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Abstract of the Dissertation

Discrete Metric Design and Discrete Tangent
Bundles: from Surfaces to 3-Manifolds

by

Xiaotian Yin

Doctor of Philosophy

in

Computer Science

Stony Brook University

2010

One of the fundamental tasks in geometric modeling and computer
graphics is to study shapes, such as surfaces and volumes, and dif-
ferential objects associated with them, such as vector fields. For
the study of shapes, the challenge in many cases comes from the
need of a parameter domain that has a canonical and simple shape,
which is equivalent to designing a metric of special properties. For
differential objects, a fundamental problem is how to represent tan-
gent bundles in a discrete setting, so that covariant differentiation
and connections can be computed accordingly.

This dissertation aims to design rigorous and practical methods
to deal with both tasks. For discrete metric design, a global pa-
rameterization method, called slit map, is designed for genus zero
surfaces with multiple holes using discrete differential forms. A sec-
ond method is designed to map volumetric handle bodies to direct
product domains. A third method is designed to compute con-
stant curvature metrics for hyperbolic 3-manifolds using a discrete
curvature flow. For discrete tangent bundles, we propose discrete
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constructions using tetrahedral meshes to represent unit tangent
bundles for various surfaces, including topological disks and closed
orientable surfaces of arbitrary genus. All the proposed methods
are based on solid results from topology and differential geometry,
and are adapted with best efforts to engineering problems ranging
from surfaces to 3-manifolds.
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Chapter 1

Introduction
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1.1 Discrete Metric Design

Surfaces encountered in computer graphics and geometric modeling are usu-

ally compact Riemannian surfaces, which are 2-manifolds with a Riemannian

metric, which is intuitively a measure of length. In engineering fields, a surface

is usually represented as a triangular mesh, which is a piecewise-linear approx-

imation of a smooth surface. In such an approximation, a discrete metric can

be represented by a set of edge length; that is, a function that assigns each

edge with a real number so that the triangle inequality is satisfied within every

triangle.

Another type of geometric objects that are widely used in computer graph-

ics and geometric modeling are volumes, which are 3-manifolds. In engineer-

ing fields, a volume is usually represented as a tetrahedral mesh, which is a

piecewise-linear approximation of a smooth 3-manifold. Similar to the surface

case, a discrete metric for a tetrahedral mesh is also a function assigning each

edge with a length.

No matter for surfaces or for volumes, a metric determines the shape of

an object. Under certain circumstances one wants to change the shape of an

object, which usually requires to replace the given metric with a new one that

has special properties. We name this process as metric design. Such needs in

the engineering fields give rise to a challenging problem:

Problem 1.1.1 (The Discrete Metric Design Problem). Given a surface rep-

resented as a triangular mesh, or a volume represented as a tetrehedral mesh,

how to compute a discrete metric that meets specific requirements from a user?

In mathematics there are many beautiful results that provide inspirations

and tools for metric design. Among all of them, an important class of re-

sults are related to classification of surfaces and 3-manifolds. For example, the

uniformization theorem states that, any simply connected Riemann surface

is isomorphic to either the Riemann sphere, the complex plane, or the open

unit disc. Intuitively it means that all surfaces in real life can be conformally

mapped to one of three canonical shapes: the unit sphere (S2), the Euclidean

plane (E2), and the hyperbolic space (H2). This theorem implies that any of

2



such surfaces admits a canonical Riemannian metric that has constant Gaus-

sian curvature +1, 0 or -1 and is conformal to the original Riemannian metric.

For 3-manifolds, the classification is much more complicated. According

to Thurston’s geometrization conjecture, which is recently proved, any compact

3-manifold can be decomposed into pieces that have one of eight geometric

structures: S3 , E3 , H3 , S2 ×R, H2 ×R, universal cover of SL2(R), Nil and

Sol.

In this work, we treat the discrete metric design problem by closely relying

on those classical theories from topology and geometry, trying to apply them

to real problems in engineering fields and bridging the gap between theories

and applications. In particular, we investigate three different types of surfaces

or volumes, and propose three methods of discrete metric designs accordingly.

[1] Slit map: for genus zero surfaces (2-manifolds) with multiple holes. It

computes flat metrics with four different types of boundaries that all

have regular shapes. The computation is based on discrete holomorphic

one-forms.

[2] Direct product parameterization: for handle body volumes (3-manifolds).

It computes Euclidean metrics with the boundary partitioned into flat

bases and vertical walls. The computation is based on slit map and

volumetric harmonic fields.

[3] Discrete Curvature Flow: for hyperbolic 3-manifold with boundaries.

It computes a hyperbolic metric of uniform negative curvature with the

boundary becoming geodesics. The computation is based on a discrete

curvature flow for 3-manifolds.

In the following we give a brief introduction to each of these methods in

section 1.1.1, 1.1.2 and 1.1.3. More details can be found in later chapters 2, 3

and 4).

1.1.1 Slit Map for Multiply Connected Surfaces

multiply connected surfaces, which are genus zero surfaces with multiple holes

(figure 1.1a), are widely used in engineering fields, such as computer vision
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and medical imaging. For such surfaces, we propose a novel linear computa-

tional method, called slit map, which can conformally map the surface to four

different flat domains:

[1] Cylindric slit domain (figure 1.1b): a cylinder with the top and bottom

open, where two of the original boundaries become circles at the top and

the bottom, while all the other boundaries (if any) become horizonal arcs

in between;

[2] Parallel slit domain (figure 1.1c): a rectangle domain where two of the

original boundaries are cut open and become two horizontal lines at

the top and the bottom, while all the other original boundaries become

horizontal slits in between;

[3] Concentric slit domain (figure 1.1d): an annular domain where two of

the original boundaries are mapped to the outer and inner circle that

concentric to each other, while all the other boundaries are mapped to

concentric arcs in between.

[4] Circular slit domain (figure 1.1e): a round disk where one of the original

boundary becomes the outer circle, while all the other boundaries are

mapped to circles inside the disk.

The four domains have different boundary shapes, and can be applied to

different practical problems. For example, the concentric domain can be used

as fingerprints for shape analysis and classification purposes. The circular

domain can be used to match scanned brain surfaces in medical imaging. The

parallel domain and cylindric domain can be used for quad remeshing of a

triangular surface.

Computing a slit map is equivalent to designing a flat metric on the given

surface such that the boundary has certain regular shapes. Our numerical al-

gorithm is based on a classical result on conformal invariants of such domains

([1]). According to this theory, such a metric can be induced from a holomor-

phic one-form that has special behavior on the boundary of the surface. To

find such a holomorphic one-form, we first compute a set of basis of holomor-

phic one-forms on the given surface, and then compute a linear combination
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(a) (b) (c) (d) (e)

Figure 1.1: Slit map can map a multiply connected surface (a) to four dif-
ferent canonical domains: cylindric slit domain (b), parallel slit domain (c),
concentric slit domain (d) and circular slit domain (e).

of the basis under certain constraints. The whole computation is linear, and

the new metric is conformal (angle-preserving) to the original metric.

1.1.2 Direct Product Parameterization for Solid Handle

Bodies

(a) (b) (c)

Figure 1.2: A direct product parameterization (c) for a handle body volume
(a). It starts from a boundary parameterization (b).

This method targets at volumes that are handle bodies (figure 1.2), whose
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boundary surface is a torus with multiple handles. The shape of such a volume

could be very complicated, while topologically they all have a simple nature;

namely, any handle body is a direct product of a base and a fiber. The base

here is a 2-dimensional disk with multiple holes, and the fiber is a 1-dimensional

line segment.

From this observation, we propose a metric design method that starts

from the boundary surface. We first partition the boundary surface into two

bases, which are topological disks with multiple holes, and a set of walls, which

are topological cylinders with both ends open. Then compute a flat metric on

bases using either slit map or any alternative method, and map two bases

back to back. Using these two flat bases as boundary condition, we compute a

volumetric harmonic function to extend the metric of the base throughout the

whole volume, which will give a parameter domain that is a direct product.

Note that for certain handle bodies, the above basic algorithm will gener-

ate huge distorsion between the given domain and the final domain. In order

to relief such distorsion, we also propose an extended algorithm, which uti-

lizes polycube map for the surface metric design, and build a map between

the given volume and its polycube domain. This map can be further used to

generate hexahedral meshes with high qualities.

1.1.3 Constant Curvature Metrics for Hyperbolic 3-Manifolds

This work is for hyperbolic 3-manifolds, which belongs to one of the eight basic

geometric structures in Thurston’s geometric conjecture, H3. This is one of

the most simple geometries in the family of eight. As an example, figure 1.3(a)

shows such a 3-manifolds, called knotted Y-shape. It can be constructed by

removing three knotted tunnels from a solid ball. The goal is to compute a

metric that has constant negative curvature in the inside, while leaving the

boundaries as geodesics.

Our numerical algorithm is directly based on a curvature flow for such

3-manifolds, proposed by Luo ([40]). It deforms a given metric according to

the curvature, and the whole process is an analog of heat diffusion. At the end

of the flow, the curvature will be uniformly distributed in the volume, and the

curvature on the boundary becomes zero.
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(a) (b) (c)

Figure 1.3: Computing constant curvature metric for knotted Y-shape (a),
which is a hyperbolic 3-Manifold. With such a metric, the shape can be
embedded in H3 in a single period (b) or multiple periods (c).

The curvature flow in [40] is designed for ideal triangulations, which is a

mesh consisting of truncated tetrahedra. In order to compute such a flow, we

propose an algorithm to convert a tetrahedral mesh to a truncated tetrahedral

mesh, on which the constant curvature metric is computed then. We also

provide algorithms to embed a given hyperbolic 3-manifold in a hyperbolic

space using this hyperbolic metric.

1.2 Discrete Unit Tangent Bundles

A unit tangent bundle for a surface is a special fiber bundle where the fiber

is a circle S1. It is a natural representation for unit tangent vector fields on

surfaces. Given an arbitrary point on a surface, all the unit tangent vectors

there can be parameterized by a unit circle. Each unit tangent vector field can

be represented as a section in the bundle, except for the singularity points (if

any) where the section is not defined.

As a powerful tool in Riemannian geometry, unit tangent bundle contains

important information about all the unit tangent vector fields on a surface, and

therefore has a natural impact on some engineering problems, such as vector

field design ([21], [70], [60], [53], [52], [46]) and vector field topology ([31], [50],

[7], [8], [41], [38], [64]).

Although unit tangent bundles could theoretically play important roles
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in vector field study, they are unfortunately missing from the literature of

those engineering fields. One of the fundamental reasons is that there is no

appropriate discrete representation for such bundles, especially for those with

non-trivial topology. This gives rise to the following problem that we are trying

to tackle:

Problem 1.2.1 (The Discrete Unit Tangent Bundle Problem). Given a sur-

face represented as a triangular mesh, how to generate a tetrahedral mesh that

faithfully represents the unit tangent bundle of the given surface?

(a) (b) (c) (d)

Figure 1.4: Discrete unit tangent bundles for topological disks (a) and closed
surfaces that have positive (b), zero (c) and negative (d) Eular characteristics.

In this work, we explore methods to represent unit tangent bundles for a

wide range of surfaces, from topological disks to closed and oriented surfaces

with arbitrary genus.

For a topological disk, the unit tangent bundle is simply a direct product

of the disk with a circle, which is a solid torus (figure 1.3a). It is easy to

build a tetrahedral mesh to represent such a bundle. For closed surfaces,

however, the unit tangent bundles are in general non-trivial (except for genus

one surfaces), and there is no obvious way to discretize such bundles with

tetrahedral meshes. Although generating tetrahedral meshes has a fruitful

literature, to name a few, [56],[34],[18],[43],[45],[10],[9],[15],[19] and etc, none

of them could nicely handle this problem. The challenges are multi-folded:
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• A unit tangent bundle for a closed surface is a closed 3-manifold, there

is no boundary surface that we can start from to tessellate the interior.

• A fiber bundle like this cannot be embedded in R3; no traditional method

could generate such a tetrahedral mesh directly.

• Topologically speaking this bundle is globally nontrivial (i.e. not direct

product); special considerations need to be taken in order to maintain

certain regular structures in the tetrahedral mesh as much as possible,

at least locally.

In order to solve problem 1.2.1 for closed surfaces, we use a local-to-global

framework. In a local construction stage, we first partition the given surface

into one or multiple topological disks that cover the original surface, and build

unit tangent bundles for each of them. These trivial bundles are called local

bundles, which are solid tori. In a global construction stage, we combine local

bundle(s) into a global bundle, i.e. the unit tangent bundle of the original

surface. This is achieved by gluing solid tori carefully along their boundaries.

This framework gives rise to two specific requirements that our solution

has to meet.

• In the global construction, in order to generate a discrete representation

of unit tangent bundle that is faithful to its smooth counterpart, the glu-

ing operation should satisfy certain topological properties; this requires

that the triangulation on the boundary of each local bundle must allow

such faithful gluing.

• In the local construction, the tetrahedral tessellation within each local

bundle should reflect the direct product nature, under constraints on the

boundary triangulation that are imposed by the global construction.

Taking all these challenges and requirements into consideration, we pro-

pose a family of faithful and efficient solutions to the discrete unit tangent

bundle problem for different types of surfaces. In particular,

• For a topological disk, we build its discrete unit tangent bundle with

regular structures both in the interior and on the boundary. We reduce
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this problem to an equivalent but simpler 2D problem, and provide ef-

ficient algorithms under various types of boundary conditions. These

algorithms are proved to output a valid solution to the 2D problem if

there is one and are proved to output the obstructions if there is no

solution.

• For a closed surface of genus zero, we build its discrete unit tangent

bundle from two trivial local bundles. We also define a discrete gluing

map to glue two local bundles up to certain topological requirements,

and design a gluable triangulation on the boundary of each local bundle,

which allows the above faithful gluing.

• For a closed surface of genus greater than zero, we build its discrete unit

tangent bundle from only one trivial local bundle. Similar to the genus

zero case, we design specific gluable triangulations on the boundary of

the local bundle, and also a discrete gluing map to glue the local bundle

to itself along its own boundary.

To the best knowledge of the author, this is the first systematic solution

to build discrete unit tangent bundles using tetrahedral meshes for a large set

of surfaces.

1.3 Organizations and Notations

In the rest of this dissertation we will spend three chapters on discrete metric

designs; namely, chapter 2 on discrete slit map for multiply-connected surfaces,

chapter 3 on direct-product parameterization of handle bodies, chapter 4 on

constant curvature metric design for hyperbolic 3-manifolds. Then another

three chapters are devoted to discrete unit tangent bundle designs for various

types of surfaces; namely, chapter 5 for topological disks, chapter 6 for g = 0

closed surfaces and chapter 7 for g > 0 closed surfaces. Finally we conclude

briefly in chapter 8.

The following notations are commonly used in the rest of the dissertation.

Other specific notations will be introduced in individual chapters.
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∂M denotes the boundary of a manifold M . If M is a k-dimensional

manifold (k > 0), ∂M will be a (k-1)-dimensional manifold.

Sk denotes a k-dimensional sphere. For example, S1 denotes a circle (1-

dimensional), S2 denotes a 2-dimensional sphere, S3 denotes a 3-dimensional

sphere.

T k denotes a k-dimensional torus. For example, T 2 denotes a 2-dimensional

torus (with only one handle), which is topologically equivalent to S1 ×S1. T 3

denotes a 3-dimensional torus, which is topologically equivalent to S1×S1×S1.

T 2(g) denotes 2-dimensional torus with g handles, i.e. a closed oriented

surface of genus-g. For example, T 2(2) denotes a 2-dimensional torus with two

handles. And as a special case T 2(1) is exactly T 2, a 2-dimensional torus with

only one handle.

Dk (or Bk) denotes a k-dimensional disk (or ball), whose boundary is a

(k-1)-dimensional sphere, i.e. ∂Dk = Sk−1. For example, D2 (or B2) denotes

a 2-dimensional topological disk, whose boundary is a circle S1; D3 (or B3)

denotes a solid ball (3-dimensional), whose boundary is a 2-sphere S2.
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Chapter 2

Discrete Metric Design via Slit

Map
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2.1 Motivations and Related Work

Surface conformal parameterization is a fundamental tool in geometric mod-

eling and processing. It is an essential technique for many applications, such

as texture mapping, surface matching, registration and tracking, re-meshing,

mesh-spline conversion and so on.

Many methods have been proposed to parameterize surfaces varying from

closed surfaces to surfaces with boundaries, from genus zero spheres to high

genus surfaces. For a general overview of the literature, we refer the readers

to the comprehensive survey papers [55] and [22].

Among all these surfaces, genus zero surfaces with multiple boundaries, or

namely,multiply connected surfaces, are widely used in many engineering fields.

For example, in certain computer vision applications, people punch holes in

the human face mesh at the eyes and the mouth (figure 1.1a). In medical

imaging field, people specify certain line landmarks on the brain surface for

registration purposes, and each of the lines can be sliced open to be a hole. Our

parameterization method is targeting at these multiply connected surfaces.

Also, we are looking for parameter domains that have regular shape, such

as unit disk, rectangle or something alike. Such canonical domains are highly

preferable in many applications, such as texture mapping, shape comparison,

computation using finite element method (FEM) and etc.

In the literature there are some methods to parameterize multiply con-

nected surfaces, such as [14], [37], [25] and etc. But all these methods leave

the boundary free and thus cannot generate any canonical parameter domain

in general. In fact, the regularity of the shape of the parameter domain is

mainly reflected in the shape of its boundaries. In order to achieve canonical

domains, the surface boundaries have to be fixed in most (if not all) cases.

There are some parameterization methods with fixed boundaries for mul-

tiply connected surfaces. One of such work is discrete Ricci flow [32], which is

able to map the surface to a round disk with circular holes inside. However,

that method is non-linear. Actually that method targets at general surfaces,

not specifically tuned for the multiply connected surfaces.

In this work, we propose a novel linear computational method, called

slit map, for global conformal parameterization of multiply connected surfaces
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with canonical domains (figure 1.1). Four different canonical domains can be

computed: cylindric slit domain (figure 1.1b), which is an open cylinder with

two circle boundaries at the top and the bottom, while other boundaries (if

any) become arcs around the axis of the cylinder; parallel slit domain (figure

1.1c), which is a rectangle where all the original boundaries become parallel

slits; concentric slit domain (figure 1.1d), where two boundaries are mapped to

concentric circles, while others mapped to concentric arcs in between; circular

slit domain (figure 1.1e), which is a round disk with all the boundaries being

circles.

Computing a slit map is equivalent to finding a certain holomorphic one-

form, which we called slit holomorphic one-form, with special behavior on the

surface boundaries. In recent years, discrete one-form has been studied and

applied in many applications, such as vector field design and decomposition

([21], [64]), surface parameterization ([27], [25]), quad mesh design ([63]) and

etc. In this work, we explicitly compute the basis of holomorphic one-forms,

by an approach which is similar yet slightly different to that in [27]), and

then compute the slit holomorphic one-form from there up to certain special

constraints.

In a nutshell, slit map proposed in this paper own the following merits.

[1] It can generate four different canonical domains for an arbitrary multiply

connected surface;

[2] The mapping is conformal, one-to-one and global (i.e. do not need to

partition the surface);

[3] The algorithm is linear.

2.2 Theoretic Background

The key of computing slit map is to find a so called slit holomorphic one-

form, which is a pair of orthogonal harmonic one-forms with special behavior

on the surface boundary. Every slit map is guaranteed to be conformal and

essentially one-to-one. In this section, we briefly introduce the major concepts
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and theories that are directly relevant to our parameterization method. For

further details, the interested readers are referred to [1] and [28].

Harmonic Function

Suppose S is a surface embedded in R3 with induced Euclidean metric g. S

is covered by an atlas {(Uα, ϕα)}. Suppose (xα, yα) is the local parameter

on the chart (Uα, ϕα). We say (xα, yα) is isothermal, if the metric has the

representation

g = e2λ(xα,yα)(dx2α + dy2α).

The Laplace-Beltrami operator is defined as

∆g =
1

e2λ(xα,yα)
(
∂2

∂x2α
+

∂2

∂y2α
).

A function f : S → R is harmonic, if ∆gf ≡ 0.

2.2.1 Holomorphic One-form

Suppose η is a differential one-form with the representation fαdxα + gαdyα

in the local parameters (xα, yα), and fβdxβ + gβdyβ in the local parameters

(xβ, yβ). Then (
∂xα

∂xβ

∂yα
∂xβ

∂xα

∂yβ

∂yα
∂yβ

)(
fα
gα

)
=

(
fβ
gβ

)
.

η is a closed one-form if on each chart (xα, yα)

∂f/∂yα − ∂g/∂xα = 0

η is an exact one-form if it equals the gradient of some function. An exact

one-form is also a closed one-form.

A closed one-form η is a harmonic one-form if it satisfies

∂f/∂xα + ∂g/∂yα = 0

The gradient of a harmonic function is an exact harmonic one-form.
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The so-called Hodge star operator turns a one-form η to its conjugate

∗η = −gαdxα + fαdyα

Definition 2.2.1 (Holomorphic One-form). A holomorphic one-form is a

complex differential form η +
√
−1∗η, where η is a harmonic one-form.

The wedge product of two one-forms ηk = fkdx + gkdy, k = 1, 2 is a

two-form

η1 ∧ η2 = (f1g2 − f2g1)dx ∧ dy.

2.2.2 Slit Holomorphic One-form

Suppose S is an open surface with n boundaries γ0, · · · , γn−1. One can uniquely

find a holomorphic one-form ω = η+
√
−1∗η such that η is exact, ∗η is closed,

and

Im

(∫
γk

ω

)
=


2π k = 0
−2π k = 1
0 otherwise

(2.1)

where Im takes the imaginary part of the complex valued integration.

Such a holomorphic one-form ω is called slit holomorphic one-form. It is

periodic in the imaginary part on two of the boundaries.

All the holomorphic one-forms form a linear space, which is a finite dimen-

sional space for multiply connected surfaces with finite number of boundary

curves. The slit holomorphic one-form is a point in this space, and therefore

can be expressed as a linear combination of those basis holomorphic one-forms.

Both the basis and the linear combination can be computed using linear meth-

ods (section 2.3).

2.2.3 Slit Map

With the slit holomorphic one-form ω, one is allowed to map the original sur-

face to one of four parameter domains: the cylindric, parallel, concentric and

circular domain, and the corresponding slit map can be defined accordingly.
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The cylindric slit map uses an open cylinder as the target domain, with

two circle boundaries at the top and the bottom, while with all the other

boundaries (if any) as arcs around the axis of the cylinder. The formal defini-

tion is as follows:

Definition 2.2.2 (Cylindric Slit Map). Let S̄ be the universal covering space

of the surface S, π : S̄ → S be the projection and ω̄ = π∗ω be the pull back

of ω. Fix a point p̄0 on S̄, for any point p ∈ S̄, let γ̄ be an arbitrary path

connecting p̄0 and p̄, then the cylindric slit map is defined as

ϕ̄(p̄) =

∫
γ̄

ω̄

The parallel slit map is an immediate variation of the cylindric slit map,

by cutting and unwrapping the cylinder into a rectangle. All the original

boundaries become parallel slits, plus two cutting boundaries orthogonal to

them. The parallel slit map is actually a single period representation of the

periodic slit holomorphic one-form.

The concentric slit map is essentially the exponential of the cylindric slit

map. The target domain is a flat disk, with two concentric circle boundaries

and several (if any) concentric arc boundaries in between. It is formally defined

as:

Definition 2.2.3 (Concentric Slit Map). Fix a point p0 on the surface, for any

point p ∈ S, let γ be an arbitrary path connecting p0 and p, then the circular

slit map is defined as

ϕ(p) = e
∫
γ ω

The circular slit map computes a flat disk domain, where all the bound-

aries are circles. It can be computed from the concentric slit domain by ex-

panding each (round-trip) arc boundary into a perfect circle. This can be

achieved through a sequence of analytic functions. First, use certain Möbius

transformation to put the target arc (round trip) as the positive x-axis, with

one end point at the origin and the other one at the infinity. Then take the
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square root function to squeeze the domain into the upper half plane, where

the target arc (single trip) covers the whole x-axis. Finally use another Möbius

transformation to transform the x-axis to a circle. Repeating this process for

each arc, one will transform the concentric slit domain into a circular slit

domain.

2.3 Algorithm Pipeline

The goal of this work is to compute a conformal mapping of a multiply con-

nected mesh to a certain slit domain. As explained in the previous section, the

mapping is acquired by integrating a slit holomorphic one-form, which is in

turn calculated from a set of holomorphic one-form basis. The whole algorithm

can be outlined as follows:

[1] Compute the basis for all the holomorphic one-forms; (section 2.3.1)

[2] Compute the slit holomorphic one-forms; (section 2.3.2)

[3] Compute four kinds of slit domains. (section 2.3.3)

In this section we assume the boundary of the input mesh has n + 1

connected components ∂M = γ0−γ1−· · ·−γn, and without loss of generality,

we map γ0 and γ1 to the outer and inner circle of the concentric slit domain,

while all the others to the concentric slits.

2.3.1 Computing holomorphic one-form basis

In order to compute a set of basis holomorphic one-forms, we employ a method

very similar to that introduced in [27]. The surfaces in that work are closed,

while the ones we are studying have boundaries. But essentially, both the

work share the same idea. We first compute a set of harmonic one-forms, then

pair each of them with its conjugate through the hodge star operation.
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(a)η1 (b) η2 (c) η3

Figure 2.1: Basis of exact harmonic one-forms.

(a)τ1 (b)τ1 (c)τ3

Figure 2.2: Basis of closed but not exact harmonic one-forms.

Let γk be an inner boundary, we compute a harmonic function fk : S → R
by solving a Dirichlet problem on the mesh M :{

∆fk ≡ 0
fk|γj = δkj

where δkj is the Kronecker function, ∆ is the discrete Laplacian-Beltrami op-

erator using the well-known co-tangent formula proposed in [51]. Taking the

gradient of the harmonic function fk, we get an exact harmonic one-form ηk

ηk = dfk; in this way we can compute a set of exact harmonic one-forms

{η1, η2, · · · , ηn}

which are visualized in figure 2.1.
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The next step would be computing the conjugate for each ηk. A naive

method would be rotating ηk by 90◦ about the surface normal. But in practice

the resulting one-form (denoted as η′k) is usually not accurate enough. In this

work we take η′k as an initial approximation, and then improve the accuracy

utilizing the harmonic one-form basis, which can be represented as

{η1, η2, · · · , ηn, τ1, τ2, · · · , τn}

where ηk comes from the previous step, while τk can be computed as

follows.

For each inner boundary γk (k > 0), compute a path ζk bridging γk and

γ0; slice the mesh open along this path, denote the resulting mesh as Mk; ζk

itself is split into two boundary segments ζ+k and ζ−k in Mk. As done in [63],

compute a function gk :Mk → R by solving a Dirichlet problem,

{
∆gk ≡ 0
gk|ζ+k = 1, gk|ζ−k = 0.

Compute the gradient of gk and let τk = dgk, then map τk back to M ,

where τk becomes a closed one-form. In order to make it harmonic, we compute

a function hk :M → R by solving a linear system ∆(τk+dhk) ≡ 0, and update

τk to be τk + dhk. Now we get a set of basis

{τ1, τ2, . . . , τn}

for all the closed but not exact harmonic one-forms (visualized in figure

2.2).

Come back to the question of computing the conjugate one-form for each

ηk. Since ηk is harmonic, its conjugate ∗ηk should also be harmonic, and can

therefore be represented as a linear combination of the base harmonic one-

forms ∗ηk =
∑n

i=1 aiηi +
∑n

i=1 biτi. The coefficients ai and bi (i = 1, 2, · · · , n)
can be computed by solving the following linear system,∫

M

∗ηk ∧ ηi =
∫
M

η′k ∧ ηi,
∫
M

∗ηk ∧ τj =
∫
M

η′k ∧ τj.
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(η1 +
∗η1) (η2 +

∗η2) (η3 +
∗η3)

Figure 2.3: Basis of holomorphic one-forms

where ∧ is the wedge product (section 2.2). Once each ∗ηk is computed

this way, we can pair it with its conjugate

{η1 +
√
−1∗η1, · · · , ηn +

√
−1∗ηn}

which is a set of basis for the holomorphic one-form group (see figure 2.3).

2.3.2 Computing slit holomorphic one-form

As explained in section 2.2, the slit holomorphic one-form ω is a special linear

combination of these basis holomorphic one-forms

ω =
n∑

i=1

λi(ηi +
√
−1∗ηi)

such that the imaginary part of its integration satisfies equation 2.1. This

constraint can be formulated as the following linear system:
α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αn1 αn2 · · · αnn




λ1
λ2
...
λn

 =


−2π
0
...
0


where αkj =

∫
γj

∗ηk, and λi (i = 1, · · · , n) are the unknowns.

It can be proven that this linear system has a unique solution, which
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reflects the fact that γ1 is mapped to the inner circle of the concentric slit

domain. Further, the system implies another equation

α01λ1 + α02λ2 + · · ·+ α0nλn = 2π,

which means that γ0 is mapped to the outer circle in the concentric slit domain.

2.3.3 Computing slit domains

Once the slit holomorphic one-form ω has been computed, we can integrate it

on the mesh. Starting from a base vertex v0 (which can be chosen arbitrarily),

build a spanning tree among all the vertices. This tree will induce a path ζi

from v0 to any other vertex vi. Then we can assign each vertex with a complex

number hi +
√
−1θi by integrating ω along ζi: hi = Re

(∫ vi
v0
ω
)

θi = Im
(∫ vi

v0
ω
) (2.2)

From this integration, we can directly compute the cylindric slit domain

(2.3.3), and then , parallel (2.3.3) and concentric (2.3.3) slit domain accord-

ingly. The construction of the circular slit domain (2.3.3) is more complicated

than that of the other three domains, and need further treatments using com-

plex analysis techniques.

