

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Applications and Enhancements of

 Featherweight Virtual Machine (FVM)

A THESIS PRESENTED

BY

HARIHARAN KOLAM GOVINDARAJAN

TO

THE GRADUATE SCHOOL

IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

STONY BROOK UNIVERSITY

MAY 2008

 ii

Stony Brook University

The Graduate School

Hariharan Kolam Govindarajan

We, the thesis committee for the above candidate for the

Master of Science degree,

Here by recommend acceptance of this thesis.

Professor Tzi-cker Chiueh, Thesis Advisor
Computer Science Department

Assistant Professor Jie Gao,

Computer Science Department

This thesis is accepted by the Graduate School

 Lawrence Martin

Dean of the Graduate School

 iii

Abstract of the Thesis

Applications and Enhancements of

Feather Weight Virtual Machine (FVM)

by

Hariharan Kolam Govindarajan

Master of Science

in

Computer Science

Stony Brook University

2008

Featherweight virtual machine [11] (FVM) is an OS level virtualization technique
on Microsoft Windows OS. Under FVM architecture, each virtual machine is created

using the same state as the host machine. The virtual machines are logically isolated
using namespace virtualization, resource copy on write and IPC confinement.

The key idea of FVM is access redirection and copy on write, which enables each
VM to read the base environment from the host machine but write into the FVM private

environment. FVM identifies various communication interfaces and confines its scope on
a per VM basis.

We describe the design and implementation details that we followed to virtualize
Windows installer, which is an operating system resident installer service. Windows

installer service performs installation duties (files/registry updates) on behalf of
applications. Windows clipboard forms a communication medium (a scratch pad)
available to Windows and all running applications. We also describe the

design/implementation details for visualizing Windows clipboard.

We also present an application of FVM framework: binary server. Binary server
allows Windows desktop to share binaries that are centrally stored, managed and patched.
The shared binaries are launched in a VM whose runtime environment is imported from a

central binary server. We describe the procedure to customize the generic FVM
framework to accommodate the needs of these applications and present experimental

results to demonstrate their performance and effectiveness.

To

My Family

 v

Table of Contents

List of Tables .. vi

List of Figures.. vii

Publications .. ix

1 Introduction .. 1

2 Related Work.. 7

3 FVM Enhancements .. 9

3.1 Overview ... 9

3.2 Windows Installer Virtualization .. 10

3.3 Clipboard Virtualization ... 13

4 Shared Binary Server .. 15

4.1 Introduction... 15

4.2 Overview of FVM based shared binary server ... 16

4.3 Design and Implementation .. 16

4.4 Performance Evluation ... 20

5 Conclusion and future work ... 25

Bibliography .. 26

 vi

List of Tables

1: SHARED BINARY SERVER REDIRECTION LOGIC 19

2: NUMBER OF REGISTRY/FILES REDIRECTED ... 23

 vii

List of Figures

1: OS LEVEL VIRTUALIZATION VS HARDWARE LEVEL VIRTUALIZATION 2

2: FVM VIRTUALIIZATION LAYER AT SYSTEM CALL INTERFACE LAYER 3

3: FVM VIRTUALIZATION TECHNIQUE..10

4: WINDOWS INSTALLER VIRTUALIZATION TECHNIQUE .. 12

5: SUMMARY OF APPLICATION DEPLOYMENT ARCHITECTURES 15

6: BINARY SERVER ARCHITECTURE... 17

7: COM REDIRECTION TECHNIQUE IN SHARED BINARY SERVER18

8: BINARY SERVER EVALUATION-1 ..21

9: BINARY SERVER EVALUATION-2 ..21

10: BINARY SERVER EVALUATION-3 ..22

Acknowledgements

First of all, I sincerely wish to thank Dr. Tzi-cker Chiueh for his guidance and support all

through the project. I would also like to thank all the present and past colleagues at

Rether Networks Inc. In particular, Dr. Lap-chung Lam for his insightful advises and

helps on my thesis work and Sheng-I Doong, President of Rether Networks, for her kind

support. I also want to give my thanks to Dr. Yang Yu for mentoring me and helping me

bootstrap on my thesis work. I would also want to give my thanks to Subhadeep Sinha

and Zhiyong for their help.

ix

Publications

 Yang Yu, Hariharan Kolam Govindarajan, Lap-Chung Lam and Tzi-cker Chiueh,
 “Applications of a Feather-weight Virtual Machine”, to appear in Proceedings of the

 2008 International Conference on Virtual Execution Environments
 (VEE‟08), March 2008

1

Chapter 1

Introduction

1.1 Virtual Machine – an overview
 Virtual machine (VM) is a technology that enables multiple execution environments
on a single physical machine. VM does typically hide the physical characteristics of a
computing resource from its users. Thus a single physical resource (for example, a

server) could be made to appear as multiple virtual resources. VM‟s have been
extensively used for the following purposes,

 Server consolidation: Consolidate the workloads of several under-utilized
applications to fewer machines (perhaps a single machine too). Benefits include

saving on administration costs and management costs.

 VM‟s could be used to provide secure, isolated sandboxes for running untrusted

applications. Virtualization is an important concept in building secure computing
platforms. Since, the VM‟s could be used to isolate what they run, they provide fault
and error containment.

 VM‟s makes software easier to migrate, thus aiding in system (and application)
mobility.

 VM‟s can be used to create varied test scenarios, and can lead to some very
imaginative, effective quality assurance.

To support virtual environments with software approaches, a virtualization layer must

be placed at certain levels along the machine stack. This virtualization layer thus

partitions physical machine resources and maps the virtual requests from a VM to
physical requests. This virtualization layer could be hardware embedded, in which case

the hardware provides architectural support that facilitates building a Virtual Machine
Monitor and allows multiple Operating Systems (called the guest OS‟s) to run in
isolation. The virtualization layer could also emulate the entire instruction set of a VM in

software which is called the Instruction Set Architecture (ISA). Hardware Abstraction
Level (HAL) virtualization exploits the similarity between the architectures of the guest

and host machine, and directly executes certain instructions on the native CPU without
emulation. OS-level virtualization partitions the physical machine‟s resources at the
operating system level. This means all the OS-level VM‟s share a single operating system

kernel. Fig 1.1 depicts the difference between OS level virtualization and Hardware level
virtualization. Hypervisor (or the Virtual Machine Monitor) is the name given to the

virtualization platform that allows multiple operating systems to run on host comp uter at
the same time. Hypervisor‟s could be implemented to run directly on a bare hardware
platform (typically as a control program). VMware ESX server, Citrix XEN server are

typical examples for such configurations. Hyper visor could also software that runs
within an operating system environment. The guest operating system in this case runs on

a third level above the hardware (e.g. VMware Workstation, VM Fusion etc.)

