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Abstract of the Dissertation

Entanglement in Valence-Bond-Solid States
and Quantum Search

by

Ying Xu

Doctor of Philosophy

in

Physics

Stony Brook University

2009

The present dissertation covers two independent subjects: i) The
quantum entanglement in Valence-Bond-Solid states, and ii) quan-
tum database search algorithms. Both subjects are presented in a
self-contained and pedagogical way.

i) The first chapter is a through introduction to the subject of quan-
tum entanglement in Valence-Bond-Solid (VBS) states defined on a
lattice or graph. The VBS state was first introduced as the ground
state of the celebrated Affleck-Kennedy-Lieb-Tasaki (AKLT) spin
chain model in statistical mechanics. Then it became essential in
condensed matter physics, quantum information and measurement-
based quantum computation. Recent studies elucidated important
entanglement properties of the VBS state. We start with the defini-
tion of a general AKLT model and the construction of VBS ground
states. A subsystem is introduced and described by the density ma-
trix. Exact spectrum properties of the density matrix are proved
and discussed. Density matrices of 1-dimensional models are diago-
nalized and the entanglement entropies (the von Neumann entropy
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and Rényi entropy) are calculated. The entropies take saturated
value and the density matrix is proportional to a projector in the
large subsystem limit.

ii) The second chapter is a detailed introduction to the subject of
quantum database search algorithms. The problem of searching a
large database (a Hilbert space) for a target item is performed by
the famous Grover algorithm which locates the target item with
probability 1 and a quadratic speed up compared with the cor-
responding classical algorithm. If the database is partitioned into
blocks and one is searching for the block containing the target item
instead of the target item itself, then the problem is referred to as
partial search. Partial search trades accuracy for speed and the
most efficient version is the Grover-Radhakrishnan-Korepin (GRK)
algorithm. The target block can be further partitioned into sub-
blocks so that GRK can be performed in a sequence called a hi-
erarchy. We formulate the Grover search and GRK partial search
and prove that a GRK hierarchy is less efficient than a direct GRK
partial search.
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Chapter 1

Entanglement in
Valence-Bond-Solid States

1.1 Introduction

The fields of statistical mechanics, condensed matter physics and quantum in-
formation theory share a common interest in the study of interacting quantum
many body systems. The concept of entanglement in quantum mechanics
has significant importance in all these areas. Roughly speaking, entangle-
ment [41] is a phenomenon of quantum mechanical nature in which quantum
states of physical systems are linked together so that one system can not be
adequately described without full mention of its counterpart, even when the
individual systems may be spatially separated. Entanglement becomes partic-
ularly interesting in a many body interacting system where a subsystem (also
a physical system by itself) may strongly correlate with its environment (other
parts of the system) in terms of observable physical properties. The correla-
tions may reject the principle of local realism, which states that information
about the state of a system can only be mediated by interactions in its im-
mediate surroundings (neighbors). The characteristic length of entanglement
may be diverging while the usual correlation length remains finite [49]. Quan-
tum entanglement is a fundamental measure of how much quantum effects we
can observe and use to control one quantum system by another, and it is the
primary resource in emerging technologies of quantum computation and quan-
tum information processing [6]. Entanglement properties play an important
role in condensed matter physics, such as phase transitions and macroscopic
properties of solids [43, 44]. At the same time, it also prompts some of the
more philosophically oriented discussions concerning quantum theory.

Much of current research seeks to elucidate quantum entanglement in a
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variety of interacting systems. Extensive research has been undertaken to
investigate quantum entanglement in strongly correlated states such as spin
chains, correlated electrons, interacting bosons as well as other models. (See
[3, 16, 17, 20, 26, 30, 31, 34, 38, 39, 42, 45, 46, 49] for reviews and refer-
ences.) A general approach studies the density matrix of a certain subsystem
of a strongly entangled state. The spectrum of the density matrix and the
derived entropy functions serve as measures of entanglement. The von Neu-
mann entropy and Rényi entropy are typical quantifications of entanglement.
These characteristic functions may depend on the physical parameters (size,
coupling constants, external fields, etc.) in various different ways. An area law
for the von Neumann entropy in harmonic lattice systems has been extensively
studied [8, 9, 28], which states that the entropy scales proportional to the size
(area) of the boundary of the subsystem. (For comparison, a classical Boltz-
mann entropy is an extensive quantity proportional to the size (volume) of the
physical system.) The entropy of the whole system vanishes if the system is
in a pure state (usually the unique ground state), but it can be positive for a
subsystem. (The density matrix of the whole system is pure but the density
matrix of a subsystem usually takes the form of mixed states.) Much insight in
understanding entanglement of quantum systems has been obtained by study-
ing exactly solvable models in statistical mechanics, in which it is possible to
solve the subsystem density matrix and calculate the entropy exactly. This
chapter is devoted to one particular model – the AKLT model.

In 1987, I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki proposed a spin
interacting model known as the AKLT model [1, 2]. The model consists of
spins on a lattice and the Hamiltonian describes interactions between near-
est neighbors. The Hamiltonian density is a linear combination of projectors.
Each projector is written as a polynomial of the inner product of a pair of inter-
acting spin vectors. The model is similar to the Heisenberg anti-ferromagnet
with a gap. The authors (AKLT) of [1, 2] found the exact ground state,
which has an exponentially-decaying correlation function and a finite energy
gap. In their early works, authors discussed the 1-dimensional AKLT lattices
with open and periodic boundary conditions and 2-dimensional models such
as the Hexagonal lattice. This model has been attracting enormous research
interests since then [10, 13, 18, 32, 33, 36]. It can be defined and solved in
higher dimensional and arbitrary lattices [2, 12, 35, 47] and generalizable to
the inhomogeneous (non-translational invariant) case (spins at different lattice
sites may take different values) and an arbitrary graph [36, 52]. Given cer-
tain conditions (as to be described later), the ground state has proven to be
unique [4, 36]. It is known as the Valence-Bond-Solid (VBS) state. The VBS
state lies at the intersection of different research fields. The Schwinger boson

2



representation of the VBS state (see (1.31)) relates to the Laughlin ansatz of
the fractional quantum Hall effect [4, 26, 29]. The Laughlin wave function
of the fractional quantum Hall effect is the VBS state on the complete graph
[24]. The VBS state illustrates ground state properties of anti-ferromagnetic
integer-spin chains with a Haldane gap [23]. In 1-dimension, the VBS state is
related to the matrix product state and deformed VBS-models were studied in
[37]. The theory of VBS state was generalized to the finitely correlated states
and essentially developed [14, 15]. In 1-dimension, the correlation functions
were obtained and studied in [15]. The entanglement of formation in VBS
state was estimated in [40]. It has been showed that the VBS state can be
used as a resource state in measurement-based quantum computation instead
of the cluster state [7]. It was proved in [48] that VBS state allows universal
quantum computation and an implementation of the AKLT Hamiltonian in
optical lattices [19] has also been proposed.

This chapter introduces some of the main results on quantum entanglement
in VBS states defined on a lattice or graph. We take a pedagogical approach,
starting with the basics of the AKLT model, construction of VBS states and
measures of entanglement. We shall consider a part (subsystem) of the system,
i.e. a block of spins. It is described completely by the reduced density matrix
of the block, which we call the density matrix later for short. The density
matrix has been studied extensively. It contains information of all correlation
functions [4, 31, 32, 50]. The entanglement properties of the VBS states has
been studied by means of the density matrix as in [10–12, 18, 32, 36, 49–52].

The chapter is divided into seven sections including a complete treatment
of 1-dimensional models:

1. A brief introduction to the topic. (§ 1.1 )

2. The construction of the general AKLT Hamiltonian, introduction of the
VBS ground state, and definition of different versions of the AKLT
model: 1) The basic model; 2) The generalized (including the inho-
mogeneous) model. Proof of the uniqueness of the VBS ground state.
(§ 1.2 )

3. The concept of quantum entanglement, introduction of the subsystem,
definition of the subsystem Hamiltonian and general properties of the
density matrix for the model defined on a graph or a lattice. Proof of
the relation between the non-zero spectrum of the density matrix and
the degenerate ground states of the block Hamiltonian. (§ 1.3 )

4. The simplest 1-dimensional basic model with spin-1. Calculation and di-
agonalization of the density matrix in an algebraic approach. Discussion
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of the entanglement entropies. (§ 1.4 )

5. The 1-dimensional homogeneous model with spin-S. Calculation and
diagonalization of the density matrix using the Schwinger representation.
Discussion of the entanglement entropies. Derivation of the relation
between the density matrix and correlation functions. (§ 1.5 )

6. The 1-dimensional inhomogeneous model treated in parallel with the
homogeneous model. (§ 1.6 )

7. Summary including some open problems. Conjecture on the density
matrix and entropies in the large block limit. (§ 1.7 )

1.2 The General AKLT Model

In the following we give the most general AKLT Hamiltonian and VBS states.
The definition applies to both graphs and arbitrary lattices.

1.2.1 The Hamiltonian

The original AKLT Hamiltonian describes a spin interacting system, in which
spins sitting at lattice sites interact with nearest neighbors. One of the most
simple versions is an (1-dimensional) open chain of N sites with spin-1 at each
site, and the Hamiltonian is given by [1]

H =
1

2

N−1∑
j=0

(
Sj · Sj+1 +

1

3
(Sj · Sj+1)2 +

2

3

)
(1.1)

This Hamiltonian (1.1) looks like the Heisenberg Hamiltonian with an extra
quadratic term (the proportionality factor 1/2 and the additive constant 2/3
are sometimes neglected which only shifts and scales the energy spectrum
as a whole), but the physical system behaves quite differently. It was later
generalized that the spin Sj at each site can take higher spin values or different
values at different site, and one could apply different boundary conditions (e.g.
a periodic boundary condition or an open boundary condition). An arbitrary
boundary condition or distribution of spin values over sites may not yield a
unique ground state (e.g. Hamiltonian (1.1) has 4-fold degenerate ground
states), and we could find the condition for the existence of a uniqueness
ground state (see § 1.2.5 and [36]). The Hamiltonian can be defined on higher
dimensional lattices (e.g. 2-dimensional square or hexagonal lattice [1, 2]) or
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an arbitrary graph (in that case we need to specify the meaning of a nearest
neighbor). All these different variations share two common features:

1. The Hamiltonian is a collection of terms with only nearest neighbor
interactions. i.e.

H =
∑
〈kl〉

H(k, l). (1.2)

Here the Hamiltonian density H(k, l) describes the interaction between
spins at lattice sites or vertices (for a graph) k and l. Only nearest
neighbor pairs 〈kl〉’s called bonds are involved in the sum in (1.2).

2. The Hamiltonian density H(k, l) is a sum of terms with each term pro-
portional to a projector. The proportionality coefficients are all positive.
i.e.

H(k, l) =
∑
J

CJ(k, l)πJ(k, l). (1.3)

Here πJ(k, l)’s are projectors and CJ(k, l)’s are positive coefficients. Note
that they may depend on the pair 〈kl〉 and the bond spin value labeled
by J (The bound spin is defined as Jkl = Sk + Sl). The meaning is
this: The spin Sk with spin value Sk at site (or vertex) k is a (2Sk +
1)-dimensional representation of the SU(2) Lie algebra, while Sl is a
(2Sl + 1)-dimensional representation. The direct product of these two
representations is reducible to a direct sum of irreducible representations
with dimensions 2J + 1 and J runs from |Sk − Sl| to Sk + Sl. The
Hilbert space ‘splits’ into these invariant subspaces labeled by J which
is called the bond spin value of Sk and Sl. (The eigenvalues of the
Casimir operator – the square of the bond spin (Sk + Sl)

2 is J(J + 1).)
The projector πJ(k, l) projects on the invariant subspace with bond spin
J . If we choose an orthonormal basis {|J,m〉 | m = −J, . . . , J} for
the subspace, such that (Sk + Sl)

2|J,m〉 = J(J + 1)|J,m〉 and (Szk +
Szl )|J,m〉 = m|J,m〉, then the projector could be written as

πJ(k, l) =
J∑

m=−J

|J,m〉〈J,m|. (1.4)

This form (1.4) is cumbersome in practical use and it is preferred to
express the projector πJ(k, l) explicitly in terms of spin operators Sk
and Sl. We shall do that in the next section (§ 1.2.2 ).
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Even without an explicit form of the projectors, an immediate consequence
of these two properties is that the Hamiltonian is positive semi-definite. 1

Furthermore, because of this, if we could construct a state |ψ〉 which has no
projection on any of the specified bond spin-J states appearing in (1.3) for
each bond, i.e. πJ(k, l)|ψ〉 = 0, ∀ 〈kl〉, then it has to be a ground state (with
energy equal to zero) regardless of the specific values of the coefficients. 2

1.2.2 The Projector

In order to complete the definition of the general AKLT Hamiltonian (1.2)
and Hamiltonian density (1.3), we have to give an explicit expression of the
projector πJ(k, l) in terms of spin operators Sk and Sl. There are two different
approaches. The forms of πJ(k, l) for a specific model such as the expression
(1.1) or those for 1-dimensional models in § 1.4 , § 1.5 and § 1.6 can be obtained
through either approach as follows.

1. The following two sets of operators, namely, the projectors

{πJ(k, l) | J = |Sk − Sl|, . . . , Sk + Sl} (1.5)

and the powers of the inner product (Sk · Sl)

{(Sk · Sl)n | n = 0, . . . , 2S<}, S< ≡ min{Sk, Sl} (1.6)

are both complete set of operators. One set is expressible in terms of the
other. In other words, they are related by a linear transform:

(Sk · Sl)n

=

(
1

2

)n [
(Sk + Sl)

2 − Sk(Sk + 1)− Sl(Sl + 1)
]n Sk+Sl∑

J=|Sk−Sl|

πJ(k, l)

=

Sk+Sl∑
J=|Sk−Sl|

(
1

2

)n
[J(J + 1)− Sk(Sk + 1)− Sl(Sl + 1)]n πJ(k, l)

(1.7)

1The Hamiltonian is essentially a sum of projectors with positive coefficients. A projector
π satisfies π2 = π. So that for an arbitrary state |ψ〉, we have 〈ψ|π|ψ〉 = 〈ψ|π2|ψ〉 =
(π|ψ〉, π|ψ〉) ≥ 0, in which (∗ , ∗) denotes an inner product.

2Some authors add or omit additive constants in the expression of projectors. e.g. in
(1.1) the constant 2/3 can be dropped. This may shift the ground state energy but does
not affect the form of the ground state because the ground state is constructed to have no
projection on the specified subspaces for every bond.
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for n = 0, . . . , 2S<. In (1.7) we have used

Sk+Sl∑
J=|Sk−Sl|

πJ(k, l) = I (1.8)

being the identity. This set of 2S< + 1 linear equations (1.7) can be
inverted, which express the projector πJ(k, l) as a polynomial of the
inner product (Sk · Sl).

2. Another approach is to realize that if an operator P(k, l) satisfies the
following condition

P(k, l)πJ ′(k, l) = δJJ ′πJ(k, l), ∀ J ′ (1.9)

then the operator P(k, l) is identified with πJ(k, l) because

P(k, l) = P(k, l)

Sk+Sl∑
J ′=|Sk−Sl|

πJ ′(k, l)

=

 Sk+Sl∑
J ′=|Sk−Sl|

δJJ ′

 πJ(k, l) = πJ(k, l). (1.10)

Therefore we could construct an operator satisfying the condition (1.9):

P(k, l) =

j 6=J∏
|Sk−Sl|≤j≤Sk+Sl

(Sk + Sl)
2 − j(j + 1)

J(J + 1)− j(j + 1)
. (1.11)

When P(k, l) acting on πJ ′(k, l), we have:

(a) If J ′ 6= J , then the numerator of one factor in the product vanishes,
so that P vanishes;

(b) If J ′ = J , all factors in the product become equal to 1, so as the
expression P .

So that (1.11) is the projector πJ(k, l). Operator πJ(k, l) = P(k, l) in
(1.11) projects the bond spin Jkl ≡ Sk + Sl on the subspace with fixed
total spin value J and |Sk − Sl| ≤ J ≤ Sk + Sl. Note that we could
expand (Sk + Sl)

2 = 2Sk · Sl + Sk(Sk + 1) + Sl(Sl + 1). Therefore
projector πJ(k, l) in (1.11) is a polynomial in the scalar product (Sk ·Sl)
of degree 2S<, where S< ≡ min{Sk, Sl} is the minimum of the two spin
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values of the same bond 〈kl〉. For example with Sk = Sl = 1, we may
have a quadratic polynomial as in (1.1):

π2(k, l) =
1

6
(Sk · Sl)2 +

1

2
(Sk · Sl) +

1

3
. (1.12)

1.2.3 The Basic AKLT Model

The Hamiltonian

Once we have the building blocks for the Hamiltonian from § 1.2.1 and § 1.2.2 ,
various types of the AKLT model can be constructed. Let us start with the
definition of the basic AKLT model on a connected graph or lattice. (Any
lattice is a special graph with periodic structure; our notations and definitions
refer to the most general). A graph consists of two types of elements, namely
vertices and edges. Every edge connects two vertices. As in Figure (1.1), a
vertex is drawn as a (large) circle and an edge is drawn as a solid line connecting
two vertices. For every pair of vertices in the connected graph, there is a walk
3 from one to the other. Vertices can also be called sites and edges sometimes
called links or bonds. In a graph, a pair of vertices connected by an edge is
regarded nearest neighbors, i.e. the terms edge, bond and nearest neighbor
are equivalent and interchangeable. (For a lattice, vertices become sites and
bonds become lattice vectors connecting nearest neighboring sites.) In the case
of a disconnected graph, the Hamiltonian (1.2) is a direct sum with respect to
connected components and the ground state is a direct product. Therefore we
shall need only to study a connected graph. Also, assuming that the graph
consists of more than one vertices to avoid the trivial case where there would
be no interaction at all.

Let us introduce mathematical notations. By Sl we shall denote the spin
operator located at vertex l with spin value Sl. In the basic model we require
that Sl = 1

2
zl, where zl is the number of incident edges connected to vertex

l, also known as the valence or coordination number (the number of nearest
neighbors of the vertex l). The relation between the spin value and coordi-
nation number must be true for any vertex l, including boundaries. This will
guarantee the uniqueness of the ground state, see § 1.2.5 . For a lattice, this
condition would also yield that bulk spins (spins not on the boundary) take
the same value 1

2
z because the number of nearest neighbors z is a constant.

In the basic model we define the Hamiltonian density H(k, l) for bond

3A walk is an alternating sequence of vertices and edges, beginning and ending with a
vertex, in which each vertex is incident to the two edges that precede and follow it in the
sequence, and the vertices that precede and follow an edge are the endvertices of that edge.

8



(edge) 〈kl〉 as

H(k, l) = C(k, l) πSk+Sl(k, l), H(k, l) ≥ 0 (1.13)

with C(k, l) an arbitrary positive real coefficient (it may depend on the bond
〈kl〉). So that the Hamiltonian density for each bond (edge) is proportional
to the projector on the subspace with the highest possible bond spin value
(Sk + Sl). The physical meaning is that interacting spins do not form the
highest possible bond spin (this will increase the energy) in the ground state.
Then the Hamiltonian according to (1.2) is

H =
∑
〈kl〉

H(k, l) =
∑
〈kl〉

C(k, l)πSk+Sl(k, l). (1.14)

Here we sum over all bonds (edges) 〈kl〉. Note that for a lattice all the highest
bond spin values for bulk spins are the same and equal to half the coordination
number z/2. For example, the basic model defined on a 2-dimensional square
lattice must have spin-2 in the bulk and π4 in the Hamiltonian; also, the
Hexagonal lattice has spin-3/2 and π3.

The VBS State – Graphical Method

The Hamiltonian (1.14) with condition

Sl =
1

2
zl (1.15)

has a unique ground state [1, 2, 4, 36] known as the Valence-Bond-Solid (VBS)
state. It can be constructed in a graphical way as follows (see Figure 1.1). Each
vertex l is represented by zl spin-1

2
’s. We associate each spin-1

2
with an incident

edge. In such a way each edge has two spin-1
2
’s at its ends. We anti-symmetrize

the spin states of these two spin-1
2
’s. So that anti-symmetrization is done along

each edge. These anti-symmetrizations ensure that there is no projection on
the highest bond spin states for every bond. Then we also symmetrize the
product of spin-1

2
’s at each vertex (each large circle in Figure 1.1). These

symmetrizations preserve the correct spin value at each vertex.
Let us write down the VBS ground state algebraically following this ap-

proach. We label the particular dot from vertex l connected with some dot
from vertex k by lk (correspondingly, that dot from vertex k is labeled by kl).
In this way we have specified a unique prescription of indices with dots. Then

9



k l

Figure 1.1: Example of a part of the graph including vertex k with zk = 3 and
vertex l with zl = 4. Black dots represent spin-1

2
states, which are enclosed by

large circles representing vertices and symmetrization of the product of spin-
1
2
’s at each vertex. Solid lines represent edges (bonds) which anti-symmetrize

the pair of connected spin-1
2
’s.

the anti-symmetrization results in the singlet state

|Φ〉kl =
1√
2

(| ↑〉lk | ↓〉kl − | ↓〉lk | ↑〉kl) , (1.16)

where | ↑〉 (or ↓〉) denotes spin up (or down) states referring to a basis. The
direct product of all these |Φ〉 singlet states corresponds to all edges (bonds)
in our Figure 1.1: ∏

〈kl〉

|Φ〉kl. (1.17)

We still have to complete the symmetrization (circles) at each vertex. We
denote the symmetrization operator of zl black dots in vertex l by P(l). The
action of P(l) on any product of zl spin-1

2
’s is

P(l)|χlk1 〉lk1 |χlk2 〉lk2 · · · |χlkzl 〉lkzl (1.18)

=

zl! terms∑
σ

|χlkσ(1)
〉lk1 |χlkσ(2)

〉lk2 · · · |χlkσ(zl)
〉lkzl , χ =↑ or ↓
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where k1, k2, . . . , kzl are the zl spin-1
2
’s (block dots) belonging to vertex l (the

index also refers to the zl vertices connected to vertex l by an edge) and σ is
a permutation of the indices:

σ =

(
1 2 · · · zl

σ(1) σ(2) · · · σ(zl)

)
. (1.19)

All permutations are summed up in (1.18). Then the symmetrization at each
vertex is carried out by taking the product

∏
l P(l) of all vertices. Finally, the

unique VBS ground state can be written as

|VBS〉 =
∏
l

P(l)
∏
〈kl〉

|Φ〉kl. (1.20)

Here the first product runs over all vertices and the second over all edges
(bonds). Note that the VBS state in (1.20) is not normalized in general. If
the coordination number zl is a constant over all vertices in the graph except
for boundaries (such as in the case of a lattice), then we would have the same
spin value at each bulk vertex. In that case the basic model is also referred to
as the homogeneous model.

1.2.4 The Generalized AKLT Model

The Hamiltonian

In the generalized AKLT model, relation (1.15) is generalized. We associate
a positive integer Mkl (Mkl ≡ Mlk) to each edge 〈kl〉 of the graph (or each
bond of a lattice). We shall call Mkl multiplicity numbers. Similar to the
basic model, the Hamiltonian describes interactions between nearest neighbors
(vertices connected by an edge):

H =
∑
〈kl〉

H(k, l). (1.21)

However, the Hamiltonian density is no longer proportional to a single projec-
tor as in (1.13) in general. Instead, it is a linear combination of projectors

H(k, l) =

Sk+Sl∑
J=Sk+Sl−Mkl+1

CJ(k, l) πJ(k, l), (1.22)

1 ≤Mkl ≤ 2S< ≡ min{Sk, Sl}.
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Projector πJ(k, l) is given by (1.11), and CJ(k, l)’s are arbitrary positive co-
efficients. So that H(k, l) projects the bond spin on the subspace with bond
spin value J greater than Sk + Sl −Mkl. Physically formation of any bond
spin higher than Sk + Sl −Mkl would increase the energy.

The condition of uniqueness of the ground state was introduced in [36]:

2Sl =
∑
k

Mkl, ∀ l. (1.23)

Here Sl is the spin value at vertex l and we sum over all edges incident to
vertex l (connected to vertex l). The Hamiltonian (1.21) has a unique ground
state if (1.23) is valid, see § 1.2.5 . The relation 2Sl = zl for the basic model
is a special case when all Mkl = 1. Also, when Mkl = 1, the Hamiltonian
density (1.22) reduces to that of the basic model (1.13). The condition (1.23)
can be put into an invariant form. Let us define a column vector S, the lth

component of which is associated with vertex l of the graph and equal to
Sl. The number of components is equal to the number of vertices N in the
whole graph. Next, we define another column vector M with its dimension
equal to the number of edges M in the graph. The kth and lth components
of this vector are associated with edge 〈kl〉 and both equal to Mkl. The most
important geometrical characteristic of the graph is the vertex-edge incidence
matrix Î (see [27]). This is a rectangular matrix with N rows and M columns.
Each row is associated with the vertex and each column is associated with the
edge. If the vertex belongs to the edge the corresponding matrix element is
equal to one, otherwise zero. Then the condition (1.23) of uniqueness can be
re-written as

2 S = Î ·M. (1.24)

For more details we refer to [36].