The cylindric slit domain The cylindric slit domain (figure 1.1b) can be

built from the integration of slit holomorphic one-form directly. In the cylindric

slit domain, the (x, y, z) coordinate for each vertex vi can be represented as

(cos θi, sin θi, hi). Obviously, the radius of the sectional circle is 1.0. Please note

that, although the range of θ could be beyond 2π, the cylindric slit domain is

still well defined since the cos and sin will regulate θ by 2π period.

The parallel slit domain To compute the parallel slit domain (figure 1.1c),

we can re-parameterize the cylindric domain by replacing θ ∈ R with α ∈
[0..2π]. Cutting the cylinder surface open along the vertical line α = 0, and
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unrolling the surface into the XY plane, we get the parallel slit domain. The

(x, y) coordinate for each vertex vi is represented as (αi, hi). Note that the

width of the domain is automatically normalized to 2π this way.

The concentric slit domain The concentric slit domain (figure 1.1d) is

computed by taking the exponential of the integration 2.2. Namely, The com-

plex coordinate for each vertex vi is represented as

xi +
√
−1yi = ehi+

√
−1θi

The circular slit domain The circular slit domain (figure 2.5d) can be

computed from the concentric slit domain. As an initialization, we normalize

the concentric slit domain to a unit disk (figure 2.5a); that is, the radius of the

outer circle boundary is 1. For each concentric slit arc γi (i > 1), let vi1 and

vi2 be the vertices at the two ends of the arc, let zi1 and zi2 be their complex

coordinates respectively. Repeating the following steps for i = 2, ·, n, one will

expand each slit arc γi into a full circle.

Firstly, take the Möbius transformation z = (z − zi1)/(z − zi2) on the

whole domain, so that vi1 and vi2 are mapped to the original and the infinity

respectively. In order to handle the infinity point, we take a stereo graphic

projection and map the flat domain to a sphere (figure 2.4a), where vi1 and v
i
2

appears at the south and north pole respectively. Due to the fact that γi is

a round-trip arc in the concentric slit domain, now it is mapped to a half of

a great circle (round-trip) along a longitude line on the sphere connecting the

two poles.

Secondly, rotate the sphere around the z-axis until the half great circle

γi falls into the y = 0 plane (figure 2.4b). If we map the sphere back to the

complex plane by an inverse stereo graphic projection, γi will lie on the x-axis,

with vi1 and vi2 at the original and infinity respectively.

Thirdly, take the complex square root z = z1/2 operation to cut the com-

plex plane along the positive x-axis and squeeze the whole plane into the y ≥ 0

half plane, where γi spans the whole x-axis. Again, in order to accommodate

the infinity point nicely, this step can be carried out on the sphere instead; it

will squeeze the whole sphere into a half sphere embedded in the y ≥ 0 half
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Figure 2.4: Expanding slit arc γ2 to a full circle (section 2.3.3). (a) stereo
graphic projection of the concentric slit domain int figure 2.5a. (b) the sphere
is rotated around the z-axis to place γ2 in the y = 0 plane. (c) the arc is
expanded to a full circle by taking the complex square root. (d) the semi-
sphere is rotated around the x-axis to place γ2 in the y = 0 plane.

space (figure 2.4c). The key point is, γi is now expanded into a full circle on

the y = 0 plane.

Finally, rotate the half sphere around the x-axis until the circle γi falls on

the z = 0 plane (figure 2.4d), then take an inverse stereo graphic projection

to map the half sphere to a unit disk on the complex plane (figure 2.5b). Now

γi is turned into the outer boundary circle.

Note that, since all the above operations are angle-preserving, each circle

before the iteration will still be a circle after the iteration, and each slit arc

will remain an arc (i.e. part of a certain circle). Therefore the above process

can be carried out on all the slit arcs iteratively until all of them are turned

into circles (figure 2.5b, 2.5c). After this, an inversion operation will bring γ0

back to the outer boundary (figure 2.5d).

2.4 Applications and Extensions

Slit map can parameterize a given surface with four different slit domains.

Although all these domains are derived from the same holomorphic one-form,

they are quite different from one another in terms of their boundary shapes,

and thus can potentially facilitate a wide range of applications with different

domain preference.
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Figure 2.5: Construction of the circular slit domain (section 2.3.3). (a) is the
concentric slit domain with two arcs γ2 and γ3. (b) and (c) turn slit arc γ2
and γ3 into full circles respectively. (d) is the final circular slit domain that
enforces γ0 to be the outer boundary.
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Figure 2.6: Finger-prints visualized by slit domains.

2.4.1 Surface Fingerprint

Table 2.1: Numerical fingerprints (normalized) for faces in figure 2.7.

Model Finger-prints [r1, r2, r3, θ
e
2, θ

s
3, θ

e
3]

fig.2.7a [0.231425, 0.815924, 0.763043, 0.264949, 0.553551, 0.860910]
fig.2.7b [0.287076, 0.814576, 0.769996, 0.277660, 0.561342, 0.865693]
fig.2.7b [0.243699, 0.776883, 0.744513, 0.247569, 0.554127, 0.869185]
fig.2.7b [0.177832, 0.768475, 0.752875, 0.322658, 0.657879, 1.007431]

Slit map computes the conformal invariants of the surface. The shape

parameters of the circular slit domain indicate the conformal equivalence class

of the surface and can be treated as the fingerprints of the surface. We test

our algorithm for several human faces from different persons with different

expressions. The result is illustrated in figure 2.6. From this figure, it is very

clear that the fingerprints of the three calm faces are very similar, whereas the

25
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Figure 2.7: Fingerprints for 4 face models using concentric slit domains; this
is a visualization of their numerical fingerprints in table 2.1.

fingerprint of the laughing face is quite different from others. This gives us a

way to measure the expression quantitatively.

2.4.2 Brain Mapping

Slit map provides a valuable tool for conformal brain mapping with landmarks.

As shown in figure 2.8, brain surfaces are highly convoluted. It is a great chal-

lenge to match two cortical surfaces directly in R3. Conformal brain mapping

flattens the brain surface onto the canonical domains. Special landmarks are

labeled on the surface, which are required to be registered across different brain

surfaces. By using slit map, all the land marks are mapped to concentric or

parallel slits, and the whole brain is mapped to annulus or rectangle. This

makes the down stream registration and analysis much easier. In figure 2.8,

the mapping result is shown on the circular slit domain and the parallel slit

domain respectively.

2.4.3 Quad Remeshing

Slit map can be used to convert a given triangular mesh to a quadrilateral

mesh. Both the parallel slit domain and the cylindric slit domain can be used

26
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Figure 2.8: Brain mapping using circular slit domain (data courtesy by LONI,
UCLA). (a) and (c) are two brain surfaces with 10 landmarks each. (b) and
(d) are their circular slit domains respectively. (e) is the brain surface (c)
resampled using (a)’s triangulation, (f) is the average shape between (a) and
(e).

to do the task. For example, in a parallel slit domain, one just needs to trace a

set of horizontal lines and a set of vertical lines. Note that for each horizontal

slit, there should be one horizontal line placed at that height, and two vertical

lines passing through two ends of the slit. Figure 2.9 shows a result of quad

remeshing over a triangulated human face. Note how the iso lines are parallel

or perpendicular to boundary lines.
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Figure 2.9: Slit map can convert a triangular mesh (on the left) to a quadri-
lateral mesh (on the right).

2.4.4 Extension to Closed Surfaces

Although this work focuses on multiply connected surfaces, in fact our al-

gorithm can be easily generalized to handle high genus closed surfaces, such

as the eight model in figure 2.10. The only extra requirement is to slice the

surface open along certain cycles (see figure 2.10 c). Such cycles can be auto-

matically computed using methods like that proposed by T. Dey et al in [16].

After turning the surface into a multiply connected one, we can carry out the

slit algorithm thereafter directly.

2.5 Performance

We implemented the slit map algorithm in C++ on Windows platform. All

the experiments were carried out on a IBM T-42 laptop with 1.80 GHz Intel

Pentium M processor and 768 MB RAM. We used MATLAB as the sparse

linear solver.

We tested the algorithm pipeline on multiple models with various number
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Figure 2.10: Slit map of closed mesh. The closed eight model (c) is sliced
open into an annulus with 4 boundaries. (b) and (d) show the parallel slit
domains with different prescribed outer boundaries. (a) and (e) show the
texture mapping corresponding to domain (b) and (d) respectively.

of triangles and various number of boundary curves. The time consumed for

each model is listed in table 2.2.

The time complexity of the slit map algorithm depends on two factors.

One is the size of the mesh in terms of total number of triangle faces. For sophia

face models with 3 boundary curves, the total computational time ranges from

2 to 20 seconds as the number of triangles varies from 4,000 to 30,000.

Another factor is the number of boundary curves. For david face models

consisting of about 8,000 faces, the computational time is ranging from 4 to

25 seconds while the number of boundary curves varies from 3 to 9.

Both factors have much more impacts on the computation of holomorphic

one-form basis than on the construction of the slit domains. Actually most of

the computational time is taken by the basis construction. For the face model

in figure 1.1, it takes 20 seconds to compute the basis, while only less than 3

seconds to compute the slit holomorphic one-form and the four slit domains.

Once the holomorphic one-form basis are acquired, one is allowed to

choose different boundary curves as full circles. Figure 2.11 shows an example

with different boundary configurations. All of them are computed from the

same holomorphic one-form basis. From the discussion above, once the com-

putationally heavy basis are computed, one is allowed to compute different slit

domains with various boundary configurations at low prices.
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Figure 2.11: Slit map with different boundary configurations.

Table 2.2: Computational time

Model number of number of seconds to seconds to compute
boundaries triangles compute basis 4 slit domains

sophia face 3 4,000 1 1
sophia face 3 10,000 4 1
sophia face 3 20,000 10 2
sophia face 3 30,000 17 3
david face 3 8,000 3 1
david face 5 8,000 7 1
david face 7 8,000 16 1
david face 9 8,000 24 1

30



Chapter 3

Discrete Metric Design via

Direct Product

Parameterizations
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3.1 Motivations and Contributions

In this chapter we focus attention on discrete metric design for volumes with

handles, namely handle bodies(3.3). In engineering fields such models are

so common nowadays that the parameterization of them is becoming more

and more prized and urgent. Due to their complicated topological nature,

however, the task is quite challenging. But the idea behind our work is very

straightforward and effective.

Note that many canonical domains have extremely simple structures.

Some of them are just direct product of shapes from lower dimensions. Figure

3.1 shows examples including a solid cube, which is the direct product of three

1- dimensional line segments, and a solid torus, which is the direct product of

a 2-dimensional disk and a 1-dimensional circle.

The intuition of our method is to compute a parameter domain that is the

direct product of some sub-domains. Due to the shape characteristic of handle

bodies, the sub-domains we choose here are 2D annulus with multiple holes

and 1D line segment. The direct product nature is achieved by extending the

parameterization of the 2D annulus through out the volume along a special

harmonic field that is orthogonal to the annulus. The whole process is like

building a foliation for the volume.

Figure 3.1: Volumetric domains that are direct products.

The reason we prefer direct product domains is multi-folded. Firstly, in a

direct product domain there is no singularity, thus the parameterization would
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not degenerate at any point of the volume. Secondly, such a domain naturally

allows a structure of orthogonality. In fact, at any point of the volume the three

parameter lines are guaranteed to be orthogonal to one another. Thirdly and

consequently, such structures will make many tasks easier, such as volumetric

remeshing, volumetric registration, physical simulation and so on.

In a nutshell, this work distinguishes itself from other related works (sec-

tion 3.2) with the following contributions:

• The algorithm is able to parameterize volumes with arbitrary number of

handles; it can also be downgraded and applied to volumes with trivial

topology (i.e. topological balls).

• The parameter domain is the direct product of a surface patch and a line

segment; the mapping between the original volume and the parameter

domain is homeomorphism, and there is no singularity.

• At any point in the volume, the three parameter lines are orthogonal

to one another, which is a natural consequence of enforcing a conformal

parameterization on the surface and a gradient field in the volume.

• It provides a way to extend polycube maps from the boundary surface

into the volume for general handle bodies (see section 3.5), reducing the

volumetric distortion tremendously.

The rest of the chapter is organized as follows. Section 3.2 gives an

overview of related works. Section 3.3 explains the necessary notations and

background knowledge. The details of the basic algorithm are presented in

section 3.4; an extended algorithm dedicated to volumetric polycube map con-

struction is in section 3.5, plus some experimental results.

3.2 Related Work

3.2.1 Volumetric Parameterization

Among the limited literature of parameterization for volumetric data sets, one

of the earliest work is by Wang et al. [67]. They proposed a harmonic method
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that maps volumetric imaging data of human brains to solid balls. Their

algorithm is only able to parameterize topological balls. Nevertheless, they

provided a very simple version of volumetric harmonic maps for tetrahadron

meshes that is adopted in this work.

Li et al. [39] used the method of fundamental solution (MFS) to build a

mapping between volumes with the same topology. That method is essentially

a simulation of electric fields over point clouds, and requires to place enough

extra points (i.e. electric charges) off the boundary to enforce an approximated

boundary condition. It is able to process handle bodies; but no direct product

structure has been presented in there.

One of the methods that are most related to ours in spirits is by Martin et

al. [42]. Their method starts from a parameterization of the boundary surface

and extends it inwards to a one skeleton of the volume. The result is almost a

direct product everywhere, except for the regions around the ends of the one

skeleton, where singularities are introduced. What is more, that method is

mainly targeting at volumes without handles.

As a comparison, the method presented in this work can parameterize

arbitrary handle bodies with a direct-product parameter domain without any

singularity. The input to the algorithm is a tetrahedral mesh M (see section

3.3), which can either be given directly, or be generated from a triangular mesh

of its boundary surface using softwares like Tetgen ([57]).

3.2.2 Surface Parameterization

Our algorithm starts from a parameterization of a surface patch on the bound-

ary of the volume. Surface parameterization has drawn huge attentions in the

past decades, and the body of research dedicated to it is quite vast. The sur-

vey paper by Sheffer et al [55] and that by Floater et al. [22] are both good

reference for general interests. Here we only review some works that are most

relevant to ours; they should be able to handle genus zero surfaces with multi-

ple holes, which are the bases in our surface partition (see section 3.3.1), and

should be able to generate regular boundaries in the parameter domain. Fur-

thermore, we require that the paramterization should be conformal, or angle

preserving.
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Many linear methods have been proposed for the conformal mapping.

For example, DCP [14] and LSCM [37] are two of the earliest works that can

handle multi-holed annuli. Both of them construct the mapping by solving

certain linear systems with fixed or free boundary conditions. Slit map [68] is

another linear method proposed to achieve regular boundaries of the annulus,

where all the boundaries are mapped to parallel straight slits or concentric

circles and arcs. All such methods could be extremely efficient in computation,

but are lack of flexible control on the boundaries.

It turns out that finer control on the boundaries usually incurs much

heavier computation. One of the major approaches is via discrete curvature

flow [69], which uses curvature constraints to guide the metric deformation.

Several non-linear computational methods have been proposed along this line,

such as the circle pattern by Kharevych et al. [35], the discrete Ricci flow by

Jin et al. [33] and the conformal equivalence by Springborn et al. [58]. To

alleviate the computational burden, Ben-Chen et al. [3] proposed a linearized

method with a trade-off that depends on applications. All these methods

allow the user to design the boundary shape on his own will by prescribing the

appropriate curvature on the boundary (as well as that inside).

3.2.3 Polycube Map

As a way to model the boundary surface, polycube map for surface meshes

offers a rectangular structure which necessarily facilitates subsequent geomet-

ric computing and shape analysis. This concept was pioneered by Tarini et

al. [59], who explicitly project the surface to an polycube domain. Wang et

al. proposed an intrinsic method to construct the polycube map [65]. This

method was improved later [66] to allow user controls over the placement of

singularity points, and applied to the construction of manifold spline [26]. All

these works focus on surface polycube maps, while our work could start from

such a surface polycube map and extend it into the bounded volume.
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3.3 Preliminaries and Notations

In this part we briefly introduce some necessary background knowledge that

is underlying our algorithm, as well as the notations used in this work.

3.3.1 Handle Bodies and Boundary Partition

In general, an n-hole (n ≥ 1) handle body is a 3-manifold whose boundary is a

surface that can be continuously deformed to (i.e. isotopic to) some unknotted

n-hole torus without tearing or self intersection. For such a volume ∂H, its

boundary surface ∂H can be covered by a set of charts,

∂H = B0 ∪B1 ∪
n∪

i=0

Di

where B0 and B1 are called bases, or to be specific, B0 is the floor and

B1 the ceiling respectively. They are two disjoint n-hole annuli, B0 ∩B1 = ∅.

Each Di(i ∈ [0..n]) is called a wall, which is a topological cylinder with both

ends open. All the walls are pairwisely disjoint, Di ∩Dj = ∅(i ̸= j). A base

Bk(k ∈ {0, 1}) and a wall Dl(l ∈ [0..n]) intersect at a 1-dimensional simple

loop, ζkl = Bk ∩Dl.

As a special case, volumes without any handle (i.e. topological solid balls)

can be considered as degenerate handle bodies with n = 0. The boundary

surface for such bodies can also be partitioned into bases and walls, where

each base is a topological disk and there is only one single wall. Our algorithm

can be essentially applied to these topological balls, though the focus of the

following presentation is mainly on general handle bodies with n ≥ 1. We will

make it clear in the context whenever it is necessary to distinguish them.

For the purpose of computation, a volume is usually modeled as point

clouds or piecewise linear meshes. In this work, every handle body is repre-

sented as a tetrahedral mesh

M = (T,F,E,V,C)

where T, F, E and V are the sets of tetrahedra, triangular faces, edges
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and vertices in the mesh, while C describes the connectivity among them.

Furthermore, FBi
, EBi

, VBi
and CBi

denotes the set of faces, set of edges, set

of vertices and connectivity for a base Bi (i ∈ {0, 1}); similarly, FDi
, EDi

, VDi

and CDi
denotes the counterparts for a wall Di (i ∈ [0..n]);

3.3.2 Volumetric Parameterization

For surfaces, parameterization is the process of computing a mapping between

the original surface mesh in R3 and a parameter domain that is usually a planar

mesh in R2. This is equivalent to assigning a pair of real valued coordinates

to every vertex in the mesh.

Parameterization for volume data can be defined similarly. Given a tetra-

hedral mesh M with vertex set V, each vertex vi ∈ V should be assigned with

a triple coordinates (ui, vi, wi). That amounts to computing three real valued

parameter functions :

{u,v,w} : V → R

Note that although these functions are by definition restricted on ver-

tices, it can be extended through out the whole tetrahedral mesh piecewisely.

Namely, the function value for an arbitrary point in the volume is defined as

the interpolation of the values on the four vertices of the enclosing tetrahe-

dron. Here we use the same symbol to denote both the function restricted to

vertices and that extended to the volume.

As a result, these parameter functions induce a piecewise-linear map from

the original volumetric mesh M to a parameter domain N. The domain N is

a subset of R3, and should ideally have a very regular shape. In our case, the

parameter domain is a direct product of a multi-holed annulus (parameterized

by u, v) and a straight line segment (parameterized by w).

3.3.3 Volumetric Harmonic Function

In general, a function f is harmonic if it satisfies the Laplace’s equation△f = 0.

If Dirichlet boundary condition is imposed on this partial differential equation,

37



a harmonic function is the solution of the Dirichlet’s problem. The same

concepts can be well formulated on volumes in a discrete setting.

Given a tetrahedral mesh M = (T,F,E,V,C), let w : V → R be a real

valued function defined over the vertices, let wi = w(vi) (vi ∈ V). w is

harmonic if and only if it satisfies the following discrete Laplace’s equation:

∑
eij∈E

kij(wj −wi) = 0

where eij is an edge connecting vertex vi to vj; kij is a real valued weight

assigned with eij in the following way. Suppose edge eij is shared by t adjacent

tetrahedra, it lies against t dihedral angles {θk}, k = 1, ..., t. let lij be the

length of edge eij. Then the edge weight for eij can be defined as

kij =
1

12

t∑
k=1

lij cot θk

Same to that in the smooth setting, we can impose Dirichlet boundary

conditions on the discrete volumetric harmonic function. Namely, we set the

value of w fixed on certain vertices vi ∈ Vc, where Vc is the set of vertices that

serve as constraint vertices.

Once a harmonic function w is computed over a tetrahedral mesh, one

can compute its gradient ▽w, which is a vector field that is piecewise constant.

Starting from an arbitrary point in the volume, one can trace an integral curve

of the gradient field. In our work such a curve is called a fiber.

3.4 The Basic Algorithm

This section presents the algorithmic details of direct product volume param-

eterization. Given a tetrahedral mesh M of some handle body, our algorithm

starts by partitioning the boundary surface ∂M into the floor, the ceiling and

the walls. Then the floor is conformally parameterized using u and v. Next,

a special harmonic field ▽w is computed throughout the volume. By tracing

the integral lines (i.e. fibers), the u, v parameters on the floor are smoothly

extended through the volume all the way up to the ceiling; meanwhile, the w
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Figure 3.2: Tetrahedral mesh for a handle body with two handles (left) and
the direct product domain (right).

parameter for each inner vertex is also determined by how far it is from the

floor along the fiber.

The proposed algorithm contains the following steps:

• Input: A tetrahedral mesh M for a handle body.

• Output: A parameterization using three parameter functions u, v and

w.

• Outline:

[1] Partition the boundary surface ∂M into bases Bi and walls Dj (Sec-

tion 3.4.1);

[2] Parameterize the floor B0 with u and v (Section 3.4.2);

[3] Compute a harmonic function w over M (Section 3.4.3);

[4] Tracing fibers and compute the u, v and w values for every vertex

in the volume (Section 3.4.4).
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3.4.1 Boundary Surface Partition

Our volumetric parameterization method starts from the manipulation of the

boundary surface, since the shape of the final parameter domain is totally

constrained by the boundary surface. In our case this amounts to a partition

of the boundary surface into bases and walls (figure 3.4, 3.3 and 3.8).

The most straightforward one is to label each chart manually. To be

specific, the user could specify a set of cycles on the surface, and split the

surface into the desired patches along those cycles. This way one has the

full control on the distortion and resolution of the final parameter domain.

However, this may be very tedious for large-scale models.

In the following we introduce several automatic techniques that fit in our

algorithm. One is called normal-guided flooding, which picks the bases directly

and make the walls as left-overs. Another is called tunnel cycle extension,

which starts from identifying the walls. A third method is by picking sharp

edges in a polycube map.

Normal-Guided Flooding This technique traces a connected surface re-

gion where the variation of the surface normal is bounded from the above by a

given threshold ϵ. The tracing is a Bread First Search (BFS) over the vertices

of the surface mesh, starting from a seed vertex v0 specified by the user. Let

n0 be the normal at v0; the search is halted at a vertex vi if and only if one of

the following two conditions is satisfied: first, all the vertices neighboring to

vi are already included in the region; second, the normal ni there varies too

much from n0, that is, |1.0 − ni · n0| > ϵ. Please note that all the normal

vectors here are normalized to be unit vectors.

Using this technique, the user can trace the floor and the ceiling. The

position and coverage of these patches can be optimized by adjusting the

choice of seed vertices and the thresholds.

Tunnel Cycle Extension This technique traces a cylinder-shaped surface

region. Similar to the normal-guided flooding, this one is also a BFS process,

except for that the seed here is a cycle rather than a single vertex. The seed

cycle should be placed around a tunnel, and extend to both side by a certain

amount that can be specified by the user.
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Figure 3.3: A direct-product domain for the Eight model.

Note that among all the n + 1 walls, there is usually a wider one, say

D0, that encloses the other n thinner ones. The tunnel cycles for those thin

walls actually belong to a set of the homology group generators for the original

boundary surface. Such generators can be traced automatically by the method

of Erickson and Whittlesey [20] or that of Dey et al. [17]. The later one can

even generate the shortest loop around a tunnel. For the wide wall, the tunnel

cycle should be specified separately as a topological combination of the other

cycles.

Figure 3.3 shows a boundary partition for an Eight model, where the floor

and ceiling are traced using the above methods.
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Partition via Polycubes Polycube map gives a parameter domain that

roughly resembles the given mesh. A polycube domain is a union of multiple

cubes. In such a domain it is very easy to define loops that goes along those

sharp edges. By careful selection of such sharp loops, the polycube domain

can be partitioned into multi-holed bases and cylindric walls. This will induce

a partition in the original domain that serves the purpose for our algorithm.

Actually, if one is able to compute a polycube map for the boundary surface,

the surface partition and surface parameterization will come as a side-product

of the map. Figure 3.9 and 3.8 show two examples of partition using polycube

maps.

3.4.2 Boundary Surface Parameterization

After the boundary surface is partitioned, one of the bases needs to be pa-

rameterized conformally; without loss of generality, we choose the floor in the

experiments. Recall that the bases are in general annuli with multiple holes;

any algorithm that can conformally parameterize such domains will fit here.

For example, slit map ([68]) can generate four different types of canonical do-

mains. The shape of each domain is determined by the intrinsic invariants of

the given surface. Another method is called discrete Ricci flow ([33]), which

provides the user with much more flexibility to prescribe the boundary shape.

Figure 3.4: Conformal parameterization by discrete Ricci flow. (a) is the input
surface, (b) is the parameter domain.

The parameter domain could have various shapes with different prescrip-

tion of the boundary curvature. For the base surface in the Eight model, for

example, one of the choices is to map to a planar round disk with two cir-
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cular holes inside, as shown in figure 3.3; the angle-preserving nature of the

conformal map is shown in 3.4.

Another choice is to map the same surface to a rectangle with two rectan-

gle disks removed (figure 3.5). Here the curvature is set to be π/2 for corners

on the outer boundary curve, −π/2 for corners on the inner boundary curve.

Figure 3.5: Another direct-product domain for the Eight model.

3.4.3 Computing The Harmonic Function

In section 3.4.2 the floor has been conformally parameterized, meaning that

we have the u and v coordinates on one end of the volume. A natural follow-

ing step is to extend them through the volume to the other end (the ceiling)

smoothly. Meanwhile, we need a third coordinate along a direction orthog-

onal to the u v domain. Both goals are achieved via a vector field that is

the gradient of a volumetric harmonic function. This section is devoted to

the computation of such a harmonic function w, which serves as the third
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coordinate in the parameter domain.

Based on the discussion in section 3.3.3, the volumetric harmonic func-

tion w : V → R is the solution of the discrete Laplacian’s equation with the

following Dirichlet boundary condition 0.0 on the floor, and λ (λ ∈ R+) on the

ceiling. Here λ specifies the height of the walls in the parameter domain. It

can either be defined by the user, or be estimated automatically to match the

width-height ratio in the original model. In the later case, one can compute a

diameter of the floor d before the parameterization and that d′ after the param-

eterization, plus the average height of the walls h before the parameterization.

Then lambda can be simply set as λ = hd/d′.

Note that the function w computed from above can be extended to the

whole volume piecewise-linearly (section 3.3.2), not necessary being restricted

on vertices only. The extended function (also denoted as w) provides the third

parameter for any point in the tetrahedral mesh.

3.4.4 Tracing The Fibers

Besides serving as a third parameter function, w also provides an approach to

bringing the (u, v) coordinates into the volume in a smooth manner. This is

achieved by tracing the integral curves (i.e. fibers) of the gradient field ▽w in

the volume, either along or against the gradient direction.

To be specific, from a vertex vi ∈ V − VB0 one can trace a fiber along

−▽w until reaching the floor B0. Suppose the fiber hits the floor at point pi

with surface parameter (u, v); the same tuple (u, v) is assigned to vertex vi;

plus the value of w = w(vi), a complete set of coordinates (u, v, w) in the

parameter domain is determined for that vertex.

Or vice versa, one can start from a vertex on the floor vj ∈ VB0 and trace

a fiber along ▽w until hitting the ceiling. All the points on that fiber carry

the same (u, v) values as vj does.

An important fact is that, due to the nature of the harmonic function and

the way we set the boundary conditions, fibers should be disjoint pairwisely.

That is, given two vertices with different (u, v) coordinates, the fibers traced

from there should not merge or intersect, provided that the discrete approxi-

mation is accurate enough. Secondly, a fiber will start from one base and end
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Figure 3.6: Tracing a fiber.

at the other, no self-intersection will be present along it. Furthermore, a fiber

starting from a vertex on a wall will stay on that wall, while one starting from

somewhere off the walls will never touch any wall. The tracing procedure is

slightly different for these two cases.

Tracing off the walls Starting from a point p0 that is not on any wall, the

fiber will penetrate a set of tetrahedra. Since the gradient field is constant

within a tetrahedron, the fiber will consist of a set of consecutive straight line

segments. Given the starting point pi of the i’th segment (i = 0, 1, ...), how

to find the ending point pi+1 depends on the position of pi. Without loss of

generality, let r(pi, tk) denote the ray starting from point pi along the tracing

direction assigned to tetrahedron tk, which follows or against the gradient ▽w.

• If pi is at a vertex vj0 , check all the surrounding tetrahedra for one

tk = (vj0vj1vj2vj3) such that r(vj0 , tk) intersects the face (vj1vj2vj3) at a

point pi+1.

• If pi is on an edge e = (vj0vj1), check all the tetrahedra sharing this edge,

locate the one tk = (vj0vj1vj2vj3) such that r(pi, tk) intersects either the

face (vj0vj1vj2) or the face (vj1vj0vj3).

