
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Self-Adaptive, Scalable and Energy-Efficient
Algorithms for Unattended Sensor Networks

A Dissertation Presented

by

Ming Ma

to

The Graduate School
in Partial Fulfillment of the

Requirements
for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

August 2007



Stony Brook University

The Graduate School

Ming Ma

We, the dissertation committee for the above candidate for the
Doctor of Philosophydegree in Electrical Engineering,

hereby recommend acceptance of this dissertation.

Dr. Yuanyuan Yang, Advisor
Professor

Department of Electrical and Computer Engineering

Dr. Armen H. Zemanian, Chair
Distinguished Professor, IEEE Life Fellow

Department of Electrical and Computer Engineering

Dr. Alex Doboli
Associate Professor

Department of Electrical and Computer Engineering

Dr. Jie Gao
Assistant Professor

Department of Computer Science

This dissertation is accepted by the Graduate School
Lawrence Martin

Dean of the Graduate School

ii



Abstract of the Dissertation

Self-Adaptive, Scalable and Energy-Efficient

Algorithms for Unattended Sensor Networks

by

Ming Ma

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2007

This thesis proposes an integrated suite of self-adaptive, scalable and energy-

efficient algorithms and protocols for large, unattended sensor networks. The pro-

posed approach includes several closely related topics in mobile sensor networks:

(1) self-deployment algorithms which are suitable for different environments and re-

quirements of different tasks; (2) channel reservation MAC protocol for WLANs

and sensor networks; (3) reliable position-based routing in mobile ad-hoc/sensor net-

works; (4) energy-efficient data gathering mechanism.

Wireless sensor networks are playing an increasingly important role in a wide-range of

applications, such as medical treatment, outer-space exploration, battlefield surveillance,

emergency response, etc. A wireless sensor network is generally composed of hundreds

and thousands of distributed sensor nodes, with each node having limited communication,

computing and sensing capability. For such large scale and resource-limited networks,

energy-efficiency and scalability become two critical issues. Unlike traditional networks,
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sensor networks usually work in an unknown or hazardous environment, such as outer-

space, seabed and battlefield. Little information about the environment can be obtained

before the sensor nodes are deployed. Therefore, each sensor node must be able to “learn

and think” itself, and also cooperate with each other to make decisions more efficiently

and reliably. Thus energy-efficiency, scalability and self-adaptability are very important

capabilities for unattended mobile sensor networks. Due to the special characteristics of

sensor nodes and their working environments, classical algorithms and protocols designed

for traditional networks may not be suitable for sensor networks.

The thesis presents a suite of energy-efficient, scalable and self-adaptive algorithms

and protocols: (1) The adaptive Triangular deployment algorithm (ATRI) provides a self-

adaptive deployment solution to mobile sensor networks, which can greatly increases the

coverage area and reduces the coverage gap. (2) The channel reservation protocol (CR-

MAC) provides a new adaptive collision avoidance mechanism at MAC layer that can

decrease collisions and provide higher throughput than traditional approaches with only

minimum overhead for exchanging control messages. (3) Single path flooding chain algo-

rithm can improve the end-to-end reliability mobile sensor networks. (4) By introducing

hierarchy, clustering algorithm and cluster head positioning algorithm improve the scal-

ability and energy efficiency of large scale sensor networks. (5) Data gathering scheme

introduces mobility to the data collector and can greatly prolong the lifetime of static sen-

sor networks.
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Chapter 1

Introduction

This chapter explains the motivation, challenges, design goals, and contributions of the

thesis.

1.1 Motivation for This Thesis

In recent years, wireless sensor networks have emerged as a new information-gathering

paradigm in a wide-range of applications, such as medical treatment, outer-space explo-

ration, battlefield surveillance, emergency response, etc. [1, 2, 3, 4, 5]. Although most

current existing research on sensor networks is still at the prototype level, see, for exam-

ple, UCB-smart dusts [6], MIT-µAMPS [7], ISI-pc104 [9], UCLA-WINS [8], TmoteSky

nodes [10], and Crossbow MICA [11], it is expected that sensor network technologies will

be applied widely in various areas in the near future [1, 2, 3, 4, 5]. The sensor nodes are

usually thrown into the large scale sensing field without a pre-configured infrastructure.

Before monitoring the environment, sensor nodes must be able to discover nearby nodes,

organize themselves into a network and subscribe to the network. After the network has

1



been set up, sensor nodes begin to sense the environment and send data to the outside ob-

server. Although sensor nodes are designed with low power consumption in mind, a sensor

node can survive limited lifetime with current technologies [8, 13, 14]. Furthermore, low

computing capacity, limited memory and communication bandwidth of sensor nodes pro-

hibit the use of high complexity algorithms and protocols. Moreover, the topology of the

sensor network may change abruptly due to unexpected failure of sensor nodes. All these

special characteristics of sensor networks bring unique challenges to designing a reliable

and efficient sensor network. The network must be designed such that it isenergy-efficient,

scalableandself-adaptive.

A sensor network roughly works in three phases: deployment, self-organization, sens-

ing and data gathering. Comparing to first two phases, sensing and data gathering consume

dominant percentage energy because the first two phases are needed only when the network

is initialized. In the phase of sensing and data gathering, the energy consumption on sens-

ing is relatively stable because it only depends on the sampling rate, and does not depend

on network topology or the location of sensors. Therefore the data gathering scheme is

the most important factor that determines the network lifetime. Although applications of

sensor networks may be diverse, most of them share an essential feature, which is all data

packets must be aggregated at the data observer. In a homogeneous network where sensors

are organized into a flat topology, sensors close to the observer consume much more energy

than sensors at the margin of the network, since they need to relay a lot of packets from

sensors far away from the data observer. As a result, after these sensors fail, other nodes

cannot reach the observer and the network becomes disconnected, even most of the nodes

can still survive for a long period.
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1.2 Challenges and Design Goals

In the following we discuss several challenges and design goals related to these proper-

ties of sensor networks.

1.2.1 Unattended vs. Human-Controlled

In a human-controlled sensor network, sensor nodes work as passive operators. The

motion, location and coverage of all the nodes in the network are planned and scheduled

by the human-being or a remote controller. In order to make accurate decisions, a large

amount of sensing data and global environment information have to be fed back to the con-

troller. However, the conflict between a lot of energy consumption for uploading data and

downloading commands and limited energy of each small sensor node becomes a primary

obstacle to apply this approach in large scale sensor networks. In addition, the long commu-

nication delay prevents human-control-based protocols from being used in delay-sensitive

and remote exploring applications. For instance, in the recent Mars Rover Project [15] de-

veloped by NASA, it takes about 12 minutes to download a small picture from the Mars

Rover to the earth. Due to the long distance between a sensor and the controller and the

low speed of the wireless channel, the commands can hardly been transmitted to the sen-

sor instantly. Therefore, sensor nodes must have self-configurability and self-adaptability

in an unknown environment. For example, the Mars Rover can turn itself on/off to pro-

long the lifetime. Developing an integrated suite of adaptive algorithms and protocols for

unattended sensor nodes is a primary research task for the future sensor networks.

3



1.2.2 Dynamic vs. Static Network Topologies

In some sensor networks, such as a roof monitoring system, all nodes have fixed loca-

tions and sufficient energy (usually plugged into electrical outlets). Since no nodes move

or run out of power, the network can work well with existing mature protocols for static

topologies. However, can this type of network be used in monitoring unknown and dynam-

ically changed environments? The answer is clearly no. First, in an unknown environment,

sensors can hardly be placed precisely at the intended locations with little information about

the environment available. Second, mobile sensor nodes are more suitable for dynamically

changed environments and fulfilling the searching and exploring tasks than static sensor

nodes. In addition, limited lifetime and unpredictable damage may also cause the failure

of nodes, thereby change the topology of the network. The dynamic topologies have a

critical impact on the network layer algorithms and protocols, since the traditional routing

protocols for static networks can no longer perform efficiently in dynamic sensor networks.

Most existing routing algorithms for dynamic sensor/ad hoc networks can be divided

into two classes: topology-based and position-based. Topology-based algorithms are based

on network link information, while position-based algorithms use location information of

nodes to achieve packet forwarding. Although some topology-based routing algorithms,

such as DSDV [17], OLSR [18], TBRPS [19], DSR [20, 21], TORA [22], AODV [23, 24],

try to improve the performance by only maintaining the link information that are currently

in use, they still have some inherent limitations. When thousands of moving nodes need to

communicate with each other, the overhead storm leads to tremendous power and time con-

sumption. On the other hand, position-based routing algorithms [25, 26, 27, 28, 29, 30, 31]

do not need to establish and maintain network links, and the routing decisions are mainly

based on the location information of the destination node and the one-hop neighbors of

4



each forwarding node. In a position-based routing algorithm, each mobile node can obtain

its own location information from Global Positioning System (GPS) or some other posi-

tioning services [33, 34]. A routing decision at a node is triggered by an incoming packet

to the node and is made based on the location information of both the destination node and

the one-hop neighbors of each forwarding node. In general, position-based routing algo-

rithms are more preferred for sensor networks due to their efficiency and reliability, and

may become dominant routing algorithms in dynamic sensor networks in the near future

[25, 26].

1.2.3 Unknown vs. Well-Known Environments

One of the most important functionalities of sensor networks is to sense the human-

unreachable area, such as volcano, seabed and outer-space. Unlike in a well-known en-

vironment, it is impossible to throw sensor nodes to their expected targets in an unknown

working area or provide a map of the working area to sensor nodes before the placement.

However, most of previous research work in this area assume all nodes are well-deployed

or a global map is pre-stored in the memory of all sensor nodes. In fact, in some situ-

ations the environment may be completely unknown to the newly coming sensor nodes.

Without the control of the human being, sensor nodes must be “smart” enough to learn the

working area by themselves, and then deploy themselves to their expected working targets.

There has been some interesting work on self-deployment, such as Potential-Field-Based

Deployment algorithm [59], Virtual Force Algorithm(VFA) [62] and Movement-Assisted

Sensor Deployment algorithms [61] (VEC, VOR, MiniMax). These algorithms focused on

maximizing the coverage area by assuming that the motion of each node can be affected

by virtual force from other nodes and obstacles. In these approaches, sensor nodes can

5



Limited Energy

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Human−Unreachable
Large Scale
Strange, No maps

Frequently changed position and topology
Lack of powerful central control

Unattended

Self−Adaptability Scalablibty Energy Efficiency

Features of Environment Features of Nodes

Challenges

Design Goals

Mobility
Small Coverage

Figure 1.1: Features, challenges and design goals of the future sensor networks.

dynamically adjust their positions according to the change of the network structure. How-

ever, sensor nodes were always assumed to be uniformly distributed rather than based on

different task requirements or the distribution of interested events. Self-deployment is a

fundamental preparation step for the subsequent operations in a sensor network, and in

order to prolong the lifetime of the network, this step must be fast and energy-efficient.

Finally, we summary the challenges and design goals of the sensor networks discussed

above in Figure 1.1.

1.3 Contributions

The novel contribution of this thesis includes:

• An adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor
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Networks.[94] The adaptive Triangular deployment algorithm can increase the non-

gap coverage of mobile sensors. It also supports adaptive deployment. Without the

map and information of the environment, nodes can avoid obstacles and adjust the

density dynamically based upon different requirements.

• A contention-Based MAC protocol with channel reservation Protocol.[96] The

proposed MAC protocol can achieve much better throughput, fairness, packet delay

than IEEE 802.11 RTS/CTS protocol. In particular, under saturated traffic, both the

throughput and the fairness index of the CR-MAC protocol are very close to the

theoretical bound.

• A reliable single path flooding chain routing algorithm for mobile ad-hoc/sensor

Networks, called single-path flooding chain algorithm.[95] The proposed algo-

rithm can significantly save the bandwidth and power for resource limited mobile

nodes, especially in large networks. The single-path flooding chain algorithm con-

sistently performs well for various mobilities and keeps a high successful packet

delivery ratio(> 75%), which is insensitive to the change of node’s motion speed.

• A clustering and Load Balancing mechanism in Hybrid Sensor Networks with

Mobile Cluster Heads.[99, 98, 97, 100] The proposed cluster head positioning al-

gorithm can increase the network lifetime by a significant amount. In addition, the

algorithm can recover the network from unexpected failure of sensors and cluster

heads.
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• A novel data gathering scheme by introducing mobility and hierarchy into sen-

sor networks.[101] The proposed data gathering mechanism can prolong the net-

work lifetime about 30 times compared to a network which has only a static ob-

server, and about 4 times compared to a network whose mobile observer can only

move along straight lines.

The proposed research combines protocol design, algorithm design, analytical, proba-

bilistic and simulation techniques to conduct comprehensive studies on the above issues.

The proposed research will have a significant impact on fundamental design principles and

infrastructures for the development of future sensor networks. The outcome of this project

will be applicable to a wide spectrum of applications, including space, military, environ-

mental, health care, home and other commercial areas.

1.4 Thesis Outline

The proposed design techniques are presented in a bottom-up fashion. Chapter 3 pro-

poses a new position-based routing algorithm,Single Path Flooding Chain algorithmfor ad

hoc networks. Chapter 4 proposes a novel and more efficient contention-based MAC pro-

tocol, called theChannel Reservation MAC protocol, by introducing a reservation mecha-

nism. Chapter 5 proposes a heuristic algorithm for clustering sensors, positioning cluster

heads and balancing traffic load in the network. Chapter 6 presents data gathering schemes

for large scale sensor networks by introducing hierarchy and mobility. Chapter 7 concludes

the thesis.
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Chapter 2

Adaptive Triangular Self-Deployment

Algorithm

This chapter presents a novel sensor deployment algorithm, calledadaptive triangular

deployment (ATRI)algorithm, for large scale unattended mobile sensor networks. ATRI

algorithm aims at maximizing coverage area and minimizing coverage gaps and overlaps,

by adjusting the deployment layout of nodes close to equilateral triangulations, which is

proved to be the optimal layout to provide the maximum no-gap coverage. The algorithm

only needs location information of nearby nodes, thereby avoiding communication cost

for exchanging global information. By dividing the transmission range into six sectors,

each node adjusts the relative distance to its one-hop neighbors in each sector separately.

Distance threshold strategyandmovement state diagram strategyare adopted to avoid the

oscillation of nodes. The simulation results show that ATRI algorithm achieves a much

larger coverage area and less average moving distance of nodes than existing algorithms.

We also show that ATRI algorithm is applicable to practical environments and tasks, such as

working in both bounded and unbounded areas, and avoiding irregularly-shaped obstacles.
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In addition, the density of nodes can be adjusted adaptively to different requirements of

tasks.

The rest of the chapter is organized as follows. Section 2.1 summarizes the existing

work in this area. Section 2.2 studies the optimum node layout for sensor deployment.

Section 2.3 presents the details of the new self-deployment algorithm for mobile sensor

networks. Section 2.4 gives the simulation results for the proposed algorithm. Finally,

Section 2.5 concludes the chapter.

2.1 Related Work

There has been some previous work on the maximum coverage problem for sensor net-

works in the literature.Potential-field-based deployment algorithm[59] assumes that the

movement of each node can be affected by virtual force from other nodes and obstacles.

In the algorithm, all nodes explore from a compact region and fill the maximum working

area in a way similar to the particles in the micro-world [57]. Although this approach can

maximize the coverage area, since the main idea of this algorithm is obtained from the

micro-world, the nodes in the network may oscillate for a long time before they reach the

static equilibrium state, like the particles in micro world. The oscillation of nodes con-

sumes much more energy than moving to the desired location directly. Moreover, this

algorithm can only be used in a bounded area, since nodes must be restricted within the

boundary by the virtual force from boundary. Without the boundary, each node will not

stop expelling others until there is no other nodes within its transmission range.The Vir-

tual Force Algorithm (VFA)[62] divides a sensor network into clusters. Each cluster head

is responsible for collecting the location information of the nodes and determining their

targets. The cluster architecture may lead to an unbalanced lifetime of the nodes and is
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not suitable for the networks that do not have powerful central nodes.Constrained Cover-

age algorithm[60] can guarantee that each node has at leastK neighbors by introducing

two virtual forces. However, it still does not have any mechanism to limit the oscillation

of nodes.Movement-Assisted Sensor Deployment algorithms[61], which consist of three

independent algorithmsVEC, VORandMiniMax, use Voronoi diagrams to discover the

coverage holes and maximize the coverage area by pushing or pulling nodes to cover the

coverage gaps based on virtual forces. In the VEC algorithm, the nodes which have cov-

ered their corresponding Voronoi cells do not need to move, while other nodes are pushed

to fill the coverage gaps. In VOR, nodes will move toward the farthest Voronoi vertices.

The MiniMax algorithm moves nodes more gently than VOR, thereby avoiding the genera-

tion of new holes in some cases. Compared to potential-field-based deployment algorithm,

movement-assisted sensor deployment algorithms reduce the oscillation and save the en-

ergy consumed by node movement. All three algorithms assume that each node knows its

Voronoi neighbors and vertices. However, Voronoi diagram is a global structure, and all

Voronoi vertices and cells can only be obtained when the global location information of

the nodes in the network is known [58], which means that each node must exchange its

current location information with all other nodes in the network to acquire its correspond-

ing Voronoi vertices and cell. For each location update message, it may takeO(n) one-hop

transmissions to reach all other nodes, wheren is the total number of nodes in the network.

In the case when the GPS system is unavailable, the error in one-hop relative locations of

the nodes may be accumulated. Thus, the error for two far away nodes may be signifi-

cant. In addition, so far most of the existing algorithms are only concerned with deploying

nodes within a bounded area. VOR and Minimax algorithms are based on Voronoi dia-

grams and require every Voronoi cell to be bounded. However, by the definition of Voronoi
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graph [58], each periphery Voronoi cell is unbounded, since it contains a Voronoi vertex at

infinity. Thus, VOR and Minimax algorithms cannot be used in this situation.

Finally, though all the algorithms discussed above intended to maximize the node cov-

erage, minimize the coverage overlap and gap and deploy nodes uniformly, they did not

answer a fundamental question in the deployment: What type of node layout can provide

the maximum coverage with the smallest overlap and gap? We will address this issue in

the next section.

2.2 Ideal Node Layout for Maximum Coverage

Similar to the deployment algorithms discussed in the previous section, one of the

important goals of our algorithm is to maximize the coverage area, where the spans of

the coverage area on both X and Y dimension are much larger than the sensing range of

sensors. However, before we design a maximum coverage algorithm, we need to know

what type of node layout can provide the maximum coverage for a given number of nodes.

In order to find the ideal node layout for maximum coverage, we introduce the Delaunay

triangulation [58] to describe the layout of the network. LetN be a set ofn nodes, which are

randomly thrown in the plane, andT be a Delaunay triangulation ofN, such that no other

nodes inN are inside the circumcircle of any triangle inT. Suppose that a large number of

sensor nodes are randomly thrown in a two-dimensional field. The entire sensing area can

be partitioned into some Delaunay triangles, whose vertices represent sensor nodes. We

assume that the number of nodes is so large that the entire working area consists of a large

number of Delaunay triangles. We have the following theorem regarding the optimum node

layout.
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Figure 2.1: The maximum no-gap coverage area in a triangle can be obtained, if and only
if the lengths of all three edges of the Delaunay Triangle equal

√
3r.

Theorem 1 If all Delaunay triangles are equilateral triangles with edge length
√

3r, the

coverage area ofn nodes is maximum without coverage gap, where the spans of the cover-

age area on both X and Y dimension are much larger than the sensing range of sensors.

Proof. Since the entire working area can be decomposed into a large number of De-

launay triangles, if we can prove that the no-gap coverage area in any Delaunay triangle is

maximized when the lengths of all its edges equal
√

3r, then the maximum coverage area

of n nodes can be obtained. LetCn0, Cn1 andCn2 be the circles centered at the pointsn0, n1

andn2, respectively, which denote the coverage area of corresponding nodes. Without loss

of generality, we assume that circleCn0 and circleCn1 cross at pointO, whereO andn2 lo-

cate on the same side of edge(n0,n1) as shown in Fig. 2.1. Letφ0 = 6 n2n0O, φ1 = 6 n0n1O

andφ2 = 6 n1n2O, where0 < φ0,φ1, andφ2 < π
2. Let |niO| denote the distance between

nodeni andO, whereni ∈ {n0,n1,n2}. From Fig.2.1, sinceCn0 andCn1 cross atO, we can

obtain|n1O| = |n0O| = r. In order to maximize the area of the triangle without coverage

gap,|n2O| should equalr. The area of triangle∆n0n1n2, denoted asA(∆n0n1n2), can be

calculated as the summation of the area of the following three triangles∆n0n1O, ∆n0n2O
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and∆n2n1O.

A(∆n0n1n2) = A(∆n0n1O)+A(∆n0n2O)+A(∆n2n1O) (2.1)

= r2(sinφ0cosφ0 +sinφ1cosφ1 +sinφ2cosφ2)

=
r2

2
× (sin(2φ0)+sin(2φ1)+sin(2φ2))

Since

|n1O|= |n0O|= |n2O|= r

we have

φ0 +φ1 +φ2 =
π
2

(2.2)

By replacingφ2 with (π
2−φ0−φ1) in (2.1), we obtain,

A(∆n0n1n2) =
r2

2
× (sin(2φ0)+sin(2φ1)+sin(2φ0 +2φ1)) (2.3)

Let

f (φ0,φ1) = sin(2φ0)+sin(2φ1)+sin(2φ0 +2φ1)

When
∂ f (φ0,φ1)

∂φ0
= 0 and

∂ f (φ0,φ1)
∂φ1

= 0

the maximal value ofA(∆n0n1n2) can be obtained. Thus,

∂ f (φ0,φ1)
∂φ0

= 2cos(2φ0)+2cos(2φ0 +2φ1) = 0

∂ f (φ0,φ1)
∂φ1

= 2cos(2φ1)+2cos(2φ0 +2φ1) = 0 (2.4)
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Figure 2.2: The perfect node layout for maximum no-gap coverage.

By solving (2.4), we obtain,

2φ0 +φ1 =
(2k+1)π

2
, k = 0,±1,±2, . . .

φ0 +2φ1 =
(2m+1)π

2
, m= 0,±1,±2, . . . (2.5)

Since0 < φ0,φ1,φ2 < π
2, we have,

2φ0 +φ1 = φ0 +2φ1 =
π
2

(2.6)

From (2.2) and (2.6), we can obtain that the maximum value ofA(∆n0n1n2) can only be

achieved whenφ0 = φ1 = φ2 = π
6. We have shown that whenφ0 = φ1 = φ2 = π

6 and the

lengths of all three edgesn0n1, n1n2 andn2n0 equal
√

3r, the area of triangle∆n0n1n2 is

maximized. Therefore, as depicted in Fig. 2.2, if all Delaunay triangles are equilateral

triangles with edge length
√

3r, the no-gap coverage area in a plane is maximized.
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Having considered the maximum coverage problem, we now derive the minimum av-

erage moving distance of the nodes under a uniform deployment density. We assume that

initially all sensor nodes are in a compact area near the origin of the polar coordinate system

and eventually will be deployed to a disk-shaped areaSwith radiusD, that is, the sensors

are uniformly distributed over areaS= πD2. We have the following theorem regarding the

minimum average moving distance.

Theorem 2 When sensor nodes are deployed from a compact area to a disk-shaped area

Swith radiusD, the minimum average moving distance of the nodes is2D
3 .

Proof. When nodes are uniformly distributed over areaS, the minimum average mov-

ing distanceDavg can be computed as the average distance from the origin of the polar

coordinate system. Let(ρ,θ) denote the polar coordinate of the node. Thus,

Davg = E(ρ) =
∫ 2π

0

∫ D

0

ρ
πD2ρdρdθ =

2D
3

(2.7)

By pluggingS= πD2 into (2.7), we have

Davg =
2
3

√
S
π

(2.8)

It should be pointed out thatDavg can be achieved only when every node directly moves

to its final position during the deployment. Thus it represents the minimum average moving

distance in the ideal situation. However, this optimum value is difficult to achieve when the

final position of each node is unknown before the deployment and there are obstacles that

may block the movement of the nodes. Nevertheless,Davg can serve as a lower bound on

the average moving distance of the nodes for any deployment algorithm. We will compare

the average moving distance of our algorithm withDavg in the simulation section.
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2.3 Adaptive Triangular Deployment Algorithm

In this section, we present a new adaptive deployment algorithm based on the optimum

node layout we obtained in the previous section. For presentational convenience, we start

with a simpler version of the algorithm, calledtriangular deployment (TRI) algorithm, then

discuss some strategies to improve the basic algorithm, and finally present the complete

algorithm.

2.3.1 The Basic Triangular Deployment Algorithm

We have known what type of node layout can maximize the coverage in a plane. Now

the issue that needs to be addressed is how to deploy nodes from a compact area or an

irregular layout to a perfect layout. A large number of sensor nodes are randomly thrown

into a working area or placed in a bunch. As discussed earlier, exchanging global loca-

tion/topology information during such a dynamical deployment period would put a heavy

traffic burden to the network. Furthermore, when a bunch of nodes are located within a

compact area and most of them need to communicate with others at the same time, the

communication will be very inefficient due to the collision at the MAC layer [43]. Thus,

the node movement decision should be based on local information in the deployment pro-

cess. Since the location information is updated periodically, as a result, each node can only

decide its movement periodically.

We now present an algorithm to deploy the sensor nodes close to a perfect equilateral

triangular layout with the maximum coverage. The basic idea of the algorithm is to adjust

the distance between two Delaunay neighbors to
√

3r in three different coordinate systems,

namely,XY, X
′
Y
′

andX
′′
Y
′′
, where the angles betweenX-axis andX

′
-axis, and between

X-axis andX
′′
-axis areπ

3 and2π
3 , respectively. As shown in Fig. 2.3(a), the coverage area of
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Figure 2.3: Local movement strategies based on the location of one-hop neighbors.

a sensor node is divided into six sector areas, called sectors 1 to 6 counterclockwise, where

X-axis,X
′
-axis andX

′′
-axis symmetrically partition sectors 1 and 4, sectors 2 and 5, and

sectors 3 and 6. The radius of each sector equals the transmission range of the node. The

location of the nodes in sectors 1 and 4, sectors 2 and 5, and sectors 3 and 6, are expressed

by XY, X
′
Y
′
andX

′′
Y
′′

coordinates, respectively.

