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Abstract of the Dissertation

African Papionin Phylogenetic History and Plio-Pleistocene Biogeography

by

Christopher Charles Gilbert

Doctor of Philosophy

in

Anthropology

Stony Brook University

2008

The cercopithecine primate tribe Papionini (Order: Primates; Family
Cercopithecidae; Subfamily Cercopithecinae) are an extremely successful group of
monkeys including the living macaques (Macaca), mangabeys (Lophocebus,
Cercocebus), baboons (Papio), geladas (Theropithecus), mandrills, and drills
(Mandrillus). The proliferation of the papionins is a well documented evolutionary
phenomenon; in addition to the geographic and taxonomic diversity of the extant taxa,
papionin monkeys are widely present and abundant members of the African Plio-
Pleistocene fossil record. Despite their evolutionary success and relative abundance, the
taxonomic and phylogenetic status of many Plio-Pleistocene papionins remains uncertain.
Well supported phylogenetic hypotheses are essential to understanding the origins and
evolution of this group: such phylogenetic trees can be used to infer the evolutionary

sequence of the key characters in certain lineages as well as assess Plio-Pleistocene
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biogeography. Comparative questions regarding biogeography can then be assessed and
compared to contemporaneous hominin taxa.

In order to elucidate African papionin phylogenetic history, two main methods of
quantitative morphological analysis were used: cladistic analysis of character data using
parsimony and 3-D geometric morphometric analysis of the basicranium. In contrast to
many previous phylogenetic studies of papionin craniodental data, here the effects of
allometry are accounted for by applying the narrow allometric coding method to
allometrically influenced morphological characters (Gilbert and Rossie, 2007). The
results of the cladistic analysis (Chapter 2) strongly suggest that papionin phylogeny
based on analysis of craniodental data and that based on molecular systematics are
congruent and support a Cercocebus/Mandrillus clade as well as a
Papio/Lophocebus/Theropithecus clade. In addition, within the
Papio/Lophocebus/Theropithecus clade, a Papio/Lophocebus sister relationship is
supported. If congruence between molecules and morphology is considered to be a
prerequisite for accepting morphological data as being reliable, then papionin and, more
broadly, primate morphology as evidenced by this data set must be considered a reliable
source of phylogenetic information. When fossil taxa are added to the analysis, the two
most parsimonious trees recovered suggest the following phylogenetic relationships
(Chapter 3): Parapapio, Pliopapio and Dinopithecus are stem African papionins,
Theropithecus is the most primitive crown African papionin taxon and the status of T.
baringensis as a member of the genus Theropithecus is strongly supported,
Gorgopithecus is closely related to Papio and Lophocebus, and Papio quadratirostris, as
defined by Delson and Dean (1993) to include the later Omo Shungura material as well
as some of the material from the Angolan Humpata Plateau, is closely related to
Mandrillus, Cercocebus, Procercocebus.

To further investigate the potential signal contained within papionin cranial
anatomy, [ applied 3-D geometric morphometric techniques in a phylogenetic analysis of
African papionin basicranial morphology (Chapter 4). Neighbor-joining and UPGMA
clustering methods were used to generate phylogenetic hypotheses based on
Euclidean distances between the average principal components (PC) matrices

compiled by sex for each taxon. To adjust for the effects of allometry, PCs that
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were significantly correlated with centroid size were excluded from the analysis.
While the basicranium has been suggested to be a highly informative anatomical region
in the study of other primate taxa, papionin basicranial shape, as represented by the PC
matrices in this study, does not suggest the same phylogenetic relationships among taxa
as the more comprehensive craniodental analyses in Chapters 2 and 3. It is difficult to
properly adjust for the effects of allometry in multivariate analyses of shape, and it is
likely that important phylogenetic information is contained within the information that is
excluded on the size-correlated PCs. Further effort should focus on methodologies to
adjust for allometric effects in multivariate morphometric analyses.

In light of the phylogenetic relationships hypothesized in Chapter 3, Chapter 5
investigates African papionin biogeography by treating biogeography as an unordered
cladistic character and biogeographic regions such as South Africa, East Africa, North
Africa, Central Africa, and West Africa as character states. The biogeographic character
states for each fossil and extant papionin taxon are then mapped onto a cladogram
derived from Chapter 3 and, using logic similar to the “progression rule” (Hennig, 1966),
dispersal events are then inferred. The hypothesized biogeographic patterns of the
African papionins during the Plio-Pleistocene are then compared to contemporaneous
hominin biogeographic patterns. Results indicate that African papionin dispersal patterns
largely mirror those of early hominins and, in at least one case, oppose general
mammalian trends as well. Suggestions of unique behavioral adaptations to account for
early hominin biogeography and dispersal patterns, therefore, seem unwarranted. In
addition, African papionin monkeys appear to document a biogeographic connection

between West and South Africa ~2.3 - 1.5 Ma.
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Chapter 1

Introduction

The cercopithecine primate tribe Papionini (Order: Primates; Family
Cercopithecidae; Subfamily Cercopithecinae) is an extremely successful group of
monkeys including the living macaques (Macaca), mangabeys (Lophocebus,
Cercocebus), baboons (Papio), geladas (Theropithecus), mandrills, and drills
(Mandrillus) (Fig. 1.1). As a testament to their adaptability and evolutionary success,
papionins are geographically spread throughout the Old World, from the southern tip of
Africa to the snow-capped mountains of Japan and the island rainforests of Southeast
Asia. The proliferation of the papionins is a well documented evolutionary phenomenon;
in addition to the geographic and taxonomic diversity of the extant taxa, papionin
monkeys are widely present and abundant components of the African Plio-Pleistocene
fossil record.

Despite their evolutionary success and relative abundance, the taxonomic and
phylogenetic status of many Plio-Pleistocene papionins remains uncertain. Questions
exist over which fossil taxa are legitimate species, the phylogenetic relationships of the
fossil taxa amongst themselves, and the phylogenetic relationships of the fossil taxa to
extant taxa. Given the relatively rich fossil record of this group during the Plio-
Pleistocene, quantitative analyses of morphological variation in a taxonomic and
phylogenetic framework provide a promising way to test a series of evolutionary
hypotheses. Well-supported phylogenetic hypotheses are essential to understanding the
origins and evolution of this group: such phylogenetic trees can be used to infer the
evolutionary sequence of the key characters in lineages as well as to determine which
taxa lay within or at the base of the extant African clades. In this respect, the ancestral
papionin morphotype as well as the ancestral morphotypes of the African clades can be

elucidated.



For many years, molecular and morphological studies concerning the
phylogenetic relationships among the extant Papionini were incongruent. Traditionally,
most morphological studies concluded that the mangabeys, Cercocebus and Lophocebus,
were a monophyletic group and that the mandrills and drills (Mandrillus) were closely
related to the savannah baboons of the genus Papio (Fig. 1.2) (e.g., Jolly, 1972; Szalay
and Delson, 1979; Strasser and Delson, 1987; Delson and Dean, 1993). By contrast,
analyses of molecular data going back to the 1970’s determined that the mangabeys, as
traditionally constituted, were a diphyletic group (e.g., Barnicot and Wade, 1970;
Barnicot and Hewett-Emmett, 1972; Cronin and Sarich, 1976; Hewett-Emmett et al.,
1976). While these early studies analyzed blood proteins, more recent studies analyzed
DNA directly, using both mitochondrial and Y-chromosome DNA samples (Disotell et
al., 1992; Disotell, 1994; Harris and Disotell, 1998; Disotell, 2000; Harris, 2000; Tosi et
al., 1999, 2003). The results of these recent molecular studies forcefully argued the
following points: macaques (Macaca) represent the basal extant papionin taxon (a fact
agreed upon by most morphological studies), Cercocebus and Mandrillus represent a
monophyletic group, and finally, a clade consisting of Papio, Theropithecus, and
Lophocebus exists but the relationships among these three genera are unresolved (Fig.
1.3). Given the power and congruence of the molecular data sets, most researchers
accepted the molecular phylogeny as the best hypothesis regarding papionin phylogenetic
relationships.

Acceptance of the molecular phylogeny left researchers with the realization that
the Papionini, as a group, is apparently riddled with morphological homoplasy
(Lockwood and Fleagle, 2000). This apparent homoplasy prevented most morphological
studies from recovering trees broadly congruent with molecular data (e.g., Collard and
Wood, 2000; 2001; Collard and O’Higgins, 2001; Singleton, 2002; Frost et al., 2003;
Collard and Elton, 2002). The incongruence of morphological and molecular data even
led some researchers to suggest that morphological data are unreliable for reconstructing
phylogenetic relationships (Collard and Wood, 2000; 2001). Given the perceived
unreliability of morphological data, sorting out phylogenetic relationships of fossil taxa is
equally or likely more problematic. The papionin fossil record, similar to that of most

mammalian groups, is composed mainly of craniodental fossils. If papionin craniodental



anatomy is truly unreliable for reconstructing phylogenetic relationships, it will be
difficult to elucidate the evolutionary history of this very successful group of primates.

In contrast to the conclusion that craniodental morphology is unreliable, more
recent studies suggest that closer examination of papionin craniodental and postcranial
anatomy supports the same clades as molecular data (Fleagle and McGraw, 1999; 2002;
McGraw and Fleagle, 2006; Gilbert, 2007; Gilbert and Rossie, 2007). In particular,
recent studies have suggested that convergent allometry results the appearance of
rampant homoplasy; when the effects of allometry are accounted for in phylogenetic
analysis of morphological data, results suggest that morphological and molecular data
offer congruent phylogenetic hypotheses (Gilbert, 2007; Gilbert and Rossie, 2007).

Thus, craniodental data of these primates would appear to be no more or less reliable than
molecular data for reconstructing African papionin relationships. The congruence of the
two data sets provides strong support for their shared phylogenetic hypothesis, namely
that Cercocebus and Mandrillus form a clade and that Papio, Lophocebus, and
Theropithecus also form a clade among extant African papionin taxa (Fig. 1.3). Given a
set of informative craniodental characters with which to evaluate the fossil record, a well-
supported hypothesis of the phylogenetic relationships and evolutionary history of the
African papionins should be attainable.

Given the renewed confidence in papionin craniodental anatomy, this dissertation
re-examines the anatomy of extant and fossil papionins in order to understand their
phylogenetic relationships and evolutionary history. In order to achieve this goal, two
main methods of quantitative morphological analysis were used: cladistic analysis of
character data using parsimony and 3-D geometric morphometrics of the basicranium.
Thus, a direct comparison between cladistic methods and morphometric methods in the
reconstruction of phylogeny can be made. With fossil taxa placed in a more firm
phylogenetic framework, assessments of Plio-Pleistocene African papionin biogeography
can also be made. Comparative questions regarding Plio-Pleistocene biogeography can
then be assessed and patterns of dispersal can be compared with those of

contemporaneous hominin taxa.



Figure Captions

Figure 1.1. Extant papionin taxa: Macaques (Macaca), Mangabaeys (Lophocebus,
Cercocebus), Geladas (Theropithecus), Baboons (Papio), Mandrills and Drills
(Mandrillus). Illustrations by Stephen Nash.

Figure 1.2. Traditionally hypothesized phylogenetic trees of the extant Papionini from
morphological data: @) from Jolly (1972), Szalay and Delson (1979), Strasser and Delson
(1987); b) from Delson and Dean (1993). Illustrations by Stephen Nash.

Figure 1.3. Hypothesized phylogenetic trees of the extant Papionini from molecular
(mtDNA and Y-chromosome) data (Disotell et al., 1992; Disotell, 1994; 2000; Harris and
Disotell, 1998; Tosi et al., 1999; 2003) as well as recent morphological studies (Fleagle
and McGraw, 1999; 2002; McGraw and Fleagle, 2006; Gilbert, 2007; Gilbert and Rossie,
2007). Illustrations by Stephen Nash.
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Chapter 2

Cladistic Analysis of Extant African Papionins Using Craniodental Data

Abstract

In this study, a comprehensive phylogenetic analysis of African papionin
craniodental morphology, including both quantitative and qualitative characters, is
performed using the narrow allometric coding method to control for allometry. In
contrast to previous studies of African papionin craniodental morphology, the results of
this study strongly suggest that African papionin phylogeny based on molecular
systematics and that based on morphology are congruent and support a
Cercocebus/Mandrillus clade as well as a Papio/Lophocebus/Theropithecus clade. In
addition, within the Papio/Lophocebus/Theropithecus clade, a Papio/Lophocebus sister
relationship is supported. If congruence between molecules and morphology is
considered to be a prerequisite for accepting morphological data as being reliable, then
papionin and, more broadly, primate morphology as evidenced by this data set must be
considered a reliable source of phylogenetic information. Among highly sexually
dimorphic primates such as the papionins, male morphologies appear to be particularly
good sources of phylogenetic information. This phenomenon is most likely due to sexual
selection, and suggests that future analyses of highly sexually dimorphic primates should
consider analyzing the sexes separately. Finally, character transformation analyses
identify a series of morphological synapomorphies uniting the various papionin clades
that should prove useful in future morphological analyses, especially those involving

fossil taxa.



Introduction

In recent years, the reliability of primate morphological data to generate accurate
phylogenetic hypotheses has been explicitly called into question (Collard and Wood,
2000; 2001). Specifically, phylogenetic analyses of extant hominoid and papionin
craniodental morphology have demonstrated that homoplasy is rampant in all regions of
the cranium and, more broadly, that all cranial regions are unreliable for reconstructing
phylogeny (Collard and Wood, 2000; 2001). Taken at face value, these results suggest
that all primate phylogenies relying on craniodental morphology are dubious (Collard and
Wood, 2000; 2001). Since our understanding of primate evolution is based on a fossil
record composed largely of craniodental material, the implications of Collard and
Wood’s (2000; 2001) studies are especially drastic.

Although the issues raised by Collard and Wood (2000; 2001) are certainly
significant, and it is true that homoplasy is a widespread phenomenon with the potential
to conflate the results of phylogenetic analyses (Lockwood and Fleagle, 1999), their
broader claim about the inability of phylogenetic studies of skeletal and dental data to
generate accurate phylogenies is far from proved (Strait and Grine, 2004; Gilbert and
Rossie, 2007). The analyses that led to their results and overall conclusions are not
without issue, and some of these problems have been previously identified. Thus, the
choice of outgroup(s) and of which taxa to include in an analysis can have significant
effects on determining character polarities, and this will influence the resulting
phylogenetic trees (e.g., Strait and Grine, 2004). In fact, hominoid phylogenetic
resolution improves with adjustments to allow for the assignment of multiple outgroups
as well as the inclusion of fossil taxa (Strait and Grine, 2004). Fossil taxa are especially
important in morphological phylogenetic analyses because they extend taxon sampling
(e.g., Gauthier et al., 1988; Donaghue et al., 1989; Strait and Grine, 2004), they provide
unique morphologies that help to refine assessments of character transformation (e.g.,
Gatesy and O’Leary, 2001; Springer et al., 2001; Gatesy et al., 2003), and consequently
they increase overall phylogenetic accuracy (e.g., Wheeler, 1992; Zwickl and Hillis,
2002). In the case of hominoid phylogeny, Strait and Grine (2004) recovered the

“correct” or molecular cladogram by simply expanding the outgroup and including



hominin fossils that helped to break down the “long branch” that separates Homo from
other apes.

Additionally, as noted by Jolly (2001), the size-adjustment method employed by
Collard and Wood (2000; 2001) for their quantitative characters, a geometric mean size
correction, does not properly adjust for shape changes that are correlated with size (i.e.,
allometry). While a geometric mean method of size correction is isometric and equalizes
specimen volumes while maintaining their shapes (Jungers et al., 1995), this
methodology does not account for those shape differences that are correlated with size.
Therefore, every allometrically influenced character is simply being grouped on the basis
of body size. In effect, body size is being coded multiple times in the analysis and the
influence of these size-correlated characters is reflected in the resulting trees. A
subsequent study attempted to use a different method for size-correction, namely
regression analysis with the retention of residuals (Nadal-Roberts and Collard, 2005).
However, this method is undesirable because residuals eliminate not only size but most
shape information as well (Bookstein, 1989; Jungers et al., 1995; Nadal-Roberts and
Collard, 2005).

As these criticisms imply, it is difficult to adequately control for differences in
body size without losing phylogenetically meaningful information. One option would be
to simply exclude any allometrically influenced characters, once identified, from
subsequent phylogenetic analysis, but this would surely result in a major loss of useful
information because so much of form is correlated with size (see Lycett and Collard,
2005). Even when a character is significantly correlated with body size, taxa of similar
sizes may have different morphologies that have real phylogenetic value. For example,
when taxa form two distinct size groups, small species may have, in relative terms, long
or short snouts, and large species may also have, in relative terms, long or short snouts.
In such cases the relatively long snouts of small and large species may be homologous, as
may be the relatively short snouts of both groups, but these homologies would be
obscured by most methods of character coding that attempt to adjust for size. In such
cases, a “narrow allometry” approach (Smith, 1984) would be better suited to detecting
similarities in morphology (see Fig. 1). In fact, a narrow allometric coding method has

been devised recently, and preliminary results suggest that it effectively adjusts for
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allometry when comparing closely related animals distributed among discrete body-size
groups (Gilbert and Rossie, 2007).

Herein, the narrow allometric coding method is applied to phylogenetic analyses
of African papionin hard-tissue anatomy including a large set of quantitative and
qualitative craniodental characters. As suggested by Gilbert and Rossie (2007), the
inclusion of a large number of both quantitative and qualitative characters represents an
improved data set relative to previous analyses, and this study therefore represents the
most comprehensive cladistic morphological analysis of the African papionin monkeys to
date. Due to the large amount of sexual dimorphism resulting in drastically different
male and female papionin morphologies, three separate analyses are conducted: 1) a
traditional sex-averaged analysis, 2) a male analysis, and 3) a female analysis.

In sum, the purpose of this study is threefold. First, this comprehensive data set
will be used to further assess the influence of allometry on papionin craniodental
morphology. Second, the results of these analyses will be compared to the results of
previous molecular and morphological phylogenetic analyses of African papionin
primates. If any phylogenetic hypotheses produced from this comprehensive analysis of
craniodental anatomy are congruent with those produced from molecular analyses,
confidence in their shared phylogenetic hypothesis will certainly be increased. In
addition, for those who insist that morphological data must produce phylogenetic
hypotheses congruent with molecular data in order to be considered reliable, any
congruence between papionin molecules and morphology will demonstrate that hard
tissue anatomy is a “reliable” source of phylogenetic information. Finally, character
transformation analyses will be used to identify craniodental characters which unite the
resulting African papionin clades. With a documented list of shared-derived craniodental
characters supporting certain clades, a better understanding of papionin craniodental

evolution will be achieved.

