

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Quasi Borel Cayley Graphs for

Ultrafast Information Dissemination in

Large and Dense Networks

A Dissertation Presented

by

Jaewook Yu

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

May 2011

Stony Brook University

The Graduate School

Jaewook Yu

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

K. Wendy Tang – Dissertation Advisor
Associate Professor, Department of Electrical and Computer Engineering

Eric C. Noel – Dissertation Co-Advisor
Ph.D, AT&T Laboratories

Thomas G. Robertazzi – Chairperson of Defense
Professor, Department of Electrical and Computer Engineering

Yuanyuan Yang
Professor, Department of Electrical and Computer Engineering

Jie Gao
Assistant Professor, Department of Computer Science

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Quasi Borel Cayley Graphs for Ultrafast
Information Dissemination in Large and Dense

Networks

by

Jaewook Yu

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2011

As modern networks grow quickly in size, and the amount of data
to be processed in the network explodes, fast information dissem-
ination and data exchange is gaining strong attention today. In
this research, we observe that the underlying topology of a net-
work plays a greater role in determining the efficiency of the net-
works in terms of information dissemination speed especially for
large networks. However, there has been a lack of constructive
research encompassing network modeling, performance evaluation,
and application of such network models. Therefore, we devote our
efforts to identify a network model enabling ultrafast information
exchange, recognize issues that may arise when applying such net-
work model in real networks, and provide corresponding solutions
for the problems. In regard to these efforts, this dissertation makes
the following contributions. We identified Borel Cayley Graphs
(BCGs) to be one of the fastest network topologies in informa-
tion dissemination for large and dense networks. In addition, we

iii

showed that BCGs have favorable topological properties includ-
ing deterministic topology generation, small nodal degree, short
average path length, and small diameter. However, besides these
superior properties, it has been challenging to use BCG as an un-
derlying topology for real networks because of its lack of size flexi-
bility. To resolve BCG’s size limitation, we proposed BCG Pruning
and Expansion algorithms that transform the original BCGs into
Quasi BCGs in any desired sizes while maintaining the superior
properties of the original BCGs. Analytical and simulation results
showed that Quasi BCGs exhibit almost the same information dis-
semination performance and similar topological properties as those
of the original BCGs. In addition, we considered wireless sensor
networks to demonstrate the potential of BCGs as a real network
topology. Specifically, we developed a topology control protocol
called BCG Topology Control (BCG-TC) that constructs Quasi
BCG network topology in wireless sensor networks. Lastly, we
proposed the Dynamic BCG Routing Protocol that allows nodes
in a network to update their routing table dynamically as network
topology changes over time.

iv

To My Parents, Brother, and Wife

v

Contents

List of Figures x

List of Tables xiii

Acknowledgments xiv

1 Introduction 1
1.1 Network Models for Ultrafast Information Dissemination . . . 2
1.2 Problems and Approaches . 3
1.3 The BCGs for Wireless Sensor Networks 4

1.3.1 Topology Control . 4
1.4 Routing . 6
1.5 Summary of Contribution . 8
1.6 Organization of Thesis . 9

2 Preliminary 10
2.1 Graph Terminology . 10
2.2 Topological Graph Metrics . 12
2.3 Spectral Graph Metrics . 13

2.3.1 Graph Laplacian . 13
2.3.2 Graph spectrum . 15
2.3.3 Algebraic connectivity 17

2.4 Information Dissemination Performance 17
2.4.1 Average consensus protocol 18

3 Network Models 20
3.1 Introduction . 20
3.2 Regular Graphs . 21

3.2.1 Ring lattices . 21
3.2.2 Meshes . 22

3.3 Random Graphs . 24

vi

3.3.1 Erdös-Rényi’s random graphs 24
3.3.2 Watts-Strogatz’s small world networks 26

3.4 Cayley Graphs . 27
3.5 Borel Cayley Graphs . 27

3.5.1 Node representation 28
3.5.2 Connection rule . 28
3.5.3 Examples . 29

3.6 How to Select BCG Parameters? 30
3.6.1 BCG samples . 30
3.6.2 Patterns of bad generators 30
3.6.3 Guideline . 32

3.7 Information Dissemination Performance of Network Models . . 33
3.7.1 Setup . 33
3.7.2 Performance metrics 34
3.7.3 Results . 34

4 Quasi Borel Cayley Graph 41
4.1 Introduction . 41
4.2 BCG Pruning . 42

4.2.1 Cut-through rewiring 43
4.3 BCG Pruning: Connectivity 46

4.3.1 Analysis . 46
4.3.2 Validation . 50
4.3.3 Relation to the graph generators 53

4.4 BCG Pruning: Topological and Spectral Properties 54
4.4.1 Graph generation . 54
4.4.2 Diameter . 54
4.4.3 Average path length 55
4.4.4 Algebraic connectivity 55

4.5 BCG Pruning: Information Dissemination Performance 57
4.5.1 Setups . 57
4.5.2 Evaluation . 58

4.6 BCG Random Expansion . 61
4.6.1 Terminologies . 61
4.6.2 Random expansion . 62

4.7 BCG Random Expansion: Topological Properties 62
4.7.1 Setup . 65
4.7.2 Diameter . 65
4.7.3 Average path length 66

4.8 BCG Random Expansion: Information Dissemination Perfor-
mance . 66

vii

4.8.1 Setup and metrics . 66
4.8.2 Performance . 66

5 Borel Cayley Graph Topology Control 71
5.1 Introduction . 71
5.2 Borel Cayley Graph Topology Control 72

5.2.1 Assumptions . 72
5.2.2 BCG-TC Phase-I . 74
5.2.3 BCG-TC Phase-II . 75
5.2.4 Neighbor polling order 76

5.3 Performance Evaluation . 78
5.3.1 Network connectivity 78
5.3.2 Topological properties 82

5.4 Energy Consumption . 83

6 Routing 86
6.1 Introduction . 86
6.2 Vertex Transitive BCG Routing Protocol 87

6.2.1 Routing table . 87
6.2.2 Routing table generation 87
6.2.3 Node ID translation 89

6.3 Dynamic BCG Routing Protocol 90
6.3.1 Assumption . 90
6.3.2 Dynamic routing table update 92
6.3.3 Dynamic routing table update with CTR 92
6.3.4 Random forwarding . 94

6.4 Backward Advertisement . 94
6.4.1 Operation . 95

6.5 Routing Performance . 96
6.5.1 Setups . 96
6.5.2 Reachability . 96
6.5.3 Average hop count . 98
6.5.4 Hop counts distribution 98

6.6 Discussion . 100

7 Conclusion 102
7.1 Summary . 102
7.2 Future Work . 103

7.2.1 Open issues . 103
7.2.2 Applications . 104

viii

Bibliography 106

ix

List of Figures

1.1 Taxonomy of topology control protocols. 5

2.1 Example undirected graph G(V,E). 10
2.2 Degree, distance, and diameter of the sample graph. 11
2.3 Graph spectra and the histograms of different graph families. . 16
2.4 Asymptotic convergence of state values of nodes in random

graph G(n = 20,m = 8). 19

3.1 Algorithm for k-regular ring lattice generator. 22
3.2 Realization of k -regular ring lattice with n=32 and k=2, 4, 8,

and 16. 23
3.3 4-Regular toroidal mesh and diagonal mesh. 23
3.4 Realization of a random graph of 40 vertices and mean degree 3. 25
3.5 Algorithm for random graph generator 26
3.6 Connection rule of Borel Cayley Graph. 27
3.7 A 21-node, 4-regular BCG. 29
3.8 Algorithm for average consensus protocol. 34
3.9 Information dissemination performance versus algebraic connec-

tivity (λ2) for n = 110, 171, 253, and 1081. 37
3.10 Information dissemination performance versus the ratio of spec-

tral radio to algebraic connectivity (λn/λ2) for n = 110, 171,
253, and 1081. 38

3.11 Convergence steps vs. network sizes. 39

4.1 The quasi Borel Cayley graph generation process. 41
4.2 Algorithm for BCG pruning. 43
4.3 Pruning and Cut-Through Rewiring. 44
4.4 Cutting-through multiple edges. 44
4.5 Handling K3 cycle. 45
4.6 Algorithm for Cut-Through Rewiring. 46
4.7 The nodal isolation probability and the average nodal isolation

ratio of resized BCGs. 51

x

4.8 The graph disconnection probability and the ratio as a function
of the normalized amount of pruned nodes γ/no 51

4.9 Analytical error PE(dis) and the Case 2 graph disconnection
ratio ∆Case2(dis) as a function of the normalized amount of
pruned nodes γ/no. 52

4.10 P (dis) of the resized graphs as a function of γ/no for α =
10, . . . , 50. The size of the original BCG no = 5253. 53

4.11 Comparison of information distribution performance for the orig-
inal and resized BCGs, toroidal and diagonal meshes, and SWNs
as a function of network size. (continue) 59

4.11 Comparison of information distribution performance for the orig-
inal and resized BCGs, toroidal and diagonal meshes, and SWNs
as a function of network size. 60

4.12 Illustration of node injection and edge rewiring in BCG Random
Expansion algorithm. 63

4.13 Algorithm for BCG Random Expansion. 64
4.14 Diameter of the expanded BCGs, the original BCGs, toroidal

meshes, diagonal meshes, and SWNs. 67
4.15 Average path length of the expanded BCGs, the original BCGs,

toroidal meshes, diagonal meshes, and SWNs. 68
4.16 Information dissemination performance of the expanded BCGs,

the original BCGs, toroidal meshes, diagonal meshes, and SWNs. 69

5.1 Algorithm for BCG-TC Phase-I. 74
5.2 BCG-TC Phase-II example. 75
5.3 Algorithm for BCG-TC Phase-II. 76
5.4 Algorithm for processing HELLO. 77
5.5 Illustration of α− 1 nodes in x’s g1-direction polling order ⇀x(g1). 77
5.6 Average node isolation ratio versus the maximum radio range. 79
5.7 Connected network ratio versus the maximum radio range. . . 80
5.8 Average number of isolated nodes in a network. 81
5.9 The ratio of disconnected networks without isolated nodes. . . 81
5.10 Radio range versus average diameter. 82
5.11 Radio range versus the average path length. 83
5.12 Average nodal energy consumption when the consensus has

been made. 84

6.1 An example of BCG (d = 4) static routing table for node 0. . 88
6.2 Example routing table with the destination row 17 set based on

the shortest paths. 89

xi

6.3 Illustration of destination blocking after node f fails using the
Dynamic BCG Routing Protocol. 91

6.4 Illustration of topology and routing table of u after performing
CTR. 93

6.5 Illustration of BA packet forwarding to the first hop ancestors. 95
6.6 Node u forwards BA packets to its neighbors a, b, and c. . . . 96
6.7 Reachability versus the percentage of node failures. 97
6.8 Average hop count and average shortest path length versus the

percentage of node failures. 98
6.9 Hop count distribution for the Dynamic BCG Routing Protocol

with Backward Advertisement. 99

xii

List of Tables

3.1 BCG sizes and corresponding parameters. 31
3.2 (t1, t2) generating disconnected BCGs (Scenario A). 32
3.3 Generator pairs generating disconnected BCGs (Scenario B). . 32
3.4 Consensus protocol parameters. 33
3.5 Graph families and parameters. 35

4.1 The original sizes no of example BCGs and their corresponding
BCG parameters p, k, and a. 42

4.2 Notation. 47
4.3 Sizes and parameters of the original BCGs and corresponding

target sizes. 55
4.4 Average diameter of the original and resized BCGs. 56
4.5 Average of average path lengths of the original and resized BCGs. 56
4.6 Average algebraic connectivity of the original and resized BCGs. 56
4.7 Sizes and parameters of the benchmark graphs. 57
4.8 The original BCGs and the target sizes. 62
4.9 Parameters of the benchmark BCGs. 64
4.10 Parameters of toroidal meshes, diagonal meshes, and SWNs. . 65

5.1 Simulation parameters. 78
5.2 Parameters for radio model. 84

6.1 Contents of Backward Advertisement packet. 94

xiii

Acknowledgments

Looking back over the past years, I am very grateful for all I have received
and learned during my PhD studies. There have been many people who have
been encouragements and inspirations throughout these years.

I would like to express my sincere gratitude to my advisor, Dr. Wendy
Tang, for her guidance, understanding, and patience during my PhD studies.
Dr. Tang has always allowed me ample freedom to explore interesting problems
and guided me to the right direction. Her insightful comments and constructive
criticisms at different stages of my research helped me achieve quality results.

My co-advisor, Dr. Eric Noel, has been always there to give invaluable
comments and advices through the years in my PhD study. I am deeply
grateful to him for the patient discussions and suggestions on the technical
and theoretical details of my works. I am also thankful to him for his thorough
and countless revisions of this thesis.

I would like to gratefully thank the committee members, Dr. Thomas
Robertazzi, Dr. Yuanyuan Yang, and Dr. Jie Gao for their thoughtful com-
ments on the thesis. I also thank anonymous reviewers for their insightful
comments and suggestions on my previous works during the PhD study.

Many friends have helped me stay on the track through these difficult years.
Their support and care helped me overcome many worst moments and stay
focused on my study. Their suggestions and discussions gave me insights to
look problems in different ways. I specially thank Seungyong for his supports
and encouragements. I would like to acknowledge my Lab members Dongsoo
and Junghun for their discussions and supports in developing many unclear
ideas to the concrete and meaningful ones.

Finally, and most importantly, I would like to thank my wife Jiyoung for
her support, encouragement, quiet patience and unwavering love. I thank my
parents and brother for their faith in me and allowing me to be whom I wanted.
It was their patience and trust that gave me the strength to tackle challenges
head on. Also, I thank Jiyoung’s parents for their encouragement and support
over the years.

xiv

Chapter 1

Introduction

As modern networks grow quickly in size and require fast data exchange, de-
signing efficient network topology is of great importance today. For example,
the topology of Internet affects the Quality of Service (QoS) and through-
put [1, 2], that of the wireless sensor networks (WSNs) affects the data fusion
rate [3], and that of social networks affects the speed of information propaga-
tion among people [4–6]. More recently, as the daily amount of data that the
networked clusters of major Internet companies have to process reaches the
order of petabytes1 [7], the underlying logical or physical topology connecting
a large collection of processors, servers, and storages is gaining strong atten-
tion too [8, 9]. In such large scale, high density, and data intensive network
environments, ultrafast information dissemination and data exchange are the
key requirements. However, there has been a lack of constructive research
encompassing network modeling, performance evaluation, and application of
such network models. Therefore, we have explored the following questions:

(i) Are there any specific network models for fast information exchange for
large and dense networks?

(ii) What are the issues and solutions associated with applying the identified
network model on real networks?

1 1 petabytes = 1015 bytes.

1

1.1 Network Models for Ultrafast Information

Dissemination

Among many studies on network models, Watts and Strogatz brought insights
into key aspects of efficient network topology. In their seminal work [10], they
observed that one can transform a network topology from one with extremely
slow in information dissemination to a very fast one by adding a small amount
of randomness to the network, where the resulting networks are known as Small
World Networks (SWNs). To see the effects of randomness on network topol-
ogy and the information dissemination performance, they begin with k-regular
ring lattices which are known as one of the slowest information dissemination
graphs. Then, they induced randomness on the graphs by randomly rewiring
the edges of k-regular ring lattices with some small rewiring probability. They
evaluated the information dissemination performance of the resulting graphs
using an epidemic model which resembles a distributed networked system.
Their experiments revealed that the infectious diseases spread surprisingly
faster in the randomized graphs than in the original k-regular ring lattices. In
fact, the randomness give the regular (non-random) graphs a small number of
long distance edges acting as shortcuts. These shortcuts transform the large
world where every node is far away to each other (larger diameter and longer
average path length) into the small world where nodes are tightly connected
(small diameter and shorter average path length). Thus, the resultant graphs
are named Small World Networks.

More recently in [11], Olfati-Saber utilized the average consensus protocol
that solves an average consensus problem in a distributed manner to show the
superior information convergence performance of SWNs. Again, in [12], the
same author investigated the connection between fast mixing Markov chains
and quasi Ramanujan graphs (Ramanujan graphs generated by a randomized
algorithm). We observed that the graphs displaying fast information dissemi-
nation in the aforementioned articles share a common aspect: the randomness
in topology.

In particular, we have been inspired by the pseudo randomness of the Borel
Cayley Graphs (BCGs) [13]. The topology of BCGs looks random with many
long distance edges, however, BCGs are algebraically (and hence determinis-
tically) formulated, k-regular, symmetric, and vertex-transitive graphs. The
BCGs are known as one of the densest graphs where the graph density is the
number of nodes for a given diameter and the number of edges [13]. The prop-
erties of BCGs are summarized as small constant degree, short average path
length, and small diameter. The small constant degree implies that each node
can communicate simultaneously to only a small number of neighbors. The

2

small diameter and short average path length guarantee the information to
traverse the entire network within a small number of hops.

To confirm whether BCGs are the right model for fast information dissemi-
nation, we began our initial research by performing a comparative study on the
topological properties and information dissemination performance of various
graph families including regular graphs, random graphs, and pseudo-random
graphs. Specifically, we evaluated BCGs, toroidal meshes, diagonal meshes,
random graphs, and SWNs over a wide range of network sizes between 100
to 5000 nodes. Results reported in Chapter 3 showed that BCGs yield 2 to
100 times faster information distribution rate than the SWNs with rewiring
probability pr = 0.01, 0.1, or 0.2. More importantly, the BCGs showed the
best scalability over the range of network sizes considered. Moreover, topolog-
ical and spectral graph metrics such as a diameter, average path length, and
algebraic connectivity confirmed that BCGs can be very efficient in routing
too. Based on our results, we conclude that the BCG is a good candidate for
ultrafast information dissemination network topology.

1.2 Problems and Approaches

Despite the favorable properties of BCGs, application of BCGs to real networks
have been challenging because of their inflexible and discontinuous sizes. In
fact, the size of BCG is determined by p × k where, p is a prime, and k
is the smallest positive integer such that ak(mod p) = 1 for a ∈ Zp (see
Definition 3.2 and Definition 3.3). This BCG’s size restriction has posed a
strong challenge to the application of BCGs in real networks. Therefore, we
devote our efforts to resolving this size restriction of BCGs and demonstrating
potential applications of BCGs in real networks.

To solve the size issue of BCGs, we propose BCG resizing algorithms that
construct Quasi BCGs of any arbitrary sizes. We use the term Quasi BCGs be-
cause, although the resized BCGs are no longer the original BCGs, they share
high level of topological similarities. We will discuss these similarities further
in Chapter 4. Our graph resizing algorithm consists of two main algorithms:
the BCG Pruning algorithm and the BCG Random Expansion algorithm.

The BCG Pruning algorithm removes nodes from the original BCGs to
generate Quasi BCGs of smaller sizes and rewires the broken connections of
remaining nodes to maintain connectivity. Since the BCG Pruning algorithm
removes nodes from BCGs, our main concern is whether the constructed Quasi
BCGs remain connected while maintaining the properties of the original BCGs.
Thus, we provide a theoretical groundwork for the connectivity of Quasi BCGs.
In particular, we derived an analytical formulae to characterize the disconnec-

3

tion probability of the Quasi BCGs and further validated the formulae through
extensive simulations. Both the analytical and simulation results showed that,
using the proposed BCG resizing algorithm, the resized BCGs are almost surely
connected2 even after 80 ∼ 90% of nodes are pruned from the original BCGs.

Moreover, topological analysis revealed that the original and the pruned
BCGs share similar structural properties. In fact, the proposed BCG Pruning
algorithm preserved the advantageous properties of the original BCGs when
75% or fewer nodes were pruned from the original BCGs. Such superior proper-
ties include a small diameter, a short average path length, and a large algebraic
connectivity. Furthermore, we also evaluated the information dissemination
performance of both the original and resized BCGs with up to 5000 nodes. The
results were promising: the information dissemination performance of pruned
BCGs is as good as that of the original BCGs.

Unlike the BCG Pruning algorithm, the proposed BCG Random Expansion
algorithm expands the original BCGs to Quasi BCGs with larger sizes by
adding nodes into the original BCGs and establishing edges between the added
nodes and pre-existing nodes. Simulation results showed that the Random
Expansion algorithm expands the original BCGs without noticeable penalty
to the information dissemination performance, diameter, and average path
length.

1.3 The BCGs for Wireless Sensor Networks

Recently, there has been a growing interest for fast information distribution
in densely populated wireless sensor networks [14–16]. Fast information dis-
tribution in a large and dense network is important in environmental sens-
ing [17], traffic monitoring [18], security, and surveillance applications [19].
To demonstrate the BCGs applied in real networks, we developed topology
control protocol that constructs a wireless sensor network topology similar to
BCGs.

1.3.1 Topology Control

Due to the ad hoc nature of WSN, its topology constructed without any con-
trol is prone to be arbitrary rather than well constructed to provide better
performance for WSN applications. Thus, topology control protocols that con-
struct a network topology compensating the limitations of WSNs have gained
attention. Although WSNs demand different sets and levels of performance

2 We say the resized BCGs are almost surely connected if the graphs are connected with
a probability larger than or equal to 0.999.

4

Topology Control Protocol

Homogeneous Non-homogeneous

Location Based Neighbor Based Direction Based

Figure 1.1: Taxonomy of topology control protocols.

requirements depending on applications, the main goals of topology control
protocols can be summarized as improving network lifetime, connectivity, in-
formation/data fusion speed, and routing efficiency.

Santi [20] provided a comprehensive taxonomy of topology control proto-
cols for wireless ad hoc networks. We show a part of the taxonomy in Fig-
ure 1.1. The homogeneous topology control protocols assume that every node
has the same radio range, on the other hand, nodes in the non-homogeneous
topology control protocols are assumed to control their own radio range within
pre-defined maximum radio range. The location based topology control pro-
tocols assumes that exact coordinations of nodes are known to a centralized
controller, or nodes exchange their locations with neighbors. Based on the lo-
cation information, the centralized controller may control connections between
nodes, or nodes can establish connections with others in a distributed manner.
The direction based topology control protocol are similar to the location based
topology control protocols in that it utilizes location information. However,
nodes in direction based control estimate their relative locations based on their
neighboring nodes.

Unlike the location based or direction based topology control protocols,
the neighbor based topology control protocols do not rely on the location
information of nodes. Instead, the neighbor based topology control protocol
assumes that every node uses unique node ID to identify itself and its neighbors
within a radio range. Thus, nodes establish connections with their neighbors
based on estimated distance or link quality between itself and its neighbors in
neighbor based topology control.

In [21], Blough et al. proposed the k-Neigh topology control protocol that
maintains the nodal degree close to but no larger than k as follows: Let Li

be a list of node i’s k nearest neighbors. Then, node i collects Lj, where j
are the nodes within i’s maximum radio range, and builds a set of symmetric
neighbors LS = {j | i ∈ Lj, j ∈ Li}. Next, node i sets its transmission power
to reach the farthest node in LS, where LS is a set of the logical neighbors

5

of i. They showed that nodes of k-Neigh network consume less energy than
those of arbitrary network without topology control. They also showed that
k-Neigh can generate a connected network with very high probability by
setting k = Θ(log n), where n is the number of nodes randomly and uniformly
distributed in the network. In addition, we developed k-Random, a simple
topology control protocol, that randomly selects at most k neighbors from its
physical neighbors within maximum radio range R and establishes connections
with those selected neighbors.

BCG Topology Control. In our investigation on the topological properties
and information dissemination performance of various network models, we
conclude that BCGs and Quasi BCGs are one of the best network models for
large and dense networks.

However, using the BCGs or Quasi BCGs as a topology for wireless sensor
networks has been challenging because the BCG’s pseudo-random, long-range
connections do not guarantee neighboring nodes to be within radio range. In
fact, it is not possible to assume all nodes in a network to be within a single
hop communication range in many real network applications. In this sense, we
developed the BCG Topology Control (BCG-TC) for wireless sensor networks
that constructs the network topology as similar as possible to BCG topology
while relaxing the one hop communication assumption.

The proposed BCG-TC is a neighbor based topology control protocol that
does not rely on the location information of nodes. However, unlike the con-
ventional neighbor based topology control, BCG-TC does not estimate the
distance or link quality to establish connections with their neighbor. Instead,
nodes in BCG-TC use the pre-loaded, identical BCG parameters to deter-
mine their neighbors defined by BCG. Despite the fact that BCG-TC uses
pre-defined BCG topology, it still falls into the category of neighbor based
topology control. Thus, we compare the performance of BCG-TC with two
neighbor based topology control protocols, the k-Neigh and k-Random.

1.4 Routing

Routing protocols for wireless sensor networks (WSNs) have gained growing
attention too. In general, sensor nodes of WSNs form a network without the
help of central unit (self-organizing network). More importantly, nodes in
WSNs frequently die out as they consume their limited energy sources (e.g.,
batteries). Due to its ad-hoc nature and limited resources, WSN requires a
routing protocol that is aware of energy consumption, dynamically changing

6

topolog, network connectivity, node-to-node reachability, and efficiency of data
aggregation.

Although BCG networks can use any pre-existing routing protocols such
as Ad-hoc On-Demand Distance Vector (AODV) routing protocol [22], the
network still requires a routing protocol that exploits favorable properties of
the constructed topology. Previously, Tang and Arden in [23] proposed an
iterative multi-path routing protocol for BCGs that fully exploits the vertex
transitive property of BCGs. Since this routing protocol uses the vertex tran-
sitive property of BCG, we call the protocol Vertex Transitive BCG Routing
Protocol. The Vertex Transitive BCG Routing protocol uses a (n − 1) × d
array where n is the number of nodes, and d is a constant degree of BCGs.
The routing table contains shortest path information between a root node to
the rest of nodes. Since BCGs are vertex transitive graphs, this pre-computed
routing table can be used by all other nodes using a simple node ID translation
equation. We will discuss the details of the Vertex Transitive BCG Routing
Protocol in Chapter 6.

