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Abstract of the Thesis 

Applications and Enhancements of  

Feather Weight Virtual Machine (FVM)  

by 
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Master of Science 

in 
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Stony Brook University 

2008 

 

Featherweight virtual machine [11] (FVM) is an OS level virtualization technique 
on Microsoft Windows OS. Under FVM architecture, each virtual machine is created 

using the same state as the host machine. The virtual machines are logically isolated 
using namespace virtualization, resource copy on write and IPC confinement.  
 

The key idea of FVM is access redirection and copy on write, which enables each 
VM to read the base environment from the host machine but write into the FVM private 

environment. FVM identifies various communication interfaces and confines its scope on 
a per VM basis.  
 

We describe the design and implementation details that we followed to virtualize 
Windows installer, which is an operating system resident installer service. Windows 

installer service performs installation duties (files/registry updates) on behalf of 
applications. Windows clipboard forms a communication medium (a scratch pad) 
available to Windows and all running applications. We also describe the 

design/implementation details for visualizing Windows clipboard.  
 

We also present an application of FVM framework: binary server. Binary server 
allows Windows desktop to share binaries that are centrally stored, managed and patched. 
The shared binaries are launched in a VM whose runtime environment is imported from a 

central binary server.  We describe the procedure to customize the generic FVM 
framework to accommodate the needs of these applications and present experimental 

results to demonstrate their performance and effectiveness.  
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Chapter 1 

Introduction 
  

1.1 Virtual Machine – an overview 
     Virtual machine (VM) is a technology that enables multiple execution environments 
on a single physical machine. VM does typically hide the physical characteristics of a 
computing resource from its users. Thus a single physical resource (for example, a 

server) could be made to appear as multiple virtual resources. VM‟s have been 
extensively used for the following purposes,  

 Server consolidation: Consolidate the workloads of several under-utilized 
applications to fewer machines (perhaps a single machine too). Benefits include 

saving on administration costs and management costs. 

 VM‟s could be used to provide secure, isolated sandboxes for running untrusted 

applications. Virtualization is an important concept in building secure computing 
platforms. Since, the VM‟s could be used to isolate what they run, they provide fault 
and error containment. 

 VM‟s makes software easier to migrate, thus aiding in system (and application) 
mobility. 

 VM‟s can be used to create varied test scenarios, and can lead to some very 
imaginative, effective quality assurance.  

 
To support virtual environments with software approaches, a virtualization layer must 

be placed at certain levels along the machine stack. This virtualization layer thus 

partitions physical machine resources and maps the virtual requests from a VM to 
physical requests. This virtualization layer could be hardware embedded, in which case 

the hardware provides architectural support that facilitates building a Virtual Machine 
Monitor and allows multiple Operating Systems (called the guest OS‟s) to run in 
isolation. The virtualization layer could also emulate the entire instruction set of a VM in 

software which is called the Instruction Set Architecture (ISA). Hardware Abstraction 
Level (HAL) virtualization exploits the similarity between the architectures of the guest 

and host machine, and directly executes certain instructions on the native CPU without 
emulation. OS-level virtualization partitions the physical machine‟s resources at the 
operating system level. This means all the OS-level VM‟s share a single operating system 

kernel. Fig 1.1 depicts the difference between OS level virtualization and Hardware level 
virtualization. Hypervisor (or the Virtual Machine Monitor) is the name given to the 

virtualization platform that allows multiple operating systems to run on host comp uter at 
the same time. Hypervisor‟s could be implemented to run directly on a bare hardware 
platform (typically as a control program). VMware ESX server, Citrix XEN server are 

typical examples for such configurations. Hyper visor could also software that runs 
within an operating system environment. The guest operating system in this case runs on 

a third level above the hardware (e.g. VMware Workstation, VM Fusion etc.)  
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Figure 1.1 OS level virtualization vs. Hardware level virtualization 

 

1.2 Feather-Weight Virtual Machine (FVM) 
     FVM is a Windows based OS level virtualization technique, which is specifically 
designed to reduce the invocation latency of a new VM and to scale to a large number of 

VMs by minimizing per-VM resource requirement. The virtualization layer, in FVM, 
virtualizes the namespace by renaming the system resources, which forms the key idea of 
FVM. This renaming takes place at the OS system call interface. Microsoft Windows 

supports numerous namespaces for various system resources (system resources include 
files, registries, kernel objects, network address, daemon services etc). Whenever a 

process makes a system call to access any of the above-specified resources, the FVM 
layer manipulates the names of the resource. This renaming ensures that the namespaces 
visible to processes in one VM is disjoint to those visible to a process executing in a 

different VM. This further ensures that, two VMs never share any resources and therefore 
cannot interact with each other directly.  For example, when a process in a VM (say 

VM1) tries to access a file named “/foo/bar”, the virtualization layer redirects access to a 
different file (say “/VM1/foo/bar” on the host workspace). This virtual to physical 
mapping is transparently performed inside the virtualization layer which, in case of FVM, 

is at the system call interface/system call library interface layer.  
 

All the VMs share the host OS‟s kernel-mode component, including the hardware 
abstraction layer, device drivers, OS kernel as well as system boot components. The file 
system image is also shared by default. Each new VM starts with exactly the same 

operating environment as the current host. Therefore, both the startup delay and the initial 
resource requirement for a VM are minimized. Since, the resource virtualization is 
performed by simply renaming system call arguments instead of complicated resource 

mappings or instruction interpretations, an application‟s runtime performance in a VM is 
also improved Duplicating the resources to each VM‟s partition involves significant 

resource costs on the physical machine (along with the VM initialization and termination 
overhead). FVM typically shares most resources with the host environment. Private 
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copies are created only when a resource is to be modified by the VM. Figure 1.2 
pictorially depicts the FVM virtualization architecture.  

