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Abstract of the Dissertation

Adaptive Fitting of Mixed-Effects Models with
Correlated Random-effects

by

Guangxiang Zhang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2011

Linear mixed-effects model (LMM) has been widely used in hierarchical and longitudinal

data analyses. In practice, the fitting algorithm can fail to converge because of boundary

issues of the estimated random-effects covariance matrix, i.e., being near-singular, non-

positive definite, or both. The traditional grand mean centering technique cannot generally

improve the numerical stability and may even increase the correlation between random-

effects. Also, current available algorithms are not computationally optimal because the

condition number of random-effects covariance matrix is unnecessarily increased when the

random-effects correlation estimate is not zero.

To improve the convergence of data with such boundary issue, we propose an adaptive

fitting (AF) algorithm using an optimal linear transformation of the random-effects design

matrix. It is a data-driven adaptive procedure, aiming at reducing subsequent random-

effects correlation estimates down to zero in the optimal transformed estimation space.

Extension of the AF algorithm to multiple random-effects models is also discussed. The
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AF algorithm can be easily implemented with standard software and be applied to other

mixed-effects models.

Simulations show that the AF algorithm significantly improves the convergence rate,

and reduces the condition number and non-positive definite rate of the estimated random-

effects covariance matrix, especially under small sample size, relative large noise, and high

correlation settings. We also propose a new two-step modeling strategy for LMM fitting and

random-effects selection. This parsimonious LMM with uncorrelated random-effects in the

optimal transformed space is favored by the likelihood ratio test and Akaike Information

Criterion. Two real life longitudinal data sets are used to illustrate the application of this

AF algorithm implemented with software package R (nlme).
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Chapter 1

Introduction

1.1 Background

Linear mixed-effects model (LMM) has been widely used for the analysis of hierarchical

and longitudinal data (Laird and Ware, 1982). By incorporating random-effects into an

ordinary regression model, LMM accommodates correlations among multiple observations

made on the same unit (e.g., subject, group, cluster, classroom, center) and allows for

unbalanced designs where all units do not require an equal number of observations and/or

the same data collection occasions. LMM is also known as multilevel model (Goldstein,

1986), random coefficient model (Longford, 1993) or hierarchical linear model (Raudenbush

and Bryk, 2002) in different substantive fields.

The maximum likelihood estimation of LMM parameters can be implemented by various

numerical optimization algorithms, such as expectation-maximization (EM) (e.g., Laird and

Ware, 1982; Dempster et al., 1984; Laird et al., 1987; Liu and Rubin, 1994; Meng and van

Dyk, 1998), Newton-Raphson (e.g., Jennrich and Schluchter, 1986; Thompson and Meyer,

1986; Lindstrom and Bates, 1988; Callanan and Harville, 1991), iterative generalized least

squares (IGLS) (Goldstein, 1986), or Fisher scoring (Longford, 1987), and is implemented

in many standard or specialized softwares (see West et al., 2006 for details). However, an

important practical problem of applying mixed-effects models is the slow or non-convergence

issue during the nonlinear iterative maximizing likelihood process. When random-effects are

highly correlated, it can sometimes be difficult to achieve convergence using these available
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packages, or alternatively, an algorithm can converge to a random-effects covariance matrix

that is near-singular or non-positive definite (PD). Several papers reported that the non-

convergence rate can vary from a few percents to more than 50% in simulation studies (Meng

and van Dyk, 1998; van Dyk, 2000; Browne and Draper, 2000; Berkhof and Snijders, 2001;

Shieh and Fouladi, 2003), depending on algorithms used, simulation scale and settings, e.g.,

sample size, relative size of random-effects variance to the residual variance, and correlation

level. It has also been shown that the estimated covariance matrix for random-effects could

be non-PD (Meng and van Dyk, 1998; Mikulich et al., 1999; Browne and Draper, 2000;

West et al., 2006; Pryseley et al., 2011) and the estimated correlation between random-

effects could be close to unity (Meng and van Dyk, 1998; Pinheiro and Bates, 2000; Gurrin

et al., 2001; Solaro and Ferrari, 2007). The non-convergence problem has been shown to get

worse as the correlation level increased, either between random-effects (Browne and Draper,

2000) or between fixed-effects (Shieh and Fouladi, 2003).

During LMM fitting, the traditional grand mean centering technique, which transforms

a predictor covariate around its grand mean, has been extensively used in practice (e.g.,

Kreft et al., 1995; van der Leeden et al., 1996; Morrell et al., 1997; Browne and Draper,

2000; Gurrin et al., 2001; Zhang and Davidian, 2001). It is even built in as a default or an

optional setting for some softwares (Kreft et al., 1995) because of its ability to facilitate pa-

rameter interpretation and the possibility of improving numerical stability. For independent

data, centering can remove the non-essential ill-conditioning in ordinary regressions, e.g., the

sample covariance between intercept and slope being zero after centering (e.g., Marquardt

and Snee, 1975; Bradley and Srivastava, 1979; Draper and Smith, 1998, ch. 16). However,

for hierarchical or correlated data modeled by LMM, the computational consequences of

centering on random-effects are complicated and not well understood. The reported cor-

relation estimate between random intercept and random slope might be partially reduced

after centering, but centering did not necessarily eliminate the collinearity problems be-

tween random-effects (e.g., Kreft et al., 1995; Pinheiro and Bates, 2000). After centering,

both non-convergence and non-PD could still occur (Pinheiro and Bates, 2000; Browne and

Draper, 2000). Therefore, grand mean centering is not a computationally optimal linear

transformation for mixed-effects models in general.

Illustrative Example The following concrete numerical example illustrates the problem

of the centering transformation. For simulated longitudinal continuous data fitted by a
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LMM with two random-effects (b0i, b1i), where b0i and b1i are the random intercept and

slope for the i-th subject, respectively, the possible impacts of different recoding methods

for the observed raw time variable can be examined. Let

yij = β0 + tijβ1 + b0i + tijb1i + εij, i = 1, · · · ,m; j = 1, · · · , n, (1.1.1)

(b0i, b1i)
T ∼ N(0, G2×2), εij ∼ N(0, σ2

e), b0i⊥εij, b1i⊥εij.

The balanced longitudinal data set had continuous measurements Yij at the same five

occasions tij ∈ (1, 2, 3, 4, 5) (i.e., from 1 to 5 years) for the i-th subject in a sample of 50.

To take into account the correlations among repeated measurements made on the same

subject, a LMM with random intercept and random slope (RIS) model was applied at

different time scales. Table 1.1 summaries the results of the RIS model examined at three

usual time scales, namely, t∗ij = tij + δ, where δ was a location shift taking on the values of

δ = 0,−3,−1, which corresponded to raw, centering and follow-up scales, respectively. With

a total of 250 data points, the RIS model failed to converge for the three time scales due to

the estimated correlation between random-effects being on the boundary of the parameter

space, i.e., correlation estimates closed to ±1. However, after the introduction of a new

location shift (δ = −1.0416), RIS model could achieve convergence, and the new estimated

correlation is reduced to 0.167.

Table 1.1: RIS model fitting results based on different recoding methods

Method Raw Centering Follow-up Optimal
Location shift (δ) 0 −3 -1 −1.0416
Predictor (tij + δ) (1,2,3,4,5) (−2,−1,0,1,2) (0,1,2,3,4) t∗ij
Converged? No No No Yes

̂Cor(b0i, b1i) −1.000 1.000 −0.990 0.167

t∗ij = (1, 2, 3, 4, 5) + (−1.0416) = (−0.0416, 1.9584, 2.9584, 3.9584)

How to construct the location shift which can reduce the correlation in two and multiple

random-effects cases will be described in Section 3.2 and 5.3.
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1.2 Research goals

The numerical example above shows that there is possible link between convergence status

and the correlation being estimated which is in turn dependent on three specific location

shifts of the data. For a general linear transformation, the invariant nature of LMM infer-

ences before and after transformation has been discussed (Longford, 1993; Morrell et al.,

1997). Longford (1993) also identified an optimal linear transformation with zero correla-

tion between random-effects in the search for minimum variance for response variable. Little

work has been done on this optimal transformation with respect to its improving fitting of

mixed-effects models. To the best of our knowledge, this optimal transformation has not

been linked to the non-convergence issue during numerical estimation process nor been used

as a replacement for the traditional centering technique.

The primary goal of my dissertation is to utilize the optimal linear transformation of

the predictor variable to improve the numerical stability of LMM fitting. Focusing on the

potential computational benefits from using this optimal transformation, we formulate an

adaptive fitting (AF) algorithm, aiming to improve the non-convergence problems during

the fitting of mixed-effects models with highly correlated random-effects. The second goal is

to propose an AF-enhanced uncorrelated RIS model and compare it with other competing

models based on several model selection criteria.

The dissertation is organized as follows. We first review the LMM and describe its

linear transformation in Chapter 2. In Chapter 3, the AF algorithm is proposed, and its

correlation and condition number reduction properties are provided. The performance of AF

is studied through simulations (Chapter 4). The extension of AF to multiple random-effects

cases is described in Chapter 5. After incorporating AF, a new two-step modeling strategy

for LMM fitting and random-effects selection is proposed and investigated in Chapter 6.

The application of the AF algorithm on LMM fitting and modeling are shown by two real

life examples (Chapter 7). Discussions about this AF procedure are provided in Chapter 8.
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Chapter 2

LMM and Linear Transformation

This chapter will review LMM, its general linear transformation and the associated model

equivalency.

2.1 LMM and its estimation

LMM (Laird and Ware, 1982; Pinheiro and Bates, 2000) can be specified as:

yi = Xiβ + Zibi + εi, i = 1, · · · ,m (2.1.1)

bi ∼ Nq(0, G), εi ∼ N(0, σ2
eRi), bi⊥εi,

where yi is the observed response vector for ith subject, with scalar components yij, j =

1, . . . , ni; Xi(ni× p) and Zi(ni× q) are design matrices of known covariates; β are the p× 1

fixed-effects coefficients modeling the population-average effects; bi are the q × 1 random-

effects modeling subject-specific effects and are assumed to be normally distributed with

mean zero and a general covariance matrix G; εi are the ni × 1 unexplained errors and

Ri = Ini
is usually assumed; bi and εi are assumed to be independent.

If a LMM has two random-effects bTi = (b0i, b1i) with the corresponding Zi = (1, xi),

where 1 is a constant vector of one and xi is the observed slope predictor vector with scalar

components xij, then it is a random intercept and slope (RIS) model. If the random slope

b1i term is dropped from a RIS model, then it becomes a random intercept only (RI) model.
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Following the notations of Jacqmin-Gadda et al. (2007), let θ , (β, φ), where φ ,

(G, σ2
e) is the vector of covariance parameters. The vector θ can be estimated by maximizing

the log-likelihood function of (2.1.1),

l(θ) = −1

2

m∑
i=1

{log(|Vi|) + (yi −Xiβ)TV −1
i (yi −Xiβ) + nilog(2π)}, (2.1.2)

where Vi is the marginal covariance matrix of response variable,

Vi = Cov(yi) = ZiGZ
T
i + σ2

eI. (2.1.3)

The MLE of fixed-effects parameters β can be obtained after solving the score function

∂l(θ)/∂θ = 0,

β̂(φ̂) = (
∑
i

XT
i Vi(φ̂)−1Xi)

−1
∑
i

XT
i Vi(φ̂)−1yi, (2.1.4)

which is a generalized least squares estimator. However, the MLEs of covariance param-

eters φ do not have a general closed form solution and must be estimated iteratively by

maximizing the log-likelihood function after plugging β̂ in (2.1.4) into β in (2.1.2). The

asymptotic covariance matrix of the MLEs is estimated by the inverse of the Hessian ma-

trix at the optimum −∂l2(θ)/∂θ∂θt. The MLEs of β and φ are asymptotically independent

given that E(∂l2(θ)/∂β∂θ) = 0. The MLEs of covariance parameters φ are biased and

can be corrected by the restricted likelihood (REML) method, adjusting for the loss of

degree of freedom due to estimating the fixed-effects in β. The corresponding REML log-

likelihood differs from the full likelihood (ML) function in (2.1.2) only by a constant term

plus −0.5
∑

i log(|XT
i V

−1
i Xi|).

There are several iterative optimization algorithms for fitting LMM. The EM algorithm

will always converge to a local maximum of the likelihood surface but may need a very large

number of iterations. The EM algorithm can be used to provide starting values for other

algorithms (e.g., in R, Stata and HLM). Unlike the EM algorithm, the convergence of the

Newton-Raphson algorithm is not guaranteed. However, the Newton-Raphson algorithm

and its variations are the most commonly used algorithms to fit LMM, where an observed

Hessian matrix is needed. The Iterative generalized least squares (IGLS) algorithm and

the Fisher scoring algorithm are mathematically equivalent under normality assumption

(Goldstein, 2002). The Fisher scoring algorithm uses the expected Hessian matrix and can

be considered as a modification of the Newton-Raphson algorithm.

The main computational difficulty in applying LMM is the estimation of the covariance

matrix (West et al., 2006, pp.30-31). It is well know that the Newton-Raphson algorithm
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does not guarantee convergence or can converge to a non-PD covariance matrix (e.g., Lind-

strom and Bates, 1988; Mikulich et al., 1999; van Dyk, 2000; West et al., 2006, ch. 6).

2.2 Linear transformation

To improve the numerical stability of LMM fitting, the traditional grand mean centering

technique has been extensively used in practice, with the expectation of a computational

benefit similar to that in ordinary regressions for independent data (e.g., van der Leeden

et al. 1996, pp. 600; Morrell et al. 1997, pp. 339). However, for clustered or hierarchical

data, the impacts of centering become more complicated, and the computational benefits in

ordinary regression may no longer exist. In the context of RI model, there exists an opti-

mal linear transformation of the response variable which can convert the correlated random

vector (intercept and error) into an uncorrelated one to facilitate testing for independent

normality (Hwang and Wei, 2006). For RIS model, an orthogonal linear transformation

for random-effects has been identified but not proposed for numerical optimization pur-

pose (Longford 1993). Reparameterization of the design matrix [Xi, Zi] by an orthogonal-

triangular form has also been shown to reduce the complexity of computation and improve

the LMM fitting (Lindstrom and Bates, 1988), although it is not a linear transformation

method for the design matrix.

The general linear transformation for LMM has been discussed by Longford (1993)

and Morrell et al. (1997). Let the original design matrices Xi and Zi be transformed to

X∗i = XiA1 and Z∗i = ZiA2, respectively. Namely,

yi = Xiβ + Zibi + εi

= XiA1A
−1
1 β + ZiA2A

−1
2 bi + εi (2.2.1)

= X∗i β
∗ + Z∗i b

∗
i + εi,

where β∗ = A−1
1 β, b∗i = A−1

2 bi, with both A1(p × p) and A2(q × q) assumed invertible.

