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Abstract of the Dissertation
Thick Non-Crossing Paths and

Minimum-Cost Continuous Flows in Polygonal Domains
by

Valentin Polishchuk

Doctor of Philosophy
in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University
2007

We study the problem of finding shortest non-crossing thick paths in a
polygonal domain, where a thick path is the Minkowski sum of a usual (zero-
thickness, or thin) path and a disk. Given K pairs of terminals on the boundary
of a simple n-gon, we compute in O(n + K) time a representation of the set
of K shortest non-crossing thick paths joining the terminal pairs; using the
representation, any particular path can be output in time proportional to its
complexity.

In a polygonal domain with h holes we compute K shortest thick non-
crossing paths in O

(
(K + 1)hh! poly(n, K)

)
time, using an efficient method

to compute any one of the K thick paths if the “threadings” of all paths
amidst the holes are specified. We show that if h is not constant, the prob-
lem is NP-hard; we also show the hardness of approximation. We give a
pseudopolynomial-time algorithm for some rectilinear versions of the problem.

We apply our thick paths algorithms to obtain the first algorithmic re-
sults for the minimum-cost continuous flow problem — an extension of the
standard discrete minimum-cost network flow problem to continuous domains.
The results are based on showing a continuous analog of the Network Flow
Decomposition Theorem.

We investigate the problem of finding the maximum number of thick paths
that can be routed in a polygonal domain. Using a modification of the “contin-
uous uppermost path” algorithm, we give a constructive proof of a continuous
Menger-type result: the maximum number of paths equals to the length of a
shortest path in the “thresholded critical graph” of the domain. The algorithm
computes (a representation of) the paths in O(nh + n log n) time. We show
how to use the algorithm to find maximum monotone flows and paths. For
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simple polygons we give faster, linear-time algorithms.
The non-crossing thick paths problems, as well as the continuous flow prob-

lems, arise in the air traffic management problem of optimally routing air traffic
lanes in Flow Constrained Areas while avoiding weather hazards, no-fly zones,
and other constraints. The other motivations for studying the problems come
from wire routing for circuits and from information propagation in sensor net-
works.

We also consider other motion planning problems: the touring problems,
shortest paths with bounded number of links in rectilinear domains, and opti-
mal tours in “pixelated” environments and grids.
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1 Introduction

One of the most studied subjects in computational geometry is the shortest
path problem (see surveys [98, 97]): given a set of polygonal obstacles in the
plane and a pair of points (s, t), find a shortest s-t path avoiding the interiors of
the obstacles. Efficient algorithms are known for the two-dimensional problem
both in simple polygons and in polygonal domains.

The non-crossing paths problem is an extension of the shortest path prob-
lem. In the problem, given a set of polygonal obstacles in the plane and K
pairs of points (sk, tk), one wants to find a collection of K non-crossing sk-tk
paths avoiding the interiors of the obstacles and such that the paths are opti-
mal according to some criterion. The objective may be either to minimize the
sum of the lengths of the paths (minsum version) or to minimize the length of
the longest path (minmax version).

The general problem (with K being part of the input) is NP-hard even in
the absence of obstacles , under the L1 or the Euclidean metric, and under any
objective — minsum or minmax [15]. On the contrary, in a simple polygon
with all pairs (sk, tk) on the boundary, it is possible to build in linear time a
data structure such that a shortest path can be output in time proportional
to its complexity [107]. We build our solution for the case of simple polygons
on the ideas from [107].

The problem of routing “thick” paths arises in a variety of applications,
including VLSI, air traffic management (ATM), and robotics. A thick path is
the Minkowski sum of a curve in R2 (the reference path) and the unit disk.

Finding one thick shortest path avoiding the obstacles can be done by first
offsetting the obstacles by 1 and then solving the usual shortest path problem
the in presence of the offset obstacles; the path found serves as the reference
path for an optimal thick path [29, 89]. Thus, in a simple polygon the shortest
thick path can be computed in linear time using the algorithm for shortest
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paths in splinegons of [44].

Multiple Thick Paths

The problem of finding multiple thick paths (the Thick Non-Crossing Paths
Problem), which we consider in this thesis, is an extension of both the shortest
non-crossing paths problem and the thick shortest path problem. We give
rigorous formulation of the problem in Section 2. As follows from the problem
name, the input to the problem consists of a set of pairs of terminals; the output
— of a set of shortest non-crossing thick paths connecting the terminals.

Related Work Our problem can be viewed as a variation of the Fat-Edge
Graph Drawing Problem (FEDP) [48, 49], which, in turn, is an extension of
the continuous homotopic routing problem (CHRP) — a classical problem in
VLSI design [32, 57, 88, 91]. A related problem is that of finding shortest
paths homotopic to a given collection of paths [18, 50, 35]. The novelty of
our work lies in considering the problem in simple polygons and polygonal
domains; the previous research concentrated on point obstacles for the paths.
Our data structure for storing thick shortest paths shares similar ideas with
the ones used in [48, 49, 91, 107].

Remark. Although only point obstacles are considered in CHRP/FEDP, the
existing results on FEDP [48, 49] are more general than ours in some other
aspects: the general FEDP takes an embedding of an arbitrary planar graph
and draws it with the edges of maximum thickness; we do not answer the
question of finding the maximum separation between the paths (of course, one
can simply do binary search on different path widths and use our algorithms
as an oracle).

Some heuristics for finding thick non-crossing paths in polygonal domains
are suggested in the VLSI literature [74], but no complexity analysis nor per-
formance guarantees are given there. A very restricted version is considered
in [6]. In a rectilinear environment, fast algorithms are known for some special
cases of the minsum version [86, 119].

The disjoint paths problem is a very well known problem in graph theory.
Generally, the minmax versions are harder than the minsum. In particular, it
is NP-hard to approximate the number of length-bounded disjoint paths.

The geometric thick non-crossing paths problem (considered here) and the
graph-theoretic disjoint paths problem are related in that thick non-crossing
paths in polygonal domains correspond to disjoint paths in certain planar
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graphs. Throughout this work we exploit this connection in both ways: We use
the hardness of the graph problem to establish the hardness of the geometric
version; we also translate the geometric problem into the problem on a (path-
preserving) graph.

Related to our problem is the curvature-constrained shortest path problem.
The problem is NP-hard in general [111]; some special cases admit polynomial-
time solutions [4, 17, 20, 21].

Flows in the Continuum

In certain applications the task is to route a large “swarm” of small objects
(agents) through a polygonal environment. Finding and describing a specific
path for each individual object may be an unnecessary complication. The
problem then is to find an optimal flow (a vector field) in the domain so that
any object could make its way through the domain simply by following one of
the flow streamlines. The term flow originates from imagining an incompress-
ible fluid flowing through the domain; optimal flow corresponds then to the
best designed pipes that constrain the fluid motion.

Related Work In [77, 75, 117, 95] maximum flows in geometric domains
were studied. Hu et al. [77, 75] used flows in discrete networks to approximate
continuous flows. Strang [117] proved that the Maxflow-Mincut Theorem holds
for a continuous flow; Mitchell [95] gave efficient algorithms for computing
maximum flows in polygonal domains.

The study of discrete network flows is one of the most important sub-
jects in combinatorial optimization. Besides the problem of finding maximum
flows, the other problem attracting the most attention has been that of find-
ing minimum-cost flows (aka the transshipment problem) [7]. The continuous
counterpart of the problem asks for a geometric flow of minimum cost, where
the cost is defined, e.g., as the length of the longest streamline of the flow, or
as the total length of the streamlines, or as the area of the support of the flow.

Kohn and Strang studied the minimum-cost flow problem in a series of
works [82, 83]. The main difference between the work of Kohn and Strang and
ours is as follows. In Kohn and Strang’s formulation, at every point on the
boundary of the domain, the rate at which the flow enters the domain (i.e., the
normal component of the flow) is specified. In our formulation, it is required
that the flow enters/exits the domain only through the parts of the boundary
designated as sources/sinks; everywhere else on the boundary the rate of the

3



flow

flow To
ta

l F
lo

w
So

ur
ce

SinkSo
ur

ce

Sink

T
ot

al
 F

lo
w

Figure 1: The difference between Kohn-Strang’s formulation (left) and ours
(right).

flow into/out of the domain is 0. In this way our formulation is a special case
of Kohn-Strang’s. On the other hand, we put a restriction only on the integral
value of the total flow that comes through all sources/exits through all sinks.
In this respect our formulation is more general. The difference between the
formulations is schematically shown in Fig. 1.

Kohn and Strang proved that the flowlines of an optimal flow avoid unions
of certain balls, and that the flowlines, corresponding to different values of
the stream function, are sufficiently separated. Our main technical result,
Lemma 3.2, states that thick paths, routed treating certain Minkowski sums
as obstacles, do not intersect. These Minkowski sums are exactly the unions
of the balls that serve as obstacles in the Kohn-Strang’s construction! This
is not surprising in view of our Continuous Flow Decomposition Theorem
(Theorem 5.5). Our proof of Lemma 3.2 is somewhat similar to (but, possibly,
more elaborate than) the proof of the analogous result in [83].1 Moreover, we
use Lemma 3.2 and its corollaries (Corollaries 3.4–3.7) to prove our Continuous
Flow Decomposition Theorem. Loosely speaking, Kohn and Strang went “from
flows to paths” while we go “from paths to flows”.

Yet another, subtler, difference between Kohn-Strang’s work and ours is the
standard difference between purely mathematical and algorithmic solutions. In
a purely mathematical setting the domain is not restricted to be polygonal (or,
in general, have a bounded-length description); in this way purely mathemat-
ical formulation is more general than ours. On the other hand, it is often the
case that for purely-mathematical solutions to exist, the input must possess
certain continuity (or at least Lipschitz) properties. For instance, in [83, 116]

1Steinberg, Williams, and Ziemer [116] generalize the problem to higher dimensions.
They also prove the result analogous to the one in [83] and Lemma 3.2; our proof is com-
pletely different from the one in [116].
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it is assumed that the flow rate at the boundary of the domain is given by
a Lipschitz (with respect to the geodesic distance) function. This does not
have to hold in our case: the rate of the flow is 0 in any neighborhood of a
source/sink; yet, the flow rate may be 1 at every point of the source/sink. This
is one of the reasons why Kohn-Strang’s solution cannot be used directly to
solve the problem in our setting.

The last but not least difference, that, to our understanding, makes our
solution a novel one, is in designing algorithms for actually computing the
flows and in analyzing the algorithms complexity. While [83, 116] give impor-
tant characterizations of the optimal flows, they do not provide a closed-form
formula or another way of constructing them.

A variety of classical results and efficient algorithms exist for discrete net-
work flows. The celebrated Maxflow-Mincut Theorem asserts that the value
of the maxflow in a network equals the capacity of the mincut. The famous
Flow Decomposition Theorem states that a flow can be decomposed into a set
of paths from sources to sinks plus a (possibly empty) set of cycles (in partic-
ular, a minimum-cost flow decomposes into the paths only)[7]. Establishing
the continuous versions of the Maxflow-Mincut Theorem [78, 95, 117] and the
Flow Decomposition Theorem (proven here) is fundamental to exploring the
mapping between discrete graph notions and their continuous analogues in
geometry.

Other Work on Continuous and Geometric Flows Huge body of both
theoretical and experimental work is being done in the area of numerical sim-
ulation of fluid flow, see, e.g., [63] and references thereoff.

The term “continuous flow” has been used in the literature for the flows in
discrete networks that have time-varying parameters — link capacities, node
storage capacities, link delays [8, 103]. In contrast, in our setting, a continuous
flow is a continuous vector field (the flow) in a static polygonal environment
(the continuum).

Foldes [54] showed that the permeability of Jordan curves in a domain of a
steady fluid flow is a sufficient condition for the curves separability. Atkinson
and Vaidya [13] and Agarwal, Efrat and Sharir [3] considered the Euclidean
transportation problem, a generalization of the minimum-weight bipartite Eu-
clidean matching problem, in which a commodity has to be transferred, at
a minimum cost, from a set of point sources to a set of point sinks. In the
Continuous Transshipment Problem, which we consider here, the sources and
the sinks are boundary edges of a simple polygon.
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Motivation

Our particular motivation for the problem comes from ATM applications in
routing safe lanes (“flows”) of air traffic through sectors or “flow constrained
areas” (FCAs) while avoiding certain constraints – hazardous weather systems,
no-fly zones, regions of congestion, etc. Each lane is a thick path, determined
by the protected airspace zone (PAZ) that specifies the horizontal separation
standard for flights. The routing of thick paths is critical also to the proposed
“high-volume tube-shaped sector” concept for the National Airspace System in
the USA (see Yousefi et. al [129]) and the related Eurocontrol “Freeway” sys-
tem in Europe (see Hering [68]), which seek to lay out efficient traffic corridors,
subject to geometric constraints. Using geometric max-flow techniques [95],
in [101] we compute the number of lanes that can be routed through a con-
strained airspace. The thick non-crossing paths problem arises in optimizing
the set of lanes; it is a min-cost flow problem in the continuum, as we prove
in our Flow Decomposition Theorem. Algorithms based on techniques of this
thesis are scheduled for implementation within the Flow-Based Route Planner
(FBRP) system [84, 85, 110] at Stony Brook; FBRP utilizes greedy heuristics
for routing thick paths among weather hazards, but these have no theoretical
guarantees, as our algorithms here do.

Another motivation for studying thick paths and continuous flows in polyg-
onal environments comes from data transportation in sensor networks. Sup-
pose the data, produced at a set of sources, has to be delivered to a set of
destinations by propagating through a set of sensors evenly distributed in the
domain. Connecting the source-destination pairs with shortest possible paths
may create undesirable congestion (Figure 2, left). One way to avoid the con-
gestion is to introduce a capacity bound on the amount of information passing
through any point of the domain. Then, a collection of optimal well separated
source-destination paths may be sought (Figure 2, right) that provides more
balanced utilization of the domain while keeping the information tracks short.

Our Contributions

In this thesis we solve the thick non-crossing shortest paths problem, which is
an extension of both the thick shortest path problem and the K non-crossing
shortest paths problem. We also prove the continuous Flow Decomposition
Theorem and apply it to solve the Balanced Continuous Transshipment Prob-
lem with Source-Sink Separation.
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sources
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Figure 2: Well separated routes provide more balanced data transfer.

• Section 3: In O(n + K) time we compute a (linear-space) representation of
the set of K shortest non-crossing thick paths in a simple n-gon for a given
set of K terminal pairs. The representation allows us to output the shortest
thick path joining a given pair of terminals, in time proportional to the path’s
complexity.
• Section 4: We give an O

(
(K + 1)hh! poly(n,K)

)
algorithm for finding thick

non-crossing paths in a polygonal domain with h holes. We show that if h
is not constant, the minmax version of the problem is NP-hard (weakly if
K = 2, strongly for large K). We also show that unless P=NP there exists
no Fully Polynomial Time Approximation Scheme for the problem, and give
pseudopolynomial-time algorithms for rectilinear versions of the problem.
• Section 5: We state and prove the Flow Decomposition Theorem for minimum-
cost flows in the continuum. We define the Geometric Balanced Transshipment
Problem with Source-Sink Separation; we apply our theorem to solve the prob-
lem.
• Section 6.1: We consider rectilinear versions of the problem. We map the
problem to the one on a path-preserving graph. This enables giving efficient
algorithms.

Our algorithms can be used to find optimal paths under any objective that
is a non-decreasing function of the length of an individual thick path; they
apply, e.g., to the minsum and the minmax objectives.
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2 Preliminaries

We give some definitions and introduce the notation. Let P be a simple poly-
gon with n vertices — a simply-connected open subset of the plane whose
boundary bdP consists of n straight line segments disjoint other than at end-
points. In this thesis we will also use “polygon” to refer to a set whose bound-
ary consists of straight line segments and circular arcs; the complexity of such
a polygon is the number of its boundary segments and arcs. For any set S ⊂ R2

we speak of in the sequel, by bdS we will mean the part of the boundary of S
lying inside P .

A path π is a simple curve; |π| denotes its length. For r > 0 let Cr be the
open disk of radius r centered at the origin; we denote C1 with just C. For a set
S ⊂ R2 let (S)r be the Minkowski sum S⊕Cr; S⊕Cr = {x+ y |x ∈ S, y ∈ Cr}.
We define a thick path Π within P with reference path π to be the Minkowski
sum Π = (π)1 such that Π does not intersect the exterior of P . The length of
a thick path Π = (π)1 is the length of its reference path π.

For two points v, u on the boundary of a simple polygon Q let Q(v, u)
denote the part of the boundary of Q from v to u clockwise. Let π be a u-v
path within Q, let B(π) be the part of Q to the right of the closed curve
v−Q(v, u)−u−π− v. The points in B(π) (resp. in Q\B(π)) are said to be
below (resp. above) π. If π is the shortest u-v path, B(π) is called the slice of
(v, u) and is denoted sl(v, u).

Let P 1 = P \ (bdP )1 be P offset by 1 inside. We assume that P 1 is still
a simple polygon; otherwise the connected components of P 1 can be treated
separately. If Π = (π)1 is a thick path within P , then necessarily π is a path
within P 1.

Problem Formulation Let ST = {(sk, tk), k = 1 . . . K} be K pairs of
points on the boundary of P 1. Borrowing terminology from the VLSI com-
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Figure 3: Left: an example. Right: a selfish thick s1-t1 path leaves no space
for a thick s2-t2 path.

munity, we call the points in ST terminals. Let πk be an sk-tk path within
P 1; we call sk the start and tk the destination of the kth path. Let Πk be the
thick path within P with πk as the reference path, Πk = (πk)

1. Thick paths
Π1, . . . , ΠK are called non-crossing if Πi∩Πj = ∅ for i, j = 1 . . . K, i 6= j. Note
that we allow the thick paths to share parts of the boundary with each other;
we only require that the interiors of the paths are disjoint.

We seek a collection of thick non-crossing paths that is simultaneously
optimal both for the minsum and the minmax version: we require that for
any k = 1 . . . K the sk-tk path in the collection is as short as possible given
the existence of (arbitrary) paths connecting the other terminals, (si,ti), i =
1, . . . , k −1, k + 1, . . . K. We call the collection of such paths all-shortest2 3.
See Fig. 3, left, for an example.

Following [107], we make, without loss of generality, the following assump-
tion, which we call the Positioning assumption: Starting from s1 and going
around bdP 1 clockwise one encounters s1, s2, . . . , sK in this order, and for any
k, sk appears before tk. We also assume that the problem instance is feasible,
i.e., that the polygon is “wide” enough to accommodate the thick paths. In
particular, we assume that the distance between any two points in ST is at
least 2 (otherwise the solution, obviously, does not exist).

The three basic problems that arise when dealing with multiple short paths

2Maley [91] uses the term “ideal” for a similar notion.
3To uniquely define the solution to the minmax version we require that each path in the

collection is locally optimal.
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Figure 4: From left to right: an instance of the problem; the mapping of bdP
and the terminals to the unit circle; the tree of slices Tsl; the data structure G
storing the paths. The vertices v1 . . . v4 and t′2 are the internal nodes of G; t′2
is a dummy node, added to keep t2 a leaf.

are as follows.

(a) Report πk: route one of the K thick shortest paths. In this setting we
do not care how the other paths “look like”. We only need the exact
description of the sk-tk shortest path. This may be important if the
paths are routed one-by-one in a distributed setting.

(b) Store K: build a data structure holding all K thick shortest paths. The
data structure must support efficient reporting of any single path.

(c) Report K: Output all K paths.

Of course, (c) can be solved either by solving (a) for all k = 1 . . . K, or by
solving (b) and then querying the data structure to report the paths one by
one. Thus, in the sequel, we concentrate on solving (a) and (b).

Thin Paths We start by recollecting and extending known results on finding
multiple non-crossing shortest thin paths [107]. For the case of thin paths we
assume that the terminals in ST lie on the boundary of a simple polygon P .
The paths are allowed to share edges and vertices, but are not allowed to cross.
No path is allowed to go around a terminal of another path; in other words, the
homotopy type of each path is the unique homotopy type of a path between
two points on the boundary of the polygon; or, in yet another words, no path
is allowed to “squeeze in” between a terminal of another path and bdP — this
condition will make much more sense later, when we turn to the thick paths.
The paths we are looking for must be all-shortest.
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The approach of [107] to the problem was as follows. First, the boundary
of the polygon is mapped to the unit circle bdC; the terminals are identified
with their images. Then, a chord sktk is drawn between the terminals in every
pair (sk, tk), k = 1 . . . K. If two of the chords cross, then the problem instance
is infeasible. Otherwise, the tree of slices Tsl on C ∪ sl(t1, s1) ∪K

k=1 sl(sk, tk) is
built in which the root is the whole circle C, the root’s immediate children are
sl(s1, t1) and sl(t1, s1), and the parent-child relation is defined by containment
of the slices (Fig. 4, ignore the shaded disks 1–4 now; see also [107] for details).

According to [107], the collection of the shortest paths between the pairs
in ST forms a forest. In fact, the collection may not necessarily form a forest,
since there may exist cycles of edges of the paths (Fig. 4); the term “forest”
should be replaced with the term “graph”4 [106]. The size of the “forest” of
[107] is O(n+K), and any shortest path can be reported in time proportional
to the number of edges in the path. The forest is computed in a bottom-up
fashion using Tsl, starting in phase 1 with the paths at the leaves of the tree,
and in the phase q considering the paths at level Z−q+1, where Z is the height
of Tsl. In order to achieve linear time, [107] conducts a careful refinement of
the funnel paradigm for computing shortest paths in a simple polygon [65]:
When a shortest sk-tk path at a level q is routed, the funnel from sk in the
direction of tk is extended until the funnel hits Q, a connected subset of the
part of the boundary of the polygon, which has been already used by paths
from levels 1, . . . , q − 1. The funnel then continues to extend in the direction
of tk from the other end of Q. This leads to

Theorem 2.1. [106, 107] In linear time a data structure can be constructed
such that the shortest path between any pair of terminals can be output in time
proportional to the path’s complexity.

Our solution for the case of thick paths in simple polygons (Section 3)
builds and extends on ideas from [107].

4In Section 3.3 we build the corresponding graph for the thick paths and augment it with
additional information so that it has the required features of the forest of [107]: linear size,
while supporting the efficient reporting of a path.
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3 Thick Paths in Simple
Polygons

3.1 K=2

We first describe the solution for the case K = 2; the solution for arbitrary
K is derived from it. We assume, without loss of generality, that s1, s2, t2, t1
appear in this order clockwise around bdP 1. Define the bottom B (resp. top
T ) of P 1 to be the portion of the boundary of P 1 between t1 and s1 (resp. s2

and t2): B = P 1(t1, s1), T = P 1(s2, t2) (Fig. 5).

Figure 5: B = P 1(t1, s1), π2 ∩ (B)2 = ∅. T = P 1(s2, t2), π1 ∩ (T )2 = ∅.
Otherwise, the other path cannot by routed.

Lemma 3.1. π1 cannot intersect (T )2. π2 cannot intersect (B)2.
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Proof. If π1∩ (T )2 6= ∅, then there exists a point p ∈ π1 that is within distance
2 of T , and thus there exists a point q ∈ (p)1 ⊂ Π1 that is within distance 1 of
T and, thus, is within distance 2 of bdP . But the path Π2 (of width 2) must
lie between Π1 and bdP , and thus any point of Π1 must be at least at distance
2 from bdP . Similarly, π2 ∩ (B)2 = ∅. ¤

Let π∗1 (resp. π∗2) be the shortest s1-t1 (resp. s2-t2) path within P 1 routed
treating (T )2 (resp. (B)2) as obstacles (Fig. 5); let Π∗

1 = (π∗1)
1, Π∗

2 = (π∗2)
1. By

Lemma 3.1, the very existence of thick s1-t1 and s2-t2 paths does not allow any
s1-t1 path to enter (T )2 and any s2-t2 path to enter (B)2. Thus, each of Π∗

1,
Π∗

2 is as short as possible given the existence of the other thick path. We will
now show that Π∗

1 and Π∗
2 are, in fact, disjoint, and thus, provide the solution

to the thick non-crossing all-shortest paths problem.
Enclose π∗1 in an (open) “tube” τ of width 2: τ = (π∗1)

2. By the boundary,
bdτ , of τ we will understand the boundary points of τ that lie above π∗1.
(Observe, that bdτ may be disconnected since τ may run outside P 1.) We need
to prove the following (the details of the proof are deferred to the Appendix):

Lemma 3.2. π∗2 ∩ τ = ∅.

Proof. (Sketch) We consider the parts of τ induced by different parts of π∗1 one
by one. We show that π∗2 “enters” and “exits” τ the same number of times.
We prove that we can replace the subpath of π∗2 between the first entry and
exit points by the part of bdτ and that the new path is shorter (the new path
will still be feasible since it goes by the boundary of τ). ¤

Theorem 3.3. The shortest s1-t1 and s2-t2 non-crossing thick paths Π∗
1 and

Π∗
2 can be found in linear time and space.

Proof. (B)2 and (T )2, since they are an offset of P 1 by 2, are obtained by
taking Minkowski sum of portions of P ’s boundary (simple chains) with disk
of radius 3. Thus, (B)2 and (T )2 are found in linear time by computing the
medial axis of a simple chain (part of bdP ) [30]. We then compute π∗1, π

∗
2 as

shortest paths within the resulting free space splinegons, using the linear-time
algorithm of [92]. ¤

The Routing Paradigm The following corollaries can be proved similarly
to the proof of Lemma 3.2, i.e., by considering the parts of π∗1, π∗2 and π∗

“pulled taught” against different features of (bdP )1, (bdP )2, (bdP )3.
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Corollary 3.4. The paths Π∗
1 and Π∗

2 are all-shortest.

Corollary 3.5. π∗1 (resp. π∗2) is the shortest s1-t1 (resp. s2-t2) path within P 1,
routed treating (π∗2)

2 (resp. τ = (π∗1)
2) as obstacle.

Corollary 3.6. Let π∗ = (bdΠ∗
1) ∩ (bdΠ∗

2) be the points, boundary to both Π∗
1

and Π∗
2. Then π∗ is a path.

Corollary 3.7. Let s and t be the endpoints of π∗. Then, if the distance from
each of s, t to bdP is at least 2, π∗ is the shortest s-t path routed treating
(bdP )2 as obstacle.

The corollaries assert that if Π∗
1 and Π∗

2 ever “meet” (so that there exist
points, boundary to both), they then “go together” for some time, but after
that, diverging on their way to the destinations, never meet again. While the
paths go together, they do it, of course, in the optimal way.

Loosely speaking, each of the paths is routed “greedily”, as opposed to
“selfishly”. A selfishly routed path would only care about its own length, and
would “rush” to the destination in the quickest way, thus, possibly, making the
routing of the other path infeasible (see Fig. 3). Our greedy routing assumes
that each path leaves just enough space for the other path to “squeeze in”.
On the other hand, the obstacles for a path are created in a “conservative”
way: no obstacle is larger than it is necessary for the existence of the other
path. Thus, the paths routed greedily amidst the conservative obstacles are
all-shortest.

3.2 The General Case: Arbitrary K

We give O(n + K) time solutions to Problems (a) Report πk and (b) Store K.
This gives a way to solve Problem (c) Report K in O(K(n + K)) time and
space, which (as we show) is worst-case optimal.

As with thin paths (Section 2), we begin by mapping bdP 1 to bdC and
drawing the chords sktk, k = 1 . . . K (Fig. 4). Let ST ord = (ν1, . . . , ν2K) be
the set {s1, . . . , sK , t1, . . . , tK} ordered clockwise around bdP 1.

Definition 3.8. Let v, u be two consecutive points in ST ord. Let γ be a path
within C from a point on bdC(v, u) to a point on the chord sktk. The kth depth
of P 1(v, u), denoted dk(v, u), is defined as the minimum, over all γ, of the
number of (other) chords that γ crosses.
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For example, in Fig. 4 the 4th depth of P 1(s2, t2) is 2, the 1st depth of
P 1(t4, t3) is 1.

