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Abstract of the Dissertation 
 

Analysis of surface layer effects in spherical contact 

by 

 
Jae Hun Kim 

 
Doctor of Philosophy 

 
in 
 

Materials Science and Engineering 
 

Stony Brook University 
 

2008 
 
 
 

Spherical indentation is a powerful technique for the evaluation of mechanical 

properties. Due to its non self-similar and nondestructive nature, spherical indentation has 

advantages for assessment of materials exhibiting nonlinearity and bio materials. Though 

the Hertzian solution is applicable for extraction of the elastic properties from various 

materials, it is limited in complex materials, or with surface layer effects. In this thesis, 

selected problems with surface layer effects in spherical indentation are considered.  

The first problem is the indentation of an elastic solid covered with a tensed 

membrane, applicable to many physiologic systems. Semi-analytical solutions are 

obtained relating indentation load to contact radius, as well as contact radius to depth. 

Good agreement is found between derived equations and results from finite element 

method (FEM) simulations.  In addition, the effect of membrane on sub-surface stresses 

is shown quantitatively, compared to the classical solution.  

The second problem is the indentation of an elastic bilayer, or film/substrate 
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system. A first-order elastic perturbation solution for spherical punch indentation on a 

film/substrate system is presented. FEM simulations were conducted for comparison with 

the analytic solution. FEM results indicate that the new solution is valid for a practical 

range of modulus mismatch, especially for a stiff film on a compliant substrate.  It also 

shows that effective modulus curves for the spherical punch deviates from those of the 

flat punch when the thickness is comparable to contact size. 
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1. Introduction 

 

1.1 Spherical indentation 

 

Spherical indentation has been widely used to assess the mechanical properties of 

materials, mainly due to its well-known elastic solution. The problem of two elastic 

solids with smooth and non-conforming surfaces in contact was first accurately described 

by Hertz [1]. Initially inspired by the study of optical fringes induced in the gap between 

two glass lenses, Hertz postulated that each body in contact can be regarded as an elastic 

half-space loaded over a small elliptical region of its plane surface. For the specific 

axisymmetric case (Figure 1.1a), in which the contact region is circular with radius a , 

the contact pressure distribution in the circular contact area is given as an equation; 

2/122 )/1()( arprp o −=     (1.1) 

where op  is the maximum stress at the contact center, r  is radial distance and a  is 

the contact radius. This problem has been further simplified for materials characterization. 

Consider an indentation of an elastic-half space by a rigid sphere of radius R  with 

applied load P , inducing displacement h  and contact radius a  (Figure 1.1b). Based 

on Hertz’s work, a relatively simple equation formulating relation between total load, 

contact radius and displacement (Hertzian equation) can be given as  

)1(3
8

ν
μ

−
=

ahP     (1.2) 

where μ  is  shear modulus and ν  is Poisson’s ratio [2]. 
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Figure 1.1 (a) Hertz’s postulation: each body in contact can be regarded as an 
elastic half-space loaded on contact region. 1R  and 2R  are curvatures of bodies 
in contact, a  is contact radius, and )(rp  is distributed pressure in contact 
area. (b) Schematic of indentation with a rigid sphere of radius R . 
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This general relation is applied to spherical indentation within the small strain range, and 

without friction. It is well known that this equation is accurate in the range 1.0/ <Ra  

and reliable in the range 2.0/ <Ra  with maximum error of 4%.[3] Further, as the 

relationship between a  and h  is based on the geometry of the spherical tip, an 

equation relating force to displacement is found as  

)1(3
8 2/3

ν
μ

−
=

hRP ,    (1.3) 

which is commonly used [2]. 

In contact characterization of materials, the two main tips in use are spherical and 

sharp (defined by included angle b ). Vickers and Knoop hardness tests are performed 

with sharp tips.  To relate indentation measurement to intrinsic mechanical properties, 

spherical indentation has several advantages compared to sharp indentation. First, 

whereas sharp indentation introduces a discontinuity at the tip and thus immediate 

inelasticity, spherical indentation gives a gradually increasing stress, allowing purely 

elastic deformation for shallow depth indentations (Figure 1.2) [2].  In addition, the 

well-defined stress fields allow onset of inelasticity to be probed [4, 5]. Second, unlike 

sharp indenter, a sphere does not have a self-similar geometry; Ra /  or characteristic 

strain varies with load [6], allowing measurement of stress-strain behavior including 

parameters like yield strength and hardening coefficient [7, 8]. Note however that sharp 

indentation is thus more appropriate for examining material length-scale effects. 
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Figure 1.2 Transition between the purely elastic and the elastic-plastic 
deformation in spherical indentation: (a) Typical P - h  curve with transition. 
(b) Schematic of evolution of plastic deformation. Beyond the elastic limit, 
plastic deformation initiate below the surface where the shear stress is the 
maximum. 
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1.2  Modulus measurement with indentation 

 

Indentation is a popular mechanical test for modulus measurement due to its 

relative experimental simplicity. Initially, indentation was performed with dead-weight 

loading for the hardness test. In 1948, Tabor [9] first attempted to measure modulus with 

a spherical indenter by observing the residual impression after single load indentation. 

Instrumented indentation, which allows continuous load and depth measurement, was 

developed in the 1970’s [10]. This technique has been extensively used for acquiring 

elastic modulus of various material systems, by examining the slope of the unloading P -

h  relation [11-15]. This analysis is well-suited for metals and other materials for which 

inelastic deformation does not affect elastic modulus, but for many systems, purely 

elastic deformation is necessary to characterize elastic behavior [16-18]. Specifically, 

recent attention has focused on contact probing of soft biomaterials (e.g., tissue) [19-21]. 

The indentation measurement of modulus is based on the known elastic solution, 

relating the load, displacement and contact area (Eq. 1.2). Though this equation has been 

successfully used for many material systems, it has limited applicability to non-

homogeneous systems. Since indentation is a surface measurement technique, any surface 

or surface layer involved effect give a deviation from the homogenous solution. Surface 

effects including adhesion between an indenter and a surface, friction and surface residual 

stress have been studied with analytical and experimental approaches [22-25]. Surface 

measurement of thin films on substrates has been reported to give continuous variation of 

indentation modulus depending on the depth compared to the film thickness [11, 26]. 

Similarly, a membrane covering a soft bio-material will induce size effect on the 
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indentation measurement [20]. For those complex systems, a modification to Eq. (1.2) is 

required.  

 

1.3 A membrane on a soft biomaterial 

 

Indentation is attractive for probing biomaterials, largely due to the lack of 

necessary specimen preparation, allowing quick in-vitro or in-vivo mechanical tests, for 

physiologic study or possibly diagnosis (note that palpation could be considered a type of 

indentation). Biomaterial systems such as human brain, lung, kidney, skin, and cell have 

been assessed for mechanical properties, with indentation technique [15, 19-21, 27]. 

 Indentation of ‘soft’ biomaterials raises some issues to be considered for analysis 

and/or property extraction, including viscoelasticity, adhesion due to moist surfaces, and 

structural heterogeneities in tissue samples. In the context of contact mechanics, this 

presents a number of problems to be solved. Among others, the size effect induced by a 

membrane on the surface of an organ is an interesting feature. As an example, human 

lung has long been considered as an elastic solid bounded by a membrane on the surface 

[28]. Here, the membrane is a thin layer with negligible bending rigidity. The overall 

mechanical properties of the lung could be obtained through indentation based on the 

classical elastic solution, assuming it being a homogeneous elastic solid. However, this 

assumption is reported to induce some error depending on the inflation pressure and the 

size of the indentation.[20] This membrane effect on indentation measurement is due to 

the in-plane prestress (membrane tension), which is usually developed in bio-membrane. 