Methods

This study is based on published characters and character states historically

deemed important in discussions of cercopithecine and papionin phylogeny combined
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with my own observations (see Table 1 for the sources of individual characters). Data for
the 62 quantitative characters originally used in the Collard and Wood (2000; 2001)
studies were kindly provided by Mark Collard. Complete character lists with definitions
and character states are presented in Tables 2.1-2.2. The taxa and sample sizes used in
the phylogenetic analyses are broken down by character and presented in Table 2.3.
Males and females were analyzed separately and also averaged together in a third sex-
averaged analysis. Because many characters, particularly quantitative characters, were
coded on the basis of narrow allometries, taxa such as Pan and Colobus are not
appropriate outgroups because the allometric trajectories influencing the craniodental
morphology of these primates are not comparable to those observed in African papionin
monkeys; such phylogenetically and phenetically distant taxa cannot be used (Gaftney,
1979; Lockwood et al., 2004). However, Strait and Grine (2004) have also demonstrated
that multiple outgroups help improve phylogenetic resolution and accuracy. To account
for both of these realities, Macaca and Allenopithecus were assigned as outgroups for all
analyses, but, in order to retain a relevant allometric baseline for the African papionins,
only Macaca was coded for morphometric (quantitative) craniodental characters.

For analysis, all macaque specimens were lumped into a single taxon: Macaca.
For quantitative characters, this included specimens of M. fascicularis and M. mulatta.
For qualitative characters, this included specimens of M. fascicularis, M. mulatta, M.
nemestrina, and M. sylvanus. These taxa are generally regarded by morphological and
molecular studies as the relatively generalized macaques that are likely to represent the
primitive morphological condition (e.g., Fooden, 1975; Szalay and Delson, 1979; Delson,
1980; Morales and Melnick, 1998; Groves, 2001). Because this analysis was conducted
at the genus-level, it is appropriate to sample multiple species in an attempt to include a
range of possible morphologies. For ingroup taxa, specimens of the following species
and subspecies were included in their respective genera in the analysis: Cercocebus
agilis, Cercocebus torquatus, Lophocebus albigena, Lophocebus aterrimus, Mandrillus
leucophaeus, Mandrillus sphinx, Papio hamadryas anubis, Papio hamadryas
cynocephalus, Papio hamadryas hamadryas, Papio hamadryas kindae, Papio hamadryas
papio, Papio hamadryas ursinus, Theropithecus gelada.
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In total, 157 characters were used for the analysis: 88 quantitative characters and
69 qualitative characters. Each type of character requires slightly different rules and
techniques for assigning character states. For quantitative characters, an isometric size
correction was first applied. For each specimen, all quantitative characters were divided
by the geometric mean of all measurements for that specimen”. After this isometric size
correction, the resulting values for each character represented some aspect of “shape”
(sensu Mosimann, 1970; also see Darroch and Mosimann, 1985).

By definition, allometrically influenced characters are those whose shape is
significantly correlated with size (Mosimann and James, 1979). To determine which
characters were allometrically influenced, a correlation of all isometrically size-adjusted
shape characters against the geometric mean of 62 cranial measurements was performed.
Theoretically, these correlations should be calculated for each character of each specimen
against the geometric mean for that specimen. This has the advantage of providing more
data points to detect significance in the correlations, especially if the phylogenetic
analysis in question involves a small number of taxa. However, this approach also has
the serious disadvantage of being overly sensitive to characters that have a small but
statistically significant size-correlated component.

The more general approach used and advocated here instead uses the average
size-adjusted character value of each taxon and then correlates these to the average
geometric mean of each taxon. Using an example from this analysis, Character C7
(distance between bregma and lambda) was measured on 20 male and 20 female
Cercocebus specimens. For each specimen, a geometric mean of 62 cranial
measurements was calculated and the raw measurement of C7 was divided by the
geometric mean for that specimen. The new value is the size-adjusted value for C7. The
average of all 20 size-adjusted values for male Cercocebus was calculated, as well as the
average of all 20 geometric means for the Cercocebus males. The same procedure was
carried out with females, leading to an average male value of C7, an average female
value of C7, an average geometric mean for male Cercocebus, and an average geometric

mean for female Cercocebus. The same calculations were performed for all taxa in the

* Because characters expressed as an index are already size-adjusted, they were not divided by the
geometric mean. The 62 measurements used by Collard and Wood (2000; 2001) were used in the
calculation of the geometric mean for each taxon.
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analysis. For the correlation analysis, the average C7 values were used for males and
females combined so that 12 data points were available for the correlation (i.e., 6 male
values and 6 female values). These 12 values were then correlated with their
corresponding 12 average geometric means. The resulting r-value for the correlation of
C7 against the geometric mean was -0.908 with a p-value less than 0.001, indicating that
C7 is an allometrically influenced character.

Correlation analyses were performed for all quantitative characters in the same
way as outlined for character C7. The critical value for a correlation with a sample size
of 12 and 10 degrees of freedom at the 0.05 significance level is 0.576 (Rohlf and Sokal,
1995). The lowest significant r-value produced from the correlation analyses performed
here was 0.5987. Correlation r-values below 0.576 were considered biologically
insignificant and did not warrant application of the narrow allometric coding procedure
outlined here.

After the correlation analyses were performed, those shape characters that were
significantly correlated with the geometric mean (size) were determined to be, by
definition, significantly influenced by allometry (see Tables 2.1-2.2 for the complete list
of allometrically influenced characters). Due to their correlation with body size, these
characters are not independent characters and are not suitable for phylogenetic analysis
without some sort of character correction. For any quantitative character determined to
be allometrically influenced, the narrow allometric coding method was employed to
disentangle the effects of allometry (see also Gilbert and Rossie, 2007). The papionin
taxa included here were divided into two size categories: Macaca, Cercocebus and
Lophocebus were considered to be small-bodied and Papio, Theropithecus and
Mandrillus were considered to be large-bodied. These size groups are fairly obvious, but
they can also be confirmed statistically by using gap-weighted coding for the geometric
mean of each taxon and assigning two character states. These two size categories hold
true for both males and females.

Again picking up with the C7 example, this character was determined to be
significantly influenced by allometry due to its significant correlation with the geometric
mean (see above). Therefore, the narrow allometric coding procedure was applied to

character C7 in order to better reflect homologous character states in taxa of differing
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body sizes (see Fig. 2.1). The values for each sex and each taxon in the small-bodied
papionin taxa (Macaca, Cercocebus, and Lophocebus) were coded separately using gap-
weighted coding and, similarly, the values for each sex and each taxon in the large-
bodied papionin taxa (Papio, Theropithecus, and Mandrillus) were coded separately
using gap-weighted coding (see Thiele, 1993 for a description of gap-weighted coding).
As a result, the taxon with the lowest C7 value in the small-bodied size category
(Cercocebus) gets assigned a character state of “0”, and the taxon with the lowest C7
value in the large-bodied size category (Mandrillus) also gets assigned a character state
of “0”. If the narrow allometric procedure was not employed, Mandrillus would receive
a value of “0” because it has the lowest C7 value among all taxa and Cercocebus would
receive a higher character state value, depending on the number of character states chosen
to be employed by the gap-weighting equation (see Fig. 2.1 and Fig. 2.2).

For all quantitative characters, gap weighted coding was used (Thiele, 1993),
dividing the variation into three character states because this represents the minimum
number of taxa in a given size category (see also Gilbert and Rossie, 2007). A flow chart
summarizing the narrow allometric coding method for quantitative characters is presented
in Figure 2.3.

Qualitative characters were scored according to the character state criteria listed
in Table 2.2. To better encompass variation, intermediate character states were
employed. Intermediate (polymorphic) character states for a given character were
applied to any taxon displaying two or more character states in more than 20% of
specimens examined. For characters with more than two discrete character states, an
intermediate state was assigned if two adjacent character states totaled > 80% of all
observations. For example, if a character has three discrete states (0, 2, and 4), and a
taxon displays states 0 or 2 combined for > 80% of all observations, an intermediate state
(1) was assigned for this particular taxon. If no two adjacent character states combined
totaled > 80% of all observations for all taxa, an additional polymorphic state was added
and the character was considered unordered. In the case of multistate characters where
more than two adjacent states both totaled 80%, the average of the two possible

intermediate states was used. For example, if states 0 + 2 total 80% (intermediate state 1)
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but states 2 + 4 also total 80% (intermediate state 3), the average of the intermediate
states, in this case (1 +3)/2 =2, was assigned.

Unless otherwise noted, qualitative characters were considered ordered. For a full
description of characters, character states, and character types, see Tables 2.1 and 2.2.
When possible, a similar narrow allometric coding method was employed for qualitative
characters determined to be allometrically influenced. Qualitative characters were
determined to be significantly influenced by allometry by taking careful note of where
consistent differences exist between the morphologies of small and large taxa, similar to
the analysis of Gilbert (2007). To illustrate by example, Gilbert (2007) determined that
the development or extent of maxillary fossae, character F20 in this analysis, is
allometrically influenced such that, where fossae are present, small taxa have greater
development of this feature on average than do large taxa. Accordingly, character states
were assigned separately in small and large taxa in order to restore perceived homology.
The result is that large and small taxa with the greatest development of maxillary fossae
relative to other taxa within their respective size categories were assigned similar
character states (e.g., see Table 2.2 for character state definitions within each size
category). Where data was unavailable or inapplicable for certain characters, whether
they were qualitative or quantitative, the missing data (“?”’) code was used.

The resulting character matrices for the male, female, and sex-averaged data sets
were then subjected to a series of parsimony analyses using PAUP 4.0 (Swofford, 1998),
and character transformations were mapped using Mesquite 1.11 (Maddison & Maddison,
2006). Sex-averaged character states simply consisted of the average of the mean male
and mean female values for each quantitative character and most of the qualitative
characters. In the case of quantitative characters, the sex-averaged value for each
character was then coded using gap-weighted coding with three character states. For
qualitative characters, the character state value of the males and females for each taxon
were averaged together. If the resulting value for any taxon ended up with a decimal of
0.5, the character states of all taxa for that character were doubled in order to work with
whole number character states. If the character was unordered, the polymorphic state
was one whole number higher than the highest specific character state, regardless of the

doubling procedure. An exhaustive search was used to find the most parsimonious trees
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and a 10,000 replication branch and bound bootstrap procedure with replacement was
used to provide confidence intervals on the clades suggested by the most parsimonious

trees.

Results

Almost one-third of the characters examined in this study, i.e., 51 out of 157,
were significantly affected by allometry. Over two-thirds of these allometrically
influenced characters (36 out of 51) were concentrated in the face, cranial vault and
cranial base.

For comparison, the molecular phylogeny for the extant papionins (Disotell et al.,
1992; 2000; Disotell, 1994; Harris and Disotell, 1998; Tosi et al., 1999; 2003) and the
most parsimonious tree derived from the original Collard and Wood (2000) data set are
presented in Figure 2.4. For a more direct comparison with the analyses presented here,
the original Collard and Wood (2000) data set was reanalyzed excluding Pan and instead
assigning Macaca as the outgroup, and without application of the narrow allometric
coding method. The resulting cladograms from the current analyses are provided in
Figure 5 and summarized with tree statistics in Table 2.4. Using the narrow allometric
coding method, the most parsimonious trees resulting from the sex-averaged, male, and
female analyses were congruent with the molecular phylogenetic tree (Figs. 2.4a, 2.5a,
2.5b). Therefore, the majority-rule consensus tree of the three analyses presented here is
also congruent with molecular tree (Fig. 2.6). Bootstrap support values for the most
parsimonious trees obtained in each individual analysis are presented in Table 2.4. The
higher values here, relative to the previous analyses of Gilbert and Rossie (2007),
indicate increased support for the congruence of molecular and morphological data.

The results of the character transformation analyses are presented in Table 2.5.
Only those shared-derived characters supporting the clades suggested by the consensus
tree are provided. Many of the characters presented in Table 2.5 are identified here, for

the first time, as shared-derived characters uniting the various African papionin clades.
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Discussion

As previously demonstrated, allometry has a strong influence on papionin
craniodental anatomy (Freedman, 1962; Collard and O’Higgins, 2001; Singleton, 2002;
Frost et al., 2003; Leigh et al., 2003; Gilbert and Rossie, 2007). The strong influence of
allometry may be compensated for by using a narrow allometric approach to identify
craniodental synapomorphies, and such a method must be considered a prerequisite in
any attempt to conduct a meaningful phylogenetic analysis of morphological data in
papionins or any other group where the included taxa show a great disparity in size. A
previous analysis on a smaller number of quantitative morphological characters has
demonstrated the efficacy of this type of approach (Gilbert and Rossie, 2007). The
analyses conducted here confirm these findings, and extend the known utility of the
narrow allometric coding method to both quantitative and qualitative characters.

Using the narrow allometric coding method, the most parsimonious phylogenetic
trees produced in the sex-averaged, male, and female analyses were congruent with the
consensus tree produced from molecular data. In addition, the bootstrap values
associated with these trees are generally higher than those produced from quantitative
morphological data alone. These tree statistics illustrate the importance of including both
quantitative and qualitative characters in phylogenetic analysis (Gilbert and Rossie,
2007). Both types of characters may contain phylogenetically useful information and can
help increase the accuracy of resulting trees. Future phylogenetic analyses of primate
morphology should attempt to include both kinds of characters whenever possible.

In addition to the most parsimonious trees, the majority-rule consensus tree is
congruent with the molecular consensus tree in suggesting a Cercocebus/Mandrillus
clade as well as a Papio/Lophocebus/Theropithecus clade. While the molecular
consensus tree cannot resolve the relationships among Papio, Lophocebus, and
Theropithecus, the results from the morphological analyses presented here support the
existence of a Papio/Lophocebus clade with Theropithecus placed at the base of the
group. Further support of an extant sister relationship between Papio and Lophocebus
may also be provided by the newly named papionin taxon Rungwecebus Kipunji, which

was originally described as Lophocebus Kipunji but has more recently been suggested to
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be more closely related to Papio (Jones et al., 2005; Davenport et al., 2006). No doubt
further genetic and morphological analyses including Rungwecebus will help to resolve
the genus-level relationships with the Papio/Lophocebus/Theropithecus group. In the
meantime, as the results of this analysis suggest, the phylogenetic placement of
Theropithecus at the base of this African papionin clade will remain the hypothesis with
the most support.

The congruence achieved between the phylogenetic hypotheses produced from
the morphological data presented here and the previously published molecular data
indicate that there is strong support for their shared phylogenetic hypothesis. Thus,
among extant African papionin taxa, there is strong support for both a
Cercocebus/Mandrillus and a Papio/Lophocebus/Theropithecus clade. A more detailed
and biologically meaningful interpretation of papionin craniodental morphology, taking
allometry into account, clearly indicates that papionin molecules and morphology are
congruent. As reliable as one considers molecular data in primate phylogenetic analysis,
morphological data must be considered just as reliable. Rather than proclaiming
morphological data unreliable or irrelevant (e.g., Collard and Wood, 2000; 2001;
Scotland et al., 2003), it is better to understand the importance of morphological data in
phylogenetic reconstruction, especially in the case of fossils, and to re-examine cases of
seeming incongruence with greater scrutiny (Wiens, 2004; Smith and Turner, 2004;
Gilbert and Rossie, 2007). Both molecular and morphological data are important sources
of phylogenetic information, and ignoring one source or the other is not advisable if the
overall goal is phylogenetic accuracy.

Similar to the findings of Gilbert and Rossie (2007), the male and female analyses
presented here illustrate the dichotomous nature of African papionin craniodental
anatomy. While the most parsimonious tree produced from the male analysis is
congruent with the female most parsimonious tree and both suggest
Cercocebus/Mandrillus and Papio/Lophocebus/Theropithecus clades, there is no
bootstrap support for the Papio/Lophocebus/Theropithecus clade in the female analysis.
In addition, analysis of male craniodental morphology results in the highest CI, RI, RC
and bootstrap values, and the lowest HI values compared to all other analyses performed

here (see Table 2.4). These statistics suggest that male craniodental anatomy is better at
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detecting real versus apparent synapomorphies and produces more stable phylogenetic
trees. The superior performance of the male craniodental data set supports previous
claims about the increased utility of male morphologies relative to female morphologies
among highly sexually dimorphic primates (Fleagle and McGraw, 2002; Gilbert and
Rossie, 2007). It is likely that the distinctive traits of papionin males are tied to sexual
selection, and these traits are phylogenetically informative because closely related taxa,
by definition, must have shared a common mate recognition system more recently than
distantly related taxa (Paterson, 1985; Gilbert and Rossie, 2007). In addition, sexual
selection in the form of mate competition is almost exclusive to males among catarrhine
taxa. Similar types and levels of contest competition over females in closely related taxa
would help explain the evolution of distinctive and phylogenetically informative male
craniodental characters and their potential absence in females.

Further support for sexual selection, particularly contest competition among
males, as an important imprint on phylogenetic history is evident from a brief
examination of two characters commonly considered closely tied to sexual selection in
primates: relative male canine size and male canine size relative to female canine size.
Cercocebus and Mandrillus have the largest male canines relative to body size as well as
the highest levels of canine dimorphism relative to the other papionin taxa. Similarly,
Papio, Theropithecus, and Lophocebus have the smallest male canines relative to body
size and the lowest levels of canine dimorphism relative to the primitive condition
expressed by Macaca. The distribution of these characters points to the similar patterns
of sexual selection and, by extension, the shared phylogenetic history of these African
papionin clades.

The performance of male craniodental morphology in the analyses presented here
suggests that primate and mammalian morphological systematists should pay close
attention to male morphologies among highly sexually dimorphic taxa. In fact, in
addition to sex-averaged analyses, I would recommend that the sexes be analyzed
separately in phylogenetic analyses of highly sexually dimorphic taxa. This is not
typically done in cladistic studies, but there are good reasons to argue that it should be.
While individual qualitative morphological characters can be defined in such a way to

focus on male or female character states only, quantitative morphological characters
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typically represent measurements that are taken on specimens of both sexes and then
averaged together. These quantitative characters necessarily represent an “imaginary”
morphotype; no animal exists with an intermediate male and female morphology,
especially among highly sexually dimorphic and morphologically dichotomous taxa.
Therefore, it may be preferable to separate the sexes and run separate phylogenetic
analyses on both morphotypes. Further studies of this kind may support or refute the
hypothesis that male morphologies, particularly sexually-selected characters, have
increased phylogenetic value relative to female morphologies among sexually dimorphic
taxa.

An alternative and more complete approach to including both male and female
data in phylogenetic analysis is to combine the separate male and female matrices in a
larger “combined-sex” analysis. In the case of this study, this would double the number
of characters in the study, from 157 to 314. While it may be suggested that this strategy
will result in the repetition and overweighting of certain characters, there are many
reasons to believe that combining male and female matrices that have been coded
separately is the most appropriate and accurate portrayal of morphological information
about a species. First, such an approach does not create an “imaginary” morphotype; the
integrity of the separate male and female morphotypes is retained. Second, male and
female morphotypes in sexually dimorphic taxa are demonstrably different and these
differences obviously have a genetic basis, which is included in this approach. Third,
increasing the number of characters in phylogenetic analysis has been repeatedly
demonstrated to increase overall phylogenetic accuracy (e.g., Wiens, 2003a; 2003b;
2006). In this case, combining characters that have been scored separately for males and
females allows for both unique male and female character states that are phylogenetically
informative to be sampled together during the analysis and potentially increases the
strength and accuracy of the phylogenetic signal.

To demonstrate the effectiveness of a combined-sex approach, the 157 character
male matrix and 157 character female matrix were combined into a 314 character matrix
and then subjected to the same parsimony and bootstrap analyses. The resulting most
parsimonious tree is the same as the consensus tree from the previous analyses (Fig. 2.6).

