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Abstract of the Dissertation

Correlations in Low-Dimensional Systems

by

Sebastian Andres Reyes

Doctor of Philosophy

in

Physics

Stony Brook University

2007

We examine three different low dimensional condensed matter sys-

tems.

Chapter 2 is concerned with the one dimensional quantum Ising

model in a transverse magnetic field. Using exact results for the

correlators of the classical two dimensional Ising model we show

how to obtain two point correlators of the order parameter field

for two different regimes.

In the third chapter we study the problem of two spin-1/2 Heisen-

berg chains interacting at a single point. Using equivalences be-

tween different models we show that the correlators of the physical
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fields have non-universal exponents.

Finally, in Chapter 4 we explore the possibility of spin density wave

(SDW) formation in graphene (two dimensional layers of graphite)

that may be facilitated by the application of a magnetic field in

the direction of the plane of the graphene sheet. We find an or-

der parameter that combines sublattice, valley and spin degrees of

freedom. Due to reduced dimensionality, we pay special attention

to critical fluctuations.
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Chapter 1

Introduction

Dimensionality is one of the most defining properties of a physical system. In

particular, since fluctuations always increase with a decrease of dimensionality,

the latter most desicively affects properties of phase transitions. Fluctuations

can preclude phase ordering such that ordered phases existing in three dimen-

sions may not occur in lower dimensionality.

Strength of fluctuations in low-dimensional systems often makes it difficult

a use of conventional theoretical tools such as mean field theory. At these cir-

cumstances one has to resort to more advanced methods such as bosonization

and Bethe ansatz available in (1+1)-dimensions (for quantum systems) and in

two dimensions (for classical systems). Though these methods are very pow-

erful their application to various problems, such as calculations of correlation

functions, are frequently not quite straightforward and requires a considerable

effort. In this thesis we address some of the problems of that kind.
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1.1 One-dimensional Systems

One-dimensional systems exist in nature either directly or in their quasi-1D

form as arrays of weakly coupled chains. In both cases they have also been

the object of extensive experimental study in the last couple of decades when

the advances in the synthesis made such systems available. Examples include

the bulk materials consisting of well separated spin chains (KCuF3) [2] or

ladders (SrCu2O3) [3]. In such materials exchange interaction along the one-

dimensional structure (chain or ladder) is much stronger than the interaction

among them, resulting in quasi-one-dimensional behavior. There are a number

of strictly one-dimensional systems such as, for example, carbon nanotubes,

edge states in the quantum Hall effect or Josephson junction arrays, just to

name a few.

It is worth mentioning that the increasing ability to produce higher mag-

netic fields and lower temperatures has also played a major role in the success

of experimental studies in such materials.

From the point of view of the theorist, the study of one-dimensional systems

is very appealing because of the fact that non-perturbative or even exact results

can frequently be found. A very important analytical method to obtain such

solutions is Bethe-ansatz. Introduced more than seventy years ago by Hans

Bethe [1], it is an elegant though rather complicated approach that allows, in

principle, to obtain all the eigenenergies and eigenstates for a certain class of

microscopic one-dimensional Hamiltonians.

The most difficult problem of Bethe ansatz is complexity of the eigenfunc-

tions. This often makes it very difficult to calculate the correlation functions.
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Unless the excitation spectrum is gapless and linear in momentum (here the

alternative methods of bosonization and conformal field theory can be used),

the problem may become quite severe and was partially resolved only for mod-

els with Lorentz symmetry and for T = 0. In that case one can employ the

formfactor expansion first suggested by Karowski et. al and then perfected

by Smirnov. At nonzero temperature this expansion has problems related to

singularities in the operator matrix elements (formfactors). Such singularities

may exist even for models of non-interacting particles such as Quantum Ising

model, provided the operators in question are nonlocal with respect to particle

creation and annihilation operators.

In the second chapter of this thesis we explore this problem for the one-

dimensional quantum Ising model (Ising model in a transverse magnetic field).

This model consists in a chain of S = 1/2 spins with a nearest neighbor

exchange interaction of their z-components and with a magnetic field applied

in the x direction. This model can be recast as a model of free fermions at

the expense of producing a highly nonlocal relationship between Sz operators

and the fermion creation and annihilation operators. This nonlocality leads to

singularities in the matrix elements of Sz. As far as the formfactor approach

is concerned, the calculation of Sz − Sz correlation function at T 6= 0 is as

complicated problem as for other integrable models.

Fortunately the Sz − Sz correlation function for the quantum Ising model

admits an alternative representation [4], [5] and [6], which allows to circumvent

the problems emerging in the formfactor expansion. This will allow us to

derive long time asymptotics for the dynamical correlation function for the

Ising model. These results give an idea of the kind of problems one should
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expect to resolve to obtain similar expressions for correlation functions in other

integrable models.

We start in section 2.1 by introducing the Ising model and its basic prop-

erties in some detail. Later, in section 2.2 we show how to calculate finite

temperature correlators in the low energy regime where Lorentz symmetry

emerges and a continuum description is appropriate. The results are written

in terms of an expansion in powers of soliton density (virial expansion). Fi-

nally, in 2.3 we derive results for the dynamical correlator for the lattice high

temperature regime where universality is lost (T À J).

In Chapter 3 we deal with a different kind of one dimensional system: the

problem of two spin-1/2 Heisenberg chains interacting at a single point. To

obtain the results we make extensive use of the method developed in [47] to

transform the problem of two interacting Heisenberg chains into the problem

of four independent one dimensional quantum Ising models. We find that

since the operator describing the interaction is exactly marginal, correlations

of physical operators have non-universal exponents.

1.2 Two-dimensional Systems

Two-dimensional physics is as full of marvels as one-dimensional ones. Its

study has proven to be incredibly fruitful and has led to important discoveries

in the past. For example, in 1980 the integral quantum Hall effect (QHE) [7]

was discovered in two-dimensional electron systems followed by the discovery

of the fractional QHE only two years later [8]. Both of these achievements

were possible due to the realization of effectively 2D electron systems by con-
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fining charge carriers into thin potential wells (MOSFET, GaAs heterostruc-

tures). Another remarkable discovery occured in 1986 when high-temperature

superconductivity was first observed in layered cuprates [11]. It is now widely

agreed that their behavior is determined by physics of electrons and spins in

two-dimensional copper-oxygen planes.

Not surprisingly then, the experimental realization of a two-dimensional

layer of graphite (graphene) [12], [13] sparked an enormous amount of in-

terest in this material. This one atom thick crystal provides a kind of two-

dimensional electron system that is conceptually different from that mentioned

in the previous paragraph. The realization of such a material was quite sur-

prising because it was previously thought that such strictly two dimensional

structure should not exist because it would be unstable due to divergent ther-

mal fluctuations [10], [9].

One of the most remarkable properties of graphene is that its low energy

excitations are well described by the spectrum of relativistic Dirac fermions.

Interestingly then, we have a situation where quantum relativistic phenomena

can be “tested” in a condensed matter experiment. From a more practical

point of view, this material is very promising for applications in microelec-

tronics and it may be a candidate to replace Si in the future. We have to

wait to see if such important applications become a reality, but for the time

being we have enough motivation to study graphene from the scientific point

of view.

In Chapter 4 we explore the possibility of spin density wave formation in

graphene that may be facilitated by the application of a magnetic field in the

direction of the graphene plane. We argue that since the field splits the bands
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creating a finite density of states at the Fermi surface, this situation is ideal

for excitonic condensation of particle hole pairs. The most general form of

the order parameter is presented and the critical temperature at which it will

form is estimated. Critical fluctuations become extremely important in two

dimensions so we pay special attention to them.

For completeness several appendices have been included. They contain

details of important calculations and complementary background material we

considered useful for the reader unfamiliar with some of the subjects treated.
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Chapter 2

Order Parameter Correlators of

the Quantum Ising Model

In this chapter we present some results obtained for the dynamical correlator

of the order parameter field of the quantum Ising (QI) model. Although this

model has been extensively studied we found room for our contribution.

For the sake of completeness and to aid the reader not familiar with the

subject, in section 2.1 some basic facts about the Ising model are introduced.

For a more complete review of important results regarding the Ising model

the reader should consult references [14], [15] and [16]. In section 2.2 a virial

expansion for the two-point correlation function is derived. Finally, in section

2.3, we obtain the dynamical correlator in the (lattice) high temperature limit.
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2.1 Basics of the Ising Model

The Ising model (IM) was introduced in 1925 [17] as a simple theory of fer-

romagnetism and it remains until today, one of the most important models

in statistical physics. It is the most elementary model of magnetic degrees

of freedom with short range interactions and it possesses a wealth of inter-

esting physical properties, for example, it undergoes a second order phase

transition between a disordered and an ordered state. From the theoretical

point of view, it also has the virtue that exact calculations can be performed.

Physical realizations of the Ising model can be found in materials such as the

dipolar-coupled ferromagnet LiHoF4 [18].

We will start by describing the one dimensional Quantum Ising (QI) model

[20] and later will discuss a useful correspondence between this model and the

classical two-dimensional Ising model.

The QI model Hamiltonian is

H = −J
∑

n

(
σz

nσz
n+1 +

1

λ
σx

n

)
(2.1)

where σz, σx are the Pauli matrices, J is the nearest neighbor exchange interac-

tion and J/λ is a transverse magnetic field. Now we can use the Jordan-Wigner

transformation [19] to transform spins into fermionic degrees of freedom:

σz
n = −

∏
m<n

(1− 2c†mcm)(c†n + cn)

(2.2)

σx
n = 1− 2c†ncn
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Using this equivalence the Hamiltonian can be transformed into

H = −J
∑

n

(
c†n+1cn + c†ncn+1 + c†nc

†
n+1 + cn+1cn +

1

λ
(1− 2c†ncn)

)
(2.3)

Now, the usual Fourier mode transformation

cn =
1√
N

∑
p

cpe
ipxn (2.4)

can be used to simplify the Hamiltonian further

H = −J
∑

p

(
2

λ
(cos p− 1)c†pcp + i sin p(c†−pc

†
p + c−pcp) +

1

λ

)
(2.5)

Finally using the Bogoliubov transformation the Ising chain is mapped into a

system of non-interacting fermions:

H =
∑

p

ε(p)
(
F †

pFp − 1/2
)

(2.6)

where the single particle energy is given by,

ε(p) =
2J

λ

√
(λ− 1)2 + 4λ sin2(pa/2) (2.7)

with a being the lattice spacing and

Fp = upcp − ivpc
†
−p (2.8)
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where

up = cos θp , vp = sin θp ; tan 2θp =
λ sin p

λ cos p− 1
(2.9)

Hamiltonian (2.1) possesses a property of self-duality: the transformation

µz
n+1/2 =

∏
j<n σx

j , µx
n+1/2 = σz

nσ
z
n+1 preserves both the commutation relations

and the form of the Hamiltonian:

H = −J
∑

n

(
1

λ
µz

n−1/2µ
z
n+1/2 + µx

n+1/2

)
(2.10)

As follows from the form of the dispersion law (2.6), λ = 1 is the critical

point, i.e. the point where the spectrum of excitations becomes gapless. It

is easy to see that at T = 0 it separates the regions where 〈σz〉 6= 0 (λ > 1)

and 〈µz
n+1/2〉 6= 0 (λ < 1). Operators σz and µz are respectively called order

and disorder parameter operators. The duality allows to study the correlation

functions at one side of the transition only. For instance, a correlation function

of σz at λ > 1 coincides with the correlation function for µz with J, J/λ

interchanged.

It is convenient to summarize some properties of the quantum Ising chain

in a phase diagram (see Fig. 2.1). The diagram is divided in different regions,

each one of them with different properties. In the Quantum Paramagnetic

region the gap is larger than the temperature, the magnetic field is larger

than the exchange of the order parameter and at T = 0 the system will be

in a disordered ground state with 〈σz〉 = 0. The Quantum Critical regime

corresponds to T larger than the gap and the physics is dominated by the

10



Figure 2.1: Phase diagram for the one dimensional quantum Ising model.
There are three distinct low temperature regimes (T ¿ J), in all of which
Lorentz symmetry emerges and a field theory description is appropriate. In
the Lattice High T (T À J) both Lorentz symmetry and universality are lost.

quantum critical point. In section 2.2 we will study primarily the Long Range

Order region where the temperature is lower than the gap but now, since

the magnetic field is smaller than the exchange of the order parameter, the

correlation length diverges exponentially when T → 0 and at T = 0 the system

is in its ordered phase.