The membrane imposes a size effect during contact(Figure 1.3) , that is to say, a 
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relatively large contact dimension ‘feels’ the underlying solid (relationship between 

indentation load P  and contact radius a  more so reflects the solid properties), whereas 

a smaller contact is more strongly affected by the membrane (depends on membrane 

tension compared to modulus) [20]. The relation between indentation variables ( P , a  

and h ) and membrane tension is essential to the indentation measurement for a 

biomaterial with tensed membrane. Inspired by the application of indentation to soft 

biomaterials, the problem of spherical indentation on an elastic half-space with tensed 

membrane on the surface is considered in this thesis. The problem definition and 

approach are described in detail in Chapter 4.  

 

1.4 A thin film on a substrate 

 

Measurement of mechanical properties of films deposited on substrates has long 

been an issue in thin- and thick-film technology. Although indentation is extensively used 

for the measurement of film due to its relative experimental simplicity, analysis is 

complicated by the inevitable substrate effect. Rules of practice exist that film properties 

may be isolated if contact dimensions are small compared to film thickness, but such 

simplifications are not useful for layers including microstructural size effects, or ultra-

thin films.  Thus, analyses that consider the relation between film and substrate 

properties are necessary.  

Consider the indentation of an ideally elastic film/substrate system that is 

mechanically bonded. A proper description of the effective modulus effμ of the 

film/substrate system, in the context of film and substrate moduli ( fμ and sμ ) is essential 
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Figure 1.3 Membrane induced size effect. The effect of membrane becomes less 
dominant as the contact size increases. 
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to the accurate extraction of the film properties. Since there is no exact solution yet for 

this problem, a number of approximate models have been proposed to be fitted with data 

from experiments, FEM simulations, or analytic solutions for several tip geometries.  

Those models have shown good yet limited applicability.  Most of these approaches 

were based on the following simple formula:  

)/,/()( sfsfseff ta μμφμμμμ −+=     (1.4) 

where a  is contact radius, t is the thickness of the film and φ  is a weight function of 

contact size, tip geometry and modulus mismatch; φ  approaches 1 when 0/ →ta  and 

0 when ∞→ta / .  Numerous forms of Eq. (1.4) have been proposed for sharp and flat-

ended cylindrical tip geometry. Doerner and Nix [11] first introduced an empirical 

equation of an effective modulus expressed as an exponential form and fit it with 

experimental data obtained with a sharp tip.  King[29] performed a numerical analysis 

of flat-ended tip indentation and introduced a similar equation to Doerner and Nix’s. Jung 

et al.[30] developed a power law function based on their experimental results from 

nanoindentation with ceramic films on silicon substrates.  

In 1992, Gao et al.[31] performed a first order perturbation analysis on the flat-

ended cylindrical punch problem, and presented a formula for effective modulus effμ . 

Mencik, et al.[32] compared this and several empirical equations with experimental data 

from nanoindentation, and found that Gao et al.’s equation gave the best fit to their 

experimental data. Though the perturbation approach has been confirmed to be useful for 

the indentation measurement on thin films, the flat punch assumption originally adopted 

for simplicity put a limit on its application to commonly used tip geometry, a sphere. The 

spherical tip indentation on a film/substrate system is considered in this thesis with a 
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perturbation approach. A detailed description of the problem and approach is presented in 

Chapter 5.  
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2. Statement of the Problem  

 

Spherical indentation is used very commonly to probe mechanical behavior of a 

number of engineering and biological systems.  The ease of implementation, availability 

of various tips, and non-singular stress fields make it attractive for materials, in particular 

where damage is to be avoided, or onset of inelasticity assessed.  However, in contrast 

to other indenter tips, the sphere is not self-similar.  That is to say, characteristic strain 

underneath the tip varies as contact radius changes.  This can make analysis difficult.  

In addition, in relevant systems, surface layer effects are omnipresent, and these include 

thin films on substrates, thick coatings, or biological tensed membranes.  There have 

been a number of empirical, engineering-based techniques or rules-of-thumb devised to 

simplify analyses in light of this, mostly adopting a strategy of avoidance.  For example, 

it is known that if one indents a film on a substrate, one should keep contact dimensions 

smaller than approximately one-tenth of the film thickness, to avoid substrate effects.  

However, in many real cases, this is impractical, and leads to complexities of a higher 

level that stem from microstructural size effects.  Thus, it is important to devise closed-

form, accurate analyses for the spherical indentation of materials with surface layer 

effects, if properties are to be extracted.  

In this thesis, two distinct scenarios are analyzed. In the first, inspired by 

biomaterials an elastic solid bounded by a tensed membrane of infinitesimal thickness is 

considered. In Chapter 4, spherical indentation load-depth relations are derived in a 

general manner. With the help of FEM, the Hertzian boundary condition is modified to 

accommodate the effect of membrane. Analytical models are compared with FEM 
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calculations. The subsurface stress is studied compared to classical model. In the second 

scenario, the problem of an elastic film on an elastic substrate is revisited. Indentation 

modulus of film/substrate system depends on the contact geometry, and also the shape of 

the tip. In Chapter 5, spherical indentation of the composite material is analyzed using a 

modified perturbation approach first adopted by Gao, et al [31] for the indentation 

problem. When compared with FEM, this analysis is shown to be particularly accurate in 

the case of a stiff film on a compliant substrate, which is the case in a large percentage of 

engineering applications. The FEM results with different tips are compared to show the 

effect of tip geometry on the composite modulus. 
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3. Finite Element Simulation  

 

3.1 Introduction 

 

Finite element method (FEM) simulation has been used extensively for contact 

mechanics problems. Other than indentation with homogeneous material, this technique 

allows analysis of indentation problems with complicated systems such as layered, 

graded and cracked materials [33-35].  

In this thesis, FEM is used to validate analytic predictions. All the simulations 

were performed using commercial code ABAQUS [36]. Two different models have been 

developed in this study. Both are modeled as axisymmetric and elastic solids. Mesh 

convergence was checked with classical elastic equations for each geometry assuming 

homogeneous material. The mesh was refined until the error compared to the equation 

was less than 1%.   

 

3.2 Finite element models and boundary conditions 

 

3.2.1 Spherical indentation of a membrane on an elastic half-space 

Figure 3.1 shows a schematic of the model used in Chapter 4. The spherical 

indenter was modeled as a rigid surface with 10=R . The elastic solid was modeled as an 

isotropic, two-dimensional solid using four-noded axisymmetric quadrilateral elements 

(29945 total).  Two-noded axisymmetric membrane elements (1090 total) were used to 

simulate the membrane on top of the elastic solid.
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Figure 3.1 Finite element model of spherical indentation on an elastic solid with 
membrane. 
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 To exclude the effect of Poisson’s ratio and membrane thickness change under 

indentation, the membrane was assigned a Poisson’s ratio of 0.4999 and a thickness of 

R410− .  Membrane tension was imparted via artificial thermal strains; to ensure near-

constant oT  during indentation, membrane modulus was low and imposed strains were 

accordingly high (effect of input modulus had no effect on results).  Attachment 

between membrane and solid was imposed via the ‘friction’ option, after tensing.   All 

models were performed allowing for large deformation.  

