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Abstract of the Dissertation 

Development of a Multi-Modal Neuroimaging Fusion Approach to Study 

Rehabilitation of Aphasia Stroke Patients. 

by 

Mayuresh Sudhakar Korgaonkar 

Doctor of Philosophy 

in 

Biomedical Engineering 

Stony Brook University 

2008 

 

Language is a complex higher order cognitive function and has been one of the most 

popular areas of research over the past two centuries. Impairment of the ability to 

produce and/or comprehend language, also called aphasia, is a common functional 

disability seen in many stroke patients. Cerebral function reorganization immediately 

post-stroke and over a period of therapy can predict extent of damage and final outcome 

of recovery in these patients. A thorough understanding of how the brain rewires post-

stroke can help clinicians to make informative decisions about rehabilitation strategies 

most appropriate for an individual patient. The goal of this dissertation was to use 

currently existing neuroimaging techniques – functional MRI (fMRI), diffusion tensor 

imaging (DTI), electroencephalography (EEG) and resting state BOLD MRI - to develop 

a multi-modality neuroimaging tool to study brain plasticity in aphasia patients. Using 

fMRI as a focal point for integration of all modalities, we have developed and 
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investigated methods to combine information from these modalities and identify potential 

markers of cerebral reorganization. We hypothesize that individual task difficulty maybe 

a critical confound in interpreting changes in brain function in stroke patients. Using our 

developed battery of language production and comprehension tasks, we have shown that 

task difficulty effects in language function can be highlighted in healthy subjects and are 

also found to change with age. This developed tool will be useful for future studies of 

aphasia stroke patients in evaluating effects of clinical drugs and different rehabilitation 

strategies in successful recovery of these patients.    
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Chapter 1 

Introduction 

 

Stroke, also called brain attack or cerebrovascular accident, is the third leading 

cause of death and the leading cause of disability in the United States. Stroke affects 

nearly four out of five Americans – either themselves or someone they know. On an 

average, a stroke occurs every 45 seconds, someone dies every 3 minutes and those who 

survive are left with significant physical and emotional after effects.  

The brain is an extremely complex organ that controls various body functions. In 

the event of a stroke, blood supply to a part of the brain is interrupted which results in the 

sudden loss of neuronal function. One of the effects of stroke is aphasia, or the loss or 

impairment of the ability to produce and/or comprehend language. It is estimated that 

approximately 1,000,000 individuals in the United States have aphasia and approximately 

80,000 individuals acquire aphasia every year. Anyone can acquire aphasia, but 

prominent are individuals from the middle and later age groups and constitute an equal 

number of men and women. 

Aphasia results from damage to the language centers of the brain. The area and 

extent of damage may result in the ability to speak but not write, or vice versa, or display 

a wide variety of other deficiencies in reading, writing, and comprehension. Based on the 

area of damage or nature of disability, aphasia can be classified into various types (See 

Table 1.1). 

Aphasia recovery generally depends on the type of brain insult. In case of 

transient ischemic attack (TIA) i.e. temporary obstruction of blood flow to the brain due 
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to stroke, aphasia recovery takes place without treatment and takes about a few hours to a 

few days. For most aphasic cases, language recovery is neither quick nor complete and 

demands some form of speech-language therapy. This therapy is targeted at improving 

the patient’s ability to communicate by helping the person to use remaining abilities, to 

restore language abilities as much as possible, or to learn other methods of 

communication. The effect of therapy depends on the cause, extent and nature of stroke 

insult, and the age and health of the patient. 

Current research in aphasia is targeted at exploring new ways in evaluation and 

treatment to further understand brain function. Medical imaging techniques like Positron 

Emission Tomography (PET), Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI) and functional Magnetic Resonance Imaging (fMRI) are being used to 

define brain functions, determine the severity of brain damage and predict the severity of 

aphasia. Using these techniques a thorough understanding of language disabilities in 

various types of aphasia can be acquired, which may help to design various treatment 

strategies and to evaluate them. 

The goal of this dissertation is to develop a neuroimaging tool using a 

multimodality fusion approach to better understand brain functions, dynamics and 

architecture in aphasics and healthy subjects. Such a tool could be used to study brain 

plasticity and evaluation of effectiveness of different aphasia treatment strategies. 

 

(Statistical and general information from www.asha.org and the National 

Institute on Deafness and other Communication Disorders October 1997 - NIH Pub. No. 

97-4257) 
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Type of Aphasia 

 

Repetition Naming 
Auditory-

Comprehension 
Fluency 

 

Broca’s 

 

Moderate- 

severe 

Moderate-

severe 
Mild difficulty 

Non-fluent, 

effortful, slow 

 

Wernicke’s 

 

Mild-

moderate 
Mild-severe Defective Fluent paraphasic 

 

Conduction 

 

Poor Poor Relatively good Fluent 

 

Mixed Transcortical 

 

Moderate Poor Poor Non-fluent 

 

Transcortical Motor 

 

Good Mild-severe Mild Non-fluent 

 

Transcortical Sensory 

 

Good 
Moderate-

severe 
Poor Fluent 

 

Global 

 

Poor Poor Poor Non-fluent 

 

Mixed 

 

Non-fluent Moderate Moderate 
Mild (worse than 

Broca’s nonfluent) 

 

Anomic 

 

Mild 
Moderate-

severe 
Mild Fluent 

 
Table 1.1: A brief summary of different types of aphasia and their effects. 
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Chapter 2 

Background: Language - A Higher Order Cognitive Function 

 

Language has been one of the most popular areas of research over the past two 

centuries. Language is a highly complex higher order cognitive function with even the 

most basic task of generating a single word requiring different levels of cognitive 

processing. The complexity of language can be realized from this neuroscientific 

description by Cathy Price [1]: 

“Language is the mental faculty that we use to communicate. It involves the 

association of sounds and symbols with meaningful concepts and enables us to describe 

our external environment and abstract thoughts. The effective use of language requires 

the interaction of memory with sensory input and motor output systems. The principal 

types of memory required for language are phonological (the sounds of words), 

orthographic (the spellings of words) and semantic (our knowledge of the word). Sensory 

input to these memories can be via auditory processing (for spoken words, environmental 

sounds and music), visual processing (for written words, objects, faces and sign), or 

tactile processing (Braille). Motor output enables the expression of concepts via 

articulation, writing, signing or drawing; it can either be self generated (in response to 

internally generated thought) or stimulus driven (e.g. in response to written or heard 

words).” 

The past two centuries has witnessed a number of theories related to language 

processing. Popular and earliest among them are: the neurological models of language 

developed in the 19
th

 century by Broca, Wernicke and Lichtheim; and the cognitive 
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models suggested by the 20
th

 century psychologists [1]. Based on lesion and postmortem 

studies, the 19
th

 century models identified the role of brain regions recruited at different 

stages of language processing. The neurological model for repetition of heard speech and 

read visual words is shown in Figure 2.1. Cognitive models, on the other hand, were 

primarily focused on the complexity of language functions rather than their neurological 

underpinnings. Using behavioral studies, they sought to better understand interactions of 

various subcomponents involved at different levels of language processing. They also 

proposed existence of more than a single route depending upon specifics of language 

processing (e.g. semantic vs. non-semantic involvement). One such cognitive model 

proposed by Patterson and Shewell with complex sub component interactions and 

multiple routes for word processing is shown in Figure 2.2. 

A BAA BB

 
Figure 2.1: The 19

th
 Century Neurological Model for Language (Figure taken from [1]): 

Arrows indicate sequence of language processing.   

A. Repetition of Heard Speech: Primary auditory cortex (P.A.C.) – area which processes 

auditory speech input; Wernicke’s area – comprehension of auditory word; Broca’s area 

– generation of motor representation of the heard word; Arcuate Fasciculus – pathway 

connecting Wernicke’s to Broca’s area; Motor Cortex – Output speech production.  

B. Reading Components: Visual Cortex – Visual word processing; Angular Gyrus – access 

to representation of visual word; same path followed from thereon to final word 

production i.e. Wernicke’s area, Arcuate Fasciculus, Broca’s area and Motor cortex  
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Figure 2.2: The 20

th
 Century Cognitive Model for word processing by Patterson & Shewell 

in 1987 (Figure taken from [1]). Left side of the model describes processing associated with 

heard or spoken speech and right side with reading and writing. The model shows four key 

components involving four lexicons: 1. auditory input lexicon corresponds to the auditory images 

of speech; 2. orthographic input lexicon corresponds to visual images of words; 3. auditory output 

lexicon corresponds to motor images of speech; and 4. orthographic output lexicon, not specified 

in the neurological model but specifies the motor images for writing. Cognitive system includes 

the concept of words. The model incorporates more than one route for reading and speaking, for 

example, words can either be read via orthographic analysis, the orthographic input lexicon and 

the phonological output lexicon or, directly by converting parts of words to respective phonemes 

and integrating those phonemes in the response buffer. An important difference compared to the 

neurological model is the lack of neurological information with associated components.      

 

The contribution of neuroimaging over the past decade has revolutionized the 

understanding of language and tested the validity of these proposed models. New models 

have been proposed which help us better understand the complexities of language. Based 

on neuroimaging evidence, Price has proposed one such advanced model which combines 

previous neurological and cognitive models (Figure 2.3) [1]. This model revalidates the 

existence of a semantic and non-semantic route with the role of additional areas 

(depending on nature of semantic information) for word reading.  

The next few sections aim at reviewing the word production mechanism, 

subcomponents involved and their functional organization in tasks used in our research, 

namely, picture naming and verb generation. A language comprehension task to tap the 
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semantic processing in language is also discussed. Finally, a review of the application of 

language function to study brain reorganization in aphasia is provided.        

 
 
Figure 2.3: Price’s Proposed Model for Word Processing based on NeuroImaging Data 

(Figure taken from [1]): Top row: Acoustic processing of heard words and Visual Processing of 

written words. Second row left: Phonological processing of speech sounds relative to 

environmental sounds. Second row middle: Semantic decisions relative to phonological decisions 

on the same words. Second row right: Retrieving the name (lexical semantics) relative to seeing 

visual controls and saying “okay” or “yes”. Third row: Transverse slices showing the anterior 

insula and frontal operculum activations during phonological output. Fourth row: Motor areas for 

articulation and auditory processing of spoken response for reading aloud relative to silent 

reading.    
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2.1 Word Production (Picture Naming and Verb Generation): 

 

Word production is a demanding, cognitive process. A number of stages and sub-

stages are parsed before a single word is produced. This cognitive complexity is even 

more enhanced when sentences are generated. The neuroscience field has a long way to 

go before all complexities in higher level language production are sorted out. A wide 

range of neuro-psych, electrophysiology and neuroimaging research has provided us an 

understanding of single word production at subcomponent level. Using a meta-analysis 

approach with these studies, Indefrey and Levelt have provided a framework of the 

processing components involved in speech production and cerebral regions associated 

with them [2, 3]. Different tasks used in word production studies like picture naming, 

verb generation, noun generation, word reading, word repetition, generating words 

starting with a particular letter etc., differ in the type of lead-in processes and also in 

terms of the level of entry in the core processes. Both picture naming and verb generation 

contain all processing levels in word production. The components involved with different 

word production tasks are shown in Figure 2.4. Details of these components and their 

associated cerebral regions proposed by Indefrey and Levelt are given below. Figure 2.5 

shows a schematic representation of the cerebral regions and temporal windows for the 

components involved in picture naming.  
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Figure 2.4: Different word production tasks and their sub components (Figure taken from 

[2, 4]. Check mark indicates involvement of the component process in the task. Check mark in 

parentheses indicates that the component’s involvement depends on the details of the task. 

Phonetic encoding and articulation, for instance, are involved in overt, but not in silent word 

production tasks. 

   

1. Lead-in Processes: 

The lead-in process in picture naming is visual object recognition i.e. visual 

complexity, color, object category etc. For verb generation, a visual or auditory word 
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recognition process is triggered. For a concrete noun, a visual image of the noun will be 

generated and that image activates one or more associated actions in the long term 

memory. When the noun is abstract, long term memory maybe accessed without visual 

imagery. The cerebral regions recruited for the lead-in processing stage are: 

Picture Naming: Ten regions are activated mainly during picture naming: left anterior 

insula, left posterior inferior temporal and fusiform gyri, bilateral medial occipital lobe, 

right caudate nucleus, left midbrain, and the medial and right lateral cerebellum. Five of 

these regions – left anterior insula, left posterior fusiform gyrus, left and right medial 

occipital lobe and right medial cerebellum – are also found activated during word 

reading, suggesting an involvement in visual processing, the principal lead-in component 

common to both picture naming and reading.  

Verb generation: Left anterior superior frontal gyrus, right anterior insula, right mid 

superior and middle temporal gyri, left caudate nucleus, and right thalamus are the 

regions associated with word generation. The left anterior frontal and middle temporal 

gyri, right anterior insula, and left caudate are specifically related to the lead-in processes 

of word generation, whereas right mid superior temporal gyrus and left thalamus are 

found in word reading as well.  

The posterior fusiform gyrus and the insula were suggested to be involved in the 

later stages of visual processing because of their absence during pseudo word reading. 

The medial occipital activations were also associated with the processing of nonlinguistic 

visual features (like string length etc) because of their presence during both word and 

pseudo word reading tasks.   
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2. Conceptual preparation, lexical and lemma selection: 

Conceptual preparation involves assimilating properties of a viewed picture or 

word and generating lexical concepts semantically associated with them. Syntactic 

representations for each lexical concept, also called lemma, are retrieved from the mental 

lexicon. Next depending upon the communicative situation and the experimental task, the 

appropriate lexical concept and corresponding lemma is selected for expression. For 

example, if a picture of a labrador is shown, lexical concepts like ANIMAL, DOG, 

LABRADOR etc. could be activated. If the task is to name the animal in the picture, the 

lexical concept DOG will be selected for expression.  

The mid segment of the left middle temporal gyrus was found associated with the 

conceptual and/or lexical selection processes in word production. Apart from the 

conceptual preparation for lexical selection, a number of other conceptual processes are 

involved in word generation - like the semantically guided search processes in word 

generation (served by the anterior frontal regions), as well as from the prelinguistic 

conceptual processes involved in object recognition and categorization (served by the 

ventral temporal lobe). These are however suggested to be a part of the lead-in processes. 

 

3. Phonological code retrieval: 

Phonological code retrieval is the first major step in generation of the articulatory 

shape of a word. Only the selected lemma will activate retrieval of phonological codes of 

each of its morphemes. Morphemes represent segments or division of phonemes of the 

whole word. This phonological code retrieval activates the left posterior superior and 

middle temporal gyri i.e. the Wernicke’s area and the left thalamus. The posterior 
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superior temporal lobe has been also found to be activated during word comprehension 

indicating that a common store of lexical word form representations is accessed in both 

word production and comprehension. 

 

4. Phonological encoding: 

During this stage the spelled out segments of the phonological code are 

incrementally clustered in syllabic patterns. For example, to syllabify the word ‘persist’, 

the first two segments /p/ and /e
r
/ will be clustered to form the first syllable /pe

r
/; next the 

remaining four segments will be clustered to form the second syllable /sIst/. Each syllable 

is also called a phonological score. 

The left posterior inferior frontal gyrus (Broca’s area) and left mid superior 

temporal gyrus are two areas which are found to be associated with phonological 

encoding. Only the Broca’s area has been observed to be active for processing of pseudo 

words indicating a functional difference between the Broca’s area and the left mid 

superior temporal gyrus within non-lexical phonological processing. Broca’s area is also 

found to be activated in tasks involving phonological processing of language 

comprehension.  

 

5. Phonetic encoding and articulation:  

As soon as a syllable is programmed, its gestural score is retrieved from the 

mental syllabary. The syllabary is the repository of abstract motor representations for 

each syllable. From the syllable scores, a gestural pattern also called an articulatory score 

or gestural score for the word is generated. This is called phonetic encoding. Articulation 
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involves generating least-effort solutions for execution of these gestural scores. These 

solutions provide motor instructions for the respiratory, laryngeal and the supralaryngeal 

systems involved in fluent articulation. 

The primary motor and sensory areas, i.e. the right and left ventral (and to some 

extent dorsal) precentral gyri and the right and left ventral postcentral gyri are the areas 

activated for production of abstract articulatory gestures and their articulation. These 

sensorimotor activations were also observed in control conditions for which the same 

word was said for every stimulus, confirming their recruitment for articulation. Other 

regions found activated only for overt tasks are: left anterior superior temporal gyrus – 

associated with overt pronunciation, right SMA – related to complex motor planning and 

imagination of articulation, and the left and medial cerebellum – associated with motor 

activity.     

 

6. Self perception: 

This component of word processing involves self monitoring of generated speech 

and enters the same processing pathway that is used for normal speech comprehension. 

Bilateral superior temporal activations are associated with self monitoring.  

 

 



 14 

 
Figure 2.5: (Left) Schematic representation of the cerebral regions and temporal 

components for word production in picture naming  (Figure taken from [5]). Identical 

colors indicate relation between regions and processing subcomponents (Right). The 

numbers indicate the time-windows in milliseconds during which the regions are activated during 

picture naming from the onset of the picture stimuli. Further regions activated with phonetic 

encoding and articulation (not shown) are the right sensorimotor cortex, the right SMA, left and 

medial right cerebellum, left and right thalamus, and right midbrain. The region involved with 

self monitoring is the right mid superior temporal gyrus.   

 

2.2 Language Comprehension: 

 

Language processing mainly involves two components: syntactic i.e. processing 

of syntax and semantic i.e. processing of meaning or context of language. While a 

number of studies have concentrated on studying these two processes separately, it is 

suggested that there is both temporal separation (early vs. late) as well as overlap 

between these processes [6]. In summary it has been suggested that language 

comprehension consists of the following three phases: Phase 1 (100-300ms) represents 

the initial syntactic structure formation, Phase 2 (300-500ms) during which the lexical 
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semantic and morphosyntactic processes take place with the goal of thematic role 

assignment (or N400 effect), and Phase 3 (500-1000ms) during which the different types 

of information are integrated. From electrophysiology studies, syntactic processing is 

correlated with two components: a left anterior negativity (LAN), which occurs during an 

early time window (100-500ms) and a late centro-parietal positivity termed P600, which 

occurs between 600 and 1000ms. Semantic processing is correlated with both the N400 

and also the P600 component (which is associated with the integration of the semantic 

and syntactic information) [7]. Functional neuroanatomy studies of sentence processing 

have identified separable temporo-frontal networks. The semantic processes are mainly 

subserved by the left temporal regions (medial and superior temporal gyrus) and involve 

recruitment of the frontal cortex (BA 45/47) when strategic or memory aspects come into 

play; while the syntactic processes involve the left anterior superior temporal gyrus, 

BA44 and the adjacent fontal operculum. The next section will cover a review of N400 

and semantic processing.              

