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Abstract of the Dissertation

Analysis and Design of Genomic Sequences

by

Dimitris Papamichail

Doctor of Philosophy

in

Computer Science

Stony Brook University

2007

Genomic sequences contain genetic information for the development and func-

tioning of living organisms. Sequence variability can be used both to determine

organism identity and as a tool to alter function.

Although microorganisms dominate the biosphere, most have not been

identified or studied. In this dissertation, we present an oligonucleotide (k-

mer classification method based on conditional probabilities, which performs

substantially better than other known methods and can be used to identify

bacterial species, even from mixed populations, using modest amounts of sam-

ple sequence [96].

Here we also deal with the problem of population analysis, leading to de-

termination of diversity and function of members of microbial communities

[72]. We develop homology based tools for robust phylotype determination,

enhancing closely related sequence associations, and a methodology for achiev-

ing more accurate richness estimation, using different clustering criteria [95].

The emerging field of synthetic biology is broadly defined as the intersection

of biology and engineering that focuses on the modification or creation of novel

biological systems that do not have a counterpart in nature. Working with
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the group that achieved the first genome-level synthesis of a virus, we have

designed, synthesized, and evaluated new variants of poliovirus to serve as

vaccines. Specifically, we sought weakened but viable strains that could be

used for preparations of a killed poliovirus vaccine. Our designs result in a

virus with roughly 100-fold lower specific infectivity than the wildtype virus.

Here we detail the theory behind gene design in the context of optimizing a

DNA sequence for particular desired properties while simultaneously coding

for a given amino acid sequence [87].

We have also explored the problem of designing the provably shortest ge-

nomic sequence to encode a given set of genes by exploiting alternate reading

frames. We have developed an algorithm for designing the shortest DNA se-

quence simultaneously encoding two given amino acid sequences. We have

shown that the coding sequences of naturally occurring pairs of overlapping

genes approach maximum compression, as well as investigated the impact of

alternate coding matrices on overlapping sequence design [129].

iv



Contents

List of Tables ix

List of Figures xi

Acknowledgements xiii

1 Introduction 1

1.1 Sequence Classification and Analysis . . . . . . . . . . . . . . 2

1.2 Genomic Sequence Synthesis . . . . . . . . . . . . . . . . . . . 4

I Genomic Sequence Analysis 7

2 Oligonucleotide Classification of Microbial Genomic Se-

quences 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Identifying the Origin of Contiguous Sequences . . . . . . . . 14

2.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . 15

2.2.2 Correcting for Repeated Strains . . . . . . . . . . . . . 17

2.3 Dealing with Fragmented Sequences . . . . . . . . . . . . . . . 20

2.4 Phylogenetic Classification from k-mer Distributions . . . . . . 22

v



2.4.1 Identifying Bacteria with Known k-mer Statistical Dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Identifying Bacteria in the Absence of Statistical Infor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Identifying Bacteria from Mixed Samples . . . . . . . . . . . . 27

2.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Conditional Probability Classifier . . . . . . . . . . . . 30

2.6.2 Clustering and Grouping . . . . . . . . . . . . . . . . . 31

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Local Alignment Classification for Analyzing the Poplar Rhi-

zosphere 34

3.1 Genomic Sequence Classification . . . . . . . . . . . . . . . . . 37
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Chapter 1

Introduction

Bioinformatics is a field that derives knowledge from computer analysis of

biological data. This data can consist of information stored in the genetic

code, but also experimental results from various sources, patient statistics,

and the scientific literature. Research in bioinformatics includes development

of methods for the storage, retrieval, and analysis of data. Bioinformatics is

a rapidly developing branch of biology and is highly interdisciplinary, using

techniques and concepts from informatics, statistics, mathematics, chemistry,

biochemistry, physics, and linguistics. It has many practical applications in

different areas of biology and medicine.

In this dissertation we will concentrate in two major branches of bioinfor-

matics. The first is sequence analysis, as in classification, phylogenetic analysis

and motif finding. The second is sequence design and synthesis.

In the course of my studies I have collaborated with two groups of bi-

ologists: One headed by Dr. van der Lelie in the Biology Department of

Brookhaven National Laboratory (BNL) and the other headed by Professor

Eckard Wimmer in the Microbiology Department of SUNY at Stony Brook.

The BNL group seeks analysis of microbial populations and phylogeny deter-

mination of microorganisms associated with plants, either endophytically or in
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their rhizosphere. With the second group we have designed, synthesized and

analyzed an array of viral segments/genes, for the purposes of attenuating the

translation of these viruses and creating candidate vaccines.

1.1 Sequence Classification and Analysis

Phylogenetic methods can be used for many purposes, including analyzing

morphological and molecular data. Here we concentrate on the analysis of

DNA and RNA sequences.

In the first part of this dissertation, we will attempt to answer the following

question:

How can we conduct a census of the members of a bacterial commu-

nity, when the overwhelming number have never been sequenced?

In this problem the input is sequence data from random samples of one or

more communities, and the output expected is (1) the determination of the

phylogenetic groups present and (2) how these groups change under different

environmental conditions. With the motive of global warming, answering this

question today is more crucial than ever.

Although there are several techniques and tools for discovering the origin of

sequences, they cannot detect genomic fragments not resembling anything reg-

istered in databases, especially when these fragments are randomly extracted

and are not associated with some known gene or area of a genome. But

hope comes from the results of Sandberg et al. [109], who investigated the

identification of bacterial genomic sequences with the aid of oligonucleotide

distributions instead of sequence matching. Using a näıve Bayesian classifier

and the fact that the oligonucleotide distribution of an organism comprises

a “genomic signature”, capable of distinguishing among different taxa while

varying very little intergenomically, random fragments can now be classified

2



to their closest known sequenced relative. Here we enhance this classification

method by exploiting the overlapping nature of oligonucleotides, as well as

explore the identification possibilities in mixed populations.

There are methods to assay complex microbial communities other than

extracting random genomic fragments however. One of the most common is

targeting well known, universally distributed, functionally constant and con-

served regions, such as the ribosomal RNA genes. Using taxonomically specific

primers, meaning conserved oligonucleotides at certain locations of such genes,

one can isolate a large number of samples with minimum amount of sequenc-

ing and a well defined target in each sample. Approximate sequence matching

techniques work accurately to identify the origin of these genes, having tens

of thousands of reference sequences available to compare them to. We used

such techniques for a large scale phylogenetic analysis project, aiming to ob-

serve microbial population changes under conditions of elevated atmospheric

CO2. By parameterized approximate local alignment and significance evalua-

tions of classification assignments, we analyzed the major groups involved in

the changes observed under conditions of elevated CO2. We also determined

the richness and diversity of these populations, using provably accurate and

robust clustering techniques.

In several occasions a microbiologist acts as an investigator, trying to solve

a case using clues and arguments, based on evidence and proof. In the case of

Photorhabdus luminescens, an effective killer of insects and potential source of

effective insecticide toxins, the case involved the discovery of outer membrane

porin proteins and associated regulatory RNA genes. Using motif searching

and pattern matching techniques, several “suspects” were identified and an-

alyzed in the search for the ideal candidate fitting the profile. Despite our

efforts, the micF regulatory antisense RNA gene seems absent from P. lumi-

nescens, a fact that is supported by the life cycle and symbiotic relationships

3



of the bacterium.

1.2 Genomic Sequence Synthesis

Genomic synthesis is signaling a new area of research that combines science

and engineering in order to design and build novel biological functions and

systems. Biologists are interested in learning more about how natural living

systems work. One direct (but not always simple) way to test our current

understanding of a natural living system is to build an instance (or version) of

the system in accordance with our current understanding of its functionality.

This way we can test a hypothesis on a complex system, adjusting only a few

controls.

From an engineering point of view, biology can be viewed as a technology.

Synthetic Biology includes the broad redefinition and expansion of biotech-

nology, with the ultimate goals of being able to design and build engineered

biological systems that process information, manipulate chemicals, fabricate

materials and structures, produce energy, provide food, and maintain and en-

hance human health and our environment. The reverse engineering of nature

may often oversimplify the mechanisms governing bio-processes, but discovers

major principles building a block at a time, often recovering details in its way.

In this part of the dissertation we will attempt to answer the following

question:

How can we rapidly create a vaccine for a new viral disease?

This problem expects as input the genome of a virus, while it returns a

design of a “better” virus, to serve as a vaccine. The need and motives for

the existence of such a methodology are obvious, however it is only today that

synthesis technologies have advanced to such a degree that low cost and high

efficiency permit its development.
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RNA viruses is the largest virus group; it contains some of the most dreaded

human pathogens, like HIV, Ebola, SARS and Influenza. High mutation rates

confer high adaptability to changing conditions and environments and they es-

cape from human intervention using drugs, leaving few effective treatment op-

tions. Weakening a pathogenic virus to a degree that is safe for human adminis-

tration while retaining ability to elicit protective immune response creates live

attenuated virus vaccines. But the process of passaging the pathogenic virus

through diverse non-human cell cultures and animal hosts in order to acquire

mutations and adapt to new host conditions, so that it loses its pathogenic

potential in humans, is poorly defined, costly and time consuming.

In this dissertation we demonstrate methods to engineer attenuated stable

virus vaccines by introducing synonymous mutations to alter the translation

efficiency of the virus. Using the ideas of species-specific codon bias and the

effects of altered codon distribution towards underrepresented codons in hu-

mans, we synthesized capsid proteins that translate minimally, while encoding

for the same capsid proteins and thus eliciting a robust immune response.

Codon pair bias was discovered in prokaryotic cells, but has since been

seen in all other examined species, including humans, and has high statistical

significance. To investigate the effects of altered codon pair distribution we de-

signed and synthesized optimized poliovirus capsid encodings, using over- and

under-represented human codon pairs. The algorithms we developed for de-

signing these novel sequences were used to embed/remove patterns, secondary

structures, and altering the codon and codon pair distributions. Since hetero-

geneous combinations of such preferences lead to computationally intractable

(NP-complete) problems, the simulated annealing heuristic was employed to

realize our designs.

Another problem we explore here is the design of the provably shortest ge-

nomic sequence to encode a given set of genes by exploiting alternate reading

5



frames. We present a dynamic programming algorithm for designing the short-

est DNA sequence simultaneously encoding two given amino acid sequences.

We show that the coding sequence of naturally occurring pairs of overlap-

ping genes approach maximum compression and we investigate the impact of

alternate coding matrices on overlapping sequence design.
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Part I

Genomic Sequence Analysis
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Chapter 2

Oligonucleotide Classification of

Microbial Genomic Sequences

2.1 Introduction

Microorganisms are the largest reservoir of genetic and biochemical diversity

on earth. Understanding the structure, functional roles, and diversity of com-

plex communities of microbes is key to using their wide-ranging capabilities.

Microorganisms dominate the biosphere, yet most have not been identified

or studied. Traditional methods for culturing and characterizing microorgan-

isms limit analysis to those that will grow under laboratory conditions, which

represent less than 1% of all microorganisms. The recent surge of research

in molecular microbial ecology provided compelling evidence for the existence

of many novel types of microorganisms in the environment in numbers and

varieties that dwarf those of the comparatively few amenable to laboratory

cultivation.

There is currently no effective technology to assay the relative abundance

of complex microbial communities. Probe-based methods such as microarrays

This chapter is drawn from our paper [96].
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can only hope to detect species which have already been at least partially

sequenced; but these represent a vanishingly small fraction of the millions of

microbial species. The genomic sequence tag (GST) approach, pioneered by

Dunn et al. [33], promises to make such analysis possible for the first time. It

has important applications in many areas of the life sciences, but particularly

in ecological and medical research.

Genomic sequence tags (GSTs) are short (e.g. 21 base) sequence fragments

sampled more or less at random from microbial genomes in the given pop-

ulation. Such tags are inexpensive to assay, yet long enough to allow for

straightforward species identification against sequence databases. However,

such identification techniques cannot hope to identify non-sequenced species,

which will constitute the vast majority of microbes into the foreseeable future.

Hope comes from the intriguing results of Sandberg et al. [109], who in-

vestigated identifying bacterial genomic sequences using k-mer distributions

instead of sequence matching. They found that microbial species could be

correctly identified with an accuracy of approximately 85% from k-mer distri-

butions from sequence samples as short as 400 bases. In this chapter, we build

on these observations in several directions:

• Improved Classification Method – We give a classification method based

on conditional probabilities which performs substantially better than the

method of Sandberg et al. [109] when using small amounts of sample

sequence. In particular, our conditional probability approach improved

species identification accuracy by up to 20% for short sequence segments

(35bp) over the naive Bayesian classifier. These results are significant,

because the cost of an assay increases linearly with the amount of re-

quired sequence.

• Accurate Recognition Using Fragmented Sequence Data – We demon-

strate that k-mer analysis of short sequence tags is more effective than

9



analysis of equivalent amounts of contiguous sequence. These results are

fortuitous, because they imply that our results can be readily applied

to GST and long SAGE [106, 126] assays. They are also surprising, be-

cause (1) fragmentation inherently reduces the information available for

k-mer analysis, and (2) individual short tags have a low (between 5-8%)

sequence-recognition specificity, as shown in Table 1.

• Signature Analysis for Unsequenced Species – Recognizing new and unse-

quenced species is critical to tagging-based population analysis. Success

depends upon the extent to which k-mer distribution is preserved among

related strains and higher order classifications (order and genus).

We demonstrate that k-mer distributions are well-preserved among re-

lated strains/species, by demonstrating that bacterial genomes can be

clustered into natural groups according to k-mer distribution similarities.

In particular, we demonstrate that we can obtain both coarse phylo-

genetic relationships [34] and fine information from analyzing genomic

signatures.

We give accurate methods of identifying the order, genus and species

of unsequenced bacteria from short tags. In particular, we show that

unsequenced bacterial species can be accurately identified with respect

to the 16S ribosomal RNA phylogenetic information on the basis of short

tags.

• Frequency Analysis of Mixed Populations – We demonstrate that it is

possible to identify bacterial species from mixed populations via k-mer

distributions using modest amounts of sample sequence. Consider se-

quence tags collected from a mixture of two equally-represented species:

our clustering-based approach proves capable of identifying at least one

of two species 95% of the time.
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Further, our methods extend beyond species identification to frequency

analysis. By careful analysis of modest amounts of sequence data, we

can predict the frequency of the most dominant species in a population –

even for unsequenced organisms. Further, our predictions grossly match

the actual population over wide range of dominant-species frequencies.

This chapter is organized as following. Genomic sequence tag methods and

previous work on bacterial population assays are discussed in Section 2.1.1. In

Section 2.2, we extend the work of Sandberg et al. [109] on k-mer recognition

of contiguous sequence fragments. In Section 2.3, we generalize this work to

short sequence tags. We consider the clustering and recognition of unsequenced

species with the respect to k-mer distribution and phylogenetic classifications

in Section 2.4. Finally, we consider the problem of deconvolving tags from

mixed species populations in Section 2.5.

2.1.1 Previous Work

Genomic Sequence Tags (GSTs) are short (21 base) fragments, product of a

method for identifying and quantitatively analyzing genomic DNA without a

priori knowledge of the genome. The DNA is initially fragmented with a type

II restriction enzyme. An oligonucleotide adaptor containing a recognition site

for MmeI, a type IIS restriction enzyme, is then used to release 21-bp tags from

fixed positions in the DNA relative to the sites recognized by the fragmenting

enzyme. These tags are PCR-amplified, purified, concatenated and sequenced,

to create a high-resolution GST sequence profile of the genomic DNA.

The GST approach has proven efficient in providing quantitative infor-

mation for samples of different microbe sequences, even from non-sequenced

genomes. Tags that appear in a sample with significantly different frequen-

cies presumably come from organisms occurring with different frequencies in

11



the population. Difficulty arises when specific organisms appear with simi-

lar frequency in the sample, or when tags appear with more than singular

multiplicity.

This approach for characterizing prokaryotic or eukaryotic genomes is sim-

ilar to long serial analysis of gene expression (long SAGE [106, 126]) in that it

produces large numbers of positionally defined 21-bp tag sequences that can

be used to examine intra-specific genomic variation and, if genome information

is available, provide immediate species identity. Other methods of large-scale

scanning of microbial genomes on a quantitative and qualitative basis include

the NotI passporting [134] and the restriction site tagged (RST) microarrays

[135], as well as the original SAGE procedure [127, 133, 138], which produces

positionally defined short tags of 13 to 14 bp with an increased throughput.

Genomic signatures based on compositions of nucleotides have been proven

useful in identifying the origin of small sequences [60, 108, 109]. Frequencies of

short sequence motifs – down to the level of dinucleotides – have shown great

potential in providing a way of distinguishing different genuses in a coarse level

[34], but also differentiate between strains of the same species in eubacterial

organisms [62]. Dinucleotide composition was also shown to determine in a

great degree the DNA local curvature, which is important in transcription,

replication, recombination and chromatin structure [81].

Genomic signatures have been used for identification/detection of

pathogenicity islands [62], while differences in the use of mutually symmet-

ric and complementary triplets distinguish between coding and non-coding

genomic sequences [90]. Bacterial phage genome signatures are strongly cor-

related with the nature of the host and the extent to which the phage uses

the host-cell machinery [6]. Intragenomically, the dinucleotide relative abun-

dance varies little between 50 kilobase or longer windows on a given genome

[30, 44], but is stable even in windows ranging in size from 50 kilobases down

12



to 125 bases [57]. It is difficult though to use genomic signatures in order

to differentiate between strands where there are substantial chromosomal re-

arrangements mediated through homologous recombination or other segment

shuffling recombination events which have occurred in nature and are not

strongly selected against [14].

Different bacterial genomes have distinct combinations of attributes like

characteristic codon usage, G+C content, (ranging from about 75% to 25%),

GC strand bias, nearest neighbor frequencies and oligonucleotide frequencies,

and although their mechanistic origins are not always entirely clear, these

characteristics likely evolve slowly enough to be of use in attempting to de-

cipher evolutionary histories of horizontally transferred DNA regions [14, 64].

The evolutionary implications of microbial genome tetranucleotide frequency

biases can produce phylogenetic trees that demonstrate a level of congruence

with 16S mRNA trees [99].

Using whole genome signatures and concentrating on a varying number

of species one can easily distinguish differences between domains of life and

families [20].

Other statistical measures used for characterization and classification of

species include: (i) the linguistic complexity [122], (ii) the Chaos Game Rep-

resentation of Sequences [30], which provides a unique way of visualizing the

frequencies of oligonucleotides in the form of images and construct visual proofs

on characteristics observed by image manipulation, and (iii) the compositional

spectrum [69], which uses a subset of long oligonucleotides (10 − 25 bp) and

imperfect matching, based on Hamming distance or smallest weighted sum of

edit distance. The species specificity of different statistical measures is quanti-

fied in [108], where genomic signatures, synonymous codon choice, amino acid

usage and G + C content are explored.
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3-mer 4-mer 5-mer 6-mer 7-mer 8-mer
Recognition percentage 5.58% 6.03% 6.51% 6.68% 7.09% 8.16%

Table 1: Average Origin Identification accuracy of 1000 randomly drawn 20-
mers for varying k-mer size

2.2 Identifying the Origin of Contiguous Se-

quences

Sandberg et al. [109] developed a naive Bayesian classifier to investigate the

possibility of predicting the genome of origin for a specific genomic sequence.

