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Abstract of the Dissertation 

Statistical Methods for Biological Pathway Analysis  

by 

Xiao Wu 

Doctor of Philosophy 

in 

Department of Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

This thesis features a novel theoretical development, as well as a novel application of the 

structural equation modeling (SEM) framework for biological pathway and biological 

measurement platform comparisons respectively. For the SEM methodology development, we 

have extended the covariate structural equation modeling (cSEM) method (Sharpe, 2010) for 

pathway comparisons that was limited to continuous variables on the pathway nodes and 

categorical variables as pathway covariates only, to allow both continuous and categorical 

variables as pathway nodes as well as pathway covariates. This novel mixed variable cSEM 

method will permit researchers to implement a pathway with both continuous variables such as 

gene expression levels, and categorical variables such as genotypes on the pathway nodes, and 

compare the pathway between different groups (diseased, normal etc.) as well as evaluate the 

impact of continuous variables such as age on the pathway links (i.e. connecting patterns and 

strengths).  

 

Culture-independent phylogenetic analysis of 16S ribosomal RNA gene sequences has emerged 

as an incisive method of identifying bacteria present in a specimen. However multiple competing 

measurement platforms are often available to enumerate the abundances of the bacteria, 

including Sanger sequencing, pyrosequencing, and quantitative PCR. Here we present a novel 

application of the latent variable SEM to estimate the reliabilities of, and the similarities between 

different measurement platforms, and subsequently, weigh these measures optimally for a 

unified analysis of the true latent microbiome composition. The latent variable SEM contains the 

usual repeated measures ANCOVA as special cases and, as a more general, realistic and optimal 

model, features superior model goodness-of-fit as well as more reliable analysis results.  

 

The third and final contribution of this thesis is the establishment of two bioinformatics pipelines 

in a systems biology framework to integrate incremental biological knowledge obtained through 
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the analysis of newly available experimental data, to existing biological knowledge database, and 

subsequently evolve such knowledgebase to the next level. Two examples, one from the 

molecular study of the human inflammatory bowel diseases, and one from the study of 

endophytic bacteria known to impact the growth rate of certain plant, are provided to illustrate 

these novel pipelines.     
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Chapter 1 Introduction and overview 

 
 

 

 

In recent years, various statistical pathway analysis methods have gained enormous 

popularity in biomedical research because of the increasing focus on systems biological studies. 

As noted by the nation’s leading scientists, "The (traditional) reductionist approach has 

successfully identified most of the components and many of the interactions but, unfortunately, 

offers no convincing concepts or methods to understand how system properties emerge...the 

pluralism of causes and effects in biological networks is better addressed by observing, through 

quantitative measures, multiple components simultaneously and by rigorous data integration with 

mathematical models" (Sauer, Heinemann et al. 2007). The biostatistics and bioinformatics 

community have quickly taken up the initiatives developing statistical methods for biological 

pathway analysis.   

 

In the first part of this thesis, we will introduce several novel methodological 

development and application of structural equation modeling (SEM) for biological pathway 

analysis that include, especially, (1) an efficient modeling and computation scheme for mixed 

variables SEM – that is, SEM with both categorical and continuous variables as pathway nodes, 

(2) the development of the new mixed variable covariate SEM framework for comparative 

analysis of pathways with mixed categorical variables (e.g. genotypes, phenotypes) and 

continuous variables (e.g. gene expression levels, age, etc.) as both pathway nodes and pathway 

covariates, (3) the proposition of a joint statistical and biological pathway analysis pipeline 

consisting of SAM, IPA and covariate SEM for comparative genetic network analysis utilizing 

both known biological database and newly available experimental data, and (4) the novel 

application of the latent variable SEM for microbiome measurement platform comparison and 

combination. These original methods and applications are illustrated through an on-going study 

of the human inflammatory bowel diseases led by our collaborator, Dr. Ellen Li, at the Stony 

Brook University Medical School.   
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In contrast to the first part, the novel biological pathway analysis by structural equation 

modeling with application to a human study, the second part of this thesis focuses on developing 

a novel bioinformatics pipeline for a systems biology study of the endophytic bacteria, a plant 

colonizing and growth promoting bacterium, at the level of the genome, transcriptome and 

metabolome. The aim of this study is to identify mechanisms by which the endophytic bacteria 

can regulate the growth of poplar, to quantify the degree to which major regulatory pathways of 

endophytic bacteria are involved, and to ultimately, model these pathways to optimize the 

production of poplar biomass on marginal soils as a feedstock for bio-refineries. The endophytic 

bacteria project is led by our collaborators Dr. Daniel van der Lelie and Dr. Safiyh Taghavi from 

the Biological Department of the Brookhaven National Laboratory. 

 

 

 

 

Part I 

Novel Methodological Development and Application of 

Structural Equation Modeling (SEM) 

 

 

1.1 An overview of SEM 
 

Biological pathway analysis almost invariably boils down to the discovery, confirmation, 

and comparison of networks consisting of nodes and links where nodes stand for biological 

components such as genes and proteins, and links represent the relations among these 

components. In this dissertation we will focus on the analysis of biological pathways based on 

structural equation modeling (SEM) – a modern statistical technique for hypothesis-driven 

confirmatory and comparative network analyses (Bollen 1989). As shown in Figure 1 (A), SEM 

evaluates the strength of relations among genes A, B and C simultaneously by a multi-equation 

system, where some variables can be both the dependent as well as the independent variables 

such as gene C.  

SEM is not a data-driven network discovery tool, instead it is a hypothesis driven 

confirmatory pathway analysis method designed to integrate existing biological network 

knowledgebase with newly available experimental data to evolve our understanding of the 

underlying pathways.  In addition, SEM can incorporate latent variables that are not measured 

directly or accurately, but rather inferred from several measured indicators. This allows 

researchers to explicitly capture the unreliability of measurements from biological experiments. 
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SEM is a very general framework that includes a vast array of major statistical analysis methods 

such as factor analysis, regression analysis and time series analysis as special cases.  

To further adapt SEM to modern systems biological studies, in this thesis, we develop the 

novel mixed variable covariate SEM analysis methods where both the network nodes and 

pathway covariates (i.e. variables that could potentially influence the strength of pathway links) 

can be a mixture of categorical and continuous variables (Figure 1 D). Other new extensions and 

applications to classical SEM include efficient modeling and estimation of mixed variable SEM, 

a joint statistical and biological covariate SEM pathway analysis pipeline, and latent variable 

SEM for measurement platforms comparison and integration.  

 

(A) Conventional SEM 

 

(B) Mixed variable SEM 

 

(C) Covariate SEM 

 

(D) Mixed variable covariate SEM  

 
Figure 1. Illustration of structural equation models for different types of biological 

pathways. (A) Conventional SEM for the pathway with all continuous variables (gene expression 

values) as nodes. (B) Mixed variable SEM for the pathway with both continuous (gene 

expression values) and categorical (genotype and phenotype) nodes. (C) Covariate SEM with 

continuous nodes and categorical covariates (G, such as gender) (Sharpe, 2010). (D) Mixed 

variable covariate SEM where both the pathway nodes and covariates can be either categorical or 

continuous variables (G, categorical covariate such as gender; A, continuous covariate such as 

age).   
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1.2 Mixed variable SEM 
 

Traditional SEM features exclusively continuous pathway nodes. However, biological 

pathways often call for both continuous and categorical pathway nodes (Figure 1 B). Figure 2 

presents a more detailed mixed variable pathway for the study of inflammatory bowel diseases 

where the network contains both categorical and continuous variables as nodes. Furthermore, this 

pathway features categorical variables as both independent (genotypes) and dependent 

(phenotypes) variables. Before the advent of mixed variable SEM, this pathway can only be 

analyzed in two or three sections, separately as illustrated in Figure 2. However, the sectional 

approach ignores relations among the links and is thus myopic and less powerful.   

The first general-purpose mixed variable SEM framework, the  generalized linear latent 

and mixed models (GLLAMM), was proposed by Dr. Rabe-Hesketh and colleagues (Skrondal 

and Rabe-Hesketh 2004). Their multi-level latent variable modeling approach, and their 

estimation algorithm based on the Gauss-Hermite quadrature, however, are cumbersome and 

slow. In this thesis, we simplified the modeling framework by combining traditional continuous 

variable SEM and the generalized linear model (GLM), and at the same time, developed a much 

efficient computational algorithm based on likelihood factorization. 

 

Figure 2. Mixed variables SEM. The entire biological pathway diagram shown here 

includes both categorical variable nodes (genotypes and phenotypes) and continuous variable 

nodes (gene expression and bacteria expression). Prior to the development of the mixed variables 

SEM, the pathway can only be analyzed in sections rather than simultaneously as a whole. For 
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example, the analysis of variance (ANOVA) can be performed in Section 1 to study the causal 

relationship between genotypes and Paneth cell alpha defensin 5 (DEFA5) gene expression. 

Section 2 can be featured as a multivariate linear regression analysis model, to check the relation 

between the levels of DEFA5 and 8 bacteria expressed in unaffected ileum tissues. Finally, 

Section 3 can be analyzed via a logistic regression model to examine the links between 

Microbiome and disease phenotypes.    

 

1.3 Covariate SEM 
 

A fundamental quest in biological network studies is to compare the pathway 

connection/link strengths between different groups (genotypes, phenotypes, gender etc.). Our 

group has successfully developed the covariate SEM analysis for network comparison when the 

underlying nodes are continuous as illustrated by Figure 1 (C) (Sharpe, 2010). In this thesis, we 

generalize the existing covariate SEM framework featuring continuous variables as pathway 

nodes and categorical variables as the pathway covariates (i.e. variables modulating the 

values/strengths of the pathway links), to mixed variable covariate SEM by allowing both the 

nodes and the covariates to be either continuous or categorical.     

To incorporate the pathway ―covariate‖ in biological networks is critical, especially for 

complex diseases where the eventual phenotype is not determined by a single genetic factor but 

rather, a set of biological and environmental variables and their interactions. Furthermore, the 

interaction term can often be modeled as a covariate pointing to the pathway between the 

interacting variables as shown in Figure 3. This example originates from a recent work on the 

joint  analysis of genotypes and gene expression data (Parts, Stegle et al. 2011) where they 

proposed that the gene expression levels are influenced by genotypes (SNPs), other physiological 

and/or environmental factors as well as interactions between them. The relation between the 

expression 
,g j

y  of gene g in observation j and its potential covariates is modeled in an additive 

model as follows: 

, , , , , , , , , ,
1 1 1 1

( )
N K K N

g j g g n n j g k k j g k n n j k j g j
n k k n

y s w x s x   
   

       . 

Here, 
g

  is the mean expression level, 
,g j

  is noise. 
,g n

  denotes the genotype effect of 

SNP
,n j

s , 
,g k

w  is the effect of intermediate factor effect of 
,k j

x , and the strength of interaction 

effects between them is regulated by weight 
, ,g k n

 . We illustrate their model in terms of an SEM 

path diagram in Figure 3 (A). By this construction, they have found an abundance of statistical 

interactions and shown how many of them help to interpret yeast gene expression regulation. 

Other recent studies also searched for genotype-environment effect, and found many gene 

expression levels affected by epistatic interactions (Costanzo, Baryshnikova et al. 2010) or 

interactions between the genotype and environmental factors, such as growth conditions of yeast 

(Smith and Kruglyak 2008), smoking and alcohol on coronary heart disease (van den Donk, van 

Engeland et al. 2007), and life stressful experiences on depression (Caspi, Sugden et al. 2003). 

Alternatively, the interaction term can be incorporated as a node pointing to the link of the 

pathway, that is, as a pathway covariate (Figure 3 B). This further motivated our work on 
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covariate SEM. Along this direction, we extended the mixed variable SEM by incorporating 

pathway covariates, both categorical and continuous, to better model complex biological 

pathways. In addition, the green node ―other factors‖ in Figure 3 can be formulated as either 

known factors such as age, smoking etc., or hidden factors such as latent cell status.        

 

(A) 

 

(B) 

 
Figure 3. Relation between the interaction term and pathway covariate – illustrated 

through a gene expression variation model in Parts, et al., 2010. The full model combines genetic 

factor S (red), other factors X (green) and their interaction S*X (blue) to explain the observed 

gene expression levels Y (yellow). (A) Interaction as one node pointing to the response gene 

expression level Y. (B) An alternative way to visualize the interaction term by considering 

factors X as pathway covariates.  Except its path to the gene expression Y, its interaction with 

SNP was incorporated by adding arrows pointing to the link from SNP to the gene expression Y.   

 

 

1.4 Application to a study on inflammatory bowel diseases 
 

Inflammatory bowel disease (IBD) is a group of inflammatory conditions of human colon 

and small intestine. The major types of IBD are Crohn's disease (CD) and ulcerative colitis (UC) 

(Baumgart and Carding 2007). UC is a specific disease of the large intestine or colon; while CD 

can affect any part of the gastrointestinal tract, but most commonly involves the terminal ileum. 

What is the worst, CD is often recursive following removal of affected part. IBD is a complex 

disease and is found associated with multiple factors, including multiple genetic, microbial, and 

environmental factors (Podolsky 2002; Renz, von Mutius et al. 2011), however the cause of this 

disease is not clear yet.  

Current inflammatory bowel disease project features a variety of mixed data for each 

subject include: gene expression data (continuous), genotype data (categorical), microbiome 

(compositional) and other covariates such as age, BMI, gender, etc. With our newly developed 

mixed variable covariate SEM method, the question we tried to answer is: ―How strong are the 

relations among these diverse factors on the disease pathway, and how the strengths differentiate 

under different covariate conditions?‖ As a result, we found some significant gene expression 
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pathways (e. g. pregnane X receptor pathway), as well as that in the disease model NOD2 risk 

alleles and Paneth cell related gene expressions increase risk of Crohn’s disease while the 

abundance of bacteria C. Coccoides has a negative effect.  

 

1.5 Summary of Part I 
 

Part I of this thesis is presented as follows. In Chapter 2, we provide a thorough literature 

review on existing biological pathway analyses methods dealing with continuous and categorical 

variables separately or together. In Chapter 3, background of the structural equation modeling -- 

model specification and estimation -- is introduced.  

In Chapter 4, we propose a bioinformatics pipeline for comparative gene expression 

pathway studies by integrating the data-driven significance analysis of microarray (Tusher, 

Tibshirani et al. 2001), the knowledge-driven ingenuity pathway database, and finally the 

covariate SEM analysis framework previously proposed by our group (Sharpe 2010).  

In Chapter 5, we presented a novel application of the latent variable SEM for microbiome 

data analysis encompassing multiple measurement platforms including Sanger sequencing, 

pyrosequencing and quantitative PCR. The latent variable SEM is applied to estimate the 

reliabilities of, and the similarities between different measurement platforms, and subsequently, 

weigh these measures optimally for a unified analysis of the true latent microbiome composition 

integrating potential covariates. The latent variable SEM contains the usual repeated measures 

ANCOVA as special cases and, as a more general, realistic and optimal model, features superior 

model goodness-of-fit as well as more reliable analysis results as shown in Figure 4 below.  

 

(A)       (B)  

Figure 4. Path diagrams for (A) latent variable SEM, and (B) repeated measures 

ANOVA.  Their difference lies in the measurement model where the repeated measures ANOVA 

assumes equal path coefficients, and for its univariate approach the measurement error variances 

are assumed to be equal as well. 
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In the ensuing Chapter 6-8, we have extended the covariate structural equation modeling 

(cSEM) method (Sharpe, 2010) for pathway comparisons that was limited to continuous 

variables on the pathway nodes and categorical variables as pathway covariates only, to allow 

both continuous and categorical variables as pathway nodes as well as pathway covariates. 

Chapter 6 presented the derivation of mixed variable SEM containing categorical endogenous 

(response) variable, while Chapter 7 illustrated the mixed variable SEM in two examples with 

disease phenotypes as endogenous variable on the pathway. The non-parametric method 

bootstrapping was also adopted when variables are non-normal. In Chapter 8 mixed variable 

SEM was further generalized to allow categorical or continuous pathway covariates, and 

illustrated through the analysis of a study on inflammatory bowel disease.  

 

 

 

 

Part II 

Novel Bioinformatics Pipeline and Application 

 

 

1.6 Bioinformatics work flow 
 

Biological systems such as cells, regulatory gene networks and protein interaction 

complexes cannot be understood based on individual components (genes, mRNA, proteins etc) 

alone, but only through an analysis involving multiple  components. In recent years, systems 

biology studies aiming at unraveling the complex interactions in biological systems based on 

large scale genomic, transcriptomic, metabolic and proteomic data and technologies is becoming 

increasingly common (Ideker 2004). Although the concept of systems biology has been around 

for over fifty years, it has only been truly feasible since the 1990’s with the birth of functional 

genomics  and the inventions of high-throughput quantitative  sequencing technologies (Zhu and 

Snyder 2002). The study of the complex biological systems in turn calls for the development of 

more sophisticated bioinformatics pipelines that will be able to process experimental data, 

integrate existing biological knowledge-bases, as summarized in the following link: 

http://www.biochemweb.org/systems.shtml, and also integrate and develop necessary 

computational tools. The development of novel bioinformatics pipelines, in a sense, has become 

a critical component in systems biology studies.  

 

http://en.wikipedia.org/wiki/Biological_system
http://www.biochemweb.org/systems.shtml
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In this part of thesis we present a novel integrative bioinformatics pipeline for a systems 

biology study of the endophytic bacteria at the level of the genome, transcriptome and 

metabolome. Endophytic bacteria are bacteria that reside within the living tissue of their host 

plants without substantively harming it (Misaghi and Donndelinger 1990). Endophytic bacteria 

have beneficial effect on plant growth, which is of great importance for the use of plants as 

feedstocks for biofuels and for carbon sequestration through biomass production. Moreover, this 

is vital when considering the aim of improving biomass production of marginal soils, thus 

avoiding competition for agricultural resources, which is one of the critical socioeconomic issues 

of the increased use of biofuels (Taghavi, Garafola et al. 2009). 

After isolated the endophytic bacteria from their host poplar, whole genome of bacteria 

were sequenced. Putative coding sequences (CDS) annotation and function prediction were 

performed via Magnifying Genome (MaGe) annotation platform (Vallenet, Engelen et al. 2009). 

Furthermore, comparative genomics and functional analysis to explore plant-associated niche 

specific adaption of bacteria was completed by a combination of the following tools: 

PhyloProfile Synteny and Genomic Islands in MaGe (Vallenet, Engelen et al. 2009), as well as 

Prophinder (Lima-Mendez, Van Helden et al. 2008) and IS Finder (http://www-is.biotoul.fr/). 

Analysis of the genome sequences pointed to a remarkable interaction between one of 

endophytic bacterium, Enterobacter sp. 638, and its poplar host (Taghavi, van der Lelie et al. 

2010). Particularly it showed the adjacency of two functional operons: sucrose utilization operon 

(scrKYAB) and acetoin / 2,3-butanediol synthesis operon (budABC) on the Enterobacter sp. 638 

genome (Taghavi et al. 2010, Figure 5). It is possible that these two operons interact and play an 

important role in the crosstalk between the Enterobacter sp. 638 and its plant host. The presence 

of sucrose -- the major photosynthate -- is a signal of proximity with plants to bacteria, which 

was hypothesized to trigger the transcription of the budABC operon in Enterobacter sp. 638, 

resulting in the synthesis of the phytohormones acetoin and 2,3-butanediol. It is a convincing 

mechanism proved from the genomic, transcriptional and metabolic analyses (Taghavi, van der 

Lelie et al. 2010).  

 

Figure 5. Schematic representation of one genomic region found on the chromosome of 

Enterobacter sp. 638. Putative open reading frames are indicated by arrows, below which the 

Enterobacter sp. 638 gene number and gene annotation are shown. The genes involved in 
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sucrose transport and utilization, acetoin and 2,3-butanediol synthesis, the toxin-antitoxin (TA 

system), as well as other putative functions are also indicated. 

However it might be a simplified scheme given the distinct phenomenon of this 

bacterium in sucrose or lactate medium in terms of the growth curve, pH, the extracellular 

structures and phytohormone productions, etc. There are necessarily more gene transcriptions 

and regulators involved to respond to presence of sucrose, and finally coordinate a chain of 

reactions that are as the basis for the strain’s adaptation to its endophytic lifestyle. Therefore, we 

performed whole transcriptome analysis by RNA-seq on Enterobacter sp. 638 grown either in 

sucrose or lactate after 6 and 12 hours, in order to gain insights into the differential gene 

expression profiles under these distinct conditions as shown in Figure 6. 

 

 

Figure 6. Experimental design of RNA-seq of Enterobacter sp. 638 strain. Four distinct 

conditions are compared with two growth media and two time points:  growth media contain 

lactate or sucrose as sole carbon source, respectively, where sucrose is a plant sugar mimicking 

the presence of plant while lactate is a milk sugar as a control; two time points are 6 hours or 12 

hours after growth.  Triplicates of each condition are considered in this experiment.  

 

Raw data from the RNA-seq experiment (Figure 6) are featured by millions of short reads 

(~36nt) that are aligned to the reference genome of Enterobacter sp. 638. Here we adopted an 

efficient look-up algorithm Suffix-array to achieve this goal and transform data to counts of gene 

expression level. The count data were in turn normalized within samples by RPKM (reads per 

kilobase of exon model per million mapped reads) (Mortazavi, Williams et al. 2008) and 

between samples by quantile normalization that is widely used in microarray study (Bolstad, 

Irizarry et al. 2003). In the next step, normalized data were compared across different 

experimental conditions to identify differentially expressed genes. Many methods have been 
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developed for the analysis of differential expressions for continuous data generated by 

microarray, such as SAM (Tusher, Tibshirani et al. 2001). However, RNA-seq provides a 

discrete measurement for each gene. Even log-transformed, measures are not well approximated 

by continuous distributions, especially in the lower count and for small samples. By introducing 

one additional parameter for dispersion, the negative-binomial-based analysis is shown well 

performed for RNA-seq data, especially for small sample size (Robinson and Smyth 2008). Here 

we implemented this method to identify differentially expressed genes using R package edgeR 

(Robinson, McCarthy et al. 2010), where the exact test having strong parallels to Fisher’s exact 

test, is used to test for differential expressions and to compute the exact p values. The studywise 

significance level is controlled by keeping the false discovery rate at 0.05 (Benjamini and 

Hochberg 1995).  

 

Obtaining a list of differential expressed genes is not the final step of the analysis. Next, 

we grouped genes in terms of similar expression patterns via clustering analysis and surveyed 

representative biological functions in each group in the ensuing functional categories analysis. 

Cluster analysis was performed using the hclust function in R based on a distance metric of one 

minus the Spearman correlation. For each cluster with distinct expression pattern, functional 

categories analysis was performed by R package GO-seq (Young, Wakefield et al. 2010). Instead 

of GO terms that are only well specified for model organisms, the manually curated functional 

categories in MaGe, bioprocess and biological roles, are used for our newly isolated bacteria.  

 

There is a wide scope for integrating the results of RNA-seq data with other sources of 

biological data to establish a more complete picture of gene regulation (Hawkins, Hon et al. 

2010). For example, integration of expression data with genotype, transcription factor binding, 

RNA interference, histone modification and DNA methylation information has the potential for 

greater understanding of a variety of regulatory mechanisms (Montgomery, Sammeth et al. 

2010). A few reports of these 'integrative' analyses have emerged recently (Ouyang, Zhou et al. 

2009). Although our current experiment did not generate these additional types of biological 

data, some efforts were made to better understand the regulatory networks based on the 

observed transcriptional changes.  

The genome of Enterobacter sp. 638 is very close related to Escherichia coli K12. E. coli 

K12 is the best known annotated model organism for bacteria. Therefore, we proposed to first 

map the orthologs from E. coli K12 to Enterobacter sp. 638 via the KEGG ortholog database in 

MATLAB (http://www.genome.jp/kegg/soap/doc/keggapi_manual .html), and then infer 

regulatory relationships in Enterobacter sp. 638. The database RegulonDB 

(http://regulondb.ccg.unam.mx/html/Database_summary.jsp) records the most comprehensive 

and updated transcriptional network for E. coli K12. We thereby resorted to the regulatory 

networks of E. coli orthologs for insights on their counterparts in Enterobacter sp. 638. The 

resulting regulatory networks are customized and visualized in Cytoscape – a visual analysis tool 

(Smoot, Ono et al. 2011). The entire work flow to integrate these relevant statistical and 

bioinformatics tools, as well as the biological databases for large-scale genomics and 

transcriptomics analysis described above is summarized in Figure 7. 

http://regulondb.ccg.unam.mx/html/Database_summary.jsp
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Figure 7. Overview of the bioinformatics analysis work flow from newly isolated bacteria 

to biological discoveries. Major milestones of the pipeline are represented by the red boxes, 

while methodologies and software used to reach the next milestone are shown in the blue boxes.  
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1.7 Summary of Part II 

 
 

In the current study, our objective was achieved by experiments including genome 

sequencing and mRNA sequencing, and the bioinformatics pipeline shown in Figure 7. We 

identified an extended set of genes in endophytic bacterium Enterobacter sp. 638 involved in 

plant niche adaptation and beneficial effect to plants: genes that code for putative proteins 

involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients 

released by plant roots), root adhesion, colonization/establishment inside the plant (chemiotaxis 

and flagella), plant protection against fungal and bacterial infections (siderophore production), 

and improved poplar growth and development through the production of the phytohormones 

acetoin, 2,3-butanediol and indole acetic acid. We also found that many genes involved in the 

plant niche adaption appear to under regulation of the RcsAB dual regulator.  