 

Semantic Processing & N400: 

 

As discussed above, electrophysiology studies, also called event related potentials 

(ERP), related to semantic processing in language comprehension have shown that 

semantic priming or semantic deviation affects the amplitude of an ERP component 

called N400 [8, 9]. N400 is the negative deflection of the ERP signal between 300 and 

500ms and peaking approximately around 400ms post-stimulus onset. In addition to 

reflecting neural activity associated with processes related to semantic or lexical access of 
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word representations, N400 has alternatively shown to be related to processes integrating 

word representations with current context [10]. For example, consider the sentences “the 

boy ate the book” and “the boy ate the ice-cream”. The latter sentence semantically 

makes sense whereas the former sentence is semantically incorrect and would elicit 

higher N400 amplitude (more negative). If a target word e.g. “dog” is preceded by a 

semantically related prime - “animal” or a semantically unrelated prime – “box”; N400 

effect would be reduced in the case of semantically primed word as compared to when 

the target word is preceded by the semantically unrelated word (N400 priming effect) 

[10]. 

Both functional imaging [11, 12] and electrophysiology [13, 14] studies 

separately as well as in conjunction [15, 16] have been used to map the neural generators 

associated with N400. As mentioned before, the left superior temporal cortex has been 

found to correlate with the N400 effect and inferior frontal cortex playing the main role 

in stimulus selection or retrieval. 

 The clinical significance of using ERP components to access language function 

has been established using patient case studies as well as patient group populations [17, 

18]. Using a revised version of the Peabody Picture Vocabulary Test, which uses a 

picture followed by a congruent or incongruent spoken word and requiring no response 

from the patient, D’Acry et al. have shown existence of correlation between the N400 

responses with the language comprehension ability (measured by standardized 

neuropsychological testing) of patients affected by a left hemisphere stroke [19]. This 

kind of assessment is advantageous in comparison to standard neuropsychological 
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methods requiring task performance for motor and language assessment in stroke 

patients.  

 

2.3 Aphasia, Brain Reorganization and Language function: 

 

Brain plasticity or neuroplasticity is the capacity of the brain to modify 

organization of its neuron networks and location of specific information processing 

functions as a result of experiences during development. The human brain is not “hard 

wired” with fixed and immutable neuronal circuits. Gray matter can actually shrink or 

thicken; neural connections can be forged and refined or conversely weakened and 

severed. Changes in our abilities manifest changes in our physical brain. With age, 

certain brain machinery tends to decline. However the plastic nature of the brain allows 

for the possibility of reinvigorating these brain machineries. This is clearly evident from 

studies which have shown evidence of the development of a compensatory brain memory 

network in older adults to counteract age related neurocognitive decline as compared to 

young adults [20]. The same mechanism is responsible for functional recovery in 

response to a cortical injury or cerebral damage.              

 The understanding of the bases for brain plasticity comes from studies of neural 

connections which have indicated that afferent cells after damage can produce new 

connections based upon a process called synaptic reorganization. Three forms of synaptic 

reorganization have been observed: 1. sprouting of new axons increasing the number of 

terminals in the normal dendrite area, 2. development of terminals in the new target area; 

and 3. extension or termination of afferents on cells that are not the normal target areas 
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(hemisphere contralateral to the injury). These changes in excitability in adjacent and 

contralateral homotopic regions of a cortical lesion is the consequence of reduced 

collateral (i.e. in ipsilateral perilesional regions) and transcallosal (i.e. in contralateral 

homotopic regions) inhibition. Netz et al. have shown that this inhibition of neurons in 

neighboring areas and parts of the bilateral network, not participating in the performance 

of a particular function, is necessary for the lateralization or specialization of certain 

brain areas for that function [21]. 

Recovery from aphasia (due to stroke or due to tumors developed over time) 

implies functional reorganization of the language system in the brain. Many 

neuroimaging studies have suggested the importance of areas surrounding the infarction 

in recovery [22-24], whereas others have suggested an essential role of the contralateral 

undamaged hemisphere [25-28]. Some have also suggested the role of both hemispheric 

areas in recruitment for recovery [29]. Most informative have been the studies which 

have followed language recovery over the course of rehabilitation of aphasic patients [25, 

30-34]. While most of these studies have observed language rehabilitation from subacute 

phases (12days to 3months post stroke) to chronic phases (more than 5 months post 

stroke), Saur and colleagues have monitored language reorganization from the acute (1.8 

days post stroke) to the chronic phase (321 days post stroke) [30]. They suggest that the 

course of language recovery begins with a moderate amount of early activation of non-

infarcted ipsilateral language structures, followed by an upregulation with recruitment of 

the homologue language structures and finally a re-shift into the ipsilateral hemisphere.  

In terms of quality of restored language function, improvement depends upon the 

undamaged portions of the language network in the left hemisphere (i.e. the dominant 
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half of the brain) and to a lesser extent on the homologous right hemisphere areas [35]. 

This is also evident from a recent study by Winhuisen and colleagues [36, 37] which used 

repetitive transcranial magnetic stimulation of inferior frontal gyral (IFG) language sites 

identified using PET. They found that the contralateral IFG is essential for residual 

language function for patients who do not recover complete left IFG function at 10 days 

post stroke [36]. This compensatory potential was however less effective than in patients 

who recovered left IFG function. The follow-up study [37] of the same patients 8 weeks 

after stroke indicated that patients with right IFG role in language at 10 days post stroke, 

showed language improvement at 8 weeks post stroke only if they had regained left IFG 

activity. Also, there was a shift of language function to the left IFG with no new right 

IFG activations observed at 8 weeks. These results indicated a restoration of transcallosal 

inhibition after recovery of the left hemispheric areas reducing the role of the right IFG in 

language function. Belin et al. have also linked increased right hemispheric activity in 

chronic aphasic patients with failed or faulty recovery attempts in the sense of 

maladaptive plasticity or the breakdown of interhemispheric control within the distributed 

neural network [38]. In contrast, the activation of neighboring regions in the ipsilateral 

hemisphere and efficient function recovery is probably due to intact collateral inhibition. 

Another factor affecting functional recovery related to cerebral reorganization is the 

speed of development of brain lesions. In the case of aphasia developed over a period of 

time on account of a slow progressive damage (e.g. due to a tumor) , the shift in language 

function to the right hemisphere indicates better recovery [39].                   
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These numerous studies of language functional reorganization have been 

summarized to deduce a hierarchical organization of aphasia recovery [40]. However, 

this proposed model is not valid in all types of aphasia for all language functions: 

• Almost complete recovery of function is only possible by restoration of the 

original activation pattern within the network of the dominant hemisphere. 

• If the primary centers are damaged, reduction of collateral inhibition leads to the 

recruitment of the perilesional areas. An incomplete but satisfactory improvement 

of language function is possible following this intrahemispheric compensation. 

• If the ipsilateral network components are severely damaged, reduction of 

transcallosal inhibition causes activation of contralateral hemispheric areas. This 

interhemispheric compensation involving homotopic contralesional areas 

contributes to an improvement in function which is dependent on the extent of the 

functional shift between hemispheres, but not as efficient as the intrahemispheric 

compensation. However, in the case of patients with slowly developing brain 

damage (as in tumors), language performance can be preserved or completely 

restored despite the interhemispheric shift in function. 

To summarize, evaluation of language function using neuroimaging methods can 

provide insight on aphasia recovery. This dissertation proposes the use of a picture 

naming and verb generation task to evaluate language production. Using these two word 

production tasks, we expect to map the different cerebral areas associated with language 

processing discussed above.  In addition, a language comprehension task, different from 

standard forms of semantic processing tasks used earlier is also proposed. This task taps 

the contextual aspect of semantic processing. The next two chapters give a brief overview 
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of the different neuroimaging methods used to probe the brain function involved in these 

tasks.    
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Chapter 3 

Background: Magnetic Resonance Imaging (MRI) 

 

MRI is an imaging method based principally on the sensitivity to the presence and 

magnetic properties of water (protons). Water constitutes 70-90% of most tissues and the 

properties and amount of water is different between tissues and also changes with disease 

or injury. This makes MRI a very sensitive diagnostic tool for imaging different types of 

tissues. Unlike other imaging techniques which image using ionizing radiation (like x-

rays, CT), there are no known damaging effects associated with MRI. This chapter 

introduces the basic concepts of MRI and gives a brief overview of the specific MR 

imaging techniques used in this dissertation.  

 

3.1 Principles of Magnetic Resonance Imaging 

 

Hydrogen nuclei are by far the most abundant in human body and the most 

commonly imaged nuclei in MRI. A hydrogen nucleus consists of a single proton. The 

proton has a property called nuclear spin and its behavior is similar to that of a spinning 

charged particle. This nuclear spin creates a nuclear magnetic moment and when the 

proton is place in a magnetic field, it experiences a turning force, known as a torque. In 

addition, the proton has an odd numbered atomic mass (i.e. 1) because of which its spin 

results in an angular momentum (J). The magnetic moment and the angular momentum 

are in the same direction and scale by a factor γ (µ = γJ), called the gyromagnetic ratio. 

This value is 42.58 MHz/T for hydrogen.  
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Within a given volume there are many hydrogen nuclei with their spins oriented 

randomly, making the net magnetization infinitesimally small. Therefore, a strong 

magnetic field (conventionally applied in the z direction), B0, needs to be applied to 

increase the net magnetization value. Because of the applied field, a torque is induced on 

the spins, causing the protons to precess about the axis of the magnetic field. This change 

in angular momentum over time is given by: 

oB
dt

dJ
×= µ   

From this equation, it is clear that the proton spin will only precess about the magnetic 

field axis when it is oriented at an angle to the field, and the frequency of this precession, 

called the Larmor frequency, is given by: Bo γω =  

There are two states for the protons: one when the protons are aligned along the 

magnetic field (low energy state) and the other when they are anti-aligned with the field 

(high energy state). The low energy, parallel state is slightly more stable with more 

protons in this state. The relative populations of the two states depend upon temperature 

and strength of the applied field (B0). The sum of all magnetic moments from spins 

within a volume, the net magnetization, provides the basis for the MRI signal. However, 

this net magnetization cannot be measured directly under equilibrium conditions. Hence 

an indirect approach to perturb the spin system away from equilibrium and then measure 

the response of the system is performed. This is usually done by applying a secondary 

external field (B1). The energy deposited by this field must match the electromagnetic 

radiation required to change from low energy state to the high energy state. This energy is 

applied for an extended period of time at the same Larmor frequency of the spins. These 
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main steps in MRI signal generation are divided into: spin excitation, spin relaxation and 

signal detection, and image reconstruction. A detailed overview of these steps can be 

found in [41]. 
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Figure 3.1: Geometric representation of 

the precession of a proton’s spin about a 

magnetic field Bo. Arrows indicate 

direction of precession. Figure adapted 

from [41]. 

 

The previous section provided an understanding of how a spin behaves in an 

applied magnetic field. BOLD fMRI and diffusion tensor imaging (DTI) require an 

understanding of the concept of ‘phase’ and how it changes in the presence of a gradient 

magnetic field, field inhomogeneities and spin motion. This is covered in the next two 

sections.    

 

Spins in a linear gradient magnetic field: 

Consider a uniform distribution of water producing a net MR signal due to the 

applied static field Bo. Now if a gradient G, i.e. a spatially linear magnetic field in 

addition to the static field, is applied over space, the net magnetic field experienced by a 
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proton depends on its position. As the Larmor frequency is dependent on the experienced 

magnetic field, protons precess at different frequencies depending on their position in 

space. The spins which are precessing faster appear to move apart with respect to those 

which are precessing slower. The combined effect is a fanning out of spins due to 

dephasing. The speed at which this happens depends on the gradient amplitude or 

strength. The total angle of dephasing depends upon the product of the gradient strength 

and its duration, also known as gradient moment. For a proton at position x with a 

gradient G applied for time t, the phase Φ of the proton is given as: 

txGtx ⋅⋅=γφ ),(  

When the gradient is turned off, all protons will experience the same static 

magnetic field and will return to the same precession rate. However, the final phase of the 

proton will be remembered. Figure 3.2 shows the change in phase due to a linear 

magnetic gradient.   

If another gradient with a reversed polarity (i.e. negative amplitude) is applied, it 

will have an exactly opposite effect i.e. spins which precessed faster before will now start 

to precess slower and the ones which had a slower rotation earlier will now speed up. 

When the gradient moment of the second applied gradient is equal to that of the first, all 

spins will be pointing in the same original direction. At this point in time, we get a 

measurable MR signal, known as gradient echo. Figure 3.3 shows dephasing and 

rephasing of spins by bipolar gradients to form a gradient echo.  
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CC

 
Figure 3.2: Phase due to the application of a linear gradient field (G). Figure taken from 
[42].y represents the position of proton spins. Phase of a spin (shown by bold arrow) at any time 

is dependent on the applied gradient field and on the position of the spin. A – phase of the spins 

before application of gradient; B – phase of the spins at the end of the applied gradient; and C – 

phase after gradient is turned off. 

 

dephase rephasedephase rephase

Figure 3.3: Generation of gradient echo. The first gradient causes the spins to dephase and 

the second opposite gradient rephases them. Complete rephasing results in gradient echo. 

Phase of spins represented by arrows. Figure taken from [42].       
 



 27 

Effect of spin motion on phase:  

We have seen that a linear magnetic gradient has the capability of encoding phase 

dependent on the position of the spins. A negative applied gradient causes these dephased 

spins to rephase with the amount of rephasing experienced again dependent on position 

of the spins. If the spins were to move during the time between the application of the 

dephase and rephase gradients, these displaced spins will not experience complete 

rephasing resulting in a loss of coherence and loss of MR signal. DTI uses this change in 

phase to map motion and is explained in more detail later.     

 

Effect of field inhomogeneities and spin interactions on phase:  

The discussion so far assumed an ideal MR experiment, where the field is 

completely homogeneous and the spins are stationary throughout. However, in reality this 

is never true. Under the influence of the applied excitation pulse, all the spins are tipped 

into the transverse plane. Initially, all the spins are precessing around the main field at 

their respective Larmor frequencies, but have the same phase i.e. initially all spins are 

coherent in phase. Over time, neighboring spins tend to interact with each other causing 

some spins to precess faster and some slower i.e. the spins become out of phase resulting 

in a loss of coherence. At any point of time, the MR signal is proportional to the net 

magnetic moments of all the spins and the loss of coherence causes the MR signal to 

decay over time. This decay mechanism is known as T2 decay. 

In addition to this spin-spin interaction, if the external field is also 

inhomogeneous, variation in the magnetic field from location to location causes spins at 

different spatial locations to precess at different frequencies, also leading to the loss of 
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coherence. Combined effects of both spin interaction and field inhomogeneity leads to 

signal loss known as T2* decay. This concept of T2* decay is responsible for the BOLD 

fMRI signal and is explained in the later sections. 

    

 

3.2 Being BOLD with MRI – Imaging Brain Function using Magnetic Resonance  

 

Grey matter is the primary tissue associated with functional activation. Long 

before fMRI, specific regions of grey matter were associated with different simple 

cognitive processes. The advent of fMRI has led to the understanding of complex 

cognitive processes and the different brain structures related to them.  

 

3.2.1 What does fMRI tell us about neuronal activity?   

 

Neurons are the basic information processing unit of the central nervous system. 

Any kind of sensory, motor or cognitive process is realized mainly through the following 

two neuronal activities: 1. integrative activity, i.e. a coalition of inputs of numerous 

associated neurons and 2. signaling activity, resulting primarily from the activity of axons 

which transmit the outcome of the integrative processes to one or more other neurons. 

These neuronal activities are demanding in terms of energy requirements in the form of 

adenosine triphosphate (ATP). Because the brain does not store energy, it must create 

ATP energy through the oxidation of glucose. The increased blood flow, in response to 

this need, supplies cells with glucose and oxygen. Thus cortical areas associated with a 

particular function will have a local increase in blood flow as compared to other areas not 
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associated with the same function. Measuring the response to this metabolic demand and 

characterizing the cortical areas associated with this demand is the main principle used by 

fMRI. fMRI is thus an indirect measure of the neuronal activity.            

 

3.2.2 Imaging this metabolic demand using MR 

 

Hemoglobin is the carrier of oxygen in blood. The hemoglobin molecule has 

magnetic properties that differ depending upon whether or not it is bound to oxygen. 

Oxygenated hemoglobin (Hb) is diamagnetic i.e. it has no unpaired electron and zero 

magnetic moment. In contrast, deoxygenated hemoglobin (dHb) is paramagnetic i.e. it 

has an unpaired electron and a significant magnetic moment. Completely deoxygenated 

blood has a magnetic susceptibility (i.e. an effective shift of the main magnetic field due 

to the magnetic moment of dHb) about 20% greater than fully oxygenated blood.  

As discussed in the previous section, in the presence of a magnetic field, 

hydrogen atoms (which are abundant in water molecules in the brain) absorb energy that 

is applied at the precession frequency. After this step of applying radio-frequency 

excitation, the hydrogen atoms emit energy at the same radio frequency until they 

gradually return to their equilibrium state. The MRI scanner measures the sum total of the 

emitted radiofrequency energy. The measured radio-frequency signal decays over time 

owing to various factors, including the presence of inhomogeneities in the magnetic field. 

Because of the paramagnetic nature of deoxyhemoglobin, there is an increase in 

inhomogeneity of the magnetic field. Greater inhomogeneity results in different hydrogen 
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atoms experiencing different magnetic strengths. This results in loss of phase coherence 

due to the T2* effect and thus decreased image intensity.  

By using a MR pulse sequence which is sensitive to this T2* effect (gradient echo 

with long TR and medium TE) [43], changes in magnetic field inhomogeneity of the 

magnetic field within each small volume of tissue resulting from changes in blood 

oxygenation can be measured. The images from this sequence will have a higher MR 

signal where the blood is highly oxygenated and a lower MR signal where the blood is 

highly deoxygenated. Utilizing this simple change in signal, regions of the brain that 

demonstrate a hemodynamic response due to activation can be located.  

Imaging these changes in blood flow with changes in brain function requires these 

images to be acquired very rapidly, atleast at the same rate as the physiological changes 

of interest. Simple gradient echo sequences are limited in the number of slices and how 

frequently these slices can be collected. These sequences acquire images by filling up the 

k-space in a line by line fashion, which necessitates a large number of separate 

excitations for a moderate image resolution. For functional imaging with a reasonable 

spatial resolution, a relatively large k-space needs to be sampled following a single 

excitation pulse. Echo planar imaging sequences which rely on filling the entire k-space 

using rapid gradient switching following a single excitation have shown application in 

collecting these functional images and are commonly used for fMRI [44, 45].  