The VBS State – Schwinger Representation

Under condition (1.23) or (1.24), the unique ground state of Hamiltonian (1.21)
is referred to as the generalized VBS state. It is constructed by introducing
the Schwinger boson representation [4, 18, 32, 36, 50–52]. This method uses a
pair of bosonic creation and annihilation operators (similar to the treatment
of the harmonic oscillator problem) to realize the SU(2) Lie algebra.

Define a pair of independent canonical bosonic operators al and bl for each
vertex (or site) l:

[ ak , a
†
l ] = [ bk , b

†
l ] = δkl (1.25)
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with all other commutators vanishing:

[ ak , al ] = [ bk , bl ] = [ ak , bl ] = [ ak , b
†
l ] = 0, ∀ k, l. (1.26)

Spin operators are represented as

S+
l = a†l bl, S−l = b†lal, Szl =

1

2
(a†lal − b

†
l bl). (1.27)

It is straightforward to verify that the SU(2) Lie algebra is realized. To re-
produce the dimension of the spin-Sl Hilbert space at vertex l, a constraint on
the total boson occupation number is required:

Ŝl ≡
1

2
(a†lal + b†l bl) = Sl. (1.28)

i.e. any physical spin state |ψ〉l at vertex l must satisfy Ŝl|ψ〉l = Sl|ψ〉l. In this
framework the spin state |Sl,ml〉l such that S2

l |Sl,ml〉l = Sl(Sl + 1)|Sl,ml〉l
and Szl |Sl,ml〉l = ml|Sl,ml〉l is represented by

|Sl,ml〉l =
(a†l )

Sl+ml(b†l )
Sl−ml√

(Sl +ml)!(Sl −ml)!
|vac〉l, (1.29)

where the vacuum |vac〉l is annihilated by any of the annihilation operators:

al |vac〉l = bl |vac〉l = 0. (1.30)

As a result, the VBS ground state in the Schwinger representation is con-
structed as

|VBS〉 =
∏
〈kl〉

(
a†kb
†
l − b

†
ka
†
l

)Mkl

|vac〉. (1.31)

It worth mentioning that this representation shows that for a full graph (each
vertex is connected to every other vertex by definition) the VBS state coincides
with the Laughlin wave function [4, 24, 26]. In (1.31) the product runs over
all bonds (edges) and the vacuum |vac〉 is the direct product of vacuums of
each vertex

|vac〉 =
⊗
l

|vac〉l, (1.32)

which is destroyed by any annihilation operators al or bl, ∀ l. (Note that
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[ a†k , b
†
l ] = 0, ∀ k, l.)

To prove that (1.31) is the ground state we need only to verify for any
vertex l and bond (edge) 〈kl〉:

1. The total power of a†l and b†l is 2Sl, so that we have spin-Sl at vertex l;

2. The z-component of the bond spin satisfies

− 1

2
(
∑
l′ 6=l

Ml′k +
∑
k′ 6=k

Mk′l) ≤ Jzkl ≡ Szk + Szl ≤
1

2
(
∑
l′ 6=l

Ml′k +
∑
k′ 6=k

Mk′l)

(1.33)

by a binomial expansion. Consequently, the maximum value of the bond
spin Jkl is 1

2
(
∑

l′ 6=lMl′k +
∑

k′ 6=kMk′l) = Sk + Sl − Mkl (from SU(2)
invariance, see § 1.5.8 and [4]).

Therefore, the state |VBS〉 defined in (1.31) has spin-Sl at vertex l and no
projection onto the Jkl > Sk + Sl −Mkl subspace for any bond (edge). The
introduction of Schwinger bosons can be used to construct a spin coherent
state basis (as expected due to the similarity with the harmonic oscillator)
in which spins at each vertex behave as classical unit vectors, see § 1.5.1 and
[18, 32, 36, 50, 51]. The coherent state basis converts algebraic computations
into classical integrals which becomes extremely useful in later sections.

1.2.5 The Uniqueness Condition

As stated in previous sections, the condition for the existence of a unique
VBS ground state is 2Sl = zl for the basic model and 2Sl =

∑
kMkl for the

generalized model (the former being a special case of the latter). In this section
we prove the uniqueness condition, i.e. the equation

H|Ψ〉 = 0 (1.34)

with H the AKLT Hamiltonian (1.21) has exactly one solution under the
condition (1.23) or (1.24). Note that this expression (1.34) is equivalent to

πJ(k, l)|Ψ〉 = 0, ∀ 〈k, l〉, Sk + Sl −Mkl + 1 ≤ J ≤ Sk + Sl (1.35)

because of the positive semi-definiteness of every projector πJ and the positive
coefficients CJ .

In order to prove the uniqueness condition, we first prove the following
lemma.
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Lemma 1.1
All solutions of the equation

πJ(k, l)|ψ〉 = 0, Sk + Sl −Mkl + 1 ≤ J ≤ Sk + Sl (1.36)

for fixed k and l can be represented in the following form

|ψ〉 = f(a†, b†)(a†kb
†
l − a

†
l b
†
k)
Mkl|vac〉. (1.37)

Here f(a†, b†) is some polynomial in a†k, b
†
k and a†l , b

†
l . For convenience, let us

apply the Weyl representation of the SU(2) Lie algebra. Consider the space of
polynomials in pairs of variables xl and yl with coefficients in C. We represent
operator a†l as multiplication on xl and b†l as multiplication on yl. At site l we
have

S+
l = xl

∂

∂yl
, S−l = yl

∂

∂xl

2Szl = xl
∂

∂xl
− yl

∂

∂yl
, 2Ŝl = xl

∂

∂xl
+ yl

∂

∂yl
. (1.38)

A basis of the (2Sl + 1)-dimensional irreducible representation of spin-Sl can
be chosen in such a way:

VSl = {xSl+mll ySl−mll | m = −S, . . . , S}. (1.39)

These monomials with total power 2Sl are clearly eigenvectors of Szl and Ŝl.
Now let us consider the tensor product of two irreducible representations VSl⊗
VSk . Define the bond spin Jkl ≡ Sk + Sl, then

J+
kl = xk

∂

∂yk
+ xl

∂

∂yl
,

J−kl = yk
∂

∂xk
+ yl

∂

∂xl
,

2Jzkl = xk
∂

∂xk
+ xl

∂

∂xl
− yk

∂

∂yk
− yl

∂

∂yl
,

2Ĵkl = xk
∂

∂xk
+ xl

∂

∂xl
+ yk

∂

∂yk
+ yl

∂

∂yl
. (1.40)

The tensor product of irreducible representation can be reduced to a direct
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sum of irreducible representations

VSk ⊗VSl =

Sk+Sl⊕
J=|Sk−Sl|

VJ . (1.41)

Now we construct the highest vector (polynomial) vJ of irreducible represen-
tation VJ with fixed J :

J+
klvJ = 0, JzklvJ = JvJ , ĴklvJ = (Sk + Sl)vJ . (1.42)

It must have a total power 2(Sk + Sl), so that the form can be taken as

vJ =
∑

mk+ml=J

Cmkmlx
Sl+ml
l ySl−mll xSk+mk

k ySk−mkk . (1.43)

This form already satisfies the second and third equations in (1.42). After
rearranging terms (relabeling indices), the first equation of (1.42) becomes

J+
klvJ =

J−1∑
mk=0

[(Sk −mk)Cmk,J−mk + (Sl − J +mk + 1)Cmk+1,J−mk−1]

·xSk+mk+1
k ySk−mk−1

k xSl+J−mkl ySl−J+mk
l . (1.44)

Because of the linear independence of the monomials appearing in (1.44), the
coefficients must vanish, which yields the following recurrence relation

Cmk+1,J−mk−1 = − Sk −mk

Sl − J +mk + 1
Cmk,J−mk . (1.45)

The solution to (1.45) in terms of C0,J is

Cmk,J−mk =

(−1)Sk−mk
(
Sk + Sl − J
Sk −mk

)
(−1)Sk

(
Sk + Sl − J

Sk

) C0,J . (1.46)

Therefore by substituting (1.46) into (1.43) and recognizing a binomial expan-
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sion, the form of vJ is found to be

vJ =
C0,J

(−1)Sk
(
Sk + Sl − J

Sk

)xSk−Sl+Jk xSl−Sk+J
l (xkyl − xlyk)Sk+Sl−J

∝ x2Sk−M
k x2Sl−M

l (xkyl − xlyk)M , M = Sk + Sl − J. (1.47)

The over all constant factor is irrelevant. All other vectors of representation
VJ can be obtained from the highest vector vJ by applications of operator J−kl .
Notice that J−kl commutes with the factor (xkyl − xlyk)

[ J−kl , xkyl − xlyk ] = 0. (1.48)

So that all vectors of representation VJ are divisible by

(xkyl − xlyk)M , M = Sk + Sl − J. (1.49)

In other words, any vector (polynomial in xk, yk and xl, yl) in the vector space
spanned by VJ has a common factor (1.49). As a consequence, if there is no
projection on the states with bond spin values

Sk + Sl −Mkl + 1 ≤ J ≤ Sk + Sl (1.50)

after summation of spins Sk and Sl (i.e. no projection on VJ with Sk + Sl −
Mkl + 1 ≤ J ≤ Sk + Sl), then a factor

(xkyl − xlyk)Mkl (1.51)

can be isolated. i.e. Any vector in
∑Sk+Sl−Mkl

J=|Sk−Sl| VJ would have a common

factor (1.51). Moreover, this fact is independent of whether we are using
the Weyl representation or the Schwinger representation of the Lie algebra.
Therefore, any solution to (1.36) must take the form of (1.37) with the factor
(a†kb

†
l − a

†
l b
†
k)
Mkl isolated. Thus we have proved Lemma 1.1.

Now let us use Lemma 1.1 to prove the uniqueness condition (1.23) or
(1.24). Note that (1.36) is valid for each bond 〈kl〉, consequently any ground
state |Ψ〉 of the Hamiltonian satisfying (1.34) and (1.35) can be presented in
the form

|Ψ〉 =
∏
〈kl〉

F (a†, b†)(a†kb
†
l − a

†
l b
†
k)
Mkl|vac〉, (1.52)

where F (a†, b†) is some polynomial in a†’s and b†’s. Now we have to make sure
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that in (1.52) each vertex (site) should have the correct spin value. By applying
2Ŝl = (a†lal + b†l bl) to the state |Ψ〉, we realize that the explicit factor in (1.52)

contribute to 2Sl (denoting the eigenvalue of 2Ŝl) exactly the value
∑
〈kl〉Mkl

which is the sum of powers of a†l and b†l . A comparison with expression (1.23)
or (1.24) shows that if we require this condition 2Sl =

∑
〈kl〉Mkl, then each

site would already have the correct spin value with the presence in (1.52) of
the explicit factor only. Therefore the degree of the polynomial in variables
a†l and b†l is zero. This is true for every site l. Therefore the polynomial
F (a†, b†) is a constant which can be removed. So that we have proved that
the uniqueness condition (1.23) or (1.24) guarantees the existence (through
explicit construction in § 1.2.4 ) and uniqueness of an energy ground state –
the VBS state.

1.3 The Subsystem and Measures of Entan-

glement

The VBS states constructed in previous sections § 1.2.3 and § 1.2.4 as ground
states of AKLT models are highly entangled states. The quantification of
entanglement is our main subject of study.

1.3.1 The Block Density Matrix and the Block Hamil-
tonian

The Block Density Matrix and Entropies

The VBS state (see (1.20) and (1.31)) has non-trivial entanglement proper-
ties. The density matrix of the VBS state is a projector (a pure state density
matrix):

ρ =
|VBS〉〈VBS|
〈VBS|VBS〉

. (1.53)

In order to analyze the entanglement, let us cut the original graph (lattice)
into two subgraphs (sublattices) B and E. That is, we cut through some
number of edges (bonds) such that the resulting graph (or lattice) B ∪ E is
disconnected (no edge (bond) between B and E). We may call one of them,
say B, the block, and the other one E the environment. The distinction is
arbitrary and the two subsystems are equivalent in measuring entanglement.

Let us focus on the block (subsystem B). It is described by the density
matrix ρB of the block (obtained by tracing out all degrees of freedom of the

18



environment E from the density matrix ρ (1.53)):

ρB = trE [ ρ ] . (1.54)

In (1.54) and below we use subscript B for block and E for environment. After
tracing out all degrees of freedom outside the block the density matrix ρB is, in
general, a mixed state density matrix (unless the pure state density matrix ρ of
the whole system projects on a product state, which is obviously not our case
of the VBS state). Formula (1.54) is the definition of the block (subsystem)
density matrix and it satisfies all three requirements of a density matrix:

1. The trace trB [ ρB ] = 1 and hermiticity ρ†B = ρB follow immediately
from those of ρ;

2. The positive semi-definiteness is seen by picking up an arbitrary state
|ψ〉B of the block and realizing that

B〈ψ|ρB|ψ〉B = trB [ ρB|ψ〉B〈ψ| ]

= trB [ (trEρ)|ψ〉B〈ψ| ]

= tr [ ρ|ψ〉B〈ψ| ⊗ IE ] ≥ 0, (1.55)

because of the positive semi-definiteness of ρ (IE is the identity of the
environment).

The density matrix ρB is a central quantity in description of the subsystem
(block). It contains all correlation functions in the VBS ground state as matrix
entries [4, 31, 32, 50]. (The relation between elements of the density matrix
and correlation functions is given in § 1.5.9 .) It is essential in measuring the
entanglement which is our main subject.

The entanglement can be measured or quantified by the von Neumann
entropy

Sv N = −trB [ ρB lnρB ] = −
∑
λ 6=0

λ lnλ (1.56)

or the Rényi entropy

SR(α) =
1

1− α
ln {trB [ ραB ]} =

1

1− α
ln

(∑
λ 6=0

λα

)
, α > 0. (1.57)

Here λ’s are (non-zero) eigenvalues of the density matrix ρB and α is an arbi-
trary parameter. Note that the Rényi entropy can be regarded a generalization
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of the von Neumann entropy and reduces to the latter in the limit α→ 1. The
von Neumann entropy is a proper extension of the Gibbs entropy (in statistical
mechanics) and the Shannon entropy (in information theory) to the quantum
case. (The Shannon entropy measures the uncertainty associated with a clas-
sical probability distribution. Whereas in quantum case a density operator
replaces a classical distribution.) It was shown by using the Schmidt decom-
position (Section 2.5 of [41]) that non-zero eigenvalues of the density matrix
of subsystem B (block) is equal to those of the density matrix of subsystem
E (environment). So that the two subsystems are equivalent in measuring
entanglement in terms of entanglement entropies, i.e. Sv N[B] = Sv N[E] and
SR[B] = SR[E]. This fact has been used in obtaining entanglement entropies
of 1-dimensional VBS states as in [11, 32] instead of diagonalizing the density
matrix directly. We will study the entropies in detail in following sections.

The Block Hamiltonian

The AKLT block density matrix ρB possesses certain characteristic properties
which distinguish the VBS states from others. We shall show in § 1.3.3 that
the spectrum of the density matrix ρB contains a lot of zero eigenvalues. In
order to understand this and give the subsystem (block) a more complete
description, we first introduce the Hamiltonian of the subsystem (called the
block Hamiltonian).

The block Hamiltonian HB is the sum of Hamiltonian densities H(k, l) with
both k ∈ B and l ∈ B, i.e. nearest neighbor interactions (bond terms) within
the block B:

HB =
∑
〈kl〉∈B

H(k, l), k ∈ B, l ∈ B. (1.58)

Here H(k, l) is given in (1.13) for the basic model and (1.22) for the generalized
model, for k and l connected by an edge (bond). In (1.58) no cut edges are
present (boundary edges between subgraphs B and E removed). In other
words, the block Hamiltonian is the internal interactions of the subsystem B.
This Hamiltonian has degenerate ground states because uniqueness conditions
(1.15) and (1.23) are no longer valid.

Let us discuss the degeneracy of ground states of (1.58). Let us denote by
N∂B the number of vertices on the boundary ∂B of the block B. The boundary
consists of those vertices (sites) with one or more cut incident edge (bond),
see Figure 1.2. The degeneracy deg of ground states of HB is given by the
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B

Block
E

Environment

Figure 1.2: Example of the cutting for the basic model. The curved double
line represents the boundary between the two subgraphs. We have the block
B on the left and the environment E on the right. Solid lines represent edges
(bonds) while dashed lines represent cut edges (cut bonds). Each dashed line
connects two dots. All vertices in the figure belong to the boundary of B or
E because of the presence of one or more cut incident edges (dashed lines).

Katsura’s formula

deg =
∏
l∈∂B

[(∑
k∈∂E

Mkl

)
+ 1

]
, 〈kl〉 ∈ {cut edges}. (1.59)

Here ∂B denotes vertices (sites) on the boundary of the block B and ∂E are
vertices (sites) on the boundary of the environment E. In (1.59) we have
N∂B terms in the product. Formula (1.59) is valid for both the basic and
the generalized model. For the basic model all Mkl = 1, including those
corresponding to cut edges. Take, for example, a particularly simple case
that each vertex on the boundary of the block ∂B was connected to exactly
one vertex on the boundary of the environment ∂E. Then the degeneracy
deg = 2N∂B . A general proof of formula (1.59) is given in the next section
§ 1.3.2 . The subspace spanned by the degenerate ground states is called the
ground space, with the dimension given by deg in (1.59). We emphasize at
this point that the block B should contain more than one vertices, otherwise
we have a trivial case that the block Hamiltonian vanishes HB = 0 and the
whole Hilbert space become the ground space. We discuss the density matrix
for a single vertex block at the end of § 1.3.3 . The spectrum of the density
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matrix ρB is closely related to the block Hamiltonian. The density matrix is a
projector onto the ground space multiplied by another matrix. We shall prove
this statement for an arbitrary graph or lattice in § 1.3.3 .

1.3.2 The Degeneracy of Ground States

We prove Katsura’s formula (1.59) for the degeneracy of ground states of the
block Hamiltonian. The proof applies to both the basic and the generalized
models. The block Hamiltonian is defined in (1.58). Let us first look at the
uniqueness condition (1.23). (The condition (1.15) for the basic model is a
special case of this general one.) For an arbitrary vertex (site) l in the block
B, the condition can be written as

2Sl =
∑
k

Mkl =
∑
k∈B

Mkl +
∑
k∈∂E

Mkl, l ∈ B. (1.60)

Note that the sum over vertices k ∈ ∂E is outside the block B. These terms
are only present for boundary vertices l ∈ ∂B. Expression (1.60) is valid for
any vertex in the block (for a bulk vertex the last summation vanishes). Next
we define the block VBS state

|VBSNB〉 =
∏
〈kl〉∈B

(
a†kb
†
l − b

†
ka
†
l

)Mkl

|vac〉, k ∈ B, l ∈ B. (1.61)

Here edge (bond) 〈kl〉 lies completely inside the block B. Now an arbitrary
ground state of the block Hamiltonian HB takes the following form

|G〉 =

[
N∂B terms∏
l ∈ ∂B

f(a†l , b
†
l )

]
|VBSNB〉, (1.62)

where f(a†l , b
†
l ) is a polynomial (it may depend on the vertex l) in a†l and b†l and

the product runs over all boundary vertices (with the total number denoted
by N∂B). The degree of this polynomial is equal to

∑
k∈∂EMkl. (Each term

in the polynomial must have the same total power
∑

k∈∂EMkl of a†l and b†l .)
It is straightforward to verify that |G〉 in (1.62) is a ground state:

1. The power of a†l and b†l in |VBSNB〉 is
∑

k∈BMkl (see (1.61)), so that

the total power of a†l and b†l in (1.62) is
∑

k∈BMkl +
∑

k∈∂EMkl = 2Sl
according to (1.60). Therefore, we have the correct power 2Sl of the
bosonic operators a†l and b†l for each vertex l in the block B (constraint
(1.28) is satisfied);

22



2. There is no projection on any bond (edge) spin value greater than or
equal to Sk + Sl−Mkl + 1 because of the construction of the block VBS
state (1.61). (One could use the same reasoning as in § 1.2.4 ).

Therefore the degeneracy deg of the ground states of HB is equal to the number
of linearly independent states of the form (1.62). Since a†l ’s and b†l ’s are bosonic

and commute, the number of linearly independent polynomials f(a†l , a
†
l ) for

an arbitrary l is equal to its degree plus one, i.e.
(∑

k∈∂EMkl

)
+ 1, ∀ l ∈

∂B. So that the total number of linearly independent polynomials of the
form

∏N∂B terms
l ∈ ∂B f(a†l , b

†
l ) is the product of these numbers for each l ∈ ∂B.

Finally, the ground state degeneracy of the block Hamiltonian HB is (Katsura’s
formula)

deg =
∏
l∈∂B

[(∑
k∈∂E

Mkl

)
+ 1

]
. (1.63)

In the case of the basic model all Mkl = 1, formula (1.63) has a graphical
illustration, see Figure 1.2. We count the number # of all cut edges (dashed
lines) incident to one boundary vertex of the block, then add one to the number
#. The degeneracy is the product of these (#+1)’s for each boundary vertex.

1.3.3 General Properties of the Density Matrix

The reduced density matrix ρB from a VBS state has important and special
spectrum structures which are universal among AKLT models. Let us denote
by NB the number of vertices in the block B. Then the dimension dim of the
Hilbert space of the block B is equal to

∏
l(2Sl + 1) with l ∈ B, which is also

the dimension of the density matrix ρB. The value is

dim =
∏
l∈B

[zl + 1] , (1.64)

for the basic model and

dim =
∏
l∈B

 ∑
k∈(B∪∂E)

Mkl

+ 1

 , (1.65)

for the generalized model. In both expressions (1.64) and (1.65) we have NB

factors in the product. Take, for example, a particularly simple basic model in
which each vertex is connected with the same number z of vertices, including
those corresponding to boundary vertices (such as in the case of a lattice).
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Then the dimension dim = (z + 1)NB . The density matrix ρB would have
dim number of eigenvalues. However, most of the eigenvalues are vanishing
and ρB is a projector onto a much smaller subspace multiplied by another
matrix. To prove this statement, we define a support to be the subspace of
the Hilbert space of the block B with non-zero eigenvalues, i.e. it is spanned
by eigenstates of ρB with non-zero eigenvalues. The dimension of the support
is denoted by D. Then We have the following theorem on the structure of the
density matrix ρB (Assuming that the block have more than one vertices, i.e.
NB ≥ 2, so that HB is not equal to zero identically):

Theorem 1.1
The support of ρB (1.54) is a subspace of the ground space of the block

Hamiltonian HB (1.58).
To prove the theorem, we recall that H =

∑
〈kl〉∈BH(k, l) and each H(k, l)

is a sum of projectors (1.22). We have H(k, l) ≥ 0. Then the construction of
the VBS ground state (1.20) and (1.31) guarantees that there is no projection
onto the subspace with higher bond spins (J ≥ Sk + Sl −Mkl + 1) for any
bond (edge). (See § 1.2.5 for the proof.) Therefore,

H(k, l)|VBS〉 = 0, ∀ 〈kl〉. (1.66)

In particular, this is true for bonds (edges) inside the block B, i.e. both k ∈ B
and l ∈ B. Now, from the definition of ρB in (1.54), we have

H(k, l)ρB = H(k, l)trE [ ρ ]

=
H(k, l)trE [ |VBS〉〈VBS| ]

〈VBS|VBS〉

=
trE [ H(k, l)|VBS〉〈VBS| ]

〈VBS|VBS〉
= 0, k ∈ B, l ∈ B. (1.67)

In the last step of (1.67) we have used (1.66) and the fact that bond (edge) 〈kl〉
lies completely inside the block B so that H(k, l) commutes with the tracing
operation in the environment E. Equation (1.67) is true for any bond (edge)
in B, so that

HBρB =
∑
〈kl〉∈B

H(k, l)ρB = 0, k ∈ B, l ∈ B. (1.68)
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If we diagonalize the density matrix ρB

ρB =
∑
λ6=0

λ|λ〉〈λ|, (1.69)

where |λ〉 is the eigenstate corresponding to eigenvalue λ. Then (1.68) can be
re-written as

HB

∑
λ 6=0

λ|λ〉〈λ| =
∑
λ 6=0

λHB|λ〉〈λ| = 0, (1.70)

Note that {|λ〉} is a linearly independent set. Therefore the solution of (1.70)
means that

HB|λ〉 = 0, λ 6= 0. (1.71)

Expression (1.71) states that any eigenstate of ρB (with non-zero eigenvalue)
is a ground state of HB. As a result, we have proved Theorem 1.1 that the
support of ρB is a subspace of the ground space of HB, so that D ≤ deg. The
density matrix takes the form of a projector multiplied by another matrix (a
constant matrix depending on non-vanishing eigenvalues) and the projector
projects on the ground space. Also, it is clear from expressions (1.59) and
(1.64), (1.65) that deg ≤ dim (∂B ⊆ B so that N∂B ≤ NB). Usually, deg is
much smaller than dim because the former involves only contributions from
boundary vertices (sites) of the block while the latter also involves contribu-
tions from all bulk vertices (sites). Then as a corollary of Theorem 1.1, we
have

D ≤ deg ≤ dim. (1.72)

If the block B consists of only one vertex with a spin-S, then we conjecture
that it is in the maximally entangled state. The support has dimension D =
2S + 1.