They found that sequences as short as 400 bases could be correctly classified

with an accuracy of approximately 85%. The classifier was applied to 25 fully

sequenced genomes, all of which came from unrelated species. The samples in

all experiments originated from the same set of organisms.

The Sandberg et al. classifier calculates the probability of finding a se-

quence S of length N in a genome Gi as the product of the N − (k − 1)

probabilities of finding each of the N − (k − 1) k-mers (motifs of length k,

k ≤ N) that constitute S in Gi. This is a valid measure of relating a sequence

with a genome which can effectively be used as a rating, although it does not

represent a correctly defined probability.

We propose a different method for classifying sequences. Instead of using

the absolute probability of a k-mer being drawn from a genome Gi, we cal-

culate the conditional probability of the last character of a k-mer appearing

after the k − 1 preceding characters of the k-mer. This conditional proba-

bility takes into consideration the dependence of the overlapping k-mers in a

sequence, recognizing that the first k − 1 characters have already appeared as

a suffix of the previous k-mer, so it is the last character of the k-mer that will

provide new information. This way we do not have to account for the overlaps

14



independently and do not have to make any further assumptions about the de-

pendence. This modification overcomes the k-mer independence assumptions

and does not increase the order of needed computation. Further information

can be found in the context of statistical natural language processing [79]. Ad-

ditionally, the improved classification using this method does not come with

any increase in the order of needed computation or ease of implementation.

Further information about this method in the context of statistical natural

language processing can be found in [79], where in the context of natural lan-

guage processing, the classification of the previous n− 1 words, the history, is

used to predict the next word in an n-gram.

We say that a bacterial genome is identified when the Bayesian/conditional

probability, calculated as the product of the individual k-mer statistical prob-

abilities, is the highest among the 104 probabilities calculated for all the

genomes.

2.2.1 Experimental Results

In order to compare the two methods with respect to the original study of

Sandberg et al., we reproduced the original experiment conditions using 25 eu-

bacteria and archaea species whose completely sequenced genomes were avail-

able before September 2001. Random pieces of different sizes were drawn from

each of the 25 microbe sequences and k-mer distributions used in calculating

the probabilities for varying values of k.

Figure 1 compares the results of the naive Bayesian classifier method and

the conditional probability method. We use whole genomic sequences to create

the k-mer statistics and also draw random sequences from the same genomes.

For each point in the graphs, all 25 microbe sequences are sampled and 10

samples are drawn in random. The classification accuracy is then averaged

over the 250 cases.
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Figure 1: Comparison of Naive Bayesian and Conditional Probability Classi-
fiers.

Figure 1 shows that our conditional probability method performs consis-

tently better, with up to 20% improvement in short sequences of 35 bases.

Using the conditional probability method we can now identify short sequences

of 400 bases with more than 90% accuracy using 8-mer frequency distributions.

The probabilities in both methods are calculated by multiplying overlap-

ping k-mer probabilities. One must be careful when handling k-mers that do

not appear in specific distributions, since the frequency appears as 0. Since

we want to be able to classify sequences from unknown bacteria, we must

be able to handle k-mers that do not appear in some or all of the available

genomes. For that reason, we discount the probabilities of finding a k-mer by

assigning a small portion of the probability space to events that have not been

encountered. We use Lidstone’s Law [79] for discounting:

P (w) =
C(w) + λ

N + Bλ

where P is the assigned probability, w is a training instance, C(w) is the

training instance frequency, N is the number of training instances, B is the
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number of bin training instances are divided into and λ is a constant.

2.2.2 Correcting for Repeated Strains

Sandberg et al. [109] experimented on the 28 different archaea and eubacteria

organism genomic sequences available on May 2000. In September 2003, when

we started our experiments, 104 full genome sequences were available from

NCBI.

Although complete genome sequences are rapidly becoming available, the

species diversity of available genomes is increasing at a slower rate because

of research biases. Attention is concentrated on human pathogenic microbes,

which results in different sequenced strains of similar species.

The frequency profiles of short oligonucleotides (k-mers) of certain length

for different microbes, although providing enough specificity for distinguishing

different species, becomes less effective for intra-species variation. Sandberg

et al. [109] dealt with the problem of reduced specificity by merging multiple

strains of the same species in classes, resulting in 25 different classes, out of

28 available microbial sequences.

The 104 available bacterial genomes we studied included several rese-

quenced strains. To eliminate this bias, we grouped bacteria into clusters

based on correlation of the k-mer frequency distributions. We grouped the

bacteria using agglomerative clustering and the averaging method for merging

clusters, resulting in the clustering for 3-mer frequency distributions of Figure

2.

The bacteria sequences can now be grouped according to the height of the

cluster difference. into a set of 80 classes. For example, yielding the grouping

of Table 2. Agglomerative clustering allows us to divide in any number of

classes desired. We found that partitioning into 80 classes satisfied both a

close proximity in distribution correlation difference while retaining biological
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Agrobacterium tumefaciens str. C58 (Cereon)
Agrobacterium tumefaciens str. C58 (U. Washington)

Pseudomonas syringae pv. tomato str. DC3000
Brucella melitensis 16M

Brucella suis 1330
Chlorobium tepidum TLS

Bifidobacterium longum NCC2705
Ralstonia solanacearum

Mycobacterium leprae
Pseudomonas putida KT2440

Xanthomonas axonopodis pv. citri str. 306
Xanthomonas campestris pv. campestris str. ATCC 33913

Bradyrhizobium japonicum USDA 110
Sinorhizobium meliloti

Mesorhizobium loti
Caulobacter crescentus CB15

Pseudomonas aeruginosa PAO1
Deinococcus radiodurans R1

Mycobacterium tuberculosis CDC1551
Mycobacterium tuberculosis H37Rv

Corynebacterium efficiens YS−314
Streptomyces coelicolor A3(2)

Corynebacterium glutamicum ATCC 13032
Thermosynechococcus elongatus BP−1

Treponema pallidum
Xylella fastidiosa 9a5c

Xylella fastidiosa Temecula1
Escherichia coli CFT073

Escherichia coli O157:H7
Escherichia coli O157:H7 EDL933

Escherichia coli K12
Shigella flexneri 2a str. 301

Neisseria meningitidis MC58
Neisseria meningitidis Z2491

Salmonella enterica subsp. enterica serovar Typhi
Salmonella enterica subsp. enterica serovar Typhi Ty2

Salmonella typhimurium LT2
Aquifex aeolicus VF5
Thermotoga maritima

Bacillus anthracis str. A2012
Bacillus cereus ATCC 14579

Oceanobacillus iheyensis HTE831
Streptococcus agalactiae 2603V−R
Streptococcus agalactiae NEM316

Mycoplasma penetrans
Staphylococcus epidermidis ATCC 12228

Staphylococcus aureus subsp. aureus Mu50
Staphylococcus aureus subsp. aureus N315
Staphylococcus aureus subsp. aureus MW2

Fusobacterium nucleatum subsp. nucleatum ATCC 25586
Buchnera aphidicola str. APS (Acyrthosiphon pisum)
Buchnera aphidicola str. Sg (Schizaphis graminum)

Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
Ureaplasma urealyticum

Buchnera aphidicola str. Bp (Baizongia pistaciae)
Rickettsia conorii

Rickettsia prowazekii
Clostridium acetobutylicum

Clostridium perfringens str. 13
Clostridium tetani E88
Borrelia burgdorferi B31

Campylobacter jejuni subsp. jejuni NCTC 11168
Mycoplasma pulmonis

Lactococcus lactis subsp. lactis
Streptococcus mutans UA159

Streptococcus pyogenes M1 GAS
Streptococcus pyogenes MGAS315

Streptococcus pyogenes MGAS8232
Streptococcus pyogenes SSI−1

Mycoplasma genitalium
Nostoc sp. PCC 7120

Streptococcus pneumoniae R6
Streptococcus pneumoniae TIGR4

Enterococcus faecalis V583
Listeria innocua

Listeria monocytogenes EGD−e
Leptospira interrogans serovar lai str. 56601

Chlamydia muridarum
Chlamydia trachomatis

Chlamydophila pneumoniae AR39
Chlamydophila pneumoniae CWL029

Chlamydophila pneumoniae J138
Chlamydophila caviae GPIC

Thermoanaerobacter tengcongensis
Bacillus halodurans

Bacteroides thetaiotaomicron VPI−5482
Haemophilus influenzae Rd KW20

Pasteurella multocida
Helicobacter pylori 26695

Helicobacter pylori J99
Mycoplasma pneumoniae

Bacillus subtilis subsp. subtilis str. 168
Salmonella typhi

Coxiella burnetii RSA 493
Tropheryma whipplei str. Twist

Tropheryma whipplei TW08−27
Lactobacillus plantarum WCFS1

Shewanella oneidensis MR−1
Vibrio parahaemolyticus RIMD 2210633

Synechocystis sp. PCC 6803
Vibrio cholerae

Vibrio vulnificus CMCP6
Yersinia pestis CO92

Yersinia pestis KIM
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Figure 2: 3-mer frequency distribution clustering based on the averaging (clus-
ter merge) agglomerative method
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A. tumefaciens (Cereon)
A. tumefaciens (U. Washington)
P. syringae
B. melitensis 16M
B. suis 1330
C. tepidum TLS
B. longum NCC2705
R. solanacearum
M. leprae
P. putida KT2440
X. axonopodis
X. campestris
B. japonicum USDA 110
S. meliloti
M. loti
C. crescentus CB15
P. aeruginosa PAO1
D. radiodurans R1
M. tuberculosis CDC1551
M. tuberculosis H37Rv
C. efficiens YS-314
S. coelicolor A3(2)
C. glutamicum ATCC 13032
T. elongatus BP-1
T. pallidum
X. fastidiosa 9a5c
X. fastidiosa Temecula1
E. coli CFT073
E. coli O157:H7
E. coli O157:H7 EDL933
E. coli K12
S. flexneri 2a str. 301
N. meningitidis MC58
N. meningitidis Z2491
S. enterica
S. enterica Ty2
S. typhimurium LT2
A. aeolicus VF5
T. maritima
B. anthracis str. A2012
B. cereus ATCC 14579
O. iheyensis HTE831
S. agalactiae 2603V-R
S. agalactiae NEM316
M. penetrans
S. epidermidis ATCC 12228
S. aureus subsp. aureus Mu50
S. aureus subsp. aureus MW2
S. aureus subsp. aureus N315
F. nucleatum subsp. nucleatum
B. aphidicola str. APS
B. aphidicola str. Sg

W. glossinidia
U. urealyticum
B. aphidicola str. Bp
R. conorii
R. prowazekii
C. acetobutylicum
C. perfringens str. 13
C. tetani E88
B. burgdorferi B31
C. jejuni subsp. jejuni
M. pulmonis
L. lactis subsp. lactis
S. mutans UA159
S. pyogenes M1 GAS
S. pyogenes MGAS315
S. pyogenes MGAS8232
S. pyogenes SSI-1
M. genitalium
Nostoc sp. PCC 7120
S. pneumoniae R6
S. pneumoniae TIGR4
E. faecalis V583
L. innocua
L. monocytogenes EGD-e
L. interrogans serovar lai
C. muridarum
C. trachomatis
C. pneumoniae AR39
C. pneumoniae CWL029
C. pneumoniae J138
C. caviae GPIC
T. tengcongensis
B. halodurans
B. thetaiotaomicron VPI-5482
H. influenzae Rd KW20
P. multocida
H. pylori 26695
H. pylori J99
M. pneumoniae
B. subtilis subsp. subtilis
S. typhi
C. burnetii RSA 493
T. whipplei str. Twist
T. whipplei TW08-27
L. plantarum WCFS1
S. oneidensis MR-1
V. parahaemolyticus
S. sp. PCC 6803
V. cholerae
V. vulnificus CMCP6
Y. pestis CO92
Y. pestis KIM

Table 2: Bacterial species clustered into 80 groups
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significance, and so will use these classes in subsequent sections of this chapter.

2.3 Dealing with Fragmented Sequences

The genomic sequence tag (GST) method results in fragments of approxi-

mately 20 bases extracted from specific locations in a genome, relative to

restriction sites. Using short tags has the advantage of avoiding oversampling

from repetitive or non-representative (in a genomic signature sense) regions,

but individually have low specificity, inadequate of discriminating species, as

seen in Table 1.

For a fixed size sample of sequence, fragmented sequences give a reduced

amount of k-mers over unfragmented sequences. For example, a sequence of

400 bases can yield 396 5-mers if in one contiguous piece, but only 320 5-

mers if the sequence is fragmented into 20 pieces of size 20. Still, for the

same sequence length, our methods prove better at identifying fragmented

sequences than contiguous sequences. Our results appear in Figure 4(a). Here

the contiguous and fragmented sequence experiment results are presented for

3-mer, 6-mer and 8-mer distributions. Graphs of all the results are presented

in Figure 3.

To see how the tag size affects the recognition accuracy, we conducted

an experiment where we kept the amount of available sequence constant at

400bp and varied the tag size. The results are shown in Figure 4(b). We

observe that the optimal tag size varies with the size of the k-mers used to

analyze the data. For distributions of trinucleotide frequencies, the tag length

where identification accuracy is maximized is around 30bp, where the optimal

tag size is around 75bp for 8-mer frequency distributions. These experiments

were performed on all 104 bacteria, with random sampling of 400bp in tags of

varying size, where each data point represents 20 averaged repeats.

20



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Sequence Length (bp)

8-mer
7-mer
6-mer
5-mer
4-mer
3-mer

(a) Classification for contiguous se-
quences

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Sequence Length (bp)

8-mer
7-mer
6-mer
5-mer
4-mer
3-mer

(b) Classification for fragmented se-
quences

Figure 3: Sequence identification accuracy as a function of sample length.
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There are two reasons behind this surprising result. First, although the

number of k-mers is reduced when using fragmented pieces, the size of the

largest independent set of non-overlapping k-mers is not significantly smaller.

With fragmented pieces we get at least one new non-overlapping k-mer every

time we have a new piece. Second, by sampling from different locations of

the genome we decrease the chance that the samples were drawn from an

area not representative of the frequency distribution for the specific bacteria.

Intergenomic differences are generally higher than intragenomic differences

[108, 109].

2.4 Phylogenetic Classification from k-mer

Distributions

Estimates of the number of distinct bacterial species go into the millions,

which makes it unlikely an observed species will correspond to a sequenced

organism. In general, we are interested in obtaining coarser identification than

distinct species. Thus we seek to identify which general class of bacteria our

prediction indicates as the origin of a sequence. These classes can be formed

from the clustering of the bacteria according to their k-mer distributions. We

can group bacteria that reside in clusters with a specific distance, represented

as the height attribute of the dendogram of Figure 2.

Using the dendrogram derived by the 3-mer distribution correlation and

classifying sequences from the 104 bacteria according to whether their class

was correctly identified, we get the results shown in Figure 5.

Identifying bacteria in groups instead of single entities makes sense in sev-

eral ways. First, a number of bacteria have great k-mer similarities to each

other, where others have very distant k-mer frequency distributions. Microbial

groups which are more important to humans are preferentially sequenced, and
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tributions
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(d) Classification based on 6-mer dis-
tributions
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tributions
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Figure 5: Classification accuracy within varying classes
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bacteria from related strains share enough material to have very similar k-mer

frequency distributions. Grouping related strains into classes enables us to

give a more stable characterization which yields more significant comparative

results. Second, our groups of bacteria are generally consistent with the phy-

logenetic tree constructed by 16S ribosomal gene differences and other criteria

discussed in Section 2.4.

In this section, we will show that both known and unknown (non fully

sequenced) bacteria can be identified with even greater accuracy with respect

to phylogenetic categorization.

We use a procaryotic phylogenetic listing of small subunit 16S rRNA found

at the Ribosomal Database Project Website [83]. Each bacterial species has a

unique index number, consisting of a series of numbers separated by ‘.’, each

indicating a different genealogic attribute (kingdom, order, genus, species).

We consider each of these numbers as branching points in our inferred tree.

All experiments in this section, involving identifying bacteria based on 16S

ribosomal criteria, were averaged over 100 repeats, where fifty 20-mer tags

(1000 bp) were randomly selected from each sampling bacteria.

2.4.1 Identifying Bacteria with Known k-mer Statistical

Distributions

In this section, we analyze how often the top-scoring bacterium of our classifier

happens to match the order, genus, and species of the closest appropriate

species in the 16S rRNA database. We measure distance to our sampling

bacteria using the inferred subtree (which now contains only our 104 fully

sequenced genomes). Closest to our sampling bacteria is considered the species

of the inferred subtree with the minimum distance in the number of node

traversals (hops) needed to reach the former in the 16S rRNA phylogenetic

tree.
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Order match Genus match Species match Closest match
99.98% 99.95% 99.83% 99.42%

Table 3: Bacterial classification by ribosomal rRNA similarity (1000bp sam-
ples)

The bacterial samples were identified in the correct order with 99.98% ac-

curacy, in the correct genus with 99.95% accuracy and in the correct species

category with 99.83% accuracy. The exact strain of origin was identified cor-

rectly 99.42% of the time.

The higher than 99% positive identification exceeds even the classification

accuracy using the statistically derived clustering tree by approximately 3%,

for similar group sizes. For classification in the corresponding order, 98% of all

bacteria were correctly classified 100% of the time, where the percentages for

perfect identification in the genus and species categories were 97% and 87%

respectively.

2.4.2 Identifying Bacteria in the Absence of Statistical

Information

Thirty-five additional bacterial genomes were published in the six months after

we down-loaded the 104 bacterial genomes known at the beginning of our

study. This new data gave us the opportunity to try to identify unknown

bacterial sequences, some of which have related strains in our distribution

database and others that are distant to any existing entry. To determine the

accuracy of our classification we use the 16S ribosomal phylogenetic tree as

reference.