 

3.2.2 Spherical indentation of an elastic bilayer 

Figure 3.2 shows a model used in Chapter 5. The spherical indenter was modeled 

as a rigid surface with 20=R , and the film and the substrate were modeled as elastic 

solids bonded to each other. Maximum displacement was set to a limit such that 

05.0/ ≤Ra . Film thickness t  was varied between 0.005 and 6 to determine effective 

modulus in the range 100/02.0 ≤≤ ta .  The film/substrate system was modeled with 

small quadrilateral elements of length 0.0075 near the contact region for the accurate 

measurement of contact radius a . Poison’s ratio was fixed at 0.3 for the film and the 

substrate.  In addition, flat punch indentation was simulated with variable thickness of 

the film for comparison to spherical punch. Figure 3.3 shows a model for flat punch 

indentation. The film/substrate system was modeled with small elements near the contact 

area similarly to the model for spherical punch indentation. 
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Figure 3.2 Finite element model of spherical indentation on an elastic 
film/substrate system. 
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Figure 3.3 Finite element model of flat punch indentation on an elastic 
film/substrate system. 
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4. Spherical Indentation of A Membrane on An Elastic 

Half-Space 

 

4.1 Introduction 

 

In this chapter, a problem of spherical indentation of an elastic half-space, 

covered with a tensed membrane, is addressed. This is equivalent to indentation of an 

elastic thin plate/film on an elastic solid, where the thickness and stiffness of film are 

sufficiently small to neglect bending rigidity [37]. This problem arises in a few instances, 

some examples being contact of the lung, which can be treated as a quasi-elastic solid 

surrounded by a thin [pleural] membrane, or other viscera, or skin over muscle or fat.  

Spherical indentation of these systems would be useful in the extraction of material 

properties for modeling purposes, or for physiology and diagnosis. Here, a quantitative 

description of this is approximately derived, relating P  to a , using material properties 

and indenter geometry as input.  In addition, sub-surface stress fields are presented. 

Results are compared with FEM results, and ranges of applicability are discussed.  

Figure 4.1 displays a schematic of the problem to be solved – a spherical indenter 

of tip radius R  is pressed into a linear elastic half-space (shear modulus μ  and 

Poisson’s ratio ν ) covered with a tensed membrane (constant tension oT ). The 

assumption of no time-dependent behavior is necessary for a tractable solution here. 

However, this may be incorporated into the solution by substituting viscoelastic operator 

for the modulus [38]. Contact between indenter and membrane is frictionless. 
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Figure 4.1 Schematic of the problem to be addressed. 
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 In the present solution, the membrane is considered to be freely sliding on the solid 

(detachment may not occur). In a real case, the membrane would be fully attached, but it 

is shown later that for aP −  relations, within small strains our solution describes this 

case well.   

Similar problems of (i) a circular area of constant pressure op , or (ii) a rigid flat 

punch acting upon the half-space/membrane system were addressed analytically by Hajji 

[39] and numerically by Gouldstone et al. [40] , respectively.  Both of these 

investigations were motivated via mechanical investigation of respiratory organs, and are 

well-suited for the measurement of, e.g., elastic properties of the probed specimens.  

The reasons for addressing this problem further here, i.e., with a spherical indenter, 

include the following:  

 Method (i) does not lend itself well to systematic practical experiments (load, 

unload), as the pressure is applied via a column of water.   

 Method (ii) potentially introduces singularities at the edge of contact.   

(Thus, the above methods may not be used to examine inelastic mechanisms.)  

 In order to distinguish solid and membrane properties, two or more indenters of 

different sizes are required.   

 Indentation with a curved surface is more physiologically relevant, when 

considering rib/lung, heart/lung, inter-viscera contact or palpation.   

Spherical indentation addresses these points, but on the other hand it is more complicated 

in its analysis due to the change in contact dimensions with load. As mentioned above, 

Hajii analytically considered the effects of membrane on indentation with a circular area 

of constant pressure. The spherical indentation  case can be solved using similar 
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methods, but determination of proper surface loading conditions is non-trivial.  This will 

be explained in the following section.  In addition, after solving for P-a relations, sub-

surface stress fields, that are very important for investigation of inelastic mechanisms, are 

discussed.   

 

4.2 Modified boundary condition 

 

We approach the problem by first considering the boundary conditions on the 

surface of the membrane (Figure 4.1).  The solid is considered to be isotropic linear 

elastic, with shear modulus μ  and Poisson’s ratio ν .  Membrane behavior is given by  

iikTp =     (4.1) 

where p , iT  and ik  are pressure, tension and curvature, respectively. In Hajji’s case, 

he applied a pressure boundary condition on the surface, and solved the corresponding 

stress functions. For a sphere indenting the surface of a half-space, Sneddon [41] showed 

that a mixed boundary condition could be used:  

0)0,( =rrzτ       

)/()0,( arfhruz −= ,  ar ≤      (4.2) 

0)0,( =rzzτ ,   ar >     

where f  is an equation for punch shape, and h  is indentation depth.  However, the 

existence of the membrane complicates this, in that normal stress is non-zero outside the 

region of contact (see Figure 4.2a).  On the other hand, Hertz [1] used a pressure 

boundary condition for the surface of an elastic solid, given as: 
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⎛
−==

a
rprpr oczzτ , ar ≤   (4.3) 

where )(rpc  is contact pressure and op  is maximum pressure. Contribution from the 

tensed membrane has the following effects.  Figure 4.2 shows the normalized Hertzian 

pressure distribution for an elastic solid, compared with that obtained from a sample FEM 

calculation in which the solid is covered with a tensed membrane (see section 3.2.1 for 

methods).  Two main differences arise.  First, as stated above, in the latter case the 

surface pressure on the solid is non-zero outside of the contact perimeter.   This is due 

to the non-zero curvature of the membrane.  Second, the slope of the surface pressure 

distribution is not infinity at the contact perimeter (Figure 4.2b). The pressure distribution 

in Eq. (4.3) must be modified to reflect these differences. Briefly, the pressure on the 

surface of the membrane due to spherical contact can then be obtained via superposition 

of two terms: (i) the corrected Hertzian pressure on the surface of the solid and  (ii) the 

pressure in the contact region due to membrane curvature. The normal pressure 

distribution between a sphere and membrane in contact was suggested by Yang [42] to be 

R
Trp o

n 2)( = , ar ≤     (4.4) 

where oT  is stretch-independent membrane tension, R  is radius of the spherical tip. By 

inspection, we found that Eq. (4.3) could be modified to an approximate form in the 

following manner:  

  
R
T

C
ba

rprp o
oc 2

)(
1)(

2/1
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++⎟⎟
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⎞
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⋅

−= , ar ≤     (4.5) 

where b  is included to modify the shape of pressure distribution, and C  is the pressure 

difference between the Hertzian pressure and the surface pressure with tensed membrane,  
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Figure 4.2 Stress distribution on the surface of elastic solid as shown from FE 
simulation; (a) )(' rp : stress with membrane effect, )(rp : stress without 
membrane effect,  (b) Crp −)(' : stress distribution subtracting C .    
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at 0/ =ar  in Figure 4.2a. Essentially, these constants are required to maintain the 

spherical geometry in the contact region. Analytical determination of the constant b  is 

non-trivial, so we found it numerically by fitting the surface pressure distribution 

obtained by FEM for a range of moduli, tension and contact dimensions.  Figure 4.3 

shows the dependency of b  on membrane tension normalized by shear modulus and 

Poisson’s ratio. It can be seen that b  increases from 1 to 1.11 as membrane tension 

increases, without dependence on dimensional parameter, radius or material parameters. 