 

In Chapter 9, we elaborated the workflow step by step, starting from genome annotations, 

comparative genomics and functional analyses of the newly screened organism, and then 

followed by differential gene expression analysis of mRNA sequencing data, and further 

biological insight can be gained by exploring patterns of expression changes within clusters and 

associated functions, and ultimately integrating results to regulatory networks. Results from the 

endophytic bacteria study were discussed and demonstrated in Chapter 10.  
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Chapter 2 Literature review  

 
 

  

 

 

2.1 Biological pathway analysis with only continuous variables 

 

Present high throughput biological experiments, such as microarray technique, provide 

expression levels of tens of thousands of genes simultaneously. The prevalent applications of 

such experiments have elevated the trend of biological analyses up to a level of pathway 

perspective. Since outputs from microarray experiments are continuous variables representing 

corresponding gene expression values, the pathway analyses with continuous variables has been 

the focus of the biostatistician community. Thus many approaches and tools have been 

developed in this field. This section will try to provide a through literature review about pathway 

analyses with only continuous variables, where majority of them were developed in a context of 

microarray experiments.   

 

2.1.1 Gene set analysis 

 

After determining a list of differentially expressed genes, subsequent pathway analyses 

are proposed in either of two directions: to connect with existing biological pathways by using 

public resources; to study the inter-relations among genes suggested by the data. For the first 

direction, many efforts have been made by biologists to record and construct predefined 

knowledgebases, such as Gene Ontology (http://www.geneontology.org/) and KEGG 

http://www.geneontology.org/


 

16 

 

(http://www.genome.jp/kegg/). Over-representative test is among the first try to identify the 

underlying functional profile of a list of genes based on knowledgebase. Such tests often involve 

the hypergeometric distribution (Cho, Huang et al. 2001), binomial distribution, chi-square 

test(Fisher and van Belle 1993) and Fisher’s exact test (Man, Wang et al. 2000). Alternative 

approaches include a chi-square test for equality of proportions and Fisher’s exact test. In most 

cases, the differences between these models will not be dramatic. This approach has been 

adopted with minor variation by many different tools (Hosack, Dennis et al. 2003; Zeeberg, Feng 

et al. 2003; Al-Shahrour, Diaz-Uriarte et al. 2004; Beissbarth and Speed 2004; Boyle, Weng et 

al. 2004; Zhang, Schmoyer et al. 2004; Lee, Braynen et al. 2005; Pehkonen, Wong et al. 2005; 

Yi, Horton et al. 2006). Khatri and Draghici (2005) provided an overview and comparison of 

such methods. However, a drawback to such gene-list methods is that they rely on the initial 

gene list in a fundamental way and are sensitive to the choice of both significance criteria and 

error-control procedure. Moreover, these methods do not consider a gene’s relative position in 

the ranked list.  

To overcome the disadvantage of the over-representation approach in its strict cut-off for 

differential expression of individual genes, methods using the whole vector of p-values have 

been widely used. Gene Set Enrichment Analysis (GSEA) (Mootha, Lindgren et al. 2003; 

Subramanian, Tamayo et al. 2005) tests whether the ranks of p-values of the genes in certain 

gene set differ from a uniform distribution, using a weighted Kolmogorov-Smirvov test. The idea 

is similar to the Al-Shahrour (2005) method. In GSEA, genes are ranked based on the correlation 

between their expression and the phenotype class by using any suitable metric. The priori gene 

sets S can be defined by GO category, location in the same cytogenetic band, etc. Then the score 

is calculated by scanning the whole ordered list of gene, increasing when encounter a gene in S 

and decreasing  when meet one is not in S. The enrichment score (ES) is the maximum deviation 

from zero encountered in the random walk; it corresponds to a weighted Kolmogorov-Smirnov-

like statistic. The nominal p value of the ES is obtained by performing an empirical phenotype-

based permutation test procedure that preserves the gene-gene correlation. They adjust the 

estimated significance level to account from multiple tests by controlling the proportion of false 

positives, that is, the false discovery rate (FDR).  

GSEA has been improved and extended in many ways. The most notable one is perhaps 

the Gene Set Analysis (GSA) method proposed by Efron and Tibshirani (2007). This method has 

been adopted by the Significance Analysis of Microarray (SAM) platform (http://www-

stat.stanford.edu/~tibs/SAM/). It uses the max-mean statistic to summarize gene-sets, which is 

the mean of the positive or the negative part of gene scores in the gene set, whichever is larger in 

absolute value.  The genes are re-standardized before the permutation, and the resulting test 

statistic is shown to be more powerful than the weighted Kolmogorov-Smirnov-like statistic used 

in GSEA. The GSA has been extended to account for a versatile array of data including multi-

class, survival, and quantitative outcomes (Efron and Tibshirani 2007).   

Al-Shahrour (2005) tested genes simultaneously in groups related by common functional 

properties. First, a list of genes is ordered according to their differential expressions in the 

experimental conditions by means of a statistical test, then one moves on to establish different 

partitions across the list by a heuristic method and to check whether partitions of genes with 

common functional properties are uniformly distributed, or conversely cumulated in one of the 

tails, where FatiGO (Al-Shahrour, Diaz-Uriarte et al. 2004) has been used to define function 

http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/


 

17 

 

categories. Finding of significant asymmetrical distributions of functional terms across the list 

will suggest groups of genes having in common functional labels are significantly over- or 

under-expressed as a block. Compared to other approaches based on direct comparison of 

distributions (e.g. using a Kolmogorov-Smirnov test, or the GSEA), this method is able to find 

asymmetrical distributions of genes with common biological label across a ranking provided this 

asymmetry is not too extreme, which means it is relatively sensitive to detect modest 

asymmetries. However, the disadvantage is apparent due to its necessity to perform a strong 

adjustment for P-values, where for Kolmogorov-Smirnov-based tests; only one test per term is 

required. 

The significance analysis of function and expression (SAFE) (Barry, Nobel et al. 2005) 

was also an extension of GSEA. It shares very similar idea with GSEA in terms of the two-stage 

and subject-permutation method. However, it is claimed that SAFE calculates permutation-based 

p-values using a separate null distribution, while GSEA used pooling to compute a FWER-

adjusted p-value for the largest Kolmogorov-Smirnov statistic, after scaling the statistic based on 

the different category sizes, where one might ignore the unknown correlation genes. Besides, this 

paper adopted biological annotation source other than GO: SWISS-PROT, providing a group of 

keywords for each gene, based on a taxonomy that includes pathways, diseases and general 

biological process (http://ca.expasy.org/sprot/); The InterPro (http://www.ebi.ac.uk/interpro/) and 

Protein Family (Pfam) database (http://pfam.sanger.ac.uk/), classifying genes using homology-

based domains in the protein sequence. 

There are other similar methods existing, for example, researchers proposed ―functional 

class scoring‖ (FCS), the geometric mean of the p-values of the genes in the gene set (Pavlidis, 

Qin et al. 2004). This paper also showed that the FCS method outperformed the over-

representation method in terms of considering all available genomic information rather than 

predetermined threshold of significance.  

 

2.1.2 Tests based on expression data 

 

Goeman and colleagues tested whether subjects with similar gene expression profiles 

have similar class labels, based on a logistic regression model (Goeman, van de Geer et al. 

2004). Specifically, they proposed a global score test that is based on the random-effects 

modeling of parameters corresponding to the coefficients of the individual genes in the gene set. 

Their method addressed the binary and continuous phenotypes as follows. Denoting the 

phenotype by Y and the gene set expressions by (x1, …, xm), the proposed test statistic is  

2

( ) ( )T

Q


 


Y μ R Y μ
 

where 
1 2(1/ ) , ( , ,..., )T

mm x x x R XX X is a matrix with columns of gene expression 

vectors, Y is  the vector of outcomes, ( )nullEμ Y is the mean outcome under the null hypothesis 

of no association, and 2 ( )nullVar  Y is the variance of the outcome under the null hypothesis of 

http://ca.expasy.org/sprot/
http://www.ebi.ac.uk/interpro/
http://pfam.sanger.ac.uk/
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no association. Later, Goeman et al. extended the method to the censored-survival phenotype 

with use of a modeling framework incorporating random effects and Cox proportional hazards 

(Goeman, Oosting et al. 2005).  

From different aspect angle, Mansmann and Meister (2005) proposed an ANCOVA 

global test on main phenotypic effect and gene-phenotype interaction in a two-way layout linear 

model. This method is equivalent to Goeman et al.’s global test in a setting of independent genes, 

while in their simulation of correlated genes, this method showed better performance regarding 

to the power. In particular, among cases where the asymptotic distribution cannot be used, the 

stratified use of the ANCONA global test outperformed Goeman et al.’s test. 

Tomfohr et al. (2005) presented the method that quantifies the level of activity of each 

pathway in different samples. The predefined gene sets (pathways) are obtained from KEGG 

(Kyoto Encyclopedia of Genes and Genomes) and Biocarta websites. The activity level is 

defined in terms of the first eigenvector in the singular value decomposition (SVD) of the matrix 

of expression levels for its capture of the main component of variation in the full expression 

matrix. Then the usual significance methods can be applied, where the usual two-sample t-test 

are often performed to evaluate which pathways have activity levels that are significantly 

different between groups. In addition, the comparison to the GSEA method was demonstrated in 

an example. In that specific example, their results seem biologically reasonable and are more 

consistent with previous experimental evidence than those obtained from GSEA.  

Dinu et al. (2007) proposed a test called SAM-GS for assessing differential expression of 

pathways between two phenotypic groups. It addressed the issue of low-variability 

characteristics of microarray data by adjusting the popular individual-gene analysis, significance 

analysis of microarray (SAM) (Tusher, Tibshirani et al. 2001; Tibshirani 2006; Efron and 

Tibshirani 2007). The SAM-GS statistic for pathway analysis with binary phenotype is 

2

1

m

p

p

SAMGS d


  

where m is the number of genes in the pathway of interest, and 

0

(1) (2)p p

p

p

x x
d

s s




 .

 

( )px k  is the average expression for the pth gene in the pathway for the kth class of the 

binary phenotype (k =1, 2), where sp is the pooled standard deviation. The constant s0 was added 

to adjust for the small variability characteristics of microarray data (Tusher, Tibshirani et al. 

2001).   

Further, Adewale et al. (2008), based on the SAM-GS and Goeman et al.’s global test, 

extended pathway analysis to diverse phenotypes, including multi-class, continuous, and 

censored-survival phenotypes, while allowing covariate adjustments and correlated data. The 

generality of the proposed method is achieved by using the regression methods. The proposed 

pathway statistic is defined as: 
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2

1

m
p

p p

r
W

s

 
   

 
  

where rp is any appropriate measure of association between the phenotype Y and the 

expression xp for the pth gene in the pathway, and sp is the standard error of rp. They took rp as 

the regression coefficient from modeling the pth gene as a predictor of the phenotype Y in an 

appropriate regression framework. The form of the test statistic is a sum of squares of the Wald 

statistics for individual genes constituting the pathway.  

 

To sum up, approaches above have one fundamental drawback: it does not render 

directed or non-directed relationships among the genes. Therefore, it is a method that will only 

identify potential key players on a biological pathway. Other methods, biological and/data 

oriented, must be utilized in order to elucidate the entire pathway structure – including key 

players and their relations as introduced in the following sections.  

 

2.1.3 Inter-relations between genes on biological pathway analysis 

 

In contrast to gene set analysis, current analyses consider not only nodes but also the 

links between them, which represent the complete pathway property. This introduces the 

problem that how does one determine the association between genes.  

 

Researchers employed many metrics to represent the gene-gene relationships, including 

Pearson correlation, partial correlation and conditional probability, etc.  

For continuous data, the Pearson correlation coefficient can be used with its classic 

definition given below 

1

2 2

1 1

( )( )

( ) ( )

n

i ii

n n

i ii i

X X Y Y
r

X X Y Y



 

 


 



 
 

It has been assumed that similar patterns in genetic profiles would suggest relationships 

between genes in that genes with strong correlation in mRNA expression profiles tend to be 

regulated by the same transcriptional factor and moreover have similar cellular functions (Yu, 

Luscombe et al. 2003; Allocco, Kohane et al. 2004).   

 

Partial correlation coefficients describe the correlation between two nodes while 

controlling for the effects of all other nodes in the system. Following the theory of normal 
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distribution, the partial correlation coefficients πi,j can be computed from the inverse of the 

covariance matrix (Ω = Σ
-1

) by: 

  
,

, ,
,

i j

i i j j
i j



 



 , where 

,i j are elements of matrix Ω.  

The disadvantage of this procedure is that the empirical covariance matrix can only be 

inverted if the number of observations exceeds the number of nodes in the network, that is, if the 

matrix is nonsingular. However, it is usually the case for the gene expression data to have many 

more genes than observations. Methods based on covariance selection provide one way to solve 

this problem by utilizing the sparse property of the partial correlation matrix. For example, 

Schafer and Strimmer (2007) have proposed a shrinkage covariance estimator  , which is 

guaranteed to be nonsingular, in a Gaussian Graphical Model. This method is based on the 

assumption that the data follows a multivariate normal distribution N (µ, Σ). The key idea is as 

follows. It is known that the (unconstrained) maximum likelihood estimator  ML  has a high 

variance if the number of nodes exceeds the number of observations, while there are several 

potentially constrained estimators that have a certain bias but a much lower variance. The 

shrinkage approach combines the MLE with one constrained estimators C  in a weighted 

average: 

(1 ) ML C       , where [0,1]  denotes the shrinkage intensity. 

Peng and colleagues (2009), inspired by the Gaussian Graphical Model, proposed a 

method using joint sparse regression techniques for the determination of nonzero partial 

correlations. They have successfully applied their method to identify hub genes based on partial 

correlations of microarray data for breast cancer.  

 

 

 

2.2 Pathway analysis with only categorical variables 

 
Sole transcriptional changes (gene expressions) are not sufficient to explain all biological 

phenomena, especially for some complex diseases. Now biological scientists began to explore 

more, such as SNP (single-nucleotide polymorphism) on the chromosome, for answers. Genomic 

instability, aberrations of SNP in chromosomes, plays a critical role in the development of many 

diseases (Klein and Klein 1985). High throughput genotyping experiments have been performed 

to study genomic instability in diseases. The output of such experiments can be summarized as 

high-dimensional binary vectors, where each binary variable records genotype status at one 

marker locus. Therefore, several approaches have been proposed to accommodate this data type 

in order to understand how SNPs may interact with each other, as it provides insight into the 

process of the disease development.  
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2.2.1 Mutual Information 

 

Instead of correlation used for defining the association between genes expressions, the 

concept of information system has been borrowed to compute the entropy of gene expression 

patterns and the mutual information between each pair of genes (Butte and Kohane 2000). This 

method can deal with non-linear associations, whereas only applicable to discrete variables or 

discretized continuous data.  

The entropy of expression pattern is a measure of the information content in that pattern, 

and is calculated by: 

1

( ) ( ) ( ( ))
n

i i

i

H A p x log2 p x


   

Higher entropy for a gene means its expression levels are more randomly distributed. For 

continuous expression data, to calculate the discrete probabilities, the researchers use a histogram 

technique. First calculate the range of values of each gene, and then divide into n sub-ranges. 

P(xi) equals to the proportions of measurements in sub-range xi. The Mutual information is a 

measure of additional information known about one gene expression pattern when given another, 

as shown below: 

( , ) ( ) ( | ) ( ) ( ) ( , )MI A B H A H A B H A H B H A B      

Thus the mutual information of zero means the joint distribution of expression values has 

no more information than genes separately. Higher mutual information between two genes 

means that one gene is non-randomly associated with the other. In this way, it can be used as a 

metric between two genes regards to their degree of independence. The hypothesis underlying is 

that the higher mutual information between two genes, the more likely it is they have a biological 

relationship. 

 

2.2.2 Graphic model 

 

Alternatively, SNP pathways can be compactly represented by graphs, in which vertices 

represent SNPs and edges represent interactions between SNPs. Tools developed for graphical 

models (Lauritzen 1996) can therefore be employed to infer interactions among SNPs. There is a 

rich literature on fitting graphical models for a small number of variables (Whittaker 1990; 

Edward 2000; Drton and Perlman 2004). However, in genome-wide SNP profiles, the number of 

SNPs p is typically much larger than the number of samples N. Under such high-dimension-low-

sample-size scenarios, Wang et al. recently tackled this challenge by proposing sparse logistic 

regression with a lasso penalty term and extend it to account for the spatial correlations within 

chromosomes (Wang, Chao et al. 2011). In their method, they derived a joint probability 

distribution of the p binary variables, which leads to a set of p logistic regression models with the 

combined p*p coefficient matrix being enforced symmetric. By assuming symmetric 
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coefficients, they had half-reduced number of parameters. Also they employed 

psedudolikelihood estimators, a recent work by Hofling and Tibshirani (2009), rather than the 

exact likelihood estimators. As a result their method was shown high efficiency and fast 

algorithm by simulation studies.  

 

2.2.3 Boolean Network 

 

The concept of system-level modeling has been extensively studied in engineering and 

can be utilized towards the modeling of gene regulatory systems (Pomerance, Ott et al. 2009). A 

Boolean network is a directed graph (network) for discrete state models, whose nodes represent 

the elements of a system (e.g. genes), characterized by an On (expressing its target protein) or 

Off state, and directed links between genes indicated that one gene influence the expression of 

the other either through the expressed protein binding to DNA, or by other signal pathway that 

modulate transcription of a gene. 

In the standard Boolean network model, the system evolves in discrete time steps and at 

each step the state of every node is simultaneously updated according to some function of its 

inputs. This function approximates the action of activators (proteins that act to increase 

expression of a given gene) or inhibitors (proteins that act to reduce expression). Although this 

method provided a good way to evaluate ―switch-type‖ regulatory pathways, the cutoff 

expression might seem to be an oversimplification considering the complex mechanism involved 

in all steps of transcriptional pathways.   

 

 

 

 

 

2.3 Pathway analysis with mixed variables  
 

Besides pathway analyses dealing with only continuous or categorical variables discussed 

above, approaches to handle mixed variables (continuous and categorical ones) are in great 

desire. It is in accordance with the increasing popularity of system biology studies that involve 

various data types. For instance, data of phenotypes and genotypes are obtained as categorical 

data, and gene expression as continuous data. Other examples are abundant.  

Often although data with mixed variable types are collected in the biological studies, the 

usual modeling strategy is to consider each outcome separately in a univariate framework. 

However, the univariate strategy is less efficient in the sense that such an approach ignores the 

extra information contained in the correlation among the variables. Other advantages of a 

multivariate setting include avoiding multiple testing and naturally leads to global tests, thus 

resulting in increased power and better control of Type I error rates Significant efficiency gains 

over separate univariate analyses have also been reported (Gueorguieva and Sanacora 2006). 
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Therefore, system biology is in great need of a joint flexible and straightforward analysis to 

accommodate all mixed variables.  

 

2.3.1 Bivariate mixed variables analysis 

 

The challenge for multivariate methods is the non-existence of obvious multivariate 

distributions for mixed variables. Several approaches have been proposed, mostly in the context 

of bivariate mixed response variables (one is categorical and the other is continuous). de Leon, et 

al provided a good review on the bivariate mixed outcome data (de Leon and Chough 2010).  

One of the earliest proposals of directly specifying the joint distribution factorizes it into 

a conditional distribution of one outcome and a marginal distribution of the other. The main idea 

of the factorization method is to write the likelihood as the product of the marginal and 

conditional distribution. Cox and Wermuth (1992) discussed two possible factorizations for 

modeling a continuous and a binary outcome as functions of predictors.  

Alternatively, several models using latent variables have been proposed to analyze this 

problem. Sammel et al. (1997) and Arminger and Kusters (1988) discussed models where the 

outcomes are assumed to be a physical manifestation of a latent variable. A drawback of this 

model is its non-robustness to misspecification of the covariance because the mean parameters 

depend heavily on the covariance parameters (Sammel, Lin et al. 1999). Dunson (2000) extended 

this approach to accommodate non-normal latent variables and non-linear relationships between 

the observed outcome and the underlying variables. Although very general, Dunson’s approach 

produces a non-identifiable model for the case of a bivariate, binary or continuous outcome. This 

fact is well known in factor analysis where each latent variable needs three or more indicators in 

order to for the model to be identifiable; otherwise the parameter space has to be reduced. Often 

this is achieved by putting constraint on parameters or fixing some parameters to a constant. 

However, in Dunson’s model it is not clear how to constrain the parameters to make the model 

identifiable without misspecifying the model for the covariance.  

In another way, implemented in SAS/STAT software, GLIMMIX procedure performs 

estimation and statistical inference for generalized linear mixed models (GLMMs) 

(http://support.sas.com/rnd/app/da/glimmix.html). A GLMM is a statistical model that extends 

the class of generalized linear models (GLMs) by incorporating normally distributed random 

effects in the linear predictor and/or by modeling the correlations among the data directly.   

Although appealing, all these means in this section are based on bivariate examples, not 

in context of pathway analysis.  Hence they are not directly applicable to the complicated case, 

for example one can be both independent and dependent variable in different equations on the 

pathway. This situation can be handled in structural equation modeling (SEM) as its specialty.   
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2.3.2 Generalized linear latent and mixed model 

 

Dr. Rabe-Hesketh, Pickles and Skrondal have generalized structural equation models 

(SEM) to accommodate different kinds of responses by a generalized linear latent and mixed 

models (GLLAMM) (Skrondal and Rabe-Hesketh 2004). SEM specifies relations among 

variables on the pathway. Chapter 3 will give an introduction on SEM. GLLAMM proposed by 

Rabe-Hesketh, et al is a class of multilevel latent variable models handling various types of 

responses including continuous, survival data, dichotomous, ordered and unordered categorical 

data. Typically, they studied the problem of estimating the association between the responses and 

observed and/or latent explanatory variables. Structural equations are used to specify regressions 

of latent continuous or discrete variables on explanatory variables as well as relationships among 

latent variables. The typical model that GLLAMM was designed to analyze is shown in Figure 8.  

 

Figure 8. Generalized linear model of the response di with the observed variable xi and 

the latent variable Fi, where Fi has two observed measurements fi1, fi2, both with measurements 

errors. 

In Figure 8, three sub-models were specified: a latent variable model, a measurement 

model and an outcome model. The latent variable model of  for unit i is 

0 1 ,i i iF x u     

where  is other observed variables,  and are regression parameters and  is a latent 

variable representing the deviation of unit i’s true value from the mean of . 

Next, the classical measurement model assumes that the rth covariate measurement for 

unit i, , differs from the latent variable  by a normally distributed measurement error , 

0 1

2(0, )

ir i ir i i ir

ir f

f F x u

N

   

 

     
 

where  and  are independent. 
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The third one, outcome model specifies the relationship between the response and 

explanatory variables and could also be other forms of generalized linear model. A logistic 

regression type is 

0 1

0 1

logit( [ 1| ])

,

i i i i

i i

P d F x F

x u

  

  

   

  
 

where and  .  

Under the normality assumption for , the likelihood is  

1

( , , ) ( | ; ) ( | ; ) ( ; )d
in

D M i i D ir i M i i

i r

L P d u g f u g u u     


   

The likelihood has no closed form but may be integrated numerically using Gauss-

Hermite quadrature. They estimate parameters using the Newton-Raphson algorithm and 

estimate standard errors by inverting the observed information matrix. Although the generality of 

GLLAMM framework, its time-consuming computation has been criticized by many users, e.g it 

is reported as ―one of the most computationally demanding packages ever‖ in comparisons 

among SEM procedures by Dr. Stas Kolenikov (http://repec.org/bost10/kolenikov0712.pdf).  