Let Ok be the set of obstacles, obtained by inflating each part of bdP 1 by
2 times its kth depth (arithmetic modulo 2K is assumed in the indices):

Ok =
2K⋃
j=1

(
P 1(νj, νj+1)

)2dk(νj ,νj+1) =
⋃

edges e∈bdP

(e)d′k(e) (1)

where for an edge e of bdP , d′k(e) denotes the amount by which the part of
the boundary of P to which e belongs is inflated.

Lemma 3.9. The sets in the right-hand side of (1) are pseudodiscs.

Proof. Recall that we assume that the input problem instance is feasible. Sup-
pose that two sets in (1), say (e)d′k(e) and (f)d′k(f), intersect. Then e and f
either both lie below πk or both lie above, since, otherwise, the problem is
infeasible. Let Υe ⊂ ST (resp. Υf ⊂ ST ) be the pairs of terminals that con-
tribute to d′k(e) (resp. d′k(f)). (In terms of the mapping of bdP 1 onto bdC, Υe

contains the chords crossed by any path from (the image of) (e)1 to the chord
sktk.) Let |Υe∩Υf | = z, |Υe| = x+ z, |Υf | = y + z, (Fig. 6, top); then, for the
instance to be feasible, the distance between e and f , must be at least 2x+2y.

On the other hand, by our construction, d′k(e) = 2(x + z) + 1, d′k(f) =
2(y + z) + 1. If (e)d′k(e) and (f)d′k(f) violate the pseudodisc property, then the
distance between segment e and segment f is strictly less than |d′k(e)−d′k(f)| =
|2x − 2y| (see Fig. 6, bottom); since |2x − 2y| ≤ max{2x, 2y} ≤ 2x + 2y, we
have a contradiction. ¤

If π∗k, k = 1 . . . K, is the path routed amidst Ok as obstacles, then each
path from {Π∗

1, . . . , Π
∗
K} = {(π∗1)1, . . . , (π∗K)1} is as short as possible given the

existence of the others. Moreover, the paths Π∗
1, . . . , Π

∗
K are non-crossing, by

the same argument as in the proof of Lemma 3.2. Thus,

Theorem 3.10. One of the K shortest thick non-crossing paths in a simple
polygon can be found in O(n + K) time and space.

Proof. Finding the kth depths of the intervals of bdP 1 can be done in O(K)
time.

Let nj, j = 1 . . . 2K be the complexity of P 1(νj, νj+1);
∑

nj = O(n + K).
Since, by Lemma 3.9, (1) is a collection of pseudodiscs, the complexity of Ok

is O(
∑

nj) = O(n + K) [5, 81], and Ok can be found in O(
∑

nj) = O(n + K)
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time and space by adapting the algorithm for computing the medial axis of a
simple polygon in linear time [30]. The free space for π∗k is a splinegon and,
thus, routing π∗k amidst Ok can be done in linear time [92]. ¤

Local optimality A thick path Π = (π)1 is called locally optimal if it cannot
be shortened while staying feasible; local optimality means, in particular, that
the reference path π is a sequence of straight line segments and circular arcs
with the segments bi-tangent to the arcs, and that at any point, the curvature
of π is at most 1. The discussion above shows that each path in a collection of
shortest thick paths is locally optimal (this property will be used in Section 5):

Lemma 3.11. For any k = 1 . . . K, Π∗
k is locally optimal.

3.3 Implicit Paths Representation

The algorithm above can be run for each k = 1 . . . K to get the K shortest
paths in O(K(n+K)) time. We remark that the O(n+K) space requirement
of our algorithm is the working space requirement. The complexity of the kth

path may be as high as Ω(n + k) (Fig. 7), in which case the size of the output
may be Ω(K(n + K)), and Ω(K(n + K)) output space may be needed just to
store the paths. On the other hand, this shows that our algorithm is worst-
case optimal if we require that the paths are output using explicit encoding:
each path is given as the sequence of straight line segments and circular arcs.

3.3.1 The Data Structure

Alternatively, we can store the thick shortest paths in a data structure, of
size O(n + K), such that any path can be output in time proportional to
its combinatorial complexity. Let P =

⋃K
k=1 cl(Πk) be the set of points that

belong to (the closure of) a thick shortest path; cl(S) denotes the closure of a
set S ⊂ R2. Our data structure G is then a graph, each connected component
of which corresponds to a connected component of P (Fig. 4).

We first describe what the edges of G are. The nodes of G correspond to
those vertices of P that belong to more than one edge of G. We use the term
nodes for the vertices of G saving the term vertices for the vertices of P .

The reference path of any thick shortest path can be described by a se-
quence of vertices of P by which it goes (i.e., the vertices that cause the path
to bend); the curvature (radius of the obstacle) at each vertex must also be
specified. Then, to output the path in time proportional to its complexity, at
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each vertex a geometric primitive of computing a bi-tangent (or tangent, at
the endpoints of the path) must be executed.

Let S = (vk1 , . . . , vkr) be a sequence of vertices of P , consecutive along a
path πk. Suppose some other path(s) also have S as a subsequence of consec-
utive vertices. The edges of G are maximal such shared sequences of vertices;
with each edge its sequence is stored. The thickness of an edge is the number
of paths sharing it.

A node of G corresponds to a vertex of P at which P “branches”, i.e., a
vertex that belongs to more than one edge of G. The leaves of G are the
terminals (sk, tk), k ∈ {1 . . . K}. If P branches at a terminal, a dummy node
can be added to G so that the terminal and the branch point are two different
nodes: the branch point is an internal node, the terminal is a leaf (like t2 in
Fig. 4).

Each internal node of G stores the list of incident edges sorted angularly
clockwise starting with the edge closest to the boundary of P . Let (e1, . . . , eL)
be the list of edges incident to a node u of G. For 1 ≤ l ≤ L, the total thickness
of e1 . . . el−1 (and that of el+1 . . . eL) is also stored at u, along with the edge el.
Later, when actual routing of a path through u is performed, these thicknesses
will give the curvature of the reference path at u.

Let Πk = (πk)
1 be a thick path following an edge e of G. All the vertices

in e are shared by all the paths going through it. Hence, the curvatures of πk
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on both sides of the path do not change as πk goes along e: the (reciprocals
of the) curvatures show how many other thick paths “pad” πk on each of its
sides. Thus,

Observation 1. To route a path using G, it is enough to know the curvatures
of the path only at the endpoints of the edges of G, i.e., at the nodes of G.

The other piece of information stored with each edge e is the maximal
and minimal index of the paths going through the edge, emin and emax. Since
s1 . . . sK appear in this order around bdP 1, all paths with indexes in [emin, emax]
follow e; all paths with indices outside the interval do not follow the edge. To
facilitate routing through G, the pointer to each incident edge e at a node of
G is augmented with the indexes emin and emax; this way, when a path, routed
from the start, arrives at the node, it can determine in constant time which
incident edge to follow on the way to the destination.

Lemma 3.12. The size of G is O(n + K).

Proof. The nodes of G are among the terminals in ST and the vertices of P .
Since the paths Π1 . . . ΠK are non-crossing, G is planar. The total amount of
information stored at a node is proportional to the degree of the node. The
total amount of information stored at the edges of G is proportional to the size
of P . ¤

3.3.2 Reporting a Thick Path Using G
Routing a path πk is done in two steps. First, we establish which edges of G
the path follows. Since sk is a leaf, there is a unique edge joining sk to the rest
of G. At a node u of G the index of the path and the pointers to the edges
incident to u tell what the next edge of the path is. This is repeated until tk
is reached and all the edges of G that πk follows are known.

Second, at each node u of G that the path goes through, the curvature
of the path is read off, and the tangent or bi-tangent is computed to extend
πk to go one more link towards tk. Specifically, let e = (u, v) be the edge
that the path takes after u. The curvature κ of πk at u can be read off the
thickness of e at u. According to Observation 1, the curvature of πk at every
internal vertex of e is still κ. Let e1 = (v, w) be the next edge of G that πk

goes through. When the next to the last vertex of e is reached by πk, the new
curvature of the path (the curvature at v) is read off the thickness of e1 at v,
and the routing continues.
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All the operations described can be performed in constant time per vertex
of P along the path. Thus,

Lemma 3.13. Given G, a thick shortest path can be reported in time propor-
tional to its combinatorial complexity.

3.3.3 Computing G
We can use the approach of [107] to actually compute G in linear time. The
idea is to use Tsl to compute G in a “bottom-up” fashion. First, the paths at
the bottom level of Tsl are found; this can be done in linear time by the same
argument as in [107]. After the paths at level q are computed, the paths at
level q + 1 are routed in time proportional to the complexity of the part of
bdP 1, not used by the paths at the levels 1 to q. The details of the algorithm
are the same as in [107]: when a path πk at the level q+1 is routed, the funnel
from sk in the direction of tk is extended until the funnel hits Q — a connected
subset of the part the boundary already used by the paths from levels 1 to q.
The funnel then continues to extend in the direction of tk from the other end
of Q.

The geometric primitives for extending the funnel — computing tangents
and bi-tangents, walking through a curved trapezoidal decomposition, check-
ing for intersections, maintaining the upper hull by “wrapping” — can still be
implemented to run in constant amortized time per vertex [92]. Thus, G, the
data structure for storing thick shortest paths, can be computed within the
same time bounds as the data structure of [107] for usual, thin paths.

Lemma 3.14. G can be computed in O(n + K) time.

From Lemmas 3.12–3.14 follows

Theorem 3.15. In linear time a data structure of linear size can be computed
such that any path in the collection of the all-shortest thick paths within a sim-
ple polygon, can be output in time proportional to the combinatorial complexity
of the path.
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4 Polygons with Holes

It was shown in [15] that the non-crossing paths problem is NP-hard: Given a
set ST = (sk, tk)

K
k=1 of K pairs of points in the plane, find non-crossing sk-tk

paths, shortest under the minsum or the minmax objective function. Here,
a path is allowed to go around the terminals of other paths; in this respect,
every terminal can be treated as a hole (a point obstacle). The hardness of
the problem stems from the fact that the terminals lie on (the boundaries of)
many different holes. In contrast, if the homotopies of the paths are given, the
shortest paths within the same homotopy types can be found efficiently [18, 50].

In this thesis we concentrate on the case in which all terminals lie close to
the boundary of the outer polygon P . This special case is important in our
motivating application (air traffic routing through a Flow Constrained Area).
It is also one of the special cases considered in the study [95] of max-flows
in polygonal domains, as it arises in the VLSI formulations of wire routing
between terminals that lie on the boundary of none or just one of the holes [74,
119]. So, we assume that ST ⊂ bdP 1 (and that the Positioning assumption
holds). Of course, we continue to assume that ∀p ∈ ST , (p)1 does not intersect
any obstacle.

As in the case of simple polygons, the algorithm developed in this section
works for any objective function that is a non-decreasing function of the length
of an individual path5. When speaking of a collection of paths, shortest will
mean a collection that is optimal under a given objective; a shortest path will
mean a path in an optimal collection. As in the case of simple polygons, we will
ensure the uniqueness of the solution by requiring that the optimal collection
is Pareto optimal: no paths can be made shorter without increasing the length

5This includes, in particular, the minsum and the minmax objectives. In polygonal do-
mains, however there exist instances of our problem for which no all-shortest paths collection
exists. This is in contrast with the case of simple polygons.
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of another path. In particular, this means that the optimal paths are locally
optimal.

We first show how to define the free space for one thick path, given the
“threadings” of all paths and the order in which the path visits the holes; the
shortest path within the free space will be a member of the optimal collection.
The number of the threadings of the shortest paths is polynomial in K for
fixed h (Lemma 4.1); for a large number h of holes, we show that the minmax
version of the problem is weakly NP-hard if K = 2 and strongly NP-hard
if K is the part of the input. We also prove hardness of approximation and
give a pseudopolynomial-time algorithm for rectilinear versions of the problem
(Section 6.1.2).

Small Number of Holes

In some applications the number of holes h may be assumed to be small. E.g.,
in ATM, the holes represent large weather systems and it is often the case that
there are not too many of them.

We define the threading type, or threading of a path to be a vector χ ∈
{above, below}h whose jth component indicates whether the hole Hj is above
or below the path. The number of different threadings of each of the shortest
paths can thus be 2h. Since, in principle, each of the K shortest paths can
have any of the 2h threadings, the total number of threadings of K paths could
potentially be as high as 2hK. Assuming ST ⊂ bdP 1 reduces the number of
different threadings substantially:

Lemma 4.1. If the terminals lie on the boundary of P 1, the number of thread-
ing types of K shortest paths is at most (K + 1)h.

Proof. K shortest paths between the pairs of terminals in ST cut P 1 into K+1
pieces (see Fig. 4). The threadings of the paths can be specified by indicating
how the holes are put into the pieces. Since there are K +1 pieces and h holes,
the total number of threadings of the shortest paths is at most (K + 1)h. ¤

When the threadings of the K shortest paths are given, the (conservative)
obstacles for each of the K paths can be constructed as follows. First, each
hole is offset by 1 outside; no reference path is allowed to pass closer than 1 to
any hole. Then, as in the case of simple polygons, for k = 1 . . . K, j = 1 . . . h,
we define the kth depth, dk(j), of the hole Hj as the minimum number of
chords that a path from (the image of) Hj crosses before reaching the chord
sktk (we assume the holes are mapped to C together with the pairs in ST ).
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For example, the 4th depth of the hole 1 in Fig. 4 is 1, the 2nd depth of the
hole 2 is 0, etc. Then the obstacle Ok for the reference path π∗k is the union of
correspondingly inflated parts of bdP 1 and boundaries of the holes:

Ok =
2K⋃

l=1

(
P 1(νl, νl+1)

)2dk(νl,νl+1) ∪
h⋃

j=1

(bdHj)
2dk(j) , (2)

where we have retained the notation from Section 3. Each of the sets in (2)
can be broken down to the Minkowski sums of edges of P with the disks. By
an argument as in the proof of Lemma 3.9, Ok is the union of O(n + K)
pseudodiscs, and, thus, has complexity O(n + K) [5, 81] and can be built in
O((n + K) log(n + K)) time using a randomized algorithm (see [37, Chapter
13] and [71] for further discussions and more references). We still refer to the
obstacles in Ok as holes even though the original holes of the domain, when
inflated according to (2), may overlap and intersect the outer boundary of the
domain; in particular, the domain may become disconnected, so by domain
we will understand the connected component that contains sk and tk.

After the obstacles corresponding to the given threadings are built, we need
to find, for each k = 1 . . . K, the shortest sk-tk path with the given threading
ζk. Let Ξ(ζk) be the family of homotopy types of simple sk-tk paths with the
threading ζk. Let Ξ∗(ζk) ⊂ Ξ(ζk) be the family of homotopy types for which
the locally shortest path is simple. Only one homotopy type χ∗ ∈ Ξ(ζk) can be
a homotopy type of a shortest path with the threading ζk; clearly, χ∗ ∈ Ξ∗(ζk).
(Actually, two optimal homotopy types can arise in case of degeneracies, which
we will ignore without loss of generality.) We show how to enumerate all
homotopy types in Ξ∗(ζk) by scrolling through all permutations of the holes
and, for each permutation, bridging the holes to transform the domain into a
simple polygon.

Let A and B be the sets of holes that are above and below (resp.) the
kth path, according to ζk. Given an ordered sequence H = (H1, . . . , Hh) of
the holes and a threading ζk, we define the operation of bridging as follows:
take the holes from H one by one and connect each hole with a shortest path
to the point just above sk (if the hole belongs to A) or just below sk (if the
hole belongs to B); treat the holes and the already-built bridges as obsta-
cles. By construction, the bridges do not cross each other. Bridging the holes
transforms the domain into a (weakly) simple polygon Pk = Pk(H, ζk).

Let π∗ be the locally shortest path of homotopy χ∗, i.e., the shortest path
with threading ζk. The following lemma shows that while scrolling through all
h! sequences of the holes, χ∗ will be “spotted”.
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τ

H

sk

tk

π∗k

Figure 8: If H ∈ A, it is also above any sk-tk path in Pk. π∗k is dashed; the
bridge τ is dotted.

Lemma 4.2. There exists an ordered sequence H = (H1, . . . , Hh) of the holes
such that the homotopy type of every path in the simple polygon Pk = Pk(H, ζk)
is χ∗, where the homotopy type is viewed with respect to the original domain,
without the bridges.

Proof. By induction on the number, h∗, of holes touched by π∗. The base:
If h∗ = 0, then any sequence H works, since no bridge crosses π∗. Indeed,
suppose the bridge τ from a hole H ′ ∈ A crosses π∗. Since τ starts and ends
above π∗, τ could be shortened by following π∗ between the first and the last
points of the crossing, contradicting the fact that τ , by construction, is the
shortest path from H ′ to (just above) sk.

The inductive step: Let H be the first hole touched by π∗; say, H ∈ A. The
bridge τ routed, in the absence of any other bridges, from H to (just above)
sk does not cross π∗ (otherwise, τ could be shortened). Thus, we bridge H
to (just above) sk using τ (Fig. 8), resulting in a scene with h− 1 holes, with
every sk-tk path leaving H on the same side (above/below, viewed w.r.t. the
original domain) as π∗ leaves it. (Otherwise, the path would cross τ , which
is now a part of the outer boundary.) Thus, we can start over: take the next
hole touched by π∗ and bridge it with a bridge not crossing π∗, and so on. ¤

The above proof is not constructive since we do not know in advance the
order in which π∗ touches the holes; thus, we resort to scrolling through all
possible orders. Given the threadings of the K paths, for each k = 1 . . . K, we
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Figure 9: Left: A collection of optimal paths. Center: The free space P2 for π∗2
after the threading and the order in which the holes are visited by the path are
guessed correctly – the holes are inflated and bridged to the outer boundary.
Right: The shortest s2-t2 path within P2 is π∗2 (dashed).

go through all of the h! permutations of the holes, bridging the holes in the
order given by the permutation, and find the shortest sk-tk path; we keep the
overall best collection of paths. The running time is O(h!hKτ(n + K)) per
threading.6 Refer to Fig. 9 for an example.

Since the number of different threadings of the K shortest paths is O((K +
1)h) (Lemma 4.1), we have:

Theorem 4.3. K shortest thick non-crossing paths can be found in
O

(
(K + 1)hh!hKτ(n + K)

)
time.

Remarks (1) An alternative approach to find the representative paths for
every homotopy type in Ξ∗(ζk) is to decompose the free space into “corridors”
and use the universal cover [69] lifting every corridor according to the thread-
ing ζk

7.
(2) Cabello et al. [27] and Bespamyatnikh [19] suggested efficient schemes for
encoding the homotopy types of paths in the plane: Given a path, the algo-
rithms in [19, 27] output its encoding in polynomial time. In our setting, a
solution to the inverse problem is desired: given an encoding, produce a path
of the corresponding homotopy type.
(3) It was shown in [50, 18] how to compute efficiently K shortest thin paths,
homotopically equivalent to a given set of paths. Unfortunately, for the case

6We denote by τ(M) the time complexity of finding one shortest path among obstacles
whose boundaries consist of a total of M straight line segments and circular arcs. We
suspect that τ(M) = O(M log M) (e.g., by extending [70]), but the current best known
straightforward algorithm [29] has τ(M) = O(M2 log M).

7We thank Jack Snoeyink for this observation.
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Figure 10: A thick path is a “sausage”. The canonical part is what is left after
the hatched semicircles are clipped off.

of thick paths, we do not have a more efficient solution than just routing the
paths one by one. It is possible that using the approach of [18, 50], finding K
thick shortest paths with given threadings can be done more efficiently.
(4) As in the case of simple polygons, the shortest thick paths can be stored in
a linear-size data structure such that a shortest path can be reported in time
proportional to its combinatorial complexity.
(5) Our algorithms generalize straightforwardly to the case in which each path
has its own thickness.

Hardness Results Finding K short disjoint paths in a planar graph is NP-
hard [72]. Disjoint paths in a plane graph correspond to thick non-crossing
paths in a polygonal domain, created by “fattening” the graph edges. This
leads to a proof of NP-hardness for the minmax version of our problem. See
Section 6.1 for details.
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5 Minimum-Cost Flows in the
Continuum

In this section we consider the minimum-cost continuous flow (or, the continu-
ous transshipment) problem — an extension of the standard discrete minimum-
cost network flow (transshipment) problem to continuous domains. We begin
by modifying slightly the statement of the thick non-crossing paths problem so
that it fits into the framework of flows in the continuum [78, 95, 117]: we “clip
off” the semicircular parts at the ends of thick paths and have the terminals of
the paths be segments on the boundary of the polygon. This allows treating
the paths as (the support of) a flow between the terminals. The fact that
(the support of) a flow can be decomposed into the flow’s streamlines suggests
that a flow can be decomposed into (an infinite number of) thin paths. We
exploit the idea of “gluing” thick paths (Corollary 3.6) to show that the flow
can actually be decomposed into a finite set of thick paths; the size of the
decomposition is linear in the size of the problem input. This is the statement
of our Flow Decomposition Theorem, the continuous analogue of the famous
network flow theorem. We use the theorem to reduce the continuous trans-
shipment problem to that of finding thick non-crossing paths in the domain.
The algorithms for the latter problem developed in the previous sections allow
us to solve a class of instances of the transshipment problem efficiently.

Canonical Part of a Thick Path For two points a, b let C
2
(a, b) be the

(open) semicircle, with diameter ab, to the left of the segment ab. Let Π = (π)1

be a thick s-t path. Let s′s′′ (resp. t′t′′) be the diameter of (s)1 (resp. (t)1),
perpendicular to π at s (resp. at t); let s′, t′ (resp. s′′, t′′) lie below (resp. above)
π. We define the canonical part, Π¤, of Π to be its part between s′s′′ and t′t′′:
Π¤ = Π \ C

2
(s′, s′′) \ C

2
(t′′, t′) (Fig. 10).
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Figure 11: Left: C/2(pw−, pw+) ∈ Rp (shaded) is attached to P along pw−pw+.
Right: A thick path originating at s will be perpendicular to es. bdP , bdP
and bdP1 are shown with dashed, dotted and solid lines respectively.

For a point p on bdP let ep be the edge of P on which p resides. For
w ∈ R+ we say that p is w-inside ep if the distance from p to the endpoints
of ep is greater than w. For a point p that is w-inside ep, let pw− ∈ ep (resp.
pw+ ∈ ep) be the point at distance w from p going counterclockwise (resp.
clockwise) along bdP : {pw−, pw+} = ep ∩ C(p, w). As in [95], we augment P
with a Riemann sheetRp, attached to P along pw−pw+ and place the semicircle
C
2
(pw−, pw+) in Rp. (The reason for placing C

2
(pw−, pw+) in a separate sheet Rp

and not in R2, the base sheet where P lives, is to make sure that C
2
(pw−, pw+)

does not intersect P even if they overlap.) Refer to Fig. 11, right.

Lemma 5.1. Let the points s, t ∈ bdP , such that |st| > 2, be 1-inside es and
et respectively. Let Pst = P ∪ C

2
(s1−, s1+) ∪ C

2
(t1+, t1−) be P augmented with

the two semicircles that reside in the corresponding sheets, Rs and Rt (so that
Pst ⊂ R2 ∪Rs ∪Rt is still a simple polygon). Let Π = (π)1 be a thick s-t path
within Pst. Then π is perpendicular to es at s and to et at t.

Proof. Let P1 = Pst \(bdPst)
1 be the inward offset by 1 of Pst. Since Π = (π)1

is a thick path within Pst, π is a path within P1. Locally at s, the boundary
of P1 consists of two quarter-circles (parts of bd(s1−)1 and bd(s1+)1), which
meet at s normally to es (Fig. 11). Thus, any path within P originating at s
is normal to es at s. The same argument works for π at t. ¤

28



Stick Representation of a Thick Path By Lemma 3.11, the canonical
part of a shortest thick path Π = (π)1 can be written as Π¤ = ∪x∈πnx, where
nx is a segment of length 2 centered at x ∈ π and perpendicular to π at x.
Imagine that nx is a stick whose center, x, moves along π. Then as x moves
from s to t, nx sweeps Π¤.

In what follows, by a w-thick path Π = (π)w we will mean the canonical part
of (π)w; as before, a thick path means (the canonical part of) a 1-thick path.
For ~w = (w1, . . . , wK) ∈ R+K, disjoint thick paths Π1 . . . Π

K
= (π1)

w1 . . . (π
K
)w

K

will be called a collection of ~w-thick paths.

“Gluing” Thick Paths Let the origins of a collection of shortest thick non-
crossing paths be spaced along a segment so that the distance between neigh-
boring origins is equal to the sum of the corresponding path widths; let the
destinations of the paths be spaced similarly on another segment. Then rout-
ing the paths can be reduced to routing just one thick path from the “midpoint”
of the origins to the “midpoint” of the destinations (Fig. 12):

Lemma 5.2. Let points s, t ∈ bdP be 2-inside es, et; let |st| > 4. Let s1 = s1−,
s2 = s1+, t2 = t1−, t1 = t1+. (By triangle inequality, |s1t1|, |s2t2| > 2.)
Let Π∗

1, Π
∗
2 = (π∗1)

1, (π∗2)
1 be the two thick shortest paths between (s1, t1) and

(s2, t2), let Π∗ = (π∗)2 be the shortest 2-thick s-t path within P . Then cl(Π∗) =
cl(Π∗

1 ∪ Π∗
2).

Proof. Let π = (bdΠ∗
1) ∩ (bdΠ∗

2) be the points, boundary to both Π∗
1 and Π∗

2.
Observe that s, t ∈ π. By Corollary 3.6, π is an s-t path. Since |st| > 4, by
Corollary 3.7, π is the shortest 2-thick s-t path within P , i.e., π = π∗. The
lemma follows now from the stick representations of Π∗

1, Π∗
2 and Π∗. ¤

Lemma 5.2 generalizes straightforwardly to an arbitrary number of paths of
arbitrary thicknesses.

The Segment Interconnection Problem Let IS = ∪K
1 swk−

k swk+
k , IT =

∪K
1 twk+

k twk−
k be two collections of K segments each; sk, tk are the midpoints of

swk−
k swk+

k , twk+
k twk−

k . Let IST = IS∪IT , ST = ∪K
1 (sk, tk). We call both the seg-

ments in IST and the points in ST terminals. Let the following properties hold:
(1) every terminal is on the boundary of P ; (2) sk is wk-inside esk

; (3) tk is wk-
inside etk ; (4) the terminals in ST are sufficiently separated: ∀k |sktk| > 2wk,
and ∀p ∈ {si, ti}, ∀q ∈ {sj, tj}, i 6= j, |pq| > wi + wj: (5) the Position-
ing assumption (Section 2) holds, i.e., sw1−

1 , s1, s
w1+
1 , . . . , swK−

K , sK , swK+
K ap-

pear in this order clockwise around bdP and ∀k, swk−
k , sk, s

wk+
k appear before
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s

s1

s2

bdP

bdP bdP1

Figure 12: Left: P = P ∪ C
2
(s1−

1 , s1+
1 ) ∪ C

2
(s1−

2 , s1+
2 ). bdP , bdP and bdP1 are

shown with dashed, dotted and solid lines respectively. Center: recall (Sec-
tion 3) that π1 is routed within P1 treating (T )2 = (P1(s2, t2))

2 as obstacles.
Right: cl((π1)

1 ∪ (π2)
1) = cl((π)2).

tw+
k , tk, t

w−
k .8 Consider the Segment Interconnection Problem (SIP) — the prob-

lem of connecting swk−
k swk+

k to twk+
k twk−

k by K non-overlapping thick “strips”
of thicknesses w1 . . . wK . By Lemma 5.1, the SIP can be formally stated as the
problem of finding (the canonical parts of the) shortest thick non-crossing sk-tk
paths within PST = P

⋃K
1

(C
2
(swk−

k , swk+
k ) ∪ C

2
(twk+

k , twk−
k )

)
, i.e., P augmented

with the semicircles, lying in the corresponding Riemann sheets.
Let SIP(P, K, ~w, IS , IT ) be the segment interconnection problem as defined

above. Let SIP
∑

(·) and SIPmax(·) be optimal solutions to the minsum and
minmax versions of the SIP(·).
Theorem 5.3. SIP

∑
(·) = SIPmax(·), and their representation can be found in

O(n + K) time.