Morrell et al. (1997) showed that the likelihood function in (2.1.2) is invariant under linear

transformations and that the REML function is only affected by a constant related to the

determinant of A1 if the scaling of fixed-effects exists (i.e., |A1|2 6= 1). Thus REML is

also invariant for a location shift linear transformation, i.e., matrix A1 being a unit upper

triangular matrix with all diagonal elements of one. Random-effects design matrix Zi is

7



usually a subset of its fixed-effects counterpart Xi since the mean of random-effects E(bi) is

assumed zero (Pinheiro and Bates, 2000). For convenience and simplicity, we assume here

the non-singular linear transformation matrices for Xi and Zi are the same in (2.2.1), i.e.,

A1 = A2 = A. Thus,

G∗ = Cov(b∗i ) = Cov(A−1bi) = A−1Cov(bi)(A
−1)T = A−1G(A−1)T . (2.2.2)

How to construct an optimal transformation matrix A in two and multiple random-

effects cases will be described in Section 3.2 and 5.3.

Morrell et al. (1997) also illustrated that a linear transformation should be applied on

a LMM which follows the hierarchical principle. The hierarchical principle requires that a

lower order term should be kept in the model no matter whether it is statistically significant,

as long as a higher order term which it is involved with appears in the model. Using a LMM

with random slope only (denoted as “RS” model) as an example, Morrell et al. (1997)

showed that the RS model could not be one-to-one linear transformation back into the

original space.

2.3 Model equivalency

We follows the definition of Kreft et al. (1995) in the multilevel modeling setting. If two

different models produce the same set of mean and variability profiles for the outcome vari-

able Yij, they are equivalent. For LMM, we only need to check the response mean E(Yij)

and response variance V ar(Yij), because two normal distributions are identical if and only if

they share the same mean vector and covariance matrix. Two equivalent models may have

a different set of parameters describing them. For equivalent models, some parameteriza-

tions can be more parsimonious than others . If the transformation between two different

parameterizations is one-to-one, then the models formulated by the two parameterizations

are equivalent. The numerical results of estimates can be used to verify the equivalency of

models. In general, fitting two equivalent models may not produce the same parameter es-

timates. But if the same maximum likelihood estimation procedure is used, one can expect

that the estimates should be the same for equivalent models due to the invariance property

of maximum likelihood estimation.
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Chapter 3

The Proposed Adaptive Fitting (AF)

Algorithm

3.1 Introduction

When random-effects are highly correlated, the iterative fitting process can be slow or non-

convergent. To improve the convergence condition due to estimated correlation between

random-effects on the boundary, we propose an adaptive fitting (AF) algorithm through

transforming a random-effect covariate using the optimal location shift.

In this chapter, we discuss the proposed AF algorithm for a LMM with two random-

effects (i.e., RIS model). The extension to a LMM with multiple random-effects scenarios

will be described in Chapter 5. Section 3.4.2 provides the rationale on why the traditional

grand mean centering technique cannot generally improve the numerical stability and may

even increase the correlation between random-effects. Section 3.4.3 addresses why current

available LMM fitting algorithms are not computationally optimal because the condition

number of random-effects covariance matrix is unnecessarily increased when the random-

effects correlation estimate is not zero.

For a RIS model with random intercept b0 and random slope b1, let Zi = (1, xi). Given

a non-singular linear transformation (A) of observed data Zi, we have Z∗i = ZiA. The

corresponding implicit change in random-effects is bi ⇒ b∗i = A−1bi.
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3.1.1 Notations for two random-effects cases

δ : a general location shift which may reduce or increase the original correlation.

d : the optimal location shift which drives the original correlation to zero.

Aδ : A = Aδ ,

(
1 δ

0 1

)
, where A is a general location shift transformation matrix

specified by a scalar location shift index of δ, corresponding to the transformation,

xij ⇒ x∗ij = xij + δ.

G(ρ) : G = G(ρ) = Cov(bi) ,

(
σ2
b0

ρσb0σb1

ρσb0σb1 σ2
b1

)
, |ρ| < 1, where G is the random-

effects covariance matrix in the original space, with the corresponding correlation

ρ between random intercept and random slope.

G∗δ(ρ
∗) : G∗ = G∗δ(ρ

∗) = Cov(b∗i ) = Cov(A−1
δ bi), where G∗ is the random-effects covariance

matrix in a transformed space (Zi ⇒ Z∗i = ZiAδ), with the corresponding new

correlation ρ∗. If δ = 0, then G∗ = G and ρ∗ = ρ.

3.2 Optimal linear transformation

Applying a general location shift transformation (equation 2.2.2) to a RIS model, we have,

Lemma 3.2.1. For a general initial covariance matrix G = Cov(bi) and a general trans-

formation matrix A = Aδ, the new covariance matrix in the transformed space is,

G∗ = Cov(b∗i ) = A−1G(A−1)T=

(
σ2
b0
− 2δρσb0σb1 + δ2σ2

b1
ρσb0σb1 − δσ2

b1

ρσb0σb1 − δσ2
b1

σ2
b1

)
.

We define the optimal shift d to be a location shift such that the resulting matrix G∗

above becomes diagonal in the transformed space. To diagonalize G∗, set ρσb0σb1−δσ2
b1

= 0,

and we get δ = ρσb0/σb1 . Thus, the optimal shift d is the ratio of the covariance between

random intercept and random slope divided by the variance of random slope, i.e.,

d , ρ
σb0
σb1

=
Cov(b0, b1)

V ar(b1)
. (3.2.1)
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The optimal covariance matrix G∗ can be obtained after replacing the general δ in

Lemma 3.2.1 with the optimal shift d. Thus,

Theorem 3.2.2. After a location shift by Aδ, the new covariance matrix in the transformed

space G∗ will become diagonal (denoted as G∗d or Ω), i.e.,

G∗ = Cov(b∗i ) = G∗δ(ρ
∗ = 0) =

(
σ2
b0

(1− ρ2) 0

0 σ2
b1

)
, Ω,

if and only if δ = d.

In other words, correlated random-effects will become uncorrelated after the optimal

linear transformation Zi = (1, xi) ⇒ Z∗i = ZiA = (1, xi + d · 1), where matrix A = Ad is

specified by the d in equation 3.2.1. For the longitudinal data settings, this is a location

shift transformation changing the origin of time variable.For example, a longitudinal study

with predictor time variable xij for i-th subject at j-th occasion, transforming of the slope

covariate xij ⇒ x∗ij = xij + d will lead to a zero correlation among random intercept and

slope.

3.3 AF algorithm

Inspired by the equation 3.2.1, we propose an adaptive fitting (AF) algorithm to reduce the

subsequent estimated correlation numerically closer to zero in the transformed estimation

space, by transforming the slope covariate using the optimal location shift d adaptively.

This process can be repeated and the convergence can be improved iteratively until the

current location shift d estimate is down to zero.

For a RIS model, the steps of an AF algorithm can be described as:

1. Fit the model using the untransformed initial covariate xij. Let iteration index k = 0,

and denote the initial xij = x0
ij and the initial location shift d0 = 0.

2. Obtain random-effects covariance matrix estimate Ĝ from current fitting outputs. For

non-convergent cases, results from the last iteration can be used. Denote the initial

Ĝ = Ĝ0.

11



3. Calculate current observed optimal location shift dk+1 from current covariance matrix

estimate Ĝk,

dk+1 =
̂Cov(b0, b1)

̂V ar(b1)
= ρ̂k

σ̂b0 ,k
σ̂b1 ,k

(3.3.1)

4. If dk+1 is not zero, go to the next step; otherwise stop and go to Step 7.

5. Adaptively fit the model using updated transformed covariate x∗ij = xk+1
ij ,

xk+1
ij = xkij + dk+1,

and obtain updated parameter estimates in the transformed space, such as Ĝ∗ and

denote as Ĝk+1.

6. Update k = k + 1 and go to Step 3.

7. Obtain the final estimates for (β, φ) in the original space by taking the one-to-one

inverse transformation. Based on the fitted Ĝ∗ at the last iteration, the corresponding

random-effects covariance matrix estimate G̃ in the original space can be obtained by

G̃ = AĜ∗AT , (3.3.2)

where A is specified by the sum of cumulative shifts (
∑k+1

i=0 di) relative to the original

space.

In Step 4 above, whether another AF step is needed depends on whether the current

observed location shift dk+1 is close enough to zero. Empirically, the stopping rule with a

magnitude at 0.001 provides reasonable good results. Step 7 may not be needed for those

parameters or measures which are invariant with a location shift, e.g., the determinant of a

estimated random-effects covariance matrix.

3.4 AF algorithm properties

We first illustrate the general impact of a location shift δ on the random-effects covariance

matrix in the transformed space in Section 3.4.1, and then establish several Theorems for

the optimal shift d in Section 3.4.2 and 3.4.3. Theorem 3.4.2 addresses the question on what

kind of location shift transformation will be able to reduce the correlation level and why
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traditional centering approach can actually increase the correlation level. Theorems 3.4.3,

3.4.7 and 3.4.9 show whether and how the condition number of random-effects covariance

matrix is reduced in the optimal transformed space.

Recall that in the original estimation space with observed data (Y,X), we have co-

variance matrix G and random-effects bi = (b0, b1)T . After a non-singular transformation

of the original data X by A, the model is refitted in the transformed space using pseudo-

new observed data (Y,X∗ = XA), with new matrix G∗ and transformed random-effects

b∗i = A−1bi.

3.4.1 Impact of a general location shift

Lemma 3.4.1. Assume a diagonal initial covariance matrix, G = Cov(bi) = G(ρ0 =

0) =

(
σ2
b0

0

0 σ2
b1

)
and a general A = Aδ. Then G∗ = Cov(b∗i ) = A−1G(A−1)T =(

σ2
b0

+ δ2σ2
b1
−δσ2

b1

−δσ2
b1

σ2
b1

)
, and

1. ∀ δ 6= 0 ⇒ ρ∗ = Cor(b∗0, b
∗
1) 6= 0;

2. |ρ∗| → 1, as |δ| → ∞; |ρ∗| is a monotonically increasing function of |δ|.

Proof. The first result is obvious. We just need to prove the second result in the Lemma

above. By definition, ρ∗ = − δσb1√
σ2

b0
+δ2σ2

b1

= − δ√
σ2+δ2

= − δ
h

= f(δ, h), where σ =
σb0

σb1
and

h =
√
σ2 + δ2.

Taking first order partial derivative, we have
∂f
∂δ

= −h−δh′
h2 = δ2/h−h

h2 = δ2−h2

h3 = −σ2

h3 < 0.

Thus, |ρ∗| = |δ|√
σ2+δ2

monotonically goes to unity, as |δ| → ∞ for a fixed ratio σb0/σb1 .

Lemma 3.4.1 can be illustrated by plotting the new correlation between random-effects

in a transformed space as a function of location shift across various variance component

ratios of the initial diagonal matrix G (Fig. 3.1). After a location shift perturbation, the new
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Figure 3.1: Random-effects correlation in the transformed space as a function of location
shift (δ) from a setting with an initial correlation (ρ0) of zero, for different variance compo-
nent ratios

correlation will move away from the initial zero correlation. The correlation can approach

the boundaries (±1.0) after a large enough location shift for different variance component

combinations. This trend can also be illustrated by taking absolute values of correlations

(Fig. 3.2).

Lemma 3.4.1 also shows that the new random intercept variance in the transformed

space also strictly increases with the increase in the location shift level, if the initial G =

G(ρ0 = 0). It is possible that for a large amount of δ, not only the new correlation is

going to unity, but also the new intercept variance σ2
b∗0

= σ2
b0

+ δ2σ2
b1

is larger than the

range of yij. This can cause numerical instability. If the origin of xij is too far away from

the zero-correlation position(i.e., |δ| � 0), then the numerical stability to estimate such

a random-effects covariance matrix may be poor, as indicated by both the random-effects

correlation and the magnitude of variance of random intercept. A good location shift should

change the origin of xij such that it reduces the correlation between random-effects.
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Figure 3.2: Absolute correlation level approaches limits for relatively large shifts

3.4.2 Correlation reduction

We define a neighborhood of an optimal shift d to be δτ , a set of location shifts around the

optimal shift, i.e.,

δτ ∈ {0 ≤ |δ − d| < |d|;∀ d 6= 0}. (3.4.1)

Theorem 3.4.2. There exists a neighborhood of the optimal shift such that a location shift

within this neighborhood will reduce the initial correlation level in the transformed space,

i.e., given the initial ρ 6= 0,

δ ∈ δτ ⇐⇒ |ρ∗| < |ρ|.

Specifically,

1. if the initial ρ = ρ0 > 0 (thus d > 0), then

δτ ∈ {0 < δ < 2d} ⇐⇒ |ρ∗| < |ρ0|;

2. if the initial ρ = ρ0 < 0 (thus d < 0), then

δτ ∈ {2d < δ < 0} ⇐⇒ |ρ∗| < |ρ0|;

3. beyond the optimal shift neighborhood, new correlation becomes larger in absolute value

than the initial value,

|δ − d| > |d| ⇐⇒ |ρ∗| > |ρ0|.
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Proof. By Lemma 3.2.1, in general, G∗ =

(
σ2
b0
− 2δρσb0σb1 + δ2σ2

b1
ρσb0σb1 − δσ2

b1

ρσb0σb1 − δσ2
b1

σ2
b1

)
.

First, it is straightforward to show that doubling the optimal shift will change the sign

of correlation, by replacing general δ in above G∗ with the value of d = ρσb0/σb1 . That is,

δ = 2d ⇐⇒ G∗ = G∗2d = A−1
2dG(A−1

2d )T =

(
σ2
b0

−ρσb0σb1
−ρσb0σb1 σ2

b1

)
(3.4.2)

By reparameterizing, A = Aδ =

(
1 δ

0 1

)
=

(
1 d

0 1

)(
1 δ − d
0 1

)
= AdAδ−d.

Obviously both Ad and Aδ−d are invertible location shift transformation matrices.

G∗ = Cov(b∗i )

= A−1G(A−1)T

= (AdAδ−d)
−1G(A−1

δ−dA
−1
d )T

= A−1
δ−dA

−1
d G(A−1

d )T (A−1
δ−d)

T

= A−1
δ−d[A

−1
d G(A−1

d )T ](A−1
δ−d)

T

= A−1
δ−d[Ω](A−1

δ−d)
T (by Theorem 3.2.2)

=⇒ Applying Lemma 3.4.1 to G∗ relative to the diagonal matrix Ω,we have,

(i) |ρ∗| monotonically increases with |δ − d|;

(ii) G∗ with ρ∗ = 0, as long as no shift from Ω, e.g., |δ − d| = 0 and δ = d;

(iii) G∗ with |ρ∗| = |ρ0| 6= 0, as long as current shift, |δ − d| = |d| = |ρ0σb0/σb1 |,

thus, δ = 0 or 2d.