The relation between b  and tension normalized by modulus and Poisson’s ratio can be 

fitted with the hyperbolic equation  

4/1
3

2
1

))1(1( AoTA

AAb

μ
ν−⋅+

−=           (4.6) 

where 1A , 2A , 3A , 4A  are constants (see Appendix 1).  The constant C  is not 

obtained via simulation, but falls out of the equations; this will be addressed in a section 

4.4. It can be shown that this boundary condition is applicable whether the membrane is 

attached to the solid, or free standing, for small contact dimensions Ra / .  With an 

appropriate approximate surface pressure condition, we now follow a variation on Hajji’s 

method to obtain resulting stress and displacement fields. 
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Figure 4.3 Modification constant b  vs. normalized tension. The constant 
varies with membrane tension effect following hyperbola relation, but 
independent of geometry of contact and material parameters. 



 

 26

4.3 Elastic solution for axisymmetric problem 

 

In this section, the elastic solution of the axisymmetric problem is derived 

following the approach used by Hajji [39]. Without body forces, the classical elastic 

equilibrium equation, in displacement formulation is given as  

0)(
21

12 =⋅∇∇
−

+∇ uu
ν

      (4.7) 

where u  is the nondimensional displacement field of the half space, ν  is Poisson’s 

ratio and∇ is the gradient operator in cylindrical coordinates given by  
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θ
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1
   (4.8) 

where or  and oz  are cylindrical coordinates normalized with respect to contact radius 

a ,  ore , θe , oze are unit vectors, and 2∇  is the Laplacian operator given by 
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  (4.9) 

If we were to consider that the membrane is in frictionless contact with the solid, the 

boundary conditions on the top of the half space would be 

μτ /)()0,( o
s

o
zz

rproo −=      (4.10a) 

0)0,( =o
rz

rooτ      (4.10b) 

where )0,( o
zz rooτ  is normal stress, )0,( o

rz rooτ  is shear stress at the top of the half space, 

and μ/)( o
s rp  is the normalized pressure exerted by the membrane on the surface of the 

half space.   

The torsionless axisymmetric contact problem can be solved with the Boussinesq forms, 
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in terms of two harmonic functions [43]. The displacement field is thus given as   
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where Φ , Ψ are harmonic functions independent of θ ,  

02 =Φ∇ , 02 =Ψ∇     (4.12) 

Similarly, the stress field can be given as  
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Considering that the stress and displacement field vanish at infinite distance, it is clear 

that Φ , Ψ and their first and second partial derivatives vanish at infinite distance from (0, 

0). Based on this observation, Hajji [44] suggested that Eqs. (4.11) and (4.13) could be 

solved using a Hankel Transform, and with assumption of frictionless contact, the 

displacement and stress fields at the surface of the solid are  

dkkrJkru oo
ro )()()21()0,( 10∫

∞
−= βν         (4.14a) 

dkkrJkru oo
zo )()()1(2)0,( 00∫

∞
−−= βν         (4.14b) 

dkkrJkkr oo
zz oo )()(2)0,( 00∫

∞
= βτ    (4.14c) 

0)0,( =o
rz rooτ             (4.14d) 

where oJ  and 1J  are Bessel functions of orders 0 and 1, respectively, β  is an 
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arbitrary function, and k  is a transform variable. 

 

4.4 Semi-analytic solution for membrane/solid  

 

In this section, the elastic solution of the spherical indentation on elastic half 

space bounded by membrane is presented by applying modified boundary condition 

extracted in section 4.2 to the general solution in section 4.3. Considering the boundary 

condition given in Eq. (4.10a), Eq. (4.14) can be solved with surface pressure distribution, 

sp , which is the same as the applied contact pressure for classical contact. Here sp  is 

not known a priori and affected by the interaction between the membrane and solid. 

However, with knowledge of contact pressure between the sphere and the membrane cp  

(Eq. 4.5), this membrane effect on surface pressure distribution sp , can be deduced by 

the governing equation for pressure equilibrium:  

)1()()( o
o

co
o

s rHrp
a

Trp
−+=

μ
κ

μμ
  (4.15) 

where κ  is the linearized curvature, cp  is the contact pressure distribution given from 

Eq. (4.5), and H  is the Heaviside step function. If we assume that   the membrane 

displacement has no dependency on oz coordinate (due to its infinitesimal thickness), the 

linearized curvature in cylindrical coordinates can be expressed as  

⎟
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oo r
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where w  is nondimensional displacement of the membrane [45]. Since the membrane 

displacement w  is equal to the elastic solid displacement oz
u  at the surface,  
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Substitution of Eqs. (4.5), (4.16) and (4.17) into Eq. (4.15) gives  
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whereε is a normalized membrane tension parameter given as 
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μ
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To      (4.19) 

Equation (4.18) can be solved using Hankel transform pairs giving  
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The constant C  can be dealt with in the following manner.  The total load P  can be 

calculated from integration of the contact pressure cp  (Eq. 4.5) in the contact region; 
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Rearrangement of Eq. (4.21) gives 
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where M  is the elliptic integral term in Eq. (4.21) (see Appendix 2).  The above may 

then be substituted into Eq. (4.20).   

Finally, inserting Eq. (4.20) into Eq. (4.14) gives the solution for the 

displacement and the stress field in this problem. The normal displacement at the surface 

is given as  
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where 1I  and 1L  are integral terms (see Appendix 2). The equation for the normal 

displacement at the surface can be modified to extract the total load versus contact area 

relation using the following geometry of the spherical contact, 
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Substituting Eq. (4.23) into Eq. (4.24) gives the total load as a function of contact radius 

and elastic properties;  
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The penetration depth of indenter h  can be calculated by substituting Eq. (4.25) into Eq. 

(4.23); 
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Both of the total load P  and the depth h  can be deduced from contact radius a and 

material parameters with Eqs. (4.25) and (4.26). 

 

4.5 Results and discussion 

 

From the proceeding analyses, we have derived two expressions for the load P  

and the depth h . For verification, these equations (4.25, 4.26) were compared with finite 

element models using ABAQUS [36]. The spherical indentation on an elastic half-space 

with tensed membrane on top was modeled as described in section 3.2.1 In keeping with 
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the original motivation of the work, results are shown here for Poisson’s ratio 43.0=ν , 

which has been reported for lung [20], but are valid for all values of ν . 10=R  in all 

simulations; the significance of including this value is described below. 

Figures 4.4a-c shows the derived results (Eqs. 4.25, 4.26) with FEM calculations, 

over a range of input variables.  In Figure 4.4a, data is plotted against explicit variation 

of the ratio μν /)1( −oT , with μ  held constant. Satisfactory agreement was found 

between Eq. (4.25) and FEM, over the Ra /  range shown.  Not surprisingly, P  

increases significantly with increasing oT . For further verification, note that the solution 

equals the Hertzian prediction for 0=oT . Figure 4.4b shows additional variation, this 

time with constant μν /)1( −oT  and varied μ , and again good agreement is found 

between analysis and FEM. Figure 4.4c compares Eq. (4.26) to results from FEM with 

varying μν /)1( −oT , showing good agreement between the two. Note the range of 

tension/modulus shown in this data covers a reasonable range expected for most 

biomaterials (e.g. Hajji [39] and Stamenovic [46]).  