In addition, the CI, RI, RC, and bootstrap values for this tree are higher than that for the
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sex-averaged analysis (Table 2.4). The results of this combined-sex analysis support the
hypothesis that it is a superior method for including both male and female morphological
data compared to the sex-averaged analysis.

Finally, the results of the analyses here present a new and updated list of
craniodental synapomorphies uniting the clades suggested by the majority-rule consensus
tree. Particularly distinctive new character states identifiable in both sexes include a
shorter distance between bregma and lambda, a shorter basisphenoid, a narrower
posterior palate, larger male canines, and higher levels of canine dimorphism for
Cercocebus/Mandrillus and a wider neurocranium, broader infratemporal region,
relatively small canines, and lower levels of canine dimorphism for
Papio/Lophocebus/Theropithecus (Table 2.5). These character states, in addition to those
described in previous studies (e.g., Fleagle and McGraw, 1999; 2002; Groves, 2000;
McGraw and Fleagle, 2006; Gilbert, 2007), should be useful in the description and
identification of new fossil African papionin taxa. The more extensive list of distinctive
characters for male and sex-averaged samples of papionins listed in Table 2.5 should also

be helpful in the phylogenetic analysis of fossil specimens.

Conclusions

A large set of qualitative and quantitative craniodental characters for the
cercopithecoid monkey tribe Papionini was subjected to phylogenetic analysis using
parsimony. In order to account for the well-documented influence of allometry on the
craniodental morphology of this group, the narrow allometric coding method was
employed (Gilbert and Rossie, 2007). Contrary to previous analyses which have
purportedly demonstrated the incongruence of papionin molecular and morphological
data, the comprehensive analyses conducted here strongly suggests that, when allometry
is properly accounted for in phylogenetic analysis, molecular studies of African papionin
phylogeny and analyses based on craniodental morphology are congruent. Therefore, if
such congruence is to be regarded as a prerequisite for assessing the reliability of
morphological data, then morphological data may be regarded as just as reliable as

molecular data. While molecular analyses cannot resolve the relationships among the
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Papio/Lophocebus/Theropithecus clade (Disotell et al., 1992; 2000; Disotell, 1994;
Harris and Disotell, 1998; Tosi et al., 1999; 2003), the morphological analyses presented
here indicate that Papio and Lophocebus are sister taxa and Theropithecus is at the base
of this grouping. As suggested by character transformation analyses, identifiable
synapomorphies of Cercocebus and Mandrillus include a short distance between bregma
and lambda, a short basisphenoid, a narrow posterior palate, large male canines, and high
levels of canine dimorphism, while a wide neurocranium, broad infratemporal region,
small male canines, and low levels of canine dimorphism unite Papio, Lophocebus, and
Theropithecus. These morphologies, along with the more complete list of morphologies
provided in Table 2.5, should be helpful in determining the phylogenetic position of
fossil papionin taxa.

Similar to the results of Gilbert and Rossie (2007), this study found that male
craniodental morphology is a particularly useful source of phylogenetic information and
that the underlying reasons for this phenomenon are probably tied to sexual selection.
Future studies of highly sexually dimorphic primates should pay particular attention to
male morphologies and either separate the sexes in phylogenetic analysis of quantitative
morphological characters or combine separate male and female matrices in a “combined-

sex’ analysis.
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Figure Captions

Figure 2.1. Heuristic comparison of narrow allometric coding and conventional coding
of size-adjusted data for hypothetical character 'relative snout length'. The study group
exhibits positive allometry for the character "relative snout length", and taxa within the
group fall into two basic size groups, small and large. The black lines represent ranges of
relative snout length within each size group. Conventional conversion of craniometric
data into phylogenetic characters (depicted in dashed lines and numbers on the Y-axis)
would divide the entire range of relative snout lengths (the Y-axis) into segments
horizontally, in this case producing 5 states. Narrow allometric coding (depicted by
diagonally arranged prime’ numbers) performs the same segmenting procedure, but
applies it to the two size groups separately such that the shortest-snouted species in each
group are coded as "short", and the longest-snouted species in each group are coded as
"long". From Gilbert and Rossie (2007).

Figure 2.2. Flow chart outlining the difference between traditional coding methods and
the narrow allometric coding procedure for allometrically influenced characters. Using
the example character C7, average values for each taxon are arranged in ascending order.
Traditional gap-weighted coding with three character states would assign character states
among all taxa treated as one group (left-hand column). The narrow allometric coding
method first divides the taxa into discrete size categories, and then uses gap-weighted
coding to assign character states separately within each size category (right column).
Note the difference between the character states assigned to each taxon using the
different methods; the narrow allometric coding method results in a more accurate
reflection of homologous character states.

Figure 2.3. Flow chart outlining the narrow allometric coding procedure for quantitative
characters.

Figure 2.4. a) Hypothesized phylogenetic tree of the extant Papionini from molecular
(mtDNA and Y-chromosome) data (Disotell et al., 1992; 2000; Disotell, 1994; Harris and
Disotell, 1998; Tosi et al., 1999; 2003) compared with b) the most parsimonious tree
derived from the craniodental data set of Collard and Wood (2000; 2001) using Macaca
rather than Pan as the outgroup.

Figure 2.5. Most parsimonious phylogenetic trees of the extant Papionini &) from
craniodental data in the sex-averaged and male analyses and b) from craniodental data in
the female analysis. Note that 2.4a is congruent with the hypothesized phylogenetic tree

for the extant papionins from molecular data in Figure 2.3a.

Figure 2.6. Majority-rule consensus tree of the extant Papionini from craniodental data
in the male, female and sex-averaged analyses. Note that this tree is congruent with the
hypothesized phylogenetic tree for the extant papionins from molecular data in Figure
2.3a. Values above the nodes correspond to the percentage of most parsimonious trees
supporting a particular clade in the male, female, and sex-averaged analyses. Numbers
below the nodes identify correspond to Table 2.5.
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Figure 2.6
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Chapter 3

Cladistic Analysis of Extant and Fossil African Papionins Using Craniodental Data

Abstract

This chapter examines extant and fossil African papionin phylogenetic history
through a comprehensive cladistic analysis of craniodental morphology using both
quantitative and qualitative characters. In order to account for the well-documented
influence of allometry on the papionin cranium, the narrow allometric coding method
was applied to characters determined to be significantly affected by allometry. Results of
the analysis suggest that Parapapio, Pliopapio, and Dinopithecus are stem African
papionin taxa. Crown Plio-Pleistocene African papionin taxa include Gorgopithecus,
Lophocebus, Procercocebus, and Papio quadratirostris. Notable phylogenetic
conclusions include the following: Papio quadratirostris, as defined by Delson and Dean
(1993), is reconstructed here as being the sister taxon to the clade containing the extant
taxa Mandrillus and Cercocebus; Theropithecus baringensis is strongly supported as a
primitive member of that genus; Gorgopithecus is closely related to Papio and
Lophocebus; and Theropithecus is a primitive crown African papionin taxon. Finally,
character transformation analyses identify a series of morphological transformations
during the course of papionin evolution. The origin of crown African papionins is
defined, at least in part, by the appearance of definitive maxillary fossae. Among crown
African papionins, Papio, Lophocebus, and Gorgopithecus are further united by the most
extensive development of this feature. The Mandrillus/Cercocebus/Procercocebus/Papio
quadratirostris clade is defined by upturned nuchal crests (especially in males), widely
divergent temporal lines (especially in males), and a tendency to enlarge the premolars as
an adaptation for hard-object food processing. The adaptive origins of the genus
Theropithecus appear associated with a diet requiring an increase in temporalis

musculature, the optimal placement of occlusal forces onto the molar battery, and an
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increase in the life of the posterior dentition. This shift is associated with the evolution of
distinctive morphological features such as the anterior union of the temporal lines,

reversed Curve of Spee, and increased enamel infoldings.

Introduction

The large African cercopithecine primates, the Papionini (Order: Primates,
Tribe: Papionini), include the living macaques (Macaca), mangabeys (Lophocebus
and Cercocebus), baboons (Papio), geladas (Theropithecus), mandrills, and drills
(Mandrillus). In addition to this diversity of extant taxa, papionin monkeys are
widely present and abundant members of the Plio-Pleistocene African fossil record.
Questions exist over which fossil taxa are legitimate species, the phylogenetic
relationships of fossil taxa amongst themselves, and the phylogenetic relationships
of fossil taxa to extant taxa. Given the relatively rich fossil record of this group, an
analysis of morphological variation in a phylogenetic framework would seem a
promising way to test a series of evolutionary hypotheses.

While previous phylogenetic analyses of African papionin morphological
data produced phylogenies incongruent with molecular data (e.g., Szalay and
Delson, 1979; Strasser and Delson, 1987; Delson and Dean, 1993; Collard and
Wood, 2000; 2001), more recent studies note morphological characters whose
distributions support relationships similar to those suggested by molecular data
(Fleagle & McGraw, 1999; 2002; McGraw and Fleagle, 2006; Gilbert, 2007a). Most
recently, Gilbert and Rossie (2007) and Gilbert (Chapter 2) have demonstrated that,
when allometry is accounted for in phylogenetic analysis of papionin craniodental
anatomy, morphological data can produce phylogenetic trees congruent with trees
produced from molecular data. If such congruence is considered to be a test of the
reliability of morphological data (Collard and Wood, 2000; 2001), then craniodental data
seems perfectly suitable for phylogenetic analysis.

Given the increased confidence in papionin morphological data, this study
presents a comprehensive craniodental phylogenetic analysis of both extant and

fossil African papionin taxa. A major goal of this analysis is to place problematic
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fossil taxa in a firm phylogenetic context. In addition, it should provide clearer
resolution of character state evolution as well as behavioral and ecological
adaptations during the highly successful Plio-Pleistocene papionin radiation in

Africa.

Taxonomic Issues

Before performing a phylogenetic analysis, operational taxonomic units
(OTUs) must be defined. Table 3.1 lists the taxa recognized and used in this study.
Many of these fossil taxa are universally accepted; however, the status of some
fossil taxa are disputed. With regard to these disputed taxa, I will briefly justify the

alpha taxonomy advocated here.

Parapapio

Traditionally, five species of Parapapio have been widely recognized: Pp. jonesi,
Pp. broomi, Pp. whitei, Pp. antiquus, and Pp. ado (e.g., Szalay and Delson, 1979; Leakey
and Delson, 1987; Fleagle, 1999; Jablonski, 2002). Heaton (2006) has recently argued
that Pp. whitei is invalid, and that the specimens formerly included in this taxon are best
assigned to Pp. broomi and Papio izodi. I find these arguments unconvincing for a
number of reasons'. In contrast to Heaton’s (2006) analysis, Pp. jonesi, Pp. broomi, and

Pp. whitei are all recognized as valid taxa in this analysis (Fig. 3.1).

! First, Heaton’s (2006) analysis was based almost solely on specimens from Sterkfontein. The most
distinctive specimens of Pp. whitei come from Makapansgat (e.g., MP 221, MP 223) and consist of fairly
complete male crania that are, in my opinion, clearly different from the most complete male crania typically
assigned to P. broomi (e.g., STS 564, M202). While P. broomi males display distinctive features such as
flattened muzzles, relatively straight to slightly concave nasal profiles, relatively short muzzles, and well-
defined, pinched temporal lines, P. whitei males contrastingly display features such as peaked nasals and
muzzles, slightly concave and often concavo-convex nasal profiles, a relatively long skull, a relatively long
muzzle, and pinched but less well-defined temporal lines (see Fig. 3.1). Second, Heaton’s (2006)
taxonomic assignments were based largely on analyses of dental dimensions and five qualitative characters,
and no extant sample was provided for comparison. Since dental dimensions as well as the qualitative
characters used in Heaton’s (2006) analysis overlap extensively among extant papionin taxa, especially at
the species level, their taxonomic value is probably limited until demonstrated otherwise. Additionally,
previous analyses of dental dimensions have upheld the view of Pp. whitei as a valid taxon at Sterkfontein
(Freedman, 1957; Freedman and Stenhouse, 1972). Finally, some of the sex assignments made by Heaton
(2006) are almost certainly incorrect, and these incorrect assignments appear to have distorted the analysis.

56



More recently, the Parapapio taxon at Taung, Pp. antiquus, has been
reassigned into its own genus, Procercocebus (Gilbert, 2007a). This assignment is
accepted here. Further support for this hypothesis will be provided if the current
analysis determines Pr. antiquus to have a phylogenetic position distinct from
Parapapio taxa.

In contrast to the South African Parapapio taxa, the status of the East
African species Pp. ado has not been recently challenged. Pp. ado is therefore

accepted as a valid taxon and included in this analysis.

?Theropithecus baringensis

In 1969, Leakey described a partial papionin cranium with associated
mandible (KNM-BC 2) from the Chemeron Formation as Papio baringensis
(Leakey, 1969). A second specimen, a partial mandible, was later also assigned to
this taxon (Leakey and Leakey, 1976). Eck and Jablonski (1984; 1987)
subsequently questioned the validity of these specimens as Papio, and instead
argued that they represented a member of the genus Theropithecus, specifically an
early representative of the T. brumpti lineage. Delson and Dean (1993) provided yet
another reassessment, concluding that the assignment to Theropithecus was
questionable.

As Delson and Dean (1993) point out, part of the problem lies in the
uncertainty of grouping the cranium and associated mandible with an unassociated
and relatively unworn mandibular fragment (KNM-BC 1647). While the type
specimen shows little indication of the distinctive Theropithecus molar pattern (e.g.,
enamel infoldings, columnar cusps, etc.), the isolated mandibular fragment does
(Delson and Dean, 1993). It is possible, however, that the isolated mandibular

fragment belongs instead to T. brumpti, which is documented in earlier strata

For example, Heaton (2006) assigns STS 563, an unambiguous female mandible that Broom (1940)
designated as the type specimen of P. whitei, as a P. broomi male. This is not a credible assignment because
the specimen clearly displays small canines as well as P;s with very reduced honing flanges, features that
are exclusively found in female papionins (for comparison of male vs. female mandibular specimens of P.
whitei, see Figs. 41-44 in Freedman, 1957). These incorrect sex assignments lead to problematic
taxonomic conclusions. For these reasons, Pp. jonesi, Pp. broomi, and Pp. whitei are all recognized as
valid taxa in this study (Table 3.1).
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(Delson et al., 2000; Leakey, pers. comm.). In light of the uncertainty, I follow
Delson and Dean (1993) and recognize KNM-BC 2 as a possible member of
Theropithecus, ?T. baringensis. However, in the absence of more convincing
morphological evidence, I do not accept the attribution of the isolated mandible to
this taxon. Instead, I provisionally assign the isolated mandibular fragment to T. cf.
brumpti until otherwise demonstrated. Pending the results of the current analysis,

the taxonomic and phylogenetic status of KNM-BC 2 will be reassessed.

Papio quadratirostris

In 1982, a fairly complete cranium of a large papionin from the Usno
formation of the Ethiopian Omo group was described as Papio quadratirostris
(Iwamoto, 1982). Similar to the situation with KNM-BC 2, this specimen was soon
reallocated to Theropithecus by Eck and Jablonski (1984, 1987), and it was also
suggested to be an early member of the T. brumpti lineage. Delson and Dean (1993)
challenged this assignment and argued that the Usno specimen was best left in the
genus Papio, and noted particular affinities to Dinopithecus, which they recognized
as a subgenus of Papio. Delson and Dean (1993) also went a step further and
assigned later Omo material, as well as material from the Humpata Plateau in
Angola, to P. quadratirostris. In contrast, Jablonski (1994) recognized the later
Omo and Angolan material as Theropithecus, grouping it with the KNM-BC 2
specimen as T. baringensis.

With regard to the Usno skull, I find no convincing synapomorphies to link
this specimen to Theropithecus. Therefore, for the purposes of this analysis, I
follow Delson and Dean (1993) and recognize the Usno cranium as P.
quadratirostris. However, while Delson and Dean (1993) make a convincing
argument that the later Omo material and some of the Angolan material are
extremely similar to each other, I consider the assignment of the later Omo material
as well as the Angolan material to P. quadratirostris as problematic. For example,
the later Omo material and the Angolan material are dentally distinct from the type

Usno specimen in displaying very enlarged premolars. In addition, there is no good
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overlapping craniofacial material that allows a proper comparison between the Usno
skull and the later Omo and Angolan material. The only overlapping craniofacial
material is a partial male frontal from Angola (DGUNL LEBAOSY) that is clearly
different from the frontal and temporal line morphology displayed by the Usno
specimen (Fig. 3.2). While the Angolan specimen displays pinched temporal lines
that appear to converge quite quickly, the Usno specimen displays widely divergent
temporal lines that do not converge until the back of the cranium.

Delson and Dean (1993), as well as Jablonski (1994), recognized only one
papionin taxon among the Plio-Pleistocene sites in Angola. In contrast, I believe
that at least two papionin taxa are probably represented among the Angolan
specimens. As mentioned above, some of the craniodental material from Angola
resembles the later Omo material, particularly a few dental specimens with large
premolars and a partial female cranium (see Table 3.1 for list of specimens).
However, other Angolan specimens are dissimilar to those from the Omo, such as
the partial male frontal DGUNL LEBAOS as well as a number of dental specimens
with small premolars and a partial male mandible with a Theropithecus-like
dentition (CAN 30 ‘90). In addition, a large number of the Angolan specimens are
subadults, so in these cases it is not possible to be confident about their adult
morphologies.

On a more theoretical level, no other Plio-Pleistocene site in South Africa
contains only one papionin taxon, and it is improbable that the situation among a
handful of sites on the Angolan Humpata Plateau is any different. I am also
skeptical of any hypothesis arguing that two large papionin taxa are unlikely to
coexist in the same region. There are many regions of Africa today where the
geographical ranges of multiple papionin taxa overlap, including large-bodied
species. In East Africa, the geographical ranges of Theropithecus and Papio overlap
in sections of Ethiopia. In western Africa, it is likely that the ranges of Mandrillus
and Papio overlap in certain regions. It is also widely recognized that populations
of Papio baboons, traditionally recognized as separate species, intermingle and
interbreed in hybrid zones all across Africa. Finally, it must be recognized that the

Angolan fossils accumulated over an unknown amount of time, potentially
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thousands if not hundreds of thousands of years. Given the unknown amount of
time-averaging, it is entirely possible that multiple taxa are preserved in Angola that
never came into contact during their lifespan in that region. Given these facts, I find
it probable that multiple species are represented within the Angolan material. Given
the clear affinities between some of the dental material as well as the partial adult
female cranium preserved in the Angolan breccias to the late Omo material, I
recognize the specimens with large premolars and other morphologies similar to the
Omo material as one taxon, and the remaining material as Cercopithecidae sp. indet.
(see Table 3.1).

In summary, I consider it prudent to recognize the Usno cranium, later Omo
material, as well as some of the Angolan papionin material as separate taxonomic
units for the purpose of this analysis. If Delson and Dean’s (1993) hypothesis is
correct, and all of the above material is closely related, then the Usno specimen,
later Omo material, and selected Angolan material, as recognized here (see above),

should be reconstructed as a clade in this analysis.