1.4 The 1–Dimensional Spin–1 Basic Model

One of the most simple models is defined on a 1-dimensional lattice with spin-
1’s in the bulk and spin-1/2’s at both ends. We shall denote by Sj the vector

25



spin operator at site j (j = 0, 1, . . . , N + 1). The Hamiltonian is

H =
1

2

N−1∑
j=1

(
Sj · Sj+1 +

1

3
(Sj · Sj+1)2 +

2

3

)
+ π 3

2
(0, 1) + π 3

2
(N,N + 1).

(1.73)

Each bulk term is a projector π2 onto the states with bond spin-2. The bound-
ary terms π 3

2
describe interactions of a spin-1/2 on the boundary and a spin-1

in the bulk. Each term is a projector onto the states with bond spin-3/2:

π 3
2
(0, 1) =

2

3
(1 + S0 · S1) , π 3

2
(N,N + 1) =

2

3
(1 + SN · SN+1) . (1.74)

The choice of boundary terms guarantees the uniqueness of the ground state.
As mentioned before, if we have spin-1 at every site in (1.73) instead, the
ground state would become 4-fold degenerate.

1.4.1 The VBS Ground State

Given the Hamiltonian (1.73), we are going to use the graphical method (see
§ 1.2.3 ) to construct the unique VBS ground state. In order to represent the
state, we first introduce the following notation for convenience [11]:

|α〉 ≡ (−1)1+δα,0I ⊗ σα|0〉, α = 0, 1, 2, 3 (1.75)

where σ0 ≡ I (2-dimensional identity), σα=1,2,3 are standard Pauli matrices and
|0〉 ≡ −1√

2
(| ↑↓〉 − | ↓↑〉) is the singlet state (antisymmetric projection) of two

spin-1/2’s. (It corresponds to the antisymmetrized state |Φ〉 in § 1.2.3 .) These
four states (1.75) (called maximally entangled states) form an orthonormal
basis of the Hilbert space of two spin-1/2 operators.

The spin-1 state at each site is represented by a symmetric projection of
two spin-1/2 states given by (1.75) for α = 1, 2, 3. Let us take the jth site for
example, see Figure 1.3. The two spin-1/2’s are labeled by (j, j̄) (from left to
right, respectively). Then the spin-1 states are prepared by projecting these
two spin-1/2’s (4-dimensional space) onto a symmetric 3-dimensional subspace
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j j1j1j0 11 NN N1

Figure 1.3: Graphical representation of the VSB ground state for the 1-
dimensional spin-1 model: Each spin-1 is realized by a pair of spin-1

2
’s which

are represented by small black dots in the figure. The pair of spin-1
2

states at
site j are labeled j, j̄. The solid lines connecting two neighboring dots (j̄ and
j + 1) represent anti-symmetrization of two spin-1

2
’s; The large circles enclos-

ing two dots (j and j̄) represent symmetrization at each site. The boundary
spin-1

2
’s are labeled 0̄ and N + 1 in consistency with the prescription.

spanned by

|1〉jj̄ =
1√
2

(| ↑〉j| ↑〉j̄ − | ↓〉j| ↓〉j̄),

|2〉jj̄ =
−i√

2
(| ↑〉j| ↑〉j̄ + | ↓〉j| ↓〉j̄),

|3〉jj̄ =
−1√

2
(| ↑〉j| ↓〉j̄ + | ↓〉j| ↑〉j̄). (1.76)

Thus the two ending spin-1/2’s are labeled as site 0̄ and N + 1, consistently
(Figure 1.3). The unique VBS ground state in this representation is [1, 2, 11]

|VBS〉 =

(
N⊗
j=1

Pjj̄

)
|0〉0̄1|0〉1̄2 · · · |0〉N̄N+1. (1.77)

Here Pjj̄ projects two spin-1/2 states onto a symmetric subspace, which de-
scribes spin-1. Using basis (1.75), we have

Pjj̄ =
3∑

α=1

|α〉jj̄〈α|. (1.78)

This projector Pjj̄ serves the same purpose as the symmetrization operator
P(l) in § 1.2.3 and their results acting on a product state of spin-1

2
’s only differ

by a normalization. We use the projector Pjj̄ for convenience here.
A crucial step (see [11]) is that the ground state (1.77) can be expressed in
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a different form using the following identity

|0〉ĀB|0〉B̄C =
−1

2

3∑
α=0

|α〉BB̄ [IĀ ⊗ (σα)C ] |0〉ĀC (1.79)

for arbitrary labels (indices) A, B and C. This identity (1.79) can be verified
by direct calculation and comparison. Repeatedly using relation (1.79), the
product of |0〉’s in (1.77) can be re-written as

|0〉0̄1|0〉1̄2 · · · |0〉N̄N+1 (1.80)

=

(
−1

2

)N 3∑
α1,··· ,αN=0

|α1〉 · · · |αN〉
[
I0̄ ⊗ (σαN · · ·σα1)N+1

]
|0〉0̄N+1.

Then by projecting onto the symmetric subspace spanned by |α = 1, 2, 3〉, the
ground VBS state (1.77) takes the form [15, 49]

|VBS〉 =
1

3N/2

3∑
α1,··· ,αN=1

|α1〉 · · · |αN〉
[
I0̄ ⊗ (σαN · · ·σα1)N+1

]
|0〉0̄N+1. (1.81)

Note that this ground state (1.81) is normalized and we have re-written the
overall phase for it has no physical content.

1.4.2 The Block Density Matrix

Given the ground state in the form (1.81), we obtain the density matrix of a
block of L contiguous bulk spins starting at site k by tracing out spin degrees
of freedom outside the block using basis (1.75):

ρL ≡ tr0̄,1,...,k−1,k+L,...,N,N+1 [ |VBS〉〈VBS| ] . (1.82)

(Note that we use subscript L to emphasize the dependence of the density
matrix on the size of the block instead of using the general B as representing
‘block’.) In taking the partial trace, we will encounter the following expression
in calculation

In =
3∑

σα1 ,··· ,σαn=1

I ⊗ (σαn · · ·σα1) |0〉〈0| I ⊗ (σα1 · · ·σαn) , n ≥ 1 (1.83)
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given I0 = |0〉〈0|. To solve this (1.83), we introduce iterative coefficients An
and Bn and write

In = An|0〉〈0|+Bn

3∑
β=1

|β〉〈β|, n ≥ 1. (1.84)

Then from (1.83) we could write down the expression of In+1 in terms of An
and Bn. Comparison of coefficients yields the following iteration relation

An+1 = 3Bn, Bn+1 = An + 2Bn, n ≥ 1 (1.85)

with A0 = 1 and B0 = 0. The solution to (1.85) is

An =
1

4
(3n + 3(−1)n) , Bn =

1

4
(3n − (−1)n) . (1.86)

As a result, we have found that

In =
1

4
(3n + 3(−1)n) |0〉〈0|+ 1

4
(3n − (−1)n)

3∑
β=1

|β〉〈β|. (1.87)

Using (1.87), it is straightforward to take the partial trace in (1.82). The
result is independent of the starting site k and the total length N (see [11]).
(So that the density matrix is translational invariant though the whole spin
chain Hamiltonian does not have complete translational invariance because of
the boundary conditions.) We choose k = 1 (i.e. re-label the indices of sites
for notational convenience) so that the density matrix reads [11]

ρL =
1

3L

3∑
α,α′=1

|α1〉〈α′1| · · · |αL〉〈α′L|〈0|I ⊗ (σα′1 · · · σα′L)I ⊗ (σαL · · ·σα1)|0〉.

(1.88)

1.4.3 Ground States of the Block Hamiltonian

The block in 1-dimension is L contiguous bulk spins. The block Hamiltonian
HB by definition (1.58) reads

HB =
1

2

L−1∑
j=1

(
Sj · Sj+1 +

1

3
(Sj · Sj+1)2 +

2

3

)
. (1.89)
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Any linear combination of states of the following form

|G;χ1, χL̄〉 ≡

(
L⊗
j=1

Pjj̄

)
|χ1〉1|0〉1̄2|0〉2̄3 · · · |0〉L−1L|χL̄〉L̄ (1.90)

is a ground state of the block Hamiltonian (1.89). In (1.90) we have made
notation |χ〉 ≡ | ↑ or ↓〉 represents the two spin-1/2 states and Pjj̄ is defined
in (1.78). Let us make a particular linear combination of these |G;χ1, χL̄〉
states using (1.75) and write the four (α = 0, 1, 2, 3) linearly independent
ground states of the block Hamiltonian (1.89) as follows

|VBS;α〉 ≡

(
L⊗
j=1

Pjj̄

)
|α〉L̄1|0〉1̄2|0〉2̄3 · · · |0〉L−1L. (1.91)

Note that we have changed the label G to VBS and these 4 states in (1.91)
are called degenerate VBS states. Now we go through the same steps as from
(1.77) to (1.81), the resultant form of the four ground states (α = 0, 1, 2, 3) is

|VBS;α〉 =
3∑

α1,··· ,αL=1

|α1〉 · · · |αL〉 〈αL|σα ⊗
(
σαL−1

· · ·σα1

)
|0〉. (1.92)

Again we have re-written the overall phase for simplicity. These four states
are orthogonal, and the normalization is given by (the calculation is similar to
that of An and Bn in (1.85))

〈VBS;α|VBS;α〉 =


1
4
(3L + 3(−1)L), α = 0;

1
4
(3L − (−1)L), α = 1, 2, 3.

(1.93)

1.4.4 Spectrum of the Density Matrix

According to Theorem 1.1, the eigenvectors corresponding to non-zero eigen-
values of the density matrix (1.88) are degenerate ground states of the block
Hamiltonian (1.89). These are exactly the degenerate VBS states found in
(1.92). Let us apply ρL to |VBS;α〉 and use orthogonality of the |α〉 states.
Then we obtain

ρL|VBS;α〉 =
1

3L

3∑
α1,··· ,αL=1

|α1〉 · · · |αL〉 Cα1···αL (1.94)
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with coefficient

Cα1···αL =
3∑

α′1,··· ,α′L=1

〈α′L|σα ⊗ (σα′L−1
· · ·σα′1)|0〉 (1.95)

·〈0|I ⊗ (σα′1 · · ·σα′L)I ⊗ (σαL · · · σα1)|0〉.

Using the same method of induction as in obtaining An and Bn in (1.85), we
have

3∑
α′1,··· ,α′L−1=1

(I ⊗ σα′L−1
· · · σα′1)|0〉〈0|(I ⊗ σα′1 · · ·σα′L−1

) =
3∑

β=0

Aβ|β〉〈β| (1.96)

with

Aβ =


1
4
(3L−1 + 3(−1)L−1), β = 0;

1
4
(3L−1 − (−1)L−1), β = 1, 2, 3.

(1.97)

Therefore the coefficient Cα1···αL defined in (1.95) can be simplified as

Cα1···αL =
3∑

α′L=1,β=0

Aβ〈α′L|σα ⊗ I|β〉〈β|I ⊗ (σα′LσαL)I ⊗ (σαL−1
· · ·σα1)|0〉.

(1.98)

Straightforward calculation using multiplication rules of Pauli matrices shows
that (1.98) can be further simplified as

Cα1···αL = 3A1δα,0〈αL|I ⊗ (σαL−1
· · ·σα1)|0〉 (1.99)

+(A0 + 2A1)(1− δα,0)(δααL〈0| − i
3∑

β=1

εααLβ〈β|)I ⊗ (σαL−1
· · ·σα1)|0〉

where εααLβ is the totally antisymmetric tensor of three indices with ε123 = 1.
By realizing that

δααL〈0| − i
3∑

β=1

εααLβ〈β| = 〈0|σαLσα ⊗ I = 〈αL|σα ⊗ I, (1.100)
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we have reached the final form of the coefficient Cα1···αL such that

Cα1···αL = [3A1δα,0 + (A0 + 2A1)(1− δα,0)] 〈αL|σα ⊗ (σαL−1
· · ·σα1)|0〉.

(1.101)

As a result, we plug (1.101) into (1.94) and find that

ρL|VBS;α〉 =
3A1δα,0 + (A0 + 2A1)(1− δα,0)

3L
(1.102)

·
3∑

α1,··· ,αL=1

|α1〉 · · · |αL〉〈αL|σα ⊗ (σαL−1
· · · σα1)|0〉.

By comparing with (1.92), we find that (1.102) is exactly the statement that
|VBS;α〉 (α = 0, 1, 2, 3) are eigenvectors of the density matrix ρL:

ρL|VBS;α〉 = Λα|VBS;α〉, α = 0, 1, 2, 3 (1.103)

with eigenvalues

Λα =
3A1δα,0 + (A0 + 2A1)(1− δα,0)

3L
=


1
4
(1 + 3(−1

3
)L), α = 0;

1
4
(1− (−1

3
)L), α = 1, 2, 3.

(1.104)

These numbers obtained in (1.104) are exactly the eigenvalues found in [11, 32]
for spin-1, and are consistent with our later explicit expression for eigenvalues
in the more general case, see (1.186) in § 1.5.6 .

We can also prove explicitly that any other eigenvectors of ρL orthogonal
to the set {|VBS;α〉} have zero eigenvalue. Note that a complete basis of the
Hilbert space HL of the block of spins can be chosen as

{|α1〉 · · · |αL〉}, α = 1, 2, 3. (1.105)

The subspace HΛ with non-zero eigenvalues is panned by {|VBS;α〉}, as we
have already shown. The Hilbert space can be reduced into a direct sum

HL = HΛ ⊕HΦ. (1.106)

We will show that the subspace HΦ orthogonal to HΛ is a subspace of vanishing
eigenvalues. Mathematically, this means that for an arbitrary basis vector
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|β1〉 · · · |βL〉, we shall have

ρL(IL −PΛ)|β1〉 · · · |βL〉 = 0, (1.107)

where IL is the identity of HL and PΛ is the projector onto HΛ:

IL ≡
3∑

α1,··· ,αL=1

|α1〉 · · · |αL〉〈α1| · · · 〈αL|,

PΛ ≡
3∑

α=1

|VBS;α〉〈VBS;α|
〈VBS;α|VBS;α〉

. (1.108)

By taking expressions (1.88), (1.108), (1.103), and realizing that

3∑
α=0

3LΛα

〈VBS;α|VBS;α〉
|α〉〈α| =

3∑
α=0

|α〉〈α| = I ⊗ I, (1.109)

we find the left hand side of (1.107) being equal to

ρL(IL −PΛ)|β1〉 · · · |βL〉 (1.110)

=
1

3L

3∑
α1···αL=1

|α1〉 · · · |αL〉 〈0|[I ⊗ (σβ1 · · ·σβL), I ⊗ (σαL · · · σα1)]|0〉.

We use multiplication rules of Pauli matrices to write the two terms within
the commutator in (1.110) as

I ⊗ (σβ1 · · · σβL) = eiθ(β)I ⊗ σβ, β = 0, 1, 2, 3;

I ⊗ (σαL · · ·σα1) = eiθ(α)I ⊗ σα, α = 0, 1, 2, 3. (1.111)

Here eiθ(β) and eiθ(α) are two phase factors. Then the commutator is

[I ⊗ (σβ1 · · ·σβL), I ⊗ (σαL · · ·σα1)] = ei(θ(β)+θ(α))I ⊗ [σβ, σα]. (1.112)

There are two possibilities:

1. α = β or at least one of the two is equal to zero, then σβ and σα
commutes;

2. α 6= β 6= 0, then [σβ, σα] = 2i
∑3

γ=1 εβαγσγ, but we still have 〈0|I ⊗
σγ|0〉 = 〈0|γ〉 = 0.

Therefore, the factor 〈0|[I⊗(σβ1 · · ·σβL), I⊗(σαL · · · σα1)]|0〉 in (1.110) is iden-
tically zero. So that we have proved (1.107). Therefore HΦ is a subspace with
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only zero eigenvalues.

1.4.5 The Large Block Limit

It is interesting to study the large block limit that L → ∞. We recognized
from (1.104) that all four eigenvalues approach the same limit

Λα =
1

4
, L→∞. (1.113)

As a result, the von Neumann entropy coincides with the Rényi entropy in the
numerical value and both equal to

Sv N = SR(α) = 2 ln 2, L→∞. (1.114)

The limiting density matrix ρL is proportional to the projector PΛ (1.108)
which projects on the 4-degenerate ground states (the ground space) of the
block Hamiltonian, i.e.

ρL =
1

4
PΛ, L→∞. (1.115)

1.5 The 1-dimensional Spin-S Homogeneous

Model

In 1-dimension, if all bulk spins take the same value S, the model is called
the homogeneous model. The system consists of a linear chain of N spin-S’s
in the bulk, and two spin-1

2
S’s on the boundaries. Let Sj denotes the vector

spin operator at site j (j = 0, 1, . . . , N + 1). The Hamiltonian is

H =
N−1∑
j=1

2S∑
J=S+1

CJ(j, j + 1)πJ(j, j + 1) +H(0, 1) +H(N,N + 1), (1.116)

where the projector πJ(j, j + 1) projects the bond spin J j,j+1 ≡ Sj + Sj+1

onto the subspace with total spin J (J = S+ 1, . . . , 2S). Physically formation
of bond spins with these values would increase energy. The boundary terms
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describe interactions between a spin-S/2 and a spin-S:

H(0, 1) =

3S/2∑
J=S/2+1

CJ(0, 1)πJ(0, 1),

H(N,N + 1) =

3S/2∑
J=S/2+1

CJ(N,N + 1)πJ(N,N + 1). (1.117)

Coefficients CJ(j, j + 1) can take arbitrary positive values. This model is
a special case of the generalized model in 1-dimension with all multiplicity
number Mj,j+1 = S.

1.5.1 The VBS ground State

The Construction of VBS State

According to the general approach in § 1.2.4 , the unique VBS ground state of
the Hamiltonian (1.116) is constructed in the Schwinger representation as [4]

|VBS〉 ≡
N∏
j=0

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
|vac〉, (1.118)

where a†, b† are bosonic creation operators and |vac〉 is destroyed by any of
the annihilation operators a, b. Recall that these operators satisfy [ai, a

†
j] =

[bi, b
†
j] = δij with all other commutators vanishing. The spin operators are

represented as S+
j = a†jbj, S

−
j = b†jaj, S

z
j = (a†jaj − b

†
jbj)/2. To reproduce the

dimension of the spin-S Hilbert space at each site, an additional constraint on
the total boson occupation number is required, namely (a†jaj + b†jbj)/2 = S.
More details and properties of the VBS state in the Schwinger representation
can be found in § 1.2.4 and [4, 5, 36]. The pure state density matrix of the
VBS ground state (1.118) is

ρ =
|VBS〉〈VBS|
〈VBS|VBS〉

. (1.119)

We will discuss the normalization 〈VBS|VBS〉 of the VBS state after intro-
ducing the coherent state basis.
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The Coherent State Basis

In order to calculate the normalization of the VBS state (1.118) and later the
density matrix of the block, it is convenient to introduce a spin coherent state
basis. We first introduce spinor coordinates

(u, v) ≡
(

cos
θ

2
eiφ

2 , sin
θ

2
e−iφ

2

)
, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (1.120)

Then for a point Ω̂ ≡ (sin θ cosφ, sin θ sinφ, cos θ) on the unit sphere, the
spin-S coherent state is defined as

|Ω̂〉 ≡
(
ua† + vb†

)2S√
(2S)!

|vac〉. (1.121)

Here we have fixed the overall phase (a U(1) gauge degree of freedom) since it
has no physical content. Note that (1.121) is covariant under SU(2) transforms
(see § 1.5.8 ). The set of coherent states is complete (but not orthogonal) such
that [18]

2S + 1

4π

∫
dΩ̂|Ω̂〉〈Ω̂| =

S∑
m=−S

|S,m〉〈S,m| = I2S+1, (1.122)

where |S,m〉 denote the eigenstate of S2 and Sz, and I2S+1 is the identity of
the (2S+1)-dimensional Hilbert space for spin-S. To prove (1.122), we expand
the expression (1.121) (see also (1.29))

|Ω̂〉 =
S∑

m=−S

√
(2S)!

(S +m)!(S −m)!
uS+mvS−m|S,m〉. (1.123)

Then, by substituting (1.123) into (1.122) and realizing that∫
dΩ̂ uS+mvS−mu∗S+m′v∗S−m

′
=

(S +m)!(S −m)!

(2S + 1)!
4πδmm′ , (1.124)

the completeness relation (1.122) is then established. This relation (1.122) can
be used in taking trace of an arbitrary operator.
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Normalization of the VBS State

The VBS state |VBS〉 defined in (1.118) is not normalized. Using the coherent
state formalism (1.121) and the completeness relation (1.122), we express the
norm square as

〈VBS|VBS〉 (1.125)

=

[
(S + 1)!

4π

]2 [
(2S + 1)!

4π

]N ∫ (N+1∏
j=0

dΩ̂j

)
N∏
j=0

[
1

2
(1− Ω̂j · Ω̂j+1)

]S
where we have used

〈0|aS+lbS−l|Ω̂〉 =
√

(2S)! uS+lvS−l. (1.126)

In order to carry out the integral in (1.125), we consider the expansion of the

function
[

1
2
(1− x)

]S
in terms of Legendre polynomials Pl(x) = 1

2ll!

(
d

dx

)l
(x2−

1)l as follows [
1

2
(1− x)

]S
=

S∑
l=0

ClPl(x). (1.127)

The coefficient Cl is derived by using the orthogonality of Pl and repeatedly
integrating by parts

Cl =
2l + 1

2

∫ 1

−1

dxPl(x)

[
1

2
(1− x)

]S
=

2l + 1

2

∫ 1

−1

dx
1

2ll!

(
d

dx

)l
(x2 − 1)l

[
1

2
(1− x)

]S
=

(2l + 1)S!

2S+l+1l!(S − l)!

∫ 1

−1

dx(x2 − 1)l(1− x)S−l

=
(−1)l(2l + 1)S!

2S+l+1l!(S − l)!

∫ 1

−1

dx(1− x)S(1 + x)l

=
(−1)l(2l + 1)S!S!

(S − l)!(S + l + 1)!
. (1.128)

Having expansion coefficients (1.128) and by replacing x with Ω̂j · Ω̂j+1, the

factor
[

1
2
(1− Ω̂j · Ω̂j+1)

]S
under the integral of (1.125) can be expanded in

terms of Legendre polynomials and further in terms of spherical harmonics by
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further using

Pl(Ω̂j · Ω̂j+1) =
4π

2l + 1

l∑
m=−l

Ylm(Ω̂j)Y
∗
lm(Ω̂j+1). (1.129)

The final result is [18, 32][
1

2
(1− Ω̂j · Ω̂j+1)

]S
=

1

S + 1

S∑
l=0

(2l + 1)λ(l, S)Pl(Ω̂j · Ω̂j+1)

=
4π

S + 1

S∑
l=0

λ(l, S)
l∑

m=−l

Ylm(Ω̂j)Y
∗
lm(Ω̂j+1) (1.130)

with coefficients λ(l, S) given by

λ(l, S) ≡ (−1)lS!(S + 1)!

(S − l)!(S + l + 1)!
. (1.131)

Now we expand
[

1
2
(1− Ω̂j · Ω̂j+1)

]S
in terms of spherical harmonics as in

(1.130), then integrate from Ω̂0 to Ω̂N+1. We notice by using the orthogo-
nality of spherical harmonics that each integral contributes a factor of 4π

S+1

except the last one. For example,∫
dΩ̂0

[
1

2
(1− Ω̂0 · Ω̂1)

]S
=

4π

S + 1

S∑
l=0

λ(l, S)
l∑

m=−l

√
4π Y ∗lm(Ω̂1)

∫
dΩ̂0Ylm(Ω̂0)Y ∗00(Ω̂0)

=
4π

S + 1

√
4π Y ∗00(Ω̂1) =

4π

S + 1
. (1.132)

The last integral over Ω̂N+1 contributes simply a factor of 4π. Consequently,
the norm square (1.125) is equal to

〈VBS|VBS〉 =

[
(2S + 1)!