Dynamic BCG Routing Protocol We observed that the static routing
table of Vertex Transitive BCG Routing protocol is not suitable for WSNs
whose topologies are dynamically changing with time. Thus, we propose the
Dynamic BCG Routing Protocol that allows nodes in a BCG network to update
their BCG routing table as network topology changes.

Initially, routing table of the Dynamic BCG Routing Protocol is the same
as that of the Vertex Transitive BCG Routing protocol. It is also a (n−1)×d
array containing multiple shortest path information. However, instead of using
the node ID translation, routing tables are pre-translated according to node
IDs. Once the translated routing tables are stored at nodes, the routing tables
will be independently updated by each node whenever it detects topology (link
state) changes. For example, if a node detects one of its neighbors fails, then
it updates its routing table to stop forwarding packet destined to the failed
node. In addition, we also uses Backward Advertisement algorithm for a node
to propagate topological changes to its neighbors. Details of the proposed
Dynamic BCG Routing Protocol and Backward Advertisement are presented
in Chapter 6.

The performance of the Dynamic BCG Routing Protocol has been evalu-
ated in terms of node-to-node reachability, average hop counts, and the dis-
tribution of hop counts. When using the Dynamic BCG Routing Protocol
without BA, the reachability and average hop counts are degraded as the
number of dead nodes increases. However, BA improves the reachability and
average hop counts of Dynamic BCG Routing Protocol up to 7% and 35%,

7

respectively, when BA is set to propagate BA packets up to two hop neighbors
of a failed node. Propagating BA packets to more neighbors may improve the
routing performance, however, our discussion shows that such practice can
make BA packets dominate the network bandwidth.

1.5 Summary of Contribution

This dissertation makes the following contributions.

(i) Identified Borel Cayley Graphs (BCGs) to be one of the fastest network
topologies in information dissemination for large and dense networks:
We have identified BCGs as one of the most favorable graphs that has
many superior properties among various different graph families such as
regular ring lattices, random graphs, toroidal meshes, diagonal meshes,
and small world networks. The BCGs’ favorable properties include de-
terministic topology generation, small nodal degree, short average path
length, small diameter, and, most importantly, ultrafast information dis-
semination.

(ii) Proposed BCG Pruning and Expansion algorithms that transform the
original BCGs into Quasi BCGs in any desired sizes:
Although BCG has superior properties as a network topology, it has been
challenging to apply BCG’s to real networks because of its lack of size
flexibility. We proposed the BCG Pruning and Expansion algorithms to
obtain Quasi BCGs with any desired size while preserving the aforemen-
tioned superior properties of the original BCGs. Analytical analysis and
extensive simulations have confirmed that Quasi BCGs exhibit almost
the same information dissemination performance as that of the original
BCGs.

(iii) Developed BCG Topology Control (BCG-TC) protocol that constructs
Quasi BCG topology for ad hoc networks in a distributed manner:
To show the potential of BCGs as a real network topology, we chose wire-
less sensor networks. Specifically, we developed a topology control pro-
tocol called the BCG-TC that constructs Quasi BCG network topology
in wireless sensor networks. We evaluated the performance of BCG-TC
in terms of network connectivity, diameter, average path length, and en-
ergy consumption. We also showed that BCG-TC generates a connected
network with the nodal degree constrained by less than or equal to four,
and achieves the least energy consumption among considered topology
control protocols such as k-Neigh and k-Random topology controls.

8

(iv) Developed Dynamic BCG Routing Protocol that allows nodes in a BCG
network to update their routing tables regarding topology changes:
We proposed Dynamic BCG Routing Protocol based on the BCG’s orig-
inal routing protocol. Each node in a network dynamically updates its
routing table using the proposed routing protocol as nodes are dying out.
The routing protocol utilizes control message called Backward Advertise-
ment packet to further reduce the number of routing loops and average
hop counts, and maximize the reachability.

1.6 Organization of Thesis

Chapter 2 reviews graph terminology, topological and spectral graph metrics,
information dissemination performance evaluation techniques used in our re-
search.

Chapter 3 summarizes various network models considered in our research
including ring lattices, toroidal meshes, and diagonal meshes, Erdös-Rényi
random graphs, and Watts-Strogatz’s Small World Networks. This chapter
describes details of BCGs including the generation method, connection rules,
and parameter selection guidelines. The last part of this chapter is devoted to
comparative studies on information dissemination performance of the networks
models.

Chapter 4 presents the BCG Pruning and Random Expansion algorithms
that transform the original BCGs into the Quasi BCGs with any desired sizes.
Analytical and simulation results have been provided to show the topological
properties and information dissemination performance of Quasi-BCGs.

Chapter 5 focuses on the application of BCGs on real network applica-
tions. In particular, we present the BCG Topology Control (BCG-TC) that
constructs a network topology for Wireless Sensor Networks (WSNs). The
topological properties of BCG-TC networks including diameter, average path
length, and network connectivity have been compared to those of similar topol-
ogy control protocols.

Chapter 6 proposes the Dynamic BCG Routing Protocol that allows every
node in a BCG network to update their routing table as the network topology
changes with time. We also present the Backward Advertisement algorithm
that propagates topology changes to the neighbors of a failed node. Simulation
results showed that the BA improves the proposed routing protocol in terms
of source-destination reachability and the average hop counts.

Chapter 7 summarizes our contribution and results. Also, we provide our
insights on the future research topics and directions.

9

Chapter 2

Preliminary

This chapter briefly reviews basic graph terminology, topological graph met-
rics, spectral graph metrics, and information dissemination performance eval-
uation techniques used in our research.

2.1 Graph Terminology

1 2 3

4 5 6

Figure 2.1: Example undirected graph G(V,E).

Definition 2.1 (Graph). A graph is an ordered pair G(V,E) such that V is
a set of vertices (or nodes) and E is a set of edges connecting the vertices.

Note that vertex and node are used interchangeably throughout this thesis.
Similarly, edge and link are used equivalently. The connections of a graph can
be represented either by directed edges (directed graph) or undirected edges
(undirected graph). Also, it is possible to assign different weights on the edges
to make a weighted graph depending on applications or contexts. However, we
only consider undirected and unweighted graphs throughout the thesis. For

10

example, an undirected and unweighted graph G(V,E) in Figure 2.1 can be
represented by a vertex set V and an edge set E of unordered pair of vertices
as follows:

V = {1, 2, 3, 4, 5, 6} ,

E = {e1,2, e2,3, e2,4, e3,5, e4,5, e5,6} ,

where eu,v is an edge between nodes u, v ∈ V . The order of a graph is the
number of nodes in a graph.

1

d(1) = 1

2

d(2) = 3

3

d(3) = 2

4

d(4) = 2

5

d(5) = 3

6

d(6) = 1

(a) degree

1

d(2, 1) = 1

2 3

d(2, 3) = 1

4

d(2, 4) = 1

5

d(2, 5) = 2

6

d(2, 6) = 3

(b) distance from node 2

1 2 3

4 5

diam(G) = 4

6

(c) diameter

Figure 2.2: Degree, distance, and diameter of the sample graph.

Definition 2.2 (Degree). The degree of a vertex d(v) is the number of edges
incident to the vertex v ∈ V (see Figure 2.2(a)).

If d(v) = k, ∀v ∈ V (G), k > 0, then G is a k-regular graph. A node v is
isolated if and only if d(v) = 0. The minimum degree of a graph dmin(G) :=
min{d(v)|v ∈ V } and similarly, the maximum degree dmax(G) := max{d(v)|v ∈
V }.

Definition 2.3 (Path). A path is a graph with a sequence of distinct vertices
such that each vertex is connected to the next vertex by an undirected edge.

If a graph H with a vertex sequence V = {u, ..., v} is a path, then we say there
exists a path between u and v.

Definition 2.4 (Path length). A path length is the number of edges in the
path.

A shortest path is a path between a pair of nodes of which path length is the
smallest. A shortest path length is the length of a shortest path.

Definition 2.5 (Distance). A distance between two vertices u, v ∈ V , d(u, v),
is the length of the shortest path between u and v (see Figure 2.2(b)).

11

Definition 2.6 (Diameter). A diameter of G, diam(G), is the greatest dis-
tance between any two vertices in G and denoted by (see Figure 2.2(c)).

Definition 2.7 (Connected graph). A graph is a connected graph if there
exists a path between any two distinct nodes in a graph.

A disconnected graph is a non-empty graph that is not a connected graph.

Definition 2.8 (Component). A maximal connected subgraph of G is a com-
ponent of G.

A giant component is a connected subgraph of G that consists of the majority
of nodes in a graph. A non-empty graph G is connected if it consists of only
one component. Similarly, G is a disconnected graph if G consists of more
than one component.

Definition 2.9 (Vertex transitive graph). A vertex transitive graph is a graph
such that every vertex has the same local connections, so that no vertex can
be distinguished from any other based on the vertices and edges that connect
the vertices.

2.2 Topological Graph Metrics

We use various topological graph metrics to characterize properties of graphs
under our investigation. In addition to a diameter, degree, and path length,
we also use the following metrics.

Definition 2.10 (Average path length). The average path length of graph
G(V,E) is the expected length of the shortest path between any two vertices.

Let d(u, v) be a distance between two vertices u, v ∈ V connected by an
edge eu,v ∈ E, then the average path length of graph G(V,E) is the average
of distances between all possible n(n− 1)/2 pairs of vertices:

µ(G) =
2

n(n− 1)

∑

u,v∈V

d(u, v) , (2.1)

where n = |V | and d(u, v) = 0 if eu,v /∈ E, or u = v.

Definition 2.11 (Degree distribution). The degree distribution of a graph is
the discrete probability distribution of degree p = p(k).

12

The degree distribution of a graph represents the probability that a randomly
chosen vertex has degree k. Network models represented in graphs can be
characterized by their degree distribution, for example, a k-regular graph of
which all vertices have the same degree k has a degree distribution following
the Dirac delta function given by δ(k). On the other hand, the degree distri-
bution of a random graph has a binomial distribution which converges to a
Poisson distribution as the size of the graph grows [24]. More recently, many
articles have reported that the degree distribution of real world networks can
be characterized by a power-law distribution [25–30].

2.3 Spectral Graph Metrics

Topological graph metrics such as degree, distance, eccentricity, centrality, di-
ameter, clustering coefficient, and degree distribution have been used to cap-
ture the structural properties of networks [10, 25, 31, 32]. However, such
topological graph metrics often fail to convey the structural properties of a
graph as a whole [33]. On the contrary, spectral graph theory has emerged as
a comprehensive tool offering a bird’s eye view of a graph structure [12, 33–
36]. In other words, the whole graph structure can be characterized by a
graph spectrum, that is, the set of eigenvalues of a graph Laplacian [37]. In
the rest of this section, we review the definitions and interpretations of graph
Laplacian, graph spectrum, and algebraic connectivity.

2.3.1 Graph Laplacian

A graph Laplacian is the Laplacian matrix of a graph. The tight relationship
between the graph Laplacian and the structural properties of a graph has been
discussed in [35, 37]. In spectral graph analysis, both eigenvalues of the graph
Laplacian and adjacency matrix are referred to as graph spectrum. In our
spectral graph analysis, we only consider the spectrum of graph Laplacian as
a graph spectrum.

Definition 2.12 (Adjacency matrix). Let A(G) be the adjacency matrix of
G with n vertices. Then, A(G) is a n× n binary matrix with its off-diagonal
entry au,v = 1 if there exists an edge between u and v, and zeros, otherwise.

We can rewrite each element of A(G(V,E)) as follows:

au,v(G) =

{
1 if eu,v ∈ E(G),
0 otherwise,

13

where u, v ∈ V (G). The adjacency matrix of an undirected graph with n
vertices is a n × n symmetric matrix since eu,v ∈ E(G) ⇔ ev,u ∈ E(G). For
example, the adjacency matrix of the graph in Figure 2.1 is given by

A(G) =

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0

.

Definition 2.13 (Degree matrix). Let D(G) be the degree matrix of G with
n vertices. Then, D(G) is a n × n diagonal matrix with the diagonal entry
au,u = d(u), u ∈ V (G), and off diagonal entries are zero.

Definition 2.14 (Laplacian matrix1). Let L(G) be the Laplacian matrix of a
graph G. Then, L is n×n matrix whose off-diagonal entries lu,v = −1 if there
exists an edge between u and v and 0 otherwise, and whose diagonal entries
lu,u = d(u).

By definition of the Laplacian matrix, each element of a Laplacian matrix is
given by

lu,v(G) =

d(u) if u = v,
−1 if eu,v ∈ E(G), u 6= v,
0 if eu,v /∈ E(G),

for all u, v ∈ V (G). We can rewrite the Laplacian matrix of G using D(G)
and A(G) as follows:

L(G) = D(G)− A(G). (2.2)

1 Note that, a variant of this definition called the normalized Laplacian matrix appears
in some contexts [36].

14

For example, we obtain the Laplacian matrix of the graph in Figure 2.1 as

L(G) =

1 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 1

︸ ︷︷ ︸

D(G)

−

0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0

︸ ︷︷ ︸

A(G)

=

1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 0 −1 0
0 −1 0 2 −1 0
0 0 −1 −1 3 −1
0 0 0 0 −1 1

.

Furthermore, each row of the Laplacian matrix corresponds to the discrete
Laplacian differential operator defined as follows:

∆φu =
∑

v : d(u,v)=1

{

φ(v)− φ(u)

}

, (2.3)

where d(u, v) is the distance between vertices u and v on a graph is the graph
Laplacian matrix [38]. In graph theory, the Laplacian matrix defines the re-
lationship between a node u ∈ V and its immediate neighbors Nu = {v :
d(u, v) = 1}. We will see the average consensus protocol described in Sec-
tion 3.8 is tightly related to the Laplacian matrix and corresponding Laplacian
operator.

2.3.2 Graph spectrum

The formal definition and some useful properties of graph spectrum are as
follows.

Definition 2.15 (Graph spectrum). A graph spectrum is the set of eigenvalues
associated with the Laplacian matrix of a graph.

Let λk be the kth eigenvalue of L, and n be the order of a graph, then the
ordered eigenvalues of L are denoted by

0 = λ1 ≤ λ2 ≤ ... ≤ λn.

15

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

14

e
ig

e
n
v
a
lu

e

sorted eigenvalu index

(a) 4-regular ring lattice

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

14

e
ig

e
n
v
a
lu

e

sorted eigenvalue index

(b) random graph

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

14

e
ig

e
n
v
a
lu

e

sorted eigenvalue index

(c) BCG (degree=4)

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

c
o
u
n
t

eigenvalue (bin size=0.5)

(d) 4-regular ring lattice

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

c
o
u
n
t

eigenvalue (bin size=1)

(e) random graph

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

c
o
u
n
t

eigenvalue (bin size=0.2)

(f) BCG (degree=4)

Figure 2.3: Graph spectra and the histograms of different graph families.

Since L is positive semidefinite, all of its eigenvalues are nonnegative. The
smallest eigenvalue λ1 is always 0 because L1 = 0, where 1 denotes the all
ones column vector. The graph spectrum has been proven to be a useful tool
for graph structure analysis [34, 35], graph clustering [39, 40], graph visual-
ization [41], graph modularizing detection [31], and consensus protocol [42].
In our research, we have obtained a graph spectrum from the graph Lapla-
cian with which we analyzed the structural properties and the information
dissemination performance of a graph. In [33], the author reported the exis-
tence of unique graph spectra for well-known graph families such as lattices,
Erdös-Rènyi’s random graphs [43], Watts-Strogatz’s small world networks [10],
and Barábasi-Albert’s scale-free networks [25]. The study showed that graphs
belonging to the same family usually share the same or similar spectral prop-
erties.

Figure 2.3 shows the shapes of graph spectra for different graph fami-
lies: k-regular ring lattices, Erdös-Rényi random graphs, and Borel Cayley
graphs. The k-regular ring lattice has a spectrum with a saddle point (Fig-
ure 2.3(a)) that corresponds to a few nearly identical eigenvalues, and a “bath-
tub” shaped spectral histogram (Figure 2.3(d)) with a significant concentration
of low and high valued eigenvalues. While, the spectrum of the random graph

16

(Figure 2.3(b)) increases monotonically without any saddle point. Finally, the
BCG spectrum (Figure 2.3(c)) resembles that of a “stair case” with nearly
identical eigenvalues in each step and a few outliers, which corresponds to a
“rectangular” shaped spectral histogram (Figure 2.3(f)).

2.3.3 Algebraic connectivity

Definition 2.16 (Algebraic Connectivity [34]). The algebraic connectivity of
a graph is the second smallest eigenvalue of a graph Laplacian.

The number of zeros that appear in the eigenvalues of a graph Laplacian
corresponds to the number of connected components in a graph. If the alge-
braic connectivity of a graph is zero, then the graph consists of at least two
connected components. Thus, G is connected if and only if the second smallest
eigenvalue λ2 > 0.

Moreover, the magnitude of λ2 is a measure of how well connected a graph
is [34, 37]. Also, it is well known that the larger the algebraic connectivity of
a graph, the faster the information dissemination over the graph [12, 44].

Definition 2.17 (Spectral radius). The spectral radius of a graph is the largest
eigenvalue of the Laplacian matrix of the graph.

In addition, it has also been reported that the ratio of spectral radius
to algebraic connectivity, λn/λ2, is another effective measure of information
dissemination performance [45]. In our research, we compare the algebraic
connectivity of the original and resized BCGs to show how our graph resizing
algorithm affects the connectivity and information dissemination performance
of the original BCGs.

2.4 Information Dissemination Performance

We consider the consensus protocol as a means of evaluating the informa-
tion dissemination performance of graphs. Consensus protocol is a distributed
node-to-node message exchange rule to drive nodes in a network to a network-
wide agreement over a quantity of interest (e.g., average of sensory data) [42].
The consensus protocol is widely accepted as a reliable measure of information
dissemination or data fusion performance of network topologies [46, 47]. In
addition, the consensus protocol has been appeared in the contexts of sensor
fusion [46, 48], vehicle formation control [49], and spacecraft attitude con-
trol [50–52].

The consensus value can be the average, the maximum, the minimum, or
any other function. In particular, we consider the average consensus protocol

17

that solves the average consensus problem in a distributed manner. The the-
oretical background of the average consensus protocol, including asymptotic
convergence analysis and its relationship to a graph Laplacian and information
dissemination rate, has been studied in [42].

2.4.1 Average consensus protocol

Let us consider a networked system of which the underlying network topology
is represented by an unweighted, undirected graph G. Every node in the net-
work holds its own state value (e.g., local temperature data in wireless sensor
network application) and updates the state value based on the average consen-
sus protocol. That is, each node in the network, v ∈ V (G), communicates its
state value xv with its immediate neighbors N(v) := {u : eu,v ∈ E(G)}, where
eu,v is an undirected edge between u and v, and E(G) is the edge set of G.
At each τth iteration, nodes exchange their state values xv(τ) with their im-
mediate neighbors. Given the state values xu(τ) received from their neighbors
u ∈ N(v), each node v updates its state according to,

xv(τ + 1) = xv(τ) +
1

ω

∑

u∈N(v)

xu(τ)− xv(τ)

 , (2.4)

where 0 < 1
ω

< 1
2dmax(G)

ensures asymptotic convergence of above average
consensus protocol. The asymptotic convergence analysis is well established
in [42], and will not be repeated here.

Using the simple average consensus protocol in Eq. (2.4), the state value
of each node asymptotically converges to the average of all initial state val-
ues. The global agreement or consensus will be asserted when all nodes in
the network reach the same average value. Determining the global agreement
requires a centralized controller that monitors the state values updated by the
nodes in a network. Although this is unrealistic especially for distributed com-
puting applications, we use this protocol solely for measuring the information
dissemination performance of networks.

Following the method in [11, 12], we utilize the average consensus protocol,
Eq. (2.4), to measure the information dissemination performance of a graph
generated by our proposed graph resizing algorithms. This method has been
widely accepted as a reliable measure of network information dissemination
performance [46, 47]. More details on average consensus protocol can be found
in [42, 53] and will not be repeated here.

18

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15

s
ta

te
s

τ

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15

s
ta

te
s

τ

Figure 2.4: Asymptotic convergence of state values of nodes in random graph
G(n = 20,m = 8). The consensus value was −0.4.

Example. We start by generating a connected random graph of 20 nodes
with a mean degree of 8 where the initial integer state value of each node was
chosen uniformly randomly between [−5, 5]. The realized random graph had
topological metrics, diam(G) = 12, and dmax(G) = 16. The average consensus
value calculated from the initial states was −0.4. All nodes in the graph follow
the average consensus protocol given in Equation (2.4) with ω = 33. The state
evolution of each node is plotted in Figure 2.4.

Summary

In this chapter, we reviewed some graph terminologies, topological/spectral
graph metrics, and information dissemination performance evaluation method.
The topological and spectral graph metrics are very important tools to quan-
tify, characterize, and predict the properties of graphs. There is no single
metric that can capture the whole graph properties, rather we use various
types of graph metrics in the rest of the chapters to evaluate the different
properties of network models under our research.

19

Chapter 3

Network Models

3.1 Introduction

Intuitively, the underlying topology of a network affects its efficiency in ex-
changing information. For instance, the topology of Internet affects the effi-
ciency of packet routing, that of the wireless sensor networks (WSNs) affects
the rate of data fusion, and that of social networks affects the speed of rumor
or disease propagation among people [54].

Network topology has to be fast in information exchange, flexible in size,
and scalable in information exchange performance over a wide range of sizes.
Especially as the networks become larger and denser, the underlying topology
plays an even greater role. We, therefore, have been exploring the follow-
ing questions: (i) is there any specific network model for fast information
exchange? (ii) if it exists, is it applicable to real networks such as ad hoc
networks? and (iii) what are the issues and solutions?

Among many studies on network models, Watts and Strogatz brought in-
sights into key aspects of efficient network topology. In their seminal work [10],
they observed that one can transform a network topology from one with ex-
tremely slow information dissemination performance to a very fast one by
adding a small amount of randomness to the network, where the resulting
networks are known as Small World Networks (SWNs). To produce random-
ness in a network, the authors randomly rewired a small portion of edges
of k-regular ring lattices which are known as one of the slowest information
dissemination graphs [10]. They evaluated the information dissemination per-
formance of the resulting SWNs using an epidemic model which resembles
a distributed networked system. Their experiments revealed that the infec-

20

tious diseases spread much faster in SWNs than in the original k-regular ring
lattices.

More recently in [11], Olfati-Saber utilized the average consensus protocol
that solves an average consensus problem in a distributed manner to show
the superior information convergence performance of SWNs. Again, in [12],
the author investigated the connection between fast mixing Markov chains
and quasi Ramanujan graphs (Ramanujan graphs generated by a randomized
algorithm). We observed that the graphs displaying fast information dissemi-
nation in the aforementioned articles share a common aspect: the randomness
in topology.

In this chapter, we will show that BCGs exhibit the fastest information
dissemination performance among several different graph families for network
sizes ranging from a few hundreds to several thousands nodes. Moreover, topo-
logical and spectral graph metrics such as diameter, average path length, and
algebraic connectivity confirmed that BCGs can be very efficient in message
routing too. To identify the best performing graph family in terms of in-
formation dissemination and scalability we also followed the groundwork laid
by [11] and [12]. More specifically, we evaluated the information dissemina-
tion performance of a graph using the average consensus protocol. We also
used graph spectral analysis to compare the performance of BCGs with other
graph families such as regular ring lattices, Erdös-Rényi’s random graphs,
Watts-Strogatz’s small world networks, toroidal meshes, and diagonal meshes.

3.2 Regular Graphs

3.2.1 Ring lattices

The k-regular ring lattice is a graph with n vertices arranged on the circle
such that each vertex is connected to its k closest neighbors. We implemented
the algorithm depicted in Figure 3.1 to generate an adjacency matrix for k-
regular ring lattice. Realization of the 2, 4, 8, 16-regular ring lattices are shown
in Figure 3.2.

The maximum distance from a node in a k-regular ring lattice to its imme-
diate neighbors is upper bounded by ⌈k/2⌉ hops. This distance bound prevents
nodes of k-regular ring lattices from having long distance edges connecting it
to distant nodes. More importantly in the rest of this chapter, we will discuss
how the local connections degrade the information dissemination performance
over the network.

21

Require: n := number of nodes
Require: k := degree of the lattice
Require: A := n× n zero matrix
1: procedure RegRingLatticeGen(n, k, A)
2: for all u < v ∈ V (G) do ⊲ u and v are integer in [0, n− 1]
3: m← 1
4: while m ≤ k do
5: if v = {(u+n+m)(mod n)}∧{(u+n−m)(mod n)} then
6: A[u, v]← 1
7: A[v, u]← 1
8: end if
9: m← m+ 1

10: end while
11: end for
12: end procedure

Figure 3.1: Algorithm for k-regular ring lattice generator.