• If pi is within a face f = (vj0vj1vj2), then do the same check for the

tetrahedra on both sides of f , and find one tk where r(pi, tk) hits one of

the other three faces in tk.
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Tracing on a wall For a point p0 that is on one of the walls, the tracing is

restricted on that surface; the gradient field ▽w should also be projected onto

that surface. This way, the fiber starting from v0 is a sequence of straight line

segments crossing a set of triangle faces on that wall. Similarly, let pi, pi+1

be the starting and ending points of the i’th segment; let s(pi, fk) be the ray

along the tracing direction assigned to face fk, starting from point pi.

• If pi is at a vertex vj0 , check all the surrounding faces for one fk =

(vj0vj1vj2) such that r(pi, fk) intersects the edge (vj1vj2) at a point pi+1.

• If pi falls on an edge e = (vj0vj1), check the adjacent faces on both side

of e, locate the one fk = (vj0vj1vj2) such that r(pi, fk) intersects either

the edge (vj0vj2) or the edge (vj0vj3).

Figure 3.7: A genus-0 Bimba model (lower row) and its polycube parameter
domain (upper row). (a) and (b) show the boundary manipulation; (c) and
(d) show the color mapped harmonic fields; (e) and (f) show the hexahedral
remeshing of the original volume based on the polycube parameterization.

3.5 Applications and Extensions

The basic algorithm of direct product parameterization could be adapted to

further applications. One of such applications is to build the hexahedral mesh
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for a volume given as a tetrahedral mesh. It requires mapping the given volu-

metric mesh M to a polycube domain MP using the direct product algorithm.

In order to build a hexahedral mesh, the polycube domain has several ad-

vantages over other parametric domains. First, polycube has a regular struc-

ture that can be used to construct all-hexahedral meshes. Second, there are

well-developed techniques to construct polycube maps that can be used to

parameterize the boundary surface of a given volume. Third, due to the ge-

ometric simplicity, it is usually easier to partition the boundary surface of a

polycube domain than to partition that of the input model.

The adapted algorithm for hexahedral mesh construction will work the

following way.

Firstly, map the boundary surface ∂M to a surface polycube domain ∂MP

using algorithms from [65]. Then we can tessellate the volume bounded by

∂MP with cubes, resulting in a regular hexahedral mesh MP , which will serve

as the parameter domain for the original volume M. The mapping between

MP and M will be computed in consequential steps below.

Secondly, partition the polycube surface ∂MP into bases {BP
0 , B

P
1 } and

walls {DP
0 , · · · , DP

n }. Note that here the floor BP
0 and the ceiling BP

1 are in

general not flat, but compositions of multiple flat pieces, which also applies to

the walls. Furthermore, the partition of the polycube surface ∂MP also induces

a partition of the original boundary surface ∂M: {B0, B1, D0, · · · , Dn}.
Thirdly, compute the harmonic field and trace the fibers on MP and M

separately, which will assign (u, v, w) coordinates to each vertex of MP and

each vertex of M. Then a map ϕ can be easily built between the original

volume M and the polycube domain MP by corresponding points with the

same (u, v, w) coordinates.

Finally, re-tessellate the polycube domain MP with hexahedra. This is an

easy task due to the geometric nature of polycube domain. Then with the map

ϕ computed in the previous step, this tessellation can be directly transferred

to the original volume M, which results in a hexahedral mesh for the given

volume.

The extended algorithm for constructing polycube domains and hexahe-

dral meshes can be applied on models with different topology. Figure 3.9, 3.8

and 3.7 show the results on volumes with a boundary surface of genes four, two
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Figure 3.8: A genus-2 cup model (lower row) and its polycube parameter
domain (upper row). (a) and (b) show the bases and walls in the boundary
partition respectively; (c) to (e) show the color mapped harmonic field in the
volume; (f) shows the conformality and distortion of the mapping using texture
map.

and zero respectively. In particular, the algorithm can apply to degenerated

handle bodies, i.e. topological balls (see figure 3.7).

Figure 3.9: A genus-4 Greek model parameterized with a polycube domain
and remeshed with hexahedra, which uses the direct-product algorithm.
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Chapter 4

Discrete Metric Design via

Discrete Curvature Flow
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4.1 Motivations and Contributions

In geometric modeling, many problems can be reduced to designing metrics

with constant curvature. For example, a common task in surface parameteri-

zation ([22], [55]) aims to find a flat 2D domain for the given surface, which is

equivalent to computing a metric with zero curvature in its interior. According

to the famous Uniformization Theorem, every compact 2-manifold (i.e. sur-

face) admits a constant curvature metric, and the constant is one of +1, 0 and

-1, which induces the spherical, Euclidean and hyperbolic geometry on surfaces

respectively.

3-manifolds, according to Thurston’s geometrization conjecture, can be

decomposed into pieces that admit canonical geometries. There are eight

canonical geometries, and three of them have constant sectional curvatures

+1, 0 or -1. How to compute constant curvature metrics for such 3-manifolds

are therefore becoming a natural question to ask.

An effective way to design such metrics is by curvature flows ; such flows

deform a given Riemannian metric according to its curvature. In certain cir-

cumstances, a curvature flow can lead to a constant curvature metric. In the

mathematical society, there is some work along this line. For example, in a

seminal paper [29] Hamilton introduced the Ricci flow for Riemannian man-

ifolds of any dimension. And this flow has been applied in the proof of the

Poincaré conjecture ([47], [49], [48]).

In particular, some works are dedicated to surfaces, such as [61], [62], [30],

[54], [13], [12], [11], [5] and [4], either in smooth settings or in discrete settings.

Some theoretical results in there have also been successfully introduced into

the computer graphics and geometric modeling society in [35], [33], [3] and

etc.

For 3-manifolds, there is a series of work ([24], [23], [40] and etc) on hy-

perbolic 3-manifolds with complete geodesic boundaries. They provided some

important theoretical results on the geometry of such manifolds in a combi-

natorial setting. In engineering fields, however, to the best knowledge of the

authors there has been no work to compute or apply the constant curvature

metric for 3-manifolds yet. Although there are some works on volumetric

parameterizations (such as [67], [39] and [42]), they do not impose any re-
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quirement on the curvature.

(a) (b) (c) (d)

Figure 4.1: An example of hyperbolic 3-manifold, Thurston’s knotted Y shape,
constructed from a solid ball with three entangled tunnels removed. (a) and
(b) show the boundary surface, (c) and (d) show the internal tessellation with
tetrahedra.

Motivated by the above situation in engineering fields, this work serves as

an initial attempt to extend the application of constant curvature metrics from

surfaces to 3-manifolds. In particular we focus on a special type of 3-manifolds

that have boundaries and satisfy the following two conditions:

[1] The boundary is a closed surface of genus g (g > 1).

[2] For any loop on the boundary surface, if it cannot shrink to a point on

the boundary, then it cannot shrink to a point through the interior of

the volume.

Note that such 3-manifolds admit hyperbolic metrics, which have constant

sectional curvature of -1, and could therefore be called hyperbolic 3-manifolds.

One of such examples is Thurston’s knotted Y-shape (figure 4.1) constructed

from a solid ball with three entangled tunnels removed.

We believe that such techniques will benefit various applications such as

shape classification and etc. On the other hand, it also provides to geometers

and topologists a numerical approach that would potentially facilitate their

study on 3-manifolds at least in a discrete setting.

Since we are working in a discrete setting, any given 3-manifold should

be represented by a discrete approximation, such as a volumetric mesh. Our

curvature flow algorithm requires a special mesh consisting of a set of truncated

tetrahedra (figure 4.2). This representation has been widely used in the study
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of 3-manifold since its introduction by Thurston [61]. It can model 3-manifolds

with boundary surfaces of arbitrary genus, including but not limited to those

mentioned above that have high genus boundary surfaces.

However such a representation hardly found its place in engineering ap-

plications, where one of the most commonly used representations is the tetra-

hedral mesh. The later can be built from a triangular mesh of the boundary

surface easily by tools like tetgen [57], and there are various ways to remesh

it, such as [36],[2].

To bridge this gap, we proposed an algorithm to build a truncated tetra-

hedral mesh from a tetrahedral mesh that is much easier to acquire. It can

be used to model 3-manifolds with various boundary surfaces, including those

with high genus boundary surfaces that are not easy to handle using other

tools such as SnapPea or Regina. The process preserves topological invariants,

and is totally automatic. With such a tool, one is able to construct simple

representations for complicated 3-manifolds (with boundaries) easily, which is

otherwise a much more difficult task that usually requires strong intuitions or

long time training.

Once a truncated tetrahedral mesh is built, we use a numerical method to

compute the constant curvature metric based on a discrete curvature flow pro-

posed by Luo ([40]). This flow deforms edge lengths of the truncated tetrahe-

dra by simulating a heat diffusion process; the convergence of the flow and the

uniqueness of the solution is guaranteed by [40] for the hyperbolic 3-manifolds

that we are handling. We did experiments on over 150 3-manifolds whose

canonical metrics are known, and the results from our algorithm conformed

very well to those obtained by algebraic approaches, with a numerical error no

more than 1e−6.

Furthermore, in order to visualize the constant curvature metric, a third

algorithm is provided to realize it in the hyperbolic space H3. Using this

algorithm the metric can be visualized either by a single period (i.e. the fun-

damental domain) or by multiple periods (i.e. a finite portion of the universal

covering).

As a brief summary, this work has the following contributions:

[1] We proposed an combinatorial algorithm to convert a tetrahedral mesh
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to a truncated tetrahedral mesh for general 3-manifolds with various

kinds of boundaries, plus a common data structure that guarantees a

smooth conversion. This algorithm can not only generates the inputs for

the discrete curvature flow algorithm, but also provides a computational

tool for researchers to facilitate other tasks that may require such a

construction.

[2] We proposed a numerical algorithm to compute constant curvature met-

rics for a special kind of hyperbolic 3-manifolds based on a discrete cur-

vature flow. Experiments are carried out to validate the correctness and

effectiveness of the algorithm.

[3] We proposed an algorithm to realize the input 3-manifold in the hyper-

bolic space, which paved a way to visualize the constant curvature metric

that is just computed.

The rest of this chapter is organized as follows. We first present the al-

gorithm of constructing truncated tetrahedral meshes in section 4.2, together

with a discussion about the underlying data structure. Section 4.3 is dedi-

cated to the algorithm on discrete curvature flow, including some necessary

backgrounds and experimental results. The visualization method is shown in

section 4.4.

4.2 Truncated Tetrahedral Meshes

This section is dedicated to an algorithm that generates a truncated tetrahe-

dral mesh for a 3-manifold (with boundaries) that is given as a tetrahedral

mesh. Before getting there, we first present the data structure used to repre-

sent a (truncated) tetrahedral mesh in computer.

4.2.1 Data Structures

In general, a tetrahedral mesh consists of a set of tetrahedra (figure 4.2(a))

and the connectivity (adjacency) among them. The constitution of a truncated

tetrahedral mesh is similar, except for that it uses truncated tetrahedra (figure
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(a) (b) (c)

Figure 4.2: A truncated tetrahedron (c) resulting from a tetrahedron (a) with
four corners trimmed off (b). The truncated tetrahedron has 4 hexagonal faces
f1 - f4 and 4 triangular faces f̂1 - f̂4; in a truncated tetrahedral mesh, all fj
should be in the interior while all f̂j should be on the boundary.

4.2(c)) as building blocks. Actually with careful design, a representation for

the former can be converted to the later smoothly with just minor modifica-

tions. In the follows we show such a consistent design for both tetrahedral

meshes (section 4.2.1) and truncated tetrahedral meshes (section 4.2.1).

Tetrahedral Meshes To represent a tetrahedral mesh, one of the data

structures that are commonly used in geometric modeling is vertex-oriented.

Namely, it starts from a given set of vertices {v1, v2, · · · } plus their coordinates

(embedding) in the Euclidean space R3, and then defines each tetrahedron by

four vertices different to one another. In such a data structure, two tetrahe-

dra can only be glued along at most one face. Consequently it cannot model

certain complicated inner structures that would occur in our algorithm.

In this work, we need a data structure that is more flexible. It should,

for example, allow two tetrahedra to be identified at more than one face, and

therefore allow multiple vertices (edges) of a single tetrahedron to be identified.

For this purpose we designed a tetrahedral mesh that is tetrahedron-oriented,

where we start with a set of tetrahedra and then define everything else from

them. This construction is more general than the vertex-oriented one; actually

the later is only a special case of the former, meaning that any vertex-oriented

mesh can be converted into a tetrahedron-oriented one smoothly, but not vice

versa.

Let nt be the number of tetrahedra in the mesh; the set of tetrahedra is
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Figure 4.3: Local entities for a tetrahedron: t-vertices vj (a - d), t-edges ej
(a), directed t-edges ej1j2 (b), t-faces fj (c), oriented t-faces fj1j2j3 (d).

denoted as T = {t1, · · · , tnt}. Comparatively, faces, edges and vertices can be

defined both locally and globally, depending on how we treat each tetrahedron

in the mesh.

The local definition arises when we treat the tetrahedra in the mesh as

separate entities. For an arbitrary tetrahedron ti, its vertices can be denoted

as TVi = {vij|1 6 j 6 4}, where each vij is called a t-vertex.

Similarly, we can define the set of t-edges as TEi = {eij|1 6 j 6 6}. A

directed t-edge eij can be denoted as eij1j2 (1 6 j1 6 4, 1 6 j2 6 4, j1 ̸= j2) if

it starts from t-vertex vij1 and ends at vij2 . The set of t-faces can be denoted

as TFi = {f i
j |1 6 j 6 4}. An oriented t-face f i

j can be denoted as eij1j2j3
(1 6 j1 6 4, 1 6 j2 6 4, 1 6 j3 6 4, j1 ̸= j2, j1 ̸= j3, j2 ̸= j3) if it covers

t-vertices vij1 , v
i
j2

and vij3 in a counter-clockwise manner.

In a global sense, on the other hand, all the tetrahedra are glued together

by identifying certain t-faces. To be specific, if two tetrahedra ti1 and ti2 are

glued along t-faces f i1
j1

and f i2
j2
, it will give rise to a global face (or face for

short) fk consisting of these two t-faces. And all the global faces constitute

the face set F = {f1, · · · , fnf}, where nf is the total number of global faces

in the mesh. The gluing among t-faces is be represented by an identifying

function (or gluing function)

φf :
nt∪
i=1

TFi → F

Given a face fk ∈ F , its pre-images are defined as φ−1
f (fk) = {f i

j |φf (f
i
j) =
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fk}. Note that the number of pre-images |φ−1
f (fk)| for a face should be no less

than 1 and no more than 2.

Furthermore, the gluing function on t-faces induces a gluing function on

t-edges:

φe :
nt∪
i=1

TEi → E

where E = {e1, · · · , ene} is the set of global edges (or edges for short).

Again, given an edge ek ∈ E, its pre-images are denoted as φ−1
e (ek), and the

number of pre-images satisfies |φ−1
e (ek)| > 1.

Similarly, we can define the set of global vertices (or vertices for short)

V = {v1, · · · , vnv} and the vertex gluing function

φv :
nt∪
i=1

TVi → V

.

under which the number of pre-images for an arbitrary vertex vk ∈ V

satisfies |φ−1
v (vk)| > 1.

Note that the local entities (t-vertices, t-edges and t-faces) can be looked

as part of a tetrahedron. For example, we say a tetrahedron ti contains a

t-vertex vij if vij ∈ TVi; the containment of t-edges or t-faces is defined simi-

larly. Meanwhile, these local entities are also part of the corresponding global

entities. For example, a vertex vk contains a t-vertex vij if φv(v
i
j) = vk.

The global entities, however, are not belonging to any tetrahedron nor

local entity. In this sense, we will say a tetrahedron ti is incident to a vertex

vk if ti contains a t-vertex tij whose image is vk under map φv. The incident

relation between tetrahedra and edges or faces are defined similarly. Two

vertices are adjacent if each of them contains a t-vertex, such that these two

t-vertices are in the same tetrahedron and are therefore connected by some

t-edge.

Truncated Tetrahedral Meshes Given a tetrahedron, if one trims four

smaller tetrahedra from its four vertex corners (figure 4.2(b)), the remaining

object is called a truncated tetrahedron (figure 4.2(c)), spanning 12 vertices,
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Figure 4.4: Global entities (face f̄ , edge ē, vertex v̄) by identifying local
entities (t-faces f i

j , t-edges eij, t-vertices vij) from a couple of tetrahedra
{ti|i = 1, 2, · · · } using gluing functions (φf , φe, φv). Note that each face
f̄ has at most 2 pre-images, while an edge ē or a vertex v̄ could have more
than 2 pre-images.

bounded by 4 triangular faces and 4 hexagonal faces. Multiple truncated

tetrahedra can be glued together along hexagonal faces to form a truncated

tetrahedral mesh.

The data structure we used to represent a truncated tetrahedral mesh is

similar to that for a tetrahedral mesh, with slight changes. It contains a set

of truncated tetrahedra T = {t1, · · · , tnt}. Each ti has 4 hexagonal t-faces

TFi = {f i
j |1 6 j 6 4}, 6 t-edges TEi = {eij|1 6 j 6 6}; instead of having

4 t-vertices, it has 4 triangular t-faces ˆTF i = {f̂ i
j |1 6 j 6 4}. The gluing

functions are defined as:

φf :
nt∪
i=1

TFi → F

φe :
nt∪
i=1

TEi → E

where F , E are the sets of (global) hexagonal faces and (global) edges.

One thing different to tetrahedral meshes is that, the number of pre-images

for an arbitrary face fk ∈ F should be exactly 2, and that for an arbitrary

edge ek ∈ E should be no less than 2. This fact implies that every hexagonal
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t-face should be identified with some one else and is therefore in the interior

of the volume, and the same to each t-edges. Another difference is that there

is no gluing function defined for triangular t-faces, which means that such

faces should not be identified with any one else and should therefore be on the

boundary.

The data structure introduced above is purely topological in its own right,

but allows geometric information to be assigned later; for example, in the

discrete curvature flow (see section 4.3), certain geometric information will be

assigned, such as dihedral angle, edge length, edge curvature and etc. However,

the (truncated) tetrahedral mesh itself does not necessarily rely on geometry.

4.2.2 Algorithms

In this section we introduce the algorithm that takes a tetrahedral mesh as

input and produces a truncated tetrahedral mesh of the given 3-manifold. Note

that both meshes should be represented using the data structure discussed in

above.

A basic operation in this conversion is called vertex merge (figure 4.6),

which merges one vertex into another one that is adjacent to the first one; dur-

ing the merge, some tetrahedra around these two vertices need to be removed

or adjusted. To be specific, suppose we want to merge vertex v2 into vertex v1,

or make a v2-to-v1 merge, four sets of tetrahedra will be affected (figure 4.5).

One set is TII , consisting of all the tetrahedra that are incident to both v1

and v2. All such tetrahedra will be removed from the mesh after this merge.

Another set is TI , consisting of all the tetrahedra {ti} such that ti is

incident to vertex v1 but not incident to v2, and has a t-face f i
j that was

identified with some t-face from TII . After the merge, the t-face f i
j will be

identified by another t-face from TIII (see below), but its image under φf

remains unchanged.

A third set is TIII , consisting of all the tetrahedra {ti} such that ti is inci-

dent to vertex v2 but not incident to v1, and has a t-face f i
j that was identified

with some t-face from TII . After the merge, the t-face f i
j will be identified

to another t-face from TI , and its image under φf will change accordingly.

Consequently, the gluing image of some t-edges and t-vertices in ti will also be
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I. hosting tet II. deleted tet III. deformed tet IV. deformed tet

Figure 4.5: Four types of tetrahedra affected by a vertex merge, shown in the
top row (before the shrinking) and the bottom row (after the shrinking). The
type-II tetrahedra will be deleted, the type-III and type-IV tetrahedra will be
deformed to meet the type-I tetrahedra by faces (and therefore by edges and
vertices) and by vertices only respectively.

changed.

The last set is TIV , consisting of all the tetrahedra {ti} such that ti is

incident to vertex v2 but not incident to v1, and does not have any t-face

that was identified with any t-face from TII . After the merge, one of its t-

vertices that was belonging to v2 will now belong to v1, and the images of the

surrounding t-edges will also be changed accordingly.

The conversion algorithm could be divided into several steps.

[1] Using vertex merge, remove all the vertices that are in the interior of the

mesh, together with all the type-II tetrahedra getting involved in each

merge. After this step, the mesh is reduced to a smaller set of tetrahedra,

with all the vertices on the boundary.

[2] For each face fi on the mesh boundary, create a tetrahedron ti that

identifies one of its t-faces f i
j with fi and leaves only one t-vertex vij out

side of the original mesh. All the newly created tetrahedra {ti} are glued

together nicely according to the connectivity between their underlying

faces {fi}. Also, for all the tetrahedra that sit on the same component of
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Figure 4.6: Vertex merge (v2-to-v1). The process is shown in (b) to (d) from
both global views (top row) and cutting views (bottom row). (b) shows all the
tetrahedra getting involved, among which the type-II tetrahedra are deleted
in (c) and the type-III and type-IV tetrahedra are then deformed in (d) to
meet the type-I tetrahedra.

the boundary surface, identify their only t-vertices that stick out of the

original volume. This will give rise to a set of new vertices, the number

of them equals to the number of boundary components of the original

volume. Now the mesh is converted to a closed tetrahedral mesh.

[3] Use vertex merge again to remove all the vertices in the closed mesh

except for those that are newly created in the previous step. Now all the

vertices from the original tetrahedral mesh have been removed.

[4] For each tetrahedra remaining in the mesh, turn it into a truncated one

by trimming off a small tetrahedron from each of its t-vertices. Conse-

quently all the hexagonal faces are kept inside the resulting mesh, while

all the triangular faces are exposed on the boundary. The original tetra-

hedral mesh is now converted to a truncated tetrahedral mesh.

The above algorithm is topology-preserving; in another word, it does not

change the fundamental group of the input 3-manifold. Actually this is a very

important property that is required for the computation of constant curva-

ture metric on 3-manifolds. Due to the so called Mostow rigidity ([44]), the
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geometry of a finite volume hyperbolic 3-manifold is totally determined by its

fundamental group. Different 3-manifolds have equivalent constant curvature

metrics if they have the same topology. As a consequence, different triangu-

lations and different ways to transform the mesh will not affect the computa-

tional results of the discrete curvature flow, so long as the fundamental group

of the 3-manifold is preserved during the transformation.

4.2.3 Experiments

The algorithm constructing truncated tetrahedral meshes has been tested and

validated by experiments on various 3-manifolds with different kinds of bound-

ary surfaces, including those with a boundary of sphere (genus 0), 1-hole torus

(genus 1) and multi-hole torus (with genus greater than 1).

One of the examples is the knotted Y-shape (figure 4.1) that is given

as a tetrahedral mesh with 16,374 vertices and 83,622 tetrahedra. It can be

converted to a truncated tetrahedral mesh with only two truncated tetrahedra

{t1, t2} (figure 4.7a) glued together by the pattern shown in figure 4.7(b). To

change the notations, for each ti, let {Ai, Bi, Ci, Di} be its four hexagon faces,

let {ai, bi, ci, di} be the truncated vertices. The gluing pattern is given as

follows, where the arrow → means to identify the identity on the left and that

on the right:
A1 → B2 {b1 → c2, d1 → a2, c1 → d2}
B1 → A2 {c1 → b2, d1 → c2, a1 → d2}
C1 → C2 {a1 → a2, d1 → b2, b1 → d2}
D1 → D2 {a1 → a2, b1 → c2, c1 → b2}

4.3 Computing Hyperbolic Metrics

In this section we introduce the algorithm to compute hyperbolic metrics that

have constant curvature -1 for the hyperbolic 3-manifolds defined in section

4.1. The input to the algorithm is a truncated tetrahedral mesh computed from

section 4.2, but assigned with a hyperbolic metric (section 4.3.1). On such a

mesh with geometric information, one can define discrete curvatures (section

4.3.2) and then simulate a discrete curvature flow on the mesh (section 4.3.3).
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Figure 4.7: The truncated tetrahedral mesh and gluing pattern for the knotted
Y shape

The algorithm has been validated by experiments (section 4.3.4).
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Figure 4.8: Hyperbolic tetrahedron and truncated hyperbolic tetrahedron.

4.3.1 Hyperbolic Truncated Tetrahedra

A (truncated) tetrahedron assigned with a hyperbolic metric is called a hyper-

bolic (truncated) tetrahedron. In figure 4.8, for example, the left frame shows a

hyperbolic tetrahedron, where each face fi is a hyperbolic triangle, each edge

eij is a hyperbolic line segment. The right frame shows a hyperbolic trun-

cated tetrahedron, where each triangular face f̂i is a hyperbolic triangle that

is perpendicular to edges eij, eik, eil, each hexagonal face fi is a right-angled

hyperbolic hexagon.
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Hyperbolic triangles and right angled hyperbolic hexagons satisfy spe-

cial cosine laws (figure 4.9). Given a hyperbolic triangle with edge length

{yi, yj, yk} and inner angles {θi, θj, θk}, where θi is against yi, we have the

following hyperbolic cosine laws

cosh yi =
cos θi + cos θj cos θk

sin θj sin θk
(4.1)

cos θi =
− cosh yi + cosh yj cosh yk

sinh yj sinh yk
(4.2)

Given a hyperbolic hexagon as shown in figure 4.9 with right inner angles

and edge length {xi, xj, xk} ∪ {yi, yj, yk}, where xi is against yi, the following

cosine law holds:

cosh yi =
coshxi + coshxj coshxk

sinh xj sinhxk
(4.3)

y1

y2

y3

θ1

θ2

θ3

x1

x2x3

y1

y2
y3

Figure 4.9: Hyperbolic Cosine laws for triangle and right-angled hexagon.

The geometry of the truncated tetrahedron is determined by the dihedral

angles {θ1, θ2, · · · , θ6} as shown in Figure 4.8. For example, the hyperbolic

triangle at v2 has inner angles θ3, θ4, θ5, its edge lengths can be determined

using formula 4.1. For face f4, the edge length e12, e23, e31 can be determined by

the hyperbolic triangles at v1, v2, v3 using the right-angled hyperbolic hexagon

cosine law 4.3.

On the other hand, the geometry of a hyperbolic truncated tetrahedron

is determined by the length of edges e12, e13, e14, e23, e34, e42. Due to the fact

that each face fi is a right angled hexagon, the above six edge lengths will

determine the edge length of each hyperbolic triangular face f̂j, and therefore

determines its three inner angles, which equal to the corresponding dihedral

angles of the hyperbolic truncated tetrahedron.
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4.3.2 The Discrete Curvature

For surface meshes, the discrete (vertex) curvature is represented as the angle

deficit. For an interior vertex, the curvature is 2π minus the surrounding

corner angles

K(vi) = 2π −
∑
jk

αjk
i .

for a boundary vertex, the curvature is π minus the surrounding corner angles.

vi

vj vk

α
jk
i

vi

vj vk

vl

α
jkl
i

vi

vj

vk

vl

β
kl
ij

(a) (b) (c)

Figure 4.10: Discrete curvatures: vertex curvature (a) for 2-manifolds, vertex
curvature (b) and edge curvature (c) for 3-manifolds.

In a tetrahedral mesh for a 3-manifold, one can also define vertex cur-

vature; as shown in figure 4.10, each tetrahedron [vi, vj, vk, vl] has four solid

angles at their vertices, {αjkl
i , αkli

j , αlij
k , α

ijk
l }; for an interior vertex, the vertex

curvature is defined as 4π minus the surrounding solid angles,

K(vi) = 4π −
∑
jkl

αjkl
i .

if the vertex is on the boundary, the vertex curvature is defined as

K(vi) = 2π −
∑
jkl

αjkl
i .

Besides vertex curvature, tetrahedral meshes also present another type of

discrete curvature, edge curvature. Suppose [vi, vj, vk, vl] is a tetrahedron, the

dihedral angle on edge eij is β
kl
ij . If edge eij is an interior edge ( i.e. eij is not
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on the boundary), the edge curvature is defined as

K(eij) = 2π −
∑
kl

βkl
ij .

If eij is on the boundary, the edge curvature is defined as

K(eij) = π −
∑
kl

βkl
ij .

The two types of discrete curvatures are actually closely related. Edge

curvature determines vertex curvature,
∑

j K(eij) = K(vi), and is therefore

more essential than the later.

4.3.3 Discrete Curvature Flow

Given a hyperbolic tetrahedron with edge lengths lij and dihedral angles θij,

the volume of the tetrahedron V is a function of the dihedral angles V =

V (θ12, θ13, θ14, θ23, θ24, θ34), and the Schlaefli formula can be expressed as

∂V

∂θij
=

−lij
2
,

namely, the differential 1-form dV is −1
2

∑
ij lijdθij. It is proved in [40] that the

volume of a hyperbolic truncated tetrahedron is a strictly concave function of

the dihedral angles.

Given a 3-manifold represented as truncated tetrahedral mesh, we can

define the discrete metric function as x : E → R+, where E is the set of

edges that are along the hexagonal faces but not along the triangular faces.

The discrete curvature function can be defined as K : E → R. Given an

edge eij ∈ E, its edge length and edge curvature can be represented as xij

and Kij respectively. From the discussion in above, the edge curvature can be

determined by the dihedral angles, which in turn is a function of edge length.

Therefore, the set {Kij} can be calculated from {xij}. The discrete curvature
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flow is then defined as
dxij
dt

= Kij, (4.4)

From this differential equation, the deformation of the metric is driven

by the edge curvature, and the whole process is like a heat diffusion. Any

numerical method for solving the discrete heat diffusion problem can be applied

to solve the curvature flow equation. And in the current implementation, we

simply use a gradient descent method, with initial edge length set to xij = 1.

During the flow, the total edge curvature
∑

ij K
2
ij is strictly decreasing.