=⇒ Theorem 3.4.2 is proved after combining (i), (ii) and (iii).

Fig. 3.3 illustrates the existence of a neighborhood of the optimal shift in the case of

the initial correlation ρ0 > 0. Shifting to the right of ρ0 but still within the neighborhood

of the optimal shift will ensure the reduction of correlation level in the transformed space.

For the the case with a negative initial correlation, by Lemma 3.4.1, the shifting direction

will be to the left of ρ0 (Fig. 3.4).
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correlation, showing reduction within the neighborhood of the optimal shift (d) (move to
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Note that the traditional centering will not work if the origin after centering transfor-

mation does not fall in the neighborhood of the optimal shift. For example, if the initial

ρ0 > 0, then d > 0. Centering which shifts the origin in the opposite direction will always

increase ρ∗ in the transformed space.

3.4.3 Condition number improvement

A common measure of numerical stability and singularity of a matrix is the condition number

(CN) (Belsley and Oldford, 1986; Sengupta and Bhimasankaram, 1997; Trefethen and Bau,

1997). The CN of a matrix M is defined as the square root of the ratio of the maximal

eigenvalue to the minimal eigenvalue of MMT ,

CN(M) =

√
λmax(MMT )

λmin(MMT )
. (3.4.3)

Larger condition number corresponds to less numerical stability. If the condition num-

ber is one CN(M) = 1, M is said to be perfectly conditioned. If a matrix M is near-singular,

CN(M) can be very large and M is ill-conditioned. When the condition number is huge and

the inverse of the condition number of a matrix becomes comparable to computer round-off

error, one can expect the computing quality will be poor for a nontrivial matrix operation

on this matrix, such as inverse operation. The rates of convergence of many iterative algo-

rithms are strongly influenced by the size of condition number (Yuan and Chan, 2008). For

example, the condition number of the correlation matrix of the discrete Fourier transform

vector has been directly linked to the rate of converge of algorithm (Chen et al., 2006).

3.4.3.1 Smaller condition number and larger minimal eigenvalue after AF

For a general G matrix, we can show that the condition number will become smaller after

AF as long as the original population correlation is not zero. But first, this trend of CN

reduction can be illustrated in Fig. 3.5 for various G matrices covering 5 levels of correlations

and 5 levels of variance component ratios. Fig. 3.5 shows the scatter plots of the theoretical

condition numbers in the optimal transformed space against those in the original space,

stratified by various variance component ratio settings. A dashed concordance line with

an intercept of zero and a slope of one is also provided to help visual comparison for each
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scatter plot. More deviation below the dashed line indicates a larger reduction of condition

number after AF.
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Figure 3.5: Scatter plots of theoretical condition number of random-effects covariance ma-
trix (G) in the transformed space against that in the original space, stratified by variance
component ratio, for different correlation levels

Theorem 3.4.3. Let G =

(
σ2
b0

ρσb0σb1

ρσb0σb1 σ2
b1

)
, where 0 < |ρ| < 1, with eigenvalues

λ(G): λ1 > λ2 > 0. Let G∗ = G∗d = Ω =

(
σ2
b0

(1− ρ2) 0

0 σ2
b1

)
, with eigenvalues λ(G∗):

λ∗1 ≥ λ∗2 > 0. Compared to the initial G, G∗ in the transformed space has
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(i) more clustered eigenvalues, λ2 < λ∗2 ≤ λ∗1 < λ1;

(ii) smaller condition number, CN(G∗) < CN(G).

Obviously, by Theorem 3.2.2, the matrix G∗ = Ω is obtained in the optimal transformed

space, after applying the optimal location shift A = Ad on the original matrix G. The

proof for the first result (i) in Theorem 3.4.3 will be provided after the following Lemma

3.4.4 - 3.4.6. The result (ii) can also be derived from (i), since CN(G∗) = λ∗1/λ
∗
2 and

CN(G) = λ1/λ2.

Lemma 3.4.4. For a square symmetric matrix Mn×n, relative to a scalar α 6= 0, the

condition number of M is invariant, i.e., CN(αM) = CN(M); eigenvalues of M are not

invariant and λ(αM) = αλ(M).

Proof. MT = M ⇒ eigenvalue λ(MT ) = λ(M) ⇒ λ(MMT ) = [λ(M)]2. By the definition

of CN in (3.4.3), for a square symmetric matrix M ,

CN(M) =

√
λmax(MMT )

λmin(MMT )
=
|λmax(M)|
|λmin(M)|

.

Then,

λ = eigen(M)⇐⇒ det(M − λIn) = 0

⇐⇒ αndet(M − λIn) = 0,∀ α 6= 0

⇐⇒ det(αM − αλIn) = 0

⇐⇒ eigen(αM) = αλ

Also,

CN(αM) =
|λmax(αM)|
|λmin(αM)|

=
|αλmax(M)|
|αλmin(M)|

= CN(M).

Lemma 3.4.5. For a positive definite matrix G =

(
σ2 ρσ

ρσ 1

)
, where σ > 0 and 0 < |ρ| <

1, denote diagonal elements G11 = σ2, G22 = 1, and eigenvalues λ(G), λ1 > λ2 > 0. Then

the two eigenvalues are less clustered than the two diagonal elements, i.e.,

λ1 > G22 > λ2 > 0, and λ1 > G11 > λ2 > 0, for ∀ σ > 0, ∀ 0 < |ρ| < 1.
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Proof. The characteristic equation is det(G− λI2) = 0, then

λ2 − (σ2 + 1)λ+ σ2(1− ρ2) = 0,

then,

4 = (σ2 + 1)2 − 4σ2(1− ρ2) = (σ2 − 1)2 + 4ρ2σ2 ≥ 0. (3.4.4)

Thus,

λ1 =
σ2 + 1 +

√
4

2
, λ2 =

σ2 + 1−
√
4

2
. (3.4.5)

Note that

λ1 = λ2 ⇔4 = 0⇔ σ = 1 and ρ = 0⇔ G = I2 ⇔ λ1 = λ2 = 1 = G22.

It means that non-zero correlation will result in unequal eigenvalues and that neither

of the two eigenvalues will be equal to a diagonal element G22,

ρ 6= 0⇔ G22 6= λ1 6= λ2 6= G22.

Thus, Lemma 3.4.5 is obviously true if σ = 1.

If σ > 1, then λ1 > 1 = G22, by (3.4.5). If σ < 1,

λ1 =
σ2 + 1 +

√
4

2
> G22 = 1; ∀ 0 < σ < 1

⇐⇒
√
4 > 1− σ2

⇐⇒
√
4 > 1− σ2 ≥ 0

⇐⇒4 > (1− σ2)2

⇐⇒ (σ2 − 1)2 + 4ρ2σ2 > (1− σ2)2

⇐⇒ 4ρ2σ2 > 0; ∀ ρ 6= 0, ∀ σ 6= 0.
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If σ < 1, then λ2 < 1 = G22, by (3.4.5). If σ > 1,

λ2 =
σ2 + 1−

√
4

2
< G22 = 1; ∀ σ > 1

⇐⇒
√
4 > σ2 − 1

⇐⇒
√
4 > σ2 − 1 ≥ 0

⇐⇒4 > (σ2 − 1)2

⇐⇒ (σ2 − 1)2 + 4ρ2σ2 > (σ2 − 1)2

⇐⇒ 4ρ2σ2 > 0; ∀ ρ 6= 0, ∀ σ 6= 0.

Similarly, we can prove λ1 > G11 > λ2.

Based on above Lemma 3.4.4 and Lemma 3.4.5, we have

Lemma 3.4.6. For a positive definite matrix G =

(
σ2
b0

ρσb0σb1

ρσb0σb1 σ2
b1

)
, where σb0 > 0,

σb1 > 0 and 0 < |ρ| < 1, denote two eigenvalues λ(G), λ1 ≥ λ2 > 0. Then the two

eigenvalues are more separated than the two diagonal elements, i.e., for ∀ 0 < |ρ| < 1,

λ1 > σ2
b1
> λ2 > 0, and λ1 > σ2

b0
> λ2 > 0

⇐⇒ λ1 > max(σ2
b0
, σ2

b1
) & λ2 < min(σ2

b0
, σ2

b1
).

Proof. (of Theorem 3.4.3 (i))

Recall λ∗1 = max(σ2
b0

(1− ρ2), σ2
b1

) and λ∗2 = min(σ2
b0

(1− ρ2), σ2
b1

) for diagonal G∗.

If σ2
b1
≤ σ2

b0
(1− ρ2), then

σ2
b1
≤ σ2

b0
(1− ρ2); 0 < |ρ| < 1

⇐⇒ λ∗2 = σ2
b1
≤ σ2

b0
(1− ρ2) = λ∗1

⇐⇒ σ2
b1

= λ∗2 ≤ λ∗1 = σ2
b0

(1− ρ2) < σ2
b0

=⇒ λ2 < σ2
b1

= λ∗2 ≤ λ∗1 < σ2
b0
< λ1 (by Lemma 3.4.6)

⇐⇒ λ2 < λ∗2 ≤ λ∗1 < λ1.
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If σ2
b1
> σ2

b0
(1− ρ2), then

σ2
b0

(1− ρ2) < σ2
b1

; 0 < λ∗2 < λ∗1

⇐⇒ λ∗2 = σ2
b0

(1− ρ2) < σ2
b1

= λ∗1

⇐⇒ λ∗2 < λ∗1 = σ2
b1

=⇒ λ∗2 < λ∗1 = σ2
b1
< λ1 (by Lemma 3.4.6)

⇐⇒ λ∗2 < λ∗1 < λ1 (i)

=⇒ λ∗1 < λ1

⇐⇒ λ∗1λ2 < λ1λ2

⇐⇒ λ∗1λ2 < λ1λ2 = λ∗1λ
∗
2, (det(G) = det(G∗))

⇐⇒ λ2 < λ∗2 (ii)

=⇒ λ2 < λ∗2 < λ∗1 < λ1 (i & ii).

3.4.3.2 Two properties of CN reduction after AF

To measure the extent of CN reduction, we define the condition number ratio as

CNR = CNR[G] ,
CN(G)

CN(G∗)
. (3.4.6)

If the CN is reduced in the transformed space, the CNR will be greater than one.

The CN reduction after AF are further illustrated by Fig. 3.6 and Fig. 3.7. Note that the

scales of the vertical axes are different across panels for Fig. 3.6 and Fig. 3.7. Both figures

shows that all CNRs are greater than one (above the dashed line) if the random-effects

correlation in the original space is not zero. Given the relative size of two random-effect

variances, Fig. 3.6 demonstrates that a higher CNR can be achieved for a higher level of

correlation. The magnitude of CNR tends to increase as the variance component ratio

increases, especially when the variance component ratio is larger than one, namely, the

random slope has smaller variance relative to random intercept. This observation will be

formally supported by the following Theorem 3.4.7. On the other hand, given the level of

correlation, Fig. 3.7 shows that the magnitude of CNR still generally increases across panels

as the level of correlation increases, while there may not be a monotonic relationship between
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the CNR and the variance component ratio when the ratio is larger than one. However,

the CNR at a variance component ratio larger than one seems generally larger than that

obtained at the inverse counterpart of the ratio (e.g., σb0/σb1 = 2 vs. σb0/σb1 = 0.5). This

conjecture will be confirmed by Theorem 3.4.9.
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Figure 3.6: Scatter plots of theoretical condition number ratio after AF against different
correlation levels, stratified by variance component ratio

• Property one

Theorem 3.4.7. Larger CN reduction will be obtained for a setting with higher initial
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correlation, given the same initial variance component ratio, i.e., if |ρ1| > |ρ2|, then

CNR

[(
σ2
b0

ρ1σb0σb1

ρ1σb0σb1 σ2
b1

)]
> CNR

[(
σ2
b0

ρ2σb0σb1

ρ2σb0σb1 σ2
b1

)]
.

Theorem 3.4.7 will be proved after the following Lemma 3.4.8.

Lemma 3.4.8. For a positive definite matrix G =

(
σ2 ρσ

ρσ 1

)
, the condition number ratio

CNR[G] is either the square of the largest eigenvalue of G, or the inverse of the square of

the smallest eigenvalue of G, i.e.,

CNR[G] ,
CN(G)

CN(G∗)
=

[λmax(G)]2, if σ2 ≤ 1
1−ρ2

1
[λmin(G)]2

, if σ2 > 1
1−ρ2

Proof. Denote the eigenvalues of the matrix G to be λ(G): λ1 > λ2 > 0, and the eigenvalues

of the corresponding matrix G∗ =

(
σ2(1− ρ2) 0

0 1

)
in the optimal transformed space to

be λ(G∗): λ∗1 ≥ λ∗2 > 0. By definition,

λ∗1 = 1, if σ2 ≤ 1
1−ρ2

λ∗2 = 1, if σ2 > 1
1−ρ2

(3.4.7)

By definition, det(G∗) = det(G), i.e., λ1λ2 = λ∗1λ
∗
2.

Therefore,

CNR[G] ,
CN(G)

CN(G∗)
=
λ1/λ2

λ∗1/λ
∗
2

= (
λ1

λ∗1
)2 = (

λ∗2
λ2

)2 (3.4.8)

Thus, Lemma 3.4.8 is proved after combining equation 3.4.8 with 3.4.7. Combining Lemma

3.4.8 with Lemma 3.4.4 and Lemma 3.4.5, we also have CNR[G] > 1 for a general covariance

matrix G.

Proof. (of Theorem 3.4.7)
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Given matrix G =

(
σ2 ρσ

ρσ 1

)
with eigenvalues: λ1 > λ2 > 0, by Lemma 3.4.5, we

have

λ1 =
σ2 + 1 +

√
4

2
, λ2 =

σ2 + 1−
√
4

2
, where 4 = (σ2 − 1)2 + 4ρ2σ2 ≥ 0.

For a fixed σ, if |ρ| increases, then 4 strictly increases, and therefore λ1 strictly increases

while λ2 strictly decreases. By Lemma 3.4.8, CNR[G] will increase with the change in either

λ1 or λ2. Thus, given |ρ1| > |ρ2|, we have

CNR

[(
σ2 ρ1σ

ρ1σ 1

)]
> CNR

[(
σ2 ρ2σ

ρ2σ 1

)]
.

Together with Lemma 3.4.4, Theorem 3.4.7 is thus proved.

• Property two

Theorem 3.4.9. Let two settings have the same initial correlation but reversed variance

component ratios. The setting with larger variance component ratio will have larger CN

reduction after an optimal transformation, i.e., given ρ 6= 0 and σ = σb0/σb1 > 1, we have

CNR

[(
σ2 ρσ

ρσ 1

)]
> CNR

[(
1 ρσ

ρσ σ2

)]
.