In each sector, the node adjusts its location along the corresponding axis based on the

location of its Delaunay neighbors. However, the adjustment algorithm based on Delaunay

diagram suffers the similar limitation as the solutions based on Voronoi graph, since global

location of all sensor nodes is needed to determine Delaunay triangulations and Delaunay

neighbors. In practice, we use the nearest neighbors to the node in each sector instead

of Delaunay neighbors. For example, as shown in Fig. 2.3(b), nodeN1 is the nearest

neighbor of nodeN0 in sector 1, where their coordinates inXY coordinate system are

(X1,Y1) and(X0,Y0). Let the location vector
−→
δx1 and

−→
δy1 denote vectors[(X1−X0),0] and

[0,(Y1−Y0)], respectively. If|−→δx1 +
−→
δy1| <

√
3r, it means that there is too much coverage

overlap between nodeN0 and nodeN1. Thus, the movement ofN0 should be opposite toN1
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for
|
−→
δx1−

√
3r

−→
δx1

|
−→
δx1|

|

2 to reduce the coverage overlap. On the contrary, if|−→δx1 +
−→
δy1| >

√
3r,

a coverage gap may exist between nodeN0 and nodeN1. We will let N0 move towards

N1 alongX-axis for
|
−→
δx2−

√
3r

−→
δx2

|
−→
δx2|

|

2 to fill the coverage gap. Besides the movement on X-

coordinate, the movement vector ofN0 projected on Y-coordinate equals
−→
δy1/2. Thus, the

movement vector ofN0,
−→
δv1 =

−→
δx1−

√
3r

−→
δx1

|
−→
δx1|

+
−→
δy1

2 .

In general, for sectors, each node searches the nearest neighbor within the sector and

calculates the relative horizontal and vertical location vectors
−→
δxs and

−→
δys along its corre-

sponding axis. Here,
−→
δxs and

−→
δys are expressed by relative coordinates corresponding to

sectors. The movement vector of a node in sectors,
−→
δvs, can be expressed as

−→
δvs =

−→
δxs−

√
3r
−→
δxs

|
−→
δxs|

+
−→
δys

2
(2.9)

Note that each movement vector is obtained in one of three different coordinate systems,

XY, X
′
Y
′
andX

′′
Y
′′
. After the movement vectors in all six sectors are obtained, they need

to be transferred into uniform coordinates and added in order to obtain the total movement

vector for the current round. Table 2.1 gives this triangular deployment algorithm. As will

be seen in the simulation results, after several rounds of such adjustments, the layout of the

network will be close to the ideal equilateral triangle layout. As a result, the coverage area

of the network will be maximized.
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Table 2.1: Triangular deployment algorithm

Triangular Deployment Algorithm
for each round

for each nodei = 1 to n
Broadcast “Hello” message containing its location information to its one-hop neighbors;
Receive “Hello” message from nearby nodes and obtain their location information;
Divide its coverage area into 6 sectors;
for each sectors= 1 to 6
The node calculates location vector

−→
δx and

−→
δy to its nearest neighbor

in the coordinate system;

Calculate and store the movement vector for sectors,
−→
δvs =

−→
δx−√3r

−→
δx
|
−→
δx|

+
−→
δy

2
Transfer movement vectors of all sectors into uniform coordinates;
Add them up to obtain the total movement vector for nodei;

Move;

2.3.2 Minimizing Oscillation

We have proved that equilateral triangular layout can maximize the coverage, and also

proposed a simple algorithm to adjust the network from an irregular layout to the ideal

equilateral triangle layout. However, since the global location information of the network

is difficult to obtain in the deployment process, it is impossible for each node to move to its

desired target directly. Thus, sensor nodes may move back and forth frequently before they

reach its desired target. To make the algorithm suitable to real-world applications, another

important issue is to reduce the total moving distance of the nodes in the deployment.

Recall that the moving strategy in our triangular deployment algorithm is that if the hor-

izontal distance between two neighbors is longer than
√

3r, the sensors will move towards

each other to shorten the gap between them. On the contrary, they will move away from

each other to reduce the coverage overlap. According to this strategy, nodes will move all
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Figure 2.4: Threshold strategy for reducing node oscillation. (a) Constant threshold. (b)
Variable threshold.

the time, unless the network reaches the perfect layout or its maximum rounds. In order to

reduce the oscillation, we adopt a threshold strategy by using two distance thresholds,T1

andT2, instead of
√

3r for making moving decisions, whereT1 =
√

3r + ε, T2 =
√

3r − ε

andε is a small constant. As described in Fig. 2.4(a), the Y-coordinated denotes the dis-

tance between the node and its nearest neighbor. When two far away nodes move towards

each other and the distance between them decreases toT1, two nodes stop moving. On

the other hand, when two close nodes move apart and the distance between them increases

to T2, they will stop and keep the current distance between them. This moving strategy

guarantees that the node will not move if it is located betweenT1 andT2 away from its

neighbors, so that the node is affected less when its neighbors move slightly. Note that if

the adjustment granularity is too small, which is given by∆d = T1−T2 = 2ε, T1 andT2

are close to
√

3r at the beginning of the deployment process and there will be no obvious

difference between the algorithm in Table 2.1 and the algorithm with threshold strategy.

However, if ∆d is too large, it is impossible to adjust the network to the perfect equilat-

eral triangular layout. In order to solve this problem, we let the thresholdsT1 andT2 be

the function of timet. As shown in Fig. 2.4(b), the adjustment granularity decreases as

time t increases. That is,T1 =
√

3r + ε(t) andT2 =
√

3r− ε(t), respectively, whereε(t) is
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Figure 2.5: Movement state diagram for reducing node oscillation. L: Move left; R: Move
Right; SL andSR: Stay; I: Initial state; l: Expected moving direction is left; r: Expected
moving direction is right.

called the threshold function. In practice, since the algorithm is executed round by round,

the threshold can be changed to a function of the number of rounds. In our simulations in

Section2.4, we useε(Rdcur) =
√

3
4 r ×e−Rdcur/Rdtotal as the threshold function, whereRdcur

andRdtotal are the numbers of the current rounds and the total rounds, respectively.

The second strategy, called movement state diagram, is to use a state diagram to reduce

the node oscillation. Each movement can be considered as a vector and be decomposed

into the projection vectors on X and Y coordinates. For X coordinate, nodes can only

move left or right. Oscillation exists when a node moves towards the opposite direction

of the previous movement. In order to avoid oscillation, nodes are not allowed to move

backwards immediately. Two state diagrams are used in the movement vectors projected

on X and Y coordinates separately. Fig. 2.5 shows an example of movement state diagram

for X coordinate, which contains 5 states and is used in our simulation. The diagram has 5

states:L, R, SL, SR andI , and two transitionsl andr. L andR denote the movement to the

left and the right respectively. If the state of a node isSL or SR, it has to stay where it is till

the next round.I is the initial state.l andr represent the moving decision to the left and the

right made by the triangular deployment algorithm. For example, a node plans to move left

after running the triangular algorithm, which means that the current transition isl . Then,

it needs to check its current state on its state diagram. If its current state isL, I or SL, the
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next state will go toL after the transitionl . A node can move left only when its next state is

L. If the current state of the node isSR (or R), the next state will transit toSL (or SR) upon

the transitionl . Thus, the node cannot move until next round. The movement control for

Y coordinate follows a similar procedure. Simulation results in Section 2.4 shows that the

distance threshold strategy and movement state diagram strategy can reduce a significant

amount of movements during the deployment.

2.3.3 Adaptive Triangular Deployment Algorithm

We have discussed how to deploy nodes with equal or almost equal density in an open

area where the entire area needs to be sensed uniformly. However, in many real-world

applications, the working area is partially or entirely bounded. Also, some irregularly-

shaped obstacles may be in the working area. In other situations, sensors may need to be

deployed with different density based on the requirements of tasks. Without the control

from human being or central controller, and without map and global information, sensors

have to be smart enough to make decisions themselves.

In order to make the deployment algorithm more practical, sensors must be able to

avoid obstacles and boundaries. Because an accurate map of the sensing area may not be

always available before the deployment, we assume that each sensor is equipped with an

ultrasonic obstacle detecting module [64] which makes it possible to detect obstacles when

it moves close enough to the obstacles. As discussed above, the triangular deployment

algorithm can only adjust the relative positions of two sensor nodes. However, unlike sensor

nodes, obstacles and boundaries usually have irregular shapes and continuous outlines. In

order to enable the triangular deployment algorithm to adjust the relative positions between

sensor nodes and obstacles and boundaries with only a minor modification, the outlines of
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Figure 2.6: Examples of the adaptive deployment in a bounded area with obstacles.

obstacles and boundaries are abstracted as many virtual nodes, which surround obstacles

and boundaries closely. As shown in Fig. 2.6, each small dotted circle around obstacles and

boundaries denotes a virtual node. In practice, after each sensor node detects the outlines

of obstacles or boundaries within its coverage area, from a sensor node’s point of view,

the outlines of obstacles or boundaries can be considered as many virtual nodes. Like real

sensor nodes, these virtual nodes also “push” real nodes away when real nodes are located

too close to them, or “pull” real nodes close to them when real nodes are located too far

away from them. Similar to the basic triangular deployment algorithm, after a real sensor

node divides its coverage area into six sectors, it takes account of both real nodes and

virtual nodes in each sector of its coverage area. When the real node finds other real or

virtual nodes are located too close to itself in each sector, it moves away from them. On the

contrary, when it is located too far away from other real or virtual nodes, it moves towards

them to fill the coverage gap. However, unlike real nodes, virtual nodes can neither move

nor cover the sensing area. Since virtual nodes cannot actually cover any area, in order
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to avoid the coverage gap or overlap between real nodes and virtual nodes, intuitively,

the optimum distance between adjacent real nodes and virtual nodes should be shorter

than
√

3r. In Fig. 2.6(a), the coverage areas of two real nodes are equally divided by a

straight line. As discussed earlier, both real nodes need to be at least
√

3r/2 away from

the line bisector in the optimum layout. The straight line can be considered as the virtual

“boundary” of the coverage areas of two nodes. In Fig. 2.6(b), when the line becomes a

real boundary of an obstacle or a wall, the node on the right still needs to keep the distance

to the line as
√

3r/2 to avoid the coverage gap. Thus, the distance between a real node

and a virtual node needs to be adjusted to
√

3r/2 instead of
√

3r. We revise our algorithm

as follows for deploying nodes in an area with obstacles. Letrd denote the deployment

radius. In each sector, if the nearest neighbor of the node is a virtual node, the node sets

its deployment radiusrd to r
2. If its nearest neighbor is a real node, itsrd still equals its

sensing radiusr. And then, the node runs the triangular deployment algorithm by replacing

r with rd. Fig. 2.6 shows an example of the layout after nodes are deployed in a partially

bounded area with irregularly-shaped obstacles. We can see that the distance between real

nodes is still
√

3r, while the distance between real nodes and virtual nodes (obstacles or

boundaries) is
√

3r/2.

Besides avoiding the obstacles in the working area, the location of nodes should also

follow the occurring distribution of the interested events. The higher frequency or density

of the event occurring within a given area, the more sensor nodes are needed to monitor

the status change in that area. On the contrary, it is unnecessary to monitor the event-

blank area where there will never exist interested events. In other words, nodes should

be deployed with different densities based on the requirements of tasks. For example,

suppose sensor nodes have two different types of tasks: sensing and communication. For
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Figure 2.7: Examples of the adaptive deployment based on different task requirements.

different tasks or regions, the coverage range of a node may be different. As shown in Fig.

2.7, a bunch of sensors are thrown into a contaminated chemistry factory to monitor the

density of leaked chemicals, in which contaminated sources locate in separated buildings,

which may not be uniformly distributed. The task of some nodes with high density is

to cover and monitor the contaminated area. And the task of other nodes located in the

event-blank area with low density is to provide communications between any two separated

contaminated buildings. Thus, the algorithm should not only maximize the coverage area

where the nodes need to be deployed uniformly, but also adjust the node density based on

the different distribution of event occurring. It is easy to revise the triangular deployment

algorithm to make it suitable for the adaptive deployment based on different requirements.

In the triangular deployment algorithm, in order to obtain maximum no-gap coverage, each

node tries to adjust the distance to its nearest neighbors to
√

3r. When nodes move into

a highly concerned region and find that they need to be deployed more densely, they set
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a new shorter deployment radius, say,rd, instead of the sensing radiusr, and then run the

adaptive triangular deployment algorithm by replacingr with rd. Note that the deployment

radiusrd of each sensor can be decided by itself based on the measurement obtained from

the environment. When a region does not need to be sensed with high density, nodes extend

to a sparser density by choosing a longer deployment radius.

By applying distance threshold, movement state diagram and adaptive adjustment strate-

gies, we obtain the adaptive triangular deployment algorithm (ATRI) that is summarized in

Table 2.2. As will be seen in our simulation results, by incorporating these strategies, our

adaptive triangular deployment algorithm can drive nodes to avoid obstacles in the area and

deploy them with different densities based on the requirements of tasks.

2.3.4 Discussions on Some Practical Issues: Synchronizing Sensors

and Reducing Packet Collision

So far we have assumed that sensors are well-synchronized and the location informa-

tion can be exchanged between sensors without packet collision. However, in practice, the

clocks of sensors can be imprecise due to several reasons. First, the clocks may not be

initially synchronized well. Sensors may be turned on at different times. The clock may

also be affected by the changes of the environment, such as temperature and pressure or

the battery voltage. Without global synchronization, some sensors with “faster clock” may

reach the maximum rounds and stop moving, while others still seek and try to move to

better positions to improve the coverage. In order to make all sensors move at the same

pace, sensors need to be synchronized globally. Synchronization in sensor networks has

been studied in the literature by many researchers. For instance, in [65] Qun et al proposed
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Table 2.2: Adaptive triangular deployment algorithm

Adaptive Triangular Deployment Algorithm
for each round

for each nodei = 1 to n
Broadcast “Hello” message containing its location information to its one-hop neighbors;
Receive “Hello” message from nearby nodes and obtain their location information;
Detect obstacles or boundaries within its coverage area and obtain location of
virtual nodes;

Divide its coverage area into 6 sectors;
for each sectors= 1 to 6
Adjust its sensing radiusrd adaptively based on the requirement of tasks or location of
virtual nodes;

Calculate the threshold valueTHR;
Calculate location vector

−→
δx and

−→
δy to its nearest neighbor/virtual node ;

if (0 < |δxs| ≤ |
√

3rd−THR|) or (|δxs| ≥ |
√

3rd +THR|)

Calculate and store the movement vector for sectors,
−→
δvs =

−→
δx−√3rd

−→
δx
|
−→
δx|

+
−→
δy

2 ;
else−→

δvs =−→
0 ;

end if
Transfer movement vectors of all sectors into uniform coordinates;
Add them up to obtain the total movement vector for nodei;
Check the state diagram to decide if move or not and make transitions on the state diagram;

Move;
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a fully localized diffusion-based synchronization method, which scales well in a large net-

work. This algorithm can be adopted in our deployment algorithm for the synchronization

purpose.

Moreover, in some applications, a large number of sensors are initially placed in a com-

pact area. When every sensor wants to obtain the shared channel to broadcast its location

information, the channel may become so busy that many packets are collided. Though our

main focus of this chapter is on the movement planning of sensors, nevertheless next we

briefly discuss how sensors can exchange location information reliably in such situation.

A simple way to reduce collision is to deploy sensors as sparsely as possible if the envi-

ronment and the application permit. As studied in some existing work [50, 51], another

feasible solution is to adaptively adjust the contention-window size based on how busy the

channel is. However, both solutions cannot completely avoid collision. Unlike some ex-

isting work on MAC protocols, here we are more concerned with the reliability than the

throughput or the channel utilization during the deployment phase. In order to avoid colli-

sion, instead of using a flat topology, we can introduce a hierarchy into the network. During

each round of the ATRI algorithm, we let some sensors act as cluster heads and poll other

sensors to avoid packet collision. Since the network topology keeps changing before the

maximum round of the ATRI algorithm is reached, cluster heads are not fixed and should

be selected at the beginning of each round. To become a cluster head, sensors first operate

in a contention-based mode and compete with each other to obtain the channel. Once a

node obtains the channel by successfully sending out a broadcast message, it becomes a

cluster head. All sensors that receive the broadcast message stop trying to send out the

message and become cluster members. After becoming a cluster head, the sensor polls all

sensors one by one. If the polled sensor is in the transmission range of the cluster head, the
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sensor sends its location information to the cluster head. Otherwise the channel keeps idle

for a short period, and then the cluster head will poll the next sensor. Though the proce-

dure of electing the cluster head is contention-based, after a sensor is selected as the cluster

head, sensors in the cluster stop competing with each other and can upload their location

information to the cluster head in a contention-free manner. After acquiring positions of

all sensors in its transmission range, the cluster head broadcasts all newly updated location

information to all nodes in its transmission range. Thus, by running the polling protocol,

the inner-cluster collision can be avoided.

Unlike traditional one-hop wireless networks, such as WLANs and Bluetooth networks,

a sensor network may consist of multiple clusters. Each cluster head may not know the

activities of other cluster heads. Thus, if two nearby cluster heads broadcast packets at

the same time, the packets may collide. The inter-cluster collision problem basically is a

hidden terminal problem, which has been extensively investigated in the literature. Busy-

tone-based approaches can solve the hidden terminal problem by using a busy tone to warn

nodes not to send packets. A busy tone can be a simple unmodulated SINE wave transmit-

ted in a separate narrow-band channel. Togagi et al proposed a busy tone multiple access

(BTMA) scheme [66] to solve the hidden terminal problem by requiring a receiver to power

up a busy tone to warn hidden nodes. Haas et al. presented a dual busy tone multiple access

(DBTMA) scheme [67], which uses two physically separate tones, one indicating transmit-

ting busy, and another indicating receiving busy. Other nodes that hear the busy tone will

postpone their transmission to prevent the collision. The idea of busy tones can be used to

solve the inter-cluster collision problem. Once a cluster head obtains the channel, it broad-

casts a busy tone in a separate channel with a much longer transmission range than that for

transmitting regular data to disable the transmission of all nearby cluster heads and sensors.
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Since the busy tone is transmitted in a much simpler waveform and at lower frequency band

than regular data, the busy tone can be transmitted more energy efficiently, even it needs

to be sent further than regular data. Thus, by using the combination of the polling pro-

tocol and the busy-tone scheme, the inner-cluster and inter-cluster packet collision can be

avoided, and location information can be exchanged reliably.

2.4 Performance Evaluations

This section presents a set of experiments designed to evaluate the performance and

cost of the proposed algorithm. Besides the ideal flat open area, the simulation is also

run in the more practical environments, where irregularly-shaped obstacles may block the

movement of nodes. In addition, we implement the adaptive deployment based on different

deployment requirements of the regions. All sensor nodes are equipped with Chipcon

CC2420 Zigbee transceivers [68], which can reach as far as 50 meters away. Each sensor

node can sense the occurring of events within a radius of 3 meters away from itself. At

the beginning of the experiments, sensors are randomly placed within a1m×1m compact

square which is centered at point(25m,25m). Then the nodes explode to a large, evenly

deployed layout. In order to limit the oscillation of the nodes, the same movement state

diagram depicted in Fig. 2.5 is used in all scenarios. The distance threshold function

ε(Rdcur) =
√

3
4 rd×e−Rdcur/Rdtotal, whereRdcur andRdtotal are the numbers of current rounds

and total rounds. We measure the total coverage area and the average moving distance per

node and compare them with existing algorithms.
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2.4.1 Performance and Cost Evaluation

In this subsection, we compare the performance and cost of VEC and ATRI algorithms.

VEC algorithm has similar performance as VOR and Minimax algorithm in a bounded

area. In addition, like ATRI algorithm, VEC algorithm can be used in both unbounded and

bounded areas, while VOR and Minimax algorithms have to know the boundary informa-

tion. For the sake of simplicity, we did not take account of the communication cost for

exchanging location information and assume that location information is error-free, though

VEC algorithm needs global location information and is more vulnerable to inaccurate

location information than ATRI algorithm. In order to see the effects of various node den-

sities, 100 nodes are randomly placed into a1m×1m square around point(25m,25m) at

the beginning, then they explode from a compact area to a large area. Both algorithms run

for 100 rounds. In order to evaluate the performance and cost of the two algorithms, two

metrics are measured for each simulation round: total coverage area and average moving

distance, which are defined as the coverage area of 100 nodes and accumulated moving

distance per node from the beginning of the simulation, respectively. Fig. 2.8(a) shows the

total coverage area of both algorithms as the simulation rounds increase. We can see that

the total coverage of both algorithms increases rapidly to as high as2200m2 before round

40, and then goes smoothly after round 40. At round 100, ATRI stops at about2600m2,

while VEC is close to2500m2. From rounds 10 to 100, ATRI always leads VEC for about

50m2 to 100m2. Fig. 2.8(b) describes the average moving distance when simulation rounds

range from 10 to 100. Average moving distance has a similar increasing trend to the total

coverage area, as the simulation rounds increase. In both algorithms, after round 60, nodes

are deployed evenly and their average distance is close to
√

3r. Most nodes do not need

to move except minor adjustments. As shown in Fig. 2.9, after round 60, most nodes
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form the equilateral triangle layout. There are no obvious changes between the layout of

round 60 and that of round 80, because the layout of nodes is already very close to the

ideal equilateral triangular layout after round 60. In addition, from total coverage area of

both algorithms, we also calculate optimum average moving distances and plot them in

Fig. 2.8(b). As discussed earlier, given a fixed total coverage area, the optimum average

moving distance can be calculated by (2.8). Recall that optimum average moving distances

can only be obtained when the working environment is well known and each node knows

its expected target before the deployment. Without the map of the environment, nodes have

to move in a zigzag manner, which makes the average moving distances of both algorithms

longer than the optimum values. However, compared to VEC algorithm, ATRI still saves

up to50%of the optimum average moving distance from rounds 10 to 100.

2.4.2 Non-Uniform Deployment

In this subsection, we simulate the scenario that some dangerous chemical is leaking

at point(25m,25m). Without loss of generality, we assume that the contaminated area is

disk-shaped, which is centered at point(25m,25m). The radius of the contaminated area

is 10m, which is unknown to the sensors before the deployment. In order to detect the

region of the contaminated area, 200 sensor nodes are thrown within the compact square

area close to the origin of the chemical. The circle around(25m,25m) in Fig. 2.10(a)

represents the contaminated area. The sensor nodes within the contaminated area need to be

more densely deployed than non-contaminated area to detect the small change of chemical

density. Within the contaminated area, the sensing radius is1m, while the sensing radius

within the non-contaminated area is3m. The whole sensing area is bounded within50m×
50m, which is also centered at point(25m,25m). Fig. 2.10(b) and (c) plot the deployment
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rithms for 100 runs of simulations.
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Figure 2.9: Triangular layout of 100 nodes at rounds 20, 40, 60 and 80.
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Figure 2.10: Simulation results for non-uniform deployment: (a) Round 0; (b) Round 20;
(c) Round 60; (d) Zoom-in Snapshot of the contaminated area.

layout at round 20 and round 60, respectively. Fig. 2.10(d) is the zoom-in snapshot of

the contaminated area at round 60. We can see that at round 60, sensor nodes in both

contaminated area and non-contaminated area are deployed evenly with the corresponding

deployment radius. Our adaptive algorithm can also be used in various irregularly-shaped

contaminated areas, or highly concerned areas. In addition, in a more complicated case

that the contaminated area enlarges or shrinks from time to time, the sensor nodes can also

change their deployment density dynamically to satisfy the requirement.
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Figure 2.11: Simulation results for the environment with obstacles: (a) Initial snapshot; (b)
Round 20; (c) Round 40; (d) Round 60.

2.4.3 Exploring the Area with Obstacles

In order to show that ATRI algorithm works well in the sensing environment with ob-

stacles, a circular and a triangular obstacles are placed in the sensing area. As shown in Fig.

2.11, the circular obstacle is centered at point(35m,35m) with radius8m. Vertices of the

triangular obstacle are(10m,20m), (20m,10m) and(20m,20m), respectively. Fig. 2.11(a),

(b), (c) and (d) illustrate the deployment layouts at rounds 0, 20, 40 and 60, respectively,

where each “+” symbol denotes the position of its corresponding node. At the beginning,
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Table 2.3: Exploring sensing area with obstacles : moving distance vs coverage area

Number of rounds 20 40 60
Total coverage area (m2) 2032 3504 4415

Average moving distance (m) 17.45 33.33 46.13
Optimum average moving distance (m) 16.95 22.26 25.00

similar to the previous scenario, 200 sensor nodes are randomly thrown into a1m× 1m

square around point(25m,25m). As the simulation runs, we can see from Fig. 2.11(b),(c)

and (d) that, the total coverage enlarges round by round. At round 60, nodes are evenly

deployed and no nodes enter the triangular or the circular region during the deployment.

We can see that though obstacles block the movement of some nodes, ATRI algorithm still

performs very efficiently. During the simulation, we measure the total coverage area and

average moving distance at rounds 20, 40 and 60. In addition, we also calculate optimum

average moving distance by plugging the total coverage area into (2.8). All three metrics

are shown in Table 2.3.

In practice, optimum average moving distance is difficult to reach unless the desired

optimum position of each node is known before the deployment and no obstacles block the

movement of the nodes. In the situation that the map of the environment is unavailable and

the movement of some nodes is blocked by obstacles, we can see that the movement cost

of ATRI algorithm is very reasonable compared to the optimum value.