When the flow reaches the equilibrium state, both the edge curvature and the

vertex curvature vanish (see proof in [40]). The boundary surface will become

a hyperbolic geodesic, while all the curvature (which is negative) is uniformly

distributed within each truncated hyperbolic tetrahedron. Due to the fact the

total curvature is negative, the resulting metric is a hyperbolic one.

4.3.4 Experimental Results

The algorithm has been tested on 151 hyperbolic 3-manifolds that can be

constructed by three truncated tetrahedra glued with different patterns. The

constant curvature metrics (in terms of dihedral angles) for these manifolds

have been reported in [6]; we compared our results with theirs, finding that

the difference in between was never above 1e−6. The running time is less than

a second for each 3-manifold.

We also tested the algorithm on the knotted Y-shape, which is repre-

sented as a mesh of two truncated tetrahedra. The resulting dihedral angles

are {0.523599, 0.523599, 0.523599, 0.523599, 0.523599, 0.523599} for both trun-

cated tetrahedra.

4.4 Visualization by Hyperbolic Embedding

Once the canonical hyperbolic metric is computed, one is ready to realize it

in the hyperbolic space H3. There are two ways to realize the metric. The

first one is a single period representation (figure 4.13), which is a union of

multiple truncated hyperbolic tetrahedra. The second is a multiple period
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representation (figure 4.14), which consists of multiple copies of the single

period representation. We will first introduce the hyperbolic space models

we used here (section 4.4.1), then the embedding algorithm for one truncated

tetrahedron (section 4.4.2), a single period representation (section 4.4.3) and

a multiple period representation (section 4.4.4) respectively.

(a)Left view (b) Right view (c) Periodic embedding

Figure 4.11: The upper half plane model of H2, with a hyperbolic surface
embedded in it.

4.4.1 Hyperbolic Space Model

During the hyperbolic embedding, we will work in both 2D and 3D hyperbolic

spaces. For 2D hyperbolic space H2, we use the upper half plane model H2 =

{(x, y) ∈ R2|y > 0} (figure 4.11), with Riemannian metric

ds2 =
dx2 + dy2

y2

.

In H2, hyperbolic lines are circular arcs perpendicular to and centered

on the x-axis or straight lines orthogonal to and ending at x-axis. The rigid

motion is given by the so-called Möbius transformation

az + b

cz + d
, ac− bd = 1, a, b, c, d ∈ R,

where z = x+ iy is the complex number to be transformed.

For 3D hyperbolic space H3, we use the upper half space model H3 =
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{(x, y, z) ∈ R3|z > 0} (figure 4.12), with Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2
.

In H3, the hyperbolic planes are hemispheres whose equators are on the xy-

plane or vertical planes perpendicular to and ending at the xy-plane. The

xy-plane represents all the infinity points in H3. The rigid motion in H3 is

determined by its restriction on the xy-plane, which is a Möbius transformation

on the complex plane in the form of

az + b

cz + d
, ac− bd = 1, a, b, c, d ∈ C.

4.4.2 Embedding One Truncated Tetrahedron

θ1
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θ3

θ2 θ6

θ4

θ3

θ5

θ4

f1

f2

f3

f4

v3

v4

v1

v2

θ6

θ5

(a) (b) (c)

Figure 4.12: Embedding one hyperbolic truncated tetrahedron (c) in H3 by
taking intersections among hemispheres (b) based on their intersection circles
with the infinity plane z = 0 (a).

Given the edge length of a hyperbolic truncated tetrahedron, its dihedral

angles are uniquely determined so that the truncated tetrahedron can be em-

bedded in H3 uniquely up to rigid motion. To be specific, its embedding is de-

termined by the position of its four right-angled hexagonal faces {f1, f2, f3, f4}
and that of its four triangular faces {f̂1, f̂2, f̂3, f̂4}. Each of these faces is a

hyperbolic plane (i.e. semi-sphere shown in figure 4.12(b)), separating H3 into

two half spaces. By choosing the right half space for each face and taking the
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intersection of all these chosen half spaces, one will get an embedding of the

hyperbolic truncated tetrahedron (figure 4.12(c)).

To compute the position of each hyperbolic plane, let’s consider its in-

tersection with the infinity plane z = 0, which is a Euclidean circle (figure

4.12(a)). Here we reuse the symbol fi and f̂j to represent the intersection cir-

cle by the hyperbolic plane fi and f̂j respectively. As shown in figure 4.12(a),

all the circles can be computed explicitly, such that circle fi and circle fj in-

tersect at the given dihedral angle θk, while circle f̂i is orthogonal to circles

{fj, fk, fl}. In order to remove the ambiguity caused by rigid motion, we fix

circle f1 to be line y = 0, f2 to be line y = tan θ1x, and normalize the circle

f3 to have radius 1.

Once the intersection circles are computed, we can directly construct

hemispheres (i.e. hyperbolic planes) whose equators are those circles. By

choosing the right half space for each hemisphere and using CSG operations

to compute the intersection of these half spaces, we get an embedding of a

single hyperbolic truncated tetrahedron as shown in figure 4.12(c).

4.4.3 Embedding a Single Period

Figure 4.13: Embedding the fundamental domain of the knotted Y-shape; i.e.
a single period realization of the hyperbolic metric in H3. The embedding is
shown from 5 different views.

A single period representation of the given 3-manifold with canonical hy-

perbolic metric is a union of all the constituting hyperbolic truncated tetrahe-

dra. It is constructed as follows. First, embed one truncated tetrahedron t0 as

explained above. Then pick another not-embedded truncated tetrahedron t1,

which is neighboring to t0 by identifying hexagonal t-face f1 ∈ t1 with f0 ∈ T0.

Compute a Möbius transformation in H3 that rigidly moves t1 to a position
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such that f1 ∈ t1 can be perfectly glued to f0 ∈ t0. Now we get a partially

embedded volume. Repeat the process of picking, moving and gluing for other

truncated tetrahedra until the whole volume is embedded.

The above algorithm is essentially a bread-first-search (BFS) in the given

3-manifold; it results in a tree spanning all the truncated tetrahedra in the

mesh. Due to the nature of the constant curvature metric, such gluing (or

spanning) operation can be carried out seamlessly, until finally all the trun-

cated tetrahedra are glued together nicely into a simply connected domain,

which is a topological ball. Such a single period representation is usually

called the fundamental domain for the original volume (see [28]). Figure 4.13

visualizes the embedded fundamental domain for the knotted Y-shape.

4.4.4 Embedding Multiple Periods

A multiple period representation of the hyperbolic metric is a union of multi-

ple copies of the fundamental domain, which is essentially a universal covering

space (UCS) of the original 3-manifolds (see [28]). UCS is also a simply con-

nected topological ball. Similar to the embedding of a fundamental domain,

the UCS can also be constructed through a sequence of gluing operations;

the difference is, the primitive construction blocks are copies of the embedded

fundamental domain rather than the truncated tetrahedra.

Figure 4.14: Embedding a finite portion of the UCS of the knotted Y-shape, i.e.
a multiple period realization of the hyperbolic metric in H3. The embedding
is shown from 3 different views.

Recall the algorithm for embedding a fundamental domain, any two hy-

perbolic truncated tetrahedra are glued to each other via a pair of hexagonal
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t-faces. Besides those t-faces, there will be some other hexagonal t-faces left

open, glued to nothing else. This is natural because otherwise the funda-

mental domain will not be simply connected. All the open hexagonal t-faces

are grouped into several connected components, each component constitutes

a gluable face for the whole fundamental domain. All the gluable faces can be

coupled nicely as follows. For each gluable face, there exists another gluable

face uniquely in the same fundamental domain such that they are able to glue

to each other nicely. Actually, the fundamental domain can be viewed as a

result of cutting the original mesh open along these gluable faces that can be

coupled by pairs. And two copies of the fundamental domain can be glued

together along a pair of gluable faces.

Different to the construction of a single fundamental domain, the gluing

operation among multiple copies of the fundamental domain can be repeated

infinitely, having infinitely many copies involved in the UCS. In practice, we

only construct a finite portion of the UCS, as the one visualized in figure 4.14.
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Chapter 5

Discrete Unit Tangent Bundles

for Disks
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Starting from this chapter, we spend a couple of chapters on the construc-

tion of discrete unit tangent bundles for various surfaces.

This chapter is devoted to simply connected 2-dimensional disks D2. We

first give intuitions behind our construction (section 5.1), where we convert

this 3D problem to an equivalent 2D problem. Then for the 2D problem, we

propose a basic algorithm for a restricted boundary condition (section 5.2),

and generalize it to more flexible boundary conditions (section 5.3 and 5.4).

We also analyze the convergence of each algorithms and existence of solutions

under each boundary condition.

5.1 Intuitions

The unit tangent bundle over a topological disk D2 is a direct product of the

disk D2 and a circle S1, UT (D2) = D2×S1. In another word, it is a trivial S1

bundle that can be represented as a solid torus with only one handle (figure

5.1). Given a topological disk represented as a triangular mesh D, our goal is

to generate a tetrahedral mesh T that represents the bundle UT (D), and the

tetrahedral mesh should reflect the direct product nature of the bundle. In

particular, we require that:

Definition 5.1.1. Regularity of Discrete UT (D2)

[1] A set of copies of the base (i.e. the given disk mesh) should be explicitly

represented, disjoint to one another along the fiber;

[2] A set of fibers (i.e. S1), one per vertex of the disk mesh, should be

explicitly represented, disjoint to one another;

[3] All the fibers should have the same resolution in terms of number of

sampling points along the fiber.
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(a) (b) (c)

Figure 5.1: The unit tangent bundle for a topological disk is a solid torus (c),
which is a direct product of a disk and a circle (a) and can be represented as
a tetrahedral mesh with regular structure (b).

5.1.1 Construction by Sweeping

Towards this goal, we sweep the given triangular mesh D along a circle S1 that

is orthogonal to D, make stops at certain points on the way (figure 5.1), and

finally get back to meet its original position. The resulting volume represents

the unit tangent bundle T .

Let us take a closer look at the volume between two consecutive stops.

Here every vertex v ∈ D sweeps a line segment I. Every triangle f ∈ D sweeps

a volume that is a direct product of f and a straight line segment I. Such a

volume is called a prism (figure 5.2), which is bounded by two triangles from

top and bottom, and three quadrangular walls from the side. Therefore the

volume between two consecutive stops is a union of prisms, we call this volume

a segment of T . In fact, each segment is a direct product D×I, and the union

of all the segments is the target bundle T = D × S1.

The above sweeping construction gives a mesh of T consisting of prisms

that are grouped into segments. It is easy to observe that

[1] At every stop there is a base copy Di (1 6 i 6 N), and all the base

copies are disjoint from one another.

[2] Every vertex v ∈ D sweeps a line segment between two stops, all the line

segments joins into a piecewise linear circle that represents a fiber over

v. And these fibers are disjoint to one another from vertex to vertex.
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[3] Suppose we make N stops in the sweeping. Then every fiber is a union of

N straight line segments; that is, the discretizing resolution is uniformly

equal to N .

It means that the resulting prismatic mesh from the above sweeping con-

struction already presents the regularity stated in definition 5.1.1. Recall that

our goal is a tetrahedral mesh for the unit tangent bundle. So the rest of

the task is to cut each prism into tetrahedra in a consistent way. What is

more, it turns out that in certain cases there are certain extra constraints on

the boundary that we need to consider. As one will see below, finding such a

cutting is equivalent to a simpler 2D problem, to which we can always find a

solution under most circumstances.

5.1.2 Conversion to A 2D Problem

Note that each prism can be cut into three tetrahedra by planes passing

through certain corners of the prism (figure 5.2b-d). To distinguish differ-

ent options of cutting, we assign +1 or -1 to each (directed) edge BiBi+1 of

the bottom triangle, if the wall above it is sliced along diagonal BiTi+1 or

Bi+1Ti respectively. Then every cutting option can be encoded as a 3-tuple of

±1 on the bottom triangle.

In order to tessellate the solid torus with tetrahedra, all the prisms have

to be cut in a consistent way. In our construction this can be done individually

in each segment between any two consecutive base copies, which boils down,

as discussed above, to assigning a 3-tuple of ±1 to every triangle in each base

copy.

Several issues need to be considered here:

• Not every combination of three ±1 represents a valid cutting option.

Figure 5.2(e) gives a counterexample, where the 3-tuple carries a unique

sign. A valid cutting pattern should have both +1 and -1 in each triangle.

• For any pair of prisms adjacent to each other by a quadrangular wall,

their cutting lines on that wall should coincide. Therefore the cutting

pattern in the bottom triangles should have opposite signs across the

common edge.
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Figure 5.2: There are multiple patterns to cut a prism into three tetrahedra,
each of them can be encoded by assigning +1 or -1 to each edge of its bottom
triangle B0B1B2 (a). A valid cutting pattern consists of both signs (b, c and
d), while a bad one consists of only one sign (e).

With these considerations, the tetrahedral tessellation of a local bundle

is converted to the following 2D problem:

Definition 5.1.2 (The Cutting Pattern Problem). Given a triangular mesh

of a topological disk, assign each triangle with a 3-tuple of ±1, such that:

• Every triangle should have both +1 and −1 in its 3-tuple;

• Every edge shared by two adjacent triangles should be assigned with op-

posite values in these two triangles;

• The values on boundary edges could either be prescribed as inputs (fixed

boundary) or be determined in the algorithm (free boundary).

5.1.3 Boundary Conditions

The cutting pattern problem in definition 5.1.2 is defined over simply con-

nected topological disks represented as triangular meshes. The solution to this

problem relies on the boundary condition, which involves two issues: whether

or not the cutting pattern is prescribed on boundary edges, and if yes, how

the cutting pattern is initialized on boundary edges. Considering various sit-

uations, we can classify the boundary conditions into three categories.
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Definition 5.1.3 (Boundary Conditions for Cutting Pattern Problem). In the

cutting pattern problem (definition 5.1.2), the boundary condition for an input

mesh D can be classified into the following categories:

[1] Restricted boundary: Every boundary edge of D has a prescribed cutting

pattern. In particular,

• For any triangle with only one edge exposed on the boundary of D,

the prescribed cutting pattern for this boundary edge can take an

arbitrary value of ±1;

• For any triangle with at least two edges exposed on the boundary of

D, two of such boundary edges have prescribed cutting patterns of

opposite values (i.e. +1 and −1).

[2] General boundary: Every boundary edge of D has a prescribed cutting

pattern that can take an arbitrary value of ±1;

[3] Free boundary: None of the boundary edges has a prescribed cutting pat-

tern.

The first and second conditions are both fixed boundary conditions, where

the cutting pattern is prescribed on every boundary edge and should keep fixed

in the algorithm. On the other hand the last condition does not prescribe any

value on boundary edges, thus the algorithm has the freedom to determine the

boundary cutting patterns.

Under different types of boundary conditions, a solution to the cutting

pattern problem may or may not exist, and if existing, it may require different

treatments. In the rest of this chapter, we first present a basic algorithm

for restricted boundary conditions in section 5.2; then generalize it to general

boundary conditions in section 5.3 and free boundary conditions in section 5.4.
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5.2 An Algorithm for Restricted Boundary Con-

ditions

In this section we present an algorithm to solve the cutting pattern problem

under restricted boundary conditions (see definition 5.1.3). We first define

some concepts that are necessary for later discussions, then introduce the

pipeline of our algorithm and the details for specific steps.

5.2.1 Some Definitions

First of all, let us define several concepts for a given component C (or a sub-

mesh in general).

Given a triangular meshD consisting of a set of triangles F = {f1, f2, · · · , fn},
a sub-mesh of D consists of a subset of triangles {fi1 , fi2 , · · · , fim}, where
fik ∈ F for 1 6 k 6 m and m 6 n.

The following concepts are defined within a given sub-mesh C.

For a triangle f ∈ C, its edge-valence (or valence in short) is the number

of triangles adjacent to f across some edges. It should be an non-negative

integer that is at most 3.

A triangle f is call a dangling triangle if its valence is 1. A dangling

triangle has exactly two edges exposed on the boundary of C.

A triangle f is call a dangling triangle if its valence is 0. In a singular

triangle, all three edges are on the boundary of C.

For an edge e shared by two triangles f1, f2 ∈ C, we say it is of (i, j)-type

if f1 and f2 have valence i and j respectively (1 6 i 6 j 6 3).

An edge e is called a separating edge if it is shared by two triangles and

the end vertices of e are both on the boundary of C (figure 5.3a).

A edge e is called a breaking edge if it is a separating edge and at least

one of its adjacent triangles has valence 3 (figure 5.3b and 5.3c).
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5.2.2 Algorithm Pipeline

The goal of the algorithm is to assign a value +1 or −1 to every edge in every

triangle. In our algorithm, for any edge e belonging to a triangle f , we assign

it with an integer

a(e, f) ∈ {+1,−1, 0}

meaning that the edge e in triangle f is either assigned with a determined

cutting pattern (+1 or −1) or is still open (0). An edge e is completely solved

(or solved for short) if and only if it has a determined cutting pattern in every

triangle that encloses e. An triangle f is completely solved (or solved for short)

if and only if all three edges in f have determined cutting patterns. A sub-

mesh C is completely solved (or solved for short) if and only if all the triangles

in C are solved.

Upon input, all the boundary edges have prescribed assignments ±1 while

all the other edges are initialized with assignment 0. Then the input mesh D is

processed in a divide-and-conquer manner. Namely, meshD is partitioned into

a set of sub-components that have special properties, and each sub-component

is completely solved or partially solved separately. After this, the remaining

sub-mesh consisting of all the unsolved triangles will be brought into another

iteration of divide-and-conquer like the above. Repeat this process until the

algorithm terminates.

Algorithm 5.2.1 (Cutting Pattern Algorithm - I).

• Input: A simply connected topological disk represented as a triangular

mesh D with restricted boundary conditions (definition 5.1.3).

• Output: A set of valid cutting patterns for the whole mesh D.

• Procedures:

[1] Initialize all the inner edges with assignment 0, and all the triangles

as unsolved.
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[2] Repeat the following procedures on the sub-mesh consisting of all the

unsolved triangles, until no unsolved triangle left.

(a) Partition the unsolved sub-mesh into a minimal set of sub-

components of basic types, and solve the newly exposed bound-

ary edges (section 5.2.4).

(b) Solve each sub-component completely or partially according to

its type (section 5.2.5, 5.2.6 and 5.2.7).

(c) Check the unsolved sub-mesh. If it is empty, exit; otherwise, go

back to step 2a.

5.2.3 Algorithm Invariants

In order to guaranteed that the algorithm will terminate and generate the

desired outputs, we need define several invariants that the algorithm should

preserve.

The first set of invariants arise from the definition of the cutting pattern

problem 5.1.2. First, every triangle should have both +1 and −1 in its 3-tuple

of cutting patterns. Second, every pair of adjacent triangles sharing a common

edge should have opposite cutting patterns on that edge.

Another important invariant is related to the boundary cutting patterns

for certain sub-meshes. In the process of the algorithm, various kinds of sub-

meshes could appear in different steps for various purposes; such as a sub-

component resulting from step 2a, the unsolved sub-mesh in step 2c, or even

the mesh D which is the input to the algorithm. Given a sub-mesh C, a bound-

ary assignment A is a set of values (+1, −1 or 0) assigned to the boundary

edges of C, one value per edge, where +1 or −1 represents a determined cut-

ting pattern while 0 means to be determined. It turns out that the boundary

assignments certain sub-meshes should satisfy certain requirement, which is

captured in the following definition.

Definition 5.2.1 (Safe Boundary Assignments). For a sub-mesh C in a given

triangular mesh D, a boundary assignment A is a safe boundary assignment
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for C if and only if for any dangling or singular triangle f ∈ C, at least two of

the boundary edges are assigned with opposite non-zero values (+1 and −1).

In our algorithm, we will enforce that the sub-components and the un-

solved sub-mesh should have safe boundary assignments at certain points in

the process.

In a nutshell, we propose the following invariants for the basic algorithm:

Definition 5.2.2 (Invariants of the Basic Algorithm). In the basic algorithm

(5.2.1) for the cutting pattern problem under restricted boundary conditions,

there are several invariants that need to be preserved:

• Completeness: For every completely solved triangle, the 3-tuple of cutting

patterns should consist of both +1 and −1;

• Consistency: For every completely solved edge that is shared by two tri-

angles in the original mesh, its cutting pattern in these two triangles

should have opposite signs;

• Safeness: In any iteration within step 2, the unsolved sub-mesh (or mesh)

at the beginning of step 2a should have a safe boundary assignment, and

every sub-component at the end of step 2a should also have a safe bound-

ary assignment.

As verified in later discussions, all these invariants are preserved by the

basic algorithm. That means this algorithm will not get stuck at any point in

the process until finally the whole mesh is successfully solved.

5.2.4 Constructing Sub-components

This algorithm is a divide-and-conquer one. In step 2a, the unsolved sub-mesh

(i.e. the union of all the unsolved triangles) will be partitioned into smaller

pieces. This partition happens in two stages, where the second stage refines

the partition from the first stage. Then the boundary edges that are newly

exposed in the partition are solved.
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The First Stage Partition

In the first stage of partition, all the unsolved triangles will be grouped into

a set of components. A component is a sub-mesh of the original mesh D that

is edge-connected (or connected in short), meaning that every triangle in the

component is adjacent to at least one other triangle in the component across

a common edge. We require the set of components here satisfies the following

conditions:

• They make a covering of the original mesh D, meaning that the union

of all the components is D;

• They are triangle-disjoint (or disjoint in short), meaning that there is

no triangle shared by any pair of components;

• Each component is maximal, meaning that any union of two or more

components is no longer edge-connected and thus no longer a component.

This stage of partition can be implemented as a Breadth-First-Search

among all the unsolved triangles.

The Second Stage Partition

In the second stage, each component from the first stage is further partitioned

into sub-components, which are edge-connected sub-meshes of C. And we

require that every sub-component should have one of the following basic types.

Definition 5.2.3 (Types of Sub-components).

• Aggregated sub-component (figure 5.7): a sub-component that does not

have any separating edge, and therefore every triangle has edge-valence

at least 2 within this sub-component;

• Linear sub-component (figure 5.6): a sub-component consisting of a se-

quential strip of triangles, where two triangles at the ends have edge-

valence 1 (i.e. dangling triangles) and all the other triangles have edge-

valence 2 within this sub-component.
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• Singular sub-component (figure 5.5): a sub-component consisting of a

singular triangle.

Recall the definition of separating edges and breaking edges from section

5.2.1. If a given component is a simply connected topological disk, which is

always true in the process to solve the cutting pattern problem using our algo-

rithms, slicing along any separating edge or breaking edge will both partition

the component into two smaller pieces.

(a) (b) (c)

Figure 5.3: Separating edges (a), breaking edges (b) and a minimal set of
breaking edges (c).

In fact, if we take the set of all the separating edges in a given component

and slice along them (figure 5.3a), the component will be partitioned into

a set of sub-components, where each sub-component is either aggregated or

singular. It turns out that such a partition is too fine for our purpose.

A second choice for slicing is the set of all the breaking edges (figure 5.3b).

This would give a set of sub-components that could cover all three basic types.

However, this partition still produce unnecessary small pieces. In figure 5.3,

for example, the singular sub-component in the middle can be actually merged

into the linear sub-component on the right without changing the basic type of

the later.

What we need in the algorithm is aminimal set of sub-components of basic

types (figure 5.3c), meaning that any union of two or more sub-components

in this set is not of any basic type. In another word, we require each sub-

component to be maximal without changing its own basic type. Therefore,

instead of using all the breaking edges in the given component, we only choose

a subset of them so that the resulting sub-components are all maximal. Such
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a set of breaking edges is called a minimal set of breaking edges. Figure 5.4

shows several examples of cutting a component along a minimal set of breaking

edges.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: A component is partitioned into a minimal set of sub-components
along a minimal set of breaking edges (marked in red). (a) to (f) shows six
different components and their partitions.

Boundary Assignment Completion

In the second stage partition, every input component is divided into a set of

sub-components. In a sub-component C, some edges on its boundary are ac-

tually also on the boundary of the input component, these edges are called

original boundary edges. The other edges on the boundary of C are newly in-

troduced by the second stage partition, they are called new boundary edges. In
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fact, every new boundary edge in sub-component C corresponds to a breaking

edge in the input component.

After the partition, in any resulting sub-component C, every original

boundary edge has a non-zero assignment (i.e. determined cutting pattern) in-

herited from the input sub-mesh, while every new boundary edge is initialized

with assignment 0 and need to be solved here.

By definition, the second partition only happens along a minimal set of

breaking edges. Based on the connectivity in the neighborhood, breaking edges

in this set can be classified into several types.

Definition 5.2.4 (Classification of Breaking Edges). Given a breaking edge e

shared by two neighboring sub-component C1 and C2, based on the type of C1

and C2 and the position of e in C1 and C2, e can be classified into one of the

following types:

• A2A: if both C1 and C2 are aggregated sub-components;

• A2Lm (or Lm2A): if C1 is aggregated and C2 is linear, and e belongs to

a triangle in the middle of C2;

• A2Le (or Le2A): if C1 is aggregated and C2 is linear, and e belongs to a

triangle at one end of C2;

• A2S (or S2A): if C1 is aggregated and C2 is singular;

• Lm2Lm: if both C1 and C2 are linear, and e belongs to a middle triangle

in C1 and another middle triangle in C2;

• Lm2Le (or Le2Lm): if both C1 and C2 are linear, and e belongs to a

middle triangle in C1 and an end triangle in C2;

• Lm2S (or S2Lm): if C1 is linear and C2 is singular, and e belongs to a

middle triangle in C1;
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Note that these are not all the combinations of two sub-components with

basic types. However, other combinations, including Le2Le, Le2S and S2S, are

impossible to sandwich a breaking edge, since they will violate the requirement

that every sub-component should be maximal. For example, in a Le2Le com-

bination, two linear sub-components would connect to each other at the ends;

however, in such a situation these two sub-components could be merged into

a larger linear sub-component. Therefore Le2Le is not a valid combination.

The combination of Le2S and S2S can be excluded similarly.

Given a minimal set of breaking edges along which the given component

has been partitioned, the breaking edges in this set are solved one after another

using the following procedure.

Procedure 5.2.1 (Solving A Breaking Edge). Given a breaking edge e between

two sub-components C1 and C2, do the following:

• If e is A2A, A2Lm or Lm2Lm: Suppose e is an A2A edge between ag-

gregated sub-component C1 and aggregated sub-component C2. Assign e

with +1 on C1 side and −1 on C2 side. According to definition 5.2.1,

such an assignment is safe for both C1 and C2. In addition, the invariant

of consistency (see definition 5.2.2) is preserved on e.

For A2Lm and Lm2Lm cases, it is processed and validated in the same

way.

• If e is A2Le or Lm2Le: Suppose e is an A2Le edge between aggregated

sub-component C1 and linear sub-component C2. We will solve e on C2

side first, and then on C1 side.

On C2 side, e is a boundary edge in an end triangle f2 ∈ C2. Let e′ be

the other boundary edge in triangle f2; then within f2, we can solve e

based on whether or not e′ is already solved.

– If e′ is already solved in f2, suppose its assignment is a′2 ∈ {+1,−1},
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then assign e with a2 = −a′2 in f2 (thus preserving the invariant of

completeness for f2).

– If e′ is not solved in f2 yet, then assign e with an arbitrary value

a2 ∈ {+1,−1} (so that e′ can be solved later with assignment a′2 =

−a2 and thus preserving the invariant of completeness for f2).

In either case, the two boundary edges e and e′ in end triangle f2 would

have opposite assignments, and it is therefore a safe boundary assignment

for linear sub-component C2 at the f2 end.

Once e is solved on the C2 side with assignment a2 ∈ {+1,−1}, we

assign e on the C1 side with a1 = −a2 (thus preserving the invariant

of consistency on e). Note that C1 is an aggregated sub-component and

there is no actual constraint on its boundary assignment, therefore the

above assignment on C1 side is also safe.

For the Lm2Le case, it is processed and validated in the same way.

• If e is A2S or Lm2S: Suppose e is an A2S edge between aggregated sub-

component C1 and singular sub-component C2. We will solve e on C2

side first, and then on C1 side.

On C2 side, there is only one triangle f2 ∈ C2, and e is one of the three

edges in f2. Let e′ and e′′ denote the other two boundary edges in f2;

then within f2, we can solve e based on whether or not e′ and e′′ are

solved.

– If at least one of these edges (say, e′) is already solved in f2, suppose

its assignment is a′2 ∈ {+1,−1}, then assign e with a2 = −a′2 in f2

(thus preserving the invariant of completeness for f2).
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– If neither e′ nor e′′ is solved in f2, then assign e with an arbitrary

value a2 ∈ {+1,−1} (so that e′ and e′′ can be solved later with

assignment a2
′ = −a2 and a2

′′ = −a2, and thus preserving the

invariant of completeness for f2).

In either case, at least two boundary edges e and e′ in the singular triangle

f2 would have opposite assignments, and it is therefore a safe boundary

assignment for singular sub-component C2.

Once e is solved on the C2 side with assignment a2 ∈ {+1,−1}, we

assign e on the C1 side with a1 = −a2 (thus preserving the invariant

of consistency on e). Note that C1 is an aggregated sub-component and

there is no actual constraint on its boundary assignment, therefore the

above assignment on C1 side is also safe.

For the Lm2S case, it is processed and validated in the same way.

After this process, the algorithm produces a minimal set of sub-components

of basic type. The boundary edges of each sub-component are completely

solved and guaranteed to be a safe boundary assignment. Now we can go

ahead to solve each sub-component based on its type.