Proof. It follows from our results in Section 3 that there exists a collection
of all-shortest ~w-thick non-crossing (sk-tk) paths within PST and that (a rep-
resentation of) it can be found in linear time by “inflating” the parts of the
boundary of the polygon appropriately. By Lemma 5.1, the paths give the
solution to the SIP(·). ¤

8For the separation property (4) it is enough to require that the terminals are separated
only in terms of the geodesic distance within P .

30



Remark Of course, there may be multiple optimal solutions to SIPmax(·).
The statement of Theorem 5.3 must be understood in the sense that there
exists a solution that is (Pareto) optimal for both versions.

Flows in Networks Recall some basic facts about network flows [7]. A
capacitated network N = (V, E) is a directed graph on a set of nodes V
and a set of edges E, such that each edge e ∈ E has associated with it
two (non-negative) integers ue and ce, called the capacity and the cost of
the edge. An s-t flow in N is a function f : E 7→ Z+

0 such that ∀i ∈
V \ s \ t,

∑
(i,j)∈E f((i, j)) =

∑
(j,i)∈E f((j, i)) and ∀e ∈ E, f(e) ≤ ue. The

value of the flow V =
∑

(i,t)∈E f(i, t). The cost of the flow is
∑

e∈E f(e)c(e). In
the maximum flow problem, a flow, maximizing V is sought; in the minimum-
cost flow, V is given and the goal is to minimize the cost.

An s-t cut in N is the partition of V into disjoint sets S and T , N = S∪T ,
S ∩ T = ∅, such that s ∈ S, t ∈ T . An edge e ∈ E connecting the vertices
i and j of V is said to cross the cut if i ∈ S, j ∈ T or i ∈ T , j ∈ S. The
capacity of the cut is the sum of the capacities of all edges that cross it. The
minimum cut, or mincut through the network is a cut of minimum capacity.
The Maxflow-Mincut Theorem states that the value of the maximum s-t flow
equals to the capacity of the mincut through the network.

The Flow Decomposition Theorem states that any flow can be decomposed
into a set of s-t paths and a set of cycles. The set of cycles in the decomposition
is empty for a minimum-cost flow.

The mincut, maxflow and min-cost floe can be computed efficiently [7].

Continuous Transshipment Problem We recollect from [95, 117] some
notions related to flows in polygonal domains. Let Γs = {I1 . . . IS}, Γt =
{O1 . . . OT} be two sets of disjoint (open) segments on bdP . A flow in P is a
vector field σ : P 7→ R2 such that: (1) ∀x ∈ P , div σ(x) = 0, i.e., there is no
sources/sinks inside P ; (2) ∀x ∈ bdP \Γs\Γt, σ(x) · n(x) = 0, where n(x) is
the outward pointing unit vector normal to bdP at x, i.e., the flow penetrates
bdP only at Γs ∪ Γt; (3) ∀x ∈ P, |σ(x)| ≤ 1, i.e., each point in P has unit
capacity. The value of the flow is defined as V =

∫
Γt

σ · n ds. The maximum
flow problem [78, 95, 117] asks for a flow, maximizing V ; in the minimum-cost
flow (or, the transshipment) problem (considered here), V is given and the
flow, minimizing certain objective function, is sought9.

9The classical divergence theorem states that ∀σ,
∫
Γt

σ · n ds ≤ |γ∗|, where |γ∗| is the
length of the mincut through the domain [117, 95]. We will assume that in our problem
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The Objective Functions Let Γ∗s ⊂ ∪S
1 Ii be the part of bdP through which

σ actually enters P : Γ∗s = {x ∈ ∪S
1 Ii |σ(x) · n(x) 6= 0}. Define Γ∗t similarly.

For s ∈ Γ∗s let `s = ∪∞τ=0

(
s +

∫ τ

0
σ dt

)
be the streakline of σ, going through s;

since we only consider steady flows, it coincides with the streamline — curve,
at every point of which σ is tangent to the curve, and with the pathline — the
path taken by a particle released at s in the velocity field given by σ. Let |`s|
denote the length of `s.

Strang [117] and Mitchell [95] suggested that the cost of a flow may be
defined as: (I) the area of the support, supp σ, of the flow, where supp σ =
{x ∈ P : |σ(x)| > 0}; or, (II) the “total length of the streamlines”,

∫
s∈Γ∗s

|`s|ds;

or, (III) the length of the longest streamline maxs∈Γ∗s |`s|.
It is not hard to see that it suffices to consider only those flows σ that satisfy

the following properties: (i) the absolute value of the flow vector is everywhere
at its upper bound 1, ∀x ∈ supp σ, |σ(x)| = 1; (ii) Γ∗s and Γ∗t each consists of
at most S +T connected components; (iii) there are no closed streamlines in σ;
(iv) σ leaves Γ∗s (and enters Γ∗t ) normally to bdP , ∀x ∈ Γ∗s∪Γ∗t , |σ(x)·n(x)| = 1;
(v) the lengths |Γ∗s| and |Γ∗t | of Γ∗s and Γ∗t satisfy |Γ∗s| = |Γ∗t | = V . (Of course,
(i)–(v) are not independent, but we do not care.)

Flow Decomposition Theorem For s ∈ Γ∗s let d(s) ∈ Γ∗t denote “the
other end” of the streamline `s (the destination of a particle released at s),
d(s) = s +

∫∞
0

σ dt. Let o(·) be the “inverse” of d(·), i.e., for t ∈ Γ∗t let
o(t) ∈ Γ∗s be the “origin” of a particle that ended up at t: o(t) = s|d(s) = t.

For the flows, enjoying the Properties (i)–(v) above, d(·) is continuous
almost everywhere on Γ∗s. (In the intervals of continuity of d(·) the Fréchet
distance F(`a, `b) between the streamlines `a and `b and the distance |d(a)d(b)|
between d(a) and d(b) satisfy F(`a, `b) = |d(a)d(b)| = |ab|.) Similarly, o(·) is
continuous almost everywhere on Γ∗t . Let O = {o1 . . . oS∗} ⊂ Γ∗s and D =
{d1 . . . dT ∗} ⊂ Γ∗t be the points of discontinuity of d(·) and o(·). Let IS (resp.
IT ) be the set of segments into which Γ∗s (resp. Γ∗t ) is decomposed by o1 . . . oS∗

(resp. d1 . . . dT ∗); these segments are the maximal contiguous subsets of Γ∗s, Γ∗t
such that the flow from a subset of Γ∗s goes to a subset of Γ∗t . By definition,
the number of segments in IS equals the number of segments in IT ; call this
number K.

The support of the flow can be “slit” along the streamlines originating at
o−i , o+

i , i = 1 . . . S∗ and the streamlines ending at d−j , d+
j , j = 1 . . . T ∗ into K

“smaller” flows going from the segments in IS to the corresponding segments in

V ≤ γ∗, i.e., that the problem is feasible.
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IT . Formally, consider segments e ∈ IS and f = d(e) ∈ IT . (|e| = |f |.) Let σe

be the restriction of σ on the subset of P through which the streamlines from
e to f pass: supp σe = {x ∈ P | ∃s ∈ e|x ∈ `(s)}, σe = σ on supp σe, σe = 0
o.w. Then σ =

∑
e∈IS

σe, i.e., a flow can be decomposed into “sub-flows”, such
that each sub-flow goes from a single source segment to a single sink segment.

Let ab ∈ IS, cd ∈ IT be two segments such that the (sub-)flow σab of value
2w, w ∈ R, goes from ab to cd: ∀x ∈ ab, d(x) ∈ cd, ∀y ∈ cd, o(y) ∈ ab; by
Properties (iv) and (v), |ab| = |cd| = 2w. Let πad and πbc be the streamlines
going from a to d and from b to c. For ξ ∈ (0, 1) let π(ξ) be the (thin, usual)
path from ab(ξ) = (1 − ξ)a + ξb to cd(ξ) = (1 − ξ)d + ξc, routed treating
(πad)

2wξ and (πbc)
2w(1−ξ) as obstacles. Then π(ξ), the set of points at distance

2wξ from πab and at distance 2w(1− ξ) from πcd (so that the Fréchet distance
between π(ξ) and πab, F(π(ξ), πab) = 2wξ, F(π(ξ), πcd) = 2w(1 − ξ)), is the
streamline of σ going from ab(ξ) to cd(ξ). Since exactly one streamline passes
through each point of the flow support, the support can be written as the
union of the streamlines: supp σab = ∪ξ∈(0,1)π(ξ). Lemma 5.4 below proves
that supp σab is in fact a shortest w-thick s-t path within P , where s = ab(1

2
)

and t = cd(1
2
) are the midpoints of ab and cd.

Lemma 5.4. supp σab is a w-thick shortest path from s to t.

Proof. For M ∈ N let abM , cdM be the subdivisions of ab and cd into M seg-
ments of length δ = 2w/M . Consider the Segment Interconnection Problem
SIP(P, M, δ~1M , abM , cdM), where ~1M ∈ RM is the vector of M ones. By Theo-
rem 5.3, the solution to the SIP is given by a set of M δ

2
-thick shortest paths

between the mid-points of the segments in abM and cdM . By Lemma 5.2, these
paths can be “glued” into one w-thick shortest s-t path. Since the above is
true for arbitrary M , it is also true in the limit, M → ∞, when the paths
become the streamlines of the flow. ¤

Thus, the discrete network Flow Decomposition Theorem can be extended to
the continuum:

Theorem 5.5. Continuous Flow Decomposition Theorem (CFDT)
The support of a minimum-cost flow can be decomposed into a set of thick
paths; the size of the decomposition is linear in the size of the description of
the flow.

See Fig. 13 for an example.
The celebrated Network Flow Decomposition Theorem states that any flow

can be decomposed into a set of paths from the sources to sinks and a set of
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Figure 13: Flow σ from Γs (solid blue segments) to Γt (dotted red segments).
supp σ = Π1 ∪ Π2 ∪ Π3.

cycles. For a minimum-cost flow the set of cycles is empty; it is exactly for
this reason that the minsum version of the famous disjoint paths problem can
be formulated as a flow problem. Theorem 5.5 can be regarded as a natural
extension of the Network Flow Decomposition Theorem to the continuum.

Balanced Transshipment with Source-Sink Separation The above dis-
cussion gives a solution to the transshipment problem, restricted as follows.
First, assume that the problem is balanced, i.e., |I1|+ . . . + |IS| = |O1|+ . . . +
|OT | = V (“supply”=“demand”). In this case Γ∗s = Γs, Γ∗t = Γt. Assume also
that the segments in Γs do not “interleave” with those in Γt around bdP , i.e.,
that going around bdP one encounters all sources and then all sinks (this is
often the case, e.g., in ATM: the air traffic is routed through a sector mostly
in one direction, say, East-to-West or West-to-East). Then the sets IS and
IT can be deduced by a simple matching procedure. Let p ∈ bdP be a point
between Γs and Γt, let e ∈ Γs, f ∈ Γt be the segments, closest to p around
bdP ; without loss of generality, |e| ≤ |f |. Let f ′ be the part of f , closest to
p, such that |e| = |f ′|. Insert e (resp. f ′) into IT (resp. IT ), delete e (resp. f ′)
from Γs (resp. Γt), and repeat.
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Since exactly one streamline of σ goes through each point of supp σ, the
objective functions (I) and (II) (see page 32) are easily seen to be equivalent.
By Theorem 5.3, they are also equivalent to (III). By Theorem 5.5 the trans-
shipment problem can be reduced to the corresponding instance of the SIP.
Thus, by Theorem 5.3:

Theorem 5.6. The balanced transshipment problem with the source/sink sep-
aration as described above can be solved in linear time and space.

Remarks (1) The Flow Decomposition Theorem applies also to the case in
which the sources and the sinks belong to the outer boundary of a polygonal
domain with h holes. The number of paths in this case is at most S + T + h.
To see this, decompose the flow into two parts: from Γ∗s to γ∗ and from γ∗ to
Γ∗t , where γ∗ is the mincut through the domain. The bound on the number of
paths follows from the fact that γ∗ has at most h + 1 connected components.
(2) In Section 3.3 we built a data structure for storing thick shortest paths; it is
an extension of the data structure of Papadopolou [107] for storing thin paths
(called in [107] the “forest” of shortest paths). The flows in the continuum
provide a new view on these data structures: it can be seen that our data struc-
ture actually represents the support of the min-cost flow from ∪K

1 (s1+
i , s1−

i ) to
∪K

1 (t1−i , t1+
i ). It is worth noting that the maximum flows through a domain

[95] can indeed be stored in a forest (the appropriately defined skeleton of
the domain), while our data structure G (and, in fact, the data structure of
Papadopolou, [106]) may have to be a general planar graph. This emphasizes
the difference between maximum and minimum-cost flows.
(3) We presented two ways of specifying an instance of the thick shortest paths
problem. In the first specification (Section 2) the terminals of the paths are a
set of points close to bdP ; the paths sought are the Minkowski sums of thin
paths with the disks. In the second the terminals are segments on bdP and
the paths are the canonical parts of the Minkowski sums. From a distant view
the two specifications look the same: in the second one we just have the paths
“protrude” through bdP so that paths’ non-canonical parts (the semicircles)
reside on the corresponding Riemann sheets. Although, as shown in Section 5,
the two specifications are equivalent, we decided to present both since we feel
that the first one reflects the standard view on the thick paths as the Minkow-
ski sums, while the second allows one to think of the terminals as the “doors”
through which the flow of agents enters the domain.
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6 Variations

In this section we look at our problems in rectilinear domains. We also con-
sider routing multiple thin paths in polygonal domains with holes. Finally, we
investigate the problems of routing maximum number of thick paths and find-
ing monotone flows and paths—direct extension of the maximum continuous
flow problem [117, 95].

6.1 Thick Paths and Flows in Rectilinear Domains

Here we study thick rectilinear paths and rectilinear minimum-cost flow in
rectilinear domains. We will assume that a thick path is the Minkowski sum
of the reference path and the unit square. The notation (S)1 will consequently
mean the Minkowski sum of a set S ⊂ R2 and the unit square.

We first prove that the minmax version of the thick non-crossing paths
problem is NP-hard; even if K = 2 and the paths are monotone, it is weakly
NP-hard. Our hardness proofs, in fact, work for the Euclidean version just
as well. We argue that unless P=NP there exists no Fullypolynomial-Time
Approximation Scheme for the problem. For the cases K = 2, 3 we suggest a
pseudopolynomial-time algorithm.

We then consider the rectilinear version of the minimum-cost flow prob-
lem. We show, by a standard “snapping” argument, that the problem can
be reduced to the flow problem on a path-preserving graph. It allows, under
certain restrictions on the placement of the terminals, to solve the minsum ver-
sion of the problem of finding thick non-crossing rectilinear paths in rectilinear
polygonal domains.
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6.1.1 Hardness Results

Our hardness proofs are by modifying existing proofs of NP-hardness of the
minmax versions of the disjoint paths in planar graph problem (MDPP), which,
in general is stated as follows.

Given A planar graph G = (V,E), vertices s, t ∈ V , a bound B ∈ Z+, a
length function l : E 7→ Z+

Find K (internally) vertex-disjoint paths connecting s and t, such that the
length of each path is not more than B

The idea is that vertex-disjoint paths in G correspond to thick non-crossing
paths in polygonal domain, created by “fattening” the edges of G drawing.
The only challenge in transforming the graph problem into the geometric one
is laying out the graph in the plane so that the lengths of the edges of the
graph equal to the lengths of their images. After this is done (and the drawing
is scaled, if necessary), each polygonal path l, representing an edge in G, is
replaced by (l)1. This way, disjoint paths in G correspond to non-crossing
thick paths in the domain.

Strong NP-Hardness

The following definition is taken from [107].

Definition 6.1. [107] The pairs of terminals (and the paths between them) in
ST are in parallel if {s1, . . . , sK, tK , . . . , t1} appear in this order around bdP 1.

If the pairs of terminals are in parallel, the tree of slices TST is a path.

Theorem 6.2. The minmax version of the thick non-crossing paths problem
in rectilinear domain is strongly NP-hard both in the L1 and the Euclidean
metrics, even if the paths are in parallel.

Proof. In [72] Holst and Pina proved that MDPP is NP-complete even if l :
E 7→ {1, 2, 3}. Figure 1 in [72] (which we reproduce here in Fig. 14) shows
the graph that was used to prove the hardness. The graph can be easily
transformed into a polygonal domain, and a placement of terminals in the
domain can be defined, such that the graph problem is feasible if and only
if there exist length bounded disjoint thick paths between the pairs of the
terminals.
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First of all, the edges of G can be drawn in the plane so that the length
of each edge is its Euclidean (or L1) length: the length 1 edges will remain
unchanged, the length 2 and 3 edges will “wiggle” a bit to gain length. The
edges adjacent to s and r will be dropped; the nodes adjacent to s and r will
become the terminals. Now, the drawing of the graph can be scaled so that
after each straight line segment l, representing an edge in the graph is replaced
by (l)1, edge-disjoint paths in the graph still correspond to non-crossing thick
paths in the domain.

Observe that the terminals pairs are in parallel. ¤

Weak NP-Hardness for K = 2

If two thick paths have the same start s and destination t, we extend the
notion of being non-crossing requiring that the paths diverge immediately after
leaving s and meet again only at t:

Definition 6.3. Let s, t be two points in a rectilinear domain. Two thick s-t
paths Π1 and Π2 are non-crossing if Π1 ∩ Π2 = (s)1 ∪ (t)1.

Theorem 6.4. The minmax version of the two thick non-crossing rectilin-
ear paths in rectilinear domain is weakly NP-hard both in the L1 and in the
Euclidean metrics, even if the paths are monotone.

Proof. We start our reduction from the Two Short Disjoint Paths in a Weighted
Planar Graph Problem:

Given A planar graph G = (V, E), vertices s, t ∈ V , a bound B, a length
function l : E → Z+

Find Two (internally) vertex-disjoint paths connecting s and t such that the
length of each path is not more than B

Holst and Pina [72] proved the problem is weakly NP-complete by a reduction
from Partition: given m integers c1, . . . , cm, find a set I ⊆ M = {1, . . . ,m}
such that

∑
i∈I ci =

∑
i∈M\I ci. Indeed, the graph G0 in the Figure 15 has

two internally vertex-disjoint paths from s to t each of length bounded by
B0 = 2(m + 1) + 1/2

∑m
i=1 ci if and only if the corresponding instance of

Partition is feasible.
Starting from G0, we build another graph, G (Fig. 16), such that G contains

two vertex disjoint s-t paths each of length bounded by B = 10m−6+2
∑m

i=1 ci
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Figure 14: Figure 1 from [72], rotated by 45 degrees to represent a rectilinear
domain. Circled numbers show the edge weights; letters show the regions
corresponding to certain variables in the 3SAT instance.
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Figure 15: G0. The edges with no label close to them are unit-length edges.

if and only if G0 contains two vertex disjoint s-t paths each of length bounded
by B0.

Let G be the planar layout of G as in Figure 16. (G is the set of line segments
of corresponding lengths representing the edges of G; the line segments meet
at the points representing the vertices of G.)

Let P be the Minkowski sum of G and the unit square (Fig 17). By the
construction of P , it contains two thick non-crossing s-t paths each of length
bounded by B if and only if G contains two vertex disjoint s-t paths each of
length bounded by B. Moreover, each of the paths in a solution to the problem
is monotone. ¤

Corollary 6.5. Unless P=NP, there exists no Fullypolynomial-Time Approx-
imation Scheme for the problem of finding two thick non-crossing (monotone)
(rectilinear) paths with bounded length in rectilinear domain.

Proof. If there does not exist two paths of length at most B each, then the
longest of the paths has the length at least B + 1. Suppose, that there exists
an algorithm that, for any ε > 0, finds a solution, in which the longest path is
at most 1 + ε times longer than the optimal; and that such an algorithm runs
in time, polynomial in 1/ε. Take ε < 1

B+1
. Then, the algorithm would output

a solution of cost less than B + 1 if and only if the corresponding instance of
Partition is feasible. ¤

6.1.2 Pseudopolynomial-Time Algorithm

In the previous subsection we showed that finding two thick non-crossing rec-
tilinear paths of bounded length in rectilinear domain is weakly NP-complete.
In this subsection we show that if s1, t1, s2, t2 belong to the same obstacle, the
problem can be solved in pseudo-polynomial time by a simple reduction to a
recently solved problem in graph theory.
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Figure 17: P . G is not drawn for clarity.
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Assume that the coordinates of the obstacles are given with integers and
that the whole domain resides in an N -by-N bounding square. Lay down an
N -by-N integer grid so that the vertices of the obstacles snap onto the grid.
Delete from the grid the nodes that are strictly inside the obstacles; no path
could possibly go through the deleted nodes.

The obstacles edges can be classified into 4 types: North, East, South and
West — in the intuitive way. We delete from the grid the nodes that belong
to a South or a West edge; the reason is that a thick path with the reference
path, visiting such a node, would intersect the interior of the obstacle. Let G
be the grid graph induced by the remaining grid nodes; let s1, t1, s2, t2 be the
vertices of G corresponding to the locations of s1, t1, s2, t2.

Lemma 6.6. Let Π1 = (π1)
1 and Π2 = (π2)

1 be optimal thick non-crossing
s1-t1 and s2-t2 paths. Then there exist thick non-crossing s1-t1 and s2-t2 paths
Π∗

1 = (π∗1)
1 and Π∗

2 = (π∗2)
1 such that π∗1 and π∗2 are vertex-disjoint paths in G,

and |π∗k| ≤ |πk|, k = 1, 2.

Proof. The proof is by standard “snapping” argument, extensively used in
rectilinear computational geometry to show path-preserving properties of finite
graphs built from rectilinear domains, see, e.g., [127], survey [87] and references
there off. The care must be taken though to ensure that both paths are
snapped onto the grid without crossing.

Without loss of generality, suppose that there exists a vertical link not
following the grid. Let l be the leftmost such link; say, the link belongs to
π1. Let x be the abscissa of l; let y1 and y2 be the ordinates of its endpoints
(Fig. 18).

Proposition 6.7. The open segment S1 = ((bxc, y1), (bxc, y2)) does not belong
to Π1 or Π2.

Proof. Otherwise, there exists a vertical edge of a reference path with abscissa
strictly between bxc − 1 and bxc and so l is not the leftmost vertical link
running off the grid. ¤

Thus, we can push l to the left to snap it onto S1. If the two horizontal links
adjacent to l are at different sides of the line supporting l, the length of π does
not change with the snapping. If the two adjacent horizontal links both lie to
the left of l, the path only shortens (and thus could not have been an optimal
path). If the two segments both lie to the right of l, we will push l to the right
(thus shortening the path).
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Figure 18: ` can be snapped either to the left or to the right without length-
ening the path.

Proposition 6.8. The open segment S2 = ((dxe, y1), (dxe, y2)) does not belong
to any obstacle edge.

Proof. Otherwise, (l)1 would intersect the obstacle. ¤

Thus, the integer points in S2 belong to the grid and we can snap l onto it. If
(parts of) Π1 or Π2 run through (S2)

1, by the same argument as above, the
corresponding integer points at abscissa dxe + 1 are grid points and are free
to have the path(s) snapped on them. If there are other parts of Π1 and/or
Π2 that the new snapped path(s) intersect, those parts can be snapped to the
right by the same argument.

The described snapping operation reduces the total number of the off-grid
links in Π1, Π2 by at least 1, so after performing the operation finite number
of times we obtain thick paths Π∗

1, Π
∗
2 as claimed in the Lemma. ¤

Theorem 6.9. If s1, t1, s2, t2 belong to the same obstacle, the minmax version
of the two thick non-crossing rectilinear paths problem in rectilinear domains
can be solved in time, pseudopolynomial in the size of the input of the problem.

Proof. By Lemma 6.6, the minmax version of the two thick non-crossing paths
problem can be reduced to the minmax version of the two vertex-disjoint paths
problem in the graph G built from the domain. It was shown in [72] that the
latter problem can be solved in O(m4L2) time and O(m2L2) space for a planar
graph with m nodes and maximum edge length L. The number of nodes in
G is O(N2) and each edge length is 1. Since an instance of the thick non-
crossing paths problem is specified with O(n log N) bits, the solution to the
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graph problem provides a pseudo-polynomial time algorithm for the geometric
problem; the running time of the algorithm is O(N8). ¤

We remark that in [72] it is also announced that a similar solution is possible
for two more cases: that of routing 3 disjoint paths of bounded length, and
that of arbitrary (but fixed K) when the paths are in parallel. Hence, our
problem is solvable in pseudopolynomial time in the corresponding cases too.

6.1.3 Minimum-Cost Rectilinear Flows

We consider here the rectilinear version of the minimum-cost flow problem;
we prove that the problem can be reduced to the flow problem on a path-
preserving graph. It allows, under some restrictions, to solve the minsum
version of the thick non-crossing paths problem.

The special case of the flow problem that we consider here can be defined
as follows:
Given A collection of rectilinear obstacles and 2 pairs of points (without loss
of generality — vertices of the obstacles): sources s1, s2 and sinks t1, t2. Ob-
stacles coordinates are specified with integers.
Find Two thick non-crossing paths of minimum total length, one path con-
necting s1 to one of {t1, t2}, and the second connecting s2 to the other of
{t1, t2}.

We call the described problem the minimum-cost integer rectilinear flow
problem since we can think of the paths as of a flow from (s1)

1 ∪ (s2)
1 to

(t1)
1∪ (t2)

1 with discrete thick flow lines represented by the paths in uniformly
unit-capacitated free space. Although the problem bears close resemblance
to the thick disjoint paths problem, there is an important difference: when
routing the flows, we do not care about the source-destination pairings.

We solve the flow problem by reducing it to the flow problem in a graph
G0 – a sparse version of the graph G from the previous subsection. We build
G0 as follows. Take a North edge e of an obstacle in the domain. Extend the
edge as far as possible both ways through the free space (until it collides with
another obstacle or the bounding box). Shift the edge up by 1 and extend in
the same way to run through the free space as far as possible. Do so for all
North edges. Similarly, extend vertically each East edge and its shifted to the
right copy. Take a South edge of an obstacle. Shift it down by 1 and extend
horizontally. Also, shift it down by 2 and extend. Do so for all South edges.
Similarly, extend vertically each West edge shifted to the left by 1 and by 2.
The vertices in G0 will be the points of intersection of the extended segments;
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Figure 19: Left: Three paths pushed together. Center and right: The total
length of the paths can be decreased by local modifications.

the edges will connect consecutive vertices. To complete the construction of
G0, remove from it any edge b such that (b)1 intersects an obstacle; add super-
source s connected with 0-cost edges to the sources and super-sink t connected
with 0-cost edges to the sinks. Let the capacity of each node in G0 be 1.

Any maximum (of value 2) s-t flow in G0 can be decomposed into two paths
connecting the sources and the sinks in the domain. Indeed, by construction,
the edges of G0 are at distance at least 1 from each other and from the obsta-
cles (except, possibly, at the endpoints, where node capacity prohibits paths
crossing). Thus the flow in G0 provides a feasible pair of thick paths in the
domain. We show that the converse is also true:

Lemma 6.10. Let Πk, k = 1, 2 be optimal thick paths connecting sources
and sinks, with reference paths πk. Then there exist optimal thick sk-tk paths
Π∗

k with reference paths π∗k such that π∗k are vertex-disjoint paths in G0, and
|π∗1|+ |π∗2| ≤ |π1|+ |π2|.
Proof. Consider the snapping operation that was the basis of Lemma 6.6 proof.
We snapped an edge l of path π1 to one of the nearest grid lines. Instead, we
could have pushed l until it collides with an obstacle or with another path
segment; in the latter case we could push the paths together until the extreme
path in the pushed group collides with an obstacle. What we need to show is
that there will never be more than 2 paths in such a group.