2.5 Conclusions

In this chapter, we have proposed a new adaptive deployment algorithm for unattended

mobile sensor networks, namely, adaptive triangular deployment (ATRI) algorithm. We
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have introduced an equilateral triangle deployment layout of sensor nodes and proved that

it can produce the maximum no-gap coverage area in a plane. By using the only loca-

tion information of one-hop neighbors for the adjustment of each node, the algorithm can

make the overall deployment layout close to equilateral triangulations. In order to reduce

the back-and-forth movement of nodes, the distance threshold strategy and movement state

diagram strategy are adopted, which limit the oscillation and reduce the total movement

distance of nodes. ATRI algorithm can be used in both bounded and unbounded areas. It

also supports adaptive deployment. Without the map and information of the environment,

nodes can avoid obstacles and adjust the density dynamically based upon different require-

ments. Without the control from the human being or central controller, each node can make

decisions itself. In addition, ATRI algorithm is run in a completely distributed fashion by

each node and based only on the location information of nearby nodes.
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Chapter 3

Single Path Flooding Chain Routing

Algorithm

In the first chapter, we have introduced an adaptive deployment algorithm for mobile

sensor networks. After the deployment phase, sensor nodes begin to sense the field and

communicate with each other to exchange sensing data. In the remaining parts of the thesis,

we will introduce some novel algorithms to provide reliable and efficient communication

for sensors.

This chapter gives a theoretical analysis about the effect of the out-of-date location

information on the performance of the single path routing algorithm, and then present a

new position-based routing algorithm for ad hoc networks. As will be seen, the new al-

gorithm achieves much lower communication complexity than the existing flooding-based

algorithms, which is measured by the average number of one-hop transmissions required to

send a packet from a source node to a destination node, and can consistently perform well

for various mobilities.

The rest of the chapter is organized as follows. In Section 3.1 we give a brief overview

40



of some position-based routing algorithms. In Section 3.2, we analyze the error probability

of the existing single path routing algorithm caused by the location information periodical

update. Based on the analysis in Section 3.2, we present in Section 3.3 our new single

path flooding chain routing algorithm. Section 3.4 contains some simulation results of the

algorithm, and finally, Section 3.5 concludes the chapter.

3.1 Related Work

The growing interest in ad-hoc/sensor networks has resulted in many routing algorithms

and protocols proposed for such dynamic, self-organizing and resource-limited networks.

Most of work in this area focuses on two types of routing algorithms:topology-basedrout-

ing andposition-basedrouting algorithms. Traditional topology-based routing algorithms,

which are widely used in wired networks, depend on the link information to make rout-

ing decisions. On the other hand, position-based routing algorithms require the physical

positions of nodes to perform packet forwarding. In general, the topology of an ad hoc net-

work changes too frequently to be updated timely. Maintaining a routing table at each node

introduces a significant amount of network traffic to an ad hoc network. Thus, position-

based routing algorithms were proposed to eliminate some limitations of topology-based

routing algorithms. In a position-based routing algorithm, there is no need to establish and

maintain links, and routing decisions are mainly based on the location information of the

destination node and the one-hop neighbors of the current node. Thus the algorithm can

avoid the overhead of maintaining global information of the network.

In a position-based routing algorithm, each mobile node in an ad hoc network can ob-

tain its own location information from theGlobal Positioning System(GPS) or some other

positioning services [33, 34]. A routing decision at a node is triggered by an incoming
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packet to the node and is made based on the location information of both the destination

node and the one-hop neighbors of the sender. However, it is generally not sufficient to

establish routing paths between the source and the destination if all nodes only know their

own location information. In most position-based algorithms, each node broadcasts its lo-

cation information to its one-hop neighbors periodically and requests location information

of the destination node by contacting thelocation service[35, 36, 37, 38]. Location ser-

vices are the mechanisms that provide the location information of a specific node in the

network to any node which sends a request to them. Mobile nodes register their location

information with the location service. When a node needs the location of a desired node,

it contacts the location service to obtain the location of that node. An example of location

services is the base station in cellular networks. Each base station is a location server and

provides the location information to all mobile nodes in the cell. A survey on location

services and position-based algorithms can be found in [25]. Position-based routing in ad

hoc networks has been studied extensively in recent years. Most of proposed work can be

divided intoflooding-basedalgorithms [27, 28] orgreedy packet forwarding(single-path

based) algorithms [31]. In a flooding-based algorithm, a packet is flooded to the entire or

most part of the network. On the other hand, in a greedy packet forwarding algorithm, a

packet is transmitted through a single routing path and has only one copy in the network at

any time. In this section we discuss some existing flooding-based routing algorithms and

greedy packet forwarding algorithms.

3.1.1 Flooding-Based Routing Algorithms

The simplest flooding-based routing algorithm in an ad hoc network, calledblind flood-

ing, is to flood a packet from the source node to all other nodes in the network hop by
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Figure 3.1: Illustration of the expected region in the DREAM Algorithm.

hop. This approach does not need the location information of the nodes in the network and

eliminates the power and bandwidth overhead for exchanging location information. How-

ever, this algorithm has a serious scalability problem. Since each packet passes through

all nodes in the network, the communication complexity of the blind flooding algorithm is

O(n), wheren is the number of nodes in the network. In this chapter, we say two mobile

nodes areconnectedif and only if their distance is less than their transmission radius. Thus

there exists aconnected pathbetween a source node and a destination node if any two ad-

jacent nodes in the path are connected. Although the blind flooding does not require the

location information, the high communication complexity prohibits its using in a large ad

hoc network.

An improved flooding-based algorithm,Distance Routing Effect Algorithm For Mobil-

ity (DREAM), was proposed in [27]. In the DREAM algorithm, instead of flooding a

packet to the entire network, a source nodeSfloods a packet only to a restricted area which

is determined by theexpected regionof the corresponding destination nodeD. As shown

in Figure 3.1, the circle around nodeD is its expected region whose radius can be repre-

sented byr = Vmax(t1− t0), whereVmax is the maximum speed of nodeD, t1 is the current
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time, andt0 is the time-stamp of nodeD’s location information maintained byS. Since

nodeD locates in the center of its expected region att0, it is unlikely to move out of its

expected region att1, even if it always moves at its maximum speed. Thus in order to cover

the expected region of the destination node, the flooding can be restricted only within the

angleα, as shown in Figure 3.1, which is defined by the angle between two tangent lines

of the expected region of nodeD. Compared to the blind flooding algorithm, the DREAM

algorithm does not need to flood each packet to all connected nodes. However, though only

part of nodes in the network participate in flooding in the DREAM algorithm, as analyzed

in [25], the communication complexity of the DREAM algorithm is stillO(n). This is be-

cause that in the worst case when the distance between the source and the destination node

equals to the diameter of the network, each packet covers a sector of the entire network.

Furthermore, when the destination node moves too slowly and the distanced between the

source and the destination node is too far, the flooding must be constrained in a very small

angleα, whereα = 2sin−1( (t1−t0)Vmax
d ). If all flooding nodes are restricted in such a very

narrow area, it is difficult to find a connected path between the source and the destination

node. In an extreme case that the destination node is static, the expected region of the des-

tination node becomes a point. Therefore, the packet must be forwarded along the straight

line between the source and the destination node. If not all nodes on this line are connected,

the DREAM algorithm will fail. Compared to the blind flooding, the DREAM algorithm

avoids covering the area outside of the expected region of the destination node, therefore

saves a significant amount of power and bandwidth. However, theO(n) communication

complexity of the DREAM algorithm affects its scalability in large networks. As can be

seen in Section 3.3, our newly proposed algorithm eliminates a lot of redundancy of the

DREAM algorithm while achieving comparable performance by flooding packets in each
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limited sub-area.

3.1.2 Greedy Packet Forwarding Algorithms

A group of more efficient algorithms aregreedy packet forwardingalgorithms [39, 40,

41, 31]. In a greedy packet forwarding algorithm, there is only one routing path between

the source node and the destination node, if it exists. Any node that is not contained in the

routing path will not participate in forwarding packets. When a packet was forwarded to

a node in a routing path att1, it can find the next-hop node among its one-hop neighbors

by using some strategies, for example,Most Forward Within R(MFR) [39], Nearest with

Forward Progress(NFP) [40] andCompass Routing[41]. However, based on the above

forwarding strategies, sometimes the greedy packet forwarding algorithm may fail if the

current node cannot find the next-hop node in the forwarding direction to the destination

node among its neighbors. For instance, in the MFR protocol, if the sender cannot find

a node that is closer to the destination node than itself within its transmission range, it

will fail. To solve this problem, researchers have proposed some recovery mechanisms,

such as the perimeter routing strategy of theGreedy Perimeter Stateless Routing protocol

(GPSR) [31]. In these algorithms, a packet will be transferred into the recovery mode,

when it fails to find a “better” node than itself. Because the communication complexity

of forwarding a packet from one node to the other is a linear function of their distance,

the communication complexity of the greedy packet forwarding isO(
√

n). It should be

pointed out that all algorithms discussed above assume the location information is always

accurate. However, since the location information is usually updated periodically, all rout-

ing decisions have to be based on the most recent updated location information rather than

the current location information. When one node wants to forward a packet to the other
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node, it thought the other node is still within its transmission range based on the old loca-

tion information. But the other node may move too far away to be reached after the last

location information update. Due to the out-of-date location information and the motion

of nodes between two consecutive location information updates, even robust single-path

algorithms, such as GPSR [31], may fail to forward the packet successfully. Thus, we say

that greedy packet forwarding algorithms are more sensitive to the motion of nodes than

flooding-based algorithm. As can be seen from the analysis in Section 3.2 and the simula-

tion results in Section 3.4, a single routing path has higher failure probability when nodes

move intensively. Thus, greedy packet forwarding algorithms are only suitable to static or

low mobility ad hoc networks.

Some researchers try to add some redundancy to enhance the greedy forwarding algo-

rithm. The approach is calledmulti-path routing algorithm[32], in which the source sends

several copies of each packet through several separate paths at the same time. The multi-

path forwarding algorithm can perform much better than the single path algorithm. The

successful packet delivery probability of a multi-path forwarding algorithmPmul = ∑k Pk,

wherek is the number of multiple paths andPk is the successful packet delivery probability

of thekth path. The equation above can be satisfied only when any two of paths have no

dependence. For example, in the case that two paths overlap in some nodes, if any over-

lapping node dies or moves away, both paths will fail. In order to minimize dependence

between any two paths, the source may need to acquire accurate information of the global

node distribution to decide several independent paths, whereas single path algorithm only

needs the location information of nearby nodes. The overhead of exchanging the global in-

formation leads to the tremendous energy and time consumption in large ad hoc networks.

As can be seen in section 3.3, our new algorithm is a kind of “local” algorithm like single
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path algorithm and improve the performance of the single path algorithm by flooding pack-

ets to the nearby area of each forwarding node in the single routing path instead forwarding

packets in an arbitrary direction.

3.2 Path Connectivity Analysis for Greedy Packet Forward-

ing Algorithms

Before we present our new algorithm, in this section we first analyze the error proba-

bility of a routing path caused by the outdated location information. Consider ann-node

ad hoc network, where all nodes are located in a two dimensional square and have the

same transmission radiusR. Each node is able to communicate with its neighbors at most

R units away from it. In most position-based routing algorithms, each node broadcasts

control packets to update its location information maintained by other nodes in every short

periodT. The motion trace of a node is recorded by a series of discrete positions which

are updated periodically. Since all forwarding decisions are made at these discrete points,

it is not necessary to acquire the actual motion curve between any two adjacent points.

Moreover, during each short period between two consecutive location information updates,

it is very likely for nodes to keep the same direction and the same speed or only change

them slightly. For an easy analysis, we assume that each node keeps the same speed and

motion direction between two consecutive location information updates. During each lo-

cation update period, the speed and the motion direction of each node are given randomly

according to the uniform distribution in(0,Vmax) and(0,2π), respectively, whereVmax is

the maximum speed of the node. Thus the motion curve of a node can be described by a

chain-like curve instead of its actual curve. Also, since the signal transmission time and
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the computing time of each node has little impact on the performance and the cost of the

algorithm compared to the location information update period, we simplify the theoretical

analysis and simulations by ignoring these short times.

In an ad hoc network, a routing decision is made based on the most recently updated

location information. However, all mobile nodes move from time to time, and as a result,

two connected nodes may become disconnected after a short while. There is no guarantee

that the packet coming at timet1 still can pass through the routing path based on the location

information at timet0 (wheret0+T > t1 > t0). We define the probability that two connected

nodes become disconnected after∆t asq, where∆t = t1− t0. Assume that there are a total

of m hops from the source node to the destination node and the connection status of any

two nodes is independent. Then the probability that a routing path determined at timet0 is

still connected at timet1, Ppath, can be calculated by

Ppath = (1−q)m (3.1)

In the following, we calculate the probabilityq that two connected nodes become discon-

nected after∆t. Figure 3.2(a) gives two connected nodesN1 andN2 which have absolute

velocities
−→
V1 and

−→
V2, respectively. Letφ1 andφ2 be the motion directions of nodesN1 and

N2, respectively. To see the upper bound of the error probability, we assume a worst case

that both nodeN1 and nodeN2 move at the maximum speed, that is,|−→V1| = |−→V2| = Vmax.

Without loss of generality, we choose nodeN1 as the motion reference object andφ1 = 0.

In this relative motion system, as shown is Figure 3.2(c), nodeN1 becomes the origin of the

polar coordinate, and nodeN2 is located at(r,θ), where(r,θ) is the position of nodeN2 in

the polar coordinate. As shown in Figure 3.2(b), now nodeN1 has velocity
−→
V ′

1 = 0 and node

N2 has velocity
−→
V ′

2 = (−→V2−−→V1), where the motion direction of
−→
V ′

2, φ′2 = 6 −→V ′
2 = φ2−φ1+π

2 =
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φ2+π
2 . We assume thatφ1 andφ2 can take any direction within 0 to2π with the same prob-

ability. Thus,φ′2 is uniformly distributed in(π
2, 3π

2 ), and the probability mass function of

φ′2, f (φ′2) = 1
π . In Figure 3.2(c),S is defined as the distance from point(r,θ) to the edge

of the circle in the direction ofφ′2, whereS=
√

R2− r2sin2(φ′2−θ)− r cos(φ′2−θ). When

θ = φ′2, S reaches its minimum value,Smin = (R− r). In the relative motion system, if the

distance of nodeN2 moving in the direction ofφ′2 duringt0 andt1 is longer thanS, that is,

when

|−→V ′
2|(t1− t0) > S (3.2)

nodeN2 will move out of the transmission range of nodeN1. Thus, the probability that the

link between nodesN1 andN2 becomes disconnected att1,

q = Pr{|
−→
V ′

2|(t1− t0) > S} (3.3)

Denoting|−→V ′
2|(t1− t0) in (3.3) asC, we have

q = Pr{C > S} ≤ Pr{C > Smin}

≤ Pr{C > R− r}= Pr{r > R−C}

=
∫ 3π

2

π
2

∫ 2π

0

∫ R

R−C
f (r,θ,φ′2)drdθdφ′2 (3.4)

We assume mobile nodes are distributed uniformly in the transmission range of node

N1 and the relative motion direction of a node does not depend on its location. Thus,

f (r,θ,φ′2) = f (r,θ) f (φ′2) =
r

π2R2 (3.5)
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Figure 3.2: The motion models of two nodes. (a) Absolute motion model. (b) Velocity
composition. (c) Relative motion model.

Plugging (3.5) into (3.4), we obtain

q ≤
∫ 3π

2

π
2

∫ 2π

0

∫ R

R−C

r
π2R2drdθdφ′2

≤ 1
2π2R2

∫ 3π
2

π
2

∫ 2π

0
2RC−C2dθdφ′2

≤ 1
2π2R2

∫ 3π
2

π
2

∫ 2π

0
2RCdθdφ′2

≤ 2C
R

(3.6)

ReplacingC = |−→V ′
2|(t1− t0) in (3.6), we have

q ≤ 2|−→V ′
2|(t1− t0)

R

≤ 2(|−→V1|+ |−→V2|)× (t1− t0)
R

≤ 4Vmax×T
R

(3.7)

WhereT is the location information update period andVmax is the maximum speed of a
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node. WhenVmax·T ¿R, q→ 0 andPpath= (1−q)m→ 1. This means that the routing path

based on the location information att0 is still connected att1 with probabilityPpath→ 1.

On the other hand, when4Vmax×T
R increases, the single routing path between the source node

and the destination node becomes increasingly instable. A possible solution to this problem

is that after sending a packet to its next-hop node, each node keeps a copy of the packet in

the memory until it receives an acknowledgment from the next-hop node. If the next-hop

node moves out of the transmission range of the current node, it cannot receive the packet

and reply to the current node. If the current node does not receive the acknowledgment

within a certain amount of time, it will wait for the next location information update and

then look for a new next-hop node based on the new location information. After the current

node makes a new forwarding decision, it will re-forward the packet to the new next-hop

node. Although this approach can reduce the error probability of a greedy forwarding al-

gorithm, these handshaking messages introduce extra traffic burden to a resource-limited

network. Moreover, waiting for the new location information update delays the transmis-

sion of packets.

3.3 Single Path Flooding Chain Routing Algorithm

As discussed earlier, flooding-based algorithms are more robust than single-path-based

routing algorithms. However, they usually haveO(n) communication complexity for an

n-node ad hoc network, which makes the consumption of energy and bandwidth heavily

depend on the number of nodes and affects the scalability of the network. In this section,

we propose a new routing algorithm that compromises between flooding-based algorithms

and greedy forwarding algorithms. While keeping the low communication complexity, the

new algorithm enhances the robustness of single-path-based routing algorithms by flooding
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the packet only within a limited area near two adjacent nodes in a single routing path.

3.3.1 Sub-area Flooding

A packet forwarding decision is usually based on the location information updated

earlier than the current time. Thus the next-hop node may move out of the transmission

range of the current node and cannot receive the packet. If each node in the single routing

path floods the packet within a limited area rather than forwards the packet in an arbitrary

direction, it is highly possible for the packet to re-capture the “escaped” next-hop node in

constant steps with the help ofrelay nodes. Note that the communication complexity of this

approach isO(
√

n), since the flooding only occurs in the nearby nodes of each forwarding

node.

Figure 3.3(a) shows a single routing path along nodes1→ 2→ 3→ 4→ 5→ 6→ 7,

which is determined by the location information updated att0. However, when a packet

needs to pass through this path from node 1 to node 7 att1, the routing path may become

disconnected because of the movement of nodes duringt0 andt1. For example, in Figure

3.3(b), node 5 moves out of the transmission range of node 4 att1. The link between

node 4 and node 5 becomes disconnected. As a result, the packet can no longer reach the

destination node 7 along this path.

In Table 3.1, we give a new position-based algorithm, calledsingle-path flooding chain

algorithm. Instead of forwarding the packet along a single path, we can choose the “limited

flooding area” for each forwarding node in the single path to flood the packet. At the

current timet1, just like the single path routing algorithms, the current forwarding node

decides the next-hop node in the single routing path based on the location information

updated att0. And then it calculates the expected region of its next-hop node, which is the
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t

Figure 3.3: Examples of greedy packet forwarding and single-path flooding chain algo-
rithms.

circle around the location of the next-hop node att0 with the radius ofr = Vmax(t1− t0).

Figure 3.3(b) shows the expected region of forwarding nodes1,2,3,4,5,6 and7. Each

sender in the single routing path tries to cover the expected region of the next-hop node by

simply flooding the packet to the nodes within two tangent lines of the expected region of

the next-hop node. In Figure 3.3(d), node 4 can re-capture node 5 through the relay of node

4′.
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Table 3.1: Single path flooding chain algorithm

Algorithm : Single Path Flooding Chain
for each packet starts from the source node att1

current node := source node;
while current node6= destination node

current node finds the next-hop node based on the location information updated att0;
current node calculates the expected region of the next-hop node;
current node floods the packet to cover the expected region of the next-hop node;
current node := next-hop node;

end while;
end for
End

3.3.2 Communication Complexity

In this subsection, we analyze the communication complexity of the proposed single

path flooding chain algorithm. Intuitively, the higher density of an ad hoc network, the more

connectivity of the network. Simulation results in [42] showed that six to eight neighbors

can make a small size network connected with high probability. Thus in a high density

network where each node has more than eight neighbors, routing algorithms may not have

a great impact on the performance. Therefore, in order to make a fair comparison on the

performance and the complexity of the routing algorithms, we assume that the network has

a general density, in which each node has a small constant number of neighbors within its

transmission range in average.

In the single path flooding chain algorithm, the packets flooded by a node will cover an

area to reach the next-hop node. We call this areaCovered Area. The covered area has two

possible shapes. As shown in Figure 3.4(a), when the distanced between the current and

the next-hop node is less than the radiusr of the expected region (wherer = Vmax(t1− t0)),
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Figure 3.4: Covered area of the next hop node. (a)d < r. (b) d > r.

the covered area is bounded by two tangent lines and the arc between two tangent points,

which includes the center of the circle. Figure 3.4(b) is the other case, which shows that

whend is longer thanr, the covered area is a circle centered at the position of the next-hop

node. In both cases,d is less thanR, because two adjacent nodes in the single routing

path must be in the transmission ranges of each other.r is in fact a measure for the node

mobility during the short period between two location information updates. Few existing

position-based routing algorithms can perform well in a network with a very high mobility

(r >> R) except some algorithms which use the flooding strategy, such as the DREAM

and the single path flooding chain algorithms. As will be seen in Section 3.4, the greedy

packet forwarding algorithm starts to have very poor performance afterr
R > 0.5. In fact,

whenr is much larger thanRand is similar to the network diameter, the expected region of

a node in the DREAM or the single path flooding chain algorithm may cover most nodes

in the network. In this case, there is little difference among the DREAM, the single path

flooding chain and the blinding flooding algorithms in communication complexity. In order
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to compare three position-based routing algorithms in a network with a general mobility, we

assume that the radiusr of the expected region is at most a constant times the transmission

radiusR. Thus, bothr andd can be expressed as a constant timesR. Since the size of the

covered area is a quadratic function ofr andd, it can be represented as(k·R2), wherek is a

constant. For given density of nodes, sayρ, each covered area contains a constant number

of nodes, which equalsk ·ρ ·R2.

In the algorithm, before the current node floods a packet to the next-hop node, it puts the

maximum speed and the location information of the next-hop node into the packet header.

When a node receives the packet, it calculates the covered area based on the information

in the packet header and its own location, and then checks if it is in the covered area with

respect to the packet. If yes, it will act as a “relay node” and floods this packet to its one-hop

neighbors in the covered area. Otherwise, the packet will not be forwarded to other nodes.

This strategy guarantees that only a constant number of nodes contained in each covered

area participate in relaying packets between two adjacent forwarding nodes in a single path.

Thus, the complexity of the newly proposed single-path flooding chain algorithm is only a

constant factor higher than that of a single-path-based routing algorithm and is stillO(
√

n).

3.4 Simulation Results

We have simulated the greedy packet forwarding, DREAM and the single-path flooding

chain algorithms and compare their performance and complexities. In the simulations, we

use the same node motion model as discussed in Section 3.2.n nodes are placed randomly

in a 1×1km2 square. Each node has the same transmission rangeR= 100m. Each time

the location information is updated, the speed and the direction of each node will change

according to the uniform distribution in(0,Vmax) and(0,2π), respectively, whereVmax is
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the maximum speed of the node. In both greedy forwarding algorithm and single-path

flooding chain algorithm, without loss of generality, MFR [39] strategy is used to decide

the next-hop node in the single routing path. In order to analyze the effect of the node

mobility, we introduce a metricβ = Vmax∆t
R to measure the mobility of a mobile node, where

∆t is the time between the packet arrival and the last location information update, andR

is the transmission radius of the node. We first consider the effect of the node mobility to

thesuccessful packet delivery ratio, which represents the probability that a packet is sent

successfully from a source node to a destination node. We also compare the communication

complexities of the algorithms by varying the network size.

3.4.1 Successful Packet Delivery Ratio

In this scenario, we compare the successful packet delivery ratios of three algorithms

in a network with 400 mobile nodes by rangingβ from 0 to 1. For eachβ, we generate 100

unicast packets between randomly chosen source-destination pairs. Figure 3.5 shows the

relationship between the successful packet delivery ratioPd and the node mobility metric

β. Three curves correspond to the greedy packet forwarding, DREAM and single-path

flooding chain algorithms, respectively. As shown in Figure 3.5, when nodes have very low

mobility (β < 0.1), thePd of the greedy packet forwarding algorithm is greater than50%.

Since the radius of the expected region is proportional toVmax∆t in the DREAM algorithm,

whenβ < 0.1, thePd of the DREAM algorithm is less than50%. Whenβ increases, thePd

of the greedy packet forwarding algorithm becomes too low to be acceptable. On the other

hand, the successful packet delivery ratio of the DREAM algorithm ascends asβ increases

and exceeds the single-path flooding chain algorithm slightly when the network has high

mobility (β > 0.6). We can see that unlike other two algorithms, the single-path flooding
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Figure 3.5: The successful packet delivery ratio between a randomly chosen source-
destination pair.

chain algorithm is not sensitive to the change of the node’s speed and can keep a stable high

successful packet delivery ratio (Pd > 75%) in both low mobility and high mobility ad hoc

networks.

3.4.2 Communication Complexity

From Figure 3.5, we observe that the DREAM algorithm has slightly better successful

packet delivery ratio than the single-path flooding chain algorithm when nodes have high

mobilities (β > 0.6). We now compare the communication complexity to see the tradeoff

between the DREAM algorithm and the single-path flooding chain algorithm. We analyze

the communication complexity by varying the network size from 100 nodes to 1000 nodes,

for β = 0.6,0,7,0.8 and0.9, respectively. We can see from Figure 3.6 that the successful

packet delivery ratios of three algorithms all have an increasing trend when the network

size increases from 100 to 1000. In general, the higher network density is, the more con-

nectivity of the network has. However, we notice that the difference in the communication
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complexity between the DREAM algorithm and the single-path flooding chain algorithm

becomes larger as the network size increases. Besides the network size, the mobility of the

nodes also affects the communication complexity. The faster the node’s speed is, the larger

the expected region and the higher communication complexity. From Figure 3.6, we also

observe that the DREAM algorithm has higher communication complexity than the single-

path flooding chain algorithm whenβ = 0.9 than that ofβ = 0.6,0,7 and0,8. Thus, the

single-path flooding chain algorithm is more scalable than the DREAM algorithm for large

size and high mobility ad hoc networks and always has a better successful packet delivery

ratio than the greedy packet forwarding algorithm.