So far we have only mentioned regimes in which T ¿ J . In these a con-

tinuum description is appropriate and one can take advantage of the emergent

Lorentz symmetry. In section 2.3 we will study the situation when T À J and

universality is lost (Lattice High T).
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Though one cannot observe a single fermion, the fermionic statistics can be

indirectly tested by measuring the correlation functions of σx. The operator

σx (as well as µx) is local in fermions:

σx(x) =
∑

k

e−iqxγ(k)γ(k − q)F̂kF̂q−k, F̂k = F̂ †
−k,

γ(k) =
√

1 + k/ε(k). (2.11)

Its finite temperature correlation functions are just polarization loops; they

clearly contain the Fermi distribution functions of the fermion fields F . Since

the order (σz) and disorder parameter (µz) fields are nonlocal in terms of

fermions, their correlation functions are more complicated.

2.1.1 Correspondence between 2D classical and 1D quan-

tum Ising models

We now briefly explain the correspondence between the two dimensional (2D)

classical Ising model and the quantum Ising chain. The energy of the 2D

classical IM is,

E = −
∑
rx,ry

[Kxσ(rx, ry)σ(rx + 1, ry) + Kyσ(rx, ry)σ(rx, ry + 1)] (2.12)

The critical line in the anisotropic 2D Ising model is determined by the equa-

tion (see Fig. 2.2)

sinh 2Kx sinh 2Ky = 1 (2.13)
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Figure 2.2: Critical line of the two dimensional classical Ising model. Above
the line the system is in its ordered phase. When λ < 1 we are below the line
and the system is in a paramagnetic state.

The couplings K are inversely proportional to temperature in the classical

model. Large K’s correspond then to low temperature and we are in an ordered

state above the critical line. Below the critical line, thermal fluctuations will

disorder the system.

Let us choose the y direction as the (imaginary) time direction. Then

one-dimensional QI model arises when the following continuum limit in the y

direction (Ky →∞) is taken [21]:

τ = ryτ0, ry →∞, τ0 = e−2Ky

sinh 2Kx sinh 2Ky = λ (2.14)
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In this limit the classical model gives rise to the Hamiltonian of the one-

dimensional quantum Ising model in a transverse magnetic field (2.1). More

specifically, the correlators of the order parameter field in the classical model

correspond to correlators of the quantum operator σz in the quantum one:

〈σ(rx, ry)σ(0, 0)〉C → 〈σz(rx, τ)σz(0, 0)〉Q (2.15)

where τ is Matsubara time1. Temperature and coupling in the quantum Ising

model are related to the parameters of the classical model in the following way

J

λT
= Mτ0 = Me−2Ky (2.16)

where M is the size of the classical system in the y (imaginary time) direction.

Furthermore, the phase transition mentioned before for the classical Ising

model corresponds now to a quantum phase transition (QPT), that is, a tran-

sition at T = 0 for the quantum Ising chain. The role that thermal fluctuations

played in the two dimensional classical system is now played by quantum fluc-

tuations in the ground state of the quantum chain.

1In the Matsubara time formalism it is exchanged by τ . Since we will make extensive
use of this technique throughout this work a brief explanation of it is included in Appendix
A.

14



2.2 Finite temperature correlation function:

the virial expansion

In this section we rewrite the exact expression for the finite temperature two-

point correlation function for the magnetization as a partition function of

some field theory. This removes singularities and provides a convenient form

to develop a virial expansion (the expansion in powers of soliton density).

2.2.1 Introduction

To calculate correlation functions in strongly correlated systems is not an easy

task, even if the corresponding models happen to be integrable. For models

with dynamically generated spectral gaps the most powerful technique is the

formfactor approach pioneered by Karowski et. al. [22], [23] and perfected by

Smirnov [24]. This approach works wonderfully for zero temperature, but en-

counters difficulties at T 6= 0 [25]. These difficulties are related to singularities

in the operator matrix elements (formfactors). These singularities exist for

operators nonlocal with respect to solitons, they originate from forward scat-

tering processes and their treatment requires careful infrared regularization.

Despite long efforts a correct regularization has not yet been found.

However, for models of free fermions (such as the XY model or the Quan-

tum Ising model), there are alternative means to calculate the correlation func-

tions which allow to bypass the above problems. These alternative approaches

include the determinant representation of the correlation functions [26],[27]

and the semiclassical method [28] (which may have much wider application,

15



see [29],[30]). For these results to have a greater use one has to establish their

relationship with the formfactor approach. A step in this direction was made in

[31] where the semiclassical results [28], [29],[30] were reproduced by summing

up the leading singularities in the formfactor expansion. Such summation was

restricted to the leading order in the soliton density n ∼ exp(−M/T ) (M is

the spectral gap).

In what follows we describe a formfactor-based representation for correla-

tion functions which, though in its present form is valid only for models of

free fermions, is rather suggestive and may give rise to useful generalizations

in the future. For the Quantum Ising (QI) model, which is the main object

of this work, this procedure naturally gives rise to a virial expansion of the

dynamical spin susceptibility.

In this section we will study the two-point correlation functions of the σz

and µz operators in the “ordered” phase λ > 1. For technical reasons it will

be convenient to work in the limit |λ− 1| << 1 when the spectral gap is much

smaller than the bandwidth and one can formulate a continuous description.

In this limit the excitation spectrum is relativistic

ε(p) =
√

M2 + c2p2 (2.17)

where M = 2J |λ− 1| and c = 2Ja. Energy and momentum of a quasi-particle

are conveniently parameterized by a rapidity, θ, (cp = M sinh θ). Then the

eigenstates of Hamiltonian (2.1) are labeled by sets of rapidities, {θi}, such
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that the energy and momentum of the system are equal to

E = M

n∑
i=1

cosh θi, P = c−1M

n∑
i=1

sinh θi. (2.18)

Below we set c = 1.

2.2.2 Two-point Correlators

A convenient finite temperature expression for the two point correlation func-

tions of σz and µz was derived by Bourgij and Lisovyy [4], [5]. This expression

for the Matsubara time correlation function is manifestly free of singularities

and has the following form:

〈σ(τ, x)σ(0, 0)〉 = CM1/4e−|x|∆(T ) × (2.19)
∞∑

N=0

T 2N

(2N)!

∑
q1,...q2N

2N∏
i=1

e−|x|εi−iτqi−η(qi)

εi

∏
i>j

(
qi − qj

εi + εj

)2

where τ is imaginary time. The same expression holds for µz, but with 2N

replaced by 2N +1. q = 2πTm (m integer), and ε(q) =
√

M2 + q2. The terms

in the exponents are (β = 1/T )

η(q) =
2ε(q)

π

∫ ∞

0

dx

ε2(q) + x2
ln coth[βε(x)/2], (2.20)

and

∆(T ) =

∫ ∞

−∞

dp

π
ln{coth[βε(p)/2]} (2.21)
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Figure 2.3: A graphic representation of Eq.(2.22). The ellipses are formfactors
of σ operator. Lines with left arrows are f (+)(θ) exp[itε(θ)+ ixp(θ)], lines with
the right arrows are f (−)(θ) exp[−itε(θ)− ixp(θ)].

The symmetry breaking transition at T = 0 leads to a finite magnetization,

〈σ〉 = ±[CM1/4]1/2. This is reflected in the zeroth order term in Eq. (2.19).

In [31] Eq. (2.19) was rewritten in the form which allowed an analytic

continuation for real time. The N -th term in the square brackets of Eq. (2.19)

is given as 2

2N∑
n=1

1

n!(2N − n)!

∫ n∏
i=1

dθi

2π
f (+)(θi)e

τεi+ixpi

2N−n∏
j=1

dθ′j
2π

f (−)(θ
′
j)e

−τεj−ixpj (2.22)

×
∏

i>k tanh2[(θi − θk)/2]
∏

j>p tanh2[(θ′i − θ′p)/2]∏
i,p tanh2[(θi − θ′p + i0)/2]

2In the paper [31] where this formula first appeared it was written in a simplified form
valid in the limit M À T .

18



where,

f (+)(θ) =
eη(+)(θ)

[eβε(θ) − 1]
, f (−)(θ) =

e−η(−)(θ)

[1− e−βε(θ)]
(2.23)

and

η(±)(θ) =
iM sinh θ

π

∫ ∞

−∞

dx ln{coth[β
√

M2 + x2/2]}
x2 −M2 sinh2(θ ± i0)

(2.24)

with p(θ) = M sinh θ, ε(θ) = M cosh θ. As a check for consistency we can

insert (2.22) into (2.19) and see that the dynamical correlator satisfies the

periodic boundary condition

〈σ(τ + β, x)σ(0, 0)〉 = 〈σ(τ, x)σ(0, 0)〉 (2.25)

In (2.23) we have what seems to be bosonic distribution functions, in ap-

parent contradiction with the fact that the excitations of the QI model are

fermions. A more detailed analysis will reveal that there is no such contradic-

tion. It can easily be shown that

η(±)(θ) =
i sinh θ

π
PV

∫ ∞

−∞

dx ln{coth[βM
√

1 + x2/2]}
x2 − sinh2 θ

(2.26)

∓ ln{coth[βM cosh θ/2]}

≡ iη(θ)∓ ln{coth[βM cosh θ/2]}

where we have defined η. Now we can rewrite

f (±)(θ) = eβε(θ)/2±(iη(θ)−βε(θ)/2)f(θ), f(θ) ≡ 1

eβε(θ) + 1
(2.27)
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where f(θ) is the Fermi distribution function.

In Eq.(2.22), n and N −n are numbers of particles and antiparticles. Now

we rearrange the double sum (2.22) in such a way that we first sum all terms

which contain a fixed difference between numbers of particles and antiparticles

2N − 2n = 2k. Then such term in Eq.(2.22) can be represented as an integral

of the correlation function of a Gaussian field theory:

a−4k2

0

(N − k)!(N + k)!

∫ N−k∏
i=1

dθi

2πa0

f (+)(θi)e
τεi+ixpi × (2.28)

N+k∏
j=1

dθ′j
2πa0

f (−)(θj)e
−τεj−ixpj〈

N−k∏
i

eiΦ(θi+ia)

N+k∏
j

e−iΦ(θ′j−ia)e2kiΦ(∞)〉0

where

〈Φ(θ1)Φ(θ2)〉 ≡ G0(θ12) = − ln

[
tanh2(θ12) + a2

0

R2

]
(2.29)

and a À a0 → 0, R →∞. Here we have made use of the well known identity

for the correlation function of exponents

〈eiβ1Φ(θ1)...eiβNΦ(θN )〉 = e−iβiβjG(θi,θj)− 1
2

P
i β2

i G(θi,θi)

=
∏
i<j

(
tanh2 θij

a2
0

)βiβj (
R

a0

)−(
P

i βi)
2

(2.30)

The correlator is different from zero only when

∑
i

βi = 0. (2.31)

Eq.(2.28) represents then one term in the perturbative expansion of the
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partition function of the theory with the action

S =
1

2

∫
dθ1dθ2Φ(θ1)G

−1
0 (θ12)Φ(θ2) +

∫
dθ

2πa0

V [θ, Φ(θ)] (2.32)

where

V = f (+)(θ)eτM cosh θ+ixM sinh θeiΦ(θ+ia) (2.33)

+ f (−)(θ)e−τM cosh θ−ixM sinh θe−iΦ(θ−ia)

In this theory x, τ are external parameters. The field Φ lives on an infinite

line in θ space. It is easy to see that the entire correlation function can be

written as

〈σ(τ, x)σ(0, 0)〉 = CM1/4e−|x|∆(T )Z0(x, τ)limR→∞
∞∑

k=−∞

〈e2ikΦ(R)〉V
a4k2

0

(2.34)

where

Z0 =

∫
DΦe−S[Φ]

∫
DΦe−S0[Φ]

(2.35)

and 〈...〉V stands for averaging with action (2.32). There is yet another way

to write the correlator that is worth mentioning. We can insert (2.28) into

(2.22)and easily see that we can rewrite

〈σ(τ, x)σ(0, 0)〉 = CM1/4e−|x|∆(T )

∞∑
N=0

N∑

k=−N

〈αN−k
+ αN+k

− 〉0
(N − k)!(N + k)!

= CM1/4e−|x|∆(T )〈cosh(α+ + α−)〉0 (2.36)
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where

α± =

∫
dθf (±)(θ)e±(τε(θ)+ixp(θ))e±iΦ(θ±ia)e∓iΦ(∞) (2.37)

depend on x and τ .