First of all, if l collides with another edge c of the same path π1, the path
could be shortened by short-cutting from l to c. Thus, we can assume that
the subpaths in the pushed group are alternating — π1, than π2, than π1

again and, possibly, so on; assume that there are at least 3 paths in the group.
Then, depending on the location of the sources and sinks, the total length of
the paths can be decreased by performing local modifications (Fig. 19). ¤

We remark that the source-sink pairing changes after the modification is ap-
plied, but in the problem we consider it is allowed.

46



Theorem 6.11. The minimum-cost integer rectilinear flow problem can be
solved in O(n4 log n) time and O(n2) space.

Proof. Construction of G0 can be accomplished in O(n2 log n) time and O(n2)
space. Indeed, in total O(n log n) time we can determine what the extended
obstacles edges are [55, 114]. The intersections between the O(n) extended
segments can be computed in O(n2) time by brute force. For each of the
O(n2) edges of G0 one can determine in O(log n) time whether the Minkowski
sum of the edge and the unit square intersects an obstacle. Anyway, the time of
the construction is dominated by finding the minimum-cost flow in G0, which
can be done in O(n4 log n) [104] since G0 is planar. ¤

Under certain restrictions on the placement of s1, s2, t1, t2, the problem of
minimizing the total length of s1-t1 and s2-t2 thick paths can be naturally
reduced to the flow problem. For example, it is so if s1, s2, t2, t1 belong to the
same obstacle and appear on the boundary of the obstacle in that order. Thus,
in this case, the minsum version of the two thick non-crossing paths admits
a polynomial time solution; this supports the observation that, like in graph
theory, the minmax version is harder than the minsum.

The proposed algorithm naturally extends to the case of arbitrary number
2K of sources and sinks. The K paths, optimal for the minsum version of the
problem, provide a K-approximation for the minmax version. Thus,

Corollary 6.12. The minimum cost integer rectilinear flow can be found in
Õ(K4n4) time and O(K2n2) space. If s1, . . . , sK , tK . . . , t1 belong to the same
obstacle and appear on the boundary of the obstacle in that order, the optimal
minsum short thick non-crossing paths (and a K-approximation to the minmax
optimal paths) can be found within the same bounds.

Our algorithms can be extended to higher dimensions.

6.2 Thin Paths in Polygons with Holes

As we mentioned earlier, finding short non-crossing paths between pairs of
terminals is NP-hard even if the paths are thin [15]. In order to consider
a tractable problem, we restrict our attention to the following formulation.
Let P be a polygon, let H be the set of holes in it. We assume that every
terminal in ST resides either on the boundary of P or on the boundary of one
particular hole H ∈ H. Without loss of generality, we assume that no pair of
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terminals has both its start and its destination on bdH, i.e., we assume that
s1, . . . , sK ∈ bdP , and that the Positioning assumption still holds.

In [107], the problem of routing paths of minimum total length (the minsum
version, in our terminology) in a polygon with 1 hole, |H| = 1, was investigated;
the minmax version of the problem was left unexplored. It is interesting to see
how different the minsum and the minmax optimal solutions may be and, in
particular, which paths may be expected to be as short as possible given the
existence of the other paths. It is also interesting to investigate this question
for polygons with more than one hole, |H| > 1.

Partition ST into ST P = {(si, ti) | si, ti ∈ bdP} — the set of pairs with
both terminals on bdP and STH = {(sk, tk) | sk ∈ bdP, tk ∈ bdH}. The
problem naturally splits into two cases:
Case I: STH = ∅. It was observed in [107] that in this case the shortest paths
are all-shortest. Considering the two possible routings of a path around H (H
above the path or below the path) and comparing the solutions, the total time
to route all paths is made linear in [107]:

Lemma 6.13. [107] If STH = ∅, all-shortest paths can be found in linear
time.

Case II: STH 6= ∅. As observed in [107], after the homotopy type of an sk-tk
path in ST H has been chosen (clockwise around H or counterclockwise), the
other paths are routed in a unique way. Thus, in linear time one could route
the sk-tk path both clockwise and counterclockwise, and compare the total
length of the paths under the different routings of sk-tk path. Thus,

Lemma 6.14. [107] If STH 6= ∅, the minsum version of the problem can be
solved in linear time.

Similarly, of course, the minmax version can be solved. Thus,

Corollary 6.15. If STH 6= ∅, the minmax version of the problem can be solved
in linear time.

The results in the lemmas can be combined in two corollaries:

Corollary 6.16. [107] In a simple polygon with one hole, the shortest paths
connecting the pairs without a terminal on the boundary of the hole are all-
shortest.

Corollary 6.17. [107] In a simple polygon with one hole, both the minsum
and the minmax versions of the shortest paths problem can be solved in linear
time.
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Figure 20: ST P ∩Q = ∅. Cf. Fig. 11 in [107].

We observe that Corollary 6.16 is also true even if the number of the holes
is greater than one.

Lemma 6.18. The paths connecting the terminals in ST P are all-shortest.

Proof. Case I: STH = ∅. In this case we prove the lemma by induction on
K. Obviously, if K = 1, the lemma holds. If K > 1, let π1 . . . πK−1 be the
collection of the shortest sk-tk paths, k = 1 . . . K−1; by the inductive hypoth-
esis all of them are shortest. Let πK be the shortest sK-tK path. Suppose, πK

intersects a path πj, 1 ≤ j < K. By the Positioning assumption, sj and tj are
either both below πK or both above πK . In any case, πj intersects πK an even
number of times, and one of the paths could be strictly shortened by following
the other path between consecutive points of intersection.

Case II: STH 6= ∅. Let (s1, t1) ∈ STH. Let π be the shortest path, going
around H from s1 to s1 (Fig. 20). Let Q be the open subset of P strictly
inside π. Clearly, ST P ∩ Q = ∅, since ST P ⊂ bdP and Q ∩ bdP = ∅. Thus,
if a shortest si-ti path, (si, ti) ∈ ST P , intersects π it must intersect it an
even number of times. But since π is the shortest (“pull taught”) path, the
subpath of πi between consecutive points of intersection with π could have
been shortened by following π, a contradiction to the optimality of πi. ¤

Remarks

1. It is not true that each path in the optimum is the shortest path between
its terminals (Fig. 21); the definition of all-shortest paths only requires
that each path is as short as possible given the existence of the other
paths.
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Figure 22: The minsum optimal paths go clockwise around H; the minmax
optimal paths go counterclockwise.

2. The example in Fig. 22 shows that the paths in STH optimal in the
minsum and the minmax versions can be different.

3. It remains an open problem to find an efficient algorithm for actually
routing the shortest paths in polygons with holes. In principle, nothing
should change from the case of simple polygons: after some paths have
been routed, a subsequent path could use the routed paths to progress
faster towards the destination. Unfortunately, the funnel paradigm does
not apply to the problem of finding shortest paths in polygons with
holes. The existing approaches — searching the visibility graph and
continuous Dijkstra paradigm (see surveys [98, 97]) — do not allow to
charge the work done when routing a path to the part of the boundaries
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explored. The brute force solution — routing the paths one by one —
runs in O(Kn log n) time. Constructing a data structure for two-point
queries and then using it to find the paths between pairs in ST seems
to be an overkill since the set of points to be queried is restricted to
ST . Nevertheless, as observed in [69], when the homotopy of the paths
is given, the funnel paradigm applies; we used this fact for routing thick
paths in polygons with holes (Section 4).

4. Of course, after the shortest paths are constructed, a data structure of
linear size can be build such that a shortest path can be reported in time
proportional to its complexity. The data structure is identical to the one
used for the shortest paths in simple polygons (see [107] or Section 3.3
of this thesis).

6.3 Routing Maximum Number of Thick Paths

In this and the following sections we solve the extensions of the continuous
maximum flow problem [95]. To agree with [95], we slightly redefine our nota-
tion, and introduce some new notions.

For a set Q ⊂ R2 let bdQ be its boundary. Whenever we speak of a set
Q that has interior points (Q 6= bdQ), we will assume that Q is open, i.e,
∀p ∈ bdQ, p /∈ Q. Let Ω be a polygonal domain defined by the outer (simple)
polygon P and a set H of h holes, H1 . . . Hh, in it. We will assume that no
path can run outside Ω. Let n denote the number of vertices on the boundary
of Ω.

Let Γs, Γt ∈ bdP be two edges of P—the source and the sink. Then the
set bdP \ (Γs ∪ Γt) consists of two connected components, T (“top”) and B
(“bottom”); Γs, B, Γt, T appear in this order counterclockwise on bdP . Since
T and B cannot be penetrated by paths and flows in Ω, we will add them as
holes H0 = T and Hh+1 = B to H. Abusing notation, we will assume that
Γs, Γt /∈ bdΩ, i.e., that bdΩ = bdH.

We will assume that Ω has already been “perforated” at Γs, Γt, and Rie-
mann flaps were glued to Ω at the perforated edges [95]. As described in [95],
this allows one to avoid complications that may arise when a thick path, a
wavefront, a Voronoi edge, etc. “protrudes” through Γs or Γt.

A (thin) path is a simple curve, within Ω, whose one endpoint belongs to
Γs, the other – to Γt. Note that we only consider source-sink paths. By a
thick path we will actually mean the canonical part of it. Thus, any path
starts/ends normally to the source/sink. By our results from Section 5, when
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Figure 23: Only self-overlapping thick path exists.

working with the canonical parts of thick paths, this does not imply any loss
of generality.

In this section we consider finding the maximum number of thick non-
crossing paths in Ω. We modify the continuous-Dijsktra-type uppermost short-
est path algorithm for finding the maxflow [95], to take into account the dis-
crete nature of our problem.

Thick Paths May Self-Overlap By definition, the reference path of a
thick path is simple, i.e., non-self-intersecting. At the same time, the definition
allows a thick path to be self-overlapping. In fact, in some instances only self-
overlapping thick paths exist (Fig. 23, see also Fig. 4 in [76]). This means, in
particular, that routing a thick path is different from routing a thick wire—
a non-self-overlapping thick path. While a thick path can be found by the
standard procedure of offsetting the obstacles and then searching for a thin
path within the modified free space, we are not aware of any algorithm for
finding a thick wire. To the best of our knowledge, this difference between
paths and wires has not been noticed anywhere but in [76]. This may be due
to the fact that in wire-routing applications several special cases were generally
considered—monotone paths, routing in simple polygons, rectilinear domains.
In these cases, paths and wires are the same.

Having acknowledged the possibility of the self-overlap, we show how to find
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Figure 24: The wavefronts make up the streamlines of the flow. After hitting
an obstacle, the streamlines start going around it.

the maximum number of thick paths using a modification of the continuous
uppermost path algorithm [95]. The modification involves attaching, where
necessary, Riemann flaps to allow for a self-overlapping thick path to remain
non-self-overlapping in the modified domain.

The algorithm of [95] uses the following “grass fire” analogy. Suppose that
the free space Ω \ H is grass over which fire travels at speed 1. Suppose also
that the holes are composed of a highly flammable material (the fire travels
through a hole at infinite speed) so that as soon as the fire hits a hole, its
entire boundary immediately ignites. Ignite T at time 0. The wavefront at
time τ is the boundary of the grass that has burnt by τ . The wavefronts
make up the streamlines of the flow. The algorithm fills up the free space
with the streamlines as the fire propagates until reaching B so that no more
streamlines can be found. The events of the algorithm happen when the fire
hits an obstacle. (There are also other events, not relevant here.) Two things
happens at an event: the obstacle’s boundary joins the wavefront, and the
streamlines start going below the obstacle. Refer to Fig. 24.

We modify the grass fire approach as follows. Suppose that the fire has
not hit a hole after burning for 2 units of time. Then we route a thick path
inside the burnt grass. The CDFT ensures that a path exists. We argue below
that routing a path as described can not hurt the existence of the other paths
in a collection of the maximum number of thick paths. We then start over,
treating the wavefront at 2 as new T. Refer to Fig. 25.
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Figure 25: Event time is greater than 2. By the CFDT, a thick path can be
routed within the grass that burnt for 2 units of time.

Suppose, on the other hand, that a hole H is hit by the fire at time τ < 2.
Let e be the segment of length τ that connects H to T ; we assume that e is
unique. We slit the free space along e and around bdH. This “carves out”
H, and it is no longer a hole (since it is now outside the domain). We glue a
Riemann sheet to each copy of e. In each sheet, we place a circular segment,
of radius 2, having e as a chord. Refer to Fig. 26. Now we continue the grass
fire. Not only we ignite the whole boundary of H, but also a belt of thickness
τ around it. This belt represents the fact that the path that is being routed
“jumps over” the hole and runs now on the other side of it. As before, when
the grass has burnt for 2 units of time without hitting a hole, we route a
thick path within the burnt grass. Carving out the holes and attaching the
circular segments ensures that we are routing within a simple polygon; thus,
the CFDT may be applied to show the existence of a thick path in it. We
argue that when dropped to the base sheet R2 (where Ω lives) the reference
path of the routed thick path does not intersect itself, and that the thick path
does not intersect any holes. As before, it can be argued that the routed path
does not interfere with the other thick-paths-to-be-routed. Also as before, we
treat the wavefront as the new top, and continue the propagation.

Remark. Observe, that we cannot simply bridge H to the top. Indeed, al-
though no thick path can have H below (since the distance from H to T is less
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T

Figure 26: Event time is less than 2. Slit R2 along the shortest segment,
connecting the hit hole to T , glue Riemann flaps along each copy of the slit
edge, and place a circular segment inside each flap. The new domain excludes
the hole. The arrows indicate clockwise traversal of the new top (blue). The
new wavefront is shown green, its distance from the hole equals the event time.
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Figure 27: There is no unique bridge to T that would not be crossed by any
thick path; different paths may “cut off” the hole from the top differently.

than 2) parts of a thick path may run “between” H and T . Moreover, different
thick paths may occupy overlapping portions of the space between H and T
(see Fig. 27). It shows that it is not possible to build a “bridge” between H
and T , such that no thick path would ever cross the bridge. Even more, as
the example in Fig 23 shows, just one thick path may completely “cut off” H
from T so that although H is above the path, there is no path (bridge) in Ω
between the hole and the top.

As described above, the running time of the algorithm is proportional to
the output size, i.e., to the maximum number of thick paths in Ω; call this
number K. We can remove this dependence by stopping the fire propagation
only when a hole is hit. We give the details in the next theorem.

Theorem 6.19. (A representation of) the maximum number of thick non-
crossing paths can be found in O(nh + n log n) time.

Proof. Let τ ∗ be the time of the first event, i.e., the time, when the fire reaches
a hole, H, in Ω. Suppose that τ ∗ ≥ 2; let W = bτ ∗/2c ≥ 1. Let π be the
wavefront at 2W ≤ τ ∗. The part of Ω between T and π is a simple polygon, Ωπ,
in which a flow of value 2W exists; this follows from the maxflow algorithm of
[95] (streamlines=wavefronts). By the CFDT (Theorem 5.5), there exists a W -
thick path Π in Ωπ. By the Gluing Lemma (Lemma 5.2), Π is a representation
of a set of W thick paths. We continue the propagation treating π as the new
top.
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Suppose now that τ ∗ < 2. Since the distance from H to T is less than
2, the reference path of a thick path cannot intersect e (the shortest segment
between H and T ). Thus, the reference path of a thick path, which will be
routed after the fire burns eventless for more than 2 units of time, does not
intersect itself even if parts of the thick path intersect e. The parts of a thick
path, that could possibly intersect e, belong to the circular segments, of radius
2, that have e as a chord (Fig. 26). The parts cannot intersect an obstacle
as no obstacle intersects any of the circular segments. Indeed, the diameter
of each of the segments is τ ∗ < 2, thus, if a hole intersected a segment, the
intersection point (and not the endpoint of e) would have been the event point.
Overall, it shows that when the even if the thick path “bulges into” the circular
segments, when dropped (projected) onto the base sheet R2, it remains a valid
thick path.

To prove correctness of the algorithm we need to show that the W (upper-
most) thick paths, produced by the algorithm after an event with τ ∗ ≥ 2, do
not “block” routing (in the future) the remaining K−W thick paths. This fol-
lows from the following fact: Let (Π1, . . . , ΠK) be a set of K thick non-crossing
paths in Ω; then the path ΠW+1 does not intersect Ωπ. Indeed, the distance
from π to T is 2W , thus, if π were intersected by (the upper boundary of)
ΠW+1, the W thick paths could not have “fit in” between ΠW+1 and T .

As for the running time, the grass fire can be simulated in O(nh + n log n)
time as described in [95]. There is O(h) events. If τ ∗ < 2, the modifications
to the domain take constant time per event. Otherwise, a W -thick paths can
be routed (in a simple polygon) in linear time (see, e.g., Theorem 3.10).

The algorithm outputs K∗ ≤ K thick paths, where K∗ is the number of
different threadings of the paths through Ω. Using the thick paths, output
by the algorithm, we can find, for any k ∈ {1 . . . K}, the kth path Πk in
the collection of K thick paths in time, proportional to the combinatorial
complexity of Πk (Section 3.3). In particular, all K paths may be output in
O(Kn) time. ¤

Remark. The running time of our algorithm matches that of the algorithm
for the maxflow [95]. The bottleneck in both algorithms is the grass fire
propagation in the “0/1 metric” [61], in which one travels at unit speed in
the free space and at the infinite speed across the holes. It is possible that the
O(n log n)-time continuous Dijkstra algorithm of Hershberger and Suri [70] for
shortest pats in polygonal domains may be extended to the 0/1 metric.
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Discrete Continuous MaxFlow-MinCut Theorem The notion of the
critical graph of the domain [61, 95] is central to finding shortest paths in 0/1
metric, and to mincuts and maxflows in geometric domains. The critical graph
has a vertex for every hole in H; the length of an edge (i, j) is the distance
between the holes Hi and Hj in the 0/1 metric (essentially, it is enough to
connect be edges only those holes, the shortest segment between which does
not intersect other holes). Mitchell [95] used the critical graph to formulate
and prove the “Continuous MaxFlow-MinCut Theorem” [78, 95, 117] —the
continuous version of the famous network flow theorem:

Theorem 6.20. [95] The value of the maximum flow in the domain equals to
the length of the shortest T -B path in the critical graph.

The results in this section establish the (oxymoronic) Discrete Continuous
MaxFlow-MinCut Theorem. Here, as in [95] and above, “Continuous” refers to
the continuous flow in a geometric domain, as opposed to a flow in a (discrete)
network. The “Discrete” refers to the fact that the flowlines are not allowed
to be arbitrarily thin: the (support of the) flow must decompose into a finite
set of thick paths. To state our theorem, we introduce the thresholded critical
graph Gbc: it is the critical graph, in which the length of every edge is divided
by 2 and rounded down to the nearest integer.10

Theorem 6.21. Discrete Continuous MaxFlow-MinCut Theorem. The
maximum number of thick non-crossing paths in the domain equals to the length
of the shortest T -B path in the thresholded critical graph.

Proof. The events of our uppermost shortest path algorithm correspond to the
wavefront reaching the holes. The number of the paths routed at each event
equals to the length of an edge in the thresholded critical graph. By induction
on the ordinal number of the event, the event time (since the ignition of T )
equals to the shortest-path distance from T to the hit hole in Gbc. ¤

The above theorem is the first Megner-type result for (thick) paths in continua.

6.3.1 Paths of Different Thicknesses

Consider the following decision problem: Given K numbers w1, . . . , wK , does
there exist a collection of (w1, . . . , wK)-thick paths in Ω? If the order of the

10In [95] it was suggested to use the graph to find the maximum number of “well separated”
paths; as we note in the next section, this approach does not always give a correct answer.
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B

Figure 28: The 3-PARTITION problem asks if the numbers a1 . . . a3n,
∑

i ai =
nB, B/4 < ai < B/2, can be split into n groups of 3, such that the sum
of numbers in each group is B. The polygonal domain created from a 3-
PARTITION instance has n − 1 holes; each hole is a point. The distance
between ith and (i + 1)st hole is B. The paths’ thicknesses are a1 . . . a3n; all
paths can be packed into the domain if and only if the 3-PARTITION instance
is solvable.

paths as they appear along Γs is given, the problem can be solved by the
algorithm above. Otherwise, the problem is NP-hard by reduction from 3-
PARTITION; see Fig. 28.

6.3.2 Well Separated Paths

The notion of non-crossing thick paths is distinct from that of “well separated”
paths (and this may be a better model for ATM). The (thin) paths π1 . . . πK

are called well separated if the distance between any two of them is at least 2.
As example in Figure 29 shows, the number of well separated paths can be
arbitrarily larger than the number of thick paths that can be routed through
a domain.

We can use the uppermost path algorithm to find the maximum number of
well separated paths in a domain as follows. Let the first path follow T . Offset
the path (i.e., T ) by 2. Route the next path along the boundary of the offset;
if a hole is encountered, follow the hole’s boundary, leaving the hole above the
path. Refer to Fig. 30. Repeat until B is reached by the offset path. The
correctness of the algorithm follows from the argument, similar to the one in
Theorem 6.19.

Remark. The paths, found by the above algorithm may not be (subjectively)
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1.9

Figure 29: The distance between the (point) obstacles is 1.9. A thin path can
be routed between almost every pair of consecutive obstacles; the paths will
be well separated. No thick path can be routed.
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Figure 30: The first path (solid green) follows T . The offset of the path (dashed
green) is the locus of points within Euclidean distance 2 from the path. The
second path (solid blue) follows the offset and the boundaries of the holes that
are “stuck” in the offset.
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appealing to fly by (as, e.g., the paths in Fig. 30). It would be interesting to
consider the problem of finding “flyable” well separated paths. Note that our
thick paths look “nice”, at least their curvature is never greater than 1; this
is due to the paths being locally optimal (Lemma 3.11).

6.4 Simple Algorithms for Simple Polygons

In a simple polygon P (H = {B, T}) faster algorithms are possible.

6.4.1 Maximum Number of Thick Paths

Let V ∗ be the value of the maximum flow in P . Let σ∗V ∗ be the minimum-cost
flow of value V ∗. By the CFDT, σ∗V ∗ is a V ∗/2-thick shortest path. By the
gluing Lemma 5.2, the path can be decomposed into bV ∗/2c thick paths and
one (V ∗− 2bV ∗/2c)-thick path. Thus, K ≥ bV ∗/2c, where K is the maximum
number of thick non-crossing paths that can be routed in P .

On the other hand, consider a set of K shortest thick non-crossing paths in
P . By the CDFT, there exists a Γs-Γt flow of value 2K in P . Thus, V ∗/2 ≥ K.
Since K is an integer, we have:

Lemma 6.22. K = bV ∗/2c.
Theorem 6.23. (A representation of) K thick non-crossing paths in P can
be found in linear time.

Proof. In [95] it was shown that V ∗ can be found in linear time after the
medial axis of P is built, which can also be done in linear time [30]. After V ∗

is found, we offset bdP by bV ∗c/2. The free space is a splinegon, in which a
path π between Γs and Γt can be found in linear time. We can inflate π also in
linear time; the inflated path serves as a representation for the K thick paths
in P . ¤

6.4.2 Monotone Thick Paths and Flows

We call a flow monotone if each of its streamlines is monotone w.r.t. the x-
axis. We call a thick path Π monotone if its reference path π is x-monotone,
i.e., if every vertical line intersects π in at most one point. It is easy to see
that a monotone thick path is a monotone simple polygon: every vertical line
intersects the path in one contiguous (possibly, empty) vertical segment.
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Figure 31: The waterfalls defining the inner (resp. outer) monotone hull are
shown dashed-dotted (resp. dotted).

The algorithms from the previous subsection can be extended to find mono-
tone paths and flows by “monotonizing” bdP . The inner (resp. outer) mono-
tone hull of P is the largest (resp. smallest) monotone polygon that is con-
tained (resp. contains) P . The inner hull can be obtained as follows. Sweep a
vertical line in the x direction. For every vertex v of P , connect v to the first
point of P hit when going up from v, and when going down. (Following [9], we
call the connecting segments waterfalls.) This results in a trapezoidation of P .
Starting from the leftmost trapezoid, attach to each trapezoid the trapezoid(s)
to the right of it, until reaching the rightmost one. These trapezoids form the
inner monotone hull, M(P ), of P , Fig. 31. The monotone hull of a simple
polygonal chain on bdP may be defined similarly, see Fig. 32.

Assume, for simplicity, that there is a unique trapezoid, containing Γs, and
a unique trapezoid, containing Γt. Assume also, without loss of generality,
that the trapezoid, containing Γs (resp. Γt), is the leftmost (resp. rightmost)
one. By the CFDT, finding (minimum-cost) maximum flow is equivalent the
routing a thickest path. The proof of the CFDT may be extended verba-
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T

Figure 32: Waterfalls are dashed-doted. Monotonizing T and B makes P a
monotone polygon; any shortest path in it is monotone.

tim to the monotone case: (the support of the) minimum-cost monotone flow
is a thickest monotone path. Since a monotone path is a monotone simple
polygon, it will not intersect M(B) and M(C)—the monotonized B and T
(see Fig. 32). Moreover, it is easy to see that any (locally) shortest path in
the simple (monotone) polygon, defined by Γs,M(B), Γt,M(T ) is monotone.
Thus, we can monotonize B and T , and solve the maximum flow problem in
it—the flow will be the maximum monotone flow in the original polygon. By
thresholding the flow (similarly to Section 6.4.1), one can obtain the maximum
number of thick paths in the domain.

Theorem 6.24. Finding the maximum monotone flow and the maximum num-
ber of thick paths in a simple polygon can be done in linear time.

Proof. After triangulating the polygon, it can be monotonized in linear time.
Then our algorithms from the previous subsection can be applied. ¤

6.5 Monotone Paths and Flows in Polygonal Domains

In this section we extend the algorithms of Section 6.4.2 to finding maximum
monotone flow in a polygonal domain with holes. We start by monotonizing
T . We then run the uppermost shortest path maxflow algorithm [95], filling
the free space with the flowlines. Since the top is monotone, the flowlines are
also such. When a hole is hit by a wavefront, we outer-monotonize the hole. If
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Figure 33: T is monotonized and the uppermost path algorithm is run until
a hole is hit (green streamlines). The hole is monotonized (waterfalls are
dashed-dotted red); if a waterfall hits a new hole, it is also monotonized. The
wavefront and the monotonized holes’ boundaries are the new top (thick blue).
The new top is monotonized (waterfalls are dashed-dotted blue), and the and
algorithm continues (blue streamlines).

during the monotonization a waterfall hits another hole, the hole is also (outer-)
monotonized. The wavefront and the boundaries of the monotonized holes are
assigned to be the new top. The new top is monotonized, and the grass fire
continues (Fig. 33). See [9] for efficient algorithms for monotomization of the
holes.

Theorem 6.25. The maximum monotone flow and (a representation of) the
maximum number of monotone thick non-crossing paths can be found in O(nh+
n log n) time.

Remark. As an alternative to monotonizing the holes “on-the-fly”, we could
have pre-monotonized all holes; if during the monotonization of a hole, another
hole is hit by a waterfall, the holes are merged. After that, we could assume
that all holes are monotone.
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7 Related Problems

In this section we give solutions to several motion planning problems. In the
touring problems the shortest tour that visits a given sequence of objects is
sought. In our motivating applications, finding shortest paths with bounded
number of links is an important extension of the shortest path problem. Fi-
nally, finding optimal tours through pixelated domains and grids is a classical
problem in computational geometry and graph theory.