Table 2.4.2 shows that bacteria which are closely related to others in our

frequency distribution database have a significantly better chance of being
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Index Order Genus Species Closest Closest
Bacterium Name Number match match match match match

(%) (%) (%) (%) index
M. bovis 2.30.1.13.1.1 100 100 100 100 2.30.1.13.1.1
S. flexneri 2.28.3.27.2 100 100 100 100 2.28.3.27.2
C. pneumoniae 2.20.6.2.3 100 100 100 100 2.20.6.2.3
B. anthracis 2.30.7.12.4 100 100 98 98 2.30.7.12.4
B. cereus 2.30.7.12.4 100 99 95 95 2.30.7.12.4
V. vulnificus 2.28.3.23.9 100 100 99 93 2.28.3.23.9
B. bronchiseptica 2.28.2.8.4 100 77 – 77 2.28.2.14
B. parapertussis 2.28.2.8.4 100 73 – 73 2.28.2.14
L. johnsonii 2.30.7.17.3 99 99 0 0 2.30.7.17.6
R. palustris 2.28.1.6.12.5 99 92 91 78 2.28.1.6.12
B. pertussis 2.28.2.8.4 99 79 – 79 2.28.2.14
C. violaceum 2.28.2.1.4 99 39 0 0 2.28.2.1.9
M. gallisepticum 2.30.8.4.4 99 0 0 0 2.30.8.4.3
S. avermitilis 2.30.1.8.1.2 92 92 84 84 2.30.1.8.1.12
O. yellows 2.30.8.2.3 92 0 – 0 2.30.8.4.1
C. diphtheriae 2.30.1.13.2.10 91 91 91 82 2.30.1.13.2.8
N. europaea 2.28.2.4.6 85 0 – 0 2.28.2.1.9
M. avium 2.30.1.13.1.1 83 83 78 78 2.30.1.13.1.1
M. mycoides 2.30.8.3.1 83 5 – 1 2.30.8.4.1
P. luminescens 2.28.3.27.13.5 82 82 71 66 2.28.3.27.14.5
P. gingivalis 2.15.1.2.7 71 71 71 71 2.15.1.2.8
H. ducreyi 2.28.3.26.13 67 67 51 8 2.28.3.26.10
G. sulfurreducens 2.28.4.7.4 66 – – 0 2.28.3.27.14.5
B. bacteriovorus 2.28.4.8 56 – – 6 2.28.3.27.14.5
W. succinogenes 2.28.5.1.2 49 0 0 0 2.28.5.1.1
H. hepaticus 2.28.5.1.1 17 4 0 0 2.28.5.1.1
T. denticola 2.27.3.2.3 6 0 0 0 2.27.3.2.3
P. marinus 2.21.1.9 1 1 – 0 2.21.1.3
Synechococcus 2.21.1.9 1 1 – 0 2.21.1.3
Wolbachia 2.28.1.8.5.10 0 0 0 0 2.28.1.8.5.5
P. marinus 2.21.1.9 0 0 – 0 2.21.1.3
Pirellula 2.20.1.1 0 – – 0 2.20.6.2.3
C. Blochmannia 2.15.4.3 0 – – 0 2.15.1.2.8
G. violaceus 2.21.4 0 – – 0 2.21.1.3
Average 64.97 53.45 58.33 37.27

Table 4: Identifying unknown bacterial species according to ribosomal rRNA
similarity, selected results (1000bp samples)
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identified than distant ones. One interesting observation is the fact that spe-

cific microbial species are identified with high percentages as other ‘unrelated’

species, where a closer relative from the same class or even subclass may exist

in the k-mer frequency distribution database. This would indicate that there

are differences in the classification based on the 16S rRNA phylogenetic tree

and one based on the genomic signatures alone.

2.5 Identifying Bacteria from Mixed Samples

More than just identify the members of a complex microbial community, we

seek to assay their relative population frequency. We have shown that indi-

vidual 20-mers identify the correct species only 8% of the time, using 8-mer

frequencies, thus identifying the relative frequencies of bacteria in a mixed

sample is a difficult task. An easier problem is the identification of a subset

of species in the sample, especially the single most populous member of the

sample.

For this purpose we constructed 20-mer tag data sets where half were de-

rived from one bacteria and half from another. To identify the appropriate

species, we cluster the 20-mers according to k-mer similarity, as follows: First

we create for each 20-mer a vector of size 104, each position containing the

conditional probability of the 20-mer being originated from the corresponding

known bacteria genome. Then we cluster the 20-mers using k-means clustering

into two clusters, according to the Euclidean distance of their corresponding

vectors. We then classify the 20-mers of the two clusters separately, which

gives us two candidate bacteria.

Figure 6 shows that we can identify both bacteria 50% of the time and one

of the two 95% of the time, provided we sample a sufficient number of 20-mers

from each bacteria.
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Figure 6: Recognition accuracy of pairs of equi-probable bacteria, averaged
over 500 different bacteria genome pairs.
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(b) Using 8 k-means clusters

Figure 7: Identifying bacteria from mixed sample containing percentage p
of target bacteria, using 8-mer frequency distributions and variable cluster
numbers
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As a second experiment, we created samples where a specific percentage p

is taken from a primary bacteria that we want to identify, where the rest of the

sample is populated with 20-mers from randomly selected bacteria genomes.

Then we try to identify the specified bacteria by creating a number of clusters

and counting the total percentage of the identified clusters that matches the

primary sampled bacteria.

Results for three different bacterial strains (Thermotoga maritima, Pas-

teurella multocida and Staphylococcus aureus subsp. aureus Mu50) are pro-

vided in Figure 7. These three bacteria were selected as random choices of

a hard, medium and easy-to- recognize bacteria strains by their k-mer dis-

tribution frequencies. T. maritima is pretty distant to other bacteria found

in our database, P. multocida frequency distribution resembles few other in

our database and S. aureus has another three relative strains present, which

are divided in two groups according to an 80-group clustering of the available

genomic sequences.

In Figure 7, we can observe that recognition accuracy when a specific bac-

teria is comprising more than half of the sequence material in our sample is

significant, especially when compared with an expected recognition percentage

of 1.25% of a totally random sample. As expected, the recognition rates for

T. maritima drop significantly faster than of the other representative samples,

since having related strains in the database gives a larger space for recognition

and T. maritima has a pretty distant k-mer frequency distribution. All three

bacteria have a higher than 50% recognition percentage when they comprise

more than 70% of the sample.

Comparing the results of clustering in 2 or 8 groups, we can see that 2-group

clustering performs generally better, which is expected considering we are

seeking to identify only one bacterial strain. The difference, though, diminishes

(or even reverses, in the case of distant bacteria like T. maritima) when the
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bacteria comprises a smaller percentage of our sample. This can be explained

by the fact that the specificity of the existing 20-mers of our target bacteria

in the sample is absorbed by the noise of the other 20-mers in a larger group,

where the target 20-mers could actually form smaller easier to identify groups

(given enough 20-mers).

All majority-identifying experiments were performed 100 times for each

bacteria to create data points in our graph, for 100 20-mers drawn ran-

domly from the target and random other bacteria in our frequency distribution

database, and averaged.

2.6 Methods

All experiments were performed on a set of 104 eubacterial genomes, except the

recreation of the experiment conditions of [109], where 25 archaea eubacterial

genomes were used.

2.6.1 Conditional Probability Classifier

For each classifying experiment, random sequences/fragments were drawn from

each bacterial genome in order to identify its origin. As stated in Section 2,

we say that a bacterial genome is identified when the Bayesian/conditional

probability, calculated as the product of the individual k-mer statistical prob-

abilities, is the top one (highest) among the 104 probabilities calculated for all

the genomes. In the case of considering the probability being in the top m, we

compare the origin genome of the samples with the top m ranking genomes

from the probability calculations.

Every classification experiment, for every bacteria, is repeated ten times

and the results are averaged.

For the experiments with mixed samples from two bacteria with equal
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percentages, we used 500 different bacteria genome pairs and averaged the

results. For the experiments where a primary bacteria was sampled comprising

p percentage of the sample and the rest was populated by randomly selected

pieces from other bacteria, each point represents the average of 100 repeats,

each applied on random 20-mer samples of the bacterial pair.

2.6.2 Clustering and Grouping

The different clustering methods used are the agglomerative, divisive hierarchi-

cal and k-means, as implemented in the R-Project statistical package. Further

information can be found in the R-Project documentation [100]. We should

note that the k-means clustering method in R uses “methods” instead of “cen-

troids”, which allows clustering experiments even when the distance between

elements is not a metric, which is the case when comparing the correlation of
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vectors.

Since many of our statistical experiments depended on how well vectors

can be clustered based on similarity/dissimilarity, we performed a number of

comparisons of the different methods. In general, both k-means methods, dis-

similarity with correlation distances and similarity with Euclidean distances,

perform best, but knowing the number of clusters that we are seeking. Surpris-

ingly, the divisive hierarchical method, using similarity vectors and Euclidean

distances performs equally well with the k-means methods, without any in-

formation about the number of clusters. Finally, the agglomerative methods

perform a bit weaker, especially when not using the complete method. A

sample result of ten different pair instances of 20-mer vectors clustered with

six different clustering methods can be seen in Figure 8. Here we are using

8-mer distribution frequencies to cluster 20-mers originated from two different

bacteria, each of which comprises half or our sample of 100 total 20-mers. The

comparatively measuring how well each method performs, we are using the

Rand Index [101]. We should note that the minimum and average values of

the Rand Index for the number of elements used is approximately 0.49 and

0.67 respectively.

2.7 Conclusions

Through computational experiments, we have demonstrated that the analysis

of short DNA sequence reads or tags can be used to determine the composition

of complex microbial communities. Such methods hold particular promise

as inexpensive, high-throughput methods of producing short sequence reads

become available. Unlike microarray-based techniques for population analysis,

our approach appears capable of recognizing previously unsequenced species.

We are now applying these techniques to the analysis of actual sequence data
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from samples of the poplar rhizosphere grown under different environmental

conditions.
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Chapter 3

Local Alignment Classification

for Analyzing the Poplar

Rhizosphere

One of the major contributing factors associated with climate change and

global warming is the ever increasing concentration of atmospheric CO2.

Forests account for a large proportion of global net primary productivity

(NPP), the rate at which new biomass accrues in an ecosystem [68]. Much re-

search has focused on these ecosystems as a component of the terrestrial carbon

sink and their potential to mitigate the effects of this greenhouse gas. Though

no widely accepted model exists accounting for subsequent plant responses,

elevated atmospheric CO2 has been documented to increase the carboxylation

efficiency of Rubisco [17] resulting in enhanced plant growth [27], greater fine

root production [56] and augmentation of soil carbon allocation via secretion of

root exudates from the root tips and increased turnover of fine roots [136, 54].

This chapter is drawn from our papers [72] and [95]. My contributions in this work are
limited to the development and implementation of the sequence classification and analysis
methods.
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These processes result in a concomitant increase in soil microbial respiration

and carbon turnover [50]. There is no consensus on many of the secondary

effects associated with these plant responses. Therefore their importance in

regulating the terrestrial carbon sink still remains to be determined.

Here, we present the tools facilitating an in-depth analysis of the microbial

community composition of trembling aspen (Populus tremuloides), grown at

the Rhinelander WI free-air CO2 and O3 enrichment (FACE) experiment, and

how it is affected by plant responses to elevated CO2. Initial studies on our

soil core samples for both ambient or elevated atmospheric CO2 showed that

total fungal biomass, community composition and metabolism did not signifi-

cantly change between each of the triplicate FACE plots for each experiment

belonging to either ambient or elevated CO2 [23]. However, significant changes

in enzymatic activities were noted between ambient and elevated CO2 treat-

ments, indicating changes in microbial community composition or increased

activity under conditions of elevated CO2. In order to obtain the most com-

plete global profile of the microbial community, we conducted an in-depth

community analysis on composites of these previously characterized soils.

Previous soil population studies on Bacteria and Eukarya at the domain

and phylum levels showed that total microbial abundance does not significantly

change under elevated CO2 at the Rhinelander FACE site [137, 23], which

was confirmed with q-PCR. In order to address changes in microbial diversity

(detection and frequency of operational taxonomic units (OTUs) and microbial

richness (total number of different OTUs), a total of 5061 16S (prokaryotic

and archaeal) and 1935 18S (eukaryotic) ribosomal rDNA clones (Table 5)

were generated from total soil DNA extractions obtained from trembling aspen

under ambient and elevated (560 ppm) CO2 concentrations.

A general overview of the bacterial community compositions is outlined
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(a) Classification assignment
of prokaryotic sequences under
ambient CO2 conditions

(b) Classification assignment of
prokaryotic sequences under elevated
CO2 conditions

Figure 9: Taxonomic breakdown of classified 16S rDNA sequences in prokary-
otic populations under ambient (a) and elevated (b) atmospheric CO2. Cen-
tral pie shows percentages by phyla; each outer annulus progressively breaks
these down by finer taxonomic levels: class, order, family and genus in the
outermost annulus. Numbers indicate the relative abundance, expressed as a
percentage, of the different taxonomic groups.

in Figures 9a-b. Complete comparisons of community composition for all do-

mains can be found at http://genome.bnl.gov/FACE/. The microbial abun-

dance of many taxonomic groups remained unchanged. These were predom-

inantly affiliated with γ- and δ- Proteobacteria, and provide an additional

internal standard further validating the comparison of these composite sam-

ples to determine microbial community composition.

In the rest of this chapter we will detail the bioinformatic methods enabling

a robust analysis of the diversity and identification of population changes in

the microbial community composition under conditions of ambient/elevated

CO2.
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3.1 Genomic Sequence Classification

Metagenome shotgun sequencing and analysis is revolutionizing the field of

molecular ecology, revealing a more complete vision of the biodiversity and

functions within ecosystems [4, 8, 9, 10, 13, 49, 121, 123, 128]. Preliminary

to constructing and sequencing metagenome libraries, it is necessary to esti-

mate the complexity and richness of the microbial community to be examined.

This can be adequately done by constructing and sequencing ribosomal RNA

(rRNA) gene libraries [21]. Thus, the means to accurately identify and clas-

sify large datasets of rRNA genes and to determine community richness is an

essential step in metagenome sequencing projects. The increasing library sizes

to cover the metagenomes of complex microbial communities and the subse-

quent amount of screening and analysis needed necessitates the development

and application of adequate and robust bioinformatics tools for community

composition analysis that can handle large rRNA gene data sets.

The following tools are available for analyzing microbial community com-

position:

Phylogenetic trees are useful in determining novel groups of organisms,

but are limited in their reliability for large datasets. Bootstrap values be-

come expensive to calculate and tree topologies become unreliable as tree size

increases [88].

Oligonucleotide (k-mer) based classifiers provide fast and reliable

techniques which exploit the fact that closely related sequences share common

small subsequences and that organisms and regions have their own distinct sig-

natures, a term to describe distributions of oligonucleotides [30, 61, 96, 109].

A disadvantage is the lack of positional information of oligonucleotides, which

becomes more problematic with decreasing k (oligonucleotide size), in which

case the probability of finding oligos by chance increases exponentially. Adding

location information to oligonucleotides leads to computation time increases,
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while limiting its generality. In addition, altering a single base in a sequence

results in k different k-mers, and random mutations can therefore have devas-

tating results on the oligonucleotide distribution. Correcting this problem by

approximate matching for k-mers leads to time increases exponential in the

number of errors allowed.

At present, the most widely used tool for species identification based

on ribosomal RNA gene sequences is the ribosomal database project (RDP)

Näıve Bayesian classifier [25]. This tool uses 8-mers to cluster and classify

16S rRNA sequences based upon vetted sequences with well assigned taxon-

omy (http://rdp.cme.msu.edu/index.jsp, James Cole, private communication,

[43]).

Sequence alignment classifiers extract differences and calculate dis-

tances between DNA sequences. They can be used to identify the closest

match of a sequence to a vetted reference data set. The computation time

required for aligning sequences increases quadratically to the length of the se-

quences, which significantly delays the analysis of large datasets, e.g. rRNA

gene sequences representing a complex microbial community.

The program BLAST [1] performs approximate sequence alignments, find-

ing locally very similar pieces as opposed to globally calculating the best way

to convert one sequence to the other. BLAST can be calibrated to achieve

a desired speed/sensitivity ratio. Local alignment provides flexibility in han-

dling sequencing errors, incorrectly inserted or omitted prefixes, suffixes and

subsequences, as well as ambiguous characters. A further advantage of BLAST

is the ability to compare sequences, one at a time, against a database of vetted

sequences. Classification using alignment is highly parallelizable, with great

promise with multi-processor and future multi-core systems.

In the next section we describe the use of local alignment classification as
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a robust tool in grouping closely related sequences, while maintaining equiv-

alent or slightly better classification accuracy as compared to the RDP näıve

Bayesian classifier.

3.1.1 RDP Näıve Bayesian Classification and Initial

Drawbacks

We initially tried to use the Ribosomal Database Project (RDP) Näıve

Bayesian classifier to analyze the 16S rRNA gene sequence data from a large

scale sequencing project, which aimed at determining changes in the soil mi-

crobial community composition of trembling aspen when three were exposed to

ambient (360 ppm) or elevated (560 ppm) atmospheric CO2. Upon initially an-

alyzing 2774 16S rRNA gene sequences it became apparent that a large number

of them classified in the same genus had edit distances accounting for >20% of

the total sequence length, and sometimes up to 50%! Many of these occurred

between sequences classified with low confidence estimates (<50%), creating

uncertainty for a large number of classification groupings. This provided the

first clue that many of the sequences we were trying to classify were distant

from all the vetted sequences available, possibly representing new phylogenetic

groups. We also noticed that some sequences with >99% edit distance similar-

ity were found classified in different taxa, with a couple of occurrences even at

the phylum level. These findings bring to light the fact that a perfect classifi-

cation of rRNA gene sequences can currently not be achieved, and that errors

will be found even when classifying unknown sequences to closely related char-

acterized ones. These results prompted us to explore sequence identification

methods alternative to the RDP Näıve Bayesian classifier.

39



3.1.2 Refinement of Vetted Sequence Classification us-

ing BLAST

The BLAST utility bl2seq [118], which performs pairwise sequence alignment,

was used as an alternative to maximize 16S rRNA gene classification accu-

racy. Several key parameters (match, mismatch, gap start, gap extend) were

adjusted to minimize misclassifications. To do so, a genus level leave-one-out

test (see methods) for each of the 5574 vetted sequences (RDP data set) was

performed to determine the parameter set that optimally separates the scores

of closely related species from distant ones.

After examining the different parameter sets we determined the optimal set

of key parameters (match = 1, mismatch = 5, gap open = 3, and gap extend

= 2.5), where the match is positive and considered a reward, and mismatch,

gap open and gap extend are negative and are considered penalties. Compared

to the default bl2seq parameter values, this set of parameters reduced the

number of misclassified vetted sequences from 284 to 268 out of a total of 5246

(328 sequences are unique in their genus in the vetted set).

3.2 Classifier Confidence Levels

We created a confidence estimate for each bl2seq alignment score using the

value of the highest scoring pair-wise alignment for each sequence, setting the

Boolean value for correct (1) or incorrect (0) classification at the genus, family,

order, class or phylum level. This gives us the ability to assign a confidence

estimate to each specific score value, according to the number of times an

alignment with such a value resulted in the correct phylogenetic classification.

A rating for this score was then based on these results. Fourth degree polyno-

mial regression curves were used to determine the relation between classifica-

tion scores and confidence estimate values for the different phylogenetic levels.
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These curves (Figures 10a-e) were, smoothed by the addition of extra points,

represent high confidence estimates at very high scores and zero confidence es-

timates at very low scores. The confidence estimate of each score is calculated

from the value of the polynomial for this specific score. From this analysis we

can conclude that confidence estimates decrease when classifying the species

at lower phylogenetic levels (from phylum to genus). Figure 10f demonstrates

that we still obtain a 94% classification accuracy at the genus level, when using

the optimal parameter set and the bl2seq utility, and increasing accuracies for

higher phylogenetic levels.

3.2.1 Exploring the Alignment Parameter Set

We subsequently constructed a vetted sequences database in BLAST format

and used the blastn utility, like previously done for bl2seq, in a leave-one-out

test on this database. The faster blastn processing of sequences, compared

to bl2seq, was used to explore all possible combinations of key parameters.