. 

 
 

Figure 1.2: FVM virtualization layer at OS system call interface. 

 

FVM virtualization layer is implemented by intercepting Windows system calls, 

which are exposed to the user-mode applications through a set of user mode dynamic 
linked libraries (DLL‟s). The intercepting mechanism is implemented mostly in the 

kernel (it is difficult to be subverted or bypassed than the user mode interceptions). 
However, some of the interceptions are implemented in the user space too. The reason for 
user mode interception being, some of the system calls like those managing daemon 
service, GUI window and network interface either do not have kernel mode interface or have a 
kernel mode interface with no clear documentation. The files, registries, kernel objects are 
virtualized inside the kernel. The kernel mode interceptions are implemented using a driver, 

which modifies the system call entry point in the System Service Dispatch Table (SSDT) 

within the kernel The user mode component is a DLL that modifies the library function 
entry point using the Detours library [1].  

 

1.2.1 User mode interception 
     Typically, Windows OS provides a set of standard API‟s based on which user 

processes request OS services. The API‟s are generally implemented as dll‟s (like 
kernel32.dll, user32.dll etc). These dll‟s are the most common user level interception 

points. 
 

We rely on Detours library for user level interceptions in FVM. Detours library 

replaces the first few instructions of the target API function with an unconditional jump 
to the user provided function, called a detour function. The replaced instructions from the 

target function are saved in a trampoline function, with an unconditional jump to the rest 
code of the target function. Thus, a process‟s call to a target API is routed to the detour 
function, which can call its trampoline function when it requests service from the original 

target API function. We inject our custom DLL to the target process‟s address space. 
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When this DLL is being loaded, its initialization routine is invoked to perform Import 
Address Table (IAT) modification or function rewriting. The custom DLL, which we 

inject, provides the intercepting function that has the same function signature as the target 
function and is called when the target function is called.  

 
1.2.2 Kernel mode interception 

     A process makes system calls to request OS services, and the system calls may deliver 

the user requests to certain device drivers, which process the requests and return the 
result to the caller. Therefore, we can intercept system calls or driver functions to change 

the system behavior. Compared with user- land interceptions, interception at kernel level 
is more reliable because user application processes cannot bypass it. 
 

To make a system call on Windows NT kernel, a process loads the EAX register 
with the ID of the system call and executes INT 2E or SysEnter instruction. This causes 

the calling thread to transit to kernel mode and to execute the system call dispatch 
routine. The dispatch routine locates the address of the system call stored in the Windows 
system call table, called System Service Dispatch Table (SSDT), and then starts 

execution of the system call. The SSDT stores the addresses of all the Windows system 
calls, indexed by the system call ID. To intercept a system call, in the FVM 

implementation, we replace the system call‟s SSDT entry with the address of our own 
function, which can call the original system call function plus pre and post-processing. 
The issues and alternatives of the currently used kernel mode interception in FVM are 

evaluated in details in Yang Yu‟s Ph.D. dissertation [12].  

 

1.3 Contributions 

     This thesis covers a couple of enhancements to the core FVM – the Windows installer 
service virtualization Windows clipboard virtualization. The later part of the thesis also 

describes, in details, an application of FVM – Shared Binary Service (architecture, 
implementation and evaluation).  

  

1.3.1 FVM enhancements 
    The isolation between multiple VM‟s and between a VM and the host environment 
makes virtual machines an effective platform to support fault tolerant and intrusion 
tolerant applications. Any changes made to the host environment (file/registry) by a 

process running inside the VM (say VM1) should be “charged” to VM1. This would 
ensure that when VM1 is deleted, all the changes made by it are cleaned up (without any 

side effects). In addition, the isolation mechanism needs to ensure that all inter-process 
communication interfaces are virtualized and confined to processes on a VM basis. The 
Windows installer service virtualization essentially ensures that all changes made by the 

Windows installer service process, on behalf of an application installation initiated from a 
VM, are “charged” to that VM. 

 
Windows installer service is an operating system component that describes a 

standardized format for applications (known as Windows installer format). This service 

performs the installation duties on behalf of the applications. An installable resource (or 
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a resource) is defined as a file, registry key, shortcut, or any other piece that an installer 
typically delivers to a computer.  

 
Though FVM has virtualized daemon (service) process management to start 

certain daemon processes in each VM, some daemon processes still needs to be shared 
between all VM‟s. These daemons cannot be started on a per-VM basis because they are 
either critical components of system booting or they have some close dependencies with 

some kernel drivers. Thus, VM‟s IPC to these daemons should be enabled so that the 
processes inside the VM executes properly. Windows installer is one such daemon 

process, which needs to be shared across multiple VM‟s. All of the files/registry 
(resource) modification during a Microsoft Software Installer (MSI) based application 
installation is performed by the installer service. To charge the installable resource to a 

VM, that initiated the installation, we serialize (associate) the access to the installer 
service on a per-VM basis. We describe the design, implementation and analysis of the 

approach we followed as part of this thesis.  

 
The Windows Clipboard is one additional inter-process communication method. 

Clipboard is like a scratch pad available to Windows and all running applications. It 
allows pieces of information to be temporarily stored and later retrieved by other 

applications. Thus, Windows Clipboard forms a means of information sharing between 
processes. To ensure that multiple VM‟s are isolated from each other, we need to ensure 
that the Clipboard is virtualized. This essentially means that a process from one VM (say 

VM1) should not see the contents that a process from a different VM (say VM2) has 
stored in the clipboard. 
 