7.1 Touring Problems

Here we study the problem of finding a shortest tour visiting a given sequence
of bodies. The difference between the problems studied here and classical TSP-
like problems is that we assume that the sequence in which the bodies are to be
visited is given in advance. An example of such touring problem is the problem
of finding a shortest tour through a set of line segments [56, 99, 112, 115]. Due
to the bit complexity of the solution, in L2 one can only hope to solve the
touring problem approximately in polynomial time. A singly-exponential time
exact algorithm for the problem of touring line segments in R3 is given in [112].
In [24] the problem of finding ε-approximate shortest tour of lines in R3 is
solved in time doubly logarithmic in 1/ε. The general problem for convex
polygons in R2 under Euclidean metric is solved in [47].

7.1.1 L1-Shortest Tours through a Sequence of Segments

We first consider touring line segments in the plane in L1 metric. Given a
sequence of K disjoint segments in the plane, a start point s and a target
point t, we seek a path that starts at s, visits in order each of the segments,
and ends at t, such that the L1 length of the path is minimized. We give
an O(K2) algorithm for the problem. As a by-product, our algorithm builds
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Figure 34: An example. p1, p2, p3 are the first contact points. p1 is a bend, p2

is a reflection, p3 is a pass-through.

a data structure, of size O(K), such that the shortest path, visiting k first
segments in the sequence, to any point in the plane can be output in O(k)
time.

Preliminaries

Let s1, . . . , sK be a sequence of K pairwise-disjoint segments in the plane; let
s, t be two points. For k = 1 . . . K we say that a path π visits the sequence
s1, . . . , sk if it starts at s, and there exist points p∗1 ∈ s1∩π, . . . , p∗k ∈ sk∩π such
that p∗1, . . . , p

∗
k appear in order along π. For a point z ∈ R2 and k ∈ {1 . . . K},

a k-path to z is a path to z that visits s1, . . . , sk. Let πk(z) be an L1-shortest
k-path to z; let |πk(z)| denote its length. Our problem is then to find πK(t).

Let π be a path that visits s1, . . . , sK . Let p0 = s, and let pk, k = 1 . . . K,
denote the first point of π (i.e., the point closest to s along the path) that lies
on sk and comes after pk−1 along π. We call the points p1, . . . , pK the first
contact points (Fig. 34). We let pk(z) ⊆ sk denote the set of the possible first
contact points of πk(z) with sk, i.e., the points p in sk such that |zp|+ |πk−1(p)|
is minimum over all p ∈ sk.

Without loss of generality we assume that no edge of the optimal tour
goes through an input segment; we also assume, without loss of generality,
that no segment is horizontal or vertical. We denote by Rk the smallest axis-
aligned rectangle enclosing sk. For a point z ∈ Rk let hk(z), vk(z) denote the
“horizontal” and “vertical” projection of z on sk. We denote the endpoints of
sk by ak, bk (Fig. 35).
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Rk

bk

ak

zhk(z)

vk(z)

Figure 35: ak, bk, Rk, hk and vk.

As with the shortest Euclidean tours, we may consider, without loss of
generality, only the tours that are polygonal chains that bend only at the
segments. The first points of contact of the tour with the segments, p1, . . . , pK ,
may be classified into three types: a bend at a vertex, a reflection off a point
interior to the segment, and a pass-through (refer to Fig. 34).

The algorithm of [47], which solves the touring problem in L2, builds a
set of subdivisions Sk, k = 1 . . . K, such that for any point z in a cell of kth
subdivision, πk(z) is in the same-type contact with sk. The correctness of the
algorithm is due to several facts:

1. A uniqueness lemma — in L2 metric, for any z ∈ R2, and any k = 1 . . . K,
the path πk(z) is unique.

2. The vertices of the subdivision Sk are defined by the endpoints of the
segment sk.

3. The reflection of a point in a segment is a bona-fide notion.

None of the above holds in L1 (Fig. 36). This complicates a straightforward
extension the algorithm of [47] to L1.

11 Nevertheless, using the ideas from [47],
we build similar subdivisions for the L1-shortest tours and solve the touring
problem.

Our Contributions We prove that the subdivision Sk, grouping the points
in the plane, shortest k-paths to which are in the same-type contact with
the segment sk, has constant complexity for any k = 1 . . . K. We show that
the function `k(p), `k : sk 7→ R+ that gives the length of the L1-shortest k-
path to a point p on the segment sk is a convex piecewise-linear function with

11The only problem, which we aware of, that is “harder” in L1 than in L2 is the problem of
finding the distance between two convex polygons [125] (where the convexity is understood
relative to the metric).
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Figure 36: Left: L1-shortest tours are not unique. Middle: the vertices of S3

are not defined only by the endpoints of s3. Thin red segments show the last
link of π3(·). The figure is obtained experimentally. Right: there is no unique
point x′ (reflection of x in s) such that the length of the shortest tour from
x, reflecting off s, to any point y, would equal |x′y|, and such that the point
of contact of the tour with s would be, similarly to the L2 case, that of the
intersection of s and x′y.

O(k) breakpoints. Thus, the full combinatorial shortest path map has linear
complexity (this is in contrast with the L2 case, when the map is shown to have
exponential size in the worst case [47]). Finally, We give an algorithm to build
`k and Sk for k = 1 . . . K in total O(K2) time. The subdivisions S1, . . . ,Sk,
of total linear size, allow to answer the queries for the shortest k-path to any
point in the plane in O(k) time.

Structure of Sk

In this section we show that Sk has constant complexity.

Lemma 7.1. The problem of finding the shortest k-path πk(z) to a point z ∈
R2 may be formulated as a linear program.

Proof. Consider the following program for finding πk(z):

minimize t1 + . . . + tk+1

subject to: ti ≥ ||pi − pi−1||1 i = 1 . . . k + 1 (3)

pi ∈ si i = 1 . . . k (4)

p0 = s, pk+1 = z
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The decision variables of the program are the coordinates of the first contact
points p1, . . . , pk. The constraints (4) are linear. Each of the constraints (3)
may be written as a set of five linear constraints:

txi ≥ px
i − px

i−1

txi ≥ px
i−1 − px

i

ti = ||pi − pi−1||1 ⇔ ti = txi + tyi
tyi ≥ py

i − py
i−1

tyi ≥ py
i−1 − py

i

where px
i , p

y
i are the coordinates of pi. Thus, the program is an LP. ¤

It is a well-known fact [16, Problem 6.70] that as the right-hand side of
a minimization LP changes linearly with rate λ, the objective function is a
piecewise-linear convex function of λ. Thus,

Lemma 7.2. `k(p) is a convex function of p.

Let z ∈ R2 be a point in the plane.

Lemma 7.3. The distance |zp| from z to a point p ∈ sk is a convex function
of p.

Lemma 7.4. pk(z) is a contiguous subset of sk.

Proof. Consider |πk(z)| = |zp|+ |πk−1(p)| = |zp|+`k(p) as a function of p ∈ sk.
From Lemmas 7.2 and 7.3 it is a convex function and thus, its minimizers form
a contiguous subset of its domain. ¤

We now describe the structure of Sk. Some points in the plane may be read-
ily assigned to vertex cells. Indeed, for a point x ∈ R2 let I(x), II(x), III(x), IV (x)
be the quadrants of the coordinate system with the origin at x. Lets say that
the quadrants I(x) and III(x) are opposite each other; similarly, say that the
quadrants II(x) and IV (x) are opposite. Consider now the coordinate system
with the origin at ak. Since sk is not horizontal/vertical, sk fully lies in one of
the quadrants I(ak), II(ak), III(ak), or IV (ak). Let Q(ak) be this quadrant;
let Q′(ak) be the quadrant, opposite Q(ak) (Fig. 37). The tours to the points
in the quadrant Q′(ak) may without loss of generality go through ak. Similarly,
the tours to the points in the quadrant Q′(bk) may without loss of generality
go through bk. Thus,
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Q′(ak)

ak

Q(ak)

Figure 37: sk ⊂ Q(ak).

ak
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S(ak)

bk

Figure 38: For z ∈ S(ak), ak ∈ pk(z); for z ∈ S(bk), bk ∈ pk(z).

Lemma 7.5. The points in Q′(ak) belong to the vertex cell S(ak) of ak. The
points in Q′(bk) belong to the vertex cell S(bk) of bk (Fig. 38).

The points in the plane that are not assigned to the vertex cells form
an “hourglass” with sk as the “neck” (Fig. 39). Call the two “bulbs” of the
hourglass, Ak and Bk, the sides of sk (so that ∀x, y ∈ R2 \ (sk ∪S(ak)∪S(bk)),
xy ∩ sk = ∅ if and only if x and y are on the same side of sk). By Lemma 7.4
and continuity, the shortest (k−1)-paths to all points in sk may arrive, without
loss of generality, from the same side of sk:

Lemma 7.6. Either the shortest (k− 1)-paths to any point on sk arrive from
Ak, or the shortest (k − 1)-paths to any point on sk arrive from Bk.

Thus, k-paths to the points in one of the sides reflect off sk, while k-paths
to the points in the other side pass through the segment; to understand which
side is which it is enough to compute the path πk−1(p) for an arbitrary point
p interior to sk. We define the pass-through cell Pk of Sk to be that side of sk,
k-paths to points in which pass through sk.

Suppose, without loss of generality, that Pk = Ak (Fig. 40). Now the only
missing part in the subdivision Sk is the assignment of the points in Bk. We
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Figure 39: The hourglass.
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Figure 40: Vertex cells S(ak) and S(bk) and the pass-through cell Pk are known
now.
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Figure 41: The cells of Sk. ∀z ∈ S(ck), pk(z) = ck.

show in Lemma 7.7 below that Sk has at most three cells in Bk. Specifically
(Fig. 41),

1. For any point z in one of the cells we have pk(z) = ck, where ck is some
point in sk (see proof of Lemma 7.7 for the definition of ck). In other
words, shortest k-paths to any point in the cell go through the same
point, ck, of sk. This cell is denoted S(ck) in Fig. 41.

2. The last link of πk(z) to any point z in the second cell is horizontal. This

cell is denoted
←−Rk in Fig. 41.

3. The last link of πk(z) to any point z in the third cell is vertical. This
cell is denoted ↑Rk in Fig. 41.

Lemma 7.7. Sk has at most three cells in Bk as described above.

Proof. Let Tk = Rk ∩ Bk be the right triangle zkakbk (Fig. 42). Since the
k-paths to any point in Bk \ Tk must go through Tk, it is enough to consider
only the restriction of Sk to Tk. Clearly, k-paths to a point z ∈ Tk may go
through a point on sk lying between vk(z) and hk(z) (see Fig. 42).

Assume that pk(zk) is a single point ck ∈ sk (if it is not so, let ck be an
arbitrary point in pk(zk)). Let R′

k be the axis-aligned rectangle having zk

and ck as opposite corners (Fig. 43). Consider a point z in R′
k. The path

zkpk(zk) = zkck may without loss of generality go through z. Thus, pk(z) = ck

for otherwise, the k-paths to zk would rather not go through ck either. Since
z was an arbitrary point in R′

k, any point z ∈ R′
k has ck as their first contact

point with sk. Hence, shortest k-paths to all points in S(ck) (Fig. 41) have ck

as their first contact point with sk.
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Figure 42: Tk = Rk ∩Bk so that ak = vk(zk), bk = h(zk), zk ∈ Bk. For z ∈ Tk,
without loss of generality pk(z) ∈ hk(z)vk(z).
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Figure 43: ck = pk(zk).
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The remaining part of Bk, Bk\S(ck), consists of two regions. By continuity,
for any point z in one of them, pk(z) = vk(z), in the other — pk(z) = hk(z).
Refer to Fig. 41. ¤

Remark. It may happen that one (or both) of the cells ↑Rk,
←−Rk is empty, if,

say, ck = ak; in this case the vertex cell S(ak) is a halfplane through ak.

Building Sk

As Dror et al. [47] did for the case of L2-shortest tours, we build the subdivision
Sk from the subdivisions S1 . . .Sk−1. First we assign S(ak) and S(bk). Then
we determine which cells of Sk−1 are intersected by sk. For a point p in
the part of sk, intersecting a vertex cell Sk−1(v) of Sk−1 (where v is ak−1

or bk−1), `k(p) = |pv| + `k−1(v). For p in a reflect cell, say,
←−Rk−1, `k(p) =

|phk−1(p)|+ `k−1(hk−1(p)). For p ∈ sk ∩Pk−1, we look at the subdivision Sk−2

to deduce `k(p). Finally, we find ck ≡ pk(zk) =

arg min
p∈sk∩(R2\(S(ak)∪S(bk)∪Pk))

( |zkp|+ `k−1(p) )

to complete the subdivision.
The time-dominating step of the above procedure is computing the function

`k(p). Since, in principle, part of sk may fall into Pk−1, the complexity Ck of
`k(p) may be at least Ck−1 +Ck−2, which is at least exponential in k. We show
(Lemma 7.10) that in fact, Ck is linear and thus, Sk and `k(p) can be built in
O(k) time.

Lemma 7.8. Suppose that a point z moves from ak to bk along the segment
sk. Then pk−1(z) moves (weakly) monotonically along a subsegment of sk−1.

Proof. Since the cells of Sk−1, . . . ,S1 are convex, once z leaves a cell, it never
enters it again. While z is within a reflect cell, pk−1(z) moves together with z
(horizontally or vertically). While z is within a vertex cell, pk−1(z) does not
move at all. ¤

Let p∗1, . . . , p
∗
k−1 be the first points of contact of the path πk(z) with the seg-

ments s1, . . . , sk−1: p∗k−1 = pk−1(z), p∗k−2 = pk−2(pk−1(z)), p∗k−3 = pk−3(p
∗
k−2) =

pk−3(pk−2(pk−1(z)), . . . , p∗1 = p1(p
∗
2).

Lemma 7.9. (Monotonicity Lemma). As z moves along sk, the first points
of contact p∗1, . . . , p

∗
k−1 move (weakly) monotonically along corresponding seg-

ments.
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Figure 44: Going to any point in the plane visiting s4 after visiting s1, s2, s3

may without loss of generality be done by going through a4; hence S4 consists
of just one cell S(a4) = R2.

Proof. By Lemma 7.8 and induction. ¤

Lemma 7.10. Ck ≤ 3(k − 1).

Proof. The breakpoints of `k(p) correspond to events when one of the first
points of contact hits a vertex (ak, bk, or ck) of the corresponding subdivi-
sion. ¤

Remark. We believe that there exist problem instances achieving Ck = Ω(k).

Remark. It can happen that Sk consists from only one cell, i.e., Ck = 1
(Fig. 44).

Remark. The full combinatorial shortest path map is a subdivision of the plane
into cells such that the shortest K-paths to any point within a cell is in the
same-type contact with all K segments; in L2, its complexity is exponential
in K [47]. An important corollary of Lemma 7.10 is

Corollary 7.11. The complexity of the full combinatorial shortest path map
is O(K).

This is in contrast with L2 [47].

Finding the Optimal Tour

Given the subdivisions S1, . . . ,SK we can readily compute, for any k = 1 . . . K,
the optimal tour πk(z) to any point z ∈ R2. We start by locating z in Sk. If
z is in the pass-through cell Pk of Sk, then πk(z) = πk−1(z) and we continue
by locating z in Sk−1. If z is in a vertex cell Sk(v) of Sk, then pk(z) = v. If z
is in a reflect cell, we follow the “arrow” of the cell until hitting the boundary
of sk at pk(z). We then recursively compute πk−1(pk(z)).

Theorem 7.12. The subdivisions S1, . . . ,SK of the plane, of total size O(K),
can be built time O(K2) that enable computing shortest tours πk(z) to a query
point z in O(k) time.
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7.1.2 Second-Order Conic Programming Solution

In this section we study the problem of finding a shortest tour visiting a given
sequence of convex bodies in Rd. This is an attempt to attack the touring
problem in its full generality: we investigate high-dimensional cases (d ≥ 2);
we consider convex bodies bounded by (hyper)planes and/or (hyper)spheres;
we do not restrict the start and the goal positions of the tour to be single points,
we measure the length of the tour according to either Euclidean or L1 metric.
Formulating the problem as a second-order cone program (SOCP) makes it
possible to incorporate distance constraints, which cannot be handled by a
purely geometric algorithm.

We implemented the SOCP in MATLAB and obtained its solution with
the SeDuMi package. We ran computational experiments, which suggest that
the proposed solution is practical.

Second-Order Conic Programming (SOCP) SOCP is known to be ap-
plicable to a number of computational geometry problems, such as finding
extremal volume ellipsoids, centering, separation and classification, placement
and facility location, projection and distance problems, intersection and con-
tainment of polyhedra, floor planning [22], architectural design [102]; see
also [126]. SOCP also provides a natural framework to attack geometric prob-
lems in which the goal is to optimize the length of a network (embedding of a
planar graph), possibly, under linear and quadratic constraints. A classical ex-
ample is the Weber (Facility Location) problem [46, 93, 124]: the total length
of a star is minimized, when the locations of degree-1 nodes of the star are
given. Here we use SOCP to minimize the total length of a path, when the
nodes of the path are constrained to stay within convex regions. SOCP formu-
lation also allows one to incorporate certain length and distance constraints.
A framework similar to ours is outlined in [22, page 433], where it is applied
to placement and location problems.

SOCP Formulation

We assume that each body Bi (i = 1 . . . K) in the sequence is given as the
intersection of a set of Ji bounding (hyper)halfspaces and (hyper)spheres: Bi =
{x ∈ Rd |x ∈ H−

ij, j = 1 . . . Ji}. Each of the bounding surfaces gives rise to
a linear or conic constraint xi ∈ H−

ij, where xi is the i-th vertex of the path.
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Then the touring problem may be formulated as the following SOCP:

minimize t1 + t2 + ... + t
K−1

subject to: ti ≥ ||xi+1 − xi|| i = 1 . . . K−1
xi ∈ H−

ij i = 1 . . . K j = 1 . . . Ji

If the bodies in the sequence have in total n constraints, then the SOCP allows
us to find an ε-approximate tour in O

(
d3n1.5K2 log 1

ε

)
([90]).

Additional Constraints

In some applications it is natural to ask that the length of each link of the tour
does not exceed a certain bound Li . Sometimes, also a set C = {c1, . . . , cM}
of M control points is given, with the requirement that (some of) the bends of
the tour occur close to (some of) the control points: ||xi − cm|| ≤ dim, where
dim (i = 2 . . . K−1, m = 1 . . . M) are some constants.

Imposing any of the above constraints makes it unlikely that the problem
can be efficiently solved by purely geometric techniques, like the ones in [99]
and subsequent papers on the Weighted Region Problem (see [98]). At the
same time, these additional constraints are conic and thus naturally can be
handled by our program.

L1 metric

Our SOCP can also be applied to the touring problem when the length of the
tour is measured according to the L1 metric. It requires only a slight change in
the SOCP: for each link of the tour one variable per dimension is introduced.
In R2, e.g., the new SOCP will be:

minimize tx1 + ty1 + ... + tx
K−1

+ ty
K−1

subject to: (xi, yi) ∈ H−
ij j = 1 . . . Ji

txi ≥ ||xi+1 − xi|| i = 1 . . . K−1
tyi ≥ ||yi+1 − yi|| i = 1 . . . K−1

Figure 45 shows the tours of a sequence of line segments, optimal under L1

and L2 metrics.

Weighted Links

It is straightforward to modify our solution so that it handles the weighted
version, in which each link is assigned a weight. If w1, . . . , wK−1 are the weights
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Figure 46: Illustration of two optimal paths through weighted strips, showing
the constrained (solid) and unconstrained (dashed) optimal routes. Here, the
length constraint is L = 1.5. The bold number in each strip is its weight.

of the links, the objective function changes to min w1t1 + ... + w
K−1

t
K−1

; the
rest of the SOCP remains the same.

Figure 46 shows the optimal weighted tours of a sequence of parallel line
segments. Without the constraint on the length of the links, the path obeys
Snell’s Law of Refraction; the behavior of the constrained path is different.

Computational Experiments

We implemented the described program in MATLAB. The solution to the
SOCP was obtained with the SeDuMi package by Jos Sturm [118]. We report
here the run times for the simplest case, when the bodies are parallel straight
line segments of equal length – edges in a weighted subdivision of a box (see
Fig. 46).

Theoretically, the running time of the algorithm is O(K3.5 log 1/ε) to achieve
accuracy ε. We did not change the default SeDuMi setting ε = 10−9 in our ex-
periments. We were able to solve instances of the problem with K up to 5000.
The SOCP algorithm performed about 15–25 iterations in every instance of
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Figure 47: Running times, Windows Machines. Top: 1.9MHz, 512M RAM
Compaq laptop; bottom: 1.7MHz, 256M RAM Dell desktop. Left: uncon-
strained; right: constrained. Dots – run time, sec; crosses – run time per
iteration, .1 sec.

the problem. This coincides with the observation, made by Lobo et al. in [90]
about primal-dual interior point method for SOCP: the typical number of
iterations ranges between 5 and 50, almost independent of the problem size.

The average (over about 100 runs) actual running time of the algorithm
for different problem sizes is presented in Figure 47.

Figures 48, 49, 50 and 51 show solutions of the general touring problems
in 2 and 3 dimensions.
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Figure 48: A path in 2D.
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Figure 49: A path in 3D.
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Figure 50: Touring lines in 3D; path endpoints are given.
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Figure 51: Touring lines in 3D; path endpoints are given.
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7.1.3 Hardness Results

We complement our solutions with NP-hardness results, showing that the as-
sumptions we make in the statement of the problem are crucial to the efficient
solvability.

First of all, if the order in which the bodies are to be visited is not given,
then our touring problem becomes TSP with neighborhoods (see [98, Chapter
7.4]) and thus is NP-hard.

If the bodies in the sequence are not convex, then our problem is NP-hard
by the reduction presented in [47].

Finally, if the length of each link of the tour is bounded from below, then
even the simplest version of our problem is weakly NP-hard. Indeed, con-
sider the problem of finding a shortest path visiting a sequence of parallel line
segments of equal length, with a given start point s and goal point t.

We use a reduction from Partition: Given a set A = {a1, . . . , aK} of
K integers summing to S, is there a subset A′ ⊂ A of elements summing to
S/2? Given an instance of Partition, we construct an instance of the touring
problem such that the Partition problem has answer “Yes” if and only if the
optimal path has length at most (K + 1)L, where L the lower bound on the
length of the links (common for all links). See Figure 52.

Theorem 7.13. The optimal touring problem is weakly NP-hard if a lower
bound is specified for the length of each segment of the path.

7.2 Shortest Rectilinear k-Link Path

In this section we present an algorithm for computing k-link rectilinear short-
est paths among rectilinear obstacles in the plane. We extend the “continu-
ous Dijkstra” paradigm to store the link distance information associated with
each propagating “wavefront”. Our algorithm runs in time O(kn log2 n) and
space O(kn), where n is the number of vertices of the obstacles. Previous
algorithms for the problem had worst-case time complexity O(kn2).

Our algorithm builds a j-link shortest path map, rooted at a given source
s, for each j ≤ k. A shortest path query from s to a query point t can then
be answered in time O(log n + j).

We consider the bi-criteria rectilinear two-dimensional shortest path prob-
lem: Determine a rectilinear path of minimum (L1) length, having at most
k links, from s to t that avoids the interiors of a set of disjoint simple recti-
linear obstacles having a total of n vertices. The bi-criteria rectilinear path
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the ith link has positive slope, then ai is chosen to be in the subset A′.

problem naturally arises in certain wire-routing applications in which one is
interested in finding a shortest rectilinear path for a wire that avoids a given
set of components and is constrained to have at most k links.

Bi-criteria path problems have received considerable attention in the com-
putational geometry literature; see, e.g., [97, 98, 108]. Many problems are
known to be NP-hard [12], but often only weakly so. For the special case
of two criteria consisting of length (e.g., L1 or L2) and link distance, several
polynomial-time algorithms are known for basic geometric optimal paths. See
[87] for a survey specific to rectilinear paths and rectilinear obstacles, as stud-
ied here.

It is challenging to compute Euclidean shortest paths having at most k
links, since there is no simple discrete graph that is “path preserving” for
optimal paths. The special case of k-link paths in simple polygons and some
approximation algorithms for more general cases are considered in [100].

In rectilinear polygonal domains, efficient algorithms are known for the
bi-criteria path problem that combines rectilinear link distance and L1 length.
One can achieve worst-case time O(kn2) (more precisely, O(k(m + n log n)),
where m is a number of crossings in an arrangement, and is worst-case Θ(n2));
see [87, 127]. More efficient algorithms, running in nearly linear time, are
known for optimal paths in a “combined metric”; see [28, 128]12. Results are

12Some of these nearly-linear time results are said to apply to optimizing any nondecreas-
ing function f(l, j) of the L1 length l and the number of links j; however, we suspect there is
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also known in higher dimensions for optimal paths in a combined metric, if
the obstacles are given as a set of axis-parallel boxes [36].

Our results give an O(kn log2 n) time algorithm, improving the O(kn2)
bound by roughly a factor of n. We construct a family of planar subdivisions
(link-restricted shortest path maps), one for each j = 1, . . . , k, which gives a
decomposition of the plane into cells according to the combinatorial type of a
j-link shortest rectilinear path from the source s. For any query point t, the
length of a shortest j-link path from s to t is determined by locating t in the
jth map.

Overview of the Algorithm

We apply the “continuous Dijkstra” paradigm [94], which has been applied
successfully to solving many optimal path problems in geometry. Since our
new algorithm is based on a variant of the continuous Dijkstra algorithm of
[96], we begin with a review of that method and then describe the changes
necessary to extend it to our problem.

The algorithm considers the effects of sweeping an advancing “wavefront”
from a source point s to all points of free space F . (The wavefront at distance D
is the set of points p of F for which the shortest path length from s to p is D.)
In order to simulate the advancement of wavefronts correctly, the following
information associated with each segment qq′ of the wavefront is stored in a
priority queue (called the event queue):

(a). its orientation, which will always be either northwest (NW), southwest
(SW), southeast (SE) or northeast (NE) in the case of the L1 metric;

(b). its endpoints q and q′, which are the positions of the segment’s end-
points at the moment the segment is first instantiated, before it starts being
“dragged”;

(c). its left and right track rays — these are the rays along which q and q′

must be dragged, and they may be horizontal or vertical rays through free
space or rays containing obstacle edges;

(d). the stop points L and R of the left and right track rays — these are
the first obstacle points “hit” by the left and right track rays. (If the track

a misunderstanding, since one could seemingly apply this result to the function f(l, j) that is
l if j ≤ k and ∞ otherwise, giving a nearly-linear time algorithm (independent of k) for the
k-link shortest rectilinear path. The algorithms are based on applying Dijkstra’s algorithm
in a single-criterion weighted graph, rather than a dynamic program (e.g., Bellman-Ford)
that searches for shortest j-link paths.
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rays intersect each other at point u before they hit obstacles, then L = R = u,
where u is the inside corner of the corresponding segment dragging query.);

(e). its root r, which is an obstacle vertex that is responsible for propagating
the portion of the wavefront to which the segment belongs;

(f). its contact list, which is the set of obstacle edges that the dragged
segment touches (including the obstacle edges on which its endpoints may be
sliding);

(g). its event position qeq
′
e, which is the next position of the segment at

which the contact list changes;
(h). its event point p, which is the point that is responsible for the change

in the contact list when the segment reaches its event position. The event
point p must lie on the boundary of an obstacle, and it will either be a stop
point or a vertex;

(i). the event distance, which is the distance from s at which the event
point is encountered by the segment.

The segments in the event queue are ordered according to their event dis-
tances. The next event is the dragged segment whose event distance is mini-
mum and is obtained by popping the queue. In the case of ties, we can order
the event distances by the lexicographic ordering of the x- and y-coordinates
of their roots.