Developed functional language tasks with fMRI will help us to map the functional 

language architecture in healthy subjects. fMRI will serve as an important marker to 

evaluate severity of stroke insult and study how brain reorganizes with post-stroke 

rehabilitation.     
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3.3 Diffusion Tensor Imaging 

 

3.3.1 Theory of Diffusion 

 

In 1827, the English botanist Robert Brown noticed that pollen grains when 

suspended in water followed a zigzag random path. This random translational motion 

(Brownian motion) of molecules, resulting from the thermal energy carried by these 

molecules, is called diffusion. When the motion of these molecules is unrestricted, the 

scope of movement of each of these molecules is a sphere around the molecule, resulting 

in isotropic diffusion. However, when this motion is restricted in some way in one 

particular direction, the scope of movement is an ellipsoid with the direction of the main 

axis of the ellipsoid representing the preferred direction of motion. This type of diffusion 

is called anisotropic diffusion. This is the main principle behind the underlying success of 

diffusion MRI where the random, diffusion driven displacements of molecules probe 

tissue structure [46].  

During typical diffusion times of about 50msec, water molecules in the brain 

move approximately 10µm, bouncing, crossing, or interacting with many tissue 

components such as cell membranes, fibers, or macromolecules. The overall effect 

observed in a diffusion MRI voxel of several mm
3
 reflects, on a statistical basis, the 

diffusion of the water molecules present within that voxel. This diffusion distribution 

may provide clues to the structure and geometric organization of the tissue and axonal 

structures. Namely, water molecules should move easily along axonal bundles rather than 

perpendicular to them because of fewer obstacles for movement along the fibers and 
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hence give useful information about fiber integrity which may be useful in assessing a 

number of neurological disorders.  

 

3.3.2 Diffusion weighted MR 

 

MR pulse sequences can be made diffusion sensitive by adding a pair of pulsed 

magnetic field gradients (diffusion gradients) into the sequence. The most common type 

of diffusion gradient design is the Stejskal-Tanner Scheme [47] where the first diffusion 

gradient is applied between the excitation pulse and the refocusing 180° pulse, and the 

second gradient is applied between the 180° pulse and the echo (Figure 3.4). 

 

Figure 3.4: Spin Echo MR Sequence with Diffusion Gradients (Grey). Gradients can be 

applied on any of the three imaging axes or a combination thereof. RF – Radiofrequency pulses 

applied - 90° excitation pulse followed by 180° refocusing pulse; G – gradient strength; ∆ – 

separation between gradients; δ – diffusion gradient duration. G, ∆ & δ determine the amount of 

diffusion weighting.  

 

As explained earlier, the effect of the diffusion gradients is to introduce a spatially 

dependent phase accumulation. Gradients can be applied in any direction i.e. x, y or z or a 
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linear combination of these. However the diffusion effect will be measured only in the 

direction of the applied gradients. Hence, for a stationary spin, the phase accumulation 

due to the first gradient is matched in amplitude but reversed in sign to the phase 

accumulation due to the second gradient. The result is that for stationary spins the net 

phase change is zero. For spins that move during the experiment (i.e., diffusing water 

molecules), the phase accumulations due to the first and second gradients are not matched 

in amplitude, thus resulting in a net phase change. As diffusion is a random walk, the 

motion of spins is incoherent within the voxel and will have different phases. This results 

in a loss of phase coherence and signal attenuation. The amount of diffusion weighting 

will depend on the strength of the encoding gradients (i.e., how strongly the phase 

accumulation depends on spatial location), and on the duration of the experiment (i.e., for 

how long diffusion and phase dispersion is allowed to occur). These parameters are 

summarized into a single number called ‘b-factor’. For a simple pair of pulsed gradients, 

the b-factor is given by the Stejskal-Tanner expression: 









−∆⋅⋅⋅=

3

222 δ
δγ Gb  

where γ is the gyromagnetic ratio, G is the gradient amplitude, and δ and ∆ are the 

temporal duration and separation of the diffusion-encoding gradients, respectively. 

 The signal value from a spin echo MR experiment can then be represented as  

 

( ) bDTTETTR
eeePDS

−−− ⋅⋅−⋅∝ 211  

where S is the spin echo signal value, PD is the proton density, T1 and T2 are relaxation 

times, D is the diffusion coefficient and represents the motion of the water molecules, and 
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TR & TE are the related to the timing of excitation (called repetition time) and the 

preparation time (called echo time) of the MR signal respectively. In order to obtain the 

diffusion coefficient (D), signal value of the same voxel at two different measurements in 

time is required. By changing only the b value (say b0) and keeping all other parameters 

the same, signal intensity (So) value can be obtained. The diffusion coefficient value can 

be obtained from these two signal intensity values at two different b values.       
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By solving this equation for every pixel, an apparent diffusion coefficient (ADC) map 

can be obtained. The diffusion value obtained is related to the actual diffusion value and 

contains contributions from other movement sources like micro-circulation in pseudo-

random capillary systems, bulk flow and motion effects etc. Hence the intensity of each 

pixel is often referred to as an apparent value of diffusion and is proportional to the extent 

of diffusion. In an ADC image, bright regions (high ADC, e.g. CSF) will have water 

molecules which diffuse faster than those in dark regions (low ADC, e.g. grey matter). 

However, this ADC map is a representation of diffusion only in the direction of the 

applied gradient.     

 

3.3.3 Diffusion Tensor 

 

The information obtained from the above calculation is sufficient to represent 

isotropic diffusion. However for anisotropic diffusion, the direction of diffusion 
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(represented by the direction with maximum ADC value) is more informative in terms of 

determining fiber/axonal orientation. Three independent measurements along the x, y and 

z axes are not enough because fiber orientation is not always along one of these axes. To 

accurately find the orientation with the largest ADC, the concept of diffusion tensor is 

used [48].  

According to this concept, measurements along different axes are fitted to a 3D 

ellipsoid (the ellipsoid representing average diffusion distance in each direction, not 

ADC). The properties of the 3D ellipsoid, namely, the length of the longest and two 

orthogonal axes (called eigenvalues, λ1, λ2, and λ3) and their orientations (called 

eigenvectors, ν1, ν2, and ν3) can be defined by six parameters. Therefore, ADC 

measurements along at least six axes are enough to calculate the ellipsoid (more 

measurements along other directions will improve the determination of the diffusion 

ellipsoid). To convert the measurement results (more than six ADC) to these six 

parameters, a 3 x 3 symmetric matrix called a tensor is used: (where each element of the 

matrix represents the component of diffusion in the direction given by its subscript) 
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Once the diffusion ellipsoid is determined, the information can be reduced to the 

vector of the longest axis (ν1), which indicates the fiber orientation. To visualize these 3D 

vectors, a color coded orientation map is generated [49]. 
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3.3.4 Parameters derived from DT-MRI 

 

Trace or Mean Diffusivity: 

Trace is sum of the three diagonal elements of the diffusion tensor (i.e. Dxx + Dyy + 

Dzz). Mean diffusivity is given by Trace/3.  

 

Diffusion Anisotropy: 

Diffusion anisotropy is a scalar measure which has been calculated in a number of 

ways. However, the common principle of these anisotropy indices is that they represent 

how much the diffusion ellipsoid deviates from a sphere. 

 

Anisotropy Ratio (Aratio): 

 The simplest anisotropic index is the ratio between the largest and smallest 

eigenvalue. If the diffusion tensor is isotropic, the anisotropy ratio will be 1.   

3

1

λ

λ
=ratioA  

 

Fractional Anisotropy (FA): 

 Fractional Anisotropy is a measure of fraction of the tensor that can be assigned to 

anisotropic diffusion. The numerator represents the variance of the three eigenvalues 

about their mean and the denominator represents the magnitude of the tensor. Thus 

fractional anisotropy is a normalized measure which takes values from zero (when 

diffusion is isotropic) to one (when diffusion is constrained along one axis only).   
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In addition to these measures, other measures like relative anisotropy, volume 

ratio and skewness parameters obtained from diffusion data have been used previously 

[46].    

 

3.3.5 Tractography 

 

For many applications, the use of color labeling is useful for identifying specific 

WM tracts and visualizing their rough trajectories. An alternative strategy is white matter 

tractography (WMT), which uses the diffusion directional information given by the 

direction of the principle eigenvector (ν1) in every voxel. By viewing fiber orientation in 

one voxel and following a path of smooth transition in orientation from one voxel to the 

next, one can gain an impression of the trajectory of the major white matter pathways. 

WMT increases the specificity of WM pathway estimates and enables the 3D 

visualization of these trajectories, which may be challenging using cross-sectional color 

maps. Most WMT algorithms estimate trajectories from a set of “seed” points. Two 

classes of algorithms are available for WMT: 

 

Deterministic Tractography Algorithms: 

 Deterministic or streamline WMT algorithms use the major eigenvector field to 

define the local trajectory directions at each step. The integration of deterministic 



 38 

pathways may be performed using simple step-wise algorithms including FACT [50] and 

Euler integration. Continuous integration methods such as 2nd or 4th order Runge-Kutta 

[51], which enable more accurate estimates of curved tracts, are also commonly used. 

 

Probabilistic Tractography Algorithms: 

 Probabilistic WMT algorithms are based upon some sort of iterative Monte Carlo 

approach where multiple trajectories are generated from the seed points with random 

perturbations to the trajectory directions [52, 53]. These algorithms create a distribution 

of tracts, which can be used to estimate the probability of connectivity for every voxel. 

The connection probabilities may be used as a surrogate measure of WMT confidence.  

 

 Irrespective of the type of algorithm used, basic thresholds must be applied while 

computing fiber tracts. One threshold is the FA parameter discussed above. For example 

if a voxel is entered with a low FA value, then the tracking process has probably led to an 

area of grey matter or CSF and should stop. Another threshold parameter is the angle 

between the primary eigenvector within that voxel and the equivalent vector in the 

neighboring voxels (i.e. once this angle exceeds a certain threshold, the likelihood that 

the neighboring voxel is connected by an actual WM tract is low).   

 

3.3.6 DTI Applications 

 

The main advantage of DTI is its ability to provide rich anatomical information 

about white matter – fiber integrity and fiber orientation. Although the white matter looks 
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homogeneous on a conventional MRI, it has a very complex structure and DTI is 

sensitive to this complexity. Before the invention of DTI, white matter anatomy studies 

were mainly based on post-mortem dissection or invasive tracing in animals. The ability 

to trace white matter pathways of the whole human brain has helped visualize how these 

pathways change with pathology including brain tumors [54], multiple sclerotic lesions 

[55] and vascular malformations [56]. Ultimately, this may be useful for surgical 

planning and provide useful information on locations of critical structures to avoid [57]. 

In addition to identifying pathology, WMT may provide useful insight about brain 

compensatory mechanism by visualizing reorganization following a disease, surgery or 

rehabilitation [58].  

With respect to studies of aphasia and language function, tractography of the 

language anatomy can prove useful in understanding patterns of aphasia deficits. Using 

DTI with specific hypotheses concerning the connectivity of language networks, Catani 

and colleagues identified white matter tracts that extend not only between Broca’s area 

and Wernicke’s area (arcuate fasciculus) but also between Wernicke’s area and the 

inferior parietal lobule and between the inferior parietal lobule and Broca’s area [59]. 

This may suggest the existence of a parallel processing pathway via the inferior parietal 

lobule in addition to the arcuate fasciculus. Makris et al. have segmented the superior 

longitudinal fascicle (SLF) into four sub-components (the arcuate fascicle being one of 

them) and have suggested that investigating these different SLF components may 

increase specificity in investigations of structural-functional and anatomical-clinical 

characteristics [60]. Parker et al. have investigated the existence of two pathways from 

the primary auditory cortex (Wernicke’s area) to the prefrontal areas (Broca’s area) – a 
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dorsal pathway including the arcuate fascicle and a ventral pathway running anterior 

along the superior temporal gyrus – using DTI [61]. They have also showed stronger 

connections for both these pathways in the dominant hemisphere. In addition to isolating 

WM pathways connecting the classical language regions, special interest has also been in 

studying associations of white matter asymmetry with language lateralization [62-65] and 

individual cognitive abilities [66].  

Quantitative measures obtained from DTI have served as useful markers in a 

number of patient studies. WM structures have also shown to serve as useful predictors of 

brain development. Using DTI, our goal is to track the underlying white matter structure 

and establish relationship with functional measures. Future studies can then evaluate 

whether or not these relationships or individual DTI measures can be used to predict 

brain reorganization in aphasia patients. 

 

3.4 Resting State BOLD fMRI 

 

A typical fMRI experiment consists of an experimental condition, which results in 

a neuronal response causing increased oxygen consumption, along with a baseline or 

“rest” condition. The MR image intensities of the experimental condition are then 

contrasted with recordings obtained during the rest condition to obtain a statistical 

measure which indicates how well the MR signal time-series explains the experimental 

task time-course. This seems to indicate that the quantification of the fMRI signal to a 

great extent depends on the appropriate definition of the baseline or the “rest” condition. 

This has led to increased interest of the neuroimaging community in characterizing 
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neuronal processes underlying the “rest” condition i.e. the state of the brain when the 

subject is doing nothing . But is the brain really doing nothing when we are in the 

“resting state”? If the brain is doing something, what is provoking this brain activity? Can 

we get any useful information from this resting state brain activity? These are some of the 

questions underlying the development of the low frequency resting state BOLD 

technique. The following discussion aims at answering these questions and reviews the 

resting state BOLD technique currently used.  

 The first evidence of brain activity during the rest condition was demonstrated by 

Ogawa et al. when they observed 2% fluctuations in the BOLD signal image intensities 

during the resting condition in between the experimental conditions [67]. Weisskoff et al. 

supported this finding by showing that the resting state BOLD fMRI signal frequency 

spectrum had signal characteristics in addition to the cardiac and respiratory related 

signals [68]. Finally, Biswal et al. were the first to show that in the absence of external 

stimuli, the bilateral primary motor cortices had synchronous low frequency BOLD 

signal oscillations and were functionally connected [69]. The BOLD signal oscillations 

during resting state were shown to take place in the frequency range of 0.012Hz to 0.1Hz. 

A number of studies have investigated the cause for origin of these low frequency BOLD 

fluctuations. While initially these fluctuations were thought to be associated with 

physiological noise , vascular modulation, cardio-respiratory motion or MR artifacts [70], 

a number of careful studies have ruled out these possibilities and shown these 

fluctuations to be of neuronal origin [71-74]. Subsequent studies were able to show 

functional connections using these low frequency BOLD oscillations for other sensory 

modalities as well [75, 76].  
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The theory of “default mode” of brain function was first proposed by Raichle et 

al. from observations from a PET study [77]. They suggested the existence of a network 

of brain regions during the rest condition which show signal attenuation during goal-

directed tasks. Another study by the same group have attributed the main components of 

this network to self-referential mental activity [78]. Fransson readdressed this “default 

mode” hypothesis using the low frequency BOLD fMRI oscillations [79]. Fransson’s 

study not only supports the existence of this introspectively oriented “default mode” 

network, but also suggests an existence of a second extrospectively oriented attention 

network which interrupts the default mode network on a routine basis. Most of the above 

studies have been limited because of the use of a region of interest cross correlation 

approaches which are driven by certain hypotheses. Using data driven independent 

component analysis (ICA), a variety of different coherent resting state networks have 

been shown to be simultaneously extracted [80-82]. Using a probabilistic ICA approach, 

Damoiseaux et al. have identified up to 10 functionally relevant patterns, associated with 

cognitive and sensory processing in addition to the “default mode” network, and which 

are consistent across subjects and sessions [81].  

 The primary advantage of resting state fMRI is its ability to map functional 

connectivity over the entire brain without the need of an experimental task. As 

highlighted by Xiong et al. [83], functional connectivity analyses in studies relying on an 

experimental task, to a great extent are dependent on: 1. the brain regions engaged in 

performing the task; 2. the degree of detection of this engagement which depends on the 

difference between the task and control states in the experiment; and 3. variability of 

degree of engagement of different brain regions. This means that task induced functional 
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connectivity analyses may be an underestimate of the size and number of areas involved 

in task performance and may not reflect true anatomical connectivity. Resting state 

functional connectivity analyses, on the other hand are more likely to detect all neural 

network components related to a particular brain region. The absence of a consistent task 

performance over all subjects however may introduce an unidentified, uncontrolled task 

bias when interpreting single subject data due to a wide range of unfocussed chaotic 

cognitive and sensory processes taking place in the brain during rest. This effect however 

would average out when interpreting results from a group of subjects. In addition, careful 

subject instructions before data collection could also help minimize these unfocussed 

processes. Although resting state fMRI surpass the task fMRI in terms of correlations 

between spatially remote neurophysiologic events i.e. functional connectivity, they do not 

imply how these correlations are mediated i.e. effective connectivity [84]. Effective 

connectivity maps between brain activations is commonly obtained in task fMRI data sets 

using methods like Dynamic Casual Modeling (DCM) and Structural Equation Modeling 

(SEM) [85]. 

 Resting state fMRI to date has shown to have application in investigating the 

effect of disease and/or medication on the brain. There have only been a few attempts to 

use resting state fMRI to study functional connectivity in stroke and aphasic patients [86]. 

It would be interesting to evaluate the full potential of this technique in studying 

functional reorganization of patients with therapy. Not having to perform a task may 

serve as a significant benefit in studying aphasic patients who are limited in performing 

treatment evaluation tasks. One of the goals of this dissertation research is to evaluate the 

potential of resting state fMRI in studying functional reorganization.         
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Chapter 4 

Background: Electroencephalography and Brain Function 

 

Electroencephalography (EEG) is a procedure that measures electrical brain 

activity through the skull and scalp. It is the difference in voltage between two different 

recording locations plotted over time. EEG reflects thousands of simultaneously ongoing 

brain processes and the brain response to a certain stimulus or event of interest is not 

visible by simply analyzing a continuous EEG. However, time-locking EEG epochs to 

the onset of stimulus and averaging these epochs over trials, have shown to improve the 

sensitivity of EEG to particular cognitive effects in response to the stimuli. These time-

locked signal averages are called event related potentials (ERP). An ERP waveform is 

thus a time-series of scalp voltages (usually in the range of microvolts) over time (in 

range of milliseconds), where fluctuations in voltage (N400, P600 etc) provide 

information regarding the brain function of the subject. Contemporary ERP studies 

typically record EEG from multiple scalp electrode sites, thereby giving ERP data a 

spatial parameter (topographic mapping) which complements the temporal or frequency 

information intrinsic to time-series data. By quantifying the ERP data in this spatio-

temporal domain, questions of interest concerning how cognitive and 

electrophysiological states change over time can be answered.  

Interpretation of these recorded ERP waveforms require an understanding of what 

sources generate these potentials and how these potentials are mediated from inside the 

brain to electrode sites on the scalp. ERPs are essentially inhibitory and excitatory 

postsynaptic potentials of the pyramidal cells generated in the cortex of the brain. This 
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signal which arises from thousands of synchronized pyramidal cell postsynaptic 

potentials is greatly modified by the time it reaches the recording electrode on the scalp. 

The major factors modifying the original signal are:  

• The electrical conductivity properties of tissues which lie between the electrical 

source and the recording electrodes (e.g. brain parenchyma, CSF, skull, scalp). 

• The electric field generated by the source and it’s orientation with respect to the 

recording electrode (i.e. to what extent the generator is aimed towards the 

electrode). 