3.5 Conclusions

In this chapter, we have presented a new position-based routing algorithm called single-

path flooding chain algorithm for mobile ad hoc networks. Compared to flooding-based

routing algorithms withO(n) communication complexity, the newly proposed algorithm

reduces the communication complexity toO(
√

n), which is as low as the greedy packet

forwarding algorithm. The new algorithm can significantly save the bandwidth and power

for resource limited mobile nodes, especially in large networks. In addition, simulation

results have showed that single-path flooding chain algorithm consistently performs well

for various mobilities and keeps a high successful packet delivery ratio(> 75%), which is

insensitive to the change of node’s motion speed.
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Figure 3.6: Communication complexity whenβ = 0.6,0.7,0.8 and0.9, respectively.
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Chapter 4

Channel Reservation MAC Protocol

In chapter 3, single path flooding chain routing algorithm is designed to provide reli-

able end-to-end communication at network layer for mobile ad-hoc/sensor networks. This

chapter focuses on MAC layer and presents a novel contention-based MAC protocol, called

theChannel Reservation MAC protocol, by introducing a reservation mechanism. As will

be seen, the proposed protocol achieves much better throughput and fairness and shorter

packet delay than the IEEE 802.11 protocol.

The rest of the chapter is organized as follows. In Section 4.1, we review some tech-

nique details of the IEEE 802.11 MAC protocol. Section 4.2 gives a brief overview of the

existing work. In Section 4.3, we present the new Channel Reservation MAC protocol.

Section 4.4 gives theoretical analyses on the saturated throughput of the protocol under the

ideal channel condition. In Section 4.5, we discuss some related practical issues. Section

6.4 contains simulation results, and finally, Section 6.5 concludes the chapter.
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4.1 IEEE 802.11 MAC Protocol

Wireless local area networks (WLANs) have achieved a tremendous amount of growth

in recent years. Advanced signal processing and RF technologies accelerate the develop-

ment and applications of WLANs. IEEE 802.11-based WLANs [43], [44], [45], [46] have

emerged as a prevailing technology for the broadband wireless access in both enterprises

and homes. IEEE 802.11 is a family of standards for medium access control (MAC) and

physical layer (PHY) specifications to provide multiple accesses for a shared channel. The

most popular IEEE 802.11b standard operates on the unlicensed 2.4GHZ radio spectrum

and supports data rate up to11Mbps. On PHY layer, it uses eitherdirect sequence spread

spectrum (DSSS), frequency-hopping spread spectrum (FHSS), or infrared (IR) for modu-

lation. Moreover, the newer IEEE 802.11a and IEEE 802.11g provide higher data rate up to

54Mbps. IEEE 802.11 MAC protocol is designed based on theCarrier Sense Multiple Ac-

cess/Collision Avoidance (CSMA/CA)protocol [43], [45].An IEEE 802.11-based WLAN

can be configured in either an infrastructure mode or an ad-hoc mode. Most WLANs in

small-scale homes or offices are usually deployed in the infrastructure mode and use a cen-

tral controller to allocate the channel resource. On the other hand, the ad-hoc mode can

provide more flexible network access than the infrastructure mode without the central con-

trol due to its peer-to-peer nature. In recent years, the rapid growth of large-scale wireless

sensor networking applications has boosted the development of ad-hoc MAC protocols.

The MAC protocol primarily determines the performance of a WLAN. Although IEEE

802.11 MAC protocol is adequate for the basic connectivity and applications, its perfor-

mance still needs to be improved to meet the rapidly increasing demand for more advanced

broadband technology.

Before we present our new protocol, in this section we first review some technique
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details of IEEE 802.11 MAC protocol. IEEE 802.11 MAC contains two coordination func-

tions, namely,Point Coordination Function (PCF)andDistributed Coordination Function

(DCF) [43], [44], [45], [46] which support the infrastructure configuration and the ad-hoc

configuration, respectively. PCF depends on a central controller to allocate the channel re-

source and provide contention-free services, while DCF is a typical contention-based proto-

col. PCF is built on the top of DCF and performs more efficiently than DCF. However, PCF

requires the presence of a point coordinator and can only be used in the infrastructure con-

figuration. On the other hand, DCF belongs to the class of CSMA/CA protocols. Similar to

other CSMA/CA protocols, DCF protocol provides a mechanism for collision avoidance by

using the carrier sense and the exponential back-off algorithm. In some networks, such as

large scale sensor networks, due to lack of powerful central controllers, contention-based

distributed channel access protocols are more preferred. Next we describe some specific

operations of IEEE 802.11 DCF protocol.

DCF defines two channel access modes: basic mode and RTS/CTS access mode. Both

modes adopt the discrete-time back-off algorithm. Whenever a node has a packet to trans-

mit, it generates a randomback-off counteruniformly from [0,CW−1], whereCW repre-

sents the size of thecontention window. As long as the carrier is sensed idle for a period of

Distributed Inter Frame Space (DIFS), the node begins to decrement its back-off counter
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by one. After that, the back-off counter is reduced by one for each idle slot. If the carrier is

busy, the back-off counter is frozen until the next idle DIFS is sensed. When the back-off

counter is reduced to zero, the node begins the transmission. The minimum and maximum

values ofCW, CWmin andCWmax, are determined by the physics layer characteristics. For

example,CWmin andCWmax are set to 16 and 1024, respectively for FHSS physical layer

in IEEE 802.11b standard. After each successful transmission,CW is reset to its minimum

valueCWmin. After each unsuccessful transmission, the value of the back-off stagem will

be increased by 1 andCW will be doubled until it reaches its maximum valueCWmax, that is,

CW = max{2mCWmin,CWmax}. The difference between the basic mode and the RTS/CTS

mode is that the basic mode follows a 2-way handshaking mechanism. Each successful

transmission of the data frame is confirmed by a positiveacknowledgement (ACK)message

sent by the destination, whereas the RTS/CTS mode uses a 4-way handshaking (RTS-CTS-

DATA-ACK) instead of the 2-way handshaking in the basic mode. As shown in Fig. 4.1,

two short conversation frames,Request to Send (RTS)andClear to Send (CTS), are sent

prior to the transmission of the data frame. When the source node is ready to send a packet,

it sends a RTS message instead of the data frame. The RTS message contains the expected

duration information for the remaining transmission, as shown in Fig. 4.1, which includes

threeShort Inter Frame Space (SIFS)intervals, one CTS message, one data frame and one

ACK message. If no collision occurs, the destination node replies with a CTS message

after a SIFS, which also contains the new expected duration information of the remaining

transmission. Other nodes receiving the RTS and CTS messages update theirNetwork Al-

location Vector (NAV)based on the duration information in RTS and CTS messages. NAV

is maintained by each node to indicate when the channel is available and is updated by RTS

and CTS messages. All other nodes know when the current transmission will complete
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according to the updated NAV and avoid transmitting packets during this period. Since the

length of the RTS/CTS message is usually much shorter than that of the data frame, even

if the collision of several RTS messages occurs, it still can reduce the collision overhead

compared to the collision of long data frames.

It should be pointed out that although the RTS/CTS mode has much merit compared to

the basic mode, its performance is still very sensitive to the number of active nodes in the

network. In recent years, many researchers have attempted to improve the performance of

contention-based MAC protocols in WLANs. We will give a brief overview of the existing

work in the next section.

4.2 Related Work

Bianchi [48] analyzed the saturated throughput by using the Markov chain model and

the study revealed that the saturated throughput of IEEE 802.11 DCF decreases as the

number of nodes increases. In DCF, the contention window (CW) size is an important

parameter to govern the network throughput and energy consumption. When there are

only a few active nodes in the network, a small CW can reduce the average idle time of

the channel and increase the channel utilization. When there are a large number of nodes

that have packets to transmit, the collision probability can be decreased by using a large

CW. In IEEE 802.11 DCF, the CW size is simply doubled for each packet collision. If the

number of active nodes can be obtained, the CW size can be adjusted adaptively. Based

on the analytical results in [48], Bianchi [49] proposed a method to estimate the number

of competing nodes by using the Kalman filter. The dynamic tuning algorithm in [50]

provides a method to tune the contention window to the optimal size dynamically based on
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the estimated number of active nodes. Unlike the IEEE 802.11 DCF protocol, the back-

off counter in this protocol is randomly generated following the geometric distribution,

instead of the exponential distribution. Fast Collision Resolution (FCR) algorithm [51] can

speed up the collision resolution by actively redistributing the back-off counters. It uses a

smaller contention window for the nodes that just complete the transmission successfully

and reduces the back-off counter exponentially when a fixed number of consecutive idle

slots are sensed. A gentle CW adjustment strategy GDCF, proposed in [52], improved the

throughput and fairness of the DCF by decreasing the CW size gently rather than resets it to

CWmin after each successful transmission.DCF+ algorithm [53] improved the throughput

for TCP traffic by combining the TCP ACK and the MAC ACK messages. However, the

improvement of theDCF+ algorithm is only limited to TCP traffic.

Although some of the above algorithms allow nodes to adjust their back-off counters

flexibly rather than run the exponential back-off algorithm passively, the adjustment strat-

egy is still based on the past channel status. Thus, in the standard DCF algorithm or any

of the above adaptive algorithms, when a node reduces its back-off counter to zero and

prepares to transmit a packet, it does not know if other nodes also have packets to send in

the same time slot. If a node can reserve the channel by informing others when it plans

to transmit the next packet before the next transmission, other nodes may avoid colliding

with the packet. Accordingly, the collision can be avoided or reduced. In the infrastruc-

ture mode, the central controller can easily allocates the channel resource without collision.

However, if a network is configured in the ad-hoc mode, the nodes can hardly reserve the

channel without the central control. Furthermore, it is difficult for nodes to exchange the

reservation information without sending extra packets.
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4.3 A New MAC Protocol with Channel Reservation

In this section, we present a novel MAC protocol with channel reservation mechanism,

called Channel Reservation MAC (or CR-MAC for short) protocol. We first propose a

mechanism for exchanging the reservation information by utilizing the overhearing feature

of the shared wireless channel. And then we describe how nodes reserve the channel by

using these control messages.

4.3.1 Exchanging Reservation Information by Utilizing the Overhear-

ing Feature

In a contention-based algorithm, each node needs to overhear all traffic sent by nearby

nodes within its transmission range. Control messages, such as RTS, CTS and ACK mes-

sages specified in IEEE 802.11, are received by all neighbors within the transmission range

of the sender, and then discarded by non-destination nodes. The overhearing feature of the

contention-based algorithms can be used to exchange information between nodes without

introducing too much overhead. For instance, both RTS and CTS messages in IEEE 802.11

contain the remaining duration of the current transmission. Other active nodes update their

NAVs based on the duration in RTS and CTS messages, and they will not try to transmit

packets until the current transmission is completed. Besides the duration of the current

transmission, if each node can inform other nodes more information about the next trans-

mission during the current transmission, other nodes would try to avoid colliding with the

next transmission of the node. A novel idea of our protocol is to include the reservation

information for the next transmission into the control messages of the current transmission

instead of sending an extra control packet. Thus, the reservation information can be heard
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Figure 4.2: RTS, R-RTS, F-RTS and FR-RTS frame formats.

by all nodes within the transmission range of the sender with little extra overhead.

Before we explain the details of our new protocol, we introduce three additional control

messages, termedReservation RTS (R-RTS), Forwarding RTS (F-RTS)andForwarding-

Reservation RTS (FR-RTS)messages, respectively. The frame formats of RTS, R-RTS,

F-RTS and FR-RTS are given in Fig.4.2. As shown in Fig.4.2, R-RTS has the same length

and fields as the basic RTS message, includingFrame Control, Duration, Receiver Address

(RA), Transmitter Address (TA)andFrame Check Sequence (FCS). Besides all the above

fields in the basic RTS, F-RTS and FR-RTS also contain a 6-byte field calledNext Trans-

mitter Address (NTA). Each Frame Control field consists of a 6-bit binary code indicating

the type of the frame, for example, RTS(011011), CTS(011100) and Data(100000). In or-

der to differentiate new messages from the existing ones, we put a different code in the

control field for each new frame type. Since the codes from 010000 to 011001 are reserved

in IEEE 802.11, we can use some of them for the new messages without conflicting with

the existing ones. We choose 010101, 010011 and 011100 for R-RTS, F-RTS and FR-RTS

messages, respectively. Besides these three new messages, all other messages are kept

same as in IEEE 802.11.
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Given the above formats of new control messages, we now see how much extra trans-

mission cost would be needed for exchanging the reservation information. In our new pro-

tocol CR-MAC, the sender may send a basic RTS, R-RTS, F-RTS or FR-RTS message in

different situations, where F-RTS and FR-RTS are 6 bytes longer than RTS and R-RTS. To

see the worst case, we can assume that the sender always begins the transmission with the

F-RTS/FR-RTS message. We assume that the transmission cost per bit for different mes-

sages is the same. Then the ratio of transmission cost of the new protocol to the standard

RTS/CTS mode,TransCostCR−MAC
TransCostRTS/CTS

, can be calculated as follows:

TransCostCR−MAC

TransCostRTS/CTS
=

LData+LRTS∗ +LCTS

LData+LBasic RTS+LCTS
(4.1)

whereLData, LBasic RTS, LRTS∗ and LCTS represent the lengths of the data frame, basic

RTS message, F-RTS/FR-RTS message, and CTS message, respectively. LetLe = LRTS∗−
LBasic RTS. Compared toLdata, Le has only 6 bytes in length and is usually much shorter

thanLdata. We obtain

TransCostCR−MAC

TransCostBasic
=

Le+LData+LBasic RTS+LCTS

LData+LBasic RTS+LCTS
≈ 1 (4.2)

The above equation indicates that the extra transmission cost introduced by the new proto-

col is negligible.

4.3.2 Channel Reservation Algorithm

In this subsection, we describe how each node can reserve the channel by using the

above control messages. Besides new control messages, in the CR-MAC protocol, each

node keeps a reservation waiting list to record the transmission sequence of the nodes
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within its transmission range, which contains a series of IDs or addresses of the nodes. In

addition, we assume that all the packets wait in the transmission queue before the transmis-

sion and are sent following the FIFO queueing discipline. Also, a boolean variable is used

to indicate if there are more than one packets waiting in the transmission queue.

In the CR-MAC protocol, each node in the network works alternatively in two periods:

competing periodand reservation period. Accordingly, all nodes can be classified into

two subsets:competing nodesandsequential transmitting nodes(or simply transmitting

nodes). Each competing node runs the exponential back-off algorithm as in the RTS/CTS

mode.

As will be explained later, the channel cannot keep idle for longer than a SIFS during

the reservation period. Since the back-off counter of each competing node is frozen dur-

ing the reservation period, it can only attempt to transmit a packet during the competing

period. When a competing node obtains the channel and has no more packets waiting in

its transmission queue, it begins the transmission with a basic RTS message and completes

the transmission in the same way as the standard RTS/CTS mode. If there are already

some other packets waiting in its transmission queue before the transmission of the current

packet, the competing node informs other nodes by sending a R-RTS message instead of

a basic RTS, which has a different field from the basic RTS message. Thus, all nearby

nodes that receive the R-RTS message are informed the fact that the current sender still has

packets ready to send. Then, they put the address of the sender to the end of their reser-

vation waiting lists, which are used to store the transmission sequence based on the FIFO

discipline. After a successful transmission with a R-RTS message, the sender has reserved

a transmission slot in the next reservation period and becomes a transmitting node. And

then, the node regenerates its back-off counter uniformly from[0,CWRes−1], instead of the
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range[0,CWmin−1] in the standard RTS/CTS mode, whereCWResdenotes the contention

window of the transmitting node and is usually larger thanCWmin. Each transmitting node

also reduces its back-off counter for each idle slot and attempts to transmit packets when

the back-off counter is reduced to zero. One difference between a transmitting node and a

competing node is that a transmitting node resets its contention window toCWReswhen the

collision occurs, instead of doubling the contention window.

Once a transmitting node obtains the channel successfully, the network enters the reser-

vation period. Before a transmitting node transmits a packet, it checks its reservation wait-

ing list. If the list is not empty, the node puts the address of the first node in its reservation

waiting list into the NTA field of the F-RTS or FR-RTS message and starts the transmis-

sion with the F-RTS or FR-RTS message. All nearby nodes acquire the address of the next

sender from the NTA field of the F-RTS or FR-RTS and hence know which node will be

the next sender. After the transmission, nearby nodes remove the address of the sender

from the top of their waiting lists. During the reservation period, transmitting nodes pass

the “transmission token” from one to another. Since only the node designated by the pre-

vious sender can send its packet, the collision can be avoided. In addition, because there is

only a SIFS between two consecutive transmissions, the channel cannot be sensed idle for

a DIFS(DIFS> SIFS) during the reservation period. Therefore, every node has to freeze

its back-off counter and stops competing with others until the reservation period ends.

Like competing nodes, transmitting nodes can also reserve the channel by sending a

FR-RTS message. If a transmitting node has more than one packets to send when it just

obtains the channel, it sends a FR-RTS message to reserve the channel for the next packet in

the queue. Nearby nodes then update their reservation waiting lists by putting the address

of the current sender to the end of their waiting lists, which is obtained from the TA field
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Figure 4.3: Transitions between competing nodes and transmitting nodes:α1 and α4 :
Transmission queue of the current sender is empty;α2 andα3 : Transmission queue of the
current sender is non-empty.

of FR-RTS. Also, the NTA field of the FR-RTS message indicates the address of the next

sender. If the sender has no other packets in the queue except the current packet, the sender

sends a F-RTS message to forward the transmission token to the next sender. Both F-RTS

and FR-RTS messages contain the NTA field indicating the next sender. FR-RTS informs

other nodes to update their waiting lists, while the F-RTS does not have this function. In

the second case, since the sender does not reserve the channel for the next transmission, it

will become the competing node after the transmission. Fig.4.3 describes the transitions

between competing nodes and transmitting nodes.

There are two cases where the reservation period would end and the network would

return to the competing period. One case is that the waiting list of the current sender is

empty. That means there are no other transmitting nodes within its transmission range.

Then the sender cannot pass the transmission token to another nearby transmitting node.

The other case is that when a transmitting node has been designated twice as the next sender

during a reservation period, it will give up the transmission and keep idle for a DIFS. After

the channel is sensed idle for a DIFS, the network returns to the competing period, and all

active nodes begin to reduce their back-off counters to compete for the channel.

The timing diagram of the protocol is depicted in Fig.4.4. Fig.4.4(a) describes two
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consecutive transmissions during a reservation period. At the beginning of the first trans-

mission, a F-RTS/FR-RTS message is sent by the first sender, which includes the duration

of the remaining transmission and the address of the next sender. The destination node

replies with a CTS message after receiving the F-RTS/FR-RTS message correctly. All

other nearby nodes update their NAVs based on the duration information in the F-RTS/FR-

RTS and CTS messages. Then a data frame is sent by the first sender, and confirmed by

a ACK message. During the reservation period, since the next sender has been designated

by the previous sender, the next sender only needs to wait for a SIFS to begin the second

transmission after the ACK of the first transmission ends. Thus, no node can activate its

back-off counter during the reservation period. Fig.4.4(b) shows the process that the net-

work changes from a reservation period to a competing period. We can see that, similar

to Fig.4.4(a), Fig.4.4(b) also contains two complete transmissions. The first one is the last

transmission in a reservation period, while the second one is the first transmission of the

following competing period. After the ACK message of the last transmission in the reser-

vation period is over, no transmitting node would use the channel and the channel keeps

idle for at least a DIFS. Then, all active nodes unfreeze their back-off counters and compete

with each other by running the back-off algorithm. In conclusion, during the reservation

period, the time interval between any two consecutive frames is SIFS, thus, competing

nodes cannot reduce their back-off counters. On the other hand, during the competing pe-

riod, the time interval between two consecutive transmissions must be longer than a DIFS,

and the back-off counters of active nodes can be unfrozen after each transmission. Fig.4.5

summaries the transitions between competing periods and reservation periods.

Intuitively, in the CR-MAC protocol, higher throughput can be obtained when the net-

work is in the reservation period than in the competing period, since one transmitting node
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can send the packet after another in a collision-free manner. However, a potential problem

with the CR-MAC protocol is that transmitting nodes may be favored more than competing

nodes. As fairness is another important metric to evaluate MAC protocols in addition to

throughput, to address this issue, we forcibly let the reservation period end when a trans-

mitting node obtains the second chance to transmit during the same reservation period.

Next, we explain in more detail on how the CR-MAC protocol balances the transmission

chances between competing nodes and transmitting nodes.

4.3.3 Improving the Fairness of the CR-MAC Protocol

In a WLAN, all nodes should have almost the same chance to access the channel. In the

ideal situation, as described above, one transmitting node can send packets after another in

a collision-free manner. On the other hand, each competing node has to reduce its back-off

counter before the transmission attempt and may encounter collision during the transmis-

sion. Furthermore, every competing node competes for itself, while all transmitting nodes

can transmit without any collision once any of them obtains the channel. Apparently, com-

peting nodes have less chance to obtain the channel than transmitting nodes in the protocol.
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In order to enhance the fairness of the CR-MAC protocol, we adopt three strategies to

balance the transmission chances between the transmitting nodes and the competing nodes.

The first strategy is that, as discussed above, the transmitting node must give up the

transmission chance, if it obtains the transmission token twice during the same reservation

period. Because only transmitting nodes can obtain the channel during the reservation

period, competing nodes cannot send packets until the reservation period is over. If a node

that always has a non-empty queue obtains the channel, the reservation period will not end

unless it is forced to do so. In order to maintain the fairness among all the nodes, CR-MAC

protocol does not allow any node to send more than one packets during each reservation

period.

The second strategy is that all transmitting nodes will choose a larger initial contention

window than that of competing nodes. In the protocol, the back-off counter of a transmit-

ting node is chosen uniformly from the range[0,CWRes−1], whereCWRes= CWmin×NRes,

CWmin is the initial contention window size of a competing node, andNRes denotes the

length of the waiting list of a transmitting node. WhenNRes= 1, the transmitting node has

the same initial contention window as competing nodes. When there are many transmitting

nodes within the transmission range of the node, it will choose a large contention window.

Since the larger a contention window, the less chance to obtain the channel, we increase

the size of the contention window of transmitting nodes based on the number of transmit-

ting nodes to balance the chances to obtain the channel between transmitting nodes and

competing nodes.

The last strategy is that, at the beginning of each competing period, transmitting nodes

should freeze their back-off counters until a certain number, say,W, of consecutive idle

slots are sensed. The percentage of the idle slots reflects how busy the channel is. When
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W (W > 1) is a fixed constant, in general, the more nodes compete for the channel, the

longer time is needed to obtainW consecutive idle slots. At the beginning of each com-

peting period, no transmitting nodes are allowed to reduce their back-off counters before

W consecutive idle slots are sensed. This strategy can adaptively adjust the duration where

transmitting nodes are not allowed to compete with competing nodes, according to how

busy the channel is. As will be seen in Section 6.4, our simulation results show that these

three strategies can help maintain transmission balance between transmitting nodes and

competing nodes, and the CR-MAC protocol can achieve better throughput and fairness

simultaneously than the standard RTS/CTS protocol.

4.4 Analysis of Throughput under Saturated Traffic

The saturated throughput, which is obtained under the overloaded traffic, is an important

metric to evaluate the performance of MAC protocols. In this section, we analyze the

saturated throughput of the CR-MAC protocol by using two random processes to model

the states of the channel and back-off counter of a given node. Given specific parameters of

the network, we calculate the saturated throughput of the CR-MAC protocol and compare

it with the standard RTS/CTS protocol. In order to simplify the analysis, in this section,

we study the saturated throughput under the ideal channel condition, which assumes that

there is no unexpected packet loss or collision in the network, and only one node can use

the shared channel at the same time.
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4.4.1 Characteristics of CR-MAC Protocol under Saturated Traffic

In order to obtain the saturated throughput, we first study some characteristics of the

CR-MAC protocol under saturated traffic. Under saturated traffic, every node in the net-

work always has packets ready to send, and hence each node will work as a transmitting

node after its first successful transmission. In this section, we assume that all nodes will

become transmitting nodes after the warming-up period and analyze the saturated through-

put in the steady state. The saturated throughput is defined as the payload transmitted per

unit time under saturated traffic. In order to compute the saturated throughput in the steady

state, we need to obtain the average duration of a competing period and a reservation pe-

riod. From the beginning of each competing period, every transmitting node has to freeze

its back-off counter forW consecutive idle slots to maintain the fairness, so the competing

period begins withW idle slots in the steady state. Then every transmitting node starts to

reduce its back-off counter and competes with others. Once a transmitting node obtains the

channel, the network enters the reservation period. During each reservation period, every

node sends exactly one packet. Therefore, each reservation period consists ofN consecu-

tive successful transmissions, whereN is the number of nodes in the network. After that,

the reservation period is forced to cease and the network goes back to the competing period.

The average duration of a successful transmission consists of not only the duration for

transmitting a data frame, but also the duration for transmitting all the control messages

(e.g. RTS, CTS, ACK, etc.) and inter frame spaces (e.g. SIFS and DIFS). From the timing

diagram in Fig.4.4, we can see that every successful transmission except the last one during

each reservation period consists of a FR-RTS/F-RTS, a CTS, a ACK, a data frame and four

SIFSs, where the data frame includes a MAC header, a PHY header and a payload. The

duration of the last successful transmission of each reservation period is slightly different
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from previous ones, and it ends with a DIFS instead of a SIFS to reactivate the back-off

counters of other nodes. LetTS be the average transmission duration of the first(N−1)

successful transmissions, andT
′
S be the average duration of the last successful transmission

in each reservation period.T
′
S andTS can be expressed as follows.





TS = TFR−RTS/F−RTS+TCTS+TACK +4TSIFS+

TMACHeader+TPHYHeader+TPayload

T
′
S = TFR−RTS/F−RTS+TCTS+TACK +3TSIFS+

TMACHeader+TPHYHeader+TPayload+TDIFS

= TS+TDIFS−TSIFS

(4.3)

whereTFR−RTS/F−RTS, TCTS, TACK, TSIFS, TMACHeader, TPHYHeader, TPayload andTDIFS de-

note the durations ofFR−RTS/F−RTS, CTS, ACK, SIFS, MAC Header, PHY Header,

PayloadandDIFS, respectively. Thus, the average duration of the reservation period can

be easily calculated as follows.