2

Figure 1.1 OS level virtualization vs. Hardware level virtualization

1.2 Feather-Weight Virtual Machine (FVM)
 FVM is a Windows based OS level virtualization technique, which is specifically
designed to reduce the invocation latency of a new VM and to scale to a large number of

VMs by minimizing per-VM resource requirement. The virtualization layer, in FVM,
virtualizes the namespace by renaming the system resources, which forms the key idea of
FVM. This renaming takes place at the OS system call interface. Microsoft Windows

supports numerous namespaces for various system resources (system resources include
files, registries, kernel objects, network address, daemon services etc). Whenever a

process makes a system call to access any of the above-specified resources, the FVM
layer manipulates the names of the resource. This renaming ensures that the namespaces
visible to processes in one VM is disjoint to those visible to a process executing in a

different VM. This further ensures that, two VMs never share any resources and therefore
cannot interact with each other directly. For example, when a process in a VM (say

VM1) tries to access a file named “/foo/bar”, the virtualization layer redirects access to a
different file (say “/VM1/foo/bar” on the host workspace). This virtual to physical
mapping is transparently performed inside the virtualization layer which, in case of FVM,

is at the system call interface/system call library interface layer.

All the VMs share the host OS‟s kernel-mode component, including the hardware
abstraction layer, device drivers, OS kernel as well as system boot components. The file
system image is also shared by default. Each new VM starts with exactly the same

operating environment as the current host. Therefore, both the startup delay and the initial
resource requirement for a VM are minimized. Since, the resource virtualization is
performed by simply renaming system call arguments instead of complicated resource

mappings or instruction interpretations, an application‟s runtime performance in a VM is
also improved Duplicating the resources to each VM‟s partition involves significant

resource costs on the physical machine (along with the VM initialization and termination
overhead). FVM typically shares most resources with the host environment. Private

3

copies are created only when a resource is to be modified by the VM. Figure 1.2
pictorially depicts the FVM virtualization architecture.

.

Figure 1.2: FVM virtualization layer at OS system call interface.

FVM virtualization layer is implemented by intercepting Windows system calls,

which are exposed to the user-mode applications through a set of user mode dynamic
linked libraries (DLL‟s). The intercepting mechanism is implemented mostly in the

kernel (it is difficult to be subverted or bypassed than the user mode interceptions).
However, some of the interceptions are implemented in the user space too. The reason for
user mode interception being, some of the system calls like those managing daemon
service, GUI window and network interface either do not have kernel mode interface or have a
kernel mode interface with no clear documentation. The files, registries, kernel objects are
virtualized inside the kernel. The kernel mode interceptions are implemented using a driver,

which modifies the system call entry point in the System Service Dispatch Table (SSDT)

within the kernel The user mode component is a DLL that modifies the library function
entry point using the Detours library [1].

1.2.1 User mode interception
 Typically, Windows OS provides a set of standard API‟s based on which user

processes request OS services. The API‟s are generally implemented as dll‟s (like
kernel32.dll, user32.dll etc). These dll‟s are the most common user level interception

points.

We rely on Detours library for user level interceptions in FVM. Detours library

replaces the first few instructions of the target API function with an unconditional jump
to the user provided function, called a detour function. The replaced instructions from the

target function are saved in a trampoline function, with an unconditional jump to the rest
code of the target function. Thus, a process‟s call to a target API is routed to the detour
function, which can call its trampoline function when it requests service from the original

target API function. We inject our custom DLL to the target process‟s address space.

4

When this DLL is being loaded, its initialization routine is invoked to perform Import
Address Table (IAT) modification or function rewriting. The custom DLL, which we

inject, provides the intercepting function that has the same function signature as the target
function and is called when the target function is called.

1.2.2 Kernel mode interception

 A process makes system calls to request OS services, and the system calls may deliver

the user requests to certain device drivers, which process the requests and return the
result to the caller. Therefore, we can intercept system calls or driver functions to change

the system behavior. Compared with user- land interceptions, interception at kernel level
is more reliable because user application processes cannot bypass it.

To make a system call on Windows NT kernel, a process loads the EAX register
with the ID of the system call and executes INT 2E or SysEnter instruction. This causes

the calling thread to transit to kernel mode and to execute the system call dispatch
routine. The dispatch routine locates the address of the system call stored in the Windows
system call table, called System Service Dispatch Table (SSDT), and then starts

execution of the system call. The SSDT stores the addresses of all the Windows system
calls, indexed by the system call ID. To intercept a system call, in the FVM

implementation, we replace the system call‟s SSDT entry with the address of our own
function, which can call the original system call function plus pre and post-processing.
The issues and alternatives of the currently used kernel mode interception in FVM are

evaluated in details in Yang Yu‟s Ph.D. dissertation [12].

1.3 Contributions

 This thesis covers a couple of enhancements to the core FVM – the Windows installer
service virtualization Windows clipboard virtualization. The later part of the thesis also

describes, in details, an application of FVM – Shared Binary Service (architecture,
implementation and evaluation).

1.3.1 FVM enhancements
 The isolation between multiple VM‟s and between a VM and the host environment
makes virtual machines an effective platform to support fault tolerant and intrusion
tolerant applications. Any changes made to the host environment (file/registry) by a

process running inside the VM (say VM1) should be “charged” to VM1. This would
ensure that when VM1 is deleted, all the changes made by it are cleaned up (without any

side effects). In addition, the isolation mechanism needs to ensure that all inter-process
communication interfaces are virtualized and confined to processes on a VM basis. The
Windows installer service virtualization essentially ensures that all changes made by the

Windows installer service process, on behalf of an application installation initiated from a
VM, are “charged” to that VM.