In order to identify the best set of parameters, we performed a full coverage

scan at value increments of 5, fixing the reward value of match to 10, and

allowing for all possible combinations of the three other parameters (mismatch,

gap open and gap extend). Restrictions in the blastn utility did not allow ratios

of mismatch/match lower than 1 (except the ratio 8/10) and higher than 5.

Also the mismatch/match ratio of 9/2 was not permitted. We observed that

when using blastn, the values for gap start and gap extend did not alter our

results, this in contrast to their influence on scores using the bl2seq utility.

At the end, the (match = 10, mismatch = 50 ) assignment gave the best

classification accuracy, with percentages for the different phylogenetic levels

shown in Table 5, together with the published accuracy results of the RDP

näıve Bayesian classifier [130].
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Fourth degree smoothed polynomial regression curves and classi-
fication score confidence estimates for different phylogenetic levels (phylum,
class, order, family, genus). The confidence estimate of each score is calculated
from the value of the polynomial for this specific score.
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Phylum Class Order Family Genus
RDP näıve Bayesian classifier 99.9 99.9 99.3 97.1 94.3
blastn classifier 99.9 99.7 99.4 97.1 94.9
bl2seq classifier 99.9 99.7 99.4 96.9 94.7

Table 5: Classification accuracy of RDP, blastn and bl2seq classifiers. The
numbers represent percentages of sequences correctly classified in their known
phylogenetic levels in leave-one-out tests.

3.2.2 Improved Grouping of Closely Related Sequences

using the Blastn Classifier

Although the accuracy results presented in Table 5 do not differ significantly

for the different methods tested, our blastn classifier groups closely related

sequences with increased accuracy. To demonstrate this, Levenshtein pair wise

edit distances [73] were calculated for our set of 2774 16S rRNA gene sequences.

Using the complete linkage method these were subsequently clustered into

groups, in which the percentage difference among sequences is below a cut-off

value.

Taking as an example a 1% cut-off sequence difference (this percentage is

calculated proportional to the sequence length, which for the 16S bacterial

rRNA gene is approximately 15), we would expect all group members to be-

long to the same phylogenetic group, ranging from genus to phylum, since at

the 1% dissimilarity level even species are expected to cluster together. Con-

sidering the high identification percentages for both the RDP classifier and

the blastn classifier, we counted the number of groups that were heterologous

at a given phylogenetic level (e.g. contained members of more than one phy-

lotype). A few indicative results are the following: (i) For the ambient CO2

community 16S rRNA sequence set, which comprised of 132 groups with more

than one element, 23 groups had elements classified in different genera by the
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RDP classifier, breaking them into 52 subgroups. The blastn classifier divided

only 15 groups into 30 subgroups. In 14 out of the 15 groups this was due

to the presence of a single misclassified sequence. The biggest group of 32

elements was identified as 32 Desulfotomaculum by our classifier, where the

RDP broke it into 6 distinct groups, partitioned as: 4 Thermodesulfovibrio, 1

Succiniclasticum, 15 Gelria, 1 Propionispora, 3 Thermovenabulum and 8 Pelo-

tomaculum. (ii) For the elevated CO2 community 16S rRNA sequence set,

28 groups out of a total of 87 groups were divided into 67 subgroups by the

RDP classifier, where the blastn classifier only divided 10 groups into 20 sub-

groups. These examples show that the blastn classifier reduces classification

ambiguities compared to the RDP classifier.

3.3 Significance of Population Differences

Probability values measuring significance in phylotype population changes

are calculated as follows: Considering the null hypothesis that there is no

difference between population proportions, we test it by calculating the p-

values derived from the standardized variable z = P1−P2

σP1−P2

, where σP1−P2
=

√

pq( 1
N1

+ 1
N2

) is the standard deviation of the sampling distribution of differ-

ences in proportions, which is approximately normally distributed. P1 and P2

are the phylotype proportions in the ambient (N1) and elevated (N2) CO2 sam-

ple sizes respectively. p = N1P1+N2P2

N1+N2

is an estimate of the common population

proportion under the null hypothesis and q = 1 − p [49]. To derive one-tail

test p-values from the standardized variable z values, we use the Ibbetson

polynomial approximation [50], as adapted by John Walker from C implemen-

tations written by Gary Perlman of Wang Institute, Tyngsboro, MA, found at

http://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html and avail-

able in the public domain.
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Probability values measuring significance in phylotype population changes

can also be calculated using the one side Fisher exact test. We test against

the null hypothesis that there is no difference between population proportions.

Differences in proportions follow the multinomial distribution and the Fisher

test combinatorially calculates exactly the probability of a difference with no

approximations. This test, although not an approximation, such as the z test

mentioned above, is computationally expensive and involves large integers,

even for small group sizes.

To account for the number of simultaneous statistical tests being performed

to calculate p-values of the differences in the populations, we adjust the alpha

value (significance threshold) by applying the Bonferroni correction. Thus we

divide the alpha value by the number of tests at each phylogenetic level, which

equals the number of groups compared. The divisors for the 16S populations

are: 20 for the phylum level, 27 for the class level, 52 for the order level, 120

for the family level and 273 for the genus level. The seven taxonomic levels for

the 18S sequences have the following divisors: 11, 25, 39, 40, 45, 47 and 42. As

an example, there were 35 sequences identified as members of the Bacilli class

in the ambient CO2 population samples, where only 13 in the elevated CO2

samples. The one-tail Fisher exact test gives a probability value of 0.001463

against the hypothesis that the Bacilli populations are the same. Since there

are 27 classes for which we calculate p-values, adjusting an alpha value of 0.01

with the Bonferroni correction will result in a new alpha value of 0.01/27 =

0.000370, according to which the Bacilli members did not change significantly

as a proportion of the sampled populations. Against an initial alpha value of

0.05, the adjusted value of 0.05/27 = 0.001851 suggests there is a significant

change of the Bacilli population.
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3.4 Population Richness

Rather than using the phylogenetic grouping determined from the RDP vetted

sequences, the Chao1 non-parametric estimator was used to determine phylo-

type richness [18, 19] and calculated on groups clustered according to specific

Levenshtein edit distance values [73]. In addition to single linkage cluster-

ing commonly used for determining phylotypes [111], we also used average

and complete linkage methods which are more appropriate to larger groupings

(Table 6).

Population equitability was calculated using the Simpson evenness index

ED [112, 3, 55], defined as the reciprocal Simpson index D over the maximum

number of phylotypes observed Dmax:

ED = D
Dmax

, where D = 1
P

S

i=1
p2

i

Here, pi is the proportion of the population constructed from the ith phy-

lotype and S the total number of phylotypes.

Kemp and Aller [67] argue that the amount of sampling required to de-

tect all phylotypes and reach asymptotic values of the Chao1 index (therefore

significantly reducing the probability that further sampling will discover novel

phylotypes) correlates well with evenness.

Low evenness values (<0.4) are indicative of under-sampling (by a factor

of 8 or more), relative to the Chao1 index.

3.5 Methods

All computational experiments were performed on either a hyper threaded

Pentium 4 at 3.2GHz desktop with 2GB of memory or dual Xeon at 2.8GHz

server with 4GB of memory. Since most classification computations are paral-

lelizable, a cluster of 4-10 desktops has been used for reducing computational

time. All time references referring to computation will assume use of one CPU
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Table 6: Phylotype richness calculated for the archaeal, bacterial, eukaryotic
and fungal populations.
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desktop with at least 2GB of memory.

All programs/scripts performing computations and statistical evaluations

were written in perl, except the edit distance calculations, which were written

in C, in order to decrease computational time.

3.5.1 16S rRNA Sequence Classification

Classification accuracy was measured by performing leave-one-out tests of the

5574 vetted sequences against themselves. A subset of vetted sequences is

created, excluding the singletons, which are sequences that belong to a phy-

logenetic group with only one member. Each sequence of this new dataset

is then separated from the dataset and classified against it. The number of

correctly classified sequences is then divided by the total number of sequences

present in this subset (with singletons being excluded) to produce the final

accuracy percentages.

Classification with the RDP näıve Bayesian classifier takes approximately

1.5 minutes, when submitted through the web, to produce a complete 1000

sequence assignment with confidence estimates, as calculated by bootstrap

trials. The blastn classifier requires, for the same number of sequences and

against the same database of vetted sequences, approximately 35 minutes.

Using bl2seq, for performing pair wise comparisons, requires significantly more

time, in the range of days. Increasing the accuracy of BLAST by lowering

the values of the word size W and the X drop-off parameters results in a

significant increase in computation, while increasing the classification accuracy

at the genus level by no more than 0.1%.

The näıve Bayesian classifier principles are described in [109]. The RDP

classifier uses oligonucleotides of size 8 and randomizes the selection of oligonu-

cleotides to be used for the confidence calculation. In each of the 100 bootstrap

trials, 1/8 of all possible 8-mers of a sequence are selected randomly.
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The BLAST parameters adjusted for bl2seq and blastn in order to minimize

misclassifications were:

1. match: The reward for a matched character, common to both sequences

compared.

2. mismatch: The penalty for a character substitution

3. gap start : The penalty for initiating a gap.

4. gap extend : The penalty for extending an initiated gap by one character.

These values can be scaled proportionately without affecting the alignment,

but only the score, although the relative scores under the same parameter set

remain proportional.

The score for each BLAST alignment, used to determine confidence val-

ues, was calculated by summing up the individual scores of the locally aligned

pieces, which is already normalized against the length of the sequences be-

ing compared. The two tests to measure misclassifications and calibrate local

alignment parameter space were (i) the number of rRNA sequences that score

better against a sequence from another genus than against all of the sequences

in their genus and (ii) the number of ribosomal sequences that score better

against a sequence from another genus than at least one sequence from their

own genus. The first test was used predominantly, since the final classifica-

tion decision is based on the top scoring vetted sequence and can lead to a

misclassification only if the test sequence aligns with a higher score against a

foreign-genus vetted sequence.

For scoring an alignment, we used the sum of scores of individual local

aligned pieces, which are not overlapping. A query sequence is assigned the

phylogenetic lineage of the highest matching score.
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3.6 Conclusions

The long-term sustainability of ecosystem productivity requires detailed

knowledge of its biodiversity coupled to profound understanding in its function.

Furthermore, to better understand the implications that elevated atmospheric

CO2 has on microbial communities, we provide the first detailed analysis pro-

filing changes in specific groups of microbes to specific soil processes.

Our results show that microbial communities appear to be altered by el-

evated atmospheric CO2 and that these changes may have implications for

ecosystem function, especially via effects on the cycling of essential elements.

Future investigations should shed more light on how elevated atmospheric CO2

affects the diversity of life, the complexity and functioning of microbial com-

munities in soil, the cycling of essential elements, and may further facilitate

the prediction of such environmental impacts providing the key for their future

correction.

We developed a blastn classifier with optimal key parameter set that per-

forms better than the RDP II classifier for 16S rRNA based identification,

especially when it comes to grouping of related sequences, thus reducing clas-

sification ambiguities. However, every classifier has a closed architecture and

will assign every sequence to one in its dataset. The view of the biodiversity

contained within a sample is therefore subject to the biases incurred by the

limited number of sequences contained within the vetted sequence database,

against which we classify.

In conclusion, our classifier has been proven to provide consistent and ro-

bust analysis. Further improvements could be realized in both accuracy and

speed, especially through the contributions of advances in parallel and core

architectures. These developments should enhance significantly the utility of

database search and taxonomic annotation methods to the molecular biologist.
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Chapter 4

Richness Estimation

4.1 Introduction

Two important factors that describe a microbial community are richness,

meaning the number of species present, and diversity, which is their relative

abundance [93]. The latter can be estimated from the classification efforts

and/or phylogenetic analysis of community samples. Richness estimation re-

quires information on the number of distinct subpopulations present in the

community, according to a threshold set to determine them (e.g. genus level),

as well as the evenness information, meaning how different the sizes of the

subpopulations in the community are. Several richness estimator methodolo-

gies have been developed including extrapolation from accumulation curves,

parametric estimators and non-parametric estimators, the latter being the

most promising for microbial studies [55]. Among this last class of estima-

tors, Chao1 [18] seems to be the most suited method for estimating phylotype

richness from prokaryotic 16S rRNA libraries [67].

Here we detail our bioinformatics methods for analyzing population dis-

tribution and richness in large and diverse microbial communities. This was

This chapter is drawn from our paper [95].
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achieved via a comparison of different clustering methods for achieving more

accurate richness estimations. Our methodology, which we developed using the

RDP vetted 16S rRNA gene sequence dataset, was validated against a large

16S rRNA gene dataset of approximately 2300 sequences, obtained from a soil

microbial community study. We concluded that the best approach to group

closely related sequences is by using complete linkage clustering, in order to

calculate richness and evenness indices for the communities.

In the rest of this chapter we will argue against the single linkage cluster-

ing methodology for richness estimation calculations, in favor of the equally

computationally-attractive complete linkage method.

4.2 Clustering Methodology for Richness Es-

timation

To deconvolute community composition, it is necessary to calculate the rich-

ness of a microbial population, meaning the number of phylotypes present.

This requires partitioning the sampled sequences into sets according to their

similarity. This can theoretically be achieved by using the output of our clas-

sifier, as presented in the previous chapter, where information is known for

the identification of all sequences at different phylogenetic levels. However,

this would require that all sequences are identified with the same confidence

level, which is not always the case. In addition, highly dissimilar sequences

can sometimes be classified in the same phylogenetic group when they have

the same vetted sequence as their closest neighbor.

We examined three traditionally used clustering methods, the single link-

age, average linkage and complete linkage methods, all which fall under the

agglomerative hierarchical (bottom-up) approach and produce clustering trees

[65]. All hierarchical clustering methods treat each data point as a singleton
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cluster, and then successively merge clusters until all points have been merged

into a single remaining cluster. In single linkage hierarchical clustering, two

clusters are merged in each step, whose two closest members have the smallest

distance. In complete linkage clustering, we merge in each step the two clus-

ters whose merger has the smallest diameter. In average linkage clustering, the

two clusters merged in each step have a minimum average distance between

their members.

We compared the three methods using the set of 5574 vetted sequences,

for which phylogenetic information for all phylotypes is well assigned. Before

applying the clustering methods, we used the known phylogenetic partitioning

of the vetted sequences to calculate statistics about the number of groups

they form at each phylogenetic level, as well as the minimum, average and

maximum Levenshtein edit distances between sequences in these phylogenetic

groups. The means of all these values are shown in Table 7.

The known phylogenetic partitioning of 5574 vetted sequences was used

to calculate statistics about the number of groups they form at each phyloge-

netic level, as well as the minimum, average and maximum Levenshtein edit

distances between sequences in these phylogenetic groups.

According to the number of groups in each phylotype (see Table 7), we

determined the necessary cut off edit distance value, which, when applied to

the inferred clustering tree, would produce the same number of phylogenetic

groups. This is demonstrated in Figure 11 on a random subset of 100 vetted

16S rRNA sequences. In this figure, for example, we can observe that a cut-off

edit distance value of 300 will result in the formation of 23 groups, for the

given 100 sequences. Inversely, if we want to acquire 15 groups, a cutoff edit

distance of 380 is required. Knowing the number of distinct groups for all

taxa for our vetted sequence set allows us to determine cutoff levels that will

generate the same number of groups, when clustering these sequences with

53



Table 7: Phylogenetic partitioning of the vetted sequences in groups and their
statistics. The known phylogenetic partitioning of 5574 vetted sequences was
used to calculate statistics about the number of groups they form at each
phylogenetic level, as well as the minimum, average and maximum Levenshtein
edit distances between sequences in these phylogenetic groups.
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Figure 11: Complete linkage clustering of a subset of 100 vetted 16S rRNA
sequences (for demonstration purposes). For two different cut off edit distance
values of 300 and 380, the set is partitioned into 23 and 15 groups, respectively.

our three hierarchical clustering methods. This allows the evaluation of the

clustering methods independently of the error in the cut-off estimation, which

is actually a separate problem for all clustering and partitioning methods, and

usually is calculated based on observations [55].

Correct cutoff values, as shown in Figure 11, cannot be calculated directly

from vetted sequence statistics. To illustrate this point, one would expect that

for the complete linkage clustering method, the correct threshold could be de-

termined by calculating the maximum in-group distance, when the number

of groups formed is the same as in the vetted sequence set at some phyloge-

netic level. It happens though that, even at the genus level, a group exists

(Clostridia) in the vetted sequence set with a maximum in-group distance of

626, which indicates approximately 43% sequence dissimilarity.

More appropriate thresholds can be determined by considering the mean

of the average distances inside the groups at every merging step of the average
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linkage clustering hierarchical algorithm, and then comparing this value to

the known mean for the corresponding groups of the vetted sequences. These

values are quite similar, as can be seen in Table 8. The same effect is observed

for the complete linkage clustering method (Table 8), where the threshold value

for partitioning is determined based on the maximum distance inside each

group. Single linkage clustering does not offer such a measure for estimating

a cut-off, since there is no averaging process in the algorithm.

By sorting the groups, formed at the different phylogenetic levels by using

the different clustering methods, according to their cardinality, and by com-

paring this to the known phylogeny, we created graphs showing the trends in

group sizes. The known phylogeny group cardinalities were the best approx-

imated by the complete, followed by the average clustering method. This is

shown in Figure 12 for the 75 groups at the order level, where similar figures

were produced for all taxonomic levels.

To quantify the better performance of the complete clustering method,

as observed in Figure 12, we calculated the Pearson correlation (difference

in variance) and square difference (distance of each individual group of the

same index, according to the corresponding sorted position). The results are

presented in Table 9 and confirm that the complete linkage clustering method

provides a better correlation to the known classification at all five phylogenetic

levels.

As a case study for the richness estimation based on different clustering

methods, we calculated the Chao1 index at different phylogenetic levels. Since

the Chao1 estimate is based on the ratio of singletons and doubletons of a se-

quence grouping, it can vary significantly with changes to these small integers.

For that reason, we tested the Chao1 richness estimations on 1000 random

selected sequences from the vetted sequence set, repeating the test a total of

1000 times. In Table 10 we present the average richness estimations of these
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Table 8: Estimated cut-off values based on the vetted sequence statistics and
actual cut-off values for different phylogenetic levels determined using the aver-
age and complete linkage clustering methods. The estimated cut-off values are
the means of the vetted sequence statistics for in- group average and maximum
sequence distances (See Table 7). Sequence dissimilarity cutoffs are presented
as edit distance over average 16S sequence length percentages.

experiments. As seen in Table 10, richness estimations based on groups clus-

tered with the complete linkage method are the most accurate. In conjunction

with the consistently better correlation of the group size histograms, complete

linkage clustering is preferable for use in richness estimation analysis.