S + 1

]N
S!(S + 1)!. (1.133)
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1.5.2 The Block Density Matrix

We take a block of L contiguous bulk spins as a subsystem. Now we calcu-
late the block density matrix in the VBS state (1.118). By definition, this is
achieved by taking the pure state density matrix (1.119) and tracing out all
spin degrees of freedom outside the block:

ρL ≡ tr0,1,...,k−1,k+L,...,N,N+1 [ ρ ] , 1 ≤ k, k + L− 1 ≤ N. (1.134)

Here the block of length L starts from site k and ends at site k+L−1. ρL is no
longer a pure state density matrix because of entanglement of the block with
the environment (sites outside the block of the spin chain). It was shown in
[31, 50] that entries of the density matrix are multi-point correlation functions
in the ground state. We give the proof of this statement for our spin-S case
in § 1.5.9 .

Using the coherent state basis (1.121) and completeness relation (1.122),
ρL can be written as [32]

ρL = (1.135)∫ [k−1∏
j=0

N+1∏
j=k+L

dΩ̂j

]
k−2∏
j=0

N∏
j=k+L

[
1

2
(1− Ω̂j · Ω̂j+1)

]S
B†|VBSL〉〈VBSL|B

[
(2S + 1)!

4π

]L ∫ [N+1∏
j=0

dΩ̂j

]
N∏
j=0

[
1

2
(1− Ω̂j · Ω̂j+1)

]S .

Here the boundary operator B and block VBS state |VBSL〉 are defined as

B ≡ (uk−1bk − vk−1ak)
S (ak+L−1vk+L − bk+L−1uk+L)S , (1.136)

|VBSL〉 ≡
k+L−2∏
j=k

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
|vac〉, (1.137)

respectively. Note that both B and |VBSL〉 are SU(2) covariant (see § 1.5.8 ).
The expression (1.135) can be simplified. We can perform the integrals over Ω̂j

(j = 0, 1, . . . , k− 2, k+L+ 1, . . . , N,N + 1) in the numerator and all integrals
in the denominator (see § 1.5.1 ). After integrating over these variables, the
density matrix ρL turns out to be independent of both the starting site k and
the total length N of the spin chain. This property has been proved in [11] for
spin S = 1 (using a different representation, namely the maximally entangled
states, see § 1.4.2 ) and generalized in [32] for generic spin-S. Therefore, we
can choose k = 1 (a relabeling for convenience) and the density matrix takes
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the form

ρL =

[
S + 1

(2S + 1)!

]L
(S + 1)

(4π)2

∫
dΩ̂0dΩ̂L+1B

†|VBSL〉〈VBSL|B (1.138)

with

B† =
(
u∗0b
†
1 − v∗0a

†
1

)S (
a†Lv

∗
L+1 − b

†
Lu
∗
L+1

)S
, (1.139)

|VBSL〉 =
L−1∏
j=1

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
|vac〉. (1.140)

The state |VBSL〉 is called the block VBS state. The last two integral of
(1.138) can be performed, but we keep its present form for later use.

1.5.3 Ground States of the Block Hamiltonian

Degenerate Ground States

In order to describe the eigenvectors and spectrum of the density matrix
(1.138), we first study the zero-energy ground states of the block Hamilto-
nian. The block Hamiltonian is a collection of interacting terms within the
block, i.e.

HB =
L−1∑
j=1

2S∑
J=S+1

CJπJ(j, j + 1). (1.141)

Now we define a set of S + 1 operators covariant under SU(2) (see § 1.5.8 )

A†J ≡
(
ua†1 + vb†1

)J (
a†1b
†
L − b

†
1a
†
L

)S−J (
ua†L + vb†L

)J
, 0 ≤ J ≤ S. (1.142)

These operators act on the direct product of Hilbert spaces of spins at site 1
and site L. Then the set of ground states of (1.141) can be chosen as

|G; J, Ω̂〉 ≡ A†J |VBSL〉, J = 0, . . . , S. (1.143)

Any state |G; J, Ω̂〉 of this set for fixed J and Ω̂ is a zero-energy ground state
of (1.141). To prove this we need only to verify:

1. The total power of a†1 and b†1 is 2S, so that we have spin-S at the first
site;
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2. The bond spin value satisfies −S ≤ Jz1,2 ≡ Sz1 + Sz2 ≤ S by a binomial
expansion, so that the maximum value of the bond spin J1,2 is S (from
SU(2) invariance, see § 1.5.8 and [4]).

These properties are true for any other site j and bond 〈j, j+ 1〉, respectively.
Therefore, the state |G; J, Ω̂〉 defined in (1.143) has spin-S at each site and no
projection onto the Jj,j+1 > S subspace for any bond.

Degenerate VBS States

The set of states {|G; J, Ω̂〉} depend on a discrete parameter J as well as a
continuous unit vector Ω̂. States with the same J value are not mutually
orthogonal. It is possible also to introduce an orthogonal basis in description
of the degenerate zero-energy ground states. This new basis could be used
in determining the rank and the completeness of the set {|G; J, Ω̂〉}. For
notational convenience, we define

XJM ≡
uJ+MvJ−M√

(J +M)!(J −M)!
, ψ†Sm ≡

(a†)S+m(b†)S−m√
(S +m)!(S −m)!

. (1.144)

These two variables transform conjugately with respect to one another under
SU(2). (See § 1.5.8 for more details of transformation properties.) Variable
XJM has the following orthogonality relation∫

dΩ̂X∗JMXJM ′ =
4π

(2J + 1)!
δMM ′ . (1.145)

Operator ψ†Sm is a spin state creation operator such that

ψ†Sm|vac〉 = |S,m〉. (1.146)

With the introduction of these variables (1.144), the operator A†J defined in
(1.142) can be expanded as (see Chapter 9 of [25])

A†J =

√
(S + J + 1)!(S − J)!J !J !

2J + 1
(1.147)

·
J∑

M=−J

XJM

m1+mL=M∑
m1,mL

(S/2,m1;S/2,m2|J,M) ψ†S/2,m1
⊗ ψ†S/2,mL ,

where (S/2,m1;S/2,m2|J,M) are the Clebsch-Gordan coefficients. Note that
ψ†S/2,m1

and ψ†S/2,mL are defined in the Hilbert spaces of spins at site 1 and site
L, respectively. We realize that the particular form of the sum over m1 and
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mL in (1.147) can be identified as a single spin state creation operator

Ψ†JM ≡
m1+mL=M∑
m1,mL

(S/2,m1;S/2,m2|J,M) ψ†S/2,m1
⊗ ψ†S/2,mL . (1.148)

This operator Ψ†JM acts on the direct product of two Hilbert spaces of spins
at site 1 and site L. It has the property that

Ψ†JM |vac〉1 ⊗ |vac〉L = |J,M〉1,L. (1.149)

If we define a set of degenerate VBS states {|VBSL(J,M)〉} such that

|VBSL(J,M)〉 ≡ Ψ†JM |VBSL〉, J = 0, ..., S, M = −J, ..., J, (1.150)

then these (S + 1)2 states (1.150) are not only linearly independent but also
mutually orthogonal.

The Orthogonality

To show the orthogonality of the degenerate VBS states (1.150), it is conve-
nient to introduce the total spin operators of the subsystem (block):

S+
tot =

L∑
j=1

a†jbj, S−tot =
L∑
j=1

b†jaj, Sztot =
1

2

L∑
j=1

(a†jaj − b
†
jbj). (1.151)

First we show that the set of operators {S+
tot, S

−
tot, S

z
tot} commute with the

product of valence bonds, i.e.

[S±tot,
L−1∏
j=1

(a†jb
†
j+1 − b

†
ja
†
j+1)S] = 0, [Sztot,

L−1∏
j=1

(a†jb
†
j+1 − b

†
ja
†
j+1)S] = 0. (1.152)
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These commutation relations (1.152) can be shown in similar ways. Take the
commutator with S+

tot first. We re-write the commutator as

[S+
tot,

L−1∏
j=1

(a†jb
†
j+1 − b

†
ja
†
j+1)S] (1.153)

=
L−1∑
j=1

(a†1b
†
2 − b

†
1a
†
2)S · · · [S+

tot, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S] · · · (a†L−1b

†
L − b

†
L−1a

†
L)S

=
L−1∑
j=1

(a†1b
†
2 − b

†
1a
†
2)S · · · [S+

j + S+
j+1, (a

†
jb
†
j+1 − b

†
ja
†
j+1)S] · · ·

· · · (a†L−1b
†
L − b

†
L−1a

†
L)S.

Then using commutators [ai, a
†
j] = δij and [bi, b

†
j] = δij, we find that

[S+
j + S+

j+1, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S]

= [a†jbj + a†j+1bj+1, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S]

= a†j[bj, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S] + a†j+1[bj+1, (a

†
jb
†
j+1 − b

†
ja
†
j+1)S]

= a†j(−S)a†j+1(a†jb
†
j+1 − b

†
ja
†
j+1)S−1 + a†j+1Sa

†
j(a
†
jb
†
j+1 − b

†
ja
†
j+1)S−1

= 0. (1.154)

Therefore [S+
tot,
∏L−1

j=1 (a†jb
†
j+1 − b

†
ja
†
j+1)S] = 0. In (1.154) we have used

[bj, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S] = −Sa†j+1(a†jb

†
j+1 − b

†
ja
†
j+1)S−1. (1.155)

In a similar way, we find that the commutator with S−tot also vanishes. Next
we consider the commutator with Sztot:

[Sztot,
L−1∏
j=1

(a†jb
†
j+1 − b

†
ja
†
j+1)S] (1.156)

=
L−1∑
j=1

(a†1b
†
2 − b

†
1a
†
2)S · · · [Szj + Szj+1, (a

†
jb
†
j+1 − b

†
ja
†
j+1)S] · · ·

· · · (a†L−1b
†
L − b

†
L−1a

†
L)S.
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In the right hand side of (1.156), the commutator involved also vanishes be-
cause

[Szj + Szj+1, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S]

=
1

2
[a†jaj − b

†
jbj + a†j+1aj+1 − b†j+1bj+1, (a

†
jb
†
j+1 − b

†
ja
†
j+1)S]

= a†j[aj, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S]− b†j[bj, (a

†
jb
†
j+1 − b

†
ja
†
j+1)S]

+ a†j+1[aj+1, (a
†
jb
†
j+1 − b

†
ja
†
j+1)S]− b†j+1[bj+1, (a

†
jb
†
j+1 − b

†
ja
†
j+1)S]

= 0 (1.157)

Substituting (1.157) into (1.156), we obtain [Sztot,
∏L−1

j=1 (a†jb
†
j+1−b

†
ja
†
j+1)S] = 0.

Now we shall show that the state |VBSL(J,M)〉 is a common eigenstate of Sztot

and the total spin square S2
tot = 1

2
(S+

totS
−
tot +S−totS

+
tot)+(Sztot)

2 with eigenvalues
M and J(J + 1), respectively. Using the commutation relations (1.152), we
can show that

S±tot|VBSL(J,M)〉 =
L−1∏
j=1

(a†jb
†
j+1 − b

†
ja
†
j+1)S(S±1 + S±L )|J,M〉1,L|vac〉2,...,L−1

Sztot|VBSL(J,M)〉 =
L−1∏
j=1

(a†jb
†
j+1 − b

†
ja
†
j+1)S(Sz1 + SzL)|J,M〉1,L|vac〉2,...,L−1.

(1.158)

Then from the definition of the state |VBSL(J,M)〉 and the following relations:

(S+
1 + S+

L )|J,M〉1,L =
√

(J ∓M)(J ±M + 1) |J,M ± 1〉,
(Sz1 + SzL)|J,M〉1,L = M |J,M〉1,L, (1.159)

we obtain

S±tot|VBSL(J,M)〉 =
√

(J ∓M)(J ±M + 1) |VBSL(J,M ± 1)〉,
Sztot|VBSL(J,M)〉 = M |VBSL(J,M)〉 (1.160)

and hence S2
tot|VBSL(J,M)〉 = J(J + 1)|VBSL(J,M)〉. It is now proved that

|VBSL(J,M)〉 is a common eigenstate of Hermitian operators Sztot and S2
tot

with eigenvalues M and J(J + 1), respectively. Therefore the states with
different eigenvalues (J,M) are orthogonal to each other. Thus we have proved
the orthogonality of the set {|VBSL(J,M)〉 | J = 0, . . . , S; M = −J, . . . , J}.
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Completeness and Equivalence

It is obvious from (1.147) that any ground state |G; J, Ω̂〉 can be written as a
linear superposition over these degenerate VBS states:

|G; J, Ω̂〉 =

√
(S + J + 1)!(S − J)!J !J !

2J + 1

J∑
M=−J

XJM |VBSL(J,M)〉, (1.161)

and vice versa. Now we can derive the completeness relation of the set
{|G; J, Ω̂〉} using (1.145), (1.147) and (1.148):∫

dΩ̂|G; J, Ω̂〉〈G; J, Ω̂| (1.162)

=
4π

(2J + 1)!

(S + J + 1)!(S − J)!J !J !

2J + 1

J∑
M=−J

Ψ†JM |VBSL〉〈VBSL|ΨJM .

The set of states {Ψ†JM |VBSL〉 | M = −J, . . . , J} are linearly independent.

So that the rank of {|G; J, Ω̂〉} with fixed J value is 2J + 1, which can be
obtained from the completeness relation (1.162) (see [25]). Thus the total
number of linearly independent states of the set {|G; J, Ω̂〉} is

∑S
J=0(2J+1) =

(S + 1)2, which is exactly the degeneracy of the ground states of (1.141). So
that {|G; J, Ω̂〉} forms a complete set of zero-energy ground states. The set
{|VBSL(J,M)〉} differs from {|G; J, Ω̂〉} by a change of basis, therefore it also
forms a complete set of zero-energy ground states. These two sets (1.143) and
(1.150) are equivalent in description of the degenerate ground states of the
block Hamiltonian (1.141). (More details such as the expansion (1.147) etc.
can be found in Chapter 9 of [25].)

1.5.4 Eigenvectors of the Density Matrix

Eigenvalues of the density matrix ρL can be derived indirectly, as in [11] for
spin-1 (see § 1.4.4 for comparison) and in [32] for spin-S. The basic idea is the
following: Because the density matrix is independent of both the total length
of the spin chain and the starting site of the block, we can add boundary
spins directly to the ends of the block. It was shown in [11, 32] by a Schmidt
decomposition (see Section 2.5 of [41]) that non-zero eigenvalues of the density
matrix (1.138) are equal to those of the density matrix of the two boundary
spins. All other eigenvalues of the density matrix (1.138) are zero. This fact
reveals the structure of the density matrix as a projector (up to a multiplicative
‘scaling’ matrix) onto a subspace of dimension (S + 1)2.
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Now we propose a theorem on the eigenvectors of the density matrix ρL
given by (1.138). The explicit construction of eigenvectors allows us to di-
agonalize the density matrix directly. The set of eigenvectors also spans the
subspace that the density matrix projects onto.

Theorem 1.2
Eigenvectors of the density matrix ρL (1.138) with non-zero eigenvalues are

given by the set {|G; J, Ω̂〉} (1.143), or, equivalently, by the set {|VBSL(J,M)〉}
(1.150). i.e. They are zero-energy ground states of the block Hamiltonian HB

(1.141).
We prove this theorem by showing that the density matrix ρL (1.138) can

be written as a projector in diagonal form onto the orthogonal degenerate VBS
states {|VBSL(J,M)〉} introduced in (1.150). An alternative proof taking a
different approach is given in the next section § 1.5.5 .

First, it is realized from the definition of spinor coordinates (1.120) that
if we change variables (u, v) to (iv∗,−iu∗), then the unit vector Ω̂ is inverted
about the origin to −Ω̂. So that we have [32]

(u∗b† − v∗a†)S|vac〉 = iS
√
S! | − Ω̂〉, (1.163)

where | − Ω̂〉 means a spin-S/2 coherent state for a point opposite to Ω̂ on
the unit sphere. Therefore, taking expressions of the boundary operator B†

(1.139) and the block VBS state |VBSL〉 (1.140), we have

B†|VBSL〉 = (1.164)

S!
L−1∏
j=1

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
| − Ω̂0〉1 ⊗ |vac〉2 ⊗ · · · ⊗ |vac〉L−1 ⊗ | − Ω̂L+1〉L.

Consequently the density matrix ρL (1.138) can be re-written as

ρL =

[
S + 1

(2S + 1)!

]L
S!S!

S + 1

L−1∏
j=1

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
(1.165)

·I(1)
S+1 ⊗ |vac〉2〈vac| ⊗ · · · ⊗ |vac〉L−1〈vac| ⊗ I(L)

S+1

L−1∏
j=1

(ajbj+1 − bjaj+1)S ,

where I
(1)
S+1 and I

(L)
S+1 are (S + 1)-dimensional identities associated with site

1 and site L, respectively. In obtaining (1.165), we have changed integral
variables from Ω̂0 , Ω̂L+1 to −Ω̂0, −Ω̂L+1 and performed these two integrals
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using the completeness relation (1.122). Next we notice that (see § 1.5.3 )

I
(1)
S+1 ⊗ I

(L)
S+1 =

S∑
J=0

J∑
M=−J

|J,M〉1,L〈J,M | (1.166)

=
S∑
J=0

J∑
M=−J

Ψ†JM |vac〉1〈vac| ⊗ |vac〉L〈vac|ΨJM .

As a result, combining (1.165) and (1.166), recalling definitions of |VBSL〉
(1.140) and |VBSL(J,M)〉 (1.150), the density matrix ρL takes the following
final form

ρL =

[
S + 1

(2S + 1)!

]L
S!S!

S + 1

S∑
J=0

J∑
M=−J

Ψ†JM |VBSL〉〈VBSL|ΨJM (1.167)

=

[
S + 1

(2S + 1)!

]L
S!S!

S + 1

S∑
J=0

J∑
M=−J

|VBSL(J,M)〉〈VBSL(J,M)|.

The set of degenerate VBS states {|VBSL(J,M)〉} with J = 0, . . . , S and
M = −J, . . . , J forms an orthogonal basis (see § 1.5.3 ). These (S + 1)2 states
also forms a complete set of zero-energy ground states of the block Hamil-
tonian (1.141) (see § 1.5.3 ). So that in expression (1.167) we have put the
density matrix as a projector in diagonal form over an orthogonal basis. Each
degenerate VBS state |VBSL(J,M)〉 is an eigenvector of the density matrix,
so as any of the state |G; J, Ω̂〉 (because of the degeneracy of corresponding
eigenvalues of the density matrix, see § 1.5.6 and § 1.5.7 that the eigenvalues
depend only on J). Thus we have proved Theorem 1.2.

1.5.5 An Alternative Proof of Theorem 1.2

It was shown in § 1.5.4 that the density matrix takes a diagonal form in the
basis of zero-energy ground states of the block Hamiltonian (1.141). In this
section, we show the same result by taking a different approach. This alter-
native proof of Theorem 1.2 does not involve the coherent state basis.

The proof uses the fact that the density matrix is independent of the start-
ing site and the total length of the chain (see § 1.5.2 ). So that we could change
the configuration of the whole system by adding the two ending spins directly
to the block without affecting the form of the block density matrix. The new
system now has L+ 2 sites with the block starting at site 1 and ending at site
L. Let us start with the ground VBS state of the Hamiltonian (1.116) of the
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system with N = L:

|VBS〉 ≡
L∏
j=0

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
|vac〉. (1.168)

In order to calculate the density matrix ρL = tr0,L+1 [ ρ ], where ρ is defined
in (1.119), we introduce a useful identity:

0,L+1〈J,M | (|s〉0,1 ⊗ |s〉L,L+1) =
(−1)S−J+M

(S + 1)
|J,−M〉1,L, (1.169)

where |J,M〉0,L+1 is identical to the spin state defined in (1.149) except for site
indices. |s〉i,j in (1.169) is the normalized singlet state with S valence bonds
defined as

|s〉i,j =
1

S!
√
S + 1

(
a†ib
†
j − b

†
ia
†
j

)S
|vac〉i ⊗ |vac〉j

=
(−1)

S
2

√
S + 1

S/2∑
m=−S/2

(−1)m|S/2,−m〉i ⊗ |S/2,m〉j. (1.170)

Identity (1.169) is derived using properties of the singlet state (1.170) and
Clebsch-Gordan coefficients as follows:

0,L+1〈J,M | (|s〉0,1 ⊗ |s〉L,L+1)

=

m0+mL+1=M∑
m0,mL+1

(J,M |S/2,m0;S/2,mL+1)0〈S/2,m0|L+1〈S/2,mL+1|

· (−1)
S
2

√
S + 1

S/2∑
m1=−S/2

(−1)m1|S/2,−m1〉0|S/2,m1〉1

· (−1)
S
2

√
S + 1

S/2∑
mL=−S/2

(−1)mL|S/2,−mL〉L|S/2,mL〉L+1

=
1

S + 1

m0+mL+1=M∑
m0,mL+1

(−1)m0+mL+1(J,M |S/2,m0;S/2,mL+1)

· |S/2,−m0〉1|S/2,−mL+1〉L. (1.171)
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Here the Clebsch-Gordan coefficient is defined by

(J,M |S/2,m0;S/2,mL+1) = i,j〈J,M | (|S/2,m0〉i ⊗ |S/2,mL+1〉j) . (1.172)

Then using the symmetry property of Clebsch-Gordan coefficients

(J,M |S/2,m0;S/2,mL+1) = (−1)S−J(J,−M |S/2,−m0;S/2,−mL+1),

(1.173)

and the completeness of the basis {|S/2,m0〉0 ⊗ |S/2,mL+1〉L+1}, we obtain
the identity (1.169).

With the help of identity (1.169), we calculate the partial inner product of
the VBS state (1.168) with the state |J,M〉0,L+1, which is involved in taking
trace of boundary spins. The VBS state |VBS〉 is decomposed into the bulk
part and boundary parts, then making use of (1.169), we have

0,L+1〈J,M |VBS〉

= 0,L+1〈J,M |
L∏
j=0

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
|vac〉

= S!(S + 1)!
L−1∏
j=1

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
0,L+1〈J,M |s〉0,1|s〉L,L+1|vac〉2···L−1

= (S!)2

L−1∏
j=1

(
a†jb
†
j+1 − b

†
ja
†
j+1

)S
(−1)S−J+M |J,−M〉1,L|vac〉2···L−1

= (−1)S−J+M(S!)2|VBSL(J,−M)〉. (1.174)

We see that the (S + 1)2 degenerate VBS states {|VBSL(J,M)〉} defined in
(1.150) appear in the partial inner product (1.174). As discussed in § 1.5.3 ,
they form a complete set of zero-energy ground states of the block Hamiltonian
(1.141).

Now, it is straightforward to evaluate the density matrix as

tr0,L+1 [ ρ ] =
∑
J,M

0,L+1〈J,M |VBS〉〈VBS|J,M〉0,L+1

〈VBS|VBS〉

=
(S!)4

〈VBS|VBS〉
∑
J,M

|VBSL(J,−M)〉〈VBSL(J,−M)|.

(1.175)
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This expression is identical to (1.167) as we change dummy index from M
to −M . Therefore, in this approach again we arrive at Theorem 1.2 that
the density matrix is proportional to a projector onto a subspace spanned by
the (S + 1)2 ground states of the block Hamiltonian (1.141). Normalization
〈VBS|VBS〉 has been obtained in § 1.5.1 . States |VBSL(J,M)〉 have been
shown to be mutually orthogonal in § 1.5.3 .

1.5.6 Eigenvalues of the Density Matrix (Normalization
of Degenerate VBS States)

As the next step in analyzing the spectrum of the density matrix, now we
study the eigenvalues. Based on the diagonalized form (1.167), it is clear that
eigenvalues of the density matrix ρL can be derived from the normalization
of degenerate VBS states. We obtain an explicit expression for eigenvalues in
terms of Wigner 3j-symbols in this section.

First, the following property is important: Normalization of the degenerate
VBS state |VBSL(J,M)〉 depends only on J and is independent of M . This
point is important in proving that any |G; J, Ω̂〉 is an eigenvector of ρL because
it can be written as a superposition of |VBSL(J,M)〉’s with the same J value
(1.161). With the introduction of total spin operators of the block S±tot, S

z
tot

and S2
tot (see § 1.5.3 ), we prove the statement as follows:

〈VBSL(J,M ± 1)|VBSL(J,M ± 1)〉

=
1

(J ∓M)(J ±M + 1)
〈VBSL(J,M)|S∓totS

±
tot|VBSL(J,M)〉

=
1

(J ∓M)(J ±M + 1)
〈VBSL(J,M)|(S2

tot − (Sztot)
2 ∓ Sztot)|VBSL(J,M)〉

= 〈VBSL(J,M)|VBSL(J,M)〉. (1.176)

Here we have used the fact that |VBSL(J,M)〉 is the common eigenstate of
S2

tot and Sztot with eigenvalues J(J + 1) and M , respectively (see § 1.5.3 ).
It is also realized that the normalization of |VBSL(J,M)〉 can be calculated

from integrating the inner product of |G; J, Ω̂〉 with itself over the unit vector
Ω̂ such that

1

4π

∫
dΩ̂〈G; J, Ω̂|G; J, Ω̂〉

=
(S + J + 1)!(S − J)!J !J !