Windows installer service is an operating system component that describes a

standardized format for applications (known as Windows installer format). This service

performs the installation duties on behalf of the applications. An installable resource (or

5

a resource) is defined as a file, registry key, shortcut, or any other piece that an installer
typically delivers to a computer.

Though FVM has virtualized daemon (service) process management to start

certain daemon processes in each VM, some daemon processes still needs to be shared
between all VM‟s. These daemons cannot be started on a per-VM basis because they are
either critical components of system booting or they have some close dependencies with

some kernel drivers. Thus, VM‟s IPC to these daemons should be enabled so that the
processes inside the VM executes properly. Windows installer is one such daemon

process, which needs to be shared across multiple VM‟s. All of the files/registry
(resource) modification during a Microsoft Software Installer (MSI) based application
installation is performed by the installer service. To charge the installable resource to a

VM, that initiated the installation, we serialize (associate) the access to the installer
service on a per-VM basis. We describe the design, implementation and analysis of the

approach we followed as part of this thesis.

The Windows Clipboard is one additional inter-process communication method.

Clipboard is like a scratch pad available to Windows and all running applications. It
allows pieces of information to be temporarily stored and later retrieved by other

applications. Thus, Windows Clipboard forms a means of information sharing between
processes. To ensure that multiple VM‟s are isolated from each other, we need to ensure
that the Clipboard is virtualized. This essentially means that a process from one VM (say

VM1) should not see the contents that a process from a different VM (say VM2) has
stored in the clipboard.

Windows Clipboard has the following features,

o Only one item stored at a time

o Each new copy replaces the last
o Clips are not remembered between sessions

A memory object on the clipboard can be in any data format, called a clipboard
format. Each format is identified by an unsigned integer value (defined in Winuser.h). A
window can place more than one object on the clipboard, each representing the same

information in a different clipboard format. The clipboard formats are generally oblivious
to the users.

The clipboard virtualization creates an independent clipboard view on a per-VM basis.

1.3.2 Shared binary service (A FVM application)
 Shared binary service requires the end user machine to fetch all its application binaries
from a central server. We need to provide applications installed on a central shared binary

server but executed on a client machine. Clearly, all the application files, registry entries,
configuration files, COM objects, DLL‟s etc which are required for execution of the

application physically reside on the server.

FVM‟s OS virtualization technique could be leveraged to implement the shared

binary service application. With shared binary service, it is possible to reap benefits of

6

both client server computing as well as centralized resource management (one of the key
features of a thin-client computing).

As part of this thesis, we also how a generic FVM framework could be extended

to accommodate the needs of shared binary service application. We have tailored the
FVM namespace virtualization technique to implement the Shared binary server
application. We describe the architectural details, implementation details and

experimental results that demonstrate its performance and effectiveness. We also evaluate
some of the optimizations to FVM based shared binary server architecture like client side

file/registry caching.

7

Chapter 2

Related Work

Application deployment architecture

 Deployment of applications on an end user machines could be done in one of the

following methods: local installation, network boot, thin client installation, OS
streaming, application streaming and shared binary service.

In the local installation architecture, application binaries are installed and

executed on the end user machines. In this architecture, using network-wide application

installation/patching tool, we could reduce the application management cost. Network
boot architecture allows a diskless end user machine and enables it to boot a kernel image

located on a remote server and thus run OS as well as application code on the machine‟s
local CPU. Citrix Ardence [2] refers this technology as disk streaming. The technology
that Ardence uses enables Citrix servers to boot from a centralized disk image files stored

on a file server instead of each server having its own drive. An end user machine boots
from the network through Preboot Execution Environment (PXE) and then accesses the

virtual disk via a protocol called BXP. However, because of hardware dependencies, the
virtual disk of each end user machine may be different from one another and thus require
extensive customization. This architecture offers reduced application management costs

as the binary installation and management are centralized.

 In thin client computing architecture, such as Microsoft Terminal Service [3],
application binaries are installed, maintained and executed on the server‟s CPU. An end
user machine displays the result of application executions and replays user inputs via a

special protocol such as Remote Desktop Protocol (RDP). The application maintenance
costs are considerably lowered due to centralized binary installation and execution. This

architecture, however, incurs large application runtime latency and higher network traffic
load. Since, each of the application instances are executed on the server, the server should
be a high-end machine with adequate resources to cater to all the clients. This

architecture has a disadvantage that it does not leverage the compute power of the local
end user machine and instead treats the same as dumb terminals. In comparison to the

network boot architecture, thin client architecture is more generic (no hardware
dependencies) as the application executes on the remote server CPU and only the display
is exported to the end user machine.

In an OS streaming architecture [4, 5], is similar to the network boot architecture

where the OS as well as specific sets of applications are configured into a hardware level
virtual machine image stored on a central server. The end user (client) machine runs one
of the VM images on a Virtual Machine Monitors (VMM). The VM image has less

8

hardware dependencies as it is isolated by the VMM from the underlying physical
hardware. However, in practice, the hardware dependencies are transferred to the VMM,

which is not necessarily the best party to deal with hardware dependencies because of its
emphasis on minimal code base. Streaming both OS as well as applications embedded

with it does reduce the operational costs and provides centralized management flexibility.
However, OS streaming does involve significant network overhead (in most cases
reduced by using stripped down versions of network protocol stack [2]).

In the application streaming architecture [6, 7, 8, 9], application binaries and

configurations are bundled into self-contained packages, which are stored and maintained
centrally. An end user machine running a compatible OS fetches these packages from the
server and runs them directly without local installations. Each such package runs in a

virtual environment, and is cached on the local machine whenever possible. Thinstall’s
technology allows Windows application to be processed into an executable file that can

see its own version of Windows registry, file system and DLL‟s. This essentially ensures
that incompatible applications can run on the same machine without conflict. This
architecture offers the advantages of both centralized application management and

localized application execution on end user machines. However, most of the applications
(like Microsoft Office suite) support on demand installation of features (called as

advertisement in Microsoft lingo). Essentially the installation of a feature is triggered
only when the user or application uses/activates it. Packaging of such applications would
typically warrant tracing through all possible execution paths of the application to enable

package all features. This task is very specific to each supported application. Softricity
[14] solves this problem by creating a primitive application cache file (by monitoring the

default application installation on the server). The advertised feature is downloaded from
the Softricity server (pre-configured) and it becomes part of the user‟s application cache
file when ever the application or user uses/activates it. However, an issue with packaging

is that upon subsequent software updates at the server, the package has to be refreshed in
all the clients (otherwise, the application would continue to use older versions of

files/registries).