• The conductive properties of both the recording electrodes and the scalp-electrode 

interface (size of electrodes, electrical properties of the electrodes etc.). 

 

Understanding how current flows from the source to the electrode (also called 

volume conduction) is required for estimating the location of these sources. For any scalp 

recorded EEG signal, there are an infinite number of possible source distributions within 

the brain volume which can explain or ‘fit’ the scalp recorded signal i.e. one or more 

generators in different locations in the brain can produce the same EEG finding. This 

means that it is theoretically impossible to know the location of the EEG generators in the 

brain with only scalp recorded EEG information (also known as the inverse problem). By 

adding constraints based on anatomical and physiological information, and assumptions 

about the nature of sources (like small focal sources or temporally uncorrelated sources) 

the solution space for these sources can be dramatically reduced. Estimating anatomical 

information of neuronal activity using electrophysiological data and above listed 
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assumptions is called source analysis. Details about source analysis are given in the next 

section. 

 

4.1. Source Analysis 

 

The analysis of neural sources relies on the solution of two fundamental 

problems. The forward problem concerns calculation of scalp potentials given the 

neuronal currents in the brain, whereas the inverse problem involves estimating neuronal 

currents from EEG data. The basic question posed by both these problems is how to 

model any neuronal activation so that the source of the electric field can be mapped from 

the observed EEG signal.  

The forward problem is solved by specifying a set of conditions – compartments, 

surfaces, conductivities for the head model, also referred to as forward model or volume 

conductor. The forward model essentially allows projecting a source or source network 

through modeled compartments and tissue interfaces to reach the electrode surface and 

provide an estimate of electric signals at the electrodes. Often multiple spherical shells 

modeling the brain surfaces or more complex four layered realistic models with 

compartments such as brain, cerebrospinal fluid, skull and scalp surfaces segmented from 

the patient’s MRI scan are used to model the forward problem. For a specific electrical 

source, the forward model will enable the computation of a specific potential field at its 

surface, thus resulting in a unique solution. For example, the i-th source can be modeled 

with a simple equivalent current dipole qi, uniquely defined by: location represented by 

vector ri, strength qi, and orientation coefficients θi. For K such simultaneously active 
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sources at time t, the observed EEG signal at the electrode xj positioned at pj can be 

modeled as:  

ε+∑ ⋅=
K

i
ijiiij tqptrGtqrx )()),((),,(  

where G is a function which relates each dipole and its contribution to the potential 

observed at the j-th electrode; and ε represents the electrode noise. The function G is 

calculated using the parameters of the forward model and electrode location. 

In contrast to the forward problem, the inverse problem has no unique solution. 

As described above, an infinite number of source permutations can be found to explain a 

specific potential field recorded at the surface. To make this problem solvable, a number 

of mathematical constraints are incorporated into inverse modeling algorithms. Two main 

inverse modeling approaches used are dipolar and distributed modeling methods.  

Dipolar methods assume the existence of one to three dipoles and attempt to 

determine the dipole parameters which best fit the measured data. Clearly, the dipolar 

method is over determined, in the sense that there are far more data sampling points 

(electrodes) than there are dipole parameters in determining the solution. Two commonly 

used dipolar inverse algorithms are moving and rotating dipoles. For a particular instant 

in time, the moving algorithm allows a dipole source freedom in space to assume 

location, orientation and strength to best explain the measured EEG data at that instant. 

The rotating algorithm on the other hand constraints the dipole to a location in space with 

freedom of orientation and strength to explain the variance in the measured data across 

any time interval.  
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In contrast to the dipolar methods, the distributed models make no assumption on 

the number of dipoles to solve the inverse problem. Instead they assume that there are 

simultaneously active multiple sources across multiple locations at a given instant of 

time. The predefined solution space (whole brain or even just the cortical volume) is split 

into multiple points, each representing a mini dipole, fixed in space but free to assume 

any orientation and strength. Using this mini dipole network the best source configuration 

to explain the measured data is determined. Theoretically many solutions are possible for 

any measured EEG signal and unique solutions are often achieved using post processing 

constraints. Current density methods like minimum norm least squares (MNLS) and low 

resolution electromagnetic tomography (LORETA) are commonly used distributed 

inverse algorithms with different constraints. Inverse problem for current density 

methods can be represented as: 
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Here the product term Gq gives the forward calculated data vector, while m is the real 

measured data. The data term D(j) is essentially a measure of the goodness of fit between 

the predicted and measured data. M(j) is model term which provides constraints to obtain 

a unique solution. λ is regularization parameter which links the model term to data term 

D(j) and serves to achieve equilibrium between goodness of fit and closeness to the 

model. If λ is very large, the model term dominates and large reconstruction errors may 

occur, whereas if λ is very small, chaotic source distributions are reconstructed which 

mainly explain the noise in the data. The optimal value of λ is calculated using the χ
2
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criterion which relies on the assumption that a reasonable ∆
2
 is in the order of the amount 

of noise in the data (other methods like L-curve criterion have also been used for 

estimating λ [87]). The ultimate goal of the algorithm is to determine a reliable estimate 

of the regularization parameter and the model term by minimizing the variance ∆
2
. 

Different current density methods depend on how the model term is defined. In case of 

MNLS, the model term used is estimated to be proportional to the square of the strength 

of the reconstructed currents i.e. the energy (integral of the squared current density) of all 

source currents is minimized. In the LORETA method, the modeling constraint is on the 

smoothness of the intensity profile of the reconstructed current density distribution i.e. it 

makes an assumption that neighboring sources are more likely to undergo synchronous 

depolarization during an evoked response.   

 

4.2. Applications of ERP in studying language function 

 

The earliest ERP studies in language production have focused on locating and 

verifying association of various components generated during simple word production 

[88, 89]. Using a simple picture naming task and a non-semantic picture rotation task, 

Stuss et al. [88] were able to show that the negative peak between 300 and 500ms (also 

called N400) for naming pictures as compared to viewing controls is associated with 

semantic processing in picture naming. The more recent ERP studies have mainly 

concentrated on estimating the time course and chronological order of various stages 

involved in language production. Most of the tasks used in these studies have been go-

nogo tasks which make use of the concept of generation of a lateralized readiness 



 50 

potential (LRP) [90] which is associated with response preparation and the N200 

component which is associated with response inhibition as markers for different stages. 

The onset/presence of LRP indicates that the information required in deciding whether a 

response needs to be given or not is being processed; while the N200 effect is considered 

as a marker that this information has been already analyzed. For example, Van Turennout 

et al. used three versions of the go-nogo tasks and LRP to study temporal properties of 

semantic and phonological encoding in speech production [91]. By interchanging the 

roles of semantic and phonological information in making the go-nogo decisions, they 

found that semantic information is encoded about 120ms before phonological 

information. In another LRP study, the same group found that syntactic processing takes 

place about 40ms before phonological encoding [92]. Using N200, Rodriguez-Fornells et 

al. studied the relative time courses of semantic and phonological processing during both 

language production and comprehension and concluded that although the two language 

tasks showed the expected differences in order of semantic and phonological processing, 

they differed in terms of temporal distance between the engagement of the two processes 

[93]. In case of verb generation, Rowan and colleagues used both ERP and fMRI to show 

that semantic retrieval related recruitment of the temporal and frontal areas are spaced in 

time. They found that the recruitment of temporal areas preceded the frontal regions [94]. 

Language ERP studies of semantic processing have been mainly based on studying N400 

effects by semantic priming or semantic violation in sentences. A review of these studies 

can be found under the language comprehension section in Chapter 2.  

A number of studies have shown temporal features from EEG related to language 

function. Some of these features have been used as markers of intactness of semantic 
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processing. It would be interesting to evaluate if these features change with brain 

reorganization following stroke. Along with functional MRI, these markers could help 

improve our understanding of language function in healthy and aphasic subjects.      
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Chapter 5 

Scope of Research 

 

Over the past two decades, a number of neuroimaging modalities have shown 

useful potential in studying brain dynamics. In particular in aphasia, a thorough 

understanding of how the brain compensates with disease and attempts to reorganize 

itself can help neurologists strategize and evaluate rehabilitation therapies to improve 

outcomes of these patients. This dissertation contributes to developing and evaluating a 

multi-modality neuroimaging tool with potential application in studying and 

understanding brain function deficits and brain functional reorganization in aphasics.  

The principal hypothesis for this dissertation is that a multimodality neuroimaging 

approach will allow for a better understanding of neural dynamics of reorganization. 

Each neuroimaging modality by itself is limited by the nature and extent of information it 

can provide. A single neuroimaging modality that can help us understand and study all 

brain dynamics in a noninvasive manner is yet to be developed. This has resulted in using 

of more than one modality and multimodality fusion approaches gaining popularity 

among researchers and clinicians. This dissertation uses Functional MRI (fMRI), Event 

Related Potentials (ERP), Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) and 

Resting State MRI techniques in a multimodal fusion approach to complement each other 

in understanding neural dynamics. The development and evaluation of this multimodal 

approach is done using a series of sub-hypotheses formulated within the following five 

specific aims. Each of these specific aims will be addressed in a separate subsequent 

chapter.  
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Specific Aim 1: Development of language task protocol for fMRI and ERP testing.  

In order to identify brain regions recruited for language function and study how the brain 

adapts to functional loss, language tasks need to be developed. Task difficulty 

modulations in functional tasks including language have shown to better highlight 

language functional regions. In this section, two language production tasks and one 

semantic decision-making comprehension task, to be used with fMRI and ERP and with 

inherent task difficulty modulation, will be developed. Stimuli for these tasks will also be 

evaluated.  

Rationale: A battery of language tasks including picture naming, verb generation and 

comprehension will help to study different functional architectures related to different 

types of language processing. Modulation of task difficulty can be identified from task 

response times.    

 

Specific Aim 2: Evaluation of task difficulty in picture naming and verb generation. 

The effect of task difficulty, investigated in a number of cognitive tasks, has shown 

increases in functional recruitment with increase in difficulty. Most of these studies have 

defined task difficulty in an objective sense. In this work, a subject-specific definition of 

task difficulty will be evaluated as compared to a commonly used objective definition of 

difficulty. Individual subject variability in task difficulty will also be quantified and 

changes in functional organization in language task difficulty with age will also be 

evaluated. 
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Rationale: A subjective definition of task difficulty will be more suitable in studying 

language function in aphasic stroke patients, where one would expect a large degree of 

variability in task difficulty from subject-to-subject and with age.  

 

Specific Aim 3: Integration of fMRI and ERP to study language function and task 

difficulty. 

Hemodynamic-based imaging modalities like fMRI, PET or near infrared optical imaging 

are known to provide good spatial resolution for mapping functional activity. With the 

most efficient designs, a maximum temporal resolution of 1s can be achieved with these 

modalities. Electro-magnetic based modalities like ERP or MEG on the other hand 

provide excellent temporal resolution on the order of 0.001s but are limited in terms of 

their spatial localization. This specific aim will serve to combine spatial information of 

fMRI with temporal information from ERP by modeling the conductive current source 

distribution in the head and using a source constraint approach.  

Rationale: fMRI and ERP together can provide better understanding of brain dynamics 

in functional activation and reorganization 

 

Specific Aim 4: Study White Matter (WM) Connectivity and Structure-Function 

Associations.  

Over the past few years DT-MRI has evolved as a potential diagnostic tool. WM changes 

have been correlated with disease progression or reduction and also with cortical 

functional activations. The purpose of this aim is to optimize DT-MRI to study WM 
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connectivity, develop an automated algorithm to map WM fiber tracts associated with 

GM activations and establish DTI quantitative markers of functional reorganization. 

Rationale: Both qualitative and quantitative structure-function relationships could be 

useful markers to study functional reorganization and responsiveness to aphasia therapy.  

  

Specific Aim 5: Study and evaluation of functional connectivity and low frequency 

fluctuations in resting state brain activity with BOLD fMRI. 

Low frequency fluctuation BOLD fMRI signal changes (0.012-0.1Hz) in the resting brain 

has shown potential to study functional connectivity without the use of a functional task 

in both healthy and patient populations. This specific aim will serve to establish language 

resting state functional connectivity between various brain regions. Functional seeded 

correlation approach and data driven independent component analysis (ICA) approaches 

for connectivity markers will be investigated. 

Rationale: Resting state BOLD fMRI could obviate performance of functional task to 

establish functional connectivity which would have particular implications in functionally 

challenged aphasic patients. Resting state connectivity could be used as a marker for 

evaluation of responsiveness to aphasia therapy or to study functional reorganization.  
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Chapter 6 

Development of Language Task Protocol for fMRI and ERP testing 

 

6.1 Introduction 

 

Different language tasks highlight different functional architectural organizations 

in the brain depending on the nature of the language processing initiated. Picture naming 

and verb generation, two widely used language tasks with healthy and patient 

populations, recruit the word generation functional architecture of the brain [2]. On the 

contrary, language comprehension tasks with semantic/non-semantic choices will recruit 

the brain regions involving language semantic decision making. This distinction 

highlights the need for using more than a single task to study different functional aspects 

of language processing. A battery of language tasks including picture naming, verb 

generation and language comprehension will help investigators study different functional 

architectures related to different components of language processing.  

Our hypothesis is that task difficulty in both the objective and subjective sense 

maybe an important factor in studying functional organization as compared to the 

traditional task and baseline subtraction methods. The ambiguous nature of brain activity 

in response to different baseline conditions may be the main reason for discrepancies of 

results of functional organization previously seen in the literature [95]. We propose that 

the difficulty in performing a simple task like picture naming or verb generation can be 

estimated from the total time required to perform the task. Stimulus evaluation for 

selection of the most appropriate stimuli which can effectively define task difficulty is 
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required. This would help standardize the task over a population of subjects and patients. 

Also, one of the specific aims of this thesis is to combine fMRI and ERP modalities for a 

better understanding of brain dynamics involved in language processing. The most 

important underlying assumption in fMRI-ERP fusion studies is that the response 

collected using either modality is from the same neural generators. This accentuates the 

need for a common design for the two modalities. The goal of this chapter was to develop 

neuroimaging tasks appropriate for both fMRI and EEG neuroimaging modalities, with 

stimuli chosen to vary over a range of difficulty appropriate for both healthy and patient 

populations. 

 

6.2 Methods 

 

6.2.1 Stimuli 

 

Picture Naming Task:  

 The picture stimuli for the task consisted of line drawings taken from the Peabody 

Picture Vocabulary Test [96], a common test used with aphasia patients. A total of 200 

pictures were collected. The control stimuli for the task were generated by scrambling 

some of the picture stimuli to match the majority of stimuli for size and shape. 

Scrambling was done to the extent of minimizing the possibility of any mental 

unscrambling. 

 

Verb Generation Task: 
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 The stimuli for the verb generation task consisted of common nouns for which an 

associated verb can be generated. A total of 150 noun stimuli were obtained from a word 

frequency database [97]. The control stimuli for the task consisted of unpronounceable 

non-words consisting of vowels only and matched for length with the nouns. 

  

Language Comprehension Task: 

 The language comprehension task was divided into 4 categories: a. animal and 

non-animal; b. edible and non-edible; c. professions requiring college education and 

those which do not; and d. recreational and non-recreational activities. A list of stimuli 

for each category and subcategory was generated and was first screened for agreement in 

categorization by 10 individuals. Only those stimuli with 100% categorization agreement 

were used for behavioral testing. Unpronounceable non-words generated using vowels 

and matched for length with the category stimuli were used as control stimuli. 

 

6.2.2 Behavioral Tests 

 

A group of 10 individuals underwent a behavioral study to test the stimuli from 

the three tasks. All stimuli except for the control stimuli were used for behavioral testing.   

 

Picture Naming Task: 

 Each individual was subjected to the entire picture stimulus set; one picture 

presented at a time and instructed to covertly generate a name for the picture on the 

screen. Subjects were instructed to press a button on a response pad as soon as but only 

after they had mentally named the picture. The response time for each picture was 
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measured from the onset of the picture presentation until the time of the button press. For 

pictures not named, no reaction time was assigned.   

 

Verb Generation Task: 

 Similar to the picture naming task, each individual was subjected to the entire 

noun stimuli set, one noun at a time. Individuals were instructed to covertly generate a 

verb associated with the noun displayed and press a button as soon as they had generated 

the verb. Response time for each noun was measured as above.  

 

Language Comprehension Task: 

 Individuals were presented each of the above 4 categories, one category at a time. 

Each category consisted of a question followed by the list of both the subcategory options 

in random order, each option displayed one at a time. For example, the category question 

“Which of the following is an animal?” was followed by the following options: zebra, 

pencil, cube, cheetah, and so on. For the option displayed, individuals answered the 

question by thinking either “Yes” or “No” and pressed a corresponding button. Response 

times were measured from the onset of the option to the time of button press.    

 

6.3 Results 

 

6.3.1 Behavioral Data 

 

The reaction times for each stimulus from the behavioral tests were averaged over 

all individuals. The plots below summarize the results from this study (Figures 6.1-6.3). 
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For the picture naming and verb generation task, the absicca represents the reaction time 

bins and the ordinate represents the total number of stimuli in each bin. Group 1 and 

Group 2 represent our apriori classification of easy and difficult stimuli. For the picture 

naming task, stimuli with reaction times between 0.4s and 0.6s were classified as “easy 

to name”, whereas stimuli between 0.6s and 1.1s were regarded as “difficult to name” 

picture stimuli. Stimuli with reaction times less than 0.4s or greater than 1.1s were 

regarded as too easy or too difficult and were excluded. For the verb generation task, 

nouns with reaction times between 0.6s and 1.1s were regarded as “easy to generate verb 

for”, and those between 1.3s and 1.8s were regarded as “difficult to generate verb for”. 

Stimuli with reaction times greater than 1.8s were regarded as too difficult and excluded. 

Stimuli with reaction times between 1.1s and 1.3s were excluded to obtain sufficient 

separation between the easy and difficult stimuli types.  

Behavioral Data - Picture Naming Task
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Figure 6.1: Reaction time classification of stimuli for picture naming task. Red boxes 

indicate the time window of the stimuli selected. Group 1 & 2 represent our apriori classification 

of easy and difficult stimuli.  
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Behabioral Data - Verb Generation Task

Reaction Time Bins (sec)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

N
u

m
b

e
r 

o
f 

N
o

u
n

s

0

2

4

6

8

10

12

14

16

18

Group 1

Group 2

DifficultEasy
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Figure 6.2: Reaction time classification of stimuli for verb generation task. Red boxes 

indicate the time window of the stimuli selected. Group 1 & 2 represent our apriori classification 

of easy and difficult stimuli.  

 

For the language comprehension task, the absicca represents stimuli categories 

and ordinate represents reaction time in seconds (Figure 6.3). This task is different from 

the above two tasks and individual stimuli were not classified, only the general 

categories. Based on the reaction times, the “animal/non-animal” and the “edible/non-

edible” categories were regarded as “easy to comprehend” categories whereas the 

“professions requiring college education or not” and the “recreational/non-recreational 

activities” were regarded as the “difficult to comprehend” categories.  
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Behavioral Data - Sentence Comprehension Task
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Figure 6.3: Reaction time classification of stimuli for language comprehension task. Red 

boxes indicate the time window of the stimuli selected.  