(2J + 1)!
〈VBSL(J,M)|VBSL(J,M)〉. (1.177)

In obtaining this relation (1.177) we have used expansion (1.161) and orthog-
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onality (1.145) in § 1.5.3 .
Let us consider the integral involved in (1.177). Using the coherent state

basis (1.121) and completeness relation (1.122) as before, we obtain

1

4π

∫
dΩ̂〈G; J, Ω̂|G; J, Ω̂〉 (1.178)

=
1

4π

[
(2S + 1)!

4π

]L ∫
dΩ̂

∫ [ L∏
j=1

dΩ̂j

]
L−1∏
j=1

[
1

2
(1− Ω̂j · Ω̂j+1)

]S
·
[

1

2
(1− Ω̂1 · Ω̂L)

]S−J [
1

2
(1 + Ω̂1 · Ω̂)

]J [
1

2
(1 + Ω̂ · Ω̂L)

]J
.

Now we expand
[

1
2
(1− Ω̂i · Ω̂j)

]J
in terms of spherical harmonics as in (1.130),

then integrate over Ω̂ and from Ω̂2 to Ω̂L−1, the right hand side of (1.178) is
equal to

4π((2S + 1)!)L

(S + 1)L−1(S − J + 1)(J + 1)2

S∑
l1=0

S−J∑
lL=0

J∑
l=0

l1∑
m1=−l1

lL∑
mL=−lL

l∑
m=−l

·
∫

dΩ̂1

∫
dΩ̂Lλ

L−1(l1, S)λ(lL, S − J)λ2(l, J)

· Yl1,m1(Ω̂1)YlL,mL(Ω̂1)Yl,m(Ω̂1)Y ∗l1,m1
(Ω̂L)Y ∗lL,mL(Ω̂L)Y ∗l,m(Ω̂L). (1.179)

Here we apply the following useful formula:∫
dΩ̂Yl1,m1(Ω̂)YlL,mL(Ω̂)Yl,m(Ω̂)

=

√
(2l1 + 1)(2lL + 1)(2l + 1)

4π

(
l1 lL l
0 0 0

)(
l1 lL l
m1 mL m

)
,

(1.180)

where

(
l1 lL l
m1 mL m

)
is the Wigner 3j-symbol. Using formula (1.180), we
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carry out the remaining integrals in (1.179) and obtain

((2S + 1)!)L

(S + 1)L−1(S − J + 1)(J + 1)2

S∑
l1=0

S−J∑
lL=0

J∑
l=0

l1∑
m1=−l1

lL∑
mL=−lL

l∑
m=−l

· (2l1 + 1)(2lL + 1)(2l + 1)λL−1(l1, S)λ(lL, S − J)λ2(l, J)

·
(
l1 lL l
0 0 0

)2(
l1 lL l
m1 mL m

)2

. (1.181)

These 3j-symbols obey the following orthogonality relation:∑
m1,mL

(2l + 1)

(
l1 lL l
m1 mL m

)(
l1 lL l′

m1 mL m′

)
= δll′δmm′ . (1.182)

Using this orthogonality (1.182), we can recast expression (1.181) as

((2S + 1)!)L

(S + 1)L−1(S − J + 1)(J + 1)2

S∑
l1=0

S−J∑
lL=0

J∑
l=0

(1.183)

· (2l1 + 1)(2lL + 1)(2l + 1)λL−1(l1, S)λ(lL, S − J)λ2(l, J)

(
l1 lL l
0 0 0

)2

.

The explicit value of

(
l1 lL l
0 0 0

)
is given by

(
l1 lL l
0 0 0

)
= (−1)g

√
(2g − 2l1)!(2g − 2lL)!(2g − 2l)!

(2g + 1)!

g!

(g − l1)!(g − lL)!(g − l)!
,

(1.184)

if l1 + lL + l = 2g (g ∈ N), otherwise zero. Finally, the normalization of
degenerate VBS states |VBSL(J,M)〉 is obtained as

〈VBSL(J,M)|VBSL(J,M)〉 (1.185)

=
(2J + 1)!((2S + 1)!)L

(S + 1)L−1(S + J + 1)!(S − J + 1)!(J + 1)!(J + 1)!

S∑
l1=0

S−J∑
lL=0

J∑
l=0

(2l1 + 1)(2lL + 1)(2l + 1)λL−1(l1, S)λ(lL, S − J)λ2(l, J)

(
l1 lL l
0 0 0

)2

.
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Combining results of (1.167) and (1.185), we arrive at the following theorem
on eigenvalues:

Theorem 1.3
Eigenvalues Λ(J) (J = 0, . . . , S) of the density matrix ρL are independent

of Ω̂ and M in defining eigenvectors (see (1.143) and (1.150)). An explicit
expression is given by the following triple sum

Λ(J) (1.186)

=

[
S + 1

(2S + 1)!

]L
S!S!

S + 1
〈VBSL(J,M)|VBSL(J,M)〉

=
(2J + 1)!S!S!

(S + J + 1)!(S − J + 1)!(J + 1)!(J + 1)!

S∑
l1=0

S−J∑
lL=0

J∑
l=0

·(2l1 + 1)(2lL + 1)(2l + 1)λL−1(l1, S)λ(lL, S − J)λ2(l, J)

(
l1 lL l
0 0 0

)2

.

Although not straightforward to verify, this expression (1.186) should be
consistent with eigenvalues given through the recurrence expression (1.199) in
the next section § 1.5.7 and the expression Λα in § 1.4.4 as a special case. We
could check the case when S = 1 that

〈VBSL(0, 0)|VBSL(0, 0)〉 =
1

2
(3L + 3(−1)L),

〈VBSL(1,M)|VBSL(1,M)〉 =
1

2
(3L − (−1)L), (1.187)

where we have used the selection rule of the Wigner 3j-symbol. From (1.133)
we find that 〈VBS|VBS〉 = 2 · 3L, so that we obtain the correct eigenvalues of
the density matrix from the above result (1.186) (see § 1.4.4 for comparison).

We shall emphasize at this point that given eigenvalues (1.186), both von
Neumann entropy

Sv N = −tr [ ρL lnρL ] = −
S∑
J=0

(2J + 1)Λ(J) ln Λ(J) (1.188)

and Rényi entropy

SR =
1

1− α
ln {tr [ ραL ]} =

1

1− α
ln

{
S∑
J=0

(2J + 1)Λα(J)

}
(1.189)

can be expressed directly.
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1.5.7 Eigenvalues of the Density Matrix (Recurrence
Formula)

Having constructed eigenvectors, there are more than one way to specify the
corresponding eigenvalues. An explicit expression of eigenvalues has been ob-
tained in § 1.5.6 . In this section we express eigenvalues through a conjectured
recurrence formula as appeared in [18, 32]. Let us apply the density matrix
ρL (1.138) to the state |G; J, Ω̂〉 (1.143) and obtain

ρL|G; J, Ω̂〉

=

[
S + 1

(2S + 1)!

]L
S + 1

(4π)2

∫
dΩ̂0dΩ̂L+1B

†|VBSL〉〈VBSL|BA†J |VBSL〉.

(1.190)

Using the coherent state basis (1.121) and completeness relation (1.122), the
factor 〈VBSL|BA†J |VBSL〉 in (1.190) can be re-written as

〈VBSL|BA†J |VBSL〉 (1.191)

=

[
(2S + 1)!

4π

]L ∫ ( L∏
j=1

dΩ̂j

)
L−1∏
j=1

[
1

2
(1− Ω̂j · Ω̂j+1)

]S
(u0v1 − v0u1)S

· (uu∗1 + vv∗1)J (u∗1v
∗
L − v∗1u∗L)S−J (uu∗L + vv∗L)J (uLvL+1 − vLuL+1)S .

The factor
[

1
2
(1− Ω̂j · Ω̂j+1)

]S
under the integral of (1.191) can be expanded

in terms of Legendre polynomials and further in terms of spherical harmonics
as discussed in § 1.5.1 (see also [18, 32]). Using the expansion (1.130) and
orthogonality of spherical harmonics, the integrals over Ω̂j with j = 2, . . . , L−1
in (1.191) can be performed. The result is

〈VBSL|BA†J |VBSL〉 =
S + 1

(4π)2

[
(2S + 1)!

S + 1

]L S∑
l=0

(2l + 1)λL−1(l, S)

·
∫

dΩ̂1dΩ̂LPl(Ω̂1 · Ω̂L) (u0v1 − v0u1)S (uu∗1 + vv∗1)J

(u∗1v
∗
L − v∗1u∗L)S−J (uu∗L + vv∗L)J (uLvL+1 − vLuL+1)S .

(1.192)

We plug the expression (1.192) into (1.190). Using transformation properties
under SU(2) and a binomial expansion (see § 1.5.8 ), the integral over Ω̂0 yields
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that ∫
dΩ̂0

(
u∗0b
†
1 − v∗0a

†
1

)S
(u0v1 − v0u1)S =

4π

S + 1

(
u1a

†
1 + v1b

†
1

)S
(1.193)

Similarly we can perform the integral over Ω̂L+1. As a result, the following
expression is obtained from (1.190):

ρL|G; J, Ω̂〉 =
1

(4π)2

S∑
l=0

(2l + 1)λL−1(l, S)K†l (Ω̂) |VBSL〉 . (1.194)

The operator K†l (Ω̂) involved in (1.194) is defined as

K†l (Ω̂) ≡
∫

dΩ̂1dΩ̂L

(
u1a

†
1 + v1b

†
1

)S
(uu∗1 + vv∗1)J (u∗1v

∗
L − v∗1u∗L)S−J

· (uu∗L + vv∗L)J
(
uLa

†
L + vLb

†
L

)S
Pl(Ω̂1 · Ω̂L). (1.195)

It is expressed as an integral depending on the order l of the Legendre poly-
nomial Pl(Ω̂1 · Ω̂L). K†l (Ω̂) can be calculated from the lowest few orders (see
§ 1.5.8 for example). It becomes increasingly difficult to perform the integral
as order l increases. Based on the eigenvalue expressions of the density matrix
obtained in [11, 32], we make a conjecture on the explicit form of the operator
K†l (Ω̂) for generic order l:

Conjecture 1.1

K†l (Ω̂) =

(
4π

S + 1

)2

Il

(
1

2
J(J + 1)− 1

2
S(

1

2
S + 1)

)
A†J . (1.196)

Here the polynomial Il (x) satisfy the recurrence relation

Il+1(x) =
2l + 1

(S + l + 2)2

(
4x

l + 1
+ l

)
Il (x)− l

l + 1

(
S − l + 1

S + l + 2

)2

Il−1(x)

(1.197)

with I0 = 1 and I1 = x
(S

2
+1)2

.

Note that it is important that K†l (Ω̂) ∝ A†J defined in (1.142) and Il(x)
has the same order as the Legendre polynomial Pl(x). The recurrence relation
(1.197) was proposed in [18] and used in [32] to obtain the eigenvalues of the
density matrix. (The original definition of Il(x) differs from our definition in
(1.197) by a factor of 2l+1

4π
.) Conjecture 1.1 is an alternative form of The-
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orem 1.2 together with Theorem 1.3, which also gives eigenvalues through
the recurrence relation (1.197). Indeed, expressions (1.194), altogether with
(1.196) and (1.197) yields that

ρL|G; J, Ω̂〉 (1.198)

=
1

(S + 1)2

S∑
l=0

(2l + 1)λL−1(l, S)Il

(
1

2
J(J + 1)− 1

2
S(

1

2
S + 1)

)
|G; J, Ω̂〉.

Non-zero eigenvalues (J = 0, 1, . . . , S) are seen from (1.198) as

Λ(J) ≡ 1

(S + 1)2

S∑
l=0

(2l + 1)λL−1(l, S)Il

(
1

2
J(J + 1)− 1

2
S(

1

2
S + 1)

)
.

(1.199)

Since all other eigenvalues of the density matrix are vanishing, then we con-
clude again that the density matrix ρL (1.138) is a projector onto a subspace of
dimension (S+ 1)2. This subspace is spanned by the set of vectors {|G; J, Ω̂〉}
(1.143). (The rank of the set is equal to (S + 1)2.) Furthermore, we observe
from (1.199) again that non-zero eigenvalues Λ(J) depend only on J , not on
Ω̂. Therefore, {|G; J, Ω̂〉} with fixed J value spans a degenerate subspace with
the same eigenvalue.

1.5.8 The Large Block Limit

In the limit L → ∞, that is when the size of the block becomes large, we
learned from [11, 21, 32] that the von Neumann entropy reaches the saturated
value Sv N = ln (S + 1)2. This fact implies that the density matrix (denoted
by ρ∞ in the limit) can only take the form (see [41] for a general proof)

ρ∞ =
1

(S + 1)2
I(S+1)2 ⊕ Φ∞, (1.200)

where I(S+1)2 is the identity of dimension (S + 1)2 and Φ∞ is an infinite di-
mensional matrix with only zero entries. In this section, we give a proof of
Conjecture 1.1 (1.196) in the limiting case as L→∞. Then we shall verify
the structure of the density matrix (1.200) explicitly.

We first realize from (1.131) that as L → ∞, λL−1(l, S) → δl,0. Therefore
only the first term with l = 0 is left in (1.194) and contributes to the final
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result. So that we need only to calculate K†0(Ω̂):

K†0(Ω̂) =

∫
dΩ̂1dΩ̂L

(
u1a

†
1 + v1b

†
1

)S
(uu∗1 + vv∗1)J

· (u∗1v∗L − v∗1u∗L)S−J (uu∗L + vv∗L)J
(
uLa

†
L + vLb

†
L

)S
. (1.201)

It is useful to know transformation properties of the integrand in (1.201)
under SU(2). The pair of variables (u, v) defined in (1.120) and bosonic an-
nihilation operators (a, b) in the Schwinger representation both transform as
spinors under SU(2). That is to say, if we take an arbitrary element D ∈ SU(2)
(2× 2 matrix), then (u, v), etc. transform according to(

u
v

)
→ D

(
u
v

)
. (1.202)

On the other hand, (u∗, v∗), (−v, u), (a†, b†) and (−b, a) transform conjugately
to (u, v). That is to say (u∗, v∗), etc. transform according to(

u∗

v∗

)
→ D∗

(
u∗

v∗

)
. (1.203)

The combinations appeared in K†0(Ω̂) (1.201)

u1a
†
1 + v1b

†
1, uu∗1 + vv∗1, u∗1v

∗
L − v∗1u∗L, uu∗L + vv∗L, uLa

†
L + vLb

†
L (1.204)

as well as A†J in (1.142), boundary operator B† in (1.139), etc. all transform
covariantly under SU(2), i.e. those expressions keep their form in the new
(transformed) coordinates.

These transformation properties (1.202), (1.203) can be used to simplify
the K†0(Ω̂) integral. We first make a SU(2) transform

DuL =

(
u∗L v∗L
−vL uL

)
, DuL

(
uL
vL

)
=

(
1
0

)
, (1.205)

under the part of the integral (1.201) over Ω̂1. Then this part of integral
becomes ∫

dΩ̂1

(
u1a

†
1 + v1b

†
1

)S
(uu∗1 + vv∗1)J (−v∗1)S−J . (1.206)
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This can be calculated using binomial expansion and the result is

4π

S + 1

(
ua†1 + vb†1

)J (
−b†1

)S−J
. (1.207)

Then we make an inverse transform in (1.207) using D−1
uL

= D†uL , consequently

(1.201) is put in a form with a single integral over Ω̂L remaining:

K†0(Ω̂) =
4π

S + 1

(
ua†1 + vb†1

)J
(1.208)

·
∫

dΩ̂L

(
a†1v

∗
L − b

†
1u
∗
L

)S−J
(uu∗L + vv∗L)J

(
uLa

†
L + vLb

†
L

)S
.

Now we make another SU(2) transform using

Du =

(
u∗ v∗

−v u

)
, Du

(
u
v

)
=

(
1
0

)
, (1.209)

then the remaining integral over Ω̂L in (1.208) becomes∫
dΩ̂L

(
a†1v

∗
L − b

†
1u
∗
L

)S−J
(u∗L)J

(
uLa

†
L + vLb

†
L

)S
. (1.210)

Using again binomial expansion, this integral (1.210) yields

4π

S + 1

(
a†1b
†
L − b

†
1a
†
L

)S−J (
a†L

)J
. (1.211)

At last we make an inverse transform in (1.211) using D−1
u = D†u and plug the

result into (1.208), the final form is

K†0(Ω̂) =

(
4π

S + 1

)2

A†J . (1.212)

This expression is consistent with Conjecture 1.1 (1.196), which also proves
that {|G; J, Ω̂〉} is a set of eigenvectors of the density matrix as L → ∞. Let
us denote the density matrix in the limit by ρ∞. Then (1.212) leads to the
result (see (1.198))

ρ∞|G; J, Ω̂〉 =
1

(S + 1)2
|G; J, Ω̂〉. (1.213)
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We find from (1.213) that the limiting eigenvalue

Λ∞ =
1

(S + 1)2
, L→∞ (1.214)

is independent of J . Any vector of the (S+ 1)2-dimensional subspace spanned
by the set {|G; J, Ω̂〉} is an eigenvector of ρ∞ with the same eigenvalue 1

(S+1)2
.

Therefore ρ∞ acts on this subspace as (proportional to) the identity I(S+1)2 . So
that we have proved explicitly that the density matrix takes the form (1.200) in
the large block limit. The limiting density matrix is proportional to a projector
P(S+1)2 on the degenerate ground states of the block Hamiltonian HB (1.141)

ρ∞ =
1

(S + 1)2
P(S+1)2 , L→∞. (1.215)

In addition, we also derive from the eigenvalues that the von Neumann entropy
Sv N = −

∑S
J=0(2J + 1)Λ∞ ln Λ∞ coincides with the Rényi entropy SR(α) =

1
1−α ln

{∑S
J=0(2J + 1)Λα

∞

}
and is equal to the saturated value

Sv N = SR(α) = ln(S + 1)2, L→∞. (1.216)

1.5.9 Density Matrix and Correlation Functions

The relation between the density matrix and correlation functions was studied
in [4, 31, 32, 50]. It was shown in [31] that the density matrix contains infor-
mation of all correlation functions in the ground state. The original proof was
for spin S = 1/2. In this section we generalize the result to generic spin-S as
in [50] and the proof is written in a form applicable but not restricted to the
AKLT model.

The Hilbert space associated with a spin-S is (2S+1)-dimensional. There-
fore we could choose a basis of (2S+1)2 linearly independent matrices such that
an arbitrary operator defined in the Hilbert space can be written as a super-
position over the basis. Let us denote the basis by {Aab | a, b = 1, . . . , 2S+1},
in which each matrix Aab is labeled by a pair of indices a and b with totally
(2S + 1)2 possible combinations. The matrix element is defined as

(Aab)kl = δakδbl, k, l = 1, . . . , 2S + 1. (1.217)

In addition to {Aab}, we introduce an equivalent conjugate basis {Āab} such
that

(Āab)kl = δalδbk, a, b, k, l = 1, . . . , 2S + 1. (1.218)
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These matrices (1.217) and (1.218) are actually matrix representation of op-
erators {|S,m〉〈S,m′| | m,m′ = −S, . . . , S}. They are normalized such that

tr(ĀabAcd) =
∑
k,l

(Āab)kl(Acd)lk =
∑
k,l

δalδbkδclδdk = δacδbd. (1.219)

Here tr takes trace at one and the same site. Because of the completeness
of {Aab} at each site, the density matrix of the block can be written as (see
(1.82))

ρblock = troutside|G〉〈G| =
∑
{ajbj}

 ⊗
j∈{block}

Aajbj

 coeff{ajbj}, (1.220)

where |G〉 denotes the unique ground state, troutside takes traces of sites outside
the block and coeff{ajbj} denotes the coefficient. Using the normalization
property (1.219), the coefficient coeff{ajbj} with label j taking values within
the block can be expressed as

coeff{ajbj} =
∑
{cjdj}

∏
j∈block

tr(ĀajbjAcjdj)coeff{cjdj}

= trblock

[( ⊗
j∈block

Āajbj

)
ρblock

]

= trall

[( ⊗
j∈block

Āajbj

)
|G〉〈G|

]

= 〈G|

( ⊗
j∈block

Āajbj

)
|G〉. (1.221)

Here trblock takes traces of sites within the block and trall takes traces of all
lattice sites. Combing (1.220) with (1.221), we have the final form

ρblock =
∑
{ajbj}

 ⊗
j∈{block}

Aajbj

 〈G|( ⊗
j∈block

Āajbj

)
|G〉. (1.222)

This is the expression of the density matrix with entries related to multi-

point correlation functions 〈G|
(⊗

j∈block Āajbj

)
|G〉 in the ground state. All

possible combinations {ajbj} are involved in the summation. Therefore, we
have prove for generic spin-S that the density matrix contains information of
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all correlation functions. The matrix elements are all multi-point correlators.

1.6 The 1–dimensional Inhomogeneous Model

The most general 1-dimensional model is the inhomogeneous model in which
spins at different lattice site can take different values. As a special case of the
generalized model defined in § 1.2.4 , we associate a positive integer number
(called multiplicity numbers, see § 1.2.4 ) to each bond of the lattice and denote
by Mij (Mij = Mji) the multiplicity number between sites i and j. They are
related to bulk spins by the following relation which ensures the existence of
a unique ground state

2Sj = Mj−1,j +Mj,j+1, ∀ j (1.223)

with 2S0 = M01 and 2SN+1 = MN,N+1 for ending spins. (Equation (1.223) is a
special case of the more general relation (1.23).) The condition for solvability
of relation (1.223) is

N+1∑
j=0

(−1)jSj = 0. (1.224)

Solution to relation (1.223) under condition (1.224) is

Mj,j+1 = 2

j∑
l=0

(−1)j−lSl ≥ 1. (1.225)

(More details can be found in [36].) Now we defined the Hamiltonian of the
inhomogeneous AKLT model according to (1.21) as

H =
N∑
j=0

Sj+Sj+1∑
J=Sj+Sj+1−Mj,j+1+1

CJ(j, j + 1)πJ(j, j + 1). (1.226)

Here the projector πJ(j, j+1) describes interactions between neighboring spins
j and j+1, which projects the bond spin J j,j+1 ≡ Sj+Sj+1 onto the subspace
with total spin J (J = Sj + Sj+1 −Mj,j+1 + 1, . . . , Sj + Sj+1). An explicit
expression of πJ(j, j+1) is given in § 1.2.2 and [36]. The coefficient CJ(j, j+1)
can take an arbitrary positive value. This Hamiltonian (1.226) has a unique
ground state (VBS state, see § 1.2.5 ).
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1.6.1 The VBS Ground State

The unique VBS ground state of the Hamiltonian (1.226) is given in the
Schwinger representation by [4, 36]

|VBS〉 ≡
N∏
j=0

(
a†jb
†
j+1 − b

†
ja
†
j+1

)Mj,j+1

|vac〉, (1.227)

where a†, b† are bosonic creation operators defined in exactly the same way
as in § 1.2.4 , the constraint on the total boson occupation number is now
1
2
(a†jaj + b†jbj) = Sj. The pure state density matrix of the VBS ground state

(1.227) is

ρ =
|VBS〉〈VBS|
〈VBS|VBS〉

. (1.228)

Normalization of the VBS state is (calculation similar to those in § 1.5.1 )

〈VBS|VBS〉 =

N+1∏
j=0

(2Sj + 1)!

N∏
j=0

(Mj,j+1 + 1)

. (1.229)

(See [51] for more details.)

1.6.2 The Block Density Matrix

We take a block of L contiguous bulk spins as a subsystem, which starts from
site k and ends at site k + L − 1. Using the coherent state basis (1.121) and
completeness relation (1.122), tracing out degrees of freedom outside the block,
ρL can be written as [32, 51]

ρL = (1.230)∫ [k−1∏
j=0

N+1∏
j=k+L

dΩ̂j

]
k−2∏
j=0

N∏
j=k+L

[
1

2
(1− Ω̂j · Ω̂j+1)

]Mj,j+1

B†|VBSL〉〈VBSL|B[
k+L−1∏
j=k

(2Sj + 1)!