Windows Clipboard has the following features,  

o Only one item stored at a time 

o Each new copy replaces the last 
o Clips are not remembered between sessions 

A memory object on the clipboard can be in any data format, called a clipboard 
format. Each format is identified by an unsigned integer value (defined in Winuser.h). A 
window can place more than one object on the clipboard, each representing the same 

information in a different clipboard format. The clipboard formats are generally oblivious 
to the users.  

The clipboard virtualization creates an independent clipboard view on a per-VM basis. 
 

1.3.2 Shared binary service (A FVM application) 
     Shared binary service requires the end user machine to fetch all its application binaries 
from a central server. We need to provide applications installed on a central shared binary 

server but executed on a client machine. Clearly, all the application files, registry entries, 
configuration files, COM objects, DLL‟s etc which are required for execution of the 

application physically reside on the server.  
 

FVM‟s OS virtualization technique could be leveraged to implement the shared 

binary service application. With shared binary service, it is possible to reap benefits of 
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both client server computing as well as centralized resource management (one of the key 
features of a thin-client computing). 

 
As part of this thesis, we also how a generic FVM framework could be extended 

to accommodate the needs of shared binary service application. We have tailored the 
FVM namespace virtualization technique to implement the Shared binary server 
application. We describe the architectural details, implementation details and 

experimental results that demonstrate its performance and effectiveness. We also evaluate 
some of the optimizations to FVM based shared binary server architecture like client side 

file/registry caching. 
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Chapter 2 
 

Related Work 
 

Application deployment architecture 
 
     Deployment of applications on an end user machines could be done in one of the 

following methods: local installation, network boot, thin client installation, OS 
streaming, application streaming and shared binary service.  

 
In the local installation architecture, application binaries are installed and 

executed on the end user machines. In this architecture, using network-wide application 

installation/patching tool, we could reduce the application management cost. Network 
boot architecture allows a diskless end user machine and enables it to boot a kernel image 

located on a remote server and thus run OS as well as application code on the machine‟s 
local CPU. Citrix Ardence [2] refers this technology as disk streaming. The technology 
that Ardence uses enables Citrix servers to boot from a centralized disk image files stored 

on a file server instead of each server having its own drive. An end user machine boots 
from the network through Preboot Execution Environment (PXE) and then accesses the 

virtual disk via a protocol called BXP. However, because of hardware dependencies, the 
virtual disk of each end user machine may be different from one another and thus require 
extensive customization. This architecture offers reduced application management costs 

as the binary installation and management are centralized.  
 

 In thin client computing architecture, such as Microsoft Terminal Service [3], 
application binaries are installed, maintained and executed on the server‟s CPU. An end 
user machine displays the result of application executions and replays user inputs via a 

special protocol such as Remote Desktop Protocol (RDP). The application maintenance 
costs are considerably lowered due to centralized binary installation and execution. This 

architecture, however, incurs large application runtime latency and higher network traffic 
load. Since, each of the application instances are executed on the server, the server should 
be a high-end machine with adequate resources to cater to all the clients. This 

architecture has a disadvantage that it does not leverage the compute power of the local 
end user machine and instead treats the same as dumb terminals. In comparison to the 

network boot architecture, thin client architecture is more generic (no hardware 
dependencies) as the application executes on the remote server CPU and only the display 
is exported to the end user machine.  

 
In an OS streaming architecture [4, 5],  is similar to the network boot architecture 

where the OS as well as specific sets of applications are configured into a hardware level 
virtual machine image stored on a central server. The end user (client) machine runs one 
of the VM images on a Virtual Machine Monitors (VMM). The VM image has less 
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hardware dependencies as it is isolated by the VMM from the underlying physical 
hardware. However, in practice, the hardware dependencies are transferred to the VMM, 

which is not necessarily the best party to deal with hardware dependencies because of its 
emphasis on minimal code base. Streaming both OS as well as applications embedded 

with it does reduce the operational costs and provides centralized management flexibility. 
However, OS streaming does involve significant network overhead (in most cases 
reduced by using stripped down versions of network protocol stack [2]).  
  

In the application streaming architecture [6, 7, 8, 9], application binaries and 

configurations are bundled into self-contained packages, which are stored and maintained 
centrally. An end user machine running a compatible OS fetches these packages from the 
server and runs them directly without local installations. Each such package runs in a 

virtual environment, and is cached on the local machine whenever possible. Thinstall’s 
technology allows Windows application to be processed into an executable file that can 

see its own version of Windows registry, file system and DLL‟s. This essentially ensures 
that incompatible applications can run on the same machine without conflict. This 
architecture offers the advantages of both centralized application management and 

localized application execution on end user machines. However, most of the applications 
(like Microsoft Office suite) support on demand installation of features (called as 

advertisement in Microsoft lingo). Essentially the installation of a feature is triggered 
only when the user or application uses/activates it. Packaging of such applications would 
typically warrant tracing through all possible execution paths of the application to enable 

package all features. This task is very specific to each supported application. Softricity 
[14] solves this problem by creating a primitive application cache file (by monitoring the 

default application installation on the server). The advertised feature is downloaded from 
the Softricity server (pre-configured) and it becomes part of the user‟s application cache 
file when ever the application or user uses/activates it. However, an issue with packaging 

is that upon subsequent software updates at the server, the package has to be refreshed in 
all the clients (otherwise, the application would continue to use older versions of 

files/registries). 
 