 

 

http://repec.org/bost10/kolenikov0712.pdf
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Chapter 3 Structural Equation Modeling (SEM)  

 
 

  

 

 

Structural equation modeling (SEM) is a methodology for representing, estimating, and 

testing a network of relationships between variables (measured variables and latent constructs). 

SEM theory is based on specifying a corresponding model and using data to estimate the values 

of free parameters. Often the initial hypothesis requires adjustment in light of model evidence. 

The definition of SEM was articulated by the geneticist Sewall Wright (1921), and the cognitive 

scientist Herbert Simon (1953) and formally defined by Judea Pearl (2000) using a calculus of 

counterfactuals (Pearl 2000). SEM can be viewed as a general model of traditional methods like 

regression, factor analysis and path analysis (Kline 1998).  

 

A suggested process to SEM analysis proceeds from first reviewing the relevant theory 

and research literature to support model specification; and specification a model (e. g. diagram 

and equations); determining model identification (e.g. if unique values can be found for 

parameter estimation and the number of degrees of freedom for model testing is positive); and 

then collect data, estimate parameters in the model; followed by the evaluation of the model fit 

and interpret and present results.  
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3.1 Model specification 

 

Kenneth A. Bollen’s textbook gives an excellent introduction theoretical introduction to 

SEM (1989). The standard path analysis model (SEM with measured variables only) is: 

Y Y X    . 

Y is a vector of the endogenous variables studied, and X a vector of the exogenous 

variables studied. There are some terms used often in SEM. A measured variable refers to a 

variable that is directly measured whereas in contrast to the latent variable that is a construct not 

directly or exactly measured. An endogenous—or dependent—variable in the model is one with 

arrows coming in, i.e. influences of this variable are present in the model. An exogenous—or 

independent—variable in the model is one with no arrows coming in, i.e. influences of this 

variable are not present in the current model. In the matrix form,  is a matrix containing path 

coefficients where the entry 
,i j is the coefficient of the path from endogenous node j to 

endogenous node i.  is a matrix containing coefficients of paths from exogenous variables to 

endogenous variables. 
,i j  is the coefficient of the path from exogenous node j to endogenous 

node i.   is a vector containing the error variables in the equations for the path diagram.  

 

Structural equation modeling is often referred to as covariance structure analysis. As this 

name suggests, interest often focuses on the covariance structure whereas the mean structure is 

typically eliminated by subtracting the mean from each variable. In our example, both Y and X 

are centered about their means. The null hypothesis we would like to test in SEM is 

always ( )   , where   is the population covariance matrix of the observed variables and 

( )  is the covariance matrix written as a function of the free model parameters (the vector ). 

The question we want to answer is: ―does the covariance matrix predicted by the model is equal 

to the population covariance matrix?‖ We can break ( ) into a block matrix as follows. 

( ) ( )
( )

( ) ( )

yy yx

xy xx

 


 

  
   

  
 

 

We will consider each block individually. From the equationY Y X    , we can 

obtain the explicit expression of Y:  

1

( )

( ) ( )

Y Y X

I Y X

Y I X







   

   

   

 

Thus,  
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 

 
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   

 

        

    







  

 

Where Ф is the covariance matrix of X and Ψ is the covariance matrix of error ζ. 

 

Similarly, we can get ( ) ( , ) ( ')xx Cov X X E XX    by definition. And the 

covariance of X and Y: 

1 1

1 1

( ( , )

[( )( ) '] ( 0)

( ')

( (( ) ( )) ) ( ( ' ')( ) )

[ ( ' ) ( )

)

]( ) ( )
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 
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    



        

        





 

1

1

)

[ ( ')]'

[

( ( ')

( )

( )

]' ( ')

yx E YX

I

X

B

B

E

I

Y









 





   

 

 

Now we can assemble Σ(θ) as follows: 





































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



1

111

)(
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)()(

)()(
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III
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yxyy
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
  

Now that we have ( ) , we can estimate  . In estimating   (a vector of our free 

paramters—the path coefficients and equation errors), we must choose values of  in order to 

minimize the difference between S and ( ) . The usual approach of estimating model fit and 

parameters in SEM is the maximum likelihood (ML) approach.  
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3.2 Model estimation 

 

The maximum likelihood estimation assumes that the variables in the model are 

multivariate normal (i.e., the joint distribution of the variables is distributed normally). We will 

derive the ML of the SEM model based on Y Y X     as follows.  

Assume Y and X are vectors of multivariate normally distributed variables. 

Assume
Y

Z
X

 
  
 

. Z has length p+q (p is the number of endogenous variables and q is the 

number of exogenous variables in the model). Variables Z are centered so that all variables have 

mean 0. Then because Z is a vector of multivariate normal variables, the distribution of the 

variables in Z can be written as:  

 
1
22 11

2
) (2 ')( ; exp

p q

f z z z


     
 

 

For N independent and identical distributed (iid) observations of the vector Z, the joint 

density function is 

1 2

1 2 )

( ; )

( , ,.

( ; ) ( ; ) ( )

[ (

..,

; )] ( )

;N

N

Nf z f z f z independently distributed

f

f z z

z identically distr

z

ibuted



    

 

 

and therefore, the likelihood function is 

22
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

  




  
 


 

  




. 

Therefore,  

11
2 2 2

1

) ( ) log 2 lolog ( g ( ' () )
N

N N
i i

i

p q z zL    



       . 

We can simplify log )(L  by dropping and multiplying the constant terms, and finally 

minimize the resulting fitting function:  
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1( ) ( )log log ( )MLF tr S S p q         , 

where S is the sample covariance matrix and p and q are the number of endogenous and 

exogenous variables, respectively. This fitting function is the basis of ML estimation of SEM. 

Minimizing the function will yield the appropriate estimates of .  
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Chapter 4 Comparative Genetic Pathway Analysis 

Using Structural Equation Modeling 

 

 

 

In this chapter, we propose a novel genetic pathway discovery and comparison analysis 

framework integrating newly generated gene expression microarray data and existing biological 

pathway information. Starting with the significance analysis of microarray (SAM), a list of 

differentially expressed genes among groups is obtained. This gene list is then imported to the 

Ingenuity pathway analysis (IPA) to yield potentially relevant biological pathways. Finally, a 

covariate structural equation modeling method is applied to evaluate pathway connections and 

group effects. The covariate SEM applied in the final step is based on previous work from Dr. 

Sharpe in our group (2010). The pathway scheme with all continuous nodes and categorical 

covariates is considered here. Novel generalizations of this work will be described in later 

chapters to include both categorical and continuous variables as nodes, as well as covariates on 

the biological pathways.  

Compared to covariate SEM proposed in Sharpe (2010), this comparative genetic 

pathway analysis is featured by connections to prior knowledge-based pathway construction. We 

will illustrate this novel pathway analysis pipeline using the whole human genome expression 

profiling data collected from 99 patients representing three phenotypes: ileal Crohn’s disease 

(CD), ulcerative colitis (UC) and control subjects without inflammatory bowel diseases (non-

IBD).   

 

4.1 Background 

In recent years, gene set and pathway analyses have gained increasing popularity over 

individual gene analyses since the wide availability of the large-scale gene expression data. The 

analyses of large-scale gene expression profiling dataset have been evolving in two directions: 
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the data-driven and the knowledge-driven approaches (Viswanathan, Seto et al. 2008). The data-

driven analyses are used to generate relationships among gene products (genes or proteins) solely 

based on experimental data. Various novel statistical methods have been proposed in this 

direction ranging from the permutation-based t-test as implemented in the software suite 

Significance Analysis of Microarrays (SAM) (Tusher, Tibshirani et al. 2001) to pathway 

discovery methods, such as the partial correlation network analysis (PCNA) (Peng, Wang et al. 

2009). The knowledge-driven analysis, on the other hand, is derived from a detailed pathway 

knowledgebase for particular domains of interest, such as a cell type, disease or system. The 

most common statistical method adopted there is a single over-representation test of the gene set 

based on the hypergeometric model (Cho, Huang et al. 2001) or Fisher’s exact test (Man, Wang 

et al. 2000). This approach has been applied with minor variation by many different tools (Al-

Shahrour, Diaz-Uriarte et al. 2004; Beissbarth and Speed 2004; Boyle, Weng et al. 2004; Lee, 

Braynen et al. 2005). For the knowledge-based analyses, it is critical to adopt a thorough and up-

to-date reference database. Many public biological reference databases have been developed 

including, most notably, Gene Ontology (http://www.geneontology.org/) and KEGG pathway 

(http://www.genome.jp/kegg/pathway.html). Alternatively, the commercial tool Ingenuity 

Pathway Analysis (IPA: www.ingenuity.com) has gained tremendous popularity and followings 

in this field thanks to its up-to-date, integrated and curated knowledge base of canonical 

pathways and disease-related pathways.   

The objective of this study is to develop a pathway analysis pipeline that combines the 

data- and knowledge-driven approaches. Previous approaches towards combining the two 

approaches include Gene Set Enrichment Analysis (GSEA) (Mootha, Lindgren et al. 2003; 

Subramanian, Tamayo et al. 2005), the global test (Goeman, van de Geer et al. 2004) and 

combination of SAM and IPA (Hever, Roth et al. 2006; Alekseev, Richardson et al. 2009). The 

SAM/IPA method in particular has gained traction with biological scientists. In order to further 

evaluate which portions of the biological pathways that have been identified by SAM/IPA are 

significantly different between groups or conditions, we will adopt the novel covariate structural 

equation modeling (cSEM) based on a mixed design to this pathway analysis pipeline (Sharpe 

2010).  

 
Figure 9. Illustration of the proposed comparative pathway analysis pipeline using the 

SAM, IPA and cSEM. 

As illustrated in Figure 9, in the proposed pathway analysis pipeline, differentially 

expressed genes are first obtained from the SAM gene activation/deactivation analysis, and 

http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html
http://www.ingenuity.com/
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subsequently imported to the IPA for functional analysis to identify relevant canonical pathways. 

Genes involved in such canonical pathways are considered for the ensuing cSEM analysis to 

compare the pathway connection strengths between group / condition etc. Therefore, the SAM 

analysis will identify pathway nodes/genes that are differentially expressed between 

groups/conditions, etc., while the cSEM analysis will determine the influence of these covariates 

(group, condition, etc.) on the pathway connections – i.e. links/paths between the genes.  

 

4.2 Method 

4.2.1 Significance Analysis of Microarrays (SAM) 

 

SAM is a statistical analysis technique for identifying significantly activated/deactivated 

genes using permutation based t-test (Tusher, Tibshirani et al. 2001). The multiple hypothesis 

testing is controlled by false discovery rate (FDR) (Benjamini and Hochberg 1995). One can also 

choose a fold change threshold. A recent study led by the FDA revealed that SAM is among the 

top choices to ensure high cross-lab reproducibility in significant findings (Shi, Perkins et al. 

2008). We thus chose SAM to identify significantly differentially expressed genes as the first 

step in the proposed comparative pathway analysis pipeline.   

 

4.2.2 Ingenuity pathway analysis (IPA) 

 

The set of significant genes from SAM is then imported to the IPA 

(http://www.ingenuity.com/) to identify canonical pathways significantly involved based on 

existing biological knowledgebase. IPA integrates information available in major public 

databases and information manually curated by doctoral level researchers from the latest primary 

literature sources. Thus, in our analysis, we adopted IPA as the reference knowledgebase – the 

second link on the pipeline. 

 

4.2.3 Covariate Structural Equation Modeling (cSEM) 

 

Structural equation modeling (SEM) is a statistical procedure for confirmatory causal 

inference proposed in 1921 by the American geneticist Sewall Wright (Wright 1921). However, 

following its invention, SEM had seen most of its applications in the psychometrics and 

econometrics fields (Johnston 1972; Bollen 1989) and found little action in the genetic field until 

the advent of modern microarray studies (Shipley 2000). Xiong et al. (2004) were the first 

applying SEM to genetic network reconstruction using yeast gene expression data. SEM 

estimates the hypothesized path model using the covariance (correlation) structure from the data 

in a maximum likelihood framework. For genetic data, similar gene expression profiles usually 

suggest relations among genes. It has been shown that genes with strongly correlated mRNA 

http://www.ingenuity.com/
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expression patterns tend to be regulated by the same transcriptional factor, and furthermore, have 

similar cellular functions (Yu, Luscombe et al. 2003; Allocco, Kohane et al. 2004). This justifies 

the application of SEM to gene expression data.  

 

Figure 10. Illustration of the methodology of covariate SEM (cSEM). (A) The two-level 

parametric model depicts the impact of gene X on gene Y (Level 1) and the impact of two 

covariates phenotype and genotype in the gene X→Y pathway/interaction (Level 2). The cSEM 

model was established by re-parameterizing the path coefficient between X and Y to incorporate 

potential phenotype and genotype influences. (B) A more general path diagram of the response 

variables , ... , ...1Y Y Yi p  and independent variables , ...,1X Xq  incorporating covariates , ...,1F Fk . The 

structural relations and the path coefficients of Yi are specified according to Equation (1). 

Similar model structures are defined for other response variables , ...,1Y Yp , but omitted in this path 

diagram.  

Traditional SEM is often inadequate for applications to biological data from certain 

experimental setting. Recently we have developed a customized SEM procedure and program for 

mixed designs — a popular paradigm in biomedical studies with multiple groups and repeated 

measures on each subject (Sharpe 2010). This framework includes the covariate SEM (cSEM) as 

a special case where our focus is on comparing the pathway connection strengths between 

(A)

 

(B)  
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several groups (treatment groups, phenotypes, genotypes etc.) where these group and condition 

factors are referred to as covariates (Figure 10A). 

 

This novel method can analyze multiple independent and/or correlated datasets 

simultaneously to determine precisely which paths are affected by which factor (group etc.). 

Correlation of repeated measures is incorporated into the model-implied covariance matrix. It is 

developed in a maximum likelihood framework through a two-level modeling approach. As 

illustrated in Figure 10B, the combined two-level SEM model is a series of linear equations:  

) )1 ,0 1 ,1 1 1 , 1 ,0 ,1 1 ,

) )1 ,0 1 ,1 1 1 , 1
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,0 ,

(

1( ,( 1

i i i k k qi qi qi k k

i i i k k pi pi pi k k

y F F x F F xi q

F F y F F iy p

     

      

        

         
 (1) 

 

for 1...i p , where p is the number of response variables, Fi  is the i
th 

dichotomous factor, 

xi’s are the independent variables, yi’s are the dependent/response variables, and i corresponds 

to the independent normal random error in each equation. The Box-Cox transformation is 

routinely applied to ensure normality of the data. The maximum likelihood estimators of the 

model parameters (coefficients) are obtained by minimizing the fitting function, 
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  (2) 

Here Nk  is the number of observations taken on the k
th

 independent group of subjects, 

S
k

 is the covariance matrix of (Y ) 'X  for the k
th

 independent group of subjects, ( )k   is the 

model-implied covariance matrix for the k
th

 independent group of subjects, and p q  is the 

number of variables measured for each group (summing the number of variables over all 

conditions). Once the parameters are estimated, the standard errors can be estimated via the 

asymptotic covariance matrix (inverse of the Fisher Information matrix). The Fisher Information 

matrix can be estimated using the matrix of second derivatives of the fitting function, the Hessian 

matrix of the function. Parameter estimates and corresponding errors are used for significance 

tests via the asymptotic normal distribution of parameter estimates.  

Implemented as the third and final link on the proposed comparative gene expression 

pathway analysis pipeline, cSEM can evaluate changes in gene-gene interactions (i.e. pathway 

links or paths) due to groups and/or conditions. Taken together, the proposed analysis pipeline 

will unravel relevant pathways (SAM+IPA), and identify differences in pathway nodes/gene 

expression levels (SAM) and in pathway connections/gene-gene interactions (cSEM) across 

groups/conditions. In the following, we apply the proposed pipeline towards the analysis of a 

gene microarray study comparing three phenotypes: ulcerative colitis (UC) and Crohn’s disease 

(CD) -- two major inflammatory bowel disease (IBD) phenotypes, and non-IBD controls. 
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4.3 Application and results 
 

4.3.1 Data set 

 

Ulcerative colitis (UC) and Crohn’s disease (CD) are two subtypes of Inflammatory 

Bowel Disease (IBD). They are chronic inflammatory disorders that are affected by multiple 

genetic, microbial, and environmental factors (Podolsky 2002). UC is a specific disease of the 

large intestine or colon; while CD can affect any part of the gastrointestinal tract, but most 

commonly involves the terminal ileum. This study focused on the dysregulation of genetic 

factors and their interactions in the ileum of IBD patients. The microarray data were generated 

from Agilent Human Whole Genome arrays (Agilent No.G4410A). Mucosal mRNA samples 

were collected from the ileums of 27 UC patients, 47 CD patients and 25 non-IBD controls. See 

the patients data descriptions in (Zhang, DeSimone et al. 2011). After the data preprocessing, 

including background filter, normalization and log2 transformation by limma package in R, and 

the log ratio was used as expression value of each gene for further analysis.  

 

 

4.3.2 Differentially expressed genes between UC, CD and non-IBD 

 

The differentially expressed genes between UC, CD and non-IBD patients were identified 

by two-class unpaired test in SAM for UC vs. non-IBD, CD vs. non-IBD and UC vs. CD 

(Tusher, Tibshirani et al. 2001). The results contained significant genes, with corresponding FDR 

< 5%, fold change >1.5 for each of three comparisons. These three gene lists were then 

combined into one union list (n=2979 genes) for candidate genes to distinguish disease status of 

UC, CD or non-IBD . These differentially expressed genes would be considered for further 

analysis. Thus, we obtained information about individual gene expression changes between 

different IBD phenotypes: up-regulated, down-regulated or no changes.     

 

 

4.3.3 Associated biological pathways 

 

The called genes, which are potentially related to IBD phenotype, were imported to the 

IPA for functional analysis of canonical pathways associated with such genes. In terms of the 

Ingenuity Pathways Knowledge Base, 49 canonical pathways were identified to be over-

represented in the gene list at the significant level of 0.05 (Data were not shown). Among the 

enriched pathway list, the pregnane X receptor (PXR) pathway located at the top significant level 

and appeared highly significant in ileum samples of UC and non-IBD. Also it is a transcriptional 

pathway which is suitable for microarray data analysis. Furthermore, it resembled the findings in 

colon of UC patients from Dr. Langmann’s group that dysregulation of PXR target genes in the 
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gut is likely to contribute to the pathophysiology of UC (Langmann, Moehle et al. 2004; 

Langmann and Schmitz 2006). Thus, we had PXR pathway as one of the most important 

pathways of our interest to study on.  

 

Based on both canonical pathway in Knowledge Base of Ingenuity and previous 

experimental evidence, we generated null hypothesis of PXR path diagram for covariate SEM 

analysis. This pathway includes pregnane X receptor and its target genes involved in phase I, 

phase II xenobiotics metabolism and transport of xenobiotics, which are critical components in 

intestinal barrier function against xenobiotics and bacteria (Figure 11).  

 

 
Figure 11. The PXR pathway identified through SAM and IPA analysis, under the cSEM 

null hypothesis with potential UC effect (versus non-UC) on the pathway connections. 

 

Fold changes of gene expressions in the PXR pathway are shown in Table 1A. The 

majority of detoxification genes show decreased transcripts in UC compared to non-IBD while 

no difference between CD and non-IBD. It suggests that, in the ileum, CD and non-IBD patients 

have similar transcriptional level of PXR pathway and both significantly higher than it is in UC 

patients as confirmed by the ensuing SAM analysis between UC and non-UC (CD + non-IBD) 

(Table 1B). Subsequently, we applied cSEM to compare gene-gene interactions on the PXR 

pathway between UC and non-UC. The work flow of the comparative pathway analysis pipeline 

on the given IBD study is shown in Figure 12. 
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Table 1. Fold changes of gene expressions in the PXR pathway 

(A) Fold changes in CD, UC ileum samples compared with non-IBD controls 

 

FC against nonUC CYP3A4 CYP3A7 CES2 GSTA1 GSTM4 SULT1A2 

UC -1.53* -1.77* -1.59* -1.91* -1.28 -1.70* 

CD -1.14 -1.25 -1.10 -1.35 1.21 -1.09 

FC against nonUC SULT2A1 SULT2B1 ABCB1 ABCC2 ABCC3 PXR 

UC -2.03* -1.79* -1.45 -1.75* 1.09 -1.26 

CD 1.03 -1.13 -1.25 1.04 -1.17 -1.01 

*Significant fold changes have been indicated for the threshold as fold change greater than 1.5. 

(B) Fold changes in UC ileum samples compared with non-UC controls 

FC against nonUC CYP3A4 CYP3A7 CES2 GSTA1 GSTM4 SULT1A2 

UC -1.40 -1.53 -1.49 -1.57 -1.46 -1.61 

FC against nonUC SULT2A1 SULT2B1 ABCB1 ABCC2 ABCC3 PXR 

UC -2.07 -1.65 -1.25 -1.80 1.21 -1.26 

 

 

 
Figure 12. Application of the proposed comparative pathway analysis pipeline to the IBD 

study. 
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4.3.4 Comparative pathway analysis by covariate SEM  

 

Based on the hypothesized cSEM path diagram of the PXR pathway illustrated in Figure 

11, we performed cSEM analysis comparing the UC and non-UC groups. The indicator variables 

and the corresponding structural equations are shown below.  

 

Model: UC =1 for UC patient, UC =0 for non-UC (CD + non-IBD) 
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The estimated parameters, t values and p values are shown in Table 2, and the 

corresponding path diagram is shown in Figure 13. In Figure 13, fold changes of gene 

expressions between UC and non-UC were highlighted on the nodes, where green and grey 

indicated down-regulated expression and no change of expression using the threshold of 1.5 

respectively (actual fold changes are tabulated in Table 1B). The majority of PXR downstream 

genes were decreased in UC patients compared to non-UC subjects, in accordance with previous 

results in colon by other researchers (Crotty 1994; Langmann, Moehle et al. 2004; Englund, 

Jacobson et al. 2007).    
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Table 2. Estimated coefficients of cSEM (UC vs. Non-UC), and the corresponding 

standard errors, z values and p values. P values in bold indicates the corresponding coefficient is 

significant at the significance level of 0.05 (one-sided) 

Path 

coefficients 
Estimate Std Error Z value p value 

γ1,0 2.002 0.187 10.727 < 0.001 

γ1,1 -0.371 0.355 -1.044 0.297 

γ2,0 1.802 0.212 8.481 < 0.001 

γ2,1 -0.400 0.384 -1.042 0.298 

γ3,0 1.059 0.137 7.748 < 0.001 

γ3,1 -0.232 0.280 -0.827 0.408 

γ4,0 1.550 0.230 6.738 < 0.001 

γ4,1 -0.012 0.506 -0.024 0.981 

γ5,0 1.164 0.133 8.720 < 0.001 

γ5,1 -0.491 0.289 -1.698 0.090 

γ6,0 0.774 0.129 5.981 < 0.001 

γ6,1 0.116 0.206 0.561 0.575 

γ7,0 2.721 0.332 8.192 < 0.001 

γ7,1 -0.909 0.726 -1.253 0.210 

γ8,0 1.142 0.192 5.945 < 0.001 

γ8,1 -0.755 0.446 -1.690 0.091 

γ9,0 1.539 0.148 10.378 < 0.001 

γ9,1 -0.544 0.379 -1.438 0.151 

γ10,0 2.295 0.248 9.256 < 0.001 

γ10,1 -1.065 0.587 -1.815 0.070 

γ11,0 -0.186 0.172 -1.081 0.280 

γ11,1 0.547 0.332 1.647 0.099 

 

Figure 13. The fitted path diagram for the PXR pathway based on the microarray data. 

Significant changes in gene expressions between UC and non-UC were highlighted on the nodes, 
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where green and grey indicated down-regulated expression and no change of expression using 

SAM with the FDR set at 0.05 and the fold change at 1.5. Significant path and covariate effect 

are examined through cSEM at the significance level of 0.05 one-sided. Paths in red suggested 

positive relations between PXR gene and target genes involved in xenobiotic metabolism and 

homeostasis of endobiotics. Paths with significantly positive or negative UC effect (versus non-

UC) are shown in red and blue respectively.  