The shared binary service [10] architecture, which is widely used in the UNIX

world, is similar to application streaming except that it does not require explicit
application packaging, and it allows resource sharing among packages. More concretely,

applications are installed on a shared binary server, and then exported to all end user
machines through a standard network file-sharing interface. When an application is
executed, accesses to binaries, configuration files and registry settings are redirected to

the central binary server. Shared binary service architecture ensures that the client is
always updated with the latest updated binaries/DLLs from the server (the access is

always redirected to the central binary server).

The interception methodology used for shared binary server application is similar

to the FVM interception technique [12]. The FVM interception technique is tailored to
redirect resource access to the server, over the network. Shared binaries are set up as a

SMB share on the server.

9

Chapter 3

FVM Enhancements

3.1 System overview (Feather-weight Virtual Machine)
 Virtual Machine (VM) is typically defined as sets of user-mode processes accessing
underlying hardware through multiple interfaces at various levels like library, system

calls, I/O etc. Support for multiple execution environment (VMs) on a single physical
machine would warrant modifying the these interfaces so that access requests from

different VMs can be mapped to requests to different OS object (to ensure that there is no
interference between VMs). This modified interface is called the virtualization layer. This
layer determines the scalability, runtime performance and isolation. In general, the

isolation between the VMs is complete when the virtualization layer is close to the
hardware. However, when the virtualization layer is very close to the hardware,

scalability and performance of the system is deteriorated as many system resources are
duplicated without sharing.

The Feather-weight Virtual Machine (FVM) project is designed to facilitate
sharing (OS kernel, file system, hardware) in order to improve the scalability and runtime

performance, while still maintaining a certain degree of isolation. The virtualization layer
in FVM is at the OS‟s system call interface, as shown in Figure 3.1. All the VMs share
the host OS‟s kernel-mode components, such as OS kernel and device driver. Moreover,

critical system daemons and the file system image are also shared by default. Each new
VM starts with exactly the same operating environment as the current host OS.

Therefore, both the startup delay and the initial resource requirement for a VM are
minimized. Renaming system call arguments instead of device emulation or instruction
interpretation performs the virtualization. Therefore an application‟s runtime

performance in a VM may also be improved.

The FVM virtualization layer observes all the access requests from user-mode
processes. As a result, it can redirect access to the same OS object from different VMs to
requests against different versions of the same OS object. FVM uses namespace

virtualization and resource copy-on-write to implement the access redirection and
isolation between different VMs. When a new VM (say vm1) is created, it shares all the

system resources (disk files, system configurations, etc) with the host machine. Later on,
when different types of requests from a process p in the VM pass through the FVM layer,
these requests can be redirected as follows:

o If p attempts to create a new file /a/b, the FVM layer redirects the request to
create a new file vm1/a/b.

o If p attempts to open an existing file /a/b, the FVM layer redirects the request
to open a file vm1/a/b. If file vm1/a/b exists, no further processing is made in
the FVM layer; otherwise, the FVM layer checks the access flag of the open

10

request. If the access is “open for read”, the request will go to the original file
/a/b; if it is “open for write”, the FVM layer copies /a/b to vm1/a/b, and then

redirects the request to open vm1/a/b again.
o If p attempts to read or write an existing file, the FVM layer passes the request

through without additional processing, because read/write request is based on
a file handle, which is returned by a previous open request. If the open request
has been redirected, all the subsequent read/write requests on the same file

handle are redirected inherently.
o If p attempts to delete an existing file /a/b, the FVM layer only marks the file

as deleted by adding its name /a/b to a per-VM log. The file /a/b is not deleted
from the file system.

o If p attempts to make any types of inter-process communications, such as

sending window message, to another local process, the FVM layer examines
the two processes and blocks the communications unless they are running in

the same VM.
o If p attempts to access and communicate with certain devices, the FVM layer

denied the access unless it is permitted by a policy.

Figure 3.1: FVM namespace virtualization technique.

3.2 Windows installer service virtualization
 Installation (or setup) of an application is the act of putting the program in a computer
system so that it can be executed. An application is a usually condensed into a module
that could be distributed. In order to be used, the module must be unpacked and relevant

information must be placed at correct places on the computer. An installer is a specialized
program that automates most of the work required for installation. Windows Installer

(MSI) is an engine for installation, maintenance and removal of software on Windows
OS. The installation information, and often the files themselves, are packaged in
installation packages, loosely based on relational databases, commonly known as MSI

packages. There are other different tools available on Windows OS for creating installer

11

programs. This includes Install Shield [15], Install Anywhere [16], Wise [17] and Script
Logic [18]. Most of these tools create MSI packages as well as their own proprietary

executables. The installation/un- installation and maintenance of MSI packages are
performed by the Windows Installer service program. The changes to the computer due to

unpacking the MSI installer package is performed by this Windows Installer service
daemon (create/update of files/registry entries etc). Proprietary installers, generally, do
not rely on Windows Installer service program to perform the installation changes. The

changes are rather specific to the tools that create the installer program. The tools also
create uninstall scripts which would be potentially be called during un- installation to

undo the changes created by the installation.