The shared binary service [10] architecture, which is widely used in the UNIX 

world, is similar to application streaming except that it does not require explicit 
application packaging, and it allows resource sharing among packages. More concretely, 

applications are installed on a shared binary server, and then exported to all end user 
machines through a standard network file-sharing interface. When an application is 
executed, accesses to binaries, configuration files and registry settings are redirected to 

the central binary server. Shared binary service architecture ensures that the client is 
always updated with the latest updated binaries/DLLs from the server (the access is 

always redirected to the central binary server).  
 

The interception methodology used for shared binary server application is similar 

to the FVM interception technique [12]. The FVM interception technique is tailored to 
redirect resource access to the server, over the network. Shared binaries are set up as a 

SMB share on the server.
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Chapter 3 
 

FVM Enhancements 
 

3.1 System overview (Feather-weight Virtual Machine) 
    Virtual Machine (VM) is typically defined as sets of user-mode processes accessing 
underlying hardware through multiple interfaces at various levels like library, system 

calls, I/O etc. Support for multiple execution environment (VMs) on a single physical 
machine would warrant modifying the these interfaces so that access requests from 

different VMs can be mapped to requests to different OS object (to ensure that there is no 
interference between VMs). This modified interface is called the virtualization layer. This 
layer determines the scalability, runtime performance and isolation. In general, the 

isolation between the VMs is complete when the virtualization layer is close to the 
hardware. However, when the virtualization layer is very close to the hardware, 

scalability and performance of the system is deteriorated as many system resources are 
duplicated without sharing. 
 

The Feather-weight Virtual Machine (FVM) project is designed to facilitate 
sharing (OS kernel, file system, hardware) in order to improve the scalability and runtime 

performance, while still maintaining a certain degree of isolation. The virtualization layer 
in FVM is at the OS‟s system call interface, as shown in Figure 3.1. All the VMs share 
the host OS‟s kernel-mode components, such as OS kernel and device driver. Moreover, 

critical system daemons and the file system image are also shared by default. Each new 
VM starts with exactly the same operating environment as the current host OS. 

Therefore, both the startup delay and the initial resource requirement for a VM are 
minimized. Renaming system call arguments instead of device emulation or instruction 
interpretation performs the virtualization. Therefore an application‟s runtime 

performance in a VM may also be improved.  
 

The FVM virtualization layer observes all the access requests from user-mode 
processes. As a result, it can redirect access to the same OS object from different VMs to 
requests against different versions of the same OS object. FVM uses namespace 

virtualization and resource copy-on-write to implement the access redirection and 
isolation between different VMs. When a new VM (say vm1) is created, it shares all the 

system resources (disk files, system configurations, etc) with the host machine. Later on, 
when different types of requests from a process p in the VM pass through the FVM layer, 
these requests can be redirected as follows: 

o If p attempts to create a new file /a/b, the FVM layer redirects the request to 
create a new file vm1/a/b. 

o If p attempts to open an existing file /a/b, the FVM layer redirects the request 
to open a file vm1/a/b. If file vm1/a/b exists, no further processing is made in 
the FVM layer; otherwise, the FVM layer checks the access flag of the open 
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request. If the access is “open for read”, the request will go to the original file 
/a/b; if it is “open for write”, the FVM layer copies /a/b to vm1/a/b, and then 

redirects the request to open vm1/a/b again.  
o If p attempts to read or write an existing file, the FVM layer passes the request 

through without additional processing, because read/write request is based on 
a file handle, which is returned by a previous open request. If the open request 
has been redirected, all the subsequent read/write requests on the same file 

handle are redirected inherently.  
o If p attempts to delete an existing file /a/b, the FVM layer only marks the file 

as deleted by adding its name /a/b to a per-VM log. The file /a/b is not deleted 
from the file system. 

o If p attempts to make any types of inter-process communications, such as 

sending window message, to another local process, the FVM layer examines 
the two processes and blocks the communications unless they are running in 

the same VM. 
o If p attempts to access and communicate with certain devices, the FVM layer 

denied the access unless it is permitted by a policy. 

 

 
Figure 3.1: FVM namespace virtualization technique. 

 

3.2 Windows installer service virtualization 
    Installation (or setup) of an application is the act of putting the program in a computer 
system so that it can be executed. An application is a usually condensed into a module 
that could be distributed. In order to be used, the module must be unpacked and relevant 

information must be placed at correct places on the computer. An installer is a specialized 
program that automates most of the work required for installation. Windows Installer 

(MSI) is an engine for installation, maintenance and removal of software on Windows 
OS. The installation information, and often the files themselves, are packaged in 
installation packages, loosely based on relational databases, commonly known as MSI 

packages. There are other different tools available on Windows OS for creating installer 
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programs. This includes Install Shield [15], Install Anywhere [16], Wise [17] and Script 
Logic [18]. Most of these tools create MSI packages as well as their own proprietary 

executables. The installation/un- installation and maintenance of MSI packages are 
performed by the Windows Installer service program. The changes to the computer due to 

unpacking the MSI installer package is performed by this Windows Installer service 
daemon (create/update of files/registry entries etc). Proprietary installers, generally, do 
not rely on Windows Installer service program to perform the installation changes. The 

changes are rather specific to the tools that create the installer program. The tools also 
create uninstall scripts which would be potentially be called during un- installation to 

undo the changes created by the installation.  
 