4π

]∫ [N+1∏
j=0

dΩ̂j

]
N∏
j=0

[
1

2
(1− Ω̂j · Ω̂j+1)

]Mj,j+1
.
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Here the boundary operator B and block VBS state |VBSL〉 are defined as

B ≡ (uk−1bk − vk−1ak)
Mk−1,k (ak+L−1vk+L − bk+L−1uk+L)Mk+L−1,k+L ,

(1.231)

|VBSL〉 ≡
k+L−2∏
j=k

(
a†jb
†
j+1 − b

†
ja
†
j+1

)Mj,j+1

|vac〉, (1.232)

respectively. After performing integrals over Ω̂j (j = 0, 1, . . . , k − 2, k + L +
1, . . . , N,N + 1) in the numerator and all integrals in the denominator, the
density matrix ρL turns out to be independent of spins outside the block.
This property has been proved for the homogeneous AKLT model in § 1.5.2
(see also [11, 32, 50]). Therefore, we can re-label spins within the block for
notational convenience. Let k = 1 and the density matrix takes the form

ρL =

L∏
j=0

(Mj,j+1 + 1)

L∏
j=1

(2Sj + 1)!

1

(4π)2

∫
dΩ̂0dΩ̂L+1B

†|VBSL〉〈VBSL|B (1.233)

with

B† =
(
u∗0b
†
1 − v∗0a

†
1

)M0,1
(
a†Lv

∗
L+1 − b

†
Lu
∗
L+1

)ML,L+1

, (1.234)

|VBSL〉 =
L−1∏
j=1

(
a†jb
†
j+1 − b

†
ja
†
j+1

)Mj,j+1

|vac〉. (1.235)

Again, the remaining two integrals in (1.233) are kept in the present form for
later use.

1.6.3 Ground States of the Block Hamiltonian

The block Hamiltonian with the re-labeling k = 1 reads

HB =
L−1∑
j=1

Sj+Sj+1∑
J=Sj+Sj+1−Mj,j+1+1

CJ(j, j + 1)PJ(j, j + 1). (1.236)
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Now the degenerate ground states are constructed in a similar way as in § 1.5.3 .
The new A†J operator is defined as:

A†J ≡
(
ua†1 + vb†1

)J−+J (
a†1b
†
L − b

†
1a
†
L

)J+−J (
ua†L + vb†L

)−J−+J

, (1.237)

where J− ≡ 1
2
(M01 −ML,L+1), J+ ≡ 1

2
(M01 + ML,L+1) and |J−| ≤ J ≤ J+.

Then the set of ground states of the block Hamiltonian (1.236) is

|G; J, Ω̂〉 ≡ A†J |VBSL〉, J = |J−|, . . . , J+. (1.238)

To prove that any state |G; J, Ω̂〉 is a zero-energy ground state of (1.236), we
essentially repeat the arguments as in § 1.5.3 for any site j and bond (j, j+1):

1. The total power of a†j and b†j is 2Sj, so that we have spin-Sj at site j;

2. −1
2
(Mj−1,j +Mj+1,j+2) ≤ Jzj,j+1 ≡ Szj +Szj+1 ≤ 1

2
(Mj−1,j +Mj+1,j+2) by a

binomial expansion, so that the maximum value of the bond spin Jj,j+1

is 1
2
(Mj−1,j +Mj+1,j+2) = Sj +Sj+1−Mj,j+1 (from SU(2) invariance, see

[4]).

Therefore, the state |G; J, Ω̂〉 defined in (1.238) has spin-Sj at site j and no
projection onto the Jj,j+1 > Sj + Sj+1 −Mj,j+1 subspace for any bond.

Parallelly, we also introduce an orthogonal basis in description of the de-
generate zero-energy ground states of HB (1.236), i.e. the degenerate VBS
states. Using the same notations as in § 1.5.3 , the operator A†J defined in
(1.237) can be expanded as (see [25, 51])

A†J =

√
(J+ + J + 1)!(J− + J)!(J+ − J)!(−J− + J)!

2J + 1

J∑
M=−J

XJM (1.239)

·
m1+mL=M∑
m1,mL

(
1

2
M01,m1;

1

2
ML,L+1,mL|J,M) ψ†1

2
M01,m1

⊗ ψ†1
2
ML,L+1,mL

,

where (1
2
M01,m1; 1

2
ML,L+1,mL|J,M) is the Clebsch-Gordan coefficient. Again,

the particular form of the sum over m1 and mL in (1.239) is identified as a
single spin state creation operator

Ψ†JM ≡
m1+mL=M∑
m1,mL

(
1

2
M01,m1;

1

2
ML,L+1,mL|J,M) ψ†1

2
M01,m1

⊗ ψ†1
2
ML,L+1,mL

.

(1.240)
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So that the set of degenerate VBS states {|VBSL(J,M)〉} is defined as

|VBSL(J,M)〉 ≡ Ψ†JM |VBSL〉, J = |J−|, ..., J+, M = −J, ..., J. (1.241)

Then these (M01 + 1)(ML,L+1 + 1) states (1.241) are mutually orthogonal (the

proof is exactly the same as in § 1.5.3 ). Also, the state |G; J, Ω̂〉 written as a
linear superposition over these degenerate VBS states reads

|G; J, Ω̂〉 =

√
(J+ + J + 1)!(J− + J)!(J+ − J)!(−J− + J)

2J + 1

·
J∑

M=−J

XJM |VBSL(J,M)〉. (1.242)

Therefore, as seen from (1.242), the rank of set of states {|G; J, Ω̂〉} with the
same J value is 2J+1 and the total number of linearly independent states of the
set {|G; J, Ω̂〉} is

∑J+

J=|J−|(2J + 1) = (M01 + 1)(ML,L+1 + 1), which is exactly

the degeneracy of the ground states of (1.236). So that {|G; J, Ω̂〉} forms a
complete set of zero-energy ground states. The orthogonal set {|VBSL(J,M)〉}
also forms a complete set of zero-energy ground states, which differs from
{|G; J, Ω̂〉} by a change of basis.

1.6.4 Diagonalization of the Density Matrix

The density matrix is diagonalized in § 1.5.4 and § 1.5.5 for the homogeneous
AKLT model. The analysis can be made in parallel for the inhomogeneous
model.

The statement of Theorem 1.2 is still valid here. i.e. Eigenvectors of
the density matrix ρL (1.233) with non-zero eigenvalues are given by the set
{|G; J, Ω̂〉} (1.238) or {|VBSL(J,M)〉} (1.241). This explicit construction of
eigenvectors yields a direct diagonalization of the density matrix.

Again, we prove the theorem by re-writing the density matrix ρL (1.233)
as a projector in diagonal form onto the orthogonal degenerate VBS states
{|VBSL(J,M)〉} introduced in (1.241).

Take expression (1.233) and integrate over Ω̂0 and Ω̂L+1 using binomial
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expansions and
∫ 1

−1
dx(1 + x)m(1− x)n = m!n!

(m+n+1)!
2m+n+1. Then we have

ρL =

L−1∏
j=1

(Mj,j+1 + 1)

L∏
j=1

(2Sj + 1)!

M01∑
p=0

ML,L+1∑
q=0

(
M01

p

)(
ML,L+1

q

)

(b†1)p(a†1)M01−p(a†L)q(b†L)ML,L+1−q|VBSL〉
〈VBSL|(bL)ML,L+1−q(aL)q(a1)M01−p(b1)p. (1.243)

The particular combinations of bosonic operators appeared in (1.243) are rec-
ognized up to a constant as spin creation operators ψ†1

2
M01,

1
2
M01−p

and

ψ†1
2
ML,L+1,q− 1

2
ML,L+1

at site 1 and site L, respectively. They commute with all

bond operators
(
a†jb
†
j+1 − b

†
ja
†
j+1

)Mj,j+1

, so that we could simplify the right

hand side of (1.243) using definition (1.240) and the following identity:

M01∑
p=0

ML,L+1∑
q=0

ψ†1
2
M01,

1
2
M01−p

⊗ ψ†1
2
ML,L+1,q− 1

2
ML,L+1

|vac〉1,L

1,L〈vac|ψ 1
2
M01,

1
2
M01−p ⊗ ψ 1

2
ML,L+1,q− 1

2
ML,L+1

=

M01∑
p=0

ML,L+1∑
q=0

|1
2
M01,

1

2
M01 − p〉1〈

1

2
M01,

1

2
M01 − p|

⊗|1
2
ML,L+1, q −

1

2
ML,L+1〉L〈

1

2
ML,L+1, q −

1

2
ML,L+1|

=

J+∑
J=|J−|

J∑
M=−J

|J,M〉1,L〈J,M |

=

J+∑
J=|J−|

J∑
M=−J

Ψ†JM |vac〉1,L〈vac|ΨJM . (1.244)
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The resultant final form of density matrix ρL is then

ρL =

L−1∏
j=1

(Mj,j+1 + 1)

L∏
j=1

(2Sj + 1)!

M01!ML,L+1!

J+∑
J=|J−|

J∑
M=−J

Ψ†JM |VBSL〉〈VBSL|ΨJM

=

L−1∏
j=1

(Mj,j+1 + 1)

L∏
j=1

(2Sj + 1)!

M01!ML,L+1!

J+∑
J=|J−|

J∑
M=−J

|VBSL(J,M)〉〈VBSL(J,M)|.

(1.245)

The set of degenerate VBS states {|VBSL(J,M)〉} with J = |J−|, . . . , J+

and M = −J, . . . , J forms an orthogonal basis. These (M01 + 1)(ML,L+1 + 1)
states also forms a complete set of zero-energy ground states of the block
Hamiltonian (1.236). So that in expression (1.245) we have re-written the
density matrix as a projector in diagonal form over an orthogonal basis. Each
degenerate VBS state |VBSL(J,M)〉 is an eigenvector of the density matrix, so
as any of the state |G; J, Ω̂〉 (because of the degeneracy of corresponding eigen-
values of the density matrix, see § 1.6.5 ). Thus we have generalized Theorem
1.2 to the inhomogeneous case.

1.6.5 Eigenvalues of the Density Matrix

Given the diagonalized form (1.245), again eigenvalues of the density matrix
ρL are derived from normalization of degenerate VBS states with an explicit
expression in terms of Wigner 3j-symbols.

Similarly, we first calculate the integral of the norm square of |G; J, Ω̂〉over
the unit vector Ω̂

1

4π

∫
dΩ̂〈G; J, Ω̂|G; J, Ω̂〉 (1.246)

=
(J+ + J + 1)!(J− + J)!(J+ − J)!(−J− + J)!

(2J + 1)!
〈VBSL(J,M)|VBSL(J,M)〉.

This expression (1.246) also states that normalization of the degenerate VBS
state is independent of Ω̂ and/or M .

Let us consider the integral involved in (1.246). Using coherent state basis
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(1.121) and completeness relation (1.122) as before, we obtain

1

4π

∫
dΩ̂〈G; J, Ω̂|G; J, Ω̂〉 (1.247)

=
1

4π

[
L∏
j=1

(2Sj + 1)!

4π

]∫
dΩ̂

∫ [ L∏
j=1

dΩ̂j

]
L−1∏
j=1

[
1

2
(1− Ω̂j · Ω̂j+1)

]Mj,j+1

·
[

1

2
(1− Ω̂1 · Ω̂L)

]J+−J [1

2
(1 + Ω̂1 · Ω̂)

]J−+J [
1

2
(1 + Ω̂ · Ω̂L)

]−J−+J

.

Now we expand
[

1
2
(1− Ω̂i · Ω̂j)

]Mij

in terms of spherical harmonics

[
1

2
(1− Ω̂i · Ω̂j)

]Mij

=
4π

Mij + 1

Mij∑
l=0

λ(l,Mij)
l∑

m=−l

Ylm(Ω̂i)Y
∗
lm(Ω̂j) (1.248)

with

λ(l,Mij) =
(−1)lMij!(Mij + 1)!

(Mij − l)!(Mij + l + 1)!
. (1.249)

Then integrate over Ω̂ and from Ω̂2 to Ω̂L−1, the right hand side of (1.247) is
equal to

4π
L∏
j=1

(2Sj + 1)![
L−1∏
j=1

(Mj,j+1 + 1)

]
(J− + J + 1)(J+ − J + 1)(−J− + J + 1)

·
M<∑
l

J+−J∑
lα=0

J<∑
lβ=0

l∑
m=−l

lα∑
mα=−lα

lβ∑
mβ=−lβ

[
L−1∏
j=1

λ(l,Mj,j+1)

]

· λ(lα, J+ − J)λ(lβ, J− + J)λ(lβ,−J− + J)

∫
dΩ̂1

∫
dΩ̂L

· Yl,m(Ω̂1)Ylα,mα(Ω̂1)Ylβ ,mβ(Ω̂1)Y ∗l,m(Ω̂L)Y ∗lα,mα(Ω̂L)Y ∗lβ ,mβ(Ω̂L).

(1.250)

Where we have M< ≡ min{Mj,j+1, j = 1, . . . , L − 1} and J< ≡ min{J− +
J,−J−+J}, both being the minimum of the corresponding set. Now we carry
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out remaining integrals in (1.250) using∫
dΩ̂Yl,m(Ω̂)Ylα,mα(Ω̂)Ylβ ,mβ(Ω̂)

=

√
(2l + 1)(2lα + 1)(2lβ + 1)

4π

(
l lα lβ
0 0 0

)(
l lα lβ
m mα mβ

)
.

(1.251)

The result after integration can be further simplified by applying the following
orthogonality relation∑

m,mα

(2lβ + 1)

(
l lα lβ
m mα mβ

)(
l lα l′β
m mα m′β

)
= δlβ l′βδmβm′β , (1.252)

where

(
l lα lβ
m mα mβ

)
, etc. are the Wigner 3j-symbols.

So that finally expression (1.250) is equal to

L∏
j=1

(2Sj + 1)![
L−1∏
j=1

(Mj,j+1 + 1)

]
(J− + J + 1)(J+ − J + 1)(−J− + J + 1)

·
M<∑
l

J+−J∑
lα=0

J<∑
lβ=0

[
L−1∏
j=1

λ(l,Mj,j+1)

]
λ(lα, J+ − J)λ(lβ, J− + J)λ(lβ,−J− + J)

· (2l + 1)(2lα + 1)(2lβ + 1)

(
l lα lβ
0 0 0

)2

. (1.253)

The explicit value of

(
l lα lβ
0 0 0

)
is given by

(
l lα lβ
0 0 0

)
(1.254)

= (−1)g

√
(2g − 2l)!(2g − 2lα)!(2g − 2lβ)!

(2g + 1)!

g!

(g − l)!(g − lα)!(g − lβ)!
,

if l + lα + lβ = 2g (g ∈ N), otherwise zero.
Combining results of (1.245), (1.246) and (1.253), we arrive at the following
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result for eigenvalues: Eigenvalues Λ(J) (J = |J−|, . . . , J+) of the density
matrix are independent of Ω̂ and/or M in defining eigenvectors (see (1.238)
and (1.241)). An explicit expression is given by the following triple sum

Λ(J) =

L−1∏
j=1

(Mj,j+1 + 1)

L∏
j=1

(2Sj + 1)!

M01!ML,L+1!〈VBSL(J,M)|VBSL(J,M)〉 (1.255)

=
(2J + 1)!M01!ML,L+1!

(J+ + J + 1)!(J− + J + 1)!(J+ − J + 1)!(−J− + J + 1)!

·
M<∑
l

J+−J∑
lα=0

J<∑
lβ=0

[
L−1∏
j=1

λ(l,Mj,j+1)

]
λ(lα, J+ − J)λ(lβ, J− + J)λ(lβ,−J− + J)

· (2l + 1)(2lα + 1)(2lβ + 1)

(
l lα lβ
0 0 0

)2

.

1.6.6 The Large Block Limit

In this section, we generalize the characteristic properties (§ 1.5.8 ) of the lim-
iting density matrix to the inhomogeneous model.

Let us apply the density matrix ρL (1.233) to the state |G; J, Ω̂〉 (1.238)
and get

ρL|G; J, Ω̂〉 (1.256)

=

L∏
j=0

(Mj,j+1 + 1)

L∏
j=1

(2Sj + 1)!

1

(4π)2

∫
dΩ̂0dΩ̂L+1B

†|VBSL〉〈VBSL|BA†J |VBSL〉.

Using the coherent state basis (1.121) and completeness relation (1.122), the
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factor 〈VBSL|BA†J |VBSL〉 in (1.190) can be re-written as

〈VBSL|BA†J |VBSL〉 (1.257)

=

[
L∏
j=1

(2Sj + 1)!

4π

]∫ ( L∏
j=1

dΩ̂j

)
L−1∏
j=1

[
1

2
(1− Ω̂j · Ω̂j+1)

]Mj,j+1

· (u0v1 − v0u1)M01 (uu∗1 + vv∗1)J−+J (u∗1v
∗
L − v∗1u∗L)J+−J

· (uu∗L + vv∗L)−J−+J (uLvL+1 − vLuL+1)ML,L+1 .

We plug the expression (1.257) into (1.256). Using transformation properties
under SU(2) and a binomial expansion, the integral over Ω̂0 yields that∫

dΩ̂0

(
u∗0b
†
1 − v∗0a

†
1

)M01

(u0v1 − v0u1)M01 =
4π

M01 + 1

(
u1a

†
1 + v1b

†
1

)M01

.

(1.258)

Similarly we can perform the integral over Ω̂L+1. Then using expansion (1.248)
and orthogonality of spherical harmonics, other integrals over Ω̂j with j =
2, . . . , L− 1 in (1.257) can be performed. As a result, the following expression
is obtained from (1.256):

ρL|G; J, Ω̂〉 =
1

(4π)2

M<∑
l=0

(2l + 1)

[
L−1∏
j=1

λ(l,Mj,j+1)

]
K†l (Ω̂) |VBSL〉 . (1.259)

The operator K†l (Ω̂) involved in (1.259) is defined as

K†l (Ω̂) ≡
∫

dΩ̂1dΩ̂LPl(Ω̂1 · Ω̂L)
(
u1a

†
1 + v1b

†
1

)M01

(uu∗1 + vv∗1)J−+J

· (u∗1v∗L − v∗1u∗L)J+−J (uu∗L + vv∗L)−J−+J
(
uLa

†
L + vLb

†
L

)ML,L+1

.

(1.260)

It is expressed as an integral depending on the order l of the Legendre poly-
nomial Pl(Ω̂1 · Ω̂L).

There was no ambiguity in defining the large block limit in the homoge-
neous AKLT model (see § 1.5.8 ). However, in the inhomogeneous model we
must specify the behavior of ending spins in the large block limit. So we define
the large block limit as when L→∞, the two ending spins approach definite
values, namely, M01 → S− and ML,L+1 → S+. Then we realize from (1.249)

that as L → ∞,
∏L−1

j=1 λ(l,Mj,j+1) → δl,0. Therefore only the first term with
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l = 0 is left in (1.259). So that we need only to calculate the limiting K†0(Ω̂):

K†0(Ω̂)
L→∞−→

∫
dΩ̂1dΩ̂L

(
u1a

†
1 + v1b

†
1

)S−
(uu∗1 + vv∗1)J−+J

· (u∗1v∗L − v∗1u∗L)J+−J (uu∗L + vv∗L)−J−+J
(
uLa

†
L + vLb

†
L

)S+

.

(1.261)

Here both J− and J+ take the limiting values 1
2
(S− − S+) and 1

2
(S− + S+),

respectively.
Using transformation properties of the integrand in (1.261) under SU(2),

the K†0(Ω̂) integral is simplified and carried out as

K†0(Ω̂) =
(4π)2

(S− + 1)(S+ + 1)
A†J . (1.262)

This expression states that {|G; J, Ω̂〉} is a set of eigenvectors of the density
matrix as L→∞. Let us denote the density matrix in the limit by ρ∞. Then
(1.262) leads to the result (see (1.259))

ρ∞|G; J, Ω̂〉 =
1

(S− + 1)(S+ + 1)
|G; J, Ω̂〉. (1.263)

We find from (1.263) that the limiting eigenvalue

Λ∞ =
1

(S− + 1)(S+ + 1)
, L→∞ (1.264)

is independent of J . Any vector of the (S−+ 1)(S+ + 1)-dimensional subspace
spanned by the set {|G; J, Ω̂〉} is an eigenvector of ρ∞ with the same eigenvalue

1
(S−+1)(S++1)

. Therefore ρ∞ is proportional to a projector P(S−+1)(S++1):

ρ∞ =
1

(S− + 1)(S+ + 1)
P(S−+1)(S++1), (1.265)

which is a generalization of (1.215) to the inhomogeneous model. In ad-
dition, we also derive from the eigenvalues that the von Neumann entropy
Sv N coincides with the Renyi entropy SR and is equal to the saturated value
ln [(S− + 1)(S+ + 1)].
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1.7 Summary

We have studied the entanglement of the VBS ground state for the AKLT
model in this chapter. The AKLT model is formulated on an arbitrary con-
nected graph or a lattice. The Hamiltonian (1.14), (1.21) is a sum of pro-
jectors which describe interactions between nearest neighbors. The condition
of uniqueness of the ground state relates the spin value at each vertex (site)
with multiplicity numbers associated with edges incident to the vertex (bonds
connected to the site), see (1.15), (1.23), (1.24). The unique ground state is
known as the Valence-Bond-Solid state (1.20), (1.31).

To study the entanglement, the graph (lattice) is divided into two parts:
the block and the environment. We investigate the density matrix ρB of the
block and show that it has many zero eigenvalues. We describe the subspace
(called the support) of eigenvectors of ρB with non-zero eigenvalues. It has
been proved (see Theorem 1.1 in § 1.3.3 ) that this subspace is the degenerate
ground space of some Hamiltonian which is called the block Hamiltonian HB

(1.58).
The entanglement can be measured by the von Neumann entropy or the

Rényi entropy of the density matrix ρB. Most eigenvalues of ρB vanish and
have no contribution to the entanglement entropies. The density matrix takes
the form of a projector on the ground space of HB multiplied by another matrix
(see also [52]).

A complete analysis of the density matrix for a variety of 1-dimensional
AKLT models has been presented. The block density matrix ρL for a subsys-
tem of L contiguous bulk spins has been diagonalized with non-zero eigenvalues
calculated (see also [11, 32, 50, 51]). We find that in all these cases the sup-
port coincide with the ground space, so their dimensions are equal D = deg.
In the large block limit, all non-zero eigenvalues become the same and the
density matrix is proportional to a projector (1.215), (1.265). The von Neu-
mann entropy equals the Rényi entropy and both take the saturated value
Sv N = SR = lnD = ln(deg).

Moreover, it turns out that the block Hamiltonian HB defines the density
matrix ρL completely in the large block limit L→∞. The zero-energy ground
states of the block Hamiltonian HB span the subspace that the density matrix
ρL projects onto. So that ρL can be represented as the zero-temperature limit
of the canonical ensemble density matrix defined by HB:

ρL = lim
β→+∞

e−βHB

tr [ e−βHB ]
, L→∞. (1.266)

In the zero-temperature limit, contributions from excited states of HB all
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vanish and the right hand side of (1.266) turns into a projector onto the ground
states of the block Hamiltonian.

For more complicated graphs or lattices, non-zero eigenvalues of the density
matrix are still unknown. One open problem is to calculate those eigenvalues.
One may start with the Cayley tree (also known as the Bethe tree) and an exact
explicit expression for the non-zero eigenvalues is expected because there is no
loop. It is also important to calculate non-zero eigenvalues of ρB for graphs
with loops. In all known examples [11, 50, 51] where the density matrix of a
large block has been calculated, all non-zero eigenvalues coincide. So that the
density matrix of a large block is proportional to a projector. We conjecture
that this will be the case for all connected graphs. In other words, we expect
that in the large block limit, each non-zero eigenvalue should approach the
same value 1

D
= 1

deg
, thus the entanglement entropies should be saturated, i.e.

Sv N = SR = lnD = ln (deg). The density matrix should be proportional to
a projector on the ground space of the block Hamiltonian, i.e. ρB = 1

D
PD =

1
deg

Pdeg.

74



Chapter 2

Quantum Search Algorithms

2.1 Introduction

One spectacular promise of a quantum computer is to enable new algorithms
which could practically solve feasible problems requiring exorbitant resources
on a classical computer. Two broad classes of quantum algorithms are known
which fulfill this promise. The first class is based on the Shor’s quantum
Fourier transform, which includes algorithms for solving the factorization prob-
lem with a exponential speedup over corresponding classical algorithms. The
second class is based on Grover’s algorithm for performing quantum database
searching which provides a quadratic speedup over the classical algorithms.
This chapter is devoted to the subject of quantum search.