Papio izodi

Multiple species of small-bodied Papio have been recognized previously in
the South African Plio-Pleistocene record: P. izodi, P. angusticeps, and P. wellsi
(e.g., Gear, 1926; Broom, 1940; Freedman, 1957; 1961; 1965). Given the
variability in the extant species of Papio, it is probably best to recognize the
separate populations of small-bodied Plio-Pleistocene Papio as one variable taxon
with multiple subspecies. Therefore, I broadly follow Szalay and Delson (1979) as
well as Jablonski (2002) and recognize only one taxon, Papio izodi, in this analysis;
I would rank the various populations of small-bodied Papio as subspecies (e.g., P. i.

izodi, P. i. wellsi, and P. i. angusticeps).

Papio robinsoni
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In addition to P. izodi, a larger Papio taxon has been recognized in the South
African Plio-Pliestocene, namely P. robinsoni. Szalay and Delson (1979) and
Jablonski (2002) recognize P. robinsoni only as a subspecies of the living P.
hamadryas (P. h. robinsoni). I follow this assignment here. Given that the extant
populations of P. hamadryas are already represented in this study, P. h. robinsoni is

excluded from this analysis.

Theropithecus oswaldi

Nearly all authors recognize that Theropithecus darti and Theropithecus
oswaldi represent an evolving lineage through time (e.g., Jolly, 1972; Dechow and
Singer, 1984; Eck and Jablonski, 1987; Eck, 1993; Leakey, 1993; Delson, 1993; Frost,
2001a; 2001b; 2007; Frost and Delson, 2002; Jablonski, 2002; Gilbert, 2007b). I have
previously argued that it is best to recognize the earlier and smaller-bodied populations as
a separate chronospecies (T. darti) from the larger and morphologically distinct later
populations (T. oswaldi) (Gilbert, 2007b). However, Leakey (1993), and most recently
Frost (2007), make excellent arguments that it is best to divide the entire chronolineage
into three chronosubspecies of T. oswaldi: T. o. darti, T. 0. oswaldi, and T. 0. leakeyi.
Given the continuous nature of the morphological transformations through time, this
taxonomic scheme is probably the most biologically meaningful and informative. I
follow this arrangement in this study. For the analysis, I use only specimens of T. 0. darti
because these represent the most conservative specimens of the lineage and are more
likely to be phylogenetically informative than the extremely large and derived later

chronosubspecies T. 0. oswaldi and T. 0. leakeyi (see Table 3.1).
Methods
Complete character lists with definitions and character states are presented in

Tables 3.2-3.3. Extant taxa and sample sizes are the same as those presented in Chapter

2. Fossil taxa and sample sizes are presented in Table 3.1.
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For analysis, males and females were coded separately and then combined into a
larger “combined-sex” matrix. Phylogenetic analyses involving many fossil taxa often
run into problems because of large amounts of missing data. One way to combat these
problems is to increase the number of characters used in the analysis (Wiens, 2003a;
2003b; 2006; Wiens et al., 2005). Increasing the number of characters in an analysis has
been repeatedly demonstrated to increase overall phylogenetic accuracy and help resolve
character conflict that can hamper fossil analyses with large amounts of missing data
(Wiens, 2003a; 2003b; 2006; Wiens et al., 2005). In this case, combining characters that
have been scored separately for males and females allows for both unique male and
female character states that are phylogenetically informative to be sampled together
during the analysis and potentially increase the strength and accuracy of the phylogenetic
signal (see also Chapter 2). In total, 314 craniodental characters were included: 88
quantitative characters, and 69 qualitative characters coded for each sex (see Table 2 for
full character list with sources). No postcranial data are included here because most
of the postcranial material in the fossil record is unassociated and cannot be
attributed to specific taxa.

Victoriapithecus, Parapapio lothagamensis, and Macaca were assigned as the
outgroups for all analyses. While Pp. lothagamensis and Macaca were scored and used
as the outgroup for both quantitative and qualitative characters, Victoriapithecus was
scored and used as an outgroup for qualitative characters only. Because many
quantitative characters were coded on the basis of narrow allometries, Victoriapithecus is
not an appropriate outgroup for these characters since the allometric trajectory
influencing the craniodental morphology of Victoriapithecus is not directly comparable to
that observed in papionin monkeys. A phenetically distant taxon such as
Victoriapithecus should not be used as an outgroup for these quantitative craniometric
characters (Lockwood et al., 2004; Gaffney, 1979; Gilbert and Rossie, 2007). However,
the inclusion of multiple outgroups has been demonstrated to increase phylogenetic
accuracy, and since Victoriapithecus is universally recognized as a primitive
cercopithecoid monkey, this taxon was scored and included as an outgroup for all

qualitative characters.
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While Pp. lothagamensis currently shares its generic name with other Parapapio
taxa, it is clear from its published description (Leakey et al., 2003) as well as my own
personal observations that this taxon is the most primitive papionin in the fossil record.
P. lothagamensis shares a number of features with Victoriapithecus (including
incomplete bilophodonty in some specimens, particularly subadults), and these features
suggest that Pp. lothagamensis is probably more primitive than Macaca. For these
reasons, Pp. lothagamensis is assigned as an outgroup rather than included with its
congeners as an ingroup for the analysis. It is likely that Pp. lothagamensis is both
primitive and distinct enough from later Parapapio taxa to deserve its own generic rank;
however, I will leave this taxonomic decision up to the original authors of Pp.
lothagamensis (Leakey et al., 2003). Given that Macaca is universally accepted as the
sister taxon of the African papionins, it is also assigned as an outgroup for all analyses.

Values for quantitative characters were taken from original fossils, casts of
original fossils, and measurements from the literature. Qualitative characters were scored
on original fossils and casts. In a small number of cases, published descriptions and
photographs of fossil material was used to assess qualitative states.

As described in the previous chapter, each type of character requires slightly
different rules and techniques for assigning character states. For quantitative characters,
an isometric size correction was first applied separately to the two separate elements of
the skull (the cranium and the mandible) because these elements are rarely found
associated in the fossil record. Ideally, in the current data set of 62 standard craniometric
measurements for each extant specimen’, cranial quantitative characters would be divided
by the geometric mean of the 48 cranial measurements for that specimen and mandibular
quantitative characters divided by the geometric mean of the 14 mandibular
measurements for that specimen. However, for fossil taxa, the same set of measurements
used to calculate these geometric means for extant specimens are unlikely to be
preserved. To account for this reality, regression analyses of all the measurements used
to calculate the geometric means for each extant specimen were performed separately for

extant male and female specimens. The individual cranial measurement and mandibular

"The 62 measurements from Collard and Wood (2000; 2001) were used for the calculation of the geometric
mean for each taxon (see Chapter 4).

63



measurement 1) with the highest correlation coefficient relative to the cranial and
mandibular geometric means, and 2) commonly preserved in the fossil record, were then
used as size corrections for each extant and fossil cranial and mandibular specimen. For
the current analysis, the cranial measurement P2 (see Tables 3.2-3.3, maxillo-alveolar
breadth defined as biectomolare, r = 0.948) and the mandibular measurement M11 (M;
max mesiodistal crown diameter, r = 0.935) were used for male specimens and the
measurements P2 (r =0.921) and M12 (M; max buccolingual crown diameter, r = 0.936)
were used as size corrections for female specimens. Regression analyses of the P2
(males and females) and M11 (males) measurements determined that these features were
positively allometric. This suggests that using these measurements as size-adjustments
results in a slight over-adjustment at large body sizes. However, a slight systematic over-
adjustment at large body size was deemed preferable to using different measurements
with much lower correlation coefficients and much lower rates of preservation in the
fossil record.

After these size corrections, the resulting values for each character represented
some aspect of “shape” (sensu Mosimann, 1970; also see Darroch and Mosimann, 1985).
By definition, allometrically influenced characters are those whose shape is significantly
correlated with size (Mosimann and James, 1979). Quantitative characters determined to
be allometrically influenced have been identified in previous analyses of extant taxa
(Gilbert and Rossie, 2007; see chapter 2), and these same characters were considered to
be allometrically influenced in this analysis as well (see Tables 3.2-3.3 for the complete
list of allometrically influenced characters). Due to their correlation with body size, these
characters are not independent, and they are not suitable for phylogenetic analysis
without some sort of character correction. For any quantitative character determined to
be allometrically influenced, the narrow allometric coding method was employed to
disentangle the effects of allometry (see Gilbert and Rossie, 2007). For all quantitative
characters, gap weighted coding was used (Thiele, 1993), dividing the variation into three
character states because this represents the minimum number of taxa in a given size
category (see also Gilbert and Rossie, 2007). For all allometrically influenced characters,
the 24 taxa analyzed in this study were divided into two size categories, large and small.

These size groups were determined for both sexes and for each skull element (cranium
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and mandible) by using gap-weighted coding on the appropriate size correction variable.
Measurement P2 was coded using 2 character states (large and small) for both male and
female crania; measurements M11 and M12 were used to determine size categories for
male and female mandibles, respectively. Note that for some taxa, this results in crania
and mandibles being classified in different size categories during coding. Size categories
for cranial elements of each taxon are listed in Table 3.1. For flow charts illustrating the
narrow allometric coding method for quantitative characters, see Chapter 2.

Qualitative characters were scored according to the character state criteria listed
in Table 3.3. To better encompass variation, intermediate character states were
employed. Due to small sample sizes, an intermediate state was assigned to any fossil
taxon that exhibited more than one character state among its specimens. An extant
species was considered variable for a given character if two or more character states were
observed in more than 20% of specimens examined. For characters with more than two
discrete character states, an intermediate state was assigned if two adjacent character
states combined totaled > 80% of all observations. For example, if a character has three
discrete states (0, 2, and 4), and a taxon displays states 0 or 2 combined for > 80% of all
observations, an intermediate state (1) was assigned for this particular taxon. If no two
adjacent character states combined totaled > 80% of all observations, or if a fossil taxon
displayed more than two adjacent character states, an additional polymorphic state was
added and the character was considered unordered. In the case of multistate characters
where more than two pairs of adjacent states totaled 80%, the average of the two possible
intermediate states was used. For example, if states 0 + 2 total 80% (intermediate state 1)
but states 2 + 4 also total 80% (intermediate state 3), the average of the intermediate
states, in this case (1 +3)/2 =2, was assigned. In an effort to reduce the amount of
missing data in the analysis, any qualitative character state that was constant between
male and female specimens of extant taxa was also assumed to be constant between male
and female specimens of fossil taxa.

Unless otherwise noted, qualitative characters were considered ordered. For a full
description of characters, character states, and character types, see Tables 3.2 and 3.3.
When possible, a similar narrow allometric coding method was employed for qualitative

characters determined to be allometrically influenced, as described in Chapter 2. Where
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certain characters were not preserved or were inapplicable, qualitative or quantitative, the
missing data (“?”") code was used.

The resulting character matrices were then subjected to a parsimony analysis
using PAUP 4.0 (Swofford, 2001), and character transformations were mapped using
Mesquite 1.11 (Maddison & Maddison, 2006). A 10,000 replication, random addition
sequence heuristic search was used to find the most parsimonious trees. To assess the
stability of reconstructed clades, three analyses were performed. First, decay indices
were calculated for the strict consensus tree. Second, a 1,000 replication bootstrap
analysis with replacement was performed. Finally, majority-rules and strict consensus
trees of all trees within 1% of the length of the most parsimonious tree were constructed

(Strait et al., 1997).

Results

For comparison, the hypothesized phylogeny of the extant papionin taxa is
given in Figure 3.3. Two most parsimonious trees were recovered in the analysis
including fossil taxa (Fig. 3.4), and these trees differ only in the relationships
among P. quadratirostris taxa (Fig. 3.3a, b). The majority-rule and strict consensus
of these two trees is presented in Figure 3.5. Tree statistics summarizing the most
parsimonious trees are provided in Table 3.4. Decay indices and the majority-rule
consensus of the trees within 1% of the length of the shortest tree are presented in
Figure 3.5. Given the large amount of missing data, it is perhaps not surprising that
only three clades are well-supported by bootstrap values (Table 3.4). Therefore, for
a better assessment of clade support and stability, I will focus attention on the decay
indices and consensus of the trees within 1% length of the shortest tree (Fig. 3.5).

The most parsimonious trees in Figure 3.4 and the consensus trees in Figure
3.5 suggest that the basal African papionin taxon is Parapapio, represented by Pp.
whitei, Pp. jonesi, and Pp. broomi (Fig. 3.1). These taxa form a clade at the base of
the African papionin tree. The next African papionin clade to branch off is
represented by Pliopapio and Parapapio ado. This grouping possibly suggests that

Pl. alemui and Pp. ado are congeners; however, Frost (2001b) points out numerous
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aspects of the dentition and mandible that distinguish these two taxa from each other
(Fig. 3.6). In addition, no good cranial material of Pp. ado exists to compare with
Pliopapio. In the current analysis, Pp. ado appears to group with Pl. alemui largely
on the basis of dental dimensions (Fig. 3.6). The fact that Pp. ado is distinct from
other Parapapio taxa suggests that it may be distinct enough to deserve its own
genus, but I would refrain from naming a new taxon or referring the Pp. ado
material to Pliopapio until better, more diagnostic material is recovered. In any
case, it seems likely that Pp. ado and Pliopapio, along with the three other
Parapapio taxa, all represent stem African papionins. This conclusion is further
supported by the high decay index, relative to other clades in the most parsimonious
tree, required to hypothesize these 5 taxa as crown African papionins (Fig. 3.5).

Dinopithecus is the last taxon reconstructed in the most parsimonious tree as
a stem African papionin (Figs. 3.4-3.5). This result is surprising, as many
authorities have argued and/or assumed Dinopithecus to represent a large, close
relative of the living Papio (e.g., Freedman, 1957; Szalay and Delson, 1979; Delson
and Dean, 1993; Frost, 2001a). A stem position for D. ingens is not strongly
supported by the decay indices or bootstrap analysis (Fig. 3.5), and this may
indicate that D. ingens is just as likely to be a crown African papionin given the
available evidence. However, while it only takes one step to collapse the crown
African papionin clade to include Dinopithecus in the strict consensus tree, it takes
four steps to collapse the crown clade to include Dinopithecus in the majority-rule
consensus tree (Fig. 3.4).

Among the crown African papionin taxa in the most parsimonious tree, it is
important to note that the inclusion of fossil taxa results in the reconstruction of
Theropithecus as the basal crown papionin taxon rather then a member of a clade
also containing Lophocebus and Papio (see Figs. 3.4-3.5). ?T. baringensis is
strongly supported as a member of the Theropithecus clade, confirming its
taxonomic status in the genus Theropithecus. While the trees recovered in this
analysis suggest that T. baringensis is a basal member of the genus Theropithecus,
they do not support a special relationship between T. baringensis and T. brumpti as
hypothesized by Eck and Jablonski (1984; 1987). While a clade containing T.
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brumpti, T. darti, and T. gelada is strongly supported (Fig. 3.4), the relationships
among these taxa are unstable.

Another interesting grouping among crown papionin taxa concerns P. izodi
and Gorgopithecus major. While both taxa are reconstructed as members of the
clade containing Papio and Lophocebus in the most parsimonious tree, it is striking
that P. izodi is reconstructed as the sister taxon of Gorgopithecus rather than extant
Papio. Although the sister relationship between these two taxa is not strongly
supported by decay indices and bootstrap values, a larger group including
Gorgopithecus, P. izodi, Papio and Lophocebus is more strongly supported; it takes
an additional step to collapse the clade including Gorgopithecus, P. izodi, Papio,
and Lophocebus in the majority-rules consensus tree.

Finally, the most parsimonious trees in this analysis suggest that
Procercocebus antiquus is indeed the sister taxon to Cercocebus, as hypothesized by
Gilbert (2007a). In addition, the sister clade to
Mandrillus/Procercocebus/Cercocebus is the group of three OTUs defined by
Delson and Dean (1993) as Papio quadratirostris. Overall, a clade containing these
six taxa (Mandrillus, Cercocebus, Procercocebus, and the three P. quadratirostris
OTUs) is one of the three most strongly supported clades in the most parsimonious
tree (Fig. 3.3). Contrary to the suggestions of Eck and Jablonski (1984; 1987), there
is no convincing evidence to suggest that P. quadratirostris is closely related to
Theropithecus, broadly, or T. brumpti, specifically, in any way. Instead, it is likely
that a new generic nomen should be created for P. quadratirostris to reflect its

hypothesized relationship to Mandrillus, Procercocebus, and Cercocebus.

Discussion

The results of the above analyses may offer some clarity regarding the
evolution of the highly successful cercopithecine monkey tribe Papionini. It has
long been a frustrating irony that the African papionin radiation is one of the best
documented primate radiations in the fossil record, with many specimens of nearly

complete crania, and yet the relationships of these fossil taxa to the extant African
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papionin taxa as well to each other have remained unresolved. The increased
confidence in the ability of craniodental data to accurately reflect papionin
phylogenetic relationships (Chapter 2) and, more specifically, the high confidence in
the phylogenetic utility of the current data set, lends significant weight to the
phylogenetic hypotheses presented in Figures 3.4 and 3.5. Some of the clades
reconstructed in these phylogenetic trees support previous suggestions of
phylogenetic relationships, some hypothesized relationships are contrary to previous
views, and other clades suggest relationships that have not previously been

recognized.

Supported Phylogenetic Hypotheses

Parapapio and Pliopapio

Parapapio has long been recognized as a stem African papionin, if not the
basal African papionin taxon (e.g., Szalay and Delson, 1979; Frost, 2001b;
Jablonski, 2002). The results of this phylogenetic analysis support this view.

Frost (2001b) suggested that Pliopapio represented either a stem African
papionin or a stem member of the Papio/Lophocebus/Theropithecus clade. The

trees recovered in this study support the former hypothesis.

Theropithecus baringensis

Theropithecus baringensis, as represented by KNM-BC 2, is reconstructed in
this analysis as a primitive member of the Theropithecus lineage. This phylogenetic
position for T. baringensis is strongly supported (Fig. 3.4), although a close
relationship to T. brumpti is uncertain. Therefore, the results of this study suggest
that the question mark should be removed from the nomen for this taxon and its

status as a member of Theropithecus should be formally recognized.

Procercocebus
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The results of this phylogenetic analysis strongly support the suggestion that
Procercocebus is a member of the extant clade containing Cercocebus and
Mandrillus (Gilbert, 2007a). Furthermore, a sister relationship between
Procercocebus and Cercocebus is one of the more stable groupings in this study
(Fig. 3.7).

Papio and Lophocebus

Papio and Lophocebus were suggested to be sister taxa in the previous
chapter (see Chapter 2). This relationship is strongly supported in the current study,

even with the addition of fossil taxa.

Contrary Phylogenetic Positions

Dinopithecus

The placement of Dinopithecus as a stem African papionin is contrary to
most authors’ previous hypotheses (e.g., Freedman, 1957; Szalay and Delson, 1979;
Delson and Dean, 1993; Frost, 2001a). However, this is perhaps to be expected
given the large amount of missing data for this taxon, especially in the case of the
male cranium (Fig. 3.8). As males are often more phylogenetically informative (see
Chapter 2), the analysis here relies heavily on the less distinctive female
morphologies. In addition, the highly variable extant population of Papio results in
this taxon being coded with many intermediate states. Because only one or two D.
ingens male cranial specimens exist, almost no characters were coded with the
intermediate state, perhaps masking shared character states that would be evident
with a larger sample size. Another potential issue is that the size-adjustment used in
this analysis slightly over-adjusts at large body sizes, particularly for male crania.