Let us now go back to (2.34) and notice that this form leads to significant

simplifications. The partition function can be written as an exponent of the

free energy Z0 = exp[−F (x, τ)]. The latter one is represented as a sum of the

cumulants:

F = −
∞∑

N=1

1

(N !)2

∫ N∏
i=1

dθi

2πa0

f (+)(θi)e
τεi+ixpi × (2.38)

N∏
j=1

dθ′j
2πa0

f (−)(θj)e
−τεj−ixpj〈〈

N∏
i

eiΦ(θi+ia)

N∏
j

e−iΦ(θ′j−ia)〉〉0

where the subscript 0 stands for averaging with V = 0 and

Z0(x, τ)〈e2ikΦ(R)〉V =
∞∑

N=|k|

1

(N − k)!(N + k)!

∫ N+k∏
i=1

dθi

2πa0

f (+)(θi)e
τεi+ixpi × (2.39)

N−k∏
j=1

dθ′j
2πa0

f (−)(θj)e
−τεj−ixpj〈

N+k∏
i

eiΦ(θi+ia)

N−k∏
j

e−iΦ(θ′j−ia)e2ikΦ(R)〉0

2.2.3 Results and Conclusions

All transformations so far have been exact. Now we would like to concentrate

on the causal Green’s functions. To obtain them one has to replace τ with it in

(2.22). Assuming that T ¿ M , we consider the region of frequencies |ω| < 2M ,

where the only terms of the expansion (2.22) contributing to the spectral
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function are those which contain equal number of particles and antiparticles.

As we shall demonstrate, all formfactor singularities are contained in the first

term of expansion (2.38). Since |f (+)| ∼ exp(−βM) ¿ 1, |f (−)| ∼ 1, this

expansion is in powers of soliton density exp(−βM). The first term is given

by

−F (1)(t, x)

=
1

4π2

∫
dθ1dθ2f

(+)(θ1)f
(−)(θ2)

exp (i{t[ε(θ1)− ε(θ2)] + x[p(θ1)− p(θ2)]})
tanh2(θ12 + i0)/2

≈ 1

2π2

∫
dθdvf (+)(θ + v)f (−)(θ − v)

exp [ivM(t sinh θ + x cosh θ)]

(v + i0)2
(2.40)

≈ θ(t− |x|)
{

1

π

∫

tanh θ<−|x|/t

dθf (+)(θ)f (−)(θ)M [(t sinh θ + x cosh θ)|]

+
2i

π
g[θ = tanh−1(x/t)]

}

where g(θ) = f (+)(θ)− f (−)(θ) and, as follows from (2.27)

f (+)(θ)f (−)(θ) =
1

4 cosh2[βε(θ)/2]
. (2.41)

In 2.40 we assumed that Mt, (Tt)1/2 À [1 − (x/t)2]−1/2. The higher order

cumulants contain higher powers of exp(−βM) and also do not contain positive

powers of t. This justifies keeping the exact distribution function in the real

part of (2.40). This cannot be done for the imaginary part, since the second

cumulant gives a time independent contribution ∼ exp(−2βM). Within these

limits we obtain the following results:

〈σ(x, t)σ(0, 0)〉T = CM1/4θ(t)e−δ∆|x| exp

{
− 1

4π

∫
dp

|tv(p)− x|
cosh2[βε(p)/2]
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−4i

π
exp[−βM/

√
1− (x/t)2]

}
, t > |x| (2.42)

〈σ(x, t)σ(0, 0)〉T = CM1/4θ(t) exp(−∆|x|), |x| > t (2.43)

〈µ(x, t)µ(0, 0)〉T = 〈µ(x, t)µ(0, 0)〉T=0〈σ(x, t)σ(0, 0)〉T (2.44)

where

δ∆ =
1

π

∫
dp

[
ln coth(βε/2)− 1

2 cosh2(βε/2)

]
(2.45)

∼ exp(−3βM)

The imaginary part of (2.43) in the time-like domain t > |x| reflects a quantum

nature of the excitations. For T = 0 such imaginary part was first found in

[33]. In the leading order in exp(−βM) Eq.(2.44) coincides with the one found

in [28]. At x = 0 we have

〈σ(x = 0, t > 0)σ(0, 0)〉 ≈ CM1/4 exp

[
−t/τ0 +

4i

π
e−βM + O

(
e−2βM

)]

where

τ−1
0 =

2T

π

1

eβM + 1
. (2.46)

Since single solitons are not directly observable, it is rather interesting to note

that τ0 contains the distribution function of a single soliton. It would be very

interesting to see what happens in correlation functions in models containing
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particles with fractional statistics.

Since our approach shares certain common features with the Fredholm

determinant representation introduced by Korepin et. al. [26],[27], [34],[35],

we feel obliged to comment on the subject. The main difference is that we

do not represent the correlation functions as determinants though in certain

limits this is possible. For instance, if one adopts the nonrelativistic limit

θ ¿ 1 in action (2.32), it can be fermionized and rewritten as a theory of

free fermions. Then by integrating over fermions one obtains the determinant

representation. However, we would like to point out that such representation is

not a goal in itself. By representing correlation functions as partition functions

of some field theory one already achieves a lot since now one can concentrate

on connected diagrams where it is easier to keep track of singularities. It is

possible that acting along the lines of [37] one can obtain such representations

for interacting models.

We also would like to warn against the direct comparison of Eq.(2.43) with a

similar equation for the 〈σ−σ+〉 correlation function in the XY model obtained

in [26]. This warning is necessary because the XY model in magnetic field is

rather similar to the QI model; the similarity increases when the magnetic

field exceeds the band width so that the ground state becomes ferromagnetic.

However, as was explained to us by Korepin (private communication), the

formulae of [26] were obtained for the case of weak magnetic field the XY

model spectrum is a gapless, which explains the difference in the final results.
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2.3 High Temperature Limit of the Order Pa-

rameter Correlation Function

In this section we use the exact results for the anisotropic two-dimensional

Ising model obtained by Bugrij and Lysovyy [6] to derive the expressions for

dynamical correlation functions for the Quantum Ising model in one dimension

at high temperatures.

2.3.1 Introduction

The previous attempts to calculate correlation functions of integrable models

has mostly concentrated on the low energy (temperature) limit where field

theory methods can be applied. In that case calculations are simplified due

the emerging Lorentz symmetry and conformal symmetry (at criticality). Since

such symmetries are absent for lattice theories at large temperatures, much

less is known about the high temperature dynamics.

In this section we discuss the high temperature limit of the two-point cor-

relation functions in the one-dimensional Quantum Ising (QI) model. Though

this model has been extensively studied, the high temperature asymptotics are

known only for the one site correlation function [38]. We extract these asymp-

totics from the general expressions for the correlation functions derived for

the two-dimensional anisotropic classical Ising model (IM) in [6]. To translate

them into quantum language, we will exploit the correspondence between a cer-

tain scaling limit of the two-dimensional classical IM and the one-dimensional

QI model that was explained in full detail in section 2.1.
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2.3.2 Quantum limit of the correlation functions

It was shown in [6] that the 2D anisotropic Ising correlator in the ferromagnetic

phase (λ > 1) for the model of infinite size in the x direction and length N in

the y-direction, can be written in the following form:

〈σ(τ, rx)σ(0, 0)〉 = ξ ξT e−|rx|Λ−1

N/2∑

l=0

g2l(rx, τ) (2.47)

where,

gn =
e−nΛ−1

n!Nn

[
ty(1− t2x)

tx(1− t2y)

]n2

2 ∑
q̄

n∏
j=1

e−|rx|γ(q̄j)+iτ q̄j−η(q̄j)

sinh γ(q̄j)
F 2

n [q̄] (2.48)

F 2
n [q̄] =

n∏
i<j

sin2 ((q̄iτ0 − q̄jτ0)/2)

sinh2 ((γi + γj)/2)
=

[τ0

2

]n2−n
n∏

i<j

(q̄i − q̄j)
2

sinh2 ((γi + γj)/2)
(2.49)

and,

ξ = |1− λ−2|1/2

q̄τ0 = q (2.50)

q̄ = 2πTm (T−1 = β = Nτ0)

It is convinient to take the continuum limit as early as possible in the

calculation, so we write the following,

ty(1− t2x)

tx(1− t2y)
=

sinh 2Ky

sinh 2Kx

→ 1

4λτ 2
0

(2.51)
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cosh γ(q) =
cosh 2Ky cosh 2Kx − sinh 2Ky

sinh 2Kx

+ 2 sin2(q/2)
sinh 2Ky

sinh 2Kx

→ q̄2

8λ
+

1

2
(λ−1 + λ) (2.52)

cosh γ̄(q) =
cosh 2Kx cosh 2Ky − sinh 2Kx

sinh 2Ky

+ 2 sin2(q/2)
sinh 2Kx

sinh 2Ky

(2.53)

→ 1 + 2
(
1 + λ2

) (
1− 2λ

1 + λ2
cos(q)

)
τ 2
0 + ...

= 1 +
γ̄(q)2

2
+ ...

then,

Nγ̄(q)

2
→
√

1 + λ2

T

(
1− 2λ

1 + λ2
cos(q)

)1/2

(2.54)

where the arrows indicate that the continuum limit has been taken.

In other notations,

sinh(γ/2) =

√
M2 +

q̄2

16λ
, (2.55)

cosh(γ/2) =

√
1 + M2 +

q̄2

16λ
,

M2 =
1

4
(
√

λ− 1/
√

λ)2

In the continuum (that is quantum) limit (2.48) becomes

gn =
T n

n!

[
1

16λ

]n2

2 ∑
q̄

n∏
j=1

e−|rx|γ(q̄j)+iτ q̄j−α(q̄j)

sinh (γj/2) cosh (γj/2)

n∏
i<j

(q̄i − q̄j)
2

sinh2 ((γi + γj)/2)
(2.56)
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where we have defined,

α(q̄) ≡ η(q̄) + Λ−1 (2.57)

and according to [6],

Λ−1 =
1

π

∫ π

0

dp log coth
Nγ̄(p)

2
(2.58)

η(q̄) =
1

π

∫ π

0

dp
cos(p)− e−γ(q̄)

cosh γ(q̄)− cos(p)
log coth

Nγ̄(p)

2
(2.59)

It is easy to see now that from (2.58) and (2.59) one gets,

α(q̄) =
1

π

∫ π

0

dp
sinh γ(q̄)

cosh γ(q̄)− cos(p)
log coth

Nγ̄(p)

2
(2.60)

As we mentioned in the introduction, we are interested in the nonuniversal

or lattice high temperature limit, T À J . Notice that we chose to work with

a notation in which T and τ are dimensionless variables and are related to the

dimensionful ones in the following way,

T → λT

J
; τ → τJ

λ
(2.61)

so that the high temperature regime in terms of our dimensionless variable

is, T À λ. We will restore J at the end of the calculation. In the high
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temperature regime we can make certain approximations, namely:

coth
Nγ̄(p)

2
≈ T√

1 + λ2

(
1− 2λ

1 + λ2
cos(q)

)−1/2

(2.62)

and

α(q̄) ≈ (2.63)

sinh γ(q̄)

π

[
log

(
T√

1 + λ2

)∫ π

0

dp

cosh γ(q̄)− cos(p)
− 1

2

∫ π

0

dp
log

(
1− 2λ

1+λ2 cos(p)
)

cosh γ(q̄)− cos(p)

]

Now, using the table integrals from [39],

∫ π

0

dx

c± cos x
=

π√
c2 − 1

; c2 > 1 (2.64)

∫ π

0

dx
log

(
1− 2a

1+a2 cos x
)

(
1+b2

2b
− cos x

) =
2bπ

1− b2
log

(1− ab)2

1 + a2
; a2 ≤ 1, b2 < 1 (2.65)

we obtain

α(q̄) ≈ log
T

λ
− log

(
1− λ−1e−γ(q̄)

)
(2.66)

Substituting these results into (2.56) we obtain

gn ≈ λn

n!

[
1

16λ

]n2

2 ∑
q̄

n∏
j=1

(
1− λ−1e−γj

)
(2.67)

× e−|rx|γj+iτ q̄j

sinh (γj/2) cosh (γj/2)

n∏
i<j

(q̄i − q̄j)
2

sinh2 ((γi + γj)/2)
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2.3.3 Real time asymptotics.