The effect of installation of an application inside a VM should be confined to that 

VM i.e., all resource changes made by the installer should be accounted to the VM inside 
which the application that initiated the installation in running. However, Windows 

installer service process is one of the critical components of system booting and hence 
cannot be started on a per-VM basis. Since the installer service performs the installation 
duties on behalf of the application, the resource changes made by the installer service 

have to be charged to the VM.  We use the following method for to ensure that the 
installation carried by the Windows installer service is virtualized. (Figure 3.2 is a 

pictorial depiction of the same),  
 

o During the FVM driver loading, we determine the PID of the installer service 

process. To get the PID of the installer service, we enumerate all the system 
processes and find a process whose parent is the process Services.exe (the 

service control manager) and whose image name is Msiexec.exe.  
o Whenever a process from within an FVM (VM1) tries to communicate to the 

installer service, we associate the installer process into VM1. VM1 now owns 

the installer service process. This would ensure that any changes made by the 
installer service process are confined to VM1. Upon completion of the 

installation activity, the installer service process is removed from VM1.  
o Any interim requests to access the installer service process as long as it is 

associated with a VM are rejected (unless of course the request comes from a 

process running inside the VM owning the installer service). Thus, the access 
to the installer service process is essentially serialized.  

 
The installable application communicates with the windows installer service using 

a utility called msiexec.exe. Msiexec.exe utility is used for ins tall/uninstall activity. We 

intercept this communication between the application and the installer service to 
associate the installer service process with a VM and ensure serialization of access.  
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Figure 3.2: Windows Installer virtualization technique. 

 

 The above procedure would ensure that any changes made by the installer service 

directly (as part of installation) are localized to a VM (where the application initiating the 
installation resides). However, the above technique is not complete when the installer 
registers (or uses already registered) Common Object Model (COM) classes. COM 

(Component Object Model) is a platform independent, distributed and object-oriented 
system for creating binary software components that can interact. COM server is a 

Remote Procedure Call (rpcss) service. And all resource manipulations (registry/file 
changes/creation) that the COM component does on behalf of the COM client are 
performed by this service. So, virtualizing rpcss ensures that the Windows Installer 

virtualization is complete. The rpcss virtualization also helps to complete the Windows 
Clipboard virtualization procedure. This will be described in section 3.3  

 
We verified our Windows Installer virtualization method described above by 

installing applications (installers) created by differed tools (which includes, Install Shield 
created installers like Source Insight 3.1, custom installers like Adobe acrobat reader 8.1, 
Winzip and thunderbird. We also tested out a bunch of MSI installer programs like 

Apache 2.2, Log parser, Folder view etc. We also tested out installing the whole 
Microsoft Office suite inside the FVM. Installations were initiated from within the FVM 

and it was verified that the changes due to the installation were localized to the VM 
initiating the installation. Some of the installers like Microsoft Office, Acrobat Reader 
suite registers and uses COM object as part of their installation process. The 

filesystem/registry changes made by the COM server (rpcss – not virtualized) could not 
be localized to a VM (some sideeffects/leftovers after deleting the VM inside which the 
application installation was triggered). Rpcss virtualization does ensure that the side 

effects are eliminated.  
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We tested and verified different installers created from different tools on 
Windows 2000 OS. The virtualization approach works without any side-effects to the 

host machine. However, Windows XP has introduced the concept of application binary 
prefetching which modifies the way Installer service works. The Windows Installer 

service virtualization needs to be extended to accommodate the same.  
 

3.3 Clipboard virtualization 
     Window clipboard is a convenient tool to copy or move information between different 
processes. To use the clipboard, the user generally needs to just select the information 

(text or image) that he wants to copy or move to a different place. The information is first 
copied onto the clipboard (when the copy is initiated at the source location) and at the 

destination, the information is copied out (paste) of clipboard to the destination location.  
 
There are three ways that you can copy and cut to the clipboard, and there are three ways 

that you can paste from the clipboard.  

 Using the File->Edit menu 

 Key board shortcuts (Cntrl+C for copy, Cntrl+X for move and Cntrl+P for paste) 

 Context menu. (In general, right mouse click displays the context menu options)  

 
Windows Clipboard is thus, a very simple way to share data between processes. 

Virtualizing Windows Clipboard would ensure that the information sharing is co nfined to 
processes running inside a particular VM. We intercept the 2 API‟s (user level 
interceptions using detours), GetClipBoardData() and SetClipBoardData() defined in 

user32.dll to implement Clipboard virtualization. The following is the procedure tha t we 
use to virtualize, 

o FVM service daemon is created whenever the FVM driver is loaded. We 
create a shared memory mapping as part of this service daemon (using 
CreateFileMapping() defined in kernel32.dll) which we use to share store 

clipboard data on a per VM basis. 
o We intercept SetClipboadData() API and store the clipboard data along with 

the format information on a per VM basis in the shared memory created. We 
also keep track of the Clipboard data format information in addition to the   
Upon clipboard data query from within a VM (say VM1), we return the 

contents of the clipboard pertaining toVM1.  
Apart from the Clipboard that Windows provides, a lot of custom applications implement 

their own clipboard variants (generally as out-of-proc COM components). Out-of-proc 
COM components are generally implemented as EXE‟s and is shared between multiple 
applications. Office suites like Microsoft Office, Open office support clipboard which 

could contain multiple items (Standard Windows supported can contain only one item 
inside the clipboard at a time). They usually implement their clipboard using out-of-proc 

component (as a clipboard server) to manage multiple data items. Thus, COM server 
virtualization is essential to complete clipboard virtualization.  
 