 

6.3.2 Task Design 

 

To allow retrospective categorization of task difficulty, an event related design 

would be required to separate trials based on their reaction times. Also using a jittered 

form of event related design would be a better suited approach for fMRI analysis for 

estimating dynamics of the hemodynamic response and at the same time retaining the 

inherent nature of ERP designs. Keeping this in mind, the tasks in our research were 

designed as follows. Each task had two runs in both fMRI and ERP sessions. 

 

Picture Naming Task: 

 A jittered event related task design [98] was generated using the OPTSEQ2 

program [99]. Each task run consists of 34 picture stimuli (17 from the “Easy to name” 
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and 17 from the “Difficult to name” category) and 13 control stimuli. The picture stimuli 

were not repeated within or between the runs. Each stimulus was displayed for 3s with an 

inter stimulus interval (ISI) varying from 1 to 12s. A fixation cross was displayed during 

the ISI. The total duration for each task run was 3min 12s.     

 

Verb Generation Task: 

 The task design for the verb generation task was exactly the same as the picture 

naming task. Similar to the picture naming task, each task run consisted of 17 “easy to 

generate verb” nouns, 17 “difficult to generate verb” nouns and 13 non-words. Each task 

run was 3min 12s long.  

 

Language Comprehension Task: 

 The language comprehension task had a mixed type of design i.e. a block design 

with events randomized in each block [98, 100]. Each run of this task consisted of 8 

blocks: 4 category blocks (one block for each category) and 4 control blocks. Each 

category block had a category question (displayed for 6s) followed by a list of 10 

subcategory options (each option displayed for 1.8s and with an ISI of 0.4s). Similar to 

the behavioral testing, subjects were instructed to covertly answer the category question 

with “Yes” or “No” and press a button for the corresponding answer. Each control block, 

like the category block, consisted of an instruction to view a list of 10 non-words and to 

press either button after each non-word. The duration of each block was 28s with the total 

duration of the task equal to 3min 44s. 
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6.4 Discussion 

 

The behavioral study enabled evaluation of the entire stimuli set for all the 

language tasks. Using the behavioral study results, the stimuli set for picture naming and 

verb generation tasks were trimmed to remove too easy or too difficult stimuli and at the 

same time to provide sufficient separation between the categories of stimuli and enable 

observation of functional task difficulty differences using fMRI and ERP.  
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Chapter 7 

Evaluation of Task Difficulty in Picture Naming  

and Verb Generation Tasks 

 

7.1 Introduction 

 

Both picture naming and verb generation have been extensively studied, both 

from a behavioral and a functional viewpoint [5, 94, 101-108]. The focus of these studies 

has been to revalidate cortical activation patterns using different functional imaging 

modalities; study different components of the language production processing stream; 

assess intersession-intersubject variability, age related changes and differential activation 

patterns between the two tasks. Some discrepancies in results between language function 

studies have also been observed. While some picture naming studies show that the 

classical language areas, the Broca’s and Wernicke’s areas, are not activated in simple 

picture naming [108, 109], there are numerous studies which have demonstrated 

activation in these regions [102, 110]. These discrepancies might be related to the 

different nature of baseline conditions used, the exact task used (e.g. simple naming, 

go/no-go tasks, identification of specific object properties), the presentation and/or 

training used (e.g. first time presentation vs. repeated presentation) and the level of task 

difficulty. Simplicity, ease of performance and an extensive background available on 

both these tasks, make them an attractive choice for a task battery designed to evaluate 

brain plasticity in aphasia patients.    
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With studies of brain function, including picture naming and verb generation, an 

important confound most often neglected is the individual difference in difficulty of 

performing a particular task. These differences in difficulty vary over a wide spectrum 

and are dependent on a number of factors like education, age, social background and 

health history of participating subjects. Most often this variability is controlled by careful 

screening of participants and designing simple tasks which can be standardized for 

function over subjects. Studies investigating effects of task difficulty over a number of 

paradigms [111-114] have observed a general brain activation increase with task demand 

[113-115]. These studies have defined task difficulty in an objective sense, either using 

some logical separation between easy and difficult tasks [114, 116] or ensuring correct 

categorization based on apriori collected behavioral data [112, 117]. There have also been 

a few studies which have explored subjective measures of task difficulty, correlated with 

functional activation [115, 117]. An obvious advantage of using a subjective definition of 

difficulty is its ability to categorize individual variability.  

This inter-subject variability is a more prominent issue in stroke patients, where 

the nature and extent of recovered language function depends on 1) the functional 

architecture of the premorbid brain [25], 2) the degree of spontaneous recovery as well as 

the location of compensatory recruitment, and 3) the extent of the stroke-induced lesion 

[35, 40]. Understanding of how task difficulty is affected by stroke is critical to make any 

conclusions with respect to the nature of language recovery in these patients. This also 

demands for a reliable measure of task difficulty in language function.  

The goal of this chapter was to demonstrate task difficulty-related activation 

effects in picture naming and verb generation using fMRI and ERP. Subject-specific task 
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reaction times, as a subjective measure of task demand, to predict level of language 

related functional activation, were evaluated. The effect of age on task difficulty effects 

was also studied.  

 

7.2 Methods 

 

7.2.1 Subjects 

 

Ten young (5 male, 5 female; mean age = 24.4 ± 6 yrs) and ten old (5 male, 5 

female; mean age = 57.8 ± 9 yrs) healthy adult subjects were recruited for this study. All 

subjects were native English speakers and had no history of neurological disease or 

stroke.  Right-handedness was confirmed for all subjects with the Edinburgh Handedness 

Inventory [118]. The study was approved by the Institutional Review Board of Stony 

Brook University, and all subjects provided informed consent prior to participating. The 

study protocol consisted of two sessions: a functional MRI session and an 

electroencephalography session with the same functional tasks. The two study sessions, 

however, were performed at least one week apart, and were counterbalanced so that half 

of the subjects viewed the functional stimuli once before participating in the fMRI 

session.  All subjects completed the fMRI session, while eighteen of the twenty subjects 

completed the EEG session (one subject decided not to participate in the EEG section and 

EEG data for one subject was unuseable due to technical problems in data collection).   

 

7.2.2 Functional Tasks 
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Subjects completed 2 runs of all the three language tasks described in the previous 

chapter in each session of the study. The data from the picture naming and verb 

generation tasks are presented in this chapter. Similar to the behavioral study, subjects 

covertly generated a name for each picture or an action verb associated with each noun. 

Control stimuli were passively viewed without attempting a covert response. Subject 

responses were collected and reaction times calculated for each stimulus. Stimuli for 

which the task was not performed (i.e. no button press was recorded) or reaction times 

were longer than the 3 second stimulus presentation were assigned a zero reaction time. 

This check prevented the overlap of reaction times from consecutive stimuli. Recorded 

reaction times were used to categorize the entire set of picture or word stimuli into 

“Easy” and “Difficult” items. Stimuli with reaction times less than the median reaction 

time for that subject were labeled “Easy” and stimuli with reaction times greater than the 

median were labeled “Difficult.”  To ensure sufficient separation between the “Easy” and 

“Difficult” categories, three stimuli with reaction times above and below the median were 

not included in the analysis.  

 

7.2.3 Functional MRI 

 

7.2.3.1 Imaging Parameters 

 

Functional images were collected on the Philips Achieva 3T MR Scanner at Stony 

University Hospital using an eight channel SENSE head coil. An echo planar imaging 

sequence with the following parameters was used: TE/TR = 30/2000 ms, flip angle = 90°, 
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SENSE factor 2, scan matrix = 64*64 and a field of view of 20cm. Thirty contiguous 

4mm transverse slices were used to cover the entire brain. A total of 96 frames were 

collected for each session. The functional task was programmed using EPRIME software 

(Psychology Software Tools, Inc.) and was run using a computer outside the scanner 

room. Task instructions and stimuli were projected onto a screen at the back of the 

magnet bore from a projector inside the MR scanner room. Subjects viewed the screen 

from a mirror positioned above the head coil. To minimize subject movement, the 

subject’s forehead was secured with tape to the base of the coil. 

 

7.2.3.2 Data Analyses 

 

Data Preprocessing, Single Subject and Random Effects Analyses: 

 

All fMRI preprocessing and statistical analyses were done using the statistical 

parametric mapping package (SPM2) (Wellcome Department of Imaging Neuroscience; 

http://www.fil.ion.ucl.ac.uk/spm). The first four volumes of each scan were discarded to 

account for the signal reaching equilibrium. Motion correction was first performed by 

realigning all the raw functional volumes to the first volume of each scan. All subjects 

showed correctable motion artifacts with motion within 3mm in any direction and 3 

degrees of rotation and hence were retained for further analysis. Sinc interpolation was 

then applied to correct each scan for differences in slice acquisition times by temporally 

realigning all volumes to the middle slice. Next, functional scans were registered to MNI 

(Montreal Neurological Institute) space using the EPI template provided with SPM. An 
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affine transformation with a set of 7 x 8 x 7 basis functions was used to spatially 

normalize the data into 3 x 3 x 3 mm
3
 voxels [119]. The normalized images were then 

smoothed with an isotropic 8mm full-width half maximum (FWHM) Gaussian kernel. 

Individual subject data were modeled using a General Linear Model (GLM) [120] 

on a voxel by voxel basis (first level analyses). For both tasks, easy, difficult, control and 

invalid event types were modeled. Invalid trials were those with either no button press or 

reaction times greater than 3 seconds and stimuli with RT in between the easy and 

difficult event types. In addition, the six movement parameters from the realignment 

stage were entered as regressors in the design matrix. A session-wise grand mean scaling 

of all voxels and a high pass filtering of 1/128Hz was applied. The BOLD response for 

each event type was modeled using the canonical hemodynamic response function (HRF) 

and its temporal and dispersion derivatives. T-contrast maps for each subject were 

generated from the amplitude of the HRF using all pictures (or nouns) vs. control, 

difficult vs. easy and easy vs. difficult contrasts. 

First level contrast images were entered into a second-level random effects 

analysis done separately for each age group using a one sample t-test. An uncorrected 

threshold of p<0.001 and > 10 contiguous-voxel clusters was used to extract the group 

statistic functional maps for all pictures/nouns vs. control (difficulty independent) 

contrast and a less conservative threshold of p<0.005 and > 10 contiguous-voxel clusters 

was used for difficult vs. easy and easy vs. difficult (difficulty dependent) contrasts. 

While use of an uncorrected threshold can lead to false positives and care should be taken 

in interpretation of the results, the uncorrected threshold was used for an initial 

qualitative assessment of functionally active regions only. 
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Region of Interest (ROI) Analyses: 

 

All ROI analyses were performed using MARSBAR [121]. Based on previous 

language functional neuroimaging studies [122, 123], the following apriori cortical ROIs 

were used (left and right): BA 44 (pars opercularis), BA 45 (pars triangularis), BA 47 

(pars orbitaris), inferior temporal gyrus (ITG), middle temporal gyrus (MTG), superior 

temporal gyrus (STG), supramarginal gyrus (SMG), angular gyrus (AG) and the anterior 

cingulate cortex (ACC). 

ROI analysis was performed using functional localizer ROI’s (fROI) [124]. All 

stimuli, irrespective of difficulty level or reaction time, were used to define the fROI, as 

follows: The WFU Pick Atlas tool [125] and the Anatomical Automatic Labeling Atlas 

[126] were first used to select the anatomical ROI. Next, subject-specific fROI’s were 

defined from functionally activated clusters within the anatomical ROI, with a threshold 

of p<0.05, uncorrected for multiple comparisons. Within the fROI, the principal 

eigenvariate was used to extract the percent BOLD signal change values (%BOLD). The 

principal eigenvariate was used, as opposed to the mean BOLD signal, to account for the 

spatial inhomogeneity of the BOLD response and minimize dilution of signal within the 

fROI [124]. Hemodynamic responses for all the stimuli types (i.e., easy, difficult and 

control tasks for both PN and VG) were also generated. Fitted evoked responses, peak 

latency and peak half width (FWHM) were calculated. A repeated measures analysis of 

variance (ANOVA) with age group as a between subjects factor was used to evaluate 

significant task difficulty differences and age related associations in the %BOLD, peak 

latency and FWHM between the easy and difficult conditions. 
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Linear Mixed Model Analysis to evaluate effectiveness of reaction time categorization:    

 

To evaluate the effectiveness of using individual reaction times for categorization 

of task difficulty, a separate analysis using the data from the young group of subjects and 

comparing two types of categorizations of task difficulty was done: 1) categorization 

based on individual subject reaction times (subject-specific RT) and, 2) apriori 

categorization based on reaction times for each stimulus averaged over the young group 

of subjects (group-averaged RT). As the young group of subjects showed the maximum 

task difficulty effect using the ROI analysis for VG, data from only this group was used 

for comparison of task difficulty categorizations.   

 Separate GLM analyses were used to model the individual subject data for each 

type of categorization. GLM analyses used the same methodology described above. Items 

were arranged in order of reaction time and divided into four sets of increasing RT, each 

containing an equal number of stimuli. The choice of four sets was to ensure that there 

were enough stimuli per set to model the BOLD response and at the same time allowing 

enough statistical power to model the BOLD-RT relationship across the blocks. Each 

block was defined as a separate regressor in the model. The %BOLD values for the four 

blocks and for all individuals were then entered in a separate linear mixed model analysis 

for each task difficulty categorization. To study individual subject variability of task 

difficulty, regression analysis was performed to obtain the regression slopes for each 

individual.  

To evaluate sensitivity of the subject-specific RT categorization to age effects, the 

four block GLM analysis was also done for the old group of subjects. Age-related 
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differences between the modeled relationship between %BOLD and RT were then 

evaluated using age group as a between subjects factor.    

 

Lateralization with Task Difficulty: 

 

Studying lateralization with task difficulty is important especially for application 

to stroke patients where the outcome of recovery can be predicted based on which 

hemisphere is recruited [40]. Contralateral hemispheric recruitment is also considered as 

a compensatory mechanism in healthy subjects [20].   

Hemispheric specialization based on all tasks vs. control contrast and based on the 

task difficulty contrast for both tasks was evaluated using laterality index calculations (LI 

= (L – R)/(L + R), where L and R are number of voxels in the left and right hemispheres 

respectively) i.e. LI of 1 indicates strong left and -1 strong right lateralization. A 

bootstrap algorithm was used to calculate LI [127, 128]. In short, the algorithm iteratively 

calculates 10,000 LI values at different activation thresholds. Thresholds with activation 

in < 10 voxels in either hemisphere are excluded from LI calculations. For each 

threshold, a mean LI was calculated. A weighted mean of the LI values over all 

thresholds (higher thresholds with higher weights) was then calculated to give the final 

bootstrapped LI value. This approach was used to reduce threshold dependency and the 

influence of statistical outliers in LI calculations.  

LI calculations were performed for the inferior frontal (BA 44/45/47), entire 

temporal lobe and parietal lobe, using all pictures vs. control and all nouns vs. control 

contrasts to calculate LI for difficulty independent language production. The difficult vs. 
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easy contrast was used to calculate task difficulty LI based on subject-specific 

categorization. A repeated measures ANOVA was used to evaluate differences in 

hemispheric recruitment between difficulty-independent word production and the 

difficulty dependent word production. Age as a between subjects factor was used to 

evaluate age related differences in hemispheric recruitment between difficulty-

independent word production and difficulty-dependent word production. Post hoc pair 

wise contrasts comparing the two LI values separately for each age group were also 

performed.   

 

Functional Connectivity with Task Difficulty: 

 

Modulations of functional connectivity between language regions with 

experimental conditions – particularly between language productions as compared to 

passive viewing of controls and difficult as compared to easy stimuli were evaluated 

using correlation modulation (CM) networks [129] and psycho-physiological interactions 

(PPI) [130]. Differences in these condition-specific modulations of connectivity between 

young and old subjects were also evaluated. 

 

Correlation Modulation Networks: 

CM networks were generated for all pictures/nouns vs. control and difficult vs. 

easy for both the young and old subjects. The fMRI time-course for each condition using 

the principle eigenvariate was extracted for each ROI as described earlier. Functional 

connectivity networks for a particular condition were next generated by computing a 
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weighted correlation between the time-courses of every pair of the defined ROIs. All ROI 

paired correlations were carried out at the neuronal level after generating the neuronal 

time-series by using a Parametric Empirical Bayesian formulation for hemodynamic de-

convolution of the fMRI time-course [131]. The weighting for the correlation is condition 

dependent and hence results in a network specific to the condition. The weighted 

correlation between two regions with time-courses x = (x1,..,xn) and y = (y1,..,yn) is given 

by: 
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 p = (p1,..,pn) is the condition-specific weight function (one for condition present and zero 

elsewhere). Next, a CM network, showing variations in functional connectivity between 

two conditions, was obtained by subtracting the respective pair-wise correlation values 

between the two conditions. This subtraction removes artifactual correlation confounds 

due to cardiac, respiratory or MR noise, which are all common to both conditions.   

Each component of the CM network was tested for significance across subjects 

using the Wilcoxon signed rank test. Comparison of CM networks between the young 

and old groups were done using the Wilcoxon rank sum test. Network links were 

considered significant at 5% level of significance.       

 

Psycho-Physiological Interactions: 

Psycho-physiological interactions between two ROIs for a particular condition 

were calculated using a GLM approach. The fMRI time-course for one ROI was used as 

the data and the fMRI time-course for the second ROI, the condition and second 

ROI*condition time-courses were modeled as separate regressors. This model was solved 
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using a least square fit to obtain parameter estimates for each regressor. The estimate of 

the ROI*condition regressor gives the psycho-physiological interaction between the two 

ROIs for that condition. PPI values were obtained for all ROI pairs and for each 

condition.  

Repeated measures ANOVA using the PPI estimates, condition as within-subjects 

factor and age group as between-subjects factor was used to evaluate the significance of 

these interactions. Post hoc pair wise contrasts comparing the three condition estimates 

and their age interactions were also performed.     

 

7.2.4 Event Related Potentials 

 

7.2.4.1 EEG Data Collection 

 

The EEG recordings were conducted in a sound proof recording chamber with 

subjects seated on a comfortable reclining chair in front of a monitor screen. Subjects 

were instructed to remain as still as possible and minimize eye blinks throughout the 

experiment. Continuous EEG was recorded using a 64-channel electrode cap (Neuroscan 

Inc., Sterling USA) according to the International 10-20 system of electrode placement 

(Figure 7.1) [132]. The fronto-central electrode was used as ground and the linked 

mastoid electrodes as the reference. The ocular electrodes at the outer canthi of the eye 

were used to monitor the horizontal electrooculograph (EOG) whereas the vertical EOG 

was monitored by electrodes placed above and below the orbital region of the left eye. 