The effect of installation of an application inside a VM should be confined to that

VM i.e., all resource changes made by the installer should be accounted to the VM inside
which the application that initiated the installation in running. However, Windows

installer service process is one of the critical components of system booting and hence
cannot be started on a per-VM basis. Since the installer service performs the installation
duties on behalf of the application, the resource changes made by the installer service

have to be charged to the VM. We use the following method for to ensure that the
installation carried by the Windows installer service is virtualized. (Figure 3.2 is a

pictorial depiction of the same),

o During the FVM driver loading, we determine the PID of the installer service

process. To get the PID of the installer service, we enumerate all the system
processes and find a process whose parent is the process Services.exe (the

service control manager) and whose image name is Msiexec.exe.
o Whenever a process from within an FVM (VM1) tries to communicate to the

installer service, we associate the installer process into VM1. VM1 now owns

the installer service process. This would ensure that any changes made by the
installer service process are confined to VM1. Upon completion of the

installation activity, the installer service process is removed from VM1.
o Any interim requests to access the installer service process as long as it is

associated with a VM are rejected (unless of course the request comes from a

process running inside the VM owning the installer service). Thus, the access
to the installer service process is essentially serialized.

The installable application communicates with the windows installer service using

a utility called msiexec.exe. Msiexec.exe utility is used for ins tall/uninstall activity. We

intercept this communication between the application and the installer service to
associate the installer service process with a VM and ensure serialization of access.

12

Figure 3.2: Windows Installer virtualization technique.

 The above procedure would ensure that any changes made by the installer service

directly (as part of installation) are localized to a VM (where the application initiating the
installation resides). However, the above technique is not complete when the installer
registers (or uses already registered) Common Object Model (COM) classes. COM

(Component Object Model) is a platform independent, distributed and object-oriented
system for creating binary software components that can interact. COM server is a

Remote Procedure Call (rpcss) service. And all resource manipulations (registry/file
changes/creation) that the COM component does on behalf of the COM client are
performed by this service. So, virtualizing rpcss ensures that the Windows Installer

virtualization is complete. The rpcss virtualization also helps to complete the Windows
Clipboard virtualization procedure. This will be described in section 3.3

We verified our Windows Installer virtualization method described above by

installing applications (installers) created by differed tools (which includes, Install Shield
created installers like Source Insight 3.1, custom installers like Adobe acrobat reader 8.1,
Winzip and thunderbird. We also tested out a bunch of MSI installer programs like

Apache 2.2, Log parser, Folder view etc. We also tested out installing the whole
Microsoft Office suite inside the FVM. Installations were initiated from within the FVM

and it was verified that the changes due to the installation were localized to the VM
initiating the installation. Some of the installers like Microsoft Office, Acrobat Reader
suite registers and uses COM object as part of their installation process. The

filesystem/registry changes made by the COM server (rpcss – not virtualized) could not
be localized to a VM (some sideeffects/leftovers after deleting the VM inside which the
application installation was triggered). Rpcss virtualization does ensure that the side

effects are eliminated.

13

We tested and verified different installers created from different tools on
Windows 2000 OS. The virtualization approach works without any side-effects to the

host machine. However, Windows XP has introduced the concept of application binary
prefetching which modifies the way Installer service works. The Windows Installer

service virtualization needs to be extended to accommodate the same.

3.3 Clipboard virtualization
 Window clipboard is a convenient tool to copy or move information between different
processes. To use the clipboard, the user generally needs to just select the information

(text or image) that he wants to copy or move to a different place. The information is first
copied onto the clipboard (when the copy is initiated at the source location) and at the

destination, the information is copied out (paste) of clipboard to the destination location.

There are three ways that you can copy and cut to the clipboard, and there are three ways

that you can paste from the clipboard.

 Using the File->Edit menu

 Key board shortcuts (Cntrl+C for copy, Cntrl+X for move and Cntrl+P for paste)

 Context menu. (In general, right mouse click displays the context menu options)

Windows Clipboard is thus, a very simple way to share data between processes.

Virtualizing Windows Clipboard would ensure that the information sharing is co nfined to
processes running inside a particular VM. We intercept the 2 API‟s (user level
interceptions using detours), GetClipBoardData() and SetClipBoardData() defined in

user32.dll to implement Clipboard virtualization. The following is the procedure tha t we
use to virtualize,

o FVM service daemon is created whenever the FVM driver is loaded. We
create a shared memory mapping as part of this service daemon (using
CreateFileMapping() defined in kernel32.dll) which we use to share store

clipboard data on a per VM basis.
o We intercept SetClipboadData() API and store the clipboard data along with

the format information on a per VM basis in the shared memory created. We
also keep track of the Clipboard data format information in addition to the
Upon clipboard data query from within a VM (say VM1), we return the

contents of the clipboard pertaining toVM1.
Apart from the Clipboard that Windows provides, a lot of custom applications implement

their own clipboard variants (generally as out-of-proc COM components). Out-of-proc
COM components are generally implemented as EXE‟s and is shared between multiple
applications. Office suites like Microsoft Office, Open office support clipboard which

could contain multiple items (Standard Windows supported can contain only one item
inside the clipboard at a time). They usually implement their clipboard using out-of-proc

component (as a clipboard server) to manage multiple data items. Thus, COM server
virtualization is essential to complete clipboard virtualization.

The COM server (rpcss) virtualization was recently implemented successfully by
Zhiyong as part of other FVM enhancements. In summary, the implementation involves

creating multiple rpcss services (one per VM instance). This service is created during the

14

FVM creation and destroyed when FVM is destroyed. Also, the boot time start
dependency of rpcss service is removed and the service is started inside each VM (upon a

VM start). COM server virtualization essentially solves many associated problems like
the installer virtualization issue mentioned above, clipboard virtualization issue as well as

the shared binary server issue (using out-of-proc COM objects) which is described in
Chapter 4.

15

Chapter 4

Shared Binary Server- An Application of FVM

4.1 Introduction
 OS-level virtual machines powered by the FVM framework make an effective
computing platform for many useful applications on Windows server and desktop

environment, such as malware sand boxing, intrusion tolerance and analysis, access
control, and others that require an isolated but realistic execution environment. Here we
present the design, implementation and evaluation of one such application – Shared

binary server.

A shared binary service is an application deployment architecture under which
application binaries are centrally stored and managed, and are exported from a server to
end user machines. With centralized management, this application deployment

architecture greatly simplifies software patching/upgrade/repair and license control in a
corporate environment without suffering performance penalty and scalability problem of

the thin client-computing model. We try to describe how to customize the generic FVM
framework to accommodate the needs of the shared binary server architecture and present
experimental results to demonstrate their performance and effectiveness.

Figure 4.1: Application deployment architectures.