3.2.2 Meshes

Toroidal mesh. The toroidal mesh in Figure 3.3(a) is a 4-regular, symmet-
ric graph in which nodes are interconnected both in horizontal and vertical
directions [55]. Let Gt be a toroidal mesh with n = l × k nodes where l and
k are odd integers. Then, any node located at (x, y) on a Cartesian coordi-
nate plane is connected to the following nodes located at the following four
positions:

(x, 〈y + 1〉l) ,

(x, 〈y − 1〉l) ,

(〈x+ 1〉k, y) ,

(〈x− 1〉k, y) ,

where x ∈ {−k−1
2
, ..., k−1

2
}, y ∈ {− l−1

2
, ..., l−1

2
}, and the operator

〈x〉k =

x if |x| ≤ k−1
2

,

x− k if x > k−1
2

,

x+ k if x < −k−1
2

.

(3.1)

Tang and Padubidri showed that the diameter of toroidal mesh with n = l×k
nodes, diam(Gt) =

l−1
2

+ k−1
2
.

22

(a) k = 2, n = 32 (b) k = 4, n = 32

(c) k = 8, n = 32 (d) k = 16, n = 32

Figure 3.2: Realization of k -regular ring lattice with n=32 and k=2, 4, 8, and
16.

(a) Toroidal mesh (b) Diagonal mesh

Figure 3.3: 4-Regular toroidal mesh and diagonal mesh.

23

Diagonal mesh. The diagonal mesh depicted in Figure 3.3(b) is similar to
toroidal mesh except that nodes are connected in diagonal directions [55]. Let
Gd be a diagonal mesh with n = l× k nodes where l ≤ k are odd integers and
let (x, y) be the position of a node in a Cartesian coordinate plane. Then, a
node at (x, y) is connected to the nodes at the following four positions:

(〈x+ 1〉k, 〈y + 1〉l),

(〈x+ 1〉k, 〈y − 1〉l),

(〈x− 1〉k, 〈y + 1〉l),

(〈x− 1〉k, 〈y − 1〉l),

where x ∈ {−k−1
2
, ..., k−1

2
}, y ∈ {− l−1

2
, ..., l−1

2
}, and 〈x〉k is the same operator

in Eq. (3.1). The authors in [55] also proved that a diameter of diagonal mesh
with order n = l × k,

diam(Gd) =

{

max(l, k−1
2
) if l < k ,

n− 1 if l = k .
(3.2)

3.3 Random Graphs

3.3.1 Erdös-Rényi’s random graphs

Erdös and Rényi provided the theoretical foundations of random graphs in [43].
In this section, we briefly review the properties of random graphs and also an
algorithm to generate random graphs. Let G(n, p) be the set of all Erdös-
Rényi’s random graphs with n nodes and edge probability p. Then, each node
of a random graph G ∈ G(n, p) is connected to the rest of (n− 1) nodes with
the independent edge probability p. The probability for a node to have degree
k is given by a binomial distribution

Pr [d(v) = k] =

(
n− 1

k

)

pk (1− p)n−1−k . (3.3)

Since there are n(n−1)/2 node pairs in a graph, the expected number of edges
in a random graph,

E = p
n(n− 1)

2
. (3.4)

The average degree of a random graph d = 2E/n. Thus, the edge probability
p = d/(n− 1) ≈ d/n for sufficiently large n. This implies the tight connection
between the edge probability and the average degree of a random graph.

24

Figure 3.4: Realization of a random graph of 40 vertices and mean degree 3.

We generate a random graph by drawing a uniformly distributed random
number r ∈ [0, 1) for each possible pair of vertices and join them with an edge
if r < p. Thus, each element of the adjacency matrix of a random graph is
defined by

au,v = av,u =

{

1 if r < p,

0 otherwise,

for all u < v ∈ V (G). This yields an n × n adjacency matrix for a random
graph G ∈ G(n, p). The number of trials in generating a n × n adjacency
matrix of random graph is in O(n2) regardless of the mean number of edges to
be generated. It is obvious that most of trials for joining vertex pairs will fail
for small edge probability p as is the case for large sparse random graphs. To
avoid speed bottleneck in generating a large sparse random graph, we used the
efficient random graph generating algorithm proposed in [56]. Figure 3.5 sum-
marizes the random graph generator algorithm. The realization of a random
graph with 40 vertices and mean degree of 3 is depicted in Figure 3.4.

Note that due to the way we generate random graphs, it is possible to
produce disconnected graphs. We discard these disconnected graphs because
multiple connected components prevents the graph from reaching the graph
wide consensus. The connectivity test can be done by counting the zero degree
vertices or zero diagonal elements of the Laplacian matrix. Since the number
of the zeros in the eigenvalues of a graph Laplacian represents the number of
connected components in a graph, we simply compute the algebraic connec-
tivity of the graph. If the algebraic connectivity is zero, then the graph is
disconnected.

25

Require: n := number of vertices
Require: p = (0, 1) ⊲ edge probability
Require: A := n× n zero matrix ⊲ adjacency matrix
1: procedure RandGraphGen(n, p, A)
2: u← 1 ⊲ u := integer label of node
3: v ← −1 ⊲ v := integer label of node
4: while u < n do
5: choose r ∈ [0, 1) uniformly at random

6: v ← v + 1 +

⌊
log (1− r)

log (1− p)

⌋

7: while u ≤ v ∨ u < n do
8: v ← v − u
9: u← u+ 1

10: end while
11: if u ≤ n then
12: A[u, v]← 1
13: A[v, u]← 1
14: end if
15: end while
16: end procedure

Figure 3.5: Algorithm for random graph generator [56].

3.3.2 Watts-Strogatz’s small world networks

Small world networks are one category of network models with a set of nodes
connected to mostly neighboring nodes (highly clustered) but with a few long
range connections that provide shortcuts over clusters (short average path
length). In [10], Watts and Strogatz experimented on small-world phenomenon
by randomly rewiring the edges of regular ring lattice with a small rewiring
probability. The results of their experiments showed that the average path
length drops dramatically when small-world phenomenon happens, but at the
same time the clustering coefficient representing the magnitude of local clus-
tering remains almost in the same range.

Later in [11], Olfati-Saber further verified Watts and Strogatz’s observa-
tions in a more quantitative manner by introducing a distributed decision mak-
ing protocol called the average-consensus protocol. In [11], the author showed
that it is possible to achieve ultrafast information dissemination (or network-
wide consensus) by constructing a favorable network topology. For example,
applying the random-rewiring scheme on regular ring lattice increases the al-
gebraic connectivity by 1000 folds. Similarly, in [12], the Ramanujan graphs, a

26

class of regular Cayley graphs, were proven to be an efficient network topology
for ultrafast information fusion.

3.4 Cayley Graphs

In the previous sections, we reviewed regular and random graphs. A Cayley
graph is a special family of pseudo-random and regular graphs constructed
from a finite group of which elements correspond to the nodes of the graph [57–
59]. Connections between nodes of Cayley graphs are defined by a group
operator and a set of generators. The formal definition of Cayley graphs is as
follows.

Definition 3.1 (Cayley graph [59]). Let V be a group and let G be a non-
empty generating set. The Cayley graph Γ = Γ (V,G) is a directed graph with
vertices from the group V and with directed edges ev,u if u = v ∗ g for some
g ∈ G and u 6= v ∈ V , where ∗ is the group operation.

The definition of Cayley graphs requires vertices to be elements of a group
but does not specify a particular group. Thus, a Cayley graph can be generated
over an arbitrary finite group, so there can be many varieties of Cayley graphs.

uv

-1-1 -1

Figure 3.6: Connection rule of Borel Cayley Graph.

3.5 Borel Cayley Graphs

The Borel Cayley graphs (BCGs) are Cayley graphs constructed from Borel
subgroups. The BCGs are regular, vertex transitive, and pseudo-random
graphs [58]. The definition of a Borel subgroup is given below.

Definition 3.2 (Borel subgroup [58]). Let V ∈ BL2(Zp) be a Borel subgroup
of the nonsingular upper triangular 2× 2 matrices GL2(Zp) with a parameter
a such that a ∈ Zp \ {0, 1}, then

V =

{(
x y
0 1

)

: x = at(mod p), y ∈ Zp, t ∈ Zk

}

, (3.5)

27

where p is prime, and k is the smallest positive integer such that ak =
1(mod p).

From the definition of a Borel subgroup, we define the Borel Cayley graph
as follows:

Definition 3.3 (Borel Cayley graph [58]). Let V be a Borel subgroup and let
G be a generating set such that G ⊆ V \ {I}, then C = C(V,G) is a Borel
Cayley graph with vertices represented in 2×2 matrix elements of V and with
directed edge from v to u if u = v ∗ g, where u 6= v ∈ V , g ∈ G, and ∗ is a
modulo-p matrix multiplication chosen as the group operation.

Note that, in the definition of Borel Cayley graph, we explicitly exclude the
identity element from the generating set to avoid self-loops in the graph. In
the following sections, we discuss key properties of BCGs.

3.5.1 Node representation

Nodes in BCGs are defined in the 2 × 2 matrix domain. In earlier work,
Arden and Tang [57] showed that all Cayley graphs can be represented as
generalized chordal rings (GCRs) where their nodes are grouped into q = k
classes according to the modulo-q operation. Specifically, there is a function
that maps the Borel subgroup represented in 2 × 2 matrix elements onto the
non-negative integer domain N0 of GCR. That is, each node represented by a
Borel subgroup element is mapped onto a number between 0 and n− 1, where
n is the number of elements in the Borel subgroup:

f : V → N0,
(
at y
0 1

)

7→ yq + t. (3.6)

The systematic representation of BCGs in the GCR integer domain makes
BCGs tractable for routing and other networking issues [23, 57].

3.5.2 Connection rule

In Definition 3.3, BCG’s edges between nodes are algebraically established by
the connection rule of Cayley graphs. In Figure 3.6, for example, any two
nodes u and v are connected by two directed edges labeled with generators g
and its inverse g−1. The modulo-p multiplication between a node v ∈ V and
the generator g ∈ G yields another 2× 2 matrix u ∈ V . Since the relationship
between the nodes u and v satisfies the BCG’s connection rule (u = v ∗ g),

28

Figure 3.7: A 21-node, 4-regular BCG.

there is a directed edge, ev,u, from node v to u. Similarly, there exists another
directed edge in the backward direction, eu,v, that satisfies v = u ∗ g−1. Notice
that a generator g and its inverse g−1 in conjunction establishe an undirected
(bidirectional) edge between nodes u and v. Because we are only considering
undirected BCGs in this paper, we assume that a generating set G is closed
under inversion, i.e., g ∈ G ⇔ g−1 ∈ G, for all g, g−1 ∈ G. Furthermore,
the nodal degree of BCGs is determined by the order of the generating set.
Since each pair of generators contributes degree-2 for each node, two pairs of
generators {g1, g

−1
1 } and {g2, g

−1
2 }, for example, generate undirected 4-regular

BCGs.

3.5.3 Examples

Figure 3.7 shows an example of a 21-node, 4-regular BCG with parameters
p = 7, k = 3, a = 2, and generating set G = {g1 = (1 1

0 1) , g2 = (2 1
0 1) , g

−1
1 , g−1

2 }.
From the figure, we can observe that the connections look random even though
the graphs is deterministically constructed from the given BCG parameters.
Note that a BCG looks the same from any node (vertex transitive) which
simplifies routing [23]. In Section 3.7, we will show how this pseudo-random
property of BCGs contributes to the ultrafast information dissemination or
data exchange over a network.

29

3.6 How to Select BCG Parameters?

This section provides a heuristic guideline for selecting BCG generators that
produce connected BCGs. The definition of Borel Cayley graphs explains how
the connections of a BCG are governed by the choice of generators. In fact, we
observed that most generator pairs yield densely connected BCGs with small
diameters. However, it is also observed that some generator pairs generate
disconnected BCGs. In general, a disconnected graph is undesirable. For ex-
ample, networked systems such as computer networks, wireless communication
networks, and cooperative vehicles require the underlying network topology to
be connected to ensure communication between any pair of nodes in the net-
work. Thus, it is critical to avoid generating disconnected graphs by choosing
appropriate parameters for the generators.

3.6.1 BCG samples

We generated a set of 4-regular BCG samples associated with different genera-
tor pairs to identify a pattern of bad generator pairs that generate disconnected
BCGs. We consider generators g1 =

(
at1 0
0 1

)
, g2 =

(
at2 1
0 1

)
and their inverses

g−1
1 , g−1

2 . In the rest of this section, we use (t1, t2) to represent the generator
pairs. We set the range of t1 and t2 to 1 ≤ t1 < t2 ≤ 10 instead of using all
(t1, t2) pairs in the range 0 ≤ t1 < t2 ≤ (k− 1) to limit the sample size. Thus,
the total number of generator combinations is 45 where each (t1, t2) pair de-
fines a generator set that generates a unique BCG with different connectivity
pattern.

Table 3.1 summarizes the parameters of BCGs used in our experiments.
The parameters p, k, and a have been chosen based on the definition of a
Borel subgroup (see Definition 3.2). We used two scenarios for generating
BCGs: Scenario A generates BCGs with sizes n = 1081, 2265, 3081, 4112 and
5253, while Scenario B generates BCGs with n = 2211 and 4063. We use the
data from Scenario A to find patterns of good and bad generator pairs. On
the other hand, Scenario B is designed to validate our observations. For each
of the generated BCG samples, we computed its algebraic connectivity.

3.6.2 Patterns of bad generators

We focus on finding patterns from the bad generator pairs that construct dis-
connected graphs. Based on 45 (t1, t2) pairs and their corresponding BCGs
with sizes n = 1081, 2265, 3081, 4112, and 5253, we found a pattern in good
and bad generators. The algebraic connectivity of the generated graphs re-
veals that most of the BCGs generated were connected graphs while a smaller

30

Table 3.1: BCG sizes and corresponding parameters.

scenario n p k a samples

A

1081 47 23 2 45
2265 151 15 2 45
3081 79 39 2 45
4112 257 16 2 45
5253 103 51 2 45

B
2211 67 33 6 45
4063 239 17 6 45

portion was disconnected. In fact, 4, 3, 10 and 4 samples out of the 45 BCG
samples for n = 2265, 3081, 4112 and 5253, respectively, were disconnected
graphs.

In Table 3.2, we summarize the parameters of the disconnected BCGs,
p, k and (t1, t2). In the table, d(k) and cd(t1, t2) are the set of k’s divisors
and the set of the common divisors of t1 and t2

1, respectively. Note that if
a BCG is disconnected, one of k’s divisors always appears in the common
divisors of (t1, t2) pairs. Also, the opposite was always true. That is, if a
BCG is disconnected, then cd(t1, t2) ⊂ d(k). In fact, 100% of the generator
pairs in Table 3.2 share common divisors with the divisors of k. For example
in the 2265-node case, the common divisors producing disconnected graphs
cd(t1, t2) = {3, 5} are also the divisors of k = 15. In addition, the common
divisors of all the other (t1, t2) pairs generating connected graphs other than
(3, 6), (3, 9) and (6, 9) are not the factors of k.

Furthermore, we also conjecture that if the BCG is connected, then cd(t1, t2)
is not a factor of k. For example, the parameter k of 1081-node BCGs is the
prime number 23 of which only two factors are the trivial factor 1 and itself.
The fact that the divisor 23 of k is a prime number and that it is not within
the range of t1 or t2 guarantees that no common divisor cd(t1, t2) divides k.

To support this conjecture, we further experimented with Scenario B in
Table 3.1. We found that, in Table 3.3, the (t1, t2) pairs of all disconnected
2211-node Borel Cayley graphs are the same as the ones of disconnected 3081-
and 5253-node Borel Cayley graphs. Our conjecture is further supported since
the common divisors of disconnected graphs for all 2211, 3081 and 5253 cases
are 3 which is also a divisor of k. Moreover, we observed that there is no
disconnected graph generated for 4063-node Borel Cayley graphs in the range

1 Of course, we exclude trivial divisors 1 and parameter itself. For d(k), however, if the
parameter k itself is the only divisor, then we use k as a divisor of k.

31

Table 3.2: (t1, t2) generating disconnected BCGs (Scenario A).

n p k d(k) (t1, t2) cd(t1, t2)

1081 47 23 23 - -

2265 151 15 3, 5
(3,6), (3,9) 3
(5,10) 5
(6,9) 3

3081 79 39 3, 13
(3,6), (3,9) 3
(6,9) 3

4112 257 16 2

(2,4), (2,6), (2,8), (2,10) 2
(4,6), (4,8), (4,10) 2
(6,8), (6,10) 2
(8,10) 2

5253 103 51 3, 17
(3,6), (3,9) 3
(6,9) 3

Table 3.3: Generator pairs generating disconnected BCGs (Scenario B).

n p k d(k) (t1, t2) cd(t1, t2)

2211 67 33 3, 11
(3,6), (3,9) 3
(6,9) 3

4063 239 17 17 - -

of (t1, t2) pairs we considered. That is because the sole factor d(k) = 17 for
4063-node BCGs does not fall into the experimented range 1 ≤ t1 < t2 ≤ 10
and hence, there is no generator pairs of which common divisors divide the
factor of k.

3.6.3 Guideline

Based on our observations and conjectures in the previous section, we suggest
the following guidelines for choosing k and (t1, t2) pairs to generate a connected
BCG.

Odd k: If k is even, then the divisor d(k) = 2 is a common divisor of all
(t1, t2) = (even, even) pairs which will generate disconnected BCGs. So, by
choosing an odd k, we avoid cases generating disconnected BCGs.

32

Prime k: If possible, choose a prime k.

Given k, choose (t1, t2) such that cd(t1, t2) 6⊂ d(k): Once k is chosen, the
generator (t1, t2) has to be chosen such that any common divisor of t1 and t2
(cd(t1, t2)) is not a divisor of k denoted as d(k).

3.7 Information Dissemination Performance of

Network Models

3.7.1 Setup

We evaluate the convergence speed of the average consensus protocol over the
benchmark graph families for a wide range of sizes and degrees. The bench-
mark graphs evaluated include BCGs, random graphs, small world networks,
regular ring lattices, toroidal meshes, and diagonal meshes. The parameters
used for generating the benchmark graphs are summarized in Table 3.5.

We did not consider disconnected graphs in our evaluation. For the random
graphs, we collected and evaluated 30 connected graphs. Small world networks
were generated following [10] with the rewiring probabilities of 0.01, 0.1, and
0.2. We report results averaged over 10 small world networks. Similarly,
results for each BCG of a given size and degree were averaged over 5 BCGs
constructed with different generator matrices. On the other hand, for the
regular graphs such as toroidal mesh, diagonal mesh, and ring lattices, it was
not required to average the performance metrics over several instances of the
graphs.

Table 3.4: Consensus protocol parameters.

Parameter Description and Assignment

consensus protocol average-consensus protocol (Figure 3.8)
initial state uniformly distributed random integers in [−5, 5]
step-size ω = 2dmax(G) + 1
precision 0.001

To guarantee asymptotic convergence of the average consensus protocol, we
set the step-size to the maximum allowed value [53]: ω = (2dmax(G)+1). Each
node in the graph was initialized with an integer random number between -5
and 5. The average consensus protocol reaches an agreement once the state
value of every node equals the average of all initial values within a precision

33

of 0.001. That is, we declare the network-wide consensus if r = c1, where r is
a column vector containing the state value of every node, 1 is all ones column
vector, and c is the average of all initial state values. Table 3.4 summarizes
the consensus protocol parameters used in our simulations. Our simulations
are performed on the OpenSUSE 11.1 (x86-64) operating system and Linear
Algebra PACKage (LAPACK) [60] is incorporated to compute the eigenvalues
of the graph Laplacian.

3.7.2 Performance metrics

To characterize the information dissemination performance of a graph, we used
the following metrics:

• Algebraic connectivity: See Definition 2.16.

• Spectral radius / algebraic connectivity ratio: See Definition 2.16
and Definition 2.17.

• Consensus steps: The number of steps (iterations) required for all
nodes in a network (or a graph) to reach the global agreement (i.e.,
consensus value) using the average consensus protocol described in Sec-
tion 3.8.

3.7.3 Results

In this section, we compare the convergence speeds of various families of graphs
for different sizes and degrees.

Require: L := n× n Laplacian matrix of G
Require: rinit := column vector of all initial states
Require: c = 1

n

∑

i ri, ∀ri ∈ rinit
1: procedure AverageConsensusProtocol(L, rinit)
2: τ ← 0
3: r← rinit
4: ω ← 2dmax(G) + 1
5: repeat
6: r← (I − 1

ω
L) r

7: τ ← τ + 1
8: until r = c1 ⊲ precision set to 10−3 for simulations
9: end procedure

Figure 3.8: Algorithm for average consensus protocol.

34

T
ab

le
3.
5:

G
ra
p
h
fa
m
il
ie
s
an

d
p
ar
am

et
er
s.

gr
ap

h
fa
m
il
y

si
ze

d
eg
re
e

N
u
m
b
er

of
sa
m
p
le
s

R
an

d
om

gr
ap

h
†

11
0,

17
1,

25
3

4,
8,

16
30

10
81
,
20
00
,
30
00
,4
00
0,

50
00

8,
16

20

S
m
al
l-
w
or
ld

n
et
w
or
k
†

11
0,

17
1,

25
3,

10
81
,
20
00
,
30
00
,
40
00
,
50
00

4,
8,

16
10

R
eg
u
la
r
ri
n
g
la
tt
ic
e

11
0,

17
1,

25
3,

10
81
,
20
00
,
30
00
,
40
00

4,
8,

16
1

B
or
el

C
ay
le
y
gr
ap

h
11
0,

17
1,

25
3,

10
81

4,
8,

16
5

21
62
,
34
03
,
49
70

4,
8,

16
1

T
or
oi
d
al

m
es
h

11
0,

17
1,

25
3,

10
81
,
20
00
,
30
00
,
40
00
,
50
00

4
1

D
ia
go
n
al

m
es
h

11
0,

17
1,

25
3,

10
81
,
20
00
,
30
00
,
40
00
,
50
00

4
1

†
N
on

-r
eg
u
la
r
gr
ap

h
s,
th
u
s
th
e
d
eg
re
es

ar
e
m
ea
n
va
lu
es
.

35

In Figure 3.9, we plot the number of steps required to reach the network-
wide consensus as a function of the algebraic connectivity for different families
of graphs over a range of graph sizes and degrees. As shown in the figure, in
all cases, BCGs consistently exhibit better information dissemination perfor-
mance than other benchmark graphs. Furthermore, we noticed that the in-
formation dissemination performance improves as degree increases. Figure 3.9
also confirms the known result that the larger the algebraic connectivity, the
faster consensus protocol convergence speed. Similar results were observed for
graphs of size ranging from 2000 to 5000 nodes and are not repeated here.

Figure 3.10 plots the number of steps to reach a consensus versus the ratio
of spectral radius over algebraic connectivity (λn/λ2). It has been known in
the literature that such a graph spectral property ratio is a good performance
indicator for the information diffusion rate [45]. The results shown in Fig-
ure 3.10 are consistent with those in [45]. The performance of the BCGs have
the smallest ratio and fastest convergence speed comparing to the benchmark
graphs with the same sizes and degrees.

Figure 3.11 demonstrates how the information dissemination performance
scales over different network sizes across different graph families. Comparison
among different graph families with the same degree graphs shows that BCGs
consistently achieve the fastest information dissemination speed. Furthermore,
the BCGs scale very well over network sizes ranging from 100 to 5000 nodes.
The random graphs and the Small World Networks (SWNs) with reasonably
high rewiring probability (p = 0.1, and 0.2) scales relatively well. On the con-
trary, the regular ring lattices scale very poorly over different network sizes.
These results confirm that we can improve the information dissemination per-
formance of regular ring lattices by rewiring only a small portion of its local
links, as reported in [11]. Moreover, for a given degree, as the size of the graph
increases, the performance gap among various graphs families further widens.
For a given graph size, the consensus protocol convergence speed over the same
graph family improves with increasing degree.

36

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Diagonal Mesh
 Toroidal Mesh
 Borel-Cayley

S
te
ps

Algebraic connectivity

(a) n = 110, d(G) = 4

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(b) n = 110, d(G) = 8

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(c) n = 110, d(G) = 16

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Diagonal Mesh
 Toroidal Mesh
 Borel-Cayley

S
te
ps

Algebraic connectivity

(d) n = 171, d(G) = 4

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(e) n = 171, d(G) = 8

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(f) n = 171, d(G) = 16

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Diagonal Mesh
 Toroidal Mesh
 Borel-Cayley

S
te
ps

Algebraic connectivity

(g) n = 253, d(G) = 4

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(h) n = 253, d(G) = 8

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(i) n = 253, d(G) = 16

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Diagonal Mesh
 Toroidal Mesh
 Borel-Cayley

S
te
ps

Algebraic connectivity

(j) n = 1081, d(G) = 4

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(k) n = 1081, d(G) = 8

0 1 2 3 4 5 6 7 8 9
101

102

103

104

105

106

 k-Regular Ring
 SWN (p=0.01)
 SWN (p=0.1)
 SWN (p=0.2)
 Random
 Borel-Cayley

S
te
ps

Algebraic connectivity

(l) n = 1081, d(G) = 16

Figure 3.9: Information dissemination performance versus algebraic connec-
tivity (λ2) for n = 110, 171, 253, and 1081.