To study the real time properties of the correlation function we will need to

transform this sum into a n-variable integral in the complex plane, as it was

done in [31]. The details of this calculation are given in Appendix B. The final

result is

〈σz(rx, t)σ
z(0, 0)〉 ∼ θ(t)

(
λ

T

)|rx|
e−R(t,|rx|,λ) (2.68)

where R is given by Eq.(B.18). It can also be expressed in terms of the

dispersion of fermions (solitons) in the 1-D quantum Ising model

ε(k, λ) =
2J

λ

(
1 + λ2 − 2λ cos ka

)1/2
(2.69)

where a is the lattice spacing. Considering this and restoring dimensions

according to (2.61), the result for R(t, |rx|, λ) can then be written as

R(t, |rx|, λ) =
2

π

∫ π/a

−π/a

dk (v(k, λ)t− |rx|a) θ (v(k, λ)t− |rx|a) (2.70)

=
1

π

∫ π/a

−π/a

dk [|x− v(k, λ)t| − |x|]

where x = |rx|a, and,

v(k, λ) =
∂ε(k, λ)

∂k
=

Ja sin ka√
λ(M2 + sin2(ka/2))1/2

(2.71)
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It can be easily shown that,

max [v(k, λ)] =
2Ja

λ
(2.72)

for any value of λ. Because of the step function inside the integral in (2.70)

this means that, R(t, |rx|, λ) vanishes at t < λ|rx|/2J and has the following

form:

R(t, |rx|, λ) = t f

(
t

rx

, λ

)
θ

(
2Jt

λ
− |rx|

)
(2.73)

Hence, there is no time dependence in the long distance correlator at t <

λ|rx|/2J . This is a direct consequence of causality: even excitations with the

maximum velocity cannot travel the distance |rx| in such a short time.

An analytic expression can be obtained for R,

R(t, |rx|, λ) =
2t

π

[
ε(k+

0 , λ)− ε(k−0 , λ)− |rx|a
t

(k+
0 − k−0 )

]
θ

(
2Jt

λ
− |rx|

)
(2.74)

where,

cos k±0 a = λ

( |rx|
2Jt

)2

∓
√

λ2

( |rx|
2Jt

)4

− (1 + λ2)

( |rx|
2Jt

)2

+ 1 (2.75)

with

0 < k0a < π

To give a more explicit expression for the correlation function (2.68), we
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will calculate R(t, |rx|, λ) in two limits where the expression (2.74) considerably

simplifies. For λ → 1 we have

〈σz(rx, t)σ
z(0, 0)〉 ∼ (2.76)

θ(t)

(
J

T

)|rx|
exp

{
− 4

π

[√
(2Jt)2 − |rx|2 −

(
π

2
− arcsin

|rx|
2Jt

)
|rx|

]
θ(2Jt− |rx|)

}

At λ À 1 (strongly ferromagnetic limit) we obtain,

〈σz(rx, t)σ
z(0, 0)〉 ∼ (2.77)

θ(t)

(
J

T

)|rx|
exp



−

4

π




√(
2Jt

λ

)2

− |rx|2 −
(

π

2
− arcsin

|rx|λ
2Jt

)
|rx|


 θ

(
2Jt

λ
− |rx|

)



Notice that the only difference in the time dependence in both regimes is that

of a rescaling of time (t → t/λ).

Remember now that all the results were obtained for the ferromagnetic

phase (λ > 1). For the paramagnetic phase, equation (2.47) becomes a sum

over g2l+1. It turns out that this change has a little effect over the high

temperature correlator. In fact, the form of R does not change and one can

easily derive the following result for λ < 1,

〈σz(rx, t)σ
z(0, 0)〉 ∼ θ(t)

(
J

λT

)|rx|
e−R(t,|rx|,λ) ; T À J/λ (2.78)

The “high temperature regime” has to be redefined because in the paramag-

netic phase the tranverse field becomes larger than the spin-spin coupling.
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2.3.4 Conclusions

Let us now discuss qualitative features of Eq.(2.68). As expected, at zero time

we get the standard result for the one-dimensional classical Ising model:

〈σz(rx, 0)σz(0, 0)〉 ∼
(

J

T

)|rx|
(2.79)

At least in the framework of the adopted approximation |rx| À 1, this result

persists at nonzero time at times smaller than λ|rx|/2J . Recall that J/λ is

the coefficient in front of σx in the Hamiltonian. Without this term there is

no dynamics. Hence the obtained time dependence is a quantum effect, as one

expects.

If 2tJ À λ|rx| one gets the following approximation:

〈σz(rx, t)σ
z(0, 0)〉 ∼ θ(t) e−|rx|(log T

J
−2)− 8Jt

πλ
−λ|rx|2

πJt (2.80)

This is different from the Gaussian in t behavior which holds for T = ∞ for

|rx| = 0 [38].
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Chapter 3

Crossed Spin-1/2 Heisenberg

Chains as a Quantum Impurity

Problem

Using equivalencies between different models we reduce the model of two spin-

1/2 Heisenberg chains crossed at one point to the model of free fermions.

The spin-spin correlation function is calculated by summing the perturbation

series in the interchain interaction. The result reveals a power law decay with

a nonuniversal exponent.

3.1 Introduction

Presence of impurities in interacting systems causes nonlinear effects which

may result in a nontrivial scaling of thermodynamic quantities and correlation

functions. Examples of impurity models discussed in the literature include
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various versions of the Kondo problem (a quantum spin in a noninteracting

metallic host) and the Kane-Fisher or Boundary Sine-Gordon problem (a local

static potential in a one-dimensional Luttinger liquid). They have numerous

experimental applications in physics of diluted magnetic alloys ([40],[41]) and

in such areas as interedge tunnelling in Quantum Hall effect (see, for example,

[42],[43]). As a rule the impurity scattering in these models scales to strong

coupling. The latter fixed point is rather simple in nature (fully screened spin

in the Kondo problem, severed chain in the Kane-Fisher one). The exclusion

is the fixed point in the underscreened Kondo problem where the fixed point

occurs at an intermediate coupling first predicted in [44]. This fixed point is

characterized by non-trivial universal indices.

In the present work we would like to call the attention to the situation

when the operator describing a scattering on the impurity is exactly marginal

(that is, its scaling dimension is equal to the dimension of space-time, which

in the present case is 2). Since such interaction does not flow under renormal-

ization, the results for the correlation functions are bound to depend on the

bare coupling constant. In particular, such situation exists when the under-

lying impurity problem is equivalent to a problem of noninteracting fermions

scattering on a scalar potential. An interesting situation emerges when the

fermion operators and observables are mutually nonlocal. In that case calcu-

lation of correlation functions of the physical fields still constitutes a nontrivial

problem resulting in nonuniversal scaling dimensions.
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1

Figure 3.1: Pictorial depiction of Hamiltonian 3.1. Heisenberg chains consist
of spins (arrows) located at each site that interact with its nearest neighbor
via exchange interaction. Aditionally, there is also interaction between chains
at a single site located at x = 0.

3.2 The Model: two Heisenberg chains inter-

acting at a single point

One experimentally relevant realization of the Marginal Quantum Impurity

problem is provided by the model of two spin-1/2 Heisenberg chains interacting

at a single point by the exchange interaction (see Fig. 3.1):

H =
+∞∑

n=−∞
J [S1(n) · S1(n + 1) + S2(n) · S2(n + 1)]

+J⊥S1(0) · S2(0) (3.1)
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where |J⊥| ¿ J . This model can be treated as a particular version of the spin

ladder problem. To understand this model it is better to start with a single

chain.

The spin-1/2 one dimensional Heisenberg model is very simple but it has

many interesting (nontrivial) properties and it describes real physical systems.

Realizations of such a model can be found in quasi one-dimensional materials

where the exchange interaction in one direction is much larger than in the

other two. Measurements made at an intermediate energy scale between the

two exchange energies just mentioned will reveal one dimensional properties

of the three dimensional solid. Furthermore, some of these materials have

local magnetic moments with two low-lying levels so that an effective spin-1/2

model gives an appropriate description.

The one dimensional Heisenberg chain is exactly solvable via the Bethe-

ansatz method [1] and one can thus in principle obtain its eigenfunctions and

eigenenergies. It turns out though, that it is very hard to find correlation

functions using this solution and it is much easier to use a different method. We

use the Bosonization approach [45], [46] which gives a much simpler description

of the low energy properties of the system. For a brief review of this approach

see Appendix C.

The low energy sector of a single one dimensional antiferromagnetic spin-

1/2 Heisenberg chain can then be described by the following Hamiltonian,

H =
vs

2

∫
dx

[
Π2(x) + ∂xφ

2(x)
]

(3.2)

where the velocity vs ∼ Ja, with a being the lattice spacing. Using the cor-
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respondence between bosonic field operators and the spin operators of the

original theory shown in Appendix C, the bosonic form of the interchain in-

teraction term in (3.1) can be deduced.

One can transform the bosonic version of the Hamiltonian for the two

interacting chains (3.1) further by employing the technique developed in [47]

(see also Appendix D) and rewrite the Hamiltonian as the model of four pairs

of massless real (Majorana) fermions coupled at point x = 0

H =

∫
dx

3∑
a=0

[
iv

2
(−Ra∂xRa + La∂xLa) + igaδ(x)(RaLa)

]
(3.3)

where gi = J⊥a0 (i = 1, 2, 3); g0 = −3g1 and v = πJa0/2 is the spinon velocity.

The fermion operators satisfy the standard anticommutation relations

{Ra(x), Rb(y)} = {La(x), Lb(y)} = δabδ(x− y)

{Ra(x), Lb(y)} = 0 (3.4)

and are real, that is R+ = R, L+ = L. The ratio g0/ga can be changed by intro-

duction of the four-spin interaction [48]. Thus the model of interacting spins is

reduced to the model of non-interacting fermions. This representation respects

the original symmetry of the problem: the fermions a = 1, 2, 3 transform as

an SU(2) triplet and the 0-th fermion is an SU(2) singlet. Fermionization of

one-dimensional spin models has a long history going back to the work by

Jordan and Wigner [19]. It is well known that a single spin-1/2 Heisenberg

chain can be represented as a model of fermions which interaction depends

on the anisotropy (see Appendix C). At the isotropic point this interaction is

39



quite strong. Therefore it is interesting to note that though a single isotropic

spin-1/2 Heisenberg chain cannot be described as a model of noninteracting

fermions, the two chain model can. Naturally, the spin operators of the orig-

inal Heisenberg chains are nonlocal with respect to the Majorana fermions

(the relationship between them resembles the one given by the Jordan-Wigner

transformation). For that reason the problem of correlation functions still

remains nontrivial. To calculate the spin correlators we will employ an al-

ternative representation of model (3.3), namely, in the form of four quantum

Ising models:

H =
3∑

a=0

Ha
Is, Ha

Is = Ha
crit + gaεa(x = 0) (3.5)

where Hcrit is the Hamiltonian of the critical Ising model and ε(x, τ) is the

energy density field. The quantum Ising model is described by the Hamiltonian

H = −J
∑

n

(σz
nσ

z
n+1 + hσx

n) (3.6)

The Jordan-Wigner transformation brings it to the fermionic form. The order

parameter field σ(x) of the Ising model is the continuum limit of σz
n, the

energy density field is the continuum limit of σx. At h < 1 field σ has a

nonzero vacuum average 〈σ〉 6= 0. Hamiltonian (3.6) can be rewritten in the

dual form

H = −J
∑

n

(hµz
n−1/2µ

z
n+1/2 + µx

n+1/2) (3.7)
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where the operators

µz
n+1/2 =

∏
j≤n

σx
j , µx

n+1/2 = σz
nσ

z
n+1 (3.8)

obey the same commutation relations as the Pauli matrices σz, σx. The so-

called disorder parameter field µ(x) is defined as the continuum limit of the

operator µz
n+1/2. It is clear that 〈µ〉 6= 0 at h > 1. At h = 1 the model

(3.6) coincides with its dual (3.7). Since σ and µ cannot have nonzero ground

state expectation values simulataneously, at h = 1 their averages vanish and

the model is quantum critical. At this point the Majorana fermion becomes

massless. Thus model (3.6) with h = 1 is equivalent to the model of one

species of massless Majorana fermions.

The advantage of the Ising model representation is that the original spin

fields of the Heisenberg models can be written as

S1(j) + S2(j) =
i

2
{[R×R] + [L× L]}+ (−1)jn+(x)

S1(j)− S2(j) =
i

2
{R0R + L0L}+ (−1)jn−(x) (3.9)

where the most relevant parts of the spin operators given by the staggered

magnetizations n± are expressed as local combinations of the order and disor-

der parameters of the Ising models [47]:

nx
+ = σ1µ2σ3µ0, ny

+ = µ1σ2σ3µ0, nz
+ = σ1σ2µ3µ0 (3.10)

In the expression for n− one has to interchange σ and µ.
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3.3 Correlators for Staggered Magnetization

Correlation functions of the Ising model fields and their properties are well

known and we are going to use this knowledge to calculate the correlators of

the perturbed model (3.3). Using Eqs.(3.10) it is easy to relate the desired

spin correlators to the correlation functions of the perturbed Ising model:

〈na
α(τ1, x1)n

a
β(τ2, x2)〉 = (3.11)

G2
σ,g1

(τ12; x1, x2)Gµ,g1(τ12; x1, x2)Gµ,g0(τ12; x1, x2)

+(2δαβ − 1)G2
µ,g1

(τ12; x1, x2)Gσ,g1(τ12; x1, x2)Gσ,g0(τ12, x1, x2)

where,

Gµ,g(τ ; x1, x2) ≡ 〈〈µ(τ, x1)µ(0, x2)〉〉g (3.12)

Gσ,g(τ ; x1, x2) ≡ 〈〈σ(τ, x1)σ(0, x2)〉〉g (3.13)

and α,β label the chain to which the operator corresponds (1 or 2). Notice

that the correlators remain translationally invariant only in time direction. To

simplify the calculations we will consider the above correlation functions only

at x1,2 = 0. To obtain these correlators we sum the leading logarithms in the

perturbation expansion in small ga.