5.2.5 Solving Singular Sub-components

For a singular sub-component (figure 5.5), there is only one triangle in it. Note

that all the boundary edges are already solved in the previous step, and they

constitute a safe boundary assignment. Therefore the whole sub-component

is actually already solved.

Furthermore, it can be verified that the assignment for a singular sub-

component C preserves all the related invariants in definition 5.2.2.

• For the only triangle f ∈ C, according to the discussion for the previous

step in section 5.2.4, the assignment for three edges contains both +1

and −1, thus the invariant of completeness is preserved.
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• For any edge e ∈ C:

– If e is a boundary edge in the original mesh D, its cutting pattern

is initialized upon input and is never changed;

– Otherwise, e is an internal edge in the original mesh D and is ex-

posed to the boundary of sub-component C during the previous

step, where its assignment is already proved to preserve the invari-

ant of consistency.

5.2.6 Solving Linear Sub-components

For a linear sub-component with a safe boundary assignment (figure 5.6), it

can be solved completely.

In a linear sub-component, all the triangles are connected sequentially

from one end to another end. Suppose a linear sub-component C has n + 1

triangles (n > 0) ordered as

f0, f1, · · · , fn

where f0 and fn are end triangles (i.e. dangling triangles) that each has

two boundary edges, while the others are middle triangles that each has only

one boundary edge. Let ei be the internal edge shared by two consecutive

triangles fi and fi+1 (1 6 i 6 n). Then the set of ei are all the edges that

need to be solved, and they can be ordered as a sequence

e1, · · · , en

−1

+1

+1

−1

+1

+1

Figure 5.5: A singular sub-component is actually solved in the previous itera-
tion already.
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Let a
(i−1)
i and a

(i)
i be the cutting pattern assigned to ei in fi−1 and fi

respectively. Then ei can be solved as follows:

a
(i−1)
i = +1

a
(i)
i = −1

Since all the boundary edges are already solved in the previous step, now

all the edges in this linear sub-component are solved and therefore all the

triangles here are solved.

Furthermore, we can verify that such an assignment for this sub-component

preserves all the related invariants in definition 5.2.2.

• For any triangle f ∈ C:

– If f is an end triangle, say f = f0 or f = fn, it has two boundary

edges and one internal edge. Since C is guaranteed to have a safe

boundary assignment, the two boundary edges of f have opposite

cutting patterns. Thus no matter what value is assigned to the

internal edge, the invariant of completeness is already preserved for

f .

– If f is a middle triangle, say f = fi (0 < i < n), it has one boundary

edge e and two internal edges ei−1 and ei. According to the above,

the assignments on these two internal edges are a
(i)
i−1 = −1 and

a
(i)
i = +1, which are opposite to each other. Therefore no matter

what value is assigned to the boundary edge e, the invariant of

completeness is preserved for f .

• For any edge e ∈ C:

– If e is an internal edge in C, say e = ei (0 6 i < n), it is as-

signed with opposite cutting patterns in the adjacent triangles,

a
(i)
i = −a(i−1)

i , thus preserving the invariant of consistency.

– If e is a boundary edge in the original mesh D, its cutting pattern

is initialized upon input.
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– Otherwise, e is an internal edge in the original mesh D and is ex-

posed to the boundary of sub-component C during the previous

step, where its assignment is already proved to preserve the invari-

ant of consistency.

−1

+1 +1

−1

−1

+1

−1
−1

+1 +1

−1

−1

+1

−1

+1

−1

−1

+1

+1

−1

−1

+1

Figure 5.6: A linear sub-component can be completed solved in one iteration.

5.2.7 Solving Aggregated Sub-components

For an aggregated sub-component with a safe boundary assignment (figure

5.7), we will solve the most outside layer of triangles and leaving the rest part

to be solved in later iterations.

Given an aggregated sub-component C, consider its dual graph C∗. Any

triangular face fi ∈ C corresponds to a vertex v∗i ∈ C∗, edge ej ∈ C to edge

e∗j ∈ C∗, vertex vk ∈ C to face f∗
k ∈ C∗. Note that C is a simply connected

disk and every face fi ∈ C has at most one boundary edge. Accordingly, C∗

is also a simply connected disk, its boundary is a loop connecting n vertices

with n edges sequentially:

v∗1 − e∗1 − v∗2 − e∗2 − · · · − v∗n − e∗n − v∗1

where e∗i is an edge connecting consecutive vertices v∗i and v∗i+1. This

boundary loop in C∗ corresponds to a looping sequence of n triangular faces

in C that are connected via n edges:

f1 − e1 − f2 − e2 − · · · − fn − en − f1

where ei is the common edge between adjacent faces fi and fi+1. We call

this looping sequence of triangles the frontier of C, denoted as CF , and call
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the rest part the interior of C, denoted as CI . The frontier CF consists of the

most outside layer of triangles in C, and the interior CI consists of the rest.

For any face in the frontier, it either has only one edge (and therefore

two vertices) exposed on the boundary, or has only one vertex (and no edge)

exposed on the boundary.

In this step, we will solve all the triangles in frontier CF and the newly

exposed edges on the boundary of the interior CI . We first solve the later and

then the former.

For the interior CI , some edges that were previously internal edges in

C will be exposed to the boundary of CI after the frontier CF is solved and

removed. Actually these edges are the border between CF and CI , shared by

both sides. We call them boundary edges of CI , and solve them one by one

in the following way. For any edge e on the boundary of CI , it belongs to a

triangle in CI ; Denoted this triangle as f , and let e′ and e′′ be the other two

edges in f . We solve e in f as follows.

• If e is the only edge of f that is on the boundary of CI , then assign e

with an arbitrary value a ∈ {+1,−1}.

• If besides e there is another edge (say e′) on the boundary of CI :

– If e′ is not solved yet, then assign e with a = +1;

– If e′ is already solved in f with assignment a′ ∈ {+1,−1}, then
assign e with a = −a′.

• If all the other two edges (e′ and e′′) are also on the boundary of CI :

– If neither e′ nor e′′ is solved in f , then assign e with an arbitrary

value a ∈ {+1,−1}.

– If at least one of them (say, e′) is already solved in f with assignment

a′ ∈ {+1,−1}, then assign e with a = −a′;

By repeating this process for every boundary edge of CI , the whole bound-

ary of CI is solved. And in all the above cases, for any f ∈ CI that has at

least two edges (say e and e′) on the boundary of CI , these edges are assigned
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with opposite signs. Therefore the assignment on the boundary of CI is safe,

and CI is ready to be solved in later iterations.

After the boundary of interior CI is solved, we proceed to solve the frontier

CF . In CF , those edges on the boundary C has already been solved in previous

steps, thus they will be skipped here. For all the other edges in CF , they can

be classified and solved accordingly. For any one of such edges e:

• If e is a common edge shared by two consecutive frontier faces fi and

fi+1, i.e. e = ei, then solve e in these two faces with assignment a
(i)
i = +1

and a
(i+1)
i = −1 respectively.

• Otherwise, e is a common edge shared by a frontier face fi ∈ CF and

an interior face f ′
i ∈ CI . Thus e must already be solved in the CI side

with assignment, say, a′ ∈ {+1,−1}. Then solve e in the CF side with

assignment a = −a′.
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Figure 5.7: An aggregated sub-component is only solved in the frontier (in
yellow), leaving the interior (in green) to later iterations.

5.2.8 Existence and Convergence

As shown in the explanation of each step above, all the invariants from defini-

tion 5.2.2 are preserved throughout algorithm 5.2.1. As a result, we have the

following conclusion on the convergence of this algorithm.
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Theorem 5.2.5 (Convergence of Algorithm 5.2.1). Given a triangular mesh

D of a simply connected topological disk with a restricted boundary condition,

algorithm 5.2.1 always terminates; and when it terminates, the output is a

solution to the cutting pattern problem.

Furthermore, according to theorem 5.2.5 we have the following conclusion

on the existence of solutions.

Theorem 5.2.6 (Existence of Solutions for Restricted Boundary Conditions).

The cutting pattern problem always has solutions under restricted boundary

conditions.

5.3 An Algorithm for General Boundary Con-

ditions

At the beginning of this chapter, we convert the discrete unit tangent bundle

problem to the cutting pattern problem (definition 5.1.2). In the previous

section 5.2, we provide an algorithm for the cutting pattern problem under

restricted boundary conditions. In this part, we generalize that algorithm to

general boundary conditions (definition 5.1.3).

5.3.1 Algorithm Pipeline

Given a triangular mesh D with a general boundary condition, if there is any

dangling or singular triangle, it is allowed to have a uniform cutting pattern

(+1 or −1) on two boundary edges. In another word, the boundary assignment

for D may not be safe (definition 5.2.1). In a special case where the boundary

assignment is safe, the problem degenerates to restricted boundary conditions

and can be solved with algorithm 5.2.1 directly. Otherwise, extra efforts are

needed to address the dangerous parts and try to resolve them. The whole

algorithm pipeline is defined as follows.

Algorithm 5.3.1 (Cutting Pattern Algorithm - II).
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• Input: A simply connected topological disk represented as a triangular

mesh D with a general boundary condition (definition 5.1.3).

• Output: A set of valid cutting patterns for the whole mesh D or an

unsolvable sub-mesh.

• Procedures:

[1] Initialize all the inner edge with assignment 0, and all the triangles

as unsolved.

[2] Check the boundary assignment. If it is safe, go to step 4; otherwise,

go to the next step.

[3] Partition mesh D into a minimal set of sub-components of basic

types, try to solve the breaking edges between sub-components and

try to solve every sub-component. If any breaking edge or any sub-

component is unsolvable, report it and exit; otherwise, put all the

unsolved triangles into a sub-mesh and go to step 4.

[4] Run step 2 in algorithm 5.2.1 to solve the unsolved sub-mesh from

the previous step.

In this generalized algorithm, step 3 is the part where all the sub-components

with dangerous boundary assignments are addressed, and where the algorithm

might be terminated due to unsolvable sub-components. It is the major dif-

ference of this algorithm compared to the basic algorithm 5.2.1 for restricted

boundary conditions. Therefore, we spend most of the rest of this section to

elaborate step 3.

5.3.2 Classifying Boundary Assignments

In step 3 of algorithm 5.3.1, the input mesh D is partitioned into a minimal

set of sub-components along a minimal set of breaking edges. This is carried
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out in the same way as in the basic algorithm for the restricted boundary

conditions (section 5.2.4), and the resulting sub-components here also have

three types: aggregated, linear and singular (definition 5.2.3).

Right after the partition, each sub-component will have an initial bound-

ary assignment, where every boundary edge that is also on the boundary of the

original mesh D has an assignment +1 or −1 that is prescribed in the input,

while every other boundary edge is newly introduced in the partition and has

an initial assignment 0. The new boundary edges with initial assignment 0 will

be solved later and get an assignment of +1 or −1. Different to the restricted

case, where the boundary assignments for sub-components are guaranteed to

be save ones, the boundary assignments here could be of multiple types.

Definition 5.3.1 (Types of Boundary Assignments). For a sub-component

C in step 3 of algorithm 5.3.1, its boundary assignments can be classified as

follows

[1] Safe boundary assignment: if and only if any dangling or singular tri-

angle f (if there is one) has two boundary edges with opposite non-zero

assignments (+1 and −1). Specifically, a safe boundary assignment could

only be one of the following cases:

(a) C is aggregated and thus has no dangling or singular triangle; or

(b) C is linear, and in any end triangle (dangling triangle) fi (i =

1, 2), two boundary edges ei,1 and ei,2 have opposite assignments

ai,1 = −ai2 ̸= 0; or

(c) C is singular, and in the only triangle (singular triangle), two of

the boundary edges (say e1 and e2) have opposite assignments a1 =

−a2 ̸= 0.

[2] Moderately dangerous boundary assignment: if and only if it is not safe

and there are at least two boundary edges in C assigned with opposite
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values (+1 and −1). Specifically, a moderately dangerous boundary as-

signment could only be one of the following cases:

(a) C is linear, and one of the end triangles f1 has a non-zero assign-

ment a ̸= 0 on one of its boundary edges, and the other end triangle

f2 has an opposite assignment −a on one of its boundary edges; or

(b) C is linear, and one of the end triangles f1 has a non-zero assign-

ment a ̸= 0 on one of its boundary edges, and one of the middle

triangles f3 has an opposite assignment −a on its only boundary

edge; or

(c) C is linear, and one of the middle triangles f3 has a non-zero assign-

ment a ̸= 0 on its only boundary edge, and another middle triangle

f4 has an opposite assignment −a on its only boundary edge.

[3] Extremely dangerous boundary assignment: if and only if it is not safe

and all the non-zero assignments (if there is any) on boundary edges are

equal to a single value a ∈ {+1,−1}. This non-zero value a is called the

forbidding value of this assignment. Specifically, an extremely dangerous

boundary assignment with forbidding value a ∈ {+1,−1} could only be

one of the following cases:

(a) C is singular, and either there is no non-zero assignment on the

boundary, or all the non-zero assignments are equal to a; or

(b) C is linear, and either there is no non-zero assignment on the

boundary, or all the non-zero assignments are equal to a.

In this definition, the first one, safe boundary assignment, is actually the

same as that for the restricted case (definition 5.2.1). Besides that, the last two

are only for the general case here. They are also called dangerous boundary
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assignments. A dangerous boundary assignment could be either moderately

dangerous or extremely dangerous, but not both.

It can be verified that a boundary assignment for a given sub-component

C is dangerous if and only if it is not safe; that is, if and only if there is at

least one dangling or singular triangle f ∈ C that has a uniform non-zero

assignment (+1 or −1) on all boundary edges. And such a triangle is called a

dangerous triangle.

A sub-component with a safe boundary assignment is called a safe sub-

component. Similarly, a sub-component with a dangerous boundary assign-

ment is called a dangerous sub-component ; if the boundary assignment is

moderately dangerous or extremely dangerous, the sub-component is called

a moderately dangerous sub-component or extremely dangerous sub-component

respectively.

5.3.3 Completing Boundary Assignments

For any sub-component C resulting from the above partition, the new bound-

ary edges of C are initialized with assignment 0 (i.e. open assignment) and

need to be assigned with valid cutting patterns ±1. This is equivalent to

solving all the breaking edges along which the partition is carried out.

By completing cutting patterns for new boundary edges in a sub-component,

a boundary assignment of one type can be transformed into another one of pos-

sibly different type. However, such transformations cannot happen between

arbitrary pairs of types. As an interesting observation, a transformation can

only keep or decrease the dangerousness of a boundary assignment, but not

increase it. In particular,

• An extremely dangerous one can be transformed to another extremely

dangerous one, a moderately dangerous one, or even a safe one;

• A moderately dangerous one can be transformed to another moderately

dangerous one or a safe one, but not to any extremely dangerous one;

• A safe can only be transformed to another safe one, but not to any

dangerous one.
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Inspired by the above observations, we propose a dangerousness reliev-

ing process to solve this boundary assignment completion problem. That is,

we process sub-components from the most dangerous ones to less dangerous

ones, and for every sub-component, we solve its new boundary edges with best

efforts, and thus transform itself and its adjacent sub-components to less dan-

gerous ones. If any unsolvable edge is detected, the process should terminate

and report it; otherwise, it will end when the boundary assignments for all

sub-components are completely solved.

Procedure 5.3.1 defined in below implements such a dangerousness re-

lieving process. For any sub-component C to be processed, some common

notations are used in that procedure:

• {ebi | 1 6 i 6 m}: the set of new boundary edges of C; or equivalently,

the set of breaking edges that separate C from adjacent sub-components;

• C ′
i: an adjacent sub-component that shares a common edge ebi with C;

• ai, a
′
i (∈ {+1,−1}): the assignment for breaking edge ebi in sub-component

C and C ′
i respectively;

• fi, f
′
i : the triangle in C and C ′

i that contains breaking edge ebi .

Procedure 5.3.1 (Boundary Assignment Completion). In step 3 of algorithm

5.3.1, given a minimal set of sub-components resulting from the partition of

the input mesh D, do the following to complete their boundary assignments.

[1] Repeat the following until all the extremely dangerous sub-components (if

there is any) have been transformed into moderately dangerous or safe

ones:

(a) Address all the extremely dangerous sub-components, put them in a

set C;

(b) For every extremely dangerous sub-component C ∈ C, do the fol-

lowing:
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• If there is an adjacent sub-component (say C ′
i) that is safe, then

assign ebi with ai = −b (thus Ci becomes moderately dangerous

or safe) and a′i = b (thus C ′
i remains safe).

• Otherwise, if there is an adjacent sub-component (say C ′
i) that

is moderately dangerous, then assign ebi with ai = −b (thus Ci

becomes moderately dangerous or safe) and a′i = b (thus C ′
i

remains moderately dangerous or becomes safe).

• Otherwise, if there is an adjacent sub-component (say C ′
i) that

is extremely dangerous with opposite forbidding value −b, then

assign ebi with ai = −b (thus Ci becomes moderately dangerous

or safe) and a′i = b (thus C ′
i becomes moderately dangerous or

safe).

• Otherwise, all of the adjacent sub-components must be extremely

dangerous and have the same forbidding value b; Then skip this

sub-component C so that at a later point some adjacent sub-

component might be transformed into less dangerous ones and

thus C will have a chance.

(c) Address all the extremely dangerous sub-components again and put

them in a set C̃.

• If C̃ is empty, stop step 1 of this procedure and go to step 2 of

this procedure.

• Otherwise, if C̃ contains the same extremely dangerous sub-

components as C does, report C̃ as unsolvable and exit the pro-

cedure.

• Otherwise, B is non-empty, then go back to step 1a of this

procedure and start another iteration.
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[2] For every sub-component C that is moderately dangerous, do the follow-

ing:

(a) For every new boundary edge ebi in C that has assignment 0 (i.e.

still open):

• If the corresponding adjacent sub-component C ′
i is moderately

dangerous, then assign ebi with arbitrary value ai ∈ {+1,−1}

in Ci (thus Ci remains moderately dangerous or becomes safe)

and a′i = −ai in C ′
i (thus C

′
i remains moderately dangerous or

becomes safe).

• Otherwise, the corresponding adjacent sub-component C ′
i must

be safe, then assign ebi with arbitrary value ai ∈ {+1,−1} in Ci

(thus Ci remains moderately dangerous or becomes safe) and

a′i = −ai in C ′
i (thus C

′
i remains safe).

[3] Exit the procedure.

As shown in the above procedure, there are two points where it could

terminate.

The first is in step 1c of the procedure, where a set of unsolvable sub-

components is detected. Such a set of unsolvable sub-components is an ob-

struction that keeps the algorithm from generating a valid solution for the

whole input mesh. We define it formally as follows.

Definition 5.3.2 (Cutting Pattern Obstruction). Let D be a triangular mesh

of a simply connected topological disk, where every boundary edge is assigned

with a cutting pattern +1 or −1. A cutting pattern obstruction in D is a

maximal edge-connected component C ⊂ D that is the union of a set of sub-

components S = {Si | 1 6 i 6 n} (n > 1), such that

• Every pair of sub-components Si and Sj are triangle-disjoint to each

other.
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• Every Si ∈ S is a maximal sub-component of basic types (i.e. singular,

linear or aggregated). Or equivalently, the set S is a minimal set of basic

type sub-components.

• All of the sub-components in S are extremely dangerous (definition 5.3.1)

and have the same forbidding value a ∈ {+1,−1}.

If there is any obstruction as defined above, procedure 5.3.1 will detect

them and exit immediately.

The second point that the procedure could terminate is in step 3 at the

end of the procedure. If there is no cutting pattern obstruction in the input

meshD, procedure 5.3.1 will finally terminate and output completed boundary

assignments for all the sub-components.

5.3.4 Solving Sub-Components

Once the given mesh D is partitioned into sub-components and each sub-

component gets a completely solved boundary assignment, we are ready to

solve each sub-component based on its own type and the type of its boundary

assignment.

Note that after running procedure 5.3.1 for boundary assignment com-

pletion, all the extremely dangerous sub-components are transformed to less

dangerous ones, and only moderately dangerous sub-components and safe sub-

components are left. Therefore we only need to solve the later two.

For safe sub-components, the problem is the same as that for the restricted

boundary condition case. Safe sub-components that are singular, linear or

aggregated can be directly processed by procedures from section 5.2.5, 5.2.6

and 5.2.7 respectively.

For moderately dangerous sub-components, by definition they must be

linear. Recall that a linear sub-component C consists of a sequence of n

(n > 2) triangles,

f0, f1, · · · , fn
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where f0 and fn are end triangles (with valence 1) that each has two

boundary edges eBi,1 and eBi,2 (i = 0, n), and any other fi is a middle triangle

(with valence 2) that has only one boundary edge eBi (1 6 i 6 n− 1). These

boundary edges can be ordered as

(eB0,1, e
B
0,2), e

B
1 , e

B
2 , · · · , eBn−1, (e

B
n,1, e

B
n,2)

Meanwhile, any pair of consecutive triangles fi−1 and fi (1 6 i 6 n) share

a common internal edge eIi , and all such internal edges can be ordered as a

sequence

eI1, · · · , eIn

Recalling the case for restricted boundary conditions in section 5.2.6 where

a linear sub-component C always has a safe boundary assignment, the proce-

dure there is equivalent to constructing a path P , such that P passes through

all the triangles sequentially from f0 all the way to fn and penetrates the

sequence of internal edges from eI1 through eIn; and whenever an internal

edge eIi is penetrated, it is assigned with a pair of opposite non-zero values,

a
(
eIi , fi−1

)
== 1 and a

(
eIi , fi

)
= −1.

In case of general boundary conditions, on the other hand, C could have

a moderately dangerous boundary assignment. For this case, we use a similar

procedure that also constructs a penetrating path through all the triangles and

internal edges, but with more sophisticated rules to solve the internal edges.

According to definition 5.3.1, a moderately dangerous sub-component C

must have at least two boundary edges eBi1 and eBi2 (assuming i1 < i2) in two

different triangles fi1 and fi2 such that they have opposite assignments; that

is, for some non-zero value b ∈ {+1,−1}, we have

a
(
eBi1 , fi1

)
= b

a
(
eBi2 , fi2

)
= −b

Taking fi1 and fi2 as two intermediate stops, the path we construct is a

union of three segments

P = P01 ∪ P12 ∪ P2n
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where

P01 = [f0, · · · , fi1 ]

P12 = [fi1 , · · · , fi2 ]

P2n = [fi2 , · · · , fn]

In general, these path segments can be processed individually as follows.

• For P01: In path segment P01, the first triangle f0 has two boundary edges

eB0,1 and eB0,2, which already have assignments a0,1 and a0,2 ∈ {+1,−1}.
Then inner edge eI1 can be assigned in f0 with a

(
eI1, f0

)
= −a0,1 (thus

achieving completeness for f0) and assigned in f1 with a
(
eI1, f1

)
= a0,1

(thus achieving consistency for eI1).

The last triangle fi1 in path segment P01 has a boundary edge eBi1 with a

non-zero assignment b; consider the previous triangle fi1−1, it must also

have a boundary edge eBi1−1 with a non-zero assignment b1. Then any

inner edge eIi (1 < i 6 i1) can be assigned in fi−1 with a
(
eIi , fi−1

)
= −b1

(thus achieving completeness for fi−1) and assigned in fi with a
(
eIi , fi

)
=

b1 (thus achieving consistency for eIi ).

• For P12: In path segment P12, the first triangle fi1 has a boundary edge

eBi1 with a non-zero assignment b, and the last triangle fi2 has a boundary

edge eBi2 with a non-zero assignment −b. Then any inner edge eIi (i1 <

i 6 i2) can be assigned in fi−1 with a
(
eIi , fi−1

)
= b2 (thus achieving

completeness for fi−1) and assigned in fi with a
(
eIi , fi

)
= −b2 (thus

achieving consistency for eIi ).

• For P2n In path segment P2n, the last triangle fn has two boundary edges

eBn,1 and eBn,2, which already have assignments an,1 and an,2 ∈ {+1,−1}.
Then inner edge eIn can be assigned in fn with a

(
eIn, fn

)
= −an,1 (thus

achieving completeness for fn) and assigned in fn−1 with a
(
eIn, fn−1

)
=

an,1 (thus achieving consistency for eIn).

The first triangle fi2 in path segment P2n has a boundary edge eBi2 with

a non-zero assignment −b; consider the next triangle fi2+1, it must also

have a boundary edge eBi2+1 with a non-zero assignment b2. Then any
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inner edge eIi (i2 < i < n) can be assigned in fi−1 with a
(
eIi , fi−1

)
= b2

(thus achieving completeness for fi−1) and assigned in fi with a
(
eIi , fi

)
=

−b2 (thus achieving consistency for eIi ).

From the above discussion, one can see that for a moderately dangerous

sub-component C, the completeness of cutting patterns is achieved on every

triangle fi, and the consistency of cutting patterns is achieved on every edge

eIi that needs to be solved. Therefore, such a C is completely solved with a

set of valid cutting patterns.

In summery, the overall procedure for solving a sub-component with com-

pleted boundary assignment in step 3 of algorithm 5.3.1 can be outlined as the

follows.

Procedure 5.3.2 (Solving A Sub-component). In step 3 of algorithm 5.3.1,

given a sub-component C with a completed boundary assignment, do the fol-

lowing to solve C.

• If the boundary assignment for C is safe, then

– If C is singular, run procedure in section 5.2.5 to solve it completely;

– Otherwise, if C is linear, run procedure in section 5.2.6 to solve it

completely;

– Otherwise, C must be aggregated, run procedure in section 5.2.7 to

solve its frontier and leave its interior to further iterations in step

4 of algorithm 5.3.1.

• Otherwise, the boundary assignment for C must be moderately dangerous

and thus C must be linear. Define the following notations for C:

– F = {fi | 0 6 i 6 n}: the set of triangles in C ordered sequentially;

– EI = {eIi | 1 6 i 6 n}: the corresponding set of inner edges to be

solved in C;
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– EB = {eB0,1, eB0,2} ∪ {eBi | 1 6 i 6 n − 1} ∪ {eBn,1, eBn,2}: the

corresponding set of boundary edges in C;

– ai,1 and ai,2 ∈ {+1,−1} (i = 0, n): the assignments for boundary

edges eBi,1 and eBi,2 in end triangle fi;

– eBi1 and eBi2 ∈ EB: two boundary edges with opposite assignments b

and −b (b ∈ {+1,−1});

– fi1 and fi2 ∈ F (0 6 i1 6 i2 6 n): triangles in C that enclose eBi1

and eBi2 respectively;

– b1 and b2 ∈ {+1,−1}: the assignments for eBi1−1 ∈ fi1−1 and e
B
i2+1 ∈

fi2+1 respectively.

Then solve the inner edges {eI1, eI2, · · · , eIn} as follows:

[1] For eI1, solve it in f0 and f1 with

a
(
eI1, f0

)
= −a0,1

a
(
eI1, f1

)
= a0,1

[2] For every eIi (1 < i 6 i1), solve it in fi−1 and fi with

a
(
eIi , fi−1

)
= −b1

a
(
eIi , fi

)
= b1

[3] For every eIi (i1 < i 6 i2), solve it in fi−1 and fi with

a
(
eIi , fi−1

)
= −b

a
(
eIi , fi

)
= b
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[4] For every eIi (i2 < i < n), solve it in fi−1 and fi with

a
(
eIi , fi−1

)
= b2

a
(
eIi , fi

)
= −b2

[5] For eIn, solve it in fn−1 and fn with

a
(
eIn, fn−1

)
= an,1

a
(
eIn, fn

)
= −an,1

• Exit the procedure.

5.3.5 Existence and Convergence

In the above discussions, we already address and validate all the major issues

regarding the convergence of algorithm for general boundary conditions. In

particular:

• For step 3 of algorithm 5.3.1, we show the follows.

– In section 5.3.2, we show that the input mesh is partitioned into

a minimal set of sub-components of basic types (singular, linear or

aggregated) and with various types of initial boundary assignments

(safe, moderately dangerous or extremely dangerous).

– In section 5.3.3, we show that by procedure 5.3.1, if there is any cut-

ting pattern obstruction (definition 5.3.2) in the input mesh D, the

whole algorithm will terminate and output the obstruction. Oth-

erwise, all the initial boundary assignments (consisting of +1 and

−1 and 0) are completed (only consisting of +1 and −1), and all

the extremely dangerous ones are downgraded to less dangerous

one. Therefore after this process, all the boundary assignments are

completed and become either moderately dangerous or safe.

107



– In section 5.3.4, we show that by procedure 5.3.2, all the moderately

dangerous sub-components are completely solved with valid cut-

ting patterns. For safe sub-components, they are either completely

solved or partially solved using procedures from the algorithm for

restricted boundary conditions, where we already show that these

procedures generate valid cutting patterns for newly solved part

and the remaining unsolved triangles constitute a sub-mesh that

has a safe boundary assignment. Therefore after this process, the

original mesh is reduced to an unsolved sub-mesh with a restricted

boundary condition.

• For step 4 of algorithm 5.3.1, we run algorithm 5.2.1 on the unsolved

sub-mesh with a restricted boundary condition. According to theorem

5.2.5, this process will terminate and will generate a set of valid cutting

patterns for the given sub-mesh.

Based on all these discussions, we have the following conclusion on the

convergence of algorithm 5.3.1.

Theorem 5.3.3 (Convergence of Algorithm 5.3.1). Given a triangular mesh

D of a simply connected topological disk with a general boundary condition,

algorithm 5.4.1 always terminates; and when it terminates,

• If D has any cutting pattern obstruction (definition 5.3.2), the algorithm

outputs such an obstruction (which is a connected component of D).

• Otherwise, the algorithm outputs a set of valid cutting patterns for the

whole mesh D.

Furthermore, according to theorem 5.3.3 we have the following conclusion

on the existence of solutions.