 

 

As shown in Figure 13, according to the first level cSEM analysis, all the paths are in red 

except the path between PXR and ABCC3. Paths in red suggested positive relation between PXR 

gene and target genes involved in xenobiotic metabolism and homeostasis of endobiotics. When 

PXR gene expression goes down, the expression of positive-related genes also go down, and vice 

versa. Although PXR did not down-express as significantly in UC as its downstream genes, we 

can infer from their positive relations that reduced PXR expression and activity will strongly 

down-regulate expression of genes encoding detoxification enzymes and transporters. As shown 

by the second level cSEM group analysis (UC versus non-UC), there are four negative UC group 

effect on PXR to GSTM4, SULT2B1 and ABCC2 paths, and one positive UC group effect on 

PXR to ABCC3 path. UC had no significant impact on the other paths of the PXR pathway 

indicating the relations remained similar between PXR to target genes in UC and non-UC 

subjects. Negative UC effect on the path, for example, from PXR to SULT2B1, indicates 

significant reduction of expressions in UC patients compared to non-UC subjects. This result is 

in accordance with the reduced expression pattern in PXR pathway in the ileum samples of UC 

patients, which resemble the findings based on the colon samples of UC patients (Langmann, 

Moehle et al. 2004). 

 

To summarize, our comparative pathway analysis suggested some potentially interesting 

interactions, especially the effect on gene-gene interaction compared between groups (UC versus 

non-UC). This result seemed biologically justifiable since it is consistent with previous 

experimental evidence. Moreover, it provided novel information, for instance, the positive 

relation from PXR to SULT2B1 is probably influenced by the disease phenotype. The underlying 

pathway mechanism will help biologists design further experiments to validate the genetic 

network discovered through the proposed analysis pipelines.  

 

 

4.4 Discussion 

 

In this work, we proposed a pipeline consisting of SAM, IPA and cSEM for comparative 

gene expression pathway analysis utilizing both known biological database and newly available 

experimental data. As noted by the nation’s leading scientists, ―The (traditional) reductionist 

approach has successfully identified most of the components and many of the interactions but, 
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unfortunately, offers no convincing concepts or methods to understand how system properties 

emerge...the pluralism of causes and effects in biological networks is better addressed by 

observing, through quantitative measures, multiple components simultaneously and by rigorous 

data integration with mathematical models‖ (Sauer, Heinemann et al. 2007). It is our hope that 

more, and better, work in this direction will follow in the near future. 
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Chapter 5 Comparative Analysis of Microbiome 

Measurement Platforms Using Latent Variable 

Structural Equation Modeling 

 

 

 

 

Culture-independent phylogenetic analysis of 16S ribosomal RNA (rRNA) gene 

sequences has emerged as an incisive method of identifying bacteria present in a specimen. 

Currently, multiple techniques are available to enumerate the abundance of bacterial taxa in 

specimens, including Sanger sequencing, pyrosequencing, and quantitative PCR. In this work we 

present a novel application of the latent variable structural equation modeling (SEM) to compare 

these different measurement platforms and to combine them for a unified analysis of the 

microbiome. This model treats the true relative frequency of a given bacteria in the tissue sample 

as the latent (unobserved) variable and estimates the reliabilities of, and similarities between 

different measurement platforms, and subsequently weighs these measures optimally for a 

unified analysis of the microbiome composition. The latent variable SEM contains the repeated 

measures ANOVA models as special cases and, as a more general and realistic modeling 

approach features superior goodness-of-fit as well as more reliable analysis results. We 

demonstrate the latent variable SEM approach through a microbiome study of the inflammatory 

bowel diseases (IBD) where the goal is to compare and integrate measurements for the bacterial 

taxa Firmicutes/ Clostridium Group XIVa from four modalities: Sanger, two windows of 454 

pyrosequencing, and qPCR, and furthermore, to examine the impact of IBD (sub) phenotypes on 

the bacteria abundance.    
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5.1 Motivation 
 

Complex microbial communities, like those of the human gastrointestinal (GI) tract and 

other environmental specimens, are gaining increased studies, thanks to the technological 

advances in culture-independent methods based on the amplification of 16S rRNA genes in 

recent years (Weisburg, Barns et al. 1991). Traditional phylogenetic analysis of a sample is 

performed by amplifying 16S rRNA genes, cloning, and sequencing by the Sanger method 

(Sanger and Coulson 1975). Advantage of this method is the sufficiency of single pass Sanger 

sequencing of 900-1000 bases for classifying bacteria. Disadvantages include annealing bias 

(Suzuki and Giovannoni 1996), potential cloning bias (Zoetendal, Akkermans et al. 1998), as 

well as time and expenses. The high cost associated with this approach has been prohibitive for 

in-depth sampling of complex microbial communities.  

 

Next generation sequencing technology provides a promising alternative to quantifying 

the microbiome without the limitations of cloning/Sanger sequencing. One 454 sequencing run 

can produce 1.2 million sequences in 8 hours (Margulies, Egholm et al. 2005), which would 

require months or years of work with the older methods. The high throughput per run means the 

unit cost of the next gen. sequencing is only a tiny fraction of that for Sanger sequencing. The 

new technology also eliminates the cloning bias by directly sequencing the 16S rRNA genes 

generated by polymerase chain reaction (PCR). Therefore, high throughput sequencing is ideal if 

adaptable to meet the requirements needed for microbiome work. However, the main limitation 

of high throughput sequencing is read length. Reads from next generation sequencing 

technologies are considerably shorter than those from Sanger sequencing. Illumina’s Solexa and 

Applied Biosystem’s SOLiD platforms generate reads of about 25-100 bases, while 454 

sequencing technology reads up to 400-500 bases per sequence. The concern is loss of 

classification accuracy with shorter sequence reads (Roesch, Fulthorpe et al. 2007; Dowd, Sun et 

al. 2008). Several strategies have been tried to maximize the information obtained from short 

sequences. One is to target certain hypervariable regions (HVR) that are most informative for a 

specific microbiome of interest (Chakravorty, Helb et al. 2007; Spear, Sikaroodi et al. 2008). As 

a comparison to the Sanger and the next generation sequencing methods, quantitative PCR 

(qPCR) approach employs primers specific for particular bacterium to detect and quantify 

bacteria. It is regarded as a reliable and accurate quantification measure for the absolute amount 

of 16S rRNA genes from one specific organism (Zemanick, Wagner et al. 2010). However, the 

accuracy of qPCR highly relies on proper designs of the primers (Rosey, Abachin et al. 2007).  

 

To date, few attempts were made at systematically compare and combine different 

measurement platforms for microbiome analysis. Nossa et al. (2010) analyzed Sanger 

sequencing and 454 pyrosequencing for 16s rRNA gene sequences and compared the 

classification accuracies based on these platforms. Here we propose the latent variable structural 

equation modeling (SEM) for platform comparison and combination.  The latent variable SEM 

includes the repeated measures ANOVA, both the univariate and the multivariate versions, as 

special cases, and is free from the rigid assumption of the latter approaches such as weighing 

each platform equally in the analysis regardless of their reliabilities and equal measurement error 

variances (Kline 1998). The latent variable SEM treats the true bacteria expression as the latent 
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(unobserved) variable and estimates the reliabilities of, and relations between, different 

measurement platforms, and subsequently combines them for a joint analysis with each platform 

weighted by its reliability. Furthermore, like the repeated measures ANOVA, the latent variable 

SEM can easily incorporate covariates such as disease phenotypes and genotypes (Frank, St 

Amand et al. 2007; Frank, Robertson et al. 2011) to examine their influences on the underlying 

microbiome composition/bacteria expression.  

 

The latent variable SEM approach is demonstrated through a microbiome study of the 

inflammatory bowel diseases (IBD) with several measurement platforms including Sanger 

sequencing, 454 pyrosequencing with different hypervariable regions (windows), and 

quantitative PCR (qPCR). Our goal is to identify the most reliable microbiome measurement 

platform, and furthermore, to examine the impact of covariates, especially the IBD disease 

phenotypes (Crohn’s Disease and ulcerative colitis) on the enteric microbiota. This study was 

supported by the Human Microbiome Project (http://nihroadmap.nih.gov/hmp/) dedicated to 

uncovering the association between the human microbiome of various anatomical sites and 

related diseases. 

 

  

 

 

5.2 Methods 
 

5.2.1 Measurement model of latent variable SEM 

 

In latent variable SEM, a latent variable refers to the unknown ground truth such as the 

true frequency of a certain bacteria in the microbiome. The latent variable is linked to its various 

measurements or indicators through a measurement model. Figure 14 describes a measurement 

model where the latent variable   (in terms of the IBD study, the true frequency of a certain 

bacteria in the tissue) is gauged through m measurements (for the IBD study, 

measurements from four platforms including Sanger, two 454 windows, and qPCR). 

Let  
'

1 2, , , mY Y YY , the latent variable SEM model is a system of linear 

equations:  Y Λ ε , where  
'

1 2, , , m  Λ is the vector of path coefficients showing the 

expected number of unit changes in the observed variables/measurements for a one-unit change 

in the true level of  . Random errors for the measurements and the latent variable itself are 

denoted by  
'

1 2, , , m  ε and  respectively. We further assume that all errors are normally 

distributed and independent with
2( ) , ( , ) 0, ( , ) 0i i jVar Cov Cov        , 

and ( , 1,..., ,i j m )i j . By convention, Y is usually centered about its mean and 

thus the intercept terms are eliminated.  

http://nihroadmap.nih.gov/hmp/
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Figure 14. Path diagram for a latent variable SEM measurement model with one latent 

variable and m measurements (observaed variables). 

 

Let  be the vector of the model parameters including the path coefficients and the error 

variances, for the latent SEM model illustrated in Figure 14, the population covariance matrix 

 of Y implied by the SEM model is: 

 
2

2

2

) ( ') ( )( ' ')

' '

( ) ' ( ')

' cov( )

( E E

E

E E



 







    

   

 

 

θ YY Λ ε Λ ε

Λ Λ εε

Λ Λ εε

Λ Λ ε  

 

Given the multivariate normally distribution of Y, one can estimate the model parameters 

via the traditional maximum likelihood (ML) method that will eventually result in the 

minimization of the following ML fit function: 
1( ) ( )log logMLF tr S S m        , 

where S is the sample covariance matrix. This in turn reduces to minimizing the 

difference between S and , and thus the maximum likelihood estimators of θ are obtained by 

solving  

 

To fix ideas, we now illustrate the modeling and estimation of the latent variable SEM in 

details by setting m = 3 in Figure 14. The SEM equations are:  

1 1 1

2 2 2

3 3 3 ,

Y

Y

Y

 

  

  

 

 

 

 

2 2 2where ( ) 0, ( ) 0, ( ) , ( ) , ( ) , ( , ) 0

and ( , ) 0.

i ii i i y i i

i j

E Y E Var Y Var Var Cov

Cov

        

 

     



  

The model implied covariance matrix (*its upper triangular portion is omitted in the 

matrix form due to symmetry) is:   
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2

2 2 2

1 1

2 2 2 2

2 1 2 2

2 2 2 2 2

3 1 3 2 3 3

( ) ( ') [( )( ) ']

( ') ' ( ')

' ( ')

E YY E

E E

E

 

  

   

   

 

 

  

     

        

     

   

   

 
 

  
  

Σ θ

 

Following convention for latent variable SEM estimation, we set one of the path 

coefficients to 1 to assign a scale to the latent variable (Bollen 1989). This seemingly arbitrary 

scale assignment has no consequence on the ensuing model estimation because the estimated 

standardized path coefficients, invariant to this arbitrary scale assignment, will be reported 

eventually.  Thereby without loss of generality, we set 1 1  to obtain: 

2 2

1

2 2 2 2

2 2 2

2 2 2 2 2

3 3 2 3 3

( ) (1)

 

  

   

 

    

       

 
 

  
  

Σ θ

 

 

The sample covariance matrix (*again the portion above the diagonal is omitted because 

of symmetry), on the other hand, is denoted by: 

11

21 22

31 32 33

S

S S S

S S S

 
 


 
    

 

By equating ( )Σ θ  and S, the estimators of the model parameters soon emerge as: 

223 23 12 13
2 3

13 12 23

2 2 2 2 2 2

1 11 2 22 3 33

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, , (2)

S S S S

S S S

S S S



     

  

     

  

     

 

 

In order to evaluate the consistency of the measurement platforms, we adopt the concept 

of reliability originated from the classical test theory by assuming a true score underlies a 

measure (Allen and Yen 2002). In the latent SEM measurement model, 2

iy
R , the squared 

correlation coefficient between the latent variable   and its measure Yi, is a good reliability 

measure representing the percentage of variance in a measure that is explained by the latent 

variable (true score). It is appropriate under very general conditions and in simple cases is equal 
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to some of the traditional techniques such as Cronbach’s alpha (Bollen 1989). For the latent SEM 

model illustrated in Figure 14, we have: 

2 2

,

2 2

2

2

(squared correlation between observed and latent variable)

cov ( , ) cov ( , )
( )

( ) ( ) ( ) ( )

[ ( ) cov( , )]

[ ( ) cov( , ) ( )] ( )

[

i iy y

i i i

i i i

i i i

i i

i i i i

i

R

y
y

Var y Var Var Var

Var

Var Var Var



   
 

   

   

     






   






 


2

2

2 2

2

( )]
( ,cov( , ) 0)

[ ( ) ( )] ( )

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( ) ( )

i i

i i

i i i i

i i i i i

Var

Var Var Var

Var Var Var Var

Var Var Var y Var y Var y


   

   

     

  

 


    


            

 

The last term in the equation can be interpreted as the proportion of variance in the 

measure Yi that is explained by the latent variable . The estimated reliability is also closely 

related to correlations between observed measures. For example, the reliability of y2 for the 

simple case of one latent variable with three measurements (Figure 14 with m = 3) is computed 

from Equation (2) as: 

2

2

22 2

2 23 12 13

2

13 23 22

12 23 11 33 11 3312 23 2312

13 22 1313 22 11 33 11 22 22 33

12 23

13

2ˆ 
ˆ ˆ 1

ˆ
y

y

S S S

S S S

S S S S S SS S SS

S S SS S S S S S S S

r r

r

R
 



 
   
 

  





 

Here ijr  is the sample Pearson product moment correlation coefficient between the 

observed variables  and . Similarly, we have
1 3

12 13 13 23

2 12

2

3

2 and ˆ .ˆ  y y

r r r r

r
R

r
R   

By now we have shown how to compute the R-square from the data, and furthermore, 

how the R-square is related to the correlations between the observed variables. Suppose the first 

two of the three measurement platforms are perfectly correlated ( ) while the third 

measure is poorly correlated to the first two with . Then we have , 

and . That is, the first two measurements are deemed perfectly reliable on the strength 

of their perfect consistency, while the third one is considered very unreliable due to its poor 

correlation to the other measures.  
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The standardized path coefficients are defined as *
ˆ

ˆ ˆ
ˆ

i

i i

y


 


 . Together with the definition 

of the reliability

2

2

2

2

ˆ ˆ

ˆ
ˆ

i

i

i

y

y

R
 


 , we can easily obtain that

2 2

2

2

2 *
ˆ ˆ

ˆ( )
ˆ

ˆ
i

i

i

y i

y

R
 




 . Therefore, the 

standardized path coefficient *ˆ
i
  is indeed the sample correlation between the observed 

measurement  and the latent variable.  

 

 

 

5.2.2 Latent variable SEM with covariates 

 

 

While one advantage of the latent variable SEM is to simultaneously incorporate multiple 

measures for the same underlying latent variable in a measurement model as shown in the 

previous section, its other advantage is to integrate covariates for the latent variable in the same 

model. In the ensuing example of the inflammatory bowel diseases, this means one can 

simultaneously examine the potential influence of covariates such as disease phenotypes on the 

underlying bacteria expression while incorporating microbiome measures from multiple 

platforms as shown in Figure 15.  

 

 
Figure 15. Latent variable SEM path diagram with one latent variable, m measurements 

and k covariates. 

 

 

The SEM model for Figure 15 is: 

'



 

 

 

Λ

Γ X

Y ε
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Here, Y is a vector of measurement variables for the latent variable , and X is a vector 

of independent variables (covariates) affecting the latent variable . Both Y and X have been 

centered about their means per SEM convention. In addition to notations in the measurement 

model, we have Γ = [ɍ1,…, ɍk] representing the vector of path coefficients from the covariates to 

the latent variable. The estimation procedure is very similar to the measurement model as well. 

We can break the covariance matrix ( ) θ into a block matrix as follows:  

( (

(

) )
( )

) )(

YX

XY

Y

X

Y

X

  
   

  

θ θ
θ

θ θ
 

 
Each block individually can be factored as follows.  

 
2

2

2

) ( ') ( ' )( ' ' ' ' ')

' ' ' ' '

' ( ') ' ( ) ' ( ')

( 'cov( ) ) ov( )

(

' c

YY E E

E

E E E



 







      

    

  

  

θ YY ΛΓ X Λ ε X ΓΛ Λ ε

ΛΓ XX ΓΛ Λ Λ εε

ΛΓ XX ΓΛ Λ Λ εε

Λ Γ X Γ Λ ε

 

 

 

 

) ( ') ( ' ) '

'

(

' ' '

' ( ')

'cov( )

YX E E

E

E





    

  





θ YX ΛΓ X Λ ε X

ΛΓ XX Λ X εX

ΛΓ XX

ΛΓ X

 

 ) ( ') 'cov( ) ' cov( ) '(XY E   θ XY ΛΓ X X ΓΛ  

( ) cov( )XX θ X
 

 

Now we can assemble Σ(θ) as the following: 
2( 'cov( ) ) ' cov( ) 'cov( )

( )
cov( ) ' cov( )

  
  
 

Λ Γ X Γ Λ ε ΛΓ X
Σ θ

X ΓΛ X . 

 
Thus the parameters can be estimated through minimizing the ML fitting function, or 

equivalently, by equating ( )Σ θ  and S, the sample covariance matrix for both X and Y.  
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5.2.3 Comparison to repeated measures ANOVA 

 

 

The traditional approach to incorporate multiple repeated measures to the same 

underlying latent variable is the repeated measures ANOVA. Here we show that the latent 

variable SEM is a more general model with the repeated measures ANOVA, both the univariate 

and the multivariate analysis approaches, as special cases (Figure 16).  

 

 
Figure 16. Path diagram for repeated measures ANOVA.  In comparison to the latent 

variable SEM model (Figure 15), the repeated measures ANOVA assumes equal path 

coefficients for both the multivariate and univariate analysis approaches. In addition, for the 

univariate approach the measurement error variances are assumed to be equal as well. 

 

 

The univariate repeated measures ANOVA model is: ij j i ijY Z    , where j  is the 

(fixed) effect of covariate , 
iZ  is the (random) effect of subject i, and ij are 

independent and identically distributed random errors independent of iZ . 

Let  
'

1 2, , ,i i i imY Y Y Y , assuming the errors are independent and normally distributed, we 

have  ,
iid

i mY N   , 1, ,i n , where  
'

1 2, , , m     and omitting the upper triangle of the 

matrix by symmetry, we have  
2 2

2 2 2

2 2 2 2

z

z z

z z z







 

  

   

 
 

  
 
 

  

. 

 

This particular structure of the variance covariance matrix is called ―compound 

symmetry‖.  The univariate repeated measures ANOVA can be obtained from the more general 

latent variable SEM shown in Figure 16 (A) by imposing equal measurement error variances and 
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equal path coefficients from the measurements to the latent variable. That is, 
2 21 and  ( 1,2,... )i i i m      .  

 

The multivariate approach for repeated measures ANOVA allows different measurement 

error variances but still imposes equal weights to path coefficients from the measurements to the 

latent variable, that is, 1,( 1,2,... )i i m     as shown in Figure 16 (B). The resulting variance 

covariance matrix   for  ,
iid

i mY N    ( 1, , )i n  is: 

1

2

2 2

2 2 2

2 2 2 2

... ... ... ...

...
m

z

z z

z z z







 

  

   

 
 

 
 
 
  

 

 

In summary, the repeated measures ANOVA models, both the univariate and the 

multivariate approaches, are special cases of the latent variable SEM with constraints on the 

error variances and path coefficients. The latent variable SEM is a more realistic, flexible and 

general model to evaluate the latent variable with several measurements, especially when the 

reliability of each measurement is unclear and the assumption of equal error variances is 

questionable. 

 

 

5.3 Case study 
 

5.3.1 Data and model descriptions 

 

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative 

colitis (UC), represent the inflammatory conditions of the small intestine and/or the colon. The 

IBD study reported here includes 44 ileal CD patients, 53 UC patients, and 60 non-IBD control 

subjects. 

The abundance of the bacterial taxa Firmicutes/ Clostridium Group XIVa from unaffected 

ileal samples collected from the proximal margin of resected ileum from each subject is obtained 

from four microbe measurement modalities: Sanger sequencing, 454 pyrosequencing with two 

windows: v1v3 and v3v5, and qPCR. For each sequencing platform, the relative frequency of 

this bacterial taxa was calculated and then subjected to the logit transformation. The qPCR data 

(dCT) are converted as to have the consistent transformation for other 

three measurements. 

IBD phenotypes (CD and UC) are incorporated as two covariates into the SEM model for 

an association analysis as well. Path diagrams for the latent variable SEM measurement, and 

covariate models for Clostridium GroupXIVa are shown in Figure 17 (A) and (B) respectively.  
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(A)      (B) 

  

Figure 17. Latent variable SEM approach to incorporate multimodal microbiome 

measurements. (A) The measurement model with four measurements / indicators for the true 

(logit-transformed) relative frequency of Clostridium GroupXIVa. (B) The covariate model with 

two binary disease indicators: CD (= 1 for Crohn’s disease, and 0 otherwise), and UC (= 1 for 

ulcerative colitis, and 0 otherwise). 

 

5.3.2 Results 

Consistency and reliability of different measurement modalities 

 

Table 3 showed the Pearson correlation among the four measurement modalities for the 

logit transformed relative frequency of Clostridium GroupXIVa. The qPCR data have low 

correlations with all three sequencing measures, and the v3v5 pyrosequencing window is the best 

correlated among all modalities as expected since they are based on the same technique. The 

qPCR analyses were conducted for F. prausnitzii using previously established primers (Rinttila, 

Kassinen et al. 2004). While F. prausnitzii is a major species within the Clostridium Group XIVa 

category, nevertheless the target might be different from those in the sequencing modalities. 

Therefore, although qPCR is often treated as the gold standard for the quantification of 

nucleotide sequences, it is limited by its high dependency on the accurate specification of 

primers of targets.  

 

Table 3. Pearson correlations among four different measurement modalities for the logit 

transformed relative frequency of Clostridium GroupXIVa (N = 157). 

 Sanger 
454_v1v3 

(p value) 

454_v3v5 

(p value) 

qPCR 

(p value)  

Sanger 1 
0.664  

(<.001) 

0.691  

(<.001) 

0.110  

(0.173) 

454_v1v3  1 
0.877  

(<.001) 

0.206  

(0.010) 

454_v3v5   1 
0.141  

(0.078) 

qPCR    1 
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The reliabilities of these measurement modalities are shown in the Table 4. The reliability 

stands for the squared correlation coefficient between the measurement and the latent variable. 

Thus it indicates the closeness of one measure with its true value. Again, the v3v5 

pyrosequencing is found to be the most reliable with a reliability score of 0.902, and a correlation 

of 0.950 to the true underlying Clostridium GroupXIVa expression.  

 

 

Table 4. Reliability of each measurement platform in the four-modality latent variable SEM 

measurement model, and its correlation to the latent variable (true relative frequency of 

Clostridium GroupXIVa). 

 
Four- modality measurement model 

Sanger 454_v1v3 454_v3v5 qPCR 

Reliability 

Correlation to the latent variable 

0.524 

0.724 

0.853 

0.924 

0.902 

0.950 

0.031 

0.176 

 

 

Since the reliability is closely related to the correlations among measurement modalities, 

and since the two 454 pyrosequencing windows feature the highest correlation (r = 0.877) as 

expected, we also ran a three-modality measurement model by only retaining v3v5, the more 

reliable pyrosequencing window for quantifying Clostridium GroupXIVa (Table 5). Again, the 

v3v5 pyrosequencing window emerged as the most reliable among the three modalities with an 

estimated reliability of 0.891 and an estimated correlation of 0.944 with the underlying 

Clostridium GroupXIVa frequency. 

 

 

Table 5. Reliability of each measurement platform in the three-modality latent variable 

SEM measurement model, and its correlation to the latent variable (true relative frequency of 

Clostridium GroupXIVa). 

 

Three-measurement 

modality model 

S

anger 

454_

v3v5 

q

PCR 

Reliability 

Correlation to the latent 

variable 

0

.536 

0

.732 

0.89

1 

0.94

4 

0.

022 

   

0.148 
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Path diagrams for the measurement models with the estimated standardized path 

coefficients are shown in Figure 18 below. As shown before, the standardized path coefficient is 

indeed the correlation between each measurement and the latent variable.  

 

       

Figure 18. The estimated 4- and 3-modality latent variable SEM measurement models for 

a study of the inflammatory bowel diseases.  