37

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) k-Regular Ring
 SWN (p=0.1) Toroidal Mesh
 SWN (p=0.2) Diagonal Mesh
 Random Borel-Cayley

S
te
ps

Radius/AC

(a) n = 110, d(G) = 4

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(b) n = 110, d(G) = 8

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(c) n = 110, d(G) = 16

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) k-Regular Ring
 SWN (p=0.1) Toroidal Mesh
 SWN (p=0.2) Diagonal Mesh
 Random Borel-Cayley

S
te
ps

Radius/AC

(d) n = 171, d(G) = 4

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(e) n = 171, d(G) = 8

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(f) n = 171, d(G) = 16

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) k-Regular Ring
 SWN (p=0.1) Toroidal Mesh
 SWN (p=0.2) Diagonal Mesh
 Random Borel-Cayley

S
te
ps

Radius/AC

(g) n = 253, d(G) = 4

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(h) n = 253, d(G) = 8

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(i) n = 253, d(G) = 16

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) k-Regular Ring
 SWN (p=0.1) Toroidal Mesh
 SWN (p=0.2) Diagonal Mesh
 Random Borel-Cayley

S
te
ps

Radius/AC

(j) n = 1081, d(G) = 4

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(k) n = 1081, d(G) = 8

100 101 102 103 104 105
101

102

103

104

105

106

 SWN (p=0.01) Random
 SWN (p=0.1) k-Regular Ring
 SWN (p=0.2) Borel-Cayley

S
te
ps

Radius/AC

(l) n = 1081, d(G) = 16

Figure 3.10: Information dissemination performance versus the ratio of spec-
tral radio to algebraic connectivity (λn/λ2) for n = 110, 171, 253, and 1081.

38

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

c
o

n
s
e

n
s
u

s
 s

te
p

 (
τ)

network size

2k 3k 4k 5k

BCG

SWN (p=0.01)

SWN (p=0.1)

SWN (p=0.2)

Random

k-Regular

Toroidal Mesh

Toroidal Mesh

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

c
o

n
s
e

n
s
u

s
 s

te
p

 (
τ)

network size

2k 3k 4k 5k

BCG

SWN (p=0.01)

SWN (p=0.1)

SWN (p=0.2)

Random

k-Regular

Toroidal Mesh

Toroidal Mesh

(a) d(G) = 4

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

c
o

n
s
e

n
s
u

s
 s

te
p

 (
τ)

network size

2k 3k 4k 5k

BCG

SWN (p=0.01)

SWN (p=0.1)

SWN (p=0.2)

Random

k-Regular

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

c
o

n
s
e

n
s
u

s
 s

te
p

 (
τ)

network size

2k 3k 4k 5k

BCG

SWN (p=0.01)

SWN (p=0.1)

SWN (p=0.2)

Random

k-Regular

(b) d(G) = 8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

c
o
n

s
e

n
s
u
s
 s

te
p

 (
τ)

network size

2k 3k 4k 5k

BCG

SWN (p=0.01)

SWN (p=0.1)

SWN (p=0.2)

Random

k-Regular

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

c
o
n

s
e

n
s
u
s
 s

te
p

 (
τ)

network size

2k 3k 4k 5k

BCG

SWN (p=0.01)

SWN (p=0.1)

SWN (p=0.2)

Random

k-Regular

(c) d(G) = 16

Figure 3.11: Convergence steps vs. network sizes.

39

Summary

In this chapter, we reviewed various network models including Erdös-Rényi’s
random graphs, Watts-Strogatz’s small world networks, k-regular ring lattices,
toroidal meshes, diagonal meshes, and Borel Cayley Graphs. We evaluated in-
formation dissemination speed of each network model using several metrics
including average consensus protocol convergence speed, algebraic connectiv-
ity, and the ratio of spectral radius to algebraic connectivity.

We found that BCGs are one of the most favorable graphs that have the fol-
lowing properties: (i) the fastest information dissemination speed among con-
sidered benchmark graphs, and (ii) the best scalability among the benchmark
graphs with the network sizes from n = 100 to 5000 nodes. We attribute this
superior information dissemination performance and scalability of the BCGs
to its pseudo-random connections that help to facilitate even distribution of
information exchange among nodes in the network.

40

Chapter 4

Quasi Borel Cayley Graph

4.1 Introduction

In the previous chapter, we discussed various advantageous properties of BCGs
including (a) integer domain representations as GCR (Generalized Chordal
Rings), (b) an algebraic graph construction, (c) vertex transitivity, (d) a con-
stant degree, and (e) an ultrafast information dissemination performance. We
also found that the information dissemination performance of BCGs scales
very well over a wide range of network sizes ranging from 1000 to 5000 nodes.

However, we also recognized that it has been challenging to apply BCGs
to real networks because of BCGs’ lack of size flexibility. As noted in Defini-
tions 3.2 and 3.3, the size of a BCG is p × k, where p is a prime, and k is a
factor of p− 1. Because of the limited choices in choosing BCG parameters p

Processing BCGs

If (no > nt)

 BCG Pruning

ElseIf (no < nt)

 BCG Random Expansion

EndIf

Cut-Through Rewiring

Original BCG

size = no

target size = nt

Quasi BCG

size = nt

Figure 4.1: The quasi Borel Cayley graph generation process.

41

Table 4.1: The original sizes no of example BCGs and their corresponding
BCG parameters p, k, and a.

p k a no p k a no p k a no

7 3 2 21 109 36 2 3924 151 45 2 6795
17 16 3 272 257 16 2 4112 337 21 2 7077
47 23 2 1081 97 48 11 4656 223 37 2 8251
53 26 6 1378 521 10 5 5210 331 30 2 9930
67 33 2 2211 103 51 2 5253 107 106 7 11342
79 39 2 3081 241 24 2 5784 769 48 3 36912
83 41 3 3403 199 33 5 6567 223 222 11 49506

and k, it is not possible to construct a BCG of arbitrary size. For example,
Table 4.1 shows examples of BCG sizes and corresponding BCG parameters.
To facilitate realistic applications of BCGs as network topologies, we propose
graph resizing algorithms that produce Quasi BCGs with flexible sizes, while
preserving the aforementioned advantageous properties of the original BCGs.

A Quasi BCG is a BCG that is transformed by our BCG Pruning algorithm
or BCG Random Expansion algorithm. Figure 4.1 illustrates a diagram for
Quasi BCG generation method that takes the original BCG (with the original
size no) and target size (nt) as inputs. Using those two inputs, our algorithms
generate Quasi BCGs of target size nt. Note that in the rest of this section,
we are considering undirected 4-regular BCGs constructed by two generators
and their inverses. In the following sections, we describe our proposed BCG
Pruning and Random Expansion algorithms.

4.2 BCG Pruning

The proposed BCG pruning algorithm randomly selects a node to be removed
from the original BCG, prunes the selected node, and rewires broken edges of
remaining nodes to maintain connectivity. The node removal and edge rewiring
processes are repeated until the desired target size is reached. Figure 4.2
summarizes our BCG Pruning algorithm. In the next section, we present
the Cut-Through Rewiring (CTR) algorithm which is a key to preserve the
deterministic connection rule of BCGs.

42

Require: V := a vertex set of Borel Cayley Graph
Require: 0 < nt < no

1: procedure GraphResizing(V, nt)
2: while nt < |V | do
3: select a node v ∈ V uniformly at random
4: V ← V \ {v} ⊲ prune node v
5: perform Cut-Through Rewiring ⊲ Figure 4.6
6: end while
7: end procedure

Figure 4.2: Algorithm for BCG pruning.

4.2.1 Cut-through rewiring

Whenever a node is removed from a BCG, the BCG Pruning algorithm rewires
the edges of the remaining nodes using the CTR algorithm to preserve the
connectivity of the pruned BCG. To make CTR algorithm deterministic, we
exploit the BCG’s generators and deterministic connection rule. Recall in
Definition 3.3 that a node u is connected to another node v if and only if
u = v ∗ g for g ∈ G. From this connection rule, we define the g-direction as
follows:

Definition 4.1 (g-direction). Let g be a generator of a Borel Cayley graph,
then the g-direction between two neighboring nodes v and w is the logical
direction of the directed edge ev,w such that w = v∗g. We denote two connected

nodes in the g-direction by v
g
−֒→ w.

Based on the above definition, let us consider a 4-regular BCG formulated
by generators g1, g2, g

−1
1 , and g−1

2 . Then, any node v ∈ V is connected to
its four neighbors in the g1, g2, g

−1
1 , and g−1

2 directions with the respective
neighbors Nv = {x, y, w, z}, where x = v ∗ g1, y = v ∗ g2, w = v ∗ g−1

1 , and
z = v∗g−1

2 . Now, suppose we are pruning v in Figure 4.3(a). Then, as shown in
Figure 4.3(b), the four neighbors of v, Nv = {w, x, y, z}, lose their connections
to v.

Our CTR algorithm preserves the connectivity of the graph by establishing
edges that tunnel or cut-through the pruned node v in the g1, g2, g

−1
1 , and

g−1
2 directions as illustrated in Figure 4.3(c). More specifically, after node v
is pruned, our rewiring algorithm rewires the node w to the new neighbor x
found by the following group multiplication:

w ∗ g21 = w ∗ g1
︸ ︷︷ ︸

v

∗g1 = v ∗ g1 = x .

43

(a) before pruning (b) after pruning v

(c) cut-through rewiring

Figure 4.3: Pruning and Cut-Through Rewiring.

v x
g1

g1
-1

r
g1

g1
-1

q

 pruned nodes

g1-direction

Figure 4.4: Cutting-through multiple edges.

44

(a) K3 cycle (b) Multiple edges

Figure 4.5: Handling K3 cycle.

Similarly, CTR algorithm determines the new neighboring node of x to be
w = x∗g−1

1 ∗g
−1
1 = x∗g−2

1 . Note that this simple rewiring operation is applied
to the rest of the nodes, y and z, for g2 and g−1

2 directions as well.
We also note that it is necessary to cut-through multiple nodes when more

than one node in the same g-direction have been removed. For example,
suppose in Figure 4.4 that all κ > 1 consecutive nodes between x and q in
the g1 and g−1

1 directions have been pruned out. Then, CTR establishes a

new edge between x and q by computing x ∗ gκ+1
1 = q, and q ∗ g−(κ+1)

1 = x in
forward and backward directions, respectively.

There are also situations where our graph pruning algorithm results in
multiple edges and self loops. The former occurs when a node to be pruned
is part of a cycle of three nodes as shown in Figure 4.5(a). In this case,
pruning node v and applying CTR will result in multiple edges between nodes
u and w as illustrated in Figure 4.5(b). Furthermore, by pruning the node
w in Figure 4.5(b), CTR produces a self-loop for the node u. Thus, if the
CTR algorithm produces |G|/2 self-loops for a node, then the node will be
isolated from a connected component, and the resulting pruned BCG will be
disconnected. Figure 4.6 summarizes the CTR algorithm for a 4-regular BCG
with four generators g1, g2, and their inverses g3 = g−1

1 and g4 = g−1
2 .

The advantages of the CTR algorithm can be summarized by (a) determin-
istic edge rewiring (new neighbors replacing pruned node are algebraically de-
termined by group multiplication) (b) simplicity in computation (2×2 matrix
multiplications), and (c) the consistency with the original BCGs connection
rule. Because CTR uses the same connection rule as in BCGs, we expect struc-
tural similarities between the original and the pruned BCGs. We investigate
these issues in the rest of the chapter.

45

Require: x := pruned node
Require: Nx = {v | d(u, v) = 1} ⊲ a set of neighbors of node x
Require: V ′ := a set of nodes in a pruned BCG
1: procedure CutThroughRewiring(x,Nx, V

′)
2: for each v ∈ Nx do
3: g ← v−1 ∗ x
4: while vdest /∈ V ′ do
5: vdest ← vdest ∗ g
6: end while
7: if vdest 6= v then
8: establish a directed edge from v to vdest
9: end if

10: end for
11: end procedure

Figure 4.6: Algorithm for Cut-Through Rewiring.

4.3 BCG Pruning: Connectivity

In this section, we investigate the connectivity of pruned BCGs. Because our
BCG Pruning algorithm does not involve any complex mechanism to prevent
the occurrence of isolated nodes, it is important to see wether or not the pro-
posed algorithm guarantees the connectivity of pruned BCGs. Obviously, as
the number of pruned nodes increases, the graph disconnection probability of
pruned graph increases. Nonetheless, analytical and simulation results showed
that pruned BCGs remain connected even after pruning 80% to 90% of nodes
from the original graph.

4.3.1 Analysis

We begin our graph connectivity analysis by considering two cases where the
pruned BCGs are disconnected:

1. Case 1 - Node isolation: The case that a pruned BCG contains at
least one node which has no neighbor (isolated). The nodal isolation
probability is the probability that one or more nodes in a pruned BCG
are isolated.

2. Case 2 - Multiple connected components: The case that a pruned
BCG contains two or more connected components (disjoint connected
subgraphs) of orders larger than 1 but less than nt− 1 after pruning (nt

46

Table 4.2: Notation.

Notation Description

C Borel Cayley graph (BCG)
C

P a pruned BCG
C

E a expanded BGG
V vertex set (or subgroups)
V (G) vertex set of a graph G

G generating set of a BCG
g, g−1 generator and its inverse
I identity matrix
Nv set of a node v’s immediate neighbors
no size of the original BCG
nt target size of a pruned BCG
n size of the benchmark graphs
m number of nodes contained in g-direction
γ number of pruned nodes
δ number of isolated nodes
P i
γ(v, g) probability of a node v to have exactly i nodes in g-direction after pruning

γ nodes and rewiring
P 0
γ (v) probability of a node v to be an isolated node after pruning γ nodes and

rewiring
P (iso) nodal isolation probability
P (dis) graph disconnection probability
∆(iso) node isolation ratio
∆(dis) graph disconnection ratio
S set of pruned BCG samples
Sdis set of disconnected pruned BCG samples
diam(G) diameter of a graph G

µ(G) average path length of a graph (G)
λ2 algebraic connectivity

is the target size). In this case, we only consider the order of connected
components greater than or equal to 2 since node isolation (component
with order exactly 1) is considered in Case 1. The multiple connected
components probability is the probability that there exists two or more
connected components in the pruned BCG, excluding Case 1.

Based on the theoretical results presented in [61, 62], we expect the multiple
connected components probability (Case 2) to decrease very quickly with the
size of a graph. So in this thesis, we only derive analytical expressions for
the graph disconnection probability due to node isolations (Case 1). Also, in
the following sections, we will show that the multiple connected components
probability (Case 2) is significantly less than the nodal isolation probability.

47

Lemma 4.1. Let C be a 4-regular Borel Cayley graph, and let m be the
smallest integer such that gm (mod p) = I, where g is a generator, and I is
the identity. If CP is a pruned BCG of C after pruning γ nodes by random
pruning and rewiring using CTR, then the probability of a node v ∈ V (CP)
having exactly i distinct nodes in the g-direction,

P i
γ(v, g) =

(
α

α− i

)(
no − α

γ − (α− i)

)

(
no

γ

) , (4.1)

for (α− i) ≤ γ ≤ no and 0 ≤ i ≤ α, where α = m− 1, and no denotes the size
of the original Borel Cayley graph.

Proof. Let Π(v, g) be a set of distinct nodes in the g-direction excluding the
starting node v, that is, Π(v, g) = {π ∈ V (CP)\{v} | π = v∗gq, ∀ 1 ≤ q ≤ α}.
The random pruning algorithm selects γ nodes uniformly at random from the
original Borel Cayley graph. Out of γ pruned nodes, if exactly (α − i) nodes
are chosen (without replacement) from the set Π(v, g), then there are exactly
i nodes remaining in the g-direction of node v. Thus, the probability of a node
v ∈ V (CP) having exactly i distinct nodes in the g-direction after pruning γ
nodes is given by the hypergeometric probability mass function (pmf) [63]

P i
γ(v, g) = Pr

[∣
∣Π(v, g)

∣
∣ = i

]
=

(
α

α− i

)(
no − α

γ − (α− i)

)

(
no

γ

) , (4.2)

for (α− i) ≤ γ ≤ no and 0 ≤ i ≤ α.

Using Eq. (4.1), the probability of a node in a pruned BCG having exactly i
nodes in the g-direction, we derive the nodal isolation probability after random
pruning.

Lemma 4.2. Let C be a 4-regular Borel Cayley graph with generating set
G = {g1, g2, g

−1
1 , g−1

2 }, and let m1 and m2 be the smallest integers such that
gm1

1 (mod p) = I, and gm2

2 (mod p) = I. If we choose the generators satisfying
m1 = m2, then the probability of a node v ∈ V (CP) being an isolated node
after pruning γ nodes and performing CTR

P (iso) =
γ!

no!

(no − 2α)!

(γ − 2α)!
, (4.3)

48

for (2α− i) ≤ γ ≤ no and 0 ≤ i ≤ 2α, where α = (m1 − 1) = (m2 − 1).

Proof. A node in a pruned BCG v ∈ V (CP) is isolated if and only if it has
no neighbor in the g1 and g2 directions. The reverse direction paths given
by the inverse generators g−1

1 and g−1
2 are not considered because they only

consist of the same nodes in the g1 and g2 direction paths, respectively. As in
Lemma 4.1, the probability of a node v ∈ V (CP) to be isolated is given by the
hypergeometric pmf. By setting the number of the remaining nodes in both
g1 and g2 directions to 0 (i.e., i = 0) and denoting α = m1 − 1 = m2 − 1, the
nodal isolation probability is given by

P (iso) = P 0
γ (v) =

(
2α

2α− 0

)(
no − 2α

γ − 2α− 0

)

(
no

γ

) =

(
no − 2α

γ − 2α

)

(
no

γ

) (4.4)

=
γ!

no!

(no − 2α)!

(γ − 2α)!
, (4.5)

for (2α− i) ≤ γ ≤ no and 0 ≤ i ≤ 2α.

Next, we derive the graph disconnection probability due to the node isola-
tions (Case 1).

Lemma 4.3. Let δ be the number of isolated nodes in a pruned BCG, and let
γ be the number of pruned nodes, then the graph disconnection probability of
the pruned BCG due to the existence of one or more isolated nodes

P (dis) = 1−

[

1−
γ!

no!

(no − 2α)!

(γ − 2α)!

]nt

, (4.6)

for 2α ≤ γ ≤ no, where nt = no − γ denotes the size of the pruned BCG.

Proof. We consider the probability of pruned BCG having δ = k isolated nodes
to compute the graph disconnection probability. Since a graph containing at
least one isolated node is disconnected, 1− P 0

γ (v) is the probability of a node
being connected (not isolated) in the pruned BCG after γ nodes pruning and
rewiring. First, the probability of a pruned BCG having exactly k isolated
nodes

Pr [δ = k] =

(
no − γ

k

)
[
P 0
γ (v)

]k [
1− P 0

γ (v)
]no−γ−k

, (4.7)

and the probability that there is no isolated node in a pruned BCG

49

Pr [δ = 0] =
[
1− P 0

γ (v)
]nt

, (4.8)

where the target size nt = no − γ. Hence, the disconnection probability of a
pruned BCG after γ nodes pruning and rewiring is given by

P (dis) = Pr [δ > 0] = 1− Pr [δ = 0]

= 1−

[

1−
γ!

no!

(no − 2α)!

(γ − 2α)!

]nt

. (4.9)

4.3.2 Validation

To verify the accuracy of the nodal isolation and graph disconnection probabil-
ities (Eq. (4.3) and Eq. (4.6)), we resized the original BCGs of sizes no = 1081
and 5253 using the proposed BCG Pruning algorithm. The number of distinct
nodes in the g1 and g2 directions were m1 = m2 = 23 and m1 = m2 = 51 for
no = 1081 and 5253, respectively. The amount of pruned nodes, γ, was set to
a multiple of 20 for no = 1081 and a multiple of 105 for no = 5253 (approx-
imately 2% of the original graph size). For each γ, we generated |S| = 1500
pruned BCG samples using the BCG Pruning algorithm. For the pruned BCG
samples, we computed the node isolation ratio and the graph disconnection
ratio.

The node isolation ratio was calculated as ∆(iso) = 1
nt
δ(CP), where δ(CP)

is the number of isolated nodes in the pruned BCG and nt is the size of
the pruned BCGs. While the graph disconnection ratio was calculated as
∆(dis) = |Sdis|/|S|, where Sdis = {CP | δ(CP) > 0, CP ∈ S} (i.e., a set of
disconnected pruned BCGs due to the node isolation). Note that the node
isolation ratio and the graph disconnection ratio are the simulated results of
the nodal isolation probability in Eq. (4.3) and graph disconnection probability
in Eq. (4.6), respectively. Lastly, we computed the average node isolation ratio

as ∆(iso) = 1
|S|nt

∑|S|
i=1 δ(C

P
i), where CP

i is an instance of a pruned BCG.

In Figure 4.7, we compare the nodal isolation probability (analytical re-
sults) and the node isolation ratio (simulation results) of pruned BCGs. The
nodal isolation probability remains below 0.01 until the normalized prun-
ing quantity reaches 0.9 to 0.95. That is, pruning 90% ∼ 95% of nodes
from the original BCGs produced fewer than 0.01nt isolated nodes in pruned
BCGs. In the figure, we also show the target nodal isolation probability at

50

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b
ili

ty

Normalized amount of pruning (γ / no)

Target P(iso)

P(iso), no=506, m1=m2=22
P(iso), no=1081, m1=m2=23
P(iso), no=3081, m1=m2=39
P(iso), no=5253, m1=m2=51
∆(iso), no=1081, m1=m2=23
∆(iso), no=5253, m1=m2=51

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b
ili

ty

Normalized amount of pruning (γ / no)

Target P(iso)

P(iso), no=506, m1=m2=22
P(iso), no=1081, m1=m2=23
P(iso), no=3081, m1=m2=39
P(iso), no=5253, m1=m2=51
∆(iso), no=1081, m1=m2=23
∆(iso), no=5253, m1=m2=51

Figure 4.7: The nodal isolation probability P (iso) and the average nodal iso-
lation ratio ∆(iso) of resized BCGs as a function of the normalized amount of
pruned nodes γ/no. The average node isolation ratio was obtained by taking
the average of the node isolation ratios of 1500 samples for each γ/no.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b

ili
ty

Normalized amount of pruning (γ / no)

P(dis), no=506, m1=m2=22
P(dis), no=1081, m1=m2=23
P(dis), no=3081, m1=m2=39
P(dis), no=5253, m1=m2=51
∆(dis), no=1081, m1=m2=23
∆(dis), no=5253, m1=m2=51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b

ili
ty

Normalized amount of pruning (γ / no)

P(dis), no=506, m1=m2=22
P(dis), no=1081, m1=m2=23
P(dis), no=3081, m1=m2=39
P(dis), no=5253, m1=m2=51
∆(dis), no=1081, m1=m2=23
∆(dis), no=5253, m1=m2=51

Figure 4.8: The graph disconnection probability P (dis) and the ratio ∆(dis)
as a function of the normalized amount of pruned nodes γ/no. The graph dis-
connection ratio was obtained by counting the number of disconnected graphs
among 1500 samples for each γ/no.

51

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b
ili

ty

Normalized amount of pruning (γ / no)

PE(dis), no=1081

PE(dis), no=5253

∆case2(dis), no=1081

∆case2(dis), no=5253

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b
ili

ty

Normalized amount of pruning (γ / no)

PE(dis), no=1081

PE(dis), no=5253

∆case2(dis), no=1081

∆case2(dis), no=5253

Figure 4.9: Analytical error PE(dis) and the Case 2 graph disconnection ratio
∆Case2(dis) as a function of the normalized amount of pruned nodes γ/no.

P (iso) = 0.0001 1 to illustrate how many node prunings the original BCG can
tolerate before being disconnected with this target probability. The results
show that up to 82% of nodes can be pruned from the no = 506 original BCG
while maintaining the nodal isolation probability less than or equal to the
target nodal isolation probability. The corresponding percentages of pruning
that meet the target nodal isolation probability are 82%, 88%, and 92% for
no = 1081, 3081, and 5253 BCGs, respectively.

Figure 4.8 shows the graph disconnection probability from Lemma 4.3 ver-
sus the graph disconnection ratio for BCGs of sizes no = 1081 and 5253. In
the figure, we plotted the disconnection probability for no = 506 and 3081 as
well. The analytical and simulation results show that the pruned BCGs are
connected with very high probability for up to 80% pruning for no = 1081, and
90% for no = 5253. In fact, simulation results shows that 98.87% and 100% of
pruned BCGs are connected when 80% of nodes are pruned from no = 1081
and no = 5253 BCGs, respectively. For 90% pruning, we observed from the
simulation that 99.4% of the pruned BCGs with the original size no = 5253
are connected.

Even though our analytical expression for the graph disconnection prob-
ability P (dis) in Eq. (4.6) only considers node isolations, we found the error

1 Note that, this target nodal isolation probability P (iso) = 0.0001 guarantees at most
one node isolation for 10, 000 nodes networks.

52

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b
ili

ty

Normalized amount of pruning (γ / no)

P(dis), α=10
P(dis), α=20
P(dis), α=30
P(dis), α=40
P(dis), α=50

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a
b
ili

ty

Normalized amount of pruning (γ / no)

P(dis), α=10
P(dis), α=20
P(dis), α=30
P(dis), α=40
P(dis), α=50

Figure 4.10: P (dis) of the resized graphs as a function of γ/no for α =
10, . . . , 50. The size of the original BCG no = 5253.

between our analytical expressions and our simulation results to be small.
Moreover, in Figure 4.9, we show the error PE(dis) = |P (dis) − ∆(dis)| for
pruned BCGs2 of sizes no = 1081 and 5253. We found the role of the multiple
connected components (Case 2), represented by PE(dis), become insignificant
as no and nt increase.