DRes= (N−1)TS+T
′
S = N∗TS+TDIFS−TSIFS (4.4)

The average duration of a competing period is more difficult to obtain than that of a reser-

vation period. In the steady state, before any transmitting node obtains the channel, only

collisions and idle slots occur in the competing period. LetTI andTC be the average dura-

tion of an idle slot and a collision, respectively. Clearly,TI equals to the length of a slot.

When a collision occurs, the remaining transmission after the F-RTS/FR-RTS frame is can-

celed. After the channel keeps idle for a DIFS, every node becomes unfrozen. Hence, a

collision contains a DIFS and a F-RTS/FR-RTS, that is,

TC = TF−RTS/FR−RTS+TDIFS (4.5)
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Under saturated traffic, each competing period contains only idle slots and collisions. In

order to obtain the average duration of the competing period, in the following, we use two

random processes to model the states of the channel and the back-off counter of a given

node during the competing period.

4.4.2 Random Process of Channel States

The first random process is used to model the channel state during the remaining com-

peting period afterW consecutive idle slots. The channel must be in one of the three

possible states: idle, collision and successful transmission, which are represented by I, C

and S in abbreviation in the following. The channel changes from one state to another step

by step. In each step, the states I, C and S lastTI , TC andTS, respectively. Let{X1,X2, . . .}
be a sequence of random variables to model the channel states, whereXk represents the

channel state at thekth step andXk ∈ {I ,C,S}, k = 1,2, . . ..

We now derive the state and transition probabilities of this random process. Unlike

the Markov process, the channel state at thekth step depends not only on the state of the

(k−1)th step, but also on all previous(k−1) steps. For example, the channel can be in

I or C state at thekth step if and only if there is no successful transmission at previous

(k− 1) steps, because any successful transmission will cease the competing period. Let

φk denote the event that there is no successful transmission occurs during firstk steps. In

other words,φk = (Xk 6= S,Xk−1 6= S, . . . , X1 6= S). Let Sk, Ck andIk represent the events

that the channel has a successful transmission, a collision, and an idle slot at thekth step,

respectively. LetP(Sk) be the probability that a node sends the first packet successfully

at thekth step, andP(Sk,φk−1) be the joint probability that a node sends the first packet

successfully at thekth step after(k− 1) idle slots or collisions. We can obtainP(Sk) =
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P(Sk,φk−1) and ∑∞
k=1P(Sk,φk−1) = 1, since only idle slots and collisions can occur before

the successful transmission.

Let DC(k) be the average duration of the competing period except firstW consecutive

idle slots, which is under the condition that the first successful transmission occurs at the

kth step. LetLPayloadbe the average length of the payload. The average duration of a reser-

vation periodDRescan be obtained from (4.4). We can calculate the saturated throughput

ρ as the transmitted payload during one competing period and one reservation period as

follows.

ρ =
∞

∑
k=1

P(Sk,φk−1) · N×LPayload

W×TI +DC(k)+DRes

=
∞

∑
k=1

P(Sk|φk−1)P(φk−1) ·

N×LPayload

W×TI +DC(k)+N×TS+TDIFS−TSIFS
(4.6)

Let Di be the duration at theith step(i < k), we have

DC(k) =
k−1

∑
i=1

E(Di |Sk) =
k−1

∑
i=1

E(Di |Sk,φk−1) (4.7)

SinceDi depends only on the channel states of the firsti steps. we obtain

E(Di |Sk,φk−1) = E(Di |φi) (4.8)

Before a successful transmission occurs at thekth step, the channel state at theith step can

be either I or C. We have

E(Di |φi) = P(Ci |φi)Tc +P(Ii |φi)TI
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=
P(Ci ,φi)Tc +P(Ii ,φi)TI

P(φi)

=
P(Ci ,φi−1)Tc +P(Ii ,φi−1)TI

P(Ci ,φi−1)+P(Ii ,φi−1)

=
P(Ci |φi−1)Tc +P(Ii |φi−1)TI

P(Ci |φi−1)+P(Ii |φi−1)
(4.9)

By combining (4.7), (4.8) and (4.9), we obtain

DC(k) =
k−1

∑
i=1

P(Ci |φi−1)Tc +P(Ii |φi−1)TI

P(Ci |φi−1)+P(Ii |φi−1)
(4.10)

By plugging (4.10) into (4.6), we find that the saturated throughputρ only depends on the

probabilitiesP(φk), P(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1), k = 1,2, . . .. In addition,P(φk)

also can be expressed byP(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1) as follows.

P(φk) = P(φk|φk−1)P(φk−1|φk−2) . . .P(φ2|φ1)P(φ1)

= (P(Ck|φk−1)+P(Ik|φk−1))(P(Ck−1|φk−2)

+P(Ik−1|φk−2)) . . .(P(C1)+P(I1)) (4.11)

Therefore, ifP(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1) can be solved, the saturated through-

put ρ can be easily obtained. The conditional probabilitiesP(Ck|φk−1), P(Ik|φk−1) and

P(Sk|φk−1) are determined by the states of back-off counters of nodes. For example, if

more than one nodes reduce their back-off counters at the end of the(k− 1)th step, the

collision must occur at thekth step. If only one node has the zero back-off counter at the

end of the(k−1)th step, it can make a successful transmission at thekth step. Thus, we can

find P(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1) from the states of the back-off counters.
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Figure 4.6: Markov chain model for transmitting nodes.

4.4.3 Random Process of Back-off Counter States

Next, we analyze the random process for the back-off counter of a given node. While

the channel state changes step by step, the state of the back-off counter of a given node

follows the Markov process. At the end of each step in the random process of the channel

state, every node changes its back-off counter based on the channel state of the current step.

For example, an idle slot makes every node reduce its back-off counter by one. Thus, we

can say that the change of the back-off counter state is triggered by the channel state. On

the other hand, the state of the back-off counter also causes the change of the channel state.

For instance, when more than one nodes reduce their back-off counters to zero at the end

of the same slot, a collision must occur in the next slot.

We use the Markov chain in Fig.4.6 to model the back-off counter state of a given node

during the remaining competing period afterW consecutive idle slots. The Markov chain

contains(CWRes+ 1) states, namely,S,0,1, . . . ,(CWRes− 1), respectively. Each of them

represents a state of the back-off counter of a node. States 0 to(CWRes− 1) correspond

to the values of the back-off counter. StateS denotes the state that the node has sent a

packet successfully. Unlike a regular Markov chain, not all transition probabilities of this

Markov chain are constants. Some transition probabilities depend on the channel state of

the current step. LetPs(k) andPc(k) be the conditional probabilities that the channel state

is in statesS andC at thekth step, respectively. We assume that thekth transition of the

back-off counter state occurs at the end of thekth step of the channel state, and is caused
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by the channel state of thekth step. LetPi j (k) be the transition probability of the back-off

counter state at thekth transition from statei to statej, wherei, j = S,0,1, . . ., (CWRes−1).

We have

Pi j (k) =





1, i = S, j = S;

1−Pc(k), i = 0, j = S;

Pc(k)
CWRes

, i = 0, j = 0,1, . . . ,CWRes−1;

Ps(k), i = 1,2, . . . ,CWRes−1, j = S;

1−Ps(k), i = 1,2, . . . ,CWRes−1, j = i−1;

0 others.

(4.12)

The first equation accounts for the case that a node sends a packet successfully at thekth

step. Thus, the competing period ends, and the back-off counter will stay at state S after

that. The second and third equations model the case that a node tries to send a packet at

the kth step. After a successful transmission, the back-off counter goes to stateS, with

the conditional probability1−Pc(k). Otherwise, the node resets it back-off counter by

choosing a number uniformly from 0 to(CWRes−1) again. In the fourth equation, whenever

any other node in the network completes a successful transmission, the node will no longer

reduce its back-off counter, and transfer to stateS. Finally, the fifth equation accounts for

the case that the back-off counter is reduced by one unless a successful transmission occurs

at thekth step. From above transition probabilities, we can construct the transition matrix

Ptrans(k) by plugging everyPi j (k) into its corresponding entry ofPtrans(k).

In addition to the transition probabilities, we also need to know the state probabilities of

the back-off counter to solveP(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1). Let−→µ (k) be the state

probability vector of the back-off counter at thekth step. Since a node chooses its back-off

counter uniformly from 0 to(CRRes− 1) at the beginning of each competing period, the
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initial state probability vector

−→µ (1) = (0,1/CWRes,1/CWRes, . . . ,1/CWRes)
T (4.13)

From the transition probabilities in (4.12) and the initial state probabilities in (4.13), we

obtain

−→µ (k) = (µS(k),µ0(k),µ1(k), . . . ,µCWRes−1(k))T

= −→µ (1)×
k−1

∏
i=1

Ptrans(i) (4.14)

whereµi(k), i = S,0,1, . . . ,CWRes−1, represents the probability that the back-off counter

stays at statei at thekth step. Letτ(k) denote the conditional probability that a node tries to

transmit a packet at thekth step, under the condition that no successful transmission occurs

before thekth step. We have

τ(k) =
µ0(k)

1−µS(k)
(4.15)

The conditional probabilitiesPC(k) andPS(k) can be expressed byτ(k). When a given

node tries to send a packet at thekth step, if all otherN−1 nodes have non-zero back-off

counters, the packet can be transmitted successfully. If some of remaining nodes also try

to send the packets at thekth step, the collision will occur. Thus,





PS(k) = (1− τ(k))N−1

PC(k) = 1− (1− τ(k))N−1
(4.16)
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From (4.12) to (4.16), we can solve the state probability vector−→µ (k) and conditional

packet transmission probabilityτ(k) recursively for anyk > 0. Moreover, we can derive

P(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1) from τ(k). We have





P(Ik|φk−1) = (1− τ(k))N

P(Sk|φk−1) = Nτ(k)(1− τ(k))N−1

P(Ck|φk−1) = 1−P(Ik|φk−1)−P(Sk|φk−1)

(4.17)

Though the values ofP(Ck|φk−1), P(Ik|φk−1) andP(Sk|φk−1) for anyk > 0 can be calcu-

lated from (4.12) to (4.17), it is still difficult to give a neat expression ofρ by plugging them

into (4.6) and (4.10). Furthermore, becauseρ is obtained by calculating the summation of

the function ofk in (4.6), whenk ranges from 1 to∞, it is impractical to get precise value

for ρ by repeating the addition operation for infinite iterations. Therefore, we will find the

approximate value ofρ in the next subsection.

4.4.4 Numerical Analysis of Saturated Throughput

In order to calculate the approximate value of the saturated throughputρ, we repeat

the addition operations in (4.6) for a sufficiently large number,M, times instead of infinite

times. That is,

ρ =
M

∑
k=1

P(Sk|φk−1)P(φk−1) ·

N×LPayload

W×TI +DC(k)+N×TS+TDIFS−TSIFS
(4.18)
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Table 4.1: System parameters used for numerical analyses and simulations
Average Packet Payload 8184 bits

MAC Header 272 bits
PHY Header 128 bits

F-RTS and FR-RTS 208 bits + PHY Header
Basic RTS and R-RTS 160 bits + PHY Header

CTS 112 bits + PHY Header
ACK 112 bits + PHY Header
SIFS 28µs
DIFS 128µs

Slot Length 50µs
Transmission Rate(R) 1Mbps

CWmin 16
CWmax 1024

W 4

Table 4.1 illustrates the frame-related parameters and overhead used in the following

numerical analyses and simulations. Recall thatW is a small integer and transmitting nodes

cannot reduce their back-off counters untilW consecutive idle slots are sensed from the

beginning of each competing period. Here we chooseW = 4. As discussed above, the

length of F-RTS/FR-RTS in Table 4.1 is 6 bytes longer than that of RTS/R-RTS. In order

to compare the performance with the results in [48], we use the same average length of the

payload as in [48], which is represented byLPayload and computed by the product of the

average duration of the payloadTPayloadand the transmission rateR. All other parameters in

Table 4.1 are the same as the specification of IEEE 802.11b FHSS [43], [44]. By plugging

these parameters into (4.3) and (4.5), we obtain the values ofTS andTC. For a given number

of nodes, we can calculateτ(k), PS(k), PC(k), Ptrans(k), P(Ik|φk−1),P(Sk|φk−1),P(Ck|φk−1)

and P(φk|φk−1) for 1 ≤ k ≤ M, recursively, from (4.12) to (4.17). Finally, from above

numerical results for eachk, 1≤ k≤ M, the approximate value ofρ can be obtained by

repeating the addition operation in (4.18) forM times.
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In addition, we derive the upper bounds of saturated throughput for both RTS/CTS

and CR-MAC. The theoretical upper bound of the saturated throughput can be obtained,

if and only if all transmissions are completed one by one without collisions and extra idle

slots. Thus, the upper bound of the saturated throughput for RTS/CTS and CR-MAC can

be expressed bŷρRTS/CTSandρ̂CR−MAC as follows.

ρ̂RTS/CTS=
TPayload×R

TRTS/CTS
S

= 855.7(kbps) (4.19)

ρ̂CR−MAC =
N×TPayload×R

N×TS+TDIFS−TSIFS+W×TI
(4.20)

whereTRTS/CTS
S equals to the average duration of each successful transmission in the

RTS/CTS protocol and can be represented as

TRTS/CTS
S = TRTS+TCTS+TACK +3TSIFS+TDIFS+

TMACHeader+TPHYHeader+TPayload (4.21)

We chooseM = 80,100and200and calculate the approximate saturated throughput for

each case, when the number of nodesN ranges from 1 to 60. We plot three approxi-

mate curves of the saturated throughput forM = 80,100and200in Fig. 4.7. In addition,

based on the theoretical analysis in [48], we calculate the numerical results of the saturated

throughput of the RTS/CTS protocol by using the same parameters in Table 4.1, and also

plot the curve in Fig. 4.7. Finally, we plot the upper bounds for RTS/CTS and CR-MAC in

Fig. 4.7 by evaluating equations (4.19) and (4.20).

From Fig.4.7, we have following observations. First, the largerM is, the better approx-

imate saturated throughput can be obtained. We can see that there is very little difference
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Figure 4.7: Numerical results of saturated throughput.

between the curves forM = 100andM = 200. Second, the CR-MAC protocol (M = 200)

achieves better saturated throughput than RTS/CTS whenN ≥ 3 and even exceeds the up-

per bound of RTS/CTS whenN ≥ 18. Finally, we can see that the saturated throughput

of the CR-MAC protocol increases slightly, while the saturated throughput of RTS/CTS

drops sharply, as the number of nodes increases from 1 to 60, due to more collisions after

it reaches its maximum value.

4.5 Discussions on Some Practical Issues

4.5.1 Throughput under Unsaturated Traffic

We have shown that the CR-MAC protocol achieves better saturated throughput under

the ideal channel condition than the RTS/CTS protocol. However, can the CR-MAC proto-

col still perform better than the RTS/CTS protocol under more realistic unsaturated traffic?

In the following, we analyze the throughput of the CR-MAC protocol in this scenario.

In the CR-MAC, since transmitting nodes transmit packets without collision during the
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Figure 4.8: ON/OFF traffic model.

reservation period, intuitively, the higher percentage of transmitting nodes in the network,

the better throughput can be obtained. The percentage of the transmitting nodes depends

on the offered traffic load of every node. For example, if a node always has a non-empty

queue, it will work as a transmitting node after the first successful transmission. On the

contrary, if a node has no other packets waiting in the queue, when it begins to transmit the

current packet, it has to compete with other nodes to transmit the next packet. The heavier

the offered load is, the better chance a node can reserve the channel for the next packet

when it transmits the current packet.

In order to see the effect of the offered load on the throughput of the CR-MAC protocol,

we consider an ON/OFF traffic model shown in Fig. 4.8. The traffic model has two states

ON and OFF. ON state means the node is busy and has packets ready to send, while OFF

state means the node is idle. Assume that an active node wants to transmit a packet at time

slot t. At that time, it has more than one packets waiting in the queue with probabilityp(t)

so that it can keep active after slott. Also, assume that at the end of each idle slot, an idle

node in OFF state produces a packet to send and transfers into ON state with probability

1−q(t). It stays in OFF state with probabilityq(t). Any general traffic, such as TCP and

UDP traffic, can be characterized by the ON/OFF model by choosing a specific transition

probabilitiesp(t) andq(t).

To simplify the analysis and examine the extreme cases, we assume thatp(t) andq(t)

are constantsp andq, which range from 0 to 1. Whenp = 1 andq < 1, all nodes always

have a non-empty queue, and the network works under saturated traffic. Whenp = 0 and
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Figure 4.9: Illustration of the hidden node problem.

1 > q≥ 0, there are no other packets waiting in the queue when a node begins the current

transmission. In this case, no node can reserve the channel for the next transmission. Every

node has to compete with each other to obtain the channel all the time. In this case, the CR-

MAC protocol degrades to the standard RTS/CTS protocol, and has the same performance.

Between these two extreme cases, when1≥ p> 0 and1> q≥ 0, more or fewer nodes will

work as transmitting nodes for some time. As will be seen in Section 6.4, the simulation

results show that CR-MAC protocol provides better throughput and fairness whenp > 0,

and the same performance whenp = 0 compared to the standard RTS/CTS protocol.

4.5.2 Error Handling in Networks with Unexpected Packet Loss and

Collision

As discussed above, the proposed protocol works well under the ideal channel condi-

tion. However, in practice, a wireless channel may not be as stable as the ideal case. Nodes

may face unexpected packet loss and collision. We will show that the CR-MAC protocol

can also work well in these cases.

Based on the assumption of the ideal network, when a transmitting node broadcasts a

RTS message, all nearby nodes within the transmission range of the sender can receive the

RTS message correctly. Unfortunately, the RTS may be lost due to the interference in the

environment. Furthermore, the RTS collision may occur in a multi-hop network due to the
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hidden node problem[54], [55], which is illustrated briefly as follows. As shown in Fig.

4.9, node A and node C stay too far away to hear each other, and they may transmit RTS

messages to node B in the same time slot. Thus, node B cannot receive the RTS messages

correctly from either of them. This is called the hidden node problem. In this case, when

node A and node C cannot receive the CTS message after a SIFS, they know the transmis-

sions has failed. In the CR-MAC protocol, the failure of RTS transmission may occur in

both the competing period and the reservation period. When node A or node C works in

the reservation period, it cannot forward the “transmission token” to the next sender due to

the RTS failure. Then, the node keeps idle for a DIFS and the reservation period transfers

into the competing period. If the RTS failure occurs during the competing period, the node

will reset their contention window and continue to compete for the channel. In the worst

case that no transmitting node can forward the transmission token to the next sender due

to the transmission failure, the network will not enter the reservation period at all, and all

the nodes compete with each other all the time. Thus, in the worst case, CR-MAC protocol

still has similar performance and cost to the standard RTS/CTS protocol.

4.6 Simulation Results

In this section, we present the simulation results of the CR-MAC protocol. In our sim-

ulation, we assume that all nodes uniformly distributed within a50×50m2 2-dimensional

square. A node can communicate with any other nodes within the transmission range of

80m. 95% of packets can be received correctly. The same parameters of the protocol are de-

scribed in Table 4.1. The simulation was run under the ON/OFF traffic model in Fig.4.8 for

various values of(p,q) pairs. We evaluated four important performance metrics, through-

put, fairness, maximum packet delay and mean packet delay of each node. Moreover, all

92



these performance metrics are compared with the standard RTS/CTS protocol under the

same condition. The simulation ran for 100 seconds which contained 20 seconds warming-

up period. All simulation data were collected from 20 seconds to 100 seconds.

4.6.1 Throughput

Fig.4.10(a,b and c) illustrate the throughput of CR-MAC and RTS/CTS protocols for

(p,q) = (1,0),(0.5,0.5) and(0,0), respectively. Whenp= 1, every node always has pack-

ets ready to send, so every node works under saturated traffic. Fig.4.10(a) shows the satu-

rated case when(p,q) = (1,0). We can see that as the number of nodes increases, the satu-

rated throughput of CR-MAC protocol increases slightly, while the throughput of RTS/CTS

drops sharply due to the increase of collisions. In case (b)((p,q) = (0.5,0.5)), a node may

work as a competing node or a transmitting node alternatively. The throughput of CR-

MAC protocol declines a little as the number of nodes increases, since some nodes work

as competing nodes and more collisions occur as the number of nodes increases. How-

ever, all nodes in RTS/CTS are always competing nodes. It is not surprising that RTS/CTS

protocol has more collisions than the CR-MAC protocol, which results in a fast decline of

the throughput. Whenp = 0, no nodes can reserve the channel all the time, because every

node always has an empty queue when it wants to send the current packet. In this case, as

discussed in Section 4.5, the CR-MAC degrades to the RTS/CTS protocol, we can see from

Fig.4.10(c) that they have similar throughput when the number of nodes changes from 1 to

80.
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Figure 4.10: Comparison of throughput under ON/OFF traffic. (a)p = 1,q = 0. (b) p =
0.5,q = 0.5. (c) p = 0,q = 0.
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4.6.2 Fairness

To evaluate the fairness of the CR-MAC protocol, we adopt the fairness index defined

in [56], which is widely accepted and used in [52] [51]. The fairness index is defined as

f (x) =
(∑ρi/ρ′

i)
2

N∑(ρi/ρ′
i)2

(4.22)

whereρi andρ′i represent the throughput and the ideal throughput of nodei, respectively,

andN is the number of nodes in the network. We assume that all nodes has the same ideal

throughput. It is easy to show that0 < f (x)≤ 1 and f (x) = 1 if and only if all nodes have

the same throughputρi . Also, the closer to 1 the fairness index is, the better fairness can be

obtained.

Fig.4.11(a,b and c) shows the fairness index when(p,q) = (1,0),(0.5,0.5) and(0,0),

respectively. Fig.4.11(a) shows the fairness under saturated traffic((p,q) = (1,0)). In CR-

MAC protocol, since all nodes always have packets to send, they all work as transmitting

nodes in the steady state. Thus, every node has equal chance to use the channel and send

exactly one packet during each reservation period. Thus, the fairness index of the CR-MAC

protocol always equals to 1, while the fairness index of the RTS/CTS protocol decreases as

the number of nodes increases. In case (b)((p,q) = (0.5,0.5)),we can see that the fairness

index of the CR-MAC protocol still keeps above 0.95. However, the fairness index curve

of the RTS/CTS protocol decreases fast and drops down to 0.91 when the number of nodes

increases to 80. The third case((p,q) = (0,0)) accounts for the situation that no node can

reserve the channel. In this case the CR-MAC protocol degrades to the RTS/CTS protocol.

In Fig.4.11(c), we observes that CR-MAC and RTS/CTS have almost the same declining

curve as the number of nodes increases. Besides the above three special cases, we also

ran the simulation for various values of(p,q) pairs. We found that the CR-MAC protocol
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Figure 4.11: Comparison of fairness index under ON/OFF traffic. (a)p = 1,q = 0. (b)
p = 0.5,q = 0.5. (c) p = 0,q = 0.

always provides better fairness than the RTS/CTS protocol whenp > 0, and has a similar

declining curve as the RTS/CTS protocol whenp = 0.

4.6.3 Packet Delay

Packet delay is also an important metric to evaluate a MAC protocol. In the simulation,

we compared the maximum and mean packet delay of the CR-MAC and the RTS/CTS pro-

tocols for each node. We looked at three traffic cases((p,q) = (1,1), (p,q) = (0.5,0.5)

and(p,q) = (0,0)). When the network operates under saturated traffic(p = 1), CR-MAC

can obtain shorter packet delay than RTS/CTS, because RTS/CTS causes much more col-

lisions than CR-MAC. Whenp = 0, as discussed above, CR-MAC protocol degrades to

RTS/CTS and has the same packet delay as the RTS/CTS protocol. Therefore, we only
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Table 4.2: The statistic simulation data for the maximum packet delay,E(DMax) and
V(DMax) denote the average and variance of the maximum packet delay.

Node E(DMax)±V(DMax) E(DMax)±V(DMax)
# (CR−MAC) (RTS/CTS)
8 2.7171±1.8148 7.2405±3.1556
16 4.5122±2.4781 11.5075±2.3972
32 8.7888±3.4135 17.0359±4.7697
64 14.6533±4.5074 21.2358±5.0779

Table 4.3: The statistic values for the mean packet delay,E(D) andV(D) denote the average
and variance of the mean packet delay.

Node E(D)±V(D) E(D)±V(D)
# (CR−MAC) (RTS/CTS)
8 0.0604±0.0012 0.0651±0.0029
16 0.1338±0.0050 0.1408±0.0108
32 0.2830±0.0146 0.2936±0.0268
64 0.5851±0.0408 0.6048±0.0658

give the simulation results for the case(p,q) = (0.5,0.5) here. The simulation program

was run for 10 independent iterations when the number of nodesN equals to 8, 16, 32 and

64, respectively. The packet delay is defined as the duration from the time the packet enters

the queue to the time it leaves. For each node, we collected the maximum packet delay

and the mean packet delay during the time from 20 seconds to 100 seconds, and calculated

the average and variance of maximum packet delay and mean packet delay of allN nodes.

The statistic data of the maximum packet delay and mean packet delay are shown in Tables

4.2 and 4.3, whereE(DMax), V(DMax), E(D) andV(D) denote the average values and the

variances of the maximum packet delay and mean packet delay, respectively. All data are

measured in seconds.

From Table 4.2, we can see that the average maximum delay of the RTS/CTS protocol

is nearly twice as that of the CR-MAC protocol. The data in Table 4.3 also reflects that the
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RTS/CTS protocol has sightly longer mean packet delay than CR-MAC protocol. There-

fore, we can conclude that the CR-MAC protocol is more suitable to the delay-sensitive

applications than RTS/CTS, such as real-time voice and video traffic.