 

 

 

Comparison to repeated measures ANOVA  

 

The model goodness-of-fit indices for the 4- and 3-modality latent variable SEM 

measurement models for Clostridium GroupXIVa are listed in Table 6, and compared to those for 

the repeated measures ANOVA in both the univariate and the multivariate analysis approaches.  

SEM relies on several statistical tests to determine the adequacy of model fit to the data. The chi-

square test indicates the amount of difference between the expected and the observed covariance 

matrices. A chi-square value close to zero indicates little difference between the expected and 

observed covariance matrices. The root mean square error of approximation (RMSEA) is related 

to the residuals in the SEM model. The RMSEA values range from 0 to 1 with a smaller RMSEA 

value indicating better model fit. Acceptable model fit is indicated by an RMSEA value of 0.06 

or less (Hu and Bentler 1999). The Comparative Fit Index (CFI) is equal to the discrepancy 

function adjusted for the sample size. That is, CFI = 1 – d(proposed model)/d(Null model), where d equals 

to the corresponding chi-square minus the degrees of freedom of the model. The CFI ranges from 

0 to 1 with a larger value indicating better model fit. Acceptable model fit is indicated by a CFI 

value of 0.90 or greater (Hu and Bentler 1999). As shown in Table 6, the latent variable SEM 

(model A) has significantly better Chi-square goodness-of fit index (χ
2 

= 3.428, p = 0.180) than 

model B and C representing the repeated measures ANOVA in the multivariate and univariate 

approaches respectively; model A also has acceptable RMSEA model fit index, while model B 

and C have poor fit in terms of the RMSEA index; For the CFI criterion, models A and B both 

provide good fit with CFI values above 0.9. 
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Table 6. Model goodness-of-fit comparison between latent variable SEM and repeated measures 

ANOVA approach of Clostridium Group XIVa based on four platforms (Sanger, V1V3, V3V5 

and qPCR). 

 

 

Estimation of the latent variable SEM model with covariates IBD phenotypes  

  

In this section, we examine the impact of two IBD phenotypes, CD and UC, on the relative 

frequency of Clostridium GroupXIVa via the latent variable SEM simultaneously utilizing 

measurements of the given taxa from either all four platforms, or only three (minus the v1v3 

window of the 454 pyrosequencing). The results are summarized in Figure 19.  

 

 

Figure 19. The estimated 4- and 3-modality latent SEM models examining the effect of 

two covariates: CD and UC phenotypes.  

 

Subjects with Crohn’s Disease (CD) was found to have a significantly lower relative 

abundance of Clostridium GroupXIVa (p = 0.023) in the three-modality (Sanger, 454 v3v5, and 

MODEL MODEL CONSTRAINT GOODNESS-OF-FIT 

A: Latent variable SEM set λ1 = 1 

Chi-square 
3.428 (df = 2)   

Pr > χ
2
: 0.180 

RMSEA 0.068 

CFI 0.996 

B: Equivalent to repeated 

measures ANOVA 

(multivariate approach) 

set all indicator path 

coefficient λj = 1 

Chi-square 
26.562 (df = 5)   

Pr > χ
2
: <0.001 

RMSEA 0.166 

CFI 0.936 

C: Equivalent to repeated 

measures ANOVA 

(univariate approach) 

set all indicator path 

coefficient λj = 1;   

set all indicator error 

variances to be equal, that 

is, let var ( i) =
2
 

Chi-square 
352.835 (df = 8)   

Pr > χ
2
: < .001 

RMSEA 0.526 

CFI 0.000 
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qPCR) latent variable SEM analysis. The four-modality latent variable SEM analysis utilizing all 

available measurements showed a trend of reduction among CD patients (p = 0.192) . The 

difference may lie in the decrease of model parameters for the three-modality model that renders 

it more powerful to detect the underlying difference than the four-modality model. The three-

modality model also showed a trend of negative impact of the UC phenotype on the given 

bacteria taxa (p = 0.108). 

 

 

To our knowledge, this is the first application of SEM modeling to studies of the human 

microbiome. Because human gastrointestinal microbial communities typically are complex and 

difficult to study in situ, multiple experimental modalities are required to provide a deep 

description of the dynamic microbe-microbe and microbe-host interactions within the gut.  In 

this study we demonstrate that latent variable SEM can provide a robust means of integrating 

datasets derived from different experimental methodologies.  Moreover, we show that SEM can 

be used to evaluate the relative merits of different measurement techniques, in this example, 

Sanger sequencing, pyrosequencing, and qPCR. 
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Chapter 6 Mixed variable SEM – Joint analysis of 

pathway with mixed continuous and categorical 

endogenous variables 

 

 

 

 

6.1 Model estimation 

6.1.1 A simple example 

To fix ideas, we will start with a simple case as shown in Figure 20. In this example, we 

assume that X is a continuous exogenous variable, Y is a continuous endogenous variable, and W 

is a categorical endogenous variable. The continuous variables X and Y are centered to have 

mean 0.  

 
Figure 20. A simple example of a pathway with both a categorical variable (W) and a 

continuous variable (Y) as the endogenous variables (i.e. dependent or response variables) on the 

pathway. 
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Unlike the bivariate mixed variable analyses we reviewed in Chapter 2.3, here random 

variable Y is both as dependent variable to X and as independent variable to W, a simple scheme 

of pathway. Nevertheless, we are inspired by previous methods -- the factorization idea and 

GLLAMM -- here we propose to use a factorization method for the joint density distribution of 

variables. The main idea of the factorization method is to write the likelihood as the product of 

the marginal distribution of one outcome and the conditional distribution of the other outcome 

given the previous one. Cox and Wermuth (1992) discussed two possible factorizations for 

modeling a continuous and a binary outcome as functions of predictors. As our example, the 

joint density function has two ways of 

factorization ( , , ) ( , | ) ( ) ( | , ) ( , )f X Y W f X Y W f W f W X Y f X Y  . The way of factorization models 

represent a structure in variables, which the conditioning variable treated as intermediate variable 

and the conditioned variable as the ultimate response. The direction of conditioning is suggested 

by the direction of the arrows on the path diagram. Since we have the categorical variable W as 

the endogenous variable on the pathway, we naturally adopted the second way of factorization: 

( , , ) ( | , ) ( , )f X Y W f W X Y f X Y . The distribution ( , )f X Y  can be further written as conditional 

probability density function (PDF) of continuous endogenous variable Y given X: ( | ) ( )f Y X f X . 

 

The likelihood function of GLLAMM is also based on the product of distributions; 

however the setting of latent variable is mandatory, even with the only measurement, one has to 

specify the measurement error in order to make the model identifiable. The corresponding 

likelihood function of GLLAMM for the pathway in Figure 20 is: 

( , ) ( | ; ) ( | ; ) ( ; )di i i i i i

i

L f W u f Y u g u u      

where u is the latent variable underlying the observed variable Y, and it will be integral 

out for the estimation. The parameter   is the corresponding measurement error to be estimated. 

When there is only one observed measurement of Y, specification of  is mandatory. Iterative 

Gauss-Hermite quadrature method is used to find the estimates in the form above. Therefore, 

GLLAMM is criticized by their very low computation efficiency especially for the model with 

all observed variables.  

In addition, note that in GLLAMM, W and Y are assumed conditionally independent 

given the latent variable, and the distribution of exogenous variable X is not considered. It is 

atypical to conventional SEM which considers covariance structure of all variables on the 

pathway. Bollen’s book (1989) discussed this question: 

"The assumption that Y and X are sampled independently from a multinormal 

distribution can be replaced with either of two alternatives that lead to the same ML estimators, 

standard errors, and tests of significance for B ,   and   as before. The first alternative assumes 

that X is a random variable distributed independently of error, whereas the second assumes that x 

is fixed in repeated samples. Both alternatives assume that error is multinormal with a covariance 

matrix of . Though these options are appealing they are not always appropriate. For example, 
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in most non-experimental research, x is random rather than fixed and varies as new units are 

sampled..."   

Therefore, we felt it is obliged to include distribution of X in the likelihood function for 

the estimation of the whole pathway. In a result, to the example in Figure 20, we adopted the 

derivation based on ( , , ) ( | , ) ( , )f X Y W f W X Y f X Y . We assume (X, Y) follows bivariate normal 

distribution and W given X and Y follows Bernoulli(π). The joint distribution (( , , ) | )f X Y W   is 

expressed by conditional probability mass function (PMF) of W given (X, Y) and PDF of (Y X):  

(( , , ) | ) ( , ; ) ( | , ; )c bf X Y W f X Y P W X Y    

where ,c b 
 
are two subsets of the parameter set  . As indicated by the subscripts, 

c contains parameters in the distribution of continuous variables ( , )f X Y  and ,c b   contains 

parameters in the conditional distribution of binary variable ( | , )P W X Y . 

 

The first part is the distribution of (X, Y): 

1
2 1

2

1

( , ; )

1
( ) exp [ ] ( )

2

c

c c

Y
Y

X

f X Y

X



 


 
  
  

 
 




 

Where ( )c  is the variance-covariance matrix of (Y X) implied by the model, which 

containing the parameter set : ( , , )c    . It follows the traditional form for SEM with   being 

the coefficient of Y regressed on X;   being the variance of X and   being the error variance.  

2( ) ( , )
( )

( , ) ( )
c

Var Y Cov Y X

Cov X Y Var X

   


 

  
     

   
.  

The above expressions of ( )c  is then inserted into the density function.  

 

The second part is the conditional PMF of dichotomous variable W given (Y X). Here we 

will derive this conditional PMF based on generalized linear model (GLM). Generalized linear 

modeling is the most common approach to model a wide range of response processes, including 

continuous, dichotomous, ordinal data, counts and durations, etc. The explanatory variables 

affect the response through the linear predictor vi for unit i, '

i i
v  x  where xi is a vector of 

explanatory variables and   contains the corresponding regression parameters. Both continuous 

and categorical explanatory variables can be accommodated. For categorical variables such as 

colors, dummy variables would typically be specified. The response process is described by 

specifying the conditional probability of yi given the linear predictor. The special case for 
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dependent variable is continuous. A linear regression model 
i i i

y v    is usually specified, 

where the residual 
i
 are independently normally distributed with zero mean and variance 2 . 

The linear regression model can alternatively be defined by setting the conditional expectation of 

the response, given the linear predictor
i

v , ( | )
i i i i

E y v v   , and specifying that the yi are 

independently normally distributed with mean 
i

  and variance 2 . 

All the generalized linear models have a common structure and can be defined by two 

components: (1) the function between the expectation of the response and the linear predictor 
1( )

i i
g v   or ( )

i i
g v  , where g(.) is a link function. Logit is the link function for logistic 

regression; (2) the conditional probability distribution of the responses is a member of the 

exponential family with expectation
i

 . The conditional probability distribution of the 

dichotomous response is Bernoulli distribution.  

For dichotomous responses taking on values 0 or 1, the conditional probability of 

response 1, Pr( 1| )
i i

y v , is just the conditional expectation 
i

  of yi. This can be modeled as a 

logistic regression 

exp( )

1 exp( )

i

i

i

v

v
 


 or ln( )

1

i

i

i

v






. 

Conditional on νi, the yi are independently Bernoulli distributed. 

 

For the current example in Figure 20 the conditional PMF of dichotomous variable W 

given (Y X) which we assume follows a Bernoulli distribution with the logit link function: 

0 1 2logit( ( | ))E W X Y X Y    
 

Let ( | )E W X Y  . After taking e to both sides of the equation above, we get: 

0 1 2
( ) exp( )
1

X Y


  


  


. 

Solve the equation we get 

 0 1 2

0 1 2 0 1 2

exp( ) 1
(1 )

1 exp( ) 1 exp( )

X Y
and

X Y X Y

  
 

     

 
  

     
 

Thus the PMF of W given (Y X) is as below:
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1

0 1 2

0 1 2

0 1 2

0 1 2

(1 )

( ) (1 )
1

1
exp( ( ))

1 exp( )

exp( ( )

( | ; )

)

1 exp( )

)

W

b

W WP W

W X Y
X Y

W X Y

X Y

X Y  






  
  

  

 







 


   
  

 


  



 

The parameter set b  contains parameters 0 1 2, ,   , which are intercepts and coefficients 

of regressors X and Y.  

By multiplying two parts together, we obtain the joint PDF of X, Y and W: 

1
2 1 0 1 11

2

0 1 1

(( , , ) | )

( , ; ) ( | , ; )

1
( ) (

exp( ( ))
exp [ )

2
]

1 exp( )

c b

c c

Y W X Y
Y X

X X

f X Y W

f Y Y

Y

X P W X

 



 

 


  

 
    
   

   




  

 

 

Suppose there is a sample (x1, y1, w1), (x2, y2, w2), … , (x n, yn, w n) of N iid observations, 

coming from a population with a joint distribution of (X, Y, W). Therefore, the joint PDF above is 

true for each independent observation/subject. We can obtain the corresponding likelihood 

function of this sample by their product: 

1 1 1 2 2 2

1 1 1 2 2 2

1

| ( , , ), ( , , ),..., ( , , ))

(( , , ), ( , , ),..., ( , , ) | )

(( , , ) |

(

)

N N N

N N N

N

i i i

i

X Y W X Y W X Y W

f X Y W X Y W X Y W

f W

L

X Y











 

where

 



 

is an appropriate set of parameters. 

Hence,  

 

1
2 0 1

1 1 1 2 2 2

1

1

1

2

1

1 21

0 2

| ( , , ), ( , , ),..., ( , , ))

(( , , ) | )

( , ; ) ( | , ; )

1
(

(

exp( ( ))
exp [ ]

1 exp( )
) ( )

2

i i i i
i i

i

N N N

N

i i i

i

N

i i c i i i

i

b

i

N

c c

i i

X Y W X Y W X Y W

f X Y W

f X Y P

L

Y W X Y

W X

X
X Y

Y

Y
X





 

  

 











 



    
   

 





  
   

     






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This is the kernel of the likelihood function to maximize. However, it is still cumbersome 

to differentiate and can be simplified a great deal further by taking its log. Since the logarithm is 

a monotonic function, any maximum of the likelihood function will also be a maximum of the 

log likelihood function and vice versa. Thus taking the natural log of the equation above yields 

the log likelihood function:

 
1 1 1 2 2 2

11
2

1
2

0

1

1 2 0 1 2

1

| ( , , ), ( , , ),..., ( , , )))

ln(2 ) ln (

ln( (

[ ]

[ ( ) ln(1 exp( )

) ( )

)]

N N N

N

c c

i

i

i i

i

N

i i i i i

i

L

Y

X

Y X
X

W X

Y W X Y W X Y

Y

W

Y X



  

     







 
  

 

     

 
     










 

The log-likelihood function above contains parameters 0 1 2, , , , ,      to be estimated. 

There are three unknown parameters in the model implied covariance structure , ,    and we 

have three known information from the covariance matrix implied by the data: ,  and 
YY XY XX

S S S . 

Thus the model is just identifiable. Let us call the first part of summation ( )
c

g   and the second 

one ( )
b

g  . Note that two parts of the summation above have no common parameters, containing 

{ : , , }c    and 0 1 2{ : , , }b    , respectively. 

1
2

0 1 2 0 1

11
2

1

2

1

( ) [ ]

( ) [ ( ) ln(1 ex

ln(2

p(

) ln ( ) ( )

))]

and
N

c c

i

c i i

i

N

b i i i i i

i

i

Y
g Y X

X

g W X Y X Y



    



 

 







  
   

 

      


    
 





 

where ( )cg   can be further reduced as: 

11
2

1

1

2

1
2

1

22

2

1

11

ln(2 ) ln ( ) ( )

ln(2 ) ln ( ) ( )

( ) [ ]

[ ] ( a scalar equals to its trace)

[ln(2 ) ln ( ) ( )]

i

c i i

i

N
i

i i

i i

i

i i

i

N

c c

i

N
c c

N
c c

N

Y
g Y X

X

Y
Y X

X

Y
tr Y XN

X

  

  

  

 









 
  

 

   
   

 

 
    

 

  



 

    

      
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



1
2 2

1

1

1
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ln(2 ) ln ( ) ( )
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[ ]N

N

i

N
i

i i

i i

c c

tr AB tr BA

Y
trN Y X

X
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










   
       

  





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 
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


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 
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Then we have the sample variance covariance matrix 1
1

*

1

[ ]
1

N
i

i iN

i i

Y N
Y X S

N
S

X




  
  




 
 , 

thus * 1N
S S

N


 , finally we reduce the function ( )cg   as: 

 

1

2 2

1
2

1

2

ln(2 ) ln ( ) ( )

ln(2 ) ln ( )

(

(

1
)

)

N
c

N

N
c c

N
c c

N S
N

g tr
N

N Str

  

 



 





 
    

   

  
 

 

. 

Hence, the resulting log likelihood function is reduced as:   
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Note that two parts of the summation above have no common parameters, containing 

{ : , , }c    and 0 1 2{ : , , }b    , respectively. Our goal is to find parameters that maximize the 

log-likelihood function. A necessary condition for finding the maximum of any function, 

say ( )f  , is to set the first partial derivative of ( )f   with respect to each 
i

  to zero and solve 

for
i

 . In differentiating the log likelihood function: 

 
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( ) ( ) ( ) ( )
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(
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c b
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
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 

 

  
  

  

 
 
 


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Since the terms in ( )cg   do not depend on b , thus ( ) 0c

b

g 






, and ( )

( , )
c

c b

g 
 




 

equals to ( )c

c

g 





. Similarly ( )

( , )
b

c b

g 
 




 equals to ( )b

b

g 





. According to the form of this 

first derivative of log-likelihood, we found interestingly that maximization of this log-likelihood 

function is equivalent to two separate maximizations for log-likelihood functions of one 

traditional SEM and one logistic regression. This equivalency largely simplified implementations 

of our mixed variable SEM. More importantly, it is ready to be extended to more general 

framework, for instance, the generalized linear model with other link functions accommodating 

other types of categorical variables.   

 

 

6.1.2 General form of model estimation  

 

In this section, we derive the general form for our mixed variable SEM. When there are 

multiple endogenous and exogenous variables with more complicated relations among them on 

the pathway, we can extend our ML function to the general case.  

Assume we have endogenous variable vector X and exogenous variable vector Y with a 

general form:   Y ΒY ΓX ζ , and one categorical variable W.  Following the notations in the 

traditional SEM, here Β is a matrix containing path coefficients where the entry ,i jΒ is the 

coefficient of the path from endogenous node j to endogenous node i. Γ is a matrix containing 

coefficients of paths from exogenous variables to endogenous variables. ,i j  is the coefficient of 

the path from exogenous node j to endogenous node i. ζ  is a vector containing the error 

variables in the equations for the path diagram.  

Assume Y and X are vectors of multivariate normally distributed variables. Let
 

  
 

Y
Z

X
. 

Z has length p+q (p is the number of endogenous variables and q is the number of exogenous 

variables in the model). Variables Z are centered so that all variables have mean 0. The resulting 

probability density function for Z is  

 2

1
2 1 1

2
) (2 )( ; exp) '( ( )

p q

c c cf Z Z Z  
  

 
 

This is the standard form for multivariate normal distribution. 
 

Furthermore we assume, for simplicity, that the categorical variable W conditioned on Z 

follows Bernoulli distribution. Then we will model the conditional PMF of dichotomous variable 

W given Z through the logit link function: 
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in which here A is a vector containing path coefficients where α0 represents the intercept 

and the entry αj is the coefficient of the path from the node Zj to W.  

 

Accordingly, we can obtain the conditional PMF of W given Z: 
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The resulting joint distribution (( , ) | )f W Z  can be expressed by conditional PMF of W given 

Z and PDF of Z:  
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where  and c b 
 
are two subsets of the parameter set  . As indicated by the subscripts, 

c contains parameters in the distribution of continuous variables ( )f Z  and b  contains parameters in 

the conditional distribution of binary variable ( | )P W Z . 
 

Suppose there is a sample (y1,1, … , yp,1, x1,1, …, xq,1, w1), (y1,2, … , yp,2, x1,2, …, xq,2, w2), 

… , (y1,N, … , yp,N, x1,N, …, xq,N, wN) of N iid observations, coming from a population with a joint 

distribution of (Z, W). 
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The corresponding likelihood function of the model is: 
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In accordance, the log likelihood function is:
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The last equality is obtained by using a similar transformation from the previous section, 

where S represents the sample variance-covariance matrix of variables in Z. Parameter 

estimations can be obtained by maximizing the log-likelihood function above. As shown in the 

previous simple case, the log-likelihood function of this general form of our mixed variable SEM 

also features a summation of two components that do not share common parameters. Thus we 

can draw similar conclusion when maximizing this log-likelihood function: it is equivalent to 

perform one SEM model and one generalized linear modeling, separately. Because of this 

property, we can naturally derive our statistical inference and overall model fit based on the 

knowledge of traditional SEM and GLM. 
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6.2 Statistical inference of parameters 

 

The estimation of standard errors of path coefficients has the same form for both SEM 

and MLE. It is described in the book Bollen (1989) and Agresti (2007), respectively. The 

maximum likelihood estimator,  , of the parameter vector , is distributed as  

1
2 log ( )

, E
L

N
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    

. 

Standard errors (square root of variances of parameter estimates) of the estimates can be 

calculated via the asymptotic covariance matrix (inverse of Fisher Information Matrix), with 

respect to the method through which the parameter estimates are obtained. By definition, the 

asymptotic covariance matrix of the ML estimator of arbitrary   is 

 
1

2 log ( )L
ACOV E
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
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. 

This calculation depends on the expected Fisher Information Matrix, and the required 

partial derivatives of log )(L  . Numerical methods for these procedures are described and 

adopted by software SAS and R.  

 

 

 

6.3 Overall model fit 
 

There is no existing model fit measure for our joint mixed variable SEM model. Also 

overall model fit is not computed in GLLAMM program (Rabe-Hesketh, Skrondal et al. 2003). 

Here we propose a Chi-square test statistic based on the ML estimates.  

In the traditional SEM, the Chi-square test is developed as the overall fit measure to 

gauge whether ( )    by measuring the departure of   from ( ) . Being population 

parameters,   and ( )  are not directly observable, and are thus estimated by their sample 

counterparts S, the usual sample covariance matrix, and ˆ( ) , the estimated implied covariance 

matrix where  is the MLE of the model parameters  

Similarly, for the generalized linear model, researchers utilized the deviance to test the 

closeness between the model of interest and the saturated model. The saturated model is defined 
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to have a separate parameter for each observation, and thus provides a perfect fit to the data. The 

deviance is the likelihood-ratio statistic for the hypothesis that all parameters that are in the 

saturated model but not in model of interest should equal to zero. Because the saturated model 

has additional parameters, its maximized log likelihood is at least as large as the maximized log 

likelihood for the reduced model.  

Looking at our mixed variable SEM, the joint null hypothesis to test the overall model fit 

should be that ( )c    and b is the reduced parameter vector for the conditional distribution 

of W with the additional parameters set to zero. The overall model fit is then derived via the 

likelihood ratio test method. The likelihood ratio test statistic, by definition, is: 
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is the numerator for the likelihood ratio test. 

To form the denominator of the test statistic, we must choose an alternative 

hypothesis, 1H , for which the value of the corresponding log-likelihood function is at its 

maximum. If we set   to be the sample covariance S  and set ( )W  be the sample 

proportion ( 1)W  , then 1log L is at its maximum value as in the SEM and GLM. Then, the 

likelihood function for 1H , 1log L  is  
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in which we make use of  
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as well as that N  equals to the number of observations having W = 1 and (1 )N   

equals to the number of observations having W = 0. Here the expression above is the standard of 

perfect fit to compare 0H  to. 

The test statistic is distributed as chi-square when N is large. In this case, 
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If we reorganize the log-likelihood ratio above, we can obtain the expression below: 
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The expressions (1) and (2) are log-likelihood ratios for SEM and GLM, respectively. 

The corresponding degree of freedom (df) equals to the sum of two parts: the number of unique 

information in the covariance matrix (
1

( )( 1)
2

p q p q   ) plus the number of observations (N) 

and then minus the number of model parameters. The p value is calculated as the right-tail 

probability above the observed test statistic value, based on chi-square distribution. If large test 

statistic and small p value is obtained, it provide strong evidence that the model poorly represents 

or fits the data.   

 

 

6.4 Simulation study 
 

6.4.1 Comparison to GLLAMM 

The simple model described in section 6.1.1 is simulated by the formula below: 
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where we set
0 1 2

2, 1, 2 and 4        . We generated the simulated data set with N = 

1000. The estimates by our mixed variable SEM and those from GLLAMM are compared in 

Table 7.  

