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Abstract of the Dissertation

Cryo Soft X-ray Diffraction Microscopy with
Biological Specimens

by

Xiaojing Huang

Doctor of Philosophy

in

Physics

Stony Brook University

2009

X-ray diffraction microscopy (XDM) is a lensless imaging tech-

nique well suited to studying thick biological samples at high res-

olution. Because x-rays have relatively short wavelengths, x-ray

microscopes have the potential to achieve higher resolution than

visible light microscopes. X-rays have high penetration ability,

which enables x-ray microscopes to image samples that are too

thick for electron microscopes. X-ray photons can be considered

to interact with objects only once in most cases, which simpli-

fies the data analysis process. Furthermore, by dispensing with

the resolution and efficiency limitations imposed by x-ray optics,

XDM can provide images with a resolution only confined by the

maximum diffraction angle that can be collected and the sample’s

radiation tolerance.
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We demonstrated through numerical simulations that XDM has

the capability to deliver equivalent resolution images using fewer

photons, compared with conventional x-ray microscopy. This is

an important advantage for studying radiation-sensitive biological

and soft matter specimens.

We applied XDM on a chemically dried yeast cell with 750 eV x-

rays, and obtained images at 10 different rotation angles. They

provided partial 3D structure information of the complex object.

However, radiation damage imposed on the specimen prevented

the taking of more data as required for a full 3D reconstruction.

We obtained the first image of an intact, frozen hydrated eukaryotic

yeast cell using soft x-ray diffraction microscopy. Frozen hydrated

samples are interesting because they are close to the cell’s natural,

hydrated state without dehydration artifacts, and they are radia-

tion hard. By plunge-freezing the specimen into liquid ethane and

maintaining it below -170◦C, artifacts due to dehydration, ice crys-

tallization, and radiation damage are greatly reduced. In this ex-

ample, coherent diffraction data using 520 eV x-rays were recorded

and reconstructed to reveal a budding yeast cell at a resolution bet-

ter than 25 nm. This demonstration represents an important step

towards high resolution imaging of cells in their natural, hydrated

state.
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Chapter 1

Microscopy with x-rays

X-ray microscopy has been used for high resolution imaging, because of its

unique characteristics of short wavelength and deep penetration ability. This

chapter describes x-ray interactions with matter, the production of coherent

x-rays from synchrotron light sources, and the advantages and challenges of

x-ray microscopies.
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1.1 X-ray spectral region

The x-ray region is located between the ultraviolet and gamma ray regions in

the electromagnetic spectrum. As shown in Fig. 1.1, “soft” x-rays commonly

mean x-rays from an energy about 100 eV to several keV, with typical atten-

uation lengths of a few microns for low-Z elements which make up the main

part of the mass of biological specimens. The “hard” x-rays are commonly

from several keV to about 100 keV with attenuation lengths up to millimeters.

Soft x-rays with energies lower than 1 keV are considered in this thesis work.

The x-ray photon energy E and wavelength λ are related by

E = hν = h
c

λ
, (1.1)

where h is the Planck’s constant 6.626 × 10−34 J·sec or 4.136 × 10−15 eV·sec,
ν is the wave frequency, and c is the speed of light in vacuum 3.0× 108 m/sec.

X-ray wavelengths vary from 10−2 nm to about 10 nm.

 1 m  100 nm  10 nm  1 nm  0.1 nm = 1Å

 10 keV

 CuK

 2a0

 SiK OK CK SiL

 1 keV

 Photon energy

Wavelength

 100 eV 10 eV 1 eV

IR VUV

Hard X-raysUV Extreme Ultraviolet

Soft X-rays
 CuKα

Figure 1.1: A portion of the electromagnetic spectrum extending from the
infrared to the x-ray region [1].

The high penetration ability of x-rays has attracted scientific attention

since they were discovered, as they can interact with internal structures rather

than the surface features. Moreover, because they have relatively short wave-

lengths, x-rays can be used to distinguish small structures as in microscopy.

The first ever Nobel Prize in Physics was awarded to W. Röntgen in 1901 for

the discovery of these remarkable rays with exceptional importance.
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1.2 X-ray refractive index

1.2.1 Propagation in vacuum

The propagation of all electromagnetic waves, including x-rays, is described

by Maxwell’s equations [2, 3]:

∇×H =
∂D

∂t
+ J Ampere’s law, (1.2)

∇×E = −∂B
∂t

Faraday’s law, (1.3)

∇ ·B = 0, (1.4)

∇ ·D = ρ Coulomb’s law, (1.5)

where H is the magnetic field vector, D is the electric displacement, J is the

current density, E is the electric field vector, B is the magnetic density, and

ρ is the charge density.

Considering the waves in vacuum, the constitutive relations take the form

D = ǫ0E, (1.6)

B = µ0H , (1.7)

where ǫ0 is the permittivity (dielectric constant), and µ0 is the magnetic per-

meability in vacuum.

Electromagnetic waves are solutions to Maxwell’s equations. The vector

wave equation can be obtained from Eqs. 1.2–1.7 as

(

∂2

∂t2
− c2∇2

)

E(r, t) = − 1

ǫ0

[

∂J(r, t)

∂t
+ c2∇ρ(r, t)

]

, (1.8)

where c = 1/
√
ǫ0µ0 is identified as the velocity of an electromagnetic wave in

vacuum.
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1.2.2 Interaction with bound electrons

X-ray propagation in a medium can be explained on the basis of interaction

with bound electrons.

In the semi-classical model, an atom can be represented as a massive, pos-

itively charged (+Ne) nucleus surrounded by N low mass, negatively charged

electrons bound at discrete energies. When an external electromagnetic wave

(for instance, an incident x-ray wave) passes through this atom as shown in

Fig. 1.2, the bound electrons will oscillate, driven by the imposed electromag-

netic field in the presence of the nuclear restoring force. An electron’s response

to the external electromagnetic field depends on both the electron’s resonant

frequency ωs and the frequency of external wave ω.

The equation of motion of the bound electrons with oscillation mode ωs

can be written following Newton’s second law of motion as

me
d2xs

dt2
+meγds

dxs

dt
+meω

2
sxs = −e(Ei + vs ×Bi), (1.9)

whereme is the mass of electron, xs is the displacement, and γds is the damping

ratio. The first term in Eq. 1.9 is the acceleration contribution, the second

term is the dissipative force term which accounts for energy loss, and the third

term is caused by the restoring force for an oscillator of resonant frequency ωs.

The term on the right side is the Lorentz force imposed by the external field.

As the oscillation is driven by the incident electromagnetic field, the dis-

placement xs, velocity vs = ∂xs/∂t, and acceleration ∂2xs/∂t
2 all have the

same time dependence exp (−iωt) as the incident field, along with possible con-

stant phase offsets. For non-relativistic oscillation velocities vs, the vs ×Bi

term is negligible. In that case, Eq. 1.9 can be simplified to

me(−iω)2xs +meγds(−iω)xs +meω
2
sxs = −eEi. (1.10)

Combining factors, the harmonic displacement is given by

xs =
e

me

1

ω2 − ω2
s + iγdsω

Ei. (1.11)
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x

Figure 1.2: Schematic illustration of a bound electron oscillation mode re-
sponse to an incident electromagnetic wave in the presence of restoring and
dissipative forces.

The oscillation velocity is thus

vs =
e

me

1

ω2 − ω2
s + iγdsω

∂Ei

∂t
. (1.12)

1.2.3 Refractive index

For the propagation of a transverse wave, where the electric field plane is

perpendicular to the propagation direction, only the component of the current

density in the transverse plane JT contributes. Supposing that there is no net

charge density in the medium, the ∇ρ term in the wave equation Eq. 1.8 can

be dropped. In this condition, Eq. 1.8 can be rewritten as

(

∂2

∂t2
− c2∇2

)

E(r, t) = − 1

ǫ0

∂JT(r, t)

∂t
. (1.13)

The transverse current density JT contributed from many electrons is a

summation over all electrons at different resonance frequencies in the medium

JT(r, t) = −ena

∑

s

gsvs(r, t), (1.14)

where na is the average density of atoms, and gs is the oscillator strength which
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is the number of electrons associated with a given resonance frequency ωs in

an atom. The sum of the oscillator strengths for all resonances is equal to the

total number of electrons in the atom

∑

s

gs = Z, (1.15)

where Z is the total number of electrons per atom.

Substituting Eqs. 1.12, 1.14 and 1.15 into Eq. 1.13, we have

(

∂2

∂t2
− c2∇2

)

E(r, t) =
e2na

ǫ0me

∑

s

gs

ω2 − ω2
s + iγdsω

∂2E(r, t)

∂t2
, (1.16)

which can be reorganized in the standard form of a wave equation as

[

∂2

∂t2
− c2

n2(ω)
∇2

]

E(r, t) = 0, (1.17)

where the refractive index n(ω) is defined as

n(ω) =

[

1 − e2na

ǫ0me

∑

s

gs

ω2 − ω2
s + iγdsω

]1/2

. (1.18)

In x-ray region, ω2 is very large compared to the quantity e2na/ǫ0me, so the

second term in the square brackets is much smaller than 1. The index of

refraction can be written using the first order approximation of the Taylor

Series (
√

1 − ε ≃ 1 − 1
2
ε with ε≪ 1) as

n(ω) = 1 − 1

2

e2na

ǫ0me

∑

s

gs

ω2 − ω2
s + iγdsω

. (1.19)

The complex scattering factor is usually denoted as f(ω) with the form

f(ω) =
∑

s

gs

ω2 − ω2
s + iγdsω

, (1.20)
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which can be written in terms of the complex components

f(ω) = f1(ω) − if2(ω) (1.21)

with

f1(ω) =
∑

s

gs(ω
2 − ω2

s)

(ω2 − ω2
s)

2 + (γdsω)2
, f2(ω) =

∑

s

gsγdsω

(ω2 − ω2
s)

2 + (γdsω)2
. (1.22)

For x-rays, the refractive index deviates slightly from unity. It is common

to express it in the form:

n(ω) = 1 − δ + iβ, (1.23)

where the negative sign before δ is determined by choosing the propagation

direction as the forward direction, and this sign will be flipped if the forward

direction is defined oppositely. Combined with Eqs. 1.19, 1.20 and 1.21, we

obtain

δ =
1

2

e2na

ǫ0me
f1(ω), (1.24)

β =
1

2

e2na

ǫ0me
f2(ω). (1.25)

We note that both δ and β are dependent on incident x-ray frequency ω, or

the x-ray energy. As an example, Table 1.1 shows the δ and β values of carbon

and protein at different x-ray energies [4]. As it will be discussed in Sec. 1.2.4,

δ is related to phase shift, and β is related to absorption. We can see that

at higher x-ray energies, both the absorption and phase shift contrasts are

significantly reduced. It’s also noticeable that the phase factor can be orders

of magnitude larger than absorption. Because of this fact, most samples show

mainly phase rather than absorption contrast at high x-ray energies.
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Table 1.1: Refractive index of carbon and protein with a composition of
H48.6C32.9N8.9S0.3 and a density of 1.35 g/cm3.

X-ray energy δ (carbon) β (carbon) δ (protein) β (protein)
520 eV 1.76606×10−3 5.31843×10−4 9.89096×10−4 2.64519×10−4

750 eV 8.81000×10−4 1.45286×10−4 5.43095×10−4 1.04496×10−4

1 keV 4.94676×10−4 4.94325×10−5 3.10657×10−4 3.63702×10−5

1.5 keV 2.16575×10−4 1.04040×10−5 1.37252×10−4 7.89374×10−6

5 keV 1.88883×10−5 8.42194×10−8 1.20456×10−5 9.00700×10−8

10 keV 4.69771×10−6 4.60272×10−9 2.99445×10−6 5.39158×10−9

1.2.4 Absorption and phase shift

Because the x-ray wave interacts with the medium in which it propagates, the

wave front will be modified to have the amplitude decreased and the phase

advanced or retarded.

Let’s consider these effects on a plane wave

ψ(r, t) = ψ0e
−i(ωt−k·r), (1.26)

where ψ0 is the initial amplitude, and the propagation direction of this plane

is defined as the forward direction which is consistent with the refractive index

definition in Eq. 1.23. In the propagation direction, we have k·r = kz, where z

is the distance which the wave has traversed in the medium. The wave number

k in the medium can be obtained from the complex dispersion relation, which

is defined as
ω

k
=
c

n
=

c

1 − δ + iβ
. (1.27)

Substituting Eq. 1.27 into Eq. 1.26, we have

ψ(z, t) = ψ0e
−iω(t−z/c)ei(2π/λ)δze−(2π/λ)βz , (1.28)

where ω/c = 2π/λ is used. The first exponential term in Eq. 1.28 represents the

phase advance of vacuum propagation, the second term represents the phase

shift due to interactions with the medium, and the third term represents a

decay of the wave amplitude due to absorption.
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Eq. 1.28 can be considered as the near field exit wave from a medium with

thickness z and refractive index n. The intensity of this exit wave can be

calculated by

I(z) = ψ∗ ·ψ = I0e
−2(2π/λ)βz = I0e

−µz, (1.29)

where I0 = ψ2
0 , µ is the attenuation coefficient which is defined by the Lambert-

Beer law as

µ =
4πβ

λ
. (1.30)

The attenuation length is the distance into a medium when the wave intensity

drops to 1/e of its initial magnitude.From Eq. 1.29, the attenuation length is

the inverse of the attenuation coefficient or 1/µ.

1.3 Synchrotron x-ray source

A number of x-ray sources have been invented. One motivation for the evolu-

tion of x-ray sources is the pursuit of higher brightness. The spectral brightness

B is defined as the photon flux per unit phase space volume, which is the pho-

ton number ∆Nphoton per second s, per source area ∆A, per solid angle ∆Ω,

and per 0.1% bandwidth BW, or

B =
∆Nphoton

s · ∆A · ∆Ω · 0.1%BW
. (1.31)

Table 1.2 shows the typical brightnesses of several different types x-ray sources.

For the diffraction experiments described in this dissertation, the spectral

brightness and coherence of the x-ray beam are of great importance. The

time-averaged brightnesses are listed in Table 1.2, except for free electron

laser (FEL), for which it refers to the peak brightness. As we can see, the

FEL provides the highest brightness. However, the photons from an FEL are

so tightly compressed into ultrashort pulses that they may cause significant

heating of a specimen, so that some specimens, especially biological samples,

could be easily destroyed by a single pulse exposure. Without a beam splitter

to provide multiple viewing directions for one pulse, FELs may have challenges
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Table 1.2: Typical brightnesses of x-ray sources. The time-averaged bright-
nesses are listed, except for free electron laser (FEL), for which it refers to the
peak brightness.

X-ray source Brightness (photons/s/mm2/mrad2/0.1%BW)
X-ray tube 109 [5, 6]

X-ray emitting plasma 107 [7]
Bending magnet 1014 [8]

Wiggler 1016 [9]
Undulator 1019 [10]

Free electron laser 1030 [11]

for 3D imaging of biological specimens. On the other hand, undulators, one

type of magnetic structure used to generate synchrotron radiation, have the

ability to produce discrete, spectrally narrow, intense and continuous x-ray

beams. They match our experimental requirements very well.

1.3.1 Undulator radiation

An undulator is a periodic magnetic structure, as illustrated in Fig. 1.3. When

the relativistic electron beam traverses the alternating magnetic field in the

axial direction, it oscillates harmonically in the transverse plane with angular

excursions which are called undulations. With a relatively weak magnetic

field, the amplitude of these angular excursions are small, which can generate

narrow radiation cones.

Let’s consider the characteristics of undulator radiation in a little more

detail. Suppose the electron beam speed is v, which is close to the light speed

in vacuum c. The Lorentz factor γ is defined as 1/
√

(1 − v2/c2). If the period

of the undulator is λu, according to Lorentz contraction of length, the new

period in the electron’s reference frame is

λ′ =
λu

γ
. (1.32)

In this reference frame, the frequency of the emitted radiation is f ′ = c/λ′ =

cγ/λu. In the laboratory reference frame, this frequency is modified by the
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relativistic form of the Doppler frequency formula as

f =
f ′

γ(1 − β cos θ)
=

c

λu(1 − β cos θ)
, (1.33)

where β = v/c, and θ is the angle between the observation direction and the

moving direction of electron beam. For small angles off axis, the first order

approximation of Taylor expansion for cos θ is 1 − θ2/2, so that Eq. 1.33 can

be simplified as

f =
c/λu

1 − β(1 − θ2/2)
=

2cγ

λu(1 + γ2θ2)
, (1.34)

where 1−β ≃ 1/2γ2 with β ≃ 1 is used for the second equality. The radiation

wavelength in the laboratory reference frame is then

λ =
c

f
=

λu

2γ2
(1 + γ2θ2). (1.35)

Undulator
(N periods)

Electron
beam

N
N

N

N
N

NS
S

S

S
S

S

Figure 1.3: Schematic of an undulator: a narrow cone of radiation generated
by deflecting relativistic electron beam with alternating magnetic structure.

As we can see in Fig. 1.3, the electron oscillation in the transverse plane
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leads to a longer traveling path than the initial circular trajectory. As a

result, the axial velocity is reduced. By solving the equation of motion of the

oscillating electrons [1], the effective value of the Lorentz factor can be found

as

γ∗ =
γ

√

1 +K2/2
, (1.36)

where K is the non-dimensional magnetic strength parameter of an undulator,

which is defined as

K =
eB0λu

2πmec
, (1.37)

where B0 is the peak magnetic field.

Replacing γ in Eq. 1.35 with γ∗ in Eq. 1.36, we obtain the undulator

equation for the fundamental mode:

λ =
λu

2γ2
(1 +

K2

2
+ γ2θ2). (1.38)

The bandwidth of the emitted radiation is determined by the number of oscil-

lation period N as [12]
∆λ

λ
=

1

N
. (1.39)

For mth harmonics, both the frequencies and oscillation cycles are enhanced

by a factor of m. The corresponding undulator equation is

λm =
λu

2γ2m
(1 +

K2

2
+ γ2θ2), (1.40)

and the band width is
∆λ

λ
=

1

mN
. (1.41)

1.3.2 Undulator gap

The magnetic field produced by the permanent magnet arrays in an undulator

(as shown in Fig. 1.3) is determined by its parameters such as the remanent

magnetic field Br, the period length λu, the height of magnet blocks hu, the

number of magnet blocks in each period in upper or lower branch M ′, and
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the tunable gap between those two branches g. For many purposes, their

rigorously expressed relationship given by [13] can be simplified by a sine

wave with period λu and amplitude [14]

B0 = 2Bre
−πg/λu

sin(π/M ′)

π/M ′
[1 − e−2πhu/λu ], (1.42)

where we note that all the variables on the right side are fixed with the mag-

netic structure, except for the undulator gap g. Therefore Eq. 1.42 can be

rewritten as a function of g as

B0 ∝ e−πg/λu . (1.43)

From Eq. 1.37, K varies linearly with B0 or K ∝ B0. Substituting this

result into Eq. 1.43, we have

K = Cue
−πg/λu , (1.44)

which can be rewritten specifically with one unknown constant as

g =
λu

π
ln
Cu

K
, (1.45)

where Cu is a constant that needs to be determined.

1.3.3 ALS beamline 9.0.1 undulator

The experimental apparatus [15] used in this dissertation is stationed at Beam-

line 9.0.1 at Advanced Light Source (ALS) at Lawrence Berkeley National

Laboratory, where the x-ray radiation is produced by undulator U10. The

engineering design parameters of U10 are listed in Table 1.3 [16][17].

We operated the microscope at 520 and 750 eV energies for diffraction

experiments using the third harmonic of the undulator. The x-ray energy is

selected by adjusting undulator gap to the specific setting. To determine the

required gap value, we first calculate the fundamental energy Ef from the
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Table 1.3: Engineering design parameters of undulator U10 at ALS

Period length 10 cm
Number of period 43

Effective field range 0.98–0.05 T
Energy range (at 1.9 GeV ring energy) 8–1500 eV

Gap range 2.27–11.6 cm
Gap step resolution 2.8 µm
Operation pressure 10−9 torr

target energy Et and harmonic number m using Eq. 1.40 and E = 2π~c/λ as

Ef =
Et

m
. (1.46)

We then calculate the undulator parameter K on axis (θ = 0) using the energy

form of the undulator equation Eq. 1.38, which gives

Ef(keV) =
0.9496E2

e(GeV)

λu(cm)
(

1 + K2

2

) , (1.47)

where Ee is the electron energy in the synchrotron storage ring. Eq. 1.47 can

be reorganized to be

K =

√

2

[

0.9496E2
e(GeV)

Ef(keV)λu(cm)
− 1

]

. (1.48)

Finally, the undetermined constant parameter Cu in the relationship between

K and g in Eq. 1.45 is calibrated from fitting the measured field strength of

this undulator, giving Cu = 19.573. The calibration also gives a multiplicative

correction factor 0.935 to Eq. 1.45, which reflecting the characteristics of the

actual device as opposed to an ideal model of it.

Using these undulator parameters for the ALS operated at 1.9 GeV, we

find that to obtain 530 eV radiation from the third harmonic, a gap of 7.91

cm and a K of 1.37 is required, while for 750 eV x-rays a gap of 9.29 cm and

a K of 0.86 is required.
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1.4 X-ray microscopy for biological samples

There are three major microscopy techniques for biological imaging: visible

light microscopy, electron microscopy and x-ray microscopy. Each type has

strengths that make it well suited for one circumstance, and weaknesses that

limit its application in other cases. Visible light microscopy allows one to study

biological samples in their natural state and with maximum ease of use, but its

achievable resolution is severely limited by the wavelength of the illumination.

Electron microscopy has the ability to achieve extremely high resolution, but

it can only penetrate less than a half micron into biological materials; it cannot

image micron size objects in their entirety. X-ray microscopy fills a resolution

and fidelity gap between the other two microscopies. It can be used for the

imaging of unsectioned biological samples which are too thick to be viewed in

electron microscopy, and it has the potential for achieving much higher spatial

resolution than the most advanced optical microscopy. In this last section

of Chapter 1, we discuss some basic and important considerations of x-ray

microscopy.

1.4.1 Resolution

Resolution is one of the key characteristics to judge the performance of micro-

scopes.

If two objects are brought close, the intensity between them rises in the

image, so it becomes difficult to resolve each individual object. The transverse

resolution δt, which is the permitted separation that can be distinguished, is

defined by the Rayleigh criterion, which states that two circular objects are

minimally resolved when the central peak of the Airy pattern from one object is

located at the first minimum ring of the Airy pattern from the other displaced

δt away. In this condition, the overlapped intensity of the central Rayleigh dip

is 26.5% off from each single peak.

Suppose that the Airy patterns are collected on a screen placed at a distance

z from a round object with diameter d, which is illuminated by light with

wavelength λ. The radius of the first minimum ring in its Airy pattern can be
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calculated by

rnull =
1.22λz

d
. (1.49)

We introduce another important concept, the numerical aperture (N.A.), which

is defined as the product of the medium’s refractive index and the sine of the

angle between the optical axis and the outermost light direction, or N.A. =

n sin θ. The refractive index equals 1 in air, and in small angle approximation

sin θ ≃ θ, so N.A. is d/2z in this case. The transverse resolution δt = rnull can

then expressed from Eq. 1.49 as

δt =
0.61λ

N.A.
. (1.50)

The longitudinal resolution δl, or depth of focus, is the maximum displace-

ment from the focal plane, when the intensity is decreased by a amount which

does not affect resolution. It is shown [3] that the intensity on-axis decreases by

about 20% (comparable to 26.5% in Rayleigh criterion) when the observation

plane displaced by an amount of ±λ/(2(N.A.)2). Based on this consideration,

the longitudinal resolution δl is obtained as

δl =
λ

2(N.A.)2
. (1.51)

1.4.2 Water window

Table 1.1 shows that, in general, the higher the x-ray energy, the less inter-

action with the medium. However, a side effect of the increase in penetration

power is the loss in image contrast. Therefore, the x-ray energy has to be

carefully chosen according to the properties of the specimen to be studied.

Regarding biological samples, where carbon and oxygen are the most abun-

dant atoms, there is an exceptional spectral region to work with called “the

water window” between the carbon and oxygen K absorption edges (284 eV

and 544 eV, respectively) [18], where the contrast of organic materials is opti-

mized with low absorption in water. This is shown in Fig. 1.4.
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Figure 1.4: Penetration distances on x-rays and electrons in water and protein
as a function of energy [19]. The blue curve is for oxygen, and the red curve
is for carbon. The spectral region between carbon and oxygen K absorption
edges give best contrast of carbon against oxygen (water). This region is
known as the “water window”.
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1.4.3 Radiation damage

Radiation damage results when materials are subject to ionizing illuminations.

Depending on the energy level of the incident radiation, the interactions with

electrons in the material can be described in three forms: Photoelectric, Auger,

or Compton effects. They are known as the primary damage. In hydrated

materials, the energetic electrons generated by the primary reactions can create

free radicals, which can diffuse and change the chemical states of the object,

causing secondary damage.

To measure the intensity of radiation exposures, the radiation dose is de-

fined as the absorbed energy per mass with an SI unit of Gray (Gy). One

Gray equals to 1 Joule of energy absorbed by 1 kilogram of material. Con-

sider a specimen that is illuminated by an average of n̄ photons per pixel,

with a pixel dimension of ∆r (and thus an areal exposure of n̄/∆2
r). If an

incident beam is attenuated according to the Lambert-Beer law (Eq. 1.29

and Eq. 1.30), then the fraction of energy absorbed per thickness is given

by −dI/dz = µ I0 exp(−µz), where z is the distance into which the beam has

already penetrated the specimen. We can therefore describe the “skin dose”

D at z = 0 by

D =
n̄Ephotonµ

∆2
rρ

, (1.52)

where ρ is the density of the specimen material and Ephoton is the photon en-

ergy. The skin dose D calculation above assumes no escaped energy, which

is usually the case for soft x-ray microscopy because of the short range of

secondary electrons produced following x-ray absorption and the very low flu-

orescence yield of the low-Z elements that make up the main part of the mass

of biological specimens. The relative biological effectiveness or RBE factor is

considered to be equal to unity as usually the case with x-ray photons. Based

on the above, we assume a direct proportionality between photons per pixel

n̄, areal exposure n̄/∆2
r, and absorbed dose D.

Theoretical calculations [20] and experimental data [21] show that higher

illumination dose is required to resolve higher resolution. It has also been

shown [21, 22] that the radiation damage effects limit the achievable resolu-

tion. The battle between dose and radiation damage sets a resolution limit for
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biological x-ray microscopy to be around 10 nm, as shown in Fig. 1.5.

10 nm

1018

1016

1014

1012

1010

108

106

0.1 1 10 100

Resolution (nm)

R
ad

ia
tio

n 
do

se
 (

G
ra

y)

Imaging: 1 keV X rays

10 keV

X-ray microscopy

Electron

microscopy

X-ray cryst.

Electron cryst.