It is important to recognize that the ratio μν /)1( −oT  is not dimensionless, and 

has units of length.  In Hajji’s original treatment, the contact radius a was included in 

the denominator, removing this complexity.  However, in the current analysis, a varies 

with depth.  This results in an inherent length scale into the problem, and recognition of 

modeling units becomes necessary. For example, if one were to consider a membrane 

tension 1000=oT dynes/cm and  1000=μ dynes/cm2, the data in Figure 4.4 would be 

applicable for indentation with tip radius 10=R cm. If SI units were chosen 

( 1000=oT N/m,  1000=μ N/m2), a tip radius of 10=R m would be applicable. 



 

 32

 
 
 

a/R

0.00 0.05 0.10 0.15 0.20 0.25

P
 (m

N
)

0

250

500

750

1000

1250

To(1-ν)/μ = 0 cm      
To(1-ν)/μ = 0.5 cm
To(1-ν)/μ = 1 cm
To(1-ν)/μ = 5 cm
To(1-ν)/μ= 10 cm

Hertzian

 
(a) 

a/R

0.00 0.05 0.10 0.15 0.20

P
 (m

N
)

0

250

500

750

1000

1250

1500

μ = 1.75 kPa   
μ = 3.5 kPa    
μ = 17.5 kPa  

 
(b) 

 

 



 

 33

 

 

 

 

a/R

0.00 0.05 0.10 0.15 0.20 0.25

h/
R

0.0

0.1

0.2

0.3

0.4

To(1-ν)/μ = 0 cm    
To(1-ν)/μ = 0.5 cm  
To(1-ν)/μ = 1 cm  
To(1-ν)/μ = 5 cm  
To(1-ν)/μ = 10 cm  

Hertzian

 
(c) 

 
Figure 4.4 (a) Load-contact radius curves; =ν 0.43, =μ 3.5 kPa , μν /)1( −oT  is 
normalized membrane tension; (b) Load-contact radius curves with fixed membrane 
effect; =ν 0.43, Normalized membrane tension is fixed at =− μν /)1(oT 1 cm ; (c) 
Depth-contact radius curves; =ν 0.43, =μ 3.5 kPa . Solid lines are from analytical 
solution, dots are from FE simulations. 
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In this study we have investigated systems of physiologic relevance.  Thus, the Figures 

are plotted for a tip radius of R = 10 cm, which is of order organ size, moduli are of order 

kPa , and tension of order cmkPa ⋅ .   

Figure 4.5 shows comparison (for P  vs Ra / ) between the analytical formulae 

treating membrane/solid contact as frictionless, and FEM calculations in which 

membrane was attached to solid. Data are shown for a range of solid/membrane 

properties, and agreement between the two solutions is very good.  This result shows 

that within this range, the derivation presented here should be applicable for real systems, 

at least for determination/analysis of aP − .  In addition, as shear stresses are ostensibly 

non-zero in the case of attached membrane, this result shows that aP −  is relatively 

insensitive to surface shear stresses over this range.       

For analyzing, e.g., initial inelastic events, it is useful to know the distribution of, 

e.g., shear stresses underneath the indenter tip. Here we show selected comparisons of (i) 

pressure and displacement distribution at the indented surface and (ii) maximum shear 

stress (calculated from principals) along the axis of symmetry of indentation. The explicit 

relations may be calculated using Eqs. (4.14, 4.20) and are placed in the Appendix 3. 

Figure 4.6 shows surface distributions of normal stress and displacement, calculated via 

the analysis in this work, and FEM. Good agreement was found between both approaches.  

Note for this case, results are compared using 43.0=ν , but other input values led to 

similar matching of analysis and FEM. Figures 4.7 a and b show distributions and 

location of maximum shear stress, respectively, for a range of input parameters. Figure 

4.7a mimics the presentation from Johnson [2]  normalizing the shear stress with respect 

to op , for a range of membrane tension. 
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Figure 4.5 Load-contact radius curves; =ν 0.43, =μ 3.5 kPa , μν /)1( −oT  is 
normalized membrane tension; Solid lines are from analytical solution, dots are 
from FE simulations with membrane attachment. 
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Figure 4.6 Stress distribution and displacement on the surface of elastic solid;

=ν 0.43, =Ra / 0.05, =− μν /)1(oT 0.5 cm . Solid lines are from analytical 
solution, dots are from FE simulation. Stress is normalized by shear modulus 
and displacement is normalized by contact radius.  
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Figure 4.7b shows how the normalized ( az / ) location of maximum shear stress varies as 

a function of Ra / .  As expected, in the Hertzian case ( 0=oT ) this location is a 

constant.  However, a decrease is shown, with increasing Ra / , for all other cases with 

finite membrane tension.  This is due to the decrease in membrane ‘effect’ as contact 

dimensions increase (see Eq. 4.19).  Note that the data shown are for constant R .  It is 

expected that whereas the attachment conditions between membrane and solid have little 

effect on the results in Eqs. (4.25) and (4.26) [44], under larger deformation an attached 

membrane could significantly affect stress distributions (see section 4.6) . Finally, in 

cases of physiologic visceral contact, sufficient moisture exists to provide relatively 

frictionless conditions. Nevertheless, our FEM models with a friction coefficient of 0.1 

(not shown) suggest that within the applicable range of this model, indenter/membrane 

friction has little effect.    



 

 38

 

 

 

N
or

m
al

iz
ed

 d
ep

th
, z

/a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To(1-v)/μ = 0 cm 
To(1-v)/μ = 0.1 cm
To(1-v)/μ = 1 cm 
To(1-v)/μ = 10 cm 
To(1-v)/μ = 100 cm

0.1 0.2 0.3 0.40.0

orz p2)( ττ −

N
or

m
al

iz
ed

 d
ep

th
, z

/a

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To(1-v)/μ = 0 cm 
To(1-v)/μ = 0.1 cm
To(1-v)/μ = 1 cm 
To(1-v)/μ = 10 cm 
To(1-v)/μ = 100 cm

To(1-v)/μ = 0 cm 
To(1-v)/μ = 0.1 cm
To(1-v)/μ = 1 cm 
To(1-v)/μ = 10 cm 
To(1-v)/μ = 100 cm

0.1 0.2 0.3 0.40.0

orz p2)( ττ −
 

(a) 
 



 

 39

 

 

 

 

a/R
0.00 0.02 0.04 0.06

0.50

0.55

0.60

0.65

0.70

0.75

To(1-ν)/μ = 0 cm 

To(1-ν)/μ = 0.1 cm 

To(1-ν)/μ = 1 cm

To(1-ν)/μ=10 cm 

z/
a

(M
ax

im
um

 s
he

ar
 s

tre
ss

)

a/R
0.00 0.02 0.04 0.06

0.50

0.55

0.60

0.65

0.70

0.75

To(1-ν)/μ = 0 cm 

To(1-ν)/μ = 0.1 cm 

To(1-ν)/μ = 1 cm

To(1-ν)/μ=10 cm 

z/
a

(M
ax

im
um

 s
he

ar
 s

tre
ss

)

 
(b) 

 
Figure 4.7 (a) Shear stress distributions along the axis of symmetry with 
variable membrane tension; =ν 0.43, =μ 3.5 kPa . Maximum shear stress 
depth increases as membrane effect increases. (b) Maximum shear stress depth 
– contact radius curves; =ν 0.43, 5.3=μ kPa . Contrary to the case without 
membrane effect, the maximum depth is increasing as the tension increases and 
decaying from maximum as the contract radius increases. 
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4.6 Conclusion 