Each obstacle vertex u has associated with it a sorted list, the SE-hit
list, RSE(u) = {r1,. . .,rN} of roots ri of dragged segments that are southeast
of u and are such that the dragged segment has “hit” point u (i.e., u has
been an event point for a dragged segment rooted at ri, and this event has
already occurred). Similar definitions apply to the hit lists RNE(u), RNW (u),
and RSW (u) of the roots of the segments which have hit u from southwest,
southeast and northeast respectively. The total size of all lists is bounded
above by O(n log n).

Also associated with each obstacle vertex u is a permanent label, d(u),
which, at the conclusion of the algorithm, gives the length `(s, u) of shortest
path from s to u. Initially, d(u) = +∞ for all u. We say that u has been
permanently labeled if d(u)<+∞. We say that a non-vertex point x has been
permanently labeled if it lies in the region swept out by some dragged segment.
Each vertex u also has a pointer, parent(u), which, at the conclusion of the
algorithm, points to the parent of u in the shortest path tree SPT(s). Initially,
parent(u) =NIL.

There are three types of events:
(I). the event point p is one of the stop points;
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Figure 53: The information associated with a wavefront segment.

(II). p is interior to the dragged segment in its event position; and,
(III). p is a vertex encountered by an endpoint of the dragged segment.
The event queue is updated at each event so as to simulate the wavefront

propagation correctly. Determining events in the continuous Dijkstra method
involves answering segment dragging queries of special forms; see [96] for de-
tails.

Modifications to account for link distance In order to modify the above
algorithm for the k-link path problem, we extend the continuous Dijkstra al-
gorithm to store the (rectilinear) link distance from s to any point u on the
wavefront. In particular, we distinguish between s-u paths ending with a
vertical link and s-u paths ending with a horizontal link. To this end we
associate with each wavefront segment one or two additional segments: a hori-
zontal segment, called a v-source and/or a vertical segment, called an h-source.
With each v-source v we store its link number, l.v, which is the link distance
from s to v, and pointer to a predecessor h-source, pred.v . Then the shortest
(l.v + 1)-link s-u path with last link vertical may go from s through pred.v to v
and then to u. We store similar information with each of the h-sources. Refer
to Figure 53.

Each obstacle vertex u has now associated with it k SE-hit lists. For
j ∈ {1 . . . k}, the hit list jRSE

(u) contains the roots and sources of dragged
segments that are southeast of u and are such that the dragged segment has
“hit” point u and the link distance from s to the source is less than j. (Clearly,
1RSE(u) ⊆ 2RSE(u) ⊆ · · · ⊆ kRSE(u), so we only store the corresponding set
differences). We similarly define hit lists for other hit directions.

Initially, s is permanently labeled with 0. Four dragged segments rooted
at s are inserted along with their distance labels into the event queue: NE,
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NW, SW and SE segments with the tracks being horizontal and vertical rays
from s.

Events The propagation of the wavefront involves doing different things de-
pending on whether the next event is of Type I, II, or III and on whether
or not the event point p has already been permanently labeled. The cases
are illustrated in Figures 54, 55, 56 and 57 for a segment dragged northeast.
Processing the events for the segments propagating in other directions is sim-
ilar. The details of the events processing are mostly the same as in [96]. It is
important, though, to modify the clipping of wavefronts in order that the only
wavefronts that are permitted to continue (and not be clipped appropriately)
are those corresponding to Pareto-optimal solution paths.

Complexity of the algorithm Since we are propagating up to k different
wavefronts (corresponding to up to k different link distances to the points on
wavefronts), the complexity of the algorithm in [96] goes up by a factor of k
and becomes O(kn log2 n).

The proof of correctness is based on an induction argument, establishing
that each point t reached (swept over) by the ith event (with associated L1

distance di) have been reached by a dragged segment corresponding to each
of the link distances j = dL(s, t), . . . , l(t), where dL(s, t) is the rectilinear link
distance from s to t and l(t) is the (maximum) rectilinear link length of a
shortest L1 path from s to t.

7.3 The Box Mover Problem

In this section we show that the optimization problem is NP-hard for a wide
class of motion planning puzzles, including classical SOKOBAN. We investi-
gate a new problem, the Box Mover Problem (BMP), in which the agent is
allowed to lift and carry boxes on a rectilinear grid in order to rearrange them.
Some classical motion planning puzzles are special cases of BMP. We also iden-
tify a natural class of BMP instances, for which optimization is in NP, making
the optimization problems from the class NP-complete.

There is a number of motion planning puzzles in which, given an arrange-
ment of unit blocks (boxes) in the plane, one has to rearrange the boxes into
another configuration by operating a robot which moves in the same plane
amid the boxes. The classical example is SOKOBAN. ([43] provides a thor-
ough description of the puzzles and corresponding algorithmic results.) The
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Figure 54: Type I event.
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Figure 55: Type II event.
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Figure 56: Type III event.
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puzzles we consider here may be classified according to the following charac-
teristics (the classification is adapted from [38]):

1. How powerful the robot is:

• Can the robot push the boxes? How many at a time?

• Can the robot pull the boxes? How many?

• We introduce a “new dimension” for the robot: can the robot lift
a box and put it to an adjacent position (including the position,
occupied by the robot before the lift)? The new problem is dubbed
the Box Mover Problem (BMP).

2. Box types

• Are all boxes movable, or are some fixed to the plane? In other
words, are we working on the infinite plane, with nothing else but
the boxes on it, or are we constrained to a floor bound by rigid
walls?

3. Robot path

• Is the solution path required to have no self-intersections?

• Are we looking for a closed path for the robot?

4. Boxes’ IDs (”15”-style)

• Are the boxes and the target positions labeled? This may be im-
portant with respect to the final configuration of the boxes; in
SOKOBAN any box can occupy any target position.

Following notation in [38, 39, 45], we call BMP(k, p, l) the Box Mover Problem
for the robot capable of pushing k, pulling p and lifting l boxes at one time.
If some boxes may be fixed to the plane, the problem is called BMP(k, p, l)-F.
If only non-self-intersecting paths are allowed for the robot, the problem is
called BMP(k, p, l)-X. We do not require the robot to return to its initial
position; it can stop right after all the boxes are in their target positions.
Finally, if the boxes and the target positions bear labels, the problem is called
#BMP(k, p, l). Thus, e.g., BMP(1, 0, 0)-F is the original SOKOBAN game,
BMP(∞,∞,∞) is the Omnipotent Robot Problem (they also have problems),
BMP(k, 0, 0), BMP(∞, 0, 0) and BMP(1, 0, 0)-X are the Push-k, Push-* and
Push-X versions of Push (see [43]).
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To clarify rules for lifting, we emphasize that the robot can essentially “go
under” a box: it can approach the box, swap positions with it and then put
the box back. Such an operation requires 2 lifts. The robot can also carry a
box to another location. We think of such carrying as a sequence of lifts; the
number of necessary lifts equals the distance traveled by the robot with the
box.

It is possible to come up with other rules for lifting. With some adjustment,
our results remain valid for other rules as well.

Comparison with Previous Work

1. To our knowledge, previous research concentrated on investigating hard-
ness of the feasibility problems, while in “reality” one would rather be
interested in minimizing the amount of work to be done (i.e. in the op-
timization) when it is ensured that the problem is feasible. We define
the cost of a solution to be the number of “loaded” moves (pushes, pulls,
lifts); the unloaded motion of the robot is free.

The only results on optimization of SOKOBAN can be found in [113].
We have taken the basic edge gadget from it. These results were never
published and used third dimension to work or considered a slightly
modified SOKOBAN problem [34].

2. Several attempts have been made to make the puzzles “more tractable”
by limiting the robot’s capabilities [41, 38, 40], i.e. by considering
BMP(k, p, l) with l = 0 and small values of k, p satisfying kp = 0.
The exact complexity of some of the problems is still unknown; oth-
ers have been shown PSPACE-complete [23, 33, 66]. The only known
“easier” (NP-complete) problem is a somewhat artificial Push-X version
(see above), which restricts the robot’s paths, rather than its power.

Our proof of NP-hardness of the optimization problem holds for an ar-
bitrarily powerful robot. We also describe a natural class of open BMP
instances, for which the optimization problem is in NP.

3. Leakage is a major problem in proving hardness of puzzles with all blocks
movable. To constrain the robot’s motion certain configurations have to
be used: e.g., if the robot can push up to k boxes, a (k + 1) × (k + 1)
square of boxes can be considered fixed to the floor, a wall of thickness
more than k can be considered rigid [41, 40], etc. Same configurations
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Figure 58: Planar embedding and floor map.

work for constraining of a pull-only robot—once disassembled, these con-
figurations can never be put together. Yet, if the robot can both pull
and push (or lift), then no obvious construction (if any at all!) is “heavy”
enough to serve as an obstacle for the robot.

In our proof the wall thickness is constant and the proof holds for an
arbitrarily powerful robot.

4. In [41] and [40] the authors contrasted their work to “all previous ap-
proaches of building circuits based on graphs, which seem to inherently
require [problematic] crossings.” In fact, one of the first proofs of NP-
hardness of SOKOBAN [45] was based on Planar 3-SAT problem and
did not use any crossovers. Our construction does not require crossings
either, since it is by reduction from HC for planar graphs.

The Reduction

The reduction is from the Hamiltonian cycle (HC) problem for planar directed
graphs with each node v satisfying outdegree(v) + indegree(v) = 3, which is
NP-complete by [109]. Let G = (N, A) be such a graph with |N | = n. We
construct a BMP(1,0,0)-F instance from G such that G contains a HC iff the
BMP instance is solvable in 3n− 2 pushes.

First, embed G in the plane in such a way that the edges of G are drawn
with vertical and horizontal segments (Figure 58, left and center). Such an
embedding is possible and can be constructed from G in polynomial time [80].
We then use the embedding as a “floor map” for constructing a BMP(1,0,0)-F
instance. Each edge of G becomes a corridor of width 1 and every node of
G becomes a “T-intersection” of 2 corridors (Figure 52, center and right).
Next, we place a node gadget (Figure 59, left) in each node of G and an edge
gadget (Figure 59, right) in the middle of every edge to emulate the direction
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Figure 59: Node (left) and edge (right) gadgets. Boxes (in their initial posi-
tions) are marked with £, boxes’ target positions are marked with light grey

of the edge. (We may need to lengthen the corridors to have enough space
for inserting the edge gadgets.) Note that in the edge gadget, the initial and
the target positions of the box coincide. It is easy to see that the edge gadget
is passable in one direction only (with 2 pushes per each pass). The robot is
initially placed inside a corridor. The robot’s goal will be to put the boxes in
the target positions.

If G has an HC, then the constructed BMP(1,0,0)-F instance can be solved
in 3n − 2 pushes. Indeed, the robot will follow the HC in G, traveling along
n−1 edges (spending 2 pushes per edge) and pushing all the boxes in the node
gadgets in the corresponding target positions (1 push per node). If G is not
Hamiltonian, then in order to visit all the nodes, the robot needs to travel
twice along at least one edge of G, so the total number of pushes will be not
less than n · 2 + n = 3n. Thus, the constructed BMP(1,0,0)-F instance can be
solved with 3n− 2 pushes iff G is Hamiltonian.

Results

From the preceding discussion follows

Lemma 7.14. BMP(1, 0, 0)-F is NP-hard.

We shall now strengthen this result in several aspects. First, observe that if
the robot is only allowed to pull 1 box (BMP(0, 1, 0)-F), the same edge gadget
can be used to model the direction on an edge – the only difference is that
the direction of the edge is now reversed. If, in addition, the initial and target
positions of the boxes in node gadgets are swapped, the same reduction works
for BMP(0, 1, 0)-F. Hence, Corollary BMP(0, 1, 0)-F is NP-hard. When the
robot is allowed to lift a box, the directionality of the corridors (edges) is lost
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(the robot can travel in both directions). In fact, the edge gadget may now be
simplified to just be a corridor with a box in target position. Still, the cost of
traveling through an edge is 2. The BMP instance now models a planar undi-
rected cubic graph. The HC problem for planar undirected 3-connected cubic
graphs having no face with fewer than 5 edges is NP-complete [59]. Thus, our
reduction is valid for BMP(0, 0, 1)-F as well: Corollary BMP(0, 0, 1)-F is NP-
hard. Secondly, observe that if G is Hamiltonian, the path of the robot in the
proposed solution is non-self-intersecting. Thus, Corollary BMP(1, 0, 0)-F-X,
BMP(0, 1, 0)-F-X and BMP(0, 0, 1)-F-X are NP-hard. Next, observe that we
could have assigned numbers to the boxes and target locations. The boxes
and the target locations in node gadgets could have been labeled 1 through
n and the boxes in the edge gadgets (they are already in target positions)
– n + 1 to 2n. The reduction above would not change and thus Corollary
#BMP(1, 0, 0)-F, #BMP(0, 1, 0)-F and #BMP(0, 0, 1)-F are NP-hard. Giv-
ing the robot the power to push, pull or lift an arbitrary number of boxes
would not change the reduction (essentially, the edge gadget is just an “energy
waster”). So, Corollary BMP(k, p, l)-F is NP-hard for any (k, p, l) 6= (0, 0, 0).
Since all of the above observations work independently of each other, Corollary
[#]BMP(k, p, l)-F[-X] is NP-hard for any (k, p, l) 6= (0, 0, 0). Finally, we can
replace the rigid walls of the corridors by walls of boxes of thickness 2 and
change the gadgets as shown in Figure 60. The reduction will still be in place.
Indeed, even if the robot has enough power to break through a wall, it would
not benefit from doing so, since it would still need to spend too much of a
workload before getting to a node gadget. Thus, we have the main result:

Theorem 7.15. All variations of BMP are NP-hard, i.e. [#]BMP(k, p, l)[-
F][-X] is NP-hard for any (k, p, l) 6= (0, 0, 0), including infinite values of k, p, l.

As mentioned above, if G is Hamiltonian, the corresponding BMP(1,0,0)-F
instance can be solved in 3n − 2 pushes, while if G is non-Hamiltonian, the
number of pushes, needed to solve the instance, is at least 3n. This shows that
(unless P=NP) there exist no Fully Polynomial Time Approximation Scheme
(FPTAS) for the problem. Indeed, suppose, that there exists an algorithm,
which, for any ε > 0, finds a solution, requiring at most 1 + ε times the
optimum pushes; and that such an algorithm runs in time, polynomial in
1/ε. Take ε < 2

3n−2
. Then, the algorithm would output a solution of cost

less than 3n iff G is Hamiltonian. Since this argument works for all versions
of the problem, we have Corollary Unless P=NP, there exists no FPTAS for
[#]BMP(k, p, l)[-F][-X].
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Figure 60: Node (left) and edge (right) gadgets with all blocks movable.

A Realistic Assumption

To prove hardness of BMP, we have constructed some gadgets constraining the
agent’s motion. Moreover, to avoid leakage, the whole instance was “closed”
– once inside the warehouse, the agent is constrained to stay there forever,
never to be able to come out and report a solution to an NP-hard problem!
We define the Open Box Mover Problem (OBMP) as BMP restricted to the
instances in which the agent can escape to infinity from the initial position.
OBMP retains all the notation introduced in BMP: # , (k, p, l), -F, -X.

Lemma 7.16. OBMP is NP-hard for all formulations for which BMP is NP-
hard.

Proof. In the constructions used for proving hardness of BMP we could initially
put the agent in the edge, adjacent to the unbounded face of the graph, and
make a hole in the wall close to the agent’s initial position. Having the ability
to escape to infinity does not change the cost of a feasible solution (since we
only count the workload, not the total travel of the agent). Thus, the reduction,
which worked for a BMP formulation, also works for the corresponding version
of OBMP. ¤

Although openness has no impact on optimality, it has drastic effect on feasi-
bility: every instance of OBMP(k, p, l) with l > 0 is feasible. Indeed, if the
agent can lift and carry the boxes (l > 0), he can go to a far point (“infinity”),
return to a box, carry it to infinity, return to another box, carry it to infinity
and so on. Now, that he has all the boxes at infinity, he can start bringing the
boxes back one by one to their target positions. If there are N pixels in the
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floor map, there are no more than N boxes in the instance. So, the point at
the distance of 2N from the exit from the warehouse is far enough to be the
“infinity” point, to which the agent can carry all the boxes one by one. Thus,
any instance of OBMP(k, p, l) with l > 0 is feasible. Moreover, it is solvable
in at most O(N2) moves and therefore is in NP.

Theorem 7.17. [#]OBMP(k, p, l)[-F][-X] with l>0 is NP-complete.

7.4 The Snowblower Problem

In this section we introduce the snowblower problem (SBP), a new optimiza-
tion problem that is closely related to milling problems and to some material-
handling problems. The objective in the SBP is to compute a short tour for
the snowblower to follow to remove all the snow from a domain (driveway,
sidewalk, etc.). When a snowblower passes over each region along the tour, it
displaces snow into a nearby region. The constraint is that if the snow is piled
too high, then the snowblower cannot clear the pile.

We give an algorithmic study of the SBP. We show that in general, the
problem is NP-complete, and we present polynomial-time approximation algo-
rithms for removing snow under various assumptions about the operation of
the snowblower. Most commercially available snowblowers allow the user to
control the direction in which the snow is thrown. We differentiate between the
cases in which the snow can be thrown in any direction, in any direction except
backwards, and only to the right. For all cases, we give constant-factor ap-
proximation algorithms; the constants increase as the throw direction becomes
more restricted. We focus on the integral orthohedral version of the problem,
in which the boundary edges of the domain are parallel to the coordinate axes
and the coordinates of its vertices are integral.

Our results are also applicable to robotic vacuuming (or lawnmowing) with
bounded capacity dust bin and to some versions of material-handling problems,
in which the goal is to rearrange cartons on the floor of a warehouse.

A snowblower is a “material shifting machine,” which lifts snow and de-
posits it nearby. The goal is to dispose of all the snow, moving it outside the
driveway. There is a skill in making sure that the deposited piles of snow do
not grow higher than the maximum depth capacity of the snowblower. This
crystallizes into an algorithmic question, which we have called the Snowblower
Problem (SBP): How does one optimally use a snowblower to clear a given
polygonal region?

The SBP shows up in other contexts: Consider a mobile robot that is
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equipped with a device that allows it to pick up a carton and then place
the carton down again in a location just next to it, possibly on a stack of
cartons. With each such operation, the robot shifts a unit of “material”. The
SBP models the problem in which the robot is to move a set of boxes to a
specified destination in the most efficient manner, subject to the constraint
that it cannot stack boxes higher than a capacity bound.

In a third motivating application, consider a robotic lawnmower or vacuum
cleaner that has a catch basin for the clippings, leaves, dust, or other debris.
The goal is to remove the debris from a region, with the constraint that the
catch basin must be emptied (e.g., in the compost pile) whenever it gets full.

The SBP is related to other problems on milling, vehicle routing, and trav-
eling salesman tours, but there are two important new features: (a) material
must be moved (snow must be thrown), and (b) material may not pile up too
high.

While the SBP arises naturally in these other application domains, we use
the terminology of snow removal.

The objective of the SBP is to find the shortest snowblower tour that clears
a domain P , assumed to be initially covered with snow at uniform depth 1.
An important parameter of the problem is the maximum snow depth D > 1
through which the snowblower can move. At all times no point of P should
have snow of greater depth than D. The snow is to be moved to points outside
of P . We assume that each point outside P is able to receive arbitrarily much
snow (i.e., that the driveway is surrounded by a “cliff” over which we can toss
as much snow as we want).13

Snowblowers offer the user the ability to control the direction in which
the snow is thrown. Some throw directions are preferable over others; e.g.,
throwing the snow back into the user’s face is undesirable. However, it can be
cumbersome to change the throw direction too frequently during the course of
clearing. Thus, we consider three throw models. In the default model throwing
the snow backwards is allowed. In the adjustable-throw model the snow can
be thrown only to the left, right, or forward. In the fixed-throw model the
snow is always thrown to the right. Even though it seems silly to allow the
throw direction to be back into one’s face, the default model is the starting
point for the analysis of other models; it is also equivalent to the problem of
vacuum-cleaning a floor.

13The “cliff” assumption accurately models the capacitated-vacuum-cleaner problem for
which there is a (central) “dustpan vac” in the baseboard, where a robotic vacuum cleaner
may empty its load [1] and applies also to urban snow removal using snow melters [2] or
disposing off the snow into a river.
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Results We show that the SBP is NP-complete for multiply connected do-
mains. Our main results are constant-factor approximation algorithms for each
of the three throw models, assuming D ≥ 2. The approximation ratio of our
algorithms increases as the throw direction becomes more restricted.

Default model, Theorem. 7.23
D 2 or 3 any D ≥ 4
Approximation 6 8

Adjustable throw, Theorem. 7.26
D any D ≥ 2
Approximation 4 + 3D/bD/2c

Fixed throw, Theorem. 7.29
D any D ≥ 2
Approximation 34 + 24D/bD/2c

The SBP is closely related to milling and lawn-mowing problems, which
have been studied extensively in the NC-machining and computational-geometry
literatures; see e.g., [11, 10, 67]. The SBP is also closely related to material-
handling problems, in which the goal is to rearrange a set of objects (e.g.,
cartons) within a storage facility; see [41, 33] and Section 7.3 of this the-
sis. The SBP may be considered as an intermediate point between the TSP/
lawnmowing/milling problems and material-handling problems. Indeed, for
D = ∞, the SBP is that of optimal milling. Unlike most material-handling
problems, the SBP formulation allows the material (snow) to pile up on a single
pixel of the domain, and it is this compressibility of the material that distin-
guishes the SBP from previously studied material-handling problems. With
TSP and related problems, every pixel is visited only a constant number of
times, whereas with material-handling problems, pixels may have to be visited
a number of times exponential in the input size. For this reason, material-
handling problems are not even known to be in NP [41, 33], in contrast with
the SBP. Note that in material handling problems the objective is to mini-
mize workload (distance traveled while loaded), while in the SBP (as in the
milling/mowing problems) the objective is to minimize total travel distance
(loaded or not).

The SBP is also related to the earth-mover’s distance (EMD), which is
the minimum amount of work needed to rearrange one distribution (of earth,
snow, etc.) to another; see [31]. In the EMD literature, the question is explored
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mostly from an existential point of view, rather than planning the actual pro-
cess of rearrangement. In the SBP, we are interested in optimizing the length
of the tour, and we do not necessarily know in advance the final distribution
of the snow after it has been removed from P .

Notation The input is a polygonal domain, P . Since we are mainly con-
cerned with proving constant factor approximation algorithms, it suffices to
consider distances measured according to the L1 metric. We consider the snow-
blower to be an (axis-parallel) unit square that moves horizontally or vertically
by unit steps. This justifies our assumption, in most of our discussion, that
P is an integral-orthogonal simple polygon, which is comprised of a union of
pixels – (closed) unit squares with disjoint interiors and integral coordinates.

We say that two pixels are adjacent or neighbors if they share a side; the
degree of a pixel is the number of its neighbors. For a region R ⊆ P (subset
of pixels), let GR denote the dual graph of R, having a vertex in the center of
each pixel of R and edges between adjacent pixels.

A pixel of degree less than four is a boundary pixel. For a boundary pixel,
a side that is also on the boundary of P is called a boundary side. The set of
boundary sides, ∂P , forms the boundary of P . We assume that the elements of
∂P are ordered as they are encountered when the boundary of P is traversed
counterclockwise.

An articulation vertex of a graph G is a vertex whose removal disconnects
G. We assume that GP has no articulation vertices. (Our algorithms can
be adapted to regions having articulation vertices, at a possible increase in
approximation ratio.)

Algorithms Overview Our algorithms proceed by clearing the polygon
Voronoi-cell-by-Voronoi-cell, starting from the Voronoi cell of the garage g —
the pixel on the boundary of P at which the snowblower tour starts and ends.
The order of the boundary sides in ∂P provides a natural order in which to
clear the cells. We observe that the Voronoi cell of each boundary side is a
tree of one of two special types, which we call lines and combs. We show how
to clear the trees efficiently in each of the throw models. We prove that our
algorithms give constant-factor approximations by charging the lengths of the
tours produced by the algorithms to two lower bounds, described below.

Voronoi Decomposition For a pixel p ∈ P let V (p) denote the element of
∂P closest to p. In case of ties, the tie-breaking rule (see below) is applied.
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Inspired by computational-geometry terminology, we call V (p) the Voronoi
side of p. We let δ(p) denote the length of the path from p to the pixel
having V (p) as a side. For a boundary side e ∈ ∂P we let Voronoi(e) denote
the (possibly, empty) set of pixels, having e is the Voronoi side: Voronoi(e) =
{p ∈ P |V (p) = e}. We call Voronoi(e) the Voronoi cell of e. The Voronoi cells
of the elements of ∂P form a partition of P , called the Voronoi decomposition
of P . We remark that our Voronoi decomposition is a discrete version of the
Voronoi diagram of the edges of P [14].

A set of pixels L whose dual graph GL is a straight path or a path with
one bend, is called a line. Each line L has a root pixel p, which corresponds
to one of the two leaves of GL, and a base, e ∈ ∂P , which is a side of p.

A (horizontal) comb C is a union of pixels consisting of a set of vertically
adjacent (horizontal) rows of pixels, with all of the rightmost pixels (or all of
the leftmost pixels) in a common column. (A vertical comb is defined similarly;
however, by our tie breaking rules, we need consider only horizontal combs.) A
comb is a special type of histogram polygon [30]. The common vertical column
of rightmost/leftmost pixels is called the handle of comb C, and each of the
rows is called a tooth. A leftward comb has its teeth extending leftwards from
the handle; a rightward comb is defined similarly. The pixel of a tooth that is
furthest from the handle is the tip of the tooth. The topmost row is the wisdom
tooth of the comb. The root pixel p of the comb is either the bottommost or
topmost pixel of the handle, and its bottom or top side, e ∈ ∂P , is the base of
the comb. See Figure 61, left. The union of a leftward comb and a rightward
comb having a common root pixel is called a double-sided comb.

Tie Breaking Our rules for finding V (p) for a pixel p that is equidistant
between two or more boundaries is based on the direction of the shortest path
from p to V (p); vertical edges are preferred to horizontal, going down has
higher priority than going up, going to the right — than going left. In fact,
any tie-breaking rule can be applied as long as it is applied consistently. The
particular choice of the rule only affects the orientation of the combs.

Voronoi Cell Structure An analysis of the structure of the Voronoi parti-
tion under our tie breaking rules gives:

Lemma 7.18. For a side e ∈ ∂P , the Voronoi cell of e is either a line (whose
dual graph is a straight path), or a comb, or a double-sided comb. By our
tie-breaking rule, the combs may appear only as the Voronoi cells of horizon-
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Figure 61: Left: a comb. The base is bold. The pixels in the handle are
marked with asterisks, the pixels in the wisdom tooth are marked with bullets.
Right: Voronoi cells. The sides of ∂P are numbered 1 . . . 28 counterclockwise.
The pixels in the Voronoi cell of a side are marked with the corresponding
number. Voronoi cell of side 3 is a comb; Voronoi cells of sides 6, 11, 17, 25, 28
are empty; cells of sides 1, 7, 10, 18, 24 are lines, comprised of just one pixel;
cells of the other edges are lines with more than one pixel.

tal edges. The double-sided combs may appear only as the Voronoi cells of
(horizontal) edges of length 1.

Let p be a boundary pixel of P , let e ∈ ∂P be the side of p such that
p ∈ Voronoi(e). We denote Voronoi(e) by T (p) or T (e), indicating that it is a
unique tree (a line or a comb) that has p as the root and e as the base.

Lower Bounds We exhibit two lower bounds on the cost of an optimal tour,
the snow lower bound, based on the number of pixels, and the distance lower
bound, based on the Voronoi decomposition of the domain. At any time let
s(R) be the set of pixels of R covered with snow and also, abusing notation,
the number of these pixels. Let d(R) = 1

D

∑
p∈s(R) δ(p) .