4.3.3 Relation to the graph generators

By definition of BCGs, the numbers of nodes contained along the g1 and
g2 directions are given, respectively, by the integers m1 and m2 such that
gm1

1 (mod p) = I, and gm2

2 (mod p) = I, where 0 ≤ m1,m2 ≤ k, and I is
the identity. Thus, m1 and m2 are determined by the choice of generators.
Assuming that we choose two generators such that m1 = m2, the graph dis-
connection probability in Eq. (4.6) is a function of α = m1 − 1 = m2 − 1 in
addition to the number of pruned nodes. Moreover, α is determined by the
generators because m1 and m2 are computed such that gm1

1 (mod p) = I, and
gm2

2 (mod p) = I. Based on this observation, we investigate the relationship
between α and the graph disconnection probability.

In Figure 4.10, we plotted P (dis) as a function of γ/no for the pruned
BCGs generated from the no = 5253 original BCGs. The maximum possible

2 PE(dis) also represents Case 2 graph disconnection ratio.

53

value for α is 50 since the maximum values of m1 and m2 for this particular
graph are limited by k − 1 = 50. We used different values for α to show
effects of generators on the connectedness of the pruned BCGs. The results
showed that P (dis) of the pruned BCG is sensitive to α. In fact, the original
BCGs formulated by generators with large α values experience fewer graph
disconnections after pruning. Thus, it is desired to choose generators that
yield large m1 and m2 to ensure lower graph disconnection probability after
pruning.

4.4 BCG Pruning: Topological and Spectral

Properties

In this section, we quantify the topological and spectral properties of pruned
BCGs. More specifically, we compare the original BCGs and their pruned
BCGs using the metrics including diameter, the average path length, and the
algebraic connectivity defined in Chapter 2.

4.4.1 Graph generation

The original BCGs with no = 1081, 2211, 3081, 4063, and 5253 were generated
and pruned by our BCG Pruning algorithm. Table 4.3 summarizes the sizes
and parameters of the original and pruned BCGs.

We have (p×k−1) generator candidates in total because any node element
except the identity can be a generator. However, for generators g1 =

(
at1 y1
0 1

)
,

and g2 =
(
at2 y2
0 1

)
, we simply set y1 = y2 = 1 since the parameters y1 and

y2 do not affect the connections of BCGs. In addition, we set the range of
t1 and t2 to 1 ≤ t1 < t2 ≤ 10 instead of using all (t1, t2) pairs in the range
0 ≤ t1 < t2 ≤ (k − 1). Thus, the total number of generator combinations was
45, where each (t1, t2) pair generated a unique BCG with different connection
pattern.

We arbitrarily set the target sizes nt = 1000, 2000, 3000, 4000, and 5000.
Note that nt can be any arbitrary number in the range (0, no]. The amount of
pruned nodes, γ = no − nt.

4.4.2 Diameter

Since BCGs are known as one of the densest 4-regular graphs for a given
range of diameters [64], we compare the diameters of the original and pruned
BCGs. For a given BCG of size no, we computed the average diameter (d)

54

Table 4.3: Sizes and parameters of the original BCGs and corresponding target
sizes.

no p k a nt samples

1081 47 23 2 1000 45
2211 67 33 6 1000 2000 45
3081 79 39 2 1000 2000 3000 45
4063 239 17 6 1000 2000 3000 4000 45
5253 103 51 2 1000 2000 3000 4000 5000 45

and standard deviation (σ) over n pruned BCGs of size nt in Table 4.4. For
example, d = 10.5 for the no = 5253 BCGs became d = 9.3 after pruning
γ = 4253 nodes (i.e., nt = 1000). More interestingly, we found that the
average diameters of the pruned BCGs are relatively invariant with the amount
of pruning. For instance, the average diameter of pruned BCGs with nt = 1000
created from the original BCGs with no = 5253 is 9.3 which is close to d = 8.7
of pruned BCGs with nt = 1000 resized from the original BCGs with no =
1081.

4.4.3 Average path length

In general, a small average diameter does not automatically guarantee a small
average path length. Thus, we also evaluated the average path length of the
original and pruned BCGs in Table 4.5. As expected, the average path lengths
of the original BCGs were short (e.g., µ = 5.6 ∼ 7.4). We found that, for a
given target size nt, the average path lengths of the pruned BCGs remain
close to those of the original BCGs. For example, 6.2 ≤ µ ≤ 6.4 for nt = 2000
regardless of no.

4.4.4 Algebraic connectivity

The average algebraic connectivity λ2 of the original and pruned BCGs are
summarized in Table 4.6. In the table, the larger the λ2 is, the better connected
the graph is. As indicated, λ2 of the pruned BCGs remained close to that of the
original BCGs. For instance, in most cases, the average algebraic connectivity
values of the pruned BCGs were close to those of the original BCGs.

However, the average algebraic connectivity of the no = 4063 BCGs pruned
to nt = 1000 were decreased by half which implies the loose connectedness of
the pruned BCGs. We believe this undesirable result is attributed to the
relatively small parameter k (k = 17 in this case).

55

T
ab

le
4.
4:

A
ve
ra
ge

d
ia
m
et
er

(d
)
of

th
e
or
ig
in
al

an
d
re
si
ze
d
B
C
G
s.

T
h
e
σ
an

d
n
ar
e
th
e
st
an

d
ar
d
d
ev
ia
ti
on

an
d

sa
m
p
le

si
ze
,
re
sp
ec
ti
ve
ly
.

n
o

n
t
=

n
o

n
t
=

50
00

n
t
=

40
00

n
t
=

30
00

n
t
=

20
00

n
t
=

10
00

d
(σ
,n

)
d
(σ
,n

)
d
(σ
,n

)
d
(σ
,n

)
d
(σ
,n

)
d
(σ
,n

)

10
81

8.
1
(0
.3
,4
5)

8.
1
(0
.3
,4
5)

22
11

8.
9
(0
.6
,4
2)

9.
1
(0
.4
,4
2)

8.
7
(0
.5
,4
2)

30
81

9.
4
(0
.9
,4
2)

9.
7
(0
.9
,4
2)

9.
1
(0
.3
,4
2)

8.
7
(0
.6
,4
2)

40
63

9.
2
(0
.4
,4
5)

10
.0

(0
.2
,4
5)

9.
9
(0
.3
,4
5)

9.
3
(0
.5
,4
5)

11
.1

(0
.5
,3
9)

52
53

10
.5

(1
.3
,4
2)

10
.6

(1
.2
,4
2)

10
.2

(0
.6
,4
2)

10
.0

(0
.3
,4
2)

9.
2
(0
.4
,4
2)

9.
3
(0
.9
,4
2)

T
ab

le
4.
5:

A
ve
ra
ge

of
av
er
ag
e
p
at
h
le
n
gt
h
s
(µ
)
of

th
e
or
ig
in
al

an
d
re
si
ze
d
B
C
G
s.

T
h
e
σ
an

d
n
ar
e
th
e
st
an

d
ar
d

d
ev
ia
ti
on

an
d
sa
m
p
le

si
ze
,
re
sp
ec
ti
ve
ly
.

n
o

n
t
=

n
o

n
t
=

50
00

n
t
=

40
00

n
t
=

30
00

n
t
=

20
00

n
t
=

10
00

µ
(σ
,n

)
µ
(σ
,n

)
µ
(σ
,n

)
µ
(σ
,n

)
µ
(σ
,n

)
µ
(σ
,n

)

10
81

5.
6
(0
.1
,4
5)

5.
6
(0
.1
,4
5)

22
11

6.
4
(0
.2
,4
2)

6.
3
(0
.1
,4
2)

5.
7
(0
.1
,4
2)

30
81

6.
7
(0
.3
,4
2)

6.
7
(0
.2
,4
2)

6.
2
(0
.0
,4
2)

5.
7
(0
.1
,4
2)

40
63

6.
9
(0
.1
,4
5)

6.
9
(0
.1
,4
5)

6.
6
(0
.1
,4
5)

6.
3
(0
.0
,4
5)

6.
3
(0
.0
,3
9)

52
53

7.
4
(0
.5
,4
2)

7.
3
(0
.4
,4
2)

6.
9
(0
.2
,4
2)

6.
6
(0
.1
,4
2)

6.
3
(0
.0
,4
2)

5.
9
(0
.3
,4
2)

T
ab

le
4.
6:

A
ve
ra
ge

al
ge
b
ra
ic

co
n
n
ec
ti
v
it
y
(λ

2
)
of

th
e
or
ig
in
al

an
d
re
si
ze
d
B
C
G
s.

T
h
e
σ
an

d
n
ar
e
th
e
st
an

d
ar
d

d
ev
ia
ti
on

an
d
sa
m
p
le

si
ze
,
re
sp
ec
ti
ve
ly
.

n
o

n
t
=

n
o

n
t
=

50
00

n
t
=

40
00

n
t
=

30
00

n
t
=

20
00

n
t
=

10
00

λ
2
(σ
,n

)
λ
2
(σ
,n

)
λ
2
(σ
,n

)
λ
2
(σ
,n

)
λ
2
(σ
,n

)
λ
2
(σ
,n

)

10
81

0.
7
(0
.2
,4
5)

0.
6
(0
.1
,4
5)

22
11

0.
6
(0
.2
,4
2)

0.
5
(0
.1
,4
2)

0.
5
(0
.0
,4
2)

30
81

0.
5
(0
.2
,4
2)

0.
5
(0
.2
,4
2)

0.
5
(0
.1
,4
2)

0.
5
(0
.1
,4
2)

40
63

0.
6
(0
.1
,4
5)

0.
6
(0
.1
,4
5)

0.
5
(0
.0
,4
5)

0.
5
(0
.0
,4
5)

0.
3
(0
.0
,3
9)

52
53

0.
4
(0
.2
,4
2)

0.
4
(0
.2
,4
2)

0.
5
(0
.1
,4
2)

0.
5
(0
.1
,4
2)

0.
5
(0
.0
,4
2)

0.
5
(0
.1
,4
2)

56

Table 4.7: Sizes and parameters of the benchmark graphs.

toroidal & diagonal meshes small-world networks

n l k samples n pr samples

1081 23 47 1 1000 0.2 52
2021 43 47 1 2000 0.2 43
3009 51 59 1 3000 0.2 33
4087 61 67 1 4000 0.2 19
5041 71 71 1 5000 0.2 31

Overall, our results indicate the diameter and average path length of the
pruned BCG to be almost pruning invariant if 75% or less nodes are pruned
from the original BCGs. These results imply that our BCG Pruning algorithm
is effective in generating arbitrary size BCG while preserving the advantageous
properties of the BCGs such as shorter diameter and average path length.

4.5 BCG Pruning: Information Dissemination

Performance

This section investigates the information dissemination performance of pruned
BCGs and benchmark graphs including the original BCGs, toroidal meshes,
diagonal meshes, and small world networks.

4.5.1 Setups

The information dissemination performance of the pruned BCGs was compared
against that of the original BCGs, toroidal and diagonal meshes [55], and small
world networks (SWNs) over a wide range of network sizes from 1000 to 5000
nodes. The rewiring probability of the SWNs was fixed to pr = 0.2 throughout
the simulation.

The sizes of meshes were determined by n = l × k, where l and k are
odd numbers [55]. The SWNs were generated using the method described
in [10] with a fixed rewiring probability, pr = 0.2. Table 4.7 summarizes
the parameters used in the toroidal and diagonal meshes, and SWNs. Note
that because connections in the SWNs are random, we could obtain 19 to 52
connected SWNs out of 100 SWN realizations.

In all cases, we set the step size ω = (2dmax(C
P)+1) to ensure asymptotic

convergence of the system [53]. The initial states for all nodes were integers

57

randomly chosen between −5 and 5 inclusive. We declared a graph to have
reached an agreement once each node value equals the average of all initial
values within a precision of 0.001. The performance of the consensus protocol
was measured by the number of steps needed to reach a network-wide con-
sensus. Obviously, a small number of steps implies a faster convergence rate.
By comparing the number of steps to achieve a consensus for each of different
network topologies, we gain valuable insights on the information dissemination
performance of a given topology.

4.5.2 Evaluation

In Section 3.7, we saw that the regular ring lattices have the worst informa-
tion dissemination performance among the regular graphs investigated. On
the other hand, the (4-regular) toroidal and diagonal meshes performed bet-
ter than the 4-regular ring lattices, while SWNs outperformed the meshes.
Furthermore, we also observed that the original BCGs of comparable sizes
performed better than the corresponding SWNs. Now, we compare the infor-
mation dissemination performance of pruned BCGs with the original BCGs,
toroidal meshes, diagonal meshes, and small world networks (SWNs).

In Figure 4.11, we compare the information dissemination performance
of the original and pruned BCGs, toroidal and diagonal meshes, and SWNs.
The x-axis corresponds to a target size, nt, ranging from 1000 to 5000, whereas
the y-axis is the number of consensus steps required to reach the network-wide
consensus. Each point in the plot is average consensus steps and corresponding
standard deviation.

Figure 4.11(a) shows the information dissemination performance of the
original and pruned BCGs when the original BCGs with no = 5253 are resized
to the graphs with the target sizes between nt = 5000 and 1000. Similarly,
Figure 4.11(d) shows performance comparison between the original BCGs with
no = 2211 and the pruned BCGs with nt = 2000 and 1000. As indicated in the
figures, the pruned BCGs performs almost identically to the original BCGs and
with consistently superior performance over the toroidal and diagonal meshes,
and SWNs.

Furthermore, from Figure 4.11, we observed that the information dissem-
ination performance is relatively independent of the amount of pruning. For
instance, the consensus steps of the pruned BCGs with nt = 1000 span between
100 and 250, regardless of the size of the original BCGs. Even when a large
number of nodes are pruned from the original BCG, the pruned BCGs of much
smaller size still show better performance than that of the same size SWNs, or
toroidal and diagonal mesh networks. For example, the pruned BCGs resized
from no = 5253 to nt = 1000 perform better than any other graphs as shown

58

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n
s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=5253)

Pruned BCGs (no=5253)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n
s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=5253)

Pruned BCGs (no=5253)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

(a) no = 5253

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n

s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=4063)

Pruned BCGs (no=4063)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n

s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=4063)

Pruned BCGs (no=4063)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

(b) no = 4063

Figure 4.11: Comparison of information distribution performance for the orig-
inal and resized BCGs, toroidal and diagonal meshes, and SWNs as a function
of network size. (continue)

59

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n
s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=3081)

Pruned BCGs (no=3081)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n
s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=3081)

Pruned BCGs (no=3081)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

(c) no = 3081

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n

s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=2211)

Pruned BCGs (no=2211)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n

s
e
n

s
u
s
 s

te
p

s
 (

τ)

Target network size (nt)

Original BCGs (no=2211)

Pruned BCGs (no=2211)

SWN (pr=0.2)

Toroidal mesh

Diagonal mesh

(d) no = 2211

Figure 4.11: Comparison of information distribution performance for the orig-
inal and resized BCGs, toroidal and diagonal meshes, and SWNs as a function
of network size.

60

in Figure 4.11(a). This confirms that the proposed BCG Pruning algorithm
generated pruned BCGs that preserve the ultrafast information dissemination
property of the original BCGs. Furthermore, such superior performance of
pruned BCGs scales very well over the network sizes ranging from 1000 to
5000 nodes.

On the other hand, the information dissemination performance of the
pruned BCGs with 1000 nodes that are resized from the original BCGs with
4063 nodes dropped by 74% in Figure 4.11(b). Such performance degradation
can be explained by the relatively small k(= 17) of the 4063 nodes original
BCGs (see Table 4.3) together with our observations in Section 4.3.3. More
specifically, a small k (and α that is upper bounded by k − 1) results in poor
graph connectivity after pruning. The relatively small algebraic connectivity
λ2 = 0.3 of this particular graph in Table 4.6 supports our observation that a
small k generally implies poor information dissemination. However, it is im-
portant to notice that even the worst performance observed in the simulations
is still far better than that of the same size SWNs as shown in Figure 4.11.

4.6 BCG Random Expansion

This section presents a BCG expansion algorithm called the BCG Random
Expansion Algorithm. Unlike the BCG Pruning algorithm, the proposed BCG
Random Expansion algorithm expands the original BCG by adding nodes into
the original BCG and by establishing edges between the injected nodes and
pre-existing nodes. Simulation results showed that the Random Expansion
algorithm expands the original BCGs with minimal penalty on the information
dissemination performance, diameter, and average path length.

4.6.1 Terminologies

We refer to the BCG used as a base graph for expansion the original BCG
or the original graph, interchangeably. Such original BCGs are denoted as
C. Similarly, we denote CE the expanded BCG or an expanded graph that
is a graph expanded by our BCG random expansion algorithm. The size of
the original and expanded BCGs are denoted by no and nt, respectively. We
denote the set of neighbors of a node u ∈ V (G) as Nu, where V (G) and E(G)
are the node set and edge set of G, respectively. The injected node ω ∈ Ω is
a node that is added to the original BCG. In addition, Ω′ defines the set of
nodes to be injected in the original BCG.

Our random expansion algorithm operates as follows: First, two edges that
involve four distinct nodes are selected. Second, the two edges are unwired

61

Table 4.8: The original BCGs and the target sizes.

parameters values

original size (no) 253, 1081, 2211, 3081
target size (nt) 1000, 2000, 3000, 4000, 5000

(disconnected). Finally, a new node is connected to these four distinct nodes.
Details of three steps are described in the following sections.

4.6.2 Random expansion

Figure 4.12 illustrates how the random expansion algorithm injects a new node
in the original BCG. To maintain the 4-regular property of the original BCG,
the random expansion algorithm first randomly selects two distinct edges such
that each edge joins a pair of nodes. Figure 4.12(a) shows an injected node
ω and two randomly selected edges joining four nodes u, v, w, and x in the
original BCG.

Once two edges have been selected, the random expansion algorithm dis-
connects those selected edges and establishes new links between the four nodes
and the injected node. Figure 4.12(b) shows the injected node ω rewired with
the original nodes u, v, w, and x.

Since we are not considering a multigraph depicted in Figure 4.12(c), we
avoid multiple edges by selecting two edges involved with four distinct nodes.
With this method, the BCG Random Expansion maintains the expanded
BCGs to have the 4-regular property of the original BCGs.

We summarize the proposed BCG Random Expansion algorithm in Fig-
ure 4.13. In the following sections, we evaluate the properties of expanded
BCGs in terms of diameter, average path length, and information dissemina-
tion performance.

4.7 BCG Random Expansion: Topological Prop-

erties

In this section, we compare the topological properties of expanded BCGs with
those of the original BCGs, toroidal meshes, diagonal meshes, and Small World
Networks (SWNs).

62

u

v w

x

ω

(a) BCG connections before injecting ω. Two edges e(u, v) and e(w, x) are ran-
domly selected for node injection.

u

v w

x

ω

(b) BCG connections after injecting ω into the original BCG. New edges are
established between ω and existing nodes u, v, w, and x.

u

v = w

x

ω

(c) Formulation of multiple edge when the selected edges depicted in (a) are the
same node, i.e., v = w.

Figure 4.12: Illustration of node injection and edge rewiring in BCG Random
Expansion algorithm. Note that the original edges of nodes depicted in dotted
line are omitted for brevity.

63

Require: nt > no

Require: Ω′ = {w1, w2, . . . , wi}, i = nt − no

1: procedure BcgRandomExpansion(C,Ω′)
2: CE ← C
3: Ω← ∅
4: for each ω ∈ Ω′ do
5: /* first edge selection and rewiring */
6: randomly choose u ∈ V (CE) ⊲ root node
7: randomly choose v ∈ Nu

8: E(CE)← E(CE) \ {eu,v} ⊲ unwire
9: E(CE)← E(CE) ∪ {eu,ω, ev,ω} ⊲ rewire

10: /* second edge selection and rewiring */
11: randomly choose w ∈ V (C) \ {u, v} ⊲ root node
12: randomly choose x ∈ Nw \ {u, v}
13: E(CE)← E(CE) \ {ew,x} ⊲ unwire
14: E(CE)← E(CE) ∪ {ew,ω, ex,ω} ⊲ rewire
15: Ω← Ω ∪ {ω}
16: CE ← CE ∪ {ω}
17: if |Ω|(mod n) = 0 then
18: n← |CE|
19: end if
20: end for
21: end procedure

Figure 4.13: Algorithm for BCG Random Expansion.

Table 4.9: Parameters of the benchmark BCGs.

n p k a t1 t2

253 23 11 2 3 7
1081 47 23 2 3 7
2211 67 33 6 5 7
3081 79 39 2 7 11
4063 239 17 6 3 7
5253 103 51 2 3 7

64

Table 4.10: Parameters of toroidal meshes, diagonal meshes, and SWNs.

toroidal and diagonal meshes SWNs

n l k samples n pr samples

1081 23 47 1 1000 0.2 45
2021 43 47 1 2000 0.2 45
3009 51 59 1 3000 0.2 30
4087 61 67 1 4000 0.2 40
5041 71 71 1 5000 0.2 25

4.7.1 Setup

Using our BCG Random Expansion algorithm, the BCGs with the original
sizes no = 253, 1081, 2211, and 3081 have been generated and expanded to
target sizes nt between 1000 and 5000. The BCG parameters p, k, and a
have been chosen based on the guideline provided in Section 3.6. Table 4.8
summarizes the parameters of the original BCG. For each target size, 100
distinct expanded BCG samples (with variations on edge selections) have been
obtained. For each expanded BCG sample, both the diameter and the average
path length have been measured.

For performance comparison, we also evaluated the topological metrics
of the benchmark BCGs, toroidal meshes, diagonal meshes, and SWNs. The
benchmark BCGs summarized in Table 4.9 have been generated for comparison
against the expanded BCGs. Also, Table 4.10 shows the sizes and parameters
of benchmark graphs: toroidal meshes, diagonal meshes, and SWNs.

4.7.2 Diameter

In Figure 4.14, we plotted the average diameter D of the expanded BCGs
versus the target network sizes. The diameter of the expanded BCGs is almost
the same as that of the original BCGs regardless of the expansion factor γ =
nt/no. For example, the average diameter of the expanded BCGs with nt =
5000 was D = 10 for both γ = 19.76 (no = 253) and γ = 4.63 (no = 1081).
Furthermore, regardless of γ, the expanded BCGs have the shortest diameters
among the considered graphs other than the original BCGs.

65

4.7.3 Average path length

Figure 4.15 shows the average path length of the original and expanded BCGs
together with the benchmark graphs. The results show that the average path
length of the expanded BCGs are almost the same as those of the original
BCGs over the whole range of target sizes. Moreover, the average path lengths
of the expanded BCGs (no = 253) are shorter than those of toroidal meshes,
diagonal meshes, or SWNs. In particular, regardless of γ, the expanded BCGs
have at least 3.05, 2.70, and 1.02 times shorter average path lengths than those
of toroidal meshes, diagonal meshes, and SWNs, respectively.

4.8 BCG Random Expansion: Information Dis-

semination Performance

In this section, we evaluate the information dissemination performance of the
original and expanded BCGs, toroidal meshes, diagonal meshes, and SWNs.

4.8.1 Setup and metrics

Information dissemination performance has been evaluated for the expanded
BCGs, the original BCGs, toroidal meshes, diagonal meshes, and SWNs in
terms of the number of required consensus steps τ . We declare that a consensus
is reached if the state values of all nodes are identical within the precision of
10-3. Obviously, the fewer the number of steps to reach a consensus, the
better the information dissemination performance of a graph. We used the
graph parameters summarized in Table 4.8, 4.9, and 4.10.

4.8.2 Performance

Figure 4.16 compares the information dissemination performance of the ex-
panded BCGs (no = 253, 1081) against those of the BCGs, toroidal meshes,
diagonal meshes, and SWNs. The consensus steps τ of the expanded BCGs
are almost the same as those of the original BCGs with slight differences de-
pending on the amount of expansion. Note that the standard deviation of
the consensus steps for the expanded BCGs was negligible (e.g. less than four
steps regardless of no).

Moreover, for 1.6 ≤ γ ≤ 19.8, the expanded BCGs generated from the
original BCG with no = 253 exhibit 24 ∼ 72, 15 ∼ 70, and 5 ∼ 6 times
faster information dissemination performance than the toroidal meshes, diag-
onal meshes, and SWNs, respectively. Another interesting observation is that

66

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 2000 3000 4000 5000

D
ia

m
e
te

r
(h

o
p
s
)

Network size

BCG
SWN (pr=0.2)
toroidal mesh

diagonal mesh

E-BCG (no=253)
E-BCG (no=1081)
E-BCG (no=2211)
E-BCG (no=3081)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 2000 3000 4000 5000

D
ia

m
e
te

r
(h

o
p
s
)

Network size

BCG
SWN (pr=0.2)
toroidal mesh

diagonal mesh

E-BCG (no=253)
E-BCG (no=1081)
E-BCG (no=2211)
E-BCG (no=3081)

(a) Diameter of all graphs.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1000 2000 3000 4000 5000

D
ia

m
e

te
r

(h
o
p
s
)

Network size

BCG
E-BCG (no=253)
E-BCG (no=1081)

E-BCG (no=2211)
E-BCG (no=3081)

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1000 2000 3000 4000 5000

D
ia

m
e

te
r

(h
o
p
s
)

Network size

BCG
E-BCG (no=253)
E-BCG (no=1081)

E-BCG (no=2211)
E-BCG (no=3081)

(b) Diameter of the original and expanded BCGs (zoomed the bottom part
of Figure 4.14(a)).

Figure 4.14: Diameter of the expanded BCGs, the original BCGs, toroidal
meshes, diagonal meshes, and SWNs.