X-rays: ribosome

Required for non-crystal x-ray imaging

Within damage limit

Figure 1.5: Radiation dose requirement for achievable resolutions, together
with the maximum tolerable dose before damage [21]. The required doses
are calculated for protein against water background at 1 keV and 10 keV x-
ray energies. The maximum tolerable doses are summarized from published
literatures. The decreasing Dose vs Resolution line crosses with the increasing
Dose vs Damage line at a resolution about 10 nm.
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Chapter 2

X-ray Diffraction Microscopy

X-ray diffraction microscopy (XDM) is a novel imaging method, which involves

no optics in the imaging system. As a result, it dispenses with the techno-

logical limitations of lens efficiency and resolution. The achievable resolution

is only limited by the maximum collected diffraction angle and the radiation

tolerance of the sample. In this chapter, we will discuss the principles of lens-

based microscopy and lensless XDM, and the approximations and limitations

of XDM.
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2.1 Lens-based imaging

In conventional microscopes, the scattered signal from an object illuminated

by an incident beam is collected and phased to form an image in real space

by a lens or a combination of lenses, as shown in Fig. 2.1. We are going to

briefly review the principles of the lens-based microscopy before we discuss the

advantages of lensless imaging system.

Incident beam

Object

r-
P

P’

z

x

y

z

v

u

1 +z2z1

Lens

ξ

η

rr’

r’

Image

P’’
0

Figure 2.1: Geometry for lens-based imaging formation.

2.1.1 Fresnel diffraction

Assume the object is located in the (ξ, η, 0) plane, and the illumination is along

the positive ẑ direction, as shown in Fig. 2.1. The exit wave from the object

can be considered as a collection of Huygens point sources. Each point source

propagates towards the lens plane (x, y, z1) independently. The wave front in

front of the lens can be obtained by summing up the amplitude from all those

point sources, as

ψ(x, y) =

∫ ∫

ψ(ξ, η)
exp (ik|r − r′|)

|r − r′| cos θdξdη

= z1

∫ ∫

ψ(ξ, η)
exp (ik|r − r′|)

|r − r′|2 dξdη, (2.1)

where θ is the angle between r − r′ and ẑ, and cos θ equals z1/|r − r′|.
We apply the Fresnel approximation ((x− ξ)2 + (y− η)2 ≪ z2) to simplify
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Eq. 2.1. In this condition, using the Taylor expansion approximation of the

square root function, we have

|r − r′| = z1

√

1 +

(

x− ξ

z1

)2

+

(

y − η

z1

)2

≈ z1

[

1 +
1

2

(

x− ξ

z1

)2

+
1

2

(

y − η

z1

)2
]

. (2.2)

The accurate expression of the Fresnel approximation requires that the phase

change induced by ignoring the third term in Taylor expansion is much less

than 1 radian, which gives π[(x− ξ)2 + (y − η)2]2/(4λ) ≪ z3.

Eq. 2.1 then becomes

ψ(x, y) =
eikz1

z1
e

ik
2z1

(x2+y2)

∫ ∫

ψ(ξ, η)e
ik
2z1

(ξ2+η2)
e

−ik
z1

(xξ+yη)
dξdη. (2.3)

2.1.2 Impulse response and lens law

For a linear system, the superposition property gives

ψ(x, y) =

∫ ∫

ψ(ξ, η)δ(x− ξ, y − η)dξdη, (2.4)

which guarantees that the image can be obtained by summing each individual

impulse response as

ψi(x, y) = S
{
∫ ∫

ψo(ξ, η)δ(x− ξ, y − η)dξdη

}

=

∫ ∫

ψo(ξ, η)S {δ(x− ξ, y − η)} dξdη

=

∫ ∫

ψo(ξ, η)h(x, y; ξ, η)dξdη, (2.5)

where the operator S represents the system function operating on an input

object to produce an output image, and h is the imaging system response to

one point source, i.e., the impulse response, which is also known as the point

spread function.
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Let’s consider what h looks like for the Fresnel imaging system. Consider

one point on the object at coordinates (ξ, η, 0). The corresponding incident

wave front before entering the lens can be described as a spherical wave di-

verging from that point, or

ψ
(p)
l (x, y) =

1

|r − r′|e
ik|r−r′|

=
eikz1

z1
exp

{

ik

2z1

[

(x− ξ)2 + (y − η)2
]

}

, (2.6)

where the simplification step Eq. 2.2 under the Fresnel approximation is ap-

plied in the second equality. The same result can be obtained by substituting

ψ(ξ, η) in Eq. 2.3 with δ(ξ − ξ′, η − η′) which represents this point source.

The function of a lens with a focal length fl can be expressed as a phase

transformation factor exp [−ik(x2 + y2)/2fl] due to the thickness variance, and

a pupil function P (x, y) because of the finite radius. Then, the wave front from

a pulse after the lens takes the form

ψ
′(p)
l (x, y) =

eikz1

z1
P (x, y) exp

[

− ik

2fl
(x2 + y2)

]

exp

{

ik

2z1

[

(x− ξ)2 + (y − η)2
]

}

.

(2.7)

This wave front exiting the lens can be again treated as a collection of

Huygens point sources. Then, the wave front at the image plane (u, v, z1 + z2)

can be calculated using Fresnel diffraction formula Eq. 2.3. We note that this

image is formed by an impulse input, so it is the point spread function of the

imaging system h, which is

h(u, v; ξ, η) =
eik(z1+z2)

z1z2
exp

[

ik

2z2
(u2 + v2)

]

exp

[

ik

2z1
(ξ2 + η2)

]

×
∫ ∫

P (x, y) exp

[

ik

2

(

1

z1
+

1

z2
− 1

fl

)

(x2 + y2)

]

× exp

{

−ik
[(

ξ

z1
+
u

z2

)

x+

(

η

z1
+
v

z2

)

y

]}

dxdy. (2.8)

The quadratic phase factor in the integral is eliminated when the object dis-
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tance z1 and the image distance z2 satisfy

1

z1
+

1

z2
=

1

fl
, (2.9)

which is known as the lens law.

If the impulse response of the system depends only on the distance between

the excitation point and the response point, i.e., (x−ξ) and (y−η), h(x, y; ξ, η)
can be written as h(x − ξ, y − η). In the case of Eq. 2.8, h is determined by

(u − Mξ) and (v − Mη), where M = −z2/z1 is the system magnification.

Under this condition, Eq. 2.5 shows that the image equals the convolution of

the object with the point spread function of the system, or

ψi = ψo ⊗ h, (2.10)

where the symbol ⊗ denotes the convolution of two functions.

2.1.3 Modulation transfer function

Considering a full-field transmission x-ray microscope (TXM) operating in

brightfield incoherent imaging mode, this is done by using a condenser lens to

illuminate the specimen, and an objective lens to collect the scattered light and

deliver a phased, magnified, real-space image to a detector. In this incoherent

circumstance, Eq. 2.10 becomes the intensity convolution relationship

Ii = Io ⊗ |h|2. (2.11)

The Fourier transform of the intensity of the point spread function, F(|h|2)
(where F denotes the Fourier transform operation), is defined as the Modula-

tion Transfer Function, or MTF. The MTF can be calculated [23] as

MTF =























2
π

[

cos−1
(

f
f0

)

− f
f0

√

1 −
(

f
f0

)2
]

f ≤ f0

0 f > f0,

(2.12)
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where f represents spatial frequency, and f0 is the spatial frequency cutoff.

Using the convolution theorem of Fourier transforms F{}, the image in-

tensity can be represented as

Ii = F−1

{

F{Io} · F{|h|2}
}

= F−1

{

F{Io} · MTF

}

. (2.13)

2.1.4 Zone plate

For x-rays, Fresnel zone plates are utilized as diffractive lenses, because it is

difficult in practice to make normal optical lenses with materials of refractive

indices close to unity in the x-ray spectral region.

A Fresnel zone plate consists of alternate transparent and opaque rings.

The radius of the mth zone is given by

r2
m = mfzpλ+m2λ2/4, (2.14)

where fzp is the first order focal length. fzp can be calculated by

fzp = 4Ndr2
N/λ, (2.15)

where N is the number of zones, and drN is the outermost zone width. The

numerical aperture, transverse resolution and depth of focus of the zone plate

are given by

N.A.zp =
λ

2drN
, (2.16)

δzp
t = 0.61

λ

N.A.zp
= 1.22drN , (2.17)

δzp
l = 1.22

λ

N.A.2zp
= 4.88

dr2
N

λ
. (2.18)

For example, for 520 eV x-rays with λ = 2.38 nm, a zone plate with 20 nm

outermost zone width, the achievable transverse resolution and depth of focus

are 24.4 nm and 0.82 µm, respectively.

As we can see, the performance of TXM is highly restricted by the zone

plate quality. Although TXM has been routinely used for high resolution
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imaging of biological specimens in both 2D [24–26] and more recently in 3D

via tomography [27, 28], and the Fresnel zone plate-based scanning transmis-

sion x-ray microscopes (STXM) have been successfully applied as 2D and 3D

structure determination methods [29–31], the technical difficulty in the fabri-

cation of high resolution and efficiency zone plates becomes a major limitation.

Most soft x-ray experiments use zone plates with an outermost zone width of

25 to 30 nm, and efficiencies of about 10%. Higher resolution zone plates

have been fabricated, but with lower efficiency; for example, 15 nm outermost

zone width was demonstrated in 2005 with an efficiency of 4% [32], and this

record was pushed forward to 12 nm in 2009, but with an efficiency of 0.6%

[33]. Considering such low efficiencies, these zone plates are not feasible for

imaging radiation sensitive samples, such as biological and soft matter spec-

imens. Therefore, an alternative, lensless microscope can complement TXM

and STXM for high resolution imaging with no optics-imposed losses on either

the efficiency, or finite numerical aperture (and thus resolution limitations).

2.2 Lensless imaging: XDM

XDM is a lensless method for imaging isolated nonperiodic objects at high

resolutions. It was proposed by Sayre in 1980 as an extension of crystallogra-

phy to non-crystalline samples [34]. Unlike conventional x-ray microscopies,

this imaging system employs no x-ray optics (such as Fresnel zone plates).

Instead, the isolated object is illuminated by a coherent plane-wave incident

x-ray beam, and the properly sampled far field diffraction pattern is collected

directly by a charge-coupled device (CCD) placed downstream, as shown in

Fig. 2.2. Without a lens to sample and phase the diffraction signal, the object

image in real space is reconstructed by iterative phase retrieval algorithms

from the measured diffraction intensity. In this section, we will go through the

basic ideas in XDM.
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Figure 2.2: Schematic layout of XDM experimental setup (adapted from [35]).

2.2.1 Far field diffraction pattern

When an incident x-ray plane wave interacts with a nonperiodic object, the

wave front will be modified by the scattering with electrons and nuclei in the

object. We can consider the exit wave from the object (expressed by Eq. 1.28)

as a collection of Huygens point sources located at the object exit plane, and

derive what the far field exit wave looks like by letting it propagate a relatively

long distance.

Incident wave

Object
Di�racted wave

r’
r
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r-r’ P
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z
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B
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η

Z

x

y

Figure 2.3: Illustration of incident plane scattered by an object.

We follow Born’s approach instead to derive the far field wave front [3],

since it is more convenient for describing the essence of XDM. Assuming an

incident coherent plane wave traveling along the ẑ direction diffracted by an

object, as shown in Fig. 2.3, the exit wave front satisfies the wave equation

Eq. 1.17. Of course the plane wave has a time dependence of exp (−iωt), as

seen in Eq. 1.26, but this term will not be shown in the following discussions.
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Eq. 1.17 can then be expressed as

∇2ψ(r) + k2n2(r)ψ(r) = 0, (2.19)

where k is the wave number in vacuum, with k̂ in the ẑ direction and k = ω/c.

For convenience, we rewrite Eq. 2.19 in the form

∇2ψ(r) + k2ψ(r) = −4πF (r)ψ(r), (2.20)

where F (r) is called the scattering potential, defined as

F (r) =
1

4π
k2
[

n2(r) − 1
]

≈ 1

2π
k2 [−δ(r) + iβ(r)] . (2.21)

As the refractive index n is expressed by 1−δ+iβ as in Eq. 1.23, and both δ and

β are very small numbers in the x-ray spectral range (as shown in Table 1.1),

n2 can be approximated as 1 + 2(−δ + iβ), which is used in the last equality

of Eq. 2.21.

Because the interaction between the incident wave and the object is rela-

tively weak, the incident wave is partially diffracted by the scattering poten-

tial of the object with the remaining and strongest part transmitted without

diffraction. We can then express the far field wave front ψ(r) as the summa-

tion of the unscattered incident wave ψ(i)(r) and the scattered wave ψ(s)(r)

as

ψ(r) = ψ(i)(r) +ψ(s)(r). (2.22)

The unscattered plane wave ψ(i)(r) satisfies the Helmholtz equation

(∇2 + k2)ψ(i)(r) = 0. (2.23)

Substituting Eq. 2.22 and Eq. 2.23 into Eq. 2.20, we obtain

(∇2 + k2)ψ(s)(r) = −4πF (r)ψ(r). (2.24)

Solving this equation using Green’s function [3], and noting that the incident

plane wave takes the form ψ0 exp(ikẑ · r), we see that the far field wave front
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ψ(r) can be obtained as

ψ(r) = ψ0e
ikẑ·r +

∫

V

F (r′)ψ(r′)
eik|r−r′|

|r − r′|d
3r′, (2.25)

where ẑ and r̂ are the direction units, and r′ goes through all points located

in the volume V occupied by the object.

For far field diffraction, the so-called Fraunhofer approximation condition

is satisfied, or |r| ≫ |r′|, or z2 ≫ ξ2 + η2. The accurate expression of the

Fraunhofer approximation is z ≫ π(ξ2 + η2)/λ, which is stronger than the

Fresnel approximation. As shown in Fig. 2.3, |r − r′| is approximately equal

to the length of A, while |A| = |r| − |B|, where B is the projection of r′ on

to r, i.e., |B| = r′ · r̂. In that case, |r − r′| can be approximated as

|r − r′| ≈ |r| − r′ · r̂, (2.26)

where r̂ can be calculated as r/|r|. Eq. 2.25 can then be simplified to

ψ(r) = ψ0e
ikẑ·r +

eik|r|

|r|

∫

V

F (r′)ψ(r′)e−ikr′·r̂d3r′. (2.27)

2.2.2 Born approximation

By applying the Fraunhofer approximation, we obtain an integral equation

of ψ(r) as in Eq. 2.27. In general cases, it is very difficult to find the solu-

tions for integral equations of arbitrary integrand ψ(r). Fortunately, there are

approximation methods available.

As discussed in Sec. 1.2.3, the refractive indices are usually very close to

unity in x-ray region. From Eq. 2.21, we can see that the scattering potentials

are small when n is slightly off from 1, which implies the object diffracts

weakly. In this circumstance, we can use the lowest-order approximation as

in perturbation expansion, where the successive terms can be calculated by

iteration from previous terms. By replacing the total wave front term ψ (ψ(i)+

ψ(s)) inside the intergral with the incident plane wave front ψ(i) or ψ0e
ikẑ·r,

the first approximation to the solution of the integral equation of Eq. 2.27 can
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be obtained as

ψ(r) = ψ0e
ikẑ·r + ψ0

eik|r|

|r|

∫

V

F (r′)e−ik(r̂−ẑ)·r′

d3r′. (2.28)

The solution given by Eq. 2.28 is referred to as the Born approximation. We

note that the integral in this solution is a Fourier transform of the object’s

scattering potential F . As illustrated by Fig. 2.4, the end points of the vector

k(r̂− ẑ) lies on a sphere with radius k, which is known as the Ewald sphere.

k z

k r

O

k ( z - r )

Figure 2.4: Ewald sphere of far field diffraction.

The validity limit of the Born approximation requires [36]

T |n− 1| < 2πλCb, (2.29)

where T is the thickness of the object and Cb is a constant ∼ 0.2 [37]. For

instance, at 520 eV (λ = 2.38 nm), the maximum thickness of protein within

the Born approximation requirement is about 3 µm. Considering nearly 50% of

the real cell is occupied by protein, this estimation roughly gives the maximum

cell size that satisfies the Born approximation, which is about 6 µm.

Let’s emphasize one more time that as defined by Eq. 2.22, the first term in

Eq. 2.28 is the unscattered incident wave, and the second term is the scattered

wave. By using the Born approximation, the incident wave is applied to the

integral of the scattered term as the first order approximation, which means

the incident beam is considered to be scattered only once under this condition.
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For nonperiodic objects, the far field diffraction obtained by Eq. 2.28 does

not distribute scattered signals into discrete Bragg peaks; instead it spreads

out into a more continuous diffraction pattern.

When considering the diffraction pattern near the incident wave propaga-

tion axis (ẑ in the current discussion), the arc of the Ewald sphere can be

modeled as a straight line, as shown in Fig. 2.4. In XDM experiments, the far

field scattered wave front is collected by a CCD pixel array. In other words,

the continuous diffraction pattern is sampled by a grid in Cartesian coordi-

nates. For further analysis, we denote r and r′ using Cartesian coordinate

components as (x, y, z) and (ξ, η, 0). The r′ · (r̂− ẑ) term in Eq. 2.28 can then

be expressed as

r′ · (r̂ − ẑ) =
xξ

|r| +
yη

|r| ≈
xξ

z
+
yη

z
. (2.30)

where |r| ≈ z is used for near axis condition.

Substituting Eq. 2.30 into Eq. 2.28, for a 2D measurement, we have

ψ(x, y, z) = ψ0e
ikz + ψ0

eikz

z
eik x2

+y2

2z

∫ ∫

F (ξ, η)e−2πi(fxξ+fyη)dξdη, (2.31)

where k = 2π/λ is used, the spatial frequencies are defined as fx = x/(λz)

and fy = y/(λz), and the label for the object area V is taken off, because the

scattering potential function F is zero outside. F (ξ, η) represents the overall

scattering potential of F (r′) viewed along the illumination direction.

In experiments with wavelengths shorter than microwaves, the detector can

only record the intensities of the far field wave; the phase is lost. Furthermore,

since scattering by the object tends to fall off with spatial frequency as f−4, the

dynamic range of the scattered radiation exceeds that of many detectors, so

that the unscattered incident wave (the first term at the right side of Eq. 2.31)

is usually blocked by a beamstop. We can then see that the measured intensity

is proportional to the square of the Fourier transform modulus of the object’s

scattering potential, or

I(x, y) = |ψ(x, y, z)|2

=
ψ0

2

z2
|F [F (ξ, η)]|2 , (2.32)
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where I is the measured far field diffraction intensity. More specifically, as

the scattering potential F is determined by the δ and β parameters in the

refractive index (Eq. 2.21), we have

I(x, y) = CF |F [−δ(ξ, η) + iβ(ξ, η)]|2 , (2.33)

where CF = k4ψ0
2/(4π2z2) is a constant. From now on, the “object” o is

denoted by −δ + iβ of the specimen.

Suppose the CCD array size is N×N with pixel size ∆×∆ and correspond-

ing pixel size ∆r ×∆r in real space. Eq. 2.33 can be rewritten using the form

of discrete Fourier transform as

I(p∆, q∆) =

∣

∣

∣

∣

∣

N−1
∑

n=0

N−1
∑

m=0

o(n∆r, m∆r)e
−2πi(p∆ n

N
+q∆ m

N
)

∣

∣

∣

∣

∣

2

, (2.34)

where p and q are array pixel indices. Eq. 2.34 is accurate up to the multi-

plicative complex constant CF .

2.2.3 Oversampling

In XDM experiments, only the magnitude (square root of intensity) of the

diffraction pattern is measured, while all the phase information is lost. This

is known as the phase problem. In order to reconstruct the object, the phase

part needs to be recovered. This process cannot be done by using Eq. 2.34

itself. Other a priori information (constraints) is required for the object re-

construction.

According to Eq. 2.34, N2 equations are given by the intensity measure-

ment. Considering that a complex object has both δ and β values at each

pixel, there are 2N2 unknown variables. So, the equations can only be solved

by reducing the number of unknown variables by at least a factor of 2. This

can be satisfied by requiring that the object is finite and isolated in an opti-

cally empty space from other scatterers. The area occupied by the object is

commonly called “support”; the support area is required to be smaller than

half size of the field of view, and this requirement is known as a finite support
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constraint. If the object is purely real, according to the Friedel’s law [38], its

diffraction intensity is centrally symmetric, where the number of independent

equations is N/2 with N unknown variables. The object is still required to be

finite to reduce the unknown variable number by at least a factor of 2. As a

result, in both cases the object needs to be localized in an area which is at

most half the size of the entire array. This conclusion holds for 1D, 2D and

3D objects.

Let’s consider how finely a CCD should sample the continuous diffraction

pattern to ensure that all information is recorded. This question is answered

by the Nyquist-Shannon sampling theorem [39, 40]. It states that the signal

can be completely reconstructed when the sampling frequency is at least twice

the highest frequency of the input signal.

Assume that the object in the current consideration is finite within a n×n
array, or within the range of [−n∆r/2, n∆r/2] in each direction, with pixel

size in real space of ∆r. The minimum signal period in reciprocal space from

this object can be calculated by

pmin =
2

n∆r

. (2.35)

Suppose that the entire array size is N×N. So the pixel size in reciprocal space,

or the sampling period, is

psampling =
1

N∆r
. (2.36)

The Nyquist-Shannon sampling theorem requires psampling is at most half of

pmin, which gives

n ≤ N. (2.37)

As mentioned before, in order to have the phase information retrieved, the

object size should be smaller than half of the entire array. In this 2D example,

it requires n2 ≤ N2/2, which is

n ≤ N√
2
. (2.38)
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We can see that Eq. 2.38 restricts the allowed object size more strongly

than the Nyquist-Shannon sampling. In fact, further restrictions of the object

size are helpful, and are characterized by an oversampling ratio σo [41]

σo =
entire image size

object size
, (2.39)

which must be at least ≥ 2 for successful reconstructions. In the current

example,

σo =

(

N∆r

n∆r

)2

=
N2

n2
. (2.40)

The oversampling ratio can be determined in reciprocal space too. The

diffraction speckles are sampled by CCD pixels. So, the oversampling ratio

can also be obtained by

σo =
speckle size

CCD pixel size
. (2.41)

Suppose that the CCD is located at a distance of z away from the object.

The speckle dimension of the diffraction pattern can be calculated as

∆s =
λz

n∆r
. (2.42)

The CCD pixel size is related to the dimension of the field of view as

N∆r =
λz

∆
. (2.43)

Then, using Eq. 2.42 and Eq. 2.43, the oversampling ratio calculated with the

definition in Eq. 2.41 is

σo =

(

∆s

∆

)2

=
N2

n2
, (2.44)

which is consistent with the result from Eq. 2.39.

It should be mentioned that increasing the oversampling ratio does not give

more information about the object, but adds more zero-value pixels outside

the support area in real space. However, a larger oversampling ratio indeed

helps to retrieve phases with less difficulty.
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2.2.4 Phase retrieval

Phase recovery from the oversampled intensities is performed by iterative phase

retrieval algorithms. The first phase recovery algorithm was invented by Ger-

chberg and Saxton [42], where it was used to recover phase from simultaneous

intensity measurements in real and Fourier spaces. For recovery from Fourier

plane data alone, various generalizations of the Gerchberg-Saxton algorithm

have been proposed by Fienup [43, 44], Elser [45], and others [46–50].

The phase retrieval algorithms take different forms, but they share the

same characteristics of iterating between pre-defined constraints. The most

commonly used constraints are the Fourier modulus constraint in reciprocal

space and the support constraint in real space. They are determined by two

sets of a priori information: the measured diffraction magnitude (the Fourier

modulus in reciprocal space), and the object being isolated in a finite area (the

support area in real space).

Consider the output of each iteration as a point in Euclidean space, and

the constraints as the subspaces satisfying corresponding requirements. Then

the applications of constraints can be modeled as projection operators. These

projection operators have two major properties: one is that their actions take

the minimized path to project a point to the subspaces of the constraint sets,

the other is that applying projections twice gives the same results as applying

them once. For instance, the Fourier modulus projection πm sets the magni-

tudes of a complex diffraction pattern to the measured values and maintain

the phases in reciprocal space, and the support projection πs is to set all the

pixel values outside the support to zero in real space.

Various phase retrieval algorithms have been generated by using those de-

fined projection operators. They are summarized in Table 2.1 with the al-

gorithm list of error reduction (ER) [42], solvent flipping (SF) [46], hybrid

input-output (HIO) [43], difference map (DM) [45], averaged successive reflec-

tions (ASR) [47], hybrid projection reflection (HPR) [48], relaxed averaged

alternating reflectors (RAAR) [49], and relaxed averaged successive reactor

(RASR) [50]. The reflectors of πm and πs are defined as Rm = 2πm − I and

Rs = 2πs − I, where I is the unity array.
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Table 2.1: Various phase retrieval algorithms expressed in projection opera-
tors.

Algorithm o(n+1)

ER πsπmo
(n)

SF Rsπmo
(n)

HIO [I − βπm + πs(πm − I + βπm)]o(n)

DM
{I + βπs[(1 + γs)πm − γsI]

−βπm[(1 + γm)πs − γmI]}o(n)

ASR 1
2
(RsRm + I)o(n)

HPR
1
2
{Rs[Rm + (β − 1)πm]
+I + (1 − β)πm}o(n)

RAAR
[

1
2
β(RsRm + I) + (1 − β)πm

]

o(n)

RASR (πm − βRm + βπsRm)o(n)

We note that when the algorithm parameter β equals 1, HIO, ASR, HPR,

RAAR and RASR coincide. For DM algorithm, as the optimized values for

γm and γs are β−1 and −β−1 respectively, HIO becomes a special case of DM

with β = 1. Simulations on the comparisons between these algorithms [51, 52]

conclude that the hybrid input-output (and hence the difference map as well)

is the most efficient algorithm in the presence of noise.

2.3 Limitations and requirements of XDM

In a lens-based imaging system, the image quality is limited by the property

of the lens. In this section, we will discuss the factors that limit the image

quality in a lensless XDM system in terms of spatial resolution and depth of

focus, what coherence level is required, and how to handle the missing data at

the diffraction center and the floating phase ambiguity.

2.3.1 Resolution and depth of focus

The transverse spatial resolution is limited by the x-ray wavelength and the

numerical aperture of the imaging system, which is determined by the maxi-

mum diffraction angle recorded for XDM. As shown in Fig. 2.5, with a N×N

CCD of ∆ × ∆ pixel size which is placed at a distance of z away from the
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object, the diffraction angle of the smallest feature that can be identified (nor-

mally, we consider the half-period transverse resolution σt, which has the half

size of the smallest feature) is

θmax ≈ sin(θmax) =
λ

2σt
. (2.45)

The maximum diffraction angle can also be calculated from the CCD size and

CCD-to-sample distance as

θmax ≈ tan(θmax) =
1
2
N∆

z
. (2.46)

Combining Eq. 2.45 and Eq. 2.46, the diffraction limited transverse resolution

of XDM can be obtained as

σt =
λz

N∆
. (2.47)

Note that σt equals the pixel size in real space ∆r as calculated by Eq. 2.43,

and this result differs from the resolution defined by the Rayleigh criterion (as

discussed in Sec. 1.4.1) by a factor of 1.22.

θmax
θmax

θmax
2σt

2σt

Object

Field of view

z

CCD

λ

N∆

Figure 2.5: Schematic geometry of XDM resolution calculation.