Lemma 7.19. Let R be a subset of P with the snowblower starting from a
pixel outside R. Then s(R) and d(R) are lower bounds on the cost to clear R.

Proof. For the snow lower bound, observe that region R cannot be cleared
with fewer than s(R) snowblower moves because each pixel of s(R) needs to
be visited.

For the distance lower bound, observe that, in order to clear the snow
initially residing on a pixel p, the snowblower has to make at least δ(p) moves.
When the snow from p is carried to the boundary of P and thrown away, the
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snow from at most D − 1 other pixels can be thrown away simultaneously.
Thus, a region R cannot be cleared with fewer than d(R) moves. ¤

NP-Completeness It is known [79, 105] that the Hamiltonian path problem
in cubic grid graphs is NP-complete. The problem can be straightforwardly
reduced to SBP. If G is a cubic grid graph, construct an (integral orthohedral)
domain P such that G = GP . Since GP is cubic, each pixel p ∈ P is a
boundary pixel, thus, the snowblower can throw the snow away from p upon
entering it. Hence, SBP on P is equivalent to TSP on G, which has optimum
less than n + 1 iff G is Hamiltonian (where n is the number of nodes in G).
The reduction works for any D ≥ 1.

The algorithms proposed in this thesis show that any domain can be cleared
using a set of moves of cardinality polynomial in the number of pixels in the
domain, assuming D ≥ 2. Thus, we obtain

Theorem 7.20. If D ≥ 2, the SBP is NP-complete, both in the default model
and in the adjustable throw model, for inputs that are polygonal domains with
holes.

Approximation Algorithm for the Default Model

In this section we give an 8-approximation algorithm for the case when the
snow can be thrown in all four directions. We first show how to clear a line
efficiently with the operation called line-clearing. We then introduce another
operation, the brush, and show how to clear a comb efficiently with a sequence
of line-clearings and brushes. Finally, we splice the subtours through each line
and comb into a larger tour, clearing the entire domain. The algorithm for the
default model, developed in this section, serves as a basis for the algorithms
in the other models.

Clearing a Line Let L be a line of pixels; let p and e be its root and the
base. We are interested in clearing lines for which the base is a boundary side,
i.e., e ∈ ∂P . Let ` = s(L); let the first J pixels of L counting from p be clear.
We assume that p is already clear (J > 0); the snow from it was thrown away
through the side e as the snowblower first entered pixel p. Let L|J denote L
with the J pixels clear; let `− J = kD + r.14 Denote by (L|J)D the first kD

14For ease of presentation, we adapt the following convention. For d ∈ {D, bD/2c} and
an integer w we understand the equality w = ad + b as follows: b and a are the remainder
and the quotient, respectively, of w divided by d.
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pixels of L|J covered with snow; denote by Lr the last r pixels on L|J . The
idea of decomposing L|J into (L|J)D and Lr is that the snow from (L|J)D is
thrown away with k “fully-loaded” throws, and the snow from Lr is thrown
away with (at most one) additional “under-loaded” throw.

We clear line L starting at p by moving all the snow through the base e
and returning back to p. The basic clearing operation is a back throw. In a
back throw the snowblower, entering a pixel u from pixel v, throws u’s snow
backward onto v. Starting from p, the snowblower moves along L away from p
until either the snowblower moves through D pixels covered with snow or the
snowblower reaches the other end of L; this is called the forward pass. Next,
the snowblower makes a U-turn and moves back to p, pushing all the snow in
front of it and over e; this is called the backward pass. A forward and backward
pass that clears exactly D units of snow is called a D-full pass.

Lemma 7.21. For arbitrary D ≥ 4 the line-clearing cost is at most 2s(L\p)+
4d(L|J). For D = 2, 3 the line-clearing cost is at most 2s(L \ p) + 2d(L|J). If
every pass is D-full, the cost is 4d(L|J) for D ≥ 4 and 2d(L|J) for D = 2, 3.

Proof. The clearing cost is c(L|J) = c((L|J)D) + c(Lr) =
∑k

i=1 2(J − 1 +
iD) + 2(`− 1) = 2kJ + Dk(k + 1)− 2k + 2(`− 1). The snow lower bound of
L \ p is s(L \ p) = `− 1. The distance lower bound of (L|J)D is d((L|J)D) =
1
D

∑kD
i=1(J + i) = kJ + k(kD + 1)/2.

Thus,

c(L|J) = 2s(L \ p) +

(
2 +

D − 3

J + (Dk + 1)/2

)
d((L|J)D)

If every pass is a D-full pass, then c(Lr) = 0. Therefore, c(L|J) = c((L|J)D) =(
2 + D−3

J+(Dk+1)/2

)
d((L|J)D). ¤

Clearing a Comb Let C be a comb with the root p, base e, and handle H
of length H. Let `1 . . . `H be the lengths of the teeth of the comb. Since we are
interested in clearing combs for which the base e is a boundary side (e ∈ ∂P ),
we assume that pixel p is already clear — the snow from it was thrown away
through e as the snowblower first entered p.

Our strategy for clearing C is as follows. While there exists a line L ⊂ C
rooted at p, such that s(L) ≥ D, we perform as many D-full passes on L as
we can. When no such L remains, we call the comb brush-ready and we use
another clearing operation, the brush, to finish the clearing.
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Figure 62: Left: a brush-ready comb. The snow is shown in light gray. Center:
a brush, D = 4; the part of the brush, traveling through the handle, is bold.
Right: the comb after the brush.

A brush, essentially, is a “capacitated” depth-first-search. Among the teeth
of a brush-ready comb that are not fully cleared, let t be the tooth, furthest
from the base. In a brush, we move the snowblower from p through the handle,
turn into t, reach its tip, U-turn, come back to the handle (pushing the pile of
snow), turn onto the handle, move by the handle back towards p until we reach
the next not fully cleared tooth, turn onto the tooth, and so on. We continue
clearing the teeth one-by-one in this manner until D units of snow have been
moved (or all the snow on the comb has been moved). Then we push the snow
to p through the handle and across e. This tour is called a brush (Figure 62).

Lemma 7.22. For arbitrary D ≥ 4 the comb C can be cleared at a cost of at
most 4s(C \ p) + 4d(C \ p) (at most 4s(C \ p) + 2d(C \ p) for D = 2, 3).

Proof. If s(C \ p) < D, then the cost of clearing is just 2s(C \ p), so suppose,
s(C \ p) ≥ D. Let B be the number of brushes used; let B be the set of pixels
cleared by the brushes. For b = 1 . . . B let tb and t′b be the first and the last
tooth visited during the bth brush. For b ∈ {1 . . . B − 1} the bth brush enters
at least 2 teeth, so tb > t′b ≥ tb+1.

Each brush can be decomposed into two parts: the part traveling through
the teeth and the part traveling through the handle (Figure 62). Since each
tooth is visited during at most 2 brushes, the length of the first part is at most
4 times the size of all teeth, that is, 4s(C \H). The total length of the second
part of all brushes is 2

∑B
b=1(tb − 1). Thus, the cost of the “brushing” is

c(B) ≤ 2
B∑

b=1

(tb − 1) + 4s(C \ H) ≤ 2
B∑

b=2

tb + 4s(C \ p)− 2 (5)

since t1 ≤ H and H ≥ 2 (for otherwise C is a line).
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There are exactly D pixels cleared during each brush b ∈ {0 . . . B − 1}, and
each of these pixels is at distance at least tb′ from the base of the comb. Thus,
the distance lower bound of the pixels, cleared during brush b, is at least tb′ .
Consequently, the distance lower bound of B

d(B) ≥
B∑

b=1

tb′ ≥
B−1∑

b=1

tb+1 =
B∑

b=2

tb (6)

From (5) and (6), B can be cleared at a cost of at most 2d(B) + 4s(C \ p).
Let P ⊆ C be the pixels, cleared during the line-clearings. By our strategy,

during each line-clearing, every pass is D-full; thus, by Lemma 7.21, P can be
cleared at a cost of at most 4d(P) (or 2d(P) if D = 2, 3). Since P and B are
snow-disjoint and P ∪ B = C \ p, the lemma follows. ¤
The above analysis is also valid in the case when the handle is initially clear.
This is the case when the second side of a double-sided comb is being cleared.
Thus, a double-sided comb can be cleared within the same bounds on the cost
of clearing.

Clearing the Domain Now that we have defined the operations which allow
us to clear efficiently lines and combs, we are ready to present the algorithm
for clearing the domain.

Theorem 7.23. For arbitrary D ≥ 4 (resp., D = 2, 3) an 8-approximate
(resp., 6-approximate) tour can be found in polynomial time.

Proof. Let p1, . . . , pM be the boundary pixels of P as they are encountered
when going around the boundary of P counterclockwise starting from g =
p1; let e1, . . . , eM ∈ ∂P be the boundary sides of p1, . . . , pM such that ei =
V e(pi), i = 1 . . . M . The polygon P can be decomposed into disjoint trees
T (p1), . . . , T (pM) = T (e1), . . . , T (eM) with the bases e1 . . . , eM , where each
tree T (ei) is either a line or a comb.

Our algorithm clears P tree-by-tree starting with T (e1) = T (g). By Lem-
mas 7.21 and 7.22, for i = 1 . . .M , the tree T (pi) \ pi can be cleared at a cost
of at most 4s(T (pi) \ pi) + 4d(T (pi) \ pi) starting from pi and returning to pi.
Since

⋃M
1 T (pi) \ pi = P \ {p1 . . . pM}, the interior of P can be cleared at a

cost of at most c(P \{p1 . . . pM}) = 4s(P \{p1 . . . pM})+4d(P \{p1 . . . pM}) ≤
4s(P \ g) + 4d(P \ g)− 4M + 4.

Finally, the tours clearing the interior of P can be spliced into a tour,
clearing P at a cost of at most 2M . Since the optimum is at least s(P \g) and
is at least d(P \ g), the theorem follows. ¤
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Other Models

In this section we give approximation algorithms for the case when the throw
direction is restricted. Specifically, we first consider the adjustable-throw-
direction formulation. This is a convenient case for the snowblower operator
who does not want the snow thrown in his face. We then consider the fixed-
throw-direction formulation, which assumes that the snow is always thrown to
the right.

We remark that the relatively low approximation factors of the algorithms
for the default model, presented in the previous section, were due to a very
conservative clearing: the snow from every pixel p ∈ P was thrown through
the Voronoi side V (p). Unfortunately, it seems hard to preserve this appealing
property if throwing back is forbidden. The reason is that the comb in the
Voronoi cell Voronoi(e) of a boundary side e ∈ ∂P often has a “staircase”-
shaped boundary; clearing the first “stair” in the staircase cannot be done
without throwing the snow onto a pixel of Voronoi(e′), where e′ 6= e is another
boundary side. This is why the approximation factors of the algorithms in this
section are higher than those in the previous one.

Adjustable Throw Direction

In the adjustable-throw model the snow cannot be thrown backward but can be
thrown in the three other directions. To give a constant-factor approximation
algorithm for this case, we show how to emulate line-clearings and brushes
avoiding back throws (Figure 63). The approximation ratios increase slightly
in comparison with the default model.
Line-clearing We can emulate a (half of a) pass by a sequence of moves,
each with throwing the snow to the left, forward or to the right (Figure 63,
left and center). Thus, the line-clearing may be executed in the same way as it
was done if the back throws were allowed. The only difference is that now the
snow is moved to the base when the snow from only bD/2c pixels (as opposed
to D pixels) of the line is gathered.

Lemma 7.24. The line-clearing cost is at most 3D/bD/2cd(L|J) + 2s(L \ p).
If every pass is bD/2c-full, the cost is 3D/bD/2cd(L|J).

Proof. Let `− J = k′bD/2c+ r′. Let (L|J)bD/2c be the first k′bD/2c pixels of
L|J , let Lr′ be its last r′ pixels. Then the cost of the clearing of L|J is c(L|J) =

c((L|J)bD/2c)+c(Lr′) =
∑k′

i=1 2(J + ibD/2c)+2` = 2k′J +bD/2ck′(k′+1)+2`.
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Figure 63: Emulating line-clearing and brush. The (possible) snow locations
are in light gray; s is the snowblower. Left: forward and backward passes in
the default model; there are D units of snow on the checked pixel. Center:
the passes emulation; there is (at most) 2bD/2c units of snow on the checked
pixel. Right: the snow to be cleared during a brush is in light gray; there are
bD/2c light gray pixels.

The lower bounds are given by s(L \ p) = `− 1 and

d((L|J)bD
2
c) =

1

D

k′bD
2
c∑

i=1

(J + i) =
bD

2
c

D

[
k′J +

k′(k′bD
2
c+ 1)

2

]
(7)

Thus,

c(L|J) ≤ D

bD
2
c

(
2 +

2 + bD/2c k′ − k′

k′J + bD/2c
2

k′2 + k′
2

)
d(L \ p) + 2s(L \ p)

¤

Brush Brush also does not change too much from the default case. The
difference is the same as with the line-clearing: now, instead of clearing D
pixels with a brush, we prepare to clear only bD/2c pixels (Figure 63, right).
Consequently, the definition of a brush-ready comb is changed — now we
require that there is less than bD/2c pixels covered with snow on each tooth
of such a comb. Observe that together with each unit of snow, the snow from
at most 1 other pixel is moved — thus (although the brush may go outside
the comb, as, e.g., in Figure 63), the brush is feasible.

Lemma 7.25. A comb can be cleared at a cost of 3D/bD/2cd(C\p)+4s(C\p).

Proof. In comparison with the default model (Lemma 7.22) several observa-
tions are in place. The number of brushes may go up; we still denote it by B.
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The cost of the brushes 1 . . . B − 1 does not change. If the Bth brush has to
enter the first tooth, there may be 2 more moves needed to return to the root
of the comb (see Figure 63, right); hence, the total cost of the brushing (5)
may go up by 2. The distance lower bound (6) goes down by D/bD/2c. The
rest of the proof is identical to the proof of Lemma 7.22 (with Lemma 7.24
used in place of Lemma 7.21). ¤

Observe that in fact the snow can be removed from more than bD/2c pixels
during a brush; we just ignore it for now in our analysis. Note that a double-
sided comb can also be cleared in the described way.
Clearing the Domain As in the default case (Theorem 7.23),

Theorem 7.26. A (4 + 3D/bD/2c)-approximate tour can be found in polyno-
mial time.

Comment on the Parity of D We remark that if D is even, the cost of the
clearing is the same as it would be if the snowblower were able to move through
snow of depth D + 1 (the slight increase of 6/(D − 1) in the approximation
factor would be due to the decrease of the distance lower bound).

Fixed Throw Direction

In reality, changing the throw direction requires some effort. In particular,
a snow plow does not change the direction of snow displacement at all. In
this section we consider the fixed throw direction model, i.e., the case of the
snowblower which can only throw the snow to the right. We exploit the same
idea as in the previous subsection — reducing the problem in the fixed throw
direction model to the problem in the default model. All we need is to show
how to emulate line-clearing and brush.

In what follows we retain the notation from the previous subsection.

Lemma 7.27. The line-clearing cost is at most 24D/bD/2cd(L|J)+25s(L\p).
If every pass is bD/2c-full, the cost is 24D/bD/2cd(L|J).

Proof. We first consider clearing a line whose dual graph is embedded as a
single straight line segment and whose base is perpendicular to the segment; we
describe the line-clearing, assuming that the line is vertical. Next, we extend
the solution to the case when the base is parallel to the edges of the dual graph;
this can only be a horizontal line — the first tooth in a (double-)comb. Finally,
we consider clearing an L-shaped line; this can only by a tooth together with
the (part of the) handle.
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Figure 64: The boundary sides are bold. Left: the double-base setup. e is
the base. Right: before the forward pass the snow below the snowblower is
cleared on both lines.

A Line L with GL⊥e. As in the adjustable-throw case (see Figure 63,
left and center), to clear L we will need to use the pixels to the right of L
to throw the snow onto. Let p′ be the boundary pixel, following p counter-
clockwise around the boundary of P . Before the line-clearing is begun, it will
be convenient to have p′ clear. Thus, the first thing we do upon entering L
(through p) is clearing p′. Together with returning the snowblower to p it takes
2 or 4 moves (Figure 64, left); we call these moves the double-base setup.

Then, the following invariant is maintained during line-clearing. If the
snowblower is at a pixel q ∈ L before starting the forward pass, all pixels on
L from p to q are clear, along with the pixels to the right of them (Figure 64,
right). The invariant holds in the beginning of the line-clearing and our line-
clearing strategy respects it.

Each back throw is emulated with 5 moves (Figure 65, left). After moving
up by bD/2c pixels (and thus, gathering 2bD/2c units of snow on these bD/2c
pixels), the snowblower U-turns and moves towards p “pushing” the snow in
front of it; a push is emulated with 11 moves (Figure 66).

The above observations already show that the cost of line-clearing increases
only by a multiplicative constant in comparison with the adjustable-throw case.
A more careful look at the Figures 65 and 66 reveals that: (1) in the push
emulation the first two moves are the opposites of the last two, thus, all 4
moves may be omitted – consequently, a push may be emulated by a sequence
of only 7 moves; (2) if the boundary side, following e, is vertical, the last push,
throwing the snow away from P , may require 9 moves (Figure 65, right); and,
(3) when emulating the last back throw in a forward pass, the last 2 of the 5
moves (the move up and the move to the right in Figure 65, left) can be omitted
– indeed, during the push emulation, the snowblower may as well start to the
right of the snow (see Figure 66). Thus, a line L|J can be cleared at a cost of
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Figure 65: Left: emulating back throw. Right: pushing the 2bD/2c units of
snow away from P and returning the snowblower to p may require 9 moves.
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Figure 66: Emulating pushing the snow in front of the snowblower.

c(L|J) ≤ 4 +
∑k′

i=1 (J − 1 + (i− 1) bD/2c+ 5 bD/2c+ 7(J + i bD/2c − 1))+
J + 5r′ + 7(`− 1).

A Line L with GL||e. Consider a horizontal line, extending to the left of
the base; such a line may represent the first tooth of a comb. The double-base
can be cleared with 8 or 12 moves (see Figure 67), the root can be cleared with
3 moves (see Figure 68, left) instead of 9 moves (see Figure 65, right); the rest
of the clearing does not change.

Consider now a horizontal line extending to the right of the base; such a
line may appear as the first tooth in a double-sided comb. The double-base
for such a line can be cleared with 3 moves; the rest of the clearing is the same
as for the vertical line.

L-shaped Line. An L-shaped line L consists of a vertical and a horizon-
tal segment. Each of the segments can be cleared as described above.

Thus, any line L|J can be cleared at a cost of at most c(L|J) ≤ 12 +∑k′
i=1 (J − 1 + (i− 1) bD/2c+ 5 bD/2c+ 7(J + i bD/2c − 1))+J +5r′+7(`−

1).
Since the snow and distance (7) lower bounds do not change, the lemma

follows. ¤

Lemma 7.28. A comb can be cleared at a cost of 34s(C \ p) + 24D
bD/2cd(C \ p).

115



¥
s

¥
¥¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

¥
¥

s s

→ →
-
-

¾
¾

¥¥
¥¥

¥
¥

¥
¥

¥
¥

¥
¥
¥

¥
¥

¥
¥

¥
¥

¥
¥
¥

¥
¥

¥
¥

¥
¥

¥
¥
¥

s s

→ →
-
-

¾
¾s

Figure 67: Setting up the double-base for clearing a horizontal line extending
to the left of its base. Depending on the direction of the edge adjacent to the
base from the right, there are 8 (above) or 12 (below) moves necessary.
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Figure 68: Left: clearing the root of a horizontal, extending to the left, line
with 3 moves. There is 2bD/2c units of snow on the checked pixel. Right:
Setting up the double-base for clearing a horizontal line extending to the right
of its base.
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Proof. Brush in the fixed throw direction model can be described easily using
analogy with: a) brush in default and adjustable-throw models and b) line-
clearing in fixed-throw model. As in the adjustable-throw model, we prepare
to clear bD/2c pixels during each brush. Same as with line-clearing, we setup
the double-base for the comb with at most 12 moves; also, 9 moves per brush
may be needed to push the snow away from P through the base. Back throw
and push can be emulated with 5 and 7 moves (Figure 65, left and Figure 66).
Thus, if the cost of a brush (5) in the default model was, say, c, the cost of the
brush in the fixed-throw model is at most 7c + 9. Since any brush starts with
the double-base setup, c ≥ 6; this, in turn, implies 7c + 9 ≤ (51/6)c. Hence,
the cost of clearing B increases by at most a factor of 51/6.

By Lemma 7.27, the cost of clearing P , c(P) ≤ 24D/bD/2cd(P). The snow
and distance lower bounds do not change in comparison with the adjustable-
throw case. The lemma now follows from simple arithmetic. ¤

As in the default and adjustable-throw models (Theorems 7.23, 7.26),

Theorem 7.29. A (34 + 24D
bD/2c)-approximate tour can be found in polynomial

time.

7.5 Hamiltonian Cycles in Triangular Grids

In the previous sections we considered vehicle routing problems in “pixelated”
domains, or, equivalently, on square “grid” graphs. In general, grids have
proved to be extremely useful in all areas of computer science. Their main
usage is as the discrete approximation to a continuous domain or surface. Nu-
merous algorithms in computer graphics, numerical analysis, computational
geometry, robotics and other fields are based on grid computations.

Formally, a square grid, or square grid graph G is induced by a finite subset
G of the infinite integer grid Z2: the vertices of G are the points in G, the
edges of G connect the points of G that are at unit distance from each other.
We will identify a grid graph G with the subset G that induces the graph.

The infinite grid Z2 may be viewed as the set of vertices of a tiling of the
plane with unit squares. Another plane tiling with regular polygons, the tiling
with equilateral triangles, defines an infinite “grid” in the same way; we call
this grid infinite triangular. A triangular grid graph is a graph induced by a
finite subset of the infinite triangular grid. We will use the terms triangular
(square) grid graph and triangular (square) grid interchangeably. Another
name for the grids used in the literature is meshes. Gardner [58] calls the
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infinite triangular grid an isometric grid; square grids are sometimes called
orthogonal.

As important special cases, the classes of “thin” and “solid” (or, “simple”)
square grid graphs were introduced [10, 122]. A square grid is called thin if it
contains no (simple) cycle of length 4. A square grid graph is called solid if all
of its bounded faces are unit squares.

The HCP in square grid graphs has been the subject of extensive research
[79, 105, 80, 53, 52, 122, 10]. In general, the problem is NP-complete [79, 105,
80]. It was proved that in solid square grids the HCP is polynomial [122].
It was shown [10] that in a solid square grid on N vertices there exists a
tour of length at most 6N/5 visiting all grid vertices; in any (not necessarily
solid) square grid there exists such a tour of length 1.325N ; these tours can
be computed in linear time.

A lot of effort has been devoted to establishing “simplest” classes of graphs
for which the HCP remains hard. The classical result in this direction is the
hardness of the problem in planar cubic graphs [60]. Another important step,
also taken in [60], is establishing that the HCP in planar cubic graphs remains
hard even if restricted to the graphs of girth 5. In this thesis we, in a sense,
extend this result by showing that the problem remains hard in planar graphs
of arbitrary girth g ≥ 6. Since the maximum possible girth of a planar cubic
graph is 5, instead of considering cubic graphs, we restrict our attention to
planar graphs of maximum degree 3.

Existence of multiple Hamiltonian cycles has been the subject of extensive
research too, see [64, Chapter 4] for a survey. Sufficient conditions on the
degrees of the vertices of a graph are known, under which the graph, if Hamil-
tonian at all, contains more than one Hamiltonian cycle: any vertex has odd
degree [120], any vertex has the same degree r > 48 [62], maximum degree is
bounded from below [73], the degree of any vertex in a part (of a bipartite
graph) is at least 3 [121] (and, in general, the number of Hamiltonian cycles
is at least exponential in the maximum degree [121]). Thomassen [121] also
considered bipartite graphs of large girth, and, as a counterpart to the above
results, showed that in a Hamiltonian cubic graph (or when the degree of any
vertex in a part is 4) the number of Hamiltonian cycles increases (at least)
exponentially as a function of the girth. All these conditions bound the min-
imum/maximum degree of the graph vertices from below and do not restrict
the graph to be planar. Here we show that there exist planar graphs of ar-
bitrary girth g ≥ 6, with maximum degree 3, having exactly 3 Hamiltonian
cycles.
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Definitions and Notation We say that a graph G = (V,E) is induced by
a set S ⊂ R2 if V = S, and E = {{i, j} | i, j ∈ S, |i − j| = 1}. Let Z∆ be the
infinite triangular lattice, i.e., the set of vertices of the tiling of R2 with unit
equilateral triangles. A triangular grid graph, or triangular grid, is a plane
graph induced by a subset of vertices of Z∆. Let G = (V,E) be a triangular
grid without degree-1 vertices. A bounded face f of G is called a hole if f
is not a unit equilateral triangle. Let h denote the number of holes in G. A
vertex v ∈ V is called a cut if its removal disconnects G; v is a local cut v
is a cut or if the number of holes in G \ v is less than h. A vertex v ∈ V
is called boundary if its degree is less than 6. The non-boundary vertices
of G (degree-6 vertices) are called internal vertices and denoted by V6. The
subgraph B of G induced by its boundary vertices, V \ V6, is a set of cycles
B = {C, C1, . . . , Ch}. The cycle C ∈ B that separates G from its unbounded
face is called the outer boundary. Each cycle in B \C = {C1 . . . Ch} bounds a
hole, i.e., is the boundary of a hole of G. Having no local cut means that the
cycles in B are simple and vertex-disjoint. Let the cost of B be the number
of edges in it.

For g ∈ N we denote by Gg the class of planar bipartite maximum-degree-3
graphs of girth g.

Results We show that the Hamiltonian cycle problem is NP-hard for trian-
gular grids, even if the grid has maximum degree 4. We prove that triangular
grids without local cuts are always Hamiltonian, with the exception of one
special graph, “The Star of David” (Fig. 69). Our proof is constructive, which
allows finding the Hamiltonian cycle in linear time. This has application in
computer graphics as it gives an efficient scheme for outputting triangulation
data.

We prove that for arbitrarily high g, the Hamiltonian cycle problem is NP-
complete for graphs from Gg. We also prove that for arbitrarily high g there
exist graphs in Gg that have exactly 3 Hamiltonian cycles.

7.5.1 Hamiltonian Cycle is NP-complete for Triangular Grids

Itai et al. [79] and Papadimitriou and Vazirani [105] proved that the HCP in
square grid graphs is NP-complete by a reduction from HCP in undirected
planar bipartite graphs with maximum degree 3 [79]. We follow the idea of
[79, 105] to show that the HCP in triangular grids is NP-complete.

Let G′ be an undirected planar bipartite graph with maximum degree 3; let
the nodes of G′ be 2-colored “black” and “white”. (We say that G′ has nodes
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Figure 69: The only non-Hamiltonian polygonal triangular grid graph: the
Star of David.

Figure 70: G′ and the embedding.

and arcs saving the terms vertices and edges for the triangular grid graph G
that we build from G′ as follows.) First, G′ is embedded in the plane, with the
arcs drawn by paths going at 0, 60 or 120 degrees to the x-axis, so that the
turn angles are 120o at each corner along an embedded polygonal arc (Fig. 70).
The embedding is then represented by a triangular grid graph G with nodes
and arcs simulated by the gadgets shown in Figure 71.

In detail, the nodes are represented by the unit triangles; the arcs are
simulated by “tentacles”. The triangles corresponding to the black (resp.,
white) nodes of G′ are called black (resp., white). A tentacle-arc is connected
to the black triangle with a “pin” connection (Fig. 72, left) and to the white
triangle with an “arm” connection (Fig. 72, right); the terms are borrowed
from [105].