67

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1000 2000 3000 4000 5000

A
v
e

ra
g
e
 p

a
th

 l
e
n
g
th

 (
h
o
p
s
)

Network size

BCG
SWN (pr=0.2)
toroidal mesh

diagonal mesh

E-BCG (no=253)
E-BCG (no=1081)
E-BCG (no=2211)
E-BCG (no=3081)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1000 2000 3000 4000 5000

A
v
e

ra
g
e
 p

a
th

 l
e
n
g
th

 (
h
o
p
s
)

Network size

BCG
SWN (pr=0.2)
toroidal mesh

diagonal mesh

E-BCG (no=253)
E-BCG (no=1081)
E-BCG (no=2211)
E-BCG (no=3081)

(a) Average path length of all graphs.

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1000 2000 3000 4000 5000

A
v
e

ra
g
e

 p
a
th

 l
e
n

g
th

 (
h
o
p

s
)

Network size

BCG
E-BCG (no=253)
E-BCG (no=1081)

E-BCG (no=2211)
E-BCG (no=3081)

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1000 2000 3000 4000 5000

A
v
e

ra
g
e

 p
a
th

 l
e
n

g
th

 (
h
o
p

s
)

Network size

BCG
E-BCG (no=253)
E-BCG (no=1081)

E-BCG (no=2211)
E-BCG (no=3081)

(b) Average path length of the original and expanded BCGs (zoomed the
bottom part of Figure 4.15(a)).

Figure 4.15: Average path length of the expanded BCGs, the original BCGs,
toroidal meshes, diagonal meshes, and SWNs.

68

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n
s
e
n
s
u
s
 s

te
p
s
 (

τ)

Network size

BCG
SWN (pr=0.2)
toroidal mesh

diagonal mesh

E-BCG (no=253)
E-BCG (no=1081)
E-BCG (no=2211)
E-BCG (no=3081)

10
1

10
2

10
3

10
4

10
5

 1000 2000 3000 4000 5000

C
o
n
s
e
n
s
u
s
 s

te
p
s
 (

τ)

Network size

BCG
SWN (pr=0.2)
toroidal mesh

diagonal mesh

E-BCG (no=253)
E-BCG (no=1081)
E-BCG (no=2211)
E-BCG (no=3081)

Figure 4.16: Information dissemination performance of the expanded BCGs,
the original BCGs, toroidal meshes, diagonal meshes, and SWNs.

these expanded BCGs have slightly better information dissemination perfor-
mance than the original BCGs for some γ’s.

Overall, simulation results confirmed that the proposed BCG random ex-
pansion algorithm (i) maintains a small diameter, short average path length,
and ultrafast information dissemination of the original BCGs in the expanded
BCGs and (ii) is scalable over a wide range of expansion factors. In other
words, our random expansion algorithm is effective in expanding the origi-
nal BCG networks to larger networks of arbitrary sizes while maintaining the
superior topological properties of the original BCGs.

Summary

We presented a graph theoretic approach that resolves the size limitation of
BCGs. The proposed resizing method consists of two algorithms: the BCG
Pruning and the BCG Random Expansion algorithms.

The BCG Pruning algorithm removes nodes from the original BCGs and
rewires disconnected edges using the Cut-Through Rewiring (CTR) algorithm.
Analytical analysis of the connectivity of pruned BCGs confirmed that the
pruned BCGs are connected with high probability even after 80% ∼ 90%
size reduction depending on the original BCG size. For example, when 80% of

69

nodes are pruned from the original BCGs with no = 1081 and 5253, the pruned
graphs are connected with the probabilities 0.9926 and 1.0, respectively. The
accuracy of our analytical expressions were validated by extensive simulations
as well.

Furthermore, we evaluated the topological and spectral graph properties of
the original and pruned BCGs in terms of diameter, average path length, and
algebraic connectivity. The results confirmed that the BCG Pruning algorithm
guarantees strong structural similarity between the original and pruned BCGs.
In fact, the proposed BCG Pruning algorithm preserves the small diameter,
short average path length, and large algebraic connectivity of original BCGs.
Most importantly, we evaluated the information dissemination performance of
both the original and pruned BCGs for up to 5000 nodes. The results were
promising: our proposed graph resizing algorithm generated pruned BCGs
with comparable information dissemination performance of the original BCGs.

The BCG Random Expansion expands the original BCGs to arbitrary sizes.
The simulation results showed that the proposed random expansion algorithm
produces expanded BCGs with almost the same or superior information dis-
semination performance as well as favorable topological properties regardless
of the expansion factor. In fact, even with an expansion factor γ = 25 (i.e., the
original BCG is expanded 25 times larger), the diameter and the average path
length were almost the same as those of the original BCG. For the same γ,
the information dissemination performance of the expanded BCG was slightly
better than that of the original BCG.

70

Chapter 5

Borel Cayley Graph Topology
Control

5.1 Introduction

This chapter demonstrates an application of BCGs in wireless sensor networks
(WSNs) by means of a topology control protocol. Because of the ad hoc na-
ture of WSNs, a topology constructed without control is prone to be arbitrary
rather than well constructed to provide optimal information distribution per-
formance for WSN applications. Although WSNs demand different sets and
levels of performance requirements depending on applications, the main goals
of topology control protocol can be summarized as improving network lifetime,
connectivity, information/data fusion speed, and routing efficiency.

As shown in previous chapters, the BCG has many advantageous properties
when used as a communication graph. Those advantages include a small con-
stant degree, a short average path length, and a small diameter over a wide
range of network sizes. Most importantly, we showed that one can achieve
fast information dissemination in a network when its underlying topology is
a BCG or a Quasi BCG in Chapter 3. Comparative performance evaluation
among BCGs, Small-World Networks, diagonal and toroidal meshes, and ran-
dom graphs revealed that BCGs have the fastest information convergence over
the range of network sizes considered.

However, using BCGs as topologies for wireless networks has been challeng-
ing because the BCG’s random nature does not guarantee neighboring nodes
to be within radio range. In fact, we must assume that all nodes in a network
to be within a single hop communication range in order to use the BCGs for a

71

wireless network topologies. This assumption limits the use of BCGs to very
dense networks where all nodes are within one hop range of each other.

This chapter presents the BCG Topology Control (BCG-TC) for wireless
sensor networks that builds network topology as close as possible to BCG
topology while relaxing the one hop communication assumption. Specifically,
we developed BCG-TC that constructs a communication topology for very
dense wireless sensor networks of which the maximum nodal degree κ is con-
strained by a challenging value 4. We investigate the network connectivity and
the topological properties of the communication graphs generated by BCG-
TC, κ-Neigh1, and κ-Random (κ neighbors are randomly selected among the
physical neighbors).

Furthermore, we evaluated the energy consumed by nodes to reach a global
agreement using the average consensus protocol. Results showed that the
topology generated by our proposed BCG-TC possesses superior performance
in network connectivity when the transmission range is above a certain thresh-
old. We also showed that nodes in BCG-TC networks consume the least
amount of energy to reach a network-wide consensus among those in κ-Neigh

or κ-Random networks.

5.2 Borel Cayley Graph Topology Control

The one hop communication assumption in wireless networks is not practical
since communication on BCG’s long distance links would yield significant en-
ergy consumption and radio interference. In the following sections, we discuss
how BCG-TC generates connected networks that resemble the original BCGs
in topological properties while relaxing the one hop communication assump-
tion. Also, the performance evaluation on information dissemination speed
showed the BCG-TC networks to perform as well as the original BCGs.

5.2.1 Assumptions

We design BCG-TC such that the constructed network topologies are nearly
identical to those of the original BCGs. Since we are using an undirected
4-regular BCG as a base communication graph, BCG-TC generates an undi-
rected network topology with nodal degree less than or equal to four depending
on the maximum radio range. The BCG-TC protocol is based on the following
assumptions:

1 Originally, the name of the protocol is k-Neigh with k in English alphabet. However,
we slightly abuse the name and use κ-Neigh (with kappa) throughout the thesis to avoid
confusion with the BCG parameter k.

72

• Maximum nodal degree κ = 4.

• High network density, for example, more than 1000 nodes in a 100m ×
100m area.

• Stationary and identical nodes without sink nodes.

• Circular radio range with the maximum radius R. Each node can set its
transmission power to reach neighbors within R.

• Nodes are assigned a unique ID between 0 to n− 1.

• Nodes are assigned the same BCG parameters p and k, and generator
set G = {g1, g2, g

−1
1 , g−1

2 }.

• The order of BCG-TC operation is determined by node ID. No nodes
are simultaneously performing BCG-TC operation.

Definition 5.1 (Physical neighbor). A physical neighbor N phy
v is a set of

nodes such that each node in N phy
v is within the communication range of node

v.

Definition 5.2 (Logical neighbor). A logical neighbor N log
v ⊂ N phy

v is a set
of physical neighbors of v such that there is a connection between v and each
node in N log

v .

Definition 5.3 (BCG neighbor). A BCG neighbor N bcg
v is a set of nodes such

that each node in N bcg
v is an immediate neighbor of node v that is defined by

BCG.

The BCG-TC protocol consists of two phases. During the first phase, all
nodes in the network identify their BCG neighbors among physical neighbors.
If one or more logical neighbors are found among the physical neighbors, the
node establishes bidirectional links with those neighbors. After all nodes com-
plete Phase-I, nodes having degree less than four start Phase-II to establish
more connections. While the original BCG determines connections in the first
phase, we use the Cut-Through Rewiring algorithm described in Section 4.2.1
during the second phase. In the followings, we describe the two phases of
BCG-TC in detail.

73

5.2.2 BCG-TC Phase-I

Let x be a source node performing the BCG-TC Phase-I, then x starts Phase-I
by broadcasting HELLO packet to its physical neighbors N phy

x . Each HELLO
packet contains the source ID srcid = x and a payload pl = N bcg

x . Each
physical neighbor w ∈ N phy

x receiving a HELLO packet extracts N bcg
x from

the packet and checks if its ID w matches one of the IDs in N bcg
x . If there is

a match, then w establishes an edge with x and replies with an ACK packet
containing source node ID srcid = w and destination node ID destid = x. If it
does not match, then w ignores the HELLO packet. After broadcasting HELLO
packet, x resets the pre-defined timer T1 and collects ACKs until the timer T1
expires. From each received ACK, x extracts srcid = w and checks if w ∈ N bcg

x .
If there is a match, then x establishes an edge with w, otherwise, ignores the
ACK. We summarize the Phase-I operation in Figure 5.1. Also, Figure 5.4
shows how physical neighbors process HELLO packets during Phase-I.

Although the topology of a network generated by Phase-I resembles that
of the original BCG, depending on the maximum radio range R, it is possible
that (i) some nodes are isolated (i.e., not connected to any nodes) and/or
(ii) the whole network comprises multiple components (i.e., multiple disjoint
subnetworks) of sizes larger than or equal to two2. In fact, when the maximum

Require: N bcg
x = {v ∈ V : v = x ∗ g, ∀g ∈ G}

Require: N log
x := current logical neighbors of x

1: procedure BcgTcPhaseI(x,N bcg
x ,N log

x)
2: if |N log

x | < 4 then ⊲ x performs Phase-I
3: x broadcasts HELLO[srcid = x, pl = N bcg

x]
4: repeat
5: if x receives ACK[destid = x, srcid = w] then
6: if w ∈ N bcg

x then
7: N log

x ← N log
x ∪ {srcid}

8: end if
9: end if

10: until T1 expires
11: end if
12: end procedure

Figure 5.1: Algorithm for BCG-TC Phase-I.

2 An isolated node, that is a node with no neighbor, is a network with size equal to one.
Thus, a network with multiple components of which sizes are larger than or equal to two is
disconnected network without isolated nodes.

74

x

x1

x2

x3

x4

g−1
1

g2
g−1
2

g41

g1
g1

g1

g1

out of range nodes

radio range of x polling order

link

Figure 5.2: BCG-TC Phase-II example. After Phase-I, x failed to connect to
the original neighbor x1 in g1 direction. By performing Phase-II, x connects
to x4.

radio range R is smaller than a certain threshold, the generated topology from
Phase-I can be disconnected due to isolated nodes, multiple components, or a
combination of both.

5.2.3 BCG-TC Phase-II

The second phase of BCG-TC enhances the network connectivity by system-
atically adding more edges to nodes having less than four neighbors after
finishing Phase-I. From the connection rule of BCG, each node in a 4-regular
BCG has four neighbors in g1, g2, g

−1
1 and g−1

2 directions. During Phase-II,
if a node is missing a neighbor in any g-direction, the node uses the CTR
algorithm described in Section 4.2.1 to find the next available neighbor in the
same g-direction.

Definition 5.4 (Empty g-direction). An empty g-direction is a g-direction to
where a node does not have any connected neighbor.

Let x be a node that found less than four neighbors during Phase-I. After all
nodes complete Phase-I, x starts the following Phase-II operation to improve
its connectivity. First, x identifies a set of empty g-directions G

e. For each
g ∈ G

e, x computes the next available neighbor w = x∗g2, resets a pre-defined
timer T2, and sends a HELLO packet to w. After sending the HELLO packet, x
waits for ACK until T2 expires. If x receives an ACK from w, then it establishes
a connection with w. Otherwise, x starts over and polls the next neighbors

75

Require: G
e := a set of empty g-directions

1: procedure BcgTcPhaseII(x, y, g) ⊲ x performs Phase-II
2: for each g ∈ G

e do
3: i← 2
4: w ← x ∗ gi

5: while w 6= x do
6: x sends HELLO[destid = w, srcid = x] ⊲ x polls w
7: repeat
8: if x receives ACK[destid = x, srcid = w] then
9: N log

x ← N log
x ∪ {w} ⊲ w is a new neighbor

10: x terminates Phase-II for g-direction
11: end if
12: until T2 expires
13: i← i+ 1
14: w ← x ∗ gi

15: end while
16: end for
17: end procedure

Figure 5.3: Algorithm for BCG-TC Phase-II.

obtained by computing x ∗ g3, x ∗ g4, and so on, until it receives an ACK. We
will discuss this polling order in the next section.

For example, let us consider the Phase-II operation of node x in Figure 5.2.
Assuming that node x failed to find its BCG neighbor x1 in its g1-direction
during Phase-I, x starts Phase-II operation by sending HELLO packet to its
next available neighbor x2 in the g1-direction and waits for an ACK. Since x2

and x3 are out of range, x will not receive any ACK from them. When x finally
receives ACK from x4 = x ∗ g41 located within its radio range, it establishes
a symmetric link with x4 only when x4 completed Phase-I but has less than
four neighbors. Phase-II algorithm is summarized in Figure 5.3. The Phase-II
operation is performed multiple times for each of missing neighbors that are
not found during the Phase-I.

5.2.4 Neighbor polling order

Suppose BCG-TC uses 4-regular BCGs generated by G = {g1, g2, g
−1
1 , g−1

2 }. If
a node x failed to find its neighbor in the g1-direction, then, during the Phase-
II, x polls its potential neighbors one by one until it finds one within its radio
range. As described in Section 4.2.1, the CTR algorithm computes ordered set

76

Require: N log
w := current logical neighbors of w

1: procedure BcgTcProcHello(w, HELLO)
2: if |N log

w | = 4 then ⊲ already has four neighbors
3: ignore HELLO
4: end if
5: if w is performing Phase-I then
6: w extracts srcid = x and pl = N bcg

x

7: if w ∈ N bcg
x then

8: N log
w ← N log

w ∪ {x}
9: w sends ACK[destid = x, srcid = w]

10: else
11: ignore HELLO
12: end if
13: else if w is performing Phase-II then
14: if ∃ g ∈ G, h > 1 s.t. srcid = x ∗ gh then
15: N log

x ← N log
x ∪ {srcid}

16: w sends ACK[y, x]
17: end if
18: end if
19: end procedure

Figure 5.4: Algorithm for processing HELLO.

of potential neighbors using the BCG connection rule. For example, node x’s
polling order is computed by x1 = w ∗ g1, x2 = w ∗ g21, x3 = w ∗ g31, and so on,
as depicted in Figure 5.5. The polling order of x’s g1-direction is denoted by
⇀x(g1) = (x1x2 . . . xα−2xα−1). Note that, the inverse generator, g−1

1 , yields the
same set of neighbors in reverse order ⇀x(g−1

1) = (xα−1xα−2 . . . x2x1).

x
x1

x2 xα−3 xα−2

xα−1

g1
g1 g1

g1
g1

g1

Figure 5.5: Illustration of α− 1 nodes in x’s g1-direction polling order ⇀x(g1).

Termination of polling order. Let α and β be positive integers such that
gα1 = I and gβ2 = I, respectively. Then, each node of a BCG has α − 1 and
β−1 nodes in its cycles for g1 (or g

−1
1), and g2 (or g

−1
2) directions, respectively.

Thus, the polling order in any g-direction terminates at the originating node

77

Table 5.1: Simulation parameters.

Parameters Values

area dimension 100m× 100m
number of nodes (n) 1081
network density (ρ) 0.1081 nodes/m2

max. radio range (R) 5, 10, 15, . . . , 140 m
node distribution uniformly randomly distributed in the area
sample size (ns) 100 samples per radio range
BCG parameters p = 47, k = 23, a = 2, t1 = 3, t2 = 7

(self-node). For example, the polling order of x’s g1-direction ends at the
originating node (i.e., x) in Figure 5.5. The values of α and β are determined
by the choice of generators as described in Section 4.3.3.

5.3 Performance Evaluation

In this section, we investigate the node isolation ratio, connectivity, diameter,
average path length, and energy consumption of topologies generated by BCG-
TC, κ-Neigh (Phase 1)3, and κ-Random. The κ-Neigh networks (i.e., the
networks constructed by κ-Neigh protocol) are generated for κ = 4 and 6.
Since κ-Neigh with κ = 4 did not produce any connected networks over
the whole radio ranges, we were not able to evaluate diameter, average path
length, or energy consumption for those disconnected networks. Instead, we
generated κ-Neigh networks with κ = 6 to evaluate these metrics. With the
κ-Random protocol, connections between physical neighbors are established
randomly with only one constraint, the maximum nodal degree κ ≤ 4. For
each of topology control protocols and radio range considered, we generated
100 network samples with random node deployments. Table 5.1 summarizes
the simulation parameters.

5.3.1 Network connectivity

We investigate the network connectivity as a function of the maximum radio
range R that is the maximum reachable distance between any two nodes. We
declare a network to be connected if it has no isolated nodes and consists

3 The κ-Neigh protocol has Phase 2, an optional stage to prune some excessive edges,
but we did not use Phase 2 due to the same reason (complexity in implementation) as
explained by the original authors.

78

10
-4

10
-3

10
-2

10
-1

10
0

 5 20 35 50 65 80 95 110 125 140

N
o
d
e
 i
s
o
la

ti
o
n
 r

a
ti
o

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

10
-4

10
-3

10
-2

10
-1

10
0

 5 20 35 50 65 80 95 110 125 140

N
o
d
e
 i
s
o
la

ti
o
n
 r

a
ti
o

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

Figure 5.6: Average node isolation ratio versus the maximum radio range.

of one connected component (see Definition 2.7 and Definition 2.8). So, we
evaluate network connectivity with the (i) node isolation ratio, the ratio of
isolated nodes to the number of total nodes in a constructed network sample
si,

∆(iso)i =
number of isolated nodes in si

number of nodes in si
,

and (ii) connected network ratio, the ratio of fully connected networks among
all sample networks,

∆(con) =
number of connected networks

total number of samples
.

Node isolation. Figure 5.6 shows the average node isolation ratio ∆(iso) =
1/ns

∑ns

i=1 ∆(iso)i versus the maximum radio range R. The κ-Neigh networks
with κ = 4 shows a relatively large average node isolation ratio for all R. We
found the average node isolation ratio of BCG-TC networks to be very large
for R < 20m, but to decrease quickly to that of κ-Neigh with κ = 4 as R
exceeds 25m. Moreover, ∆(iso) of BCG-TC networks approaches that of κ-
Neigh with κ = 6 as R exceeds 40m and finally becomes zero for R ≥ 100m.
On the other hand, ∆(iso) of κ-Neigh networks with κ = 6 remains at 0.0013
for all R > 5m. Overall, BCG-TC networks display better node isolation ratio
when R ≥ 40m comparing to that of κ-Neigh with κ = 4 or 6.

79

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 20 35 50 65 80 95 110 125 140

R
a
ti
o

 o
f
fu

lly
 c

o
n
n
e
c
te

d
 n

e
tw

o
rk

s

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 20 35 50 65 80 95 110 125 140

R
a
ti
o

 o
f
fu

lly
 c

o
n
n
e
c
te

d
 n

e
tw

o
rk

s

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

Figure 5.7: Connected network ratio versus the maximum radio range.

Network connectivity. Besides isolated nodes, a network can be discon-
nected due to multiple connected components. Although a network may not
have any isolated nodes, multiple connected components can result in a dis-
connected network. Figure 5.7 shows the ratio of connected networks ∆(con)
against R. Simulation results confirmed that κ-Neigh with κ = 4 does not
produce any connected network as shown in Figure 5.7, where all disconnected
networks contain isolated node in Figure 5.8. Similarly, κ-Neigh with κ = 6
generated disconnected networks with very high ratio 0.856, and 32% of dis-
connected networks did not contain any isolated nodes.

On the other hand, BCG-TC starts to construct connected networks from
R = 30m, and ∆(con) consistently increases with R in Figure 5.7. As shown
in Figure 5.8, all disconnected BCG-TC networks observed for R ≥ 40m were
disconnected due to several isolated nodes rather than multiple components. In
fact, the average number of isolated nodes in BCG-TC networks was negligible
for R ≥ 35m as shown in Figure 5.8. For example, among 1081 nodes in BCG-
TC networks, less than two nodes were isolated for R ≥ 35m.

Moreover, Figure 5.9 shows that BCG-TC does not generate a disconnected
network with multiple components for almost all R. In fact, only two networks
among 100 network samples had multiple components. This confirms that
node isolation is the main reason for a BCG-TC network to be disconnected.
From these observations, we conclude that the giant component4 of BCG-TC

4 A giant component is a connected subgraph of G that consists of the majority of nodes

80

 0

 2

 4

 6

 8

 10

 12

 14

 5 20 35 50 65 80 95 110 125 140

N
u
m

b
e
r

o
f
is

o
la

te
d

 n
o
d
e
s

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

 0

 2

 4

 6

 8

 10

 12

 14

 5 20 35 50 65 80 95 110 125 140

N
u
m

b
e
r

o
f
is

o
la

te
d

 n
o
d
e
s

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

Figure 5.8: Average number of isolated nodes in a network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 20 35 50 65 80 95 110 125 140

R
a
ti
o
 o

f
d
is

c
o
n
n
.

n
e
tw

o
rk

s
 (

m
u
lt
i-
c
o
m

p
o
n
e

n
ts

)

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 20 35 50 65 80 95 110 125 140

R
a
ti
o
 o

f
d
is

c
o
n
n
.

n
e
tw

o
rk

s
 (

m
u
lt
i-
c
o
m

p
o
n
e

n
ts

)

R (m)

BCG-TC

k-Neigh (k=4)

k-Neigh (k=6)

k-Random (k=4)

Figure 5.9: The ratio of disconnected networks without isolated nodes. Note
that only the number of networks that are disconnected by multiple compo-
nents but not by node isolations.

networks contain 99.8% of all nodes.

in a graph.

81

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 20 35 50 65 80 95 110 125 140

D
ia

m
e
te

r
(h

o
p

s
)

R (m)

BCG-TC

k-Neigh (k=6)

k-Random (k=4)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 20 35 50 65 80 95 110 125 140

D
ia

m
e
te

r
(h

o
p

s
)

R (m)

BCG-TC

k-Neigh (k=6)

k-Random (k=4)

Figure 5.10: Radio range versus average diameter.

5.3.2 Topological properties

In this section, we take a closer look at the topological properties of the BCG-
TC networks including diameter and average path length. Note that we only
consider connected networks to evaluate diameter and average path length.
Since we were not able to obtain connected network from κ-Neigh with κ = 4,
we only considered κ-Neigh networks with κ = 6 for evaluating the diameter
and average path length. Also, we did not consider BCG-TC results for R < 30
since BCG-TC did not produce any connected networks.

Diameter. In Figure 5.10, we plot the average diameter D for 100 network
samples generated by BCG-TC, κ-Neigh , and κ-random. For networks pro-
duced by κ-Neigh with κ = 6, the average diameter remains around D = 53
for whole R > 5m. While the average diameter of the networks generated by
BCG-TC consistently decreases from 12.75 hops to 8 hops as R increases.

Average path length. The short average path length is another promising
property of BCG-TC networks. We show µ, the sample mean of average
path lengths, in Figure 5.11. Along with the short diameter illustrated in
Figure 5.10, the BCG-TC networks display a very short average path length
µ throughout the maximum radio ranges considered.

In this section, we showed that, although nodal degree is constrained by a
small value κ = 4, BCG-TC networks can achieve a small diameter and a short

82

 0

 4

 8

 12

 16

 20

 24

 28

 32

 5 20 35 50 65 80 95 110 125 140

A
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

 (
h
o
p
s
)

R (m)

BCG-TC

k-Neigh (k=6)

k-Random (k=4)

 0

 4

 8

 12

 16

 20

 24

 28

 32

 5 20 35 50 65 80 95 110 125 140

A
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

 (
h
o
p
s
)

R (m)

BCG-TC

k-Neigh (k=6)

k-Random (k=4)

Figure 5.11: Radio range versus the average path length.

average path length when the maximum radio range R > 35m. Since not all
WSN applications require fully connected networks, if we consider applications
allowing a few isolation nodes, then BCG-TC networks can be considered as
connected networks (without multiple components) for R > 35m. In the next
section, we consider the energy efficiency of these topologies with the average
consensus protocol.