The longitudinal resolution σl, or the depth of focus, can be calculated

using Eq. 1.51. Using the experimental parameters, the numerical aperture is
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N.A. ≈ θmax = N∆/2z. Then, σl is

σl =
2λz2

N2∆2
. (2.48)

As an example, for 520 eV x-rays with λ =2.38 nm, z =15 cm, N = 1024

and ∆ = 20 µm, which are typical for the XDM experiments described in

this dissertation, the maximum achievable transverse resolution is about 17

nm, and the depth of focus is 0.26 µm. The field of view can be calculated

using Nσt or Eq. 2.43, which gives 18 µm. We note that the depth of focus

in this case is shorter than the typical cell dimension (∼ 3 µm). However, the

focal plane can be adjusted by refining the support shape or propagating the

reconstructed wave front in real space.

2.3.2 Coherence requirement

X-ray sources in reality are quasi-monochromatic and finite in size, so that the

well-defined phase relationships between points at the wave front are restricted

to a finite region of coherence. This region is determined by dimensions in 2

directions: the temporal coherence (or longitudinal coherence) in the propa-

gation direction, and the spatial coherence (or transverse coherence) in the

transverse direction, as shown in Fig. 2.6.

P1

P2

P1

P2

Spatial coherence

Temporal coherence

P0

Figure 2.6: Spatial and temporal coherence.
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The XDM experiments require that the spatial coherence length is at least

the same size as the object. According to the van Cittert-Zernike theorem

[3], a partially coherent source can be obtained from a non-coherent source by

using an aperture. The illumination within the half radius of the central Airy

disk of the pinhole aperture can be considered to be coherent. This approach

was used in our XDM experiments. Using Eq. 1.49, we obtain the spatial

coherence tcoh as

tcoh =
0.61λzph

dph
, (2.49)

where zph is the distance from the pinhole to the sample, and dph is the diam-

eter of the pinhole.

In the experiments, we placed a 5 µm pinhole 2.5 cm upstream of the

specimen grid, so with 520 eV x-rays, λ = 2.38 nm, the spatial coherence

width is about 14.5 µm. This satisfies the requirement of the typical specimen

size which is about 3 µm.

The temporal coherence lcoh is defined as the length that causes a π phase

shift for wave fronts with wavelengths differing by ∆λ. Suppose that the wave

front with wavelength λ travels m cycles in a distance of lcoh, or

lcoh = mλ, (2.50)

while the wave front with λ+ ∆λ travels m− 1/2 cycles, or

lcoh = (m− 1

2
)(λ+ ∆λ). (2.51)

Solving lcoh from Eq. 2.50 and Eq. 2.51, we have

lcoh =
λ2

2∆λ
. (2.52)

We see the temporal coherence lcoh is proportional to λ/∆λ, which relates to

the object size a and maximum diffraction angle θmax by [53]

λ

∆λ
≥ a

λ

√

2 [1 − cos (2θmax)]. (2.53)
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Because the maximum diffraction angle θmax relates to the transverse spa-

tial resolution σt by Eq. 2.45, Eq. 2.53 can be simplified in the small angle

approximation as

λ

∆λ
≥ a

λ

√

2

[

1 − cos

(

λ

σt

)]

≈ a

σt
. (2.54)

For instance, to achieve 10 nm resolution from a 3 µm specimen, it requires

λ/∆λ ≥ 300.

2.3.3 Missing center

The intense direct x-ray beam is blocked by a beamstop in XDM experiments.

This leaves an area with no data value in the center of the diffraction pat-

tern. The size of this missing center is typically 20×20 pixels. To reconstruct

an object with a finite support, the lack of data in the diffraction center can

bring ambiguities. As an example, considering that the Fourier transform of

a Gaussian function is a Gaussian function, if the initial Gaussian function is

sufficiently broad and within the support region in real space, its Fourier trans-

form can be narrow enough to fit into the missing center in reciprocal space.

In this case, this Gaussian function satisfies both the support constraint and

the Fourier modulus constraint (as shown in Fig. 2.7), so it is unconstrained

by known information in either space, and can potentially dominate the re-

constructed image. Of course, other Fourier transform pairs beyond Gaussians

can give rise to the same problem.

A method to select the unconstrained intensities was proposed by ranking

the eigenvalues of a set of “constrained power operators” [54, 55] and subtract-

ing the least constrained powers from the reconstructed images. An alternative

method is to apply a high-pass filter to the diffraction pattern with a missing

center to remove the intensity abruption caused by the beam stop [36]. The
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Figure 2.7: An example of a Gaussian function fitting both the support con-
straint in real space (left) and the Fourier modulus constraint in reciprocal
space (right) [54].

filter function is

Filter(f) =











df + (1 − df)(f/r)
4 exp (2 − 2f 2/r2) f < r

1 otherwise,

(2.55)

where f is the spatial frequency in reciprocal space, df is the depth of the filter

with a value between 0 and 1 (smaller number means deeper), and r is the

filter radius, which is normally less than 10% of the array width. The effect

of this filter function is equivalent to the coherent image generated by a lens

with a center stop, but it also convolves the image with the Fourier transform

of the filter. It could increase the negative magnitude in the image, and cause

the support to be slightly larger.

2.3.4 Global phase

Another type of ambiguity comes from the fact that only the intensity of the

diffraction pattern is measured. It is because the measured far field diffraction

pattern, or the Fourier modulus of the object as expressed by Eq. 2.34, is not

sensitive to multiplicative constant phase factors, translations and twin images
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(complex conjugation plus 180◦ rotation), or

|F [o(x, y)]| =
∣

∣F
[

eiφo(x− x0, y − y0)
]∣

∣

=
∣

∣F
[

eiφo∗(−x− x0,−y − y0)
]∣

∣ . (2.56)

In an image reconstruction process, if the support is well defined in real

space, the translation ambiguity is then removed. If the object shape is not

central symmetric, there will be no twin image problem. However, the arbi-

trary phase offset factor exp(iφ) always exists.

This random phase variation has to be adjusted to a common value to min-

imize the magnitude reduction during the averaging process in reconstruction.

We calculate this global phase following Fienup’s method [56]. Consider the

normalized difference caused by the phase factor exp(iφ)

E2 =

∑
∣

∣eiφo− o
∣

∣

2

∑

|o|2

=
2
∑

|o|2 −
(

eiφ
∑

oo∗ + c.c.
)

∑

|o|2

=
2
∑ |o|2 − 2R

(

eiφ
∑

oo∗
)

∑ |o|2
, (2.57)

where c.c. denotes for complex conjugate of the preceding term, and R stands

for the real part of a complex value. To minimize this error, we should max-

imize the second term in the numerator by setting φ = −ϕ, where ϕ is the

phase of the complex value
∑

oo∗.

If o(n) is the first term in the averaging process, the initial phase factor φ0

is set to be the phase of
∑

o(n)o∗(n+1) with the opposite sign. Similarly, the

phase factors φm for subsequent terms are the phases of
∑

o(n)o∗(m) with the

opposite sign.
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Chapter 3

Simulations on XDM

The previous chapter described the beauties as well as the challenges of x-

ray diffraction microscopy (XDM), in this chapter we discuss some subtleties

of this technique through numerical simulations, including comparison with

conventional x-ray microscopy in the aspect of signal-to-noise ratio, radiation

dose requirement for achieving given resolution, how phase retrieval algorithms

handle improperly defined supports, and the stagnation caused by the missing

center in reciprocal space.

43



3.1 Signal-to-noise ratio comparison

Using a signal-to-noise ratio estimation based on correlations between multiple

simulated images, we compare the dose efficiency of two soft x-ray imaging sys-

tems: incoherent brightfield imaging using zone plate optics in a transmission

x-ray microscope (TXM), and x-ray diffraction microscopy (XDM). In XDM

one must computationally phase weak diffraction signals; in TXM one suffers

signal losses due to the finite numerical aperture and efficiency of the optics.

In this section we address the following question through simulations:

which approach yields more information on example biological specimens for a

given radiation dose? This is an important consideration for radiation-sensitive

specimens such as frozen hydrated cells, since similar to electron microscopy

radiation damage is the resolution-limiting factor. We find that XDM has

the potential for delivering equivalent resolution images using fewer photons.

This can be an important advantage for studying radiation-sensitive biological

and soft matter specimens. This SNR simulation and the dose requirement

calculation discussed in Sec. 3.2 have been published [57].

3.1.1 Signal and noise in images

The signal-to-noies ratio, or SNR, of 2D images was defined by Rose [58, 59]

as the square root of the total number of photons removed from or added

into an object area. The SNR calculated from this definition is not sensitive

to the structure variations inside the object, and in reality the dimension of

the object is unknown in advance. Instead, we estimate SNR of images based

on image correlations in the presence of signal-dependent noise. This method

gives SNR values that scale with incident photon number as expected, and it

is used in subsequent SNR calculations on simulated images.

SNR, and object detection

We wish to consider the signal-to-noise ratio for the detection of an object with

a specified contrast. We follow here the treatment of Glaeser [60] and of Sayre

et al. [61]. Our goal is to distinguish measurements (such as image pixels) in the
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case that a unit-incident-flux measurement would lead to a measured intensity

of I. To detect an object, assume that the signal is given by the difference

between an intensity with a feature present If , and the background intensity

Ib; that is, the average signal is n̄|If −Ib| when each measurement is made with

n̄ incident photons. In the Gaussian approximation to the Poisson distribution

for event counting, the noise can be expressed as the square root variance of

each measurement
√
n̄I, and if the noise is uncorrelated from measurement to

measurement (which is the case for photon noise) the total noise will be given

by the root mean square sum. As a result, the expected signal-to-noise ratio

(SNR) is

SNR =
Signal

Noise
=

n̄|If − Ib|
√

(
√

n̄If )2 + (
√
n̄Ib)2

=
√
n̄
|If − Ib|
√

If + Ib
=

√
n̄Θ, (3.1)

where Θ of

Θ =
|If − Ib|
√

If + Ib
(3.2)

is a contrast parameter [61] which differs slightly from the usual definition of

contrast C as

C =
|If − Ib|
If + Ib

. (3.3)

Based on Eq. 3.1, a log-log plot of SNR versus incident photon number n̄

should follow a straight line with a slope of 1/2 and an ordinate intercept of

log10 Θ:

log10 SNR = log10(
√
n̄Θ) =

1

2
log10 n̄+ log10 Θ. (3.4)

SNR estimation from image correlations

The easiest way to measure signal-to-noise ratio is to compare measured images

of an object against the known object itself. While this approach can be used

in simulations, we wish to employ a method that can be used in experiments

where the object is not known except through images that have been obtained.

An intuitive approach is to calculate the cross correlation coefficient of two

independent images of the same object, so as to compare features that are
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reproduced against those that fluctuate. We summarize here an approach

described by Bershad and Rockmore [62] and first used in electron microscopy

by Frank and Al-Ali [63]. We extend this method to signal-dependent noise

cases, and without the requirement of zero-mean signal.

Let us consider two separate 2D intensity measurements I1 and I2 of the

same signal array S with stochastic noise arrays N1 and N2, or

I1 = S +N1 and I2 = S +N2, (3.5)

where the mean value of S over all 2D pixels is 〈S〉, and N1 and N2 come from

the same source obeying the same Gaussian distribution with zero mean value

(〈N1〉 = 〈N2〉 = 0). Consequently, 〈I1〉 = 〈I2〉 = 〈S〉. Detailed derivation

steps can be found in Appendix B.

For 2D images, the object visibility depends on how much the signal differs

from noise level and its background. Based on this consideration, we define

the total signal and total noise for the entire 2D image by their variances:

Signal2 = 〈(S − 〈S〉)(S − 〈S〉)∗〉 = 〈S2〉 − 〈S〉2, (3.6)

Noise2 = 〈(N1,2 − 〈N1,2〉)(N1,2 − 〈N1,2〉)∗〉 = 〈N2
1,2〉, (3.7)

where 〈N1,2〉 = 0 has been used in the final equality of Eq. 3.7. Again, the

average is done over all pixel indices of the 2D image, which differs from

variance calculation for each pixel with a stack of images. The variances of

images I1 and I2 can be calculated as

σ1,2
2 = 〈(I1,2 − 〈I1,2〉)(I1,2 − 〈I1,2〉)∗〉

= 〈S2〉 + 〈N2
1,2〉 − 〈S〉2, (3.8)

where we used the fact that the cross terms 〈SN∗
1,2〉 and 〈S∗N1,2〉 are in practice

negligible compared to 〈SS∗〉. This would be expected for low contrast objects,

but in practice it also applies to cases with objects with high contrast; in

simulations, we find that 〈SN∗
1,2〉 and 〈S∗N1,2〉 are several orders of magnitude

lower than 〈SS∗〉 even with full contrast object. As a result, we are able
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to drop the terms 〈SN∗
1,2〉 and 〈S∗N1,2〉 in Eq. 3.8 to obtain the final result

listed above. Since N1 and N2 obey the same Gaussian distribution, they have

identical variances (〈N2
1 〉 = 〈N2

2 〉). So, we can denote σ1 = σ2 = σ. The

covariance between I1 and I2 can be derived following analogous steps:

rσ1σ2 = rσ2 = 〈(I1 − 〈I1〉)(I2 − 〈I2〉)∗〉
= 〈S2〉 − 〈S〉2, (3.9)

where r is the correlation coefficient. It can be calculated as

r =
〈(I1 − 〈I1〉)(I2 − 〈I2〉)∗〉

√

〈(I1 − 〈I1〉)2〉〈(I2 − 〈I2〉)2〉
. (3.10)

Combining Eqs. 3.6 and 3.7 with Eq. 3.8, we have

σ2 = (〈S2〉 − 〈S〉2) + 〈N2
1,2〉 = Signal2 + Noise2. (3.11)

From Eqs. 3.6 and 3.9, we have

rσ2 = 〈S2〉 − 〈S〉2 = Signal2. (3.12)

From Eq. 3.11 and Eq. 3.12, we see that the signal-to-noise ratio can be cal-

culated from the correlation coefficient r as

SNR =

√

Signal2

Noise2 =

√

r

1 − r
. (3.13)

which is the square root of the expression α = r/(1 − r) used by Frank and

Al-Ali [63].

Simulation of signal-dependent noise in images

To explore signal to noise effects in photon-limited imaging, we need to be

able to generate images with simulated noise. We begin with an image with

K pixels and a set of intensities {Ik} before noise is added. To include signal-

dependent noise, we employ two alternative approaches for implementation in
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Figure 3.1: Histograms of photon noise simulated according to the two ap-
proaches described in the main text. A Gaussian approximation works very
well for n̄ ≥ 10. The histograms for these simulated images are identical to
the expected distribution.
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the IDL programming environment (Research Systems, Inc.):

1. One approach is to use IDL’s randomn() routine with the poisson key-

word. For this case, we have to give randomn() each value Ik to generate

a noise-included value In,k, and thereby arrive at a noise-included set

{In,k}.

2. Another approach is to use the fact that the Gaussian approximation

provides a very good representation of the Poisson distribution for ex-

pected counts of n̄ ≥ 20. Since in the Gaussian approximation the

variance of the photon noise σ2
d is equal to the number of photons Ik in

each of K pixels, we can approximate the set of signal-dependent noise

values {Nd,k} as

{Nd,k} =
√

{Ik} · {rd,k}, (3.14)

where we use a Gaussian-distributed zero-mean random number set {rd}
in the calculation as provided by the IDL routine randomn(). We then

arrive at a noise-included set of

{In,k} = {Ik} + {Nd,k}, (3.15)

which we must then constrain to have non-negative values to correct for

possible “tails” of the Gaussian distribution at small values of Ik.

In both cases, the randomn() routine is used with an initial seed generated

from the system clock as seed=long(systime(/seconds)). In Fig. 3.1, we

show the histograms of flatfield images with 2002 pixels and various values of

n̄ using both of the methods mentioned above.

Test with Lena’s picture

To confirm that Eq. 3.13 provides a good measure of the SNR from multiple

noisy images of identical objects, we used simulations to explore its scaling

with photon number. As an “object” we used the well-known “Lena” im-

age with transparency I normalized between 0 and 1. For each calculational

run we multiplied the image by a value of n̄, and then added to each pixel p
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Figure 3.2: (a) Images with noise simulated according to different mean photon
numbers per pixel n̄. Without noise, each pixel p has a value Ip of between 0
and 1. With illumination of n̄ photons per pixel, each pixel has a starting value
of n̄Ip photons which was used on a pixel-by-pixel basis to generate an image
using signal-dependent noise calculated using the positive-integer-truncated
Gaussian method described. (b) signal-to-noise ratio (SNR) calculated from
the images versus incident photon number per pixel n̄. The signal-to-noise
ratio was calculated both by comparison of the noisy image with the noise-free
original image described in Eqs. 3.6 and 3.7, and by using the two-noisy-image
correlation method described in Eqs. 3.10 and 3.13. Since a fit of the data on
a log-log plot of SNR versus n̄ shows a slope of 0.5 as expected from Eq. 3.4,
both image SNR methods give the expected scaling of SNR versus exposure
n̄.
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a pseudo-random noise value based on a positive-integer-truncated Gaussian

approximation of the true Poisson distribution for each pixel’s value of n̄Ip.

By repeating this process, we obtained two images of an identical object but

with different signal-dependent noise added, allowing us to measure the image

SNR using the cross-correlation result of Eqs. 3.10 and 3.13. Figure 3.2(a)

shows the resulting images with noise corresponding to the indicated number

n̄ of incident photons per pixel. Figure 3.2(b) shows that a log-log plot of the

calculated SNR values as a function of n̄ has slope of 1/2 as expected from

Eq. 3.4, reflecting the
√
n̄ dependence of SNR on incident exposure expected

from Eq. 3.1. Finally, we also show in Fig. 3.2(b) the signal-to-noise ratio cal-

culated by comparison of the original, noise-free image with a noise-included

version at each photon exposure n̄ using Eqs. 3.6 and 3.7. We can see that

the SNR values calculated with the definitions of signal and noise are identi-

cal to those calculated from the correlation method. However, in subsequent

calculations we use the two-noisy-image correlation method of Eqs. 3.10 and

3.13 because it is applicable to a broader range of cases including experiments

where the noise-free object is not known.

3.1.2 Simulations with defined “cells”

Having established the positive-integer-truncated Gaussian method for adding

signal-dependent noise to data recordings, and the image correlation method

of Eqs. 3.10 and 3.13 for estimating SNR from image pairs, we now turn to

simulations of the two experimental approaches to be compared (Fig. 3.3):

lens-based imaging (incoherent brightfield imaging in a TXM), and lensless

imaging (x-ray diffraction microscopy or XDM).

Defined “cells” A and B

We generated two different types of biological-cell-like defined objects for our

simulations, which we will call cell A and cell B (see Fig. 3.4). In both cases

we assumed an x-ray energy of 520 eV (within the “water window” [18, 61]

between the carbon and oxygen K absorption edges), and values of the re-

fractive index calculated according to the tabulation of Henke et al. [4] using
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Figure 3.3: Schematic of the two x-ray imaging systems considered in sim-
ulations. In the TXM or transmission x-ray microscope at left, incoherent
brightfield imaging is assumed where the numerical aperture of the condenser
is 1.5 times the numerical aperture of the objective lens; a magnified image is
recorded on a detector such as a CCD. The TXM objective is a zone plate with
30 nm outermost zone width and 10% diffraction efficiency. In XDM or x-ray
diffraction microscopy at right, the specimen is assumed to be illuminated by a
fully coherent beam and the far-field x-ray diffraction pattern is recorded on a
detector such as a CCD. A reconstructed image is obtained by computational
phasing of the coherent diffraction pattern.

an assumed stoichiometric composition of H48.6C32.9N8.9O8.9S0.3 and density of

ρ = 1.35 g/cm3 for protein, and H62.5C31.5O6.3 with ρ = 1.0 g/cm3 for lipid

[64]. The two objects were defined as follows:

Cell A is modeled as a 2D continuous region with irregular boundary and

random protein thicknesses over a range of 0 to 500 nm inside (Fig. 3.4(a)).

The entire image is a 256 × 256 pixel array with a pixel size of 15 nm.

Cell B is embedded in the center of a 400 × 400 × 400 pixel ice cube, also

with a pixel size of 15 nm. The cell-like object has a diameter of 200 pixels, or

3 microns, with a 3 pixel or 45 nm thick lipid membrane as boundary. Inside

the object, several 225 nm diameter protein rods were placed (1.8 µm long for

the vertical bars, and 1.35 µm long for the horizontal bars), along with some

protein ellipsoids (the larger ones are 0.9× 0.45 µm, and the smaller ones are

0.68 × 0.45 µm in size). A “bud” with a diameter of 1.2 µm was added to

the top right shoulder of this fake cell, both in order to break the rotational

symmetry for eliminating potential problems with enantiomorphs in XDM,

and to approximate the appearance of a budding yeast cell. This object was

then assumed to be illuminated by a plane wave, and a multislice propagation
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Cell A Cell B

Figure 3.4: Defined objects used for image simulations. Shown here is the
magnitude of the simulated exit wave resulting from plane wave illumination
of the object. Cell A has random protein thicknesses within an irregular
boundary, while Cell B has a lipid membrane and several protein bars and
ellipses inside.

process [54, 65] was used to generate an exit wave (400 × 400 pixels across)

leaving the cube.

In the case of cell A, we have a defined object with broad spatial frequency

content due to the random thickness variations inside. In the case of cell B, we

have an object with readily recognized structures. The two defined objects are

shown in real space in Fig. 3.4, and in Fourier space in Fig. 3.5. To compare

zone plate imaging with diffraction microscopy, we simulated both imaging

techniques on these two different defined objects.

Zone plate imaging process

X-ray microscopes using synchrotron radiation and Fresnel zone plates for full-

field imaging have been in existence for some time [24], and are finding consid-

erable success for 25–40 nm resolution imaging applications and tomographic

imaging of frozen hydrated cells [27, 28, 66], with commercial laboratory source

versions now becoming available [67]. We model here a representative micro-

scope with a Fresnel zone plate with 30 nm outermost zone width and 10%

diffraction efficiency [68], used in incoherent brightfield mode with a 100%

efficient detector. In this case the recorded image intensity can be obtained

using Eq. 2.13.

For a zone plate with outermost zone width of drN (set to be 30 nm in
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Figure 3.5: Diffraction patterns of the exit waves from the two defined objects,
cell A and cell B, and their azimuthally averaged, unit-integral-normalized
power spectral densities. In both cases the exit wave amplitude was Fourier
transformed and then squared to yield the diffraction intensity. Both defined
objects have the signal decline with spatial frequency in a power law relation-
ship with a slope of about 3.3 over most frequencies. For cell A, this trend
then levels off at a spatial frequency of about 10 µm−1 where the pixel-by-pixel
uncorrelated protein thickness dominate the diffraction pattern; this yields a
flat power spectrum corresponding to a delta (δ) function in real space. For
cell B, the overall round shape of the object gives rise to Airy rings in the
diffraction pattern which show up at spatial frequencies above 10 µm−1.

simulation), the cutoff of the incoherent MTF is at a spatial frequency of

f0 = 1/drN . The integral of Eq. 2.12 has a numerical value of 0.20 compared

to the integral of a MTF of 1 for all frequencies up to a cutoff at f0. The

resulting image intensity was then multiplied by 0.10 to account for a typical

zone plate focusing efficiency of 10% (while theoretical efficiencies can approach

20%, 10% is representative of the best experimental measurements). Finally,

the resulting image was multiplied by an exposure of n̄ photons per pixel,

and simulated photon noise was added using the positive-integer-truncated

Gaussian approach to yield a final image.

Reconstruction from diffraction pattern

In x-ray diffraction microscopy, the image is reconstructed from the far-field

diffraction intensity of a coherently illuminated object which is assumed to be

within a finite support (area of non-zero optical interaction). To simulate the

imaging process, the complex exit wave amplitude leaving the defined object
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was multiplied by
√
n̄ to account for an exposure of n̄ photons per pixel, after

which it was Fourier transformed to yield the far-field diffraction amplitude.

This diffraction amplitude was then squared to yield the diffraction intensity,

and simulated photon noise was added using the positive-integer-truncated

Gaussian approach to produce a simulated data recording. The diffraction

patterns were assumed to be recorded in the far field, with proper Shannon

sampling between the real-space object array and the Fourier plane detector

array (that is, 2562 detector pixels for Cell A, and 4002 detector pixels for Cell

B). The pixel size in the reconstructed image is 15 nm. To reconstruct the

image, we took the square root of the noisy diffraction intensity to revert to

Fourier amplitude, and then reconstructed the image using the difference map

algorithm developed by Elser [45] with β = 1.15.

3.1.3 SNR simulation results

We carried out simulation runs for each of the two defined objects (cell A

and cell B), using both TXM and XDM, and using incident photon per pixel

values of n̄ = {1, 2, 5} × 10{1,2,3,4,5} and 1 × 106 (that is, exposures of 1 × 101,

2 × 101, . . ., 1 × 106). Fig. 3.6 shows some examples of simulated zone plate

and reconstructed diffraction images. For each incident photon number n̄, we

calculated 10 TXM images and 10 XDM images, each with separate simulated

signal-dependent photon noise in the intensity recording. From each set of 10

images, one can form 45 separate two-image pairs for calculating the SNR using

the method of Eqs. 3.10 and 3.13 over the region where the object is located

(that is, inside the object’s support for both the XDM and TXM cases). The

final SNR value was calculated from the average of these 45 measurements.

Figure 3.7 shows a plot of log10(SNR) versus log10(n̄) for the set of image

simulations of both defined objects. As can be seen, in all cases the slope of

the fitted line is near 1/2, as expected from Eq. 3.4; in other words, the signal-

to-noise ratio is proportional to
√
n̄ as expected from Eq. 3.1. An important

difference is that x-ray diffraction microscopy gives a higher SNR for a given

photon exposure n̄ in these simulations. For zone plates of 10% efficiency and

an incoherent brightfield MTF integral about 0.2 as described in Sec. 3.1.2,
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Figure 3.6: Images resulting from the simulations. Shown here are both TXM
(top row) and XDM (bottom row) images calculated for the two defined ob-
jects, cells A and B, with exposures of n̄ = 1×103 and n̄ = 1×105 photons per
pixel. The lack of “salt and pepper” shot noise in background region outside
of the cell in the XDM reconstructions is a result of the imposition of a finite
support constraint in the reconstruction process.

one might expect an improvement of about 1/(0.1 × 0.2) = 50 in signal, or

an improvement of
√

50 ≃ 7 in the signal-to-noise ratio. The fitted lines of

Fig. 3.7 are indeed higher for x-ray diffraction microscopy versus transmis-

sion x-ray microscopy, with an improvement of XDM/TXM of 7.2 ± 1.6 for

cell A, and 6.3 ± 2.1 for cell B. This means that the iterative reconstruction

algorithms used in x-ray diffraction microscopy are able to phase even weak

diffracted signals with significant signal-dependent photon noise present; this

is consistent with an early observation by Fienup [43] who found that finite

support phase retrieval algorithms appeared to be quite robust in the presence

of signal-independent noise added to the Fourier magnitudes.