 

In this chapter, a solution for spherical indentation of an elastic half-space 

covered with a tensed membrane is developed. Semi-analytical relations show good 

agreement with FEM models, over a range of input parameters. The modified boundary 

condition is proved to be valid for various combinations of modulus and membrane 

tension. The plot of shear stress based on current solution shows that the location of 

maximum shear stress deviates from the prediction of classic solution and decreases as 

the normalized contact radius increases. Though the attachment between the membrane 

and the elastic solid is the real case, the free sliding assumption shows negligible effect 

on the results. It is intended that this solution is appropriate for macro- or perhaps micro-

indentation of biological tissues. FEM results with large depth indentation illustrates that 

the compressive pressure possibly induce the shrinkage of local region of lung, leading to 

collapse. 
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5. Spherical Indentation of An Elastic Bilayer  

 

5.1 Introduction 

 

In this chapter, the spherical indentation on an elastic layered system is 

considered. New perturbation solution is presented compared to FEM results. The effect 

of the tip geometry on the measured modulus will be discussed.  

After the instrumented indentation was adopted for measurement of mechanical 

property, its application has been extended to the film measurement. Due to the lack of an 

exact solution for a film/substrate system, there have been numerous models for the 

relationship between the effective modulus effμ of the film/substrate system and the 

film/substrate moduli ( fμ and sμ ). Most of these works were based on flat-ended and 

sharp tip indentation aimed at application to nanoindentation.  

 Doerner and Nix [11] first proposed an exponential equation for the effective 

modulus based on their experimental data using nanoindentation. King [29] modified this 

equation by doing numerical analysis of flat-ended tip indentation. The above empirical 

equations have adjustable parameters which must be determined by experiment, or 

numerically.  

Gao, et al.[31] derived a first order perturbation solution for the flat  punch 

indentation problem, showing that their solution is valid up to the modulus mismatch 

ratio of 2. Xu and Pharr[47] later modified the perturbation solution and comparison with 

FEM results showed better accuracy for a wide range of modulus mismatch. The 

perturbation solution is attractive because it is given as a closed form and doesn’t include 
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adjustable parameters. But its assumption on flat-ended cylindrical geometry limits the 

applicability for sharp or spherical tip indentation, particularly when a  and t are 

comparable.   

Different tip geometries have been considered in other investigations.  Perriot 

and Barthel[48] used numerical integration to get effective modulus curves for sharp and 

spherical tips, and showed they overlap closely, but differ from those for a flat-ended 

cylindrical tip.  Clifford and Seah[26] conducted FEM simulations with spherical tip 

geometry to get effective modulus curves for compliant polymer films on stiff substrates 

and proposed a curve-fit equation.  Finally, Hsueh and Miranda[49] presented an 

approximate, analytically derived equation of effective modulus under spherical tip 

indentation, based on an extension of the Boussinesq Green’s function. Using FEM 

simulations, they showed that their results were valid for a certain range of modulus 

mismatch, but most accurate for the case of a compliant film on a stiff substrate.  

 There is an opportunity to revisit the problem of spherical indentation of a bilayer, 

with particular attention to the stiff film on compliant substrate. From the above 

investigations it appears that inaccuracies may arise from (a) tip geometry (e.g., flat 

punch vs spherical) or (b) analysis method.  To investigate this, here we use the first-

order perturbation solution, and modify it for a spherical tip geometry.  The following 

salient points will be made: 

 A known solution for indentation of a homogeneous half-space is used to calculate 

the energy change due to perturbation of modulus.  Specifically, we adapt Gao’s 

solution to accommodate the stress/displacement distribution under a spherical tip. 

 FEM simulation is conducted to verify the new solution.  FEM results for a 
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spherical tip are compared to those for a flat-ended cylindrical tip for the 

examination of the effect of tip geometry on effective modulus measurement. 

 Improved agreement is shown between the new approach and FEM/numerical 

approaches, particularly in the case of a stiff film on a compliant substrate.  

 

5.2 Elastic solution for spherical indentation of an elastic half space 

 The problem of spherical contact was first studied by Hertz [1]. He solved 

integral equation and presented the contact stresses. The stress beneath the surface was 

first analyzed by Huber [50]. Fuch [51] settled the lines of principal stress by carrying out 

a laborious process of arithmetical integration. Later, Morton and Close [52] calculated 

the stresses developed in the half-space on which a spherical ball is pressed. None of the 

above works presented an applicable solution with explicit formulation. The fully derived 

formulation of stress field under spherical contact was given by Hamilton and Goodman 

[53], but their formulation was in an implicit form involving imaginary parts. Hamilton 

[54] extracted the stresses as a series of algebraic formulae based on Hamilton and 

Goodman’s result.  

The stress field for the frictionless spherical contact problem given by Hamilton 

is as follows; 
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Similarly, the displacement field is given as  
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In the next section, the stress, displacement and strain field (Eqs. 5.1-10) will be used to 

calculate the strain energy due to a moduli perturbation.  

 

5.3 Perturbation analysis 

 

Figure 5.1 shows a schematic of the problem to be addressed, namely the 

indentation of a film/substrate system with a rigid spherical tip of radius R .  

Cylindrical coordinates r , θ , z  are used and the system is axisymmetric about the z-

axis ( 0=r ).  The contact surface and the film/substrate interface are located at 0=z  

and tz = , respectively.  An applied load P  results in tip displacement h  and the 

contact radius a .  Both film and substrate are isotropic linear elastic solids, with shear 

modulus and Poisson’s ratio  fμ , fν  and  sμ , sν , respectively.  In perturbation 

analysis, the film/substrate system is treated as a homogeneous material with (initially) 

properties of the substrate that undergoes a phase transformation to assume film 

properties in the region tz <<0 .  During the transformation, the load P  is fixed and 

the displacement h  is allowed to change to hh δ+ .  The force-displacement relation 

for spherical indentation of an elastic material, is described by Hertzian relation[2] as  
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Figure 5.1 Schematic of spherical indentation on film/substrate system 
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Equation (5.11) contains a single value for shear modulus and Poisson’s ratio, but a 

composite value is used to represent the film/substrate system [26, 49, 55]. Upon the 

phase transformation, the extra work done by the force P  due to the displacement 

change hδ  is thus calculated as [56]  
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The additional work is equal to the strain energy change due to moduli variation in the 

body, and the energy conservation equation can be written as  

dVuuchP o
lkV

o
jiijkl

f
,,2

1
5
2

∫−= δδ       (5.13) 

where ijklcδ  is the change of moduli from substrate material to film material and o
iu  is 

the known displacement field for the homogeneous substrate material.  The right term of 

Eq. (5.13) is the energy variation due to a moduli transformation, and can be rearranged 

(following Gao, et al.[31]) as 
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where sλ  is the Lame constant of the substrate,   

 
)21(

)(

fs

sf

s

fe
νν

νν
μ
μ

−

−
⋅= ,     (5.15) 

and oτ  and oε  are the known stress and strain field for the homogeneous substrate 

material. The terms fV  and fA  in Eq. (5.14) indicate the domain volume and the 

surrounding surface domain of the film region, respectively.  The surface domain 

consists of two planes: 0=z  and tz = .  The surface stress and displacement solutions 
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for spherical indentation of an elastic homogeneous material are known[2], and are  

)2(
8

1 22 ra
a
p

u o
z −

−
=

π
μ

ν  ar ≤ ,    (5.16) 

2/122 )/1( arpozz −=τ  ar ≤ ,    (5.17) 

where  

22
3

)1(
4

a
P

a
hpo πνπ
μ

=
−

= .     (5.18) 

Using Eqs. (5.16-18), the area integral on the surface in Eq. (5.14) reduces to Ph54 .  