5.4 Energy Consumption

In this section, we compute the energy needed for all nodes in a network to
reach a consensus using the average consensus protocol. We use the simula-
tion setup summarized in Table 5.1. In addition, we also applied the radio
model described in [65]. For the sake of simplicity, we only consider the en-
ergy consumption from data transmission (Etx) and reception (Erx) defined as
follows:

Etx = B (β1 + β2 r
α(v, w)) , (5.1)

Erx = B γ , (5.2)

where α is the path loss exponent typically ranging from 2 to 6. The constants
β1, β2, and γ correspond to the energy dissipated by the transmitter module,
the transmit amplifier, and the receiver module, respectively. We denote the

83

 0.01

 0.1

 1

 10

 100

 5 20 35 50 65 80 95 110 125 140

A
v
e
ra

g
e

 n
o
d
a
l
e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o

n
 (

J
)

R (m)

BCG-TC

k-Neigh (k=6)

k-Random (k=4)
 0.01

 0.1

 1

 10

 100

 5 20 35 50 65 80 95 110 125 140

A
v
e
ra

g
e

 n
o
d
a
l
e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o

n
 (

J
)

R (m)

BCG-TC

k-Neigh (k=6)

k-Random (k=4)

Figure 5.12: Average nodal energy consumption when the consensus has been
made.

estimated distance between nodes v and w by r(v, w) and the length of the
message by B. We set α = 2, equivalent to the free-space path loss model.
We assume that a sensor node v can adjust its transmission power to reach its
neighbors w located within the maximum radio range R. The parameters for
power model used in the simulation are summarized in Table 5.2.

Using the average consensus protocol, every node exchanges (transmits and
receives) its state value with its neighbors at every iteration. Thus, the total

Table 5.2: Parameters for radio model.

parameters values

α 2
β1 45n J/bit
β2 10p J/bit/m2

γ 135n J/bit
B 320 bits (40 bytes)

84

energy consumed by the network at the τth iteration is given by

Enet(τ) =
∑

∀ev,w∈E
v 6=w

τ (Etx + Erx) (5.3)

=
∑

∀ev,w∈E
v 6=w

τ B (β1 + β2 r
α(v, w) + γ) . (5.4)

If all nodes in the network reach the consensus value at the τ = Ωth

iteration, then the average nodal energy consumption can be computed by
Enode = Enet(Ω)/n. We plot Enode in Figure 5.12. We observe that the average
energy consumed at each node is determined by the average path length and
the diameter of the network topologies. We also note that the nodal energy
consumption for BCG-TC is consistently smaller than that of the κ-Neigh

with κ = 6 over the whole range of R.

Summary

In this chapter, we presented the BCG Topology Control protocol for densely
deployed WSNs. Unlike other topology controls that are not based on specific
graph models, we use a pre-defined BCG topology as a network model with
which each node determines their neighbors. Note that, BCG-TC does not
require nodes to memorize whole BCG topology since each node can compute
its neighbors using BCG parameters and its own node ID assigned by BCG.

Moreover, we limit the nodal degree κ = 4 to reduce radio interference
in BCG-TC networks. Although, it is challenging to construct a connected
network with such a small nodal degree, our simulation results showed that
BCG-TC can generate a large connected network with a few isolated nodes.
In fact, there were only two or three isolated nodes in BCG-TC network with
1081 nodes deployed in 100m × 100m area when R > 35m. We also showed
that BCG-TC networks exhibit key BCG properties such as a small diameter
and short average path length.

Furthermore, we were able to achieve fast information dissemination in
WSNs by using BCGs as the underlying topologies of WSNs. Our performance
evaluation of the information dissemination performance using the average
consensus protocol revealed that we can reduce a significant amount of energy
consumption for nodes to complete a collaborative job. The simulations for
1081 wireless sensor nodes distributed in a 100m × 100m area showed that
BCG-TC performs well when the radio range exceeds a certain threshold and
consumes the least energy among considered topology control protocols.

85

Chapter 6

Routing

6.1 Introduction

A routing protocol enables nodes (or routers) in a network to relay packets to
a destination node (or router). The main goal of a routing protocol is to mini-
mize the routing cost in delivering packets to a destination, where the routing
cost can be defined as bandwidth (capacity), delay, or the number of hops
between source and destination. It requires sophisticated methods to find the
minimum cost path(s) between source and destination. For example, Inter-
net routing protocols such as Routing Information Protocol (RIP) and Open
Shortest Path First (OSPF) use Bellman-Ford algorithm [66] and Dijkstra’s
algorithm [67], respectively.

More recently, routing protocols for wireless sensor networks (WSNs) have
gained growing attention. Wireless sensor networks consists of small bat-
tery operated nodes equipped with sensing, radio communication, and with
limited computational power. In general, sensor nodes in WSNs form a dis-
tributed network without centeralized control (self-organizing network). More
importantly, nodes in WSNs are frequently dying out as they consume limited
energy. Due to its limited resources and ad-hoc nature, WSN requires a rout-
ing protocol that is aware of energy consumption, topology changes, network
connectivity, node-to-node reachability, and efficiency of data aggregation.

As we discussed in the previous chapters, a network topology that is close
to BCG can be constructed in WSNs using BCG-TC. Although it is possi-
ble to use any routing protocol in BCG networks (i.e., the network of which
connections are defined by BCG), the network still requires a routing protocol
that exploits the favorable properties of the constructed topology. Previously

86

in [23], Tang and Arden proposed an iterative multi-path routing protocol for
BCG that we call Vertex Transitive BCG Routing Protocol. However, the Ver-
tex Transitive BCG routing protocol cannot be used in a WSN environment
of which network topology keeps changing. Thus, in this chapter, we present
a Dynamic BCG Routing Protocol that allows the nodes in a BCG network
to update their routing table as the network topology changes over time.

6.2 Vertex Transitive BCG Routing Protocol

This section reviews the Vertex Transitive BCG Routing Protocol [23], routing
table format, node ID translation, and generation method.

6.2.1 Routing table

The routing table of the Vertex Transitive BCG Routing protocol is an (n −
1) × d array where n is the number of nodes, and d is a constant degree
of BCGs. For example, Figure 6.1 shows an example routing table of a 4-
regular BCG constructed by two distinct generators and their inverses, G =
{g1, g2, g

-1
1 , g

-1
2 }. Each row of the routing table is a destination row mapped

to each destination node. The columns are outgoing links labeled with g1, g2,
g-11 , and g-12 directions. Every node in the same BCG network uses the same
routing table and make a forwarding decision by looking up the destination
row of the routing table. The destination row and outgoing link pair of the
routing table is denoted by RTBL(dst, g) where dst is a destination node ID,
and g ∈ G is the label of an outgoing link. We assume that the blank cells are
set to zero but omitted for brevity.

6.2.2 Routing table generation

The Vertex Transitive BCG routing protocol utilizes a pre-computed routing
table to provide multiple shortest paths to each source and destination pair.
To generate the static routing table for a BCG with n nodes and degree d, we
perform the following steps:

(1) Generate a BCG, C.

(2) Prepare a routing table RTBL with (n− 1) rows and d columns. Initialize
RTBL with all zeros.

(3) Compute all shortest paths from a root node r (in general, r = 0) to all
other destinations v ∈ V \ {r}. Unlike the vertex sequence of a path (Def-
inition 2.3), generate a sequence of outgoing links for each shortest path

87

g1 g2 g-11 g-12

1

2

3

4

5

6
...

n-2

n-1

outgoing links

d
es
ti
n
at
io
n
ro
w

1 1

1 1

1

1 1

1

1 1 1

1

1 1 1

Figure 6.1: An example of BCG (d = 4) static routing table for node 0. The
blank cells are set to zero, but they omitted for brevity.

Sr,v = {si ∈ G | pi+1 = pi ∗ si, pi, pi+1 ∈ Pr,v}, where G = {g1, g2, g
-1
1 , g

-1
2 },

Pr,v is the vertex sequence of a path between r and v, and E(C) is the
edge set.

(4) For each shortest path to v ∈ V \ {r}, set RTBL(v, s1)← 1.

For example, consider multiple shortest paths from root node 0 to 17 as
follows:

Path 1: 0
g1
−→ 3

g1
−→ 6

g-12−→ 17 ,

Path 2: 0
g2
−→ 4

g1
−→ 10

g2
−→ 17 ,

Path 3: 0
g-11−→ 18

g-12−→ 8
g-11−→ 17 .

Then, the sequences of the shortest paths are

Path 1: S0,17 = {g1 , g1 , g
-1
2 } ,

Path 2: S0,17 = {g2 , g1 , g2 } ,

Path 3: S0,17 = {g
-1
1 , g

-1
2 , g

-1
1 } .

88

For each shortest path to the destination 17, set the routing table as follows:

Path 1: RTBL(17, g1)← 1 ,

Path 2: RTBL(17, g2)← 1 ,

Path 3: RTBL(17, g-11)← 1 .

which yields the destination row 17 for the routing table as shown in Figure 6.2.

g1 g2 g-11 g-12

...

17

...

1 1 1

Figure 6.2: Example routing table with the destination row 17 set based on
the shortest paths.

If node 0 receives a packet destined to 17, then it looks up destination row
17 of the routing table and figures out the outgoing links that guarantee the
shortest path to 17. In this case, there are three available outgoing links g1,
g2, and g-11 . Since there are multiple available outgoing links, node 0 randomly
selects one link among them for forwarding.

6.2.3 Node ID translation

Recall that BCGs are vertex-transitive graphs, that is, the topology viewed
from any node looks identical (see Definition 2.9). This vertex-transitive prop-
erty makes it possible for every node in the same BCG to use the same routing
table that is pre-computed for one root node (in general, root node ID r=0).
Once the routing table is stored, each node translates a destination node ID
into a new node ID which is the destination node ID viewed from the root
node. Thus, every node can view the routing table as if it were the root node.

Following the node ID translation in [23], let i be the ID of a node making a
routing decision, and let j be the destination node ID extracted from a packet
to be forwarded. If a BCG is generated by a parameters p, k, and a, then the
translated destination node ID j′ is computed as follows:

j′ =
〈
aq−c1 (m2 −m1)

〉

p
q + 〈c2 − c1〉q , (6.1)

where 〈〉x is the x-modulo operator, m1 = i/q, m2 = j/q, c1 = 〈i〉q, and
c2 = 〈j〉q are integers.

89

For example, suppose node 7 on a 21 nodes BCG with parameter p = 7,
q = k = 3, and a = 2 receives a packet destined to node 17. Then, plugging
m1 = 7/3 = 2, m2 = 17/3 = 5, c1 = 〈7〉3 = 1, and c2 = 〈17〉3 = 2 into
Eq. (6.1) yields the new destination node ID j′ = 16. Thus, node 7 looks up
the row 16 of its routing table to forward the packet destined to 17.

6.3 Dynamic BCG Routing Protocol

This section presents the Dynamic BCG Routing Protocol for each node to
update its routing table as topology changes dynamically. Each node updates
its routing table as soon as the topology changes to maximize the routing
efficiency and prevent packet losses. In addition, we propose a Backward
Advertisement to propagate topology changes to the neighbors of a failed node.

6.3.1 Assumption

Densely deployed wireless networks. We assume that the wireless net-
work under our consideration is very dense and that each node’s radio range
is sufficiently large to communicate with its logical neighbors defined by BCG.
The communication range and topology control issues for densely deployed
wireless sensor nodes have been discussed in Chapter 5.

Link status detection. Even though we do not specify a link state detection
method, we assume a node can detect the status of links (e.g., link up and link
down) to its immediate neighbors. In general, link state can be monitored by
sending hello packets and collecting feedback from neighboring nodes. A node
or its links may fail either temporarily or permanently, however, we consider
a scenario where nodes are dying out permanently due to energy depletion.

Dynamically changing topology. We assume the topology of a network
to change over time. More specifically, we consider a wireless sensor network
where nodes die out as they consume limited energy while operating various
functions such as sensing, processing, transmitting, and receiving data.

Routing control time. The routing control time includes (i) link down
detection time, (ii) routing table update time, and (iii) routing control message
building, sending, reception, and processing time. We assume that the routing
control time after each node failure is no greater than the time between node
failures.

90

fu v

w

x

g1 g1
g-1
1

g-1
1

g2

g2

g-1
2

g-1
2

g1 g2 g-11 g-12
...
f
...
v

w

x
...
...

1 1

1

1 1

1

1

1

1 1

1 1 1

RTBL of u

(a) Topology and the routing table of u before f fails.

?
u v

w

x

g1 g-1
1

g2

g-1
2

g1 g2 g-11 g-12
...
f
...
v

w

x
...
...

1 1

0

1 1

0

0

0

1 1

1 1 1

RTBL of u

(b) Topology and the routing table of u after f fails.

Figure 6.3: Illustration of destination blocking after node f fails using the
Dynamic BCG Routing Protocol. Note that some of the original edges of
nodes (depicted in dotted line) are omitted for brevity.

Routing table. Every node in the network starts with an identical but pre-
translated routing table using Eq. (6.1). So that nodes do not need to translate
the destination node ID at runtime. Unlike the Vertex Transitive BCG Routing
Protocol, as the network topology changes over time, the routing tables of the
Dynamic BCG Routing Protocol will be independently updated by nodes and
may no longer be identical with one another.

91

6.3.2 Dynamic routing table update

As nodes fail, the neighbors of failed node detect the link state change, and
update their routing table accordingly. In Figure 6.3(a), we illustrate the part
of a BCG where 5 nodes are connected by four generators G = {g1, g2, g

-1
1 , g

-1
2 }.

The figure also shows a sample routing table for node u. The routing table
and the topology in Figure 6.3(a) show that u will forward packets destined
to f , w, x, or v to its g1-direction outgoing link. Although the routing table
of f is not presented in the figure, we can guess that f will forward packets
destined to its immediate neighbors u, v, w, and x respectively to its g-11 , g1,
g-12 , and g2 outgoing link.

Now, suppose a node f in Figure 6.3(a) fails, and its immediate neighbors
Nf = {u, v, w, x} detect that f is not responding. Since forwarding packets
to the failed node f is undesirable, neighbors in Nf block outgoing links to
f by updating their routing table. In addition, each node in Nf also blocks
the nodes in Nf excluding itself. Thus, neighbors of f block destinations as
follows:

node u: RTBL({f, v, w, x}, g1)← 0 ,

node v: RTBL({f, u, w, x}, g-11)← 0 ,

node w: RTBL({f, u, v, x}, g2)← 0 ,

node x: RTBL({f, u, v, w}, g-12)← 0 .

The resulting routing table of u, after destination blocking, is shown in Fig-
ure 6.3(b).

6.3.3 Dynamic routing table update with CTR

The CTR algorithm presented in Chapter 4 ensures a BCG to remain con-
nected after pruning a large amount of nodes from it. In fact, 98.9 ∼ 100%
pruned BCGs were connected even after 80% size reduction, depending on the
original BCG size. Thus, in addition to the dynamic routing table update
described in the previous section, we also update the routing table according
to the new neighbors found by the CTR algorithm.

If a node detects a link down, then it performs the dynamic routing table
update followed by CTR to maintain network connectivity. In addition, we
assume that nodes exchange the list of their immediate neighbors nbrlist with
their newly found neighbors. These neighbor lists will be used by the Backward
Advertisement algorithm described in Section 6.4 to improve the reachability.

Once a node performed CTR and found a new neighbor, it updates its
routing table according to a new connection established by CTR. Let us con-

92

u
v

w

x

g1

g-1
1

g-1
2

g2

g1 g2 g-11 g-12
...
f
...
v

w

x
...
...

1 1

0

1 1

1

0

0

1 1

1 1 1

RTBL of u

Figure 6.4: Illustration of topology and routing table of u after CTR. Note
that some of the original edges of nodes (depicted in dotted line) are omitted
for brevity.

sider CTR algorithm performed on the partial BCG topology with failed node
f in Figure 6.3(b). After executing CTR, nodes u and v are rewired by the
edges in g1 and g-11 directions, while nodes w and x are joined by edges in g2
and g-12 directions. Next, nodes in Nf connected to new neighbors also update
their routing table as follows:

node u: RTBL(v, g1)← 1 ,

node v: RTBL(u, g-11)← 1 ,

node w: RTBL(x, g-12)← 1 ,

node x: RTBL(w, g2)← 1 .

Let Nx be a set of neighbors of node x, then each node exchanges its list of
neighbors with its newly found neighbor. For example, node u in Figure 6.4
receives the list of Nv from its new neighbor v with which u updates its routing
table. The routing table updates performed by the neighbors of the failed node
are as follows:

node u: RTBL(Nv \ {u}, g1)← 1 ,

node v: RTBL(Nu \ {v}, g
-1
1)← 1 ,

node w: RTBL(Nx \ {w}, g
-1
2)← 1 ,

node x: RTBL(Nw \ {x}, g2)← 1 .

Figure 6.4 show the updated routing table of node u.

93

Table 6.1: Contents of Backward Advertisement packet.

Field Description

destid destination (BA packet receiver) node ID
srcid source (BA packet sender) node ID
blkdest ID of failed node
nbrlist a list of new neighbors

6.3.4 Random forwarding

As packets arrive at a node, it looks up its routing table to determine the
best outgoing link(s) to forward the packet (i.e., 1’s in the specific destination
row of the routing table). If there are multiple outgoing links available (i.e.,
multiple 1’s in the same row), then the node randomly picks one outgoing link
among them.

However, a node may not be able to decide the best outgoing link to the
destination by looking up its routing table. This is because some destination
rows may become all zeros as the topology changes with time. To deal with
this case, we use random forwarding.

Suppose node u in Figure 6.4 receives a packet destined to x. The desti-
nation row x of u’s routing table contains all zeros. Recall that blank cells in
the figure are assumed to be set to zero but omitted for brevity. Since u is not
able to find the best outgoing link to destination x, it randomly selects the
outgoing link towards one of its neighbors Nu \ {s}, where s is the node that
sent the packet to u. We exclude s to avoid infinite routing loops.

We concede this random forwarding may cause packets to (i) traverse a
network infinitely or (ii) take unnecessarily long paths to reach a destination.
To reduce the frequency of random forwarding, we propose the Backward Ad-
vertisement (BA) algorithm in the next section.

6.4 Backward Advertisement

The Backward Advertisement algorithm prevents packets from being delivered
to nodes that do not have an optimal path to the destination. Instead, BA
algorithm gives its neighboring nodes a chance to take the packet forwarding
responsibility. Because the BCG routing table supports multiple shortest paths
between nodes, those neighboring nodes may have one or more alternative
shortest paths to the destination (i.e., 1’s in the specific destination row of the
routing table). In case nodes who received BA packets do not have the shortest

94

v

n1

n2

n3
f

u

a b c

CTR

failed→

← sending BA packets

← 1st hop ancestors

← BA packets

Figure 6.5: Illustration of u forwarding BA packets to its first hop ancestors
as it detects a link down for f . Then, the first hop ancestors send new BA
packets to their own ancestors which are the second order of u. Note that
some nodes and edges are not shown for clarity.

path either, they can propagate BA packets one hop further to their neighbors.
However, to limit the number of BA packets generated in the network, we set
the number of hops to propagate BA packets to within two hops from a failed
node. The heuristics behind this restriction will be discussed in Section 6.6.

6.4.1 Operation

The BA algorithm uses a simple control message called BA packet. The main
contents of a BA packet is the list of blocked destinations including the failed
node and the list of new neighbors found by CTR. Using the BA packet, a node
informs its neighbors of the most recent changes such as a node failure. In
addition to informing node failure, BA also lets its neighboring nodes update
their routing table of newly connected neighbors. More specifically, if a node
found a new neighbor by performing CTR, then it updates its routing table
with 1 for the destination row corresponding to the new neighbor. Next, it
sends BA packets to its neighboring nodes to have them update their routing
tables with 1 for each new neighbor discovered by CTR. The BA packet carries
the information summarized in Table 6.1.

The BA operation can only be initiated by nodes that detect node failures.
When a node detects a link down, it updates its routing table according to
the routing table update method described in Section 6.3.2 and Section 6.3.3.
Next, it initiates the BA operation by building a BA packet and sends the BA
packet to its first hop neighbors as shown in Figure 6.5. Finally, the neighbors

95

update their routing table using the information stored in BA packets.
Let us consider Figure 6.5 that shows how BA packets are propagated

in the network. In the figure, u detects the link connected to f is down and
initiates the BA operation by building and sending BA packets to its neighbors
depicted in Figure 6.6.

destid = a srcid = u blkdest = f nbrlist = {n1, n2, n3}

destid = b srcid = u blkdest = f nbrlist = {n1, n2, n3}

destid = c srcid = u blkdest = f nbrlist = {n1, n2, n3}

Figure 6.6: Node u forwards BA packets to its neighbors a, b, and c illustrated
in Figure 6.5.

Upon receiving the BA packet, the neighbors (i.e., BA packet recipients)
extract the destination node ID destid (a, b, or c), the blocked destina-
tion ID blkdest (f), and a new neighbor list nbrlist ({n1, n2, n3}) from the
BA packet. Then, each BA packet receiver checks if destid matches its ID.
If it does not match, the BA packet is discarded. Otherwise, the BA re-
ceiver records the BA packet incoming link g, blocks the destination by per-
forming RTBL(blkdest, g-1) ← 0, and updates its routing table by setting
RTBL(nbrlist, g-1)← 1.

6.5 Routing Performance

6.5.1 Setups

We generated the original BCGs with two different sizes n = 506 and 1081.
Then, we performed BCG pruning with CTR to simulate node failures. For
each node removal (failure), the proposed Dynamic BCG Routing Protocol has
been performed. Also, for each amount of node failures (i.e., 10%, 20%, . . . 80%
failures), we evaluated the routing performance in terms of reachability and
average hop count. For each amount of node removals, we generated 99 samples
and obtained the average of performance metrics considered.

6.5.2 Reachability

We define reachability η as the number of reachable source and destination
pairs among all pairs of nodes in a network. To determine the reachable
source-destination pairs, we set the time-to-live (TTL) 1 to the size of the

1 The idea of TTL is borrowed from the Internet Protocol. The TTL limits the number
of hops that a packet can traverse in a network. For example, the TTL is set to a pre-defined

96

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80

R
e
a
c
h

a
b
ili

ty
 (

η
)

Removed Nodes (%)

1081-wo-BA
1081-w-BA

 506-wo-BA
 506-w-BA

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80

R
e
a
c
h

a
b
ili

ty
 (

η
)

Removed Nodes (%)

1081-wo-BA
1081-w-BA

 506-wo-BA
 506-w-BA

Figure 6.7: Reachability versus the percentage of node failures.

original BCGs. If any packets traverse nodes more than a pre-defined TTL
value before reaching a destination, then we assume that the destination is
unreachable, and we discard the packet.

We evaluated the node to node reachability (η) as a function of the number
of failed nodes. This measures how effectively the proposed routing protocol
finds a routing path between a source and destination. We obtained the reach-
ability by computing the ratio of the number of reachable pairs of nodes nr to
all possible pairs of nodes alive na, that is, η = 2nr/ (na (na − 1)).

Figure 6.7 shows the reachability as a function of the percentage of node
failures. For each network sample, Dynamic BCG Routing Protocol with and
without Backward Advertisement has been simulated (wo-BA and w-BA in
the figure). Beyond 70% node failures, the BA algorithm starts to improves
the reachability comparing to the Dynamic BCG Routing protocol without it.
However, BA improves the reachability by 5% and 7% when 80% of nodes are
failed from the n = 506 and n = 1081 networks, respectively. Note that, this
improvement with BA may seem to be minimal but 7% improvement for a
BCG with n = 1081 and 80% failed nodes (i.e., a network with 216 nodes) is
equivalent to 1625 more reachable source and destination pairs.

value when a packet is generated and reduced by one on every hop. If any intermediate
node receives a packet with TTL value equals zero, then it discards the packet.

97

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80

A
v
e

ra
g
e
 H

o
p
 C

o
u
n
t

(h
o
p
s
)

Removed Nodes (%)

1081-wo-BA
1081-w-BA
506-wo-BA
506-w-BA

1081-AvgSPL
506-AvgSPL

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80

A
v
e

ra
g
e
 H

o
p
 C

o
u
n
t

(h
o
p
s
)

Removed Nodes (%)

1081-wo-BA
1081-w-BA
506-wo-BA
506-w-BA

1081-AvgSPL
506-AvgSPL

Figure 6.8: Average hop count and average shortest path length versus the
percentage of node failures.

6.5.3 Average hop count

We computed the average of the average hop counts of the 99 network samples
for each node removals. In addition, we computed the average shortest path
length which serves as a reference representing the best achievable average hop
count for each network sample.

Figure 6.8 shows the results. The gap between the lower bound of the hop
counts represented in the average shortest path length (AvgSPL in the figure)
and the average hop count using the proposed routing table update method
keeps widening with the number of failed nodes. However, we observed that
BA reduces the average hop count up to 35% from that of the Dynamic BCG
Routing Protocol without BA.