4.7 Conclusions

In this chapter, we proposed a new contention-based MAC protocol with channel reser-

vation, called CR-MAC protocol. We showed theoretically and experimentally that the

CR-MAC protocol can achieve much better throughput, fairness, packet delay than IEEE

802.11 RTS/CTS protocol. In particular, under saturated traffic, both the throughput and

the fairness index of the CR-MAC protocol are very close to the theoretical bound, regard-

less of the number of nodes in the network. By utilizing the overhearing feature of the

shared medium, the proposed protocol includes the reservation information into the control

messages, rather than transmit extra control packets. Thus, the proposed protocol does not

incur much extra overhead. Moreover, the simulation results show that CR-MAC protocol

achieves shorter maximum and mean packet delay than the RTS/CTS protocol, thus the

new protocol is more suitable to the delay-sensitive applications.

98



Chapter 5

Clustering and Load Balancing

Algorithms

In chapter 3 and 4, we assume that wireless nodes have very long battery life. Thus,

single path flooding algorithm and channel reservation protocol focus more on performance

and reliability than energy efficiency. In the next two chapters, the proposed approaches

are designed for low speed, low cost applications, in which sensors can only work properly

for a limited time. For such applications, energy efficiency becomes the first concern.

This chapter investigates the problem of positioning mobile cluster heads and balancing

traffic load in a hybrid sensor network, which consists of two types of nodes: basic static

sensor nodes and mobile cluster heads. In such a network, sensor nodes are organized

into clusters and form the lower layer of the network. At the higher layer, cluster heads

collect sensing data from sensors and forward data to outside observers. Such two-layer

hybrid networks are more scalable and energy-efficient than homogeneous sensor networks.

We show that the locations of cluster heads can affect network lifetime significantly. The

problem of maximizing network lifetime through dynamically positioning cluster heads in
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the network (referred to as the CHL problem in this paper) turns out to be NP-hard. We

present a heuristic algorithm for positioning cluster heads and balancing traffic load in the

network.

The rest of the chapter is organized as follows. Section 5.1 provides some background

of the problem studied in this paper and briefly discusses the related work. Section 5.2

gives the description and the formalization of the problem. Section 5.3 presents the new

clustering algorithm. Section 5.4 gives the performance evaluation results. Finally, Section

5.5 concludes the chapter.

5.1 Background and Related Work

In a large scale hierarchical network, sensors are organized into clusters with a cluster

head in each cluster. Cluster heads act not only as a data aggregation point for collecting

sensing data from sensors, but also as a controller/scheduler to make various routing and

scheduling decisions. Such hierarchical clustered sensor networks can be classified into

two categories:homogeneousandheterogeneous. In a homogeneous network, all nodes

have identical capability and energy at the beginning. Some of the nodes are selected to

serve as cluster heads [69, 70, 72, 71]. However, cluster heads will inevitably consume

more energy than other sensor nodes. In order to avoid the problem of cluster heads fail-

ing faster than other nodes, sensor nodes can act as the cluster head rotationally [69]. In

this type of network, since every sensor node may possibly become a cluster head, each

of them has to be “powerful” enough to handle incoming and outgoing traffic and cache

sensing data, which will increase the overall cost of the entire sensor network. Further-

more, selecting cluster heads dynamically also results in high overhead due to the frequent

information exchange among the sensor nodes. On the contrary, a heterogeneous sensor
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network, or a hybrid sensor network, contains a small number of resource-rich specialized

cluster heads along with a large number of resource-limited basic sensor nodes. Basic sen-

sor nodes have limited communication capability and mainly focus on sensing the environ-

ment, while cluster head nodes are equipped with more powerful transceivers and batteries

but simpler sensing modules. The cluster head organizes basic sensor nodes around it into

a cluster, collects sensing data from sensors and forwards data to the outside observer. A

two-layer hybrid sensor network is depicted in Figure 5.1, where large nodes at the higher

layer are cluster heads and small nodes at the lower layer denote the basic sensor nodes.

The advantages of a heterogeneous sensor network are: first, the hierarchical topology is

more scalable than a flat network without hierarchies; second, as the dominant percentage

of the network nodes, the basic sensors can be made very simple and inexpensive, thus the

overall cost of the network can be reduced.

In a heterogeneous sensor network, after deployed in a two-dimensional area, each

cluster head organizes sensor nodes around it into a cluster. The inner-cluster traffic can be

roughly divided into two types based on the direction of the traffic flow: uploading sensing

data from sensors to the cluster head and downloading commands from the cluster head to

sensors. Since the number of cluster heads is much smaller than the number of sensors and

each sensor has a very limited transmission range, the packets sent by a sensor node may

need multi-hop relaying by other sensors to reach the cluster head. On the other hand, since

a cluster head has a more powerful transceiver, every sensor in the cluster can hear from the

cluster head directly. Cluster head can decide the routing path and poll sensors one by one

in a time-slotted manner. Our recent work [99, 98] focused on the inner-cluster multi-hop

polling scheme for a cluster with a static cluster head. In this paper, we consider mobile

resource-rich cluster heads, and will focus on optimally positioning such cluster heads in
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Figure 5.1: A two-layer hybrid sensor network. Large nodes at the higher layer are cluster
heads. Small nodes at the lower layer are basic sensor nodes.

the network to balance traffic load and prolong network lifetime.

The problem studied in this paper is related to two well-known problems: the facility

location problem [76] and the network flow problem [75]. The facility location problem

(FLP) has been extensively studied in the last decade, which can be briefly described as

follows. Given a set of demand nodes, a set of facility nodes and cost functions, the prob-

lem is to optimize some objectives, for example, thek-center problem which minimizes the

maximum distance (cost) between any demand node and the nearest facility, thek-median

problem which minimizes the sum of distances to the nearest facility, and so on. As many

other optimization problems, thek-center andk-median facility location problems are NP-

hard. In the problem we consider in this paper, demand nodes and facilities correspond to

sensor nodes and cluster heads, respectively. However, different from the traditional facil-

ity location problem, we introduce the capacity, or energy limit, to each sensor node, to

find the maximum lifetime of the entire network. The network flow problem is to optimize

the flow between any pair of nodes in a graph according to various objective and constraint
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functions. The network flow problem was first introduced to multi-hop wireless networks

by Chang and Tassiulas [73], and then discussed in other literatures as well, see, for ex-

ample, [74, 99, 98]. In this paper, we will use the network flow as a mathematical tool to

balance the traffic load to maximize network lifetime by applying different constraints.

We consider the applications, such as environment monitoring, where the sensing data

is generally collected at a low rate and sensing data is not very delay-sensitive so that it

can be accumulated into fixed-length data packets and uploaded once a while. For such

applications, we have the following assumptions.ns static sensors andnc mobile cluster

heads are uniformly deployed onto a two-dimensional working area. Due to limited trans-

mission power, sensor nodes can only reach nearby nodes within a limited range. The total

power consumption for transmitting a packet, including processing power consumption,

such as coding/decoding, modulation/demodulation, A/D-D/A, and so on, and radio power

both are assumed to be proportional to the size of the packet. For the sake of simplicity,

we only consider the major energy consumption for communications and ignore those for

sensing and other tasks. Cluster heads can move to anywhere within the working area, and

are equipped with more powerful transceivers and batteries having much longer lifetime

than those of sensor nodes. Sensing modules can be optional for cluster heads. In addition,

cluster heads are connected directly without the relaying of sensor nodes. We assume that

all sensors and cluster heads obtain either their absolute positions from the GPS [33] or rel-

ative positions from other location services [34, 77]. In the area without the GPS system,

we assume that each sensor can estimate the relative location information to nearby nodes

by detecting the relative distance and angle [34, 77].

103



5.2 Problem Description and Formalization

Before describing the problem we are considering, we first give an example to see how

the position of the cluster head affects the network lifetime. Here we define thenetwork

lifetimeas the lifetime of the first failure node in the network. As shown in Figure 5.2(a),

two cluster heads and twenty sensor nodes are randomly deployed in the sensing field. The

network is organized into two spanning trees rooted at two cluster heads respectively. Due

to limited transmission power of sensors, a packet may need multi-hop relays to reach the

cluster head. We can see that in the left cluster, node 1 is a bottleneck node, because it has to

relay the packets from its six child nodes to the cluster head. An even worse situation occurs

in the other cluster: node 2 suffers heavier load than node 1, which has seven children.

Since node 1 and node 2 are bottlenecks in the corresponding clusters, they will consume

energy much faster than other nodes. After they fail, the network becomes disconnected.

Figure 5.2(b) shows the network layout in which two cluster heads are placed at better

positions. Some traffic load forwarded by node 1 and node 2 before is now re-directed via

other nodes with lighter traffic load. As a result, the most unlucky node in Figure 5.2(b) has

only two child nodes. We can see that due to the movement of cluster heads, the traffic load

is balanced and the network lifetime is prolonged significantly. From this simple example,

we observe that, in order to maximize the network lifetime, the maximum load of any

node should be minimized. In addition to load balancing, positions of cluster heads can

also affect the directions of traffic flow, thereby have a significant impact on the network

lifetime. In the following, we will start with the networks with static cluster heads and then

consider the networks with mobile cluster heads.
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Figure 5.2: (a) Initial topology of two clusters. (b) New topology after two cluster heads
move to better locations.
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5.2.1 Load Balancing in Networks with Static Cluster Heads

As discussed above, due to the different amount of traffic each sensor node relays, some

nodes may fail sooner than others. In order to maximize the network lifetime, relaying

paths must be carefully planned to balance traffic load. Load balancing problem in sensor

networks has been investigated in some existing work, such as [73, 74, 99], and can be

formalized into a network flow problem or a linear program under different objectives and

constraints. For a network with static cluster heads, the problem of maximizing network

lifetime can be formalized as the following network flow problem.

A static sensor network can be modeled as a directed graphG(S,C,A), whereS=

{s1,s2, . . . ,sns} is the set of all sensor nodes,C = {c1,c2, . . . ,cnc} is the set of all cluster

heads andA is the set of all directed linksa(i, j) wherei ∈ S, j ∈ S
⋃

C. Given a directed

graphG, its corresponding flow graphG′(S′,C′,Src,Dst,A′) can be constructed as follows:

• For eachsi ∈ S, add two verticess′i ands′′i to S′; an arca(s′i ,s
′′
i ) is added intoA′ with

capacity
Esi−(rsi TPg)

Pr
+ rsi T; for eachc j ∈C, add a vertexc′j to C′;

• For each arca(si ,sj) ∈ A, wheresi ,sj ∈ S , add an arca(s′′i ,s
′
j) into A′ with infinity

capacity;

• For each arca(si ,c j) ∈ A, wheresi ∈ S,c j ∈ C, add an arca(s′′i ,c
′
j) into A′ with

infinity capacity;

• A pair of source and destination nodesSrcandDst are added intoG′; for eachs′i ∈S′,

connectSrcands′i by an arca(Src,s′i) with capacityrsi T;

• For eachc′j ∈C′, connectc′j andDst by an arca(c′j ,Dst) with infinity capacity.
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wherersi andEsi denote the data generating rate and energy limit of nodesi , Pg andPr

represent the power consumption for generating and relaying a unit of traffic, respectively,

andT is the network lifetime. Since the sensing data is sent out periodically, say, every∆T

time. We can setT = ∆T at the beginning and increaseT by ∆T every time. For any given

T, the problem is a regular maximum flow problem and can be solved by Ford-Fulkerson

algorithm in polynomial time. In this construction,rsi T limits the flow fromSrc to si and

represents the flow generated bysi within time T, which consumes(rsi TPg) energy. Due

to the energy constraint of nodesi , the maximum flow that nodesi can relay within timeT

is
Esi−(rsi TPg)

Pr
. Thus, the total flow a nodesi can generate and relay in timeT is limited by

Esi−(rsi TPg)
Pr

+rsi T. When the maximum flow equals∑si∈Srsi T, it means that until timeT, all

generated traffic byns sensor nodes is received by cluster heads. Thus, allns sensors must

be alive untilT. We can keep increasingT and running Ford-Fulkerson algorithm to obtain

the maximum flow for everyT value, until the maximum flow is less than∑si∈Srsi T, which

means that some nodes have failed before timeT. Finally, the value ofT obtained before

the last run of Ford-Fulkerson algorithm is the maximum network lifetime. An example of

the construction is depicted in Figure 5.3.

We now analyze the time complexity of this method. LetU denote the maximum units

of traffic any sensor node generates and relays within timeT∗, whereT∗ is the maximum

network lifetime obtained by the algorithm. Then

U = max
si∈S

{
Esi− (rsi T

∗Pg)
Pr

+ rsi T
∗
}

The running time of this method isO(UM2
s), whereMs = nc + ns is the total number of

cluster heads and sensors in the network.

Note that the above optimization needs global location information of sensor nodes
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for maximizing the network lifetime, where the capacities of unmarked arcs are infinity.
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and cluster heads and connection patterns of the network. As we know, exchanging global

location information is very energy-consuming and impractical for a large sensor network.

Here we give this global optimal solution is only for the purpose of comparing the lifetime

of the network with mobile cluster heads later.

5.2.2 Possible Locations of Mobile Cluster Heads

Next we consider the problem of maximizing the lifetime of the network where cluster

heads are allowed to move in the sensing field. From the example we discussed earlier, we

can see that the position of a cluster head can greatly affect the network lifetime. Before

cluster heads decide where to move, they need to know where they can move to. The

possible location setL of cluster heads is defined as a set of target positions where cluster

heads can move to, stay and be reached by sensor nodes. For most applications, cluster

heads are able to move continuously on the two-dimensional plane, which includes an

infinite number of points. However, not every point in the field can be a possible location

for a cluster head, because once a cluster head moves to a point, nearby sensor nodes must

be close enough to communicate with the cluster head. We define theneighbor setof a

point as a set of sensor nodes which can communicate with the cluster head placed at this

point. A point is a possible location of the cluster head, if and only if its neighbor set is

non-empty and the set has been obtained or estimated by the cluster head.

Possible locations of cluster heads can be classified into two types: known positions

whose neighbor sets have been obtained, and unknown positions whose neighbor sets can

be estimated. In some cases, such as indoor applications, due to the reflection from walls

and obstacles, wireless propagation is difficult to be modeled into a neat form [78]. The

transmission range of a node may be in an irregular shape. It is impractical to obtain the
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Figure 5.4: Grid scheme: cluster head can only move to crossing points of grid cells.

neighbor set of an unknown point, unless a cluster head moves there or a sensor node

has stayed there. In this situation, only the points where sensor nodes or cluster heads

have been located can be possible locations, because only the neighbor sets of these points

can be obtained precisely. A cluster head will choose its next position from these known

possible locations. Though these possible locations can guarantee the cluster head to com-

municate with its neighbor set, some positions in an unknown area may be better than these

known positions. When sensor nodes are deployed in an open two-dimensional field, where

received wireless signal strength is inversely proportional to the square of the distance be-

tween the transmitter and the receiver. In this case, the two-ray model can be used to model

the propagation of wireless nodes. The transmission range can be approximately modeled

by a unit disk centered at the transmitter, whose radius is proportional to its transmission

power. Given relative positions and maximum signal strengths of all sensor nodes and

cluster heads, the neighbor set of any point in the field can be estimated according to the
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two-ray propagation model. Thus, the possible location set becomes an infinite set. In or-

der to simplify the problem, we assume that each cluster divides the sensing field into grid

cells. Only the crossing points of grids can be the possible locations. We refer to these two

methods to obtain possible locations of cluster heads described above asknown position

schemeandgrid scheme, respectively. An example of using the grid scheme is illustrated

in Figure 5.4, where the sensing field is divided into grids, and the cluster head will choose

and then move to the best location among all crossing points of the grids.

5.2.3 Problem Definition and Formalization

For a network withns sensor nodes andnc mobile cluster heads, we assume that each

cluster head can move to any one of thenl possible locations. We now consider the prob-

lem of finding the positions ofnc cluster heads fromnl (nl ≥ nc) possible locations, and

determining which cluster head serves each ofns sensors to maximize the network lifetime.

We call this problemCluster Head Locationproblem and refer to it as CHL problem. CHL

problem can be formally stated as follows.

The sensor network can be modeled as a directed graphG(S,L,A), whereS= {s1,s2, . . . ,sns}
is a set of all sensor nodes,L = {l1, l2, . . . , lnl} is a set of all possible locations of cluster

heads, andA is the set of all arcs inG. Let Nsj be a set of sensors that can reachsj in one

hop, andNl i be a set of sensors that can reach the cluster head atl i in one hop, andNs′j be

a set of sensor nodes and possible locations of cluster heads which are in the transmission

range of sensorsj . An arca(sj ,sk) belongs toA, if and only if sensorsk can be reached by

sj in one hop, and an arca(sj , lk) exists in G, if and only if the possible locationlk is located

within the transmission range of sensorsj . Let ns = |S|, nl = |L| andnc be the number of

cluster heads, wherenl ≥ nc. Each vertexsj(sj ∈ S) hasnl indicator variablescl i
sj , ∀l i ∈ L.
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Each arca(sk, t) in A containsnl flow values f l i
skt , wheresk ∈ S, t ∈ S

⋃
L andl i ∈ L. Each

elementl i in L corresponds to a variableI l i indicating whether a cluster head stays atl i .

Given a graphG(S,L,A), the problem can be formalized as follows:

Maximize T

Sub ject to

I l i = {0,1},∀l i ∈ L

∑
l i∈L

I l i = nc

cl i
sj

= {0,1},∀l i ∈ L,∀sj ∈ S

∑
l i∈L

cl i
sj

= 1,∀l i ∈ L,∀sj ∈ S

∑
sj∈Nli

f l i
sj l i
≤ I l i ×M

∑
l i∈L

∑
t∈Ns′j

f l i
sj t = ∑

l i∈L
∑

sk∈Nsj

f l i
sksj

+ rsj T,∀sj ∈ S

Pr ∑
t∈Ns′j

f l i
sj t +Pg ∑

sk∈Nsj

f l i
sksj

≤ cl i
sj

Esj ,∀sj ∈ S

All variables≥ 0

In this program,T is the network lifetime, andI l i is an indicator variable denoting whether

a cluster head is placed at possible locationl i . Sincenc cluster heads will choose their

positions fromnl possible locations, the summation ofI l i for all l i ∈ L equalsnc. cl i
sj is

another indicator variable denoting whether sensorsj belongs to the cluster head at possible

location l i . Since each sensor can only belong to one cluster, only onecl i
sj for all l i ∈ L

can be1, while others equal0. In the fifth constraint,M is a large positive constant and
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represents the maximum traffic a cluster head can handle. Since cluster heads are powerful,

M can be assumed to be any constant larger than the total flow in the network. If there is

a cluster head staying at possible locationl i , the total flow received by the cluster head

must be less thanM. Otherwise, no flow goes tol i . The sixth constraint accounts for the

fact that, for each sensor node, the total outgoing traffic equals the sum of total incoming

traffic and the total locally generated traffic.rsj is the data generating rate of sensorsj . The

seventh constraint says that the total energy consumption of sensorsj must be limited by its

maximum energy limitEsj . From this constraint, we can also see that whencl i
sj = 0, that is,

when sensorsj does not belong to the cluster head atl i , both f l i
sj t(t ∈N′

sj
) and f l i

sksj (sk ∈Nsj )

equal zero, which means no flow goes tol i via sensorsj .

5.2.4 NP-Hardness of the CHL Problem

We next show that it is NP-hard to obtain optimal clustering and locations of cluster

heads which maximizes the network lifetime.

Lemma 1 The CHL problem is NP-hard.

Proof. In order to show that CHL is NP-hard, we give a reduction from thek-center prob-

lem [76]. Thek-center problem is a basic facility location problem, which aims at locating

k facilities in a graph and to assign demand vertices to facilities, so as to minimize the

maximum distance from a vertex to the facility to which it is assigned. Given any instance

of thek-center facility location problem, an instance of CHL problem can be constructed

as follows.

Let G denote the graph of thek-center problem,Dem= {D1,D2, . . . ,DnD} denote a set

of demand vertices, andFac= {F1,F2, . . . ,FnF} be the set of possible locations of facilities.
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A graph of CHLG′(S,L,A) can be constructed as follows, whereS, L andA are as defined

in Section 5.2.3.

• For each demand vertexD j in G, add a vertexsj to S, with infinity energy capacity

Esj and data generating ratersj = 1.

• For each vertex denoting a possible facility locationFi in G, add a vertexl i into L.

• For each pair ofD j and Fi in G, add an intermediate vertexmi
j into S, with the

energy capacityEmi
j
= 1

d(D j ,Fi)
and data generating ratermi

j
= 0, whered(D j ,Fi)

is the distance between demand vertexD j and possible locationFi in G. Con-

nectmi
j and l i , sj andmi

j with two arcsa(mi
j , l i) anda(sj ,mi

j), respectively, where

a(mi
j , l i),a(sj ,mi

j) ∈ A.

In the construction, the number of cluster headsnc in CHL equals the number of facil-

ities, k, in thek-center problem, and the number of possible locations of cluster headsnl

equals the number of possible facility locations,nF , in thek-center problem. Power con-

sumption for generating and relaying a unit of traffic,Pg andPr , both equal 1. An example

of the construction ofG′ from G is shown in Figure 5.5. Figure 5.5(a) contains four demand

vertices and two possible facility locations, while two possible locations of cluster heads

vertices and twelve sensor vertices are added in Figure 5.5(b). Among all twelve sensor

nodes,mi
j ,( j = 1,2,3,4;i = 1,2), are intermediate nodes which have zero data generating

rate and act as relaying-only nodes.

In the optimal solution of CHL, if there is a non-zero flow goes fromsj to l i via the path

sj → mi
j → l i , a demand nodeD j is assigned to the facilityFi . In addition, the maximum

flow generated bysj within time T, which equalsTrsj , must be less than or equal to the

maximum flow the intermediate nodemi
j can relay, which equals

E
mi

j
Pr

. Since bothPr andrsj
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Figure 5.5: Reduction from thek-center problem to CHL. (a) Graph of thek-center. (b)
Graph of CHP.

are 1 in this construction, we know that the lifetimeT is bounded bymin j maxi Emi
j
, where

Emi
j
is the energy constraint of the intermediate vertexmi

j , for i = 1,2, . . . ,nF , j = 1, . . . ,nD.

SinceEmi
j
= 1

d(D j ,Fi)
, we have,maxT = maxminj maxi( 1

d(D j ,Fi)
).

Therefore, the optimal clustering achieves the maximum lifetimeT in G′, if and only if

demand vertices inGcan be organized intok clusters with the maximum-minimum distance

from any demand vertex to the facility to which it is assigned can be minimized to1
T .

We have shown that it is NP-hard to find a clustering which maximizes the lifetime

T in the CHL problem. In addition to the NP-hardness of the problem, for a centralized

algorithm, collecting global location information and connection patterns will be a very

energy-consuming task for a large scale network. Even if a suboptimal solution can be

obtained by relaxation or other methods, the centralized algorithm may not be suitable for

a large sensor network. In a network which consists of hundreds and thousands of nodes, it

will be a huge burden to forward location and topology information to one central controller

instead of sending to multiple distributed cluster heads. For these reasons, in the following

we present a practical distributed heuristic algorithm for the above problem.
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5.3 Clustering a Hybrid Sensor Network: A Heuristic Clus-

tering Algorithm

We propose a heuristic clustering algorithm as outlined in Figure 5.6. The algorithm

can be divided into two phases: organizing sensor nodes into different clusters and finding

the best location for every cluster head. These two steps can be executed rotationally as

shown in Figure 5.6. We will explain the algorithm in details next.

5.3.1 Organizing Sensor Nodes into Clusters

A straightforward way to organize sensor nodes into clusters is to assign each sensor to

the “nearest” cluster head from it. Here, the distance from a sensor node to a cluster head

is measured by the hop count. After sensor nodes and cluster heads are deployed in the

field, first, they need to discover their neighbor nodes around and transmission links among

them. During the neighbor discovery phase,Hello messages will be generated and flooded

by each sensor node. In order to avoid extra overhead, theseHello messages are also used

to construct clusters in our algorithm. A cluster will be organized into a spanning tree as

follows. At the beginning, each cluster head generates aHello message, which includes

three extra fields in addition to other regular contents:Root, ParentandLevel, whereRoot

andParentare marked by the ID of the cluster head, andLeveldenotes the current level of

the cluster head in the spanning tree and is set to zero. Then the cluster head broadcasts the

Hello message with the same transmission power as sensor nodes. Each sensor node will

also maintain its node level, parent ID and root ID in the tree, where level is set to infinity at

the beginning. Once a sensor node receivesHello messages from the cluster head or other

sensor nodes, they will check theLevelvalue in the message and compare it with its node
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level. If theLevelin the message is less than its own node level, it updates its root ID, parent

ID and level according to the values ofRoot, ParentandLevelin the message, respectively.

Then, it increments theLevelof the message by one, sets theParentof the message with its

node ID, and broadcasts it again. If theLevelin the message is not less than its own node

level, it simply drops the message. Finally, when no moreHello messages are broadcast

in the network, every sensor node will know which cluster it belongs to and which sensor

node is its parent node in the spanning tree. The cluster forming process will end after a

fixed-length of the time, which should be long enough to guarantee every sensor can find

its nearest cluster head. At the end of the cluster forming phase, each sensor node uploads

its location and neighbor information to its nearest cluster head through the branch of the

spanning tree. This phase is described in Table 5.1.

We now analyze the complexity of the clustering algorithm. Each sensor has at most

n one-hop neighbors, wheren is the total number of nodes in the network. Each sensor

needs to receiveHello messages from all its one-hop neighbors, and also send out itsHello

message to all of them, which needsO(n) times one-hop transmission. Thus, the total

complexity of the clustering algorithm isO(n2).

5.3.2 Finding Best Locations of Cluster Heads

After the cluster forming phase, the entire network is organized intonc independent

clusters. Each of them consists of a cluster head as the root and a bunch of sensor nodes.

The next step is to find the best location for each cluster head from its possible locations.