Substitution and rearrangement of Eq. (5.14) leads to the following expression for hh /∂  
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The original displacement h  is calculated from the Hertz relation[2] such as 
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Equation (5.21) is thus the perturbation equation for spherical indentation.  The terms 

oI  and 1I  are weighting functions representing modulus difference and Poisson’s ratio 

difference, respectively.  For the flat punch, Neuber’s potential [57] was used to 
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calculate oI  and 1I .  Here, the elastic solutions for the spherical punch problem given 

by Hamilton [53, 54] are used to obtain new oI  and 1I .   

Substituting Eqs. (5.1-10) into Eqs. (5.22) and (5.23) gives closed-form integral equations 

for oI  and  1I  for spherical indentation:  
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where 'A , 'S , 'M , 'N , 'G , 'H  are variables in Eqs. (5.1-10) at tz = .  Equations (5.24) 

and (5.25) represent weighting functions for the modulus and Poisson’s ratio effects, 

respectively, taking into account a spherical indenter. 

It is important to note that the perturbation analysis presented here is based on 

the assumption that the contact radius a  remains constant during transformation.  

However, with a spherical tip of constant radius R  this is not the case, as a change in 

effective modulus would indeed change h , giving a concomitant change in a .  To 

avoid this complication, we allow tip radius R  to vary during transformation but 

constrain a  to be constant.  This is permitted using Hertzian analysis, as the surface 

pressure boundary condition is described with load P  and contact radius a  in spherical 
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indentation as in Figure 5.2.  Elastic solutions for stress and displacement (Eqs. 5.1-10) 

depend only on this pressure boundary condition.  If the two cases in Figures 5.2 a and b 

have the same boundary condition, the relative strain energy difference between the two 

states can be predicted by the moduli perturbation equation as expressed in the right term 

of Eq. (5.13).  On the other hand, the left term in Eq. (5.13) gives the relative elastic 

stored energy change between two states in Figures 5.2 a and b.  By considering a 

different radius of the sphere, Eq. (5.13) is applicable to the layered contact problem. 
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Figure 5.2 Pressure boundary condition with different ball size (a) before and 
(b) after phase transformation. 
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5.4 Effective compliance 

 

The moduli perturbation can also be accomplished via transformation of the 

substrate ( ∞<< zt .)  Thus, another perturbation equation is given in similar form to Eq. 

(5.21) when the transformation occurs in the substrate region,  
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Noting that Eqs. (5.21) and (5.26) must agree with each other, Gao et al. [31] suggested 

the two equations be combined to give the unified form for effective compliance as  
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It is clear that although Eq. (5.27) gives correct values at limiting cases of 0/ →ta  

(complete sampling of film) and ∞→ta /  (complete sampling of substrate), its limit as 

∞→sμ  is not correct.  In addition, 7% error was shown between Eq. (5.27) and flat 

punch FEM models in the range of 2/5.0 << sf μμ .  Xu and Pharr [47] modified Eq. 

(5.27) to give the correct limit as ∞→sμ    
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Using FEM simulations, they showed that Eq. (5.28) gives better accuracy for a wider 

range of 10/1.0 ≤≤ sf μμ .  For comparison of modulus extraction methods, Eqs. (5.27) 

and (5.28) may be used to plot curves of effective modulus vs ta / (see later Figures).  

For further illustration, a normalized displacement may be defined and compared across 

methods[49].  This term, denoted as ft hh /  compares tip displacement under identical 
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loading conditions, between a composite material and a homogeneous material having 

film properties.  The displacement for the composite material and the film only material 

can be given by rearranging Eq. (5.11) such as  
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where ( ) fμν /)1( −  is the compliance of the film, th  is the displacement for the 

film/substrate system and fh  is the displacement for the film only material under the 

same load and geometry.  Comparing Eqs. (5.29) and (5.30), the normalized 

displacement can be given as  
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5.5 Results and discussion 

 

The new weighting functions oI  and 1I  for spherical punch (Eqs. 5.24, 5.25) 

are displayed in Figure 5.3 compared to those for flat punch[31].  The new functions for 

spherical punch have a similar shape, but are not equivalent to those for flat punch.  The 

curves for the spherical case have inflection points that occur for larger contact radius 

than the flat punch.  Thus, the flat punch case underestimates the values of oI  and 1I  

for ratios of contact radius to layer thickness ( ta / ) ranging from 0.02 to 2; and 
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overestimates the values of oI  and 1I  for ta /  ranging from 2 to 100.  Near the 

equivalence points of the spherical and flat punch cases at 2/ =ta  for oI , and 5/ =ta  

for 1I , there is similarity in the results.  Both weighting functions go to unity and zero 

as 0/ →ta  and ∞→ta / , respectively.  Figure 5.4 shows the evolution of effective 

modulus with varying ta / .  Consider the film-substrate system described in this work.  

With input values of fμ  and sμ , effμ  is the modulus that would be obtained in an 

experiment.  For a spherical indenter of radius R , this value would be calculated using 

Eq. (5.11).  For a flat punch, this would be calculated using the following equation [41]: 
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In Figure 5.4a, Eq. (5.27) is plotted using oI  derived in this work (Eq. 5.24), and oI  for 

a flat punch. Poisson’s ratio for both a film and a substrate is set to 0.3 so that 1I  is not 

considered here.  The Figure shows that using Eq. (5.27) one obtains a single curve the 

position of which is independent of modulus ratio.  In Figure 5.4b, Eq. (5.28) is plotted 

using oI  for both the current work and flat punch, and the curves correctly shift as the 

modulus ratio varies.  Note that although the curves have similar shapes there are large 

deviations between values of effective modulus for flat and spherical tips.  This 

deviation is highest when modulus ratio sf μμ /  becomes very small.  

To check the correctness of the approach, results from Eqs. (5.24), (5.25) and 

(5.28) were compared with finite element simulations using the commercial code 

ABAQUS[36]. The spherical indentation on layered system was modeled as described in 

section 3.2.2. Film thickness t  was varied to determine effective modulus in the range 

100/02.0 ≤≤ ta .  
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Figure 5.3 oI  and 1I  curves for spherical and flat punches.  
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 For comparison, flat punch indentation was also simulated with variable thickness of the 

film.  Poison’s ratio was fixed at 0.3 for the film and the substrate.  The effective 

modulus was obtained with Eq. (5.11) and Eq. (5.32) for spherical and flat punch, 

respectively. Figure 5.5 displays the FEM results for two different indenter shapes 

compared to the current solutions (using Eq. 5.28) and Gao’s analytical model for a flat 

punch [31]. Figure 5.5(a-b) illustrates the cases of a stiff film on a compliant substrate, 

and Figure 5.5(c-d) represents the cases of a compliant film on a stiff substrate.  The 

normalization in Figure 5.5 indicates how the effective modulus changes between the 

film modulus and substrate modulus.  A normalized value approaching, 0 and 1 means 

the effective modulus converges to the film modulus and substrate modulus, respectively.  