Proof. Denote covariance matrix Gσ =

(
σ2 ρσ

ρσ 1

)
with eigenvalues: λ1 > λ2 > 0. Denote

covariance matrix G1/σ =

(
1 ρσ

ρσ σ2

)
. Then CN(G1/σ) = CN(Gσ) = λ1/λ2 by Lemma

3.4.5. We also have the corresponding new matrix G∗1/σ =

(
1− ρ2 0

0 σ2

)
in the optimal

transformed space. Obviously, CN(G∗1/σ) = σ2/(1− ρ2), given σ > 1. Thus

CNR[G1/σ] ,
CN(G1/σ)

CN(G∗1/σ)
=
λ1/λ2

λ∗1/λ
∗
2

=
λ1/λ2

σ2/(1− ρ2)
(3.4.9)

By Lemma 3.4.8,
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CNR[Gσ] =

[λ1]2, if σ2 ≤ 1
1−ρ2

1
[λ2]2

, if σ2 > 1
1−ρ2

(3.4.10)

Taking the ratio and noting that λ1λ2 = σ2(1− ρ2), we have

CNR[Gσ]

CNR[G1/σ]
=

λ1λ2 × σ2

1−ρ2 = σ4 > 1, if σ2 ≤ 1
1−ρ2

1
λ1λ2
× σ2

1−ρ2 = 1
(1−ρ2)2

> 1, if σ2 > 1
1−ρ2

(3.4.11)

Thus CNR[Gσ] > CNR[G1/σ] is always true, regardless of the relative size of σ2 and

1
1−ρ2 . By (3.4.11), we have

CNR[Gσ]

CNR[G1/σ]
= min(σ4,

1

(1− ρ2)2
), given σ > 1.

Thus, a large reduction of CN can be expected under challenging data fitting situations,

e.g., with extreme correlation and/or large variance component ratio. Such challenging

scenarios also produce a wide neighborhood of the optimal shift, where the proposed AF

algorithm is expected to perform well.
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Chapter 4

Simulation Study

This chapter examines the performance of the proposed AF algorithm for RIS models in

405 simulation settings.

4.1 Convergence performance measures

We used non-convergence rate to measure the numerical convergence performance of the

AF algorithm. The non-convergence rate was defined as the observed proportion of non-

convergent runs, i.e., the number of failed runs divided by the total number runs for a sim-

ulation setting. Although a statistical software package may not signal any error messages

related to the convergence status, a nominally convergent run may produce a non-positive

definite covariance matrix estimate. The non-PD here was defined for random-effects co-

variance matrix rather than for the covariance matrix of outcome variable (Browne and

Draper, 2000; Pryseley et al., 2011). As long as the estimated covariance matrix G had a

negative eigenvalue, it was a non-PD run. Due to the skewed distribution of observed CNs,

we used the geometric mean instead of arithmetic mean to measure the condition number

estimate for a simulation setting.
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4.2 Softwares

The simulated data sets were fitted by routine lme(nlme) (Pinheiro et al., 2009) in the

R environment using REML estimation method. By package default, the fitting function

first ran 25 steps of EM iterations to provide initial values before entering Newton-Raphson

iterations. The intermediate fitting results were always available at any iteration step by

setting option returnObject = TRUE in the lmeControl list of the lme routine, no matter

whether the convergence was obtained or not. To simplify the convergence diagnosis, two

default options in lmeControl list, the maximum number of Newton-Raphson iterations

(msMaxIter, default 50) and the maximum number of evaluations of the objective function

permitted for nlminb (msMaxEval, default 200), were also both increased to 500. As a

result, the relevant warning messages for these two options did not occur in our simulations.

The same lme routine was used both before and after AF.

All simulations and analyses were conducted on a 2.13 GHz Intel Core (TM) 2 CPU

6400 processor on the Windows XP Professional (version 2002) platform.

4.3 Simulation settings

We fitted a RIS model to series of balanced datasets generated from the following LMM.

yij = β0 + xijβ1 + b0i + xijb1i + εij, i = 1, · · · ,m; j = 1, · · · , n, (4.3.1)

where yij being scalar, the jth observations within ith group; fixed-effects β0 = −1 and

β1 = 1; both predictor variable xij and residual εij were sampled from standard normal

distribution, N(0, 1).

Sample sizes (N = m × n) varied from 125 to 2000, with number of groups m ∈ (25,

50, 100) and group size n ∈ (5, 10, 20), a balanced design. Each random effect had three

levels, σb0 (intercept) or σb1 (slope) ∈ (1, 1/2, 1/4). The correlation between random-effects

covered five levels, ρ ∈ (0.99, 0.95, 0.80, 0.30, 0.00), indicating extremely high, very high,

high, moderate and zero correlation, respectively. Thus, there were a total of 405 scenarios

(9 sample size settings × 9 variance combinations × 5 correlation settings).

The number of replication runs per simulation design scenario was set at 1000. For
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Table 4.1: Summary of convergence improvements after adaptive fitting (AF)

Estimation Space # of AF # (%) of scenarios** Total # of non-convergence rate per scenario

with failed runs failed runs*** mean (range)

Untransformed 0 324 (80.0%) 69,787 17.23% (0.0%, 60.3%)

Transformed 1 52 (12.8%) 165 0.041% (0.0%, 1.3%)

Transformed 2 2 (0.5%) 2 0.00049% (0.0%, 0.1%)

* Total 405 scenarios were simulated and each scenario with 1000 replication runs

** Scenarios with at least one non-converged run

*** Out of all 405 X 1000 runs

each simulated dataset, the RIS model was fitted both in the original space without AF and

in the transformed space with AF.

4.4 Simulation results

4.4.1 Non-convergence rate

The AF procedure was found to improve the non-convergence rate significantly (Table 4.1).

Across 405 scenarios, the average non-convergence rate was as high as 17.23% before AF,

but was reduced to close to zero level (0.00049%) in the transformed space after AF. Cor-

respondingly, the percentage of scenarios with non-convergence issues was 80.0% and 0.5%,

before and after AF, respectively. The number of non-convergent runs out of 405,000 sim-

ulated runs dropped from 69,787 to 165 and 2, before AF, after single and two AF steps,

respectively. The following discussions about the performance of AF algorithm are all based

on the fitting results after two AF steps.

Before AF, the average non-convergence rate increased from 3.88%, 4.62%, 13.47%,

27.14% to 37.05% as the population correlation level increased from ρ = 0.00, 0.30, 0.80,

0.95 to 0.99, respectively. However, the population correlation level had little impact on the

efficiency of AF or the number of AF steps needed. After the first AF step, there were 165

non-convergent runs, evenly distributed in 52 scenarios, with 12, 12, 11, 10, and 7 scenarios

where population ρ = 0.00, 0.30, 0.80, 0.95 and 0.99, respectively. After the second AF

step, there were two failed runs, one from zero and the other from moderate correlation

(0.30) scenarios. Therefore, the strong impact of high correlation on non-convergence in the

original space before AF disappeared in the optimal transformed space. The AF algorithm
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was generally applicable and especially effective when the correlation was extremely high.

Small random slope variance (σ2
b1

) also had a significant impact on the non-convergence

rate before AF (Fig. 4.1 and 4.2). When the random slope variance was reduced (Fig. 4.2,

from left panels to right panels), the non-convergence rate increased across all three levels

of random intercept variance (σ2
b0

). Controlling random slope at the same level (e.g., σb1 =

0.25), however, when the random intercept variance became larger (Fig. 4.2, from top to

bottom), the non-convergence rate was reduced slightly. Fig. 4.2 also confirms that small

random slope variance had a larger impact on the non-convergence rate than small random

intercept variance across various sample size settings. On the other hand, the two factors of

sample size, the number of groups (m) and group size (n), seemed to have comparable impact

on the non-convergence rate. Fig. 4.3 shows the non-convergence rates for all simulated

scenarios.

The non-convergence issue could become more severe as the variances combination

decreased, namely, relative noise increased. For the 45 scenarios with the highest level of

variance component considered (σb0 = σb1 = 1), only 25 scenarios had all 1000 converged

runs, with a mean (range) non-convergence rate of 5.06% (0.0%, 35.9%) across the 45

scenarios. On the other hand, for the 45 scenarios with the smallest level of variance

component examined (σb0 = σb1 = 0.25), only 2 scenarios had a zero non-convergence rate,

with a mean (range) non-convergence rate of 32.56% (0.0%, 60.3%) across the 45 scenarios.

It is not surprising that the non-convergence rate could be improved by increasing

sample size. For the 45 scenarios with the smallest number of observations (m×n = 25×5 =

125), none of the scenarios had a zero non-convergence rate before AF, with a mean (range)

non-convergence rate of 30.06% (1.0%, 57.7%) across the 45 scenarios. On the other hand,

for the 45 scenarios with the maximum number of observations (100× 20 = 2000), only 22

scenarios had a zero non-convergence rate before AF, with a mean (range) non-convergence

rate of 0.81% (0.0%, 44.9%) across the 45 scenarios.

4.4.2 Non-positive definite

Besides the non-convergence rate, the utility of AF could also be illustrated by the im-

provement in the fraction of positive definite estimates of random-effects covariance matrix

(Table 4.2). Across all 405 scenarios, there was only one run with the non-PD issue after

32



Population correlation ( ρ )

N
on

−
co

nv
er

ge
nc

e 
ra

te
 b

ef
or

e 
A

F 0%

20%

40%

60%

0%

20%

40%

60%

0%

20%

40%

60%

σb1 = 1

● ●

●

●

●

● ● ●

●

●

● ● ●
●

●

0 0.3 0.8 0.95 0.99

σb1 = 0.5

● ●

●

●

●

● ●
●

●

●

● ● ●

●

●

0 0.3 0.8 0.95 0.99

σb1 = 0.25

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

0 0.3 0.8 0.95 0.99

σ
b0 =

0.25
σ

b0 =
0.5

σ
b0 =

1

m x n=500
m: # of group
n: group size

● m=25 n=20

m=50 n=10

m=100 n=5

m=25 n=20

m=50 n=10

m=100 n=5

Figure 4.1: The non-convergence rate before adaptive fitting (AF) as a function of popula-
tion correlation level, with each of the nine panels corresponding to one of the nine variance
component combinations, controlling the total number of observations for three sample size
combinations to 500
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Figure 4.2: The non-convergence rate before adaptive fitting (AF) as a function of popula-
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size combinations, and with each of the nine curves of a panel corresponding to one of the
nine variance component combinations
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AF. However, before AF, there were 48,278 (11.92%) runs with non-PD issues, which were

distributed in 321 of the 405 scenarios. Importantly, the 11.92% non-PD runs was com-

posed of 8.56% non-convergent and 3.36% “nominally convergent” runs. In other words,

there were on average more than 33 “implicit” non-PD runs per scenario, which were con-

sidered as convergent runs without signaling any error message by the software package.

Thus, although the average nominally convergent rate was 82.77% before AF (see Section

4.4.1), there was only 79.41% runs which were not only nominally convergent, but also had

PD covariance matrix estimates across all 405 scenarios. If stratified by the convergence

status, the conditional non-PD rate per run was much higher within failed runs than that

within converged runs (49.67% vs. 4.06%). Fig. 4.4 plots the conditional non-PD rate given

a nominally convergent run as a function of population correlation level. It seemed that a

large sample size (e.g., 2000 = 100×20) might not alleviate the non-PD issue, especially for

the settings with small variance component for random intercept relative to random slope

(e.g., σb0 = 0.25, σb1 = 1). Therefore, non-PD issue might still be a numerical issue even for

a nominally convergent run before AF but not in the optimal transformed space.

4.4.3 Change in correlation

The above overall improvement in the non-convergence rate and positive definite property

could be further understood by observing the change in estimated random-effects correlation

before and after AF (Table 4.2). On average, the near-zero correlation (|ρ̂| < 0.10) rate

improved from 9.59% before AF to 85.56% after AF. More importantly, extreme correlation

(|ρ̂| ≥ 0.99) almost disappeared in the optimal transformed space. The average extreme

correlation rate dropped from 26.4% before AF down to 0.0042% after AF. Our simulations

show that the correlation estimate had a 99.3% empirical rate to become smaller after AF.

The near-zero correlation after AF could also be illustrated by plotting the observed

correlation estimate ρ̂∗ in the transformed space against the nominal non-convergence rate

before AF, and against the original population correlation setting (Fig. 4.5 and 4.6, respec-

tively). The ρ̂∗ scattered around zero and had a tight range of (-0.104, 0.166) across all

simulated 405 scenarios. The magnitude of ρ̂∗ might slightly increase with the increase in

the non-convergence rate or the increase in the original population correlation level. The

value of ρ̂∗ might have larger variability for higher correlation settings, but overall the AF

procedure performed very well even for extremely high correlation. For those 81 scenarios

36



Table 4.2: Properties of estimated random-effects covariance matrix in the original and
optimal transformed spaces

Non-positive definite (PD)

# of scenarios involved*** 321 1

Total # runs involved**** 48,278 1

Rate per scenario 

    range (0.0%, 34.8%) (0.0%, 0.1%)

    mean 11.92% 0.00025%

# of scenarios involved*** 303 0

Total # runs involved**** 13,614 0

Rate per scenario

    range (0.0%, 19.8%) 0.0%

    mean 3.36% 0.00%

# of scenarios involved*** 334 13

Total # runs involved**** 106,520 17

Rate per scenario

    range (0.0%, 66.4%) (0.0%, 0.2%)

    mean 26.36% 0.0042%

# of scenarios involved*** 240 405

Total # runs involved**** 38,840 346,522

Rate per scenario

    range (0.0%, 64.2%) (45.0%, 100.0%)

    mean 9.59% 85.56%

IV. Observed |rho|<0.10

* Observed values at last iteration

Estimation space
Properties

Original Optimal transformed

** A non-PD run can be either a non-converged run or a "nominally converged" run

Random-effects correlation

**** Out of all 405 X 1000 runs

*** Scenarios with at least one run assoicated with that specified event

I. Overall non-PD**

II. "Nominally converged" but non-PD

III. Observed |rho|>=0.99
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Figure 4.4: The conditional non-PD rate before adaptive fitting (AF) as a function of
population correlation level, with each of the nine panels corresponding to one of the nine
sample size combinations, and with each of the nine curves of a panel corresponding to one
of the nine variance component combinations
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Figure 4.5: The scatter plot of correlation estimate in the transformed space after adaptive
fitting (AF) against the non-convergence rate before AF across all simulation scenarios for
various population correlations

39



Population correlation ( ρ )

ρ*  : 
E

st
im

at
ed

 c
or

re
la

tio
n 

af
te

r 
A

F

−0.10

−0.05

0.00

0.05

0.10

0.15

●●
●
●

●

●
●
●

●

●

●

●
●

●

●

●●
●
●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.3 0.8 0.95 0.99

Figure 4.6: The box-plot of correlation estimate in the transformed space after adaptive
fitting (AF) against population correlation level across all simulation scenarios
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with zero non-convergence rate (Fig. 4.5), the observed random-effects correlation in the

optimal transformed space were very close to zero, with a range of (-0.00021, 0.00041).