Since Dinopithecus is the largest taxon included in this study, it is possible that the
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size-adjustment employed here slightly misrepresents certain Dinopithecus cranial
features.

One final reason for the placement of D. ingens as a stem African papionin
seems closely tied to the presence/absence of facial fossae (Fig. 3.8). The presence
of definitive facial fossae is reconstructed as a synapomorphy of crown African
papionins in this analysis, and Dinopithecus lacks this feature. I have argued
previously that the development of facial fossae is allometrically influenced
(Gilbert, 2007a), and so it is possible that D. ingens lacks facial fossae due to its
very large size and that the narrow allometric coding method was too crude to
interpret the morphology of D. ingens correctly. Regardless of these caveats, the
most parsimonious interpretation of D. ingens craniodental morphology, as
represented by this data set, is that D. ingens as a very large stem African papionin

close to the origin of the crown taxa.

Gorgopithecus and Papio izodi

While the phylogenetic position of the enigmatic Gorgopithecus has always
been uncertain, no previous author has suggested that G. major and P. izodi are sister
taxa. Similar to the case with Dinopithecus, this reconstruction may be due to
missing data. These taxa are linked to the exclusion of extant Papio and
Lophocebus by male characters such as relatively narrow M;s, intermediate-sized
premolars, a sagittal crest at or posterior to bregma, and a definitive post-orbital
sulcus. These last two characters are also often found in extant Papio, but due to
small fossil sample size, they were scored as monomorphic in the fossils and
polymorphic in the large sample of extant Papio crania. Larger sample sizes of P.
izodi and Gorgopithecus specimens with additional morphological regions preserved
would help resolve the relationships. In addition, the fact that the best preserved
specimen of the male skull of Gorgopithecus is heavily distorted casts doubt on at
least some of the quantitative male character states derived from this specimen.

While the placement of both G. major and P. izodi as close relatives of extant Papio
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and Lophocebus seems a likely hypothesis, it is surprising to think that P. izodi may
be more closely related to Gorgopithecus than the living Papio.

Newly recognized relationships/clades

Gorgopithecus

As mentioned above, the phylogenetic position of Gorgopithecus has long
been uncertain. This study suggests that G. major is most closely related to Papio

and Lophocebus among extant taxa.

Papio quadratirostris

Delson and Dean’s (1993) hypothesis regarding the close relationship
between the type specimen of P. quadratirostris (the Usno cranium), the later Omo
material, and a number of the Angolan specimens is supported by the results of this
analysis. Furthermore, the analyses strongly suggest that this group of fossils is
closely related to the extant clade containing Cercocebus and Mandrillus. Such a
phylogenetic relationship has not been previously suggested for the Usno, Omo, or
Angolan material. However, Delson and Dean (1993) hinted at the possibility of
this relationship when comparing the cranial morphology of large African papionins
and referring the Usno skull to the genus Papio. Delson and Dean (1993) also
considered Mandrillus to be a member of the genus Papio, and many of the
morphological similarities noted between the Usno specimen and Papio were, in
fact, similarities more specifically with Mandrillus (e.g., see Figs. 3.9-3.10; see also
p. 131 as well as Figs. 4.2 and 4.5 in Delson and Dean, 1993).

While the consensus tree reconstructs the type specimen of P. quadratirostris
(Usno), later Omo material, and Angolan specimens as an unresolved trichotomy, I
consider the tree in Fig. 3.3a to be the most likely given the available geological and
geographical evidence. As mentioned above, the later Omo and Angolan material

are united by a group of seemingly derived features, such as enlarged premolars,
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that suggest them to be distinct from the earlier Usno skull. The Usno specimen is
dated to approximately 3.3 Ma (Delson and Dean, 1993), and the Omo and Angolan
material are perhaps 1-2 Ma younger. In the case of the Omo material, my own
measurements suggest that fourth premolar size increases through time from their
small size in the Usno specimen (3.3 Ma) with progressive enlargement in Members
E through G (2.5-2.3 Ma; see specimens NME L 185-6, NME L 4-13b, NME Omo 42-
1972-1, NME Omo 47-1970-2008; see Table 3.5 and Fig. 3.11).

If the Usno specimen and the later Shungura E-G material represents an
evolving lineage, than they should probably be recognized as the same species with
different chronological (anagenetic) subspecies. I would also include the Angolan
material in the same subspecies as the later Omo material. In any case, it would
seem that this group of fossils requires a new generic nomen to reflect their

probable relationship as the sister group to the extant Mandrillus/Cercocebus clade.

Character Evolution and the African papionin radiation

As the low CI values in the most parsimonious trees imply, there is
considerable morphological homoplasy in the African papionin radiation. This
makes craniodental synapomorphies difficult to identify for many higher level
clades. However, there are some characters can be identified in the transformation
analyses as particularly distinctive of certain clades. Table 3.6 highlights the most
distinctive synapomorphies at selected nodes.

First, two features are identified here as unique synapomorphies defining
African papionin taxa apart from macaques and other early papionins. Thus, it
appears that African papionins have a wider interorbital distance compared to
Macaca as well a reduced incidence of the nasal bones projecting above the fronto-
maxillary suture, particularly in females. These features are not obvious, but this is
perhaps to be expected among the first African papionin taxa to diverge from an
ancestral macaque-like population.

Second, the presence of definitive maxillary fossae is the one obvious cranial

synapomorphy that unites all crown African papionins. Papio, Lophocebus, Papio
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izodi, and Gorgopithecus are further identified by extreme development of maxillary
fossae, including taxa with the deepest and most extensive fossae among all
papionin taxa. Mandrillus, Cercocebus and Papio quadratirostris are characterized
by less extensive maxillary fossae compared to Papio, Lophocebus, Papio izodi,
Gorgopithecus, and most Theropithecus taxa. Another cranial feature that is seen
only among crown African papionins, although not universally so, is the presence of
definitive maxillary ridges and mandibular corpus fossae in males.

Third, many previous characters identified as synapomorphies of
Theropithecus were confirmed in this study. The most distinctive characters
recognized in this study include small incisors, temporal lines that meet in males to
form a sagittal crest anterior to bregma, and deeply excavated fossae anterior to the
foramen magnum. Theropithecus brumpti, the T. oswaldi lineage and T. gelada also
share increased enamel infoldings, more obliquely oriented lophids on the lower
molars, and a reversed Curve of Spee for the tooth row.

Finally, a series of characters can also be identified as synapomorphies
defining the clade containing Cercocebus, Mandrillus, Procercocebus, and Papio
quadratirostris. These taxa are all united by the appearance of widely divergent
temporal lines (especially in males), upturned nuchal crests (especially in males),
and less extensive development of the maxillary fossae. In addition, there is a
tendency to develop very large premolars relative to the molars among these taxa.
This last feature appears to have developed independently at least two times, once in
the Papio quadratirostris group and at least once among Mandrillus, Cercocebus,
and Procercocebus.

With a better understanding of the synapomorphies that characterize the
different papionin clades, it is possible to speculate about their adaptive significance
during the Plio-Pleistocene radiation of these monkeys. From the phylogenetic
hypothesis presented here, it is evident that the earliest and most primitive African
papionins were very macaque-like in appearance, lacking maxillary and mandibular
corpus fossae, and having a generalized bilophodont dentition with relatively small
premolars. Similar to macaques, Parapapio species came in a variety of sizes, and

probably partitioned niche space in the Plio-Pleistocene by differentiation in body
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size, locomotor pattern (e.g., Ciochon, 1993; Elton, 2001), and diet (e.g., Fourie et
al., 2008).

In contrast to Parapapio, Pliopapio, and Dinopithecus, the common ancestor
of all crown African papionins developed definitive maxillary fossae. The adaptive
significance as well as the underlying anatomical cause of this osteological feature
are unclear; however, it seems that there is an allometric component associated with
the development and extent of maxillary and mandibular fossae among taxa which
possess them (Gilbert, 2007a). Thus, as body and skull size decrease, the depth and
extent of the maxillary fossae increases and extends into the infraorbital plate.
When body size is mapped onto the phylogeny in Figures 4 and 5, it would appear
that definitive maxillary fossae most likely developed in a large African papionin.
This hypothesized distribution of body size also suggests that the extant mangabeys,
Lophocebus and Cercocebus, are derived in their smaller size and associated cranial
morphologies, as suggested by Singleton (2002).

One potential explanation for the appearance of maxillary fossae may be
associated with sexual selection. Since both males and females exhibit maxillary
fossae, it is unclear whether male or female preferences (or both) may have driven
the evolution of this feature. However, the fact that the level of sexual dimorphism
also seems to increase in crown African papionins relative to stem taxa points to the
importance of sexual selection in the origin of the crown taxa.

As previously noted, (e.g., Jolly, 1970; 1972; Szalay and Delson, 1979; Eck
and Jablonski, 1984; 1987; Jablonski, 1993; 2002), later members of the genus
Theropithecus are easily identified by a number of dental synapomorphies clearly
associated with adaptations to a heavily herbaceous and gramnivorous diet. While
early members of the genus Theropithecus, as characterized by T. baringensis,
cannot be identified on the basis of a/the derived dentition, they can be identified by
the anterior union of the temporal lines (Fig. 3.12) as well as the deeply excavated
fossae anterior to the foramen magnum. The anterior position of the temporal lines
seems related to the increased size of the temporalis musculature as well as the
optimal placement of the temporalis in order to increase occlusal forces on the

molar battery (Jolly, 1970, see Fig. 3.12). This increase in musculature and chewing
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emphasis probably also helped to drive selection for increased enamel infoldings, a
delayed eruption pattern, and reversed Curve of Spee to lengthen the life of the
molars in later Theropithecus taxa. The reversed Curve of Spee, associated with the
delayed eruption pattern, functions to keep the posterior molar row from full
occlusion as long as possible, thereby extending the life of the most posterior teeth.
The adaptive and functional significance of the deeply excavated fossae anterior to
the foramen magnum are unclear, although one may speculate that they are related
to the orientation of the neck and skull which may be linked in modern geladas to
their unique posture while foraging.

While the Theropithecus lineage is, in part, linked to adaptations associated
with increasing the emphasis of chewing onto the posterior dentition, the
Mandrillus/Cercocebus/Papio quadratirostris clade is defined in large part by a
shift of chewing-muscle forces onto the premolars. This anterior shift most likely
provides selective pressure for larger premolars. In extant Cercocebus and
Mandrillus, large premolars are suggested to be adaptations for processing hard-
object food items acquired while foraging on the forest floor (Fleagle and McGraw,
1999; 2002).

A similar situation probably existed in the Plio-Pleistocene P. quadratirostris
lineage. In East Africa, the reconstructed environment of the Usno Formation
includes riverine forests and woodlands (Reed, 1997). The Shungura Members E
through G are also often noted as including a forest or woodland component (Eck and
Jablonski, 1984, 1987; Ciochon, 1993; Reed, 1997), and a transition from well-watered
riparian forests/woodlands to a river with slightly more open woodlands is documented
through time (Reed, 1997). Forests and woodlands are the same types of environment
that Cercocebus and Mandrillus occupy today. Therefore, similar dietary selection
pressures on early members of this clade were likely, and premolar size increases through
time among P. quadratirostris specimens in the Omo Shungura section (Table 3.5).

The reconstructed environment of the Angolan Humpata Plateau also includes more
forested environments (Pickford et al., 1994), which is also consistent with the preferred
habitat of extant members of this group. In the case of East Africa, a shift to a hard-

object niche may have also helped to avoid direct competition with the contemporaneous
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and forest-adapted T. brumpti. Overall, the available evidence indicates that the
Mandrillus/Cercocebus/Papio quadratirostris clade has always been a forest-adapted
lineage, which may have avoided competition with the expanding savannah-adapted
Papio lineage. In addition, a shift to a hard-object feeding niche may have helped to
avoid competition with other forest-living cercopithecines such as guenons, Lophocebus
mangabeys, and T. brumpti.

Finally, the remaining crown African papionin taxa (Papio hamadryas,
Lophocebus, Gorgopithecus, and Papio izodi) are not obviously grouped in any
adaptively cohesive way. In fact, it seems that this group of monkeys is better defined as
being unspecialized generalists than being committed to any specific type of lifestyle.
The defining synapomorphy of the group is the possession of the deepest and most
extensive maxillary fossae among crown African papionins (Fig. 3.13). However, as
previously discussed, the adaptive significance of this feature is unclear. As is the case
with most fossil papionin taxa, postcrania cannot be assigned to Gorgopithecus and P.
izodi, so it is not possible to definitively assess whether or not Lophocebus is the only

arboreal taxon among this group, although it seems likely given the available evidence.

Timing of the African papionin radiation

One final aspect of the phylogenetic hypothesis presented in this study concerns
the geochronological origin of specific clades. Molecular studies suggest that the basic
division between Mandrillus/Cercocebus and Papio/Lophocebus/Theropithecus took
place between 6 and 10 million years ago (Ma) (Disotell and Raaum, 2002; Tosi et al.,
2003; 2005). The separation of Papio, Lophocebus, and Theropithecus has been
estimated to be around 4 - 5 Ma (Disotell and Raaum, 2002; Tosi et al., 2005). This date
accords well with the phylogeny presented here, as no taxon reconstructed as diverging
after Theropithecus split from the other crown African papionins is present in the fossil
record before 3.3 Ma. It does, however, suggest that there was a very quick radiation of
crown African papionins, as Cercocebus and Mandrillus are estimated to have diverged
between 3.6 and 4.1 Ma and P. quadratirostris, by virtue of its earlier hypothesized

branching event, is reconstructed to have diverged sometime before that. This rapid
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radiation of crown African papionins at the beginning of the Pliocene may help to explain
why molecular data cannot resolve the relationship between Papio, Lophocebus and
Theropithecus. In summary, the phylogenetic hypothesis presented here is in general

agreement with previous estimates of papionin divergence dates.

Conclusions

A large set of qualitative and quantitative craniodental characters for extant and
fossil members of the cercopithecoid monkey tribe Papionini was subjected to
phylogenetic analysis using parsimony. In order to account for the well-documented
influence of allometry on the craniodental morphology of this group, the narrow
allometric coding method was employed (Gilbert and Rossie, 2007). The resulting
phylogenetic hypothesis reconstructs Parapapio, Pliopapio and Dinopithecus as stem
African papionins.

The origin of crown African papionins is defined, at least in part, by the
appearance of definitive facial fossae. Among crown African papionins, Theropithecus is
reconstructed as the basal crown African papionin taxon and the status of T. baringensis
as a member of the genus Theropithecus is strongly supported. The adaptive origins of
the genus Theropithecus are associated, in part, with dietary adaptations requiring an
increase in temporalis musculature and chewing emphasis onto the molars (Jolly, 1970).
Gorgopithecus is reconstructed as having been closely related to Papio and Lophocebus,
and this group is characterized by the deepest and most extensive maxillary fossae among
all crown African papionins. Lophocebus is possibly a secondarily arboreal taxon.

Papio quadratirostris, as defined by Delson and Dean (1993) to include the later
Omo Shungura material as well as some of the material from the Angolan Humpata
Plateau, is reconstructed here as the sister taxon to Cercocebus, Procercocebus, and
Mandrillus. This clade appears largely restricted to forested environments, and it is
characterized by the tendency to evolve adaptations for hard-object food items, which has
apparently happened in parallel at least twice. Morphological features that define this
group and are linked to this ecological focus include widely divergent temporal lines that

shift chewing-muscle forces towards the anterior dentition, and the consequent
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enlargement of the premolars. Papio quadratirostris requires a new generic nomen to
reflect its hypothesized position as the sister to the extant clade containing Cercocebus

and Mandrillus.
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Figure Captions

Figure 3.1. Comparison of three Parapapio taxa. From left to right, male cranial
specimens of P. jonesi (AL 363-15), P. broomi (M202), and P. whitei (MP221). Note the
peaked/raised nasals, slightly concavo-convex nasal profile, a relatively long skull, a
relatively long muzzle, and pinched but less well-defined temporal lines of P. whitei
compared to P. broomi.

Figure 3.2. Comparison of a) DGUNL LEBAOS, a presumed adult male frontal from the
Angolan Humpata Plateau with b) the Usno specimen from the Ethiopian Omo group.
Note the widely divergent temporal lines and more posterior union of the temporal lines
in the Usno specimen.

Figure 3.3 a) Hypothesized phylogenetic tree of the extant Papionini from molecular
(mtDNA and Y-chromosome) data (Disotell et al., 1992; Disotell, 1994; 2000; Harris and
Disotell, 1998; Harris, 2000; Tosi et al., 2003) and morphological data (Gilbert and
Rossie, 2007; Gilbert, Chapter 2).

Figure 3.4. Most parsimonious phylogenetic trees of the extant and fossil Papionini.
Tree statistics are given in Table 3.4. See Table 3.6 for list of the most distinctive
synapomorphies at each of the numbered nodes.

Figure 3.5. a) Strict consensus tree of the extant and fossil Papionini. Decay indices are
provided above each branch on the tree. b) Majority-rules consensus tree of the extant
and fossil Papionini. Decay indices are provided above each branch on the tree. C)
Majority-rules consensus tree of all trees within 1% of the length of the most
parsimonious tree. Bootstrap values are provided above each branch on the tree.

Figure 3.6. Comparison of the male mandibular dentition of Parapapio ado from
Kanapoi and Pliopapio alemui from Aramis. From left to right, male mandibular
specimens of P. ado (KP-286), P. ado (KP 29306), and P. alemui (ARA-VP 1/73).

Figure 3.7. Comparison of Procercocebus with extant Cercocebus. Top: Pr.
antiquus male (TP9, left) compared to C. torquatus male (right). Bottom: Pr.
antiquus female (TP8, left) compared with C. agilis female (right). From Gilbert
(2007a).

Figure 3.8. Dinopithecus ingens male (SK599, left) and female (SK553, right).
Note the incompleteness of the male specimen and the lack of definitive maxillary

fossae in both specimens.

Figure 3.9. Comparison, in lateral view, of a) an adult male P. quadratirostris
(Usno) to b) an adult male Mandrillus sphinx. From Delson and Dean (1993).

Figure 3.10. Comparison, in dorsal view, of a) an adult male P. quadratirostris
(Usno) to b) an adult male Mandrillus sphinx. From Delson and Dean (1993).
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Figure 3.11. Increase in P. quadratirostris premolar size through time in the Omo
River Basin, Ethiopia: a) Usno specimen, b) NME L 185-6, ¢) NME L 4013b, d)
NME Omo 42-1972-1, ¢) NME Omo 47-1970-2008. See also Table 5.

Figure 3.12. Comparison of the four Theropithecus taxa recognized in this analysis.
Note the anterior union of the temporal lines well-anterior to bregma, a defining
feature of Theropithecus linked here to an increase in the size of temporalis as well
as the optimal placement of temporalis in order to increase occlusal forces on the
molar battery.