We should note here that computation times for the single, average and
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Figure 12: Cardinalities of the 75 groups formed by the single, average and
complete clustering methods, compared to the original 75-group partitioning
of all 16S vetted sequences, at the order level. The logarithmic values of the
group sizes are presented in reverse sorted order. The two rightmost steps of
each curve show the number of the doubletons and singletons, representing
groups with two and one members, respectively.

complete methods differ insignificantly and have a quadratic time dependence

to the number of sequences (or linear to the number of pair-wise sequence

distances). For our clustering analysis. we used the statistical analysis pro-

gram R [119]. Evaluation of the average and maximum in-group distances

of a clustering were performed using the height and order arrays provided by

R, in conjunction with the calculated pair-wise edit distances of the vetted

sequences.
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Table 9: Pearson correlation and square differences of the sorted cardinality
lists of partition groups, created by the three clustering methods, against the
original partitions of the vetted sequences. The Pearson correlation and square
differences were calculated for different phylogenetic levels.

Table 10: Average Chao1 richness estimation index calculated for random
1000 sequence subsets from the RDP vetted sequence dataset and for the
groupings from different clustering methods. The first two columns present
the average number of phylotypes in the 1000 randomly selected sequences and
the estimated Chao1 richness for each phylogenetic level, based on the known
taxonomical grouping. The last three columns present the average deviation of
the Chao1 richness estimate, based on the groupings acquired from different
clustering methods, as a percentage of the Chao1 richness estimate of the
known taxonomy. Here complete linkage clustering is outperforming the other
clustering methods in all but one level (genus).
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4.3 Conclusions

The 16S rRNA gene sequence enables the association of phylogeny [76, 116]

and remains the most reliable method to determine completely new or diver-

gent organisms. Aside from the availability of a curated dataset (i.e. the

vetted sequences), the analysis of 16S rRNA gene sequences serves as a choice

model, as it also permits a direct comparison of the composition of different

communities.

Although tree manipulation and visualization utilities like arb [77], which

use multiple alignment to construct phylogenetic trees, have the capability of

handling large datasets, editing their input becomes a laborious and tedious

task. Therefore, the need exists to develop classification tools to overcome

both the computational limitations in accurately identifying taxonomical re-

lationships, and reconstructing phylogenetic trees for the purpose of better

extrapolating ecological roles.

Because of its simplicity and efficiency, single linkage clustering has of-

ten been used for clustering sequences [111]. Other tools, such as DOTUR

[110], give the user the option to select different clustering methods, but no

information is provided on which method actually performs better or what dis-

similarity cutoff should be used to differentiate groups at a given phylogenetic

level. We demonstrate that the complete linkage clustering method seems to

be the preferential approach to create clusters of closely related sequences,

taking into account that it is less computational intense than full phyloge-

netic tree analysis. The output of this clustering method can subsequently be

used for richness estimation of the microbial community, using e.g. the Chao1

index, as we did for the different microbial communities associated with trem-

bling aspen under conditions of ambient and elevated CO2, presented in the

previous chapter.
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Chapter 5

Identifying Outer Membrane

Genes in Photorhabdus

Luminescens

5.1 Introduction

Photorhabdus luminescens (P. luminescens) is phylogenetically a member of

the γ-proteobacteria based on analyses of 50 γ-proteobacterial 16S rRNA genes

[86]. In a phylogenetic tree based on the sctV gene (which encodes a highly

conserved inner membrane protein), P. luminescens falls into the Yersinia fam-

ily [11].

P. luminescens has a complex life cycle and proliferates in two distinctly

different environments [37, 132]. P. luminescens lives symbiotically in the

nematode gut, but also has a pathogenic phase when the worm, which normally

resides in the soil, infects an insect. In this stage, P. luminescens cells are

This chapter is drawn from our paper [94]. My contributions in this work are limited to the
design and development of the motif and promoter locator utilities and obtaining data for
micF.
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released into the circulatory system (hemocoel) of the insect by the nematode.

Here the bacteria grow and commence with the rapid killing of the insect

and both the nematode and the bacteria feed from the dead insect [37, 132].

After nutrients derived from the insect carcass are depleted, the bacteria re-

associate with the nematode and the symbiotic relationship is re-established.

P. luminescens has not been found as a free living organism and thus differs

significantly from E. coli and most other closely related γ-proteobacteria.

During the evolutionary period when P. luminescens evolved into a sym-

biont and a pathogen, its genome expanded such that it has one of the largest

chromosomes of the γ-proteobacteria (5.7 Mb) [32]. This expansion is related

to its pathogenic phase [37, 132, 32]. However certain genetic elements that

contribute towards survival in a harsh environment but are no longer needed

may have been lost from the genome during evolution of the organism.

Using a bioinformatics approach, the P. luminescens genome was analyzed

for outer membrane porin protein and associated regulatory RNA genes. We

find a limited presence of the porin genes and their RNA regulators.

5.1.1 Outer Membrane Proteins

Outer membrane porin proteins allow for the passive diffusion of small solutes

into the bacterial cell. Passage of molecules through the cell envelope and

control of this process are crucial to cell survival when nutrients are scarce

or when the cell is exposure to toxins or other adverse conditions. In E.

coli and related γ-proteobacteria, the major outer membrane porin proteins

are OmpF and OmpC [89]. ompF and ompC genes are regulated transcrip-

tionally by transcription factor OmpR in response to osmolarity change in

the environment [38]. ompF is also regulated post-transcriptionally at the

level of messenger RNA stability by the trans-encoded antisense RNA micF

62



in response to various environmental factors such as temperature increase, ox-

idative stress and exposure to toxic compounds [29]. Regulatory non-coding

RNAs (ncRNAs) in prokaryotes are also referred to as trans-encoded antisense

RNAs. ompC in E. coli is regulated post-transcriptionally by the regulatory

ncRNA micC [22]. OmpA, another major outer membrane protein, has multi-

ple and more complex functions.[131] For example, OmpA adds to the stability

of the cell envelope by linking the outer membrane to the peptidoglycan. It

is involved in bacterial conjugation [102] and functions as a porin protein as

well [39]. The stability of ompA mRNA varies with bacterial growth rate

[117] and ompA mRNA is degraded at a fast rate when cells enter stationary

phase [45]. Udekwu et al [124] recently showed that the regulatory micA RNA

post-transcriptionally regulates ompA mRNA. In addition, micA is induced at

stationary phase, a stress condition [124]. Thus in E. coli, three major outer

membrane proteins, OmpF, OmpC, and OmpA are all regulated by specific

small RNAs in response to stress factors.

5.2 Searching for RNA Primary and Sec-

ondary Structure Motifs in P. luminescens

The strategy used to search for a putative micF RNA in P. luminescens

was to scan the genome using the conserved 13 nt 5’ end micF sequence,

i.e., 5’G1CTATCATCATTA133’ as well as variations of this sequence. Vari-

ations included T at position 2, T at positions 6 and 9, and in addition,

a total of 4 random substitutions. A different first pattern that provides

perfect complementarily to the ompF mRNA 5’ UTR was also employed:

5’G1TTTCATCATTATT143’. Variations included a total of four random sub-

stitutions and also allowing for the insertion of an A residue randomly between

the 3rd and 10th base of the pattern. Additional constraints consisted of a
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rho- independent termination pattern situated 35−85 bp downstream the two

basic 5’ end patterns shown above. The parameters used for the terminal rho-

independent structure were a stem-loop followed by at least four T residues.

The stem was 4 − 15 bp with a minimum of three G-C pairs, the loop 3 − 8

bases, and the maximum folding energy of loop was -9 Kcal/mol. Scans for

the termination motif were performed after the initial identification of the two

patterns shown above.

For scanning the P. luminescens genome, the perl programing language

was used.

Additional scans were performed for –10 and –35 promoter sequences. To

avoid 0 values, discounting for the probabilities in the consensus sequences

were applied. Jeffrey Perk’s law was used [79]:

Jeffrey Perk’s law: P (w) = (C(w)+1/2)/(N+B/2), where P is the assigned

probability, w is a DNA character assignment, C(w) is the frequency of the

character in the consensus table for the specific position, N is the number of

training sequences used for the creation of the consensus table and B is the

number of possible values for our character i.e., 4.

5.2.1 Searching for a Putative P. luminescens micF

RNA

In the search for a putative P. luminescens micF RNA, the “fifth positive”

sequence (described in the main text under the section a. ompC and micF )

is found in an intergenic region. It is 414 bp from the 5’ side of the ptsH gene

and 35 bp from the 3’ side of the cysK gene and is located at positions 1674515-

1674620 of the P. luminescens genome.

A promoter search was also performed for the P.luminescens “fifth posi-

tive” sequence. The results are described in terms of a p-value (the proba-

bility that the examined sequence appears by chance). The most prominent
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(a) RNA/RNA secondary structure
model of the fifth positive sequences

(b) Y. pestis micF RNA/ompF
mRNA 5’ UTR duplex model, repro-
duced from [28]

Figure 13: Examining micF candidates

promoter candidate for the “fifth positive sequence” had a p-value of 2.0x10−3

and was calculated for the P-35 at -37 and a spacer of 17 bp between the –35

and –10 sequences. For the E.coli micF promoter [26] the calculated p-value

is 3.3x10−3 (P-35 at –36 and spacer of 17 bp). Although the “fifth positive”

sequence provides a promoter probability in the range of that for E. coli micF,

the micF promoter produces a weak signal. The statistical methods used are

described below.

Figure 13a shows a model of the RNA/RNA duplex structure of the “fifth

positive” sequence with P. luminescens ompF mRNA 5’ UTR. Figure 13b

(reproduced from [28]) shows the Y. pestis micF RNA/ompF mRNA 5’ UTR

duplex as a comparison. This structure has the characteristics of micF/ompF
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RNA/RNA duplexes with the exception of “blunt ends” which is characreristic

of duplexes from all bacteria known to have a micF gene. Thus although

we have discounted this sequence as a potential micF in P. luminescens, we

cannot rule out that the “fifth positive sequence” encodes a small RNA as it

has possible promoter and termination signals.

5.3 Promoter Search Methods

In order to locate possible P-35 and P-10 promoter sites for candidate se-

quences, a search was performed in the region upstream of the sequence, start-

ing at -50 and ending at -30 for the P-35 promoter. The spacer between the

P-35 and P-10 promoter allowed for a length of 15-19 bp.

To calculate p-values (probability that the examined sequence appears by

chance) and to examine the significance of the promoter findings, the base

frequency distributions in the consensus hexamers as compiled in reference

[75] was used. Initially, the probability of the two hexamers appearing in a

specific location (under the constraints previously specified) is calculated as

the geometric mean of the product of the individual frequencies of all bases

of the candidate promoters at this location. In order to calculate a p-value

for this probability, a pre-compiled sorted table of all possible 412 values of

probabilities for each hexamer pair that could comprise our two promoters is

consulted, in order to locate the value of the probability for the location we

are examining. The p-value is then calculated as the number of values equal

or higher than the one we calculated, over the total number of values (412).

Although the p-values are significant, they become less significant if cor-

rected for the number of samples, e.g. Bonferroni correction [7], since a variety

of possible positions for the P-35 promoter and five values, 15-19 for the spacer
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between the two promoters were considered. This is true for the known pro-

moter site for the E. coli micF. Thus this accounts for attributing the E.coli

micF as a weak signal.

5.4 Conclusion

By bioinformatics analysis of conserved genetic loci, mRNA 5’ UTR sequences,

RNA secondary structure motifs, upstream promoter regions and protein se-

quence homologies, an ompF like porin gene in P. luminescens as well as a

duplication of this gene have been predicted. Gene loci for micF RNA, as well

as OmpC protein and its associated regulatory micC RNA, were not found.

Significantly, a sequence bearing the appropriate signatures of the E. coli micA

RNA was located. The ompA homolog was previously annotated in P. lumi-

nescens.

Presence of an ompF-like porin in P. luminescens is in keeping with the

necessity to allow for passage of small molecules into the cell. The apparent

lack of ompC, micC and micF suggests that these genes are not essential to

P. luminescens and ompC and micF in particular may have been lost when

the organism entered its defined life cycle and partially protected habitat.

Control of porin gene expression by RNA may be more prevalent in free-living

cells where survival is dependent on the ability to make rapid adjustments

in response to environmental stress. Regulation of ompA by micA may have

been retained due to a necessity for ompA control during one or both stages

of the P. luminescens life cycle.
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Part II

Genomic Sequence Design
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Chapter 6

Design of Overlapping Genes

6.1 Introduction

The emerging field of synthetic biology moves beyond conventional genetic

manipulation to construct novel life forms that do not originate in nature.

The synthesis of poliovirus from off-to-shelf components [15] attracted world-

wide attention when announced in July 2002. Subsequently, the bacteriophage

PhiX174 was synthesized using different techniques in only three weeks [115],

and Kodumal, et.al [70] recently set a new record for the longest synthesized

sequence, at 31.7 kilobases. The ethics and risks associated with synthetic

biology continue to be debated [2], but the pace of developments is quicken-

ing. Indeed, Tian, et.al. [120] have just proposed a method for DNA synthesis

based on microarrays and multiplex PCR that promises a substantial reduction

in cost.

Once you can synthesize an existing genome from scratch, you can do the

same for new and better designs as well. In this chapter, we explore an in-

teresting problem in genome design, namely designing the provably shortest

This chapter is drawn from our paper [129]. My contributions in this work are limited to the
development and implementation of the algorithm for gene overlapping and observations on
natural and random gene overlap dynamics.
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genomic sequence to encode a given set of genes, by exploiting alternate read-

ing frames and the redundancy of the genetic code. Theoretically, up to six

proteins can be encoded on the same genomic sequence using three alternate

reading frames on both strands. Indeed, long gene overlaps occur frequently

in nature.

Our contributions are:

• Finding Shortest Encodings for Given Protein Pairs – We present an

algorithm for designing the shortest DNA sequence simultaneously en-

coding two given amino acid sequences. Our algorithm runs in worst-case

quadratic time, but we provide an expected-case analysis explaining its

observed linear running time when employing the standard DNA triplet

code.

• Comparing Natural and Synthetic Coding-Pair Sequences – We compare

the overlapping gene designs constructed by our algorithm to those oc-

curring in natural viral sequences. We show that the coding sequence of

naturally occurring pairs of overlapping genes in general approach max-

imum compression, meaning that it is impossible to design overlapping

shorter coding sequences for them which save more than 1-2% over inde-

pendent genes. This counterintuitive result has natural explanation in

terms of the evolutionary mechanics of overlapping gene sequences.

Further, we show interesting differences between the preferred phase

(reading frame), strand, and orientation of natural and optimized over-

lapping sequences.

• Impact of Alternate Coding Matrices on Overlapping Sequence Design

– Protein designs are not immutable; indeed, certain pairs of amino

acids share such similar physical/chemical properties they can be fairly

freely substituted without altering protein function. This freedom can
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be exploited to design substantially shorter encodings for a given pair of

proteins.

We investigate the impact of increasingly permissive amino acid substi-

tution matrices (derived from the well-known PAM250 matrix) on the

potential for constructing tight encodings. Extremely tight encodings

are often possible while largely preserving the hydrophobicity of the as-

sociated residues. Further, the encodings designed under each of these

matrices shows interesting differences between the preferred phase (read-

ing frame), strand, and orientation.

• Biotechnology Applications of Nested Encodings – We propose an inter-

esting application for overlapping gene design, namely the interleaving

of an antibiotic resistance gene into a target gene inserted into a virus

or plasmid for amplification. Selective pressures tend to quickly remove

such target genes as disadvantageous to the host. However, coupling such

a target with a resistance gene provides a means to select for individuals

containing the arbitrarily selected target gene.

To demonstrate the feasibility of this technique, we apply our algorithm

to encode each of five important antibiotic resistance genes within the

body of the Hepatitis C virus. In fact, we demonstrate there are several

possible places to encode each resistance gene within the virus, assuming

a sufficiently (but not excessively) permissive codon replacement matrix.

These sequence design problems naturally arise in our project, currently

underway, to design and synthesize weakened viral strains to serve as candi-

date vaccines. This work also follows our previous efforts to design encoding

sequences for proteins which minimize or maximize RNA secondary structure

[24] and avoid restriction sites [114].
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This chapter is organized as follows. In Section 6.2, we survey the litera-

ture concerning why gene overlaps occur in nature and how they evolve. We

present our algorithm for constructing optimal encodings in Section 6.3, with

associated analysis, and compare our synthesized designs with wildtype viral

encodings. In Section 6.4, we study the impact of alternate codon substitution

matrices on the size and parity of minimal pairwise gene encodings. Finally,

in Section 6.5, we present our results on encoding antibiotic resistance genes

within viral coding sequences.

6.2 Overlapping Genes in Nature

Overlapping genes are adjacent genes whose coding regions are at least partly

overlapping. They occur most frequently in prokaryotes, bacteriophages, ani-

mal viruses and mitochondria, but are seen in higher organisms as well. Gene

overlapping presumably results from evolutionary pressure to minimize genome

size and maximize encoding capacity. For viruses, this is manifested in two

ways; first when genome size substantially affects the speed of replication, and

second when an upper bound on the genome size is imposed by packaging.

Overlapping genes are common for viruses with prokaryotic hosts because

they must be able to replicate sufficiently fast to keep up with their host

cells [12]. As an example, many bacteriophages have compact genomes which

maximize coding information into the minimum genome size [12]. In term

of evolutionary pressure to minimize genome size, packaging size pressure (the

packaging size of the virus particle as the amount of nucleic acid which can

be incorporated into the virion) sets the genome size upper bound for viruses

with eukaryotic hosts [12].

Overlap between genes is very common in genomes mutating at high rates,
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Figure 14: Notation for the gene encoding algorithm: the canonical encoding
(left), with the top (center) and bottom (right) overhang cases.

such as bacteria and mitochondria, but especially viruses. Although a mu-

tation in an overlapping region can impair more than one protein and would

be naturally selected against, there are several reasons overlapping genes can

benefit an organism:

• By reducing the size of the genome, without affecting the number of

genes encoded.

• By generating new (or sometimes more complex) proteins without in-

creasing the size of the genome.

• By coordinating the expression levels of functionally related genes.

• By coordinating the expression levels of genes, where the expression of

one gene requires the deactivation of the other.

The first two functions are supported by the theory of “overprinting”, which

attempts to describe the origin of new genes from an existing genome with

minimal mutational change [66]. Size reduction is considered important under

the assumption that replication rate is inversely related to genome length, since

it has an obvious effect in increased rates of replication and minimization of

mutation load.

Overlapping reading frames can serve to expedite efficient translation.

Overlaps can bring translation machinery close to both overlapping genes,
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which can co-ordinate or co-regulate their expression. In other cases an over-

lap can bring the termination site of one gene into the same region as the

translation initiation site for the next gene [92].

The rate of evolution can be expected to be slower in overlapping genes

[84]. Since point mutations in overlapping regions can affect two genes si-

multaneously, a mutant variant produced with a mutation in an overlapping

region will have a lower growth rate and in most cases cannot compete with

the wild type variant.

Although high mutation rates and selection towards a compacted genome

would indicate that overlapping genes should occur mostly in viral and cellular

prokaryotic genomes and mitochondria, recent studies show that mammalian

genomes have relatively frequent occurrences of overlapping genes too. The

observed 774 overlapping genes in the human and 542 overlapping genes in

the mouse genome [125] do not compare favorably with the 806 overlapping

gene pairs in the genome of E.Coli, since the latter genomes is three orders

of magnitude smaller. Nevertheless, the same mechanisms of evolution, like

rearrangements or loss of parts and utilization of neighboring gene signals,

provide explanation for the origin of these overlaps.