 

 

Table 7. Comparison of point estimates between mixed variable SEM and GLLAMM 

Parameters Mixed variable SEM 
GLLAMM  

set measurement error 0.001 
GLLAMM  

set measurement error 0.1 

 True 
Estimate 

(Std Error) 

Z value 

(p value) 

Estimate 

(Std Error) 

Z value 

(p value) 

Estimate 

(Std Error) 

Z value 

(p value) 

β 2 
1.992 

(0.031) 

63.28 

(<.001) 

1.992 

(0.031) 

63.34 

(<.001) 

1.993 

(0.032) 

62.97 

(<.001) 

α0 1 
0.879 

(0.110) 

7.99 

(<.001) 

0.881 

(0.110) 

7.98 

(<.001) 

1.817 

(0.494) 

3.68 

(<.001) 

α1 -2 
-2.238 

(0.492) 

-4.55 

(<.001) 

-2.278 

(0.496) 

-4.59 

(<.001) 

-16.143 

(4.871) 

-3.31 

(<.001) 

α2 4 
4.092 

(0.321) 

12.74 

(<.001) 

4.119 

(0.325) 

12.68 

(<.001) 

14.337 

(3.893) 

3.68 

(<.001) 

 

GLLAMM treats endogenous variables as latent variables, thus when there is no multiple 

indicators for one latent variable, one has to specify a non-zero measurement error in order to 

make the model identifiable. This assumption is not flexible for simple example as in current 

case. However, specification of the measurement error would be arbitrary. We tried to specify a 

small measurement error variance to make these two methods equivalent. We can see point 

estimates and standard errors between two methods are very similar when measurement error 

variance is set to be 0.001. Nevertheless, if we set a smaller measurement error variance, like 

0.0001, convergence of GLLAMM doesn’t achieve; furthermore, if we set larger measurement 

error variance, like 0.1 as shown in Table 7, GLLAMM generated far deviated estimates 

compared to the true parameters. In a word, GLLAMM is not robust when there is only one 

measurement for endogenous variables. In addition, one drawback of GLLAMM, as complained 

by many users, is highly time-consuming. Even for the simplest pathway in the current example 

with only three variables, GLLAMM takes several minutes which is over ten times more than 

our mixed variable SEM.           
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Chapter 7 Application of mixed variable SEM 

 

 

 

 

 

 

7.1 Diet and coronary heart disease model 

We implemented our mixed variable model using data from GLLAMM example (Rabe-

Hesketh, Pickles et al. 2003; Rabe-Hesketh, Skrondal et al. 2003). The dataset is from Morris, 

Marr and Clayton (1977). This study investigated the relationship between dietary fiber intake 

and coronary heart disease (CHD). In the experiment, 333 middle-aged men weighed their food 

intake over a 7-day period, allowing food constituents to be derived, and were then followed up 

for CHD. The model will estimate the effect of dietary fiber intake on CHD, considering for 

occupation as potential factor. The relevant variables are: 

 

CHD: dummy variable for CHD (1: present; 0: absent) 

Fiber: dietary fiber intake in the experiment 

Bus: dummy variable for whether the man works for London transportation (1: London 

transportation; 0: bank staff) 
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Since the fiber intake has a skewed distribution, it has been log-transformed and centered 

as suggested in the paper. The results from GLLAMM and our model are shown in the table 

below.  

 

Table 8. Mixed variable SEM and GLLAMM estimates for diet and coronary heart disease 

example 

Parameters 

Mixed variable SEM GLLAMM 

Estimate 

(Std Error) 

Z value 

(p value) 

Estimate 

(Std Error) 

Z value 

(p value) 

(Intercept) α0 
-1.87 

(0.24) 

-7.64 

(< .001) 

-1.87 

(0.25) 

-7.52 

(< .001) 

bus -> CHD α1 
-0.14 

(0.33) 

-0.43 

(0.66) 

-0.20 

(0.34) 

-0.59 

(0.557) 

diet -> CHD α2 
-1.63 

(0.54) 

-2.99 

(0.003) 

-2.10 

(0.72) 

-2.92 

(0.004) 

bus -> diet β 
-0.12 

(0.03) 

-3.54 

(< .001) 

-0.12 

(0.03) 

-3.54 

(< .001) 

 

As illustrated in the Table 8, for this real data analysis, our mixed variable SEM 

generated very similar estimates and corresponding statistical inferences compared to the 

GLLAMM results. However, our model is superior to GLLAMM in terms of better computing 

efficiency, which is also seen in the simulation study. 

 

 

7.2 Crohn’s disease model  

 

In this section, we will apply our mixed variable SEM on the Crohn’s disease model. We 

obtained the hypothesis from our gastroenterology expert as shown in the Figure 21. Related 
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genotype, gene expression and changes of specific bacterial abundance in the microbiome are 

considered to lead to the change of risk of Crohn’s disease. We have collected data from 79 

observations, among whom 31 subjects are Crohn’s disease patients, and others are control 

subjects.   

 

Figure 21. Path diagram for Crohn’s disease model using mixed variable SEM. 

 

In Figure 21, the orange box stands for the dummy variable for the presence of Crohn’s 

disease (1: presence; 0: absence). The blue boxes stand for the abundance of two groups of 

bacteria in the gut which measured by qPCR technique. The changes of gut bacterial quantities 

are an influential factor to the risk of Crohn’s disease. The green box represents the gene 

expressions related to Paneth cells which are of particular interests related to Crohn’s disease. 

The gene expression values were generated by the Agilent whole human genome microarray. 

Normalization and pre-processing of the data to filter out undetectable gene-probes resulted in a 

total of 26,765 gene-probes. 2,979 significant genes were identified as significantly differentially 

expressed by the threshold of fold change greater than 1.5 and controlled FDR at 0.05. The 

hierarchical clustering on the 2,979 genes was then performed  to further reduce the dimensions 

of the microarray data to 43 clusters (refer to Zhang et al.(2011) for more details). We found that 

genes clustered together tend to share the same biological functions. Particularly, we are 

interested in cluater 24. Cluster 24 is enriched for antimicrobial peptides that are expressed by 

Paneth cells. These cells are particularly abundant in the ileum and are implicated in host 

containment of the microbiome (Dieckgraefe, Stenson et al. 2000). Genes encoding Paneth cell 

signature markers, such as DEFA5, DEFA6, ITLN1, REG3A, REG3G had similar expression 

patterns, and thus were all included in the cluster 24. Therefore, in the current study, median 

expression values of genes in cluster 24 are used to  represent the expression level of Paneth cell 

related pathway. The pink box represents the number of risk alleles located in the nucleotide 

oligomerization domain 2 (NOD2) gene. NOD2 encodes an intracellular bacterial sensor that is 

expressed in Paneth cells, macrophages, and dendritic cells. It likely plays an important role in 

host containment of gut bacteria in the ileum where Paneth cells are particularly abundant. Risk 

allele of NOD2 is associated with high risk of ileal Crohn’s disease (CD) (Hamm, Reimers et al. 

2010). Thus genotype NOD2, associated with the gene expressions of Paneth cell markers, as 

well as bacterial abundances are studied in the current Crohn’s disease model. 
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On the path diagram, straight arrows demonstrated the directional relations from on 

variable to the other variable. For instance, Paneth cell gene expressions are supposed to have 

direct effect on the risk of Crohn’s disease and also are hypothesized to indirectly affect through 

the changes in the abundances of C. coccoides and F. prausnitzii. Path coefficents on the 

pathway are estimated and tested the significance as shown in the Table 9.   

 

Table 9. Mixed variable SEM estimates for Crohn’s disease example 

Path coefficients Estimate Std Error Z value p value 

NOD2        →  Paneth cell 0.380  0.134    2.826  0.005 

Paneth cell →  C. coccoides -0.760  0.461   -1.650  0.099 

Paneth cell → F. prausnitzii -1.209  0.554   -2.183  0.029 

NOD2        →  CD 1.516      0.645    2.349   0.019 

Paneth cell →  CD 1.788      0.645    2.774   0.006 

C. coccoides →  CD -0.305      0.123   -2.474   0.013 

F.prausnitzii →  CD -0.331      0.114   -2.916   0.004 

 

Chi-square test statistic of the current model fit is 71.345 with df 77, and the 

corresponding p value is 0.660. Large p value of chi-square test suggested a good overall model 

fit to the observed data. For the seven estimates in the Table 9, we can treat them as two parts of 

model: the disease model based on the conditional logistic regression; and the structural model 

among variables except the disease variable. In the disease model, we have path coefficients 

from NOD2, Paneth cell gene expressions, C. coccoides and F. prausnitzii to CD. For example, 

the coefficient 1.788 of Paneth cell gene expression represents its estimated effect on risk of 

Crohn’s disease. The corresponding odds ratio is exp(1.788) = 5.98. The large positive odds ratio 

indicates that elevated expression level tends to increase the risk of Crohn’s disease. In the 

structural model, the relations among NOD2, Paneth cell, C. coccoides and F. prausnitzii are 

also evaluated, where Paneth cell doesn’t appear to have an important effect on C. coccoides 

with the estimate of -0.760 and p value 0.099. The significances of path coefficients at level of 

0.05 are demonstrated in Figure 22.  
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Figure 22. The fitted path diagram for Crohn’s disease model by covariate mixed variable 

SEM. Paths determined to be insignificant are shown as dashed arrows. Arrows and factors 

highlighted are significant after a two-sided z-test with .05  . Red paths indicate a positive 

influence while green paths indicate a negative influence. 

 

In Figure 22, red solid lines refer to significantly positive relations; while green solid 

lines refers to significantly negative relations; and the dashed line indicates the insignificant 

relation. It appears having NOD2 risk alleles and elevated Paneth cell gene expressions will lead 

to the increase of chance to have Crohn’s disease, where NOD2 risk alleles has direct effect and 

indirect effect via Paneth cell gene expressions. On the other hand, amplification of two bacterial 

quantities seems have effect to reduce the chance getting Crohn’s disease. Paneth cell gene 

expression has an alternatively indirect way to affect disease by decreasing quantity of bacterial 

group F. prausnitzii.  

 

 

 

7.3 Bootstrap  
 

As traditional SEM, the derivation of our mixed variable SEM is based on the assumption 

of the multivariate normal distribution among all variables besides the categorical endogenous 

one. As discussed in the chapter 6, normality of exogenous variable is not that restrictive in terms 

of estimation and statistical inference, while violation of multivariate normal assumption on 

those endogenous variables is problematic. In our previous example in Section 7.2, if we 

examined the normality of three continuous endogenous variables, Paneth cell gene expression, 

F. prausnitzii and C. coccoides, the Shapiro-Wilk tests showed p values <.001, <.001 and 0.032. 

It suggested they do not follow normal distribution individually, thus jointly they will not satisfy 
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the assumption of multivariate normality. The corresponding density functions of three variables 

are shown in Figure 23.  

 
Figure 23. Distribution of three endogenous variables in Crohn’s disease model 

 

 

There are several strategies available when one appears to have nonnormal data. 

Suggested in Loehlin’s book p.59 (2004), first and most obviously, one should check for outliers 

– extreme cases that represent errors; A second option, if one has some variables that are skewed, 

is to transform them to a scale that more nearly normal, such as logarithms or square roots of the 

original scores; A third option is to make use of a bootstrap procedure. The boot strap is to take 

repeated samples from one’s own data, taken as representative of the population distribution, to 

see how much empirical variation there is in the results. Instead of computing the standard error 

of a given path coefficient based on multivariate normal distribution, one simply fits the model 

several hundred times in different re-sampled data from original observations. Then one can 

derive the confidence intervals of the estimates. With fair sized samples, bootstrapping can 

provide an attractive way of dealing with non-normal distributions. Bollen and Stine (1993), 

Yung and Bentler (1996), and Nevitt and Hancock (2001) included discussions of bootstrapping 

in SEM. Therefore, here we performed bootstrap procedures on Crohn’s disease model since we 

had fairly large dataset. The mixed variable SEM analysis is performed 1000 times by 

resampling with replacement. The corresponding estimates and 95% confidence intervals are 

shown in Table 10.  
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Table 10. Mixed variable SEM estimates based on bootstrapping for Crohn’s disease example 

Path coefficients Estimate 95% CI 

NOD2        →  Paneth cell 0.380 (0.180, 0.579)  

Paneth cell →  C. coccoides -0.760 (-1.753, 0.240) 

Paneth cell → F. prausnitzii -1.209 (-2.395, -0.136) 

NOD2        →  CD 1.738 (0.223, 3.761) 

Paneth cell →  CD 3.448 (0.667, 10.214) 

C. coccoides →  CD -0.307 (-0.714, 0.148) 

F. prausnitzii →  CD -0.382 (-0.751, -0.107) 

 

If CI contains zero inside, it suggests the null hypothesis about parameter equal zero 

should not be rejected. In Table 10, the 95% CIs of estimates from bootstrapping technique 

showed consistency compared to results in Table 9. Zero is only included in 95% CI of 

coefficient from Paneth cell to C. coccoides. Therefore, besides this parameter estimate, the rest 

estimates can be considered significant with zero outside the CIs.  
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Chapter 8 Mixed variable covariate SEM 

 

 

 

 

 

 

 
Conventional SEM endeavors to determine the strength of links between nodes that are 

uniformly continuous variables (Figure 24 A), while in biological studies the pathway link 

strength could be modulated by other factors. This is especially true for complex diseases where 

the state of the cell often dictates how genetic variation can affect the final disease phenotype. 

We proposed to solve this problem by adding a node pointing to links, where the node stands for 

the potential important covariate to the relations on the pathway. This covariate SEM is based on 

the previous work from our group (Sharpe 2010), which, however, was limited to continuous 

variables on the pathway nodes and categorical variables as pathway covariates only (Figure 24 

C). As shown in the previous chapters, biological pathways often involve mixed categorical and 

continuous variables as pathways nodes (Figure 24 B). In addition, it is conceivable that the 

pathway link strength may be affected by both categorical variables such as phenotypes, 

genotypes, etc., but also by continuous variables such as age, levels of certain enzymes, etc. In 

this dissertation, we extended the covariate cSEM method (Sharpe, 2010) for pathway 

comparisons to allow both continuous and categorical variables as pathway nodes as well as 

pathway covariates (Figure 24 D). Alternatively the effect of covariate on the link can be viewed 

as the effect from interaction term between covariate and source variable of the link to the target 

variable of the link.  
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(A) Conventional SEM 

 

(B) Mixed variable SEM 

 

(C) Covariate SEM 

 

(D) Mixed variable covariate SEM  

 
Figure 24. Illustration of structural equation models for different types of biological 

pathways. (A) Conventional SEM for the pathway with all continuous variables (gene expression 

values) as nodes. (B) Mixed variable SEM for the pathway with both continuous (gene 

expression values) and categorical (genotype and phenotype) nodes. (C) Covariate SEM with 

continuous nodes and categorical covariates (G, such as gender) (Sharpe, 2010). (D) Mixed 

variable covariate SEM where both the pathway nodes and covariates can be either categorical or 

continuous variables (G, categorical covariate such as gender; A, continuous covariate such as 

age).   

 

 

 

8.1 Mixed variable SEM with categorical pathway covariate 

 

It is natural thinking to extend previous covariate SEM to a unified mixed variable SEM 

frame work that incorporates categorical covariates. In this sense, the joint mixed variable SEM 

is able to handle all scenarios that categorical variables are considered as exogenous, endogenous 

as well as covariates on the pathway. GLLAMM by Rabe-Hesketh (2004) is not applicable to 

this complicated case with respect to addition of categorical covariates. However, this situation is 

ubiquitous and important in applications in biological and medical studies. Because often instead 

of being assumed a causal relation in the pathway, a categorical (group) variable is considered a 

covariate, and researchers would like to know model changes between groups. For instance, a 

disease model is constructed by several risk factors. Disease is the response and risk factors form 
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the structural model among each other. One is interested in how the model differentiates in 

between covariate gender (male and female). In this case, rather than including gender as an 

exogenous node in the pathway, it is more reasonable to have it as a covariate pointing to 

existing paths and then test the additional path significance. Path diagram for a simple example 

of mixed variable covariate SEM is demonstrated in the Figure 25. 

 

Figure 25. A simple example that demonstrated mixed variable covariate SEM. Here 

categorical variables W and G are an endogenous variable and a covariate, respectively on the 

pathway.  

 

The derivation of jointly mixed variable covariate SEM is straightforward since the 

compatible ML based estimation used in both covariate SEM and mixed variable SEM. For the 

example in Figure 25, we assumed that W and G are dichotomous variables, W conditioned on X 

and Y follows Bernoulli distribution, X and Y are bivariate normal distributed under each group 

of G. By re-parameterization, covariate G can be incorporated into equations as: 
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The corresponding log-likelihood function for N observations can be easily derived as: 
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Note that subscriptions 0 and 1 in 0 1 ,0 ,1 0 1, , ( ), ( ), ,c cN N S S    indicate parameters in 

corresponding G = 0 and 1, respectively.  0 1,N N  are number of observations in G = 0 and 1, 

and 0 1N N N  ; ,0 ,1( ), ( )c c   are covariance matrixes containing exclusive parameters for G = 
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0 and 1; and 0 1,S S  are sample covariance matrixes of observations with G =0 and 1, 

respectively. Other parameters have similar interpretation in Chapter 6. Parameters can then be 

obtained by maximize the log-likelihood function above. The following section gives an example 

of mixed variable SEM with one categorical covariate. 

 

 

 

8.2 Mixed variable SEM with categorical pathway covariate for Crohn’s 

disease study 

 

The same Crohn’s disease data set is considered in this section. Here we consider one 

additional variable: immunomodulator (e.g. 6-mercaptopurine and azathioprine). 

Immunomodulator (IM) is a substance which has an effect on immune system, where cause of 

Crohn’s disease might relate to the attack from autoimmune system (Marks 2011). In this 

example we treated IM (current under treatment or not) as a binary covariate to the original 

pathway, to test the hypothesis that the pathway differs under different IM status. Out of total 79 

subjects, 51 have IM therapy and 28 do not. They are coded as 0 and 1, respectively.  

The jointly mixed variable covariate SEM is fitted.  

 

Table 11 showed the resulting estimates and statistical tests. For each directional link on 

the pathway, there are two coefficients. For example, the path from Paneth cell to F. prausnitzii, 

the path coefficient according to the effect of Paneth cell on F. prausnitzii in group IM = 0, and 

Immunomodulator coefficient is the change to the path coefficient when IM = 1. Paneth cell gene 

expression has significant negative relation on F. prausnitzii quantity with p value 0.018, while 

covariate IM appears to have no significant changes to this relation. The whole picture of the 

Crohn’s disease model including immunomodulator is shown in Figure 26. The fitted pathway 

clearly shows that for some paths, the IM treatments of subjects do affect the strength of 

connectivity between nodes. 
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Table 11. Mixed variable covariate SEM estimates, standard errors and corresponding z values 

and p values (two-sided) for Crohn’s disease example.   

 Estimate 
Std 

Error 

Z 

value 

p 

value 

NOD2        →  Paneth cell 
Path coefficient 0.324 0.183 1.767 0.077 

Immunomodulator 0.160 0.266 0.603 0.547 

Paneth cell →  C. coccoides 
Path coefficient -0.553 0.508 -1.089 0.276 

immunomodulator -0.745 0.997 -0.747 0.455 

Paneth cell →F. prausnitzii 
Path coefficient -1.711 0.725 -2.362 0.018 

immunomodulator 1.190 1.098 1.084 0.279 

NOD2        →   CD 
Path coefficient -0.129 1.302 -0.099 0.921 

immunomodulator 8.648 3.422 2.528 0.011 

Paneth cell  →  CD 
Path coefficient 7.433 2.279 3.262 0.001 

immunomodulator -4.310 2.822 -1.527 0.127 

C. coccoides  →  CD 
Path coefficient -0.171 0.160 -1.069 0.285 

immunomodulator -1.606 0.633 -2.536 0.011 

F. prausnitzii  →  CD 
Path coefficient 0.278 0.238 1.168 0.243 

immunomodulator -1.814 0.762 -2.380 0.017 

 



 

84 

 

 

Figure 26. The fitted path diagram for Crohn’s disease model by mixed variable covariate 

SEM. Immunomodulator is included in the pathway as the covariate. Paths determined to be 

insignificant are shown as dotted arrows. Arrows and factors highlighted are significant after a 

two-sided z-test with .05  . Red paths indicate a positive influence while green paths indicate a 

negative influence. 

 

 

 

8.3 Mixed variable SEM with continuous pathway covariate 

 

In the previous section, we have already extended covariate SEM (Sharpe 2010; Wu, 

Sharpe et al. 2011) to accommodate categorical endogenous variables. We illustrated the 

extended model in Crohn’s disease mixed-variable example and successfully detected significant 

covariate effects on the strength of paths. However in real practice, covariates cannot always be 

treated as categorical as gender, race or immunomodulator. Taking Crohn’s disease model for 

example, we have continuous covariates, like age and BMI. These covariates are not major focus 

of the study, but their effects on the disease model are potential concerns and of interests to 

biologists and medical doctors. In this case, current covariate SEM model by Dr. Sharpe (2010) 

is not applicable since its likelihood function is derived based on combination of likelihood 

functions that covariance structures are computed separately from each group of categorical 

covariates. When covariates are continuous, there is no straightforward separation of covariance 

structures of variables given the covariate. This motivated us to further generalize our mixed 

variable covariate SEM to incorporate continuous covariates and solve this complex model.  

Look at the demonstration in Figure 27(A). In contrast to categorical covariate G in Figure 25, 

covariate C here has continuous values. Covariate C is hypothesized to have effect on strengths 

of paths.  
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(A) 

 

(B)  

 

Figure 27. Mixed variable SEM with continuous covariate C. (A) On the pathway, 

endogenous variable W is categorical and covariate C is continuous. (B) An alternative 

illustration of mixed variable covariate SEM when covariate C is continuous. Here covariate C is 

incorporated, for each path, by adding a node to point to the corresponding endogenous variable. 

The added node can be viewed the interaction between covariate and exogenous variable. 

 
 

The equations implied by the path diagram in Figure 27(A) are: 
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where, we also applied the idea of re-parameterization to re-write equations as: 
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We interpret the coefficient, for each path, is consist of effect from the corresponding 

exogenous variable and from interaction between the covariate and the exogenous variable. 

Alternatively, it can be interpreted as, for each path, adding one node of interaction between the 

covariate and the exogenous variable to point to the corresponding endogenous variable (Figure 

27 B). 

 

Hence, in general, evaluation of continuous covariates on the paths is in accordance to 

adding several interaction terms as exogenous nodes to the model. The number of new nodes 

added to the model equals to the number of links on the pathway. Recall the derivation in Section 

6.1, mixed variable SEM can be solved by factorization of two components: one conditional 

GLM model and one SEM model. For the conditional GLM, considering covariate effect is 
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equivalent to adding interaction terms between covariate and original predictors to the equation.  

For SEM of all continuous variables, considering the case with p endogenous variables Y and q 

exogenous variable X. Assume, among p endogenous variables Y, pex variables are also as 

independent variables that have arrows out. To solve this model including one continuous 

variable C, we created a new exogenous variable vector X
*
 = (X1, …, Xq, CX1, … CXq, CY1, …, 

CYpex)’, where we assumed that Y1, …, Ypex are the pex variables that have arrows out. Then we 

are ready to obtain the likelihood function of mixed variable SEM with continuous covariate by 

replace X with X
*
.   

Assume Z
*
 = (Y X
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8.4 Mixed variable SEM with continuous pathway covariate for Crohn’s 

disease study 
 

As an example, age of surgery, a continuous covariate, is incorporated into the Crohn’s 

disease model in Section 7.2. The mixed variable SEM with this continuous covariate is fitted 

and results are shown in Table 12 and Figure 28. The overall model fit chi-square is 94. 3 with 

degree freedom 79, and corresponding p value is 0.11 that indicating a good fit.    
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Table 12. Continuous-covariate mixed variable SEM estimates, standard errors and 

corresponding z values and p values (two-sided) for Crohn’s disease example.   

 Estimate 
Std 

Error 

Z 

value 

p 

value 

NOD2        →  Paneth cell 
Path coefficient 0.397 0.153 2.597 0.009 

Age of surgery 0.029  0.121   0.237 0.813 

Paneth cell →  C. coccoides 
Path coefficient -0.682 0.485 -1.407 0.159 

Age of surgery 0.302 0.597 0.506 0.613 

Paneth cell →F. prausnitzii 
Path coefficient -1.075 0.582 -1.847 0.065 

Age of surgery 0.523 0.717 0.730 0.465 

NOD2       →  CD 
Path coefficient 1.986    0.836  2.376   0.017 

Age of surgery 0.214  0.688 0.312 0.755 

Paneth cell →  CD 
Path coefficient 2.683   0.970  2.767   0.006 

Age of surgery -3.544  1.397 -2.538 0.011 

C. Coccoides  →  CD 
Path coefficient -0.314   0.157 -1.997   0.046 

Age of surgery 0.008  0.156 0.049   0.961 

F. prausnitzii  →  CD 
Path coefficient -0.459  0.160 -2.877   0.004 

Age of surgery 0.117  0.167 0.702   0.482 

 

Figure 28. The fitted path diagram for Crohn’s disease model by continuous-covariate 

mixed variable SEM. Paths determined to be insignificant are shown as dotted arrows. Arrows 
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and factors highlighted are significant after a two-sided z-test with .05  . Red paths indicate a 

positive influence while green paths indicate a negative influence. 