As noted in Fig. 3.7, the log10(SNR) versus log10(n̄) dependence of cell B

shows some oscillations about the linear trend. This oscillation corresponds to

successive Airy rings in the diffraction pattern of the overall spherical shape of

cell B, as shown in Fig. 3.5. In the dark bands between Airy rings correspond-

ing to the far-field diffraction pattern of a disk, the signal is lower than the

ring-free trend would suggest so the addition of more photons is less helpful
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Figure 3.7: Plot of the signal-to-noise ratio SNR as a function of incident
photons per pixel n̄ for our simulation set. The results at left are for the
defined object “cell A”, while those at right are for “cell B” (see Fig. 3.4). The
results for both x-ray diffraction microscopy (XDM) and transmission x-ray
microscopy (TXM) are shown. In all cases a slope of about 1/2 is observed in
the log10(SNR) versus log10(n̄) plot (Eq. 3.4), and for both objects the SNR for
x-ray diffraction microscopy is about 7 times higher than it is for transmission
x-ray microscopy. For x-ray diffraction microscopy of cell B, the SNR curve
oscillates around the straight line fit. This oscillation corresponds to providing
enough signal to phase data in successive Airy rings in the diffraction pattern
of the overall spherical shape of cell B, as shown in Fig. 3.5.
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until the next Airy ring begins to be filled in. A different effect can be seen

in the log10(SNR) versus log10(n̄) curve for cell A: as shown in Fig. 3.5, the

normalized power spectrum for cell A “levels off” at a constant value of about

10−2 at spatial frequencies f above about 10 µm−1. This suggests that when

the incident photon number n̄ is larger than 100, all the diffraction intensity

pixel values approach 1 so that all spatial frequencies above 10 µm−1 have

measurable, single-photon or larger intensities. and start to contribute to in-

crease reconstruction quality. This may explain the slight flattening of the

log10(SNR) versus log10(n̄) curve at the lowest photon exposures for cell A in

x-ray diffraction microscopy (XDM).

Although in these simulations we had perfect knowledge of the object that

was “imaged,” we chose to adopt a cross-correlation method for quantitative

comparisons that is better suited to experimental work with unknown objects.

Following the work of Bershad and Rockmore [62], we modified the signal-

to-noise measure of Frank and Al-Ali [63] with the result that our measure

gives the expected scaling with incident photon number n̄. We then used

this measure to compare incoherent brightfield imaging in a transmission x-

ray microscope with a zone plate objective lens of specified efficiency versus

x-ray diffraction microscopy using an iterative phase retrieval algorithm for

image reconstruction. In these simulations, x-ray diffraction microscopy gave

a higher signal-to-noise ratio for equivalent dose, with a gain consistent with

the losses imposed by the modulation transfer function and overall efficiency

of the zone plate objective.

Of course these simulations are idealized; real imaging experiments involve

a number of factors not accounted for here. One of them is that transmission

x-ray microscopy has the significant advantage of providing images immedi-

ately, unlike x-ray diffraction microscopy where one must use sophisticated

image reconstruction algorithms, and specimens that satisfy a finite-support

constraint (though we note that ptychography can remove that latter limita-

tion [69]). A limitation of transmission x-ray microscopy as well as its scanning

“cousin” is that the resolution-determining outermost zones on zone plates usu-

ally have a lower diffraction efficiency than the coarser, inner zones. In x-ray

diffraction microscopy, complications include undesired scattering from nearby
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high-contrast objects such as specimen support grid bars, and the detrimental

effects of partial coherence which can contribute noise to reconstructed images

[70]. Nevertheless, the simulations shown here illustrate how x-ray diffraction

microscopy has the potential to deliver images with higher resolution when

studying dose-sensitive specimens.

3.2 Radiation dose requirement

In Sec. 1.4.3, we showed that the radiation dose D is proportional to the

incident photon number per pixel n̄, as expressed in Eq. 1.52. When combined

with a method to estimate resolution of reconstructed images from the phase

retrieval transfer function [55], the simulated images for SNR comparison can

be actually used to study how much dose is required for achieving certain

resolution. This question is important, because radiation damage is one of

the major effects that limits the achievable resolution for radiation sensitive

specimens, such as biological or soft matter samples.

3.2.1 Power density curve slope

As shown in Fig. 3.5, the azimuthally-averaged diffracted signal P (f) in our

defined objects declines in a power law relationship of log10 P (f) = m log10 f+b

or

P (f) = 10bfm (3.16)

with m = −3.3 (azimuthal averaging smooths out the sharp variations due to

individual speckles to reveal an overall scattering trend). Theoretical estimates

for signal decline in x-ray diffraction microscopy have ranged from m = −4

[21], to m = −3, -4, and -6 for various specimen models [20]. In small angle

x-ray scattering, Porod’s law suggests that the diffraction signal should decline

with spatial frequency as fm with m = −4, while measured power spectra tend

to have positive deviations from this dependence (i.e., values of m of -3 to -4).

As the diffracted signal for a particular length scale declines, the available

number of photons for reconstructing structure at that length scale decreases;

the signal-to-noise ratio then worsens as a result (as illustrated in Fig. 3.2).
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Since images become unrecognizable when a minimum signal-to-noise ratio is

not satisfied [58], this suggests a direct relationship between achievable res-

olution ∆min and some minimum signal level Smin. Since the signal scales

with incident photons per pixel n̄ yet declines with spatial frequency f in the

Fourier domain, we will assume that the minimum reconstructable signal level

is reached at a cutoff spatial frequency fc, or

Smin = n̄P (fc). (3.17)

Associating the minimum object size ∆min with the half-period of a grating at

the maximum resolvable spatial frequency fc, we obtain

fc =
1

2∆min
. (3.18)

Inserting the diffracted signal trend of Eq. 3.16 evaluated at frequency fc into

Eq. 3.17 and then employing Eq. 3.18 leads to

Smin = n̄10b(2∆min)
−mr , (3.19)

where we have used mr to denote the power law dependence in reconstructed

images even though we expect it to be the same as the specimen diffracted

power scaling m of Eq. 3.16. The result of Eq. 3.19 can then be rearranged to

give

log10 n̄ = mr log10(∆min) +mr log10 2 + log10 Smin − b (3.20)

where we have chosen to place ∆min on the abscissa and n̄ on the ordinate

for comparison with the dose-versus-resolution plots estimated by Howells et

al. [21] and Shen et al. [20].

The above arguments suggest that the required dose (proportional to ex-

posure n̄) for achieving a desired resolution ∆min should have the same log-log

slope mr as the scaling m in object’s diffracted signal (because of the use of

Eq. 3.17 in deriving Eq. 3.20).

60



(a) (b)

0.2

0.4

0.6

0.8

1.0

1.2

100101
0.0

Ire
co

n 
/ I

da
ta

spatial frequency f (μm-1)

10 3

10 2

10 1

10 5

10 4

n
: i

nc
id

en
t p

ho
to

n 
nu

m
be

r 
pe

r 
pi

xe
l

10010

Slope: -3.2±0.2

Resolution (nm)

Figure 3.8: Investigation of the dose versus resolution trend for x-ray diffrac-
tion microscopy of defined object B. (a) The ratio 〈Irecon(f)〉/〈Idata(f)〉 for
the example case of incident photon number n̄ = 1000. This ratio measures
how consistent the reconstructed intensity Irecon averaged over many iterates
compared to the recorded intensity Idata. We chose a cutoff value of 0.7 as
providing an estimate of the resolution of the reconstructed image. (b) The
resulting trend of incident photon number n̄ versus resolution ∆min, along with
a straight line fit to determine the dose versus resolution scaling parameter mr.
The value of mr = −3.2±0.2 is consistent with the scaling of m = −3.30±0.03
shown in Fig. 3.5 for the diffracted signal from this object.
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3.2.2 Dose simulation result

We therefore explored the scaling parameter mr in our simulations of imaging

defined cell B using x-ray diffraction microscopy. The spatial frequency de-

pendent ratio 〈Irecon(f)〉/〈Idata(f)〉 provides a good measure of the resolution

in diffraction microscopy reconstructions [54, 55] (similar to a phase retrieval

transfer function [36]), and in our simulations we used a value of 0.7 for this

ratio as way to identify the cutoff spatial frequency fc and thus the resolution

∆min = 1/(2fc). The resulting data of signal level n̄ required to achieve a given

resolution ∆min are shown in Fig. 3.8; a linear fit of the data gives a value of

mr = −3.2 ± 0.2. Since defined cell B has a signal that scales like P (f) ∝ fm

with m = −3.30 ± 0.03 as shown in Fig. 3.5, these simulation results are

consistent with the expected result: the scattering strength of the specimen

determines the dose versus resolution trend for imaging the specimen. The

same conclusion is also obtained from cell A.

While Fig. 3.8 shows a good overall agreement between the dose-versus-

resolution slope mr and the scattering-versus-angle slope m, there are “local”

departures from this “global” trend. That is, the power law fit of Fig. 3.8

is done over a very large, 105:1 dynamic range in incident photons per pixel

n̄; this is the “global” trend. If one were instead to carry out the fit over a

smaller exposure dynamic range, a different, “local” power law dependance

might be observed. Given that the Airy ring characteristics of our defined

object B produce departures from a simple power law relationship as seen in

Fig. 3.5 (due to concentration of extra diffraction signal into certain spatial

frequency ranges), we expect that both computer simulations and experimental

observations can have somewhat different dose-versus-resolution slopesmr over

particular exposure ranges.

3.3 Incorrect support tolerance

As discussed in Sec. 2.2.4, phase retrieval algorithms are able to reconstruct

the complex object using support constraint in real space and Fourier modulus

constraint in the reciprocal space. The Fourier modulus constraint is well
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defined, because it is determined by the measured diffraction intensity. On

the other hand, it takes a lot of effort to find the correct support in real space.

Once the support is accurately defined, the solution for the reconstruction is

then obtained.

An image reconstruction process usually starts by running iterative al-

gorithms with an initial support provided from a thresholded version of the

autocorrelation function. The output reconstructed image is then used to re-

fine the support towards the correct shape. One method of refinement of the

support is through the use of a low pass filter and threshold operation called

the “shrinkwrap” algorithm [71], but manual support adjustment can also be

required.

In this section, we compare the performances of 4 different phase retrieval

algorithms: Error Reduction (ER) [42], Hybrid Input-Output (HIO) [43], Dif-

ference Map (DM) [45] and Relaxed Averaged Successive Reactor (RASR) [50],

with incorrectly defined supports in real space through numerical simulation.

3.3.1 Support simulation setup

In order to understand the effects of erroneous supports, we used the exit wave

of Cell B with n̄ = 104 incident photon number per pixel at a photon energy of

520 eV as defined in Sec. 3.1.2. The diffraction intensity was calculated from

this fake cell, photon noise was added, and the XDM reconstruction process

was simulated in the same way as in Sec. 3.1.2. For DM algorithm, we set

β = 1.15, γm = β−1 and γs = −β−1. For HIO and RASR, we set β = 0.9 for

this simulation.

The test supports were generated from the correct support as shown in

Fig. 3.9 (b). The first incorrect support, the “bump-out” support, was ob-

tained by including a number of pixels outside the correct support at a local

area (Fig. 3.9 (c)). The second one, the “bite-in” support, excludes some pix-

els inside the correct support at a local area (Fig. 3.9 (d)). The third one, the

“loose” support, increases the size of the correct support uniformly by 2 pixels

(Fig. 3.9 (e)). The forth one, the “tight” support, reduces the correct support

size uniformly by 2 pixels (Fig. 3.9 (f)).
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Figure 3.9: The blue area denotes the region removed from the correct support.
The error area denotes the region added to the correct support. (a) The exit
wave of the simulated cell. (b) The correct support. (c) The “bump-out”
support generated by including a number of pixels outside the correct support
at a local area. (d) The “bite-in” support generated by excluding some pixels
intside the correct support at a local area. (e) The “loose” support generated
by increasing the size of the correct support uniformly by 2 pixels. (f) The
“tight” support generated by reducing the correct support size uniformly by
2 pixels.
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The error function to monitor the convergence of each algorithm is defined

differently. In this simulation, in order to make a consistent comparison, a

universal error metric was introduced for all these 4 testing algorithms, which

was calculated from the difference between the output of the current iteration

and that of the next, or

En =

√
∑

|on+1 − on|2
√
∑

|on|2
. (3.21)

Note that 2 pairs of Fourier transforms are applied in a DM iteration, while

1 pair is applied in a HIO, ER and RASR iteration. To get the number of

Fourier transforms the same for all algorithms, the iteration numbers of the

latter 3 algorithms were doubled from that of DM. In the simulation, DM

was run by 1000 iterations and starts to average after 800 iterations with an

interval of 2. The other 3 algorithms were run by 2000 iterations and start

averaging after 1600 iterations with an interval of 4. The reconstruction of

each algorithm was performed 5 times with individual random starts, and the

final image was averaged from those 5 reconstructions.

3.3.2 Simulated images and comparison

The reconstructed images for the correct, bump-out and bite-in supports

are shown in Fig. 3.10, the corresponding error metric curves are shown in

Fig. 3.12, and the phase retrieval transfer function curves are shown in Fig. 3.14.

All the algorithms give good reconstructions for the correct support. As

the basic shape and major part of the support are kept for both bump-out

and bite-in supports, a lot of information are retrieved from those supports

too. Especially, for the bump-out support, because the extra support area

does not bring translation ambiguity, the reconstruction quality is not affected

significantly. For the bite-in support, as the support excludes a part of object

area, the reconstruction algorithms try to place all the diffraction intensities

inside. The reconstructed image quality thus become worse.

This effect could be used in a support-refining process. If a part of the

reconstruction support is not defined with sufficient confidence, we can en-
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large the support in this area and keep the rest of support untouched. The

reconstruction with this new support could give a new boundary of the object

in the target area. Based on that, the new support boundary can be refined

in that region.

A similar conclusion can be drawn out from the error and PRTF curves.

The error curves for the correct and bump-out supports are almost converged

to the same level with small error values. The bite-in support increases the

error convergent level and also involves larger fluctuations, especially for DM

algorithm, which indicates that the algorithms are struggling to fit the diffrac-

tion information into the cropped support. The PRTF curves for the correct

and bump-out supports are almost overlapping, while the PRTF from bite-in

support stays at an abnormal high level. This is because the intensity outside

this bite-in support is also filled into the smaller area, which increases the

intensity in the reconstructed image incorrectly.

The reconstructed images for the correct, loose and tight supports are

shown in Fig. 3.11, the corresponding error metric curves are shown in Fig. 3.13,

and the phase retrieval transfer function curves are shown in Fig. 3.15.

We found the loose support gives good reconstruction too, especially with

the application of centering the image to remove the translation ambiguity,

which is done by maximizing the convolution between sequential images. This

centering process keeps linear phase shifts from building up and giving “false”

errors from the reconstructed object shifting off of the support. But, the PRTF

curves from loose support drops earlier and stays at a lower level than those

from the correct support, which gives a worse reconstruction resolution. The

image quality decreases significantly for tight support, because the support

constraint is not satisfied very well. This violation is even worse than the

bite-in support, where the mismatching only happens at one local position.

5 images are simulated for each case. From those 5 images, there are 10

ways to calculate SNR from image pairs. The averaged SNR value for each

case is summarized in Table. 3.1. We can see that the correct and bump-out

supports give the best reconstruction, the SNR for loose support decreases

slightly, and the SNR given by bite-in and tight supports are not quite con-

sistent. This inconsistency implies that with insufficient large supports, the
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Figure 3.10: Reconstructed images with DM, HIO, ER and RASR with correct,
“bump-out”, and “bite-in” supports.
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Figure 3.11: Reconstructed images with DM, HIO, ER and RASR with cor-
rect, “tight”, and “loose” supports. For the loose support, a centering process
was applied to remove the translation ambiguity, which is done by maximizing
the convolution between sequential images. The corresponding result is la-
beled with “Centered”. The one without the centering process is labeled with
“Uncentered”.
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Figure 3.12: Error curves from reconstruction with DM, HIO, ER and RASR
with correct, “bump-out”, and “bite-in” supports.
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reconstruction algorithms keep outputting reconstructions at a stagnation po-

sition. The poor quality of these images can be justified by eyes, but they

could have high similarity and give high SNR values.

From this simulation, the smaller supports could cause convergence prob-

lems for all reconstruction algorithms. The overall performances of DM and

HIO are better than ER and RASR. They give higher reconstruction qualities

at most cases.

Table 3.1: SNR of reconstructed images with different supports.

DM Correct 8.1 Loose (centered) 6.6
Bump-out 9.4 Loose 4.6

Bite-in 2.3 Tight 1.8
HIO Correct 8.0 Loose (centered) 5.2

Bump-out 8.2 Loose 4.3
Bite-in 47.0 Tight 24.6

ER Correct 2.4 Loose (centered) 1.7
Bump-out 1.9 Loose 1.7

Bite-in 2.8 Tight 3.6
RASR Correct 3.2 Loose (centered) 3.5

Bump-out 3.0 Loose 2.5
Bite-in 33.2 Tight 10.3

3.4 Missing center tolerance

In Sec. 2.3.3, we discussed that the missing data in the center of the diffraction

array can allow unconstrained modes which satisfy both Fourier modulus and

support constraints. When the missing data area is large enough, it can hinder

successful reconstructions. In experiments with a normal CCD, the intense

direct beam has to be blocked by a beamstop; as a result, the center remains

at least partially missing, although the size of the missing center can be reduced

by assembling data from multiple beamstop positions.

In this section, we compare the performances of phase retrieval algorithms:

ER, HIO, DM and RASR with varying sizes of missing centers in diffraction

patterns.
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3.4.1 Missing center simulation setup

We used the exit wave of Cell B (defined in Sec. 3.1.2) with 520 eV x-rays and

104 incident photon number per pixel as the test sample again. The diffraction

pattern calculation, addition of photon noise and reconstruction settings are

identical to Sec. 3.3.1.

A varying number of pixels are removed from the diffraction pattern. The

sizes of the test missing centers are 5×5, 10×10, 20×20 and 50×50 pixels,

which are shown in Fig. 3.16. Considering the oversampling ratio of Cell B

is about 4.6 (obtained by dividing the array size divided with the number of

pixels inside the correct support), the corresponding missing speckles inside

the missing centers are 5, 22, 87 and 543, respectively.

3.4.2 Simulated images and comparison

The reconstructed images are shown in Fig. 3.17. We found that the recon-

struction quality is significantly affected with 10×10 missing center for all

testing algorithms. ER and RASR cannot have the objected reconstructed

with missing center size larger than 5×5, while DM and HIO fail to converge

when the missing area is larger than 10×10 missing area, which corresponds

to about 22 missing speckles.

The error curves are shown in Fig. 3.18, where we see that with increasing

size of missing center, the convergence speed slows down, and the convergence

level raises up for all testing algorithms. A constant worsen trend can be

found from the PRTF curves too (shown in Fig. 3.19). For DM and HIO,

PRTF curves collapse after 10×10 missing size, and for ER and RASR, PRTF

curves fell off after 5×5 missing size.

The signal-to-noise ratio of reconstructed image for each case is summarized

in Table. 3.2. With increasing size of the missing data area, SNR values

decrease. DM and HIO give higher image quality in terms of SNR, which is

consistent with conclusion obtained from error and PRTF curves.

In Sec. 2.3.3, we mentioned that a high pass filter function can be used to

mitigate the ambiguity caused by missing center. We applied a filter with 0.5

depth and 10% width of the entire array to the reconstructed images. They
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20x20 missing 50x50 missing

Figure 3.16: (a) Exit wave of Cell B. (b) Diffraction pattern of Cell B. (c-d)
Diffraction patterns of Cell B with 5×5, 10×10, 20×20 and 50×50 missing
centers, respectively.
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Figure 3.17: Reconstructed images from DM, HIO, ER and RASR for Cell B
with 0, 5×5, 10×10, 20×20 and 50×50 missing centers.
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Table 3.2: SNR of reconstructed images with varying size of missing center.

Missing area 0 5×5 10×10 20×20 50×50
Missing speckle 0 5 22 87 543

DM 8.1 4.7 2.7 1.4 1.1
HIO 8.0 6.3 1.9 1.0 1.1
ER 2.0 0.8 0.7 0.8 0.9

RASR 3.2 2.0 0.6 0.6 1.0

are displayed in Fig. 3.20, where we see that for the cases with larger missing

area in diffraction patterns, the improvement provided by the high pass filter

is very limited. Reducing the size of the missing center to a very small value

is necessary to achieve good reconstructions.

0 200 400 600 800 1000 0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

E
rr

o
r

E
rr

o
r

E
rr

o
r

E
rr

o
r

Iteration Iteration

Iteration Iteration

No missing center

10X10 missing center
20X20 missing center

5X5 missing center

50X50 missing center

0.1

1.0
DM

0.1

1.0

No missing center

10X10 missing center
20X20 missing center

5X5 missing center

50X50 missing center HIO

0.0001

0.001

0.01

No missing center

10X10 missing center
20X20 missing center

5X5 missing center

50X50 missing center ER

0.01

0.10 No missing center

10X10 missing center
20X20 missing center

5X5 missing center

50X50 missing center RASR

Figure 3.18: Error curves of reconstructions from DM, HIO, ER and RASR
for Cell B with 0, 5×5, 10×10, 20×20 and 50×50 missing centers.

From the SNR values listed in Table. 3.1 and Table. 3.2, combined with the

reconstructed images shown in Fig. 3.10, Fig. 3.11 and Fig. 3.17, as well as the
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76



No missing
center

5x5 missing
center

10x10 missing
center

20x20 missing
center

50x50 missing
center

DM HIO ER RASR

Figure 3.20: High pass filtered reconstructed images from DM, HIO, ER and
RASR for Cell B with 0, 5×5, 10×10, 20×20 and 50×50 missing centers.
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error and PRTF curves in Fig. 3.12, Fig. 3.13, Fig. 3.14, Fig. 3.15, Fig. 3.18 and

Fig. 3.19, we found that when phase retrieval algorithms give reasonably good

reconstructions, the corresponding SNR values are about ≥ 2. We mentioned

previously that when the reconstruction algorithm trapped into a stagnation

position, it is possible to give abnormally high SNR values. This situation can

be eliminated by checking the reconstructed images directly.

From the incorrect support and missing center simulations, we found that

the DM and HIO algorithms are more robust in handling incorrect support

guess and incomplete diffraction data with missing centers than ER and RASR.

When the support size is smaller than the actual object size, reconstruction

algorithms do not converge well, while a loose support can be used to generate

fairly good reconstructions, from which the shape of the support can be refined

further. The missing data in the center of diffraction pattern not only brings

ambiguities into reconstruction, but also prevents convergence when too many

speckles are blocked by the missing center. DM and HIO work well up to about

22 missing speckles, while ER and RASR give reasonably good reconstructions

up to about 5 missing speckles.
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Chapter 4

XDM experiment on dried yeast

cells

In this chapter, we use XDM to image a chemically-dried yeast cell using 750

eV x-rays. A series of 2D reconstructions are obtained at 10 different angles.

In this chapter, we will discuss the sample preparation, data collection, image

reconstructions, achieved resolutions and associated limitations.
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4.1 Imaging whole, eukaryotic cells with XDM

The goal for our experiments is to image whole, eukaryotic biological cells at

high resolutions. The size of cells could be a few microns, which is too thick

for electron microscopes [72–74]. Cells also provide interesting structures in

the range of 5-10 nm, which is beyond the resolution limit of visible light

microscopes. Cells do not come in crystalline arrays of identical structures,

and they are sensitive to radiation damage.

It has been suggested that x-ray microscopes are well suited for imaging

thick biological samples [72, 75, 76]. They have the capability to bridge the

gap between electron microscopy and visible light microscopy. In particular,

XDM removes the limitations imposed by optics, and it can work with unique

objects (single cells) in a way that crystallography cannot. It has the potential

to image biological specimens with a resolution limited only by the collected

maximum diffraction angle and the radiation tolerance of the samples.

XDM has been successfully applied on biological imaging of bacteria [77],

yeasts [55], malaria-infected erythrocytes [78], herpes virions [79] and chro-

mosomes [80] since it was first experimentally demonstrated in 1999 [81]. We

contribute to this fast-improving progress in XDM by performing experiments

on whole, eukaryotic cells at multiple viewing angles towards 3D, which will

be discussed in this chapter, and in their natural, hydrated status, which is

going to be discussed in the following chapter.

In this chapter, the sample preparation and data recording were carried out

as part of a team effort involving Johanna Nelson, David Shapiro and Stefano

Marchesini; the reconstructions shown here were obtained by the thesis author.

4.2 Chemically-dried cell preparation

We imaged Saccharomyces cerevisiae yeast cells carrying the whi5 mutation.

The size of the wild type of yeast cells is about 6-7 µm, which is too large for

XDM by violating the Born approximation requirement (Eq. 2.29). The whi5

mutation produces smaller yeast cells [82], normally with a diameter of about

3-4 µm, which satisfies our present-day experimental limitations.
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4.2.1 Fixation

Following the recipe described previously [35, 83], the cell colony was initially

cultured on a YPD agar plate. Before using, we incubated the cells in YPD

solution at 30◦C for 8 hours, changed with fresh YPD solution, let them grow

for another 8 hours, and repeated this cycle several times.

The purpose of a chemical drying process is to prevent surface-tension-

caused structural collapse by gradually replacing water with acetone.

Formaldehyde solution is a widely used fixative. We fixed the cells by

suspending them in 37% Formaldehyde YPD solution for 30 minutes at room

temperature. In this process, the Formaldehyde solution can be replaced with

3% Glutaraldehyde, 10% NaCu, 0.5% CaCl2 in water.

To remove the fixative, we washed the fixed cells in water, spun them down

in centrifuge, discarded the liquid, and resuspended them in fresh water. This

process was repeated 3 times.

4.2.2 Dehydration

After the cellular structures were fixed, the water in cells was gradually re-

placed by acetone. This was done by suspending the cell in an acetone solution

with increasing concentrations. The water molecules were gradually diffused

and removed.

The protocol of this process is as following:

1. Suspend cells in 30% acetone, 70% water for 10 minutes, repeat.

2. Suspend cells in 50% acetone, 50% water for 10 minutes, repeat.

3. Suspend cells in 70% acetone, 30% water for 10 minutes, repeat.

4. Suspend cells in 90% acetone, 10% water for 10 minutes, repeat.

5. Suspend cells in 100% acetone for 10 minutes, repeat.

Each step was repeated means that the acetone solution was replaced with

fresh solution by spinning down the cells, discarding the liquid, and resus-

pending the cells in fresh solution.
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This dehydration process is done slowly, which helps to preserve much of

the cells’ larger scale structure.

There was still a small amount of water left inside cells after the acetone

dehydration process. To remove water as much as possible, the cells were

then washed with Hexamethyldisilazane or HMDS. After the last step in the

acetone dehydration process, we centrifuged the cells in 100% acetone solution,

discarded the liquid, and resuspended cells in HMDS. We then added a droplet

of this solution onto the grid coated with a formvar film. The HMDS is highly

volatile, so it evaporates almost immediately. We then added another drop of

pure HMDS on the grid, allowed it to evaporate, and repeated with a second

drop of pure HMDS. Although HMDS evaporates rapidly, we found it does

not break or harm the formvar film.

We note that because a lot of cells could be lost during this multiple-step

dehydration process, there is not a good way to monitor the cell concentration

in the final stage. However, the requirement of a finite support constraint

means that a low cell density is preferred.

4.3 Experimental setup

The microscope chamber [15] is stationed at Beamline 9.0.1 of the Advanced

Light Source at Lawrence Berkeley National Laboratory. The basic concept

of this microscope is to select and deliver coherent x-ray illumination onto a

well isolated specimen on the sample grid, and collect the far field diffraction

pattern with a CCD located downstream.