Figure 3.13. Development of the maxillary/suborbital fossae in the hypothesized
clade including extant taxa Papio and Lophocebus as well as the fossil taxa
Gorgopithecus and P. izodi. Top: Gorgopithecus major male (KA192, left) and
female (KA153, right). Bottom: L. albigena female (left), P. hamadryas kindae
female (middle), P. h. ursinus female (right). Note the deep and extensive
maxillary/suborbital fossae found in all taxa. The results of this analysis suggest
that the extensive maxillary/suborbital fossae are a defining feature of this group.
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Figure 3.2
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Chapter 4

Phylogenetic Analysis of the African Papionin Basicranium using 3-D Geometric
Morphometrics

Abstract

In this chapter, I apply 3-D geometric morphometric techniques in a phylogenetic
analysis of African papionin basicranial morphology. The effects of allometry strongly
influence papionin basicranial morphology, and unless these size effects are controlled or
eliminated, phylogenetic analyses suggest traditional phylogenetic groupings of small
taxa (mangabeys) and large taxa (geladas, mandrills, drills, and baboons). When the
effects of allometry are eliminated by excluding size-correlated PC scores, phylogenetic
analyses of papionin basicranial morphology are incongruent with recent molecular and
morphological studies of African papionins. By contrast, a cladistic analysis of
basicranial characters suggests the same phylogenetic relationships as recent molecular
and morphological studies for the extant African papionins. The addition of fossil taxa,
noted to generally increase phylogenetic accuracy, results in phylogenetic hypotheses
inconsistent with recent results of molecular and morphological studies of extant and
fossil African papionins. These results suggest that important phylogenetic information is
contained within the size-correlated PCs, and this information is being discarded during
the attempt to eliminate the effects of body size. Future 3-D morphometric studies of
phylogeny should focus on the development of methodologies to adjust for allometric

effects.
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Introduction

In contrast to previous morphological studies (Fig. 4.1), more recent analyses
have demonstrated that African papionin morphological and molecular data suggest
congruent phylogenetic hypotheses (Fleagle and McGraw, 1999; 2002; Groves, 2000;
Gilbert, 2007; Gilbert and Rossie, 2007; Chapter 2; Fig. 4.2). While the characters
identified in these recent studies have focused on craniofacial and craniodental anatomy,
it remains to be seen if other morphological regions also contain the same phylogenetic
signal. One cranial region that has been suggested to be particularly informative in
primate phylogenetic studies, and therefore worthy of additional scrutiny, is the
basicranium.

For example, recent studies of the primate basicranium, specifically hominin and
extant hominoid taxa, have proven extremely successful in identifying phylogenetic
relationships from morphological data (Harvati, 2001; 2003; Lockwood et al., 2004).
Lockwood et al. (2004) analyzed temporal bone morphology in a study that recovered
phylogenetic trees of the extant great apes consistent with molecular phylogenies down to
the subspecies level. Indeed, the basicranium has long been noted as an important region
for analyzing primate phylogenetic relationships (e.g., Szalay and Delson, 1979;
MacPhee and Cartmill, 1986; Ross, 1994; Kay et al., 1997; 2008; Ross et al., 1998; Ross
and Covert, 2000; Bloch and Silcox, 2001; Cardini and Elton, 2008) as well as studies of
hominin relationships (e.g. Strait et al., 1997; Strait, 2001; Harvati, 2001; 2003; Strait and
Grine, 2004).

The results of the recent hominin and hominoid studies suggest that the
basicranium may offer valuable information to place African papionin taxa in a secure
phylogenetic context. This project uses a 3-D geometric morphometric analysis of
the papionin basicranium in a further investigation of the phylogenetic signal
contained within papionin cranial anatomy. If basicranial morphology suggests the
same relationships as craniodental and molecular data (Fig. 4.2), it will strengthen
the broader assertion that the basicranium is a particularly valuable source of

phylogenetic information.
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Methods

To assess patterns of variation in the papionin basicranium, data was collected on
a large sample of over 800 extant papionin basicrania (Table 4.1). Specimens were
sampled from the following collections: AMNH (American Museum of Natural History,
New York), BMNH (British Museum of Natural History, London), FMNH (Field
Museum of Natural History, Chicago), MCZ (Museum of Comparative Zoology, Harvard
University), PCM (Powell-Cotton Museum, Birchington), RLS (Randy L. Susman
personal collection, Stony Brook), RMCA (Royal Museum for Central Africa, Tervuren),
TM (Transvaal Museum, South Africa), and UW-AS (Department of Anatomy,
University of Witwatersrand, South Africa). A MicroScribe 3DX three-dimensional
mechanical digitizer (Immersion Corp.) was used for all morphometric data collection.
The 41 landmarks used to capture the shape of the basicranium are listed in Table 4.2 and
illustrated in Figure 4.3; these landmarks were taken in part as a compilation of those
used by Harvati (2003) and Lockwood et al. (2004). Additional basicranial landmarks
deemed to be highly repeatable and potentially informative were added as well.
Landmarks outside of the midline were taken on the right side of the basicranium only.

All landmark data were analyzed using 3-D geometric morphometric techniques.
The data were imported into the software package Morphologika (O’Higgins and Jones,
1998), and Procrustes superimposition analyses were performed on all male basicrania,
all female basicrania, and all basicrania combined. Following Procrustes
superimposition, principal components analyses (PCA) were performed and a matrix of
principal components (PCs) scores was produced for each specimen per analysis: males,
females, and all basicrania. Generalized Procrustes Analysis adjusts only for non-
allometric differences in size among specimens; thus, an adjustment for allometric size
differences was required before phylogenetic analyses are performed. To account for the
effects allometry, PCs significantly correlated with centroid size were excluded from
further analyses involving clustering phylogenetic methods. Correlations were performed
between average PC scores and average centroid sizes of each sex of each taxon for all
analyses (male, female, and all basicrania). The critical r-value for a correlation with a

sample size of 6 and 4 degrees of freedom at the 0.05 level is 0.811, while with a sample
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size of 12 and 10 degrees of freedom the critical r-value is 0.576 (Rohlf and Sokal, 1995).
Therefore, correlation r-values below 0.811 were considered insignificant in the male and
female analyses, and r-values below 0.576 were considered insignificant in the analyses
including all basicrania (i.e., sex-averaged analyses).

Following the exclusion of those principal components that were significantly
correlated with centroid size, a mean matrix of the remaining first 52 PCs for each taxon
(males, females and sex-averaged) was generated. Morphological (Euclidean) distances
between taxa were then calculated in the NTSY Spc v.2.11c software package
(Biostatistics, Inc.) for the male, female and sex-averaged matrices. In recognition of the
improved results of combined-sex analyses for the analysis of cladistic craniodental data,
male and female matrices were also combined into one large matrix in a final combined-
sex analysis.

The resulting distances were then used in various neighbor-joining (NJ) and
UPGMA clustering algorithms to generate phylogenetic hypotheses at the genus level.
The NJ algorithm is not purely phenetic, and it has the advantage of outgroup assignment
to provide a baseline polarity in terms of basicranial morphology (Lockwood et al.,
2004). A composite Macaca as well as individual Macaca species were assigned as the
outgroup for phylogenetic analyses in recognition that Macaca is a variable taxon and

different species are argued to retain the primitive morphotype for the extant papionins.

Results

In all analyses, the first 52 PCs explained approximately 94% of the variance
among the papionin basicrania. Eigenvalues and loadings of each of the first 52 PCs are
provided in Table 4.3. Plots of the first 2 principal components in the male and female
analyses are presented in Figures 4.4 and 4.5. In the male analysis, PC 1, PC 27, PC 38,
and PC 42 were determined to be significantly correlated with centroid size (PC 1, r =
0.885,PC27,r= -0.842, PC 38, r=0.870, PC 42, r =0.866). Among females, PC 1
and PC 48 were significantly correlated with centroid size (PC 1, r =0.854, PC 48, r = -
0.871). For the correlation analysis including all basicrania, only PC 1 was significantly

correlated with centroid size (r = 0.866). Size-correlated PCs accounted for 30.7% of the
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variance in the male analysis, 26.8% of the variance in the female analysis, and 29.3% in
the sex-averaged (all basicrania) analysis. The effect of including size-correlated
morphological shape in phylogenetic analysis is clearly demonstrated by the analyses
illustrated in Figures 4.6, 4.9, and 4.12 for males, females and the sex-averaged sample.
All NJ and UPGMA analyses that include size-correlated PCs result in the recovery of a
tree suggesting a small-bodied group (Cercocebus, Lophocebus) and a large-bodied
group (Mandrillus, Papio, Theropithecus) among African papionin taxa. These
groupings are the same as those suggested by previous morphological studies (Figure
4.1b).

NJ and UPGMA trees excluding size-correlated PCs are presented in Figs. 4.7,
4.10, and 4.13 for males, females, and sex-averaged analyses, respectively. In all NJ and
UPGMA trees that exclude size-correlated PCs, the mangabeys are diphyletic and
Lophocebus is closest to Papio. Theropithecus is reconstructed as the most primitive
African papionin in the NJ trees, while Mandrillus (males) or Theropithecus (females,
sex-averaged) occupies this position in the UPGMA analyses.

The NJ trees that exclude size-correlated PCs and use individual Macaca taxa as
outgroups (Figs. 4.8, 4.11, 4.14) are broadly similar to the same analyses that use an
average Macaca (Figs. 4.7a, 4.10a, 4.13a). When M. sylvanus, M. fascicularis, and M.
mulatta are individually used as outgroups, Theropithecus is suggested to be the most
primitive African papionin taxon followed by successive branching of Cercocebus and
Mandrillus (in some order) and finally the Lophocebus/Papio group. When M.
nemestrina is used as an outgroup, however, the results are somewhat different.
Mandrillus is the most primitive African papionin in these analyses, followed by a
successive branching of Theropithecus and Cercocebus in the male analyses or a
Theropithecus/Cercocebus and Lophocebus/Papio pairing in the other analyses (Figs.
4.8¢c, 4.11c, 4.14c). Lophocebus and Papio are reconstructed as sister taxa in all NJ
analyses.

Finally, the combined-sex analyses (Fig. 4.15) suggest the same basic set of
relationships as the male trees that exclude size-correlated PCs. NJ Trees suggest

successive branching of Theropithecus, Cercocebus, Mandrillus, and then
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Lophocebus/Papio. UPGMA analyses instead suggest the successive branching of
Mandrillus, Theropithecus, Cercocebus and then Lophocebus/Papio.

Discussion

Results of this study illustrate the effects of allometry on the basicranial
morphology of the African papionins. Including size-correlated PCs in phylogenetic
analysis results in the grouping of small taxa (the mangabeys, Cercocebus and
Lophocebus) and large taxa (Theropithecus, Mandrillus and Papio) (see Figs. 4.6, 4.9,
4.12). These groupings are similar to those hypothesized by previous analyses of
morphological data (Fig. 4.1), and this suggests that allometry is largely responsible for
the traditionally hypothesized systematic relationships of the African papionins.

Given the effect of allometry on the evolution of papionin basicranial
morphology, the most informative analyses will be those that control or account for this
phenomenon in some way. This study attempted to control for the effects of allometry by
eliminating size-correlated PCs from phylogenetic analyses, thereby eliminating a large
amount of the shape variance that is correlated with size. The results of this approach are
similar to those of the early blood protein analyses (particularly Cronin and Sarich, 1976)
in that they suggest the mangabeys to be diphyletic. At the very least, they imply that the
traditional morphological groupings (Fig. 4.1) are incorrect (see Figs. 4.7, 4.10, 4.13).
None of the analyses excluding PC 1 are congruent with the more recent molecular (e.g.,
Disotell et al., 1992; Disotell, 1994; 2000; Harris and Disotell, 1998; Harris, 2000; Tosi
et al., 1999, 2003) and morphological analyses (e.g., Fleagle and McGraw, 1999; 2002;
Gilbert, 2007; Gilbert and Rossie, 2007; Chapter 2) (Fig. 4.2). This is perhaps to be
expected given that over a quarter of the shape variance is eliminated from the
phylogenetic analysis. While eliminating size-correlated PCs is perhaps preferable to
including the confounding effects of allometry, it is a rather crude method to attempt to
control for changes in shape that are associated with changes in size. In this case,
potentially useful phylogenetic information is being thrown out with the allometric bath

water.
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Broadly speaking, the results of this study suggest two possibilities regarding the
ability of the papionin basicranium to accurately reflect phylogeny. It can be argued that
basicranial shape, as represented by the PC matrices analyzed here, is not a highly
informative phylogenetic region relative to other anatomical regions. This suggestion
runs counter to recent 3-D geometric morphometric analyses of hominoids (Lockwood et
al., 2004) and guenons (Cardini and Elton, 2008). Alternatively, it can be argued that
difficulty in adjusting for the effects of allometry and other issues inherent in multivariate
3-D morphometric analyses of size-disparate taxa may help to obscure phylogenetic
signals in basicranial shape.

To choose between these alternate possibilities, I conducted a direct comparison
of the phylogenetic trees produced from 3-D geometric morphometrics of the
basicranium to those produced from a cladistic analysis of 33 basicranial characters taken
from the larger craniodental data set presented in Chapter 2 (Table 4.4). Results of the
cladistic analysis demonstrate that male, female, sex-averaged, and combined-sex
cladistic analyses of basicranial morphology, adjusted for allometry using the narrow
allometric coding method, recover phylogenetic trees that are congruent with larger
morphological data sets (Chapter 2) as well as molecular data (Fig. 4.2; Table 4.4).
Furthermore, these trees have high bootstrap support (see Table 4.4). These results
support other studies indicating that the basicranium is a highly informative phylogenetic
region (Lockwood et al., 2004; Cardini and Elton, 2008), but suggest that the multivariate
morphometric shape analyses and the PCs that contain the morphological information are
not fine-grained enough, include too much “noise”, or do not capture the same details as
a given set of cladistic characters. The nature of principal components analyses, in
particular the likely combination of many cladistic characters on individual size-
correlated and size-uncorrelated PCs, effectively results in a character reduction that does
not allow as fine-grained a phylogenetic analysis as cladistic studies.

While previous studies of papionin morphological data have also used sex-
averaged analyses (e.g., Collard and O’Higgins, 2001; Collard and Wood, 2000; 2001;
Singleton, 2002), and while this study also performed sex-averaged analyses for
comparative purposes, there is little justification for such analyses in future phylogenetic

studies. Papionins are highly sexually dimorphic taxa. Averaging highly dimorphic male
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and female morphotypes results in the creation of an “imaginary” morphotype. While
any average of morphological data is an imaginary morphotype, averaging multiple
individuals of two shape dimorphic sexes results in a morphotype that is, from a
phylogenetic perspective, a biologically irrelevant entity. Therefore, the sex-averaged
analysis will not be discussed further in this study.

In another attempt to analyze both sexes simultaneously in phylogenetic analysis,
the individual male and female matrices were combined into one large PC matrix, similar
to the methodology described in Chapter 2. In terms of tree topology, the results of these
combined-sex analyses were virtually identical to the sex-averaged analyses, and
incongruent with recent molecular and morphological analyses (e.g., Disotell et al., 1992;
Disotell, 1994; 2000; Harris and Disotell, 1998; Tosi et al., 1999, 2003; Fleagle and
McGraw, 1999; 2002; Harris, 2000; Gilbert, 2007; Gilbert and Rossie, 2007; Chapter 2).
One of the major reasons the combined-sex character matrices were effective in cladistic
analyses is that they increased the number of characters analyzed and investigated
phylogeny on a finer scale. As mentioned above, it would appear that multivariate data
reduction methods such as PCAs result in many of these separate characters being
“lumped” into various PCs, particularly PC 1 in both male and female matrices. This
data reduction and, in effect, character reduction may also help to explain the relatively
poor performance of the combined-sex analyses of 3D morphometric data relative to
those reported in Chapter 2.

While phylogenetic trees generated from extant papionin basicranial anatomy are
incongruent with trees generated from molecular data (Disotell et al., 1992; Disotell,
1994; 2000; Harris and Disotell, 1998; Harris, 2000; Tosi et al., 1999, 2003) and
craniodental data (Gilbert and Rossie, 2007; Chapter 2), phylogenetic resolution may
well improve with the inclusion of fossil taxa. Fossil taxa are especially important
in phylogenetic analyses because they extend taxon sampling (e.g., Gauthier et al.,
1988; Strait & Grine, 2004), provide unique morphologies that help to refine
assessments of polarity (e.g., Gatesy & O’Leary, 2001; Springer et al., 2001; Gatesy
et al., 2003), and increase overall phylogenetic accuracy (e.g., Wheeler, 1992;
Zwickl & Hillis, 2002; Strait and Grine, 2004). Therefore, an analysis using the

same methodology as described above including fossil taxa for both males and
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females was performed. The maximum number of shared landmarks between the
largest number of taxa was used in an effort to maximize landmark and taxon inclusion
(29 landmarks among five fossil taxa for males and 25 landmarks among 5 taxa for
females; see Table 4.5), resulting in reduced landmark lists for each sex compared to
the extant analyses. Due to the differing number of landmarks and taxa between
male and female analyses including fossil taxa, sex-averaged and combined-sex
analyses were not performed. The results of the analyses excluding size-correlated
PCs are presented in Figures 4.16 and 4.17.

While the inclusion of fossil taxa in phylogenetic analysis has the potential to
increase phylogenetic accuracy (Wheeler, 1992; Zwickl & Hillis, 2002; Strait and
Grine, 2004), the results of this study do not appear to support this notion for the reduced
landmark data set. If the congruent phylogenetic relationships suggested by recent
molecular (Disotell et al., 1992; Disotell, 1994; 2000; Harris and Disotell, 1998; Harris,
2000; Tosi et al., 1999, 2003) and morphological (Fleagle and McGraw, 1999; 2002;
Gilbert, 2007; Gilbert and Rossie, 2007; Chapter 2) studies are considered to be accurate,
then the phylogenetic relationships suggested by the current study, even with the
inclusion of fossil taxa, are likely to be incorrect. For example, a clade containing
Cercocebus and Mandrillus is strongly supported by both molecular and craniodental
data (Disotell et al., 1992; Disotell, 1994; 2000; Harris and Disotell, 1998; Harris, 2000;
Tosi et al., 1999, 2003; Fleagle and McGraw, 1999; 2002; Gilbert, 2007; Gilbert and
Rossie, 2007; Chapter 2), but such a grouping is not found in any of the phylogenetic
trees produced here, even when fossil taxa are included. In addition, while a clade
containing extant and fossil Theropithecus taxa is strongly supported in the phylogenetic
hypothesis presented earlier in Chapter 3, Theropithecus taxa in the current analysis of
extant and fossil papionins are found to be paraphyletic. For these reasons many
researchers, including myself, would find the groupings in the reduced landmark analyses
to be difficult to accept and, in fact, highly unlikely.