Namely, the Ising order parameter field correlator, 〈〈σ(τa)σ(τb)〉〉 (we omit

the space coordinate x assuming x = 0) can be obtained by calculating the
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following series,

〈〈σ(τa)σ(τb)〉〉g =
+∞∑
n=0

gn

n!
Cn (3.14)

where,

Cn ≡
∫

dτ1 . . . dτn〈〈σ(τa)σ(τb)ε(τ1) . . . ε(τn)〉〉0 (3.15)

and 〈〈〉〉0 denotes the irreducible correlator in the unperturbed system and,

ε ≡ iRL(x = 0) (3.16)

is the Ising model energy density at the impurity point.

Only the largest divergent terms will be kept at each order in g. The ir-

reducible correlators under consideration will have its largest divergencies in

the regions where each of the τi
′s approach either τa or τb corresponding to

the fusion of ε and σ operators. Divergencies corresponding to the fusion of

ε operators are not present in the irreducible correlation functions being can-

celled by the corresponding divergencies in the partition function. To calculate

the leading logarithms we take advantage of the Operator Product Expansion

(OPE) for the critical Ising model [49]:

ε(τi)σ(τa,b) =
1

2|τa,b − τi|σ(τa,b) + ... (3.17)

where the dots stand for less relevant terms. The most divergent part of Cn is

43



given by

Cn ≈
[
2 ln

( |τab|
τ0

)]n

(3.18)

where τ0 is an ultraviolet cutoff. The factor 2n comes from the number of

regions with divergent integrand that exist (that is to say, the number of ways

the n different τi variables can approach either τa or τb) and the logarithm

comes from integrating over this regions.

Now, replacing this result into (3.14) is easy to see that,

Gσ,g = 〈σ(τa)σ(τb)〉0
(

τ0

|τab|
)−2g

(3.19)

=
1

|τab| 14

(
τ0

|τab|
)−2g

where 〈σ(τa)σ(τb)〉0 ∼ |τab|−1/4 is the correlator of the unperturbed system.

Similar considerations are valid for the perturbation series for the disorder

parameter, 〈µ(τa)µ(τb)〉. The only difference is that the OPE contains minus

sign [49]:

ε(τi)µ(τa,b) = − 1

2|τa,b − τi|µ(τa,b) + ... (3.20)

Then the same steps that lead to (3.19), now lead to:

Gµ,g = 〈〈µ(τa)µ(τb)〉〉0
(

τ0

|τab|
)2g

(3.21)

=
1

|τab| 14

(
τ0

|τab|
)2g

44



where g = g1 for µa (a=1,2,3) operator and g0 for the µ0 operator.

Substituting (3.19,3.21) into (3.11) we obtain

〈nα(τa) · nβ(τb)〉 =
3

|τab|

[(
τ0

|τab|
)−2g̃

+ (2δαβ − 1)

(
τ0

|τab|
)2g̃

]
(3.22)

where g̃ = (g1−g0). The nonuniversal power law behavior of the spin-spin cor-

relation functions is reflected in the power law behavior of the local magnetic

susceptibility:

χ(x = 0) ∼ (T/T0)
2g̃ + (T/T0)

−2g̃, T0 ∼ J (3.23)

As one may expect, the susceptibility does not depend on the sign of the

interchain interaction. Since the perturbing impurity operator is exactly mar-

ginal, it does not generate any nontrivial corrections to the specific heat. The

impurity magnetic susceptibility diverges with a nonuniversal index (3.23).

Thus we have found a nontrivial example of the impurity problem where

strong correlations in the bulk generate nonuniversal scaling dimensions. This

model may be a member of a class of models which can be formulated as a

scattering problem for free particles, whose creation and annihilation operators

and the observables are mutually nonlocal.
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Chapter 4

Spin Density Wave Formation

in Graphene Facilitated by

in-plane Magnetic Field

We suggest that by applying a magnetic field lying in the plane of graphene

layer one may facilitate an excitonic condensation of electron-hole pairs with

opposite spins. The Spin Density Wave order parameter has U(1)×O(4) sym-

metry. Our calculations yield a conservative estimate for the Berezinskii-

Kosterlitz-Thouless transition temperature TBKT ∼ 10−2 − 10−1 B. Below

TBKT the system is in insulating state with a finite spin conductivity and

disordered spin fluctuations.
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4.1 Introduction

Since its experimental realization three years ago [12], [13], graphene (graphite

monolayer) has attracted an enormous amount of attention. From the theoret-

ical point of view it has the unique and beautiful property that its quasiparticle

spectrum can be described by massless Dirac spinors. From a more practical

point of view, it holds the promise for future applications, particularly in mi-

croelectronics.

The present introduction is organized as follows. In 4.1.1 we present a brief

summary of some basic facts about graphene that we considered essential to

be able to understand the rest of the chapter. Later, in 4.1.2 we motivate our

study of SDW formation facilitated by the application of a magnetic field in

the direction of the plane of the graphene layer.

4.1.1 Basics of Graphene

Graphene is a material that consists of a single layer of graphite in which

carbon atoms are arranged in a tightly packed honeycomb lattice configuration

(see Fig. 4.1). Even though it was only recently realized experimentally,

graphene has been studied theoretically for many years, not only because of

its peculiar properties but also because 2D graphite layers are the basis of

other structures such as buckyballs and carbon nanotubes.

The current literature about graphene is immense; as far as the band struc-

ture is concerned, the most elementary information can be found in [50]. The

spectrum of the single layer graphene is well described by the tight-binding
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Figure 4.1: Graphene’s hexagonal lattice. Carbon atoms are arranged into
two overlapping triangular lattices (u and v). We consider nearest neighbor
hopping amplitude t.

Hamiltonian with tunneling to nearest neighbors:

H0 = −t
∑
r,iσ

u+
σ (r)vσ(r + bi) + h.c. (4.1)

where r belong to a triangular lattice (see Fig. 4.1). By introducing the

Fourier transform of the creation operators in the usual way, this Hamiltonian

can be easily diagonalized. As a result, the energy spectrum of quasiparticles

is found to be

ε(k) = ±t

√
1 + 4 cos(3kxa/2) cos(

√
3kya/2) + 4 cos2(

√
3kya/2) (4.2)

where t is the nearest neighbor hopping energy and a is the spacing between
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Figure 4.2: The spectrum of quasiparticles (4.2) as obtained from the nearest
neighbor hopping Hamiltonian. Valence and conduction bands touch at two
points inside the Brillouin zone. The low energy part of the spectrum consists
of two cones separated by the vector 2Q.

the atoms. This spectrum has the property that the valence and conduction

band touch at two points in the first Brillouin zone. The low energy physics

is then described by particles with conical spectrum (see Fig. 4.2).

It turns out that such an spectrum coincides with the spectrum of two-

dimensional Dirac equation for massless particles. Two Dirac cones are cen-

tered at two different points (so-called “valleys”) in the Brillouin zone sepa-

rated by the wave vector 2Q. The Dirac fermions have, in fact, eight com-

ponents corresponding to sublattice, valley and spin indices corresponding to
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spinors in 6-dimensional space. Thus one can view the low energy states of

graphene as those of 6-dimensional relativistic massless fermions confined to a

two-dimensional plane. This fact will play an important role in the subsequent

discussion.

Now we are ready to write down the noninteracting Hamiltonian describing

states close to the tips of the Dirac cones

H0 =
∑

k

ψ+(k)Ĥ0ψ(k) (4.3)

Ĥ0 = vk~σ ⊗ σz ⊗ I

where the Pauli matrices act in the spaces (u, v), (Q,−Q) and σ =↑, ↓. Here

ψ†, ψ are 8-dimensional spinors made of operators creating and annihilating

electrons on different sublattices and in different valleys:

ψ†(k) =
(
u+

σ (k + K), v+
σ (k + K), v+

σ (k + K ′), u+
σ (k + K ′)

)
(4.4)

where

K−K′ = 2Q =
2π

3a

(
1,

1√
3

)
. (4.5)

At larger momenta the spectrum loses rotational symmetry acquiring the so-

called trigonal warping [50]. This removes degeneracy between different val-

leys.
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4.1.2 Density Wave Formation and in-plane Magnetic

Field

In the present section we discuss the effect of the application of an in-plane

magnetic field in a graphene sheet and its relation to density wave formation.

For isolated graphene sheet the Coulomb interaction is rather strong. This

induces a possibility of Charge Density Wave (CDW) or Spin Density Wave

(SDW) formation. Such intriguing possibility has already been discussed in

the literature [51], [52], [53], [54], [55], [56]. The reduced dimensionality of

graphene makes a density wave formation even more interesting by enhancing

the order parameter fluctuations. As a result the corresponding transition may

be converted into a Berezinskii-Kosterlitz-Thouless (BKT) one (if the order

parameter has U(1) symmetry) or even shifted to zero temperature, if the

corresponding symmetry is non-Abelian.

The CDW order parameter discussed in the papers cited above establishes

different population densities on the two sublattices of graphene (we will call

them u and v ones) corresponding to a site-centered Density Wave. It was

found that without magnetic field order parameters do not form; instead the

system is close to Quantum Critical Point [58]. However, a magnetic field

perpendicular to the graphene layers may facilitate formation of the CDW

[51],[55].

In what follows we suggest that by applying a magnetic field in the graphene

plane or a Weiss exchange field [57] one can facilitate a formation of a different

order parameter, the one combining all (sublattice, valley and spin) degrees

of freedom. This order parameter has O(4)×U(1) symmetry which may be
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Figure 4.3: Graphene bands split by the in-plane magnetic field.

reduced down to the O(2) one by a slight anisotropy caused by the trigonal

warping and the short range spin exchange.

Since magnetic field B lies in the plane, it affects only spin leading to

Zeeman splitting of the bands (see Fig. 2). Fermi points become Fermi surfaces

with a finite density of states. The density of states at the Fermi surface is

easy to obtain,

ρ(εF ) =
kF

2πvF

(4.6)

where kF and vF are Fermi momentum and velocity respectively. This is the

arrangement ideal for formation of an exciton insulator.

Application of the magnetic field (B) only introduces a simple additional

52



term to the non-interacting Hamiltonian (4.3),

H0 =
∑

k

ψ+(k)
(
Ĥ0 + Bb̂

)
ψ(k) (4.7)

Ĥ0 + Bb̂ = vk~σ ⊗ σz ⊗ I + BI ⊗ I ⊗ σz

4.2 Mean Field Hamiltonian

The phase transition we are going to study is driven by interactions between

quasiparticles. We start then by introducing interactions and treating them

using the simplest possible method, namely the mean field theory approach.

The predominant interaction is the Coulomb one:

V =
1

2

∑

k,k′,q

[ψ+(k + q)ψ(k)]
2πe2

|q| [ψ+(k′ − q)ψ(k′)] (4.8)

As we shall demonstrate, the effective interaction at the Fermi surface is

significantly screened. At low energies one can neglect frequency and momen-

tum dependence of the interaction and replace e2/|k−k′| in (4.8) by constant

V . The estimate of this constant will be given later (see section 4.3); now

we will discuss general properties of the order parameter. Decoupling the

interaction by the Hubbard-Stratonovich transformation

V

2
[ψ+

a ψa][ψ
+
b ψb] → ∆ab∆ba

2V
+ ∆abψ

+
a ψb (4.9)

where indices a, b run from 1 to 8, we arrive to the single-particle mean field
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Figure 4.4: The spectrum of quasiparticles below the mean field critical tem-
perature (4.11). A gap opens all around the Fermi surface located at v|k| = B.