6.5.4 Hop counts distribution

We further investigated the distribution of hop count when using the Dynamic
BCG Routing Protocol with BA. In Figure 6.9, hop count histograms are
shown for BCGs with n = 506 and 1081. The hop counts for every source and
destination pair were collected and their occurrence (normalized to one). As
expected, the occurrences of short routing paths decrease while those of long
routing paths increase with the number of failed nodes. Thus, minimizing the

98

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
 t
o
 1

)

Hop Counts (hops)

10% fails, n=506
20% fails, n=506
30% fails, n=506
40% fails, n=506
50% fails, n=506
60% fails, n=506
70% fails, n=506
80% fails, n=506

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
 t
o
 1

)

Hop Counts (hops)

10% fails, n=506
20% fails, n=506
30% fails, n=506
40% fails, n=506
50% fails, n=506
60% fails, n=506
70% fails, n=506
80% fails, n=506

(a) n = 506

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
 t
o

 1
)

Hop Counts (hops)

10% fails, n=1081
20% fails, n=1081
30% fails, n=1081
40% fails, n=1081
50% fails, n=1081
60% fails, n=1081
70% fails, n=1081
80% fails, n=1081

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

F
re

q
u
e
n
c
y
 (

n
o
rm

a
liz

e
d
 t
o

 1
)

Hop Counts (hops)

10% fails, n=1081
20% fails, n=1081
30% fails, n=1081
40% fails, n=1081
50% fails, n=1081
60% fails, n=1081
70% fails, n=1081
80% fails, n=1081

(b) n = 1081

Figure 6.9: Hop count distribution for the Dynamic BCG Routing Protocol
with Backward Advertisement. Note that Hop counts exceeding 50 are not
shown for brevity.

99

occurrences of such long routing paths will be the main goal to improve the
proposed routing protocol, which remains as future work.

In addition, modes of the histograms are found between 3 ∼ 5 hops and
3 ∼ 6 hops for n = 506 and n = 1081, respectively. These almost match
the average shortest path lengths (AvgSPL) in Figure 6.8 which span between
3.75 ∼ 4.97 and 4.52 ∼ 5.49, respectively for the BCGs with n = 506 and
n = 1081.

6.6 Discussion

In the previous sections, we observed that BA can reduce the average hop count
and improve the node to node reachability. Currently, we only propagate BA
packets to a failed node’s neighbors within two hops. The BA can be used
more aggressively to minimize the average hop count, while this increases the
BA packets traveling around the network for every node failure. In fact, the
number of BA packets propagated to the network per node failure is a function
of the BA packet propagation range that is the number of hops from the failed
node. Let h > 1 be the BA packet propagation range and let ηh be the number
of BA packets propagated. Assume that each node within h hops from a failed
node is unique node having d neighbors, then

η2 = d (d− 1) ,

η3 = (d− 1) η2 = d (d− 1)2 ,

η4 = (d− 1) η3 = d (d− 1)3 ,

...

Thus, the number of BA packets required to be propagated is given by ηh =
d (d− 1)h−1. For example, if the network is 4 regular, then the number of BA
packets to be generated for each node failure, η3 = 36, η4 = 108, η4 = 324,
and so on, which increase quickly with h. Moreover, only 10% of nodes failing
from a 1081 nodes 4-regular BCG network will result in total 108× η2 = 1296,
108 × η3 = 3888, 108 × η4 = 11664 BA packets propagated in the network.
Energy required for wireless sensor nodes to generate, transmit, receive, and
process a large number of BA packets will be a huge burden to the nodes
suffering from limited energy source.

100

Summary

This chapter presents the Dynamic BCG Routing Protocol for a BCG topol-
ogy that is dynamically changing over time. We also proposed the Backward
Advertisement that allows nodes to propagate topological changes to their
neighbors. The results in our simulation setup showed that BA improves the
average hop count and the reachability of BCG Dynamic Routing Protocol up
to 7% and 35%.

101

Chapter 7

Conclusion

In this thesis, we investigated a graph theoretic approach to achieve ultrafast
information dissemination and data exchange in large and dense networks.
Particularly, we focused on the strengths, limitations and solutions, and appli-
cations of Borel Cayley Graph (BCG) that is a regular, vertex transitive, and
algebraically generated pseudo-random graphs. We summarize our contribu-
tions and provide our insights on the future research topics and directions.

7.1 Summary

Network model for ultrafast information dissemination. Among many
well known network models including regular ring lattices, random graphs,
toroidal meshes, diagonal meshes, and small-world networks, we confirmed
that BCGs are one of the most favorable network models. In fact, our com-
parative study showed that BCGs have superior properties including deter-
ministic topology generation, small nodal degree, short average path length,
small diameter, and ultrafast information dissemination.

Resolving size limitation of BCGs The BCG’s inflexible sizes has posed
a severe limitation on applying this superior network model in real networks.
We resolved this size restriction by using proposed BCG Pruning and BCG
Random Expansion algorithms. Analytical analysis and extensive simulations
confirmed that the original BCGs and the Quasi BCGs exhibit almost the
same information dissemination performance as well as topological properties.

102

BCG Topology Control for Wireless Sensor Networks To construct a
BCG topology in Wireless Sensor Network (WSN), we developed BCG Topol-
ogy Control (BCG-TC). We compare the performance of BCG-TC networks to
κ-Neigh and κ-Random in terms of topological metrics including a diameter,
average path length, network connectivity, and energy consumption. Particu-
larly with a challengingly small maximum nodal degree k ≤ 4, the BCG-TC
constructed a giant component containing more than 98% of total nodes when
maximum radio range R exceeds approximately 25% of diagonal length of a
rectangular area. Moreover, comparison on energy consumption showed nodes
in BCG-TC networks to consume the least energy among the topology control
protocols considered.

BCG Dynamic Routing Protocol We proposed Dynamic BCG Rout-
ing Protocol based on the BCG’s original routing protocol. The Dynamic
BCG Routing Protocol allows every node in a network dynamically to update
their routing table using the proposed routing protocol as nodes die out over
time. The proposed routing protocol utilizes our Backward Advertisement
(BA) to propagate topological changes to nearby neighbors. The results in
our simulation setup showed that BA improves the average hop counts and
the reachability of BCG Dynamic Routing Protocol up to 7% and 35%.

7.2 Future Work

7.2.1 Open issues

Measuring the randomness of a graph. In our research, we realized that
it is not easy to define or measure the randomness of a graph. One may want
to define randomness by means of degree distribution, however, graphs display
the same degree distribution such as k-regular ring lattices and BCGs have
totally different characteristics. Other would like to use statistics or graph
metrics to define the graph randomness, yet many different graphs may share
the same quantity. Thus, answering to the question, “How random a random
graph is?” or “How to measure the randomness of regular graphs?” will be
challenging. However, we expect the correct measure of graph randomness can
answer its relationship to other graph metrics or performance measures.

Selecting right BCG parameters. The diameter, average path length,
information dissemination performance, and even the connectivity of BCGs
are determined by the choice of BCG parameters. Although choosing a right
set of BCG parameters is important, there has been lack of a comprehensive

103

study on the choice of BCG parameters. In this regard, we have provided
some heuristic guidelines on selecting BCG generators in Section 3.6. How-
ever, even though the guidelines ensure connected BCGs, we are still missing
a mathematically proven method to obtain right BCG parameters generating
connected BCGs with better topological properties. We expect the investiga-
tion on obtaining right BCG parameters will give us more insights into the
properties and applications of BCGs.

Deterministic BCG expansion. The proposed BCG Random expansion
enlarges the original BCGs in any larger sizes. However, unlike the BCG Prun-
ing algorithm that uses BCG’s algebraic connection rule, the BCG Expansion
algorithm randomly rewires connections between added nodes and existing
nodes.

Pruning and expanding other network models. Beyond application to
the BCGs we expect some algorithms similar to our BCG Pruning and Expan-
sion algorithm may be able to resize other network models such as Ramanujan
graphs [68] or de Bruijn graphs [69]. It will be interesting to investigate the
topological and spectral properties, as well as the information dissemination
performance of such resized graphs. We concede that this random rewiring
would prevent us from using the BCG’s useful properties such as algebraically
defined connections between nodes. In fact, the core of BCG Pruning algo-
rithm is the CTR algorithm that utilizes the BCG’s algebraic connection rule.
Thus, we expect that BCG’s connection rule might be used to deterministically
expand the BCGs.

7.2.2 Applications

Large clusters processing peta-scale data. In 2008, Dean et al. [7] re-
ported that Google’s large-scale cluster processes twenty petabytes (1015 bytes)
of data per day to serve its users. Same year, Baeza-Yatesand et al. [70] re-
ported Yahoo!’s clusters handle dataset of multi-petabyte order. Those clus-
ters or server-farm usually consists of several thousands of networked machines
where each machine own or share multiple, several terabytes hard-disks. In
these very dense and data-intensive networked machine environments, not only
the physical connections among servers, but also the logical connections be-
tween datasets are key to get desired jobs done on time.

We believe that the BCGs and the Quasi BCGs are strong candidates for
connecting those physical or logical objects. For instance, let us consider a

104

4-regular BCG1 with 15, 657 nodes whose diameter is only 10. If a cluster of
approximately 15000 servers2 (or networked storages) are connected by Quasi
BCG topology, then any servers in the cluster can reach any other servers (at
most) in 10 hops. The algebraic connection of BCGs will be a key benefit
for such large scale clusters as every server can compute (instead of being
configured) its neighbors to connect using very simple algebraic operation.
Moreover, we believe our CTR algorithm provide fault tolerant feature too.
Even if a large number of servers fail (e.g., up to 80%), our CTR algorithm will
guarantee a strong connectivity for the rest of servers alive (see connectivity
analysis in Section 4.3.1). In this massive failure scenario, CTR allows each
servers to find its next available neighbors independently and deterministically
without human intervention.

Mobile ad hoc networks. In mobile ad hoc networks, nodes are moving
within the coverage of base station (BS) or between the BSs. As traveling
between BSs, nodes are registered to one BS and unregistered from another
BS, which requires remaining nodes (as opposed to moving nodes) to adapt
to frequent topology changes. In this scenario, our BCG Pruning and BCG
Random Expansion might be used to maintain connectivity of remaining nodes
in the network. Specifically, when nodes are moving out of radio coverage,
remaining nodes who lost connections to the moving nodes uses BCG Pruning
to maintain their connectivity. When new nodes appears in the network,
nearby neighbors may be able to use BCG Expansion to give connections to
the new nodes. It is also a possible scenario that the centralized controllers
or the BSs perform BCG Pruning and Expansion and manage connections of
mobiles stations under coverage.

1 Note that the nodal degree is not limited to four, but rather we can use any even nodal
degree by using different set of generators. Intuitively, BCGs with larger nodal degree will
result in smaller diameter, shorter average path length, and better information dissemination
performance.

2 It does not need to be exactly 15, 657 as the original BCGs can be downsized using
BCG Pruning algorithm.

105

Bibliography

[1] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and
Randy H. Katz. Overqos: offering internet qos using overlays. SIGCOMM
Comput. Commun. Rev., 33:11–16, January 2003. ISSN 0146-4833.

[2] M. Castro, P. Druschel, Y.C. Hu, and A. Rowstron. Topology-aware
routing in structured peer-to-peer overlay networks. In Future Directions
in Distributed Computing, pages 103–107. Springer-Verlag, 2003. ISBN
3540009124.

[3] Jeremy Elson and Kay Römer. Wireless sensor networks: a new regime for
time synchronization. SIGCOMM Comput. Commun. Rev., 33:149–154,
January 2003. ISSN 0146-4833.

[4] P.S. Dodds and D.J. Watts. A generalized model of social and biological
contagion. Journal of Theoretical Biology, 232(4):587–604, 2005. ISSN
0022-5193.

[5] D. López-Pintado. Diffusion in complex social networks. Games and
Economic Behavior, 62(2):573–590, 2008. ISSN 0899-8256.

[6] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A measurement-
driven analysis of information propagation in the flickr social network.
In Proceedings of the 18th international conference on World wide web,
WWW ’09, pages 721–730, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-487-4.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-
ing on large clusters. Commun. ACM, 51:107–113, January 2008. ISSN
0001-0782.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proceedings of the ACM SIGCOMM 2008
conference on Data communication, pages 63–74. ACM, 2008.

106

[9] G. Lee, N. Tolia, P. Ranganathan, and R.H. Katz. Topology-aware re-
source allocation for data-intensive workloads. In Proceedings of the first
ACM asia-pacific workshop on Workshop on systems, pages 1–6. ACM,
2010.

[10] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, June 4, 1998. ISSN 0028-0836.

[11] R. Olfati-Saber. Ultrafast consensus in small-world networks. In Pro-
ceedings of the American Control Conference (ACC’05), volume 4, pages
2371–2378, June 8–10, 2005.

[12] R. Olfati-Saber. Algebraic connectivity ratio of Ramanujan graphs. In
Proceedings of the American Control Conference (ACC’07), pages 4619–
4624, July 9–13, 2007.

[13] K. Wendy Tang and B. W. Arden. Representations of Borel Cayley
graphs. SIAM Journal on Discrete Mathematics, 6(4):655–676, 1993.
ISSN 0895-4801.

[14] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, and
John Heidemann. Impact of network density on data aggregation in
wireless sensor networks. In Proceedings of the 22nd International Con-
ference on Distributed Computing Systems (ICDCS’02), pages 457–458,
2002. ISBN 0-7695-1585-1.

[15] A. Hu and S.D. Servetto. Asymptotically optimal time synchronization in
dense sensor networks. In Proceedings of the 2nd ACM international con-
ference on Wireless sensor networks and applications, pages 1–10. ACM,
2003.

[16] I. Demirkol, C. Ersoy, and F. Alagoz. MAC protocols for wireless sensor
networks: a survey. IEEE Commun. Mag., 44(4):115–121, April 2006.

[17] Kirk Martinez, Jane K. Hart, and Royan Ong. Environmental sensor
networks. Computer, 37(8):50–56, 2004. ISSN 0018-9162.

[18] S. Coleri, S.Y. Cheung, and P. Varaiya. Sensor networks for monitor-
ing traffic. In Proceedings of the Allerton conference on communication,
control and computing, pages 32–40, 2004.

[19] Ting Yan, Tian He, and John A. Stankovic. Differentiated surveillance
for sensor networks. In Proceedings of the First international conference
on Embedded networked sensor systems (SenSys’03), pages 51–62. ACM,
2003. ISBN 1-58113-707-9.

107

[20] Paolo Santi. Topology control in wireless ad hoc and sensor networks.
ACM Computing Surveys (CSUR), 37(2):164–194, 2005. ISSN 0360-0300.

[21] D.M. Blough, M. Leoncini, G. Resta, and P. Santi. The k-neighbors
approach to interference bounded and symmetric topology control in ad
hoc networks. IEEE Trans. Mobile Comput., 5(9):1267–1282, 2006.

[22] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing.
In Mobile Computing Systems and Applications, 1999. Proceedings. WM-
CSA’99. Second IEEE Workshop on, pages 90–100. IEEE, 2002. ISBN
0769500250.

[23] K. Wendy Tang and B. W. Arden. Vertex-transitivity and routing for Cay-
ley graphs in GCR representations. In Proceedings of the ACM/SIGAPP
Symposium on Applied Computing (SAC’92), pages 1180–1187, New
York, NY, USA, 1992. ACM. ISBN 0-89791-502-X.

[24] Fatihcan M. Atay, Tuerker Biyikoglu, and Juergen Jost. Synchronization
of networks with prescribed degree distributions. IEEE Trans. Circuits
Syst. I, 53:92, 2006.

[25] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286:509–512, October 1999.

[26] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the Internet topology. In Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communication (SIGCOMM’99), pages 251–262, New York, New York,
1999. ACM. ISBN 1-58113-135-6.

[27] Sven Bilke and Carsten Peterson. Topological properties of citation and
metabolic networks. Phys. Rev. E, 64:036106, 2001.

[28] M. E. J. Newman. Scientific collaboration networks. I. Network construc-
tion and fundamental results. Phys. Rev. E, 64(1):016131, June 2001.

[29] M. E. J. Newman. The structure of scientific collaboration networks.
Proceedings of the National Academy of Sciences, 98(2):404–409, January
2001.

[30] Walter W. Powell, Douglas R. White, Kenneth W. Koput, and Jason
Owen-Smith. Network dynamics and field evolution: The growth of in-
terorganizational collaboration in the life sciences. American Journal of
Sociology, 110(4):1132–1205, 2005.

108

[31] M. E. J. Newman. Detecting community structure in networks. The
European Physical Journal B-Condensed Matter, 38(2):321–330, 2004.

[32] A. Jamakovic, S. Uhlig, and I. Theisler. On the relationships between
topological metrics in real-world networks. In Proceedings of the European
Conference on Complex Systems, pages 1–14, 2007.

[33] A. Banerjee. The Spectrum of the graph Laplacian as a tool for analyzing
structure and evolution of networks. PhD thesis, Max Planck Institute,
Berlin, Germany, 2008.

[34] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23:298–305, 1973.

[35] B. Mohar. The Laplacian spectrum of graphs. Graph Theory, Combina-
torics, and Applications, 2:871–898, 1991.

[36] F.R.K. Chung. Spectral graph theory. American Mathematical Society,
1997.

[37] C.D. Godsil and G. Royle. Algebraic graph theory. Springer, 2001.

[38] C.D. Meyer. Matrix analysis and applied linear algebra. Society for In-
dustrial and Applied Mathematics, 2000.

[39] S. White and P. Smyth. A spectral clustering approach to finding com-
munities in graph. In Proceedings of the SIAM Data Mining Conference,
2005.

[40] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the ACM/IEEE conference on Supercomputing,
volume 95, page 285, New York, NY, USA, 1995. ACM.

[41] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parame-
terization for 3d meshes. ACM Transactions on Graphics, 22(3):358–363,
2003.

[42] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Trans. Autom.
Control, 49(9):1520–1533, September 2004. ISSN 0018-9286.

[43] P. Erdös and A. Rényi. On the evolution of random graphs. Bulletin of
the Institute of International Statistics, 38:343–347, 1961.

109

[44] F. Comellas and S. Gago. Synchronizability of complex networks. J. Phys.
A: Math. Theor, 40:4483–4492, 2007.

[45] H. Hong, Beom Jun Kim, M. Y. Choi, and Hyunggyu Park. Factors that
predict better synchronizability on complex networks. Phys. Rev. E, 69
(6):067105, June 2004.

[46] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In Proceedings of the Fourth In-
ternational Symposium on Information Processing in Sensor Networks
(IPSN’05), pages 63–70, 2005. ISBN 0-7803-9202-7.

[47] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE
Trans. Autom. Control, 50(11):1867–1872, November 2005. ISSN 0018-
9286.

[48] R. Olfati-Saber and J. S. Shamma. Consensus filters for sensor networks
and distributed sensor fusion. In Proceedings of the 44th IEEE Conference
on Decision and Control and European Control Conference, pages 6698–
6703, December 2005.

[49] J.A. Fax and R.M. Murray. Information flow and cooperative control
of vehicle formations. IEEE Trans. Autom. Control, 49(9):1465–1476,
September 2004. ISSN 0018-9286.

[50] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless
point convergence algorithm for mobilerobots with limited visibility. IEEE
Trans. Robot. Autom., 15(5):818–828, 1999.

[51] J. Lin, AS Morse, and BDO Anderson. The multi-agent rendezvous prob-
lem. In Proceedings of the 42nd IEEE Conference on Decision and Con-
trol, volume 2, pages 1508–1513, 2003.

[52] J. Cortes, S. Martinez, and F. Bullo. Robust rendezvous for mobile au-
tonomous agents via proximity graphs in arbitrary dimensions. IEEE
Trans. Autom. Control, 51(8):1289–1298, 2006.

[53] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation
in networked multi-agent systems. Proc. IEEE, 95(1):215–233, January
2007. ISSN 0018-9219.

[54] S.H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276,
2001.

110

[55] K. Wendy Tang and S. A. Padubidri. Diagonal and toroidal mesh net-
works. IEEE Trans. Comput., 43(7):815–826, 1994. ISSN 0018-9340.

[56] V. Batagelj and U. Brandes. Efficient generation of large random net-
works. Phys. Rev. E, 71(3):36113, March 2005.

[57] B. W. Arden and K. Wendy Tang. Representations and routing for Cayley
graphs [computer networks]. IEEE Trans. Commun., 39(11):1533–1537,
November 1991.

[58] K. Wendy Tang and B. W. Arden. Representations of Borel Cayley
graphs. SIAM Journal on Discrete Mathematics, 6(4):655–676, 1993.
ISSN 0895-4801.

[59] Joseph J. Rotman. An Introduction to the theory of groups. Springer, 4th
edition, 1999.

[60] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen.
LAPACK: A portable linear algebra library for high-performance com-
puters. In Proceedings of ACM/IEEE conference on Supercomputing (Su-
percomputing’90), pages 2–11. IEEE Computer Society, 1990. ISBN O-
69791-412-O.

[61] Richard Beigel, Grigorii Margulis, and Daniel A. Spielman. Fault diagno-
sis in a small constant number of parallel testing rounds. In Proceedings of
the Fifth annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA’93), pages 21–29, New York, NY, USA, 1993. ACM. ISBN
0-89791-599-2.

[62] Christian Bettstetter. On the connectivity of ad hoc networks. The Com-
puter Journal, 47(4):432–447, 2004.

[63] Sheldon M. Ross. Introduction to probability models. Academic Press, 9th
edition, 2006.

[64] D.V. Chudnovsky, G.V. Chudnovsky, and M.M. Denneau. Regular graphs
with small diameter as models for interconnection networks. In Proceed-
ings Third International Conference on Supercomputing (ICS’88), pages
232–239, 1988.

[65] Mirela Marta and Mihaela Cardei. Using sink mobility to increase wireless
sensor networks lifetime. In Proceedings of the International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WowMom’08),

111

pages 1–10, Washington, DC, USA, 2008. IEEE Computer Society. ISBN
978-1-4244-2099-5.

[66] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[67] E.W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959. ISSN 0029-599X.

[68] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-
torica, 8:261–277, 1988. ISSN 0209-9683.

[69] NG De Bruijn. A combinatorial problem. Kibern. Sb., Nov. Ser, 6:33–40,
1969.

[70] Ricardo Baeza-Yates and Raghu Ramakrishnan. Data challenges at ya-
hoo! In Proceedings of the 11th international conference on Extending
database technology: Advances in database technology, EDBT ’08, pages
652–655, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-926-5.

112

	 List of Figures
	 List of Tables
	 Acknowledgments
	1 Introduction
	1.1 Network Models for Ultrafast Information Dissemination
	1.2 Problems and Approaches
	1.3 The BCGs for Wireless Sensor Networks
	1.3.1 Topology Control

	1.4 Routing
	1.5 Summary of Contribution
	1.6 Organization of Thesis

	2 Preliminary
	2.1 Graph Terminology
	2.2 Topological Graph Metrics
	2.3 Spectral Graph Metrics
	2.3.1 Graph Laplacian
	2.3.2 Graph spectrum
	2.3.3 Algebraic connectivity

	2.4 Information Dissemination Performance
	2.4.1 Average consensus protocol

	3 Network Models
	3.1 Introduction
	3.2 Regular Graphs
	3.2.1 Ring lattices
	3.2.2 Meshes

	3.3 Random Graphs
	3.3.1 Erdös-Rényi's random graphs
	3.3.2 Watts-Strogatz's small world networks

	3.4 Cayley Graphs
	3.5 Borel Cayley Graphs
	3.5.1 Node representation
	3.5.2 Connection rule
	3.5.3 Examples

	3.6 How to Select BCG Parameters?
	3.6.1 BCG samples
	3.6.2 Patterns of bad generators
	3.6.3 Guideline

	3.7 Information Dissemination Performance of Network Models
	3.7.1 Setup
	3.7.2 Performance metrics
	3.7.3 Results

	4 Quasi Borel Cayley Graph
	4.1 Introduction
	4.2 BCG Pruning
	4.2.1 Cut-through rewiring

	4.3 BCG Pruning: Connectivity
	4.3.1 Analysis
	4.3.2 Validation
	4.3.3 Relation to the graph generators

	4.4 BCG Pruning: Topological and Spectral Properties
	4.4.1 Graph generation
	4.4.2 Diameter
	4.4.3 Average path length
	4.4.4 Algebraic connectivity

	4.5 BCG Pruning: Information Dissemination Performance
	4.5.1 Setups
	4.5.2 Evaluation

	4.6 BCG Random Expansion
	4.6.1 Terminologies
	4.6.2 Random expansion

	4.7 BCG Random Expansion: Topological Properties
	4.7.1 Setup
	4.7.2 Diameter
	4.7.3 Average path length

	4.8 BCG Random Expansion: Information Dissemination Performance
	4.8.1 Setup and metrics
	4.8.2 Performance

	5 Borel Cayley Graph Topology Control
	5.1 Introduction
	5.2 Borel Cayley Graph Topology Control
	5.2.1 Assumptions
	5.2.2 BCG-TC Phase-I
	5.2.3 BCG-TC Phase-II
	5.2.4 Neighbor polling order

	5.3 Performance Evaluation
	5.3.1 Network connectivity
	5.3.2 Topological properties

	5.4 Energy Consumption

	6 Routing
	6.1 Introduction
	6.2 Vertex Transitive BCG Routing Protocol
	6.2.1 Routing table
	6.2.2 Routing table generation
	6.2.3 Node ID translation

	6.3 Dynamic BCG Routing Protocol
	6.3.1 Assumption
	6.3.2 Dynamic routing table update
	6.3.3 Dynamic routing table update with CTR
	6.3.4 Random forwarding

	6.4 Backward Advertisement
	6.4.1 Operation

	6.5 Routing Performance
	6.5.1 Setups
	6.5.2 Reachability
	6.5.3 Average hop count
	6.5.4 Hop counts distribution

	6.6 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future Work
	7.2.1 Open issues
	7.2.2 Applications

	 Bibliography