The COM server (rpcss) virtualization was recently implemented successfully by 
Zhiyong as part of other FVM enhancements. In summary, the implementation involves 

creating multiple rpcss services (one per VM instance). This service is created during the 
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FVM creation and destroyed when FVM is destroyed. Also, the boot time start 
dependency of rpcss service is removed and the service is started inside each VM (upon a 

VM start). COM server virtualization essentially solves many associated problems like 
the installer virtualization issue mentioned above, clipboard virtualization issue as well as 

the shared binary server issue (using out-of-proc COM objects) which is described in 
Chapter 4. 
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Chapter 4 
 

Shared Binary Server- An Application of FVM 

 

4.1 Introduction 
     OS-level virtual machines powered by the FVM framework make an effective 
computing platform for many useful applications on Windows server and desktop 

environment, such as malware sand boxing, intrusion tolerance and analysis, access 
control, and others that require an isolated but realistic execution environment. Here we 
present the design, implementation and evaluation of one such application – Shared 

binary server. 
 

A shared binary service is an application deployment architecture under which 
application binaries are centrally stored and managed, and are exported from a server to 
end user machines. With centralized management, this application deployment 

architecture greatly simplifies software patching/upgrade/repair and license control in a 
corporate environment without suffering performance penalty and scalability problem of 

the thin client-computing model. We try to describe how to customize the generic FVM 
framework to accommodate the needs of the shared binary server architecture and present 
experimental results to demonstrate their performance and effectiveness.  

 

 
Figure 4.1: Application deployment architectures. 

(I: Install, R: Execution) 

 

4.2 Overview of FVM based Shared binary server  

     The shared binary server is widely used in the UNIX world. End user machines 
typically mount binary files exported by a central binary server on local directories and 

execute them locally. However, in Windows world, this scenario is a bit tricky. Most 
applications are not designed to be loaded from a shared repository and run locally. 

Instead, they are designed to run on the machine on which they are installed. 
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Consequently, whenever an application runs, it tries to locate its operating environment 
like registries, libraries, configuration files etc from the local machine.  

 
 To enable a Windows client machine to execute a program physically stored on a 

binary server, the program‟s operating environment has to be redirected from the local 
machine to the binary server. However, when accessing a local file containing the 
input/output data, the access should not be redirected.  

 
 FVM architecture enables us to redirect access of a process running in a VM to the 

VM‟s private workspace. We extend this to framework to support redirections on the 
binary server client. We modify the redirection logic on the binary server client as 
described above. A process started from the executable on the binary server is associated 

with a special VM (with redirection logic modified) on the binary server c lient. To 
distinguish between accesses to local/input output data and the application configuration 

data, we rely on the typical application installation patterns (based on heuristics). An 
application installation, usually, updates only a few directories like the program directory 
(C:\Program Files), the system directory (C:|\winnt\system32) and the configuration 

directory (C:\Documents and settings\All users). The installation, usually, modifies the 
registry keys located at HKLM\Software. Users rarely store their personal data at these 

locations. The binary server is implemented over these heuristics and testing with a 
variety of Windows applications suggests that this heuristic is pretty reliable and 
reasonable. 

 

4.3 Design and implementation 
      Figure 4.2 pictorially depicts the system architecture for the proposed shared binary 
server for Windows based end user machines. Under binary server architecture, users 
start the application process on their local machine by executing the application„s 

executable file stored on the binary server. The binary server is accessed using remote 
file share/access protocol like CIFS/SMB. The process creation on the binary server 

client is intercepted. We create a VM on the local machine in case the executable is being 
launched from the remote binary server.  
 

Since we leverage the Windows supported Common Internet File System (CIFS) 
sharing, redirecting the access is straightforward. When a process accesses one of its 

libraries using a local path, say “C:\Program Files\abc.dll”, the FVM redirects the access 
to the binary server by renaming the system call argument to the path 
“\\Binserv\C\Program Files\abc.dll”  (UNC naming). BinServ is the name of the binary 

server. This name is usually configured as a registry key on the binary server using a 
client tool. In addition to application binaries, FVM can also redirect loading of Windows 

system DLL‟s to the binary server by intercepting system calls accessing memory-
mapped DLL images. When the system DLLs are loaded from the binary server, we 
require the end user machines to run the same OS kernel as the shared binary server.  

 
The registry redirection logic is implemented entirely in the user space (unlike file 

redirection logic described above). The above technique of renaming the system call 
argument (file name) to perform file redirection doesn‟t work with registry related system 

file:\\Binserv\C\Program%20Files\abc.dll
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calls. In the current binary server prototype, we leverage two Winnt API‟s RegLoadKey 
and RegStoreKey to facilitate registry redirection. We export registry entries under the 

“HKLM\Software” (using RegLoadKey API) on the binary server and load these registry 
entries into the VM (using RegStoreKey API) that is set up to run shared binaries when 

the VM is first created. This implies that the client has a copy of all the registry entries 
associated with the applications installed on the binary server, and the registry access 
from the shared binary VM is redirected to its local copy. We also periodically 

synchronize the shared binary VM‟s local registry copy with those on the central server 
to reflect newly installed applications.  

 
In addition to files and registries, applications can install environment variables 

on the binary server. To allow an application running in a shared binary VM to access its 

environment variables that are set up at the installation time, the shared binary VM 
retrieves all the environment variables stored on the binary server and merges them with 

environment variables of the local environment. 

      
 

 
Figure 4.2: Binary server architecture.  

 

 COM (Component Object Model) is a platform independent, distributed and object-
oriented system for creating binary software components that can interact. The COM 
framework provides a standard way for applications (.exe files) or libraries (.dll files) to 

make their functionality available to COM compliant applications. The shared binary 
server architecture also redirects accesses to the COM components that shared binary 

server depend upon. There are typically 2 types of COM components. One is called In-
Process objects, which are usually implemented as DLL‟s that an application can load 
into its address space. Redirecting access to In-Process COM objects is same as 

redirecting accesses to DLL‟s. The other is Out-of-process COM component, usually 
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implemented as stand-alone exe‟s, which runs as a separate process. The Out-of-process 
COM components allow multiple client processes to connect to it. So, when an 

application program running in a shared binary server VM accesses an out-of-proc COM 
object, it should load the COM object from the remote binary server into the application 

regardless of any locally installed COM objects.  
 