Hamiltonian

HMF = H0 +
∑

k

ψ+
a (k)∆abψb(k) (4.10)

Diagonalization of (4.10) results in the single-electron spectrum given by

E2
± = Tr(∆+∆) + v2

F (|k| ±B)2 (4.11)

with a condition that matrix ∆ anticommutes with all matrices composing the

Hamiltonian (4.3). When the temperature becomes lower than a certain mean

field critical temperature (TMF ) the order parameter will form, creating a gap

in the spectrum of quasiparticles (see Fig. 4.4).
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4.2.1 Order Parameter Field

To satisfy invariance of the quasiparticle spectrum (4.11) we find a situation

very similar to the one found in the Dirac equation for relativistic quantum

mechanics [59]

H = γapa + γ0m (4.12)

where, to satisfy the requirement for a relativistic spectrum E = ±
√

p2 + m2,

the matrices must have the following properties

{γa, γ0} = 0, {γa, γb} = δab, γ2
0 = I (4.13)

In the present situation the matrices have to fulfill similar requirements, namely

{γx,y, ∆̂} = 0, {γi, γj} = δij, ∆̂2 = I|∆|2 (4.14)

Additionally, the matrix ∆̂ must satisfy

{b̂, ∆̂} = 0 (4.15)

where b̂ ≡ I ⊗ I ⊗σz is the matrix that couples to the in-plane magnetic field.

In summary, ∆̂ is composed of γ matrices of 6-dimensional Dirac equation

subject to the additional constraint that they have to anticommute with I ⊗
I⊗σz which is not a γ matrix. The most general parameterization for a matrix

55



with such properties is

∆̂

|∆| = cos αI ⊗ (cos φσx + sin φσy)⊗ (cos θσx + sin θσy)

+ sin α cos βσz ⊗ σz ⊗ (cos θσx + sin θσy)

+ sin α sin βσz ⊗ I ⊗ (− sin θσx + cos θσy) (4.16)

Four angles α, β, φ, θ parameterize the order parameter manifold which, as we

will demonstrate, has O(4)×U(1) symmetry (the trigonal warping, destroying

nesting between the Fermi surfaces of electrons from different valleys, selects

α = π/2 and thus lows this symmetry down to [U(1)]2). The short range

exchange introduces further anisotropy bringing the symmetry down to O(2).

Among other things, this order parameter gives rise to the nonuniform spin

density. The part corresponding to on-site Spin Density wave is given by the

second term in (4.16):

Su(r) ≡ 〈u+(r)~σ⊥u(r)〉 ∼ (4.17)

e1 sin α cos β,

Sv(r) ≡ 〈v+(r)~σ⊥v(r)〉

−e1 sin α cos β,

The link-centered SDW originates from the first term:

Suv(r) ≡ 〈u+(r)~σ⊥v(r)〉 ∼ (4.18)

2e1 cos α cos(2Qr + φ) (4.19)
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where e1,2 are two mutually perpendicular unit vectors orthogonal to the mag-

netic field B (they are parameterized by angle θ). Such SDWs generate Bragg

peaks at q = 0 and ±2Q respectively.

4.3 Effective Interaction and Mean Field Crit-

ical Temperature

To estimate the magnitude of the spectral gap, we need to estimate the effec-

tive interaction on the Fermi surface. The strength of the Coulomb interaction

is characterized by the dimensionless parameter g = πe2/~vF (in what follows

we put ~ = 1) which bare value is rather high ≈ 6.9. However, as we have men-

tioned above, the effective interaction at the Fermi surface must be smaller due

to the screening. To estimate its magnitude we will follow Son [58], who used a

combination of Renormalization Group (RG) theory and 1/N approximation,

where N = 4 is the degeneracy of a single Dirac cone. In this approximation

the Coulomb interaction is screened:

V (q, ωn) =
2πe2

|q| − 2πe2NΠ(ωn, q)
, (4.20)

where the polarization operator is estimated as

Π(ωn, q) = − q2

√
v(q)2q2 + ω2

n

(4.21)
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where v(q) is found from RG equation. The latter equation can be obtained

from the equations derived by Gonzalez et. al. 1 [62], and Son [58]:

N
dg

d ln(Ec)
=

8

π2

(
g − π/2 +

arccos g√
1− g2

)
(4.22)

where g(Ec) = πe2N/4vF and Ec is the running cut-off energy. These equations

are obtained for B = 0; for B finite the scaling stops at Ec = B. As one

may expect and as we will confirm below, the gap size is determined by the

product of the screened interaction (4.20) at momenta of the order of the Fermi

momentum kF = B and the density of states on the Fermi surface:

ḡ =
kF

2πvF

V (kF , 0) =
e2/vF

1 + Ne2/vF

(4.23)

Therefore unless g(B) is smaller than 1, the effective coupling ḡ has a universal

value 1/N . From the numerical solution of (4.22) obtained in [62] we see that at

bare value g0 = 6.9 the effective coupling g(B) falls below 1 at N−1 ln(W/B) ≈
4 (see Fig. 4.5) which corresponds to B < 10−3K. Thus we can conclude that

except of very small temperatures and fields one can consider the screened

interaction as universal ḡ = 1/N .

The saddle point conditions for the order parameter are

∆(k) = T
∑

n

∫
d2p

(2π)2
V (|k− p|)× (4.24)

∆(p)[ω2
n + |∆(p)|2 + B2 + (vp)2]

[ω2
n + |∆(p)|2 + B2 + (vp)2]2 − 4(vp)2B2

1The authors of [62] set N = 1. In this case the approximations used in that paper are
no longer valid at g > 1. For large N the requirement is less stringent: g/N < 1.
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Figure 4.5: Renormalization group flow of g for a bare value of g0 ≈ 6.9. g
becomes lower than 1 only if B ≤ 10−3K.

To find the mean field transition temperature we can study the linearized form

of this equation. Summing over the Matsubara frequencies and integrating over

angles we get the following equation:

∆(p) =

∫
d2k

(2π)2

V (p− k)

2
× (4.25)

{
tanh[(vk|k|+ B)β/2]

vk|k|+ B
+

tanh[(vk|k| −B)β/2]

(vk|k| −B)

}
∆(k)

Neglecting momentum dependence of V and vq and taking B as the ultraviolet

cut-off we obtain the following estimate for the mean field temperature

TMF ≈ B exp(−N) ∼ 0.02B (4.26)
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This formula overestimates TMF for very small fields where the screened in-

teraction is smaller than 1/N and probably somewhat underestimates it for

higher fields.

For example, for a large but experimentally realistic magnetic field of B =

20[T ] the mean field critical temperature would be TMF ≈ 0.3K.

4.4 Critical Fluctuations

In two space dimensions the mean field temperature TMF just marks a crossover.

What happens at lower temperatures is determined by fluctuations and the

latter crucially depend on the symmetry of the order parameter. For that rea-

son we decided to derive the Ginzburg-Landau effective action for fluctuations

[60], [61].

In order to find the effective action we proceed in the usual way by first

introducing an auxiliary field as we already did in section 4.2. Schematically

we have

Z =

∫
D∆D∆†DψDψ†eS[ψ,ψ†,∆,∆†] = C

∫
D∆D∆†eSeff [∆,∆†] (4.27)

where in the right hand side we have integrated out fermions taking advantage

of the fact that the action has become quadratic after the transformation.

We are left then with an action that depends only on the auxiliary (order

parameter) field.

Furthermore, the effective action may be expanded around its mean field

(saddle point) solution (∆0) to take into account the effect of fluctuations
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(δ∆). The contribution of the order parameter fluctuations to the action in

the second order is

T

2

∑
n

Tr

∫
d2p

(2π)2

(
δ∆̂(q)Ĝ(p + q/2)δ∆̂(−q)Ĝ(p− q/2)

)

where Ĝ is the mean field Matsubara Green’s function

G = (4.28)

− (ω2 + B2 + ∆̂2 + p2 − 2Bγ̄µp
µ)(iωI − B̂ − ∆̂aγa − γµp

µ)

[ω2 + |∆|2 + (B − |p|)2][ω2 + |∆|2 + (B + |p|)2]

where γ̄µ = (σµ ⊗ σz ⊗ σz) and γµ = (σµ ⊗ σz ⊗ I). At small frequencies

|ω| ¿ B we have to take the residue at the corresponding pole which gives

Gr =

(
I − γ̄µpµ

|p|

)
(iωI − B̂ − ∆̂aγa − γµp

µ)

2[ω2 + |∆|2 + (B − |p|)2]
(4.29)

Now one has to use this Green’s function to derive the stiffness.

At T < TMF this yields the following Ginzburg-Landau action

S =
ρ

2

∫
dτd2x

[
v−2

(
θ̇2 + Ṅ2

)
+ (∂µθ)

2 + (∂µN)2
]

(4.30)

where N is the four-dimensional unit vector

N = (sin α cos β, sin α sin β, cos α cos φ, cos α sin φ) (4.31)

and ρ and v are temperature dependent stiffness and velocity of the collective

modes. This action describes fluctuations with energies much smaller than
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TMF . Its symmetry is O(4)×U(1), as has been mentioned above. The U(1)

phase θ decouples from the rest of the action. Vortices in θ will transform the

mean field transition in this sector into the Berezinskii-Kosterlitz-Thouless

(BKT) one. When taking into account singular configurations (vortices) the

U(1) symmetric part of the action becomes2

Sθ =
1

2

∫
d2x

{
(∂µΘ)2 + α cos

(
2π

√
ρ

T
Φ

)}
(4.32)

where

Θ ≡
√

ρ

T
θ (4.33)

and Φ is its dual field. The cosine term perturbing the gaussian action becomes

relevant when its conformal dimension becomes smaller than the dimensional-

ity of space. That is when

1

4π

(
2π

√
ρ

T

)2

< 2. (4.34)

This means that above some critical temperature

TBKT =
π

2
ρ (4.35)

the aditional term representing singular configurations will become relevant

and will affect the long distance physics. In other words, at T < TBKT the

system is critical and its correlation functions decay as a power law, while at

2For simplicity we keep only the most relevant cosine term in the action.
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T > TBKT vortices produce disorder and the system aquires a finite correlation

length.

We believe, however, that the corresponding transition temperature will be

close to TMF . Indeed, our estimate for the T = 0 stiffness yields ρ(0) = B/6π

(we note in passing that v(0) = vF /
√

2). We present a detailed calculation of

the stiffness in Appendix E. Hence the crude estimate of the BKT temperature

TBKT =
π

2
ρ(0) =

B

12
(4.36)

gives the transition temperature less than an order of magnitude larger than

TMF . This means that one has to be more subtle and calculate the stiffness

at finite T and solve the equation

TBKT =
π

2
ρ(TBKT ) (4.37)

Since close to TMF the stiffness behaves as

ρ(T ) = γB

(
TMF − T

TMF

)2

(4.38)

where γ ∼ 1/10, the solution of Eq.(4.37) is

TMF − TBKT

TMF

∼
√

TMF

γB
∼ 1 (4.39)

Thus the BKT transition occurs relatively closely to the mean field one (see

Fig. 4.6).

The orbital part of action (4.30) is the O(4) nonlinear sigma model. At
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Figure 4.6: The stiffness at zero temperature (ρ(0)) is much larger than the
mean field critical temperature (TMF ) at which the stiffness vanishes. Equation
(4.37) is thus solved at a temperature close to TMF .

finite temperatures its stiffness scales to zero and the phase transition occurs

only at T = 0. At T 6= 0 the orbital fluctuations will have a finite correlation

length

ξ(T ) ∼ vF

TMF

exp[2πρ(T )/T ] . (4.40)

This correlation length will manifest itself in a finite, T -dependent width of

the neutron scattering peaks at q = 0,±2Q.
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Figure 4.7: Schematic view of expected neutron scattering Bragg peaks. Peaks
are located at wavevectors 0 and ±2Q. The width of the peaks is given by the
inverse correlation length of the O(4) non-linear sigma model (4.40).

4.5 Conclusions

A brief summary of our findings is that by applying a strong in-plane magnetic

field to a graphene sheet one can facilitate a transition into a state character-

ized by a single particle gap and strong spin and orbital fluctuations.

The simplest experimental sign of the transition is a rapid drop in electrical

conductivity below TMF . This is due to the fact that, as we showed, below

this temperature quasiparticle excitations which carry electrical charge will

become gapped. Another important experimental signature is the emergence

of a broad elastic peaks in the spin structure factors. Since neutrons couple

to spin, the cross section from inelastic neutron scattering experiment should

show broad peaks similar to the ones shown in Fig. 4.7. The width of the peaks

will be determined by the finite correlation length given by orbital fluctuations

of N at any finite temperature. The spin conductivity becomes finite below
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certain temperature TBKT (this corresponds to angle θ going critical), but the

spin-spin correlation function remain disordered due to the orbital fluctuations.
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Chapter 5

General Conclusions

The behavior of materials such as semiconductors and simple metals has been

well understood for many years. The main reason for this is that they can

be described in terms of free or weakly interacting particle-like excitations

(quasiparticles). In this case, fairly straightforward mathematical methods

or conventional perturbation theory are enough to explain the phenomena

observed in experiments.