Impedances for all electrodes were kept below 10 KΩ and electrodes with impedances 
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greater than this level were labeled as “bad electrodes” and excluded from the analysis. A 

digitization rate of 500Hz and amplification gain of 1000 was used. 

 

7.2.4.2 Data Analyses 

 

Ocular artifact rejection from the EEG data was done using Independent 

Component Analysis (ICA). EEGLAB v5.03 software package (based on the MATLAB 

platform) was used to run ICA [133, 134]. The continuous EEG data was first visually 

scanned to remove time-intervals with large movement-related artifacts (e.g. a sneeze or 

too much wiggling). Bad channels were identified and excluded before running the ICA 

analysis. The output of ICA is a component array with a 2D scalp map, trial time plots 

and frequency spectrum for the individual components. The artifactual components in 

this component array were then identified.  

Vertical eye artifacts (blinks) were identified as components with the following 

characteristics: 1. the scalp map showing a strong far-frontal projection typical of eye-

artifacts; 2. smoothly decreasing EEG frequency spectrum with an initial peak; and 3. 

irregular short voltage bursts representing individual eye movements in the trial time 

plots. Lateral eye movement artifact components were identified as those with: 1. the 

scalp map showing bilateral frontal changes in polarity; 2. smoothly decreasing EEG 

frequency spectrum and 3. irregular extended voltage drifts (as compared to vertical 

movements) corresponding to eye movements in the trial time plots. EOG artifact 

rejection for most EEG analyses is usually done by rejecting epochs with EEG voltage 

beyond a set threshold. The size of our epochs restricted us from using such an approach, 
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which would result in discarding a large number of trials for every subject. Using the 

independent component analysis approach not only helped us to remove the ocular 

artifact components from our data, but also increase the statistical power of our task by 

allowing to us to retain all trials.  

Using the artifact free EEG data, epochs were then defined from 100ms prior to 

stimulus onset and continued to 2000ms after stimulus onset for each stimulus. A 

baseline correction using the 100ms prior to stimulus onset for each epoch was also 

applied. Stimuli were divided into easy and difficult types in the same manner as done for 

the fMRI. EEG epochs for each event type i.e. all stimuli (easy & difficult), easy, difficult 

and control were then averaged to obtain their respective ERPs. For analogous 

comparisons with the fMRI data, in addition to the averages, difference waveforms i.e. all 

stimuli vs. control and difficult vs. easy similar to the fMRI contrasts were also 

generated. Grand averages, i.e. ERPs averaged over all the subjects, were also obtained 

for each contrast.  

 

7.2.4.3 Statistical Analyses 

 

 The grand average ERPs for all stimuli vs. control and difficult vs. easy 

comparisons were used as a guide to define their respective time intervals. Average 

voltage for each electrode was extracted from these intervals for each of the respective 

conditions for every subject. Individual electrodes were grouped into four regions: 

anterior-left (F1, F3, F5, F7, FC1, FC3, FC5, FT7), anterior-right (F2, F4, F6, F8, FC2, 

FC4, FC6, FT8), posterior-left (CP1, CP3, CP5, TP7, P1, P3, P5, P7) and posterior-right 
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(CP2, CP4, CP6, TP8, P2, P4, P6, P8). To statistically evaluate effects seen in the grand 

averages, a separate 3-way repeated measures ANOVA with condition (All 

Stimuli/Control or Difficult/Easy), Anterior-Posterior (AP) (4 levels) and laterality (8 

levels) as within-subject variables was performed for both the difficult-independent and 

dependent ERPs for each task. To evaluate age related differences, age as a between-

subjects factor was also defined. The Greenhouse-Geisser correction was used for all 

comparisons [135]. 

 

 

 

 

Figure 7.1: International 10-20 system of 

electrode placement. 

 

7.3 Results 

 

7.3.1 Functional MRI 

 

Results presented in this section are for all subjects for VG and nineteen subjects 

for PN. Technical problems in recording behavioral responses for one elderly subject 

caused us to exclude the picture naming fMRI data for that subject from the analysis. In 

addition, another elderly subject made too few responses in one of the two runs of the 

picture naming fMRI task and hence data from only one run was used in the analysis. 
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7.3.1.1 Behavioral Data 

 

 Reaction time data collected during the fMRI were analyzed using repeated 

measures ANOVA to evaluate age related RT differences between the two conditions in 

each task and between the two tasks. With condition RT as within-subjects factor and age 

as between-subjects factor, the spread in reaction times for easy and difficult conditions 

was not significantly different between the two age groups in each task (means for PN – 

young: E = 1030 ms, D = 1472 ms; old: E = 907 ms, D = 1379 ms & VG – young: E = 

1173 ms, D = 1709 ms; old: E = 1112 ms, D = 1626 ms). With task RT as within-subjects 

factor and age as between-subjects factor, RT was significantly different between the two 

tasks (main effect) for each condition (easy, difficulty PN<VG: p<0.001). However, no 

age related effects were found. The RT difference between easy and difficult conditions 

was also significantly different between the two tasks irrespective of age group (mean D - 

E RT: PN = 457 ± 116 ms, VG = 525 ± 122 ms, p<0.05). 

 

7.3.1.2 Language Production Activations 

 

Difficulty Independent Language Production Activations 

 The brain areas recruited for difficulty independent language production were 

assessed using the all pictures vs. control and all words vs. control contrasts. Fig 7.2 (PN) 

& 7.3 (VG) (top) show the cortical rendered activations for these two contrast conditions 

for each age group. Table 7.1 lists all significant clusters corrected for multiple 

comparisons. 
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MNI coordinates Region Side 

x y z 

z score BA 

  

Picture Naming: Task Difficulty Independent Activations  

 

Young Subjects 

Temporal lobe, sub-gyral L -42 -75 -6   4.91  

Middle Occipital Gyrus L -30 -93 3   4.87 19 

Lingual Gyrus R 27 -87 -9   4.89 37 

Middle Occipital Gyrus R 33 -96 9   4.83 18 

Occipital Lobe, Cuneus R 18 -102 -3   4.77 18 

 

Old Subjects 

Superior Frontal Gyrus L -9 15 57 5.38  
+
Medial Frontal Gyrus L -6 0 60 4.64 6 

Cerebellum, posterior lobe L -36 -69 -24 4.98  

Fusiform gyrus L -42 -63 -18 4.81 37 
+
Occipital lobe, Fusiform L -24 -87 -18 4.74  

  

Verb Generation: Task Difficulty Independent Activations 

 

Young Subjects 
+
Frontal Lobe L -45 15 6   4.76 44 

+
Extra-Nuclear, Thalamus R 27 -27 -3   4.71  

 

Old Subjects 

Inferior Occipital Gyrus L -24 -96 -15   5.30 17 

Cerebellum, posterior lobe R 9 -81 -18   4.99  

Cerebellum, anterior lobe L -12 -60 -15   4.84  

Superior Frontal Gyrus L -3 12 63   5.14 6 

Medial Frontal Gyrus L -9 12 51   5.07 32 

Superior Frontal Gyrus L -6 3 60   4.78 6 

Midbrain R 6 -27 -6   5.06  

 

Verb Generation: Task Difficulty Dependent Activations 
 

Young Subjects 

Medial Frontal Gyrus R 6 33 42   4.99 6 

Superior Frontal Gyrus L -9 18 60   4.88  

Inferior Frontal Gyrus R 45 15 15   4.84 44 

 
Table 7.1: Task difficulty independent and task difficulty dependent language production 
activations: Clusters at p<0.05 and at

 
p<0.1 (+) corrected for family-wise error listed. R = right, 

L = left. Brodmann’s Areas (BA) within 12mm of a cluster focus are listed. Task difficulty 

dependent language production activations for PN for both age groups and task difficulty 

dependent activations for VG for old subjects were not significant after FWE correction. 
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Figure 7.2: Picture Naming Activations: Task difficulty independent language activations 

(p<0.001 uncorrected & >10 voxel clusters, row 1: young, row 2: old) and task difficulty 

dependent language activations (p<0.005 uncorrected & >10 voxel clusters, row 3: young, row 4: 

old). R = right, L = left. 
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Figure 7.3: Verb Generation Activations: Task difficulty independent language activations 

(p<0.001 uncorrected & >10 voxel clusters, row 1: young, row 2: old) and task difficulty 

dependent language activations (p<0.005 uncorrected & >10 voxel clusters, row 3: young, row 4: 

old). R = right, L = left. 

 

Difficulty Dependent Language Production Activations 

 Fig. 7.2 (PN) & 7.3 (VG) (bottom) shows activation based on task difficulty using 

the difficult vs. easy contrast. Significant activation clusters are listed in Table 7.1. 

Difficulty dependent activations were significant only for the young group of subjects for 
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VG. No difficulty dependent clusters were significant for either age group for PN. The 

reverse task difficulty effect, i.e. easy vs. difficult, did not result in any significant 

cortical activation clusters.   

 

7.3.1.3 Region of Interest Analyses 

 

 The repeated measures ANOVA analysis found a statistically significant within-

subjects main effect of condition and condition*age interaction effects, as follows:   

 

Within-subjects main effects (condition): 

 For VG, % BOLD values for the easy and difficult condition (difficult>easy) 

differed at p<0.001 in the left BA45/47, at p<0.01 in the left BA44, left ITG, left MTG, 

right BA47 and at p<0.05 in the left AG and right BA45. Latency differences were 

observed (difficult peak later than easy) in the bilateral BA47, left BA45, left STG and 

left MTG (p<0.01); and bilateral SMG and right MTG (p<0.05). Difficult responses were 

longer than the easy response (FWHM) in the left BA45/47 (p<0.01) and left BA44, left 

MTG and left AG (p<0.05).  

 For PN, % BOLD (difficult>easy) values were significant only in the left BA47 

(difficult>easy: p<0.05) and in the left STG (easy>difficult: p<0.05). Significant 

differences for HRF latency (difficult peak later than easy) were found only in the left 

ITG (p<0.05) and HRF FWHM (difficult responses longer than easy) in the left BA45, 

left ITG and left MTG (p<0.05).      
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Age related differences in task difficulty (condition*age): 

 For VG, %BOLD values between the difficult and easy conditions were 

significantly different between the two age groups (greater task difficulty differences for 

young as compared to old) in the left BA45 and right BA47 at p<0.05. Trends (p<0.1) 

were seen for left BA44/47 and right BA45. Significant age related differences 

(young>old) for FWHM values between the two conditions were also found in the right 

BA45 (p<0.01) while trends were seen in the right BA47 and left AG. 

 No significant age related interactions were found for the HRF latency values 

from the VG task and any of the HRF measures for PN.  

 

7.3.1.4 Linear Mixed Model Analyses 

 

To evaluate effectiveness of reaction time categorization:    

Significant differences between the two RT categorizations, with a larger effect 

seen using subject-specific RT categorization was found in the left BA47 (t = 2.72, p = 

0.023). As an example the percent signal change values across the four stimuli blocks in 

the left BA 47 for the young subjects and for each categorization type are shown in Fig 

7.4. In addition a trend was also observed in left BA45 (t = 2.22, p = 0.054) and left 

BA44 (t = 1.98, p = 0.079).  

Although there were no significant differences between the two categorizations in 

other ROIs, a significant linear (%BOLD vs. RT) relationship was modeled for both 

categorizations in the left ITG and right BA45/47 areas; and only for the subject-specific 
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categorization in the left AG, left MTG and right SMG areas. The results for this analysis 

are summarized in Table 7.2. 

 

 
Figure 7.4: Mixed Model Analysis – Subject-Specific vs. Group-Averaged RT: Four block 

analyses for all subjects in left BA47 for both tasks (top row – verb generation, bottom row – 

picture naming) and for both RT categorization types (right – group-averaged RT, left – subject-

specific RT). Bold line depicts the modeled linear relationship over the 4 blocks and all 

individuals. Modeled relationships were significant for verb generations only (p < 0.001). 
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Subject-specific RT Group-averaged RT ROI 

Effect ± SE p Effect ± SE p 

Left BA45
+
 0.100 ± 0.016 <0.001 0.069 ± 0.007 <0.001 

Left BA47* 0.084 ± 0.020 0.002 0.046 ± 0.009 0.001 

Left AG 0.070 ± 0.009 <0.001 0.031 ± 0.014 0.066 

Left BA44
+
 0.067 ± 0.012 <0.001 0.053 ± 0.007 <0.001 

Left ITG 0.051 ± 0.005 <0.001 0.029 ± 0.011 0.034 

Left MTG 0.047 ± 0.012 0.005 0.020 ± 0.015 0.232 

Right BA47 0.036 ± 0.009 0.003 0.054 ± 0.012 0.002 

Right BA45 0.030 ± 0.010 0.017 0.047 ± 0.016 0.021 

Right SMG -0.023 ± 0.005 0.002 -0.011 ± 0.007 0.183 

 

Table 7.2: Linear mixed model results comparing subject-specific RT and group-averaged 

RT categorization for all ROIs - *p<0.05 and 
+
p<0.1 indicate significance level for differences 

between the two RT categorizations. The p-value indicates the statistical significance of the 

modeled linear relation across all subjects (over the 4 reaction time blocks) and the effect defines 

the slope of the modeled linear relationship. 

 

 

Age related differences: 

The relationship of %BOLD with RT was found to significantly change with age 

in a number of ROIs for VG only. Similar to the ROI analysis, age related differences 

were observed in the left frontal (BA45: F(1,18) = 16.27, p = 0.001; left BA44: F(1,18) = 

11.25, p = 0.004; left BA47: F(1,18) = 4.56, p = 0.047), right frontal (right BA45: F(1,17) 

= 8.55, p = 0.009; right BA47: F(1,17) = 5.19, p = 0.036) and left AG (F(1,14) = 14.08, p 

= 0.002). In all the ROIs, a stronger linear effect of %BOLD with increasing RT was 

observed for the young group as compared to their older cohort. As an example, in Fig. 

7.5 we show the percent signal change values across the four stimuli blocks in the left 

and right BA 45 for both groups of subjects. A greater regression slope for %BOLD vs. 

RT is seen for the young subjects as compared to the old subjects. These ROIs also 

showed significant main within-subject effects (irrespective of age group) of the modeled 

relationship of %BOLD with RT (left BA44/45: p<0.001; left BA47, left AG, right 

BA45: p<0.01 and right BA47: p<0.05). Trends (p<0.1) were modeled in the left ITG and 
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left MTG. A trend for the main effect in the left ITG was also observed for the PN task. 

The effect sizes of the significant modeled relationship for both subject groups are 

summarized in Table 7.3. 

 

 
Figure 7.5: Mixed Model Analysis – Young vs. Old Subjects: Four block analyses in BA45 for 

VG task (top row – left BA45, bottom row – right BA45) and for both subject groups (right – old, 

left – young). Bold line depicts the modeled linear relationship over the 4 blocks and all 

individuals in each group. Modeled relationships were significant only for the young group of 

subjects (left BA45: p < 0.001; right BA45: p<0.05). 
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Young Subjects 

 

Old Subjects ROI 

Effect ± SE p Effect ± SE p 

Left BA45** 0.100 ± 0.016 <0.001 0.021 ± 0.011 0.096 

Right BA45** 0.030 ± 0.010 0.017 -0.009 ± 0.012 0.449 

Left BA47* 0.084 ± 0.020 0.002 0.025 ± 0.013 0.083 

Right BA47* 0.036 ± 0.009 0.003 0.003 ± 0.011 0.774 

Left BA44** 0.067 ± 0.012 <0.001 0.025 ± 0.011 0.046 

Left AG** 0.070 ± 0.009 <0.001 0.000 ± 0.011 0.993 

Left ITG 0.051 ± 0.005 <0.001 0.013 ± 0.014 0.379 

Left MTG 0.047 ± 0.012 0.005 0.005 ± 0.007 0.556 

 
Table 7.3: Linear Mixed Model Analysis: Age Effects – ROIs with significant main effects of 
%BOLD vs. RT for VG - **p<0.01 and *p<0.05 indicate significance level for differences 

between the two age groups. 

 

 

7.3.1.5 Lateralization with Task Difficulty 

 

A significant rightward laterality shift with task difficulty was observed in the 

inferior frontal and temporal regions for both tasks. This shift was not significantly 

different between the two age groups (i.e., no age interactions). For VG, this shift in the 

functional hemispheric recruitment of the inferior frontal region (F(1,18) = 8.14, p<0.05) 

was from strong left (difficulty independent LI, LIall: young = 0.65, old = 0.72) to weakly 

left lateralized (difficulty-dependent LI, LIdiff: young = 0.25, old = 0.45). In the temporal 

region, functional specialization shifted (F(1,18) = 10.98, p<0.005) from left (LIall: young 

= 0.53, old = 0.57) to bilateral in young and weakly lateralized in older subjects (LIdiff: 

young = 0.04, old = 0.24). However, in the parietal region, LI remained weakly left 

lateralized (LIall: young = 0.16, old = 0.27; LIdiff: young = 0.31; old = 0.31). 

Similarly, for PN a rightward shift of functional dominance was found in the left 

inferior frontal region (F(1,17) = 13.92, p<0.005; LIall: young = 0.34, old = 0.66; LIdiff: 

young = -0.13, old = 0.17) and the temporal region  (F(1,17) = 6.41, p<0.05; LIall: young 
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= 0.27, old = 0.38; LIdiff: young = 0; old = -0.02). Similar to VG, the shift in hemispheric 

recruitment in the parietal region was not significant (LIall: young = 0.22, old = -0.08; 

LIdiff: young = 0.09, old = 0.08). As an example of the shift with task difficulty, 

differences in language lateralization based on difficulty-independent as compared to 

subject-specific analysis in the frontal regions are shown in Fig. 7.6 for VG for both age 

groups.  

 
Figure 7.6:  Lateralization with Task Difficulty: Pair-wise comparisons between difficulty-

independent and subject-specific difficulty-dependent activation maps revealed significant 

hemispheric laterality shift in the inferior frontal for only the young age group (p=0.05). Boxes 

indicate mean and ±95% confidence intervals. 

 

 

7.3.1.6 Functional Connectivity with Task Difficulty 

  

CM Networks: 

Functional connectivity differences observed with the VG task are summarized in 

Fig 7.7 (A&B – All words vs. controls; C&D - Difficult vs. easy). For the all words vs. 

control network, significant differences in functional interactions between the young and 

old subjects (p<0.05) were present for the L & R-ITG (CM Young = 0.262, Old = -0.024) 
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and L-AG & R-ITG (CM Young = 0.224, Old = -0.061) network links. For the difficult 

vs. easy network, the network links between the two groups were significantly different 

for: L-BA44 & L-BA45 (CM Young = -0.032, Old = 0.032), L-BA44 & L-MTG (CM 

Young = -0.087, Old = 0.087), L-ACC & R-BA47 (CM Young = -0.096, Old = 0.286) 

and R-BA44 & R-AG (CM Young = -0.021, Old = -0.145).  