Theorem 5.3.4 (Existence of Solutions for General Boundary Conditions).

The cutting pattern problem has solutions under general boundary conditions

if there is no cutting pattern obstruction in the input mesh.
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5.4 An Algorithm for Free Boundary Condi-

tions

In the previous two sections, we propose algorithms for the cutting pattern

problem under restricted boundary conditions (section 5.2) and general bound-

ary conditions (5.3) respectively. Both of them can be considered as fixed

boundary conditions. In this part, we discuss the cutting pattern problem

under free boundary conditions (definition 5.1.3).

5.4.1 Algorithm Pipeline

Under a free boundary condition, given a triangular mesh D, the boundary

edges will not be prescribed with any assignment. Instead, these values can

be determined by the algorithm. Actually, at the beginning of the algorithm,

the boundary edges can be automatically initialized with any safe boundary

assignment; this way the problem with a free boundary condition is turned

into one with a restricted boundary condition, and then it can be solved using

algorithm 5.2.1. The new algorithm pipeline is outlined in below.

Algorithm 5.4.1 (Cutting Pattern Algorithm - III).

• Input: A simply connected topological disk represented as a triangular

mesh D with a free boundary condition (definition 5.1.3).

• Output: A set of valid cutting patterns for the whole mesh D.

• Procedures:

[1] Initialize the boundary of D with a safe boundary assignment.

[2] Run algorithm 5.2.1.

In this algorithm, step 2 has been elaborated in section 5.2. The only step

that needs to be explained is step 1.
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5.4.2 Initializing The Boundary

Consider step 1 in the above algorithm pipeline. Given a triangular mesh

D of a simply connected topological disk, all the boundary edges need to be

initialized with a valid cutting pattern +1 or −1. This can be easily achieved

by considering the triangles that contain boundary edges.

Procedure 5.4.1 (Initialize Boundary Assignments). Given an input mesh

D, for every triangle f containing boundary edge(s), do the following:

• If there is only one boundary edge e in f , initialize e with assignment

a = +1;

• If there are two boundary edges e1 and e2 in f , i.e. f is a dangling trian-

gle, initialize them with assignments a1 = +1 and a2 = −1 respectively;

• If all three edges e1, e2 and e3 are boundary edges, i.e. f is a singular

triangle, assign them with a1 = a2 = +1 and a3 = −1 respectively;

By calling procedure 5.4.1, the input mesh D is assigned with an initial

boundary assignment A. And it is easy to verify that A satisfies all the re-

quirements for a restricted boundary condition (definition 5.1.3). Therefore,

the problem is converted to one with a restricted boundary condition, where

A serves as a prescribed boundary assignment.

5.4.3 Existence and Convergence

In algorithm 5.4.1, step 1 converts a free boundary condition to a restricted

boundary condition, which is given as input to step 2 to be processed by algo-

rithm 5.2.1. According to theorem 5.2.5, algorithm 5.2.1 always terminates for

any input mesh D with a restricted boundary condition, and always generates

a solution for the cutting pattern problem.

Therefore we have the following conclusion on the convergence of algo-

rithm 5.4.1.
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Theorem 5.4.1 (Convergence of Algorithm 5.4.1). Given a triangular mesh D

of a simply connected topological disk with a free boundary condition, algorithm

5.4.1 always terminates; and when it terminates, the output is a solution to

the cutting pattern problem.

Furthermore, according to theorem 5.4.1 we have the following conclusion

on the existence of solutions.

Theorem 5.4.2 (Existence of Solutions for Free Boundary Conditions). The

cutting pattern problem always has solutions under free boundary conditions.
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Chapter 6

Discrete Unit Tangent Bundles

for g = 0 Closed Surfaces

112



This chapter is devoted to discrete unit tangent bundles for topological

2-spheres, i.e. g = 0 closed and oriented surfaces. We start from the intuitions

behind our construction (section 6.1), then present the local construction (sec-

tion 6.2) and global construction (section 6.3) respectively, and give validations

of our methods (section 6.4).

6.1 Intuitions

Unit tangent bundles for S2 surfaces are non-trivial. In order to represent such

a complicated 3-manifold, we utilize the idea of local trivialization. Specifically,

we partition a given surface into a set of covering disks, build a unit tangent

bundle (which is trivial) over each disk, then glue these trivial bundles into a

non-trivial bundle for the original surface.

Without loss of generality, we use a sphere that has radius one and is

centered at the origin of R3 (figure 6.1); Any other g = 0 surface can be

mapped to such a standard sphere. Given a standard sphere M , it can be

sliced open along the equator on the XY plane into two semi-spheres, which

can be further mapped to two unit disks D1 and D2 on the XY plane by

stereographic projection. These two disks are called covering disks for the

original surface M .

For each covering disk, its unit tangent bundle is simply a direct product

of the disk with a circle, Di×S1, which is a solid torus (figure 5.1). In fact, two

such solid tori can cover a unit tangent bundle overM , overlapping each other

only on their boundary surfaces, because the intersection of the two covering

disks for M only happens on their boundary loops.

For the purpose of a global construction, we need to consider the transition

function ϕ21 between two covering disks. It can be formulated as a complex

function

ϕ21(z) =
1

z
(6.1)

By changing to the polar coordinates z = reiθ and restricting to the

boundary of unit disk, we have:

ϕ21(z) = e−iθ (6.2)
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Figure 6.1: A 2-sphere can be parameterized by two unit disks. The map ϕ1

and ϕ2 are both orientation-preserving, verified by the oriented triangle ACB
and ADE. The chart transition function is ϕ21 = 1/z in complex form.

By taking the differential

dϕ21(z) = − 1

z2
= − 1

r2
e−2θi (6.3)

the Jacobian J21 on the boundary of unit disk can be written as:

J21 =

(
cos(π − 2θ) − sin(π − 2θ)
sin(π − 2θ) cos(π − 2θ)

)
(6.4)

The transition function (equation 6.2) and Jacobian (equation 6.4) give

information about how to match the boundary surfaces of two local bundles.

The following proposition states the requirements that our discrete construc-

tion should meet.

Proposition 6.1.1. A discrete construction of unit tangent bundles over a

S2 surface M using two local bundles over covering disks Di should satisfy the

114



following requirements:

[1] According to the transition function ϕ21, a vertex v2j in ∂D2 with polar

angle θj should be mapped to a vertex v1i in ∂D1 with polar angle θi = −θj,

and the fiber over v2j should be mapped to the fiber over v1i .

[2] According to the Jacobian J21, when one starts from a vertex v2j ∈ ∂D2

and goes around ∂D2 once (counterclockwise) to get back to v2j , the cor-

responding fiber should be rotated (or twisted) by 4π at the end.

6.2 Local Construction

Once two covering disks {Dk | 1 6 k 6 2}) are given, we can build local triv-

ial bundles {Tk = Dk × S1 | 1 6 k 6 2}). Local construction refers to the

stage where each local bundle Tk is tessellated with tetrahedra. Such a bundle

can be constructed using algorithms from chapter 5, with extra constraints on

the boundary triangulation. In particular, we need a special grid structure

(section 6.2.1) on the boundary surface ∂Tk, which allows us to assign mean-

ingful coordinates (section 6.2.2) to the vertices in ∂Tk. Then an appropriate

gluable triangulation (section 6.2.3) is needed for ∂Tk so that the tessellation

algorithms from chapter 5 can be adapted here (section 6.2.4) and generates

discrete local bundles that meet the requirements from the global construction

in a later stage.

6.2.1 Grid Structure

The boundary surface ∂Tk of a local bundle Tk is a genus one closed surface.

Considering the global construction that glues two local bundles along their

boundary, it turns out that vertices in boundary triangulation should have

certain grid structures.

Generally speaking, a grid structure over such a torus surface could be

a 2D tensor product of two discretized circles ∂Dk × S1, where ∂Dk is the

boundary of covering disk Dk, S
1 is the fiber. Each circle should be discretized

115



by a set of sampling points (i.e. vertices), and the number of vertices is called

the discretizing resolution. Suppose the discretizing resolution of Dk and S1 is

Mb and Mf respectively, a grid structure Γ can be generally defined over the

boundary of a local bundle Tk as a pair of integers

Γ(∂Tk) = [Mb,Mf ] (6.5)

Furthermore, some other requirements arise from our specific construction

of unit tangent bundles. First, according to proposition 6.1.1, when one goes

around Dk once, he should go around the fiber S1 twice. It implies that

we need the discretization resolution along Dk two times of that along S1,

Mb = 2Mf . Second, according to equation 6.4, there should be a sample point

in the midway of S1. It implies that the resolution of S1 should be an even

number, Mf = 2N for some positive integer N . As a consequence, the grid

structure we actually use in our construction should have the following form

Γ(∂Tk) = [4N, 2N ] (6.6)

for some positive integer N and for 1 6 k 6 2.

6.2.2 Vertex Coordinates

A grid structure as in section 6.2.1 allows us to assign simple yet meaningful

coordinates to vertices of ∂T . Here we introduce two different coordinate

systems.

The first one is called angle coordinate system (figure 6.2a). Note that

each vertex is the intersection of two circles, a copy of ∂Dk and a fiber S1.

Along a copy of ∂Dk the vertices can be parameterized by polar angle θ,

while along a fiber S1 the vertices can be parameterized by polar angle α.

Therefore each vertex v can be represented as a pair of real values θ and α.

Plus, to distinguish vertices from two local bundles, we put an extra integer

k (1 6 k 6 2) in the coordinate, which results in a three-tuple coordinate for

each vertex

(k, θ, α)
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θ

α

θ = 0

α = 0

i

j

i=0

j=0

(a) (b)

Figure 6.2: In angle coordinates (a), θ and α should be normalized to [0..2π).
In grid coordinates (b), i and j should be modulated by m and n respectively,
if there are m fiber circles (in blue) and n base circles (in yellow).

Note that the valid values for both θ and α are between 0 and 2π; any

value beyond this range should be normalized to this range by module 2π.

The second system is called grid coordinate system (figure 6.2b). Similarly,

along each copy of ∂Dk, the vertices can be numbered by {0, 1, ...,Mb − 1} in

the increasing order of polar angle θ. Along each fiber S1, the vertices can be

numbered by {0, 1, ...,Mf−1} in the increasing order of polar angle α. Plus an

extra integer k (1 6 k 6 2) to indicate which local bundle the vertex belongs

to, we have another three-tuple coordinate for each vertex

(k, i, j)

Note that the valid values for i and j is [0..Mb − 1] and [0..Mf − 1]

respectively; any value beyond the range should be modulated by Mb or Mf

accordingly.

Under certain re-parameterization that gives uniform angle difference be-

tween adjacent vertices along Dk and S1 respectively, these two kinds of coor-

dinates can be transformed to each other:
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(k, i, j) =

(
k,

[
θ

2π
·m
]
,
[ α
2π

· n
])

(6.7)

(k, θ, α) =

(
k,

2π

m
· i, 2π

n
· j
)

(6.8)

By fixing the grid size to 4N × 2N , the transformation between angle

coordinates and grid coordinates can be re-written as:

(k, i, j) =

(
k,

[
θ

π
· 2N

]
,
[α
π
·N
])

(6.9)

(k, θ, α) =
(
k,

π

2N
· i, π

N
· j
)

(6.10)

6.2.3 Gluable Triangulation

Having a grid structure 6.6 is the first step to discretize ∂Tk. Here we will define

a special triangulation for ∂Tk using the grid structure. Such a triangulation

allows further gluing of two local bundles and therefore is called a gluable

triangulation.

Definition 6.2.1 (Gluable Triangulation (for UT (S2))). Given a trivial local

bundle Tk = Dk×S1, where Dk (1 6 k 6 2) is a covering disk of a S2 surface,

a triangulation of its boundary ∂Tk = ∂Dk×S1 is called a gluable triangulation

∆(∂Tk) (figure 6.4) if :

[1] The vertices of the triangulation form a grid structure on ∂Tk with the

following form:

Γ(∂Tk) = [4N, 2N ]

for some positive integers N ;

[2] The triangles are defined by all possible combinations of vertices (repre-
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sented with grid coordinates) in the following forms:

[(k, i, j), (k, i+ 1, j), (k, i+ 1, j + 1)]

[(k, i, j), (k, i+ 1, j + 1), (k, i, j + 1)]

Figure 6.4 illustrates an gluable triangulations on both ∂Tk, where ∂Tk

is sliced open along Dk and a fiber S1 and flattened into a 2D domain for

visualization purposes. A 3D view of gluable triangulations is shown in figure

6.3.

It is easy to notice that the edges in a gluable triangulation can be clas-

sified into three types:

• Fiber edge: (for 0 6 i 6 4N , 0 6 j < 2N)

[(k, i, j) , (k, i, j + 1)]

• Base edge: (for 0 6 i < 4N , 0 6 j < 2N)

[(k, i, j) , (k, i+ 1, j)]

• Diagonal edge: (for 0 6 i < 4N , 0 6 j < 2N)

[(k, i, j) , (k, i+ 1, j + 1)]

Furthermore, the edges of the same type will connect into loops, and

all the edges on ∂Tk are grouped into a set of cycles in one of the following

categories:

• Fiber cycles {γFi (k) | 0 6 i 6 4N}:

γFi (k) = [(k, i, 0) , (k, i, 1) , · · · , (k, i, 2N − 1) , (k, i, 0)]
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• Base cycles {γBj (k) | 0 6 j < 2N}:

γBj (k) = [(k, 0, j) , (k, 1, j) , · · · , (k, 4N − 1, j) , (k, 0, j)]

• Diagonal cycles {γDj (k) | 0 6 j 6 2N}:

γDj (k) = [(k, 0, j) , (k, 1, j + 1) , · · · , (k, 4N − 1, j + 4N − 1) , (k, 0, j)]

Figure 6.4 illustrates different types of cycles on ∂T1 and ∂T2; the fiber

cycles, base cycles, and diagonal cycles are drawn in black, red and blue re-

spectively.

On ∂Tk = ∂Dk×S1, every cycle of the above can be projected onto either

∂Dk or S1, or both. Each fiber cycle γFi (k) can be 1-to-1 mapped to a fiber

S1. Each base cycle γBj (k) can be 1-to-1 mapped to ∂Dk. Each diagonal cycle

γDj (c) covers both directions; it can be 2-to-1 mapped onto a fiber S1 and

1-to-1 mapped to ∂Dk.

∂T1 ∂T2

Figure 6.3: Gluable triangulations on the boundary of two local bundles for a
g = 0 surface.
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6.2.4 Local Bundle

Once a gluable triangulation is defined on ∂Tk, we are ready to triangulate the

whole local bundle Tk. Note that the local bundle is a direct product both in

itself Tk = Dk × S1 and on the boundary ∂Tk = ∂Dk × S1, and the gluable

triangulation of ∂Tk also has a grid structure which is a tensor product. It

meets all the requirements in definition 5.1.1 and can therefore be triangulated

using algorithms in chapter 5.

By definition 6.2.1, each fiber has a discretizing resolution of 2N . Thus

in a tetrahedral mesh for local bundle Tk = Dk ×S1, the base Dk should have

2N pre-images (i.e. base copies) {(Dk)j|0 6 j < 2N}, where each (Dk)j is

a triangular mesh consisting of all the vertices that have local coordinate j

along fiber S1. The whole tetrahedral mesh Tk is then partitioned by these

base copies into 2N bundle segments {(Dk)j × Ij|0 6 j < 2N}, where Ij is a

one-dimensional interval corresponding to an edge (j, j + 1) along a fiber.

In order to extend the boundary triangulation into the whole volume Tk,

we can actually do this for each bundle segment (Dk)j × Ij individually, where
the problem is converted to the cutting pattern problem (definition 5.1.2) for

base copy (Dk)j. To do the conversion, we need to represent the boundary

triangulation on each ∂(Dk)j × Ij in the language of cutting patterns (section

5.1.2).

Definition 6.2.2 (Boundary Cutting Pattern for UT (S2)). Given a gluable

triangulation for ∂Tk = ∂Dk×S1, where Dk is a covering disk of a S2 surface,

Tk is a trivial local bundle Tk = Dk × S1, let ∂(Dk)j denote the j’th copy of

∂Dk in ∂Tk. The boundary cutting pattern is a function f that assigns every

edge in each ∂(Dk)j with integer +1.

Using the above boundary cutting patterns as boundary constraints, we

can compute cutting patterns for each base copy (Dk)j using algorithms from

chapter 5, which will give us a tetrahedral tessellation for each bundle segment

(Dk)j × Ij and thus a tetrahedral mesh for the whole local bundle Tk.
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6.3 Global Construction

The global construction considers how to glue two local bundles (constructed

in section 6.3) into a global one, and the later will be a discrete representation

for the unit tangent bundle UT (S2) for the original surface S2. As explained

in section 6.1, such a gluing only involves the boundary surface of local bundles

T1 and T2. In order to glue two local bundles together, we need to define a

gluing map between ∂T1 and ∂T2.

A2

A1

A3

A3

A5

A4

A6

A0

A7

A0

A7

B2B1 B3 B5B4 B6 B0B7B0

θ = 0 θ = π θ = 2π

α = 0

α = π

α = 2π

j = 0

j = N

j = 2N

i = 2N i = 4Ni = 0

∂T2

θ = 0 θ = π θ = 2π

α = 0

α = π

α = 2π

j = 0

j = N

j = 2N

i = 2N i = 4Ni = 0

B0

A2A1 A3 A5A4 A6 A0A7A0

B2

B1

B3

B5

B4

B6

B7

B0

B2B6

∂T1

Figure 6.4: Gluable triangulations (Definition 6.2.1) and a gluing map (Def-
inition 6.3.1) in between. It maps each cycle in ∂T1 to a unique cycle in
∂T2 that has the same color, namely, grey (vertical) to grey (vertical), red
(horizontal) to red (diagonal), blue (diagonal) to blue (horizontal). In partic-
ular, the high-lighted red cycle A0A1 · · ·A7A0 from both sides are identified
under the map; same for the blue cycle B0B1 · · ·B7B0. Note that this map
is orientation-reversing, it maps pairs of oriented triangles from both sides
against the normal of each other.
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6.3.1 Gluing Map

To design a gluing map between ∂T1 and ∂T2, one needs to consider how a

gluing map should behave. The behavior of a gluing map should be consistent

with the way we partition a given surface in section 6.1, and is therefore deter-

mined by the transition function between the covering disks and the jacobian

of the transition function.

According the transition function in equation 6.2, ∂D2 is identified with

∂D1 by reversing the orientation. That means ∂T2 = ∂D2×S1 should be iden-

tified with ∂T2 = ∂D1 ×S1 with orientation reversed. Furthermore, according

to the jacobian in equation 6.4, fibers in ∂T2 need to be twisted before getting

identified with fibers in ∂T1, and the speed of fiber twisting is twice the speed

of traveling along ∂D2, plus a shift of π in angle coordinates, or equivalently,

N in grid coordinates.

Based the above observations, we define a gluing map from ∂T2 to ∂T1 as

follows.

Definition 6.3.1 (Gluing Map for UT (S2)). Given an S2 surface M , its two

covering disks {Dk | k = 1, 2} and two local bundles {Tk = Dk × S1} whose

boundaries {∂Tk = ∂Dk × S1} have gluable triangulations {∆(∂Tk)} with grid

structure [4N, 2N ], a map

Ψ : ∂T2 → ∂T1

is called a gluing map if it acts on the vertices of the gluable triangulations as

follows:

Ψ((2, i, j)) = (1,−i, j − i+N)

Using this map, we can glue two local bundles together along their bound-

ary surfaces nicely. As validated in the next section, such a construction will

generate a valid tetrahedral mesh that has no boundary, and this mesh is a

faithful discrete representation of the unit tangent bundle over the original

surface.

123



6.4 Validations

In previous sections, we introduce gluable triangulations on the boundary sur-

face of local bundles, and define a gluing map between them. In this section we

will show that these constructions will produce desired discrete representations

for unit tangent bundles of S2 surfaces.

6.4.1 Bijection

First of all we will show that a gluing map induces a bijection of the glu-

able triangulations on ∂T1 and ∂T2. To achieve this, we use three lemmas to

show the bijection of vertices (lemma 6.4.1), edges (lemma 6.4.2) and triangles

(lemma 6.4.3) respectively.

Lemma 6.4.1. A gluing map Ψ induces a bijection between vertices in ∂T1

and vertices in ∂T2.

Proof. By definition of Ψ∂T2 → ∂T1, any vertex in ∂T2 has a unique image in

∂T1 under map Ψ. So it suffices to show that every vertex in ∂T1 has a unique

pre-image in ∂T2.

For any vertex (1, i′, j′) ∈ ∂T1 (0 6 i′ 6 4N , 0 6 j′ 6 2N), suppose it has

a pre-image, denoted as (2, i, j) ∈ ∂T2. By definition we have

(1, i′, j′) = (1,−i, j − i+N)

Solving this for i and j, we have

i = −i′

j = j′ − i′ −N

With a modulation of 4N for i′ and 2N for j′, it corresponds to a unique

vertex in ∂T1. Therefore Ψ is a bijection between vertices on ∂T2 and vertices
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on ∂T1. And the inverse map can be defined as:

Ψ−1 ((1, i′, j′)) = (2,−i′, j′ − i′ +N)

Lemma 6.4.2. A gluing map Ψ induces a bijection between edges in ∂T1 and

edges in ∂T2.

Proof. It suffices to show that under Ψ∂T2 → ∂T1, any edge in ∂T2 has a

unique image in ∂T1, and any edge in ∂T1 has a unique pre-image in ∂T2.

We first show that any edge in ∂T2 has a unique image in ∂T1 under map

Ψ.

• For any fiber edge [(2, i, j) , (2, i, j + 1)] (0 6 i 6 4N , 0 6 j < 2N), the

end vertices are mapped to

Ψ ((2, i, j)) = (1,−i, j − i+N)

Ψ ((2, i, j + 1)) = (1,−i, j − i+N + 1)

With a substitution

i′ = −i (modulated by 4N)

j′ = j − i+N (modulated by 2N)

it corresponds to a valid and unique fiber edge in ∂T1

[(1, i′, j′), (1, i′, j′ + 1)]

• For any base edge [(2, i, j) , (2, i+ 1, j)] (0 6 i < Nk, 0 6 j < N), the
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end vertices are mapped to

Ψ ((2, i, j)) = (1,−i, j − i+N)

Ψ ((2, i+ 1, j)) = (1,−i− 1, j − i− 1 +N)

With a substitution

i′ = −i− 1 (modulated by 4N)

j′ = j − i− 1 +N (modulated by 2N)

it corresponds to a valid and unique diagonal edge in 1× S1

[(1, i′ + 1, j′ + 1), (1, i′, j′)]

• For any diagonal edge [(2, i, j) , (2, i+ 1, j + 1)] (0 6 i < Nk, 0 6 j < N),

the end vertices are mapped to

Ψ ((2, i, j)) = (1,−i, j − i+N)

Ψ ((2, i+ 1, j + 1)) = (1,−i− 1, j − i+N)

With a substitution

i′ = −i− 1 (modulated by 4N)

j′ = j − i+N (modulated by 2N)
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it corresponds to a valid and unique base edge in 1× S1

[(1, i′ + 1, j′), (1, i′, j′)]

By a similar analysis on the inverse map Ψ−1, it can be shown that any

edge in ∂T1 is mapped to a valid and unique edge in ∂T2.

In summary, Ψ induces a bijection between edges in ∂T1 and edges in

∂T2.

Lemma 6.4.3. A gluing map Ψ induces a bijection between triangles in ∂T1

and triangles in ∂T2.

Proof. It suffices to show that under Ψ∂T2 → ∂T1, any triangle in ∂T2 has a

unique image in ∂T1, and any triangle in ∂T1 has a unique pre-image in ∂T2.

We first show that any triangle in ∂T2 has a unique image in ∂T1 under

map Ψ, with orientation reversed.

• For any triangle

[(2, i, j), (2, i+ 1, j), (2, i+ 1, j + 1)]

(0 6 i < 4N , 0 6 j < 2N), the end vertices are mapped to

Ψ ((2, i, j)) = (1,−i, j − i+N)

Ψ ((2, i+ 1, j)) = (1,−i− 1, j − i− 1 +N)

Ψ ((2, i+ 1, j + 1)) = (1,−i− 1, j − i+N)

With a substitution

i′ = −i− 1 (modulated by 4N)
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j′ = j − i− 1 +N (modulated by 2N)

it corresponds to a unique but orientation-reversed triangle in ∂T1

[(1, i′ + 1, j′ + 1), (1, i′, j′), (1, i′, j′ + 1)]

• For any triangle

[(2, i, j), (2, i+ 1, j + 1), (2, i, j + 1)]

(0 6 i < 4N , 0 6 j < 2N), the end vertices are mapped to

Ψ ((2, i, j)) = (1,−i, j − i+N)

Ψ ((2, i+ 1, j + 1)) = (1,−i− 1, j − i+N)

Ψ ((2, i, j + 1)) = (1,−i, j + 1− i+N)

With a substitution

i′ = −i− 1 (modulated by 4N)

j′ = j − i+N (modulated by 2N)

it corresponds to a unique but orientation-reversed triangle in ∂T1

[(1, i′ + 1, j′), (1, i′, j′), (1, i′ + 1, j′ + 1)]

By a similar analysis on the inverse map Ψ−1, it can be shown that any

triangle in ∂T1 is mapped to a unique but reversed triangle in ∂T2.

In summary, Ψ induces a bijection between triangles in ∂T1 and triangles

128



in ∂T2 with orientation reversed.

∂T1

θ = π/8

(i = 1)

∂T2

θ = −π/8

(i = −1)

∂T1 ∂T2

Figure 6.5: Fiber cycles on ∂T1 are mapped to fiber cycles on ∂T2.

According to lemma 6.4.1, 6.4.2 and 6.4.3, we claim that a gluing map

induces a bijection of gluable triangulations for ∂T1 and ∂T2.

Theorem 6.4.1. A gluing map Ψ induces a bijection between the gluable tri-

angulation for ∂T1 and the gluable triangulation for ∂T2.

In addition, from lemma 6.4.2 and its proof, we can get a corollary re-

garding the mapping among cycles of different types.

Corollary 6.4.1. A gluing map Ψ induces a bijection between cycles on ∂T1

and cycles on ∂T2. In particular:
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∂T1

α = 0.0

(j = 0)

∂T2

∂T1 ∂T2

Figure 6.6: Base cycles on ∂T1 are mapped to diagonal cycles on ∂T2.
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• Any fiber cycle on ∂T1 is mapped to a unique fiber cycle on ∂T2, and vice

versa;

• Any base cycle on ∂T1 is mapped to a unique diagonal cycle on ∂T2, and

vice versa;

• Any diagonal cycle on ∂T1 is mapped to a unique base cycle on ∂T2, and

vice versa;

∂T1 ∂T2

α = 0.0

(j = 0)

∂T1 ∂T2

Figure 6.7: Diagonal cycles on ∂T1 are mapped to base cycles on ∂T2.
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6.4.2 Continuity

In the previous section we show that a gluing map Ψ induces bijections of

vertices, edges and triangles between ∂T1 and ∂T2. Actually Ψ has an even

nicer property, it is continuous on the triangulations over each band. Before

getting to a theorem about this, we need some definitions.

Definition 6.4.2 (One-Ring Neighborhoods for Vertices). Given a triangula-

tion ∆ and a vertex v ∈ ∆, the one-ring neighborhood of v is a sequence of

triangles

Θ(v) = [f1, f2, · · · , ft]

such that

• v ∈ fi for 1 6 i 6 t;

• There is a common edge shared by fi and fi+1 for 1 6 i < t, and by ft

and f1 if v is not on the boundary;

• All the fi’s are ordered counter-clockwisely.

We call t the face-valence of v.

Definition 6.4.3 (Continuous Map for Triangulations). Given two triangu-

lated domain ∆1 and ∆2, a map Φ : ∆1 → ∆2, and a vertex v ∈ ∆1; denote

the one-ring neighborhood of v as

Θ(v) = [f1, f2, · · · , ft]

denote the image vertex as v′ = Φ(v) and its one-ring neighborhood as

Θ(v′)) = [f ′
1, f

′
2, · · · , f ′

t ]
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where

f ′
i = Φ(fi)

The given map Φ is continuous if and only if for every v ∈ ∆1,

Φ(fi) = f ′
i (1 6 i 6 t)

Φ is reversely continuous if and only if for every v ∈ ∆1

Φ(fi) = (f ′
t−i)

−1 (1 6 i 6 t)

where (f ′
i)

−1 denotes f ′
i with orientation reversed.

In another word, a map between two triangulations are continuous or

reversely continuous if and only if it keeps one-ring neighborhoods invariant

for all the vertices with orientation preserved or reversed. And as proved in

the following theorem, a gluing map in definition 6.3.1 is a continuous map

with orientation reversed.

Theorem 6.4.4. Gluing map Ψ and its inverse Ψ−1 are both reversely con-

tinuous.

Proof. It suffices to show that both Ψ and Ψ−1 keeps one-ring neighborhoods

invariant with orientation reversed.