COM objects are identified by CLSID‟s (Class Identifiers), a globally unique 

identifier. To implement the above-described behavior for Out-of-process COM objects, 
we assign a new CLSID to each COM object accessed by the applications running inside 

a shared binary VM. We perform the necessary mapping between the old CLSID and the 
new CLSID during each COM object access. This mapping is maintained inside FVM. 
This forces the system to load COM objects from the binary server into the application 

process. 

 
Figure 4.3: COM redirection technique used in Shared Binary server 

implementation. 

 
By redirecting file, registry and OLE/COM access to a remote binary server in the 

FVM layer, the binary server VM allows users to use Windows applications without 
installing them on the local machine. We have tested a few applications, such as LeapFtp, 

Winamp and Microsoft Word, which cannot be started through the file-sharing interface 
unless running in the binary server VM. 
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Table 4.1: Shared Binary Server redirection logic 

 

4.4 Evaluation 
 

Correctness 
     We tested out the shared binary server implementation using a bunch of standard Windows 
applications (listed in table 4.1). We configured a shared binary server with the applications 
installed and shared the installation and other configuration directories. The client did not have 
any of the applications installed locally. When the executable from the server was launched from 
the client machine, the redirection strategy ensured that the application was launched successfully 
on the client. 
 

Some of the Operating system dependent known DLL‟s (like the kernel32.dll) are not 
streamed to the client from the shared binary server.  We do reuse some of the system DLLs of 
the client. This warrants that the operating environment on the client and the server be the same. 
Since the shared binary server architecture is built on top of FVM (an OS level virtualization 
technique), any application modifying the running kernel (by direct access) or loading a kernel 
module is not supported. Shared binary server architecture works only for user land applications.  
 

The suggested in the previous section, the current redirection strategy of shared binary 
server is static. The redirection logic we use is based on heuristics. We notice that, in general, 
application installations usually update only a few directories (installation directory typically 
being C:\Prog~ files, configuration directories being C:\Docume~settings\\All users and system 
directory being C:\winnt). The application installation also modifies only fixed registry keys 
(HKLM\Software). Our redirection logic filters these directories/registry key entries to perform 
redirection. Testing of variety of Windows applications suggest that this heuristic is reasonably 
effective. 

 

 Performance Evaluation 
     We evaluate the performance of FVM based shared binary server architecture by 
measuring the startup time of six interactive Windows applications in the following 

configurations. 
o Local installation and  Execution (LIE): Applications are installed and executed 

on the end user machines  
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o Shared Binary Service with Local Data (SBSLD): Applications are installed on a 
central server and executed on an end user machine with input/output files stored 

locally.  
o Shared Binary Service with Remote Data (SBSRD): Applications are installed on 

a central server and executed on an end user machine with input/output files also 
stored on the central server.  

o Thin Client Computing (TCC): Applications are installed and executed on a 

central server, with execution results displayed on an end user machine through a 
Windows Terminal Service (WTS) session. Input/Output files are stored in the 

central server as well.  
 
 

We use a test harness program to launch an application under test using the 
CreateProcess() Win32 API, and monitors the application‟s initialization using the 

WaitforInputIdle() API. The start-up time of a test application corresponds to the elapsed 
time between the moments when these two API calls return. To measure the initialization 
time of a WTS session, we run a terminal service client ActiveX control program on an 

end user machine. When a WTS session is successfully established, this program receives 
a connected event. The time between this event and the time when the program first 

contacts the terminal server is the WTS session‟s initialization time. We use two 
machines in this experiment. The client machine was an Intel Pentium-4 2.4GHz machine 
with 1GB memory running Windows 2000 server and the shared binary server machine 

was an Intel Pentium-4 2.4GHz machine with 256 MB memory running Windows 2000 
server. 

 

Caching 
    We tested out the effectiveness of caching the application configuration files and 

registries locally. The following is the summary of the test setup.  
(1) Inside the FVM, whenever we do the rename of the file/registry entries to the remote 

binary server, we cache it locally.  
(2) Any subsequent access to a resource is first looked up in the temporary directory 

(from (1)). We redirect the access to the binary server only when the file is not 

present locally 
(3) The registry entries are anyways cached on the client during the binary server setup 

time as described above. Figure 4.5 shows the startup comparison among various 
Windows applications. 
 

Note that configurations SBCLD and SBCRD are equivalent to SBSLD and SBSRD 
respectively with local caching. 
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Figure 4.4 Start-up time of six interactive applications under 3 different test 

configurations. 

 

  

 
Figure 4.5 Start-up time of six interactive applications under 4 different test 

configurations. 
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Figure 4.6 The startup time of six interactive applications and the execution times 

under 3 different configurations. 

 

Analysis 
 

Figure 4.5 shows the start-up time comparison among these four configurations 
for the six test applications. The start-up overheads of the four configurations tested are 
in the following order: SBSRD > SBSLD > TCC > LIE. In general, the amount of 

file/registry access over the network determines the magnitude of the initialization 
overhead. For LIE and TCC, the amount of file/registry access over the network is zero, 

and therefore their start-up times are smaller. Because TCC incurs an additional fixed 
cost (around 40 msec) of initializing a WTS session, its start-up time is longer than LIE‟s. 
Both SBSLD and SBSRD require access to the remote server for configuration files, 

registry entries, DLLs and COM/OLE components, and therefore incur a substantially 
higher start-up overhead. In the case of SBSRD, it incurs network access overhead even 

for input/output files and therefore takes longer to start-up than SBSLD. 
 