(I: Install, R: Execution)

4.2 Overview of FVM based Shared binary server

 The shared binary server is widely used in the UNIX world. End user machines
typically mount binary files exported by a central binary server on local directories and

execute them locally. However, in Windows world, this scenario is a bit tricky. Most
applications are not designed to be loaded from a shared repository and run locally.

Instead, they are designed to run on the machine on which they are installed.

16

Consequently, whenever an application runs, it tries to locate its operating environment
like registries, libraries, configuration files etc from the local machine.

 To enable a Windows client machine to execute a program physically stored on a

binary server, the program‟s operating environment has to be redirected from the local
machine to the binary server. However, when accessing a local file containing the
input/output data, the access should not be redirected.

 FVM architecture enables us to redirect access of a process running in a VM to the

VM‟s private workspace. We extend this to framework to support redirections on the
binary server client. We modify the redirection logic on the binary server client as
described above. A process started from the executable on the binary server is associated

with a special VM (with redirection logic modified) on the binary server c lient. To
distinguish between accesses to local/input output data and the application configuration

data, we rely on the typical application installation patterns (based on heuristics). An
application installation, usually, updates only a few directories like the program directory
(C:\Program Files), the system directory (C:|\winnt\system32) and the configuration

directory (C:\Documents and settings\All users). The installation, usually, modifies the
registry keys located at HKLM\Software. Users rarely store their personal data at these

locations. The binary server is implemented over these heuristics and testing with a
variety of Windows applications suggests that this heuristic is pretty reliable and
reasonable.

4.3 Design and implementation
 Figure 4.2 pictorially depicts the system architecture for the proposed shared binary
server for Windows based end user machines. Under binary server architecture, users
start the application process on their local machine by executing the application„s

executable file stored on the binary server. The binary server is accessed using remote
file share/access protocol like CIFS/SMB. The process creation on the binary server

client is intercepted. We create a VM on the local machine in case the executable is being
launched from the remote binary server.

Since we leverage the Windows supported Common Internet File System (CIFS)
sharing, redirecting the access is straightforward. When a process accesses one of its

libraries using a local path, say “C:\Program Files\abc.dll”, the FVM redirects the access
to the binary server by renaming the system call argument to the path
“\\Binserv\C\Program Files\abc.dll” (UNC naming). BinServ is the name of the binary

server. This name is usually configured as a registry key on the binary server using a
client tool. In addition to application binaries, FVM can also redirect loading of Windows

system DLL‟s to the binary server by intercepting system calls accessing memory-
mapped DLL images. When the system DLLs are loaded from the binary server, we
require the end user machines to run the same OS kernel as the shared binary server.

The registry redirection logic is implemented entirely in the user space (unlike file

redirection logic described above). The above technique of renaming the system call
argument (file name) to perform file redirection doesn‟t work with registry related system

file:\\Binserv\C\Program%20Files\abc.dll

17

calls. In the current binary server prototype, we leverage two Winnt API‟s RegLoadKey
and RegStoreKey to facilitate registry redirection. We export registry entries under the

“HKLM\Software” (using RegLoadKey API) on the binary server and load these registry
entries into the VM (using RegStoreKey API) that is set up to run shared binaries when

the VM is first created. This implies that the client has a copy of all the registry entries
associated with the applications installed on the binary server, and the registry access
from the shared binary VM is redirected to its local copy. We also periodically

synchronize the shared binary VM‟s local registry copy with those on the central server
to reflect newly installed applications.

In addition to files and registries, applications can install environment variables

on the binary server. To allow an application running in a shared binary VM to access its

environment variables that are set up at the installation time, the shared binary VM
retrieves all the environment variables stored on the binary server and merges them with

environment variables of the local environment.

Figure 4.2: Binary server architecture.

 COM (Component Object Model) is a platform independent, distributed and object-
oriented system for creating binary software components that can interact. The COM
framework provides a standard way for applications (.exe files) or libraries (.dll files) to

make their functionality available to COM compliant applications. The shared binary
server architecture also redirects accesses to the COM components that shared binary

server depend upon. There are typically 2 types of COM components. One is called In-
Process objects, which are usually implemented as DLL‟s that an application can load
into its address space. Redirecting access to In-Process COM objects is same as

redirecting accesses to DLL‟s. The other is Out-of-process COM component, usually

18

implemented as stand-alone exe‟s, which runs as a separate process. The Out-of-process
COM components allow multiple client processes to connect to it. So, when an

application program running in a shared binary server VM accesses an out-of-proc COM
object, it should load the COM object from the remote binary server into the application

regardless of any locally installed COM objects.

COM objects are identified by CLSID‟s (Class Identifiers), a globally unique

identifier. To implement the above-described behavior for Out-of-process COM objects,
we assign a new CLSID to each COM object accessed by the applications running inside

a shared binary VM. We perform the necessary mapping between the old CLSID and the
new CLSID during each COM object access. This mapping is maintained inside FVM.
This forces the system to load COM objects from the binary server into the application

process.

Figure 4.3: COM redirection technique used in Shared Binary server

implementation.

By redirecting file, registry and OLE/COM access to a remote binary server in the

FVM layer, the binary server VM allows users to use Windows applications without
installing them on the local machine. We have tested a few applications, such as LeapFtp,

Winamp and Microsoft Word, which cannot be started through the file-sharing interface
unless running in the binary server VM.

19

Table 4.1: Shared Binary Server redirection logic

4.4 Evaluation

Correctness
 We tested out the shared binary server implementation using a bunch of standard Windows
applications (listed in table 4.1). We configured a shared binary server with the applications
installed and shared the installation and other configuration directories. The client did not have
any of the applications installed locally. When the executable from the server was launched from
the client machine, the redirection strategy ensured that the application was launched successfully
on the client.

Some of the Operating system dependent known DLL‟s (like the kernel32.dll) are not
streamed to the client from the shared binary server. We do reuse some of the system DLLs of
the client. This warrants that the operating environment on the client and the server be the same.
Since the shared binary server architecture is built on top of FVM (an OS level virtualization
technique), any application modifying the running kernel (by direct access) or loading a kernel
module is not supported. Shared binary server architecture works only for user land applications.