There are several potential explanations for the reduced accuracy of the
phylogenetic hypotheses produced in the current analyses. The most obvious is that the
morphological regions represented by the excluded landmarks include a large amount of

phylogenetically informative anatomy. These regions include portions of the zygomatic,

124



the inferior petrous process, the basioccipital including the region between the external
occipital protuberance (EOP) and opisthion, and most of the sphenoid bone among males,
and the zygomatic, the articular tubercle, the stylomastoid foramen, the carotid canal, the
inferior petrous process, the basioccipital including the region between EOP and
opisthion, the inferior portion of the occipital condyle, and most of the sphenoid bone
among females. Another potential reason for the incongruent results produced in this
study has to do with the fossil specimens themselves. Almost every fossil specimen is
subject to some distortion through the process of fossilization. This distortion may have
a strong effect on multivariate shape analyses such as this one whereas cladistic studies
relying on more discrete character states may be able to circumvent this problem to some
degree. Along with distortion inherent in fossil specimens, my own attempts at
estimating certain landmarks may have also added slight inaccuracies to the
representation of morphology. The fact that many of the fossil specimens and taxa are
grouped together in the phylogenetic analyses suggests that there is some common factor
that may account for their placement in the various trees. It is possible that the small
sample size of fossil taxa and individuals makes it difficult to sample key fossil
morphologies that drive polarity and increase phylogenetic accuracy. Finally, it is again
probable that eliminating size-correlated PCs is too blunt an instrument to effectively
adjust for allometry in the current analyses.

While 3D morphometric data from the basicranium may be appropriate for
phenetic and other assessments of papionin morphology, the evidence presented here
suggests that, perhaps in contrast to other primate groups, they are not optimal for
phylogeny reconstruction in papionins. As suggested above, it appears that allometry and
other issues inherent in multivariate 3-D morphometric analyses of size-disparate taxa
may help to obscure phylogenetic signals in basicranial shape. Unfortunately, a narrow
allometric adjustment similar to the one outlined in the cladistic analyses (Chapters 2 and
3) was inappropriate in this study because such a procedure would involve adjusting PC
scores, thereby fundamentally altering basicranial shape. Future phylogenetic analyses of
3-D morphometric data should focus on improved techniques for detecting phylogenetic
information within allometrically influenced datasets. In the meantime, the phylogenetic

hypotheses of extant and fossil African papionin taxa produced from cladistic analysis of
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quantitative and qualitative craniodental data (Chapters 2 and 3) will be preferable to the

hypotheses suggested by this study.

Conclusions

Papionin basicranial morphology is highly influenced by allometry. When this
allometry was controlled for by excluding size-correlated PC scores in a 3-D geometric
morphometric analysis of extant papionin basicranial shape, phylogenetic trees were
incongruent with recent molecular and morphological studies of extant African
papionins. A reduced-landmark 3-D geometric morphometric analysis of extant and
fossil papionin basicranial morphology was also inconsistent with previous results of
molecular and morphological studies of extant and fossil African papionin phylogeny.
There are a number of possible reasons for the inconsistent and seemingly inaccurate
results presented here, the most important being the inability of current multivariate
morphometric methods to adjust for the effects of allometry in phylogenetic analyses of
shape. Because of these problems, cladistic analyses of more traditional morphological
data may offer a more fine-grained and superior approach to understanding phylogenetic
relationships (see Chapters 2 and 3), at least for the case of the African papionin
monkeys. Future 3-D morphometric studies of phylogeny should focus on the

development of methodologies to adjust for allometric effects.
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Figure Legends

Figure 4.1. Traditionally hypothesized phylogenetic trees of the extant Papionini from
morphological data. a) Szalay and Delson (1979), Strasser and Delson (1987), b) Delson
and Dean (1993). Figure from Gilbert, 2007.

Figure 4.2. Hypothesized phylogenetic tree of the extant Papionini from recent
molecular (Disotell et al., 1992; Disotell, 1994; 2000; Harris and Disotell, 1998; Tosi et
al., 1999) and morphological (Gilbert and Rossie, 2007; Chapter 2) studies.

Figure 4.3. 41 landmarks used in this study, as illustrated on the basicranium of Papio
hamadryas ursinus. Adapted from Freedman (1957).

Figure 4.4. Plot of PC 1 vs. PC 2 for male basicranial shape. Wireframe images
illustrating the changes in basicranial shape across each axis are indicated at the ends of
each axis. Minimum convex polygons surround the distributions of each extant papionin
genus. C = Cercocebus (green), L = Lophocebus (red), Mc = Macaca (blue), Mn =
Mandrillus (yellow), P = Papio (orange), T = Theropithecus (purple).

Figure 4.5. Plot of PC 1 vs. PC 2 for male basicranial shape. Wireframe images
illustrating the changes in basicranial shape across each axis are indicated at the ends of
each axis. Minimum convex polygons surround the distributions of each extant papionin
genus. C = Cercocebus (green), L = Lophocebus (red), Mc = Macaca (blue), Mn =
Mandrillus (yellow), P = Papio (orange), T = Theropithecus (purple).

Figure 4.6. Hypothesized phylogenetic trees from 3-D geometric morphometric analysis
of male basicranial data including size-correlated PCs: a) Phylogenetic tree produced
from neighbor-joining (NJ) analysis, and b) Phylogenetic tree produced from UPGMA
analysis.

Figure 4.7. Hypothesized phylogenetic trees from 3-D geometric morphometric analysis
of male basicranial data excluding size-correlated PCs: @) Phylogenetic tree produced
from NJ analysis, and b) Phylogenetic tree produced from UPGMA analysis.

Figure 4.8. Hypothesized phylogenetic trees from 3-D geometric morphometric analysis
of male basicranial data excluding size-correlated PCs and using individual macaque taxa
as outgroups: a) Phylogenetic tree produced from NJ analysis using M. fascicularis as the
outgroup, b) Phylogenetic tree produced from NJ analysis using M. mulatta as the
outgroup, ) Phylogenetic tree produced from NJ analysis using M. nemestrina as the
outgroup, and d) Phylogenetic tree produced from NJ analysis using M. sylvanus as the
outgroup.

Figure 4.9. Hypothesized phylogenetic trees from 3-D geometric morphometric analysis

of female basicranial data including size-correlated PCs: a) Phylogenetic tree produced
from NJ analysis, and b) Phylogenetic tree produced from UPGMA analysis.
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Figure 4.10. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of female basicranial data excluding size-correlated PCs: a) Phylogenetic tree
produced from NJ analysis, and b) Phylogenetic tree produced from UPGMA analysis.

Figure 4.11. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of female basicranial data excluding size-correlated PCs and using individual
macaque taxa as outgroups: a) Phylogenetic tree produced from NJ analysis using M.
fascicularis as the outgroup, b) Phylogenetic tree produced from NJ analysis using M.

mulatta as the outgroup, ¢) Phylogenetic tree produced from NJ analysis using M.

nemestrina as the outgroup, and d) Phylogenetic tree produced from NJ analysis using M.
sylvanus as the outgroup.

Figure 4.12. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of sex-averaged basicranial data including size-correlated PCs: a) Phylogenetic
tree produced from NJ analysis, and b) Phylogenetic tree produced from UPGMA
analysis.

Figure 4.13. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of sex-averaged basicranial data excluding size-correlated PCs: a) Phylogenetic
tree produced from NJ analysis, and b) Phylogenetic tree produced from UPGMA
analysis.

Figure 4.14. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of sex-averaged basicranial data excluding size-correlated PCs and using
individual macaque taxa as outgroups: @) Phylogenetic tree produced from NJ analysis
using M. fascicularis as the outgroup, b) Phylogenetic tree produced from NJ analysis
using M. mulatta as the outgroup, ¢) Phylogenetic tree produced from NJ analysis using
M. nemestrina as the outgroup, and d) Phylogenetic tree produced from NJ analysis using
M. sylvanus as the outgroup.

Figure 4.15. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of combined-sex basicranial data excluding size-correlated PCs: a) Phylogenetic
tree produced from NJ analysis, and b) Phylogenetic tree produced from UPGMA
analysis.

Figure 4.16. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of extant and fossil male basicranial data excluding size-correlated PCs: a)
Phylogenetic tree produced from NJ analysis, and b) Phylogenetic tree produced from
UPGMA analysis. Excluded PCs = PC4, PC6, PC11, PC26, and PC35.

Figure 4.17. Hypothesized phylogenetic trees from 3-D geometric morphometric
analysis of extant and fossil female basicranial data excluding size-correlated PCs: a)
Phylogenetic tree produced from NJ analysis, and b) Phylogenetic tree produced from

UPGMA analysis. Excluded PCs = PCl1, PCS8, PC15, PC21, PC29, PC38, PC41, PC43,
and PC44.
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Figure 4.2
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Table 4.1. Sample of extant papionin basicrania used in this study.

Taxon

Male sample size

Female sample size

Cercocebus agilis
Cercocebus atys
Cercocebus torquatus
Lophocebus albigena
Lophocebus aterrimus
Macaca fascicularis
Macaca mulatta
Macaca nemestrina
Macaca sylvanus
Mandrillus leucophaeus
Mandrillus sphinx
Papio hamadryas anubis
Papio hamadryas cynocephalus
Papio hamadryas hamadryas
Papio hamadryas kindae
Papio hamadryas papio
Papio hamadryas ursinus

Theropithecus gelada

26
15
26
70
48
54
17
18
8
17
15
84
18
7
8
11
44
14

16
24
7
62
39
31
27
16
9
17
9
34
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Chapter 5

Plio-Pleistocene Biogeography of the African Papionins and Its Relationship to

Hominin Biogeography

Abstract

Early hominin biogeography is contested and poorly understood. Depending on
the analysis, two to seven dispersals between East and South Africa have been
hypothesized during the Plio-Pleistocene. To better understand hominin evolutionary
history and biogeography, the evolutionary history and biogeography of
contemporaneous mammals, especially primates, can be used to test alternative
hypotheses.

Papionins have long been argued to be good adaptive and phylogenetic models for
human evolution (e.g., Jolly, 1970; 2001). Plio-Pleistocene African papionin monkeys
are found at nearly all East and South African hominin sites, and yet similar to the
situation with hominins, the evolutionary biogeography of this group remains unresolved.
The current study investigates African papionin biogeography by treating biogeography
as an unordered cladistic character and biogeographic regions such as South Africa, East
Africa, North Africa, Central Africa, and West Africa as character states. The
biogeographic character states for each fossil and extant African papionin taxon are then
mapped onto a recently hypothesized cladogram derived from craniodental data (see
Chapter 3) and dispersal events are then inferred. The hypothesized biogeographic
patterns of the African papionins during the Plio-Pleistocene are then compared to
contemporaneous hominin biogeographic patterns. Results indicate that papionin
dispersal patterns largely mirror those of early hominins and, in at least one case, oppose
general mammalian trends as well. Suggestions of unique behavioral adaptations to
account for early hominin biogeography and dispersal patterns, therefore, seem

unwarranted.
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Introduction

An understanding of the common and unique aspects of human evolution is best
achieved through comparative methods in which hominin morphology and behavior are
compared with the morphological and behavioral adaptations of other organisms.
African papionin monkeys have historically been used as important models for early
hominin adaptations because of their hypothesized similar ecological niche on the Plio-
Pleistocene African savannah or woodland mosaic environments. Fossil African
papionins are reported at nearly all early hominin sites and many other non-hominin-
bearing sites during the Plio-Pleistocene. Furthermore, as large, omnivorous Old World
primates, African papionin monkeys represent a group of mammals that are closely
related to early hominins in size and are in many cases found in the same habitats. As
large anthropoid primates surviving in similar habitats, African papionins may have also
shared similar behavioral adaptations compared to early hominin species (e.g., Jolly,
1970; 2001). Therefore, Plio-Pleistocene African papionin biogeography might offer a
particularly informative test of early hominin dispersal patterns and behavioral
adaptations (e.g., Strait & Wood, 1999).

In a recent study, Strait & Wood (1999) inferred four to seven hominin dispersal
events between East and South Africa during the Plio-Pleistocene. Earlier views
hypothesized only two or three dispersal events between these biogeographic regions
(e.g., Turner & Wood, 1993; Bromage et al., 1995). Strait & Wood (1999) also observed
that Paranthropus robustus, and possibly Homo habilis, appeared to disperse in the
opposite direction of most mammalian taxa. These early hominins were reconstructed as
dispersing southward from East to South Africa around 2.5 million years ago (Ma), a
period of time during which most other mammalian taxa apparently moved northward
from South to East Africa (Vrba, 1992; Turner & Wood, 1993; Strait & Wood, 1999).
Strait & Wood (1999) hypothesized that unique behavioral or anatomical adaptations
possessed by early hominins were probably responsible for their departure from typical
African mammalian dispersal patterns.

This study attempts to use African papionin biogeography to assess patterns of

early hominid dispersal during the Plio-Pleistocene. In order to do so, a reasonable
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phylogenetic hypothesis of extant and fossil African papionin taxa is needed. Since the
fossil record is largely composed of craniodental material, any phylogenetic hypothesis
must rely largely on craniodental characters. Some studies have argued that primate
phylogenetic hypotheses derived from craniodental data are unreliable; however, more
recent studies have demonstrated that primate craniodental data is perfectly suitable for
phylogenetic analysis and can produce phylogenetic hypotheses that are congruent with
molecular data (Strait and Grine, 2004; Gilbert and Rossie, 2007; see Chapters 2 and 3).
In this study, a recently hypothesized cladogram derived from craniodental data (see
Chapter 3) is used to infer African papionin biogeographic patterns during the Plio-
Pleistocene and then compared to those of hominins and other African mammals. The
perceived uniqueness of hominin dispersal events can then be independently tested with

an ecologically similar group of anthropoid primates.

Methods

To analyze dispersal patterns, methodology similar to the traditional “progression
rule” (Hennig, 1966) was used. The progression rule argues that a cladogram of species-
relationships is sufficient by itself to indicate centers of origin and directions of dispersal
(Nelson & Platnick, 1981). For this study the most parsimonious trees derived from
craniodental data in Chapter 3 were used.

Following the methods of Strait and Wood (1999), biogeographic patterns implied
by the cladograms were determined by treating biogeography as an unordered cladistic
character with biogeographic regions of Africa corresponding to separate character states.
Five regions of Africa were recognized: 0 = East Africa, 1 = North Africa, 2 = South
Africa, 3 = Central Africa, and 4 = West Africa. The taxonomy used for the analysis is
the same as that presented in Chapter 3 (Table 5.1; see also Chapter 3, Table 3.1 for a list
of specimens). The geographic location(s) and temporal duration of each extant and
fossil taxon used in the analysis were taken from data reported in the literature as well as
my own personal observations (Table 5.1). The time period sampled by the fossil sites

encompasses the Late Miocene through the Plio-Pleistocene.
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By tracing geographic character state changes using parsimony in the “trace
character history” option of Mesquite 1.11 (Maddison and Maddison, 2006), African
papionin biogeographic patterns and dispersal events were reconstructed. By using
known fossil dates of the taxa analyzed, dispersal dates for particular taxa or a
hypothetical ancestor could be inferred. Hypothetical ancestors were located at the
internal nodes of the cladogram, and each character state change in the cladogram
theoretically represented a dispersal event (Strait & Wood, 1999). Taxa known from
multiple geographic regions were assigned multiple character states. These multiple
assignments sometimes resulted in equivocal nodes, stems, and branches.
Victoriapithecus from the Middle Miocene of East Africa, Parapapio lothagamensis
from the Late Miocene of East Africa, and Macaca from the Late Miocene to present of
North Africa were considered the outgroups in the analysis; this arrangement set East
Africa as the “primitive” geographic character state. For the final character state coding

of the biogeographic character by taxon, see Table 5.1.

Results

Figure 5.1 presents the phylogenetic trees, reconstructed biogeographic character
state changes, and the estimated timing of dispersal events for each extant and fossil
papionin taxon in the analysis. The key to the color-coding system is presented in Table
5.2. According to these phylogenies, the first reconstructed dispersal event involved
Parapapio or its immediate ancestor (IA), Theropithecus oswaldi (or IA), and possibly
Dinopithecus ingens (or IA). This earliest dispersal event took place between ~5.0 — 3.0
Ma. Grine and Hendey (1981) tentatively assigned isolated teeth from the South African
site of Langebaanweg to Pp. jonesi, but these specimens are so fragmentary that no
definitive assignment is possible. If the generic assignment is proven to be correct, then
Parapapio or the ancestor of Parapapio must have dispersed to South Africa before ~5.0
Ma. Regardless of the assignment of the Langebaanweg specimens, Parapapio (or 1A)
along with T. 0. darti (or IA) are reconstructed as dispersing to South Africa sometime
before ~3.0 Ma when they are first documented at Makapansgat. In addition, Pp. jonesi

(or TA) is hypothesized to have migrated from South Africa to East Africa ~3.5 Ma when
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it tentatively appears at Ahmado and Hadar (Frost, 2001a; Frost and Delson, 2002),
making it most likely that the genus arrived in South Africa before ~3.5 Ma.

The next dispersal event from East to South Africa appears to have taken place
between 2.5 and 1.5 Ma, and involved Dinopithecus ingens (or IA), Papio hamadryas
robinsoni (or 1A), the ancestor of the Gorgopithecus/P. izodi clade, and possibly Papio
quadratirostris. A subset of this event corresponding to the dispersal of other
mammalian taxa between East and South Africa between 1.8 and 1.5 Ma may have
involved Papio quadratirostris. Sometime after ~2.5 Ma, Papio hamadryas is also
hypothesized to have dispersed to East Africa, Central Africa, and West Africa as well.
Given the earliest occurrence of fossil P. hamadryas specimens in South Africa (P. h.
robinsoni), it seems likely that P. hamadryas dispersed from South Africa to other
biogeographic regions (see Discussion below). Extant Lophocebus (or IA) migrated from
East to Central Africa during this time period (sometime after 2.5 Ma).

Three other major dispersal events are implied by the cladograms used by this
study. Sometime between 3.4 and 2.3 Ma, the ancestor of the
Cercocebus/Procercocebus/Mandrillus group, and possibly P. quadratirostris (as
represented in the Humpata Plateau of Angola), are hypothesized to have dispersed from
East to West Africa. Furthermore, between 2.3 and 1.5 Ma, there was a dispersal event
from West Africa to South Africa involving Procercocebus (or IA) and possibly the
aforementioned Angolan P. quadratirostris, supporting recent suggestions by Gilbert
(2007) of a faunal connection between West Africa and South Africa during the Plio-
Pleistocene. Finally, between 2.3 Ma and the present, Cercocebus (or [A) is
hypothesized to have dispersed from West to Central Africa.

Table 5.3 and Figures 5.2-5.3 illustrate the hypothesized dispersal events in this
study compared to the hominin dispersal events hypothesized by Strait and Wood (1999),
and the non-primate mammalian dispersal events inferred by other authors (e.g., Vrba,
1992; Turner and Wood, 1993). Similar to taxa including Australopithecus africanus,
African papionin monkeys such as Parapapio and Theropithecus are hypothesized to
have dispersed from East to South Africa between ~3.5 — 3.0 Ma (Fig. 5.2). Similar to
early hominins and distinct from most other mammalian taxa, African papionin monkeys

are also hypothesized to have dispersed from East to South Africa between 2.5 and 1.5
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Ma (Fig. 5.2b). During this time period, most other mammalian taxa appear to have been
dispersing northward from South to East Africa (Vrba, 1992; Turner and Wood, 1993;
Strait and Wood, 1999). Potentially diverging from the patterns seen among hominins
and other mammals, there is weak evidence for an African papionin dispersal event from
East to South Africa ~ 1.8 Ma. However, only one taxon is reconstructed as possibly
migrating from East to South Africa between 2.3 and 1.5 Ma (P. quadratirostris), and
given the location of this taxon in Angola, it is probably more likely to have reached
South Africa from West Africa. In fact, African papionin monkeys appear to be unique
in that they are hypothesized to have dispersed from West to South Africa during this
time interval (~2.3 — 1.5 Ma; see Figure 5.3).