Database search has many applications and it appears in everyday life.
Search algorithm enters as a subroutine in many important algorithms in
computer sciences [41, 54, 55]. L. Grover discovered a quantum algorithm
[56] which searches an unsorted database faster than any classical algorithm
in 1996. By unsorted we mean that there is no arrangement of items in some
sequence or particular order for searching. for example, a phonebook with
names listed alphabetically is a sorted database when we are looking for the
phone number associated with a given name; however, the same phone book
becomes an unsorted database if we are provided with a phone number and
looking for the name. Suppose that we have a large database of N items and
we are searching for one item, called the target item or solution. (e.g. Given a
map containing many cities, wishing to determine the shortest route passing
through all cities on the map.) Technically, rather than search the elements
directly, we concentrate on the index or address of those items, which is just
a number in the range 0 to N − 1. For convenience assuming N = 2n (it is
always possible to add additional auxiliary items to make the number N a
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power of 2), so the address can be stored in n bits. Let us denote the ad-
dresses of items by x and that of the target by t. (Without confusion, we
could identify the address with the actual item. For the quantum case, each
address data x is associated with a vector |x〉 which contains n qubits and the
database is a N -dimensional Hilbert space.) For an unsorted database, we are
only provided with a testing function f(x), which takes as input an arbitrary
x from the database. By definition, the output of f is 1 if x is a solution to
the search problem, and 0 if not. In other words, f is a black box with the
ability to recognize the solution to the search problem. The internal workings
of f are not important in our discussion, but the value is that f(x) = δx,t.
This test function is called an oracle. (It has a quantum version which is
discussed in § 2.2.1 .) We use number of queries to the oracle as complexity
measure. Any classical algorithm (essentially a random picking up of items)
takes O(N) number of queries. The Grover algorithm finds the target item
(with probability 1) in

jfull =
π

4

√
N ∼ O

(√
N
)
, N →∞ (2.1)

iterations (queries to the oracle), which is a quadratic speedup. We shall call
it a full search.

It occurs frequently in practice that less information is needed. For exam-
ple, the address of the target item in binary form is |t〉 = |b1b2b3...bn〉, and
we want to find only the first 3 bits b1b2b3. This means that the database is
partitioned into 8 blocks. All items in a block share the common feature such
that the first 3 bits being the same. We want to find the block containing
the target item. This is an example of partial search. The general problem of
partial search considers the following: An N item database is partitioned into
K blocks, each of the same size

b =
N

K
. (2.2)

A user wants to find the block containing the target item, instead of the
target item itself. The block with the target item is called the target block ;
others non-target blocks. Partial search naturally arises in list matching [58].
Partial search is not only a compromise on accuracy for speed, but also has
it own significance. Partial search can find all items in the database which
share some features with the target item. This can be considered as a special
case of sorting problem. The GRK algorithm of partial search was suggested
by Grover and Radhakrishnan [57] and optimized in [59]. It takes ∼ π

4
(1 −

coeff(K))
√
N number of queries to find the target block. Here coeff(K) is a
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finite positive number, which depends on K and has a limit when blocks are
large b → ∞. GRK is the most efficient partial search algorithm known in
literature [53, 57, 59, 61, 62].

GRK can be applied in a sequence (one after another), i.e. after the first
GRK, the target block found can be further partitioned into sub-blocks. Then
a second GRK can be applied to find the sub-block containing the target
item (called the target sub-block). We shall call the sequence of GRK’s a
partial search hierarchy. In the hierarchical search we iterate GRK. A practical
example would be: In order to find a hotel, we first look at a State map and
then a town map. We shall see that the second GRK works faster than the first
one. Actually, GRK can be conducted repeatedly until we find the smallest
target sub-sub-block interested. The total number of queries is the sum of
queries of each GRK in the hierarchy. (We use number of queries as measure
of complexity.)

Alternative to a partial search hierarchy which finds the target sub-sub-
block, we could partition the database directly into sub-sub-blocks and use
GRK once: We shall call it direct partial search. Although each GRK works
faster than the previous one in the hierarchy, it is not guaranteed that the
total number of queries in the hierarchy (sequence of GRK’s) is less than that
of a direct partial search. On the contrary, we will prove that direct partial
search works faster, which is the main result of this chapter. For example,
consider a database partitioned into 2 blocks. Each block is partitioned into 2
sub-blocks, so totally 4 sub-blocks. One could first find the target block using
GRK, then the target sub-block using a sequential GRK. However, it is faster
to run a GRK directly over the 4 sub-blocks, which finds the target sub-block
once.

This chapter consists of six sections:

1. A introduction to the problem of database search (§ 2.1 );

2. The Grover search algorithm (§ 2.2 );

3. Mathematical formulation of the GRK partial search algorithm (§ 2.3 );

4. A detailed study of the partial search hierarchy (§ 2.4 );

5. A comparison between a hierarchical partial search with a direct partial
search and proof of the main result that the direct partial search works
faster (§ 2.5 );

6. A brief summary (§ 2.6 ).
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2.2 The Grover Search Algorithm

In this chapter, we will consider different methods of partial search § 2.3.1 .
They are all built on the original idea of the full Grover search [41, 56, 65].
We study the Grover search in this section.

2.2.1 The Quantum Oracle

Let us formulate the problem. Consider a database of N items with one target
item. 1 The database is associated with a Hilbert space with N normalized
basis vectors. The basis vector corresponding to item x is denoted by |x〉.
Suppose that we are equipped with a quantum oracle which has a similar
ability as the classical oracle to recognize the target item. This recognition is
signaled by making use of an oracle qubit (an auxiliary qubit also called the
working basis). Mathematically, the oracle is a unitary operator Uf defined by
its action on the computational basis:

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉, (2.3)

where |x〉 is the address of the item in the database, ⊕ denotes addition modulo
2, and the oracle qubit |y〉 is a single qubit which is flipped if and only if
f(x) = 1. The unitary operator Uf serves as the quantum version of the
classical oracle, whose result depends on the value of the test function (classical
oracle) f(x) = δx,t. We can check whether x is a solution (target) by preparing
|x〉|0〉, applying the oracle, and measuring the oracle qubit (working basis) to
see if it has been flipped to |1〉. It is crucial that the oracle has an eigenstate

1√
2
(|0〉 − |1〉):

Uf |x〉
(
|0〉 − |1〉√

2

)
= |x〉

(
|0⊕ δx,t〉 − |1⊕ δx,t〉√

2

)
= (−1)δx,t|x〉

(
|0〉 − |1〉√

2

)
= (−1)f(x)|x〉

(
|0〉 − |1〉√

2

)
. (2.4)

Notice that the state of the oracle qubit is not changed. If we fix the oracle
qubit (working basis) at this eigenstate throughout the quantum search al-
gorithm, this auxiliary qubit can therefore be omitted. We could effectively

1Target item also called in literature marked item or solution.
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say

Uf |x〉 = (−1)f(x)|x〉 = It|x〉, (2.5)

so that a query to the oracle is equivalent to a reflection It about the plane
perpendicular to the target |t〉. (Note that the form (2.5) may suggests that
we actually know the target |t〉 which is not the real case.)

2.2.2 The Grover Algorithm

With the oracle well-defined, we now proceed on to the main algorithm. The
Grover search is a quantum algorithm which starts from the uniform superpo-
sition of all basis vectors in the whole database:

|s1〉 =
1√
N

N−1∑
x=0

|x〉, 〈s1|s1〉 = 1. (2.6)

The algorithm searches for a single target item |t〉 iteratively. The Grover
iteration is a unitary transform:

G1 = −Is1It. (2.7)

Later we shall call it a global iteration in GRK. Here It and Is1 are two re-
flections about the plane perpendicular to the target item |t〉 (this reflection
corresponds to a query to the oracle) and about the plane perpendicular to
the uniform superposition |s1〉 defined in (2.6), respectively:

It = I − 2|t〉〈t|, (2.8)

Is1 = I − 2|s1〉〈s1|, (2.9)

where I is the identical operator. The Grover iteration G1, as a product of
two reflections, is a rotation in the Hilbert space from |s1〉 towards the target
|t〉 by an angle 2θ1 defined by [65]

sin2 θ1 =
1

N
. (2.10)

This fact is straightforward to verify either through induction or by finding
the eigenstates of the Grover iteration G1. Another way to see it is this:
Realizing that the amplitude of all non-target items are always the same in
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the algorithm, we define

|nt〉 =
1√

N − 1

N−1 items∑
x6=t

|x〉. (2.11)

Then G1 becomes a rotation in the 2-dimensional space spanned by the or-
thonormal basis {|t〉, |nt〉}. In this basis, |s1〉 is represented by

|s1〉 =

(
sin θ1

cos θ1

)
(2.12)

and G1 becomes

G1 =

(
cos 2θ1 sin 2θ1

− sin 2θ1 cos 2θ1

)
. (2.13)

After j1 iterations the state of the database becomes [41, 65]

Gj1
1 |s1〉 = sin ((2j1 + 1)θ1) |t〉+

cos ((2j1 + 1)θ1)√
N − 1

N−1
items∑
x 6=t

|x〉. (2.14)

Therefore after jfull = π/(4θ1)− 1/2 iterations the probability amplitude of |t〉
becomes unity and amplitudes of other items all vanish. i.e.

Gjfull
1 |s1〉 = |t〉. (2.15)

As N becomes large jfull = π/(4θ1) − 1/2 approaches (2.1). More rigorously
speaking, jfull may not be an integer, so that we should have

jfull = CI

(
π

4θ1

− 1

2

)
(2.16)

number of iterations, where CI(x) denote the integer closest to the real number
x. The error is of the order O

(
1
N

)
, which can be corrected by repetition. More

details on Grover search can be found in Chapter 6 of [41].

2.3 The GRK Partial Search Algorithm

Now we proceed to quantum partial search in which the database is partitioned
into blocks and the algorithm searches for the block containing the target item.
We are particularly interested in the ideal problem that both the size of each
block b and thus that of the database N become large, with their ratio (number
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of blocks) K = N/b fixed. i.e.

b→∞, N →∞, K =
N

b
→ finite. (2.17)

2.3.1 Algorithms for Partial Search

Before introducing the GRK partial search algorithm (see § 2.3.2 ), we first
look at a few other algorithms for comparison:

1. Naive Search

Pick a block randomly and make a full Grover search in it (which makes
π
4

√
N
K

queries to the oracle). If we find the target item then we under-

stand that this is the target block. If not, then we discard this block
and pick another randomly. Make a full Grover search in it and repeat
this procedure till we find the target block. In the worst case the target
block will be the last one. So with probability 1 we have to use

r(N,K) =
(K − 1)√

K

π

4

√
N (2.18)

iterations (queries) to find the target block. 2

A full Grover search finds the target item in (π/4)
√
N queries. If we

know the exact address of the target item then we also know the tar-
get block. Comparing (π/4)

√
N with r(N,K) in (2.18), we see that the

naive version is faster only for two blocks K = 2. (If K ≥ 3 a full search
is faster).

2. Binary Search

Assume that K = 2k with k being a positive integer. Divide the database
into two blocks and make a full Grover search in one block. If the target
item is not found, then take the remaining block and divide it into two
sub-blocks. Pick a sub-block randomly and make a full search again in
it. Repeat the procedure until we are left with the last block. In the
worst case, the number of queries necessary to find the target block is

π

4

√
N

{
1√
2

+
1√
4

+ . . .+
1

2k/2

}
, k = log2K. (2.19)

2(
√
K/2)(π/4)

√
N queries on average.
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The first two terms in the braces of (2.19) are greater than 1 for K ≥ 3,

1√
2

+
1

2
=

√
2 + 1

2
> 1. (2.20)

So this algorithm is less efficient than a full Grover search, when K > 2.

3. Grover and Radhakrishnan Version

A faster version was found in [57]. Pick randomly a block and make a full
Grover search in the compliment (the set of all items in the rest of the
database). Either the target item (and block) is found after the search
or the picked block is the target block. This requires π

4

√
b(K − 1) =

π
4

√
N
√

K−1
K

queries. It is faster than a full search.

2.3.2 The GRK Partial Search Algorithm

L. K. Grover and J. Radhakrishnan also discovered a faster quantum algorithm
[57] for partial search which uses the same oracle as the main Grover algorithm.
Partial search also starts from the uniform superposition of all basis states
(2.6). A general structure of the algorithm is [53, 57, 59–62]:

Step 1. Global iterations:
j1 standard Grover iterations (2.7). After this step the state of database
is Gj1

1 |s1〉.

Step 2. Simultaneous local iterations in each block:
j2 local Grover iterations defined in (2.21) below. After step 2 the state
of database is Gj2

2 G
j1
1 |s1〉.

Local iteration is defined by

G2 =
K⊕

blocks

G
one

block
2 = −

(
K⊕

blocks

Is2

)
It. (2.21)

It is a direct sum of Grover iterations (called local queries) defined in
each block

G
one

block
2 = −Is2It. (2.22)
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In the expression It is the same reflection (2.8), i.e. query to the oracle.
Is2 is a local reflection

Is2 = I − 2|s2〉〈s2|. (2.23)

Here |s2〉 is the uniform superposition of items in one block

|s2〉 =
1√
b

b items∑
one block

|x〉. (2.24)

Local iteration G2 is a the Grover iteration in each block done simultane-
ously in all blocks. G2 acts trivially on non-target blocks. A non-trivial
operation (rotation) is present only in the target block with new rotation
angle θ2 defined by

sin2 θ2 =
K

N
=

1

b
. (2.25)

In other words, G2 acts on non-target blocks as the identity; It acts on
the target block as a local rotation. Note that amplitudes of all items in
non-target blocks remain intact in this step.

Step 3. Location of the target block with a final global iteration [59, 61, 62]:
We have to vanish amplitudes of all items in non-target blocks. It can
be done by application of one more global iteration. The resulting state
is

|d〉 ≡ G1G
j2
2 G

j1
1 |s1〉 = sinω|t〉+

cosω√
b− 1

b−1
items∑
x 6=t

target block

|x〉. (2.26)

The final state (2.26) is expressed as a superposition over items in the
target block only. This is realized by requiring that the amplitude of any
non-target block vanishes after the partial search, i.e.

〈x|d〉 = 0. (2.27)

Here x is an arbitrary item in any non-target block. This vanishing
condition can be written explicitly as an equality for j1 and j2, see (2.47)
and [59]. We shall call it a cancellation condition.
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The Mathematical Framework

Now let us follow the three steps above and find the cancellation condition
(2.27), hence the total queries to the oracle explicitly. Step 1 is nothing but
the first j1 iterations of the full Grover search. We make use of the same
notations as in § 2.2.2 . These j1 iterations are easily carried out by using the
eigenvectors of G1:

G1|ψ±1 〉 = λ±1 |ψ±1 〉, λ±1 = exp (±2iθ1) , (2.28)

|ψ±1 〉 =
1√
2
|t〉 ± i√

2

N−1∑
x=0
x 6=t

|x〉√
(N − 1)

 .

After j1 queries the state of the database is

Gj1
1 |s1〉 = sin ((2j1 + 1)θ1) |t〉+

cos ((2j1 + 1)θ1)√
N − 1

N−1∑
x=0
x 6=t

|x〉. (2.29)

During Step 2 local searches G2 are made in each block separately in
parallel. First let us consider the state of a non-target block at the beginning
of Step 2:

|nB〉 = ant

b items∑
one block

|x〉 = ant
√
b |s2〉 (2.30)

We can read the coefficient from (2.29) that

ant =
cos ((2j1 + 1)θ1)√

N − 1
(2.31)

The state of a non-target block does not change during the second step:

It|nB〉 = |nB〉 = −Is2|nB〉 = G2|nB〉. (2.32)

Now let us consider the target block. After Step 1 its state can be obtained
from (2.29) to be

|B〉 = sin ((2j1 + 1)θ1) |t〉+ cos ((2j1 + 1)θ1)

√
b− 1√
N − 1

|ntt〉. (2.33)
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Here the |ntt〉 is a normalized sum of all non-target items in the target block:

|ntt〉 =
1√
b− 1

b−1 items∑
x6=t

target block

|x〉, 〈ntt|ntt〉 = 1. (2.34)

Step 2 works as the Grover search within the target block with a different
initial state. It is also convenient to construct eigenvectors of G2 (in a similar
way as the eigenvectors of G1, see (2.28)):

G2|ψ±2 〉 = λ±2 |ψ±2 〉, λ±2 = exp (±2iθ2) ,

|ψ±2 〉 =
1√
2
|t〉 ± i√

2
|ntt〉 (2.35)

We can resolve these equations as

|ntt〉 =
i√
2

(
−|ψ+

2 〉+ |ψ−2 〉
)
, |t〉 =

1√
2

(
|ψ+

2 〉+ |ψ−2 〉
)

(2.36)

Now we can express the state of the target block in terms of the eigenvectors
of G2:

|B〉 =

[
sin ((2j1 + 1)θ1)√

2
− i

√
b− 1

N − 1

cos ((2j1 + 1)θ1)√
2

]
|ψ+

2 〉

+

[
sin ((2j1 + 1)θ1)√

2
+ i

√
b− 1

N − 1

cos ((2j1 + 1)θ1)√
2

]
|ψ−2 〉

(2.37)

After j2 iterations the target block will become

Gj2
2 |B〉 =

e2iθ2j2

√
2

[
sin ((2j1 + 1)θ1)− i

√
b− 1

N − 1
cos ((2j1 + 1)θ1)

]
|ψ+

2 〉

+
e−2iθ2j2

√
2

[
sin ((2j1 + 1)θ1) + i

√
b− 1

N − 1
cos ((2j1 + 1)θ1)

]
|ψ−2 〉

(2.38)

As a result, we can use (2.35) to express the state of the target block in terms
of the basis states

|B2〉 ≡ Gj2
2 |B〉 = at|t〉+ antt|ntt〉 (2.39)
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and to calculate the amplitudes:

at = cos(2j2θ2) sin ((2j1 + 1)θ1)

+

√
b− 1

N − 1
sin(2j2θ2) cos ((2j1 + 1)θ1) , (2.40)

antt = − sin(2j2θ2) sin ((2j1 + 1)θ1)

+

√
b− 1

N − 1
cos(2j2θ2) cos ((2j1 + 1)θ1) . (2.41)

Before presenting the last step, we shall emphasize that different versions
of the last operation in Step 3 of GRK appeared in literature [53, 57, 59].
People have finalized (after Steps 1 and 2) the state |v〉 ≡ Gj2

2 G
j1
1 |s1〉 with

different operations Is1 , −ItIs1 , or G1 ≡ −Is1It. Grover and Radhakrishnan
used Is1 [57]. This makes one less query to the oracle but the amplitude of the
target item is negative in the final state Is1|v〉. Article [59] used −ItIs1 and
article [62] used G1. The last two version become the same in the large block
limit. This means that final states −ItIs1|v〉 and G1|v〉 are equivalent (of the
same form) when b → ∞, though Is1 and It do not commute in general. We
choose G1 in our formal presentation throughout this chapter because it uses
the same Grover iteration. However, in the calculations below (only within the
discussion of Step 3) we use −ItIs1 instead for convenience. All statements
are valid for G1 because of the equivalence in the large block limit. Then Step
3 consists of the following operations. We start by application of the operator

− Is1 = −I + 2|s1〉〈s1| (2.42)

(see (2.6)) to the state of the whole database. Consider an arbitrary vector

|v〉 =
N−1∑
x=0

ax|x〉. (2.43)

The operator −Is1 inverts the coefficients about the average:

− Is1|v〉 =
N−1∑
x=0

ăx|x〉, ăx = 2ā− ax, ā =
N−1∑
x=0

ax
N
. (2.44)

We see from (2.44) this is global inversion about average ax → 2ā − ax. The
amplitude of an item which we want to vanish should be double average:
ax = 2ā. We want to annihilate the amplitudes of items in non-target blocks
ant → 0. This means that the amplitudes introduced in the previous step
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should satisfy ant = 2ā:

ant =
2

N

[
b (K − 1)ant + at +

√
b− 1 antt

]
, (2.45)

see (2.34). We can re-write this in a form:

−N
(

1

2
− 1

K

)
ant = at +

√
b− 1 antt (2.46)

Substituting here the expressions (2.31), (2.40) and (2.41) we obtain the ex-
plicit cancellation equation:

−N√
N − 1

(
1

2
− 1

K

)
cos ((2j1 + 1)θ1)

= cos(2j2θ2) sin ((2j1 + 1)θ1)

+

√
b− 1

N − 1
sin(2j2θ2) cos ((2j1 + 1)θ1)

−
√
b− 1 sin(2j2θ2) sin ((2j1 + 1)θ1)

+
b− 1√
N − 1

cos(2j2θ2) cos ((2j1 + 1)θ1) (2.47)

This equation guarantees that the amplitude of each item in each non-target
block vanishes:

Is1|nB〉 = 0, (2.48)

Is1|B2〉 = (at − ant)|t〉+ (antt −
√
b− 1 ant)|ntt〉.

Here we used (2.39), (2.44) and ant = 2ā. Next, to prepare for a next partial
search we make an extra query and turn the target block into the final state:

|d〉 = −ItIs1|B2〉 = sinω|t〉+ cosω|ntt〉 (2.49)

= (at − ant)|t〉 − (antt −
√
b− 1 ant)|ntt〉.

Below we shall call ω the block angle, we shall show that it depends only on
number of blocks K.

Now we can perform a measurement. In the simplest case N = 2n and
K = 2k, we label blocks by k qubits (items inside of a block are labeled by
n− k qubits). We measure only k block qubits and find the target block.

Let us remark that we could have replaced the whole Step 3 by appli-
cation of a single global iteration G1 to the database (see (2.7)) and make
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measurement of the block qubits. The state |d〉 (2.49) of the target block
before measurement is not altered in the large block limit.

The Large Block Limit

To see universal features we consider the limit when each block is very large.
In the large block limit b→∞, the total number of items is also large N →∞,
while the ratio K = N/b is kept finite. Then the expression for rotation angles
(2.10) and (2.25) simplifies:

θ1 →
1√
N
, θ2 →

1√
b
. (2.50)

It turns out convenient to re-write numbers of iterations in a scale form [57]

j1 =

(
π

4
− η√

K

)√
N, j2 =

α√
K

√
N. (2.51)

Here η and α are parameters of order 1 (they have a limit). Then the arguments
of trigonometric functions in (2.47) become

(2j1 + 1)θ1 =
π

2
− 2η√

K
, 2j2θ2 = 2α. (2.52)

Now the cancellation condition (2.47) takes the following form

−
√
Kb

(
1

2
− 1

K

)
sin

(
2η√
K

)
(2.53)

= cos(2α) cos

(
2η√
K

)
+

1√
K

sin(2α) sin

(
2η√
K

)
−
√
b sin(2α) cos

(
2η√
K

)
+

√
b

K
cos(2α) sin

(
2η√
K

)
.

For b → ∞ the leading contribution in this equation is of order
√
b. We can

neglect contribution of the target item into the equation (first two terms in
the r.h.s.). So we can simplify the equation (2.53) to

√
K

(
1

2
− 1

K

)
sin

(
2η√
K

)
= sin(2α) cos

(
2η√
K

)
− 1√

K
cos(2α) sin

(
2η√
K

)
. (2.54)
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Therefore, the vanishing condition (2.27) and (2.47) in terms of these param-
eters simplifies in the large b limit as [53, 59]

tan

(
2η√
K

)
=

2
√
K sin 2α

K − 4 sin2 α
. (2.55)

At this point, we also calculate the block angle ω in the expression for the final
state of the target block (2.26) or (2.49):

tanω =
1

2 tanα
+

(
2

K
− 1

2

)
tanα. (2.56)

Now we specify ranges of these parameters α and η introduced in (2.51).
Because of the constraint (2.55) relating the two parameters, it is sufficient
to specify the range of α. As seen from (2.26) and (2.56) that amplitudes
(of items in the database after GRK) depend on sin (2j2θ2) ∼ sin (2α) and
cos (2j2θ2) ∼ cos (2α). So that it is sufficient to take values of α within one
period: α ∈ [a, a + π], with a some real number determined later. We are
looking for the exact boundaries of α set by physical considerations.

Query numbers (2.51) are non-negative:

j1 =

(
π

4
− η√

K

)√
N ≥ 0, (2.57)

j2 =
α√
K

√
N ≥ 0. (2.58)

Total query number ∼ (j1 + j2) (see (2.65) below) should be less than that of
a full Grover search:

j1 + j2 =

(
π

4
+
α− η√
K

)√
N ≤ π

4

√
N. (2.59)

These three inequalities (2.57), (2.58) and (2.59) yield that

0 ≤ α ≤ η ≤ π

4

√
K. (2.60)

We use constraint (2.55) to express η as a function of α

η(α) =
1

2

√
KArctan

(
2
√
K sin 2α

K − 4 sin2 α

)
(2.61)

89



K 2 3 4 5 6 100 ∞
αB(K) π

4
π
3

π
2

1.22683 1.15100 0.956221 0.947747

Table 2.1: Upper Bound of α

with function Arctan(x) multi-valued. But according to (2.60), we have

0 ≤ Arctan

(
2
√
K sin 2α

K − 4 sin2 α

)
≤ π

2
. (2.62)

Therefore we could take the principal branch arctan (x). Now inequality (2.60)
becomes

0 ≤ α ≤ 1

2

√
K arctan

(
2
√
K sin 2α

K − 4 sin2 α

)
≤ π

4

√
K. (2.63)

This inequality determines range of α.
The solution of (2.60) (or (2.63) equivalently) can be written in the follow-

ing form:

0 ≤ α ≤ αB(K). (2.64)

Here the upper bound αB(K) is a function of K. When K = 2, 3 or 4,
αB(K) coincide with the singularities of η(α). (K − 4 sin2 α = 0 at these
singularities.) When K ≥ 5, values of αB(K) can be solved numerically. As
K increases, αB(K) approaches a certain positive number αB(∞). This limit
αB(∞) = 0.947747 . . . is the solution of α = sin (2α). (Inequality α ≤ η(α)
becomes α ≤ sin (2α) as K →∞.) The value of αB(K) always lies in between
αB(∞) and π

2
when K ≥ 5. We list these results in Table 2.1.