For any vertex v = (2, i, j) in ∂T2, its one-ring neighborhood has six

triangles

Θ(v) = [f1, f2, f3, f4, f5, f6]

where

f1 = [(2, i, j), (2, i, j − 1), (2, i+ 1, j)]

f2 = [(2, i, j), (2, i+ 1, j), (2, i+ 1, j + 1)]
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f3 = [(2, i, j), (2, i+ 1, j + 1), (2, i, j + 1)]

f4 = [(2, i, j), (2, i, j + 1), (2, i− 1, j)]

f5 = [(2, i, j), (2, i− 1, j), (2, i− 1, j − 1)]

f6 = [(2, i, j), (2, i− 1, j − 1), (2, i, j − 1)]

Under Ψ they are mapped to

Ψ(f1) = [(2, i′, j′), (2, i′, j′ − 1), (2, i′ − 1, j′ − 1)]

Ψ(f2) = [(2, i′, j′), (2, i′ − 1, j′ − 1), (2, i′ − 1, j′)]

Ψ(f3) = [(2, i′, j′), (2, i′ − 1, j′), (2, i′, j′ + 1)]

Ψ(f4) = [(2, i′, j′), (2, i′, j′ + 1), (2, i′ + 1, j′ + 1)]

Ψ(f5) = [(2, i′, j′), (2, i′ + 1, j′ + 1), (2, i′ + 1, j′)]

Ψ(f6) = [(2, i′, j′), (2, i′ + 1, j′), (2, i′, j′ − 1)]

where

i′ = −i , j′ = j − i+N

For the image vertex v′ = Ψ(v) = (1, i′, j′), it also has a one-ring neighborhood

of six triangles

Θ(v′) = [f ′
1, f

′
2, f

′
3, f

′
4, f

′
5, f

′
6]

where

f ′
1 = [(2, i′, j′), (2, i′, j′ − 1), (2, i′ + 1, j′)]

f ′
2 = [(2, i′, j′), (2, i′ + 1, j′), (2, i′ + 1, j′ + 1)]

f ′
3 = [(2, i′, j′), (2, i′ + 1, j′ + 1), (2, i′, j′ + 1)]
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f ′
4 = [(2, i′, j′), (2, i′, j′ + 1), (2, i′ − 1, j′)]

f ′
5 = [(2, i′, j′), (2, i′ − 1, j′), (2, i′ − 1, j′ − 1)]

f ′
6 = [(2, i′, j′), (2, i′ − 1, j′ − 1), (2, i′, j′ − 1)]

Obviously

Ψ(f1) = (f ′
6)

−1

Ψ(f2) = (f ′
5)

−1

Ψ(f3) = (f ′
4)

−1

Ψ(f4) = (f ′
3)

−1

Ψ(f5) = (f ′
2)

−1

Ψ(f6) = (f ′
1)

−1

which means that Ψ maps Θ(v) to the reversed Θ(Ψ(v)). Therefore Ψ is

reversely continuous from ∂T2 to ∂T1.

By a similar analysis on Ψ−1 from ∂T1 to ∂T2, it can be shown that Ψ−1

is also reversely continuous.

6.4.3 Fiber Twisting

Corollary 6.4.1 describes the behavior of gluing map Ψ on different types of

cycles. Here we give further investigations on its behavior on fiber cycles,

which will give rise to insights about how the global bundle is twisted under

gluing map Ψ.

On each fiber cycle, there is a unique vertex with zero polar angle (i.e. α =

0). We call this vertex the zero point of this fiber cycle. According to corollary

6.4.1, every fiber cycle on ∂T2 is mapped to a unique fiber cycle on ∂T1. In our

construction, it turns out that their zero points are not identified. Instead, a

fiber cycle from ∂T2 is twisted by certain amount to meet the image cycle on

135



∂T1. Actually how their zero points are mapped tells how a band is twisted.

The following theorem states that such twisting satisfies the requirements from

proposition 6.1.1.

Theorem 6.4.5. A gluing map Ψ induces a 4π twist of fiber cycles across ∂T2

and ∂T1.

Proof. Consider the sequence of fiber cycles on ∂T2:

[
γF0 (2), γ

F
1 (2), · · · γF4N−1(2), γ

F
4N(2)

]
where the last one is actually the same fiber as the first one under modulation

of 4N . According to corollary 6.4.1 they are mapped to a sequence of fiber

cycles on ∂T1: [
γF4N(1), γ

F
4N−1(1), · · · γF1 (1), γF0 (1)

]
Note that the zero points of fiber cycles on ∂T1 are:

[(1, 4N, 0), (1, 4N − 1, 0), · · · , (1, 1, 0), (1, 0, 0)]

Now consider the corresponding pre-image vertices on ∂T2. Under gluing map

Ψ((2, i, j)) = (1,−i, j − i+N)

and considering the modulation of 4N and 2N for i and j respectively, the

zero points of fiber cycles on ∂T1 are mapped to:

[(2, 0, 0), (2, 1, 1, · · · , (2, 4N − 1, 4N − 1), (2, 4N, 4N)]

That is, using grid coordinates, for i = 0, 1, · · · , 4N − 1, 4N , fiber γFi (2)

needs to be rotated (in terms of j) by 0, 1, · · · , 4N − 1, 4N to meet the
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zero point on the image fiber Ψ
(
γFi (2)

)
. Translating to the angle coordinates

(equation 6.10), an increment of 4N in terms of i is equivalent to a rotation

of 2π, while an increment of 4N in terms of j is equivalent to a rotation of

4π. That means traversing ∂D2 once will incur a fiber twisting of 4π. By

a similar analysis on the inverse map Ψ−1, one will reach a symmetric result

that traversing ∂D1 once will also incur a fiber twisting of 4π.

6.4.4 Final Remarks

In this chapter, we present a local-to-global framework to build unit tangent

bundles for a S2 surface. We first partition the surface into two covering disks

D1 and D2 that intersecting only in their boundaries. Then build two trivial

local bundles T1 and T2 with gluable triangulations on their boundary, and

gluing T1 and T2 along their boundary by a gluing map Ψ. We also prove

some claims that characterize this construction, they can be summarized in

two conclusions as below.

First, gluing map Ψ glues local bundles T1 and T2 into a valid tetrahedral

mesh UT that has no boundary. With a gluable triangulation (definition 6.2.1)

defined on ∂T1 and ∂T2, the gluing map Ψ (definition 6.3.1) between them

is both bijective (theorem 6.4.1) and reversely continuous (theorem 6.4.4).

That means the two local bundles are glued to each other along the boundary

seamlessly and the result is a valid tetrahedral mesh without any boundary.

Second, the tetrahedral mesh UT faithfully represents a unit tangent bun-

dle over a given S2 surface. Under gluing map Ψ the fibers along ∂D2 are

twisted (theorem 6.4.5) and then identified (corollary 6.4.1) with fibers along

∂D1. The twisting conforms to the transition function (equation 6.2) between

two covering disks and to the jacobian (equation 6.4) of the transition func-

tion, and the total twisting in the global bundle UT amounts to 4π (theorem

6.4.5). Thus the final tetrahedral mesh UT is a valid representation of unit

tangent bundle over the original surface.

In summary, we claim that our construction will generate valid discrete

representations of unit tangent bundles over S2 surfaces.
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Theorem 6.4.6. Given a S2 surfaceM , the local-to-global construction gener-

ates a valid tetrahedral mesh that faithfully represents the unit tangent bundle

UT (M).
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Chapter 7

Discrete Unit Tangent Bundles

for g > 0 Closed Surfaces
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This chapter is devoted to discrete unit tangent bundles for g > 0 closed

and orientable surfaces, which are surfaces with g handles T 2
g . It covers g = 1

surfaces whose unit tangent bundle is trivial, and g > 1 surfaces whose unit

tangent bundle is non-trivial, they share the same philosophy of construc-

tion. We start from the intuitions behind our construction (section 7.1), then

present the local construction (section 7.2) and global construction (section

7.3) respectively, and finally give validations of our methods (section 7.4).

7.1 Intuitions

For discrete unit tangent bundles of g > 0 surfaces, we follow a local-to-global

philosophy that is similar to that of the g = 0 case (section 6). Namely, we

first construct some local bundles that are trivial, then glue them into a global

bundle that could be non-trivial. The motivation to keep following such a

philosophy is multi-folded.

• According to our construction of discrete unit tangent bundles for disks

D2 (section 5.1), the local bundle of T 2(g) have regular inner structures;

by gluing a set of local bundles into a global bundle of T 2(g), most part

of the regularity in local bundles will be preserved in the global bundle

as well.

• Based on the algorithms in section 5, each local bundle over D2 is guar-

anteed to have a nice tessellation with tetrahedra, which can also be

transferred into the global bundle of T 2(g) with careful design of bound-

ary triangulations.

• The unit tangent bundle of T 2(g) is a closed 3-manifold that cannot

be embedded in R3 and is therefore hard to visualize. A discrete local

bundle over D2, however, can be easily embedded in R3 and therefore

provides an indirect way to visualize the internal mesh structure of the

global bundle of T 2(g).

Despite the similarity to the g = 0 case, the construction in this chapter

has prominent difference in several aspects, such as the way to partition the
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surface to disks, and the way to enforce twisting into a non-trivial global

bundle.

7.1.1 Construct Covering Disks

The first step to build local bundles for a T 2(g) surface is to find a set of

topological disks covering the whole surface. In fact, any closed and oriented

surface with one or more handles can be naturally covered by one disk. We

will explain this in below with some basic knowledge of surface topology.

ψ

M D

γ1γ2

a1a2

a
−1
1 a

−1
2

Figure 7.1: A g = 1 surface M can be covered by a single disk D under
covering map ψ. The boundary of the disk ∂D consists of 4 segments that are
identified in pairs under map ψ.

On a closed and oriented surface M of genus g, we can always find 2g

loops, {γ1, γ2, · · · , γ2g}, such that none of them can be deformed to one another

smoothly without leaving the surface. For example, figure 7.1 shows 2 such

loops on a genus 1 surface, figure 7.2 shows 4 such loops on a genus 2 surface.

These loops represent the generators of the first homology group of the given

surface. When the given surface is not knotted, these loops can also be named

handle loops and tunnel loops respectively (as in [16]). In this work, we call

them cutting loops.

Cutting loop ai and bi intersect with each other at somewhere on the

surface. Without loss of generality, we can always assume that all the loops
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ψ

M D

γ1

γ2

a1

a2a
−1
1

a
−1
2

γ3

γ4

a3

a4 a
−1
3

a
−1
4

Figure 7.2: A g = 2 surface M can be covered by a single disk D under
covering map ψ. The boundary of the disk ∂D consists of 8 segments that are
identified in pairs under map ψ.

intersect at a single common point; in case two loops having no intersection or

more than one intersections, they can always be perturbed on the surface so

that they meet one another at only one common point. This common point

is called the base point. A set of cutting loops sharing a single base point are

called canonical cutting loops.

By slicing a surfaceM open along a set of canonical cutting loops, we can

get a topological disk D (see figure 7.1 and 7.2). Each cutting loop γk on M

is split into two boundary curves ak and a−1
k in D, and the base point p of M

is split into 4g copies in D. Namely, D can be viewed as a 4g-sided polygonal

region, whose boundary ∂D consists of 4g segments

∂D = c1c2 · · · c4g (7.1)

where each ci (1 6 i 6 4g) represents one of the boundary segments

{aj, a−1
j | 1 6 j 6 2g} in D and therefore corresponds to a cutting loop γk

(1 6 k 6 2g)in M . In particular, by appropriate choice of base point and

cutting loops, ∂D can be expressed in a canonical form

∂D = a1a2a
−1
1 a−1

2 · · · a2g−1a2ga
−1
2g−1b

−1
2g (7.2)
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In algebraic topology, such a polygonal disk can be used as a representa-

tion of the so called fundamental domain, and can serve as one period in the

universal covering space, which is a simply connected surface that covers M

by infinitely many periods. In computational topology, this disk is called a

(canonical) polygonal schema. In this work, we name it a covering disk, which

covers the original surface M through a covering map

ψ : D →M

which is a surjective map such that (for 1 6 j 6 2g and 1 6 i 6 4g)

ψ(aj) = ψ(a−1
j ) = γj

ψ(pi) = p

where pi ∈ D is a common point between two consecutive segments

pi = ci ∩ ci+1

Also, we can define an identifying map

φ : ∂D → ∂D

which is a bijective self-map that identifies boundary segments in D in

pairs (1 6 j 6 2g)

φ(aj) = a−1
j , φ(a−1

j ) = aj

In our construction of discrete unit tangent bundles, we use such a covering

disk D to build a local bundle.

7.1.2 Enforce Twisting

A unit tangent bundle for a compact surface is in general non-trivial and may

have certain amount of twisting. As a well known result in algebraic topology,

the total twisting in a unit tangent bundle should be
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total twisting = 2πχ = 2π(2− 2g)

where χ is the Euler characteristic of the base surface, which equals 2−2g

if the base surface has genus g. It implies that, for example, for genus 0, 1

and 2 closed surfaces the total twisting in their unit tangent bundles should

be 4π, 0 and −4π respectively.

In our discrete construction of unit tangent bundles, a key challenge is how

to enforce the right amount of twisting into the final tetrahedral mesh. For

genus 0 closed surface (i.e. S2), as we have seen in chapter 6, the total twisting

is enforced along a cutting loop that partitions the sphere into two covering

disks D1 and D2. Recall that two local bundles T1 and T2 are built over those

two disks, and they are glued into a global bundle along their boundary. Then

the twisting is directly reflected by the gluing map between the boundaries

∂T1 and ∂T2 of local bundles.

For g > 0 surfaces, we hope to repeat the process for g = 0 surfaces by

enforcing the twisting along cutting loops. Unlike the sphere case, now we

have 2g cutting loops on a genus g surface, while having 2π(2 − 2g) twisting

to be enforced. In this work, we distribute the twisting among 2g − 2 cutting

loops with −2π per loop, while leaving the remaining 2 cutting loops free of

twisting. As a special case, for g = 1 surfaces, there are no twisting in the

unit tangent bundle, and the only two cutting loops are both free of twisting.

7.2 Local Construction

In the stage of local construction, we are given a covering disk D for a genus

g (g > 0) surface M , and need to build a tetrahedral mesh for the trivial local

bundle T = D × S1. First of all, we design a special grid structure (section

7.2.1) on the boundary surface ∂T of the local bundle, which allows us to

assign meaningful coordinates (section 7.2.2) to the vertices in ∂T . Then we

design an appropriate gluable triangulation (section 7.2.3) on ∂T so that a

tetrahedral mesh can be built (section 7.2.4) from this boundary triangulation

using algorithms from chapter 5. Note that the construction in this stage

meets the requirements for a unit tangent bundle of M and is consistent with
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the global construction in a later stage.

7.2.1 Grid Structure

A local bundle T over a covering disk D is a solid torus, its boundary ∂T is

a genus one closed surface. In our construction, ∂T needs to be triangulated

appropriately, and it turns out that the vertices in this triangulation should

have certain grid structure.

Note that ∂T is a direct product ∂T = ∂D × S1, the grid structure

could naturally be a tensor product of discretized ∂D and discretized S1,

both of which are piece-wise linear approximations for a one-dimensional loop.

Further, since ∂D consists a set of segments ck, the discretization of ∂D is a

union of the discretization of each segment ck. As a tensor product, the grid

structure can therefore be described by the discretizing resolution, i.e. amount

of edges, along fiber S1 and that along each ck.

Formally, for the boundary surface ∂T of a local bundle T for a genus g

(g > 0) surface, we can define a general grid structure Γ(∂T ) as a (1+4g)-tuple

of integers

Γ(∂T ) =
[
Mf ,Mc1 ,Mc2 , · · · ,Mc4g

]
(7.3)

whereMf specifies the number of edges along each fiber S1,Mck represents

the discretizing resolution of the k’th segment in ∂D (1 6 k 6 4g). Note that

each ck is a curve segment bounded at both ends, the number of vertices along

ck is thereforeMck+1, and every pair of consecutive segments share a common

vertex.

The last 4g integers can not be assigned arbitrarily, they are subject to

certain restrictions.

First, as explained in section 7.1.1, boundary segment ak should be iden-

tified with a−1
k . Consequently for 1 6 k 6 2g, we have

Mak =Ma−1
k

Thus the representation for a grid structure in 7.3 can be simplified to
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1 + 2g integers:

Γ(∂T ) = [Mf ,M1,M2, · · · ,M2g] (7.4)

where Mk represents the discretizing resolution for both ak and a−1
k .

Secondly, our discrete construction of UT (T 2(g)) imposes a further re-

quirement. As elaborated in section 7.1.2, among all the 2g cutting loops on

the original surface M , only two of them are free of twisting, while any other

loop will bear a twisting of −2π. Without loss of generality, assume γ1 and

γ2 are the two twisting-free cutting loops. Then as further explained in later

discussions (section 7.2.3, 7.3.1), we require that for 3 6 k 6 2g:

Mk =Mf

Therefore the grid structure that we actually use in later constructions

can be defined by only three integers:

Γ(∂T ) = [N,N1, N2] (7.5)

where

N =Mf =Mk (3 6 k 6 2g)

N1 =M1

N2 =M2

Namely, N denotes the discretizing resolution of the fiber S1, as well as

that of the 4g− 4 twisting-bearing boundary segments; N1 and N2 denote the

discretizing resolution of those two pairs of twisting-free boundary segments.

These three integers are independent to one another and can be chosen indi-

vidually.

7.2.2 Vertex Coordinates

In any grid structure defined generally in 7.3, every vertex in it can be assigned

with a coordinate, either locally or globally.
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One local coordinate system can be built along each fiber, where every

vertex can be indexed by an integer j (0 6 j < Mf ). Note that since each fiber

is a closed loop, any addition and substraction for this coordinate is modulated

by Mf , so that the value is always in the range of [0,Mf − 1]. For example,

j =Mf is equivalent to j = 0, j = −1−Mf is equivalent to j =Mf − 1.

Another local coordinate system can be built along each boundary seg-

ment ck ⊂ ∂D, where every vertex can be indexed by an integer i (0 6 i 6
Mck). Recall that each ck is a curve segment rather than a loop, and there are

Mck edges along ck; therefore, there should be Mck + 1 distinguished vertices

along ck, and the end vertex i = 0 and i =Mck should be identified with some

end vertex of adjacent boundary segment ck−1 and ck+1.

If we enlarge the scope to the whole grid structure Γ(∂T ), every vertex

can be assigned with a global coordinate

[ck, i, j]

where ck could be any boundary segment among {al, a−1
l | 1 6 l 6 2g}.

This coordinate represents the j’th vertex on a fiber over the i’th vertex of

the boundary segment ck ⊂ ∂D. In another word, if the vertex is projected to

boundary segment ck ⊂ ∂D, it has local coordinate i; projected to a fiber, it

has local coordinate j.

7.2.3 Gluable Triangulation

Once a grid structure is defined on ∂T , we can build a triangulation over the

vertices in the grid structure. Here we define a special triangulation ∆(∂T )

such that the local bundle T can be turned into a global bundle later. We call

it a gluable triangulation.

Definition 7.2.1 (Gluable Triangulation for UT (T 2(g))). Given a trivial local

bundle T = D × S1, where D is the covering disk of a T 2(g) surface (g > 0),

a triangulation of its boundary ∂T = ∂D× S1 is called a gluable triangulation

∆(∂T ) if :
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[1] The vertices of the triangulation form a grid structure on ∂T with the

following form:

Γ(∂T ) = [N,N1, N2]

for some positive integers N , N1 and N2. Namely,

• Every fiber S1 consists of N edges;

• Every boundary segment c ∈ {a1, a−1
1 } consists of N1 edges;

• Every boundary segment c ∈ {a2, a−1
2 } consists of N2 edges;

• Every boundary segment c ∈ {ak, a−1
k | 3 6 k 6 2g} consists of N

edges.

[2] The triangles in each band c× S1 ⊂ ∂D are defined by all possible com-

binations of vertices in the following forms:

• For c ∈ {a1, a2}:

[(c, i, j), (c, i+ 1, j), (c, i+ 1, j + 1)]

[(c, i, j), (c, i+ 1, j + 1), (c, i, j + 1)]

• For c ∈ {a−1
1 , a−1

2 }:

[(c, i, j + 1), (c, i, j), (c, i+ 1, j)]

[(c, i, j + 1), (c, i+ 1, j), (c, i+ 1, j + 1)]

• For c ∈ {ak, a−1
k | 3 6 k 6 2g}:

[(c, i, j + 1), (c, i, j), (c, i+ 1, j)]
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[(c, i, j + 1), (c, i+ 1, j), (c, i+ 1, j + 1)]

In the part of defining triangles, the first two cases are for untwisted

bands, as shown in figure 7.5, while the third case is for twisted bands, as

shown in figure 7.6. In both of these figures, a band is cut off along a base

path and flattened into a 2D domain for visualization purposes. Moreover, a

3D view of gluable triangulations is shown in figure 7.3 and 7.4 for g = 1 and

g = 2 base surfaces respectively.

By definition, the edges in a gluable triangulation can be classified as

• Fiber edge: (for 0 6 i 6Mc, 0 6 j < Mf )

[(c, i, j) , (c, i, j + 1)]

• Base edge: (for 0 6 i < Mc, 0 6 j < Mf )

[(c, i, j) , (c, i+ 1, j)]

• Diagonal edge: (for 0 6 i < Mc, 0 6 j < Mf )

[(c, i, j) , (c, i+ 1, j + 1)]

• Anti-diagonal edge: (for 0 6 i < Mc, 0 6 j < Mf )

[(c, i, j) , (c, i+ 1, j − 1)]

Moreover, the edges of the same type will connect into paths (or loops).

And all the edges within each band c×S1 ⊂ ∂T can be grouped into paths in

one of the following types:

• Fiber paths {γFi (c) | 0 6 i 6Mc}:

γFi (c) = [(c, i, 0) , (c, i, 1) , · · · , (c, i,Mf − 1) , (c, i, 0)]
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• Base paths {γBj (c) | 0 6 j < Mf}:

γBj (c) = [(c, 0, j) , (c, 1, j) , · · · , (c,Mc, j)]

• Diagonal paths {γDj (c) | 0 6 j 6M = min{Mf ,Mc}}:

γDj (c) = [(c, 0, j) , (c, 1, j + 1) , · · · , (c,M, j +M)]

• Anti-diagonal paths {γAj (c) | 0 6 j 6M = min{Mf ,Mc}}:

γAj (c) = [(c, 0, j) , (c, 1, j − 1) , · · · , (c,M, j −M)]

where c denotes a boundary segment in {ak, a−1
k | 1 6 k 6 2g},Mc denotes

the discretizing resolution of c,Mf denotes the discretizing resolution of a fiber,

and (c, i, j) is the global coordinate of a vertex, where the value of j is always

normalized to [0,Mf − 1]. For example, figure 7.5 illustrates different types of

paths on a pair of untwisted bands; the fiber paths, base paths, and diagonal

(or anti-diagonal) paths on ak × S1 (or a−1
k × S1)are drawn in black, red and

blue respectively. Similarly, figure 7.6 shows these paths on a pair of twisted

bands.

On ∂T = ∂D × S1, every path can be projected onto either ∂D or S1, or

both. Each fiber path γFi (c) can be projected onto a fiber S1; actually it is a

loop by itself that represents a fiber. Each base path γBj (c) can be projected

to boundary segment c, and the later will be mapped to a cutting loop on

the original surface. Each diagonal path γDj (c) or anti-diagonal path γAj (c)

actually covers both directions; projected onto fiber S1, it is mapped to a fiber

path γF0 (c); projected onto ∂D, it is mapped to a base path γB0 (c).

7.2.4 Local Bundle

Once a gluable triangulation is defined on the boundary ∂T , we are ready to

triangulate the whole local bundle T . Note that the local bundle is a direct

product both in itself T = D × S1 and on the boundary ∂T = ∂D × S1, and
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Figure 7.3: Gluable triangulation on the boundary of the local bundle for a
g = 1 surface.

Figure 7.4: Gluable triangulation on the boundary of the local bundle for a
g = 2 surface.
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the gluable triangulation of ∂T also has a grid structure which is a tensor

product. It meets all the requirements in definition 5.1.1 and can therefore be

triangulated using algorithms in chapter 5.

By definition 7.2.1, each fiber has a discretizing resolution of N . Thus in

a tetrahedral mesh for local bundle T = D × S1, the base D should have N

pre-images (i.e. base copies) {Dj|0 6 j < N}, where each Dj is a triangular

mesh consisting of all the vertices that have local coordinate j along fiber S1.

The whole tetrahedral mesh T is then partitioned by these base copies into N

bundle segments {Dj × Ij|0 6 j < N}, where Ij is a one-dimensional interval

corresponding to an edge (j, j + 1) along a fiber.

In order to extend the boundary triangulation into the whole volume T ,

we can actually do this for each bundle segment Dj × Ij individually, where

the problem is converted to the cutting pattern problem (definition 5.1.2)

for base copy Dj. To do the conversion, we need to represent the boundary

triangulation on each ∂Dj × Ij in the language of cutting patterns (section

5.1.2).

Definition 7.2.2 (Boundary Cutting Pattern for UT (T 2(g))). Given a gluable

triangulation for ∂T = ∂D×S1, where D is the covering disk of a T 2(g) surface

(g > 0), T is a trivial local bundle T = D×S1, let ∂Dj denote the j’th copy of

∂D in ∂T , which consists of 4g boundary segments {(aj)i | 1 6 i 6 4g}. The

boundary cutting pattern is a function f that assigns every edge in each ∂Dj

with an integer +1 or −1 in the following way:

• For every edge e along c ∈ {(aj)1, (aj)2}:

f(e) = +1

• For every edge e along c ∈ {(aj)−1
1 , (aj)

−1
2 }:

f(e) = −1
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• For every edge e along c ∈ {(aj)k, (aj)
−1
k | 3 6 k 6 2g}:

f(e) = −1

Using the above boundary cutting patterns as boundary constraints, we

can compute cutting patterns for each base copy Dj using the algorithms

defined in chapter 5, which will give us a tetrahedral tessellation for each

bundle segment Dj×Ij and thus a tetrahedral mesh for the whole local bundle

T .

7.3 Global Construction

In the local construction, we compute a tetrahedral mesh for local bundle

T = D × S1. In this section we will do the global construction that turns the

local bundle into a global bundle, and the later will be a discrete representation

for the unit tangent bundle UT (T 2(g)) for a genus g (g > 0) surface.

Here we are in a different situation to the g = 0 case (chapter 6). For a

S2 surface, there are two local bundles T1 and T2, and we glue them together

along their boundaries. For a T 2(g) surface, however, we only have one local

bundle T . In order to construct a global bundle, this local bundle need to be

glued to itself along its own boundary. In another word, we need a gluing map

Ψ over ∂T .

In the following discussion, we divide all those 4g bands on ∂T into two

groups

∂T = (∂T )+ ∪ (∂T )−

with each group containing 2g bands

(∂T )+ =

2g∪
k=1

(ak × S1)
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(∂T )− =

2g∪
k=1

(a−1
k × S1)
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Figure 7.5: Gluable triangulation and gluing map for UT (T 2(g)) on a pair of
untwisted boundary bands ak × S1 and a−1

k × S1 (1 6 k 6 2). A path in grey,
red or blue on the left side is mapped to a unique path in the same color on
the right side. Two of such paths, A0A1 · · ·A6 (in red) and B0B1 · · ·B6 (in
blue), are highlighted as examples.

7.3.1 Gluing Map

A gluing map over ∂T is partially determined by the identifying map φ over

∂D (section 7.1.1). Recall that φ identifies boundary segments ai and a−1
i

with their orientation reversed. Consequently, the gluing map should identify

boundary bands ai × S1 and a−1
i × S1 in an orientation-reversing manner.

Namely, it is a map between (∂T )+ and (∂T )−.

But different to φ, the gluing map over ∂T may involve twisting. As

stated in section 7.1.2, the total twisting should be 2π(2− 2g). In this work,

we design a gluing map Ψ in a special way so that the twisting is uniformly

distributed to 2g − 2 pairs of boundary segments around D.
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Figure 7.6: Gluable triangulation and gluing map for UT (T 2(g)) on a pair of
twisted boundary bands ak × S1 and a−1

k × S1 (3 6 k 6 2g). A path in grey,
red or blue on the left side is mapped to a unique path in the same color on
the right side. Two of such paths, A0A1 · · ·A6 (in red) and B0B1 · · ·B6 (in
blue), are highlighted as examples.

Definition 7.3.1 (Gluing Map for UT (T 2(g))). Given a local bundle T =

D × S1 and a gluable triangulation with grid structure [N,N1, N2] for ∂T =

∂D × S1, where D is a covering disk of a T 2(g) surface (g > 0), a map

Ψ : (∂T )+ → (∂T )−

is called a gluing map if it acts on the vertices of the gluable triangulation as

follows:

[1] For 1 6 k 6 2, 0 6 i 6 Nk, 0 6 j < N :

Ψ((ak, i, j)) = (a−1
k , Nk − i, j) ,
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[2] For 3 6 k 6 2g, 0 6 i 6 N , 0 6 j < N :

Ψ((ak, i, j)) = (a−1
k , N − i, j + i) ,

Under such a map, we can glue a local bundle to itself along its own

boundary. As verified in the next section, such a construction will glue a

local bundle nicely into a closed tetrahedral mesh, which is a faithful discrete

representation of the unit tangent bundle over a given T 2(g) surface.

7.4 Validations

In local construction, we define a gluable triangulation ∆ on the boundary of

a local bundle T ; in global construction, we define a gluing map Ψ over ∂T . In

this section, we will give several claims and proofs to validate that the above

constructions will generate a desired discrete unit tangent bundle.

7.4.1 Bijection

In this part we will show that a gluing map induces a bijection of the gluable

triangulation on bands in (∂T )+ and those in (∂T )−. We use three lemmas to

show the bijection of vertices (lemma 7.4.1), edges (lemma 7.4.2) and triangles

(lemma 7.4.3) respectively.

Lemma 7.4.1. A gluing map Ψ induces a bijection between vertices in ak×S1

and vertices in a−1
k × S1 (1 6 k 6 2g).

Proof. It can be verified for untwisted bands (1 6 k 6 2) and twisted bands

(3 6 k 6 2g) separately.