 

PPI Analyses: 

To increase statistical power and reduce errors due to multiple comparisons, the 

ROIs used in this analysis were restricted to (left and right): Inferior Frontal Gyrus (IFG 

– by combining BA44-45-47), Wernicke’s area, AG and ACC. No significant psycho-

physiological interactions were significant. However, a trend for condition dependent 

interactions between the R-IFG and R-Wernicke was found (p=0.054). Post-hoc tests for 

this interaction revealed significant differences between Difficult vs. Control (p=0.045) 

and Easy vs. Control (p=0.023) comparisons only. No age related differences between 

any psycho-physiological interactions were found to be significant.    
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Figure 7.7:  Functional Connectivity Analysis - CM networks: All words vs. Control (A – 

Young; B – Old) and Difficult vs. Easy (C – Young; D – Old). Mean CM value over the group is 

indicated by color of the links (see color scale). 
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7.3.2 Event Related Potentials 

 

7.3.2.1 Difficulty Independent & Dependent Language Production ERPs 

 

The voltage distribution maps for the difficulty-independent and difficulty-

dependent language ERPs averaged over 40ms time bins for both age groups are shown 

in Figures 7.8 - 7.11. Boxes indicate the time windows selected for statistical analyses.    

 

7.3.2.2 Statistical Analyses 

 

Difficulty Independent Language Production ERPs: 

For PN, the early negativity and late positivity difference on the voltage 

distribution maps (Figure 7.8) were statistically significant between all pictures and 

control condition (520 to 640ms: F = 4.67, p<0.05; pictures > control & 1000 to 1160ms: 

F = 17.99, p=0.001; pictures > control). The AP difference (anterior > posterior) seen 

during the late time interval was significant (main effect AP: F = 5.94, p<0.05) and 

different between the two conditions (condition*AP: F = 9.79, p<0.005). The AP effect 

was also different between the two age groups in that interval (AP*age group: F = 5.47, 

p<0.05; young anterior > old). The laterality levels were significantly different for both 

conditions (main effect laterality: F = 9.3, p<0.001; midline electrodes more negative 

than lateral) and for different AP levels (AP*laterality: F = 2.68, p<0.05). However the 

laterality levels were not different between the two conditions or age groups. 
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For VG, similar to PN, a significant early negative (young = 520 to 640ms & old 

= 600 to 720ms: F = 25.8, p<0.001; all words > control) and late positive difference 

(young = 880 to 1000ms & old = 920 to 1040ms: F = 8.45, p<0.01; all words > control) 

between the all words and control stimuli were found. The early negativity was also 

different over different levels of laterality (condition*laterality: F = 6.04, p<0.005). 

Significant AP main effect (F = 4.73, p<0.05), AP*laterality (F = 2.94, p<0.01), and 

condition*AP*laterality (F = 3.59, p=0.001) effects indicate that a significant left anterior 

negativity difference was present for the words as compared to controls. In addition, a 

greater negative effect was observed for old as compared to young subjects 

(condition*AP*laterality*age group (F = 2.1, p<0.05). For the late time window, the 

positivity was more anterior and lateralized over the two conditions (laterality main 

effect: F = 3.53, p<0.05: middle levels more negative and Laterality*AP: F = 3.65, 

p=0.001). Significant difficult-independent effects for both tasks are summarized in Table 

7.4.  

 

Difficulty Dependent Language Production ERPs: 

Similar to the fMRI results, no significant difference between the difficult and 

easy stimuli (main or interaction condition effects) were present for either time window 

for PN. The only significant effects found were a main AP effect independent of laterality 

levels (F = 6.3, p<0.05); an AP*laterality effect (F = 2.6, p<0.05)) and an AP*age effect 

(F = 6.91, p<0.05) for the late positivity.   

For VG, significant differences between the difficult and easy conditions were 

found only for the early time window (960 to 1200ms: F = 4.84, p<0.05: difficult > easy). 
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This effect was also found significantly different over different laterality levels between 

the two conditions (condition*laterality: F = 3.02, p<0.05). In addition, main effects of 

laterality (F = 6.25, p<0.005) and AP*laterality (F = 4.24, p=0.001) confirmed that the 

early negativity was more centralized for both easy and difficult conditions. The late 

positivity was more central and lateral from main laterality (F = 10.97, p<0.001) and 

AP*laterality (F = 3.69, p<0.005) effects. Significant effects for both tasks are 

summarized in Table 7.5.     

Picture Naming Verb Generation 
 

 

 

                               

                              TIME WINDOWS 
 

EFFECT 
 

520 to 

640ms 

(young, old) 

1000 to 

1160ms 

(young, old) 

520 to 640ms 

(young) 

600 to 720ms 

(old) 

880 to 

1000ms 

(young) 

920 to 

1040ms (old) 

CONDITION (All Stimuli, Control) 

 

 

F = 4.67 

p = 0.045 

 

F = 17.99 

p = 0.001 

 

F = 25.82 

p < 0.001 

 

F = 8.45 

p = 0.009 

 

LATERALITY 

 

 

NS F = 9.30 

p < 0.001 

 

NS F = 3.53 

p = 0.026 

 

AP 

 

 

NS F = 5.94 

p = 0.019 

 

F = 4.73 

p = 0.025 

 

NS 

CONDITION * LATERALITY 

 

 

NS NS F = 6.04 

p = 0.003 

 

NS 

CONDITION * AP 

 

 

NS F = 9.79 

p = 0.003 

 

NS NS 

LATERALITY * AP 

 

 

NS F = 2.68 

p = 0.018 

 

F = 2.94 

p = 0.008 

 

F = 3.65 

p = 0.001 

 

CONDITION * LATERALITY * AP 

 

 

NS NS F = 3.59 

p = 0.001 

 

NS 

AP * AGE GROUP 

 

 

NS F = 5.47 

p = 0.024 

 

NS NS 

CONDITION * LATERALITY * AP 

* AGE GROUP 

 

NS NS F = 2.10 

p = 0.045 

 

NS 

 
Table 7.4: ERP Statistical Analysis for All Stimuli vs. Control PN & VG waveforms. NS 

indicates not significant. 
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Picture Naming Verb Generation 
 

 

 

                               

                              TIME WINDOWS 
 

EFFECT 
 

600 to 

680ms 

(young, old) 

1240 to 

1360ms 

(young) 

1520 to 

1600ms(old) 

960 to 

1200ms 

(young, old) 

1360 to 

1440ms 

(young, old) 

CONDITION (Difficult, Easy) 

 

 

NS NS F = 4.84 

p = 0.040 

 

NS 

LATERALITY 

 

 

NS NS F = 6.25 

p = 0.002 

 

F = 10.97 

p < 0.001 

 

AP 

 

 

NS F = 6.30 

p = 0.020 

 

NS 

 

NS 

CONDITION * LATERALITY 

 

 

NS NS F = 3.02 

p = 0.039 

 

NS 

LATERALITY * AP 

 

 

NS F = 2.60 

p = 0.014 

 

F = 4.24 

p = 0.001 

 

F = 3.69 

p = 0.002 

 

AP * AGE GROUP 

 

 

NS F = 6.91 

p = 0.015 

 

NS NS 

Table 7.5: ERP Statistical Analysis for Difficult vs. Easy PN & VG waveforms. NS indicates 

not significant. 

 

N400 Analyses:  

In addition to the above time windows, distinct negativity differences between the 

easy (blue), difficult (red) and control (green) conditions were also observed in the grand 

averages (360 to 600ms) of the midline electrodes only for the PN task (Fig 7.12). To 

statistically evaluate this effect, a repeated measures ANOVA with condition 

(Easy/Difficult/Control) and electrode (Fz/Cz/Pz) as within subject factor and age as 

between subject factor was used. A significant difference between all three conditions (F 

= 9.7, p=0.001) and all three electrodes (F = 8.84, p<0.005) was observed. The difficult 

waveform was the most negative followed by the easy and control waveforms. Such a 

pattern was absent for the VG task for the same interval.       
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(A) YOUNG – All Pictures vs. Control(A) YOUNG – All Pictures vs. Control

 
 

(B) OLD – All Pictures vs. Control(B) OLD – All Pictures vs. Control

 
Figure 7.8: Voltage Distribution Maps for Task Difficulty Independent Language ERPs for 

Picture Naming Task (A – young; B – old groups). Boxes indicate early and late time windows 

selected for statistical analysis. Central negativity in the early time window and a centro-parietal 

positivity in the later time window is seen. 
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(A) YOUNG – All Words vs. Control(A) YOUNG – All Words vs. Control

 
 

(B) OLD – All Words vs. Control(B) OLD – All Words vs. Control

 
Figure 7.9: Voltage Distribution Maps for Task Difficulty Independent Language ERPs for 

Verb Generation Task (A – young; B – old groups). Boxes indicate early and late time windows 

selected for statistical analysis. 
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(A) YOUNG – Difficult vs. Easy Pictures(A) YOUNG – Difficult vs. Easy Pictures

 
 

(B) OLD – Difficult vs. Easy Pictures(B) OLD – Difficult vs. Easy Pictures

 
Figure 7.10: Voltage Distribution Maps for Task Difficulty Dependent Language ERPs for 
Picture Naming Task (A – young; B – old groups). Boxes indicate early and late time windows 

selected for statistical analysis. 
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(A) YOUNG – Difficult vs. Easy Words(A) YOUNG – Difficult vs. Easy Words

 

 

(B) OLD – Difficult vs. Easy(B) OLD – Difficult vs. Easy

 

Figure 7.11: Voltage Distribution Maps for Task Difficulty Dependent Language ERPs for 

Verb Generation Task (A – young; B – old groups). Boxes indicate early and late time windows 

selected for statistical analysis. 
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Pz

PzCz

Cz

Fz

Fz PzPz

PzPzCzCz

CzCz

FzFz

FzFz

 
Figure 7.12: Grand Average ERP Waveforms showing the N400 effect in PN at the midline 

(Fz, Cz, Pz) electrodes. (Difficult (red), Easy (blue) & Control (green) top row – young; bottom 

row – old groups). N400 effect was found significant (p=0.001) 
 

7.4 Discussion  

 

Picture naming and verb generation tasks have shown great potential in mapping 

the language functional architecture in healthy subjects as well as in evaluating language 

deficits and rehabilitation with therapy in aphasic patients [136, 137]. In this chapter, task 

difficulty – a potential confound of subject-wise variability in healthy and more 

importantly in aphasic patients, was evaluated using two neuroimaging modalities. A 

subjective definition of task difficulty was also evaluated in comparison to a more 

common objective definition.   

 

7.4.1 Functional MRI 

 

Task Difficulty Effects: Using individual subject reaction times as an independent 

measure of task difficulty, we observed task difficulty effects on functional activations 
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primarily in the frontal regions, more prominently in the verb generation task. A stronger 

effect size was recorded for the left-sided activations by using subject RT’s to define task 

difficulty. Qualitatively, this distinction can be appreciated in Fig. 7.4 which shows the 

strong linear relationship between the BOLD response and RT, across all four blocks and 

for nearly all subjects.  In contrast, the group-averaged RT method was not able to 

consistently categorize task difficulty of the stimuli for individual subjects, showing a 

weaker effect across the entire RT range. Presumably there is a larger amount of 

variability in the subjective degree of the difficulty of the task, and the group-averaged 

model does not correctly account for subject-to-subject differences.  The strong linear 

relationship of the subject-specific analysis also shows the validity of subject reaction 

time as measure of task difficulty, not only in general terms, but on an individual 

stimulus basis. Previous attempts to characterize task difficulty have relied on using 

objective definitions of easy and difficult tasks inherent to their task designs [111, 114, 

138, 139] or used response times as a gauge of task difficulty taken within the scanner 

[112, 113, 115, 140-143] or from ancillary pilot studies [144, 145] in fMRI block designs 

to validate easy and difficult blocks. In comparison, there are only a few studies that have 

used response time information for retrospective categorization of task difficulty [115] 

[112]. These studies however showed an overall group effect of the dependence of BOLD 

response on reaction time. Using an event related fMRI design permitted us to evaluate 

these differences at the individual subject level which are more relevant in rehabilitation 

studies of stroke patients.    

Age effects: Significant age related differences in the effect of task difficulty were 

also observed in the bilateral frontal regions. Younger subjects showed greater task 
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difficulty related differences in the BOLD signal as compared to their older counterparts. 

Using the linear mixed model analysis strategy enabled highlighting these differences 

more clearly and in more regions as compared to the traditional two condition subtraction 

(i.e., easy vs. difficult) ROI analysis. Interestingly, the mean BOLD signal for both the 

easy and difficult tasks for the older group of subjects was comparable to the mean 

BOLD signal for the difficult tasks for the younger subjects. This increase in BOLD 

signal level for the easy tasks in the older subjects may indicate age-related changes in 

cognitive processing as a compensatory mechanism to maintain performance, as has been 

shown in prior aging studies of language function [146]. Further, the decreased task 

difficulty effects seen for older subjects may indicate that ease of language performance 

develops with age and experience. However, the behavioral data did not show a 

significant age-related difference between the reaction time spread between the easy and 

difficult stimuli. Thus, the measures of task difficulty seem to suggest a decoupled 

relationship of the BOLD signal and behavioral data with aging.     

Other functional measures: In addition to peak BOLD signal differences, the 

hemodynamic response peaked later and took longer to return to baseline with increased 

subject-specific task difficulty in both the frontal and temporal regions for VG and only 

the left temporal regions for PN. An age related difference was observed only in the 

width of the hemodynamic function in the right frontal region for VG. Using laterality 

index analysis, a significant rightward shift in laterality was seen for the task-difficulty 

modulated contrast as compared to stimulus vs. control contrasts.  This shift was evident 

in both frontal and temporal regions for both the tasks, but not in the parietal lobe for 

either task. No age related differences in laterality index shifts were observed. This shift 
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may indicate an overall strategy to recruit additional contralateral cortical areas with 

increased task difficulty for both tasks.   

Functional Connectivity: For the evaluation of functional connectivity differences 

with task difficulty and these changes with age, two methods of analyses were used. A 

number of significantly different connections with task were observed between the two 

age groups using the CM method. However none of these connections were significant 

when corrected for multiple comparisons. Overall an increase in the right hemispheric 

connections with age for both difficulty independent and difficulty dependent CM 

networks was observed (Fig. 7.7), indicating an increased rightward shift in functional 

connections with age. This observation seems to be in agreement with our laterality index 

results and the hemispheric asymmetry reduction in older adults observed in a number of 

other studies [20].    

Verb Generation vs. Picture Naming: While the use of reaction time to categorize 

task difficulty was successful for verb generation, significant activations were not seen in 

the ROI analysis with this contrast in picture naming. The reaction time spread was 

smaller for picture naming, and our analysis was also limited to the language-related 

brain areas, both of which may have limited our success in demonstrating task difficulty 

effects. Another possible difference is the semantic component of the task. The lack of 

frontal activation demonstrated in many picture naming studies [108, 147, 148] has been 

argued as due to the relative lack of a semantic component. The stronger effect sizes seen 

in frontal as compared to temporal regions in VG, with the strongest task difficulty effect 

in left BA47, may be related to the strong semantic nature of this task. The robust nature 
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of this task to map language regions, demonstrated in numerous prior studies [94, 149, 

150], may also be the reason for seeing these subtle effects of task difficulty in VG.  

 

7.4.2 Event Related Potentials   

 

Semantic Effects: Differences between the ERPs for control and linguistic stimuli 

were found both early in the waveforms and late in waveforms, and for both tasks. There 

was a greater overall negativity for the language stimuli in the first time window and 

increased positivity in the second time window. For PN, the longer-latency effect was an 

enhanced positivity over the frontal areas. This may be associated with the increased 

frontal processing required for naming pictures than for passively viewing of unnameable 

control stimuli. For VG, in the earlier time window, a greater central negativity was 

observed. This may be analogous to N400 effects reported in many situations, reflecting 

greater semantic processing for words as compared to control stimuli.  

Difficulty effects: Both early and late effects were observed for item difficulty as 

well, but these effects differed for picture naming and verb generation.  For PN, the 

earlier time window (360 to 600ms) showed the greatest negativity for the difficult 

condition, followed by the easy and then the control condition. Difficulty effects were not 

observed for the VG task in that time window. Instead, a much later (960 to 1200ms) 

central negativity difference between the difficult and easy condition was observed for 

VG.  

Age effects: Latency differences were observed between the young and old 

groups for VG (Figure 7.11). For both the difficult-independent and difficulty-dependent 
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difference waveforms, the older subjects showed later or more extended processing as 

compared to the young subjects. This extended processing may be an indicator of 

additional compensatory temporal processing in the older subjects as compared to their 

younger counterparts.       

In summary, language processing dependence on task difficulty was evaluated 

using fMRI and ERP. Subject specific categorization of task difficulty and an event 

related verb generation task highlighted significant task difficulty related effects in both 

neuroimaging modalities. Age related differences were also observed. The linear mixed 

model analysis strategy is an effective approach to model both individual and group level 

relationships between BOLD signal and subject reaction times. This may be a more 

relevant approach in studies of stroke patients where a considerable subjective variability 

in performance is expected.   
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Chapter 8 

Integration of fMRI and ERP to study Language Function  

and Task Difficulty 

 

8.1 Introduction 

 

Understanding functional organization requires knowledge of functional 

neuroanatomy, time course of the processing, the type of processing and interaction 

between various functional components. Most of the currently existing neuroimaging 

techniques are limited in the nature of information they can provide. While the 

hemodynamic based neuroimaging techniques (fMRI/PET) provide good spatial 

resolution (few mm), they are limited in the temporal nature of information they can 

provide (1s). Neuronal based modalities (EEG/MEG) on the other hand provide excellent 

temporal information (0.001s) but are limited in the spatial identification of sources. To 

integrate the complementary information provided by these two techniques, many groups 

in the neuroimaging community have attempted numerous efforts directed at combining 

these two modalities (For a review see [151, 152]). These attempts have relied on the 

main assumption that the signals detected by each method correspond to the same set of 

underlying neural generators. In a review of these attempts, Horwitz and Poeppel [152], 

have categorized three classes for these approaches:  

Converging Evidence: 

 The most common, but qualitative approach has been to converge evidence from 

different studies with a common finding that supports one’s result. However, given the 
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complexity of the brain networks involved in a particular function, it is extremely 

difficult to comment about the correlation of results from the two different techniques 

without a thorough understanding of how each of these methods probe the underlying 

physiology. 

Direct Data Fusion:  

 As the name suggests, this approach mainly attempts to combine the two imaging 

data sets using mathematical or statistical algorithms. The source of brain activity 

measured at the surface of the skull is determined by modeling the conductive current 

source distribution in the head. These methods are divided based on the assumptions that 

either only a few underlying equivalent current dipoles generate the EEG/MEG data 

[153], or there exists a uniform spatial distribution of sources with temporally continuous 

EEG/MEG values throughout the brain [154]. The fMRI/PET data is integrated with the 

EEG/MEG data by using the foci of the fMRI/ PET-derived hemodynamic activations as 

constraints to localize the EEG/MEG sources. This has been one of the most popular 

approaches towards data fusion.  