4.3.1 Zone plate monochromator

The x-ray energy is selected from the undulator radiation spectrum by a com-

bination of a monochromatic zone plate and a pinhole. This microscope uses

an off axis zone plate monochromtor, which was initially designed by Howells

[84]. Instead of using a full zone plate, a segment of the zone plate, which con-

tains 1000 outermost zones, vertically disperses photons with different energies

and focuses them onto different focal planes, as shown in Fig. 4.1.
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Segment of monochromator zone plate Zone plate spectrum

Figure 4.1: Energy selection by off axis zone plate monochromator. A segment
of the full zone plate vertically disperses photons with different energy and
focuses them onto different focal planes. Place a pinhole in the focal plane of
the given energy, and scan it vertically to locate the correct peak. This picture
is adapted from [35].

A 5 µm diameter pinhole is placed in the focal plane for the desired x-ray

energy, which is 750 eV for this experiment. Scanning this pinhole vertically

gives the spectrum dispersed from the zone plate. Considering the radius of

the full zone plate is about 3.6 mm and the segment is off-axis by 3.35 mm, the

separation between the focal peak to the edge of the unscattered direct beam

is about 3.35 mm. Another phenomenon to identify the correct energy is that

usually the strength of the peak in focus is higher and its width is narrower

than other peaks, as seen in Fig. 4.1.

As we discussed in Sec. 2.3.2, to achieve 10 nm resolution from a 3 µm

specimen, the required spectral resolution λ/∆λ is at least 300, as calculated

from Eq. 2.54. This should be the minimum spectral resolving power that the

monochromatic zone plate should provide. The spectral resolution is related

to the number of zones Nzp as [85, 86]

λ

∆λ
= Nzp. (4.1)

We obtained the same result for gratings in Eq. 1.39. For the zone plate used

in our experiment, there are 1000 zones in the segment, which gives λ/∆λ =

1000. This spectral resolving power satisfies the experimental requirement

sufficiently. In other words, the temporal coherence lcoh is sufficient, according

to Eq. 2.52.
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4.3.2 Pinhole, corner and beamstop

The further down stream experimental setup from the pinhole is illustrated

in Fig. 4.2. The x-ray peak selected by the pinhole propagates through and

illuminates the specimen grid. As discussed in Sec. 2.3.2, a pinhole scattering

generates the Airy pattern, and the illumination within the half radius of the

central Airy disk can be considered to be coherent.

Pinhole Corner

Sample

Beamstop

CCD

Figure 4.2: Illustration of XDM experimental setup. The focused x-ray peak
is selected by a pinhole, which illuminates the sample. A corner window blocks
most of the pinhole scattering and leaves clean diffraction pattern collected on
CCD. This picture is adapted from [35].

The pinhole we used in the experiment is 5 µm in diameter. The sample

grid is placed 2.5 cm down stream from the pinhole. For 750 eV x-rays, we

have λ = 1.65 nm, so this setting gives a theoretical spatial coherence of 10

µm, calculated from Eq. 2.49. The experimental measurement of the coherence

width at Beamline 9.0.1 is about 5.3 ± 1.1 µm [87] with 50% fringe visibility,

which implies the beamline provides very good coherence up to 5.3 µm.

The Airy rings from the pinhole scattering can project onto the CCD and

contaminate the diffraction pattern from the specimen. A silicon piece with

a square window, which is called as “corner”, is used to block most of the

pinhole scattering. The size of the corner opening area is about 200×200 µm.

The center part of the Airy pattern goes through the corner, interacts with

the specimen, and generates diffraction signal on the CCD.
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The CCD we used in this experiment is PI-MTE 2048B CCD from Prince-

ton Instruments. The entire CCD array pixel number is 2048×2048, with 13.5

µm pixel size [88]. The CCD is located 13.6 cm away from the sample grid.

The edges of the corner also scatters. This signal is blocked by a beamstop

in front of CCD. The size of the beamstop is about 2×2 mm, corresponding

to about 100×100 pixels. It is aligned with the corner to block the projection

of corner scattering, and leave the outside area with clean diffraction pattern

from the specimen alone. The procedures for fabrication of the silicon corner

and beamstop can be found in Appendix C.

As we mentioned before, the beamstop also blocks the intense undiffracted

direct beam. To deal with the limited CCD dynamic range and widely dis-

tributed diffraction signal, and for the purpose of reducing the “missing central

region” where no data is recorded, we aligned the corner and beamstop with

the beam direction at several positions: aligning the beam with the centers

of the corner and beamstop for long exposure times and thus producing high

spatial frequency signal, and aligning the beam with the diagonal corners of

the corner and beamstop for short exposure times and producing low spatial

frequency signal. The final diffraction pattern is assembled from images taken

with both long and short exposures.

The sample grid is motorized by a goniometer system [83, 89], which pro-

vides translation ability in X, Y and Z directions, and rotation over a range of

-80◦ to +80◦. The microscope thus has the capability for 3D data acquisition.

4.4 Diffraction data and reconstructions

We collected diffraction data from a chemically-dried yeast cell with 750 eV

x-rays at 10 different angles: from -40◦ to 50◦ with 10◦ step size. We obtained

a 2D reconstructed complex image for each angle.

4.4.1 Diffraction data

Studies [83] show that dried cells suffer from an initial collapse when exposed

by x-ray beam, and then they enter a stage with uniform and slow shrinkage.
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To make sure the cell is settled down without rapid structure changes, we

illuminated the specimen for 20 minutes with direct x-ray beam which cor-

responds to a dose of about 8.2×109 Gray, until we did not see significant

changes in speckle pattern.

The corner and beamstop were aligned at 4 different locations for long and

short exposures. These locations are called top low and bottom low where

x-ray beam is aligned close to diagonal corners of the corner and beamstop

for short exposures and low spatial frequency signal, and top high and bottom

high where x-ray beam is aligned near the centers the corner and beamstop

for long exposures and high spatial frequency signal. We used 0.002 sec, 0.01

sec and 0.1 sec for the exposure times for low positions, and 4 sec, 30 sec for

high positions. To increase the photon statistics and partially remove the shot

noise, 4 diffraction patterns were taken at each position and for each exposure

time setting. The final data array is assembled from 40 images, and 136.448

sec total exposure time.

To obtain a “clean” data set for each angle, the scattering from the corner,

the formvar film, and sometimes the sample grid bars have to be removed from

the scattering signal from the specimen. Considering that the diameter of the

center Airy disk of the pinhole illumination used in this experiment is about

10 µm, we moved the sample grid 50 µm away from the cell for background

data taking. This spot is about 10 times of the coherence length (∼ 5 µm)

away, which avoids the interference with scattering from the specimen. In this

case, the background intensity can be simply subtracted.

The data arrays and background arrays were assembled separately. The

final data sets were obtained by subtracting the background arrays from the

data arrays, and setting negative pixel values to zero. The assembled diffrac-

tion data for all of the 10 angles are displayed in Fig. 4.3. The final array

size is 1800×1800 pixels, which is cut from the initial 2048×2048 CCD array.

The missing center is about 34×34 pixels. Considering the oversampling ratio

of this specimen is about 18, the missing speckle number is 64. According

to the simulation result in Sec. 3.4, the difference map algorithm could have

difficulty to give good reconstructions under this condition. The recorded

diffraction pattern extends to a spatial frequency, which is obtained by di-
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viding the diffraction angle with wavelength, of about 54 µm−1 at the edges

and 77 µm−1 at the corners. The spatial frequency at the edges of 54 µm−1

corresponds to a half-period pixel size in real space of about 9.2 nm.

The black regions in the assembled data pictures indicate pixels with zero

values. The vertical black line in the center of the top half plane is caused

by overlapping of the beamstop arm at two high resolution positions. The

black streaks emanating from the center come from the mismatching between

the data and background. Their locations are almost the same for all angles.

The mismatching gets worse for higher rotation angles, for instance, 50◦, −30◦

and −40◦. This is partially because the grid bars are closer to the direct

beam at higher angles, they diffract strongly, and these diffractions are more

difficult to be removed by background subtraction. Another reason could be

the reproducibility of rotation motor is worse at higher angles.

Fig. 4.4 shows the power spectral density (PSD) curve of the diffraction

data at 10◦. The PSD curves from other angles are very similar. We can see

the diffraction pattern intensity extends to over 6 orders of magnitude.

4.4.2 Dose calculation

The direct x-ray beam flux through the pinhole measured by a photodiode

in front of CCD is about 120 nA. Considering that the energy Ee−h needed

to create an electron-hole pair is 3.63 eV, the number of 750 eV photons per

second delivered by the incident x-ray beam can be estimated by

nphoton =
I/e

Ephoton/Ee−h
, (4.2)

where I is the flux current measured on photodiode, e is the charge of an

electron in Coulombs (1.6×10−19 C), Ephoton is the photon energy (750 eV

in this case). Substituting all the numbers into Eq. 4.2, we obtain that the

incident photon number is 3.6×109 /sec.

The major part of this incident illumination is focused within the center

Airy disk from the pinhole. Using Eq. 1.49, for a 5 µm pinhole placed 2.5 cm

away from the sample grid, the radius of the center Airy ring with 750 eV
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Figure 4.3: Assembled diffraction data from the chemically dried cell at 10
different angles, from -40 to +50 degrees with 10 degree step size.
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Figure 4.4: Power spectral density curve of assembled diffraction data from
the chemically dried cell at 10◦. The diffraction pattern intensity extends to
over 6 orders of magnitude.

x-rays (λ = 1.65 nm) is 5 µm. Considering a cell with a radius about 1.5 µm

located in the center of the Airy pattern from the pinhole, about 20% of the

total photon flux is distributed in the cell area according to the calculation in

[3]. So, the photon flux in the sample region per unit area can be calculated

by 3.6 × 109 × 20%/(π × 1.52) = 1.0 × 108 /sec/µm2.

The radiation dose imposed on the sample can be estimated using Eq. 1.52,

where D will be in Gray (Joule/kg) with the other quantities in MKS units:

Ephoton = 750 eV = 750 × 1.6 × 10−19 Joule = 1.2 × 10−16 Joule,
n̄

∆2
= 4.6 × 107 /sec/µm2 × 136.448 sec = 6.3 × 1021 /m2,

ρ = 1.35 g/cm3 = 1.35 × 103 kg/m3,

µ =
4πβ

λ
=

4π × 1.0 × 10−4

1.65 nm
= 7.6 × 105/m, (4.3)

where the β value for protein at 750 eV is listed in Table. 1.1. Substituting

values obtained by Eq. 4.3 into Eq. 1.52, we estimate that the radiation dose
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for each 2D diffraction data set is about 9.1×108 Gray.

4.4.3 Image reconstruction

Figure 4.5: Autocorrelation image of the chemically dried cell from assembled
diffraction data collected at 10◦. The size and shape of the ghost image are
the same as those of the object in real space.

We used the Difference Map algorithm to reconstruct the cell images. We

started the reconstructions with initial supports defined from the autocorre-

lation functions (obtained by squaring the Fourier transform of the recorded

data intensities and applying a high-pass Fourier filter to the result) at differ-

ent angles. Fig. 4.5 shows the autocorrelation function at 10◦. We see a pair of

ghost images in the autocorrelation image. The size of the ghost image should

be the same as that of the object in real space.
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Figure 4.6: Reconstructed images from the chemically dried cell at 10 different
angles. The scale bar is 1 µm.
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The supports were then refined manually using the first-round reconstruc-

tion results. The support refining process was repeated several times until a

correct support was obtained with confidence for each angle. The confidence

is judged from the reconstruction reproducibility with different random starts,

the PRTF level, convergence speed and error metric level.

With the best supports, 10 iterative reconstructions were run with 10 dif-

ferent random starts for each angle. Each of these 10 reconstructions consists

of 10,000 iterations. When the iteration number exceeds 8,000, the outputs

from every 2 iterations are averaged together to improve statistics of pixel val-

ues. The outputs from 10 reconstruction runs are then averaged to generate

the final reconstruction image. During the averaging process, a global phase

is applied in the way described in Sec. 2.3.4. A high pass filter was applied

to the final averaged image following the way described in Sec. 2.3.3. The re-

constructed images at those 10 angles are displayed in Fig. 4.6. These images

show that we imaged a budding cell with a small bud sitting on the shoulder

of the parent cell.

After taking x-ray diffraction data, we imaged the cell specimen in a scan-

ning electron microscope, or SEM. The SEM images are quite consistent with

the XDM reconstructions, as shown in Fig. 4.7. The scars from previous bud-

ding processes are resolved in the XDM image, which match the SEM image.

A small object attached to the parent cell can be also seen in both the SEM

and XDM images.

By looking at the 10 images series, especially the reconstructions from 10◦

to 50◦, we can see the bud, the attached small object and some sub-cellular

structures rotating systematically between different angles. This gives partial

3D structural information of the cell. The movie file, contained on the multi-

media CD, shows how the reconstructed real space images rotate through those

10 different angles.

4.4.4 Reconstruction analysis

The reconstructed images in real space give both the magnitude and phase

information of the cell specimen. Fig. 4.8 shows the magnitude and phase

92



SEM XDM

Figure 4.7: The SEM and XDM reconstruction images of the chemically dried
cell. The scale bar is 1 µm. The red box locates the position of budding scars.
The yellow box locates a small object attaching to the big cell.

Magnitude Phase
Magnitude

+ phase

Figure 4.8: Reconstructed magnitude and phase of the chemically dried cell
at 10◦. The magnitude varies from 0 to 668 (arb. unit), and the phase varies
from 0 to 0.8π. Both the magnitude and phase are displayed in the left image,
where brightness demonstrates magnitude and hue demonstrates phase. The
scale bar is 1 µm. The box and arrows locate the lipid balls in the cell.
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parts, respectively, for the reconstruction at 10◦. A number of lipid balls

can be identified in the reconstructed images. These strong diffracting lipid

droplets were consistent with the observation in TXM 3D tomography [28].

To estimated the reconstruction resolution, we picked a line in the recon-

structed image, as shown in Fig. 4.9. For the reconstruction at 10◦, a Gaussian

fit over this lineout gives a half width at half maximum of about 19 nm. We

also checked the PRTF curves of the reconstructions. For the 10◦ reconstruc-

tion, the PRTF level stays above 0.5 up to a half period resolution of 20 nm,

as shown in Fig. 4.10. Based on the lineout Gaussian fit and the PRTF cri-

terion, we estimate that the reconstruction resolution at 10◦ is about 20 nm.

The resolution for other angles are estimated following the same steps. The

reconstruction resolutions for all angles are summarized in Table. 4.1. From

the assembled diffraction data images, we saw that the data quality varies for

different angles, the estimation of reconstruction resolutions shows that the

best resolutions are achieved at 10◦-50◦

Table 4.1: Reconstruction resolutions at 10 different angles for the chemically
dried yeast cell.

Angle 0◦ 10◦ 20◦ 30◦ 40◦

Resolution 33 nm 20 nm 25 nm 28 nm 25 nm

Angle 50◦ -10◦ -20◦ -30◦ -40◦

Resolution 22 nm 33 nm 33 nm 28 nm 33 nm

Although the outline of the parent cell and the bud are resolved in the

reconstruction, as well as the sub-cellular lipid balls, some other major sub-

cellular organs, such as the nucleus and the vacuole, are not seen clearly in

the reconstructed images. The main reason comes from the large size of the

missing centers in the diffraction patterns. Simulations described in Sec. 3.4

show that the reconstruction algorithm cannot give reliable reconstructions

with 64 missing speckles.

Another reason is the existence of enantiomorphs in the reconstructions,

shown in Fig. 4.11. In most the reconstructed images, we see a bright round

blob in the parent cell. It is the twin image of the bud. We can also see that a

part of the parent cell boundary reflects inside. These unexpected structures
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Figure 4.9: Top: a line was picked in the reconstructed image of the chemically
dried yeast cell at 10◦. Bottom, a Gaussian fit over this line gives a half width
at half maximum of about 19 nm.
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Figure 4.10: PRTF curve of the reconstruction at 10◦ for the chemically dried
yeast cell. Up to 20 nm half period resolution, the PRTF level is above 0.5.

are embedded in the parent cell, which prevent the nucleus and the vacuole

from being seen in reconstructions.

It is suggested that the enantiomorphs could be removed by the following

strategy [90]: at the beginning at the iterative reconstruction process, replace

the correct support with a temporary one, which covers part of the correct

support area, perform a few iterations, and then replace back to the correct

support to continue with the iterations. We tried this method for the current

reconstructions, but It did not help remove the enantiomorphs. The simula-

tion with fake cells shows that the enantiomorphs could be caused by noisy

diffraction pattern. This implies that a better beamstop and corner alignment

and a better matched background data set are needed to generate a clean

diffraction pattern and thus a clear reconstruction.

This partial 3D data set collected at 10 rotation angles is not sufficient for

performing a 3D reconstruction. One of the major reasons is that the data

is rather sparsely sampled in angle. Another reason comes from radiation

damage. The study on a dried yeast cell [83], as plotted in Fig. 5.2, shows
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Figure 4.11: Enantiomorphs of the bud and the cell boundary are embedded
in the parent cell in the reconstruction at -30◦.
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that the dried cell starts to shrink at a radiation dose level around 5×108 Gray.

In this experiment, because the radiation dose for one set of 2D data is about

9.1× 109 Gray, the cell’s structure is quite possible to have been changed due

to the accumulated radiation dose. The data acquisition process at multiple

angles could involve more dramatic deformations.
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Chapter 5

XDM experiment on frozen

hydrated cells

Rapid freezing of cells allows one to preserve them with minimum structural

changes and no dehydration artifacts. Frozen hydrated cells are also very

robust against radiation damage. We applied XDM to a frozen hydrated yeast

cell, and obtained the first image of a whole, eukaryotic cell using XDM. In

this chapter, we discuss the motivation to work with frozen hydrated samples,

how to prepare sample grids, data collection, image reconstruction, and the

effort to improve the current experiment.
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5.1 Motivation for frozen hydrated samples

Because XDM combines the benefits of x-ray microscopy (short wavelength

and high penetration ability) with the advantages of dispensing with the

technological limits on lens efficiency and resolution, XDM and the related

diffraction-based approaches have been used as important biological imaging

techniques by a growing number of groups, including demonstrations of imag-

ing bacteria [77], yeast [55], herpes virions [79], malaria-infected erythrocytes

[78], and chromosomes in 2D and 3D [80].

A remarkable limitation of all the previous XDM demonstrations of cells,

chromosomes and virons is that they have all involved dehydrated specimens

at room temperature. As an example, Nishino et al. [80] have obtained an

exciting 3D XDM image of a dehydrated chromosome, but they also note

significant resolution degradation due to accumulated radiation dose.

Because water is the most abundant component in biological samples, any

dehydration process can cause structural artifacts. Dehydrated samples usu-

ally suffer from structural collapse, shrinkage, and distortion, with relatively

poor preservation of sub-cellular morphology.

The frozen hydrated samples can solve problems in both aspects by miti-

gating the radiation damage problem and eliminating dehydration artifacts.

5.1.1 Elimination of dehydration artifacts

Chemically dried, freeze-dried and air dried biological samples have been suc-

cessfully imaged by XDM. They are easier to work with, and more easily satisfy

the finite support or isolated specimen constraint.

However, the removal of water from the cells cannot avoid structural changes

[92]. For dissolved molecules, they tend to adhere to the closest solid neighbor-

hood, and cause shrinkage and collapse. For the insoluble structures, such as

proteins, are compact solid, so they do not always shrink or collapse, but they

can undergo aggregations and conformational changes. Normally-hydrated or-

ganic molecules and supramolecular assemblies can change their shapes and

collapse upon drying.

100



Frozen hydrated

2% glutaraldehyde fixed,
1% OsO4 postfix, critical-point dried

Figure 5.1: 1 MeV TEM images of human blood platelets from [91]. One is
frozen hydrated, the other is chemically fixed and critical-point dried. The
fixed and dried specimen is smaller and shows considerable collapse and ag-
gregation of sub-cellular structures.
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Electron microscope studies have shown that the cellular structures are

faithfully preserved in frozen hydrated specimens [93–96]. Fig. 5.1 shows

TEM images of frozen hydrated and chemically-fixed critical-point-dried hu-

man blood platelets, where we can see that the size of the dried sample is

shrunk, the shape is distorted, the connections between sub-cellular organelles

are extracted and collapsed. As a comparison, the frozen hydrated sample

preserves most of the structures very close to the cell’s living state.

5.1.2 Better radiation tolerance

As discussed in Sec. 1.4.3, radiation damage sets an ultimate limit for high

resolution imaging with ionizing radiation. The radiation dose required to

achieve high resolution can cause immediate changes in the samples, especially

biological specimens, and produce remarkable mass loss and shrinkage.

In electron microscopy, stability against radiation damage has long been

solved by imaging the specimen at cryogenic temperatures [93, 94, 97]. Elec-

tron microscopy studies of fixed and dried versus frozen hydrated blood platelets

[91] reveal tremendous differences in structural preservation as shown in Fig. 5.1.

However, because of the thickness limitations of electron microscopy on frozen

hydrated specimens [72–74], only thin, peripheral regions of whole, unsectioned

eukaryotic cells have been imaged in a frozen hydrated state using electron mi-

croscopy [98, 99].

Cryo x-ray microscopy experiments at 113 K do not show observable mass

loss at 50 nm resolution level with radiation dose up to 1010 Gray [26, 30]. A

radiation damage study with PMMA using cryo-STXM also shows that cryo-

genic conditions are very effective for reducing mass loss, although chemical

bonds are broken at comparable rates at cryo and room temperatures [100].

The benefits of cryo methods for XDM have been shown in studies of

Shapiro [83] with yeast cells. A series of diffraction patterns were taken from

both a freeze-dried yeast cell at room temperature and a frozen hydrated yeast

cell at cryogenic temperature. By monitoring the sizes of the speckles in certain

spatial frequency range, the sizes of the cells in real space can be tracked as

a function of radiation dose, as shown in Fig. 5.2. This study demonstrates
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Figure 5.2: Demonstration of the stability of frozen hydrated yeast cells to
520 eV x-ray exposure for various absorbed doses in Gray [83]. Shown here
are the fractional radial shifts of the centers of speckles in coherent diffraction
patterns of yeast cells. The top curve is of cells that were viewed while frozen
hydrated at −170◦C, while the bottom curve is of cells that were freeze-dried
and then exposed at room temperature. For the case of freeze-dried, room
temperature cell, the center positions of speckles moved outwards from the
diffraction pattern center, indicating a shrinkage of the object in real space.
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significant stability of the diffraction patterns from the frozen hydrated cell

out to doses up to 1010 Gray. In comparison, substantial specimen shrinkage

was observed at room temperature before 109 Gray. Two separate groups have

estimated that cryo XDM has the potential to deliver sub-10 nm resolution 3D

images of whole hydrated cells within the limits of radiation damage [20, 21].

5.2 Frozen hydrated sample preparation

The XDM reconstruction algorithms require the specimen isolated from other

scatterers. For frozen hydrated samples, the specimens are embedded or sur-

rounded by ice. So we have to control the water on the sample grid to form

vitreous ice, which has no crystalline structure and gives diffused diffraction

signal.

5.2.1 Vitrification of ice

There are three major states for ice: hexagonal, cubic and vitreous. Hexagonal

ice is a stable macro-crystalline modification at normal pressure, exhibiting the

segregated compartments in a scale of 100 nm or more. Cubic ice is metastable

microcrystalline, showing segregated compartments with diameters of about

20 nm, and it is usually the devitrification product of water-containing sys-

tems. Both of these two ice states diffract strongly, and thus do not satisfy our

experimental requirement. Furthermore, the crystallization process can cause

the solutes in cells to gain boundaries and result in potential structural arti-

facts. We want to control the water to form vitreous ice, which is amorphous.

It has no detectable crystal structure, does not cause crystallization artifacts,

and gives diffused diffraction signal.

The vitrification capability of a liquid is determined by its crystallization

kinetics (nucleation and crystal growth rate) and the cooling rate. According

the classical nucleation theory [101], the liquid crystallization generally takes

place in two steps: a group of molecules forms an ice nucleus at the beginning,

and then a consecutive growth around the nucleus will follow up rapidly. So,

in order to obtain vitrified samples, the molecules have to be thermally settled
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down before the ice nucleus is formed. The time required for vitrifying 1 µm3

of pure water is in 10−4 sec range [102]. It has been shown that cells and

biological tissues no thicker than 10 µm need a cooling rate more than 104

K sec−1 to be sufficiently vitrified [103].

5.2.2 Plunge freezing

Vitreous ice can be obtained by freezing the sample quickly. This can be done

by plunge-freezing thin water layers into liquid ethane; in our case, we used a

commercial instrument (FEI Vitrobot) to carry out this procedure.

The specimen is the yeast Saccharomyces cerevisiae carrying the whi5 mu-

tation, which is the same as in Chap. 4. The sample grid we used in the

experiment is shown in Fig. 5.3, which is made from copper and designed for

3D data acquisition. It has seven 820×400 µm opening slots. The rectangular

shape avoids the scattering from top and bottom edges for high rotation an-

gles. The center bar in the center column is used for the 3D alignment, where

the procedure is described in [83]. We coated this grid with a thin formvar film

following the steps described in [35]. This film provides 98-99% transmission

for 520 eV x-rays. It is also strong enough to support the specimen and has a

reasonable surviving percentage from the sample preparation process.

3 mm 820 µm

400 µm

Figure 5.3: Sample grid used for Gatan 630 cryo-sample holder.

The cells were cultured in the same way as for the chemically dried cell

in Sec. 4.2. The cell concentration was measured by Cellometer Disposable
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Hemacytometer from Nexcelom [104]. We found that a concentration of about

20 cells in each 1×1 mm square of Cellometer gave good cell distribution on

prepared grids.

Table 5.1: Plunging parameters and conditions of FEI Vitrobot for frozen
hydrated sample preparation.

Cell concentration 20 per 1 mm2 on Cellometer
Cell solution 5 µl

Oxygen plasma cleaning 20 sec
Vitrobot humidity 100%

Waiting time 30 sec
Blotting offset 2 mm
Blotting time 4 sec

In order to improve the hydrophilic property of the formvar surface and

let the cell solution spread out uniformly, we cleaned the formvar coated grids

using oxygen plasma for 20 sec. We then mounted the grid on the Vitrobot,

where the blotting offset was set to 2 mm. The humidity of the closed chamber

in the Vitrobot was set to be 100%. When the sample grid was pulled into

the chamber, we added a 5 µl droplet of cell solution on to the grid using a

pipette. We then waited for 30 sec to let cells settle down on the grid. The

grid was then blotted by a pair of filter paper for 4 sec to remove extra liquid.

After blotting, the sample grid was plunged into the cooling bath. There are

2 separated sections in the cooling bowl: the center part is filled with liquid

ethane, and the outside ring section is filled with liquid nitrogen. The sample

grid was plunged into liquid ethane first, and then transfered and stored into

liquid nitrogen once the temperature of the grid was stabilized, which is judged

by the cessation of bubbling. Table 5.1 summarizes the plunging parameters.