Discussion

Similar to early hominin dispersal patterns, the results of this study suggest that
the African papionin monkeys did not always follow typical mammalian migration
patterns during the Plio-Pleistocene. For every early hominin dispersal event, there is at
least one African papionin taxon potentially dispersing in the same direction at the same
time. Specifically, while many mammalian taxa appear to migrate north between 2.7 and
2.0 Ma, both papionins and early hominins appear to migrate south from East Africa
around ~2.5 Ma (see Fig. 5.1; Fig. 5.2b; Table 5.3). Any behavioral adaptation invoked
to explain early hominin biogeographic patterns, then, should also be common to
papionin species such as Dinopithecus ingens, Gorgopithecus major, Papio izodi and
Papio hamadryas.

If this is, indeed, the case, it may then be asked: What do Dinopithecus ingens,
Gorgopithecus major, Papio sp., Paranthropus robustus and Homo habilis all have in
common behaviorally? Dinopithecus ingens, Gorgopithecus major, and early Papio taxa
were all probably terrestrial generalists most similar to modern savanna baboons (e.g.,
Szalay & Delson, 1979; Fleagle, 1999). Did Paranthropus robustus or Homo habilis
engage in similar activities? This remains an open question. I would speculate, however,
that primates are a more generalist or eurybiomic group than has previously been studied

in a detailed biogeographic context. Other mammalian groups typically cited are usually
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characterized by more specialist or stenobiomic species such as bovids and
micromammals (e.g., for other mammals see Vrba, 1992; Turner & Wood, 1993;
Wesselman, 1985). As a more eurybiomic group, primates may be more geographically
flexible and able to tolerate conditions or exploit resources across a larger range of
habitats than more stenobiomic mammalian taxa. Detailed biogeographical studies of
other eurybiomic and stenobiomic taxa are needed to support this claim.

A unique series of dispersal events is suggested by the analysis here that, to my
knowledge, has not been previously documented in studies of mammalian biogeography
during the African Plio-Pleistocene. The proposed biogeographic connection between
West and South Africa, specifically, appears to be a unique event confined to the Papio
quadratirostris/Cercocebus/Mandrillus clade. However, the presumed connection
between these two geographic regions, as documented by these monkeys, suggests that
other African mammals, including hominins, may have shared a similar biogeographic
connection as well. Future field work in the Plio-Pleistocene deposits between West and
South Africa may confirm or refute this hypothesis. As is always the case with
interpreting biogeography from fossils, all assumptions and conclusions are subject to
change with the collection of additional fossil specimens or different interpretations of
phylogenetic relationships among taxa from different biogeographical regions (Fleagle
and Gilbert, 2006).

Previous reconstructions of Cercocebus evolutionary biogeography have argued for a
dispersal east and west from the low latitudes of Central Africa (Grubb, 1978; 1982;
McGraw and Fleagle, 2006). In contrast, the current study suggests that Cercocebus or
its immediate ancestor arose in West Africa and subsequently migrated to Central Africa.
This hypothesis suggests that the populations of extant Cercocebus torquatus in West
Africa represent the ancestral Cercocebus populations (Figure 5.3). This scenario further
supports the suggestion that C. torquatus retains the primitive craniodental morphology
for the genus, a morphology that is also generally similar to that of its sister genus
Procercocebus (Gilbert, 2007).

Similar to Cercocebus and Procercocebus, the presence of P. quadratirostris fossils
in East and southwestern Africa also suggest a wider distribution for the Papio

quadratirostris/Cercocebus/Mandrillus clade than its current limited distribution in West
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and Central Africa. In East Africa, the Shungura Formation Members E-G are often
noted as containing forested/woodland components in the environment (e.g., Eck and
Jablonski, 1984; 1987; Reed, 1997; Chapter 3), and so the extension or origination of
Cercocebus/Mandrillus relatives in the same type of environment that the extant taxa
occupy is reasonable. In large part, the extended distribution of Papio quadratirostris is
linked with a Plio-Pleistocene extension of forested environments into East Africa and
southern Angola. The available evidence therefore indicates that Papio
quadratirostris/Cercocebus/Mandrillus has always been a forest-adapted lineage. This
probably helped to avoid competition with the expanding savannah-adapted Papio
lineage (see also Chapter 3). Unlike Cercocebus, however, the fact that the earliest and
most primitive fossils potentially attributable to P. quadratirostris exist in East Africa
suggests a potential East African origin and subsequent dispersal into West Africa for
mandrills and drills (Figure 5.3).

Another interesting taxon in this analysis is Papio hamadryas. The cladogram
here suggests that this species or its immediate ancestor originated in East Africa and
dispersed to South Africa and elsewhere after ~2.5 Ma. Molecular studies suggest that
the extant P. h. ursinus population in South Africa is the most genetically diverse,
implying that the South African population is the oldest (e.g., Newman et al., 2004). The
occurrence of the first recognized subspecies of P. hamadryas in the fossil record, P. h.
robinsoni, in South Africa seems to corroborate this scenario. The simplest explanation
is that the immediate ancestor of P. h. robinsoni dispersed from East to South African
prior to 2.5 Ma, P. h. robinsoni then evolved in South Africa, and finally the extant
populations of P. hamadryas diverged from the early South African P. h. robinsoni
population.

One final noteworthy observation from this analysis is the implied biogeographic
history of the mangabeys: Lophocebus appears to have distributed from East Africa into
Central Africa, while Cercocebus appears to have dispersed from West Africa to Central
Africa. This scenario suggests a basic geographic division between these taxa and that

subsequent dispersal events resulted in the overlapping geographic ranges seen today.
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Conclusions

In light of the biogeographic patterns detected in Plio-Pleistocene African
papionins, explanations of early hominin dispersal patterns involving unique behavioral
adaptations seem unwarranted. It is more likely that general behavioral adaptations
common to multiple primate species at this time allowed for dispersal patterns that were
independent of other mammalian groups. It is suggested here that papionin and early
hominin species are eurybiomic compared to the mammalian groups (for example bovids
and micromammals) typically cited in studies of major dispersal events.

In addition to hypothesized dispersal events between East and South Africa,
African papionins appear to document a biogeographic connection between West and
South Africa ~2.3 - 1.5 Ma (Figure 5.3). Future paleontological work may help
determine if this faunal connection may have involved other mammalian taxa, including
hominins. Given the available evidence, it would appear that the Cercocebus/Mandrillus
lineage is linked with a Plio-Pleistocene extension of forested environments from East
Africa to West Africa and southward to Angola and South Africa. The living mangabey
taxa, Cercocebus and Lophocebus, were most likely geographically separated during their
origins, with the oldest and most primitive Cercocebus populations evolving in West
Africa and the oldest and most primitive populations of Lophocebus evolving in East
Africa. Subsequent to their origins, both mangabey groups dispersed in Central Africa

where they now cohabitate in extant forests.
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Figure Legends

Figure 5.1. Most parsimonious phylogenetic trees of the extant and fossil Papionini
derived from craniodental data. The only difference between the two trees is that a)
hypothesizes P. quadratirostris populations from the Omo Shungura Formation and
Angola are sister taxa, while b) hypothesizes that the USNO specimen and P.
quadratirostris from Angola are sister taxa. Biogeographic character states are mapped
onto the cladograms and color changes along branches indicate changes in character
states representing hypothesized dispersal events (see Table 5.1 for assigned states and
Table 5.2 for color key). The timing of dispersal events is indicated for selected nodes
and branches and derived from the temporal data presented in Table 5.1.

Figure 5.2. Hypothesized mammalian and hominin dispersal events in the African Plio-
Pleistocene (see also Table 5.3). a) Three main mammalian dispersal events, 1: ~3.0 Ma,
Australopithecus, Canis, Cercopithecoides, Diceros, Dinopithecus, Metridiochoerus,
Parapapio, Theropithecus, 2: ~ 2.7-2.0 Ma, Homo, Paranthropus, Cercopithecoides,
Connochaetes, Parmularius, Tragelaphus, Antidorcus, 3: ~ 1.8 Ma — 1.5 Ma, Homo,
Equus, Hipparion, Hippotragus, Kobus, Metridiochoerus, Nyctereutes, Tragelaphus; b)
Four main hominin dispersal events. Dispersals 1 — 3 are the same as those in 2a,
however there is an additional event, 4: ~ 2.5 — 1.7 Ma, potentially involving the hominin
taxa P. robustus and H. habilis (see also Strait and Wood, 1999). This implied dispersal
may have included the papionin taxa Dinopithecus ingens, the ancestor of Gorgopithecus
major/Papio izodi, Papio hamadryas robinsoni, and/or Papio quadratirostris as well.

Figure 5.3. Additional papionin dispersal events implied by this study compared to early
hominin dispersals (see also Table 5.3). The four main hominin and cercopithecoid
dispersal waves are indicated by the faded arrows between East and South Africa (see
also Fig. 5.2b). In addition to these 4 events, members of the Cercocebus/Mandrillus
clade are hypothesized to have dispersed between East and West Africa, West and South
Africa, and West and Central Africa. The extant distribution of the
Cercocebus/Mandrillus clade is illustrated by the shaded regions on the map. Key fossil
taxa and their hypothesized dispersal events are also indicated as 5: ~3.4 — 2.3 Ma, Papio
quadratirostris, the ancestor of Mandrillus/Procercocebus/Cercocebus, 6: ~2.3 — 1.5 Ma,
Procercocebus, Papio quadratirostris, 7: ~ 2.3 Ma — present, Cercocebus.
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Figure 5.3
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Chapter 6

Conclusions

As its title implies, this dissertation set out to illuminate African papionin
phylogenetic history and Plio-Pleistocene biogeography. Two different methodologies
were employed in various phylogenetic analyses: cladistic analysis of more traditional
quantitative and qualitative craniodental characters, and 3-D geometric morphometric
multivariate techniques. Both techniques offered interesting results and raise questions
and possibilities for future studies. However, in the context of the overall goals of this
dissertation, I believe that the cladistic analyses offer a clearer hypothesis of papionin
phylogenetic history with much greater degree and rationale of support.

Chapter 2 illustrated that when allometry is controlled for in phylogenetic
analysis, trees derived from African papionin craniodental data are congruent with
molecular trees. These suggest that two major clades exist among African papionins:
Cercocebus/ Mandrillus and Papio/Lophocebus/Theropithecus. Whereas molecular data
cannot resolve the relationships among these last three taxa, the morphological data
analyzed here strongly support a sister relationship between Papio and Lophocebus.

Chapter 2 also highlighted the effect in phylogenetic analysis of dramatically
different male and female phenotypes within taxa. When the sexes are analyzed
separately, male morphologies perform better. Analysis of male craniodental data results
in phylogenetic trees that are shorter and have higher CI, RI, RC and bootstrap values
compared to analyses of female data. The superior performance of the male craniodental
data set supports previous claims about the higher utility of male morphologies relative to
female morphologies among highly sexually dimorphic primates (Fleagle and McGraw,
2002; Gilbert and Rossie, 2007). It is likely that the distinctive traits of papionin males
are tied to sexual selection, and these are therefore phylogenetically informative because
closely related taxa, by definition, must have shared a common mate recognition system

more recently than distantly related taxa (Paterson, 1985; Gilbert and Rossie, 2007). In
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addition, sexual selection in the form of mate competition is almost exclusive to males
among catarrhine taxa. Similar types and levels of contest competition over females in
closely related taxa would help explain the evolution of distinctive and phylogenetically
informative male craniodental characters and their potential absence in female
craniodental anatomy. In future studies of highly sexually dimorphic primate taxa, males
and females should be separated for analysis, and particular attention should be paid to
male morphologies, or whichever data set clearly displays higher CI, RI, RC, and
bootstrap values.

In contrast to previous studies (e.g., Collard and O’Higgins, 2001; Collard and
Wood, 2000; 2001; Singleton, 2002), analyses on highly sexually dimorphic taxa such as
the papionin monkeys appear to be in error if they resort to sex-averaging methodology
(see also Creel, 1986). Averaging together highly dimorphic phenotypes results in an
“imaginary” phenotype, a phenotype that clearly does not exist in the biological world.
Using this phenotype in analysis seems much less than optimal. Instead, when both sexes
are included in phylogenetic analysis, the results of this dissertation advocates a
combined-sex approach, whereby the sexes are coded separately and then male and
female matrices are combined for parsimony or similar analysis. There are a number of
reasons why combining male and female matrices that have been coded separately is the
most appropriate and accurate portrayal of morphological information about a given
taxon, particularly a sexually dimorphic one. First, the integrity of the separate male and
female morphotypes is retained. Second, male and female morphotypes in sexually
dimorphic taxa obviously have a genetic basis, which is included in this approach. Third,
increasing the number of characters in phylogenetic analysis has been demonstrated to
increase overall phylogenetic accuracy (e.g., Wiens, 2003a; 2003b; 2006). In this case,
combining characters that have been scored separately for males and females allows for
unique male and female character states that are phylogenetically informative to be
sampled together during the analysis. This, in turn, potentially increases the strength and
accuracy of the phylogenetic signal.

Chapter 3 combined the lessons learned from Chapter 2 and applies them in a
combined-sex analysis of extant and fossil African papionin taxa. Given the high degree

of confidence in the morphological data set used in this analysis, the resulting
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phylogenetic trees from Chapter 3 represent the most comprehensive and best-supported
hypotheses of African papionin phylogenetic history to date. Results suggest that
Parapapio, Pliopapio, and Dinopithecus are stem African papionins. Crown Plio-
Pleistocene African papionins include Gorgopithecus, Lophocebus, Procercocebus, and
Papio quadratirostris. Notable phylogenetic conclusions include the following: Papio
quadratirostris, as defined by Delson and Dean (1993), is reconstructed as the sister
taxon to the clade containing Mandrillus, Procercocebus, and Cercocebus.
Theropithecus baringensis is strongly supported as a primitive member of the genus
Theropithecus, which is a primitive crown African papionin taxon. Gorgopithecus is
closely related to Papio and Lophocebus. The origin of crown African papionins appears
to be defined in part by the appearance of definitive maxillary fossae, a feature which
may be tied to sexual selection since increased levels of sexual dimorphism also appear in
crown papionin taxa. Papio, Lophocebus, and Gorgopithecus are united by the most
extensive development of maxillary fossae among African papionin taxa.

The Mandrillus/Cercocebus/Procercocebus/Papio quadratirostris clade is
defined by features such as upturned nuchal crests (especially in males), widely divergent
temporal lines (especially in males), a shift in chewing-muscle forces onto the premolars,
and a tendency to enlarge the premolars as an adaptation for hard-object food processing.
The adaptive origins of the genus Theropithecus appear to be associated with a diet that
required a shift in chewing emphasis onto the molar battery. This may, in turn, be
associated with the evolution of distinctive Theropithecus morphological features such as
the anterior union of the temporal lines, reversed Curve of Spee, and increased enamel
infoldings.

Chapter 4 presented a 3-D morphometric analysis of the extant papionin
basicranium. When the effects of allometry are eliminated by excluding size-correlated
PC scores, phylogenetic analyses of papionin basicranial morphology are incongruent
with recent molecular and morphological studies of African papionins. The addition of
fossil taxa, noted to generally increase phylogenetic accuracy, results in phylogenetic
hypotheses inconsistent with recent results of molecular and morphological studies of
extant and fossil African papionins. These results suggest that important phylogenetic

information is contained within the size-correlated PCs, and this information is being
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discarded during the attempt to eliminate the effects of body size. The nature of principal
components analyses, in particular the likely combination of many cladistic characters on
individual PCs, effectively results in a character reduction that does not allow as fine-
grained a phylogenetic analysis as cladistic studies. A direct comparison of the
phylogenetic trees produced from 3-D geometric morphometrics of the basicranium to
those produced from cladistic analysis of 33 basicranial characters demonstrates that
male, female, sex-averaged, and combined-sex cladistic analyses of basicranial
morphology, adjusted for allometry using the narrow allometric coding method, recover
phylogenetic trees that are congruent with larger morphological data sets (Chapter 2) as
well as molecular data (Table 6.1). Furthermore, these trees have high bootstrap support
(see Table 6.1). These results support other studies indicating that the basicranium is a
highly informative phylogenetic region (Lockwood et al., 2004; Cardini and Elton, 2008),
but the shape analyses and the PCs that contain the morphological information are not
fine-grained enough, include too much “noise”, or do not capture the same details as a
given set of cladistic characters. Future 3-D morphometric studies of phylogeny should
focus on the development of methodologies to adjust for allometric effects.

Finally, Chapter 5 takes the phylogenetic trees produced in Chapter 3 and uses
them to analyze African papionin biogeography compared to hominin taxa in the Plio-
Pleistocene. African papionin Plio-Pleistocene dispersal patterns largely mirror those of
early hominins and, in at least one case, oppose general mammalian trends as well.

These results suggest that papionin and early hominin species are eurybiomic compared
to the mammalian groups (e.g., bovids and micromammals) typically cited in major
dispersal events.

In addition, African papionin monkeys appear to document a biogeographic
connection between West and South Africa ~2.3 - 1.5 Ma. Future paleontological work
may help determine if this faunal connection may have involved other mammalian taxa,
including hominins. The Cercocebus/Mandrillus lineage is linked with a Plio-
Pleistocene extension of forested environments from East Africa to West Africa and
southward to Angola and South Africa. A basic geographic division since the Plio-
Pleistocene appears to have separated the living mangabey taxa, Cercocebus and

Lophocebus, with the oldest and most primitive Cercocebus populations having evolved
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in West Africa and the oldest and most primitive populations of Lophocebus having
evolved in East Africa. Subsequent to their origins, both mangabey groups dispersed in
Central Africa where they now cohabitate extant forests.

To test the ideas and hypotheses put forth in this study, future work will depend
on additional, and better preserved, fossil material (particularly male specimens) and, in
some cases, clearer resolution of taxonomy. The taxonomic status of some specimens
attributed to various Parapapio species, some of the Angolan specimens, some of the
later Omo specimens, as well as undescribed Namibian material may alter our
understanding of levels of variation in certain taxa, or result in the recognition of new
taxa and therefore add new data to future phylogenetic studies. The addition of
postcrania in future phylogenetic analyses would also be a potentially useful addition to
the study presented here; however, such analyses will depend on associated postcrania
being identified and/or assigned in the fossil record (e.g., Ciochon 1993; Elton, 2001).
Among extant taxa, the newly named Rungwecebus kipunji (Jones et al., 2005; Davenport
et al., 2006) will no doubt be important in clarifying the relationships among itself,
Papio, Lophocebus, and Theropithecus. While more comprehensive 3-D geometric
morphometric studies of the entire cranium may help shed light on phylogenetic
relationships among taxa, given the incomplete nature of many fossil crania, the difficulty
of adjusting for allometry in multivariate morphometric analyses, and the fact that some
phylogenetically informative features are not easily digitized, I believe that
comprehensive cladistic analyses of craniodental data will prove more informative in

phylogenetic studies, at least in the case of the papionin monkeys.
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