 

We can see that one age of surgery has a negative association to the effect from Paneth 

cell related gene expressions to CD. The strength of increase of risk of CD by Paneth cell related 

gene expressions may be attenuated by older age of surgery. On the other hand, we noticed in 

our data set, control subjects, usually cancer patients but without Crohn’s disease, are older than 

CD patients. Therefore, this significant covariate effect of age here might be due to the features 

of sampled data, thus it is suggestive and need to be further examined by larger data sets.  
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Part II  Novel Bioinformatics Pipeline and Application 
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The second part of this thesis is based on my research experience in Dr. van der Lelie and 

Dr. Taghavi’s lab in Brookhaven national laboratory. In contrast to the first part, the novel 

biological pathway analysis by structural equation modeling, this part focuses on a 

bioinformatics work flow for a systems biology project.  

Biological systems such as cells, regulatory gene networks and protein interaction 

complexes cannot be understood from individual components (genes, mRNA, proteins etc) 

alone, but through considerations involving all components simultaneously. The use of 

systematic genomic, transcriptomic, metabolic and proteomic technologies to construct models 

of complex biological systems and diseases is becoming increasingly commonplace (Ideker 

2004). Although the concept of systems biology has existed for a while, these approaches have 

recently become far more powerful because of the inventions of new technologies that are high-

throughput, quantitative and large-scale (Zhu and Snyder 2002). In so doing, systems biology 

integrates data and knowledge from diverse biological components into models of the system as 

a whole. The biological knowledge is growing very rapidly. A list of existing biological 

knowledge-bases is summarized here (http://www.biochemweb.org/systems.shtml). In the 

bioinformatics area, tools have been developed and will be advanced to handle the rapidly 

growing amount of data in databases. Integration of the latest knowledge and tools, in a sense, 

becomes the most critical aspect in systems biology. This suggests the exciting but also 

challenging feature of systems biology: the requirement of multiple-disciplinary abilities in 

biology, statistics and computation, etc. As Dr. Ideker (2004) mentioned ―students should beware 

of the universal curse of systems biology: as you quickly attain a breadth of knowledge in 

biology and mathematics, you risk losing, or fail to attain, depth in either. Jack of all trades, or 

master of one? The choice is yours.‖ In the following chapters, a study of interactions between 

poplar and endophytic bacteria, with major efforts stitching a complete story via integration of 

biological knowledge, statistical and computational approaches, is presented. 

 

Endophytic bacteria are bacteria that reside within the living tissue of their host plants 

without substantively harming it (Misaghi and Donndelinger 1990). They are ubiquitous in most 

plant species, residing or actively colonizing the tissues. The diversity of cultivable bacterial 

endophytes is exhibited not only in the variety of plant species colonized but also in the many 

taxa involved, with most being members of common soil bacterial genera such as Enterobacter, 

Pseudomonas, Burkholderia, Bacillus, and Azospirillum (Lodewyckx, J. Vangronsveld et al. 

2002). There are several mechanisms by which endophytic bacteria can promote plant growth. 

These mechanisms are of great importance for the use of plants as feedstocks for biofuels and for 

carbon sequestration through biomass production. Moreover, this is vital when considering the 

aim of improving biomass production of marginal soils, thus avoiding competition for 

agricultural resources, which is one of the critical socioeconomic issues of the increased use of 

biofuels (Taghavi, Garafola et al. 2009). The aim of this study is to identify mechanisms by 

which the endophytic bacteria can regulate the growth of poplar, to quantify the degree to which 

major regulatory pathways of endophytic bacteria are involved, and the ultimate goal is to model 

these pathways to optimize the production of poplar biomass on marginal soils as a feedstock for 

bio-refineries. The objective of the proposed research is to characterize endophytic bacteria at the 

level of the genome, transcriptome and metabolome. It can be achieved by using a systems 

biology approach, including comparative genome analysis and mRNA sequencing analysis. 

http://www.biochemweb.org/systems.shtml
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Figure 29, as seen in Chapter 1, demonstrated the analysis pipeline, and details will be given in 

the next chapter.  

 

 

Figure 29. Overview of bioinformatics analyses work flow from newly isolated bacteria 

to biology discoveries. The steps in the pipeline are in red boxes; the methodological 

components and software used are in blue boxes.  
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Chapter 9 Analysis workflow 

 

 

 

 

9.1 Comparative genome analysis  
 

9.1.1 Genome sequencing and annotation 

 

Total DNA was isolated from bacteria as described according to the method of Bron and 

Venema (Bron and Venema 1972). Genome sequencings of bacteria were performed at the Joint 

Genome Institute (JGI) (Walnut Creek, California, USA). Putative CoDing Sequences (CDS) 

were identified by the Magnifying Genome (MaGe) annotation platform 

(http://www.genoscope.cns.fr/agc/mage/) (Vallenet, Labarre et al. 2006).  

A number of annotation tools have been designed for an increasing demand for fast and 

accurate analysis of completely sequenced genomes. Many efforts have been made in terms of 

project management (i.e. complex biological data models and integrated databases), spectrum of 

bioinformatics tools applied (including multiple genome comparison-based annotation 

strategies), sophistication of the user interfaces (extensive visualizations, fully interactive 

graphical interfaces) and the presence of convenient features such as data editors. Examples of 

commonly used annotation platforms are given by commercial systems, such as ERGO 

(Overbeek, Larsen et al. 2003) or Pedant-Pro (successor of PEDANT), and open source systems, 

such as Artemis (Berriman and Rutherford 2003), GenDB (Meyer, Goesmann et al. 2003). In the 

study of microbial genomes, compared to these methods, MaGe is featured by the systematically 

integrated contextual analysis of genes and proteins, to detect functional constraints on genome 

evolution (Vallenet, Labarre et al. 2006; Vallenet, Engelen et al. 2009). Using MaGe platform, 

we performed automatic and manual genome annotations, as well as comparative genomics and 

functional analysis altogether.   

On genomes of our bacteria, in MaGe system, all CDS identified were manually 

reviewed, and false CDS were flagged as ―artifact‖. The remaining CDS were then submitted to 

automatic functional annotation via BLAST searches against the UniProt databank in order to 
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determine significant homology. Putative genes coding for enzymes were classified with the 

PRIAM software (Claudel-Renard, Chevalet et al. 2003), transmembrane domains were 

identified by TransMembrane Hidden Markov Model (TMHMM), and signal peptide were 

predicted using SignalP 3.0, all embedded in the MaGe software (Vallenet, Labarre et al. 2006).  

 

9.1.2 Comparative genomics and functional analysis 

 

Genome comparisons were performed using MaGe (Vallenet, Labarre et al. 2006). The 

―PhyloProfile Synteny‖ program was used to show the number of homologous genes in related 

bacteria. Genomic Islands (GI) were identified using the automated ―Genomic Islands‖ tool, 

followed by a manual curation focusing on several GI properties (Mergeay, Monchy et al. 2009). 

These properties include the presence at one extremity of a site-specific recombinase, the 

preferential insertion of GI at tRNA sites, the presence of flanking insertion sequence elements, a 

base composition and/or phylogeny which differs from the bulk of the genome, a higher content 

in hypothetical genes than the neighboring regions, the presence of hot spots for mobile genetic 

elements (MGEs) including recombinase genes, IS elements, integrase and transposase genes, 

and the conservation of GI between different unrelated hosts together with their absence in 

related hosts. A region was considered as a genomic island if at least three criteria were met. 

Metabolic reconstructions were performed using both the PRIAM software, which is based on 

the KEGG database, and the MetaCyc/EcoCyc tools embedded into the MaGe platform. The 

identification of prophages was done using ―Prophinder‖ (Lima-Mendez, Van Helden et al. 

2008) (http://www.aclame.ulb.ac.be/Tools/Prophinder/). IS Finder (http://www-is.biotoul.fr/) 

was used for the classification into families of the identified IS elements. 

 

 

 

9.2 mRNA sequencing (RNA-seq) analysis 
 

9.2.1 RNA preparation, sequencing and reads mapping 

 

Endophytic bacterium Enterobacter sp. 638 was grown at 30°C in minimal growth 

medium with sucrose or lactate as the sole carbon source to mimic conditions of plant 

association or free living, respectively. Total RNA was isolated and processed to remove rRNAs. 

The purified mRNAs were then transferred into cDNA, and sent to Cold Spring Harbor 

Laboratory for whole transcriptome sequencing via Illumina next generation sequencing. 

 

There are three major platforms for next generation sequencing experiments: 454, 

Illumina and SOLiD. 454 sequencing is featured with high time-efficiency and longer length of 
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each read; and SOLiD has advantages of higher throughput per run; and Illumina has reasonably 

good time efficiency and relatively low unit cost. Dr. Mardis (2008)  provided a good review of 

these next generation sequencing techniques. Our experiment used the Illumina Genome 

Analyzer given its high throughput and low cost, as well as the convenient service close by.  

 

Libraries were prepared for sequencing according to the manufacturer’s instructions. 76 

base-pair-long single-ended reads were obtained. For higher quality score, the trimmed reads of 

length 36 starting from the 5
th

 position were used for subsequent mapping. The k-mer uniqueness 

for the genome of Enterobacter sp. 638 is shown in Figure 30. The uniqueness curve approaches 

100% rapidly, hitting 99.7% at k = 30, which encourages read mapping using shorter 

subsequences. The obtained 36-bp reads were mapped to the Enterobacter sp. 638 genome by 

suffix-array lookup program, which allows for one substitution error.  

 

Figure 30. The k-mer uniqueness plot for Enterobacter sp. 638 chromosome. 

 

 

 

9.2.2 Pre-processing of gene expression measures 

 

Raw counts as expression level are summarized on the gene level. The number of reads 

falling into the boundary of one gene is recorded as the raw expression count. The Enterobacter 

sp. 638 reference annotations are requested from the MaGe manual annotation system. There are 

high spearman correlations between the replicates (all above 0.8), with majority of them over 

0.9. Thus, we pooled the counts that from the same biological sample to increase the coverage of 

the transcriptome.  
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In order to derive gene expression level and compare values between conditions, one first 

needs to normalize read counts to adjust for varying lane sequencing depths and potentially other 

technical effects. It has been shown that normalization is an essential step in the analysis of 

RNA-seq data (Anders and Huber 2010). Two types of normalizations are necessary: between- 

and within-library normalizations.  

Within-library normalization allows quantification and comparisons between genes in 

one sample. Because longer transcripts have more read counts falling into (at the same 

expression level), a common method for within-library normalization is to divide the 

summarized counts by the length of the gene (Marioni, Mason et al. 2008). The widely used 

RPKM (reads per kilobase of exon model per million mapped reads) accounts for both total read 

counts and gene length in within condition comparisons (Mortazavi, Williams et al. 2008). Some 

recent methods may improve the comparability within-sample by assuming non-uniform 

distributed reads inside gene boundary (Li, Jiang et al. 2010). However, performance of this 

method depends case by case. Here, we adopted the common and straightforward RPKM index 

for comparison between genes.  

To compare expression changes of certain gene between samples, gene length bias will 

cancel out because the underlying sequence used for summarization is the same between 

samples. But between-sample normalization is still critical for comparing counts from different 

libraries relative to each other. Several between-sample normalization methods, including total 

reads, housekeeping gene normalizations, have been evaluated and concluded that the quantile 

normalization, inspired from microarray study (Bolstad, Irizarry et al. 2003; Irizarry, Hobbs et al. 

2003) has the best performance (Bullard, Purdom et al. 2010). In current study, we applied 

quantile normalization to the pooled count data. The normalized data are then rounded to 

produce integer values as genes expression level for further differential expression analysis.  

 

9.2.3 Differentially expressed gene analysis 

 

The goal of a differentially expressed gene analysis is to highlight genes that have 

changed significantly across experimental conditions. In general, this means taking a table of 

normalized count data for each condition and performing statistical testing between samples of 

interest. 

Many methods have been developed for the analysis of differential expression using 

microarray data, such as SAM (Tusher, Tibshirani et al. 2001). Microarray intensities are 

typically log-transformed and analyzed as normally distributed random variables. However, 

RNA-seq provides a discrete measurement for each gene. Even log-transformed, measures are 

not well approximated by continuous distributions, especially in the lower count and for small 

samples. Therefore, statistical models appropriate for count data are vital for data mining from 

RNA-seq experiment. 

In general, the Poisson distribution forms the basis for modeling count data. In an early 

RNA-seq study using an Illumina GA sequencer, goodness-of-fit statistics suggested that the 

distribution of counts across lanes for majority of genes was indeed Poisson distributed (Marioni, 
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Mason et al. 2008). However, biological variability is not well captured by the Poisson 

assumption (Robinson and Smyth 2007). Hence, Poisson-based analyses for datasets with 

biological replicates tend to have high false positive rates resulting from the underestimation of 

sampling error. To account for biological variability, the negative binomial distribution has been 

used as a natural extension of the Poisson distribution, requiring an additional dispersion 

parameter to be estimated. A few variations of negative-binomial-based analysis of count data 

have emerged, including common dispersion models (Robinson and Smyth 2008), sharing 

information over all genes using weighted likelihood (Robinson and Smyth 2007), and an 

empirical Bayesian implementation using equivalence classes (Hardcastle and Kelly 2010). 

Negative-binomial-based analysis is implemented in R package edgeR (Robinson, McCarthy et 

al. 2010). Here we identified differentially expressed genes using edgeR package, where the 

exact test that has strong parallels with Fisher’s exact test, is used to test differential expressions 

and compute exact p values. The significance level is controlled by false discovery rate at 0.05 

(Benjamini and Hochberg 1995).  

 

 

9.2.4 Clustering and functional category analysis (GO analysis) 

 

In many cases, a list of differential expressed genes is not the final step of the analysis; 

further biological insight can be gained by looking at the expression changes of sets of genes. In 

the current experimental design, four biological conditions are tested and thus clustering analysis 

is first performed to group genes with similar expression pattern across four conditions. Then 

hierarchical clustering was carried out with distance as (1 – spearman correlation)/2. Therefore, 

the distances range from 0 to 1 with smaller values indicating similar expression patterns.  

Having each cluster with a distinct expression pattern leads to the next step -- functional 

category analysis – to identify enriched functions associated with specific expression patterns. 

Many tools focusing on gene set testing and knowledge databases have been proposed for 

microarray datasets as we introduced in chapter 2. However, RNA-seq is affected by biases not 

present in microarray data. For example, gene length bias is an issue in RNA-seq data, in which 

longer genes have higher counts (at the same expression level) (Oshlack and Wakefield 2009). 

These biases can dramatically affect the results of downstream analyses, such as testing Gene 

Ontology (GO) terms for enrichment among significant genes (Oshlack and Wakefield 2009). 

Bullard et al. (2010) suggested modifying a t-statistic by dividing by the square root of gene 

length to minimize the effect of length bias on tests. Alternatively, GO-seq is an approach 

developed specifically for RNA-seq data that can incorporate length or total count bias into gene 

set tests (Young, Wakefield et al. 2010). In the present study, GO-seq package 1.0.3 was used. 

Instead of GO terms that only well specified for model organisms, the manually curated 

functional categories in MaGe, bioprocess and biological roles, are used for our newly isolated 

bacteria.  
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9.3 Regulatory network analysis 
 

There is wide scope for integrating the results of RNA-seq data with other sources of 

biological data to establish a more complete picture of gene regulation (Hawkins, Hon et al. 

2010). For example, integration of expression data with genotype, transcription factor binding, 

RNA interference, histone modification and DNA methylation information has the potential for 

greater understanding of a variety of regulatory mechanisms (Montgomery, Sammeth et al. 

2010). A few reports of these 'integrative' analyses have emerged recently (Ouyang, Zhou et al. 

2009). Although our current experiment did not generate these additional types of biological 

data, some efforts were made to better understand regulatory networks as a basis of observed 

transcriptional changes.  

The genome of Enterobacter sp. 638 is very close related to Escherichia coli K12. E. coli 

K12 is the best known annotated model organism for bacteria. Therefore, we proposed to first 

map orthologs from E. coli K12 to Enterobacter sp. 638 using KEGG ortholog database within 

MATLAB (http://www.genome.jp/kegg/soap/doc/keggapi_manual.html), and then infer 

regulatory relationships in Enterobacter sp. 638. The database RegulonDB 

((http://regulondb.ccg.unam.mx/html/Database_summary.jsp)) recodes the most comprehensive 

and updated transcriptional network for E. coli K12. We resorted to regulatory networks of E. 

coli orthologs to give hints of ones in Enterobacter sp. 638. The resulting regulatory networks 

are customized and visualized in Cytoscape tool (Smoot, Ono et al. 2011).  

 

http://regulondb.ccg.unam.mx/html/Database_summary.jsp
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Chapter 10 Results and biological discoveries 

 

 

 

10. 1 Genome annotation and comparative genome analysis 
 

As representatives for the dominant genera of endophytic gammaproteobacteria, we 

selected Enterobacter sp. 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida 

W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant 

growth-promoting effects (Taghavi, Garafola et al. 2009). Gene sequencing and annotation 

allows the identification of the whole set of genes on the genome. Gene homologs were found in 

these endophytic bacteria that are putatively involved in phytohormone production and 

metabolisms of plant sugars and growth-regulating compounds, such as acetoin and 2, 3-

butanedial synthesis, ACC metabolism and PTS sugar uptake systems. Among them, further in 

silico comparative genome analysis was applied to the genomes of Enterobacter sp. 638 

(Taghavi, van der Lelie et al. 2010) and Psedomonas putida W619 (Wu, Monchy et al. 2011). 

Comparative genomics provided a powerful tool to gain new insights into the niche-specific 

adaption of bacteria. Pseudomonas putida W619 was compared to three other P. putida strains: 

the rhizospheric strain KT2440, the aromatic hydrocarbon-degrading strain F1 and the 

manganese-oxidizing strain GB-1. Many genes were suggested to be related to their adaptation to 

specific niches, including the ability to live in soils and sediments contaminated with high 

concentrations of heavy metals and organic contaminants (Wu, Monchy et al. 2011).  

In addition to the finding of genes encoded for production of phytohormones acetoin and 

2, 3-butanedial, in Enterobacter sp. 638, metabolite analysis as well as quantitative RT–PCR 

showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose 

in the growth medium. Interestingly, both the genetic determinants required for sucrose 

metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. 

These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, 

where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth 
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promoting phytohormones by the endophytic bacterium (Taghavi, van der Lelie et al. 2010). This 

interaction provided us an entry point to better understand the synergistic interactions between 

poplar and its growth promoting endophyte Enterobacter sp. 638. Subsequent transcriptome 

analysis was thus performed in terms of presence or absence of the plant sugar sucrose. My work 

in this project includes genome annotations and comparative genome analysis of Psedomonas 

putida W619, and RNA-seq data analyses of Enterobacter sp. 638 in the following sections. 

 

10. 2 Experimental design and physiological observations 
 

As a result, analysis of genome sequences pointed to a remarkable interaction between 

Enterobacter sp. 638 and its poplar host (Taghavi, van der Lelie et al. 2010). Particularly it 

showed the adjacency of two functional operons: sucrose utilization operon (scrKYAB) and 

acetoin / 2,3-butanediol synthesis operon (budABC) on the Enterobacter sp. 638 genome (Figure 

31). It is possible that these two operons interact and play an important role in the crosstalk 

between the Enterobacter sp. 638 and its plant host. The presence of sucrose -- the major 

photosynthate -- is a signal of proximity with plants to bacteria, which was hypothesized to 

trigger the transcription of the budABC operon in Enterobacter sp. 638, resulting in the synthesis 

of the phytohormones acetoin and 2,3-butanediol. It is a convincing mechanism proved from the 

genomic, transcriptional and metabolic analyses (Taghavi, van der Lelie et al. 2010).  

 

Figure 31. Schematic representation of one genomic region found on the chromosome of 

Enterobacter sp. 638. Putative open reading frames are indicated by arrows, below which the 

Enterobacter sp. 638 gene number and gene annotation are shown. The genes involved in 

sucrose transport and utilization, acetoin and 2,3-butanediol synthesis, the toxin-antitoxin (TA 

system), as well as other putative functions are also indicated. 

 

However it might be a simplified scheme given the distinct phenomenon of this 

bacterium in sucrose or lactate medium in terms of the growth curve, pH, the extracellular 
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structures and phytohormone productions, etc. There are necessarily more gene transcriptions 

and regulators involved to respond to presence of sucrose, and finally coordinate a chain of 

reactions that are as the basis for the strain’s adaptation to its endophytic lifestyle. Therefore, we 

performed whole transcriptome analysis on Enterobacter sp. 638 grown in sucrose or the lactate 

at 6 and 12 hours, in order to gain insights in the differential gene expression profiles under these 

distinct conditions (Figure 32). 

 

Figure 32. Experimental design of RNA-seq of Enterobacter sp. 638 strain. Four distinct 

conditions are compared with two growth media and two time points:  growth media contain 

lactate or sucrose as sole carbon source, respectively, where sucrose is a plant sugar mimicking 

the presence of plant while lactate is a milk sugar as a control; two time points are 6 hours or 12 

hours after growth.  Triplicates of each condition are considered in this experiment.  

 

  

Enterobacter sp. 638 was grown at 30°C in minimal growth medium with sucrose or 

lactate as the sole carbon source to mimic conditions of plant association or free living, 

respectively. When growing on lactate, strain 638 showed an exponential growth phase until the 

culture reaches an OD660 of 0.9 after approximately 24 hours. This growth pattern is in sharp 

contrast to the pattern observed for strain 638 when grown on sucrose (Figure 33).  Cultures 

growing on sucrose initially grow faster than on lactate, but after reaching an OD660 of 

approximately 0.4, they transitioned into the stationary growth phase. After this transition the 

following changes in cell behavior were observed for the cultures growing on sucrose: the cells 

shifted from a planktonic lifestyle to the formation of bacterial aggregates and cell elongation as 

was observed by light microscopy. Furthermore, no increase in cell biomass was observed. One 

of the major problems caused by pathogenic bacteria is uncontrolled growth and blockage of the 

plants vascular tissue (Ryan, Vorholter et al. 2011), therefore control of cell density during 

endophytic colonization is very important to avoid pathogenic responses and induction of the 

plant’s immune response. 
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Figure 33. The OD600 of Enterobacter sp. 638 in growth medium of lactate (0.2%) and 

sucrose (0.2%), respectively. 

 

 

10. 3 Summary of mRNA sequencing results 
 

After applying suffix-array lookup algorithm, we aligned short reads from mRNA 

sequencing to the reference genome of Enterobacter sp. 638 (Table 13). Multiple mapped reads 

in Table 13 are mostly due to seven copies of ribosomal genes. Unmapped reads were examined 

and found to be patented constructs from Illumina (Lin, Wang et al. 2008). Therefore, uniquely 

mapped reads are our focus and used for further differential expression analysis.   

 

Table 13. Sequence mapping summary 

 Uniquely mapped reads Multiple mapped 

reads 

Unmapped 

reads 
Total reads 

Perfect Match One mismatch 

Lactate 6hr 4,743,891 355,503 34,470,352 7,974,513 47,544,259 

Lactate 12hr 1,447,897 68,559 30,734,301 17,559,946 49,810,703 

Sucrose 6hr 2,147,743 169,491 37,532,613 8,670,633 48,520,480 

Sucrose 12hr 1,977,053 89,197 24,152,632 2,780,478 28,999,360 
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10. 4 Differential gene expression analysis 
 

Uniquely mapped reads were then summarized into raw gene expression values by 

counting the number of reads falling into each defined gene boundary. Raw gene expression 

values were processed through within normalization RPKM (Mortazavi, Williams et al. 2008) 

and quantile normalization (Bolstad, Irizarry et al. 2003) (Figure 34). Under the assumption that 

majority of transcriptome should remain similar expression level while only a small set of genes 

are responsive to conditions, the normalization generated similar quantile distribution for every 

sample to make values from different arrays comparable. In Figure 34A, before normalization 

two samples from sucrose 12 hours have overall higher expressions (log(RPKM) is around 8) 

than other samples (log(RPKM) is around 6), which might be due to variations from amounts of 

cDNA or systematic handling for each array. In this sense, many genes might be false-positively 

tested as significant when comparing sucrose 12 hours to other conditions. Thus normalization 

was applied to make all samples have similar distributions (Figure 34B).   