Overlapping genes offer an efficient way to study how coding and control

sequences have evolved. With direct comparison of the overlapping genes

for related species, one can determine how the overlaps evolved and under

which conditions, like neighboring gene distance (for example, in closely related

bacterial species it has been observed that most of the overlapping genes were

generated or degraded in gene pairs that have a short intergenic region [41]).

By comparing gene overlaps that are not conserved between related species, the

mutational changes that caused the diversion can often be identified. In other

cases further species sequencing are necessary to decipher the evolutionary

mechanisms and tendencies [41, 125].
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There is evidence that in certain gene overlaps the overlapping region is

younger than the coding sequences [91]. Other cases clearly indicate that

overlap occurred after the loss of a stop codon, the start codon, or both simul-

taneously [41].

The stability of an overlap greatly depends on the direction and phase of

the overlap. Theoretically we expect antiparallel (head-on or end-on) +1-phase

to be most common, followed by parallel +1-phase and +2-phase and then an-

tiparallel 0-phase and +2-phase overlap [71]. This order is not observed in our

experiments on sets of viral genomes, which would indicate that specific evo-

lutionary changes like the loss of end and start codons occur more frequently

than larger piece insertions and deletions, the former being the cause of the

more popular parallel and head-on overlaps. To support the last argument,

natural gene overlaps in many bacterial organisms match the unidirectional,

convergent (head-on) and divergent (end-on) relative occurrences, with the

unidirectional type appearing most, followed by the convergent and divergent

types.

In bacterial species it has been observed that the total number of overlap-

ping genes depends on the genome size or the total number of genes, which

could imply that the rates for the accumulation and degradation of overlapping

genes are universal among bacterial species [41].

Overlapping gene regions can also provide information for evolution pat-

terns among classes of organisms and seem to converge with ribosomal RNA

phylogenetic methods’ results [103]. For certain bacterial species, the extent

of conservation of unidirectional overlaps correlates with the evolutionary dis-

tances between pairs of species. Gene overlaps have even been correlated

with certain human disease genes; further genomic rearrangements are likely

to occur within overlapping regions, possibly as a consequence of anomalous

sequence features prevalent in these regions [63].

75



6.3 Finding Maximally Compressed Gene-

Pair Encodings

Our algorithm for constructing the maximally compressed encoding for a given

pair of amino acid sequences P1 and P2 can be most succinctly described via

a dynamic program. We consider the canonical case where the encoding of

P1 starts to the left (5’ end) of P2 as shown in Figure 14(left); the reverse

case follows by simply relabeling the proteins. We present only the algorithm

for the case of same-strand encodings; the case of alternate strand encodings

follows analogously.

Let P1 contain n residues and P2 m residues, respectively. Let o1, o2, and

o3 denote possible DNA sequences of 0 to 3 bases in length. There are two

general cases:

• We say that C[i, j, o1, top] is realizable iff there exists a pair of sequences

o2, o3 such that o1o2 codes for residue P1[i], o2o3 codes for residue P2[j],

and C[i + 1, j, o3, bottom] is realizable or i = n.

• We say that C[i, j, o1, bottom] is realizable iff there exists a pair of se-

quences o2, o3 such that o1o2 codes for residue P2[j], o2o3 codes for

residue P1[i], and C[i, j + 1, o3, top] is realizable or j = m.

An exception occurs only when the residues are aligned, where only one

case is needed, in which we advance both indices i and j and we check for

reaching both ends of the proteins.

The basis cases for the canonical labeling assert that an overlap is at-

tainable (C[n, j, o1, top] or C[i, m, o1, bottom] is realizable) iff C[j, 1, o1, top] is

realizable for some 1 < j < n. Since there are only a constant number of

possible short strings o1, o2, and o3, it takes constant time to evaluate a given
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value of C[i, j, o, b] given the solution of all smaller cases. With Θ(mn) values

to evaluate, the algorithm runs in worst case Θ(mn) time.

By ceasing evaluation once no realizable values remain, the longest overlap

can be computed in O((n + m)l), where l is the length of the longest overlap

between the protein sequences. Below, we argue that l should in general be of

constant length on non-degenerate substitution matrices; this states that on

average this algorithm should run in linear time on such matrices.

We say that two overlapping proteins are in-phase if the overlap length is

congruent to 0 mod 3, i.e. they align along codon boundaries. Non-trivial in-

phase, same-strand overlapping designs are in principle forbidden by the fact

that proteins must end with stop codons. However, we consider an abstraction

of this case to simplify the analysis.

Here we consider the expected length of the maximal overlap as a func-

tion of the residue equivalence probability, defined as the probability that two

randomly selected amino acids have an equivalent codon between them. This

residue equivalence probability p is a function both of the codon substitution

matrix and the distribution of amino acids in the proteins.

Assuming independence of the protein sequences, the expected length of

the longest left-right overlap E(O) of two random sequences P1 and P2 is given

by

E1(O) =
∞

∑

l=0

lpl

∞
∏

i=l+1

(1 − pi)

For the case of two-sided overlaps (i.e. either P1 or P2 may occur on the left

side of the alignment),

E2(O) =

∞
∑

l=0

l(2pl − p2l)

∞
∏

i=l+1

(1 − (2pi − p2i))

The above analysis demonstrates that the expected maximum overlap

length remains quite small until the residue equivalence probability approaches
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Figure 15: Length distribution of pairwise-overlapping genes in viral genomes.

All Overlaps, parity mod 3 Length > 4, parity mod 3
Pattern 0 1 2 All 0 1 2 All
SAME 0.0% 23.1% 39.9% 63.0% 0.0% 12.9% 53.3% 66.2%

HH 4.4% 1.9% 4.8% 21.1% 5.9% 4.9% 6.5% 17.3%
TT 3.0% 1.9% 11.0% 15.9% 4.0% 2.6% 9.9% 16.5%
total 7.4% 36.9% 55.7% 100% 9.9% 20.4% 69.7% 100%

Table 11: Parities of natural gene overlaps, ties discarded. All 3232 gene pairs
(left). The 2407 gene pairs with overlap > 4.

1. This suggests that two arbitrary proteins are unlikely to permit substan-

tially compressed in-phase encodings except under a forgiving (degenerate)

coding matrix.

Still, all is not lost. Our analysis of both wildtype and synthetic overlaps

demonstrates that out-of-phase encodings are likely to be substantially longer

than in-phase encodings. This phenomenon appears to be difficult to ana-

lyze in general because it strongly depends upon the properties of the codon
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All Overlaps, parity mod 3 Length > 4, parity mod 3
Pattern 0 1 2 All 0 1 2 All
SAME 0.01% 31.92% 1.47% 33.40% 0.05% 3.04% 13.16% 16.25%

HH 5.09% 35.51% 2.31% 42.91% 45.55% 7.77% 21.07% 74.39%
TT 0.08% 0.91% 22.70% 23.69% 0.62% 8.28% 0.46% 9.36%
total 5.18% 68.34% 26.48% 100.00% 46.22% 19.09% 34.69% 100.00%

Table 12: Longest optimized overlap using codon matrix, ties discarded. All
135,869 overlapping gene pairs (left), the 14,925 overlapping gene pairs of
length > 4 (right).

equivalence matrix.

Each amino acid is encoded by a minimum of one and a maximum of six

different codons. In total, 61 of the 64 codons encode 20 amino acids while the

other three are stop codons, a termination point for protein-synthesizing ma-

chinery. Thus there is an approximate 1-to-3 correspondence between amino

acids and their codon encodings. It is this redundancy that offers the flexibility

in amino acid sequence encoding.

To study the extent of gene overlapping in viruses, we analyzed all 1058

completely sequenced viral genomes available in Genbank as of February 22,

2004. After excluding 273 genomes containing a single annotated gene (and

hence not a candidate for gene overlapping) and 108 genomes with sequence

ambiguity or obvious annotation errors, we were left with 677 viruses of inter-

est. In total, these viruses contained 3,232 pairs of overlapping genes, 2,407

of which had overlaps of length greater than four bases.1

Figure 15 presents the frequency distribution of gene overlaps by length,

the tail of which demonstrates that long overlaps occur with surprisingly high

frequency. Table 11 shows a partition of these overlaps into disjoint cases,

distinguished by whether the genes occur on the same strand, or are head-to-

head or tail-to-tail on opposing strands. Same strand overlaps dominate in the

sample. Table 11 also shows partitions of these overlaps by the length mod 3.

1Overlaps of less than four bases are not particularly interesting, since the possible over-
laps are restricted to the start and stop codons possessed by every gene.
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In-phase overlaps are understandably rare (any stop codon breaks both same

strand sequences), but there is also a clear preference for 2 mod 3 parity over

1 mod 3.

Using our gene pair encoder, we attempted to find more compressed rep-

resentations of the wildtype gene pairs. In general we failed badly, with the

vast majority of cases having zero or insignificant improvement (recall that

approximately one third of all natural overlaps were of length 4 or less). In no

case were we able to increase the overlap length of such an overlapping gene

pair by more than 20 bases.

The lesson here is that gene overlaps occur because the proteins evolved

together – significant potential overlaps are extremely unlikely to arise in un-

related sequence pairs because the genetic code does not provide sufficient

flexibility. Figure 16 presents the results of optimally encoding 135,869 pairs

of unrelated proteins. In no case were we able to reduce the length of an

overlapping gene pair by more than 30 bases.

More interesting is the breakdown of our optimized encodings by strand

and parity, reported in Table 12. The optimized encodings show sharply dif-

ferent preferences than the wildtype encodings. Functional demands likely

constrict the choice of same strand encodings, although it is less obvious why

there is such dramatic difference in head-to-head and tail-to-tail preferences.

The difference in preferred parity is largely explained by the change in strand

encoding distribution.

6.4 Experiments in Synthetic Gene Encoding

Recent studies [40] have demonstrated that the genetic code maximizes the

likelihood that a gene mutation will not harm and may even improve the
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Figure 16: Distribution of maximum overlaps under four different codon sub-
stitution matrices.

protein. In general, the code is resilient to random mutations leading to sig-

nificant changes of the affected amino-acid properties, so that a misread codon

often codes for the same amino acid or one with similar biochemical proper-

ties. Furthermore, simulations by Gilis et al. [46] have shown that taking the

amino-acid frequency into account further increases the resilience of the code

compared to random codings. It is also known that proteins with a limited

number of point mutations which lead to non-synonymous substitutions fold

in similar ways, in a degree that homology database search can detect function

similarity in proteins differing in up to 50% of their amino-acid compositions

[80].

Based on these results, we decided to further investigate the pairwise gene
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overlapping possibilities using non-synonymous amino-acid substitution matri-

ces, which increase the combinatorial possibilities of compressed overlapping

representations at the cost of minor changes in the residues in the underlying

proteins.

Our substitution matrices are derived from the well-known PAM 250 amino

acid substitution scoring matrix. The value of each entry describes the reward

or penalty in replacing an instance of the first amino acid with the second in

aligned sequences. Positive values contribute favorably to an alignment, and

negative values unfavorably. We may derive a permissive codon equivalence

matrix from PAM 250 as a function of a threshold t by permitting replacement

of amino acid x with y if the score is ≥ t. By decreasing t, we can define a

sequence of increasingly permissive substitution matrices for our experiments.

Clearly other substitution matrices are possible (e.g. Levitt’s hydropho-

bicity scoring matrix [74]), and perhaps even preferable. Our primary interest

is establishing the flexibility for compressed sequences as a function of more

tolerant substitution matrices.

For this purpose we used three substitution matrices, one to indicate amino-

acid compatibility based on mutational changes and two matrices which indi-

cate hydrophobicity compatibility, each one allowing a different level of accept-

able substitution distances. In the substitution matrix based on mutations, the

amino-acids are separated in disjoint equivalence groups, where the hydropho-

bicity matrix limits substitutions in overlapping groups for each amino-acid,

based on the hydrophobicity “neighborhood” of each. In the two cases we

considered, the neighborhoods are limited by a hydrophobicity of 10 and 9

respectively. The substitution possibilities are presented in Table 6.4.

The results of our overlapping experiments with the use of the alternate

substitution matrices are shown in Figure 16. One can observe the significant

increase in both the number and frequency of long overlaps with increasing
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AA Codons Mut Count Hydro 10 Count Hydro 9 Count

R 6 HRK 10 RK 8 RKDE 12
K 2 HRK 10 RK 8 RKDE 12
D 2 NDEQ 8 DE 4 RKDE 12
E 2 NDEQ 8 DE 4 RKDE 12
S 6 STPAG 22 SNQG 14 SNQGTHA 24
N 2 NDEQ 8 SNQG 14 SNQGTHA 24
Q 2 NDEQ 8 SNQG 14 SNQGTHA 24
G 4 STPAG 22 SNQG 14 SNQGTHA 24
T 4 STPAG 22 THA 10 SNQGTHACM 27
H 2 HRK 10 THA 10 SNQGTHACMP 31
A 4 STPAG 22 THA 10 SNQGTHACMP 31
C 2 C 2 CM 3 THACMPVLI 30
M 1 MILV 14 CMPV 11 THACMPVLI 30
P 4 STPAG 22 MPV 9 HACMPVLIY 28
V 4 MILV 14 MPVLI 18 CMPVLIY 22
L 6 MILV 14 VLI 13 CMPVLIYF 24
I 3 MILV 14 VLI 13 CMPVLIYF 24
Y 2 FYW 5 YF 4 PVLIYF 21
F 2 FYW 5 YF 4 LIYFW 14
W 1 FYW 5 W 1 FW 3
Z 3 Z 3 Z 3 Z 3

Table 13: Matrix Amino Acid Equivalence, based on codon matrix, hydro 9
matrix, hydro 10 matrix and mutation matrix.
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length as the matrices become more permissive. In particular, almost arbi-

trarily long overlaps appear possible under t ≥ −3 substitution.

6.5 Hiding Short Genes in Long Genes

Here we report on proof-of-concept simulations of two related biotechnology

applications for carefully designed overlapping of synthetic gene sequences:

• Plasmid incorporation into mammalian cells – A common technique for

incorporating target gene expression into mammalian cell involved plas-

mid incorporation and mammalian cell transfection. Initially, the plas-

mid containing the target gene is propagated in bacteria. The naked

plasmid DNA is extracted and then introduced into the mammalian cell

by transfection.

Typically the target gene is paired with an antibiotic resistance gene,

so as to create a marker for selection in the eukaryotic cell. All cells

not expressing this marker can be eliminated with the corresponding

antibiotic drug (ex. geneticin or G418), to isolate cells expressing the

target protein. Sometimes, however only one gene is expressed, such

as when the cell fails to incorporate the entire plasmid. Because the

plasmid is linearized to be incorporated in a chromosome, the cut may

also occur in the target gene location.

By overlapping the target and marker genes, we reduce the probability

that either the cut will eliminate the target gene but the not the marker,

as well as the probability that the two genes will be separated.

• Foreign gene incorporation into viruses – RNA viruses are very prone to

recombination, so an added sequence has a high probability to be deleted.
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Since RNA viruses are streamlined to perform a limited number of spe-

cific tasks, the addition of a gene slows down the virus processes, merely

by extending slightly its length. Since the foreign gene is undesirable,

its deletion will result in a faster produced replicon that will eventually

outgrow the engineered virus we implanted.

Interleaving the target gene into a gene that the virus needs can prohibit

its deletion through reversion.

Positive indications in the direction of gene overlap engineering are the

recent results of [40], which show that the amino acid code minimizes the effects

of mutations and maximizes the likelihood that a gene mutation will improve

the resulting protein. Additionally, methods of local sampling [35, 52] can

help us simulate the behavior of slightly altered proteins in respect to folding

and docking, so that we can test the codon substitution effects without lab

experimentation.

To evaluate the potential for such synthetic overlap encodings, we at-

tempted to find maximal encodings of five important antibiotic genes (whose

length ranges from 375 to 1026 nucleotides) within the coding region of the

Hepatitis C virus (HCV). Consistent with the results of the previous section,

only trivial overlaps can be obtained using synonymous substitutions. Partial

overlaps, but not complete nesting can be obtained with the hydro-10 and

mutation substitution matrices.

However, multiple complete encodings are possible under t ≤ −2 and t ≤

−3 substitution for each of the five antibiotic resistance genes, as reported in

Table 14. There is a strong bias for alternate strand encodings, although all

five antibiotic resistance genes offer same strand encodings for t ≤ −3. In fact,

the preferable target for the inserted gene encoding (and promoter region) in

the virus application is the minus strand, so this bias appears fortunate.
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accession number of t < −2 encodings number of t < −3 encodings
Resistance gene number length same strand alternate strand same strand alternate strand
Hygromycin X03615 1026 0 1 4 1
Neomycin M55520 795 0 1 2 3
Puromycin X92429 600 0 11 16 25
Blasticidin AYI96214 423 56 250 217 442
Zeocin A31902 375 35 132 163 175

Table 14: Number of fully-enclosed t ≤ −2 and t ≤ −3 encodings of antibiotic
resistance genes within the Hepatitis C virus.

Based on these results, we are pursing more rigorous designs for intended

synthesis and implementation.
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Chapter 7

Codon Bias Designs

7.1 Introduction

The rapidly developing technologies in the field of synthetic biology allow for

the cost-efficient de novo synthesis of DNA sequences without the need for

a natural template. This allows for the generation of entirely novel coding

sequences or the modulation of existing sequences to a degree practically im-

possible with traditional cloning methods. Inspired by a previous work on

the chemical synthesis of poliovirus (PV) in the absence of natural template

[15], we are now actively exploring the utility of de novo gene synthesis for the

customization of virus properties.

As a result of the degeneracy of the genetic code, all but two amino acids

in the protein coding sequence can be encoded by more than one synonymous

codon. The frequencies of synonymous codon use for each amino acid are

unequal and have coevolved with the cell s translation machinery to avoid

excessive use of suboptimal codons which often correspond to rare or otherwise

disadvantaged tRNAs [47]. This results in a phenomenon termed synonymous

This chapter is drawn from our paper [87]. My contributions in this work are limited to the
design of the synthetic poliovirus capsid regions.

87



codon bias, which varies greatly between evolutionarily distant species and

possibly even between different tissues in the same species [98].

While codon optimization by recombinant methods (that is, to bring a

gene’s synonymous codon use into correspondence with the host cell’s codon

bias) has been widely used to improve cross-species expression [47], the oppo-

site direction of reducing expression by intentional introduction of suboptimal

synonymous codons has seldom been chosen.