Although the temperature of liquid nitrogen is lower than that of liquid

ethane, we cool the sample with liquid ethan first, because the cooling effi-

ciency of liquid ethane is much higher than that of liquid nitrogen. Table 5.2

lists the freezing points and cooling efficiencies of some widely used cryogenic

coolants, compared with liquid propane. We can see that the cooling efficiency

of liquid ethane is one order higher than that of liquid nitrogen.
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Table 5.2: Cooling efficiencies and freezing points of widely used cryogens
in comparison with liquid propane [105–107]. Cooling efficiency greater than
1 indicates higher cooling rate than liquid propane, smaller than 1 means
cooling rate lower than liquid propane. For boiling liquid nitrogen, the listed
temperature is at its boiling point.

Cryogen Freezing point (K) Freezing point (◦C) Cooling efficiency
Ethane 91 -182 1.3
Propane 86 -188 1.0
Freon 13 92 -181 0.8
Freon 22 98 -175 0.7
Freon 12 116 -158 0.5

Isopentane 113 -160 0.5
LN2 63 -210 0.2

Boiling LN2 77 -196 0.1

The entire sample preparation, transfer, storage and data acquisition pro-

cess has to be performed under at least -140◦C (133 K). Electron microscopy

studies have shown that vitrified samples start to devitrify at approximately

135 – 140 K [108, 109]. The devitrification and recrystallization process could

cause conformational changes to the specimen.

5.3 Diffraction data and reconstruction

We collected diffraction data from a frozen hydrated yeast cell with 520 eV

x-rays at Beamline 9.0.1 of the Advanced Light Source. We successfully re-

constructed the phase information, and obtained the first image of an intact,

eukaryotic cell using XDM [110] with a resolution better than 25 nm.

5.3.1 Diffraction data collection

Apart from the fact that the specimen was in a frozen hydrated state, the

diffraction data were acquired in a manner similar to what was described

previously for the studies of the chemically dried yeast cell in Chap. 4 and the

freeze-dried yeast cell in [55]. A zone plate monochromator [84] was used at

undulator beamline 9.0.1 to deliver a 520 eV x-ray beam to the experimental
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apparatus [15]. By using a 5 µm pinhole located 2.5 cm upstream of the

specimen, we were able to provide illumination with both the sufficient spatial

coherence [87] and the required temporal coherence of λ/∆λ = 500.

By working at 520 eV, we were able to take advantage of the “water win-

dow” spectral region (as shown in Fig. 1.4) with low absorption in water and

good contrast of organic materials [18, 72]

During data acquisition process, the sample grid temperature was con-

trolled to stay at -170◦C. In order to improve the vacuum quality and protect

the sample grid from moisture and dust condensation, there is a liquid nitro-

gen cooled copper plate, which we called the “cold finger”, installed in the

chamber. The temperature on the cold finger was about -180◦C. The pressure

of microscope vacuum chamber was 4.0×10−7 torr.

For this particular specimen, we checked the transmission of the ice layer

at a position near the cell, by measuring the transmitted beam flux using a

photodiode and the incident flux with sample grid removed. This measurement

indicates a transmission through the ice of about 90%, corresponding to an ice

thickness of about 1 µm, calculated using Eq. 1.29.

The diffraction data were recorded with a 1340×1300 Princeton Instru-

ments PI-MTE 1300B CCD with 20×20 µm pixel size [111], which was located

17.5 cm downstream of the specimen. The diffraction patterns were taken at

multiple corner and beamstop positions again. We aligned the x-ray beam

with the centers of corner and beamstop, which is called “high exposure” po-

sition for longest exposures (1, 10, 30 and 60 sec) and collecting highest spatial

frequency signal. We aligned x-ray beam with the diagonal corners of corner

and beamstop, which are called “top or bottom low” positions for shortest

exposures (0.001, 0.005, 0.01 and 0.05 sec) and collecting lowest spatial fre-

quency signal. The x-ray beam is also aligned at two “intermediate” positions

which locate between the high and low positions for collecting signal in the

intermediate spatial frequency range with medium exposure times (0.05, 0.1, 1

and 5 sec). From the diffraction patterns of the chemically dried sample shown

in Chap. 4, we found that the overlapping of the beamstop arm at different

locations can leave a CCD region with no effective signal reading. To solve

this problem, we moved the beamstop 300 µm away from the high exposure
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Figure 5.4: The assembled diffraction data from the frozen hydrated yeast cell.
Array size is 1100×1100 with a 20×20 missing center.
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position in Y direction, where we called it the “beamstop move” position and

make sure that there was no beamstop arm overlapping with the high expo-

sure position. The exposure times at this location were the same as at high

exposure location. At each aligned position, each exposure time was repeated

5 times. The total exposure time for a 2D data set was 214.882 sec.

The photodiode reading of the incident beam flux was 47 nA. From Eq. 4.2,

we can calculate the 520 eV photon flux to be about 2.1×109 /sec. Following

the dose estimation steps described in Sec. 4.4.2, the radius of the center Airy

ring with 520 eV x-ray from a 5 µm pinhole placed 2.5 cm away form the

sample grid is about 7.3 µm calculated from Eq. 1.49. Considering a cell

with a radius about 1.5 µm located in the center of the Airy pattern from

the pinhole, about 10% of the total photon flux is distributed in the cell area

according to the calculation in [3]. This gives the photon flux in the cell region

was about 3.0×107 /sec/µm2. Substituting the values

Ephoton = 520 eV = 520 × 1.6 × 10−19 Joule = 8.3 × 10−17 Joule,
n̄

∆2
= 1.3 × 107 /sec/µm2 × 214.882 sec = 2.8 × 1021 /m2,

ρ = 1.35 g/cm3 = 1.35 × 103 kg/m3,

µ =
4πβ

λ
=

4π × 2.6 × 10−4

2.38 nm
= 1.4 × 106/m, (5.1)

into Eq. 1.52, we estimate the total radiation dose imposed on the cell is

about 5.5×108 Gray for a 2D data set. Using the method described in [83],

the estimated dose value is 1.7×108 Gray.

In order to remove the background from ice scattering and corner scat-

tering, we collected 2 sets of background after taking data from the cell. As

an ice background, we moved the sample grid 40 µm in Y direction and col-

lected ice scattering data at that spot. We recorded another set of no-sample

background with the sample grid completely removed.

The diffraction data from the cell, ice background and no-sample back-

ground were assembled separately. We found that the ice background data

does not match the cell diffraction very well. This implies that the ice condi-

tion at the background taken position was not identical to that surrounding
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Figure 5.5: The power spectral density curve of the assembled diffraction data
from the frozen hydrated yeast cell.

the cell specimen. The final data array was generated by subtracting the no-

sample background from the initial data array. A 1100×1100 effective array

was extracted from the initial 1340×1300 assembled array. The size of the

missing center is about 20×20 pixels. Considering the oversampling ratio of

this specimen is about 35, the missing speckle number is 11. According to

the simulation result in Sec. 3.4, the difference map algorithm is able to give

reasonable reconstructions under this condition. Fig. 5.4 shows the final as-

sembled data array. The black pixels around the low spatial frequency area be-

sides the missing center come from mismatching between data and no-sample

background. The vertical lines on the right side of the assembled diffraction

pattern are caused by damaged pixels on the CCD. The power spectral density

curve is shown in Fig. 5.5.

The assembled diffraction pattern extends to 26 µm−1 spatial frequency at

edges and 37 µm−1 at corners, which correspond to a half-period size of 19 nm

at edges and 14 nm at corners. The pixel size in real space image is 19 nm.
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5.3.2 Reconstruction

Figure 5.6: Autocorrelation image calculated from the assembled diffraction
data of the frozen hydrated yeast cell.

The image in real space was retrieved from the assembled data using the

Difference Map algorithm [45]. The original support guess was obtained from

the shape of the ghost image in the autocorrelation picture, as shown in

Fig. 5.6. The support was refined using the reconstruction outputs from the

initial support. Once the best support was obtained, 10 independent recon-

struction runs were performed with different random starts. Each reconstruc-

tion was run 10,000 iterations, and the averaging procedure was started after

112



8,000 iterations by summing outputs from every 20 iterations. The final re-

constructed image was formed from the average of the outputs of all those

10 reconstructions. The global phase (Sec. 2.3.4) and the high pass filter

(Sec. 2.3.3) were applied in the reconstruction and averaging process.

1 μm2 μm

Light X ray

Figure 5.7: Images of Saccharomyces cerevisiae yeast cells. At left is shown
a visible light DIC image of a budding yeast taken using a 100×, N.A.=1.3
immersion objective. The arrow indicates the assumed beam direction for
the x-ray diffraction micrograph at right, which is of a different yeast cell.
The x-ray diffraction micrograph is a complex wave reconstruction, where the
magnitude is represented by brightness and the phase by hue. A possible
mitochondrion is indicated with the red arrow.

The right side of Figure 5.7 shows the reconstructed complex image of a

frozen hydrated yeast cell obtained using the method described above. For

reference, a visible light micrograph of a budding yeast is also shown (ob-

tained using a a Zeiss Axioplan2 microscope with a 100×, NA=1.3 immersion

objective with DIC optics, and a mRM Axiocam with Zeiss Axiovision 7.1

software). In the x-ray diffraction micrograph, we see what appears to be two

cell bodies lying on top of each other. Since this inner cell body is too large to

be a nucleus in this cell type, we believe that the image shows a new-born bud

produced as part of the division process in these cells, viewed from directly

above the bud with the parent cell underneath (see the assumed illuminating

beam orientation in Fig. 5.7 as indicated by the black arrow).
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5.4 Reconstruction analysis

We verified the budding cell orientation using two approaches, both of which

confirm that the bud is sitting on top the parent cell. We also estimated the

reconstruction resolution with two methods, and concluded that the achieved

resolution is better than 25 nm.

5.4.1 Budding orientation verification

We collected a limited data set with the sample rotated at 15 degree. While

this second data set was inadequate to get a reconstructed image, it provides

useful autocorrelation data, as shown in Fig. 5.8. As a comparison, we simu-

lated two fake cells: one with a condensed core (A and B in Fig. 5.8), the other

with a bud on its top (E and F in Fig. 5.8). We tilted the simulated cells to

0 and 15 degrees and calculated the autocorrelations at each angle. We found

that there is no significant change in the autocorrelations at different degrees

from the simulated cells with a core (C and D in Fig. 5.8). In the autocor-

relation at 15 degree from the simulated cell with a bud, the circles slide one

off another, compared with 0 degree (G and H in Fig. 5.8). The experimental

autocorrelation data shows more curved outlines at 15 degree (J in Fig. 5.8),

which is more analogous to that from a simulated cell with a bud on top.

Another evidence is available by “focusing through” the reconstructed im-

age. Since we had reconstructed a complex wavefield at a depth plane where

the outermost edges of the object within its support are sharpest [54, 112], we

were able to use Fresnel propagation to generate the reconstructed wavefield

at nearby depth planes. We picked two pairs of lines in the reconstructed

image: the first pair is on the boundary of the bud (T1 and T2 in Fig. 5.9),

the second pair is from the parent cell region (B1 and B2 in Fig. 5.9). If the

bud is on top of the parent cell, these two pairs of lines should be focused on

different focal planes. We propagated the reconstructed image from -3 µm to

+3 µm, and picked the sharpest position for each line, which locates its focal

plane. We found that the focal planes of T1 and T2 are almost at the same

level, and B1 and B2 are focused on another plane. These two focal planes are
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Figure 5.8: Autocorrelations from experimental data at 0 and 15 degrees sup-
port the assumption that the x-ray diffraction micrograph is of a budding
yeast viewed end-on, though the 15 degree tilt x-ray data were inadequate to
yield a reconstruction. (A and B) The simulated images of the optical density
of two ellipsoids one inside the other representing a cell and its nucleus core
viewed at 0 degree and 15 degree tilt. (C and D) The autocorrelations of
diffraction intensities (like the Patterson function used in x-ray crystallogra-
phy) from simulated cell with a core. There is no significant pattern change in
the autocorrelations at different tilt degrees. (E and F) The simulated images
of the optical density of two ellipsoids representing a cell and its bud on top
viewed at 0 degree and 15 degree tilt. (G and H) The autocorrelations from
simulated cell with a bud. The circles slide off one another in the autocorre-
lation at 15 degree tilt. (I and J) The autocorrelations of experimental data
at 0 and 15 degrees respectively. More curved outlines are recognizable in the
autocorrelation at 15 degree, indicated by red arrows in (J). The change in
the autocorrelations from the experimental data at the two tilt angles is more
analogous to that from a simulated cell with a bud on top.
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Figure 5.9: Through-focus imaging using the complex wavefront reconstructed
in XDM. Four selected lines are shown on the magnitude-only representation
of the reconstructed wavefront at top. The image at bottom shows line profiles
of the reconstructed image magnitude as the wavefield is propagated from the
reconstruction plane. In-focus edges look like the waist of an hourglass in such
a representation; the line profiles from the inner and outer spherical objects in
the reconstruction appear to be at different focal planes, consistent with the
iterpretation that the larger parent cell is at lines B1 and B2, and the bud is
at lines T1 and T2.
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separated by about 2.5 µm (as shown in Fig. 5.9), which is about the same

size of the bud.

Both of these two tests verified that we imaged a budding yeast cell with

the bud sitting on top of the parent cell.

5.4.2 Resolution estimation

The reconstructed x-ray diffraction micrograph shown in Fig. 5.7 does not

have the same degree of image contrast as the demonstration with the freeze-

dried yeast [55]; we attribute this to the fact that the ice layer outside the cell

was contributing some weak scattering which slightly violates the conditions

required for imposition of a finite support constraint [113]. In spite of this

limitation in our first frozen hydrated XDM demonstration, we are able to

recognize sub-celluar features including what may be a mitochondrion in the

parent cell (indicated by the red arrow in Fig. 5.7).

The resolution can be estimated to 25 nm or better using two independent

measures. While the diffraction data extends to the edge of our CCD detector

at a spatial frequency of 37 µm−1, we do not claim this as representing the res-

olution of our reconstructed image. Instead, the magnitude ratio Mrecon/Mdata

(the phase retrieval transfer function or PRTF [36, 54, 55]) provides a good

metric of the resolution of the reconstructed image. It does so by measuring

the reproducibility of the phases recovered in the Fourier plane as the itera-

tive reconstruction proceeds; phases that are reproducible lead to constructive

interference when complex iterates are added together, while less reproducible

phases lead to a lower value in the average. The spatial-frequency-dependent

magnitude ratio Mrecon/Mdata plot is shown at top in Fig. 5.10. The resolution

cutoff was estimated at the spatial frequency where the PRTF drops below a

value of 0.6. This provides one estimate of the half period resolution of 20 nm

for the reconstructed x-ray diffraction micrograph.

Another measure of the resolution can be obtained by looking at the min-

imum width of features in the reconstructed image. Since the appearance of

features in the image represents a convolution of their true shape with the

point spread function of the imaging system, this measure is imperfect. Even
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Figure 5.10: Estimation of the resolution of the x-ray diffraction micrograph.
At top is shown both the azimuthal average of the magnitude ratio (or PRTF)
Mrecon/Mdata. The PRTF measures the reproducibility of reconstructed pixel
values as a function of spatial frequency; its decline at higher frequency pro-
vides an indication of the resolution. The resolution cutoff is estimated at the
spatial frequency where the PRTF drops below a value of 0.6. This provides
one estimate of the half period resolution of 20 nm. At bottom is shown a line
scan across T2 in Fig. 5.9 at the plane of sharpest focus of this object. Also
shown is a Gaussian-smoothed fit which indicates a half width at half max of
25 nm (or σ = 21 nm in exp(−0.5x2/σ2)) for the combination of feature size
and imaging resolution.
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so, in Fig. 5.10 we also show a plot of the reconstructed intensity across a line

(T2) in the image, along with a gaussian fit to the sharp feature seen. The

Gaussian fit exp(−0.5x2/σ2) has σ = 21 nm, or a half width at half maximum

of about 25 nm, again indicating that a high resolution image was obtained.

5.5 Anti-contamination device

During the data acquisition process from the frozen hydrated specimen, we

noted that the diffraction speckles were gradually washed out by the scattering

signal from accumulating ice. Because the sample grid is at very low temper-

ature (-170◦), any residual water vapor in the experiment vacuum chamber

tend to condense on the grid and form frost and ice crystals, which will violate

the object isolation requirement and degrade the sample’s diffraction pattern

over time. Although we have a cold finger serving as the coldest surface in

the chamber, it is about 20 cm away from the grid, so it does not provide

sufficient protection. We collected data at several different angles from the

frozen hydrated cell, but only the first data set can be reconstructed.

Electron microscopy studies have shown that a cryogenic shield over the

sample grid is important for imaging frozen samples [114]. To solve the con-

tamination problem and protect the sample long enough for 3D data acqui-

sition, we designed and installed an anti-contamination device (ACD) for the

cryogenic x-ray diffraction microscope [15].

5.5.1 Mechanical design

Fitting cryo sample holders

The x-ray diffraction microscope [15] uses Gatan 630 and 914 high-tilt cryo-

specimen holders, as shown in Fig. 5.11. The Gatan 630 holder uses rectangu-

lar grids with a 3 mm width (as shown in Fig. 5.3), and the Gatan 914 holder

uses the standard electron microscope circular grid with a 3 mm diameter,

while the grid holding frame is about 2 mm wider than grids. These holders

are equipped with retractable slots to protect sample grids during the transfer
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Gatan 630 cryo-holder

Tip of Gatan 914 cryo-holder

Figure 5.11: Gatan 630 and Gatan 914 cryo-sample holders. the Gatan 630
holder uses rectangular grids with a 3 mm width (as shown in Fig. 5.3), and
the Gatan 914 holder uses the standard electron microscope circular grid with
a 3 mm diameter, while the grid holding frame is about 2 mm wider than
grids.
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Gatan 914

Gatan 630

Figure 5.12: The inner diameter of the anti-contaminator is 8 mm. It fits both
Gatan 914 and Gatan 630 cryo-sample holders. There are two 4 mm diameter
windows on its side wall, which allow the x-ray beam to illuminate the sample
grid and the diffraction signal to propagate without being obstructed.
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process, but the grid is exposed to moisture in the residual gas during data

aquisition.

To prevent ice building up on cryo specimens, the anti-contaminator, a

liquid-nitrogen-cooled copper shield, was designed to surround the sample grid

as close as possible with its temperature maintained at a level lower than that

of the grid. The anti-contaminator is made from copper, and coated with

a thin layer of gold, which protects the copper surface from oxidization and

reduces the thermal emissivity of the surface. Its dimensions were determined

by fitting the tips of both sample holders. To achieve the maximum shielding

of the sample, the anti-contaminator was designed as a hollow cylinder of 8

mm inner diameter, and it is inserted coaxially around the sample grid, as

shown in Fig. 5.12. The anti-contaminator shield is about 2.5 mm away from

the grid edges. When the cylinder long axis is aligned with the rotation axis

of the sample holder, the grid is able to be rotated with no conflicts for 3D

data acquisition.

As the x-ray beam is perpendicular to the rotation axis of the sample

holders, there are two 4 mm diameter windows on the side wall of the anti-

contaminator, which allow the x-ray beam to illuminate the sample grid and

the diffraction signal to propagate without being obstructed.

Mounting and positioning

The anti-contaminator is mounted on a Micos PP-30 piezo positioner [115] X-

Y motor stage (shown in Fig. 5.13), which gives 30 mm travel ranges in both

directions with 1 µm accuracy. The adjustment ability in X and Y directions

helps align the anti-contaminator with the rotation axis of the grid, and align

the 4 mm diameter side windows with the opening area of the grid as well. The

anti-contaminator can also be fully removed from the grid in the X direction,

when it is not in use. A motor in the Z direction is not required, because the

X-Y stage mounting slot on the chamber is well matched with the grid holder

in the Z direction.
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Copper anti-contaminator

Fiberglass support
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Figure 5.13: The anti-contaminator is a hollow copper rod coated with gold.
It is mounted on a Micos PP-30 X-Y motor stage. The ACD is thermally
isolated from the warm stage by a hollow fiberglass support and a stainless
steel support.
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5.5.2 Thermal design

The water molecules on sample grids can be rearranged to form cubic ice

crystalline structure by warming up vitreous ice to approximately −128◦C –

−133◦C [108, 109], and the residual water vapor can form cubic ice when

depositing onto the grid surface in that temperature range. Based on both of

these considerations, the temperature on the sample grid should never exceed

-140◦C during data acquisition. Normally, we control the grid temperature at

-160◦C.

To keep the ACD functioning properly, it is crucial that it should be cooled

and maintained at a temperature lower than the cryogenic sample grid. We

now consider what cooling power is required to keep the ACD operating at

about −170◦C.

Cooling path

The cooling power is provided by a cooling path, which consists of a liquid

nitrogen dewar, a copper rod and a copper braid. The customized liquid

nitrogen dewar functions as a heat sink sitting on the top of the microscope

chamber as shown in Fig. 5.14, and can hold temperature for 4 hours after

each refilling.

The dewar has a hollow aluminum “tail” at the bottom, which is filled with

liquid nitrogen and connects to the inside of the chamber through a flange.

From there, the cooling path is extended close to the sample grid via a 22 cm

long, 1.27 cm diameter, solid copper rod, which is bent to fit the chamber.

The copper rod is bolted firmly to the tail of the dewar with an indium film

sealing the joint interface.

The other end of this copper rod is about 1.27 cm away from the anti-

contaminator. They are connected using a 5 cm long copper braid (not shown

in Fig. 5.14). The maximum traveling range of the ACD motor stage is
√

2×30

mm (∼ 4.2 cm). The 5 cm copper braid provides the necessary flexibility

between the fixed copper rod and the movable anti-contaminator.
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LN2 dewar

Copper cooling path

ACD motor stage

LN2 dewar

Copper cooling path

ACD

Gatan sample
holder

Goniometer

Figure 5.14: The anti-contaminator is cooled by a liquid nitrogen dewar, which
is mounted on the top of the microscope chamber. A copper rod attached to
the dewar bottom is bent to fit the chamber and extends to about one inch
away from the anti-contaminator. The tail of the copper rod is connected to
the ACD by a 5 cm long, 1.27 cm wide copper braid (not shown in the figure).

Thermal isolation

The anti-contaminator is cooled by liquid nitrogen, while the motor stage is

at room temperature. A sufficient thermal isolation between the cold anti-

contaminator and the warm motor stage is required to minimize the thermal

conduction.

The anti-contaminator is attached to the motor stage through a fiber glass

support, which has low thermal conductivity (about 0.05 W/(m·K)). This

support is also hollow to the reduce effective thermal conduction cross-section.

It is 30 mm long with 10 mm outer and 5 mm inner diameter, as shown in

Fig. 5.13.

5.5.3 Heating power

The copper rod has a temperature close to liquid nitrogen ∼ −197◦C at the

side attaching to the dewar. To achieve the desired temperature −170◦C

125



on the anti-contaminator, we consider the thermal efficiency to assume the

temperature drops about 10 degree through the copper rod, and drops another

10 degree through the copper braid.

The heating power, which warms the ACD up, comes mainly from 2

sources: one is the thermal radiation power Prad from the warm vacuum

chamber to the cold anti-contaminator as well as other parts of the cooling

path; the other is the thermal conduction power Pcond from the warm motor

stage to the anti-contaminator.

Thermal radiation power

To estimate the thermal radiation power Prad, the anti-contaminator can be

modeled as a 35 mm long, hollow copper cylinder with 10 mm outer diam-

eter, as shown in Fig. 5.12. The anti-contaminator works at −170◦C, while

the chamber is at room temperature 20◦C. The heat transfer power through

thermal radiation from the chamber to the anti-contaminator Prad 1 can be

calculated as

Prad = ǫσA
(

T 4
c − T 4

a
)

, (5.2)

where ǫ is the emissivity of gold (about 0.02), σ is the Stefan-Boltzmann

constant 5.67 × 10−8 W/(m2·K4), A is the total surface area of the hollow

cylinder 2.2× 10−3 m2, Tc and Ta are temperatures in Kelvin of the chamber

and the anti-contaminator, 293 K and 103 K, respectively. Substituting the

numbers into Eq. 5.2, we obtain Prad 1 to be approximately 18 mW.

Using the dimensions of the copper rod and the copper braid and estimating

their average temperatures as −190◦C and −175◦C, respectively, the thermal

radiation powers, between the vacuum chamber and the copper rod Prad 2,

and between the vacuum chamber and the copper braid Prad 3, can also be

calculated using Eq. 5.2 to be 73 mW and 46 mW, respectively. Then the

total heating power through thermal radiation Prad equals Prad 1 +Prad 2 +

Prad 3 = 137 mW.
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Thermal conduction power

One side of the fiber glass support is connected to the anti-contaminator at

−170◦C, while the other side is connected to the warm stainless steel support

which is attached to the motor stage at room temperature 20◦C. The heat

transfer power through thermal conduction Pcond from the motor stage to

the anti-contaminator can be calculated as

Pcond =
kA∆T

∆l
, (5.3)

where k is the thermal conductivity of fiber glass 0.05 W/(m·K), A is the

cross-section area 5.9 × 10−5 m2, ∆T is the temperature difference between

the two ends 190 K, and ∆l is the length of the conduction path 0.03 m. Pcond
is about 19 mW for this fiber glass support.

Other heating powers

At pressures below 10−3 torr, which is typical for cryogenic soft x-ray diffrac-

tion microscopy, the heat transfer power through convection is negligible com-

pared to radiation and conduction [116].

With a typical beam flux of 109 incident photons per second for the x-ray

diffraction microscope operated at 520 eV, the beam heating power by full

absorption is

Pbeam = 109 /sec × 520 eV × 1.6 × 10−19 Joule/eV = 8 × 10−5 mW, (5.4)

which is also negligible compared with Prad and Pcond.

5.5.4 Cooling power

The cooling power that the copper rod is able to provide can be estimated by

Eq. 5.3 with k = 500 W/(m·K) for copper, A = 1.27 × 10−4 m2, ∆T = 10 K,

and ∆l = 0.22 m. The cooling power of the copper rod P ′
rod is 2.9 W.

The copper braid contains 384×36 wires, each of which is of type AWG 36

or 127 µm in diameter. Suppose the temperature drops another 10 K across
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the copper braid, which leaves the temperature on the anti-contaminator side

of around −170◦C. The cooling power of the copper braid P ′
braid can then

be estimated to be 18 W using Eq. 5.3.

As we can see, both P ′
rod and P ′

braid are orders of magnitude greater

than the required amount Prad + Pcond. The cooling path should provide

sufficient cooling power to achieve the designed temperature on ACD.

5.5.5 Temperature measurement

To monitor how the ACD cools down, three silicon diode temperature sensors

from Lakeshore [117] were mounted on the cooling path to measure tempera-

tures: the first sensor was mounted near the connection interface between the

tail of the liquid nitrogen dewar and the copper rod, the second sensor was

mounted at the end of the copper rod away from the dewar, and the third

sensor was mounted on the anti-contaminator.

The system was tested with the microscope chamber pumped down to 10−7

torr scale and the liquid nitrogen dewar filled with liquid nitrogen. When the

temperatures stabilized, the readings from those three sensors using Lakeshore

218 Temperature Monitor [118] were −195◦C, −188◦C, and −172◦C, respec-

tively. This indicates that the ACD cools well as expected.

We also note that although the designed cooling power is much higher

than the required amount, the achieved temperature is not remarkably better

than the designed goal. This implies that the heat conduction efficiency is not

perfect for the cooling path. In particular, the joints in the copper rod, and

on either end of the copper braid, can provide thermal barriers that are only

partially overcome through the use of indium foils.