 

Figure 34. Histogram of gene expression level log2(RPKM) (A) before normalization; (B) after 

quantile normalization. RPKM: Reads per Kilobase of gene per Million mapped total reads. 

(A) Before normalization (B) After normalization 

  
 

By normalized gene expressions, we performed four pair-wise comparisons -- sucrose verse 

lactate after 6 hours, sucrose verse lactate after 12 hours and time point 12 hours verse 6 hours 

for sucrose condition as well as for lactate condition. The differentially expressed genes were 

determined by biological significance fold changes as well as statistical significance p values. 

False discovery rate is also controlled for comparing thousands of genes simultaneously. The 

analog MA plots from microarray study are shown in Figure 35 for each comparison. There 
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appears no bias on proportion of significantly differential genes regarding to the expression level 

of genes. The results are summarized in Table 14. 

  

  

 

Figure 35. MA plots of four differential gene expression comparisons. Y axis: the log-

fold change is plotted against x axis: the log-concentration for each gene. Concentration is 

defined as the proportion of reads of one gene among total reads in that sample. The genes with 

fold change greater than 2 and controlled FDR less than 0.05 are highlighted in red. A smear of 

points at the left-most edge of the plot represents genes which have zero counts in one of the 

conditions.  
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Table 14. Differentially gene expression analysis summary. The analysis has been done in R 

package edgeR. 

Condition 

p values < 

0.01  

(# of genes) 

Controlling 

FDR < 0.05                 

(# of genes) 

FDR < 0.05 & FC >2 

# of genes 

(percentage) 

Up-

regulated  

Down-

regulated  

Sucrose-Lactate 

(6h)  
1403  1528  790 (17.4%)  391  399  

Sucrose-Lactate 

(12h)  
2369  2663  2392 (52.6%)  1166  1226  

12h – 6h 

(Lactate)  
538  385  208 (4.6%)  150  58  

12h – 6h 

(Sucrose) 
2745  3036  2423 (53.3%)  1160  1263  

*FDR: controlled false discovery rate; FC: fold change. 

 

 

10.4.1 Differential gene expressions linked to carbon source utilization 

 

 

Sucrose or lactate as the sole carbon source 

As expected, expression of genes for carbon source utilization and central metabolism are 

differently induced depending on the carbon source. Compared to growth on lactate, the operon 

encoding genes for sucrose uptake and metabolism (scrKYAB, located on genomic region 29 

(Taghavi, van der Lelie et al. 2010)) is 6~200 fold more induced for cultures growing on sucrose; 

the lldPRD operon for lactate uptake and utilization is 11 ~ 70 fold more induction for cultures 

growing on lactate (Figure 36). This is the most direct genetic response of Enterobacter sp. 638 

to different carbon and energy sources. Alternatively, Enterobacter sp. 638 can utilize sucrose by 

transporting it into the cell by specific permeases. Its subsequent metabolism can proceed via 

phophorolysis. For cultures growing on sucrose, the expression of the  sucrose phosphorylase 

gene (EC 2.4.1.7, Ent638_2165) was up-regulated 76 fold after 12 hours compared to 6 hours, 

pointing towards phosphorolysis as the preferred pathway for sucrose metabolism over 

hydrolysis by the scrKYAB operon during the later stages of growth (Reid and Abratt 2005).    
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Figure 36. Expression patterns of genes directly involved in sucrose and lactate 

metabolisms. Log2 of normalized gene expression values (RPKM) are plotted for each condition. 

L6, L12, S6 and S12 represent the condition lactate 6 hours, lactate 12 hours, sucrose 6 hours 

and sucrose 12 hours, respectively. 

 

 

Energy metabolism 

Among the various pathways of central energy metabolism in Enterobacter sp. 638, the 

Entner-Doudoroff and the pentose-phosphate pathway show similar levels of gene expression for 

both growth conditions. The tricarboxylic acid (TCA) cycle, however, shows after 12 hours 

growth on sucrose a reduction in gene expression. In particular, expression of the succinate 

dehydrogenase gene cluster (Ent638_1221-1229) decreases 7 fold compared to cultures grown 

on lactate. This might reflect the differences in growth phase of the sucrose and lactate cultures, 

as was shown in Figure 33: once entering the stationary growth phase, as is the case for growth 

on sucrose, Enterobacter sp. 638 should have lower energy requirement. Furthermore, pyruvate, 

the input for the TCA cycle, is also the precursor in the synthesis of various secondary 

metabolites, including acetoin, 2,3-butanediol and colanic acid that are important in the 

symbiotic relationship between Enterobacter sp. 638 and its plant host, and whose synthesis 

levels are significantly increased for cultures growing on sucrose. 
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10.4.2 Transcriptional patterns of genes involved in motility and biofilm 

formation 

 

Motility and chemotaxis 

In E. coli, the MqsR regulator acts through a two-component motility regulatory system 

QseBC (Gonzalez Barrios, Zuo et al. 2006) to transcriptionally regulate FlhDC, the master 

regulator of flagella and motility genes (Clarke and Sperandio 2005). The Enterobacter sp. 638 

genome contains multiple flagellar biosynthesis operons as well as determinants involved in 

chemotaxis, including flgNMABCDEFGHIJKL (Ent638_1584-1597), 

fliCDSTEFGHIJKLMNOPQR (Ent638_2522-2541) flhEAB (Ent638_2445-2447) cheZYBR 

(Ent638_2452-2455), tap tar (Ent638_2456-2457), cheWA motBA (Ent638_2465-2468) and 

flhCD (Ent638_2469-2470). The expressions of these gene clusters were, compared to growth on 

lactate, reduced for cultures grown on sucrose, both after 6 and 12 hours, indicating a reduction 

in the motility of the cells. This was also confirmed by microscopic imaging (Figure not shown). 

On the contrary, the majority of genes associated with pili biosynthesis are up-regulated after 12 

hours of growth on sucrose. Pili are primarily involved in adhesion to surfaces and are among the 

few factors known to affect endophytic colonization (Dorr, Hurek et al. 1998). This opposite 

expression pattern for genes involved in motility and adhesion suggests that Enterobacter sp. 638 

becomes less motile under conditions that mimic the association with the plant host. The induced 

expression levels of pili biosynthesis genes is also consistent with the observed pili on the 

surfaces of cells grown on sucrose.  

Curli fibers are another factor mediating host cell adhesion and invasion. However, 

except for the csgG gene (2.9-fold induction), no significantly different levels of gene expression 

were observed for the curli biosynthesis cluster (Ent638_1553-1559). It has been established that 

motility plays an important role in biofilm development of E. coli (Pratt and Kolter 1998; Wood, 

Gonzalez Barrios et al. 2006). Although studies on DNA microarrays of E. coli cells have not 

found to date a significant difference in flagella expression during biofilm development 

(Schembri, Kjaergaard et al. 2003; Beloin, Valle et al. 2004; Ren, Bedzyk et al. 2004), other 

studies have shown that motility genes are repressed in Pseudomonas aeruginosa in a 5-day old 

biofilm, and in Bacillus subtilis biofilms after 8, 12, and 24 h (Whiteley, Bangera et al. 2001; 

Stanley, Britton et al. 2003). On the other hand, the presence of conjugative plasmids increases 

biofilm formation (Ghigo 2001) independent of the expression of motility genes (Reisner, 

Haagensen et al. 2003). The transfer functions located on the Enterobacter sp. 638 plasmid 

pENT638-1 (Ent638_4285-4312) were found mostly to be up-regulated after 12 hours growth on 

sucrose (with average seven-fold change), which might suggest as a positive effect on biofilm 

formation.   

 

Extracellular Poly Saccharide synthesis 

In E. coli, MqsR induces the expression of the transcription factor McbR (Gonzalez 

Barrios, Zuo et al. 2006). McbR inhibits the expression of the periplasmic McbA protein in order 

to prevent the overproduction of colanic acid; excess colanic acid causes mucoidy, which inhibits 

biofilm formation (Zhang, Garcia-Contreras et al. 2008). In Enterobacter sp. 638, mcbR gene 

expression decreased for cultures grown on sucrose after both 6 and 12 hours.  After 6 hours of 
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growth on sucrose, the colanic acid biosynthesis operon (Ent638_2657-2676) became over-

expressed 22-folds on average, but after 12 hours gene expression levels were back to those 

similar as observed for cultures growing on lactate. Previously, it was shown that the increased 

expression of the colanic acid operon is the genetic response underlying biofilm formation and 

colonization processes in E. coli(Prigent-Combaret, Vidal et al. 1999). In E. coli several other 

genes are induced during biofilm formation, including ompC (porin), the proVWX operon (high-

affinity transport system of glycine betaine), pepT (tripeptidase), and nikA (nickel high-affinity 

transport system)(Prigent-Combaret, Vidal et al. 1999). Increased expression levels were 

observed after 12 hours growth on sucrose for all these genes, with the exception of the pepT 

gene that showed no significant change in expression levels. 

Colanic acid is a polyanionic heteropolysaccharide containing a repeat unit with D-

glucose, L-fucose, D-galactose, and D-glucuronate sugars that are nonstoichiometrically 

decorated with O-acetyl and pyruvate side chains.  The subunits of colonic acid based EPS, such 

as pyruvate, D-glucose and L-fucose, are also substrates for the TCA cycle of central 

metabolism. The lower gene expression levels for genes constituting the TCA cycle as observed 

for growth on sucrose could be due to the deprival of these substrates by the synthesis of colonic 

acid.  

 

Acid stress 

Another common trend in the biofilm transcriptome studies is that stress genes are 

induced (Wood 2009). Gene asr encoding acid shock protein is highly induced in the sucrose 

condition at both 6 and 12 hours. It is also consistent with the pH level drop observed at the later 

growth stage of bacteria in the sucrose.  

 

Colonization 

One active colonization pathway of Enterobacter sp. 638 that described by Taghavi et al. 

(2010) is through pectin / pectate degradation. Pectin is a structural polysaccharide contained 

between plant cell walls that help cells bind together. Harbored on the genomic islands 11 and 29 

(Taghavi, van der Lelie et al. 2010), genes were found to putatively encode enzymes to degrade 

demethylated pectin – pectate into oligogalacturonides, and uptake and finally to compounds of 

the general cellular metabolism. During the growth in the two different media, these genes were 

significantly induced in the presence of sucrose from 6 to 12 hours, but not in lactate. This 

pattern is also observed for the uxaABC genes, which encode enzymes for an alternative pathway 

of one middle step of the degradation of pectin – conversion from galacturonate into 2-dehydro-

3-deoxy-D-gluconate. Interestingly, the uxaB gene (Ent638_2013, genomic island 29) located 

closely to the sucrose utilization operon (Ent638_2019-2023), and both also have a similar 

expression pattern – induced by the sucrose growth medium. A collaborative relation is 

suggested between the sucrose metabolism and the host invasion by Enterobacter sp. 638 by the 

genomic analysis as well as the transcriptome analysis.  
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10.4.3 Transcriptional patterns of genes involved in the phytohormone 

synthesis 

Production of acetoin / 2,3-butanediol 

Consistent budABC gene expression pattern from the previous RT-PCR study (Taghavi, 

van der Lelie et al. 2010) has also been seen in the current study. Cells in the sucrose medium 

after 12 hours showed a 1321, 1054 and 283 fold induction of budABC genes respectively 

compared to cells in the lactate. It further confirmed the co-regulated pattern between the sucrose 

utilization operon and the acetoin, 2,3-butanediol synthesis operon.  

 

Production of indole acetic acid (IAA) 

Alternative plant growth promoting mechanism of endophytic and rhizosphere bacteria is 

to synthesize the plant auxin indole acetic acid (IAA). The production of IAA by Enterobacter 

sp. 638 was experimentally demonstrated and is likely via indolepyruvate as an intermediate 

molecule by the tryptophan degradation pathway VII (Taghavi, Garafola et al. 2009; Taghavi, 

van der Lelie et al. 2010). The key enzyme of this pathway is indole-3-pyruvate carboxylase 

(IpdC, Ent638_2923), whose gene expression shows 8-fold induction in the sucrose condition 

compared to lactate at 12h. Gene expressions of two other enzymes (aminotransferase and 

aldehyde dehydrogenase) on the pathway appear not differentially significant between sucrose 

and lactate. However, these two enzymes are considered less important as IpdC, since they are 

usually present in most bacteria, including those that cannot produce IAA. Furthermore, 

experiments have shown that IpdC is solely responsible for the regulation of this pathway, and 

that the first enzyme on the pathway, L-tryptophan aminotransferase, operates very close to 

equilibrium (Koga, Syono et al. 1994; Koga 1995). 

 

10. 5 Clustering and functional category analysis 
 

To demonstrate gene expression patterns across four conditions, clustering analysis was 

performed on the expression data of Enterobacter sp. 638 at condition lactate 6, 12 hours and 

sucrose 6, 12 hours using spearman correlation as the distance metric. Five distinctive expression 

patterns have been found: high level in sucrose but low level in lactate (cluster 1 and 3), low 

level in sucrose but high level in lactate (cluster 2 and 5), and not much differential gene 

expressions (cluster 4) (Table 15). For genes in each cluster, we performed over-representative 

analysis to identify the associated functions with each expression pattern (Table 15). As 

discussed in the previous section, functions including TCA cycle, motility and chemotaxis are 

enriched in the cluster 2 which are featured by repressed expression level in the sucrose 

condition. Cluster 4 appears no significant enriched functions. The gene expression pattern of 

cluster 4 is flatter than other clusters and the top representative function category is unknown 

function, which might explain why no other specific functions significantly enriched for this 

group of genes. Biosynthesis of surface polysaccharides, colanic acid and pilus are over-

representative functions in cluster 1 or 3, which represent high expression level in the sucrose 

condition. While strikingly, functions related to several nutrients uptake (N, Fe and siderophore) 



 

109 

 

also showed up in the cluster 1 and 3 that are up-regulated in the sucrose condition even with no 

shortage of the corresponding nutrients in the medium.  

 

 

 

Table 15. Clustering and functional categories analyses of significantly differential genes. The 

functional categories bioprocess and role are provided from the manual annotation in MaGe 

annotation system. The over-representative analysis is done by R package goseq 1.0.3. 

 

Bioprocess FDR Roles FDR Cluster 

Cluster 1    

 

Transport and binding proteins 0.000 

The Major Facilitator Super 

family 0.000 

Prophage functions 0.000 Structural component 0.000 

Plasmid functions 0.000 plasmid transfer 0.000 

Carbohydrates, organic 

alcohols, and acids 0.011 Replication 0.004 

Scavenge(Catabolism) 0.020 

DNA packaging, phage 

assembly 0.006 

Cations and iron carrying 

compounds 0.023 Fe aquisition 0.006 

  Pilus 0.008 

Cluster 2    

 

Chemotaxis and motility 0.000 Motility 0.000 

Ribosomal proteins 0.000 Ribosome 0.000 

Translation factors 0.000 Translation 0.000 

Surfacestructures 0.001 Flagella 0.000 

ATP-proton motive force inter-

conversion 0.002 Cytoplasm 0.000 

TCA cycle 0.046 H+ 0.000 

PTS 0.046 Periplasmic space 0.000 

  

The H+/Na+-translocating 

F, V-and A-type ATPase 

Super family 0.000 

  Tricarboxylic acid cycle 0.024 

  Inhibition/activation of 

enzymes 0.025 

Cluster 3    

 

Biosynthesis and degradation of 

surface polysaccharides and 

lipopolysaccharides 0.000 Colanicacid(M antigen) 0.000 

Explore 0.000 molybdate 0.033 

Protect 0.000 Methionine 0.033 

Nitrogen metabolism 0.006 Nitrogen metabolism 0.039 

Sugar-nucleotide biosynthesis 

and conversions 0.026 Dessication 0.039 

Anaerobic 0.046 Glutamate biosynthesis I 0.039 

Siderophores 0.050 Enterochelin (enterobactin) 0.039 

  periplasmic binding 

component 0.040 
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Cluster 4    

 

- - - - 

    

Cluster 5     

 

Carbohydrates, organic 

alcohols, and acids 
0.006 4.S.34:citrate/succinate 0.044 

  

 

Nitrogen metabolism 

Although Enterobacter sp. 638 is unable to fix nitrogen, it has the genetic capacity for the 

dissimilatory and assimilatory nitrate reduction pathway. Gene clusters encoding multiple 

nitrate/nitrite transport and reduction pathways locate on the different positions on its genome 

(Taghavi, van der Lelie et al. 2010). These gene clusters showed consistently induced expression 

pattern in the sucrose medium at both 6 hours and 12 hours as cluster 3. Especially, gene nasAB 

nrtCBA nasR, on the putative genomic island 33, have average 20 fold more expression index in 

the sucrose medium than in the lactate at 12 hours.  

 

Iron scavenging  

Siderophore is one of the most efficient systems of bacteria to compete for the limited 

iron for their synergistic interaction with the host plant (Höfte and PAHM 2007). Similarly to 

E.coli K12, Enterobacter sp. 638 is able to synthesize the siderophore enterobactin, which allows 

it to capture iron more efficiently than plant pathogens and restrict their proliferation and thus 

protect plants (Walsh, Morrissey et al. 2001). In Enterobacter sp. 638, genes associated with 

siderophore majorly located within a large cluster (Ent638_1111-1128), including the 

siderophore biosynthesis genes (entFCEBA), secretion genes (entS), and an enterobactin esterase 

gene (fes), as well as two ABC transporter genes for iron uptake (sitABCD and fepCGDB). The 

overall gene expression level of this gene cluster in the sucrose medium is higher compared to 

the one in the lactate medium. There are several other transporters involved in the iron uptake 

having similar pattern that expressed more in the sucrose medium (for example, fepBGDC). 

Particularly, the hmu operon for hemin transport, on the genomic region 25, has been largely 

induced in the sucrose medium at 12 hours (over 100 folds).  
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 Heavy metal tolerance and metal homeostasis  

Metals are vital chemical species to the microorganisms. Although an excess of heavy 

metals are generally toxic to the cell, some of metals are essential to the life at a trace amounts. 

The genomic survey of Enterobacter sp. 638 showed possible mechanisms of metal(loid) 

homeostasis, tolerance (Taghavi, van der Lelie et al. 2010). Significant differential expressions 

were also observed for genes involved in the metal uptake, tolerance and balance. Up-regulated 

expressions at the sucrose condition at 12 hours have been observed by the P-type ATPAse gene 

copA, copper efflux operon cusABCF, nickel uptake operon nikABCDE, and P-type efflux 

ATPase gene zntA that involved in zinc/ cadmium/ cobalt resistance, etc. Nickel is an essential 

cofactor for urease (ureABC, Ent638_3464-3466), which is able to convert urea into ammonia 

(Dosanjh, Hammerbacher et al. 2007). Consistent with the expression change of nickel uptake 

genes nikABCDE, it is also seen the over-expression of gene ureA and ureC for the sucrose 

condition at 12 hours. Besides, nikA gene was shown to be related to the colonization and biofilm 

formation process (Prigent-Combaret, Vidal et al. 1999).  

 

Inductions of these various uptake systems in this endophytic bacterium are solely 

observed under the sucrose growth condition. It may suggest us the well preparation of 

Enterobacter sp. 638 to compete for limited nutrient resources inside the plants that also serves 

as a strong anti-pathogen strategy for its commensal life style.   

 

 

10. 6 Regulatory network of RcsAB 
 

Furthermore, to identify one or more hub regulators responsible for our observed 

transcriptional changes, we resorted to the well-identified regulatory network in E. coli. The 

overview of regulatory network in Enterobacter sp. 638 is shown in Figure 37. This figure 

includes nodes and edges that showed consistent expression (S12 – L12) to the relationships 

recorded in RegulonDB of E.coli K12. The color of edges: red -- deactivation; green – 

activation; blue – dual regulation, which are implied from RegulonDB. There are 851 nodes in 

total. Among the whole regulatory network, one sub-network of RcsAB particularly is of our 

interest.   
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Figure 37. Overview of regulatory network in Enterobacter sp. 638. Nodes and edges are 

included here only when they showed consistent expression (S12 – L12) to the relationships 

recorded in RegulonDB of E.coli K12. The color of edges: red -- deactivation; green – 

activation; blue – dual regulation, which are implied from RegulonDB. The figure was generated 

using Cytoscape.  

 

When searching orthologs of significant genes from our experiments in E. coli database, 

one regulator GadE attracted us. GadE is the immediate upstream regulator for targets involved 

in EPS synthesis and acid response as discussed in section 10.4.2. However, this regulator does 

not have a homolog on the genome of Enterobacter sp. 638. By searching for regulators that 
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share the same targets of GadE, we found the dual regulators RcsA (Ent638_2542) and RcsB 

(Ent638_2797). These two genes encode a two-component system RcsAB, which are also 

involved in capsule biosynthesis and cell division. RcsA (Ent638_2542), the DNA-binding 

transcriptional activator, showed the highest expression level in sucrose condition after 6 hours. 

Their targets the wca operon showed very similar expression pattern compared to rcsA. While 

rcsB (Ent638_2797) didn't show much differential expressions across different conditions. The 

other operon yjbEFGH, as RcsAB targets, is also involved in the EPS production (Ferrieres, 

Aslam et al. 2007) and has consistent expression with its regulator RcsA in our experiment. 

RcsB is involved in a phosphorelay cascade (Majdalani and Gottesman 2005). In contrast, it is 

reported that RcsA, a DNA binding protein related to response regulators but not believed to be 

regulated by phosphorylation, binds with RcsB to activate transcription of target genes 

(Majdalani and Gottesman 2005). Hence, in accordance to the nature of two regulators, RcsA 

showed differential changes across conditions since it functions via transcriptional activation; 

while RcsB remained at a similar expressional level, because it is regulated through 

phosphorylation and thus without transcriptional changes.     

Although RcsAB are not necessarily the direct substitute of the GadE regulator in 

Enterobacter sp. 638, they are involved in several bio-processes of great interests. We noticed 

that the rcsAB genes are not on the same location on genome, and there are two members of Rcs 

regulon rcsCD adjacent to rcsB but on a convergent operon. This organization is similar to that 

occurred in E.coli. The regulatory connections of RcsAB implied from E. coli are shown in 

Figure 38. On the diagram, four blocks under each gene represent expression levels of L6, L12, 

S6 and S12, respectively and with brighter color indicates higher expressions and blank block 

indicates not expressed. The RcsAB regulator appears to activate transcription of genes for 

capsular polysaccharide and repress genes for flagella synthesis (Majdalani and Gottesman 

2005). This is consistent with our observations of activated gene expressions of EPS production 

but reduced ones for flagella synthesis. Therefore, it is suggested that in Enterobacter sp. 638, 

RcsAB regulators are also responsible for modulation of EPS production, flagellar and curli fiber 

synthesis. These outer membrane related activities are essential as part of an inevitable 

colonization process for bacteria entering host plants.   
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Figure 38. The regulatory network of RcsAB. The color of edges: red -- deactivation; 

green – activation, which are implied from RegulonDB. Four blocks under each gene represent 

expression levels of L6, L12, S6 and S12, respectively and with brighter color indicates higher 

expressions and blank block indicates not expressed. The figure was generated using VistaClara 

plugin (1.05)  (Kincaid, Kuchinsky et al. 2008) in Cytoscape. 

 

 

 

10. 7 Outlook 
 

In this bioinformatics pipeline, we have outlined the major steps starting from newly 

sequenced organism to the final discovery of regulatory networks. In brief, it includes genome 

annotations, comparative genomics and functional analyses, differential gene expression analysis 

by mRNA sequencing. Further biological insight can be gained by exploring patterns of 

expression changes within clusters and associated functions, and ultimately integrates results to 

regulatory networks.  

We achieved good biological interpretations from this pipeline; nevertheless there are 

spaces for further refinements. For example, many existing approaches may deserve further 

study in terms of their flexibility to accommodate various study designs and sample sizes. 

Furthermore so far, comparative genomic analysis and regulatory network analysis are limited by 
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the mapped existing knowledge from the model organism E. coli, therefore lack unique links of 

exclusive genes in our bacteria. This incompletion of regulatory relations may be addressed by 

further Chromatin Immunoprecipitation (ChIP) experiment or consensus promoter analysis, etc. 

As this field is evolving fast, we expect many new methods and tools, from biology, computer 

science and statistics, for analyses at each level to emerge in the near future, and thus help better 

understand the complex biological pathways. 
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