The suggested in the previous section, the current redirection strategy of shared binary
server is static. The redirection logic we use is based on heuristics. We notice that, in general,
application installations usually update only a few directories (installation directory typically
being C:\Prog~ files, configuration directories being C:\Docume~settings\\All users and system
directory being C:\winnt). The application installation also modifies only fixed registry keys
(HKLM\Software). Our redirection logic filters these directories/registry key entries to perform
redirection. Testing of variety of Windows applications suggest that this heuristic is reasonably
effective.

 Performance Evaluation
 We evaluate the performance of FVM based shared binary server architecture by
measuring the startup time of six interactive Windows applications in the following

configurations.
o Local installation and Execution (LIE): Applications are installed and executed

on the end user machines

20

o Shared Binary Service with Local Data (SBSLD): Applications are installed on a
central server and executed on an end user machine with input/output files stored

locally.
o Shared Binary Service with Remote Data (SBSRD): Applications are installed on

a central server and executed on an end user machine with input/output files also
stored on the central server.

o Thin Client Computing (TCC): Applications are installed and executed on a

central server, with execution results displayed on an end user machine through a
Windows Terminal Service (WTS) session. Input/Output files are stored in the

central server as well.

We use a test harness program to launch an application under test using the
CreateProcess() Win32 API, and monitors the application‟s initialization using the

WaitforInputIdle() API. The start-up time of a test application corresponds to the elapsed
time between the moments when these two API calls return. To measure the initialization
time of a WTS session, we run a terminal service client ActiveX control program on an

end user machine. When a WTS session is successfully established, this program receives
a connected event. The time between this event and the time when the program first

contacts the terminal server is the WTS session‟s initialization time. We use two
machines in this experiment. The client machine was an Intel Pentium-4 2.4GHz machine
with 1GB memory running Windows 2000 server and the shared binary server machine

was an Intel Pentium-4 2.4GHz machine with 256 MB memory running Windows 2000
server.

Caching
 We tested out the effectiveness of caching the application configuration files and

registries locally. The following is the summary of the test setup.
(1) Inside the FVM, whenever we do the rename of the file/registry entries to the remote

binary server, we cache it locally.
(2) Any subsequent access to a resource is first looked up in the temporary directory

(from (1)). We redirect the access to the binary server only when the file is not

present locally
(3) The registry entries are anyways cached on the client during the binary server setup

time as described above. Figure 4.5 shows the startup comparison among various
Windows applications.

Note that configurations SBCLD and SBCRD are equivalent to SBSLD and SBSRD
respectively with local caching.

21

Figure 4.4 Start-up time of six interactive applications under 3 different test

configurations.

Figure 4.5 Start-up time of six interactive applications under 4 different test

configurations.

22

Figure 4.6 The startup time of six interactive applications and the execution times

under 3 different configurations.

Analysis

Figure 4.5 shows the start-up time comparison among these four configurations
for the six test applications. The start-up overheads of the four configurations tested are
in the following order: SBSRD > SBSLD > TCC > LIE. In general, the amount of

file/registry access over the network determines the magnitude of the initialization
overhead. For LIE and TCC, the amount of file/registry access over the network is zero,

and therefore their start-up times are smaller. Because TCC incurs an additional fixed
cost (around 40 msec) of initializing a WTS session, its start-up time is longer than LIE‟s.
Both SBSLD and SBSRD require access to the remote server for configuration files,

registry entries, DLLs and COM/OLE components, and therefore incur a substantially
higher start-up overhead. In the case of SBSRD, it incurs network access overhead even

for input/output files and therefore takes longer to start-up than SBSLD.

The overhead order among the four configurations is different for WinWord. In

this case, the start-up times of the four configurations are pretty close to each other, LIE:
463 msec, SBSLD: 479 msec, SBSRD: 494 msec and TCC: 517 msec. The reason that

TCC exceeds SBSLD and SBSRD is because of its additional 40-msec WTS session
initialization cost. The start-up time of WinAmp is much higher than that of other test
applications because the number of file access redirections is much higher (214) than

others, as shown in Table 5.2. In other words, WinAmp requires access to 214 executable
or configuration files, which are fetched from the binary server at the initialization time.

Therefore, the execution of WinAmp using a binary server incurs a much larger

start-up overhead than others. The large difference in SBSLD‟s and SBSRD‟s start-up

times‟ forWinAmp arises from the large input file used in the test of WinAmp, which is
5.2Mbytes in size. In addition to interactive applications, we also measured the execution

time of three batch programs in the above four configurations. The batch program‟s
execution time in the four configurations follows the same order as the start-up time
measurement for interactive applications, as shown in Figure 4.2

23

Application Registry Redirections File redirections

WinWord 996 62

Power Point 487 30

Excel 339 17

Acrobat Reader 152 55

WinAmp 397 214

Firefox 159 16

Table 4.2: The number of registry and file access redirected to the binary server

during the initialization time for six interactive Windows applications.

 Figure 4.4 shows similar testing scenario with caching configured. We cache the

configuration files, registries, OLE/COM components locally in a temporary directory as
described above. Clearly, the performance of shared binary server with caching and local

data matches up with the performance of the local installation and execution results. The
discrepancy in the performance could be attributed to the redirection/renaming overhead
involved for each of the file/registry access. The amount of registry/file redirection is

pretty prominent in case of WinAmp as seen from table 4.1. The input file size used for
testing WinAmp was an mp3 fie of size 5.2 Mega bytes which is the reason for the

prominent discrepancy between SBCLD and SBCRD in table 4.4.

24

Chapter 5

Conclusion and Future Work

 In this thesis, we describe some of the extensions to core FVM and an application of

FVM (shared binary server). FVM prototype, with the described extensions, went open
source on source-forge [13] last month.

 Featherweight Virtual Machine (FVM) allows a single machine to host multiple
isolated execution environments on a single Windows kernel. By name space

virtualization and copy-on-write, FVM enables multiple VMs to efficiently share
resources without interfering with one another. FVM‟s minimal VM startup/shutdown

cost and large scalability make it an excellent platform for building applications that
require frequent invocation and termination of “dispensable” VMs.