There are a large number of materials though, in which the interaction

energy is comparable to the kinetic energy and whose properties (e.g. mag-

netism, high temperature superconductivity, etc.) cannot be explained via the

traditional free particle methods. Throughout this thesis we studied some of

such strongly correlated systems in low dimensions. As we have seen, reduced

dimensionality can be very helpful when dealing with strong correlations.

In Chapters 2 and 3 we studied two different models: quantum Ising chain

and crossed spin-1/2 Heisenberg chains respectively, and in each one of them

we focused in obtaining correlation functions of physical operators. To ob-
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tain correlation functions is of primary importance to be able to describe the

physical properties of condensed matter systems. They are proportional to the

linear response to experimental probes and often tell us about the properties

of the phase the system is in.

The one dimensional Ising model in a transverse field is the simplest model

that one can think of to describe magnetic interactions between spins in a solid.

Although its direct application to real physical systems is very limited, this

model has been widely studied because it illustrates many important properties

of condensed matter systems (i.e. second order phase transition). In our work

we calculated correlators of the order parameter field. We took advantage of

the mapping that exists between the two dimensional classical and the one

dimensional quantum Ising model. We basically used exact results for the two

point correlator of the classical system [4, 5] as the starting point to obtain

the dynamic correlator for the quantum model.

First we worked in the low temperature regime and considered the limit

where the gap is much smaller than the bandwidth, allowing for a continuum

description of the model. Starting from a form factor representation for the

two point correlator obtained in [31] we managed to rewrite it in terms of

the partition function of a certain field that lives in a one dimensional space

(θ). By using the expression for the correlator we were able to derive a low

frequency (ω < 2M) approximation that is valid in the low temperature regime

(T ¿ M) where the soliton density is small. The result contains an imaginary

part that reflects the quantum nature of the problem.

In a second study of the same model we considered the high temperature

regime (T À J) where all particles in the band are excited and Lorentz sym-
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metry is lost. Since excitations with high momentum are present, processes

at the scale of the lattice spacing become relevant and there is no universal-

ity. Very little is known about this regime since past research has focused

either on finding the ground state properties of the system or in studying it

at finite temperature in the universal limit. Our result, valid for very large

temperatures and distances is consistent with previously known results. It also

confirms that the dynamics of the system is a quantum effect and time depen-

dence only appears when the transverse field is present. Furthermore, it gives

the causality relation consistent with the velocity of quasiparticle excitations

of the model.

In Chapter 3 we explored a different kind of one dimensional system: the

problem of two spin-1/2 Heisenberg chains interacting at one point. It is well

known that Heisenberg chains are much more than a mere academic exercise,

since they are realized in several quasi one dimensional materials that have a

much stronger exchange interaction along a particular direction. In the regime

of temperatures larger than the interchain interaction, the chains behave as

isolated objects. Furthermore, materials in which only two chains interact with

each other (spin ladders) are also known. Our problem of chains interacting

at one point corresponds to a particular case of the latter. Admittedly, at the

present time we do not know of any physical system that realizes this model,

but it is quite possible that such a material would become available in the

future.

As we saw, this model is intimately related to the quantum Ising chain. In

fact, as it was shown in [47] (see also Appendix D) it can be mapped directly to

the problem of four independent critical Ising models with an energy density
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perturbation at the origin that is proportional to the interaction among the

original Heisenberg chains. Using this equivalence we calculated correlators at

the point of the interaction. We showed that the exponents of such correlators

are non-universal and are proportional to the interchain interaction.

In Chapter 4 we studied the problem of graphene sheets. This material

consists in a two dimensional arrangement of carbon atoms in a honeycomb

lattice. Its recent experimental realization sparked an enormous amount of

interest in this material. In our work we argued that applying a magnetic field

in the direction of the plane of the sheet creates the ideal scenario for excitonic

condensation.

As we stressed in the introduction, dimensionality plays an extremely im-

portant role in the study of condensed matter systems. Therefore, the methods

used when investigating a two dimensional problem are quite different from

the ones used for one dimensional systems. For instance a mean field theory

(MFT) approximation, while useful in two dimensions, becomes meaningless

in one dimension due to enhancement of fluctuations and its results are qual-

itatively incorrect. We were thus able to use MFT in graphene as a first

approximation to obtain an estimate of the critical temperature at which one

expects the density wave (DW) order to appear.

To find this critical temperature we also needed an estimate of the mag-

nitude of the effective interaction at the Fermi surface which we derived by

using a combination of renormalization group theory and N−1 approximation.

Since the DW ordering mechanism is made possible by the Zeeman splitting of

the bands of electrons with different spin, it is not surprising that the critical

temperature we obtained is proportional to the in-plane magnetic field that
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produces the splitting.

We also derived the explicit form of the order parameter field that would

appear below the critical temperature and showed and it mixes spin, valley

and sublattice degrees of freedom. Fluctuations of the order parameter become

important in two dimensions and for this reason we derived the corresponding

Ginzburg-Landau theory to take them into account. We found that it cor-

responds to a O(4) × U(1) symmetric model. In two dimensions, the O(4)

part will remain disordered at any finite temperature, whereas vortices in the

parameter (θ) of the U(1) symmetry will change the nature of the phase tran-

sition to a Berezinskii-Kosterlitz-Thouless one, and will disorder the system at

temperatures above some critical temperature TBKT . Using a crude estimate

of this temperature we concluded that it has the same order of magnitude as

the TMF calculated before.
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Appendix A

Matsubara Time Formalism

In order to illustrate the imaginary (Matsubara) time formalism in the simplest

way possible we will use a one particle system. Its partition function at finite

temperature T = β−1 may be written in the following way,

Z = Tr{e−βH} =

∫
dx〈x|e−βH |x〉. (A.1)

The exponent can be thought of as the evolution operator in imaginary time,

where the time interval is given by the inverse temperature. By dividing β

into a large number of infinitesimal slices of size ε = βM−1 it can be shown

that the partition function becomes a path integral

Z =

∫
D[x(τ)]e

R β
0 dτLτ , (A.2)

where Lτ is the Lagrangian of the system after making the change of variables

t = −iτ (A.3)
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and the integration is over all paths with x(0) = x(β).

Correlation functions of operators can be obtained within this same for-

malism, leading to

〈T{O(x, τ2)O(0, τ1)}〉 =
1

Z
Tr{e−βHT{O(x, τ2)O(0, τ1)}} (A.4)

=
1

Z

∫
D[x(τ)]O(x, τ2)O(0, τ1)e

R β
0 dτLτ (A.5)

where T is the time ordering operator and the evolution is in the imaginary

time direction

O(x, τ) = eτHO(x, 0)e−τH . (A.6)

Information about the response of a physical system to experimental probes

is contained in real time correlation functions which can be obtained from its

imaginary-time version via straightforward analytic continuation.

73



Appendix B

Transformation of sum (2.67)

into a contour integral

In this Appendix we demonstrate how to derive Eq.(2.68). We do it in a

manner similar to the one described in [31], namely by transforming the sum

(2.67) into a contour integral.

In what follows we will take advantage of the following identities:

sinh
γi + γj

2
=

√
M2 +

q̄2
i

16λ

√
1 + M2 +

q̄2
j

16λ
(B.1)

+

√
M2 +

q̄2
j

16λ

√
1 + M2 +

q̄2
i

16λ

sinh γj = 2

√
M2 +

q̄2
j

16λ

√
1 + M2 +

q̄2
j

16λ
(B.2)
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sinh
γj

2
=

√
M2 +

q̄2
j

16λ
= −isgn(<e αj) cosh αj (B.3)

cosh
γj

2
=

√
1 + M2 +

q̄2
j

16λ
= −i sinh αj (B.4)

q̄j = −sgn(<e αj)4i
√

λ(cosh2 αj + M2) (B.5)

with,

αj = i
π

2
± sinh−1




√
M2 +

q̄2
j

16λ


 (B.6)

In order to be able to simplify notation we define the following,

F (α) ≡ −i
[sinh α− sgn(<e α) cosh α]2|rx| {1 + λ−1 [sinh α− sgn(<e α) cosh α]2

}
(

e
sgn(<e α)4β

q
λ(cosh2 α+M2) − 1

) √
cosh2 α + M2

(B.7)

TAN2(αi, αj) ≡

sgn(<e αi)i

√
cosh2 αi + M2 − sgn(<e αj)i

√
cosh2 αj + M2

sgn(<e αi) cosh αi sinh αj + sgn(<e αj) cosh αj sinh αi




2

(B.8)

The discontinuity generated by sgn(<e α) arises because we are choosing dif-

ferent values of the square root at each side of the imaginary axis.

The points (B.6) in the plane, are the poles of (B.7). The result (2.67) can
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now be written as a multivariable contour integral:

g2l ≈
[

λ

2πT

]2l
1

(2l)!

∫

C

dα1F (α1)e
4τ sgn(<e α1)

√
λ(cosh2 α1+M2)... (B.9)

...

∫

C

dα2lF (α2l)e
4τ sgn(<e α2l)

√
λ(cosh2 α2l+M2)

∏
i<j

TANH2(αi, αj)

The integration contour C = C ′ + C” can be deformed as shown in Fig.

B.1. The discontinuity along the imaginary axis is, of course, avoided by the

contours.

We can see now that F takes the following form along the contours C1

(minus sign) and C6 (plus sign),

F (α) =
−i e−2|rx||α| (1 + λ−1e−2|α|)

(
e±4β

√
λ(cosh2 α+M2) − 1

) √
cosh2 α + M2

(B.10)

where α is real. For the contours C3 (minus sign) and C4 (plus sign) we have

F (α + iπ) =
−i e−2|rx||α| (1 + λ−1e−2|α|)

(
e±4β

√
λ(cosh2 α+M2) − 1

) √
cosh2 α + M2

(B.11)

We are interested in the situation when |rx| À 1, so the exponential in F

makes the integrand decrease rapidly with |α|. This means that terms in g2l

that include integrals along these contours will be at least of order O(1/|rx|)
(smaller) when compared with terms that do not include them. Then, to

calculate the leading term it is safe to neglect the part of the integral contained

in these contours and keep only the contours C2 and C5. To evaluate the

integrals along these contours we define:
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πi

C1

C2

iπ/2

C6

C

5C

4

C

C’ C"

C3

Figure B.1: The figure shows the integration contours in the α plane. The
circles are the poles of F at αj given by (B.6).

F±(α) ≡
−i e∓i2|rx|α

(
1 + λ−1e∓i2α

)
(
e±4β

√
λ(cos2 α+M2) − 1

)√
cos2 α + M2

(B.12)

TAN2
±(αi, αj) ≡

(√
cos2 αi + M2 −√

cos2 αj + M2

sin(αi + αj ∓ i2δ)

)2

(B.13)

COTAN2(αi, α
′
j) ≡



√

cos2 αi + M2 +
√

cos2 α
′
j + M2

sin(αi − α
′
j − i2δ)




2

(B.14)

In equation (B.12) F+ (F−) gives the value of F in (B.7) along C5 (C2). We
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can replace now τ for it to get the following approximation,

g2l ≈
[

λ

2πT

]2l 2l∑
p=0

1

p!(2l − p)!

∫ π

0

p∏
i=1

dαiF
+(αi)e

it 4
√

λ(cos2 αi+M2) (B.15)

×
2l−p∏
j=1

dα
′
jF

−(α
′
j)e

−it 4
q

λ(cos2 α
′
j+M2)

∏

i>k

TAN2
+(αi, αk)

×
∏
j>m

TAN2
−(α

′
j, α

′
m)

∏
i,j

COTAN2(αi, α
′
j)

The demoninator of F± can be easily simplified if we use the obvious

approximation for β ¿ 1/λ. Let us then write down the result explicitly:

g2l ≈
[√

λ

8π

]2l 2l∑
p=0

1

p!(2l − p)!