7.2 The Effects of Altered Codon Distribution

In the present work, we have reengineered the capsid coding region of poliovirus

type 1 Mahoney [PV(M)] by introducing through de novo gene synthesis the

largest possible number of rarely used synonymous codons (PV-AB) or the

largest possible codon position changes while maintaining the original codon

bias (PV-SD). We found viruses arising from PV-AB-type designs to be atten-

uated by a previously underappreciated mechanism. While the primary defect

of these genomes was at the level of genome translation, codon-deoptimized

viruses were marked by a reduction in virus-particle-specific infectivity up to

1,000-fold. Thus, while producing similar amounts of virus particles per cell,

production of infectious units (measured by functional assays) is greatly re-

duced. Due to the high degree of genetic stability as a result of the large

number of mutations contributing to the phenotype, we propose that codon-

deoptimized virus may present a useful and safer alternative for the production

of poliovirus vaccines, especially inactivated vaccines.

In order to design of codon-deoptimized polioviruses, we produced two dif-

ferent synonymous encodings of the poliovirus P1 capsid region, each governed

by different design criteria. We limited our designs to the capsid, as it has been

conclusively shown that the entire capsid coding sequence can be deleted from
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the poliovirus genome or replaced with exogenous sequences without affecting

replication of the resulting subgenomic replicon [58, 59]. It is therefore quite

certain that no unidentified crucial regulatory RNA elements are located in

the capsid region, which might be affected inadvertently by modulation of the

RNA sequence.

In our first design (PV-SD), we sought to maximize the number of RNA

base changes while preserving the exact codon usage distribution of the wild-

type P1 region (Figure 17). To achieve this result, we exchanged synonymous

codon positions for each amino acid by finding a maximum weight bipar-

tite match [42] between the positions and the codons, where the weight of

each position-codon pair is the number of base changes between the original

codon and the synonymous candidate codon to replace it. To avoid any po-

sitional bias from the matching algorithm, the synonymous codon locations

were randomly permuted before creating the input graph and the locations

were subsequently restored. We used Rothberg’s maximum bipartite match-

ing program [104] to compute the matching. A total of 11 useful restriction

enzyme sites, each 6 nucleotides, were locked in the viral genome sequence

so as to not participate in the codon location exchange. The codon shuffling

technique potentially creates additional restriction sites that we prefer to re-

main unique in the resulting reconstituted full-length genome. For this reason,

we further processed the sequence by substituting codons to eliminate the un-

desired sites. This resulted in an additional nine synonymous codon changes

that slightly altered the codon frequency distribution. However, no codon had

its frequency changed by more than 1 over the wild-type sequence. In total,

there were 934 out of 2,643 nucleotides changed in the PV-SD capsid design,

when compared to the wild-type P1 sequence, while maintaining the identical

protein sequence of the capsid coding domain (Figure 17). Since the codon

usage in this design was not changed, the GC content in the PV-SD capsid
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Figure 17: Codon use statistics in synthetic P1 capsid designs.
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coding sequence remained identical to that in the wildtype at 49%.

The second design, PV-AB, sought to drastically change the codon us-

age distribution over the wild-type P1 region. We were influenced by recent

work suggesting codon bias may impact tissue-specific expression [98]. Our de-

sired codon usage distribution was derived from the most unfavorable codons

observed in a previously described set of brain-specific genes [53, 98]. We

synthesized a capsid coding region maximizing the usage of the rarest synony-

mous codon for each particular amino acid as observed in this set of genes

(Figure 17). Since for all amino acids but one (leucine) the rarest codon in

brain corresponds to the rarest codons among all human genes at large, in ef-

fect this design would be expected to discriminate against expression in other

mammalian tissues as well. Altogether the PV-AB capsid differs from the

wildtype capsid in 680 nucleotide positions. The GC content in the PV-AB

capsid region was reduced to 43% compared to 49% in the wildtype.

Codon-deoptimized polioviruses display severe growth phenotypes. Of the

two initial capsid ORF replacement designs (Figure 18A), only PV-SD pro-

duced viable virus. In contrast, no viable virus was recovered from four inde-

pendent transfections with PV-AB RNA, even after three rounds of passaging

(Figure 18E). It appeared that the codon bias we introduced into the PV-AB

genome was too severe. Thus, we subcloned smaller portions of the PV-AB

capsid coding sequence into the PV(M) background to reduce the detrimen-

tal effects of the nonpreferred codons. Of these subclones, PV-AB2954−3386

produced cytopathic effect 40 h after RNA transfection, while PV-AB755−1513

and PV-AB2470−2954 required one or two additional passages following trans-

fection, respectively (compared to 24 h for the wildtype virus). Interestingly,

they represent the three subclones with the smallest portions of the original AB

sequence, an observation suggesting a direct correlation between the number

of nonpreferred codons and the fitness of the virus.
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Figure 18: Codon-deoptimized virus phenotypes. (A) Overview of virus con-
structs used in this study. (B) One-step growth kinetics in HeLa cell monolay-
ers. (C to H) Plaque phenotypes of codon-deoptimized viruses after 48 h (C to
F) or 72 h (G and H) of incubation; stained with anti 3Dpol antibody to visu-
alize infected cells. (C) PV(M), (D) PV-SD, (E) PV-AB, (F) PV-AB755−1513,
(G and H) PV-AB2470−2954. Cleared plaque areas are outlined by a rim of
infected cells (C and D). (H) No plaques are apparent with PV-AB2470−2954

after subsequent crystal violet staining of the well shown in panel G. (I and
J) Microphotographs of the edge of an immunostained plaque produced by
PV(M) (I) or an infected focus produced by PV-AB2470−2954 (J) after 48 h of
infection.

Despite 934 single-point mutations in its capsid region, PV-SD replicated

at wild-type capacity (Figure 18B) and produced similarly sized plaques as the

wild type (Figure 18D). While PV-AB2954−3386 grew with near-wildtype kinet-

ics (Figure 18B), PV-AB755−1513 produced minute plaques and approximately

22-fold less infectious virus (Figure 18B and F, respectively).
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In order to quantify the cumulative effect of a particular codon bias in a

protein coding sequence, we calculated a relative codon deoptimization index

(RCDI), which is a comparative measure against the general codon distri-

bution in the human genome. An RCDI = 1/codon indicates that a gene

follows the normal human codon frequencies, while any deviation from the

normal human codon bias results in an RCDI higher than 1. We derived the

RCDI by the formula RCDI = [
∑

(CiFa/CiFh) ·NCi
]/Ni (i = 1 through 64).

CiFa is the observed relative frequency in the test sequence of each codon i

out of all synonymous codons for the same amino acid (0 to 1), CiFh is the

normal relative frequency observed in the human genome of each codon i out

of all synonymous codons for that amino acid (0.06 to 1), NCi
is the number

of occurrences of that codon i in the sequence, and N is the total number of

codons (amino acids) in the sequence. Thus, a high number of rare codons in

a sequence results in a higher index. According to this formula, we calculated

RCDI values of the various capsid coding sequences of 1.14 for PV(M) and

PV-SD which is very close to a normal human distribution. The RCDI values

for the AB constructs are 1.73 for PV-AB755−1513, 1.45 for PV-AB2470−2954,

and 6.51 for the parental PV-AB.

For comparison, the RCDI for probably the best known codon-optimized

protein, humanized green fluorescent protein (GFP), was 1.31 compared to an

RCDI of 1.68 for the original Aequora victoria gfp gene [139]. According to

these calculations, a capsid coding sequence with an RCDI of < 2 is associated

with a viable virus phenotype, while an RCDI of < 2 (PV-AB 6.51, PV-

AB1513−3386 4.04, PV-AB755−2470 3.61) would result in a lethal phenotype.

Codon-deoptimized viruses are deficient at the level of genome translation.

Since our synthetic viruses and the wildtype PV(M) are indistinguishable in

their protein makeup and no known RNA-based regulatory elements were al-

tered in the modified RNA genomes, these designs allowed us to study the
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effect of reduced genome translation/replication on attenuation without af-

fecting cell and tissue tropism or immunological properties of the virus. The

PV-AB genome was designed under the hypothesis that introduction of many

suboptimal codons into the capsid coding sequence should lead to a reduction

of genome translation. Since the P1 region is at the N terminus of the polypro-

tein, synthesis of all downstream nonstructural proteins is determined by the

rate of translation through the P1 region. To test whether in fact translation is

affected, in vitro translations were performed. Unexpectedly, our initial trans-

lations in a standard HeLa-cell based cytoplasmic S10 extract [85] showed no

difference in translation capacities for any of the genomes tested. However,

as this translation system is optimized for maximal translation, it includes

the exogenous addition of excess amino acids and tRNAs, which could con-

ceivably compensate for the genetically engineered codon bias. Therefore, we

repeated in vitro translations with a modified HeLa cell extract, which was

not dialyzed and in which cellular mRNAs were not removed by micrococcal

nuclease treatment. Translations in this extract were performed without the

addition of exogenous tRNAs or amino acids. Thus, an environment was cre-

ated that more closely resembles that in the infected cell, where translation of

the PV genomes relies only on cellular supplies while competing for resources

with cellular mRNAs. Due to the high background translation from cellular

mRNA and the low [35S] Met incorporation rate in nondialyzed extract, a set

of virus-specific translation products were detected by Western blotting with

anti-2C antibodies [97]. These modified conditions resulted in dramatic reduc-

tion of translation efficiencies of the modified genomes which correlated with

the extent of the deoptimized sequence. Whereas translation of PV-SD was

comparable to that of the wildtype, translation of three noninfectious genomes,

PV-AB, PV-AB1513−3386, and PV-AB755−2470, was reduced by approximately

90%.
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7.3 Conclusions

In this chapter, we have demonstrated the utility of large-scale codon deopti-

mization of poliovirus capsid coding sequences by de novo gene synthesis for

the generation of attenuated viruses. It was our initial goal to explore the

potential of this technology as a tool for generating live attenuated virus vac-

cines. However, we found codon-deoptimized viruses to be marked by a very

low specific infectivity. In addition, our intention to design PV capsid encoding

with a synonymous codon bias that specifically discriminated against expres-

sion in the central nervous system did not bear fruit, as the tissue-specific

differences in codon bias described by others [98], if at all significant, are too

small to bring about a tissue-restrictive virus phenotype. In a larger set of

brain-specific genes than the one used by Plotkin and colleagues [98] in their

calculations, we could not detect any appreciable tissue-specific codon bias

(data not shown). These observations may pose hurdles to using this new

technology to develop codon-deoptimized viruses as candidates for live atten-

uated vaccines, although much more work has to be carried out. Fine-tuning

of codon deoptimization may still allow the alteration of tissue tropism and

virulence required for attenuation. On the other hand, codon de-optimized

viruses produced similar amounts of progeny per cell, while being 2 to 3 or-

ders of magnitude less infectious. Such viruses may prove very useful as safer

alternatives in the production of inactivated poliovirus vaccine. Since they are

100% identical to the wildtype virus at the protein level, an identical immune

response in hosts who received inactivated virus is guaranteed. This may be

of great advantage at the stage of licensing any potential vaccine based on

this strategy. Due to the distribution effect of many silent mutations over

large genome segments, codondeoptimized viruses should prove extremely ge-

netically stable. Although long-term passaging experiments are still under
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way, no faster-replicating escape variants have been isolated from either PV-

AB2470−2954 or PV-AB755−1513 after five passages, as assessed by the absence

of faster-growing or large-plaque revertants (data not shown).

In the infectious cycle of AB-type viruses described here, steps 1 and 2

should be identical to a PV(M) infection as their capsids are identical. Like-

wise, identical 5’ nontranslated regions should perform equally well in assembly

of a translation complex (step 3). Viral polyprotein translation, on the other

hand (step 4), is severely debilitated due to the introduction of a great num-

ber of suboptimal synonymous codons in the capsid region. It is thought that

the repeated encounter of rare codons by the translational machinery causes

stalling of the ribosome as by the laws of mass action rare aminoacyl-tRNA will

take longer to diffuse into the A site on the ribosome. As peptide elongation

to a large extent is driven by the concentration of available aminoacyl-tRNA,

dependence of an mRNA on many rare tRNAs, consequently, lengthens the

time of translation [47]. Alternatively, excessive stalling of the ribosome may

cause premature dissociation of the translation complex from the RNA and

result in a truncated protein destined for degradation. Both processes lead to

a lower protein synthesis rate per mRNA molecule per unit of time. While

our data presented here suggest that the phenotypes of codon-deoptimized

viruses are determined by the rate of genome translation, other mechanistic

explanations may be possible. It has been suggested that the conserved posi-

tions of rare synonymous codons throughout the viral capsid sequence in the

hepatitis A virus are of functional importance for the proper folding of the

nascent polypeptide by introducing necessary translation pauses [107]. Large-

scale alteration of the codon composition may therefore conceivably change

some of these pause sites to result in an increase of misfolded capsid proteins.

Whether these considerations also apply to the PV capsid is not clear. If

so, we would have expected a phenotype with our PV-SD design, in which the
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wildtype codons were preserved but their positions throughout the capsid were

completely changed: that is, none of the purported pause sites would be at

the appropriate position with respect to the protein sequence. No phenotype,

however, was observed and PV-SD translated and replicated at wildtype levels.

Another possibility is that the large-scale codon alterations in our designs may

create fortuitous dominant-negative RNA elements, such as stable secondary

structures, or sequences that may undergo disruptive long-range interactions

with other regions of the genome.

The near-identical production of particles per cell by codon de-optimized

viruses indicates that the total of protein produced after extended period of

times is not severely affected, whereas the rate of protein production has been

drastically reduced. This is reflected in the delayed appearance of CPE, which

may be a sign that the virus has to go through more RNA replication cy-

cles to build up similar intracellular virus protein concentrations. It appears

that codon-deoptimized viruses are severely handicapped in establishing a pro-

ductive infection because the early translation rate of the incoming infecting

genome is reduced. As a result of this lower translation rate, poliovirus proteins

essential for disabling the cell s antiviral responses (most likely proteinases

2Apro and 3Cpro) are not synthesized at sufficient amounts to pass this cru-

cial hurdle in the life cycle quickly enough. Consequently, there is a better

chance for the cell to eliminate the infection before viral replication could un-

fold and take over the cell. Thus, the chance for productive infection events

is reduced and the rate of abortive infection is increased. However, in the

case where a codon-deoptimized virus does succeed in disabling the cell, this

virus will produce nearly identical amounts of progeny to the wild type. Our

data suggest that a fundamental difference may exist between early translation

(from the incoming RNA genome) and late translation during the replicative

phase, when the cell s own translation is largely shut down. Although this
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may be a general phenomenon, it might be especially important in the case of

codon-deoptimized genomes. Host cell shutoff very likely results in an over-

abundance of free aminoacyltRNAs which may overcome the imposed effect

of the suboptimal codon usage as the PV genomes no longer have to compete

with cellular RNAs for translation resources. This, in fact, may be analogous

to our observations with the modified in vitro translation system described

above. Here, in the translation extract, which was not nuclease treated (and

thus contained the cellular mRNAs) and was not supplemented with exogenous

amino acids or tRNA, clear differences were observed in the translation capac-

ity of different capsid design mutants. Under these conditions, viral genomes

have to compete with cellular mRNAs in an environment where supplies are

limited. On the other hand, in the traditional translation extract, in which

endogenous mRNAs were removed and tRNAs and amino acids were supple-

mented in excess, all PV RNAs translated equally well regardless of codon bias.

These two different in vitro conditions may be analogous to in vivo translation

during the early and late phases in the PV-infected cell.

Since the dramatic effect of codon bias on poliovirus fitness could not be

predicted, it should be possible in future designs to make less severe codon

changes distributed over a larger number of codon sequences. This should

continue to improve the genetic stability of the individual phenotypes and

improve their potential as vaccine candidates.
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Chapter 8

Codon Pair Bias Designs

8.1 Introduction

Genes are DNA sequences, meaning chains of desoxyribonucleic acids, which

can be represented as strings on a four-letter alphabet. These strings describe

protein sequences, which are chains of amino acids, and can in turn be rep-

resented as strings on a 20-letter alphabet. Every triplet of DNA sequence

characters maps to a single amino-acid in the protein sequence, creating the

triplet code. In this code, all 43 = 64 possible DNA strings of length three

(called codons) map to elements of the 20-letter protein alphabet, with most

of the amino acid letters being encoded by more than one triplet, up to a

maximum of six.

In most organisms, there exists a distinct codon bias, which describes the

preferences of amino acids being encoded by particular codons more often

than others. The genetic information of every organism has a preference in

codon usage for amino acids that are encoded by multiple codons. The codon

frequency distribution of the codons used to encode proteins is characteristic

and often can be used to distinguish between organisms, groups of organisms,

but also different tissues, when analyzed specifically for RNA preferencially
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overexpressed in different cell types. It is widely believed that codon bias is

connected to protein translation rates, as been described and demonstrated in

the previous chapter.

In addition to codon bias, each species has specific preferences as to whether

given pairs of codons appear adjacent to each other in coding sequences, in an

ordered manner, something that is called codon-pair bias.

8.2 Codon Pair Score

To quantify codon pair bias, we define a codon pair distance as the log ratio

of the observed over the expected number of occurences (frequency) of codon

pairs in the known coding sequences of an organism. Although the calculation

of the observed frequency of codon pairs in a set of genes is straightforward,

the expected frequency of a codon pair is calculated to as to be independent

of amino acid and codon bias, following the paradigm of Fedorov et al. [36]

and enhancing Gutman and Hatfield’s approach [48]. To achieve independence

from amino acid and codon bias, the expected frequency is calculated based

on the relative proportion of the number of times an amino acid is encoded by

a specific codon. In short:

codon pair score = log(
F (AB)

F (A)×F (B)
F (X)×F (Y )

× F (XY )
), (1)

where the codon pair AB encodes for amino acid pair XY and F denotes

frequency (number of occurences).

The logarithm provides specific properties to the score, such as provid-

ing a positive/negative attribute to over- and under-represented codon pairs

respectively, as well as equalizing the distance from the mean of two scores

resulting from equal percentage deviations of the observed from the expected

frequencies. For example, two codon pairs, one having an observed/expected
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ratio of 2 and another having a ratio of 1/2, will be equidistant from 0, having

opposite values. In addition, this scoring scheme results in an expected arith-

metic mean of 0 for all the codon pair scores, assuming the values fluctuate

randomly.

A drawback in our score definition is encountered in situations where the

observed frequencies do not deviate significantly from their expected values. In

such case, an increase/decrease of the observed value of a codon pair over the

expected value results in dramatically greater changes for small expected val-

ues than for large ones. By this effect, codon pairs expected to be encountered

a few times influence the score significantly more than frequent ones.

In practice, we have found that the zero expected average (which was

verified through simple computational experiment on random amino-acid and

codon generated sets) of our scoring scheme is not encountered in the species

examined, all of which seem have negative score averages for the unweighted

set of codon pairs. This result could indicate that small expected values in

codon pair frequencies are paired with even smaller observed values for the

same codon pairs.