Therefore, to improve the non-convergence rate, the estimated correlation after AF

is not required to be exactly zero, which is the ideal theoretical value after the proposed

optimal transformation. The crucial factor is to move the estimated correlation away from

the extreme boundary region.

4.4.4 Change in condition number

The theoretical and observed condition numbers in the transformed space against those in

the original space were shown by scatter plots (Fig. 4.7 and 4.8, respectively), both stratified

by various population correlation settings. To help visual comparison, we provide a dashed

concordance line with an intercept of zero and a slope of one to each scatter plot. More

deviation below the dashed line indicates a larger reduction of condition number after AF.

Fig. 4.7 analytically predicts that the condition number would become smaller after AF

as long as the original population correlation was not zero, namely, 80.0% of 405 scenarios

were expected to have smaller condition numbers after AF. The theoretical condition number

ratio (CNR = CN(G)
CN(G∗)

) has a geometric mean (range) of 2.829 (1.000, 288.400) for all

405 scenarios. Larger reduction of condition number should occur for settings with higher

correlation and smaller random slope variance relative to random intercept. For example,

at ρ = 0.95, or 0.99, and σ = σb0

σb1
= 2, or 4, the corresponding theoretical CNR values are

all greater than 20 and are well bellow the concordance line on Fig. 4.7. This advantage of

large condition number reduction also helped explain why the AF algorithm could perform

very well under challenging settings with high correlation and small random slope variance,

where both factors tended to significantly increase the non-convergence rate before AF.

Fig. 4.8 demonstrates the empirical condition number reduction pattern for observed

results at last iteration, namely, CN(Ĝ∗) against CN(Ĝ). For the settings with very high

correlation and relatively small random slope variance, all the corresponding points were

well below the dashed lines. Across all 405 scenarios, 389 points (96.0%) were below the

dashed lines and only 16 points (4.0%) were slightly above the dashed lines. We note

that these 16 scenarios tended to have not only theoretical CNR values very close to one

(smaller than 1.6 in 15 out of 16 cases), but also non-convergence rate higher than 20%
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Figure 4.7: Scatter plots of theoretical condition number of random-effects covariance matrix
(G) in the transformed space against that in the original space, stratified by correlation level,
for different variance component ratios
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Observed CN( G ) in the original space
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Figure 4.8: Scatter plots of observed average condition number of random-effects covariance
matrix (G) in the transformed space against that in the original space across all simulation
scenarios, stratified by correlation level, for different variance component ratios
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(13 out of 16 cases). In addition, CN(Ĝ) on the x-axis of Fig. 4.8 was directly observed

at last iteration in the original space without AF and thus contained some intermediate

fittings from non-convergent runs. It is reasonable to argue that a non-convergent run

could give an inaccurate estimate for a covariance matrix and potentially under-estimate

the value of CN(G) since the corresponding iterative fitting might have been stopped earlier

before reaching more singular level due to non-convergence. Our simulations show that the

condition number estimate had a 91.3% empirical rate to become smaller after AF across

405,000 simulated runs. Therefore, the numerical optimization in the optimal transformed

space was significantly improved in both the intuitive correlation measure and the more

essential condition number measure.

The magnitude of average observed CN of a scenario might be much larger than the

theoretical value, indicated by the CN scale differences between Fig. 4.8 and Fig. 4.7. For

example, in the original space, the theoretical values of CN had a geometric-mean (range) of

3.43 (1, 16) and 340.4 (199.0, 905.7) across 81 scenarios for ρ = 0 and ρ = 0.99, respectively,

while the corresponding observed values were 13.97 (1.30, 2.016 ×104) and 1.277 ×105 (1.398

×103, 1.150 ×106), respectively. In the optimal transformed space, it is also not surprising

that the magnitude of observed CN might increase more than one order of magnitude

compared to the theoretical value. However, the observed CN ratio (CNR) due to AF was

still generally greater than one, which had been implied by Fig. 4.8. As the number of

observations increased, the limiting behavior of condition number ratio was illustrated by

Fig. 4.9. The observed CNR tended to approach the theoretical value asymptotically. It

is interesting to see that the observed CNR might be larger than the theoretical value,

especially for the settings with small sample sizes at ρ = 0, where the theoretical value of

CNR is one (left and top panel). This means that AF could be better and effective even

it was not theoretically expected to have improvement. For the settings with extreme high

correlation (ρ = 0.99) and small sample sizes, the observed CNR was still generally much

larger than one, although it could be relatively smaller than the theoretical value (left and

bottom panel).
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Theoretical CNR = CN(G) / CN(G*)
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Figure 4.9: Scatter plots of observed average condition number ratio (CNR) of random-
effects covariance matrix (G) in the original space over that in the transformed space,
against theoretical CNR value across all simulation scenarios, stratified by correlation level
(Rho), showing the limiting behavior of CNR as the number of observations (N) increases
from left to right
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4.4.5 Other simulation results

4.4.5.1 Number of iterations

We illustrate how the improved condition number after AF translated into an accelerated

convergence in terms of the number of iteration steps reached at last iterations. Fig. 4.10

plots the geometric mean of the number of iteration steps over 1,000 runs of a scenario

before and after AF. The geometric mean (range) of the numbers of iteration steps was

14.06 (1, 85.56) before AF and 7.42 (1, 20.25) after AF across all simulation scenarios.

Similar reduction of iterations was also observed for those less-challenging runs which could

converge before AF (Fig. 4.11).

4.4.5.2 Parameter estimates

The RIS fittings in the original and a non-singular linear transformed space are theoretically

identical but not necessarily numerically identical. To describe the extent and direction of

bias of the model parameter estimates in the two estimation spaces, we use the measure of

relative bias (RB) to conduct a brief descriptive analysis across various scenarios. The rela-

tive bias was defined as the percentage deviation of the estimate away from the theoretical

value, RB = θ̂−θ
θ
× 100%. The analysis was limited to those runs that converged in the

original space (before AF) and in the optimal transformed space (after AF).

The relative biases of β0, β1, and σe estimates were small across all simulated scenarios,

ranging from −3.07% to 1.60% before AF, and from −2.07% to 1.26% after AF. Before AF,

the average relative biases of the β0, β1, and σe estimates were negligible, 0.042%, 0.024%

and −0.55%, respectively. After AF, the corresponding averages were 0.041%, 0.011% and

−0.35%, respectively.

The relative biases of σb0 and σb1 estimates were positive and might be relatively large,

with means of 6.25% and 7.10% before AF, 3.83% and 3.61% after AF, respectively. Across

various scenarios, except at ρ = 0, the average relative biases of Cov(b0, b1) estimates were

negative (−3.16% before AF and −1.65% after AF), ranging from −40.59% to 4.31% before

AF and from −22.33% to 7.07% after AF.

Overall, our simulations show that the estimates of fixed-effects were unbiased while the
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Figure 4.10: Scatter plots of observed average number of iterations in the transformed space
against that in the original space across all simulation scenarios, stratified by correlation
level, for different variance component ratios
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Figure 4.11: Scatter plots of conditional number of iterations (averaging over those subset
runs of a scenario which could converge before AF) in the transformed space against that in
the original space across all simulation scenarios, stratified by correlation level, for different
variance component ratios
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covariance matrix of random-effects were relatively poorly estimated under many scenarios,

which are similar to those results reported for LMMs with different variance component

specifications (Ferron et al., 2002; Murphy and Pituch, 2009).

There were not obvious patterns and differences in the parameter estimates between

those non-PD and PD runs. This might be attributed to the high numerical accuracy of the

current R(nlme) package, which was considered as a better procedure than SAS Proc Mixed

by some researchers (Lange and Laird, 1989). This seemed to be supported by our additional

exploration of some simulated data between these two packages. The determinant of the

non-PD covariance matrix estimate was not very negative (>-0.0001) when the R(nlme)

package was used, but it could be relatively more negative (< -1.0) when the SAS Proc

mixed was used to fit the same data set using the same RIS model in the original space.

There were two interesting findings for the covariance parameter estimates of our simu-

lations. First, the directions of biases for σε and Cov(b0, b1) were negative for many scenarios,

while the corresponding biases for σb0 and σb1 tended to be positive. Secondly, for a sce-

nario that had non-convergent runs before AF, those runs which failed to converge before

AF tended to have bias in the opposite direction for the four variance components compared

to those runs which converged before AF. Thus if those runs which failed to converge before

AF were not included in the comparisons, the estimated bias of a scenario is expected to be

larger.

4.4.5.3 Starting values based on AF

We further explore the impact of a non-default starting value by refitting the RIS model

in the original space for the simulated data in all 405 scenarios. Any iterative optimization

algorithm needs initial values to start the iteration process. The initial variance-covariance

matrix of random effects is usually assumed to be a diagonal matrix, such as in package R

lme (nlme)(Pinheiro and Bates (2000)). Thus, it is possible that the non-convergence issue

in the original space before AF is associated with the package default diagonal structure

of starting matrix G, which is too simplified and can prevent the algorithm from achieving

convergence. As we have known from the simulations, a non-convergence run was generally

a run with high correlation estimate between random-effects, where the resulting matrix

G at last iteration was not diagonal at all. It is reasonable to argue that it will be easier
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for an iterative algorithm to converge if the starting value is similar to the final estimate.

Such a starting value of matrix G in the original space could be the estimated G̃ = AĜ∗AT

(equation 3.3.2 on page 12), where Ĝ∗ was available after AF. This was almost always

from a convergent run (hence G̃ potentially provided better information than the package

default starting value in the original space). Note that both matrices G̃ and Ĝ∗ were only

available after AF, but they corresponded to different estimation spaces, where Ĝ∗ was

directly obtained at the last iteration after AF and G̃ was indirectly available from a run

fitted in the transformed space.

We applied such a fitting strategy, which was pre-specified by G̃ in the original space,

for all 405 simulation scenarios in this chapter and the obtained results were denoted as

“RIS (specified G̃)”. We use “RIS (default G0)” to denote those results available from the

RIS fittings in the original space using the package default starting values. Recall that

RIS (default G0) results had an average empirical rate of 20.59 % to result in problematic

runs, which were composed of a 17.23% rate of non-convergent runs and a 3.36% rate of

nominally convergent but non-PD runs. The corresponding numbers for RIS (specified G̃)

results were 13.04% = 1.05% + 11.99%, respectively. Namely, RIS (specified G̃) showed a

largely decreased nominal non-convergence rates, with a mean (range) of 1.05% (0, 8.90%)

(totally 4,247 failed runs distributed in 268 scenarios). However, the non-PD issue for a

nominally convergent run in the original space was still there (more than half scenarios

(204/405 = 50.4%) with more than 10% non-PD rate). Overall, using the AF-introduced

starting value G̃ reduced problematic runs from 20.59 % to 13.04%, but did not alleviate

the non-PD issue in the original space. This fact strengthens the importance of conducting

LMM fitting in the optimal transformed space.

Numerically, specifying the starting random-effects covariance matrix for the LMM

fitting in the original space using an estimated matrix G̃ did not mean that the algorithm

did not need any further iteration and could immediately converge just because G̃ had been

calculated from a converged run in the transformed space. Therefore, after pre-specifying

with G̃, the algorithm would proceed as if it started with the default starting value and

could fail to converge or even nominally converge to a non-PD estimate of matrix G, even

when the specified staring G̃ was PD and “converged” in some sense.
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Chapter 5

Extension to Multiple Random-effects

Cases

5.1 Introduction

It is expected to be more complicated to fit a LMM with more than two random-effects

since the estimation involves more complex PD requirements. Estimates of each component

of a covariance matrix will place limits on the other components. If we think of a covariance

matrix as a correlation matrix, it is a necessary but not a sufficient condition for correlations

within their domain (−1, 1), to meet the PD constraints of a high dimensional covariance

matrix. We illustrate this complexity using a 4-dimensional correlation matrix M(ρ) =
1 ρ ρ ρ

ρ 1 0 0

ρ 0 1 0

ρ 0 0 1

 . The matrix M(ρ) is PD at ρ = 0.5, but becomes non-PD at ρ = 0.6,

where the corresponding minimal eigenvalues are 0.13 and −0.039, and CN(M) are 14 and

52, respectively.

For a mixed-effects model with random intercept b0 and other random-effects (bk; k =

1, . . . , q − 1 and q ≥ 2), let Zi = (1, xi1, . . . , xik) and given a non-singular linear trans-

formation (A) of observed data Zi, we have Z∗i = ZiA. The corresponding change in

random-effects is bi ⇒ b∗i = A−1bi.
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5.2 Notations incorporating multiple random-effects

cases

δ : a general location shift vector, δ = (δ1, . . . , δk)
T , k ≥ 1, which may reduce or

increase the original k of random-intercept related correlations.

d : the optimal location shift vector, d = (d1, . . . , dk)
T , which drives the original k of

random-intercept related correlations to zero.

Aδ : A = Aδ ,

(
1 δT

0 Ik

)
, where A is a general location shift transformation matrix

specified by a scalar location shift column vector index of δ = (δ1, . . . , δk)
T . Thus

A−1 =

(
1 −δT

0 Ik

)
.

G(k) : G = Cov(bi) ,

(
σ2
b0

vT

v Φk×k

)
, where G is the random-effects covariance matrix

in the original space, with the corresponding covariance matrix Φ among random-

effects except for random intercept and the covariance v between random intercept

and other random-effects.

G∗δ(k) : G∗ = Cov(b∗i ) = Cov(A−1
δ bi), where G∗ is the random-effects covariance matrix in

a transformed space (Zi ⇒ Z∗i = ZiAδ). If δ = 0, then G∗ = G.

5.3 Optimal linear transformations incorporating mul-

tiple random-effects cases

Applying a general location shift transformation to a mixed-effects model with multiple

random-effects, by equation (2.2.2) on page 8, we have,

Lemma 5.3.1. For a general initial covariance matrix G = Cov(bi) and a general trans-

formation matrix A = Aδ, the new covariance matrix in the transformed space is,

G∗ = Cov(b∗i ) = A−1G(A−1)T=

(
σ2
b0
− δTv − vT δ + δTΦδ vT − δTΦ

v − Φδ Φ

)
.
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We define the optimal shift d = (d1, . . . , dk) to be a location shift vector such that

the resulting matrix G∗ above has zero covariance between random intercept and other

random-effects in the transformed space. Set v − Φδ = 0 and we get

δ = Φ−1v. (5.3.1)

If k = 1, this reduces to the case of RIS model (Section 3.2), where the optimal shift

d = (d1) is the ratio of the covariance between random intercept and random slope divided

by the variance of random slope, i.e.,

d , ρ
σb0
σb1

=
Cov(b0, b1)

V ar(b1)
.