∫ π

0

p∏
i=1

dαi
e−i2|rx|αi+it 4

√
λ(cos2 αi+M2)(1 + λ−1e−i2αi)

cos2 αi + M2

×
2l−p∏
j=1

dα
′
j

e
i2|rx|α′j−it 4

q
λ(cos2 α

′
j+M2)

(1 + λ−1ei2α
′
j)

cos2 α
′
j + M2

×
∏

i>k

(√
cos2 αi + M2 −√cos2 αk + M2

sin(αi + αk − i2δ)

)2

×
∏
j>m




√
cos2 α

′
j + M2 −

√
cos2 α′m + M2

sin(α
′
j + α′m + i2δ)




2

×
∏
i,j



√

cos2 αi + M2 +
√

cos2 α
′
j + M2

sin(αi − α
′
j − i2δ)




2

(B.16)

We are interested in |rx| À 1 and in this case the main contribution to the

integral comes from regions around the divergencies. There are divergencies

that originate from αi − α
′
j = 0,±π. Let us take into account only the terms

in g2l which are maximally singular. This maximal singularity occurs when
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p = l and in regions where every α pairs with an α
′

in order to approach

a singularity. There are 2ll! of these regions. Finally we get the following

approximation,

g2l ≈ 1

l!


 λ

32π2

∫ π

0

dα

∫ ∞

−∞
dε

e
−i4|rx|ε+4it

√
λ
�√

cos2 α+M2−
√

cos2(α−2ε)+M2
�

(ε− i0)2
×

(1 + λ−1e−i2α)(1 + λ−1ei2(α−2ε))
(√

cos2 α + M2 +
√

cos2(α− 2ε) + M2
)2

(cos2 α + M2)(cos2(α− 2ε) + M2)




l

=
1

l!

[
−λ

π

∫ π

0

dα
(1 + λ−1e−i2α)(1 + λ−1ei2α)

cos2 α + M2

(
2t
√

λ sin α cos α√
cos2 α + M2

− |rx|
)
×

θ

(
2t
√

λ sin α cos α√
cos2 α + M2

− |rx|
)]l

≡ 1

l!
[−R(t, |rx|, λ)]l (B.17)

where

R ≡ 4

π

∫ π

0

dα

(
2t
√

λ sin α cos α√
cos2 α + M2

− |rx|
)

θ

(
2t
√

λ sin α cos α√
cos2 α + M2

− |rx|
)

(B.18)

And considering that,

Λ−1 ≈ log
T

λ
(B.19)

we get the final result for the dynamical (real time) correlation function in the

form of (2.68).
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Appendix C

Bosonization of the Heisenberg

chain

The low energy physics of the one dimensional spin-1/2 Heisenberg chain can

be described in terms of bosonic degrees of freedom via the so called, Bosoniza-

tion technique. This method has proven to be very powerful and has been

used to understand various one dimensional models. For more details on the

Bosonization procedure the reader is referred to books [46],[63],[64] that de-

scribe the subject extensively.

For simplicity we will start by showing how the more general anisotropic

(XXZ) chain is Bosonized. The Hamiltonian of the XXZ chain is

HXXZ = J
∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + ∆Sx

i Sy
i+1

)
(C.1)
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where the spin-1/2 operators satisfy the usual commutation relations

[
Sα, Sβ

]
= iεαβγSγ (C.2)

and |∆| < 1 is the anisotropy parameter.

In one dimension this problem can be mapped into the problem of inter-

acting spinless fermions via the well known Jordan-Wigner transformation

S+
i = c†ie

iπPj<i c†jcj

S−i = cie
−iπPj<i c†jcj (C.3)

Sz = c†ici − 1/2

In this new fermionic basis the Hamiltonian becomes

HXXZ =
J

2

∑
i

c†ici+1 + c†i+1ci + 2∆(c†ici − 1/2)(c†i+1ci+1 − 1/2) (C.4)

The limit ∆ = 0 of this Hamiltonian can be easily diagonalized obtaining the

following spectrum for fermionic excitations,

ε(p) = J cos(pa) (C.5)

The ground state of such a system corresponds to the spectrum filled to pF =

π/2. Since we are interested in the low energy properties of the system, we

can truncate the spectrum around the Fermi points. As a result we are left
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with excitations that have linear spectrum in the vicinity of ±pF

R(x) =
Λ∑

p=−Λ

cp+pF
ei(p+pF )x, L(x) =

Λ∑
p=−Λ

cp−pF
ei(p−pF )x (C.6)

where Λ ¿ pF and their spectrum is

εR,L(p) = ±vF p, vF = Ja

The resulting low energy Hamiltonian of the XY chain (∆ = 0) is

HXY = ivF

∫
dx

(
R†∂xR− L†∂xL

)
(C.7)

which can be directly mapped onto the free boson model

H =
vF

2

∫
dx

(
Π2 + (∂xΦ)2

)
. (C.8)

There is also the following equivalence between fermionic and bosonic opera-

tors

R(x) ∼ 1√
2πa

ei
√

4πϕ+(x), L(x) ∼ 1√
2πa

e−i
√

4πϕ−(x) (C.9)

where

ϕ± =
Φ±Θ

2
(C.10)

with Θ being the dual field of Φ.

We can now write the original spin operators in terms of the bosonic field
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operators

Sz(x) =
1√
π

∂xΦ(x)− λ(−1)n sin
√

4πΦ(x) (C.11)

S±(x) = λ′(−1)ne±i√πΘ(x) (C.12)

where λ and λ′ depend on ∆.

At ∆ ¿ 1 the anisotropy term can be added by using the expression for

Sz in terms of bosonic operators

HXXZ =
vF

2

∫
dx

(
Π2 + (1 + 4∆/π)(∂xΦ)2 +

2∆

(πa)2
cos(

√
16πΦ)

)
(C.13)

A simple RG analysis shows that the last term is irrelevant and may be ignored

when considering the low energy physics, leaving only the Gaussian part. Fur-

thermore, it can be shown that such a description is valid for any anisotropy

inside the critical region −1 < ∆ ≤ 1 leaving a low energy Hamiltonian of the

form

HXXZ =
u

2

∫
dx

(
KΠ2 +

1

K
(∂xΦ)2

)
(C.14)

where the parameters can be obtained from the exact Bethe ansatz solution

of (C.1)

K =
π

2 (π − cos−1 ∆)
, u =

πvF

2

√
1−∆2

cos−1 ∆
(C.15)

It is easy to see then that the SU(2) symmetric point (∆ = 1) corresponds

83



to Luttinger liquid parameters

K =
1

2
, u =

πvF

2
. (C.16)

84



Appendix D

Transformation of two

Heisenberg chains into

Majorana fermions

There is a beautiful equivalence between the problem of two coupled spin-1/2

Heisenberg chains and the one of four independent Ising chains in a transverse

magnetic field. Since this equivalence is exploited in Chapter 3 we will explain

here the steps missing in the main text. We will outline only the basic steps

in the derivation and the reader interested in further details is referred to [47]

(see also [63] for a more detailed description).

We begin by writing down the bosonized version (C) of the Hamiltonian of

two coupled spin-1/2 Heisenberg chains (3.1). All our derivation will be done

for the special case of one point interaction between the chains since this is
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the problem Chapter 3 addresses. The Hamiltonian of the system is

H = H0 + Hint (D.1)

where H0 corresponds to the two independent chains

H0 =
∑

i

vF

2

∫
dx

(
Π2

i + (∂xφi)
2
)

(D.2)

where i labels the chains. The second term (Hint) corresponds to the most

relevant interaction between the chains

Hint =
gλ2

2π2
[ cos

√
2π(φ1 − φ2)− cos

√
2π(φ1 + φ2) (D.3)

+ 2 cos
√

2π(θ1 − θ2) ] |x=0

where g = J⊥a. Introducing the new fields

φ± =
φ1 ± φ2

2
, θ± =

θ1 ± θ2

2
(D.4)

the Hamiltonian can be written as two completely independent parts

H = H+ + H− (D.5)

where

H+ =
vF

2

∫
dx

(
Π2

+ + (∂xφ+)2
)− m

π
cos

√
4πφ+(x = 0) (D.6)

H− =
vF

2

∫
dx

(
Π2
− + (∂xφ−)2

)
+

m

π
cos

√
4πφ−(x = 0) +

2m

π
cos

√
4πθ−(x = 0)
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where m = gλ2/2π. The problem can then be rewritten in terms of the

following fermionic degrees of freedom (refermionization)

ψR,L
+ =

1√
2πa

e±i
√

4πφR,L
+ (D.7)

and similarly for φ−. Furthermore, each one of this fermions can be decom-

posed into two Majorana (real) fermions

ψR,L
± = ξ±;R,L

1 + iξ±;R,L
2 (D.8)

in terms of which we can rewrite

H+ = Hm[ξ+
1 ] + Hm[ξ+

2 ] (D.9)

H− = Hm[ξ−1 ] + H−3m[ξ−2 ] (D.10)

where

Hm[ξ1] = i

∫
dx

vF

2

(
ξL∂xξ

L − ξR∂xξ
R
)− imδ(x)ξRξL (D.11)

Finally we obtain the desired result that the original Hamiltonian (D.1) can

be reformulated as a problem of four independent pairs of Majorana fermions

H =
4∑

a=0

Hma (D.12)

where mi = m (i = 1, 2, 3); m0 = −3m and the Hamiltonian is then equivalent

to (3.3).
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A simple inverse Jordan-Wigner transformation (C.3) permits the refor-

mulation of this problem in terms of spin degrees freedom. As a result one

obtains that the problem of two spin-1/2 Heisenberg chains can be mapped

into the problem of four independent Ising chains in a transverse magnetic

field (3.5).
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Appendix E

Calculation of Stiffness (ρ) for

Ginzburg-Landau Theory (4.30)

As we showed in section 4.4, to analyze the effect of critical fluctuations we

have to obtain the contribution of the order parameter fluctuations to the

action. It was shown that to the second order it is given by

1

2
Tr

∫
d3p

(2π)3

(
δQ̂(q)Ĝr(p + q/2)δQ̂(−q)Ĝr(p− q/2)

)
(E.1)

To obtain the stiffness we have to calculate the q2 term in the expansion for

the polarization loop. This term gives the following contribution to (E.1):

Tr

∫
d2pdω

(2π)3

{
∂µQπ̂∂µQπ̂

8[ω2 + ε2(p)]2
(E.2)

−∂µQπ̂(iω − P̂ )∂µQπ̂(iω − P̂ )

[ω2 + ε2(p)]4

(
ω2 + ε2

4
− (B − p)2

2

)}
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where

ε2 = (p−B)2 + Q2, π̂ =
1

2

(
I − γ̄µp

µ

|p|
)

, P̂ = B̂ + Qaγa + γµp
µ (E.3)

Although in principle the stiffness is a temperature dependent parameter

(ρ(T )), for simplicity we perform the calculation only for T = 0. Taking into

account that

[π̂, B̂] = 0, π2 = π, [∂µQ, π̂] = 0, QδQ = 0 (E.4)

and

π̂(p)(B̂ + γµp
µ) = π̂(p)b̂(B − p) (E.5)

where b̂ = (I ⊗ I ⊗ σz) we arrive to the expression

1

4
ρTr〈∂µQπ̂∂µQ〉 =

1

8
ρTr(∂µQ∂µQ) (E.6)

where 〈...〉 means angle average and

ρ = 4

∫
dωd2p

(2π)3

[
1

8(ω2 + ε2)2
+

(ω2 + (B − p)2)(ω2 − (B − p)2 + Q2)

4(ω2 + ε2)4

]

=
B

6πQ2
(E.7)

Now we have to take into account that

∂µQ = ∂µn1γ1 + ∂µn2γ2 + ∂µn3γ3
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+ n1[∂µφ(I ⊗ (− sin φσx + cos φσy)⊗ (cos θσx + sin θσy))

+ ∂µθ(I ⊗ (cos φσx + sin φσy)⊗ (cos θσy − sin θσx))]

+ n2∂µθ(σ
z ⊗ σz ⊗ (cos θσy − sin θσx))

+ n3∂µθ(σ
z ⊗ I ⊗ (cos θσx + sin θσy)) (E.8)

where n2
1 + n2

2 + n2
3 = 1 and γi matrices are

γ1 = (I ⊗ (cos φσx + sin φσy)⊗ (cos θσx + sin θσy)),

γ2 = (σz ⊗ σz ⊗ (cos θσx + sin θσy)),

γ3 = (σz ⊗ I ⊗ (cos θσy − sin θσx)) (E.9)

Thus well below the mean field transition temperature the Ginzburg-Landau

free energy has the following form:

F/T =
B

12πT

∫
d2xE (E.10)

where

E = (∂µα)2 + sin2 α(∂µβ)2 + cos2 α(∂µφ)2 + (∂µθ)
2 (E.11)

and the parameters are defined as in (4.16). The free energy can then be

rewritten in terms of an O(4) nonlinear sigma model plus the action of a U(1)

symmetric model (see Eqn. 4.30).

Comparing E.10 and 4.30 one can finally obtain the result for the zero
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temperature stiffness

ρ(T = 0) =
B

6π
. (E.12)
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