The new location of a cluster head should balance the traffic and minimize the maximum

traffic load of each sensor node.
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Table 5.1: Clustering forming algorithm

Cluster Forming Algorithm

Procedure of a cluster head:
for each cluster headCi

Generate aHello messageMi , including
Parent(Mi) = Ci ;
Root(Mi) = Ci ;
Level(Mi) = 0;

Broadcast theHello messageMi with the same
transmission power as sensor nodes;
end for

Procedure of a sensor node:
for each sensorn j

while (Cluster forming phase is not ended)
Overhear the channel and receive Hello messages;
if Level(M)≥Level ofn j

Discard the message;
else

Level ofn j = Level(M)+1;
Parent ID ofn j = Parent(M);
Root ID ofn j= Parent(M);
Parent(M) = n j ;
Level(M) = Level(M)+1;
Broadcast Hello messageM;

end if
end while
Upload its location and neighbor information
to the nearest cluster head;
end for
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Search for Best Locations of Cluster Heads

During the clustering forming phase, each cluster head has acquired a “map” of the

entire cluster which includes the positions and connection patterns of all sensor nodes in

the cluster. From the map, a cluster head can obtain some possible locations by using

the known position scheme or the grid scheme discussed earlier. Then the cluster head

tests possible locations one by one. For each possible location, the cluster head assumes

that it has moved there and nearby sensors have been organized around it into a cluster.

The minimum lifetime of sensor nodes will be maximized by running the network flow

algorithm we will introduce next. After all possible locations are tested, the cluster head

will compare all max-min lifetime values and choose the maximum one. Its corresponding

possible location will become the next position of the cluster head. It should be pointed out

that in the grid scheme, the number of possible locations is determined by the size of grids,

while the number of known positions is fixed for a network. The more possible locations

are available, the better locations of cluster heads may be obtained, though small grid size

increases the processing time and complexity. We will compare how different grid sizes

affect the network lifetime in Section 5.4.

Load Balancing by Using Network Flow Algorithm

For each possible location of a cluster head, we assume that the cluster head has moved

there and find the maximum-minimum lifetime of the cluster. Since each cluster only

contains one cluster head and the location of the cluster head has been fixed, the problem

of maximizing the minimum lifetime of the cluster becomes a simplified version of the

CHL problem withnc = nl = 1. The problem can be formalized as follows.
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Maximize T

Sub ject to

∑
t∈Ns′j

f l1
sj t = ∑

sk∈Nsj

f l1
sksj

+ rsj T,∀sj ∈ S

Pr ∑
t∈Ns′j

f l1
sj t +Pg ∑

sk∈Nsj

f l1
sksj

≤ Esj ,∀sj ∈ S

All variables≥ 0

All the above notations have the same definitions as those in Section 5.2.3. The two con-

straints account for the flow and energy constraints at each sensor node, respectively. Com-

pared to the CHL problem, this problem is a regular network flow program, which can be

formalized into a linear program and solved in polynomial time.

Time Complexity of Finding the Best Location of the Cluster Head

Let ML be the number of possible locations andMs be the total number of sensor nodes

and cluster head in the cluster. For each possible location, the above linear program can

be solved by the method we introduced in Section 5.2.1. Thus, the maximum lifetime can

be obtained inO(UM2
s) time, whereU is as defined in Section 5.2.1. Therefore, the total

running time for finding the best location of the cluster head isO(UMLM2
s).
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5.3.3 Recovering from Unexpected Failure of Cluster Heads and Sen-

sors

In this subsection, we discuss how a two-layer hybrid sensor network can recover from

unexpected failures of some sensor nodes and cluster heads. One of the most important

functionalities of a sensor network is to sense the human-unreachable area, such as volcano,

seabed and outer-space, where unexpected hazards occur from time to time. These hazards

may lead to unexpected failure of cluster heads and sensor nodes. Without the remote

control from human being, alive cluster heads and sensors must be able to re-organize the

network self-adaptively. Cluster head can find the failure of sensor nodes in the cluster, if

it cannot receive sensing data from these nodes for a while. When the hazard occurs in a

small region, only a small number of sensor nodes are destroyed by the hazard, the cluster

head may ignore the failures. If a large percentage of sensor nodes in the cluster fail, or

some cluster heads are down, alive cluster heads need to re-organize the network to balance

the traffic for the new network layout. What they need to do is to execute the clustering

algorithm again. Note that all operations are dynamic and self-adaptive and no control from

human being is needed.

5.4 Performance Evaluations

We implemented the proposed clustering scheme on the NS-2 simulator. In the simula-

tion, we assume that 800 sensor nodes and 6 cluster heads are uniformly deployed within

a 670× 670m2 two-dimensional square. The two-ray propagation model is used to de-

scribe the feature of the physical layer. With the maximum transmission power0.858mw,

each node can communicate with other nodes as far as40m away. The radio bandwidth

122



is 200kbps. CBR traffic on the top of UDP is generated to measure the throughput. Each

packet has a fixed size of 80 bytes, including header and payload. Within each cluster,

multi-hop polling protocol [99] is used as the inner-cluster protocol to avoid packets colli-

sion at the MAC layer. The performance of the algorithm was evaluated from three aspects:

network layout, network lifetime and recovery from failures.

5.4.1 Network Layout

In this scenario, 800 sensor nodes and 6 cluster heads are randomly deployed to cover

the sensing field, which will be organized into 6 clusters. The sensing field is divided into

10m×10m grids by cluster heads. In Figure 5.7, six triangle symbols in different colors

denote cluster heads, and other smaller symbols represent sensor nodes. The cluster head

and sensor nodes that belong to the same cluster are marked in the same color. Figure

5.7(a), (b), (c) and (d) depict the initial network layout and the layout after the first, second

and third round of adjustments, respectively. In the center of Figure 5.7(a), We can see

that three cluster heads are initially placed so close that they are near the margins of their

corresponding clusters. It is inefficient to upload sensing data to cluster heads for those

sensor nodes located too far away from cluster heads. However, after several rounds of

adjustments, as shown in Figure 5.7(b), (c) and (d), we can observe that, first, the crowded

cluster heads move apart from each other and now are closer to the center of each cluster;

second, some sensor nodes are re-allocated from one cluster to the other, which can balance

the sizes of clusters.
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Figure 5.7: Network layout where triangle symbols denote cluster heads, while other sym-
bols represent sensor nodes. Sensor nodes and cluster heads are marked in the same color
if they belong to the same cluster. (a) Initial layout. (b) Layout after round 1. (c) Layout
after round 2. (d) Layout after round 3.
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5.4.2 Network Lifetime

Next we will see how mobile cluster heads can improve the lifetime of a sensor network.

After the network is deployed, for the initial layout of a network, the optimal network life-

time can be obtained by running the flow algorithm discussed in Section 5.2.1. Here we

assume that the global location information and connection patterns needed by this global

algorithm are available, though it may be impractical to obtain such global information in a

large network. The optimal lifetime obtained will only be used as a performance reference

for the comparison purpose. We also run the known position scheme and grid scheme to

optimize the lifetime of the network with mobile cluster heads. Figure 5.8 shows the rel-

ative lifetime ratio of the known position scheme and the grid scheme with grid distances

5m, 10m and20m, respectively, to the optimal lifetime of the network with static cluster

heads. We can see from Figure 5.8 that the relative lifetime ratio is less than 1 at the be-

ginning. This is because that the initialization of the clustering phase is only based on the

local information, and the traffic flow is optimized within the range of each cluster, while

the maximum lifetime in the static network is obtained from the global optimization. How-

ever, after the first round of running the grid scheme, the relative lifetime ratio increases to

about 1.2 for the grid size5m, and about 1.0 for the grid size10m and20m. We can see

that by running the grid scheme for 5 rounds, the relative lifetime ratio goes above 1.32 for

all three different grid sizes. The known position scheme is not as good as the grid scheme

after round 1, but the relative lifetime ratio of the known position scheme keeps increasing

and reaches 1.10, 1.26 and 1.30 after round 2, 3 and 4, respectively. We can observe that,

both the grid scheme and the known position scheme can achieve at least30%improvement

of the network lifetime after 5 rounds of adjustments.
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Figure 5.8: The relative lifetime of the grid scheme (Grid size = 5m, 10m and 20m) and
known position scheme for the network with mobile cluster heads, compared to the optimal
lifetime for the network with only static cluster heads.

We also investigate how the transmission range of sensors can affect the network life-

time. Figure 5.9 shows the relative lifetime of the known position scheme compared to the

optimal lifetime for the network with only static cluster heads as the transmission range

increases from40m to 100m. The figure plots the relative lifetime obtained by executing

rounds 1, 3 and 5 of the heuristic approach. We can see that all the three curves decline

slightly as the transmission range increases. When the transmission range equals100m, the

relative lifetime after round 3 is close to1.05. This is because that increasing the transmis-

sion range can enhance the connectivity of the network, and the packets can be forwarded

to cluster heads with fewer relays. Also, the maximum burden of bottleneck nodes can

be reduced. When the transmission range is long enough, the load balancing algorithm

for static cluster heads can achieve close performance to the approaches for mobile cluster

heads. In practice, the transmission ranges of most existing prototypes of wireless sensors
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Figure 5.9: The relative lifetime of the known position scheme compared to the optimal
lifetime for the network with only static cluster heads vs. the transmission range.

are10m− 50m. In these cases, using mobile cluster heads can greatly increase network

lifetime compared to using static cluster heads.

5.4.3 Recovering from Unexpected Failures of Cluster Heads and Sen-

sors

In this scenario, we assume that one cluster head and 100 sensor nodes are destroyed

suddenly, after round 3 in the last scenario. All failed cluster heads and sensors are ran-

domly chosen. Due to the failure of cluster heads and sensors, packets from some sensors

cannot be forwarded to cluster heads through old relaying paths. In order to fix this prob-

lem, the clustering algorithm and cluster head positioning algorithm need to be executed

again to determine new locations of cluster heads and clustering of sensors for the new
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network layout. From Figure 5.10(a), we can see that the cluster head of the cluster lo-

cated at the top-right corner is down. After re-clustering, the network is re-organized into

five clusters. In Figure 5.10(b), sensor nodes in the cluster which lost its cluster head are

re-allocated to two nearby clusters. Then, in Figure 5.10(b) and (c), each cluster head

searches for and moves to the best location within the cluster. The simulation results of this

scenario show that the proposed clustering algorithm can adaptively recover the network

from unexpected failure of partial sensors and cluster heads.

5.5 Conclusions

In this paper, we have considered the problem of positioning mobile cluster heads in

a two-layer hybrid sensor network to maximize network lifetime. Two-layer hybrid net-

works are more scalable and energy-efficient than homogeneous sensor networks. In such

a network, since all sensing data goes to cluster heads, the positions of cluster heads may

affect the direction of traffic flow significantly. In order to prolong the lifetime of sensors,

the location of the cluster head needs to be planned to balance the traffic load. We first

showed that the problem of positioning cluster heads to maximize the network lifetime is

NP-hard. We then presented a heuristic algorithm for positioning the cluster heads and

balancing the traffic load in the network. By moving the cluster head to a better location,

the traffic load is balanced and the network lifetime is prolonged. Simulations were run on

the NS-2 simulator, and the results show that our cluster head positioning algorithm can in-

crease the network lifetime by a significant amount. In addition, the algorithm can recover

the network from unexpected failure of sensors and cluster heads.
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Figure 5.10: Network layout after unexpected hazards which cause 100 sensors and 1 clus-
ter head to fail. (a) Layout after 100 sensors and 1 cluster head fail. (b) Layout after round
1. (c) Layout after round 2.
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Chapter 6

Gathering Data with Mobile Data

Collectors

In pervious chapter, we have seen how the hierarchical topology can improve the net-

work lifetime. This chapter presents a new data gathering mechanism for large scale mul-

tihop sensor networks. A mobile data observer, calledSenCar, which could be a mobile

robot or a vehicle equipped with a powerful transceiver and battery, works like a mobile

base station in the network. SenCar starts the data gathering tour periodically from the static

data processing center, traverses the entire sensor network, gathers the data from sensors

while moving, returns to the starting point, and finally uploads data to the data processing

center. Unlike SenCar, sensors in the network are static, and can be made very simple and

inexpensive. They upload sensing data to SenCar when SenCar moves close to them. Since

sensors can only communicate with others within a very limited range, packets from some

sensors may need multihop relays to reach SenCar. We first show that the moving path of

SenCar can greatly affect the network lifetime. We then present heuristic algorithms for

planning the moving path/circle of SenCar and balancing traffic load in the network. We
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show that by driving SenCar along a better path and balancing the traffic load from sensors

to SenCar, the network lifetime can be prolonged significantly.

The rest of the chapter is organized as follows. Section 6.1 discusses some related

work. Section 6.2 presents our data gathering scheme for a connected network. Section

6.3 describes the data gathering scheme for a disconnected network. Section 6.4 gives

performance evaluation results and some discussions. Finally, Section 6.5 concludes the

chapter.

6.1 Related Work

Mobility of sensor networks has been studied in some literatures recently [79, 80, 81,

82, 83, 84, 85, 88, 90, 86, 87]. In [79] and [80], radio-tagged zebras and whales are used

as mobile nodes to collect sensing data in a wild environment. These animal-based nodes

wander randomly in the sensing field, and exchange sensing data only when they move

close to each other. Thus, sensor nodes in such a network are not necessarily connected

all the time. Moreover, the mobility of randomly moving animals is hard to predict and

control, thus the maximum packet delay cannot be guaranteed. For sensor networks de-

ployed in an urbane area, where public transportation vehicles, such as buses and trains,

always move along the fixed routes. These vehicles can be mounted with transceivers to

act as mobile base stations [82, 83]. Compared to the randomly moving animals, the mov-

ing path and timing are predictable in this case. However, data exchanging still depends on

the existing routes and schedules of the public transportation, and thus is very restrictive.

In [86], the authors exploited controlled movement to improve data delivery performance.

Some mobile observers, called message ferries, are used to collect data from sensors. Two

variants were studied based on whether ferries or nodes initiate proactive movement. In
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[88, 89], a number of mobile observers, calleddata MULEs, pick up data directly from

the sensors when in close range, buffer it, and drop off the data to wired access points.

The movement of MULEs are modeled as two-dimensional random walk. The primary

disadvantage of two approaches in [86, 88, 89] is increasing latency because mobile ob-

servers have to traverse transmission range of each sensor one by one to collect data. In

[85], mobile observers traverse the sensing field along parallel straight lines and gather data

from sensors. In order to reduce latency, packets sent by some sensor are allowed to be re-

layed by other sensors to reach mobile observers. This scheme works well in a large scale,

uniformly distributed sensor network. However, in practice, data mules may not always

be able to move along straight lines, for example, obstacles or boundaries may block the

moving paths of data mules. Moreover, the performance and cost of the data mule scheme

depends on the number of data mules and the distribution of sensors. When only a small

number of data mules are available and not all sensors are connected, data mules may not

cover all the sensors in the network if they only move along straight lines. In [87], the

authors proposed a data gathering scheme to minimize the maximum average load of any

sensor by jointly considering the problems of movement planning and routing. Based on

the assumption that sensors are distributed as poisson process, the average load of a sensor

can be estimated as a function of the node density. However, the estimation of the average

load may be inaccurate in cases when sensors are not densely deployed as poisson distri-

bution. [90] discussed several advantages and design issues for incorporating controlled

mobility into the networking infrastructure, and mainly focused on motion/speed control

and communication protocol design. [81, 84] also consider mobile observers in sensor

networks. [81] mainly discussed hardware/software implementation of underwater mobile

observers, while [84] proposed an algorithm to schedule the mobile observer, so that there
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is no data loss due to the buffer overflow. In order to make a data collecting scheme suitable

to various network topologies, it is more realistic and efficient to plan the moving path of

the mobile observer dynamically based on the distribution of sensors. This is the motiva-

tion of our work in this paper. In the following, we first give a data collecting scheme for a

connected network with an arbitrary topology and then discuss the case where the network

consists of several isolated clusters.

6.2 Data Gathering Scheme for a Connected Network

Sensor networks are usually deployed in dangerous or even human-unreachable areas,

such as volcano, outer-space, seabed and so on. In such environments, human beings may

not move close to the sensing field. A mobile observer, or SenCar, will be sent out to gather

data from sensors periodically. Since the network may contain a large number of nodes,

each tour may take a long time. In order to save the energy, sensors may turn on their

transceivers only when they need to send or relay packets. Except for the transmission pe-

riod, transceivers of sensors could be turned off. The entire sensor network can be divided

into several clusters, where sensors in each cluster must be connected to SenCar while it is

moving through the cluster. When SenCar moves close to the cluster, all sensors belonging

to the cluster will be waken up and prepare to send packets. Sensing data can be collected

by SenCar while it is traversing the cluster. To make this scheme work, two issues must be

resolved here. The first issue is how to wake up and turn off sensors only when needed. A

radio wake-up scheme was proposed in [91], which allows the transceivers of sensors to be

deactivated when they are idle. The second issue is how to divide sensors into clusters. As

will be described later, a moving path of SenCar consists of a series of connected line seg-

ments. Sensors close to each line segment will be organized into a cluster by SenCar, such
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that the entire network can be divided into a number of clusters. A straightforward way to

organize sensor nodes into clusters is to assign each sensor to the “nearest” line segment in

the moving path from it. The details of clustering algorithm will be given in Section 6.2.3.

While moving, SenCar will poll each sensor one by one to collect data. Relaying path

and transmission time of packets are determined by SenCar. Thus, packet collision can be

avoided and no routing paths need to be maintained by sensors. In addition, while planning

the relaying paths, traffic load needs to be balanced to prolong the lifetime of sensors. The

data gathering scheme includes three related issues: load balancing, movement planning

and clustering. Given a moving path of SenCar, the load balancing algorithm can be used

to find the optimal relaying paths from sensors to SenCar, when SenCar move through this

path, such that the network lifetime can be maximized. The movement planning algorithm

accounts for how to choose the best path from a set of candidate paths. Given a set of paths,

SenCar computes the maximum lifetime that each path can achieve by running the load bal-

ancing algorithm, and then picks the best one. The clustering algorithm is used to divided

the network into clusters, such that the load balancing algorithm and movement planning

algorithm can be run recursively. Next, we will introduce three related issues separately,

and then describe how to put them together into an integrated data gathering scheme.

6.2.1 Load Balancing

As discussed above, due to the different amount of traffic each sensor node relays, some

nodes may fail sooner than others. In order to maximize the network lifetime, relaying

paths must be carefully planned to balance the traffic load. Load balancing problem in

static sensor networks has been investigated in some existing work, such as [73, 74, 99].

Next we will describe how to formalize the problem of maximizing network lifetime in our
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Figure 6.1: (a) Connection patterns of a sensor network. (b) Directed graphG(S,c,A)
corresponding to the connection patterns of the network. (c) Network flow graph
G′(S′,Src,Dst,A′) for maximizing network lifetime, where the capacities of unmarked arcs
are infinity.

network into a network flow problem.

Given the connection patterns of the network and the moving path of SenCar, a sensor

network can be modeled as a directed graphG(S,c,A), whereS= {s1,s2, . . . ,sn} is the set

of all sensor nodes,c denotes SenCar andA is the set of all directed linksa(i, j) where

i ∈ S, j ∈ S
⋃{c}. For each pair of nodessi ,sj ∈ S, if si can reachsj in one hop, arca(si ,sj)

will be added intoA. If the moving path of SenCar traverses the transmission range ofsi , or

equivalentlysi can reach SenCar in one hop while SenCar is moving, add arca(si ,c) into

G. Figure 6.1(a) and (b) shows how to construct the directed graph from the connection

135



patterns of a network.

Given the directed graphGof a network, its corresponding flow graphG′(S′,Src,Dst,A′)

can be constructed as follows:

• For eachsi ∈ S, add two verticess′i ands′′i to S′, and an arca(s′i ,s
′′
i ) is added intoA′

with capacity
Esi−(rsi TPg)

Pr
+ rsi T;

• For each arca(si ,sj) ∈ A, wheresi ,sj ∈ S , add an arca(s′′i ,s
′
j) into A′ with infinity

capacity;

• A pair of source and destination nodesSrcandDst are added intoG′, and for each

s′i ∈ S′, connectSrcands′i by an arca(Src,s′i) with capacityrsi T;

• For each arca(si ,c) ∈ A, wheresi ∈ S, add an arca(s′′i ,Dst) into A′ with infinity

capacity;

wherersi andEsi denote the data generating rate and energy limit of nodesi , Pg andPr

represent the power consumption for generating and relaying a unit of traffic, respectively,

andT is the network lifetime. Since SenCar visits sensors periodically, say, every∆T time.

We can setT = ∆T at the beginning and increaseT by ∆T every time. For any givenT,

this problem is a regular maximum flow problem [75] and can be solved by Ford-Fulkerson

algorithm in polynomial time. In this construction,(rsi T) limits the flow fromSrcto si and

represents the flow generated bysi within time T, which consumes(rsi TPg) energy. Due

to the energy constraint of nodesi , the maximum flow nodesi can relay within timeT is

Esi−(rsi TPg)
Pr

. Thus, the total flow a nodesi can generate and relay in timeT is limited by

Esi−(rsi TPg)
Pr

+ rsi T. When the maximum flow equals∑si∈Srsi T, it means until timeT, all

generated traffic byn sensor nodes is received by SenCar. Thus, alln sensors must be alive

until T. We can keep increasingT and running Ford-Fulkerson algorithm to obtain the
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maximum flow for everyT value, until the maximum flow is less than∑si∈Srsi T, which

indicates some nodes have failed before timeT. Finally, the value ofT obtained before

the last run of Ford-Fulkerson algorithm is the maximum network lifetime. An example

of constructing the flow graph from the connection patterns of the network is depicted in

Figure 6.1.

We now analyze the time complexity of this algorithm. LetU denote the maximum

units of traffic any sensor node generates and relays within timeT∗, whereT∗ is the maxi-

mum network lifetime obtained by the algorithm. Then

U = max
si∈S

{
Esi− (rsi T

∗Pg)
Pr

+ rsi T
∗
}

According to Ford-Fulkerson algorithm [75], the maximum flow will be reached when no

more flow augmenting paths can be found in the graph. A flow graph may containO(n2)

edges, wheren denotes the number of nodes. The maximum flow can be added to each

edge is bounded byU . Thus, the running time of this algorithm isO(Un2). Based on

the connection patterns of the network and the moving path of SenCar, the optimal traffic

relaying paths which maximize the network lifetime can be obtained in polynomial time

by running the flow algorithm. Next we will discuss how to determine the moving path of

SenCar.

6.2.2 Determining Turning Points of the Moving Path

Before formally describing the problem we consider, we first give an example to see

how the moving path of the SenCar affects the network lifetime. As shown in Figure 6.2(a),

137



SenCar
Moving path

Sensor node A B

A B

(b)

(a)

Node 1

Figure 6.2: SenCar moves from A to B and collects data from nearby sensors. (a) SenCar
moves along a straight path. (b) SenCar moves along a well-planned path.

SenCar traverses the sensing field fromA to B, where fifteen nodes are deployed. We as-

sume that each sensor forwards one packet to SenCar, while SenCar moves fromA to B.

Due to limited transmission power of sensors, packets may need multi-hop relays to reach

SenCar. The sensors are organized into spanning trees to forward packets to SenCar. We

can see that in Figure 6.2(a), node 1 is a bottleneck node, because it has to relay eight pack-

ets from itself and its seven child nodes to SenCar. Thus, node 1 consumes energy much

faster than other nodes. After node 1 fails, the child nodes of node 1 cannot reach SenCar

any more, unless SenCar changes the moving path. Figure 6.2(b) shows the relaying paths

of sensors when the moving path of SenCar is well planned. We can see that each node has

at most one child node and needs to send at most two packets to SenCar. In this example,

if we only consider the energy consumption for transmission and roughly measure it by the

number of packets transmitted, the well-planned moving path of SenCar can increase the

lifetime three times compared to the straight-line moving path. From this simple example,

we observe that a well-planned moving path of SenCar may minimize the maximum load

of any sensor, save a lot of energy and prolong the network lifetime significantly. In addi-

tion to traffic load, the moving path of SenCar can also affect the directions of traffic flow,
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Figure 6.3: SenCar moves from A to B and collects data from nearby sensors. (a) SenCar
moves from A to B through a straight path. (b) SenCar moves from A to B with turning
point (xA+xB

2 ,2∆y). (c) SenCar moves from A to B with turning point(xA+xB
2 ,∆y). (d)

SenCar moves from A to B with turning point(xA+xB
2 ,−∆y).

thereby have a significant impact on the network lifetime. Next we consider the problem of

maximizing the lifetime of the network, by carefully planning the moving path of SenCar.

In practice, since it is difficult for vehicles or robots to move along any continuous curve

smoothly, we simply assume that the moving path of SenCar consists oft + 1 connected

straight line segments from the starting pointA to the end pointB. That means SenCar

needs to turnt times before it reaches the end of the path. Letp1, p2, . . . , pt denotet

turning points. Then, the moving path of SenCar can be represented byA→ p1 → p2 →
·· · → pt → B. Let (xA,xA), (xB,yB) and(xpi ,ypi) denote the coordinates ofA, B andpi , for

i = 1,2, . . . , t. We assume that thex-coordinate of any sensor is betweenxA andxB. We

will use the divide and conquer strategy to findt turning points to reduce the maximum

traffic load of any sensor needs to send out. Without loss of generality, lett = 2k−1, where

k denotes the iterations of the path planning algorithm andk = 1,2, . . .. First, given the

positions ofA andB, we will find the position of the first turning pointpt+1
2

. Since every

point betweenA andB could become the first turning point, it makes the set of candidate
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turning points an infinite set. For the sake of simplicity, we assume that the first turning

point can only be chosen from a finite set of points in the bisector of the initial path. For

the sake of simplicity, we assume that the first turning point can only be chosen from a

finite set of points in the bisector of the initial path. Let thex-coordinate of the first turning

point xpt+1
2

= xA+xB
2 , and they-coordinate of the first turning pointypt+1

2
= m×∆y, where

∆y is a fixed grid length andm can be any integer that ensures(xpt+1
2

,ypt+1
2

) to be within

the range of the sensing field. After a set of eligible possible locations of the turning point

are obtained, we can check each possible turning point and find the one that minimizes the

maximum traffic load a sensor has to send out. For example, in Figure 6.3(a), the initial path

of SenCar begins fromA to B. Given the grid length∆y and the range of sensing field, there

are three possible locations of the first turning point, located at(xA+xB
2 ,2∆y), (xA+xB

2 ,∆y)

and(xA+xB
2 ,−∆y), as shown in Figure 6.3(b), (c) and (d). For each possible turning point,

the load balancing algorithm introduced in the previous subsection can be used to obtain

the maximum-minimum lifetime of the sensors for its corresponding moving path. Figure

6.3(a)-(d) show the connection pattern graph of four different moving paths, where nodes 1,

2, 3 and 4 are the bottleneck nodes in Figure 6.3(a)-(d), which need to send four, six, three

and nine packets to SenCar, respectively. Thus, the third moving path, turned at(xA+xB
2 ,∆y),

provides a longer network lifetime than others. In the first step, point(xA+xB
2 ,∆y) is chosen

as the first turning point of the moving path. Note that sometimes better moving path may

not be found by moving the turning point along the bisector of the current path. In this

case, the new turning point can be simply set to the mid point between two end points of

the current path.
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Figure 6.4: SenCar moves from A to B and collects data from nearby sensors. (a) Two line
segments of the moving path cross transmission ranges of nodes1,s4,s5 ands6. (b) Graph
G(S,L,E) of the network. (c) Clustering obtained from the shortest path tree inG(S,L,E).
(d) Shortest path tree obtained inG(S,L,E).