5.5.6 Experimental performance

The ACD performance was tested by monitoring changes in the diffraction

pattern of blank formvar grids at cryogenic temperatures across a time span

comparable to 3D data acquisitions [36, 80]. Comparing the experimental data

without ACD and with ACD, we conclude that the ACD significantly slows

down moisture condensation and crystallization.
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Test without ACD

The moisture condensation problem was tested before the ACD was installed

[113]. A grid at room temperature was inserted into the microscope chamber,

and then cooled down and kept at −160◦C inside vacuum with the retractable

slot covered. The diffraction patterns were recorded from an initially blank

area, when the vacuum pressure was about 3×10−6 torr. The data were taken

with 520 eV x-rays. The azimuthally averaged diffraction intensities of the ini-

tial diffraction image along with a second one taken an hour later at the same

spot are shown as solid and dashed black lines in Fig. 5.15. The azimuthal av-

eraging process smooths out the sharp variations due to individual speckles to

reveal the average power scattered as a function of spatial frequency. The over-

all diffraction intensity is remarkably increased, and a ring of scattering signal

was observed around a spatial frequency of 12 µm−1 (inset image of Fig. 5.15),

which indicates that the scattering is dominated by this particular range of

randomly oriented volume gratings. This doughnut-shaped ring is due to the

scattering from either ice crystals formed after the grid was transfered into the

chamber, or a nonuniform surface of an accumulated amorphous ice layer [87].

The result implies that without the ACD, significant moisture condensation

and crystalline or amorphous ice formation occurred on the cryogenic test grid

within one hour.

Test with ACD

The ice testing experiment was performed a second time after the ACD was

installed in the cryogenic x-ray diffraction microscope. The vacuum pressure

was observed to drop by one order of magnitude with the ACD cooled from

10−7 torr scale to 10−8 torr scale.

This test grid was prepared following the frozen-hydrated sample prepara-

tion steps on a formvar-coated grid except that distilled water was used instead

of biological sample solution. The cold grid was then transfered into the micro-

scope vacuum chamber, where it was maintained at −160◦C. With the ACD

cold, the chamber pressure stabilized at 5 × 10−8 torr. The diffraction data

from a clean spot were taken with 520 eV x-rays after the grid temperature
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Figure 5.15: The azimuthally averaged curves of diffraction pattern without
ACD at the beginning (black solid), without ACD 60 minutes later (black
dashed), with ACD at the beginning (red solid), with ACD 60 minutes later
(red dashed), with ACD 16 hours later (red dots). The vacuum pressure is
improved by ACD. The ACD reduces moisture frosting significantly. It also
prevents ice crystal formation for up to 16 hours. The inset image is the
diffraction pattern taken one hour later without ACD. A ring of scattering
signal was observed around a spatial frequency of 12 µm−1, which indicates
that the scattering from crystalline or amorphous ice is dominated by this
particular range of randomly oriented volume gratings.
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was stable, and again 16 hours later. The azimuthally averaged diffraction

intensity curves are shown as red lines in Fig. 5.15. The red solid and fine-

dashed lines in Fig. 5.15 show that after 16 hours the diffraction intensity

increased almost uniformly and smoothly for most spatial frequencies, and no

rings from ice scattering appeared. Assuming a linear increase of the conden-

sation of moisture with time, we can calculate the expected power spectrum

after 1 hour. This is plotted as the red coarse-dashed line in Fig. 5.15, which

gives slightly higher diffraction intensities than the initial power spectrum.

Note that this grid was plunge-frozen and kept in liquid nitrogen before it

was transfered into the microscope chamber. The ice thickness on this grid

is therefore larger than on the previous grid used for testing ice accumulation

without the ACD. It also possibly experienced exposures to the atmosphere

environment during the preparation and transfer processes. These facts can

explain why the total initial scattered power of the grid tested with the ACD

(the red solid line in Fig. 5.15) is higher than that without the ACD (the black

solid line in Fig. 5.15).

The experimental data show that the ACD significantly slows down mois-

ture accumulation and crystalline or amorphous ice formation up to 16 hours,

which is a time span comparable to 3D data acquisitions [36, 80]. It also

improves vacuum pressure by an order of magnitude in torr. All these func-

tions help to overcome the moisture contamination problem for cryo-XDM

with soft x-rays, and enable the possibility to acquire data sets for 2D and 3D

reconstructions on frozen-hydrated specimens.
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Chapter 6

Outlook

Whole, eukaryotic yeast cells have been imaged in 2D in both chemically dried

and frozen hydrated states at high resolutions using XDM. In this last chap-

ter, we discuss the subtleties to be faced in doing 3D XDM reconstructions,

and discuss recently developed methods to image extended objects, which can

remove the isolation requirement.
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6.1 XDM in 3D

A 2D reconstruction image of a 3D object compresses only a subset of the

object’s 3D structural information into a two-dimensional view. As the depth

of focus is limited (Eq. 2.48), only a small portion of the whole object is

displayed in focus in a 2D XDM reconstruction. A complete 3D reconstructed

image will give much more structural information.

A 3D XDM reconstruction requires one to collect diffraction data at a

series of angles, assemble these data into 3D data cube in reciprocal space,

and perform a 3D phase-retrieval reconstruction [36, 80].

To collect data at multiple angles, more radiation dose is imposed on the

specimen unless one exploits dose fractionation as proposed by Hegerl and

Hoppe [119]. As discussed in Sec. 5.1.2 and illustrated in Fig. 1.5, the increased

radiation dose can cause structural damage, and thus limit the achievable

resolution. In this section, we study the relationship between the resolution

and the angle range/step size of the collected data through simulation.

6.1.1 Simulation setup

The test object is the same as Cell B for the SNR simulation in Sec. 3.1. It is

a 3D biological-like fake cell with a lipid membrane, protein bars and ellipses

and a bud on the shoulder, with an array size reduced to 200×200×200 pixels.

Instead of using one multiple-propagated exit wave of the complex 3D fake cell

as in the SNR simulation, exit waves with incident illuminations from -90 to

90 degrees with one degree step size were generated for this simulation. The

diffraction patterns for different illumination angles were then calculated from

these exit waves.

The simulated diffraction patterns were assembled into the 3D data cube

in reciprocal space, which was used for 3D reconstruction to retrieve the object

image in 3D. Varying tilt ranges and increments were tested in this simulation.

The reconstruction was performed using the Hybrid-Input-Output algorithm

[43], because it consumes less computer memory than the Difference Map. The

reconstruction qualities at different settings were compared.
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6.1.2 3D assembling

Figure 6.1: Illustration of scattering geometry for XDM, adapted from [36].

The 2D diffraction pattern were assembled into 3D Fourier data cube ac-

cording the scattering geometry shown in Fig. 6.1. For elastic scattering, the

incident wave number kin and the outgoing wave number kout have the same

magnitude, and the wave transfer vector q equals kout−kin, which is located

at the Ewald sphere and can be expressed as

qi,j =
1

λ





pi,j + zDẑ
√

p2
i,j + z2

D

− ẑ



 , (6.1)

where pi,j is the pixel location on CCD with pi,j = ∆(ix̂ + jŷ) where ∆ is

the CCD pixel size, zD is the distance from the sample to CCD.

Note that the unit of qi,j is m−1. In order to match qi,j onto a unit-less

Cartesian coordinate, the voxel size in reciprocal space needs to be determined,

which can be obtained as

∆f =
∆

λzD
. (6.2)

The 2D diffraction pattern can then be mapped onto the Ewald sphere by

projecting q onto the coordinate system with unit of ∆f and obtaining the

coordinates on the Cartesian grid by nearest neighbor sampling.

The coordinates of 2D patterns at different orientation angles can be cal-
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Figure 6.2: The center planes of (qx, qy) at iz = 100 (0 ≤ iz ≤ 199) in reciprocal
space of assembled 3D data cube.
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-70 - +70

-60 - +60

-50 - +50

 every 1 degree  every 5 degrees  every 10 degrees

Figure 6.3: Planes of (qx, qy) at iz = 50 (0 ≤ ix ≤ 199) in the assembled 3D
data cube in reciprocal space.
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culated by a 3D rotation matrix Rφ. Assuming that the specimen is rotated

along the X axis in experiments, the rotation matrix can be expressed as

Rφ =







1 0 0

0 cosφ − sinφ

0 sin φ cos φ






, (6.3)

where φ is the rotation angle.

In this simulation, the diffraction data range was tested at ±90, ±80, ±70,

±60 and ±50 degrees with step size of every 1 degree, every 5 degrees and

every 10 degrees. Fig. 6.2 shows the center planes (iz = 100) of the assembled

data cubes. Fig. 6.3 shows the iz = 50 planes of the assembled data cubes.

6.1.3 3D reconstruction and analysis

The 3D reconstruction was performed using the HIO algorithm with the perfect

support. Each reconstruction was run 100 iterations, and averaged the output

of every iteration after 80 iterations. Three image planes (iz =80, 100, 120)

of reconstructed images are shown in Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8 and

Fig. 6.9. The object images at iz =80, 100, 120 planes are shown in Fig. 6.4.

i  =80z i  =100z i  =120z

Figure 6.4: The iz=80, 100, 120 planes (0 ≤ ix ≤ 199) of the initial 3D object.

The oversampling ratio of this 3D object is about 15. In other words, 6.7%

pixel values need to be determined. According to the oversampling theory,

137



i  =80 i  =100 i  =120

1 
de

gr
ee

 s
te

p 
si

ze
5 

de
gr

ee
 s

te
p 

si
ze

10
 d

eg
re

e 
st

ep
 s

iz
e

z z z

Figure 6.5: The iz=80, 100, 120 planes of the reconstructed images with ±90
degree data range.
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Figure 6.6: The iz=80, 100, 120 planes of the reconstructed images with ±80
degree data range.
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Figure 6.7: The iz=80, 100, 120 planes of the reconstructed images with ±70
degree data range.
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Figure 6.8: The iz=80, 100, 120 planes of the reconstructed images with ±60
degree data range.
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Figure 6.9: The iz=80, 100, 120 planes of the reconstructed images with ±50
degree data range.
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it requires the percentage of the measured data at least 13.4%, or at most

86.6% unmeasured intensity voxels in the assembled data cube. Table 6.1

lists the percentage of unmeasured intensity voxels for each assembled data.

Theoretically, the data sets with unmeasured intensity voxel percentage larger

than 86.6% cannot be reconstructed. The reconstructed images are almost

consistent with this conclusion. The exceptions happen at small angle ranges

with finer step size and large angle range with rough step size. When the angle

range is not sufficient, the finer step size does not help reconstruction. While

for large enough angle range (for instance ±90 degrees), 10 degree step size can

give fairly good reconstruction. This result implies that uniform sampling over

larger Fourier space is more effective than finer sampling at a finite space. The

chromosome experiment [80] also used the strategy of large data taking range

(-70 to +60 degrees) with relatively sparse step size (every 2.5 or 5 degrees).

Table 6.1: Percentage of unmeasured intensity voxels for each assembled data.

every 1 degree every 5 degree every 10 degree
±90 40.2% 83.8% 91.4%
±80 43.9% 85.4% 92.3%
±70 52.7% 87.2% 93.2%
±60 59.4% 88.9% 94.1%
±50 66.0% 90.7% 95.0%

For biological samples, data collections at a series of illumination angles

can cause radiation damage problems. A promising solution involves dose

fractionation [119, 120], which states that the radiation dose sufficient for a 2D

reconstruction is also sufficient to generate a 3D reconstruction by distributing

the 2D image dose uniformly over 3D tilt angles.

6.2 Diffraction microscopy on extended objects

In the XDM method, a CCD collects the far field diffraction pattern from

an isolated object illuminated by a plane incident wave. The object image

in real space is retrieved from this diffraction pattern using a priori known

constraints. This approach has been shown to give unique solution [121–
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123]. It has achieved great success, but it can be only applied on finite objects

isolated from other scatterers. Additional limits include slow convergent speed

and possible stagnation during iterative reconstructions.

Two new approaches for the diffraction microscope have been developed to

extend this method to image objects with arbitrary sizes. They also improve

the convergence property.

6.2.1 Ptychography

The ptychography method [124–128] uses multiple exposures from an illumi-

nating beam that is smaller than the specimen, and which is scanned across

the specimen. The scattering from a pinhole is used as the incident plane

wave illumination. The center part of the Airy pattern from the pinhole is

sufficiently localized to be used as a probe to define the imaged area. This il-

lumination probe scans across the extended object, and the far field diffraction

pattern is recorded at each scan point.

The ptychography reconstruction engine requires significant overlap be-

tween adjacent scan positions (normally ≥60% [129]). This reconstruction

algorithm enforces that the reconstructed image in the overlapping area satis-

fies constraints on both scan positions. The abundant information in adjacent

regions removes the reconstruction ambiguities and also improves convergent

speed.

The modified ptychography technique, the scanning x-ray diffraction mi-

croscopy (SXDM) [69, 130], uses the focused x-ray beam from a zone plate

as the probe. The object is scanned and imaged at the focal plane of the

lens. Instead of assuming plane wave illumination, the SXDM method recon-

structs both the extended object and the wave front of the incident focused

illumination probe.

6.2.2 Keyhole CDI

Another diffraction method to image extended objects is called keyhole coher-

ent diffraction imaging, or keyhole CDI [131, 132]. This approach places the

object at a downstream position of the focal plane of the lens. The object
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is then illuminated by a divergent beam emerging from the zone plate’s focal

plane. This illumination generates a Fresnel diffraction pattern at the far field

detector plane, which can be used to reconstruct the object in the exposed

area with the knowledge of the illumination wave front measured in advance

[133]. The object can also be scanned in the divergent incident beam, and

arbitrary regions of the object can be imaged.

The divergent incident beam has considerable phase curvature at the ob-

ject plane, which is helpful to avoid reconstruction stagnation and speed up

convergence.

Besides the difference in the illumination arrangements between ptychog-

raphy and keyhole CDI, there is another important distinction in their re-

construction procedures. For the ptychography approach, the overlap of the

illumination footprint at contiguous scanning positions is crucial, because the

reconstruction algorithm uses the redundant information from adjacent re-

gions to achieve a convergent reconstruction. The reconstruction quality is

dependent on the amount of overlap at adjacent scanning positions. For the

keyhole CDI, the reconstruction at each illumination position is independently

achieved with the diffraction data measured at this scan location alone.

With the ability to image extended objects in 3D, x-ray diffraction mi-

croscopy is becoming a more powerful technique with great scientific applica-

tions.
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Appendix A

Far field diffraction pattern

from propagation theory

In Sec. 2.2, the Fourier transform relationship between the object and its far

field diffraction pattern is derived following Born’s approach by splitting the

wave front to the unscattered part and scattered part. This far field diffraction

pattern can be obtained from electromagnetic field propagation theory too.
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A.1 Born approximation

We consider the propagation of the wave front exiting an object surface. Be-

cause x-rays interact with mediums weekly, the second order scattering can

be ignored, which is known as the Born approximation as mathematically ex-

pressed in Sec. 2.2.2. The 2D exit wave of an object can be considered the

overall modification of the incident illumination diffracted by the object along

the transverse direction.

A.2 Fresnel and Fraunhofer approximations

Following the steps in Sec. 2.1.1, the wave front exiting the object surface can

be considered as a collection of Huygens point sources. The propagation of

each point source is modeled as a diverging spherical wave (Eq. 2.6). The wave

front at a downstream plane is the summation of wave fronts from all those

point sources (Eq. 2.1).

By applying the Fresnel approximation (z2 ≫ (ξ−x)2 +(η−y)2), the wave

function is simplified as (Eq. 2.3)

ψ(x, y) =
eikz

z
e

ik
2z

(x2+y2)

∫ ∫

ψ(ξ, η)e
ik
2z

(ξ2+η2)e
−ik

z
(xξ+yη)dξdη. (A.1)

In far field diffraction condition, the Fraunhofer approximation is also sat-

isfied, which gives z2 ≫ ξ2 + η2. The wave function can be simplified further

by dropping the quadratic phase term in the integral, or

ψ(x, y) =
eikz

z
e

ik
2z

(x2+y2)

∫ ∫

ψ(ξ, η)e
−ik

z
(xξ+yη)dξdη. (A.2)

Ignoring the decaying factor and the phase term outside the integral, the far

field diffraction pattern is related to the exit wave of the object by a Fourier

transform.

Note that the accurate forms for the Fresnel and Fraunhofer approxima-

tions are z3 ≫ π[(ξ − x)2 + (η − y)2]2/(4λ), z ≫ π(ξ2 + η2)/λ, respectively.
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A.3 Babinet principle

The exit wave from the object surface ψ(ξ, η) can be rewritten as

ψew = ψ0e
iknz′ = ψ0e

ikz′eikz′(−δ+iβ)

≈ ψ0e
ikz′[1 + ikz′(−δ + iβ)], (A.3)

where z′ is the thickness of the object, and δz′ and βz′ are denoted as the

overall effects along the propagation direction. The Fourier transform of the

first term of Eq. A.3 is a point-response δ(r) function in the center, and the

core of the second term is (−δ + iβ).

In Sec. 2.2.2, we see the far field diffraction pattern is related to the object’s

scattering potential F as expressed in Eq. 2.31. Noting that F is proportional

to (−δ+iβ) (Eq. 2.21), Eq. A.3 can be considered to add a uniform background

“1” to F . We obtain that the Fourier transform of the object’s scattering po-

tential F is identical to that of the object’s exit wave ψew up to a normalization

factor, except for a point-response function in the center, or

F(ψew) = CbF(F ) + δ(r), (A.4)

where Cb is the complex scaling constant. This conclusion can be predicted by

the Babinet principle, which states that the diffraction pattern of an opaque

body is identical to that from a hole with the same size and shape, except for

the central pixel.
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Appendix B

Numerical derivation for SNR

calculation

We discuss the details about the derivation of the formula to estimate SNR

from correlation coefficient. The related properties of Poisson distribution are

also briefly described.
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B.1 Signal and noise in Poisson distribution

The Poisson distribution is a probability distribution of discrete random oc-

currences that happen during a given time interval. If the expected occurrence

number is N , the probability of occurrence number x is equal to

f(x) =
Nxe−N

x!
. (B.1)

The mean value, or expected value of Poisson distribution can be calculated

from definition as

〈x〉 =

∫ ∞

0

xf(x)dx =

∫ ∞

0

x
Nxe−N

x!
dx = N. (B.2)

The variance can be obtained from definition as

σp =

√

∫ ∞

0

(x−N)2f(x)dx =
√
N. (B.3)

The mean value of multiple measurements, can be considered as the signal,

and the variance around this expected value is noise. The signal-to-noise ratio

in this case is then
√
N . This result gives the same 0.5 scaling in log-log plot

as Eq. 3.1.

B.2 Derivation of SNR

The 2D noisy image I1 and I2 are expressed in Eq. 3.5. The total signal and

noise for the entire 2D array can be calculated from their variances:

Signal2 = 〈(S − 〈S〉)(S − 〈S〉)∗〉
= 〈SS∗〉 − 〈S〈S〉〉 − 〈〈S〉S〉+ 〈〈S〉〈S〉〉
= 〈SS∗〉 − 〈S〉2 − 〈S〉2 + 〈S〉2

= 〈S2〉 − 〈S〉2, (B.4)
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Noise2 = 〈(N1,2 − 〈N1,2〉)(N1,2 − 〈N1,2〉)∗〉
= 〈N1,2N

∗
1,2〉 − 〈N1,2〈N1,2〉〉 − 〈〈N1,2〉N1,2〉 + 〈〈N1,2〉〈N1,2〉〉

= 〈N1,2N
∗
1,2〉 − 〈N1,2〈N1,2〉〉 − 〈〈N1,2〉N1,2〉 + 〈〈N1,2〉〈N1,2〉〉

= 〈N2
1,2〉, (B.5)

where 〈N1,2〉 = 0 has been used. Notice that I1,2, S and N1,2 are real value

intensities, so that I∗1,2 = I1,2, S
∗ = S and N∗

1,2 = N1,2.

The variances of image I1 and I2 can be calculated as

σ1,2
2 = 〈(I1,2 − 〈I1,2〉)(I1,2 − 〈I1,2〉)∗〉

= 〈I1,2I
∗
1,2〉 − 〈I1,2〈I1,2〉〉 − 〈〈I1,2〉I1,2〉 + 〈I1,2〉〈I1,2〉

= 〈I1,2I
∗
1,2〉 − 〈I1,2〉2 − 〈I1,2〉2 + 〈I1,2〉2

= 〈I1,2I
∗
1,2〉 − 〈I1,2〉2

= 〈(S +N1,2)(S +N1,2)
∗〉 − 〈S〉2

= 〈SS∗〉 + 〈SN∗
1,2〉 + 〈N1,2S

∗〉 + 〈N1,2N
∗
1,2〉 − 〈S〉2

= 〈S2〉 + 〈N2
1,2〉 − 〈S〉2, (B.6)

we used the fact that the cross terms 〈SN∗
1,2〉 and 〈S∗N1,2〉 are in practice

negligible compared to 〈SS∗〉. This would be expected for low contrast objects,

but in practice it also applies to cases with objects with high contrast; in

simulations, we find that 〈SN∗
1,2〉 and 〈S∗N1,2〉 are several orders of magnitude

lower than 〈SS∗〉 even with full contrast object. As a result, 〈SN∗
1,2〉 and

〈S∗N1,2〉 are dropped in the last equality of Eq. B.6. As N1 and N2 obey the

same Gaussian distribution, they have identical variances (〈N2
1 〉 = 〈N2

2 〉). So,

we can denote σ1 = σ2 = σ.
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The covariance between I1 and I2 can be derived as:

rσ1σ2 = rσ2 = 〈(I1 − 〈I1〉)(I2 − 〈I2〉)∗〉
= 〈I1I∗2 〉 − 〈I1〈I2〉〉 − 〈〈I1〉I2〉 + 〈I1〉〈I2〉
= 〈(S +N1)(S +N2)

∗〉 − 〈I1〈S〉〉 − 〈〈S〉I2〉 + 〈S〉2

= 〈SS∗〉 + 〈SN∗
2 〉 + 〈N1S

∗〉 + 〈N1N
∗
2 〉 − 〈S〉2

= 〈S2〉 − 〈S〉2, (B.7)

where 〈N1N
∗
2 〉 = 0, because N1 and N2 are uncorrelated.

152



Appendix C

Corner and beamstop

fabrication

In this section, we describe the steps of fabricating corners and beamstops from

silicon wafers. We also discuss the attempt to fabricate a partially attenuating

beamstop, which is called as the “Tower of Hanoi beamstop”, to retrieve the

data information in the missing center of diffraction pattern.
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C.1 Corner and square beamstop

C.1.1 Design mask

The corners and square beamstops are made from silicon wafers. The initial

pattern with the shapes and sizes of corners and beamstops are first drawn

on a mask file. This pattern will be later transfered onto the wafer by UV or

E-beam lithography. There is a open source software “Layout Editor” [134],

which can be used to edit the mask files. Simple inversion of the mask contrast

allows one to work with either positive or negative photoresists.

C.1.2 Fabrication steps

The shape of corners is a square aperture in the center of a silicon frame, while

the beamstop is a square silicon piece. The typical sizes for a corner and a

beamstop are 200×200 µm and 2×2 mm, respectively.

The silicon wafer we used is coated with a 200 nm thick silicon nitride

layer. In order to transfer the pattern onto silicon layer, the designed pattern

has to be transferred into the nitride layer first. The pattern transfer process

from the mask file to the nitride layer is done by UV lithography. We used a

negative photoresist in this fabrication process.

The fabrication steps are as follows:

1. Spin about 1-2 µm photoresist (Shipley S1811) on wafer.

2. Bake the wafer with photoresist on 115◦C hot plate for 2 minutes.

3. Cover the wafer with the mask, and expose it with standard UV (λ =

365 nm) for 7 seconds.

4. Develop the exposed wafer in developer (Shipley MF312) for 30 seconds.

5. Post-bake the developed wafer on 115◦C hot plate for 2 minutes.

6. Reactive ion etch off silicon nitride layer with SF6 plasma for 2.5 minutes.

7. Wet etch silicon layer with KOH solution at 100◦C for 8 hours.

This process is illustrated in Fig. C.1.
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Silicon Nitride layer Silicon layer

Photoresist layer Mask layer

Spin resist and bake UV expose with mask

Develop and post-bake RIE etching

Remove resist Wet etching

Figure C.1: Illustration of steps for corner and beamstop fabrication.
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C.2 Tower of Hanoi beamstop

In XDM experiments, the far-field diffraction intensity is recorded by a CCD.

The magnitude of diffraction intensity is about six orders in dynamic range,

while the dynamic range od the CCD chip is only about 3000 : 1, which

is not adequate for collecting the full ranges of intensities presented in the

diffraction pattern. So the CCD is usually protected from the intense direct

beam by a beamstop. The beamstop leaves a missing data region on the CCD,

and it brings in problem of unconstrained modes in phase retrieval process, as

discussed in Sec. 2.3.3 and Sec. ??.

In order to retrieve the information blocked by the opaque beamstop, we

propose to fabricate a partially attenuating beamstop with variable absorp-

tions in steps, which is called as the “Tower of Hanoi” beamstop.

C.2.1 Attenuation length estimation

The Tower of Hanoi beamstop attenuates the central diffraction area, and re-

duces the intensities into the dynamic range of CCD. The attenuation length

were estimated from experimental parameters by Enju Lima. This beamstop

has three layers. The thickness and diameter of each layer are listed in Ta-

bles C.1. Fig. C.2 shows the side view of the beamstop that consists of three

layers.

Table C.1: Dimensions of three layers of the Tower of Hanoi beamstop for 5
second exposure at 520 eV.

Layer 3 Layer 2 Layer 1
Attenuation length 3 6 12

Diameter (µm) 1200 500 120
Net thickness if Si (µm) 1.4 2.8 5.6
Net thickness if Au (µm) 0.13 0.26 0.52
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Figure C.2: Sketch of Tower of Hanoi beamstop with three layers.

C.2.2 Fabrication of Hanoi beamstop

The three-gold-layer structure was fabricated on top of 200 nm thick 2×2 mm

silicon nitride window by electron beam lithography. The fabrication process

requires multiple aligned mask exposures, etches, and thin film deposition

techniques. The fabrication steps are:

1. Spin about 400 µm photoresist (ZEP 520A) on a silicon nitride window.

2. Bake the window with photoresist on 180◦C hot plate for 3 minutes.

3. Expose the window with electron beam (30 keV, 1.25 nA) with the mask

of 1 layer.

4. Develop the exposed window in developer (Xylenes) for 2 minutes.

5. Rinse the window in isopropanol for 45 seconds.

6. Evaporate 1 nm chrome, and then evaporate a gold layer with the thick-

ness of this layer.

7. Dissolve the remaining photoresist layer in Posistrip 830 at 110 ◦C.

8. Repeat the entire list two more times with the other two layers.
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Silicon Nitride layer Silicon layer

Photoresist layer

Spin resist and bake Electron beam exposure

Develop and post-bake Evaporate Gold

Dissolve resist Obtain 1 layer

Gold layer

Figure C.3: Illustration of steps for fabricating one layer of the Tower of Hanoi
beamstop. This process was repeated three times to obtain the three-layer
structure.
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This process is illustrated in Fig. C.3.