 We have successfully leveraged FVM to implement a shared binary server
prototype that exhibits moderate performance overhead. One of the future works,

leveraging both the FVM framework as well as the shared binary server idea, is to build a
distributed DOFS architecture to protect confidential files on the file server against
information theft. The idea is to run file viewing/editing programs in a VM, which

redirects all the operations back to a central server. Confidential files are encrypted and
decrypted on the fly as they transmit over the network to ensure end user machines never

have plain text file content.

The COM virtualization technique we used for shared binary service application

is superseded by the FVM COM server (rpcss) virtualization. Virtualizing rpcss
effectively ensures that there is one instance of the COM server per VM. Hence, the

renaming technique we used in shared binary server becomes redundant (rpc server
virtualization was implemented post FVM 1.0). Virtualizing rpc server was a bit tricky
(brief synopsis described in section 3.3) but most of the issues pertaining to out-of-proc

COM components falls into place. In hindsight, probably, we could have included FVM
COM virtualization as part of design of shared binary server instead of designing an

alternative solution for it.

File virtualization method in shared binary server involves renaming all local file

access (based on the directories listed in table 4.1) to a CIFS network shared file path.
However, this technique doesn‟t work for registry redirections as there is no interface in

the Windows Kernel to redirect local registry access to remote registry. We currently
fetch the remote registry hive (Table 4.1) and load it locally on the client on a new hive.
Local registry accesses are mapped onto this newly created hive. The problem with

caching registry keys on the client is any software updates on the server (which might
potentially add/change registry key entries) is not immediately reflected on the client (not

until the binary server client is initialized again). A probable solution would be to create

25

and rely on a user land daemon to perform registry redirections (Windows provides
documented API‟s for remote registry accesses in the user land). One way to implement

this could be to completely move the registry virtualization code to user land. This,
however, would make the design feeble as subverting a user land interception is easier.

Another solution would be to continue doing the registry virtualization inside the kernel,
but create and rely on the user land daemon to fetch/set the remote registry data. This
method is more robust but there is a performance hit as each registry access involves a

shift from kernel to user mode to fetch the data.

To distinguish between accesses to local input/output data and those to
application-specific configuration data, the binary server could be enhanced to monitor an
application‟s installation process and record its configuration files, DLLs and registry

settings. The resulted application profile can then be sent to the client VM as redirection
criteria. This could be a rationale enhancement over the simple redirection criterion we

use in the current prototype. FVM logging framework could be leveraged to do such
profiling. FVM logging framework, in its current forms, logs the system call activity of
all applications running inside the FVM. We could leverage this framework to

automatically come up with a application specific selective virtualization profiles.

26

Bibliography
[1] Galen Hunt and Doug Brubacher. Detours: Binary interception of win32 functions.

 In Proceedings of the 3rd USENIX Windows NT Symposium, July 1999.
[2] Citrix Ardence. Software-streaming platform.

 http://www.ardence.com/enterprise/products.aspx?id=56.
[3] Microsoft Corporation. Technical overview of windows server 2003 terminal
 services. http://download.microsoft.com/download/2/8/1/281f4d94-ee89-4b21-9f9e-

 9accef44a743/TerminalServerOverview.doc, January 2005.
[4] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim

 Chow, Monica S. Lam, and Mendel Rosenblum. Virtual Appliances for Deploying
 and Maintaining Software. In Proceedings of 17th Large Installation Systems
 Administration Conference, October 2003.

[5] Ramesh Chandra, Nickolai Zeldovich, Constantine Sapuntzakis, and Monica S. Lam.
 The Collective: A Cache-Based System Management Architecture. In Proceedings of

 the 2nd Symposium
[6] Microsoft. Soft Grid Application Virtualization.
 http://www.microsoft.com/systemcenter/softgrid/default.mspx.

[7] AppStream. AppStream Technology Overview.
 http://www.appstream.com/products-technology.html.

[8] Bowen Alpern, Joshua Auerbach, Vasanth Bala, Thomas Frauenhofer, Todd
 Mummert, and Michael Pigott. PDS: A Virtual Execution Environment for Software
 Deployment. In Proceedings of the 1st International Conference on Virtual Execution

 Environments, 2005.
[9] Thinstall. Application Virtualization: A Technical Overview of the Thinstall

 Application Virtualization Platform.
 http://thinstall.com/assets/docs/ThinstallWPApplicVirtualization4a.pdf.
[10] Yang Yu, Hariharan Kolam Govindarajan, Lap-Chung Lam and Tzi-cker Chiueh,

 “Applications of a Feather-weight Virtual Machine”, to appear in Proceedings of the
 2008 International Conference on Virtual Execution Environments

 (VEE‟08), March 2008
 [11] Yang Yu, Fanglu Guo, Susanta Nanda, Lap chung Lam, and Tzi cker Chiueh.
 A Feather-weight virtual machine for windows applications. In Proceedings

 of the 2nd International Conference on Virtual Execution Environments, June 2006.
[12] Ph.D. dissertation on “Feather-Weight Virtual Machine” by Yang Yu.

 http://www.ecsl.cs.sunysb.edu/tr/TR223.pdf
[13] Feather-Weight Virtual Machines on sourceforge.net
 http://sourceforge.net/projects/fvm-rni/

[14] Softricity (SoftGrid)
 http://www.microsoft.com/systemcenter/softgrid/default.mspx

[15] Install Shield – Installation development tool.
 http://www.installshield.com/
[16] Install Anywhere – Installation development tool

 www.zerog.com/

http://www.ardence.com/enterprise/products.aspx?id=56
http://download.microsoft.com/download/2/8/1/281f4d94-ee89-4b21-9f9e-
http://thinstall.com/assets/docs/ThinstallWPApplicVirtualization4a.pdf
http://www.ecsl.cs.sunysb.edu/tr/TR223.pdf
http://sourceforge.net/projects/fvm-rni/
http://www.microsoft.com/systemcenter/softgrid/default.mspx
http://www.installshield.com/
http://www.zerog.com/

27

[17] WISE – Installation development tool
 www.wisesolutions.com

[18] Script Logic - Installation development tool
 www.scriptlogic.com

http://www.wisesolutions.com/