However, if k > 1, such simple relationship is not necessarily true. For example, k = 2,

G =


σ2

1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

, then

d1 =
σ2

3σ12 − σ13σ23

σ2
2σ

2
3 − σ2

23

(5.3.2)

d2 =
σ2

2σ13 − σ12σ23

σ2
2σ

2
3 − σ2

23

. (5.3.3)

Thus, to obtain d1 = σ12

σ2
2

, we need the covariance between two random slopes either to be

zero σ23 = 0, or σ23 =
σ2
2σ13

σ12
. Similarly, to obtain d2 = σ13

σ2
3

, we need the covariance between

two random slopes either to be zero σ23 = 0, or σ23 =
σ2
3σ12

σ13
.

If k = 3,G =


σ2

1 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ2
3 σ34

σ14 σ24 σ34 σ2
4

, then

d1 =

{
−−σ

2
4σ12σ

2
3 + σ14σ24σ

2
3 + σ12σ

2
34 + σ2

4σ13σ23 − σ14σ23σ34 − σ13σ24σ34

σ2
2σ

2
3σ

2
4 − σ2

23σ
2
4 − σ2

3σ
2
24 − σ2

2σ
2
34 + 2σ23σ24σ34

}

d2 =

{
−σ

2
4σ13σ

2
2 − σ14σ34σ

2
2 − σ13σ

2
24 − σ2

4σ12σ23 + σ14σ23σ24 + σ12σ24σ34

−σ2
2σ

2
3σ

2
4 + σ2

23σ
2
4 + σ2

3σ
2
24 + σ2

2σ
2
34 − 2σ23σ24σ34

}
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d3 =

{
−σ

2
3σ14σ

2
2 − σ13σ34σ

2
2 − σ14σ

2
23 − σ2

3σ12σ24 + σ13σ23σ24 + σ12σ23σ34

−σ2
2σ

2
3σ

2
4 + σ2

23σ
2
4 + σ2

3σ
2
24 + σ2

2σ
2
34 − 2σ23σ24σ34

}

The optimal covariance matrix G∗ can be obtained after replacing the general δ in

Lemma 5.3.1 with the optimal shift vector d. Thus,

Theorem 5.3.2. After a location shift by Aδ, the new covariance matrix in the transformed

space G∗ will become diagonal (denoted as G∗d or Ω), i.e.,

G∗ = Cov(b∗i ) = G∗δ(v
∗ = 0) =

(
σ2
b0
− vTΦ−1v 0

0 Φ

)
, Ω,

if and only if δ = d.

Compared to the original covariance matrix G, the new matrix Ω is more sparse and

tends to have smaller condition number. For a general covariance matrix, we assume that the

lower and upper bounds exist for both its condition number and its minimal and maximal

eigenvalues.

Theorem 5.3.3. Let G be the random-effects covariance matrix in the original space with

covariances between random intercept and other random-effects v = {Cov(b0, bk)}, and Ω

be the corresponding covariance matrix in the optimal transformed space. Denote two upper

bounds satisfying CN(G) ≤ UG and CN(Ω) ≤ UΩ, then we have

∀ Cov(b0, bk) 6= 0 =⇒ UG < UΩ.

Proof. First, the matrix Ω has a smaller upper bound for its maximal eigenvalue than its

counterpart matrix G, since the matrix Ω has smaller maximum absolute row sum. For a

symmetric covariance matrix M , λmax(M) ≤ maximum absolute row sum (Grenander and

Szego, 2001). It can also be proved by the fact that the matrix Ω has smaller trace for its

squared matrix. λmax(M) = λ
1/2
max(MMT ) ≤ Trace1/2(MMT ); σ2

b∗0
= σ2

b0
− vTΦ−1v < σ2

b0
,

since quadratic form vTΦ−1v > 0,∀ v 6= 0.

Second, the matrix Ω tends to have a larger lower bound for its minimum eigenvalue

than its counterpart matrix G. Note that det(Ω) = det(G) and λ−1
min(M) = λmax(M

−1).

The extension of AF to multiple random-effects cases will be illustrated by an actual

data set in Chapter 7.
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Chapter 6

Uncorrelated RIS (URIS) Model

6.1 Introduction

In practice, when a LMM encounters a non-convergence problem, one may attempt us-

ing another LMM with fewer covariance parameters or a LMM with the same number of

covariances but a different parameterization. In this chapter we propose an AF-enhanced

uncorrelated RIS model and compare it with other competing models based on several model

selection criteria using simulation studies. It will also be illustrated by a real life data set

in Chapter 7.

6.1.1 RIS, URIS, and RI models

Let G = V ar(bi) =

(
σ2
b0 ρσb0σb1

ρσb0σb1 σ2
b1

)
be the random-effects covariance matrix for a

general RIS model. If both σb1 = 0 and ρ = 0 are assumed, namely, random slope to be

excluded as a random effect, then a RIS model will be reduced to a RI model. If only

ρ = 0 is assumed, then a RIS model becomes a Uncorrelated Random Intercept and Slope

(URIS) model, which keeps the random slope term but imposes zero correlation assumption

between random intercept and random slope. Obviously, in the order of RI, URIS and RIAS

models, the relative model complexity increases. The relative complexity of the iterative

fitting process for a data set is also expected to increase in the same order.

55



We don’t cover the LMM with random slope only (RS) due to two reasons. First, a

RS model assumes that every subject is from a homogeneous initial point but with varying

growth velocities, where the assumption has to be very carefully justified (West et al., 2006).

Second, a RI model follows the hierarchical principle and is a nested model of a RIS model,

while a RS model does not. There is a danger when applying a linear transformation on a

model which does not follow the hierarchical principle (Morrell et al., 1997).

In practice, when a RIS model encounters non-convergence problems, a simpler model

may be attempted and it is usually a RI model. Recently, a URIS model has also been

briefly described as a candidate model to handle the non-convergence issue, due to the

estimated correlation falling on its boundary and with liberal 95% CI, i.e., (-1.000, 1.000),

for a specific data set (Pinheiro and Bates, 2000). The general feasibility of URIS model

has not been documented as the uncorrelated assumption is forced upon the data which

may not be realistic.

6.1.2 AF-enhanced URIS model in the transformed space (URIS.t)

In this chapter, we propose a new two-step modeling strategy to address the non-convergence

problems associated with RIS modeling. The first step is the usual AF process. A RIS

model is first fitted in the optimal transformed space (denoted as “RIS.t” model), where

the estimated correlation between random-effects is expected to be closer to zero than its

counterpart “RIS” model in the original space. The second step is to run an uncorrelated

RIS model in the optimal transformed space which has been built by the previous RIS.t

modeling process. The obtained URIS model is denoted as “URIS.t” model. Similarly,

“RI.t” model will be used to denote a RI model fitted in the same optimal transformed

space built by the RIS.t model.

6.1.3 LRT, AIC and BIC

Selecting a covariance matrix for random-effects can sometimes be tricky because a variance

component might be tested on the boundary of the parameter space. For two nested LMMs,

let the “reduced” model with q correlated random-effects specified by q(q+ 1)/2 covariance

parameters, and the “full” model with q+ 1 correlated random-effects thus (q+ 1)(q+ 2)/2
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covariance parameters. Then the difference in the number of covariance parameters between

these two models will be q+1, because the full model has one additional variance parameter

and q new covariance parameters compared to its reduced model. When comparing these

two nested LMMs using Likelihood ratio test (LRT), the usual chi-squared distribution

with q + 1 degrees of freedom is no longer valid for such a comparison. Instead, the null

distribution of LRT has been proposed as a 50:50 mixture of chi-squared distributions with

q and q + 1 degrees of freedom (Lange and Laird, 1989; Verbeke and Molenberghs, 2000;

Pinheiro and Bates, 2000; Fitzmaurice et al., 2004; West et al., 2006).

For example, a RI model has q = 1 random-effect, and a RIS model has q + 1 = 2

random-effects corresponding to 3 covariance parameters. Then the difference in the number

of covariance parameters between the “full” RIS model and the “reduced” RI model will be

3 − 1 = 2. Specifically, to compare these two models using LRT, the mixture chi-squared

distributions 0.5χ2
1 + 0.5χ2

2 has a cut point of 5.14 at α = 0.05, while the corresponding

cut point is 5.99 for χ2
2, the usual chi-squared distribution with 2 degrees of freedom. For

another example, when testing a single variance parameter, such as comparing a URIS

model with a RI model, the mixture distributions will be 0.5χ2
0 + 0.5χ2

1 and with a cut

point of 2.71 at α = 0.05, while the usual χ2
1(α=0.05) = 3.84. These two examples illustrate

that the usual chi-squared distribution χ2
q+1 is less powerful than its mixture counterpart

0.5χ2
q + 0.5χ2

q+1. Failure to take this issue into account can result in selecting a model

for covariance matrix that is too parsimonious. Consequently, the selected model might

be too simplistic, and the important structure in the covariance matrix might be ignored.

When the usual likelihood ratio test (LRT) is used for such non-standard testings, an ad

hoc solution is also recommended by some researchers (Fitzmaurice et al., 2004), i.e., using

α = 0.1 instead of α = 0.05 to determine the statistical significance of the LRT.

Alternatively, the model selection can also be based on some“information criteria”, such

as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Given a

pool of candidate models for the covariance matrix, if AIC criterion is used, one should pick

the model that minimizes

AIC = −2(maximized loglikelihood) + 2(number of parameters) (6.1.1)

= −2(l̂ − c),

where l̂ is the maximized restriced log-likelihood and c is the number of model parameters

(c = p+q∗, where p and q∗ are the dimension of fixed-effects β and the number of covariance
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parameters, respectively).

Similarly, if the BIC criterion is applied, one should select the model that minimizes

BIC = −2(maximized loglikelihood) + logN∗(number of parameters) (6.1.2)

= −2(l̂ − log
√
N∗ c),

where N∗ is the “effective sample size” and is N−p for REML estimation. There are various

versions of AIC and BIC where the definition of likelihood, N∗ and also c may be different

(Pinheiro and Bates, 2000; Fitzmaurice et al., 2004; Littell et al., 2006).

These two information criteria can be used to compare non-nested models for the co-

variance matrix selection. In general, BIC imposes a very large penalty for the estimation

of each additional covariance parameter. BIC is usually not recommended to be used for

covariance model selection (Fitzmaurice et al., 2004, pp. 177) since it entails a high risk

of favoring a model that is too simple for the data at hand. Guerin and Stroup (2000)

reported that BIC tends to favor a more parsimonious model but with worse Type I error

rate control than AIC, using SAS 8.0 Proc Mixed procedure. It can also be of interest to

compare models with the same dimension of covariance parameters, although it is actually

equivalent to compare the fitted likelihood values which are “maximized” under different

conditions. Note that REML log-likelihood is not valid to compare random-effects if two

LMMs have different number of fixed-effects.

6.2 Simulation settings

A series of balanced datasets generated from the following RIS model,

yij = β0 + xijβ1 + b0i + xijb1i + εij, i = 1, · · · ,m; j = 1, · · · , n, (6.2.1)

where yij was the jth observation within ith group; fixed-effects β0 = −1 and β1 = 0;

predictor variable xij was sampled from the standard normal distribution, N(0, 1); residual

εij was sampled from the standard normal distribution, N(0, 1).

Sample sizes (N = m×n) varied from 100 to 2000, with number of groups m ∈ (20, 50,

100) and group size n ∈ (5, 20), a balanced design. Each random effect had three levels, σb0

(intercept) or σb1 (slope) ∈ (1, 1/2, 1/4). The correlation between random-effects had two
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levels, ρ ∈ (0.00, 0.99). Thus, there were totally 54 scenarios (6 sample sizes × 9 variance

combinations) at each correlation level.

The number of replication runs per simulation design scenario was set at 1000. Each of

RIS-simulated data would be fitted by 3 models (RIS, URIS and RI) in the original space

and another 3 models (RIS.t, URIS.t and RI.t) in the optimal transformed space.

6.3 Simulation results

6.3.1 Convergence

For the general RIS model in the original space at ρ = 0, the non-convergence rate had a

mean (range) of 4.36% (0.00%, 35.20%) across all 54 scenarios (Fig. 6.1). Half of scenarios

had non-zero non-convergence rates, with a mean (range) of 8.72% (0.1%, 35.20%) across

these 27 scenarios. For the general RIS model in the original space at ρ = 0.99, the non-

convergence rate had a mean (range) of 42.61% (0.00%, 78.00%) across all 54 scenarios

(Fig. 6.2), where a zero non-convergence rate only occurred for one setting (m = 100,

n = 20, σb0 = 0.25, σb1 = 1 and ρ = 0.99).

Unlike RIS model, such non-convergence issues were not observed for other five models

(URIS and RI models in the original space; RIS.t, URIS.t and RI.t models in the optimal

transformed space) for all 108 simulated scenarios.

Although the non-convergence problem was actually only associated with the RIS

model, it is still meaningful to examine the performances of other five LMM fittings against

the non-convergence rate of the RIS model since they were all fitted on the same series of

RIS-simulated data.

6.3.2 Log-likelihood

Fig. 6.3 illustrates all the pairwise comparisons among the 6 models in terms of the fitted

log-likelihood values in a setting (m = 100, n = 5, σb0 = σb1 = 0.5 and ρ = 0), where

all 6 models had all 1000 converged runs. The RIS model seemed to have the same fitted
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log-likelihood values as its counterpart (RIS.t) in the optimal transformed space. This

seemed also the case between the RI and RI.t models, but not between the URIS and

URIS.t models. The URIS.t model was likely to have better fitted log-likelihood values

than the URIS model (Fig. 6.4). All 1000 points on the Fig. 6.4 were above the 45-degree

concordance line, with 1000, 661, 177 and 68 out of 1000 points having a larger than 0.001,

0.1, 1.0 and 2.0 increase in the fitted log-likelihood, respectively. Actually, across all 108

simulation scenarios, a better fitted log-likelihood was generally observed for the URIS.t

model compared to its counterpart in the original space (Fig. 6.5). Fig. 6.5 shows that

the median of the log-likelihood gap between the URIS.t and URIS models in a scenario

had a mean (range) of 0.23 (0.19, 0.27) at ρ = 0, and 18.41 (0.39, 103.80) at ρ = 0.99,

where the maximal median occurred for the setting (m = 100, n = 20, σb0 = σb1 = 1 and

ρ = 0.99). The improvement of the fitted log-likelihood values for the URIS.t model when

it was compared to the URIS models will be expected to affect the model selection results

determined by both AIC and BIC criteria.