Examination of FEM results shows that the relation between effμ , fμ and sμ   

over a range of ta /  differs significantly between a flat punch and a spherical tip.  The 

difference is maximum in cases where a  and t  are comparable, and sf μμ > .  The 

two curves converge when ta /  goes to zero or infinity.  This is perhaps not surprising. 

In all cases, Gao’s flat punch solution with the modified equation (Eq. 5.28) 

underestimates the modulus for both stiff and compliant film cases.  That is to say, the 

predicted effμ  for a given set of fμ , sμ  and ta /  is lower than that extracted from the 

FEM models.  The current solution for spherical punch (with Eq. 5.28) gives good 

agreement with FEM for stiff films, but underestimates for compliant films.  Figure 5.6 

illustrates the normalized displacement (Eq. 5.31) curves comparing the current work 

with FEM results and Hsueh’s model[49]. Note that Hsueh’s model gives a very similar 

result to the current solution when the modulus mismatch is small for the case of stiff 

films, but when the mismatch increases, it shows larger deviation. 
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Figure 5.4 Evolution of the effective modulus effμ  with ta /  for spherical 
punch (solid line) and flat punch (dashed line). (a) Plots of Eq. (5.27) and (b) 
Eq. (5.28). Values of fν  and sν  were fixed at 0.3.  
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Figure 5.5 Comparison of FEM results to the current work (using Eq. 5.28) and 
Gao’s solution for stiff films (a) [ 10/ =sf μμ ], (b) [ 2/ =sf μμ ] and compliant 
films (c) [ 5.0/ =sf μμ ], (d) [ 1.0/ =sf μμ ].  
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Figure 5.6 Normalized displacement, ft hh / curves for the current work with 
comparison to FEM results and Hsueh’s model: (a) 2/ =sf μμ ,4 and 10, and 
(b) 1.0/ =sf μμ , 0.4 and 0.5.  
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For 10/ =sf μμ , both Hsueh’s and the current solution deviate from the FEM results 

when ∞→ta / .  Hsueh et. al attributed this discrepancy to flexural stresses in the film.  

The current solution underestimates the modulus in the case of compliant films.  We 

find this acceptable, as Hsueh’s solution is sufficiently accurate in those cases.  Finally, 

it is interesting to note that in the case of stiff films, the current solution appears most 

accurate when a  and t  are comparable.   

In considering the accuracy of Gao’s original approach, one must account for 

errors arising from (a) the method of analysis and (b) the indenter shape approximation.  

When Gao, et al first derived a solution for the flat punch, they mentioned that the 

solution is correct with 7% error within 2/5.0 ≤≤ sf μμ , when compared with FEM for 

the same shape.  Subsequently, Xu and Pharr modified Gao’s solution and showed that 

its accuracy increased in a wider range 10/1.0 ≤≤ sf μμ .  However, Figure 5.5 shows 

that their modified solution is still off from the FEM results for all cases.  Addressing 

the indenter shape, error could result from using Neuber’s potential for an external crack 

to calculate the strain energy for the flat punch geometry.  The stress singularity of flat 

punch at the corner may lead to differences with the FEM simulation.   

Our current solution is based on the same perturbation approach, but we are 

using a more practical geometry, spherical punch, with a non-singular stress field.  

Figure 5.5 shows that the perturbation analysis, with a correct and readily comparable 

geometry, gives very accurate results, in particular for the case of a stiff film on a 

compliant substrate, and where a  and t  are comparable.  This shows the remarkable 

applicability of the perturbation approach in this case.  In the compliant film case, 

accuracy is less, even with the correct geometry.   
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5.6 Conclusion  

 

A new analytic solution for spherical indentation of a linear elastic film/substrate 

bilayer is presented based on the perturbation approach previously used by Gao et al [31].  

The new weighting functions ( oI , 1I ) have similar shapes to those for flat punch, but 

deviate over most of the contact dimension range.  FEM results confirm that the 

previous flat punch assumption gives significant error when a spherical punch is used to 

measure the effective modulus. The new perturbation solution gives good agreement with 

FEM results for stiff layers on substrates, relevant for a number of engineering systems.  
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6. Summary and Suggestions for Future Work 

 

 

 

This thesis contained an examination of surface layer effects in spherical 

indentation of solids by recourse to an analytical approach. FEM simulation was 

extensively used to analyze the problems and validate the derived solutions.  Errors and 

comparison to current and past work were discussed.  Summary and suggestions for 

future work are as follows. 

 

6.1 Spherical indentation of a membrane on an elastic half-space 

 

The effect of a surface membrane on the indentation measurement of an elastic 

solid was studied, based on the classical elastic foundation. The membrane was 

implemented into the indentation problem as a surface tension on the elastic half-space, 

and for which resisting pressure is curvature-dependent. Fitting parameters were devised 

to predict the deviation of pressure distribution from the ideal elastic case, with the use of 

FEM simulation. The semi-analytic solution was universal; it was proven to be applicable 

for all combinations of elastic material properties and geometry, by comparison to FEM 

results. The current work allows evaluation of the membrane tension and the elastic 

modulus separately with single tip indentation, from biomaterials such as viscera or skin. 

Perhaps more interesting is, beyond property measurement, the stress distribution below 

the surface can now be predicted, which is applicable to the analysis of the onset of 
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plasticity for physiologic study.  

In the further study, the effect of viscoelasticity should be considered. 

Comparison of current solution to FEM simulation with viscoelastic behavior may give 

the range of error, coming from elastic material assumption. Also, the current solution 

can be modified to include an effectively time-dependent modulus. However, currently it 

is thought that numerical methods would be necessary to evaluate the integral terms with 

time history of modulus. 

 

6.2 Spherical indentation of an elastic bilayer  

 

The indentation measurement on film/substrate system was studied with a 

perturbation approach. The energy change assuming phase transformation between a film 

and a substrate was calculated using the homogeneous solution for spherical indentation. 

Interaction between a film and a substrate was approximated by combining two 

perturbation equations. The perturbation solution was validated for the spherical 

indentation problem, especially with a system of a stiff film on a soft substrate, by 

comparison to FEM results. Careful investigation using FEM showed that the previous 

flat punch assumption gives noticeable error when a sphere is used for indentation 

measurement of film/substrate system, and that error is greatly reduced using the current 

analysis. The current work is applicable for engineering hard films such as protective 

films and insulating films.  This could include thick tribological coatings, or DLC thin 

films. Experiments can now be designed such that indentation strain Ra /  is constrained 

to be low, with no limitations on the Ra /  ratio.  This is useful as spherical indentation 
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with low Ra /  provides the ONLY true elastic analysis of these systems (flat punches 

have singularity at the corners, and sharp tips can only be used for elastic analysis after 

unloading.) 

Previous models and current solution present the variation of effective modulus 

depending on the contact size. For the classical problem, the contact size a  can be 

deduced from the known relation between a  and depth h . For the bilayer indentation 

problem, this is not known a priori and depends on the modulus mismatch ratio. In the 

future work, a - h  relation can be studied further using FEM simulation. Curve fitting 

equation for this relation would be useful for the analysis of effective modulus from 

indentation experiment. 
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Appendix 

 

Appendix 1 

 
Modification constant b in Eq. (4.6) 

4/1
3

2
1

))1(1( AoTA

AAb

μ
ν−⋅+

−=  

where 
A1 = 1.1113 
A2 = 0.1122 
A3 = 7.7826 
A4 = 1.7131 
 



 

 72

Appendix 2 
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Appendix 3 

 

Displacement and stress distribution underneath indenter 
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