6.2.3 Clustering the Network along the Segments of the Moving Path

After the first turning point is obtained, the moving path consists of two connected

line segments. Then, sensors will be organized into two clusters, where each cluster cor-

responds to a line segment. In order to save energy, two clusters of sensors can be waked

up sequentially. Sensors in one cluster forward packets to SenCar before it makes the turn,

while sensors in the other cluster send data after SenCar turns. A straightforward way to

organize sensor nodes into clusters is to assign each sensor to its “nearest” line segment in

the moving path from it. Here, the distance from a sensor to the line segment in the routing

path is measured by the hop count. Given a set of sensorsSand a set of line segmentsL,

clustering the network can be implemented by running Dijkstra shortest path algorithm in

graphG(S,L,E), which can be constructed as follows:
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• A root vertexrt is added intoV;

• For each line segment, add a vertexl i into L and an edgee(rt , l i) into E with weight

1.

• For each sensorsj ∈ S, add a vertexsj into V; Connectsj andl i by an edgee(sj , l i)

with weight 1, if and only if sensorsj can reach line segmentl i in one hop;

• For each pair of nodessj ,sk ∈ S, connectsj andsk by an edgee(sj ,sk) with weight

1, if and only if sensorssj andsk can reach each other in one hop;

As shown in Figure 6.4(a), two line segments of the moving path cross the transmission

ranges of nodes1,s4,s5 and s6. The corresponding graphG(S,L,E) of the network is

shown in Figure 6.4(b). By running Dijkstra algorithm inG, we can find the shortest

path from the root vertex to all other vertices, then a shortest path tree can be obtained,

which contains|L| first level vertices. Figure 6.4(d) and (c) show the shortest path tree

of G(S,L,E) and the clustering of the network. Each first level vertex represents a line

segment in the moving path. All child vertices of the first level vertexl i in G represent a

cluster of sensors corresponding to line segmentl i in the network.

6.2.4 Finding the Moving Path: Divide and Conquer

By combining the above algorithms of load balancing, finding turning points and clus-

tering, the moving path planning algorithm can be described as follows: organizing the net-

work into a cluster, determining the turning point from a set of possible locations of turning

points, revising the path by adding the new turning point, and then dividing each cluster

into two clusters. For each cluster, run the above algorithm recursively. After runningk

iterations of the moving path planning algorithm,∑k
i=12(i−1) turning points are obtained.

142



1

2

3

(b)(a)

(c) (d)

Cluster 1
Cluster 2

 Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 1
Sensor

Moving path
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(c) Moving path contains 3 turning points after iteration 2. (d) Moving path contains 15
turning points after iteration 4.

Figure 6.5 gives an example of the moving path planning algorithm. Figure 6.5(a)-(d) show

the moving paths and network flows of the initial, first, second and fourth iteration, respec-

tively. We can observe that node 1, 2 and 3 are bottleneck nodes in Figure 6.5(a), (b) and

(c), which need to relay packets to SenCar from 6, 5 and 2 child nodes, respectively. These

bottleneck nodes consume energy much faster than their child nodes. On the other hand, in

Figure 6.2(d), SenCar traverses through the transmission range of every node. Thus, each

node can send data to SenCar directly without relaying from other nodes. The moving path

after iteration 4 increases the lifetime seven times compared to the initial moving path.

In the moving path planning algorithm, we can observe that adding turning points into

the moving path will increase the total moving distance of SenCar, according to the triangle

inequality rule. However, in practice, the total moving distance or the length of each tour

may be restricted by several factors. First, the length of each tour may be determined
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Table 6.1: Moving Path Planning Algorithm

Moving path planning algorithm
i = 1;
flag= 1;
while (flag== 1)

Divide the network into2i−1 clusters;
for j = 1 to 2i−1 do

Find the best turning point injth cluster from all possible
locations of turning points;

Add the best turning point into the moving path;
if the total moving distance/time cannot satisfy the
constraints after the new turning point is added.

flag= 0;
Remove the new turning point from the path;

end if
end for
i++;

end while

by the buffer size and data collecting rate of sensors as sensing data must be gathered

by SenCar before the buffer overflows. If all sensors have the same memory sizemem

and data raterate, the maximum length of each tour must be less thanmem
rate . Second, the

maximum moving distance of SenCar without recharging may be limited by its battery

capacity. Third, for some delay-sensitive applications, sensing data must be uploaded to

the data processing center within limited time after being collected from the environment.

Thus, in many applications, the recursive moving path planning algorithm may have to

terminate before the distance or time bound is reached.

By incorporating these constraints into the algorithm, we summarize the moving path

planning algorithm in Table 6.1.

We now analyze the time complexity of this algorithm. Lett denote the total number of
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turning points in the moving path, when the algorithm terminates. Suppose that the sensing

field is divided intog grids. In order to determine a turning point, at mostg possible

locations of the turning point would be checked. As discussed earlier, it requiresO(Un2)

time to obtain the maximum network lifetime for each possible location of the turning

point. Thus, the running time of moving path planning algorithm isO(tgUn2), whereU and

n have the same definitions as that in Section 6.2.1. Finally, we would like to point out that

the moving path planning algorithm is run off-line by SenCar before the first data gathering

tour. After that, only when some nodes fail or the topology of the network changes, SenCar

needs to recalculate the new moving path adaptively.

6.2.5 Determining the Moving Circle of SenCar

In some applications, SenCar not only needs to traverse the sensing field, but also has

to return to the starting point and upload data to the static data processing center. For

such applications, moving paths become moving circles. Instead of a one-way straight

line, the initial circle becomes a round-trip tour, which consists of two overlapped paths

of the same shape but in opposite directions. The initial circle origins from the starting

point, traverses the network, turns around and then moves back to the starting point. Both

one-way paths of the initial circle pass through the network and divide the network into

two parts. Sensors on each side of overlapped paths form a cluster. Each one-way path

corresponds to one cluster and can be considered as the initial path of its corresponding

cluster. Then, the moving path planning algorithm can be run recursively in each cluster.

Finally, two separate moving paths form a moving circle.
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Figure 6.6: Planning the moving path in the sensing field with obstacles. The line segments
from A to 2 and from 2 to B are blocked by obstacles. Thus, 2 cannot be a turning point,
while 1 is eligible to be a turning point.

6.2.6 Avoiding Obstacles in the Sensing Field

We have discussed how to plan the moving path and circle of SenCar in an open sens-

ing field. However, in most real-world applications, the working areas may be partially

bounded, or have some irregular-shaped obstacles located within the sensing area. In order

to make the moving path planning algorithm feasible in these situations, SenCar has to be

able to avoid obstacles. Here, we assume that the complete map of the sensing field has

been obtained before SenCar begins to collect data, which should include the location and

shape information of obstacles in the sensing field. Then it is not difficult to adjust the

basic moving path planning algorithm in Table 6.1 to avoid obstacles. For each candidate

location of a turning point, SenCar will check if the line segment from the last turning point

to it and the line segment from it to the next turning point are blocked by obstacles. If so,

the candidate location is not eligible to be the turning point. Figure 6.6 shows an example

of how to check the eligibility of each possible location of the turning point. A new path

from point A to point B will be chosen fromA→ 1→ B or A→ 2→ B. Since the straight

lines betweenA and2, and between2 andA are blocked by obstacles,2 is not eligible to
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be a tuning point. Thus, the new path fromA to B can only go through point1.

6.3 Data Gathering in a Disconnected Network

We have given the moving path planning algorithm for a connected network. However,

in reality sensors are not always connected. In some applications, sensors are deployed

to monitor separate areas. In each area, nodes are densely deployed and connected, while

nodes that belong to different areas may be disconnected. For such applications, a mobile

observer is especially suitable for data gathering. First, given the positions of sensors, a

disconnected network can be divided into several connected clusters. Then, SenCar can

visit connected clusters one by one, and collect data from each cluster. Thus, the entire

moving circle can be divided into inter-cluster circles and inner-cluster paths. In each clus-

ter, inner-cluster moving path can be determined by the moving path planning algorithm

we gave in the previous section. Next we will describe the algorithms for clustering and

inter-cluster circle planning.

6.3.1 Dividing the Network into Clusters

The objective of the clustering algorithm is to find the smallest number of connected

components in the network. At the beginning, each node itself forms a connected compo-

nent. If a node is connected to any node in another component, the node will be added into

that component. The size of a connected component is maximized if no more nodes can be

added into the component. The algorithm will not terminate until the sizes of all connected

components are maximized. The clustering algorithm is shown in Table 6.2. The first part

of the clustering algorithm is the neighbor discovering phase. It takesO(n) time for each
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node to find all its one-hop neighbors, wheren is the total number of nodes in the network.

Thus, the time complexity of the neighbor discovering phase isO(n2). All nodes are added

into the setN at the beginning, which denotes the set of all nodes. In order to construct set

Cm to represent the set of nodes in themth cluster. We can start from an empty setCm. A

nodet j ∈ N is added into bothCm and a temporary setTmp, and removed fromN. After

that all the one-hop neighbors oft j are also added intoCm andTmp, and removed fromN.

Next, removet j from Tmp. Thus, nodes connected tot j can be added intoCm one by one,

until Tmpis empty. WhenN is empty, the clustering algorithm stops. Since each element

in N will be added intoTmpand removed from bothN andTmp, and finally be added into

the set denoting its corresponding cluster. The complexity of this part of the algorithm is

O(n). Thus, the total time complexity of the clustering algorithm isO(n2).

6.3.2 Planning Inter-Cluster Circle: Touring all Clusters

In this subsection, we propose an algorithm for planning the inter-cluster moving circle.

The objective of the inter-cluster circle planning is to find the shortest circle that visits all

clusters and returns to the starting point of the tour. Before describing the details of the

algorithm, we first introduce some terms and assumptions.

• Left andRight: We assume that all sensor nodes are in the same coordinate system.

Node A is on theleft of node B if thex-coordinate of A is less than that of node B.

Similarly, we can defineRight.

• Most left nodeandmost right nodeof a cluster represent the node with the minimum

and the maximumx-coordinates, respectively. If a tie exists, the most left or right

node can be randomly picked. In the following, the most left and right node of

clusterCi are denoted bylni andrni respectively.
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Table 6.2: Algorithm for dividing the network into clusters

Algorithm for Dividing the Network into Clusters
Add all nodes into setN;
for each elementni in N do

Find and add all one-hop neighbors ofni into setNB(ni);
end for
m= 0;
while N is not empty;

m++;
Construct a new empty setCm for themth cluster;
Pick a nodeni from N, add it into setTmpandCm, and remove it fromN;
while Tmpis not empty

for each elementt j in Tmpdo
for each elementnbk in NB(t j) do

Removenbk from N, and add it intoTmp;
end for
Removet j from Tmp; Add t j into setCm;

end for
end while

end while
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As shown in Figure 6.7(a), in each moving circle, SenCar traverses each cluster exactly

once. Thus, the moving circle crosses the boundary of each cluster twice. In each cluster,

we assume that the inner-cluster path either starts from the most left node to the most right

node of the cluster or in the opposite direction. Given the most left and most right nodes

of the cluster, the inner-cluster moving path can be determined separately without affecting

the inter-cluster circle. For inter-cluster circle planning, we do not need to consider the path

inside each cluster. We can simply find a shortest circle to connect|C| pairs of most left

and most right nodes, where|C| denotes the number of all clusters. In order to minimize

the moving distance of the inter-cluster tour, given a set of clusters, a graphG(V,E) can be

constructed as follows:

• For each clusterCi in the network, add three verticesci1, ci2 andci3, intoV, whereci1

andci3 denote the most left nodelni and most right noderni of clusterCi ; Connect

ci1 andci2 by edgee(ci1,ci2) with distance 0; Connectci2 andci3 by edgee(ci2,ci3)

with distance 0;

• For any two clustersCi andCj , add edgese(ci1,c j1), e(ci1,c j3), e(ci3,c j1) ande(ci3,c j3)

into E with distanced(lni , ln j), d(lni , rn j), d(rni , ln j) andd(rni , rn j) respectively,

whered(a,b) denotes the distance between nodea and nodeb, a ∈ {lni , rni} and

b∈ {ln j , rn j}.

• Add a starting points in V, for each clusterCi in the network, connects andci1 by

edgee(s,ci1) with distanced(s, lni), connects andci3 by edgee(s,ci3) with distance

d(s, rni), whered(s, lni) andd(s, rni) denote the distance from the starting point to

lni andrni .
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In the above construction, in order to visit vertexci2 in G, the circle must include either

segmentci1 → ci2 → ci3 or ci3 → ci2 → ci1, becauseci2 has only two neighborsci1 andci3.

Thus, if the shortest circle that visits all vertices and returns to the starting point can be

found, the shortest inter-cluster circle visiting all clusters can be obtained. We next show

that the problem of finding the shortest inter-cluster circle is NP-hard, and refers to the

problem asSICCproblem.

Lemma 2 The SICC problem is NP-complete.

Proof. First, it is easy to see that SICC is in NP. The shortest inter-cluster circle can be

proved to achieve the shortest distance by adding up the distances of all segments in the

circle. In order to show that SICC is NP-hard, we give a reduction from the well-known

Traveling Salesman Problem (TSP) [92]. Given any instance of the TSP, an instance of

SICC problem can be constructed as follows.

Let G′(V ′,E′) denote the graph of the TSP problem, whereV ′ = {s,v′1,v′2, . . . ,v′n}, A

graph of SICCG(V,E) can be constructed as follows.

• For eachv′i in G′, add three verticesci1, ci2 andci3, intoV, connectci1 andci2 by edge

e(ci1,ci2) with a distance 0, and connectci2 andci3 by edgee(ci2,ci3) with distance

0.

• For any edgee(v′i ,v
′
j) ∈ E′, add edgese(ci1,c j1), e(ci1,c j3), e(ci3,c j1) ande(ci3,c j3)

into E with the same distanced(v′i ,v
′
j), whered(v′i ,v

′
j) denotes the distance between

nodev′i and nodev′j .

• Add a starting points to V, for each edgee(s,v′i) ∈ E′, connects andci1 with edge

e(s,ci1) with distanced(s,v′i), and connects andci3 with edgee(s,ci3) with distance

d(s,v′i).
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Figure 6.7: SenCar gathers data from a disconnected network. (a) The sensor network
consists of three connected clusters. (b) Graph of SICC. (c) Graph of TSP.

An example of constructingG from G′ is shown in Figure 6.7(b) and (c), where four

vertices in Figure 6.7(c) are extended to ten vertices in 6.7(b). In the optimal solution of

SICC, if the shortest circle inG contains segmentci1 → ci2 → ci3 → c j1 → c j2 → c j3, the

shortest TSP circle inG′ should includev′i → v′j . The shortest circle that visits all vertices

in SICC can achieve the shortest total distance, if and only if the optimal solution of the

TSP can be found. In addition, the shortest distance of the SICC problem is equal to that

of the TSP.

Though the SICC problem is NP-hard, approximate algorithms for the TSP can be

adopted for the SICC. For example, a well-known 2-approximate algorithm [92] can be

implemented inO(|C|2 log|C|) time, where|C| is the number of clusters. Note that in

practice,|C| is usually a small constant (say, less than 10). In this case, an exhaustive

search may be used to find the shortest inter-cluster circle.
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By combining the inner-cluster path planning algorithm, clustering algorithm and inter-

cluster circle planning algorithm, SenCar can find a circle in a disconnected network.

6.4 Performance Evaluations

We have conducted extensive simulations to validate the algorithms we propose. In the

simulation, we assume that a bunch of sensor nodes are densely deployed in the sensing

field. Two-ray propagation model is used to describe the feature of the physical layer.

With the maximum transmission power0.858mw, each node can communicate with other

nodes as far as40m away. The radio bandwidth is 250kbps. CBR traffic on the top of

UDP is generated to measure the throughput. We assume each packet has a fixed size

of 80 bytes, including header and payload. Each sensor has 10kBytes flash memory for

storing its sensing data. Sensors collect data at a fixed rate 100 Byte/minute. Thus, in

order to avoid the data overflow, sensing data has to be uploaded to SenCar every 100

minutes. After SenCar moves into the transmission range of a sensor, it stops, wakes up

the sensor, collects data, and moves again after the data transmission is finished. Let the

grid length in the moving path planning algorithm be10m. Within each cluster, multi-hop

polling protocol [99] is used as the inner-cluster protocol to avoid packets collision at the

MAC layer. We evaluated the moving planning algorithm for both connected networks and

disconnected networks.

6.4.1 Finding the Moving Circle in an Area with Obstacles

In this scenario, suppose that 800 sensors are densely deployed into a contaminated

chemistry factory building to monitor the density of leaked chemicals. The map of the
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Figure 6.8: SenCar starts the data gathering circle from the entrance of the building, collects
data from sensors and returns to the entrance. (a) Initial layout of the network. (b) Layout
and moving circle after iteration 2. (c) Layout and moving circle after iteration 4. (d)
Layout and moving circle after iteration 8.
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building and the initial layout of a bunch of sensors are shown in Figure 6.8(a). The build-

ing consists of six200m×200m large rooms, which are on both sides of a1000m×100m

aisle. The entire building is bounded by brick walls. SenCar has to move within the build-

ing. SenCar enters the building from the entrance, which is at the coordinates(0m,250m),

collects data from all sensors, and returns to the entrance after a tour. We assume that the

location information, connection patterns of sensors and the map of the building have been

obtained during the network deployment phase. Based on this information, SenCar cal-

culates the routes iteration by iteration by using the moving circle planning algorithm. As

shown in Figure 6.8, the initial moving circle consists two overlapped, straight-line moving

paths,(0m,250m)→ (1000m,250m) and(1000m,250m)→ (0m,250m). Figure 6.8(b), (c)

and (d) show the moving circle after iterations 2, 4 and 8, respectively. From the figures, we

can observe that, first, SenCar enters every room without hitting the walls of the building;

second, as the number of iterations increases, SenCar moves zigzag around the building to

get closer to the nodes. We next show that the movement of SenCar can balance the traffic

load and prolong the network lifetime.

6.4.2 Network Lifetime

We now compare the network lifetime of the following three data gathering schemes:

Scheme 1: A static observer placed in the center of the network (at point(500m,250m));

Scheme 2: A mobile observer which can only move back and forth through the straight

line between(0m,250m) and(1000m,250m); Scheme 3: SenCar which can move through

a well-planned circle that starts and ends at point(0m,250m). We introduce a new metric,

called x% network lifetime, which is defined as the network lifetime when(100− x)%

sensors either run of battery or cannot send data to the data sink due to the failure of relaying
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Figure 6.9: The relative network lifetime of Scheme 3 compared to Scheme 1 and Scheme
2. (a)100%network lifetime, (b)90%network lifetime, (c)50%network lifetime.
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nodes. In this scenario, we measure%x = 50%,90%and100%network lifetime. For the

network only containing static observer, we measured the optimalx% network lifetime by

using the load balancing algorithm in [99]. We also evaluated the lifetime of the network,

in which a mobile observer moves through straight lines. The optimal lifetime of the first

two schemes is used as the performance reference for comparison purpose. The relativex%

network lifetime ofScheme 3compared toScheme 1andScheme 2are plotted in Figure 6.9.

From the figure we can observe that all the relativex% network lifetime ratios of SenCar

compared to Scheme 1 and Scheme 2 keep increasing from iterations 1 to 10, and reach

29.8 and 4.5 at iteration 10 whenx% = 100%, 26 and 4.2 at iteration 10 whenx% = 90%,

14.9 and 2.8 at iteration 10 whenx% = 50%, respectively. From this experiment, we can

see that a mobile observer can prolong the network lifetime significantly compared to a

static observer. Moreover, a well-planned moving path performs much better than a fixed

straight line path for a mobile observer.

6.4.3 Comparison with Traveling Salesman Problem (TSP) Approach

The movement planning problem can also be modeled as the well-knownTraveling

Salesman Problem (TSP), if we force SenCar to visit the location of every sensor one by

one rather than gather data remotely. The goal of TSP is to find a minimum length (cost)

tour that visits every sensor exactly once, which is known to be NP-hard. Intuitively, TSP

can achieve longer lifetime than our approach, since each sensor can upload data directly

to SenCar without relays. On the other hand, TSP may also yield longer tour length than

our approach, since SenCar needs to visit the location every single sensor. Because of

the NP-hardness ofTSP, the brutal force search method of the optimal solution in a large

network becomes impossible. However, we have managed to run the optimal algorithm for
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Figure 6.10: SenCar gathers sensing data from disconnected clusters. Continuous and
dotted lines denote inter-cluster circles and inner-cluster paths, respectively. (a) Initial
layout of the network. (b) Layout and moving circle after iteration 2. (c) Layout and
moving circle after iteration 4. (d) Layout and moving circle after iteration 8.
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Figure 6.11: Comparison with Traveling Salesman Problem(TSP) approach

a small network for comparing with our heuristic algorithm. We use Concorde TSP solver

[93] to obtain the optimal solution of TSP in a relatively small network, where 200 nodes

are uniformly deployed in a150m×300marea. We compare our approach to TSP in terms

of tour length and the100%network lifetime, and plot relative length/lifetime ratio of our

approach compared to the TSP approach in Figure 6.11. We can observe in Figure 6.11,

both relative length and lifetime keep increasing as the number of iterations increases. At

iteration 4, our approach achieves76%of the100%network lifetime of TSP, with only46%

of the tour distance of TSP. After iteration 6, the relative lifetime keeps around87%, where

relative distance increases rapidly and reaches as high as90%of the optimal solution. After

iteration 8, our algorithm makes little improvement on the network lifetime, because it is

hard for any polynomial algorithm to achieve the performance close to the optimal solution

of a NP-hard problem. Therefore, if the tour length/delay is totally not a design concern or

packet relays are not allowed, the optimal solution of TSP can achieve the longest network

lifetime, tough it is NP-hard. Otherwise, our approach can provide quite good performance

with relatively low cost compared to TSP.
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6.4.4 Finding the Moving Circle in a Disconnected Network

In this scenario, sensor nodes are organized into five connected clusters. The mov-

ing circle of SenCar starts and ends at the same point(0m,400m). Since each cluster is

disconnected from others, SenCar has to visit every cluster one by one to gather sensing

data. Figure 6.10(a) depicts the initial layout of the network. We can see that sensors are

deployed onto five separate areas in various shapes, including a circle, a sector, an “M”-

shaped area, a “T”-shaped area, and a triangle. 300 nodes are densely deployed in each

cluster. The continuous lines between clusters denote the inter-cluster circle, while the dot-

ted lines represent inner-cluster paths. Figure 6.10(b), (c) and (d) give the moving circle

after iterations 2, 4 and 8. We can observe that clusters are connected by the inter-cluster

circle, and SenCar moves zigzag in each cluster to collect data.

6.5 Conclusions

In this paper, we have proposed a new data collecting mechanism by introducing a mo-

bile data observer, SenCar, in sensor networks. SenCar works like a mobile base station,

starts the data gathering tour from the outside observer, traverses the entire sensor network,

collects the data from nearby sensors, and then returns to the outside observer. We have

showed that the moving path of SenCar can affect the network lifetime significantly. We

presented a heuristic algorithm for planning the moving path/circle of SenCar and balanc-

ing traffic load in the network. By adopting a load balancing algorithm which finds the

turning points and clusters the network recursively, network lifetime can be prolonged sig-

nificantly. The moving planning algorithm can be used in both connected networks and
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disconnected networks. In addition, SenCar can avoid obstacles while moving. Our sim-

ulation results show that the proposed data gathering mechanism can prolong the network

lifetime about 30 times compared to a network which has only a static observer, and about

4 times compared to a network whose mobile observer can only move along straight lines.
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Chapter 7

Conclusions

This thesis presents a self-adaptive, scalable and energy-efficient integrated framework

for large scale, unattended sensor networks, which includes: The adaptive Triangular de-

ployment algorithm [94] can increase the non-gap coverage of mobile sensors. It also sup-

ports adaptive deployment. Without the map and information of the environment, nodes can

avoid obstacles and adjust the density dynamically based upon different requirements. The

CR-MAC [96] protocol can achieve much better throughput, fairness, packet delay than

IEEE 802.11 RTS/CTS protocol. In particular, under saturated traffic, both the throughput

and the fairness index of the CR-MAC protocol are very close to the theoretical bound. The

single path flooding chain routing algorithm [95] can provide reliable end-to-end routing,

and significantly save the bandwidth and power for resource limited mobile nodes, espe-

cially in large networks. The clustering and Load Balancing mechanism [99, 98, 97, 100]

can increase the network lifetime by a significant amount. In addition, the algorithm can re-

cover the network from unexpected failure of sensors and cluster heads. The data gathering

mechanism [101] by using SenCar can prolong the network lifetime greatly by introducing

a mobile data collector.
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The proposed research combines protocol design, algorithm design, analytical, proba-

bilistic and simulation techniques to conduct comprehensive studies on the above issues.

The proposed research will have a significant impact on fundamental design principles and

infrastructures for the development of future sensor networks. The outcome of this project

will be applicable to a wide spectrum of applications, including space, military, environ-

mental, health care, home and other commercial areas.
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