The only means of traversing a tentacle is either by a return path (Fig. 73,
left) or by a (kind of a) cross path (Fig. 73, right). Of course, there may be
many different cross paths, but the essential difference between the return and
the cross paths is that the former connects the tentacle vertices aligned along a
line, while the latter “jumps back and forth” between the two lines that bound
the tentacle. The idea of the difference is that a cross path connects the two
node gadgets at its ends, while a return path just traverses the vertices in the
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Figure 71: The gadgets.
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Figure 72: A “pin” connection (left) and an “arm” connection (right). The
node gadgets are shown with hollow circles.

tentacle, returning to the same end from which it started.

Theorem 7.30. The HCP for triangular grid graphs is NP-complete.

Proof. If G′ has a Hamiltonian cycle, then G has one, which traverses the
black and white triangles of G in the order of the corresponding nodes of G′

in the cycle. It traverses by cross paths the tentacles that correspond to arcs
in the cycle. The remaining tentacles are picked up by return paths from the
adjacent white triangles.

Conversely, any Hamiltonian cycle C of G comes from a Hamiltonian cycle
of G′ in this way. Indeed, it is not hard to see, by inspection of Fig. 72, that
in C any triangle, representing a node of G′, is attached to exactly two cross
paths. ¤
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Figure 74: Left: Modified white triangle. Right: Modified turn of a tentacle.

Papadimitriou and Vazirani [105] also proved that the HCP in square grid
graphs is NP-complete even when restricted to graphs of maximum degree 3;
Buro [25] gave an alternative proof. Here we prove that the HCP in triangular
grids is NP-complete even when restricted to grids of maximum degree 4.

The graph G constructed in the proof of Theorem 7.30 has certain vertices
of degree 5, namely, the vertices of the white triangles and the inner points
of the angles of the tentacles. Figure 74 shows how the construction may be
modified so that the resulting graph has vertices of degree 4 or less.

Theorem 7.31. The HCP for triangular grid graphs with maximum degree 4
is NP-complete.

7.5.2 Triangular Grids without Local Cuts are Hamiltonian

Our proof of the hardness of the HCP in triangular grids (given in the previous
subsection) relied on the grid having local cuts: such are, e.g., the “black” ends
of the tentacles — the “pin” connections (Fig. 71, right). It turns out that
having local cuts is crucial for the hardness of the problem: as we prove below,
the HCP is polynomial in the triangular grids without local cuts. In fact, the
connectivity of a triangular grid is so high that, with the exception of one
particular graph (which we call the “Star of David”, Fig. 69), all triangular
grids without local cuts are Hamiltonian. Our proof is constructive and can
be turned into a linear-time algorithm, producing a Hamiltonian cycle though
the grid.

The crucial observations that we use are as follows: 1) One can attach to
the cycles in B all internal vertices at the cost of 1 per vertex; this way a cycle
cover of G is obtained, in which the cycles are vertex-disjoint. 2) A cover B
of G by vertex-disjoint cycles may be modified so that for any cycle Ci ∈ B
there exists a cycle Cj ∈ B, “facing” Ci (Fig. 75) — thus all the cycles may
be spliced into one, Hamiltonian, cycle through G. We formalize and prove
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Figure 75: Ci and Cj face each other: they can be spliced together by flipping
the opposite edges of the rhombus abcd.

these observations in the next two lemmas.

Lemma 7.32. Unless G is the Star of David, the cycles in B can be modified
into a set of cycles that visit all vertices in V6. The cost of the modification is
1 per vertex of V6.

Proof. We modify B by consistently applying three types of local modifications,
which we call the L-, V- and Z -modifications. Let B′ = {C ′, C ′

1, . . . , C
′
h} be the

cycles at any particular stage of the modification; we maintain the invariant
that C ′ is a simple cycle within G such that all of the vertices of G that have
not been visited by the cycles in B′ (i.e., V \ C ′ \ C ′

1 . . . \ C ′
h) are inside C ′.

Each modification adds one new vertex to a cycle in B′. The V-modification
is applied only when L cannot be applied; the Z -modification is applied only
when no other modification can be applied. The modifications are “monotone”
in that each modification will result in B′ visiting a superset of the vertices
that it previously visited.

We now describe the modifications. Let v ∈ V6 \B′ be an unvisited vertex.
The L-modification is applied as long as there exists a unit equilateral triangle
abv such that ab is an edge of a cycle in B′ (Fig. 76). The V-modification is
applied only when L cannot be applied and B′ goes around v like in Figure 77,
left; the modified B′ is shown in Fig 77, right. Finally, the Z -modification is
applied only when none of L, V can be applied and B′ goes around v like in
Figure 78, left; the modified B′ is shown in Fig 78, right.
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Figure 76: The L-modification. v is the hollow circle.

Figure 77: The V-modification. v is the hollow circle.

We introduce some simple definitions. Let u ∈ B′ be a vertex visited by a
cycle in B′. We say that u is a wide (resp., sharp) wedge if B′ makes a 120o

(resp., 60o) turn at u (Fig. 79).
We now proceed to showing that all vertices in V6 can be attached to B′

as claimed. Suppose that at some stage none of the modifications L, V, or Z
can be applied, but B′ does not yet go through all vertices in V6. Then, since
G is connected, there exists a vertex v ∈ V6 \ B′ such that at least one of the
neighbors of v (say, u) is a vertex of B′. Observe that the degree of v in G is 6,
for otherwise v is a boundary vertex and a cycle in B has been going through
v from the very beginning.

Since L cannot be applied, none of the edges of the hexagon that “sur-
rounds” v is in B′ (Fig. 80, left). Since u is in B′, at least one of the edges
1,2 in Fig. 80, left, must be in B′. Since L cannot be applied, at least one of
the vertices that adjacent both to v and u must be in B′ (say, the edge 1 in
Fig. 80, left, is in B′, so the vertex s is in B′ (Fig. 80, right)).

Consider three cases:

Case I: s is a sharp wedge like in Fig. 81, left. Then V can be applied
to attach v to B′ (Fig. 81, right).

Case II: s is a sharp wedge like in Fig. 82, left. Then Z can be applied

Figure 78: The Z -modification. v is the hollow circle.
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Figure 79: A wide (left) and a sharp (right) wedges.

u

v

1

2

u

v

s

Figure 80: Left: none of the crossed edges may be in B′. At least one of the
edges 1,2 (say, 1) is in B′. Right: then s ∈ B′.

s
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Figure 81: s is a sharp wedge, and a V may be applied.
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Figure 82: s is a sharp wedge, and a Z may be applied.
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Figure 83: Left: s is a wide wedge. Right: then t ∈ B′, for otherwise L could
be applied.

to attach v to B′ (Fig. 82, right).

Case III: s is a wide wedge (Fig 83, left). Then, since L can not be ap-
plied, the vertex t (Fig. 83, right), adjacent to both v and s, is in B′.

Now, by considering the same three cases of how B′ goes through t, one may
conclude that, unless t is a wide wedge (Case III), v can be attached to B′ at
the cost of 1. But if t is a wide wedge (Fig. 84, left), then, since L can not
be applied, the vertex x, adjacent to both v and t, is in B′ (Fig. 84, right).
Considering the three cases of how B′ goes through x, we conclude that x is
a wide wedge too, the vertex, adjacent to both v and x is in B′, and is also a
wide wedge. Continuing, we see that if v can not be attached to B′ at the cost
of 1, the part of B′ that goes around v is one cycle, C, which is the boundary
of the Star of David. Since v is a vertex of G, the cycle C does not surround a
hole in G, thus it is the outer boundary of G, and G is the Star of David. ¤

An interesting corollary from the above lemma is that G admits a cycle
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Figure 84: Left: t is a wide wedge. Right: then x ∈ B′, for otherwise L could
be applied.

cover by vertex-disjoint cycles.

Corollary 7.33. Unless G is the Star of David, G admits a cycle cover of
cost |V |.

We prove now that any cycle cover of G by vertex-disjoint cycles can be
spliced together into one, Hamiltonian, cycle through G. We do it by showing
that the cycle cover may be modified, by local modifications, into another cycle
cover, in which there exist two cycles that “face” each other.

Definition 7.34. Let Ci, Cj be two cycles in G. We say that Ci, Cj face each
other if there exists a unit rhombus abcd, a, b, c, d ∈ V with ab ∈ Ci, cd ∈ Cj

(see Fig. 75).

Lemma 7.35. Let B be a set of vertex-disjoint cycles going through all vertices
of G. Then there exists two cycles in B that can be modified into cycles that
face each other.

Proof. Since G is connected, there must exist two vertices, u and v, adjacent in
G, belonging to different cycles, say u ∈ Ci, v ∈ Cj. Since G is local-cut-free,
one of the nodes of the grid, adjacent to both u and v, must be in G (Fig. 85).
In other words, there must exist a unit equilateral triangle uvx within G whose
vertices are visited by more than one cycle in B.

Consider two cases:

Case I: one of the edges of the triangle belongs to a cycle in B, Fig. 86, left.
Suppose that ux ∈ Ci, v ∈ Cj. If any of the crossed edges in Fig. 86, left,
is in B, then the cycles Ci and Cj already face each other without any
modifications, so, suppose, the crossed edges are not in B. This leaves
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u x
v

Figure 85: u ∈ Ci, v ∈ Cj. x ∈ G.

u x
v
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u x
v
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u x
v

Cj

Ci w

Figure 86: Left: ux ∈ Ci, v ∈ Cj, crossed edges are not in B. Center: the
edges of Cj adjacent to v may be deduced; crossed edges are not in B. Right:
w ∈ G.

only two edges of G that could be adjacent to v in B (Fig. 86, center).
This, in turn, implies that if any of the edges, crossed in Fig. 86, center,
are in B, then Ci and Cj face each other; so suppose the crossed edges
are not in B.

For v not to be a local cut, at least one of the vertices of the grid that
are at distance 1 from v and are at the same horizontal line as v, must
be in G; suppose, without loss of generality, that it is a vertex w to the
right of v (Fig. 86, right). If B goes through w as in Fig. 87, left, a
Z -modification may be applied to Cj to have Ci and modified Cj face
each other (Fig. 87, center). So, we may assume that the crossed edges
in Fig. 87, right, are not in B. Let’s consider how B may go through w.

Suppose that B goes through w as in Fig. 88, left or Fig. 88, center. If
w ∈ Ck 6= Ci, then Ci and Ck already face each other; so, suppose that
w ∈ Ci. Then the modifications as in Fig 89, left and Fig 89, center,
lead to modified Ci and Cj facing each other. Finally, if B goes through
w as in Fig. 88, right, a modification as in Fig. 89, right, leads to the
desired result.

Case II: none of the edges of the triangle belongs to a cycle in B. In other
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Figure 87: Left and center: A Z leads to the cycles facing each other. Right:
so, assume all crossed edges are not in B.
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Figure 88: Different ways in which the B may go through w. Left and center:
If w /∈ Ci, we already have facing edges.
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Figure 89: The modifications depending on how B goes through w in Fig. 88.
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Figure 90: Cu 6= Cv 6= Cx.

words, u, v, x belong to different cycles, say Cu, Cv, Cx. If one of the
edges, crossed in Fig. 90, left, is in B, then we are in Case I; so suppose
that none of the crossed edges is in B. This leaves, for each of u, v, x,
only two edges of the grid that are possibly adjacent to the vertex in B
(Fig. 90, right). Since G has no local cuts, at least 1 other vertex adjacent
to a crossed edge is in G (in fact, at least 2). Suppose y ∈ G (Fig. 90.
right). Now, no matter how B visits y, we can find facing cycles. Indeed,
if y ∈ Cu or y ∈ Cx, then we are in Case I. Otherwise, the cycle, that y
belongs to, faces both Cu and Cx.

¤

Thus, starting from the boundary cycles of G, one may apply the modifi-
cations as in Lemma 7.32 and then as in Lemma 7.35 to get a Hamiltonian
cycle through G. This is our main result:

Theorem 7.36. Except for the Star of David (Fig. 69), any triangular grid
without local cuts is Hamiltonian and a Hamiltonian cycle in it may be found
in linear time.

Some work in computer graphics focused on finding long cycles through
triangular meshes (see, e.g., [51, 26, 42]). We feel that the following corollary
may have important applications.

Corollary 7.37. Let M be a triangulated manifold, whose connectivity is at
least that of the triangular grid. Then, if M has no local cuts, there exists a
Hamiltonian cycle through the vertices of M , and the cycle can be found in
linear time.

7.5.3 Hamiltonian Cycles in High-Girth Graphs

Our results in this subsection come from an attempt to prove the hardness of
the HCP in “hexagonal” grid graphs. Similarly to the square and triangular
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Figure 91: The infinite hexagonal grid.

grids, we may consider tiling of the plane with regular unit-side hexagons
(Fig. 91); we say that the vertices of the tiling form the infinite hexagonal
grid. A hexagonal grid graph, or hexagonal grid is induced by a subset of the
vertices of the infinite hexagonal grid: the vertices of the graph are the grid
vertices in the subset, the edges connect vertices that are at distance 1.

To show that the HCP in high-girth graphs is NP-complete we, as in Sec-
tion 7.5.1, follow the idea of [79, 105] and reduce from the HCP in planar
bipartite graphs of maximum degree 3 [79]. Let G′ be an undirected planar bi-
partite graph with maximum degree 3; let the nodes of G′ be 2-colored “black”
and “white”. As before, G′ is embedded in the plane, with the arcs drawn
by paths going at 0, 60 or 120 degrees to the x-axis, so that the turn angles
are 120o at each corner along an embedded polygonal arc (Fig. 92). Then,
we try to represent the embedding by a hexagonal grid graph. Although we
do not succeed in it, we use the gadgets of the (incomplete) representation to
construct the high-girth graph G such that G is Hamiltonian if and only if G′

is.
As in [79, 105] and Section 7.5.1, the arcs of G′ are represented by tentacles

(Fig. 93). The only means of traversing a tentacle is either by a cross path
(Fig. 94) or by a return path (Fig. 95). A cross path connects the two node
gadgets at its ends, while a return path just traverses the vertices in the
tentacle, returning to the same end from which it started.

We represent a white node of G′ by the white-node gadget (Fig. 96). As
soon as two edges that pick up the central vertex of the gadget are decided,
the gadget becomes incident to two cross paths and one return path (Fig. 97).
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Figure 92: G′ and the embedding.

Figure 93: The tentacle.

Figure 94: The cross path.

Figure 95: The return path.

132



Figure 96: The white-node gadget.

A black node of G′ is represented by the black-node gadget (Fig. 98). As
soon as two edges that pick up the central vertex of the gadget are decided, the
gadget becomes incident to two cross paths and have one return path “close”
inside the gadget (Fig. 99).

Observe (Figs. 97, 99) that the return paths are consistent in that they
“originate” at a white node and “close” at a black node.

To complete the reduction it is necessary to show how to turn the tentacles.
Unfortunately, turning our tentacles within the hexagonal grid is impossible
(due to a parity conflict). However, if we stop working in a hexagonal grid
and consider graph G just as an abstract planar graph, then turning is not an
issue at all (Fig. 100).

Lemma 7.38. The HCP in planar graphs of maximum degree 3 and girth 6
is NP-complete.

Proof. The “building blocks” of the graph G — tentacles and node gadgets
— come from the hexagonal grid, which has maximum degree 3 and girth 6.
(The only part of G that did not come from the hexagonal grid is the turn of a
tentacle (Fig. 100), but, clearly, it did not introduce vertices of higher degree
or short cycles.) Thus, the maximum degree of G is 3 and its girth is 6.

By construction, Hamiltonian cycles in G are in one-to-one correspondence
with Hamiltonian cycles in G′. Indeed, as in [79, 105] and Section 7.5.1, cross
paths in G correspond to the edges of G′ that are in a cycle; the edges of
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Figure 97: A white-node gadget is incident to two cross paths and one return
path.
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Figure 98: The black-node gadget.

G that are not, are picked up by return paths from the adjacent white-node
gadgets. ¤

Theorem 7.39. For arbitrary g ≥ 6, the HCP in planar graphs of maximum
degree 3 and girth g is NP-complete.

Proof. Let E2 be the edges of G that are adjacent to degree-2 vertices; call
these edges black. (In fact, these are the black edges that are drawn in Figs. 93,
96, and 98; black edges must participate in any Hamiltonian cycle in G.)
Replace every edge in E2 with a path of length g; each vertex in the path is
of degree 2. Make every tentacle long, so that it has at least g “wiggles” (see
Fig. 93). Call the resulting graph Gg. By construction, Gg is planar and its
maximum degree is 3.

Claim 7.40. The girth of Gg is at least g.

Proof. Let E1 be the edges of G that are not black (so, call them white). The
edges of Gg may also be called white and black: white edges are those that
correspond to white edges of G, and black — those that appeared as a result
of subdividing black edges of G. Any cycle in Gg that uses a black edge has
length more than g. It is not hard to see (Figs. 93, 96, and 98) that any cycle
within a tentacle or a node gadget has to use black edges. Finally, a cycle
in Gg, consisting solely of white edges and going through two or more node
gadgets, has to traverse a tentacle and thus, has length greater than g. ¤
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Figure 99: A black-node gadget is incident to two cross paths and one return
path.
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Figure 100: Turning a tentacle is not an issue in the abstract graph setting.

Hamiltonian cycles in Gg map one-to-one into Hamiltonian cycles in G, and,
thus, into Hamiltonian cycles in G′. Hence, Gg is Hamiltonian if and only if
G′ is. ¤

As a by-product of our reduction we obtain, for any g ≥ 6, a one-to-one
mapping between Hamiltonian cycles in planar bipartite graphs of maximum
degree 3 and Hamiltonian cycles in planar girth-g graphs of maximum degree
3. This allows one to reason about Hamiltonian cycles in the latter in terms
of the Hamiltonian cycles in the former. For instance,

Theorem 7.41. For any g ≥ 6 there exist planar girth-g graphs of maximum
degree 3 that contain exactly 3 Hamiltonian cycles.

Proof. The (planar, bipartite, maximum-degree-3) graph G′ in Fig. 101 has
exactly three Hamiltonian cycles (Fig 102). Thus, the high-girth graph, con-
structed from G′ by the procedure in our reduction, also has exactly three
Hamiltonian cycles. ¤

137



Figure 101: G′.

Figure 102: The 3 Hamiltonian cycles in G′.
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8 Conclusion and Open
Problems

We considered the problem of finding shortest non-crossing thick paths in
polygonal domains. We presented polynomial-time algorithms for the prob-
lem in simple polygons, and showed NP-hardness for polygonal domains with
holes. For the latter case we suggested an algorithm, whose running time
is exponential in the number of holes, but is polynomial in the other input
parameters.

We studied minimum-cost flows in geometric environments. We formu-
lated and proved a continuous analog of the Flow Decomposition Theorem:
a minimum-cost flow may be decomposed into a set of (thick) paths. The
theorem allowed us to apply our algorithms on finding thick paths to obtain
the first algorithmic results for the minimum-cost flow problem.

For the problem of routing the maximum number of thick paths, we proved
a continuous Megner-type result, the Discrete Continuous MaxFlow-MinCut
Theorem: the maximum number of thick paths in a polygonal domain equals
to the shortest path in the thresholded critical graph of the domain. We also
gave algorithms for finding monotone paths and flows.

The ATM motivates studying dynamic and stochastic versions of path plan-
ning. It remains open to solve the flow/paths problems in higher dimensions, in
particular, in the (x, y, t)-space. Our algorithms work in the rectilinear world,
but do rectilinear paths/flows approximate arbitrary ones well? The first steps
in this direction would be to consider the problems on two-dimensional mani-
folds in 3D, and on unions of such manifolds.

Another relevant issue is estimating the capacity of an airspace close to an
airport. This brings up the problem of finding a maximum flow in a circular
annulus. By bridging each hole, in turn, to the inner circle of the annulus, we
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can compute the maxflow in O(n3) time. Is O(n2) algorithm possible?
It seems, that despite its importance, the problem of finding a thick wire

(a non-self-overlapping thick path) has not been solved.
Finally, an important open problem is that of finding optimal constrained

paths, e.g., polygonal paths with no sharp angles.
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A Appendix: Proof of
Lemma 3.2

Lemma 3.2. π∗2 ∩ τ = ∅.

Proof. We begin by restating some known results about the structure of bdP 1,
bd(B)2 and bd(T )2.

Proposition A.1. bdP 1 may be decomposed into alternating sequence of straight
line segments and circular arcs of radius (curvature) 1.

Proof. bdP 1 is the locus of points which are at distance exactly 1 from (a point
of) the boundary of P . Consider a short contiguous subset S of bdP 1. Since
distance is a continuous function, S may be taken short enough to have all
its points be at distance 1 from the same feature (edge or vertex) of P . If all
the points in S are at distance 1 from the same point v (vertex) of P , then S
is a circular arc centered at v. If different points in S are at distance 1 from
different points in P , then the latter points lie on the same edge e of P and
thus S is a straight line segment parallel to e.

By taking the maximal subsets of bdP 1, which are at distance 1 from the
same feature of P , we obtain the decomposition of bdP 1 as claimed. ¤

Lemma A.2. bd(B)2 and bd(T )2 each may be decomposed into alternating
sequence of straight line segments and circular arcs of radius 3.

Proof. Similar to the proof of Proposition A.1. ¤

To prove Lemma 3.2, we will consider the parts of τ induced by different
parts of π∗1 one by one.
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Proposition A.3. s2 /∈ τ .

Proof. By construction of (B)2, s2 is “padded” by a layer of (B)2 of thickness
2. Thus, π∗1 is kept away from s2 by at least 2. ¤

Similarly,

Proposition A.4. t2 /∈ τ .

Thus, π∗2 “enters” and “exits” τ the same number of times. Since both s2

and t2 lie above π∗1, the entry and exit points of interest lie on bdτ . Let r1

and r2 be the first points of entry and exit. We will replace the subpath of π∗2
between r1 and r2 by the part of bdτ and show that the new path is shorter
(the new path will still be feasible since it goes by the boundary of τ).

By Lemma A.1 the boundary of P 1 consists of straight line segments and
circular arcs of radius 1. By Lemma A.2 the boundary of (T )2 consists of
straight line segments and circular arcs of radius 3. We may think of π∗1 as
of a string “pulled taught” against P 1 and (T )2. This means that π∗1 may
be decomposed into a sequence of subpaths, each of which either follows the
boundary of P 1 or (T )2, or is a straight line segment bi-tangent to reflex
portions of P 1 and (T )2. Consequently, π∗1 may be decomposed into a sequence
of alternating maximal straight line segments and circular arcs of radii 1 and 3;
the straight line segments are bi-tangent to the consecutive arcs in the sequence.
Finally, the boundary of τ will consist of circular arcs of radius 1 following
P 1(s1, s2), circular arcs of radius 3 following B2 and straight line segments
connecting the arcs. To prove π∗2 ∩ τ = ∅ we consider different portions of bdτ
one by one.

The part of bdτ induced by the part of π∗1 running along P 1(s1, s2) is of
no interest to us. Indeed, crossing such a part of bdτ by π∗2 cannot be done
without first crossing bdτ somewhere else, closer to t1, see Figure 103.

Consider the part of bdτ induced by the part of π∗1 running along B (Fig.
104). The parts of π∗1 following bdP 1 are “padded” by a layer of (B)2 of thick-
ness 2 and thus π∗2 cannot intersect bdτ there at all. Let now ab ( a, b ∈ (B)2)
be the segment of bdτ to which r1 belongs. Let a∗ (resp., b∗) be a projection
of a (resp., b) on P 1. Since b∗ − P 1(b∗, a∗) − a∗ − a− b − b∗ is a closed curve,
the only way for π∗2 to come back onto bdτ is through the segment ab again,
i.e., r2 ∈ ab. Thus, replacing the part of π∗2 from r1 to r2 by the segment r1r2

only makes the path shorter.
Finally, consider the part of bdτ induced by a portion of π∗1 running along

(T )2 together with segments from and to P 1 (Fig. 105).
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Figure 103: Part of bdτ near P 1(s1, s2).

Figure 104: Part of bdτ near (B)2.
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Figure 105: τ near (T )2.

Observe that π∗2 certainly does not intersect π∗1. Otherwise the part of π∗2
between consecutive points of intersection with π∗2 could have been replaced
by the corresponding part of π∗1. Indeed, there is no obstacle for π∗1 inside the
closed curve π∗1 − P 1(t1, s1) (only P 1 itself but it is also an obstacle for π∗2),
and π∗1 is the shortest path. Thus, since π∗2 is “pulled taught” against P 1 and
(B)2, it may enter τ only to reach a point of bdP 1 or bd(T )2 inside τ .15 Let’s
have a closer look at such possible point of entry.

Case I: π∗2 reaches bdP 1. Suppose π∗2 enters τ with a segment cv to reach
bdP 1 at point v. Let u be the vertex of P such that v ∈ bd(u)1, i.e., u
is the vertex “responsible” for creating the part of bdP 1 in question; let
au and bu be the edges of P incident to u. Without loss of generality,
suppose that cv is vertical, v is below c and u is to the left of l — the
supporting line of cv, Figure 106. For cv to (be the first segment of
π∗2 to) intersect bdτ there should exist a point p ∈ π∗1 inside C — the
quarter-circle of radius 2 centered at v.

By the local optimality conditions, after leaving bdP 1, π∗2 goes by or to

15In terms of the visibility graph V G
(
P 1 ∪ (T )2

)
(containing the shortest paths among

P 1 and (T )2 as obstacles), it means that there is a valid visibility edge uv ∈ V G
(
P 1 ∪ (T )2

)
,

u, v ∈ P 1 ∪ (T )2, such that u /∈ τ , v ∈ τ (see [29, 89, 123] for discussion of the visibility
graphs for planning shortest paths among obstacles bounded by circular arcs and straight
line segments).
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Figure 106: π∗2 reaches for bdP 1.

the left of l. For π∗1 not to intersect π∗2 there should exist an obstacle
O inside C, diverting π∗1 from bumping into π∗2 (Fig. 107). Consider all
possible subcases:

O ⊆ P 1(s1, s2), Figure 108. As can be seen from the Figure, this can not
be the case as the boundary of P 1 can not go as shown (s1, s2, t2, t1
must appear in this order when following bdP 1 clockwise).

O ⊆ (T )2, Figure 109. Impossible, similarly to the previous case.

O ⊆ P 1(t1, s1), Figure 110. In this case O is padded by a layer of B2 of
thickness 2, which serves as obstacle for π∗2. Thus, π∗2 cannot pass
by as in the Figure since v ∈ π∗2 is closer than 2 to p.

Thus, it is not possible that π∗2 enters τ to reach bdP 1.

Case II: π∗2 reaches bd(B)2. Let, again, cv be the vertical segment of π∗2
touching (B)2 at point v (Fig. 111). For cv to (be the first segment of
π∗2 to) intersect bdτ there should exist a point p ∈ π∗1 inside R — the
rectangle of width 2 with the base at cv. For π∗1 not to intersect π∗2 there
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should exist an obstacle O inside R, diverting π∗1 from bumping into π∗2.
Consider all possible subcases:

O ⊆ P 1(s1, s2), Figure 112. As can be seen from the Figure, this can not
be the case as the boundary of P 1 can not go as shown (s1, s2, t1, t2
must appear in this sequence along bdP 1).

O ⊆ (T )2, Figure 113. Impossible, similarly to the previous case.

O ⊆ P 1(t1, s1), Figure 114. In this case O is padded by a layer of B2 of
thickness 2, which serves as obstacle for π∗2. Thus, π∗2 cannot pass
by as in the Figure since it is closer than 2 to p.

Thus, it is not possible that π∗2 enters τ to reach bd(B)2. This completes the
proof. ¤
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Figure 109: O ⊆ (T )2. The scale is not kept.
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Figure 113: O ⊆ (T )2. The scale is not kept.
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