With the same model specification, the log-likelihood is expected to be the same be-

tween RI.t and RI, or between RIS.t and RIS. This was confirmed by our simulations. The

RI and RI.t models had a more than 90% empirical rate to be “identical” and otherwise not

distinguishable numerically across all simulated scenarios, where the maximal difference in

the fitted log-likelihood out of all 108,000 runs was 1.179× 10−7, which was two order less

than the error tolerance, the convergence criteria (1e−5) of the Newton-Raphson algorithm.

To avoid redundancy, we can use the RI model to fully represent the RI.t model results.

Similarly, the RIS and RIS.t models had almost identical fitted log-likelihood, implied

by those 27 scenarios without the non-convergence issue for the RIS model at ρ = 0, where

the average difference in the fitted log-likelihood in a scenario was at most at the order

of 10−6, and the maximal difference in the fitted log-likelihood out of 27,000 runs was

7.319× 10−3. To alleviate the complexity due to non-convergence runs associated with the

RIS model, only the RIS.t model results will be directly used for the comparisons with

other model candidates in the following analysis. Recall that the RIS.t model was fitted

in the optimal transformed space with zero non-convergence rate, and can be one-to-one

transformed back into the original space. Thus, we can focus our analyses on only 4 models

(URIS, RI, RIS.t and URIS.t).

The URIS.t and RIS.t models also had very similar fitted log-likelihood across all 108
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scenarios (Fig. 6.6). Fig. 6.6 shows that the maximum of the log-likelihood gap between the

URIS.t and RIS.t models in a scenario was all less than 0.01 but one exceptional run for a

scenario at ρ = 0.99.

On the other hand, the URIS and RIS models in the original space was not expected

to have similar fitted log-likelihood. This was the natural conclusion by considering the

difference between the URIS and URIS.t models shown on Fig. 6.5, the similarity between

the URIS.t and RIS.t models shown on Fig. 6.6, and the equivalency between the RIS.t and

RIS models, in terms of the fitted log-likelihood. Thus the uncorrelated assumption assumed

by both URIS and URIS.t models might significantly change the fitted log-likelihood values

in the original space, but had little impact in the optimal transformed space.

6.3.3 AIC, BIC and LRT

6.3.3.1 Three LMMs with random slopes against RI model

Across three fit criteria, the proposed URIS.t model after AF was obviously the most favored

model among three LMMs with random slopes when compared to the RI model (Fig. 6.7).

For example, when the fit criteria was AIC and correlation was zero (left and top panel

on Fig. 6.7), the empirical rate against the RI model were on average 85.35%, 87.54% and

90.94%, with the lowest rate of 16.90%, 21.50% and 39.10%, for RIS.t, URIS and URIS.t

models, respectively. Since the data were simulated from RIS models with random slopes,

one may expect that the RI model fitting should not be more favorable compared to those

LMMs with random slopes. Our simulations shows that the RI model could be more favored

by any of three fit criteria, where a < 50% empirical rate on Fig. 6.7 indicated that a RI

model was the favored model. This would occur for those scenarios with the non-convergence

issue for a RIS model in the original space (Fig. 6.8 and Fig. 6.9). For example, when the

fit criteria was AIC and correlation was zero (top three panels on Fig. 6.8), there were 3 out

of 54 scenarios (5.6%) where the RI model was dominant over the URIS.t model, while the

corresponding numbers were doubled when compared with RIS.t or URIS models, both at

a rate of 6/54 (11.1%). This trend was held at ρ = 0.99 too (Fig. 6.9). For example, either

for AIC or LRT criteria (top or bottom three panels on Fig. 6.9, respectively), the number

of scenarios where the RI model was the favored model was only one for the URIS.t-RI

comparison, but it was larger than four for both the URIS-RI and RIS.t-RI comparisons.
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Among three fit criteria, the RI model was generally most favored by BIC, and least

favored by AIC. When LRT was used to pairwise compare the RIS.t, URIS and URIS.t

model against the RI model, the empirical better rates were on average 73.51%, 79.64% and

81.97% at ρ = 0, and 90.51%, 83.77% and 94.39% at ρ = 0.99.

Besides the impacts of the non-convergence rate, the comparisons with the RI models

might also be affected by how small the random slope variance, the number of group (m)

and the group size (n) were (e.g., Fig. 6.8, Fig. 6.10 and Fig. 6.11).

6.3.3.2 Among three LMMs with random slopes

The pairwise comparisons between three LMMs with random slopes were determined by

AIC and BIC (Fig. 6.12). When compared to the RIS.t model, the URIS model was the

favored model at ρ = 0, with an average empirical rate of 83.77% by AIC and of 98.35% by

BIC, but it was generally not at ρ = 0.99, with an average empirical rate of 8.67% by AIC

and of 18.22% by BIC. This suggests that the URIS model may be a poor model selection

if the random-effects correlation is not zero, although the URIS model has showed better

convergence rate than the RIS model in the original space.

The URIS.t model was always better than a general RIS.t model even though data

were simulated with random-effects correlation at ρ = 0.99. This is consistent with the very

similar fitted likelihood between these two models (shown on Fig. 6.6).

The URIS.t model was generally better than its counterpart model in the original space

(URIS). The URIS.t model was favored by an average empirical rate of 98.13% at ρ = 0

and of 99.15% at ρ = 0.99, where both AIC and BIC criteria produced the same rates due

to the same number of covariance parameters between the two models. Recall that the

URIS.t model also had comparable empirical rates against the RI model at two correlation

levels, 90.94% at ρ = 0 and 89.30% at ρ = 0.99. Thus, the performance of the URIS.t

model seemed not to be strongly affected by the random-effects correlation level, but it was

not the case for the URIS model. On the other hand, none of runs showed that the URIS

model was better than the URIS.t model beyond the error tolerance, no matter whether the

non-convergence rate was zero or not.

The AIC comparison between the URIS model with RIS.t model or with URIS models
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might be slightly affected by simulation settings (e.g., Fig. 6.13 and Fig. 6.14), especially

for small sample size and small random slope variance. The pattern was similar for BIC

(data not shown).

When LRT was used for the URIS-RIS.t comparison, the usual chi-squared distribution

χ2
1 was applied since the correlation parameter was not tested on its boundary (Fig. 6.15).

By LRT at ρ = 0 settings, it is interesting to see that the RIS.t model had a mean (range)

empirical rate of 5.3% (3.0%, 7.5%) to be better than the URIS model across all 54 scenarios,

and corresponding numbers were 5.2% (4.0%, 7.5%) for those 27 scenarios without the non-

convergence issue, which were all close to the nominal 5% level. The LRT results might

be poor at ρ = 0.99 settings, with a mean of 85.91% and five-number summary of (8.9%,

82.7%, 99.9%, 100.0%, 100.0%). When LRT was used for the URIS.t-RIS.t comparison,

the URIS.t model was favorable due to similar fitted log-likelihood and more parsimonious

parameterization. LRT was not applicable to compare the URIS.t and URIS models.

6.3.4 Non-coverage of β1

The non-coverage rates of fixed-effect slope β1 were summarized in Fig. 6.16. The RI model

might have a more than 25% empirical non-coverage rate of β1 for either correlation level.

No obvious differences were observed for the three LMMs with random slopes.

6.4 Summary

The proposed URIS.t model is generally better than the URIS model regardless of the

correlation level between random-effects. This is true based on either Log-likelihood, AIC

or BIC criterion, at both ρ = 0 and ρ = 0.99 settings.

If non-convergence is an issue, then the RI model could be better than the three LMMs

with random slopes in some scenarios, especially when BIC is used. At ρ = 0, the URIS

model is generally favored by AIC compared to RIS.t, while RIS.t may be preferred at

ρ = 0.99.

Theoretically, the URIS.t and RIS.t models are equivalent models regardless of the
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original correlation level between random-effects, but the URIS and RIS models are only

equivalent when the RIS model also assumes no correlation between random-effects in the

original space.
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Figure 6.1: The non-convergence rate before adaptive fitting (AF) as a function of the
number of group (m), with each of the nine panels corresponding to one of the nine variance
component combinations, and with each of the two curves of a panel corresponding to each
of two group sizes (n), given random-effects correlation at ρ = 0
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Figure 6.2: The non-convergence rate before adaptive fitting (AF) as a function of the
number of group (m), with each of the nine panels corresponding to one of the nine variance
component combinations, and with each of the two curves of a panel corresponding to each
of two group sizes (n), given random-effects correlation at ρ = 0.99
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Figure 6.3: Scatter plots of the fitted log-likelihood for 3 models (RIS, URIS and RI) fitted
in the original space and 3 models (RIS.t, URIS.t and RI.t) in the optimal transformed
space, with the setting (m = 100, n = 5, σb0 = σb1 = 0.5 and ρ = 0)
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Figure 6.4: Scatter plots of the fitted log-likelihood for the URIS.t model which was fitted
in the optimal transformed space against the URIS model in the original space, with the
setting (m = 100, n = 5, σb0 = σb1 = 0.5 and ρ = 0)
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Figure 6.5: Scatter plots of the median of differences in the fitted log-likelihood values
between the URIS.t model and the URIS model, as a function of non-convergence rate
before Adapting Fitting for the RIS model in the original space across all 108 scenarios,
stratified by random-effects correlation levels
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Figure 6.6: Scatter plots of the maximum of differences in the fitted log-likelihood values
between the URIS.t model and the RIS.t model, as a function of non-convergence rate before
Adapting Fitting for the RIS model in the original space across all 108 scenarios, stratified
by random-effects correlation levels
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LRT, where all scenarios were simulated from RIS models with random-effects correlation
at ρ = 0 or ρ = 0.99
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Figure 6.8: Comparing each of the three LMMs with random intercept and slope (RIS.t,
URIS, URIS.t) against the LMM with random intercept only (RI), in term of AIC, BIC
and LRT criteria as a function of non-convergence rate before Adapting Fitting for the
RIS model in the original space, where all scenarios were simulated from RIS models with
random-effects correlation at ρ = 0
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Figure 6.9: Comparing each of the three LMMs with random intercept and slope (RIS.t,
URIS, URIS.t) against the LMM with random intercept only (RI), in term of AIC, BIC
and LRT criteria as a function of non-convergence rate before Adapting Fitting for the
RIS model in the original space, where all scenarios were simulated from RIS models with
random-effects correlation at ρ = 0.99
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Figure 6.10: Comparing each of the three LMMs with random intercept and slope (RIS.t,
URIS, URIS.t) against the LMM with random intercept only (RI), in term of AIC criteria
as a function of number of group (m), where all scenarios were simulated from RIS models
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Figure 6.11: Comparing each of the three LMMs with random intercept and slope (RIS.t,
URIS, URIS.t) against the LMM with random intercept only (RI), in term of AIC criteria
as a function of number of group (m), where all scenarios were simulated from RIS models
with random-effects correlation at ρ = 0.99
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Figure 6.13: Comparisons of URIS vs. RIS.t by AIC criteria as a function of number of
group (m), where all scenarios were simulated from RIS models
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group (m), where all scenarios were simulated from RIS models
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Figure 6.15: Scatter plots of the LRT favorable rate for the RIS.t model against the URIS.t
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Chapter 7

Application Examples

Two real data sets will be discussed in this chapter. In Section 7.1, we use IGF data

to further demonstrate the performance of AF algorithm for a RIS model in the optimal

transformed space, and to illustrate the model selection results involving the URIS.t model

proposed in Chapter 6. The FEV1 data in Section 7.2 is used to illustrate the feasibility of

AF algorithm extended to multiple random-effects case described in Chapter 5.

7.1 A longitudinal data with non-convergence issue for

RIS model: IGF data

Davidian and Giltinan (1995) described a data set obtained during quality control radioim-

munoassays for radioactive tracer used to calibrate the Insulin-like Growth Factor (IGF-I)

protein concentration measurements. The data contained 237 measurements from 10 lots

during 1 to 50 days, each lot with 4 to 39 measurements (Fig. 7.1). The median and mean

of collection time points were 22 and 22.45 days, respectively.

This publicly available IGF data is also included in the R package nlme and has been

fitted by RIS, URIS and RI models (Pinheiro and Bates, 2000). It failed to converge using

a RIS model either in the original or grand mean centered space, where the correlation

estimates at last iteration were −1.000 and 1.000, respectively. Because the approximate

95% confidence intervals for the estimated correlations above by the RIS model are very
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Figure 7.1: Time plot, with joined line segments, of IGF-1 concentration versus tracer age
in days for all 10 lots from the IGF data set
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liberal (e.g., (−1.000, 1.000)), the RI and URIS models have also been attempted.

In this section, we show the results of two proposed models which were both fitted in the

optimal transformed space, one with unstructured random-effects (RIS.t model: last column

on Table 7.1), the other with uncorrelated assumption between random-effects (URIS.t

model: last column on Table 7.2).

7.1.1 RIS model fitting in the original, centering, and optimal

transformed spaces

Table 7.1 summarizes the fitting results of IGF data for three models (RIS, RIS.c and

RIS.t), which were obtained in the original, grand mean centering and optimal transformed

spaces. For this specific data, centering could not alleviate the random-effects collinearity

problem. The reversing sign of correlation is an indication of an over-shifting after centering.

Compared to the original space, the centering results were slightly worse in terms of fitted

log-likelihood, minimal eigenvalue and condition number.

Table 7.1: LMM fitting results of IGF data in the original, centering and optimal trans-
formed spaces

Estimation space

Original Centering Optimal transformed

I. Diagnosis information

  Convergence No No Yes

  Positive definite of G* No No Yes

  Random-effects correlation -1.000 1.000 -0.187

  Minimal eigenvalue of G -1.590E-11 -2.838E-12 1.961E-09

  Condition number of G 4.309E+08 3.487E+09 3.335E+04

  Condition number ratio

    relative to the transformed space 1.290E+04 1.046E+05 1

  Log-likelihood -297.1831 -297.1832 -297.1831

  AIC 606.3663 606.3664 606.3662

  BIC 627.1238 627.1239 627.1237

  # of iterations 75 64 22

II. Parameter estimates at last iteration

  Beta1(standard error) -0.002535 (0.005045) -0.002535 (0.005044) -0.002534 (0.005043)

  Var(b1) 6.5495E-05 6.5493E-05 6.5401E-05

  Var(b0) 6.7855E-03 9.8314E-03 2.0322E-09

  Cov(b0,b1) -6.6575E-04 8.0243E-04 -6.8174E-08

  Var(noise) 0.6734 0.6734 0.6734

* Estimated random-effects covariance matrix

Fitting results
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Among the three estimation spaces, the proposed transformed space produced the best

fitting diagnosis results. For instance, the convergence was achieved with positive definite

covariance matrix estimate, and the condition number was reduced more than 10,000 times

under the optimal transformed space. After AF, the estimated correlation was relatively

small (−0.187), and the AIC, BIC and number of Newton-Raphson iteration steps needed

were also improved slightly.