[1] For 1 6 k 6 2, for any vertex (a−1
k , i′, j′) ∈ a−1

k × S1, suppose it has a

pre-image, denoted as (ak, i, j); By definition,

(a−1
k , i′, j′) = (a−1

k , Nk − i, j)
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Solving this for i and j, we have

i = Nk − i′

j = j′

which gives a unique vertex in ak × S1. And therefore the inverse map

of Ψ : a−1
k × S1 → ak × S1 can be defined as:

Ψ−1
(
(a−1

k , i′, j′)
)
→ (a−1

k , Nk − i′, j′)

[2] For 3 6 k 6 2g, for any vertex (a−1
k , i′, j′) ∈ a−1

k × S1, suppose it has a

pre-image, denoted as (ak, i, j); By definition,

(a−1
k , i′, j′) = (a−1

k , N − i, j + i)

Solving this for i and j, we have

i = N − i′

j = j′ − i = j′ −N + i′ = j′ + i′

which gives a unique vertex in ak × S1. And therefore the inverse map

of Ψ : a−1
k × S1 → ak × S1 can be defined as:

Ψ−1
(
(a−1

k , i′, j′)
)
→ (a−1

k , Nk − i′, j′ + i′)

In both cases, for any vertex in a−1
k ×S1, there is a unique pre-image in ak×S1,

and the inverse map Ψ−1 can be represented as above.
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Lemma 7.4.2. A gluing map Ψ induces a bijection between edges in ak × S1

and edges in a−1
k × S1 (1 6 k 6 2g).

Proof. It can be verified for untwisted bands (1 6 k 6 2) and twisted bands

(3 6 k 6 2g) separately.

[1] 1 6 k 6 2: We will show that any edge on untwisted band ak × S1 is

mapped to a unique edge on untwisted band a−1
k × S1 under map Ψ.

• For any fiber edge [(ak, i, j) , (ak, i, j + 1)] (0 6 i 6 Nk, 0 6 j < N),

the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , Nk − i, j)

Ψ ((ak, i, j + 1)) = (a−1
k , Nk − i, j + 1)

With a substitution

i′ = Nk − i (0 6 i′ 6 Nk)

i′ = j (0 6 j′ < N)

it corresponds to a valid and unique fiber edge on a−1
k × S1

[
(a−1

k , i′, j′), (a−1
k , i′, j′ + 1)

]
• For any base edge [(ak, i, j) , (ak, i+ 1, j)] (0 6 i < Nk, 0 6 j < N),

the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , Nk − i, j)

Ψ ((ak, i+ 1, j)) = (a−1
k , Nk − i− 1, j)
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With a substitution

i′ = Nk − i− 1 (0 6 i′ < Nk)

j′ = j (0 6 j′ < N)

it corresponds to a valid and unique base edge on a−1
k × S1

[
(a−1

k , i′ + 1, j′), (a−1
k , i′, j′)

]
• For any diagonal edge [(ak, i, j) , (ak, i+ 1, j + 1)] (0 6 i < Nk,

0 6 j < N), the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , Nk − i, j)

Ψ ((ak, i+ 1, j + 1)) = (a−1
k , Nk − i− 1, j + 1)

With a substitution

i′ = Nk − i− 1 (0 6 i′ < Nk)

j′ = j + 1 (0 6 j′ < N)

it corresponds to a valid and unique anti-diagonal edge on a−1
k ×S1

[
(a−1

k , i′ + 1, j′ − 1), (a−1
k , i′, j′)

]
By a similar analysis on the inverse map Ψ−1, it can be shown that any

edge on band a−1
k × S1 is mapped to a valid and unique edge on band

ak × S1 under map Ψ−1.
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[2] 3 6 k 6 2g: We will show that any edge on twisted band ak × S1 is

mapped to a unique edge on twisted band a−1
k × S1 under map Ψ.

• For any fiber edge [(ak, i, j) , (ak, i, j + 1)] (0 6 i 6 N , 0 6 j < N),

the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , N − i, j + i)

Ψ ((ak, i, j + 1)) = (a−1
k , N − i, j + i+ 1)

With a substitution

i′ = N − i (0 6 i′ 6 N)

j′ = j + i (0 6 j′ < N)

it corresponds to a valid and unique fiber edge on a−1
k × S1

[
(a−1

k , i′, j′), (a−1
k , i′, j′ + 1)

]
• For any base edge [(ak, i, j) , (ak, i+ 1, j)] (0 6 i < N , 0 6 j < N),

the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , N − i, j + i)

Ψ ((ak, i+ 1, j)) = (a−1
k , N − i− 1, j + i+ 1)

With a substitution

i′ = N − i− 1 (0 6 i′ < N)
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j′ = j + i (0 6 j′ < N)

it corresponds to a valid and unique anti-diagonal edge on a−1
k ×S1

[
(a−1

k , i′ + 1, j′ − 1), (a−1
k , i′, j′)

]
• For any anti-diagonal edge [(ak, i, j) , (ak, i+ 1, j − 1)] (0 6 i < N ,

0 6 j < N), the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , N − i, j + i)

Ψ ((ak, i+ 1, j − 1)) = (a−1
k , N − i− 1, j + i)

With a substitution

i′ = N − i− 1 (0 6 i′ < N)

j′ = j + i (0 6 j′ < N)

it corresponds to a valid and unique base edge on a−1
k × S1

[
(a−1

k , i′ + 1, j′), (a−1
k , i′, j′)

]
By a similar analysis on the inverse map Ψ−1, it can be shown that any

edge on band a−1
k × S1 is mapped to a valid and unique edge on band

ak × S1 under map Ψ−1.

In summary, under Ψ any edge in ak × S1 is mapped to a unique edge in

a−1
k × S1, and vice versa. Therefore Ψ induces a bijection of edges between

each pair of bands.
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Lemma 7.4.3. A gluing map Ψ induces a bijection between triangles in ak×S1

and triangles in a−1
k × S1 (1 6 k 6 2g).

Proof. It can be verified for untwisted bands (1 6 k 6 2) and twisted bands

(3 6 k 6 2g) separately.

[1] 1 6 k 6 2: We will show that under map Ψ any triangle on untwisted

band ak×S1 is mapped to a unique triangle on untwisted band a−1
k ×S1

in an orientation-reversing manner.

• For any triangle on ak × S1

[(ak, i, j), (ak, i+ 1, j), (ak, i+ 1, j + 1)]

(0 6 i < Nk, 0 6 j < N), the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , Nk − i, j)

Ψ ((ak, i+ 1, j)) = (a−1
k , Nk − i− 1, j)

Ψ ((ak, i+ 1, j + 1)) = (a−1
k , Nk − i− 1, j + 1)

With a substitution

i′ = Nk − i− 1 (0 6 i′ < Nk)

j′ = j (0 6 j′ < N)

it corresponds to a unique but reversed triangle on a−1
k × S1

[
(a−1

k , i′ + 1, j′), (a−1
k , i′, j′), (a−1

k , i′, j′ + 1)
]
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• For any triangle on ak × S1

[(ak, i, j), (ak, i+ 1, j + 1), (ak, i, j + 1)]

(0 6 i < Nk, 0 6 j < N), the end vertices are mapped to

Ψ ((ak, i, j)) = (a−1
k , Nk − i, j)

Ψ ((ak, i+ 1, j + 1)) = (a−1
k , Nk − i− 1, j + 1)

Ψ ((ak, i, j + 1)) = (a−1
k , Nk − i, j + 1)

With a substitution

i′ = Nk − i− 1 (0 6 i′ < Nk)

j′ = j (0 6 j′ < N)

it corresponds to a unique but orientation-reversed triangle on a−1
k ×

S1 [
(a−1

k , i′ + 1, j′), (a−1
k , i′, j′ + 1), (a−1

k , i′ + 1, j′ + 1)
]

By a similar analysis on the inverse map Ψ−1, it can be shown that any

triangle on band a−1
k × S1 is mapped to a unique but reversed triangle

on band ak × S1 under map Ψ−1.

[2] 3 6 k 6 2g: We will show that under map Ψ any triangle on twisted

band ak × S1 is mapped to a unique triangle on twisted band a−1
k × S1

in an orientation-reversing manner.
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• For any triangle on ak × S1

[(ak, i, j + 1), (ak, i, j), (ak, i+ 1, j)]

(0 6 i < N , 0 6 j < N), the end vertices are mapped to

Ψ ((ak, i, j + 1)) = (a−1
k , N − i, j + i+ 1)

Ψ ((ak, i, j)) = (a−1
k , N − i, j + i)

Ψ ((ak, i+ 1, j)) = (a−1
k , N − i− 1, j + i+ 1)

With a substitution

i′ = N − i− 1 (0 6 i′ < N)

j′ = j + i (0 6 j′ < N)

it corresponds to a unique but reversed triangle on a−1
k × S1

[
(a−1

k , i′ + 1, j′ + 1), (a−1
k , i′ + 1, j′), (a−1

k , i′, j′ + 1)
]

• For any triangle on ak × S1

[(ak, i, j + 1), (ak, i+ 1, j), (ak, i+ 1, j + 1)]

(0 6 i < N , 0 6 j < N), the end vertices are mapped to

Ψ ((ak, i, j + 1)) = (a−1
k , N − i, j + i+ 1)

Ψ ((ak, i+ 1, j)) = (a−1
k , N − i− 1, j + i+ 1)
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Ψ((ak, i+ 1, j + 1)) = (a−1
k , N − i− 1, j + i+ 2)

With a substitution

i′ = N − i− 1 (0 6 i′ < N)

j′ = j + i+ 1 (0 6 j′ < N)

it corresponds to a unique but reversed triangle on a−1
k × S1

[
(a−1

k , i′ + 1, j′), (a−1
k , i′, j′), (a−1

k , i′, j′ + 1)
]

By a similar analysis on the inverse map Ψ−1, it can be shown that any

triangle on band a−1
k × S1 is mapped to a unique but reversed triangle

on band ak × S1 under map Ψ−1.

In summary, under Ψ any triangle in ak × S1 is mapped to a unique but

reversed triangle in a−1
k × S1, and vice versa. Therefore Ψ induces a bijection

of triangles between each pair of bands.

According to lemma 7.4.1, 7.4.2 and 7.4.3, we claim that a gluing map

induces a bijection of gluable triangulations on each pair of bands.

Theorem 7.4.1. A gluing map Ψ induces a bijection of the gluable triangu-

lation on band ak × S1 and a−1
k × S1 (1 6 k 6 2g).

In addition, from lemma 7.4.2 and its proof, we can get a corollary re-

garding the mapping among paths of different types.

Corollary 7.4.1. A gluing map Ψ induces a bijection between paths on ak×S1

and paths on a−1
k × S1 (1 6 k 6 2g). In particular:

• For untwisted bands {ak × S1, a−1
k × S1 | 1 6 k 6 2}:
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– Any fiber path on ak×S1 is mapped to a unique fiber path on a−1
k ×

S1, and vice versa;

– Any base path on ak×S1 is mapped to a unique base path on a−1
k ×S1,

and vice versa;

– Any diagonal path on ak × S1 is mapped to a unique anti-diagonal

path on a−1
k × S1, and vice versa;

• For twisted bands {ak × S1, a−1
k × S1 | 3 6 k 6 2g}:

– Any fiber path on ak×S1 is mapped to a unique fiber path on a−1
k ×

S1, and vice versa;

– Any base path on ak × S1 is mapped to a unique anti-diagonal path

on a−1
k × S1, and vice versa;

– Any anti-diagonal path on ak × S1 is mapped to a unique base path

on a−1
k × S1, and vice versa;

7.4.2 Continuity

In lemma 7.4.1, 7.4.2 and 7.4.3, we show that a gluing map Ψ induces bijections

of vertices, edges and triangles between each pair of bands. As we will show

in this part, Ψ is continuous on the triangulations over each band. Again, we

use the concepts of one-ring neighborhood for vertices (definition 6.4.2) and

preservingly or reversely continuous map for triangulations (definition 6.4.3).

The following theorem guarantees that a gluing map in definition 7.3.1 is a

continuous map with orientation reversed.

Theorem 7.4.2. Gluing map Ψ and its inverse Ψ−1 are both reversely con-

tinuous on each pair of bands ak × S1 and a−1
k × S1.
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(a) (b) (c)

Figure 7.7: Path map on untwisted bands for UT (T 2(1)). The gluing map
over ∂T induces a path map between a pair of untwisted bands a2 × S1 and
a−1
2 ×S1, mapping fiber paths to fiber paths (a), base paths to base paths (b),

anti-diagonal paths to anti-diagonal paths (c) respectively.
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(a) (b) (c)

Figure 7.8: Path map on untwisted bands for UT (T 2(2)). The gluing map
over ∂T induces a path map between a pair of twisted bands a3 × S1 and
a−1
3 × S1, mapping fiber paths to fiber paths (a), base paths to anti-diagonal

paths (b), anti-diagonal paths to base paths (c) respectively.
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Proof. It suffices to show that for both untwisted bands and twisted bands,

both Ψ and Ψ−1 keep one-ring neighborhoods invariant with orientation re-

versed.

[1] 1 6 k 6 2: We will show that Ψ is reversely continuous from untwisted

band ak × S1 to untwisted band a−1
k × S1.

• i = 0: vertex v = (ak, i, j) is on the boundary of ak × S1. Its

one-ring neighborhood has three triangles

Θ(v) = [f1, f2, f3]

where

f1 = [(ak, i, j), (ak, i, j − 1), (ak, i+ 1, j)]

f2 = [(ak, i, j), (ak, i+ 1, j), (ak, i+ 1, j + 1)]

f3 = [(ak, i, j), (ak, i+ 1, j + 1), (ak, i, j + 1)]

Under Ψ they are mapped to

Ψ(f1) = [(ak, i
′, j′), (ak, i

′, j′ − 1), (ak, i
′ − 1, j′)]

Ψ(f2) = [(ak, i
′, j′), (ak, i

′ − 1, j′), (ak, i
′ − 1, j′ + 1)]

Ψ(f3) = [(ak, i
′, j′), (ak, i

′ − 1, j′ + 1), (ak, i
′, j′ + 1)]

where

i′ = Nk − i , j′ = j

Note that the image vertex v′ = Ψ(v) = (a−1
k , i′, j′) has a one-ring
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neighborhood of

Θ(v′) = [f ′
1, f

′
2, f

′
3]

where

f ′
1 =

[
(a−1

k , i′, j′), (a−1
k , i′, j′ + 1), (a−1

k , i′ − 1, j′ + 1)
]

f ′
2 =

[
(a−1

k , i′, j′), (a−1
k , i′ − 1, j′ + 1), (a−1

k , i′ − 1, j′)
]

f ′
3 =

[
(a−1

k , i′, j′), (a−1
k , i′ − 1, j′), (a−1

k , i′, j′ − 1)
]

Obviously

Ψ(fl) = (f ′
3−l)

−1 (1 6 l 6 3)

Therefore Ψ maps Θ(v) to the reversed Θ(Ψ(v)).

• i = Nk: vertex v = (ak, i, j) is on the boundary of ak × S1. By a

similar analysis to the i = 0 case, we have that Ψ maps Θ(v) to the

reversed Θ(Ψ(v))

• 0 < i < Nk: vertex v = (ak, i, j) is an interior vertex of ak ×S1. Its

one-ring neighborhood has six triangles

Θ(v) = [f1, f2, f3, f4, f5, f6]

and so does the one-ring neighborhood of the image vertex v′ =

Ψ(v) = (a−1
k , i′, j′) (i′ = Nk − i, j′ = j)

Θ(v′) = [f ′
1, f

′
2, f

′
3, f

′
4, f

′
5, f

′
6]
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Similar to the i = 0 case it can be verified that

Ψ(fl) = (f ′
6−l)

−1 (1 6 l 6 6)

Therefore Ψ maps Θ(v) to the reversed Θ(Ψ(v)).

Using a similar deduction, it can be shown that Ψ−1 is also reversely

continuous from untwisted band a−1
k × S1 to untwisted band ak × S1.

[2] 3 6 k 6 2g: We will show that Ψ is reversely continuous from twisted

band ak × S1 to twisted band a−1
k × S1.

• i = 0: vertex v = (ak, i, j) is on the boundary of ak × S1. Its

one-ring neighborhood has three triangles

Θ(v) = [f1, f2, f3]

where

f1 = [(ak, i, j), (ak, i, j − 1), (ak, i+ 1, j − 1)]

f2 = [(ak, i, j), (ak, i+ 1, j − 1), (ak, i+ 1, j)]

f3 = [(ak, i, j), (ak, i+ 1, j), (ak, i, j + 1)]

Under Ψ they are mapped to

Ψ(f1) = [(ak, i
′, j′), (ak, i

′, j′ − 1), (ak, i
′ − 1, j′)]

Ψ(f2) = [(ak, i
′, j′), (ak, i

′ − 1, j′), (ak, i
′ − 1, j′ + 1)]

Ψ(f3) = [(ak, i
′, j′), (ak, i

′ − 1, j′ + 1), (ak, i
′, j′ + 1)]
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where

i′ = N − i , j′ = j + i

Note that the image vertex v′ = Ψ(v) = (a−1
k , i′, j′) has a one-ring

neighborhood of

Θ(v′) = [f ′
1, f

′
2, f

′
3]

where

f ′
1 =

[
(a−1

k , i′, j′), (a−1
k , i′, j′ + 1), (a−1

k , i′ − 1, j′ + 1)
]

f ′
2 =

[
(a−1

k , i′, j′), (a−1
k , i′ − 1, j′ + 1), (a−1

k , i′ − 1, j′)
]

f ′
3 =

[
(a−1

k , i′, j′), (a−1
k , i′ − 1, j′), (a−1

k , i′, j′ − 1)
]

Obviously

Ψ(fl) = (f ′
3−l)

−1 (1 6 l 6 3)

Therefore Ψ maps Θ(v) to the reversed Θ(Ψ(v)).

• i = N : vertex v = (ak, i, j) is on the boundary of ak × S1. By a

similar analysis to the i = 0 case, we have that Ψ maps Θ(v) to the

reversed Θ(Ψ(v))

• 0 < i < N : vertex v = (ak, i, j) is an interior vertex of ak × S1. Its

one-ring neighborhood has six triangles

Θ(v) = [f1, f2, f3, f4, f5, f6]

and so does the one-ring neighborhood of the image vertex v′ =
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Ψ(v) = (a−1
k , i′, j′) (i′ = Nk − i, j′ = j + i)

Θ(v′) = [f ′
1, f

′
2, f

′
3, f

′
4, f

′
5, f

′
6]

Similar to the i = 0 case it can be verified that

Ψ(fl) = (f ′
6−l)

−1 (1 6 l 6 6)

Therefore Ψ maps Θ(v) to the reversed Θ(Ψ(v)).

Using a similar deduction, it can be shown that Ψ−1 is also reversely

continuous from twisted band a−1
k × S1 to twisted band ak × S1.

In summary, under the gluing map Ψ any triangulated band ak × S1 is

mapped to a−1
k ×S1 (and vice versa) continuously with orientation reversed.

Note that we only claim the continuity of Ψ within each band. Actually

the gluing map is not continuous across the border of two consecutive bands.

However, we will show later that all the border fibers will be nicely identified,

and the continuity and bijection on each band is enough to guarantee that the

result of the gluing is a valid tetrahedral mesh.

7.4.3 Fiber Twisting

In corollary 7.4.1 we show the behavior of a gluing map Ψ over different types

of paths, namely fiber paths, base paths and (anti-)diagonal paths. With

thorough investigation, we can get further information on the mapping of fiber

paths, which will provide us with information about how the global bundle is

twisted under gluing map Ψ.

On each fiber path, there is a unique vertex with zero local coordinate

(i.e. j = 0); we call this vertex the zero point of this fiber path. According to

corollary 7.4.1, every fiber path on ck×S1 is mapped to a unique fiber path on

c−1
k ×S1. In general there is no guarantee that their zero points are identified.
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Figure 7.9: All the border fiber paths on ∂T are identified. The red arrow
means that the lower-left fiber path is mapped to the upper right fiber path
by Ψ; The blue equal symbol means that the upper fiber path and the lower
fiber path are actually the same fiber shared by two consecutive bands.

Actually how their zero points are mapped tells how a band is twisted. The

following theorem quantifies the twisting induced by a gluing map Ψ.

Theorem 7.4.3. A gluing map Ψ induces a −2π twist of fiber paths across

each twisted band ak × S1 (1 6 k 6 2), while zero twist across each untwisted

band ak × S1 (3 6 k 6 2g).

Proof. Consider the sequence of fiber paths on band ak × S1:

[
γF0 (ak), γ

F
1 (ak), · · · γFNk−1

(ak), γ
F
Nk
(ak)

]
According to corollary 7.4.1 they are mapped to a sequence of fiber paths on
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band a−1
k × S1:

[
γFNk

(a−1
k ), γFNk−1

(a−1
k ), · · · γF1 (a−1

k ), γF0 (a
−1
k )
]

Note that the zero points of fiber paths on band a−1
k × S1 are:

[
(a−1

k , N, 0), (a−1
k , N − 1, 0), · · · , (a−1

k , 1, 0), (a−1
k , 0, 0)

]
Now consider the corresponding pre-image vertices on band ak × S1.

[1] For 1 6 k 6 2, according to the gluing map

Ψ((ak, i, j)) = (a−1
k , N − i, j)

the pre-images on band ak × S1 are:

[(ak, 0, 0), (ak, 1, 0), · · · , (ak, N − 1, 0), (ak, N, 0)]

That is, for i = 0, 1, · · · , Nk − 1, Nk, the fiber γFi (ak) will always

have its own zero point mapped to the zero point on the image fiber

Ψ
(
γFi (ak)

)
. It means that there is no twisting on such a band.

[2] For 3 6 k 6 2g, according to the gluing map

Ψ((ak, i, j)) = (a−1
k , N − i, j)

the pre-images on band ak × S1 are:

[(ak, 0, 0), (ak, 1,−1), · · · , (ak, N − 1,−(N − 1)), (ak, N,−N)]

That is, for i = 0, 1, · · · , N−1, N , fiber γFi (ak) is rotated (in terms of j)

175



by 0, −1, · · · , −(N − 1),−N to meet the zero point on the image fiber

Ψ
(
γFi (ak)

)
. Since every fiber path is actually a cycle with discretizing

resolution of N , a shift of −N in terms of j is equivalent to a rotation

of −2π. It means that such a band has a twisting of −2π.

From theorem 7.4.3, we see that for a genus g surface, the gluing map

will induce a −2π twisting on each pair of twisted bands. Since there are

2g− 2 pairs twisted bands, the total twisting is 2π(2− 2g). As a special case,

for g = 1 closed surface, there is no twisted bands and therefore there is no

twisting induced by gluing map Ψ.

Furthermore, note that each band ck × S1 is bounded by two fiber paths

(cycles) γF0 (ck) and γ
F
Nk
(ck), and every two consecutive bands share a common

fiber path

γFNk
(ck) =

(
ck × S1

)
∪
(
ck+1 × S1

)
= γF0 (ck+1)

.

We name it a border fiber path, and without loss of generality we use

γF0 (ck) to represent the border fiber path between ck−1×S1 and ck×S1. From

theorem 7.4.3, we can have an easy corollary 7.4.2 about the mapping among

border fiber paths.

Corollary 7.4.2. A gluing map Ψ identifies all the border fiber paths:

Ψ(γF0 (ck)) = Ψ(γF0 (cl)) (1 6 k, l 6 4g)}

The mapping between any pair of border fiber paths is an identity map in

terms of local coordinates along fibers:

Ψ((ck, 0, j)) = (cl, 0, j) (1 6 k, l 6 4g, 0 6 j 6 N)

The identification of all the border fiber paths is illustrated in figure 7.9.
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Actually they are all mapped to the fiber cycle over the base point in the

global bundle.

7.4.4 Final Remarks

In the above discussions, we investigate local and global constructions and

prove some important properties of the gluable triangulation and gluing map.

Based on all those theorems and corollaries, we can draw two conclusions.

First, a gluing map Ψ turns a local bundle T into a valid tetrahedral mesh

UT that has no boundary. With a gluable triangulation (definition 7.2.1)

defined on the boundary of local bundle, a gluing map Ψ (definition 7.3.1)

induces a map between each pair of boundary bands ak × S1 and a−1
k × S1

that is both bijective (theorem 7.4.1) and reversely continuous (theorem 7.4.2).

Therefore, T is glued to itself along its boundary seamlessly, and the result is

again a tetrahedral mesh without any boundary.

Second, the tetrahedral mesh UT is a valid discrete representation for a

unit tangent bundle over a given T 2(g) surface. Note that the local bundle

is a trivial S1 bundle over the covering disk. Under the gluing map Ψ, every

fiber that is not on ∂T will remain in UT as a single fiber, and every fiber

on ∂T will be identified with some other fibers on ∂T (corollary 7.4.1) and

become a fiber in UT . In particular, all the fibers on the border of bands will

be identified (theorem 7.4.2) to a single fiber in UT . Therefore, UT is a valid

S1 bundle over the original T 2(g) surface. Since the total twisting induced by

gluing map Ψ is 2π(2−2g) (theorem 7.4.3), this UT actually represents a unit

tangent bundle over T 2(g).

In summary, we claim that our construction will generate valid discrete

representations of unit tangent bundles over T 2(g) surfaces.

Theorem 7.4.4. Given a T 2(g) surface M (g > 0), the local-to-global con-

struction generates a valid tetrahedral mesh that represents the unit tangent

bundle UT (M).
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Chapter 8

Conclusion
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In this dissertation we investigate two major problems in geometric de-

sign and computer graphics, namely discrete metric design for surfaces and

3-manifolds, and discrete unit tangent bundle design for surfaces.

For discrete metric design, we study three different types of surfaces or

3-manifolds, and develop computational methods for each of them.

In chapter 2, we present a discrete metric design method for genus-zero

surfaces with multiple holes. Given a surface with multiple holes, we compute

several flat metrics so that the surface can be mapped to four different flat do-

mains, including cylindric, parallel, rectangle and circular slit domains (figure

1.1). They can be used to solve different problems, such as surface matching,

brain mapping, quad-mesh generation and etc. The underlying computation

is based on rigorous results on Riemann surfaces and complex analysis. It

involves compute the basis of holomorphic one-forms on the given surface,

and a special holomorphic one-form that can generate the slit domains. The

algorithm is linear and the mapping is conformal.

In chapter 3, we present a volumetric parameterization method for handle

bodies. This method utilizes the fact that such volumes are direct product of

certain surfaces and a one-dimensional line segment. The algorithm starts from

partitioning the boundary surface into bases and walls, and then extend a given

flat metric on the bases into the volume by computing volumetric harmonic

functions. In order to relieve distortion, polycube domains are utilized to

model the boundary surface and to parameterize the whole volume.

In chapter 4, we present discrete metric design algorithms for hyperbolic

3-manifolds with boundaries. The final metric we compute induces constant

curvature in the interior of the given 3-manifolds, and zero curvature on the

boundary. We also provide algorithms to simplify a tetrahedral mesh and

convert it to a truncated tetrahedral mesh, and algorithms to embed and

visualize the given 3-manifold in 3-dimensional hyperbolic space.

For discrete unit tangent bundle designs, we first give a solution for topo-

logical disks, and then use that as part of the algorithms to solve closed sur-

faces.

In chapter 5, we present methods to generate discrete unit tangent bundles

for topological disks (D2). Due to the fact that such a bundle is trivial, we are

able to generate a tetrahedral mesh that has a regular structure both on the
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boundary and in the interior. This problem is converted to an equivalent 2D

problem, the cutting pattern problem. We provide algorithms to solve this 2D

problem under three different boundary conditions, from the most restricted

one to the most general and flexible one. These algorithms are proved to

terminate with a solution under most circumstances. In case a solution does

not exist, the unsolvable part in the input mesh can be addressed and reported.

In chapter 6, we present a discrete construction of unit tangent bundles

for g = 0 closed and oriented surfaces (S2). For such a non-trivial bundle, we

utilize the idea of local trivialization. Namely, we partition a given surface into

two covering disks, build trivial local bundles over each disk, and then glue

those local bundles into a global bundle nicely along their boundary. In order

to meet the topological requirements for a unit tangent bundle, we design a

special triangulation on the boundary of local bundles, and a gluing map in

between to glue two local bundles to a global bundle. We validate that such

a construction generates a valid tetrahedral mesh that faithfully represent the

unit tangent bundle.

In chapter 7, we present a discrete construction of unit tangent bundles

for g > 0 closed and oriented surfaces (T 2(g)). Similar to the g = 0 case, we

still follow a local-to-global philosophy. But here we use a single disk to cover a

given surface, and build a single local bundle over the covering disk. Then the

local bundle is glued to itself along its own boundary. Again we design gluable

triangulations on the boundary of the local bundle, and a gluing map over it.

We also validate that such a construction generates a valid tetrahedral mesh

with the right amount of twisting that required by a unit tangent bundle. In

particular, when g = 1 this construction will give a trivial bundle.

Based on this dissertation, there are several other topics that draw in-

terests for further investigation. First, for discrete metric design, the current

methods in this work target at conformal parameterizations, which can gener-

ate parameter domains with regular shape, but usually incur large distortion.

One future direction is to compute metrics that takes area distortion into

consideration and try to minimize the distortion. Second, for volumetric met-

ric design, only two types of 3-manifolds are involved in the current work.

It is challenging to extend the study to other types of 3-manifolds, or to find

alternative methods for current types. Third, in this work we only focus on dis-
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crete constructions of unit tangent bundles. Any interesting extension would

be other types of fiber bundles that bear different amount of twisting and have

different properties and behaviors. Another future direction is to use them to

discretize other types of geometric objects, such as covariant differentiation,

connection and etc.
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