The masks for three layers are disks with specific diameters, and they

control the exposure regions of the electron beam. In the evaporation step,

the thickness of gold layer was controlled by timing, as the evaporation rate

can be considered to be constant. The purpose for depositing a thin layer

of chrome is because gold does not attach on silicon nitride window well, but

attaches on chrome surface easily. The chrome layer also provides a conductive

layer for a plating process (alternative to the evaporation process).

C.2.3 Structure diagnosis

SEM image

The fabricated Tower of Hanoi beamstop was imaged by SEM, as shown in

Fig. C.4. The diameters for these three layers are 1150 µm, 475 µm and

112 µm, respectively, which match the designed values very well. The black

squares near the edge of the second layer were used for disk alignment. In

Fig. C.4 (c), we see some blemishes with small size.

(a) (b) (c)

Figure C.4: SEM images of the Tower of Hanoi beamstop. (a) Over view of
the three-layer structure. (b) Tow disks in the center. (c) Details at the disk
edge.

STXM image

In order to check the thickness and roughness for each layer, several STXM

images were taken from this Hanoi beamstop with 520 eV x-rays at Beamline
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X1A of National Synchrotron Light Source at Brookhaven National Labora-

tory. The images are shown in Fig. C.5.

(a) (b)

Figure C.5: STXM images of the Tower of Hanoi beamstop with 520 eV x-rays.
(a) The first and second layers. (b) The second and third layers.

The averaged transmittance of each layer relative to silicon nitride back-

ground is: 6.06%, 0.21%, and 9.89 × 10−4, respectively. Using Eq. 1.29, con-

sidering the β value of gold for 520 eV x-rays is about 0.0044, we obtain the

thickness for each layer. They are 0.12 µm, 0.26 µm, and 0.30 µm, respec-

tively. Compared with the numbers listed in Tables C.1, the first two layers

are close to the desired values, but the third one is not thick enough.

To reduce the scattering from the Hanoi beamstop itself, the dick surface

is required to be smooth and uniform. The histogram plot for each layer is

displayed in Fig. C.6. The thickness range is estimated from the width of

gaussian fit for each histogram.

The measurements from SEM and STXM images are summarized in Ta-

bles C.2.

C.2.4 Diffraction data

We mounted the Tower of Hanoi beamstop in the diffraction microscope ap-

paratus at Beamline 901 at Advanced Light Source. We tested it by taking

diffraction data from a frozen hydrated yeast cell grid with 520 eV x-rays. The
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Figure C.6: Histogram for each layer of the Tower of Hanoi beamstop. (a)
The first layer. (b) The second layer. (c) The third layer.
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Table C.2: The Tower of Hanoi beamstop dimensions.

Layer 1 Layer 2 Layer 3
Desired diameter (µm) 120 500 1200

Measured diameter (µm) 112 475 1150
Desired thickness with Au (µm) 0.52 0.26 0.13

Measured thickness with Au (µm) 0.30+0.25
−0.04 0.26+0.04

−0.02 0.12+0.03
−0.02

images with the sample grid in and out are shown in Fig. C.7. (The right side

of the silicon nitride window was blocked by the sample holder.)

Figure C.7: Diffraction images of the Tower of Hanoi beamstop with 520 eV
x-rays. Left, with the sample grid in. Right, with the sample grid out.

The attenuated net diffraction data was obtained by subtracting the grid-

out background from the grid-in data (the left image in Fig. C.8). According

to the measured thicknesses from STXM images, we can calculate the intensity

before absorption of the Hanoi beamstop (the right image in Fig. C.8).

As only about 10% of direct beam is diffracted by the specimen, the count

difference between data and background is very small. The statistical fluctua-

tion could cause background pixel counts larger than data pixel counts. This

effect leaves a lot of zero-value pixels in the net data image. The step shape

of the Hanoi beamstop does not match the profile of the diffraction intensity

optimally. The next generation of this partially attenuating beamstop could
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Figure C.8: Net diffraction data of the Tower of Hanoi beamstop with 520 eV
x-rays. Left, attenuated data obtained by subtracting the grid-out background
from the grid-in data. Right, calculated image without absorption using the
measured thicknesses from STXM images.

have a thickness variation with a Gaussian shape.
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Appendix D

Thermal calculation for ACD

We estimate the temperature on ACD as a function of the length of the cooling

path. In the calculation, the thermal contact through the entire thermal path

is assumed to be good enough to ignore the heat loss compared with other

factors. The cooling mechanism is simplified as a copper rod or a copper

braid contacting with a heat source (for instance, the liquid nitrogen dewar)

at one end and the other end hanging in vacuum. Both the rod/braid and

heat source are enclosed in a room temperature chamber. The temperature at

the suspended end is estimated as a function of length the rod/braid.
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D.1 Thermal conduction model

Considering a copper rod with length L and radius r, let’s calculate the heat

flux in a small section B with length ∆x at position x (Fig. D.1).

D.1.1 Conduction

According to the law of heat conduction q = −k∇T , within time interval ∆t,

the heat flows into section B through intersection A (Qin cond) and the heat

flows out through intersection C (Qout cond) are:

Qin cond = qin condπr
2∆t = −k∂T (x, t)

∂x
πr2∆t, (D.1)

Qout cond = qout condπr
2∆t = −k∂T (x + ∆x, t)

∂x
πr2∆t, (D.2)

where qin cond and qout cond are heat flux densities, k is the thermal conduc-

tivity of copper, T (x, t) is the temperature distribution in the rod, and πr2 is

the cross section area.

Figure D.1: Heat flux in section B with length ∆x at position x.

D.1.2 Radiation

Because the surface temperatures of the rod and the vacuum chamber are

different, they emit and absorb electromagnetic radiation at different rates.

This effect causes heat transfer through radiation. Assume that the chamber

is at room temperature Trm. Within time interval ∆t, the net transferred
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energy by thermal radiation is given by Stefan-Boltzmann law as

Qout rad = qout rad2πr∆x∆t = ǫσ[T (x, t)4 − Trm
4]2πr∆x∆t, (D.3)

where ǫ is the emissivity, σ is the Stefan-Boltzmann constant, and 2πr∆x is

the surface area of section B.

D.1.3 Convection

As there is a small amount of air molecules in the room temperature vacuum

chamber, they can exchange energy with the cooling path by gas molecular

collision. Newton’s law of cooling [135] states that the rate of heat loss of

an object through convection is proportional to the temperature difference

between the object and its surroundings. Within the same time interval ∆t,

the heat loss of section B by exchanging energy with its surroundings is

Qout conv = qout conv2πr∆x∆t = h[T (x, t) − Trm]2πr∆x∆t, (D.4)

where h is the heat transfer coefficient between copper and air, and again

2πr∆x is the surface area of section B.

D.2 Heat transfer equation and boundary con-

ditions

The net heat gain in section B causes its temperature to rise by ∆T . Denoting

c as the specific heat of copper and ρ as its density, we can write the heat

conduction equation as

− k
∂T (x, t)

∂x
πr2∆t+ k

∂T (x + ∆x, t)

∂x
πr2∆t − ǫσ[T (x, t)4 − Trm

4]2πr∆x∆t−
h[T (x, t) − Trm]2πr∆x∆t = cρπr2∆x∆T (x, t), (D.5)
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which can be simplified as

k
∂2T (x, t)

∂x2
πr2−2πrǫσ[T (x, t)4 −Trm

4]−2πrh[T (x, t)−Trm] = cρπr2∂T (x, t)

∂t
.

(D.6)

We are interested in the heat equilibrium status, where the temperature

distribution in the rod is static (∂T/∂t = 0). Under this condition, Eq. D.6

becomes

k
∂2T (x)

∂x2
πr2 = 2πrǫσ[T (x, t)4 − Trm

4] + 2πrh[T (x) − Trm]. (D.7)

Denoting η = 2ǫσ/(kr) and τ = 2h/(kr), then Eq. D.7 can be simplified

further as
∂2T (x)

∂x2
= η[T (x, t)4 − Trm

4] + τ [T (x) − Trm]. (D.8)

Solving this second order differential equation requires at least two bound-

ary conditions. At x = 0, the rod temperature equals the heat source temper-

ature Tsc

T (0) = Tsc. (D.9)

At the other end (x = L), the boundary condition is that the heat flows into

the tip surface equals the heat loss:

− k
∂T (L)

∂x
πr2 = ǫσ[T (L)4 − Trm

4]πr2 + h[T (L) − Trm]πr2. (D.10)

Denoting ξ = ǫσ/k and ζ = h/k, Eq. D.10 can be expressed as

− ∂T (L)

∂x
= ξ[T (L)4 − Trm

4] + ζ [T (L) − Trm]. (D.11)

D.3 Differential equation solution

Solving Eq. D.8 analytically may involve hypergeometric functions. Instead,

the numerical solution can be obtained in a relatively easy way.
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Figure D.2: Temperature distributions of solid copper rod with different ra-
dius.
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At first, convert Eq. D.8 into lower order differential equation as

∂

(

1

2

(

∂T (x)

∂x

)2
)

= {η[T (x, t)4 − Trm
4] + τ [T (x) − Trm]}∂T. (D.12)

Then integrate both sides of Eq. D.12 from x to L. This gives

1

2

(

∂T (L)

∂x

)2

− 1

2

(

∂T (x)

∂x

)2

=
η

5
[T (L)5 − T (x)5] − ηTrm

4[T (L) − T (x)]

+
τ

2
[T (L)2 − T (x)2] − τTrm[T (L) − T (x)]. (D.13)

Substituting the second boundary condition Eq. D.11 into Eq. D.13, we obtain

(

∂T (x)

∂x

)2

= {ξ[T (L)4 − Trm
4] + ζ [T (L) − Trm]}2

− 2η

5
[T (L)5 − T (x)5] + 2ηTrm

4[T (L) − T (x)]

− τ [T (L)2 − T (x)2] + 2τTrm[T (L) − T (x)]. (D.14)

Denote the right side of this equation as F{T (L), T (x)}. Take square root of

Eq. D.14 and separate differential variables into different sides of the equation.

Then integral both sides from 0 to L:

∫ T (L)

T (0)

∂T (x)
√

F{T (L), T (x)}
=

∫ L

0

∂x = L. (D.15)

We can test the left side integral with a series of T (L) values. When the

integral result matches the L value (which is the length of the copper rod),

the corresponding T (L) is the numerical solution that we are searching for.

D.4 Numerical estimation result

The heat conductivity of copper k is 450 W/(mK), the emissivity of highly

polished copper is 0.023, and the heat transfer coefficient h between copper

and air is about 0.04 mW/(mK) [116]. Set the room temperature Trm to 20
◦C. The heat source temperature Tsc at the tail of the liquid nitrogen dewar is
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around −196 ◦C. The Stefan-Boltzmann constant is 5.67 × 10−8 W/(K4m2).

Fig. D.2 shows the temperature distributions of rod with 0.01 m and 0.001

m radius as a function of length. It shows the cooling effect of a solid copper

rod is very good. The temperature does not rise too much up to 0.5 m in both

cases.

T
e

m
p

e
ra

tu
re

 (
C

)

Distance from the source (m)

Ignore shielding effect

Consider as solid bundle

Figure D.3: Temperature distributions of copper braid consisting of 168 × 36
wires, each of AWG36 or 127 µm diameter. Black line: ignore shielding effect.
Red line: consider all the wires as a solid bundle.

The ACD position needs to be adjustable. A copper braid can provide such

a soft mechanical path with reasonable cooling ability. As an example, the

temperature distribution is estimated on a copper braid consisting of 168×36

wires, each of AWG36 or 127 µm diameter. As the copper braid is a bundle of

thin copper wires, the inside wires are shielded by the outside wire layers. The

estimation is done at two extreme conditions, where one completely ignores

the shielding effect, and where one considers wires to be part of a solid bundle,
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shown in Fig. D.3. From the plot, we conclude that to avoid ice crystallization

at around −140 ◦C, it is safe to use copper braid less than 0.4 m.
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Appendix E

Liquid nitrogen autofill

controller

The liquid nitrogen autofill system is meant to maintain liquid nitrogen levels

in two separate reservoirs: one is the liquid nitrogen dewar for ACD, and the

other is the dewar on the cryo-specimen holder. The autofill system works by

using a pair of level sensors and a purge container used to pre-cool the transfer

lines from a pressurized liquid nitrogen storage dewar. In this chapter, we

describe the design and operation of this system.
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E.1 Control panels

The valve control box can control two fill valves and one purge valve. Each

valve has a manual control switch (labeled OPEN) and an enable switch (la-

beled ENABLE). The state of each ENABLE switch determines which valves

will be enabled for either manual or automatic operation. Each FILL TANK

represented schematically on the panel has three LED indicators. One LED

indicates when power is supplied to open the solenoid valve. The other two

LEDs indicate the status of the low level and high level liquid sensors. The

PURGE tank is identical except that it lacks a high level sensor. The AUTO

/ MANUAL switch determines the operational mode of the controller, and the

POWER LED indicates that the controller is powered.

E N A B L EO P E NO P E NO P E N

F I L L  1
P U R G E

E R R O R

M A N U A L

A U T O E N A B L E E N A B L E

F I L L  2

V al ve  C o nt ro l S to ny  B r oo k

P O W E R

Figure E.1: Valve controller front panel.

 

0

1

H LH L L LL LL L

P u r g eT a n k  1T a n k  2

T a n k  1T a n k  2

P W R  S w i t c h

P u r g e

Figure E.2: Valve controller rear panel.

The support piece is mounted on the 10-inch flange holds a four-way
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Swagelok connector, while each branch is equipped with a solenoid valve; the

branches go to to the anti-contaminator, the cryo-holder dewar, and the pre-

cooling bath via vacuum-sealed hoses.

The signals from the sensors are collected by a Parallax “Basic Stamp”

IC, which is a programmable micro controller on a chip with 16 I/O lines,

a built in clock, processor, Basic interpreter, and nonvolatile memory. The

output commands control solenoid valves, which are powered by 12 VDC power

supplies.

E.2 Operation modes

Manual mode gives full control over all valves:

1. Place ‘AUTO/MANUAL’ switch into ‘MANUAL’ mode.

2. Place the enable switch of the valve we want to operate into ‘ENABLE’.

3. Hold the manual control switch in ‘OPEN’ position to open the valve,

until releasing the manual control switch or the up level sensor giving signal.

Auto mode maintains a liquid level:

1. Place ‘AUTO/MANUAL’ switch into ‘AUTO’ mode.

2. Place the enable switch of the valve we want to operate into ‘ENABLE’.

(Refill tank 1: enable PURGE and FILL 1 valves; Refill tank 1 and 2: enable

PURGE, FILL 1 and FILL 2 valves.)

E.3 Logic sequence

When the controller is placed in AUTO mode with at least one FILL valve

enabled, the following logic sequence is performed:

1. If both the high level sensor and the low level sensor for an enabled

valve are off, then proceed to step 2. Else wait at step 1.

2. If the PURGE valve is disabled, continue to step 3. If the PURGE valve

is enabled and the PURGE tank liquid sensor is off, then open the PURGE

valve and start the PURGE timer. If the PURGE tank liquid sensor senses

liquid before the PURGE timer times out, close the PURGE valve and continue
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to step 3. If the PURGE timer times out before the PURGE tank liquid sensor

senses liquid, close all valves and indicate a PURGE TANK timeout error.

3. Open the FILL valve for any enabled tank whose liquid level is below the

low level sensor. An independent FILL timer is started for each open valve. If

at any time, the high level sensor senses liquid and the corresponding low level

sensor does not sense liquid, all valves are closed and an error is indicated. If

an enabled FILL timer times out before the associated tank is full, all valves

are closed and a timeout error is indicated. If both the high level and low level

sensors for an enabled tank sense liquid, the associated valve is closed. Once

all valves are closed (without an error condition), continue to step 1.

E.4 Error message

The ERROR LED alerts an error condition or indicates that the controller is

in “setup” mode. When the ERROR LED is flashing, it is reporting an error

condition. Errors are detected and identified only when the controller is in

AUTO mode. When an error occurs, all valves are closed. The error condition

is reset when the AUTO / MANUAL switch is set to MANUAL. The ERROR

LED identifies the error by flashing N times, then pausing for ∼1 second and

then repeating the pattern. The value of N is determined by the source of the

error:

N = 1, PURGE TANK timeout error

N = 2, FILL TANK ♯1 timeout error

N = 3, FILL TANK ♯2 timeout error

N = 4, FILL TANK ♯1 high level sensor on, low level sensor off

N = 5, FILL TANK ♯2 high level sensor on, low level sensor off

E.5 Timeout setting

The timeout for each tank can be programmed independently. The timeout

is measured in seconds. A maximum value for the timeout parameter is 600

(ten minutes). To program the timeout for a particular valve, the process is
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as following:

1. Disable all three valves by placing each ENABLE switch in the disable

position.

2. Set the AUTO / MANUAL switch to AUTO.

3. Momentarily place all three manual valve switches in the OPEN po-

sition. The ERROR LED will come on to indicate that the controller is in

‘setup’ mode.

3. Now activate the ENABLE or OPEN switch for the tank to be pro-

grammed. The ERROR LED will proceed to blink once per second. When

the desired timeout interval is reached, release the ENABLE or OPEN switch.

The ERROR LED will turn off and the controller will return to operational

mode. The new timeout value is stored in EEPROM and will remain in effect

until reprogrammed.

Each tank can be programmed individually as described above. The default

timeout parameters are 10 seconds for the PURGE tank and 1 minute for each

of the FILL tanks. If one attempts to program a tank timeout of less than 3

seconds, the tank will revert to its default setting.

E.6 Electrical circuit schematics

Electrical circuit schematics are shown in Fig. E.3, Fig. E.4, Fig. E.5 and

Fig. E.6.

E.7 System modification with continuous flow

The problem with the current refill system design is that the intensive flush-

ing at the beginning of each refill cycle brings in vibration to the delicate

microscope, and it might trigger level sensors accidentally. To avoid these

side effects, instead of refilling the purge tank to cool the transfer hose, we

can conduct a continuous cold nitrogen gas flow through the hose when the

system is idling.

This involves modifications to two modes. In the idle mode, a relatively
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Figure E.5: Electrical schematic for valve controller front panel 2.
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Figure E.6: Electrical schematic for valve controller basic stamp PCB.
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low gas pressure (∼ 1 PSI) in liquid nitrogen reservoir drives continuous cold

nitrogen gas flow through the hose and keeps the hose cold; when the low

sensor in the target tank gives a signal to refill, a relatively high pressure (∼ 5

PSI) will be built up in the reservoir, which will drive a liquid nitrogen flux

through the hose. Fig. E.7 sketches the working scheme of the new system.

A 3-way solenoid valve switches between those two working modes. When

it is de-energized, it connects to the port with a 1 PSI release valve (controlling

the pressure in the liquid nitrogen reservoir), and the system stays in the IDLE

mode. When the valve is energized, it connects to compressed air. At this

condition, the liquid nitrogen pressure is controlled by a 5 PSI release valve,

and the system is triggered in the REFILL mode.

As there are electronic instruments located below the refilling tanks, liquid

nitrogen over-flow should be avoided in any case. For this purpose, there is a

over-flow sensor mounted near the opening edge of each target tank. When this

sensor gives signal, the controller box will trigger evacuation valve on the liquid

nitrogen reservoir and reduce the pressure down to atmosphere immediately,

which will shut down liquid nitrogen flux in the hose.
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with continuous flow.
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Appendix F

Finding cells with CCD scan

The feasibility of using projection images to find cell locations is questionable,

because the projection of a 3 µm cell on CCD is less than one pixel (20 µm).

Ice balls on a sample grid can also generate round gray shadows on CCD,

which can easily cause confusion. In this chapter, we discuss an approach for

finding cells using CCD scans.
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F.1 CCD scan speed control

The first challenge for CCD scan is that it is very time consuming. The scan

speed is adjustable by using only parts of CCD pixels, which is determined by

the parameter ccd unbinned size. For instance, when ccd unbinned size is

set to be 512, only a 512 × 512 pixel array in the center of the entire CCD

array is in use.

The size of the CCD scan image is controlled by another parameter pair:

col binning and row binning. The default value of these two parameters is

2, which means every second column and row are actually read off to generate

a final 256× 256 CCD scan image with the textttccd unbinned size setting of

512.

In principle, we can increase CCD scan speed by reducing the read off image

size as long as it is sensitive enough to find a cell. For this purpose, three

parameter inputs are added in “CCD scan” widget for ccd unbinned size,

col binning and row binning, respectively.

The scan speed has been tested as a function of those three parameters

shown in Tables F.1. The scan timing is sensitive to the final generated image

size. With different ccd unbinned size and col/row binning combinations,

as long as the image size is the same, the scan speed does not change much

(values on diagonal lines of Tables F.1). The CCD read-out timing per pixel

varies with the total pixel array size in use. Fig. F.1 shows the timing variation

trend.

Table F.1: CCD scan speed test. 1 sec exposure, 5× 5 scan array with 10 µm
step size.

col/row binning 128 × 128 256 × 256 512 × 512 1024 × 1024
1 1.4 min 1.9 min 2.9 min
2 1.3 min 1.4 min 1.8 min 2.7 min
4 1.2 min 1.3 min 1.4 min 1.7 min
8 1.2 min 1.2 min 1.3 min 1.3 min

Besides the scan speed, the speckles on the scan images should be rec-

ognizable, and the field of view should be large enough as well. From the

test, we found ccd unbinned size 512 × 512 with col/row binning 4 was a
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Figure F.1: CCD read-out timing versus total pixel number.

good setting to satisfy these requirements (left image in Fig. F.2) and gave

reasonable timing. We tried a 25×25 scan with 10 µm step size using this set

of parameter setting. It finished within about half an hour. Considering the

entire scan area size was 250 × 250 µm which covered a majority of the grid

opening window, the timing was quite good. From the CCD scan image (right

image in Fig. F.2), several strongly scattering locations can be recognized.

F.2 Identifying cell using diffraction pattern

F.2.1 Simulation

In order to tell the similarity and difference in diffraction patterns between

cells and ice, a fake cell and an ice ball were compared.

The fake cell was built and its exit wave was calculated in the same way

as in Sec. 3.1.1 (shown in (a)(c)(e)(g) of Fig. F.3).

The ice ball was built in the same way as the fake cell and has the same
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Figure F.2: CCD scan images with ccd unbinned size 512 × 512 with
col/row binning 4. Left: 5 × 5 scan with 10 µm step size; Right: 25 × 25
scan with 10 µm step size.

(e) (g)

(f) (h)

(a) (c)

(b) (d)

520 eV 1.5 keV

Figure F.3: Simulated exit waves and diffraction patterns at 520 eV ((a)-(d))
and 1.5 keV ((e)-(h)): (a)(e) exit wave of the fake cell, (b)(f) exit wave of the
ice ball, (c)(g) diffraction pattern of the fake cell, (d)(h) diffraction pattern of
the ice ball.
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outline with the same pixel size of 15 nm, but filled with ice. The exit wave

was also obtained by a multi-slice propagation (shown in (c)(f) of Fig. F.3).

The simulation was done at 520 eV and 1.5 keV with 1.0×104 incident

photons per pixel. Fourier transforming both exit waves gave the far field

diffraction patterns. The diffraction speckles did not show significant difference

directly ((b)(d) and (g)(h) in Fig. F.3). Although we can see dark rings in the

fake cell’s 520 eV diffraction image, those rings were dismissed at 1.5 keV.

We then compared their power spectral density (PSD) curves as shown in

Fig. F.4. In log-log plots, the PSD from the ice ball drops down smoothly with

spatial frequency, while the PSD from the fake cell fluctuates more. At low

spatial frequencies (≤ 1 µm−1), the fake cell PSD is 2 orders less than ice ball

PSD at 520 eV, about 6 orders less at 1.5 keV.
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Figure F.4: Power spectral density curves of the fake cell and the ice ball at
520 eV (left) and 1.5 keV (right).

Considering the scattering pattern from an ice ball is more uniform than

that from a cell, because the ice ball has no inside structure and no sharp

boundary, the variations in the power spectral density curves should be smaller

and can be used to identify the difference. Fig. F.5 shows that the PSD

variation from the ice ball is indeed smaller than that from the fake cell in

average, especially in the spatial frequency range ≤ 1.0 µm−1 at 520 eV and

in the entire range beyond 1.0 µm−1 at 1.5 keV.
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Figure F.5: Variations in power spectral density curves of the fake cell and the
ice ball at 520 eV (left) and 1.5 keV (right).

F.2.2 Analysis on experimental scan data

We took a 25 × 25 CCD scan with 10 µm step size (shown in Fig. F.2) on a

frozen hydrated yeast cell grid warmed up in vacuum chamber. We checked

the intensities and PSD variations of the scan images.

We calculated the total scattering count for each image. Fig. F.6 displays

the total count of each scan image as one pixel. The brightness of this 25× 25

image demonstrates the relative scattering strength. Fig. F.6 (b) shows the

locations of top 10 strongest scattering scan spots.

PSD variations were then calculated to represent diffraction pattern char-

acteristics. Considering the CCD pixel size is about 20 µm, distance from

sample to CCD is about 14 cm, and 520 eV x-ray wavelength is 2.38 nm, the

pixel size in reciprocal space is about 16.7 µm−1. The beamstop cutoff is about

5.6 µm−1, and the outermost pixel spacial frequency is about 20.0 µm−1. The

PSD variation calculation was done in the range from 6.0 to 16.0 µm−1 range.

It shows that the ccd unbinned size and col/row binning combination was

well chosen to cover this spacial frequency range. Fig. F.6 (c) shows the PSD

variation for each scan image, and Fig. F.6 (d) shows top 10 locations with

largest variations.

Fig. F.7 (a) shows one scan image that ranks in both top 10 lists of in-

tensity (6th) and PSD variation (4th). Its diffraction pattern is contaminated

by streaks, but speckles can be recognized. By checking its surrounding im-

ages, we found a scattered pattern with good speckles (Fig. F.7 (b)). This
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(a) (b)

(c) (d)

Figure F.6: (a) CCD scan image total counts. (b) Top 10 most strongly
scattering positions. (c) PSD variations between 1.5 µm−1 and 4.0 µm−1. (d)
Top 10 largest PSD variation in the concerned range.
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image is 10 µm away. With another CCD scan with smaller step size and

col/row binning settings, this promising specimen can be located more ac-

curately.

(a) (b)

Figure F.7: (a) An image ranks in both top 10 lists of intensity and PSD
variation. (b) The promising specimen 10 µm away from (a).

F.2.3 Conclusion

From simulation results, we conclude that: (1) it is unreliable to identify

cell from its diffraction pattern directly; (2) the PSD curves of an ice ball is

smoother than that of a fake cell and the fake cell PSD counts are several

orders less at low spatial frequencies; (3) the PSD variation of an ice ball is

consistently smaller than that of a fake cell.

Analysis of an experimental data shows than combining total scattering

counts and PSD variation is functional to locate promising specimens. Fig. F.5

shows that PSD variation difference of a cell and an ice ball is larger at higher

energy. This method could work better at higher energies.

Unfortunately, we did not collect finer scans over the picked up spot (Fig. F.7

(b)), and did not take a full 2D data set from this promising specimen. These

two processes could be performed in future experiments, and they will provide

further support to the conclusion.
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