Theoretically, it is invariant for the parameters of fixed effect slope β1, random noise and

random slope variance after a non-singular location shift linear transformation of RIS model,

but the intercept-related parameters (e.g., random intercept variance and covariance) could

change under different spaces. This theoretical expectation could be observed by comparing

these parameter estimates at last iteration across three estimation spaces, although some of

them were from non-converged fittings.

We note that the random-effects variance estimate was relatively small compared to the

random noise, and the minimal eigenvalue of random-effects covariance matrix was negative

but very close to zero in both the original and centering spaces. Thus, the non-PD issue

in a non-optimal space could be due to larger round-off error during the nonlinear iteration

process.

7.1.2 Proposed URIS.t model in the optimal transformed space

Table 7.2 summarizes the fitting results of three models (RI, URIS, URIS.t) for IGF data.

All three models converged without non-PD issue. Compared to the results of the RIS.t

model in Table 7.1, the uncorrelated assumption between random-effects had little impact

on the URIS.t model fitting, but affected the URIS model fitting, in terms of log-likelihood,

fixed effect slope β1, random noise, and random slope variance. Among the three models in

Table 7.2, together with the best model (RIS.t) in Table 7.1, the URIS.t model was most

favored by AIC criterion, while the RI model was favored by BIC. In addition, the criterion

of AIC also slightly favors the URIS model against the RIS.t model. The difference of fitted

-2Log-likelihood values between the URIS.t and RI model is approaching to be significant

based on LRT (596.8771 - 594.3662 = 2.5049 < 2.71 = (0.5χ2
0 + 0.5χ2

1)α=0.05).
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Table 7.2: LMM fitting results of IGF data in the original space, without (RI) and with
(URIS) random slope, and in the optimal transformed space with random slope (URIS.t)

Model (Estimation space)

RI (Original) URIS (Original) URIS.t (Transformed)

I. Diagnosis information

  Convergence Yes Yes Yes

  Positive definite of G* Yes Yes Yes

  -2Log-likelihood 596.8711 594.8006 594.3662

  AIC 604.8711 604.8006 604.3662

  BIC 618.7094 622.0985 621.6641

II. Parameter estimates

  Beta1(standard error) -0.00082 (0.00397) -0.00193 (0.00457) -0.00253 (0.00504)

    t-value of Beta1 -0.206 -0.422 -0.502

  Var(b1) 2.89E-05 6.54E-05

  Var(b0) 0.00512 1.31E-09 7.72E-10

  Var(noise) 0.6889 0.6754 0.6735

* Estimated random-effects covariance matrix

Fitting results

7.2 Application to LMM model with three random-

effects: FEV1 data

The data for pulmonary function FEV1 is publicly available (Fitzmaurice et al., 2004,

pp. 210-216). The data contains a cohort of 299 girls who were born in or after 1967 and

lived in Topeka, Kansas. Most girls were enrolled in the first or second grade (between

the ages of six and seven) and measurements of study participants were available annually

until graduation from high school or loss to follow-up. The FEV1 data consists of annual

measurements of FEV1, height and age, with a minimum of one and a maximum of twelve

observations per girl over time. The means (medians) of height and age of total 1993

observations are 1.498 (1.540) and 12.568 (12.597) respectively.

Several LMMs have been fitted for this data using SAS Proc Mixed. The data set,

related codes and outputs are available online from the website http://biosun1.harvard.

edu/~fitzmaur/ala/. The candidate LMMs include a model with three random-effects,

where two random slopes are age and log(height), denoted as RI2S model here. We use

RI2S model for the FEV1 data to illustrate the feasibility of AF algorithm in multiple

random-effects cases. We are not claiming that RI2S model is the best LMM fitting for
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Figure 7.2: Time plot, with joined line segments, of log(FEV1/height) versus age in years
for 50 randomly selected girls from the FEV1 data set

this specific data set. Actually, the RIS model with log(height) as random slope was the

selected model (Fitzmaurice et al., 2004, pp. 216).

Based on software package R lme(nlme), we conducted similar analyses (including the

data profile in Fig. 7.2) and obtained similar fitting results as shown in the book. For

the RI2S model fittings for FEV1 data (Table 7.3), the convergence was achieved for all

three estimation spaces: original, centering and AF optimal transformed, with AF being the

fastest among three estimation spaces. As expected, AF reduced the correlations between

random intercept and each of two random slopes to zero level (<0.001). Under the optimal

transformed space, the condition number was slightly reduced and the minimal eigenvalue

was slightly larger, away from zero. This is not surprising since the correlation levels before

AF were not high.

The estimates of log-likelihood, AIC, BIC, unexplained noise, and fixed-effects slopes

were almost identical among the three estimation spaces. There were small variations (in

third or more decimal point) for the estimates for the random-effects variances and the

covariance of two random slopes.
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Table 7.3: LMM fitting results of FEV1 data in the original, centering and optimal trans-
formed spaces

Estimation space

Original Centering Optimal transformed

I. Diagnosis information

  Convergence Yes Yes Yes

  Positive definite of G* Yes Yes Yes

  Random-effects correlation (Intercept, Age) -0.165 -0.185 0.001

  Random-effects correlation (Intecept, Log(Height)) -0.509 0.388 -0.001

  Minimal eigenvalue of G 8.149E-06 1.013E-05 1.017E-05

  Condition number of G 1.028E+04 8.034E+03 7.856E+03

  Condition number ratio

    relative to the transformed space 1.31 1.02 1

  Log-likelihood 2294.9500 2294.9500 2294.9500

  AIC -4565.8990 -4565.8990 -4565.8990

  BIC -4498.7610 -4498.7610 -4498.7610

  # of iterations 64 36 27

  time (sec) 29.45 21.32 12.16

II. Parameter estimates - Fixed-effects

  Slope - Age (standard error) 0.02344 (0.001278) 0.02344 (0.001278) 0.02344 (0.001278)

  Slope - Log(Height) (standard error) 2.2476 (0.04692) 2.2476 (0.04692) 2.2476 (0.04692)

III. Parameter estimates - Random-effects

  Intercept 0.01337 0.00938 0.00795

  Slope - Age 1.179700E-05 1.179600E-05 1.183000E-05

  Slope - Log(Height) 0.07984 0.07984 0.07992

  Cor(Age, Log(Height)) -0.373 -0.373 -0.374

  Var(noise) 0.003516 0.003516 0.003516

Fitting results
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Chapter 8

Discussion

Mixed-effects models have been widely used to model correlated data from many research

fields. In practice it is important to alleviate non-convergence issues during the iterative

optimization process. Non-PD may also be an issue and can be implicitly masked as a

“nominally convergent” run by the default criteria of a software package. The proposed

AF algorithm provides a straightforward technique to achieve these goals by reducing the

collinearity between random-effects of LMM.

Simulations show that both the non-convergence rate and the non-PD rate are sig-

nificantly reduced to zero level after AF, using the optimal linear transformation of the

random slope variable. The AF procedure is generally effective across various settings, in-

cluding those challenging scenarios with very high correlation, relatively large noise or small

random-effects variance, and small sample size.

The computational advantages of AF algorithm are demonstrated by several measures.

The reduction of random-effects correlation down to zero provides an intuitive measure of the

benefits of AF. The smallest eigenvalue of random-effects covariance matrix in the optimal

transformed space is increased and less susceptible to boundary issue. The condition number

of random-effects covariance matrix is also generally reduced in the transformed space.

Larger reduction of condition number coincides with a setting with high non-convergence

rate, i.e., extremely high correlation and near-zero random slope variance.
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The core idea of AF algorithm The core idea of our proposed AF algorithm is to

utilize the existence of an optimal linear transformation where the resulting zero correla-

tion is the farthest away from the parameter boundary, i.e., −1 or +1. Such a strategy is

expected to further reduce the possibility for correlation estimate to converge near or out

of the parameter boundary than that of explicitly direct reparameterization of model pa-

rameters, e.g., using some nonlinear transformations, such as log or logit, to force variance

and correlation estimates “within” their domains (e.g., Pinheiro and Bates, 1996 for linear

and non-linear mixed-effects models which had been implemented in the lme(nlme) routine;

Abellana et al., 2006 for generalized linear mixed-effects model in disease mapping setting).

Such direct reparameterization methods can still encounter the convergence on the bound-

ary issue if estimated random-effects are highly correlated. For example, our simulations

show that there is only a 79.41% empirical rate to converge with PD covariance matrix

across all simulation scenarios.

The feasibility of AF algorithm The AF approach is feasible for several reasons. First,

conceptually, the existence of a neighborhood of the optimal shift d provides a working

window for AF algorithm to reduce the random-effects correlation. We can expect that

the AF algorithm has more tolerant to an non-accurate estimate of d if the underlying

neighborhood is wider. In our simulations, non-convergent runs all had very high observed

correlations between random-effects before AF even when the initial population correlation

was zero. Thus both d and its neighborhood were determined mainly by the variance

ratio. Second, by Lemma 3.4.1, when random-effects are extremely correlated, the random

intercept variance is also expected to be large, thus very likely to be larger than the random

slope variance. In real data analysis using a RIS model, smaller random slope variance

relative to random intercept one was usually observed (e.g., Kreft et al., 1995; Verbeke and

Lesaffre, 1997; Browne and Draper, 2000; Gurrin et al., 2001; Zhang and Davidian, 2001;

Jacqmin-Gadda et al., 2007). Overall, a non-convergent run before AF will be strongly

associated with a non-zero optimal shift, a wide neighborhood of the shift, and a large CN

reduction potential after AF. Third, note that a location shift matrix A used in AF, even

not optimal or estimated with some error, will not introduce extra computational error

during the transformation of observed data, since det(A) = det(A−1) = 1 and CN(A) =

CN(A−1) = 1 for any δ. Lastly, the AF algorithm can be straightforwardly implemented

in existing LMM routines without modifying the internal optimization algorithm. The only

needed coding effort in using AF is to extract the covariance matrix estimate from the
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algorithm outputs and calculate the optimal shift d. For a non-convergent run, the estimate

of optimal shift d can be available from the last iteration output. Even if a highly accurate

estimate of d from previous challenging fitting may be not realistic, an approximate estimate

can be adequate as long as the subsequent correlation estimate becomes smaller and is not

near the parameter boundary.

AF algorithm compared to centering The proposed AF procedure differs from tra-

ditional grand mean centering technique in several important aspects. First, the random-

effects correlation and the relative size of random-effects variances are taken into account

by AF while centering only uses first-moment information. Centering is not a numerically

optimal linear transformation for LMM. If the new origin of a slope variable after centering

is not within the proposed optimal shift neighborhood, centering may even increase the

correlation level between random-effects. Second, the optimal location shift d = ρσb0/σb1

is a unit-free scalar. It cannot be directly calculated from the observed data itself before

estimating a random-effects covariance matrix. Third, AF can be iterative while centering

is a one step approach. Lastly, centering is a one-direction location shift method and the

new origin is always within the observed range of slope covariate. However, as pointed out

by Longford (1993), the direction of an location shift can be either positive or negative,

and even beyond the range of the observed raw data. In real longitudinal data analysis, the

calculated value of d may be close to the observed mean of time variable, e.g., for a fetal

growth data (Gurrin et al., 2001), or the two may not be close to each other as in the IGF

data in section 7.1. In our simulations, it is possible for the new origin of slope covariate

to go beyond the range of the data during numerical optimization process, especially when

the random intercept variance is larger than the random slope variance in high correlation

settings. Since the AF algorithm focuses on the numerical optimization process rather than

the inference of model parameters, this is acceptable. If a run can converge both before and

after AF, the parameter estimates in the original space will be almost identical.

The implications of AF algorithm for RIS models The numerical optimization of a

RIS model can be much more challenging than that of a RI model. When a RIS model fails to

converge due to highly correlated random-effects, it is a common practice to remove random

slope from the RIS model and fit a RI model. However, the simple compound symmetric

covariance structure and the constant correlation assumption of RI model may be unrealistic
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or not adequate for actual data modelings (Verbeke et al., 1998). RIS model is probably

the most standard tool to study changes over time in longitudinal growth curve modeling,

as it allows to model non-stationary covariance structure and to investigate the growth

velocity variations across different subjects using subject-specific random slope estimates.

Several studies have showed that the maximum likelihood inference on fixed-effects is more

robust to mis-specification of the covariance structure under a RIS model, compared to a

RI model (Lange and Laird, 1989; Jacqmin-Gadda et al., 2007; Schielzeth and Forstmeier,

2009). Thus, the excellent convergence property of AF algorithm is useful not only for

simulation studies but also for real data analyses.

The proposed URIS.t model has been shown to have several advantages over other

competing models, in terms of log-likelihood and AIC criteria. Selecting a model that is

too parsimonious has a more severe impact on Type I error rate than selecting a model

that is too complex. Our model comparison results based on the fitting from R(nmle) are

consistent with those obtained from SAS Proc Mixed (Guerin and Stroup, 2000).

The general application of AF algorithm The AF procedure can be considered as

a general purpose and efficient algorithm for mixed-effects models with correlated random-

effects, including the multiple random-effects case. Although Newton-Raphson algorithm is

the main iterative optimization tool used in our simulations, EM algorithm is also found to

be faster after AF based on our limited simulations (results not shown). Furthermore, the

linear transformation used by the AF procedure does not impose any distribution assump-

tion and thus can be generalized to other mixed-effects models, e.g., with non-normality

error or binary outcome, where the convergence can be even more difficult. We recommend

that the AF procedure should be considered as a routine collinearity diagnostic and sen-

sitivity analysis tool during the fitting of mixed-effects models, especially when there are

reasons to suspect that convergence on the boundary issue is present.

Limitation and future work There are several potential limitations for the current

study. First, whether a non-convergent run achieves convergence after AF can be influenced

by the magnitude of the calculated optimal shift d. If the automatically estimated shift is

at zero level, the AF procedure cannot further improve the optimization and thus stop with

non-convergence. This situation occurred in only two runs in our simulations. If manually

introducing a small (e.g., less than one) location shift once or twice, these two failed runs
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could also converge.

Second, the performance of AF algorithm may not be the same across different software

packages when the covariance matrix estimate is near-singular or non-PD. Some packages

may force the variance or covariance estimate to be zero, or do not provide the random-

effects covariance matrix estimate, thus the optimal shift cannot be calculated from the

output.

Third, it is worthwhile to conduct similar and more extensive simulation studies com-

paring the 6 candidate models discussed in Chapter 6 using data simulated from various

models. Using a RIS model to fit a RI-simulated data is expected to be much more difficult

than using a RI model to a RIS-simulated data.

Lastly, the number of iteration required and the performance of AF procedure need

to be further evaluated for various challenging settings for LMM, such as unbalanced data

structures and very high dimension of random-effects, and for generalized mixed-effects

models. The sensitivity study of AF algorithm relative to large change of origin of random

covariate can also be examined by simulations.
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