The overhead order among the four configurations is different for WinWord. In 

this case, the start-up times of the four configurations are pretty close to each other, LIE: 
463 msec, SBSLD: 479 msec, SBSRD: 494 msec and TCC: 517 msec. The reason that 

TCC exceeds SBSLD and SBSRD is because of its additional 40-msec WTS session 
initialization cost. The start-up time of WinAmp is much higher than that of other test 
applications because the number of file access redirections is much higher (214) than 

others, as shown in Table 5.2. In other words, WinAmp requires access to 214 executable 
or configuration files, which are fetched from the binary server at the initialization time.  

 
Therefore, the execution of WinAmp using a binary server incurs a much larger 

start-up overhead than others. The large difference in SBSLD‟s and SBSRD‟s start-up 

times‟ forWinAmp arises from the large input file used in the test of WinAmp, which is 
5.2Mbytes in size. In addition to interactive applications, we also measured the execution 

time of three batch programs in the above four configurations. The batch program‟s 
execution time in the four configurations follows the same order as the start-up time 
measurement for interactive applications, as shown in Figure 4.2  
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Application Registry Redirections File redirections 

WinWord 996 62 

Power Point  487 30 

Excel 339 17 

Acrobat Reader 152 55 

WinAmp 397 214 

Firefox  159 16 

Table 4.2: The number of registry and file access redirected to the binary server 

during the initialization time for six interactive Windows applications. 

 Figure 4.4 shows similar testing scenario with caching configured. We cache the 

configuration files, registries, OLE/COM components locally in a temporary directory as 
described above. Clearly, the performance of shared binary server with caching and local 

data matches up with the performance of the local installation and execution results. The 
discrepancy in the performance could be attributed to the redirection/renaming overhead 
involved for each of the file/registry access. The amount of registry/file redirection is 

pretty prominent in case of WinAmp as seen from table 4.1. The input file size used for 
testing WinAmp was an mp3 fie of size 5.2 Mega bytes which is the reason for the 

prominent discrepancy between SBCLD and SBCRD in table 4.4.  
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Chapter 5 

Conclusion and Future Work 
 
     In this thesis, we describe some of the extensions to core FVM and an application of 

FVM (shared binary server). FVM prototype, with the described extensions, went open 
source on source-forge [13] last month.  

 
 Featherweight Virtual Machine (FVM) allows a single machine to host multiple 
isolated execution environments on a single Windows kernel. By name space 

virtualization and copy-on-write, FVM enables multiple VMs to efficiently share 
resources without interfering with one another. FVM‟s minimal VM startup/shutdown 

cost and large scalability make it an excellent platform for building applications that 
require frequent invocation and termination of “dispensable” VMs.  
 

 We have successfully leveraged FVM to implement a shared binary server 
prototype that exhibits moderate performance overhead. One of the future works, 

leveraging both the FVM framework as well as the shared binary server idea, is to build a 
distributed DOFS architecture to protect confidential files on the file server against 
information theft. The idea is to run file viewing/editing programs in a VM, which 

redirects all the operations back to a central server. Confidential files are encrypted and 
decrypted on the fly as they transmit over the network to ensure end user machines never 

have plain text file content.  
 

The COM virtualization technique we used for shared binary service application 

is superseded by the FVM COM server (rpcss) virtualization. Virtualizing rpcss 
effectively ensures that there is one instance of the COM server per VM. Hence, the 

renaming technique we used in shared binary server becomes redundant (rpc server 
virtualization was implemented post FVM 1.0). Virtualizing rpc server was a bit tricky 
(brief synopsis described in section 3.3) but most of the issues pertaining to out-of-proc 

COM components falls into place. In hindsight, probably, we could have included FVM 
COM virtualization as part of design of shared binary server instead of designing an 

alternative solution for it.  
 

File virtualization method in shared binary server involves renaming all local file 

access (based on the directories listed in table 4.1) to a CIFS network shared file path. 
However, this technique doesn‟t work for registry redirections as there is no interface in 

the Windows Kernel to redirect local registry access to remote registry. We currently 
fetch the remote registry hive (Table 4.1) and load it locally on the client on a new hive. 
Local registry accesses are mapped onto this newly created hive. The problem with 

caching registry keys on the client is any software updates on the server (which might 
potentially add/change registry key entries) is not immediately reflected on the client (not 

until the binary server client is initialized again). A probable solution would be to create 
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and rely on a user land daemon to perform registry redirections (Windows provides 
documented API‟s for remote registry accesses in the user land). One way to implement 

this could be to completely move the registry virtualization code to user land. This, 
however, would make the design feeble as subverting a user land interception is easier. 

Another solution would be to continue doing the registry virtualization inside the kernel, 
but create and rely on the user land daemon to fetch/set the remote registry data. This 
method is more robust but there is a performance hit as each registry access involves a 

shift from kernel to user mode to fetch the data.  
 

To distinguish between accesses to local input/output data and those to 
application-specific configuration data, the binary server could be enhanced to monitor an 
application‟s installation process and record its configuration files, DLLs and registry 

settings. The resulted application profile can then be sent to the client VM as redirection 
criteria. This could be a rationale enhancement over the simple redirection criterion we 

use in the current prototype. FVM logging framework could be leveraged to do such 
profiling. FVM logging framework, in its current forms, logs the system call activity of 
all applications running inside the FVM. We could leverage this framework to 

automatically come up with a application specific selective virtualization profiles.  
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