For every organism we examine, we create a codon pair score table of all

possible codon pairs, excluding the stop codon (for statistical reasons for which

most other studies have excluded it as well). This results in vectors of 3721

(612) codon pair scores. In order to calculate the score of a random codon pair,

we use the values in the vector of a specific organism, which we will consider

our reference organism. For most of our experiments, our reference organism

is human, and is implied if not explicitely mentioned. Any m-residue protein

or coding region can be rated by the arithmetic mean of the scores of all codon

pairs that comprise its encoding.
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Random Wildtype Gradient
Runs Sequence Descent

Organism/ length Mean Mean Score SD Max Min
Gene (codons) Score StdDev per base dist. SD dist. SD dist.

per base (x103)
(x103)

Human hemoglobin 148 -68.24 5.03 85.41 4.52 8.00 -8.67
Human HV1 minor capsid region 677 -18.83 10.40 -33.56 -0.96 22.77 -22.88
Poliovirus WT1 capsid region 881 -81.77 12.81 -34.26 3.27 25.86 -28.97
Encephalomyocarditis virus 2293 -78.69 20.77 -3.86 8.26 41.95 -48.63
Human Enterovirus A 2194 -83.12 20.91 -6.00 8.09 40.36 -47.52
Human Rhinovirus A 2165 -3.19 16.99 49.89 6.76 37.18 -45.26
Human Rhinovirus B 2180 -26.69 18.17 44.55 8.55 37.08 -45.99
SARS coronavirus 7074 -39.24 33.57 23.76 13.28 65.88 -79.61
Hepatitis B * 844 -81.18 12.03 8.07 6.26 27.50 -29.95
Hepatitis C 3012 -86.34 24.27 -28.85 7.13 51.79 -54.61
HIV1 * 5444 19.46 61.41 81.61 5.51 10.32 -3.42
Poliovirus WT1 2210 -75.58 19.66 -17.68 6.51 40.56 -47.24
Cactus virus X 2064 -80.49 19.14 -6.58 7.97 41.73 -43.22
Potato virus A 3060 -58.93 22.04 5.79 8.99 46.06 -55.30
Salmon pancreas disease virus 3923 -98.99 28.61 -72.08 3.69 57.97 -61.91
Bacteriophage AP205 * 1294 -76.96 15.70 -60.91 1.32 30.95 -36.07
Chlamydia phage 2 * 1369 -26.67 13.05 -9.96 1.75 30.91 -36.09
Coliphage phiK * 1693 -56.47 16.89 -20.97 3.56 32.99 -38.50

Table 15: Codon pair bias statistics for selected genes and organisms
* Including only a non-overlapping subset of genes

In examining the extend and characteristics of codon pair bias, we con-

ducted computational experiments with a collection of human coding se-

quences from the Consensus CDS (CCDS) database, which consists of the

core set of human protein coding regions that are consistently annotated and

of high quality. We downloaded the March 2005 dataset, up to date as of Au-

gust 18, 2005, containing a total of 14,795 coding sequences and 13,142 genes,

representing more than half of the currently believed human gene number.

8.3 Gene and Organism Codon Pair Bias

In order to examine the significance of codon pair bias, we performed a series

of computational experiments, over a number of different randomly selected

genes and organisms. The initial set is composed of human, human viral, other
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viral, and phage genes.

Since the absolute scoring value of a gene or set of genes of an organism

does not provide enough information on the use of favored or unfavored codon

pairs in the human genome, for each gene/organism we examined we generated

a large number of random permutations of the codons comprising the gene or

gene set (when considering a genome). Random genes were generated by

permuting the locations of all codons of each corresponding amino-acid, thus

creating an equivalent gene (translated to the same protein), having exactly

the same codon distribution. The only alterations are the relative locations of

the codons, which result in random codon pair associations.

For each of the “scrambled” genes (or gene sets) with altered codon pairs,

we calculated the gene scores and for all of the random generations we com-

puted the mean and standard deviation of their scores. This provides with an

indication of the expected codon pair score and extend of its deviation. We

then calculated the codon pair score of the original coding sequence of each

gene and the number of standard deviations from the expected mean, calcu-

lated from the random permutations. The latter can also be used to calculate

the probability of the codon pairs being selected with bias towards over- or

under-represented codon pairs in our reference organism. For example, a se-

quence with a positive standard deviation value of 3 from the mean would

indicate a probability of 0.0013 that the use of over-represented codon pairs

occured by chance. Similarly, a positive value of 8 standard deviations from

the mean makes the probability that codon pair bias is coincidental a mere

6.11 × 10−16.

In Table 8.3 we can observe that most genes in human viruses as well as

other viruses are predominantly using codon pairs over-represented in human

coding regions. This bias is less pronounced in other viruses and especially in
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phages, as one would expect. Still, the tendency towards the usage of over-

represented human codon pairs may indicate the existence of patterns that are

generally selected for or against in a wide variety of unrelated organisms.

In most of our computational experiments we observed standard deviations

from the mean which indicate strong biases. But what is the maximum and

minimum possible deviations that a scrambled gene could achieve? To answer

this question, we performed gradient descent experiments, by randomly ex-

changing equivalent codons in our sequences for a large number of iterations

(in the range of 106), accepting transitions towards the optimizing direction we

select (either maximizing or minimizing the total score). We also performed

simulated annealing simulations, which improved the lower and upper bounds

only slightly in the expense of being computationally expensive and difficult

to parameterize. This verified the accuracy of the limits achieved by gradient

descent. These values can be found in Table 8.3.
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Saccharomyces cerevisiae (baker's yeast) 1 0.338 0.248 0.399 0.39 0.422 0.381 0.358 0.357 0.393 0.391 0.423 0.369 0.379 0.339 0.376 0.353 0.353

Anopheles gambiae (malaria mosquito) 0.338 1 0.461 0.573 0.396 0.456 0.375 0.278 0.358 0.263 0.164 0.216 0.124 0.131 0.188 0.212 0.137 0.144

Apis mellifera (honey bee) 0.248 0.461 1 0.431 0.341 0.476 0.385 0.291 0.349 0.234 0.229 0.301 0.204 0.181 0.316 0.32 0.287 0.293

Drosophila melanogaster (fruitfly) 0.399 0.573 0.431 1 0.521 0.641 0.476 0.452 0.542 0.483 0.377 0.421 0.436 0.407 0.397 0.456 0.462 0.463

Caenorhabditis briggsae (soil nematode) 0.39 0.396 0.341 0.521 1 0.867 0.47 0.373 0.395 0.396 0.29 0.325 0.312 0.317 0.284 0.32 0.297 0.295

Caenorhabditis elegans (soil nematode) 0.422 0.456 0.476 0.641 0.867 1 0.574 0.424 0.476 0.449 0.374 0.418 0.401 0.385 0.37 0.425 0.417 0.413

Ciona intestinalis (sea squirt) 0.381 0.375 0.385 0.476 0.47 0.574 1 0.537 0.54 0.552 0.551 0.539 0.498 0.487 0.465 0.507 0.501 0.498

Fugu rubripes (pufferfish) 0.358 0.278 0.291 0.452 0.373 0.424 0.537 1 0.942 0.901 0.776 0.813 0.765 0.792 0.806 0.793 0.733 0.738

Tetraodon nigroviridis (spotted green pufferfish) 0.357 0.358 0.349 0.542 0.395 0.476 0.54 0.942 1 0.867 0.719 0.783 0.759 0.763 0.787 0.795 0.755 0.761

Danio rerio (zebrafish) 0.393 0.263 0.234 0.483 0.396 0.449 0.552 0.901 0.867 1 0.809 0.837 0.813 0.825 0.792 0.801 0.776 0.777

Xenopus tropicalis (pipid frog) 0.391 0.164 0.229 0.377 0.29 0.374 0.551 0.776 0.719 0.809 1 0.914 0.881 0.893 0.868 0.881 0.853 0.854

Gallus gallus (chicken) 0.423 0.216 0.301 0.421 0.325 0.418 0.539 0.813 0.783 0.837 0.914 1 0.92 0.93 0.928 0.94 0.904 0.906

Mus musculus (mouse) 0.369 0.124 0.204 0.436 0.312 0.401 0.498 0.765 0.759 0.813 0.881 0.92 1 0.977 0.912 0.949 0.97 0.969

Rattus norvegicus (rat) 0.379 0.131 0.181 0.407 0.317 0.385 0.487 0.792 0.763 0.825 0.893 0.93 0.977 1 0.937 0.956 0.929 0.93

Bos taurus (cow) 0.339 0.188 0.316 0.397 0.284 0.37 0.465 0.806 0.787 0.792 0.868 0.928 0.912 0.937 1 0.973 0.905 0.914

Canis familiaris (dog) 0.376 0.212 0.32 0.456 0.32 0.425 0.507 0.793 0.795 0.801 0.881 0.94 0.949 0.956 0.973 1 0.949 0.954

Pan troglodytes (chimp) 0.353 0.137 0.287 0.462 0.297 0.417 0.501 0.733 0.755 0.776 0.853 0.904 0.97 0.929 0.905 0.949 1 0.998

Homo sapiens (human) 0.353 0.144 0.293 0.463 0.295 0.413 0.498 0.738 0.761 0.777 0.854 0.906 0.969 0.93 0.914 0.954 0.998 1

-0.2 - 0.20.8 - 1.0 0.6-0.8 0.4 - 0.6 0.2 - 0.4

Figure 19: Selected eukaryote codon pair bias score correlation.

In another effort to investigate the extend and significance of codon pair

bias, we created codon pair score vectors for a variety of organisms, from both
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Thermus thermophilus 1 -0.056 -0.045 0.05 0.054 0.018 0.008 0.094 0.013 -0.085 -0.025 0.027 -0.06 0.052 -0.005 -0.002 -0.037 0.047

Methanopyrus kandleri -0.056 1 0.015 -0.001 -0.03 -0.047 -0.021 -0.046 0.018 0.164 0.046 0.019 0.186 -0.049 0 0.012 0.047 -0.081

Candidatus Blochmannia floridanus -0.045 0.015 1 0.045 0.154 0.056 0.127 0.135 0.134 0.023 0.019 0.027 0.107 0.096 0.072 0.082 0.023 -0.087

Mycoplasma pneumoniae 0.05 -0.001 0.045 1 0.133 0.005 0.039 0.044 0.033 0.022 0.195 0.073 0.09 0.142 0.081 0.122 0.031 0.1

Nostoc 0.054 -0.03 0.154 0.133 1 0.057 0.088 0.117 0.047 0.068 0.066 0.043 0.013 0.279 0.174 0.189 0.044 0.096

Bacillus anthracis 0.018 -0.047 0.056 0.005 0.057 1 0.335 0.163 0.006 0.117 0.109 0.024 0.013 0.139 0.139 0.164 0.133 0

Oceanobacillus iheyensis 0.008 -0.021 0.127 0.039 0.088 0.335 1 0.211 0.083 0.109 0.134 0.063 0.075 0.219 0.118 0.162 0.135 0.067

Chlamydia trachomatis 0.094 -0.046 0.135 0.044 0.117 0.163 0.211 1 0.046 -0.057 -0.064 0.033 -0.025 0.117 0.074 0.071 0.069 0.095

Sulfolobus acidocaldarius 0.013 0.018 0.134 0.033 0.047 0.006 0.083 0.046 1 -0.001 0.005 0 -0.022 0.019 0.011 0.039 0.006 -0.044

Haloarcula marismortui -0.085 0.164 0.023 0.022 0.068 0.117 0.109 -0.057 -0.001 1 0.255 0.184 0.307 0.207 0.266 0.298 0.17 0.027

Lactobacillus plantarum -0.025 0.046 0.019 0.195 0.066 0.109 0.134 -0.064 0.005 0.255 1 0.18 0.345 0.34 0.234 0.281 0.121 0.016

Silicibacter pomeroyi 0.027 0.019 0.027 0.073 0.043 0.024 0.063 0.033 0 0.184 0.18 1 0.456 0.326 0.321 0.347 0.215 0.098

Mycobacterium tuberculosis -0.06 0.186 0.107 0.09 0.013 0.013 0.075 -0.025 -0.022 0.307 0.345 0.456 1 0.316 0.321 0.367 0.266 -0.041

Photorhabdus luminescens 0.052 -0.049 0.096 0.142 0.279 0.139 0.219 0.117 0.019 0.207 0.34 0.326 0.316 1 0.661 0.68 0.193 0.229

Salmonella enterica -0.005 0 0.072 0.081 0.174 0.139 0.118 0.074 0.011 0.266 0.234 0.321 0.321 0.661 1 0.886 0.198 0.037

Escherichia coli -0.002 0.012 0.082 0.122 0.189 0.164 0.162 0.071 0.039 0.298 0.281 0.347 0.367 0.68 0.886 1 0.262 0.092

Drosophila melanogaster -0.037 0.047 0.023 0.031 0.044 0.133 0.135 0.069 0.006 0.17 0.121 0.215 0.266 0.193 0.198 0.262 1 0.463

Homo sapiens 0.047 -0.081 -0.087 0.1 0.096 0 0.067 0.095 -0.044 0.027 0.016 0.098 -0.041 0.229 0.037 0.092 0.463 1

0.8 - 1.0 0.6-0.8 0.4 - 0.6 0.2 - 0.4 -0.2 - 0.2

Figure 20: Selected bacteria codon pair bias score correlation.

eykaryotes and prokaryotes. Then we correlated the vectors using Pearson

correlation. As seen in Figures 19 and 20, based only on codon pair score

correlation, the phylogenetic tree can be reconstructed with relative accuracy.

Codon pair bias seem to be preserved among closely related species and the

wider spread in the range of prokaryote similarity as compared to the eukary-

otes is also in accord with the timeframe of species divergence in these two

kingdoms.

8.4 Codon Pair Bias in Human Viruses

Our specific interests in modifying viruses, and specifically human pathogens,

in order to attenuate them, led to a series of computational experiments on

the codon pair bias of these viruses. We analyzed coding regions of all human

viruses whose full genome has been sequenced before May 2005, grouping them

under a number of categories, as seen in table 8.4. The “other viruses” group
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Group Number of Average gene Standard
genes Deviation distance from mean

All Human virus genes 1562 1.462
Herpes virus genes 1016 0.831
Non-Herpes virus genes 546 2.640
Adeno virus genes 201 2.327
Papilloma virus genes 197 2.319
Genes from other viruses 148 3.493

Table 16: Average standard deviation distances from mean of human viruses
groups.

includes genes from entero-, lymphotropic-, rhino-, HIV, foamy, respiratory

syncytial, spumaretro, parainfluenza, parecho-, astro-, corono-, metapneumo-,

erythro-, parvo-, and picobirna-viruses.

The set of all virus genes in aggregate does not have an excessively strong

bias towards human over-represented codon pairs, although most of this effect

can be attributed to the large number of herpes virus genes. Herpes is a spe-

cial case of superinfecting viruses, infecting almost every eukaryote, including

fungi. In Figure 8.4 we can see a histogram of all CCDS genes, as well as genes

from herpes- and adeno-viruses.

8.5 Optimization of a Gene Encoding based

on Codon Pair Bias

To examine the effects of codon pair bias on mRNA translation of specific

proteins, we decided to alter the codon positions, exchanging synonymous

codons, while keeping the same codon distribution and of course the same

amino acid chain. So we define the following problem: Given an amino acid

sequence and a set of codon frequencies (codon distribution), change the DNA

encoding of the sequence such that the codon pair score is optimized (usually
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minimized or maximized).

Our problem, as defined above, can be associated with the Traveling Sales-

man Problem (TSP), where a salesman has to visit each of a given set of cities,

driving the minimum distance possible while visiting each city only once. The

traveling salesman problem is one of the most notorious NP-complete prob-

lems, which is a function of its general usefulness and ease of description.

Almost any flavor of TSP is going to be NP-complete, so the right way to

proceed is with heuristics. These are often quite successful, typically coming

within a few percent of the optimal solution, which is close enough for most

applications and in particular for our optimized encoding.

Our problem is associated with the problem of finding a traveling salesman

path (not tour) under a 64-country metric. In this formulation, each of the 64
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possible codons is analogous to a country, and the codon multiplicity modeled

as the number of cities in the country. The codon-pair bias measure is reflected

as the country distance matrix.

The real biological problem of the design of genes encoding specific proteins

using a given set of codon multiplicities so as to optimize the gene/DNA se-

quence under a codon-pair bias measure is slightly differerent. What is missing

in our model in the country TSP model is the need to encode specific protein

sequences. The DNA triplet code partitions the 64 codons into 21 equivalence

classes (coding for each of the 20 possible amino acids and a stop symbol).

Any given protein/amino acid sequence can be specified by picking an arbi-

trary representative of the associated codon equivalence class to encode it.

Since the number of amino acids and codons is fixed in our problem, there

actually exists a dynamic programming algorithm that can solve it in O(n65)

time and space, where n is the protein length (in amino-acid residues). To

achieve these bounds, the algorithm progresses iteratively through each residue

of the protein, keeping the best possible score for each ending residue, based

on all possible codon distributions for the positions encountered so far. This

time and space complexity can be slightly improved by restricting the degrees

of freedom of the residues, keeping in mind that the sum of the codons in

the distributions kept are constant as a total, as well as grouped under their

corresponding amino-acids. Even by these reductions, the space and time

complexities are prohibitive for any real protein length design.

Because of the special restrictions and the nature of our problem, as well

as its adaptability to application of additional criteria in the optimization, we

selected the simulated annealing heuristic to optimize sequences. A general

description of the technique can be found in [113].

Our simulated annealing algorithm works as follows:

1. We initially create a random assignment of the codons in their respective
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amino acid allowed positions.

2. We calculate the codon pair score of the coding sequence from the initial

assignment.

3. We randomly exchange pairs of codons encoding for the same amino

acid, according to the simulated annealing optimization function.

4. We repeat the previous step until no change is observed for a specific

number of steps.

For best results, we adjusted the simulated annealing parameters, includ-

ing the temperature, the number of repetitions at each energy level and the

constant k. The performance of simulated annealing was compared to the

gradient descent method results (which is similar to simulated annealing, but

taking no backward steps), which verified the improvement.

8.6 Splice Sites and Secondary Structure

In all codon pair bias designs, we attempted an elimination of donor (3’)

splice sites. This was achieved by specifically targeting the consensus sequence

CAG|G, appearing in the vicinity of the donor splice site, with synonymous

changes, depending on the position of the wobble base. In the few cases where

such changes were not possible, other upstream synonymous changes that re-

duce the probability of occurence of a donor splice site were applied. These

changes were not compensated by complementary changes in other places to

keep the same codon distribution, since they would most probably alter neg-

atively the codon pair objective score. The locations of donor splice sites and

the confirmation of their elimination were predicted with two neural network

splice site prediction services, NetGene2 Server [51, 105, 16] and NNSPLICE
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[82, 5]. We consider a splice site eliminated if both services would not predict

its appearance with probability higher than 20%.

To ensure that strong secondary structures do not affect translation effi-

ciency, we scanned the capsid region of our designs using the program mfold

[31, 78]. We concentrated our search on 100 bases long segments, overlapping

with each other every 20 bases. Any segments with lower binding energy than

a threshold of −30Kcal/mol would incur random synonymous substitutions

at C −G binding locations, such that the binding energy of the segment could

be elevated. The synonymous changes would be selected in such a way that

the codon pair bias objective would be satisfied as well. Nevertheless, only a

few changes resulted in an optimized score over the original selections, since

favorable codon pairs had been already selected by the simulated annealing

optimization algorithm. The codon distribution was affected as well, but only

minimally.
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