The Optimization

It is preferred that the partial search makes the least number of queries to
the oracle. We discuss the optimization of the partial search algorithm in this
section. (See [59] where the GRK was first optimized).

The total number of queries is

S(K) ≡ j1 + j2 + 1
b→∞−→

(
π

4
+
α− η√
K

)√
N. (2.65)

It has to be minimized subject to the constraint (2.55). The minimum number
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of queries is achieved at

η (K) =
1

2

√
K arctan

(√
3K − 4

K − 2

)
, α (K) =

1

2
arccos

(
K − 2

2(K − 1)

)
.

(2.66)
Thus the minimized number of queries of GRK partial search (as a function
of K) is

S (K)
b→∞−→

(
π

4
+
α (K)− η (K)√

K

)√
N. (2.67)

Note that α − η is negative and number of blocks K ≥ 2 in a non-trivial
situation.

Now we prove that (2.66) is the global minimum of α− η under constraint
(2.55). We have used (2.55) to express η as a function of α

η (α) =

√
K

2
arctan

(
2
√
K sin 2α

K − 4 sin2 α

)
. (2.68)

Now we define a function

f (α) ≡ α− η (α) (2.69)

which we want to minimize within the range 0 ≤ α ≤ αB(K). We first prove
that (2.66) is a local minimum of f(α).

1. Case K ≥ 3

The first derivative of f(α) is

f ′(α) =
16(K − 1) sin4 α− 4K2 sin2 α +K2

16(K − 1) sin4 α− 8K sin2 α−K2
. (2.70)

It vanishes at (2.66) with sin2 α = K
4(K−1)

. We calculate next the second
derivative

f ′′(α) = 4K sin 2α[4(K−1)(K−2) cos2 2α+16(K−1) cos 2α+(K−2)2(K+2)]

[16(K−1) sin4 α−8K sin2 α−K2]2
. (2.71)

Note that the value of the denominator at (2.66) is K6

(K−1)2
, which is

strictly positive as K ≥ 3. The numerator is also positive because both
sin 2α and cos 2α are positive at (2.66) with K ≥ 3. (See § 2.3.2 for
the range of α(K).) Therefore f ′(α) = 0 and f ′′(α) > 0 at the solution
(2.66), so that (2.66) is a local minimum for K ≥ 3.
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2. Case K = 2

The case that K = 2 is more subtle. Expression (2.66) yields that α = π
4

and η = π
2
√

2
. However, both first (2.70) and second (2.71) derivatives of

α − η(α) vanish at this critical point. The third derivative is non-zero:
f ′′′(α = π

4
) = −4. So we expand function α − η(α) about the critical

point

α− η(α)|K=2 = − 4

3!

(
α− π

4

)3

+O
((

α− π

4

)4
)
. (2.72)

We see that α = π
4

is actually a saddle point due to the non-vanishing
cubic term. The form (2.72) suggests that if α goes greater than π

4
, value

of function α−η(α) could be further reduced than the value at the saddle
point. However, α = π

4
is a boundary set by physical considerations (see

Table 2.1). Definition of α and η in (2.51) involves query numbers j1

and j2, which are non-negative. Therefore j1 ≡
(
π
4
− η√

2

)√
N ≥ 0, i.e.

η ≤ π
2
√

2
. Now if we allow α to go beyond π

4
and write

α =
π

4
+ δ, η =

π

2
√

2
+ ε. (2.73)

Here δ and ε are infinitesimals, δ > 0. Then constraint (2.55) requires
that

ε = δ. (2.74)

So that η would be greater than the physically allowed maximal value
π

2
√

2
and j1 would be negative j1 = − δ√

2

√
N . This analysis showed that

α can never go beyond π
4

and function α − η(α) is minimized at this
boundary. Therefore, expression (2.66) as a local minimum is also valid
in the case that K = 2.

Now we have proved that the critical point (2.66)

α (K) =
1

2
arccos

(
K − 2

2(K − 1)

)
(2.75)

is a local minimum of f(α). Note that f(α) is analytical as 0 ≤ α ≤ αB(K)
and there is no singularity in this range any more. Therefore we can claim
that this local minimum (2.75) is also global by comparing the value of f(α)
at (2.75) with those at the boundaries. (We always have 0 < α(K) ≤ αB(K)
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K f(0) f (α(K)) f (αB(K))

2 0 π
4

(
1−
√

2
)
≈ −0.325323 π

4

(
1−
√

2
)
≈ −0.325323

3 0 -0.337098 -0.313152
4 0 -0.339837 0

Table 2.2: Comparison of values of f(α) at different points.

and equality holds only for K = 2.) We list the comparison results for K = 2,
3 and 4 in Table 2.2.

When K ≥ 5, f(0) = f(αB(K)) = 0, while f(α(K)) < 0. Therefore, we
conclude that the critical point (2.66) or (2.75) is always the global minimum.
Thus we have completed the minimization.

In the large block limit, at the minimum (2.66) the ω appeared in (2.26)
takes a particular simple form [59]

ω = α(K), . (2.76)

As a consequence, the state of database after GRK (2.26) or (2.49) is the
following: The amplitudes of items in non-target blocks all vanish and the
state of the target block is

|d〉 = sinα(K)|t〉+
cosα(K)√
b− 1

b−1
items∑
x 6=t

target block

|x〉. (2.77)

2.3.3 Different Partitions of a Database

Before ending this section, we briefly discuss the partition of a database into
blocks. A data base of N items can be partitioned into blocks in different ways.
For example, items in one block may have the first 3 bits of their addresses the
same for one partition or the last 3 bits the same for another partition. For a
database partitioned into K blocks of equal size b = N/K, there are totally

P (N,K) =
N !

(b!)K K!
(2.78)

different ways of partition. We could use ancilla qubits (also called additional
or auxiliary qubits) to label these partitions. As N and b both being large, we
shall need

log2 P (N,K) ∼ N log2K − log2K! (2.79)
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ancilla qubits. For example, if we have N = 4 items and K = 2 blocks,
then the number of partitions is P (4, 2) = 3 and we shall need log2 3 ≈ 2
ancillas. In practice, The number (2.79) can be further reduced if we only
label the partitions commonly used, not all partitions. Then we can run GRK
simultaneously for those selected partitions. When a user measures ancilla
qubit in his/her favorite partition, the target block will already be found by
that time.

2.4 The Partial Search Hierarchy

A partial search hierarchy is a sequence of GRK’s. After location of the target
block, we may consider a subsequent GRK partial search: The target block
is further partitioned into K̃ sub-blocks and we search for the sub-block con-
taining the target item (target sub-block). For example we can use Google
Earth to find the State of New York first on the map of USA and then make
a sequential search for Stony Brook in the State map.

We shall show below that a sequential GRK can be done faster than the
first GRK. The coefficient π/4 in (2.67) is replaced by a smaller number:

π

4
→ π

4
− 1

4
arccos

(
K − 2

2(K − 1)

)
. (2.80)

Each successive GRK works faster than the previous one for two reasons. First,
the new database is smaller (only one block of the previous one). Second, the
initial state of the new database (2.77) can be represented in different forms
(2.82) and (2.92) below. We see that for sequential GRK, the initial state is
no longer a uniform superposition of basis vectors of the new database. It is
an unevenly weighted superposition with emphasis on the target |t〉, see (2.82)
and (2.92). In other words, the new initial state of the database is equivalent
to a partially searched (though not fully searched) one. This fact was studied
in [59]. It has been shown that after the first GRK the state of the target
block (new database) can be written as ((2.77) re-written)

|d〉 = G1G
j2
2 G

j1
1 |s1〉 = sinα(K)|t〉+

cosα(K)√
b− 1

b−1
items∑
x 6=t

target block

|x〉. (2.81)

We have used relation (2.76). Compared with (2.29), we see that the state
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after the first GRK (2.81) takes the form

|d〉 = G1G
j2
2 G

j1
1 |s1〉 = G

α(K)
2

√
b

2 |s2〉, (2.82)

which serves as the initial state of the sequential GRK.
For notational convenience, we use a ∼ to indicate variables in the sequen-

tial GRK and make the following definitions:

Number of items in new database : Ñ = b = K̃b̃, (2.83)

Uniform superposition of new database : |s̃1〉 = |s2〉, (2.84)

New global inversion : Is̃1 = Is2 , (2.85)

New global iteration : G̃1 = G2, (2.86)

New global rotation angle : θ̃1 = θ2, (2.87)

Uniform superposition of one sub− block : |s̃2〉 =
1√
b̃

b̃ items∑
one

sub−block

|x〉,

(2.88)

New local reflection : Is̃2 = I − 2|s̃2〉〈s̃2|, (2.89)

New local iteration : G̃2 = −Is̃2It, (2.90)

New local rotation angle : sin2 θ̃2 =
1

b̃
. (2.91)

Written in these notations, the initial state of new database (2.82) is equivalent

to a partially searched one with α(K)
2

√
Ñ new global queries, i.e.

|d〉 = G1G
j2
2 G

j1
1 |s1〉 = G̃1

α(K)
2

√
Ñ |s̃1〉. (2.92)

Steps of the sequential GRK can be written in parallel with the first GRK
using new notations (2.83)-(2.91). The resultant state of target sub-block is

|d̃〉 ≡ G̃1G̃2
j̃2
G̃1

j̃1

(
G̃1

α(K)
2

√
Ñ |s̃1〉

)

= sin ω̃|t〉+
cos ω̃√
b̃− 1

b̃−1 items∑
x 6=t

target sub−block

|x〉. (2.93)

Note that the vector in the parentheses is |d〉 of (2.77). We also have (similar
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to (2.27))

〈x|d̃〉 = 0, ∀ x ∈ {items of non− target sub− blocks} . (2.94)

This yields cancellation condition relating j̃1 and j̃2 (see [59]):

−Ñ√
Ñ − 1

(
1

2
− 1

K̃

)
cos
(

2j̃1θ̃1 + α(K)
)

(2.95)

= cos(2j̃2θ̃2) sin
(

2j̃1θ̃1 + α(K)
)

+

√
b̃− 1

Ñ − 1
sin(2j̃2θ̃2) cos

(
2j̃1θ̃1 + α(K)

)
−
√
b̃− 1 sin(2j̃2θ̃2) sin

(
2j̃1θ̃1 + α(K)

)
+

b̃− 1√
Ñ − 1

cos(2j̃2θ̃2) cos
(

2j̃1θ̃1 + α(K)
)
.

We introduce parameters η̃ and α̃ defined by

j̃1 =

(
π

4
− α(K)

2
− η̃√

K̃

)√
Ñ , j̃2 = α̃

√
b̃. (2.96)

Similarly, the algorithm is also optimized [59] in the large sub-block limit:
b̃→∞, Ñ ≡ K̃b̃→∞. In the limit, the angles (2.87) and (2.91) simplify as

θ̃1 =
1√
Ñ
, θ̃2 =

1√
b̃
. (2.97)

The minimum is achieved at

η̃
(
K̃
)

=
1

2

√
K̃ arctan

(√
3K̃ − 4

K̃ − 2

)
= η

(
K̃
)
,

α̃
(
K̃
)

=
1

2
arccos

(
K̃ − 2

2(K̃ − 1)

)
= α

(
K̃
)
. (2.98)

Similar to (2.76), we have in the large sub-block limit

ω̃ = α(K̃). (2.99)
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As a result the number of queries of the sequential GRK is

S̄
(
K, K̃

)
≡ j̃1 + j̃2 + 1

b̃→∞−→

π
4
− α(K)

2
+
α
(
K̃
)
− η

(
K̃
)

√
K̃

√Ñ .

(2.100)

In principle, sequential GRK’s can be conducted successively until the
smallest target sub-sub-block is found. Here arises a question on the efficiency
of the hierarchical partial search, i.e. whether or not is a sequence of GRK’s
works faster than a direct GRK partial search of the smallest sub-sub-blocks.
As will be shown in the following section, a direct GRK partial search makes
less queries in the quantum case.

2.5 Comparison of Hierarchical Partial Search

with Direct Partial Search

The partial search hierarchy forms a sequence of GRK’s. It starts from search-
ing for the largest target block and ends with searching for the smallest target
sub-sub-block. On the other hand, it is also possible to partition the database
directly into the smallest sub-sub-blocks and use a single GRK to find the
target sub-sub-block in one time. One question of significance is whether the
hierarchical search works faster than the direct search or not. This question
is of practical importance and the answer turns out to be negative. We prove
the statement by studying the first two successive GRK’s in the hierarchy.

We have already derived the optimized number of queries of the first two
GRK’s in (2.67) and (2.100), respectively. So that the total number of queries
is the sum:

T
(
K, K̃

)
≡ S (K) + S̄

(
K, K̃

)
(2.101)

=

π4 +
π
4

+ 1
2
α (K)− η (K)
√
K

+
α
(
K̃
)
− η

(
K̃
)

√
KK̃

√N.
On the other hand, if the database is partitioned directly into KK̃ blocks, a
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K K̃ S(KK̃)/
√
N T (K, K̃)/

√
N (T (K, K̃)− S(KK̃))/

√
N

2 2 0.61548 0.670379 0.054899
2 3 0.646015 0.695421 0.049406
3 2 0.646015 0.721158 0.075143
2 4 0.664521 0.71289 0.048369
4 2 0.664521 0.73929 0.074769
3 3 0.671394 0.741605 0.070211

Table 2.3: Numerical Examples of Query Numbers.

direct GRK algorithm would require

S
(
KK̃

)
=

π
4

+
α
(
KK̃

)
− η

(
KK̃

)
√
KK̃

√N (2.102)

queries instead. Let us compare T (K, K̃) and S(KK̃), assuming that both
K ≥ 2 and K̃ ≥ 2.

2.5.1 Numerical Comparison of Query Numbers and
Asymptotic Analysis

Before giving the complete proof, we illustrate the fact that T > S (A direct
partial search works faster) by looking at a few concrete examples. Here in
Table 2.3 we give a few numerical examples of query numbers S(KK̃) and
T (K, K̃) as well as their difference, for a better understanding. It is clear that
each T − S is positive in the last column.

Independently, when number of blocks and sub-blocks both being large,
i.e. K → ∞, K̃ → ∞, asymptotic forms of α(x) and η(x) when x → ∞ are
obtained from (2.66) as

α(x) ∼ π

6
+

1

2
√

3x
+

5
√

3

(6x)2
, η(x) ∼

√
3

2
+

1

2
√

3x
+

11
√

3

90x2
. (2.103)

Then the query numbers (2.101) and (2.102) take asymptotic forms using
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(2.103)

S(KK̃) ∼

{
π

4
+

[
π

6
−
√

3

2
+

1

5
√

3(2KK̃)2

]
1√
KK̃

}
√
N (2.104)

T (K, K̃) ∼

{
π

4
+

[(
π

3
−
√

3

2

)
− 1

4
√

3K
− 19

√
3

10(6K)2

]
1√
K

+

[
π

6
−
√

3

2
+

1

5
√

3(2K̃)2

]
1√
KK̃

}
√
N. (2.105)

As for the difference T −S of query numbers, the ratio K/K̃ becomes relevant
in determining the asymptotic behavior. There are three possibilities:

1. If K/K̃ → 0, then 1/K is dominating, and

T (K, K̃)− S(KK̃) ∼

[(
π

3
−
√

3

2

)
K−

1
2

]
1√
N
. (2.106)

2. If K/K̃ →∞, then 1/K̃ is dominating, and

T (K, K̃)− S(KK̃) ∼
(

1

20
√

3
K−

1
2 K̃−

5
2

)
1√
N
. (2.107)

3. If K/K̃ → finite number, then we have the same result as (2.106).

In both the expressions (2.106) and (2.107) the coefficients of 1/
√
N are

positive. Up to now we see that T > S. Now let us formally prove as a
theorem (2.111) in the next section § 2.5.2 that T > S in general, when K ≥ 2
and K̃ ≥ 2.

2.5.2 General Proof of the Inequality

Now we prove that T
(
K, K̃

)
−S

(
KK̃

)
is always positive in the region both

K, K̃ ∈ [2,+∞). In order to complete the proof we need the following two
lemmas.

Lemma 2.1

π

4
+

(
1

2
α− η

)
(x) > 0, ∀ x ∈ [2,+∞) . (2.108)
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Proof ∀ x ∈ [2,+∞)
The derivative

[
π
4

+
(

1
2
α− η

)]′
(x) = 1

4
√
x
f (x) with

f (x) ≡ 3√
3x−4
− arctan

√
3x−4
x−2

. While f ′ (x) = −9x+8

2x(x−1)(3x−4)
3
2
< 0, so that f (x)

monotonically decreasing. Further, since that f (2) = 3√
2
− π

2
> 0, f (x)

x→+∞−→
0, then continuous function f (x) > 0 in the region. (f(x) is positive at one
point x = 2 and tends to zero as x tends to infinity. As a continuous and
monotonic function, f(x) can never become negative nor zero in the region.)
Therefore

[
π
4

+
(

1
2
α− η

)]′
(x) > 0, so that π

4
+
(

1
2
α− η

)
(x) is a monotonically

increasing function of x. With π
4

+
(

1
2
α− η

)
(2) = 3−2

√
2

8
π > 0, we conclude

that π
4

+
(

1
2
α− η

)
(2) > 0 in the region.

Lemma 2.2

(α− η) (x) monotonically decreasing, ∀ x ∈ [2,+∞) . (2.109)

Proof ∀ x ∈ [2,+∞)

The derivative (α− η)′ (x) = 1
4
√
x
g (x) with g (x) ≡

√
3x−4
x−1

− arctan
√

3x−4
x−2

.

While g′ (x) = 1
x(x−1)2

√
3x−4

> 0, so that g (x) monotonically increasing. Fur-

ther, since that g (2) =
√

2 − π
2
< 0, g (x)

x→+∞−→ 0, then continuous function
g (x) < 0 in the region. (g(x) is negative at one point x = 2 and tends to
zero as x tends to infinity. As a continuous and monotonic function, g(x) can
never become positive nor zero in the region.) Therefore (α− η)′ (x) < 0, we
conclude that (α− η) (x) is a monotonically decreasing function of x in the
region.

Having proved these two lemmas, we look at the structure of T
(
K, K̃

)
−

S
(
KK̃

)
using (2.101) and (2.102):

T
(
K, K̃

)
− S

(
KK̃

)
=
{

π
4

+ 1
2
α(K)−η(K)√

K
+

[α(K̃)−η(K̃)]−[α(KK̃)−η(KK̃)]√
KK̃

}√
N. (2.110)

Making use of Lemma 2.1 (2.108), we see that the numerator π
4

+ 1
2
α (K)−

η (K) of the first term appearing in the brace of (2.110) is positive for K ≥
2. Making use of Lemma 2.2 (2.109) and since KK̃ > K̃, the monotonic

property of α−η ensures that α
(
K̃
)
−η
(
K̃
)
> α

(
KK̃

)
−η
(
KK̃

)
. So that

the second term in the brace of (2.110) is also positive for both K ≥ 2 and
K̃ ≥ 2. Therefore the whole brace of (2.110) is positive. As a consequence,
we conclude our result in the following theorem:
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Theorem 2.1

T
(
K, K̃

)
> S

(
KK̃

)
, ∀ K, K̃ ∈ [2,∞) . (2.111)

i.e. Hierarchical partial search makes more queries to the oracle than direct
partial search. Direct GRK partial search works faster.

2.5.3 Hierarchy with Many GRK’s

Theorem 2.1 (2.111) can be extended to the case of hierarchical search with
an arbitrary number of GRK’s. The direct GRK always works faster. We
prove the statement as follows.

Consider a hierarchy with m GRK’s. Assume that m ≥ 2. We denote the
whole operations G1G

j2
2 G

j1
1 of each GRK by one symbol and define an operator

G ≡ G1G
j2
2 G

j1
1 . (2.112)

The hierarchical search works on the initial state |s1〉 as

Gm . . .G3G2G1|s1〉, (2.113)

where the sub-index denotes position of the GRK in the hierarchy (sequence).
The proof can be written formally in the following way. Define the total
number of queries of the hierarchy

T (K1, K2, . . . , Km) ≡ S(K1) +
m∑
i=2

S̄(Ki−1, Ki). (2.114)

Here Ki is number of ‘sub’-blocks in the ith partition of database. (We denoted
K1 and K2 by K and K̃ respectively in previous sections.) S(K1) is number of
queries of the first GRK, and S̄(Ki−1, Ki) that of the ith GRK in the hierarchy.
Note that S and S̄ are not of the same function form. S takes the form
corresponding to a direct GRK (2.67):

S(K1) =

(
π

4
+
α(K1)− η(K1)√

K1

)√
N. (2.115)

While (for i ≥ 2) S̄ takes a form of sequential GRK similar to (2.100):

S̄(Ki−1, Ki) =

(
π

4
− α(Ki−1)

2
+
α(Ki)− η(Ki)√

Ki

) √
N√∏i−1
j=1Kj

. (2.116)
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(We denoted S(K1) and S̄(K1, K2) by S(K) and S̄(K, K̃) respectively in pre-
vious sections.) Let us substitute these expressions into (2.114):

T (K1, K2, . . . , Km)

=

{
π
4

+
∑m−1

i=1

π
4

+ 1
2
α(Ki)−η(Ki)√∏i

j=1Kj
+ α(Km)−η(Km)√∏m

i=1Ki

}√
N. (2.117)

On the other hand, if we partition the database directly into the smallest sub-
blocks, then the number of these sub-blocks would be

∏m
i=1Ki. A direct GRK

will locate the smallest target sub-block. This would require

S

(
m∏
i=1

Ki

)
=

{
π

4
+
α(
∏m

i=1 Ki)− η(
∏m

i=1Ki)√∏m
i=1Ki

}
√
N (2.118)

queries to the oracle. Therefore the difference of (2.117) and (2.118) is

T (K1, K2, . . . , Km)− S

(
m∏
i=1

Ki

)
(2.119)

=


m−1∑

i=1

π
4

+ (1
2
α− η)(Ki)√∏i
j=1Kj

+
(α− η) (Km)− (α− η) (

∏m
i=1Ki)√∏m

i=1 Ki

√N.
We will show that this expression is always positive when each Ki ≥ 2. Using
Lemma 2.1 (2.108), we see that each term under the summation of (2.119)
is positive. Using Lemma 2.2 (2.109), α − η is a monotonically decreasing
function. Note that product of all Ki’s is larger than Km, we see that the
remaining term in the brace of (2.119) is also positive. Consequently, we
conclude our result in the following corollary:

Corollary 2.1

T (K1, K2, . . . , Km) > S

(
m∏
i=1

Ki

)
, ∀ Ki ∈ [2,+∞). (2.120)

i.e. A hierarchy of an arbitrary number of GRK’s makes more queries to the
oracle than a direct GRK. Direct GRK partial search always works faster.

2.6 Summary

This chapter studies quantum search. Built from the Grover search algo-
rithm, the optimized partial search algorithm called GRK is discussed. We
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have studied a partial search hierarchy and compared it with a direct partial
search (GRK). Consider a database of N items with a single target item. The
database is partitioned into K blocks, each block further partitioned into K̃
sub-blocks. Hierarchical search is that we use GRK and sequential GRK to
find the target block and target sub-block, respectively. Successive GRK’s can
be made if the database is further partitioned. Each sequential GRK in the
hierarchy works faster than the previous one. However, the total number of
queries to the oracle adds up. The main conclusion is that a partial search
hierarchy works slower than a direct partial search, see Theorem 2.1 (2.111)
and Corollary 2.1 (2.120). For example, consider a database partitioned into
3 blocks. Each block is further partitioned into 3 sub-blocks, so totally there
are 9 sub-blocks. One could first find the target block using GRK, then the
target sub-block by a sequential GRK. Nevertheless, it is faster to run a GRK
partial search directly over the 9 sub-blocks and find the target sub-block once.

Note: Only the class of algorithms using the standard Grover oracle was
considered in the chapter. This means that if one has already built the main
Grover algorithm experimentally, then we do not need any new hardware to
run the GRK algorithm. Another advantage of using the same oracle It as
the main Grover algorithm is more subtle: We can use ancilla (additional or
auxiliary) qubits to label different partitions of the database into blocks of
equal size b = N/K. Then we are able to run GRK algorithm simultaneously
for different partitions. (See § 2.3.3 for more details.) Later a user can measure
the ancilla qubits and choose his or her favorite partition, by that time the
target block already will be found.
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