Computational neural modeling: 

In addition to the above methods, a modeling approach to solve this data fusion 

problem has been proposed [155]. The underlying basis of such an approach is to 

construct a neural model which would allow comparison of simulated fMRI/PET and 

EEG/MEG data within the model. A similar approach has been implemented by Pflieger 

et al. using a non-linear system identification approach in which separately acquired 

fMRI and EEG/MEG datasets were temporal aligned to simulate “virtually simultaneous” 

datasets [156]. 
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  In this chapter, direct data fusion was used to combine fMRI and ERP data from 

a language comprehension task highlighting contextual semantic processing. fMRI and 

ERP results for this task are presented. fMRI constrained dipole analyses were performed 

to determine the relationship between observed fMRI activations and specific ERP 

components. 

 

8.2 Methods 

 

8.2.1 Data Collection & Preprocessing 

 

Functional MRI and ERP data from the language comprehension task for the 

same set of 20 subjects (10 young and 10 old) was used in this section. Subjects 

performed two runs of the task during each imaging session. Details about the task have 

already been discussed in chapter 6. In short, during each run subjects viewed 4 types of 

category questions followed by a number of options. Subjects covertly responded for 

each option with a ‘yes’ or ‘no’ and a corresponding button press, depending on whether 

or not the item presented fit the category. Based on the behavioral study, two of these 

categories were classified as easy and two as difficult.  

Functional MRI and EEG data for the task was collected in the same manner as 

described in chapter 7. Preprocessing steps for both modalities were the same as those for 

the picture naming and verb generation tasks.   
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8.2.2 Data Analysis 

 

8.2.2.1 Functional MRI 

 

Single subject fMRI data was modeled using the same GLM data analysis strategy 

used for PN and VG tasks. For every subject the following trial types were defined: easy-

yes, easy-no, difficult-yes, difficult-no, control, instructions and invalid trials. For the two 

easy categories (i.e. animal/non animal and edible/non edible), Yes-No option types were 

predefined and incorrect or no subject responses were labeled as invalid trials. The 

difficult category options (i.e. recreational activities and professions requiring college 

education), because of their subjective nature, were defined as ‘difficult-yes’ or ‘difficult-

no’ based on individual responses. As before, trials with no subject response were 

included as invalid trials. All options within the control blocks were defined as ‘control’ 

and all instruction questions for each block as ‘instruction’ categories. Because of 

technical problems in collecting responses for this task in the MRI, subject responses 

from the ERP session were used for this analysis (reaction times were not used for these 

analyses).  

Two types of ROI analyses were performed to extract %BOLD values. The first 

type of analysis was based on the traditional method of using complete anatomical ROIs 

to extract %BOLD values. The second type of ROI analysis was similar to the fROI 

analysis used for PN and VG. An F-contrast of the main effect of yes and no trial types, 

irrespective of category difficulty, was used to extract the fROIs. Based on previous 

literature on language comprehension studies [6], the following apriori cortical ROIs (left 
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and right) were used: BA 44, BA 45, BA 47, inferior temporal gyrus (ITG), medial 

temporal gyrus (MTG), superior temporal gyrus (STG), supra-marginal gyrus (SMG) and 

cingulate gyrus (CG).   

Repeated measures ANOVA were performed for each ROI, with task difficulty 

(easy/difficult categories) and condition (yes/no) as within-subject factors and age group 

as a between-subject factor.           

 

8.2.2.2 Event Related Potentials 

 

Epochs, from 100ms prior to stimulus onset and continued to 900ms after 

stimulus onset, were defined for the preprocessed EEG data. A baseline correction using 

the pre- stimulus onset for each epoch was also applied. Stimuli were divided into easy or 

difficult types and yes or no conditions in the same manner as done for the fMRI. EEG 

epochs for each event type were then averaged to obtain their respective ERPs. 

Difference waveforms, i.e. each event type vs. control, were also generated. Grand 

averages for these waveforms (i.e. ERPs averaged over all the subjects) were also 

obtained.  

Individual subject N400 and P600 peak latencies for easy and difficult conditions 

were determined using a sine-wave correlation method. Sine-wave correlation methods 

have previously been shown to be robust in identifying peaks in noisy ERP data [157]. 

The choice of window width for correlation was based on the approximate temporal 

window for each of these effects observed in the grand averages.  More specifically, a 

half sine-wave of window length 120ms was cross-correlated with the ‘no vs. control’ 
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waveforms from 300 to 500ms time interval. The lag with the maximum cross-correlation 

coefficient in this time window was selected as the latency of the N400 peak. Similarly, a 

wider half sine-wave window (180ms) was cross-correlated with the ‘yes vs. control’ 

waveforms from 450 to 750ms time interval to determine the P600 peak latency. Using 

these peaks, area of all the ERP waveforms within ± 50ms of the N400 peak and ± 75ms 

of the P600 peak were calculated and used for statistical analyses. Grand average 

waveforms showing the N400 and P600 effects at the three midline electrodes (Cz, Fz & 

Pz) for difficult categories for the old subject group are shown in Figure 8.1. Voltage 

distribution maps of ‘easy-no vs. control’ (A) and ‘easy-yes vs. control’ (B) waveforms 

for the young group of subjects are shown in Figure 8.2.    

Statistical analyses were done by grouping individual electrodes into four regions, 

as in section 7.2.4.3. A 4-way repeated measures ANOVA was used with anterior-

posterior (AP four levels), laterality (8 levels), difficulty (easy/difficult) and condition 

(yes/no) as within-subject variables and age as a between-subjects factor. The 

Greenhouse-Geisser correction was used for all comparisons [135]. To spatially localize 

each of the two ERP components and to evaluate for spatial differences between task 

difficulty categories and between age groups, the same repeated measures analysis was 

also performed using only the condition waveforms on which the N400 and P600 

components could be identified (i.e. No minus Control condition for N400 and Yes minus 

Control condition for P600). 

Since both these effects were expected to be maximum at the midline electrodes, 

an additional 3-way repeated measures ANOVA was also performed using only the three 
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midline electrodes (Fz, Cz & Pz) with difficulty and condition as within-subject factors 

and age as between-subject factors.  

Fz

Cz

Pz

FzFzFz

CzCzCz

PzPzPz

 

Figure 8.1: ERP grand averages for difficult categories in old subjects showing the N400 

(blue arrow) and P600 (red arrow) components at the three midline electrodes (FZ, CZ & 

PZ). ERP waveform for Yes (black) and No (red) options are shown. Greater negative peak at 

400ms (N400) for the semantically unrelated condition and greater positive peak at 600-650ms 

(P600) for semantically related condition are seen. Blue (300-500ms) and red (450-750ms) boxes 

indicate time windows selected to identify individual subject N00 & P600 component peaks. 
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Figure 8.2: Group averaged voltage distribution maps for A. semantically unrelated (No 

minus Control), and B. semantically related (Yes minus Control) for the objective categories 
in young subject group. N400 associated negativity is seen for the semantically unrelated ERP 

and not for the semantically related ERP (p<0.05). P600 associated positivity is seen for both 

options with greater amplitude for the semantically related options (p<0.005).   
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8.2.3 Source Analysis 

 

CURRY v.4.5 software package was used for performing source analyses 

(http://www.neuroscan.com/curry5). A realistic three component head model was first 

defined for every individual subject using the boundary element method (BEM) [158] 

and the subject’s T1 MR anatomical image. Using the MR image, scalp, skull, CSF, grey 

and white brain matter surface segmentation was performed. Conductivities of 0.33 S/m 

for the CSF and the scalp and a conductivity of 0.0042 S/m for the skull were used to 

define the model [159]. The BEM model method assumes a homogeneous isotropic 

conductivity within each compartment and uses approximately 3000 nodes to represent 

all the compartments. Anatomical reference points were identified on the individual 

subject MR image: nasion, inion, left-right preauricular points, anterior commisure (AC) 

and posterior commisure (PC). Using the nasion, inion and preauricular reference points 

and the segmentation results, an international 10/20 system montage of electrode 

locations was defined for every individual.  The AC-PC reference points were used to 

transfer the MR image space into the Talairach based coordinate system before doing any 

further analyses.  

An anatomically constrained dipole analysis was then performed over the entire 

averaged EEG waveforms for all stimuli types for each individual. For each of these 

waveforms, activation foci identified from the fMRI ROI analysis were used as seeds. A 

rotating dipole was seeded at each of these activation foci with a 1mm freedom of 

movement, for every seed separately. This analysis solves for the inverse problem and 

calculates how much of the measured data can be explained by a dipole source located at 
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the selected seed point. This is also called the explained variance by the source at each 

time point. Time courses of these explained variances for the averaged ERP data were 

extracted and used to interpret the results. Mean explained variances over the same time 

windows for the N400 and P600 conditions using the ‘no minus control’ and ‘yes minus 

control’ waveforms were calculated for both task difficulty categories. To evaluate 

differences between explained variance for the different ROIs, a repeated measures 

ANOVA using condition (yes/no), task difficulty level (easy/difficult) and ROIs as 

within-subject factors and age as between-subjects factor, was performed. 

       

8.3 Results 

 

8.3.1 Functional MRI 

 

Anatomical ROI Analyses: 

Using the anatomical ROI method, significant differences between %BOLD 

values for the easy and difficult categories and trends between semantically related and 

unrelated conditions (yes vs. no) were observed. %BOLD values between the easy and 

difficult categories (main effect of task difficulty; %BOLD difficult>easy) were 

significantly different in the left BA45 (F = 7.488; p=0.015). A trend of %BOLD values 

for the No condition higher than the Yes condition was found in the left BA44 (F = 4.32; 

p=0.054).  

Semantic unrelated-related processing differed with question category difficulty 

(task difficulty*condition interaction) in the right SMG (F = 5.89; p=0.027). In this 
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region, the %BOLD value for the Yes condition was higher than the No condition for the 

easy categories, while the No condition had higher %BOLD values for the difficult 

categories. However, posthoc analyses did not reveal significant differences between the 

Yes-No conditions when the easy and difficult categories were analyzed separately. In 

addition, a difficulty*condition*age group effect was found in the left ITG (F = 8.25; 

p=0.012). Posthoc analyses revealed that only the young group showed a significant task 

difficulty effect in processing No vs. Yes conditions (easy – No>Yes significant at 

p=0.039 & no significant difference between the No & Yes condition for difficult 

categories.).  

 

fROI Analyses: 

Similar to the anatomical ROI analysis, this method of ROI analysis resulted in 

significant differences between %BOLD values for the easy and difficult categories. 

However no significant differences or trends between the semantically related and 

unrelated options were observed with this method. Main task difficulty effects (i.e. 

%BOLD difficult > easy) were observed in the left BA47 (F = 6.3; p=0.023), left BA45 

(F = 5.82; p=0.028) and the left ITG (F = 5.18; p=0.037).  

In addition, left ITG showed differences in task difficulty between age groups 

(task difficulty*age group – F = 6.57; p=0.02) and differences in semantic unrelated-

related processing with task difficulty and with age groups (task difficulty*condition*age 

group – F = 7.57; p=0.014). Posthoc analyses done separately for the two age groups with 

%BOLD values in the left ITG revealed that the task difficulty effect was significant only 

for the older group (difficult > easy; p=0.011). In addition, only the young group showed 
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a significant task difficulty effect in processing No vs. Yes conditions. However further 

posthoc analyses looking at condition effects separately in each difficulty category 

revealed no differences between the semantic related and unrelated stimuli (easy – No vs. 

Yes & difficult – No vs. Yes for young not significant).  

 

8.3.2 Event Related Potentials 

 

N400 

 

N400 amplitude was significantly different between the semantically related 

(Yes) and unrelated (No) condition, with more negative amplitude for the No condition 

(main effect condition – F = 6.35; p=0.022; No<Yes). This effect was consistent over 

both age groups and over both easy and difficult categories (no age group or task 

difficulty interactions with condition were significant). The N400 peak was significantly 

later for the difficult categories (406ms) than the easy categories (384ms, F = 5.11; 

p=0.037). N400 voltage spatial distribution was found significantly different between the 

two age groups and between the two difficulty conditions (laterality*age group: F = 4.05, 

p=0.017; task difficulty*AP*laterality: F = 2.65, p=0.017).  

 

Using only the midline electrodes (Fz, Cz, Pz) 

Similar results were obtained only the midline electrodes. N400 amplitude was 

more negative for the unrelated condition than the related condition over the three 
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midline electrodes (main effect condition - F = 6.95; p=0.017). No age group or task 

difficulty category interactions with condition were observed.  

 

P600 

 

There were significant differences in the P600 amplitude between the 

semantically related (Yes) and unrelated (No) condition (main effect condition – F = 

11.99; p=0.003; Yes>No) and between the two difficulty categories (main task difficulty 

effect – F = 4.52; p=0.048; easy>difficult). The P600 amplitude difference between the 

No and Yes conditions was also found to be significantly different between easy and 

difficult categories (task difficulty*condition – F = 10.1; p=0.006). Posthoc analyses 

revealed that the amplitude difference between the Yes and No conditions (Yes>No – 

p<0.001) was significant only for the difficult categories. The P600 peak was 

significantly later for the difficult category questions (646ms) as compared to the easy 

categories (589ms, F = 13.16; p=0.002). Central positivity seen in P600 voltage 

distribution maps was significant (main effect Laterality: F = 16.12, p<0.001). P600 

spatial distribution was significantly different between the two categories for the two age 

groups (task difficulty*age group: F = 4.44, p=0.05 and AP*task difficulty*age group: F 

= 6.99, p=0.007).  

 

Using only the midline electrodes (Fz, Cz, Pz)  

Using the three midline electrodes, the same results were observed. P600 

amplitude was significantly different between the semantically related and unrelated 
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conditions (F = 14.24; p=0.002; No<Yes) and between the two difficulty levels (F = 5.77; 

p=0.028; easy>difficult). Similar to the earlier results, the P600 amplitude difference 

between the Yes-No conditions also found to be significantly different between the easy 

and difficult category levels (task difficulty*condition – F = 10.95; p=0.004) with 

posthoc differences seen only for the difficult categories (Yes>No; p<0.001).   

 

8.3.3 Source Analysis 

 

Based on the fMRI ROI analyses, seed points in five ROIs - left BA44, left BA45, 

left BA47, left ITG and right SMG, were selected to perform source analyses. The 

biggest cluster location in each ROI for every individual subject was selected as seed 

location. Repeated measures ANOVA analysis using the explained variances for each 

ROI resulted in no significance difference between the ROIs. No single seed point was 

found to be specific to the N400 or P600 time window. To check if poor SNR in our data 

could have limited the outcome of this analysis, a free dipole with no seeding constraints 

was fit to the data for a single subject with a well defined N400 peak. However, this 

dipole still was able to explain only a minimal amount of variance in the data. The mean 

explained variance over all subjects for each time window and for each ROI are plotted in 

Figure 8.3.   

 



 120 

0

10

20

30

40

50

60

left BA44 left BA45 left BA47 left ITG right SMG

fMRI seeds

%
 e

x
p

la
in

e
d

 v
a
ri

a
n

c
e

N400

P600

 
Figure 8.3: Percentage of variance explained by each of the selected fMRI seeds. All five 

selected seeds explained less than 50% of the variance in the data. No significant difference 

between ROIs was observed.   

 

8.4 Source Analyses using PN & VG data: 

 

An important finding using our ERP data was the differences in negativity (N400) 

across conditions seen during the 360 to 600ms time window in PN (See section 7.3.2). 

These differences were associated with the N400 effects previously seen in studies of 

semantic processing of picture stimuli [160-162]. This effect was also sensitive to task 

difficulty, with increase in negative amplitude with difficulty in naming pictures. For the 

VG ERP data, a central negativity effect was observed in approximately 520 to 720ms 

(young: 520 to 640ms & old: 600 to 720ms) time window for processing all words in 

comparison to controls and in a much later window (960 to 1200ms) for difficult as 

compared to easy words. Although these differences were not in the expected time 

window commonly observed for the N400 effect (between 300-500ms), it was discussed 

that the latency of this negativity may suggest a delayed semantic processing for VG. 

Also, difficult VG tasks were found to have delayed and prolonged semantic processing 

as compared to easy tasks.    
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The goal of source analysis was to qualitatively confirm that the central negativity 

effects seen for PN and during the delayed time intervals for VG are in principle related 

to the same semantic processing. If this was true, the sources from all three data sets (i.e. 

all pictures vs. control, all words vs. control and difficult vs. easy words) should converge 

to the same cortical locations. For solving this inverse problem, minimum norm least 

squares (MNLS) current density source reconstruction technique was used (Details about 

current density source analysis can be found in section 4.1). Current density methods, 

unlike limited source dipole methods, require no a priori assumptions about the nature of 

source current distributions and are the best choice when activity distribution is poorly 

known in advance. Age-group averaged ERP waveforms for all stimuli vs. control for PN 

& VG and for difficult vs. easy for VG were selected for this analysis. As we did not see 

any task difficulty related effects in PN, the difficult vs. easy waveform for PN was not 

used. The averaged waveforms were first filtered with an 8Hz low pass filter to improve 

SNR for source reconstruction. Realistic three component BEM head model was defined 

as described in the previous sections. A standard space T1 weighted MR image of a 

standard brain was used to model the different layers of BEM. Current density methods 

search for the best estimate of a distributed primary current by making an assumption of 

existence of a grid of sources in 3 dimensional spaces. This grid of sources was restricted 

to the cortex extracted from the MR image for all analyses. Minimum norm estimates 

were then calculated in steps of 2ms during the respective time windows for each 

waveform. A χ
2
 criterion was used to estimate the regularization parameter. Current 

density maximum and sources within 30% of the maximum estimate were used to 

identify location of sources.  
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Figure 8.4: Current Density Source Analysis for PN & VG – top row – VG: All words vs. 
Control; middle row – VG: Difficult vs. Easy; bottom row – PN: All PICs vs. Control. Green 

arrow indicates location of maximum current density estimate & red arrows represent sources 

within top 30% of the maximum estimate. Consistent sources in the left inferior frontal region are 

seen for VG in both young and old groups of subjects and for both comparisons. Same source 

location observed for old subjects for PN.   

 

Results:   

The maximum source locations and sources within 30% of the maximum source 

estimate for each of the waveforms are shown in Fig 8.4. A consistent source is observed 

in the left medial inferior frontal region for both all words vs. control and difficult vs. 

easy VG data and present for both young and old groups of subjects. The same source 

location is also observed for only the old subjects for the all pictures vs. control 

waveform for the PN data. These results seem to indicate that the observed central 

negativity observed in all three data sets is linked to the same underlying neural 

processing. Moreover, the inferior frontal region was also found activated for the same 

comparisons using the fMRI data. An additional source location in the right inferior 
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temporal region was present for both comparisons for VG in the young subjects and the 

difficult vs. easy comparison for the old subjects.  

 

8.5 Discussion 

 

Successful language comprehension depends on the correct semantic and 

syntactic integration of information. Electrophysiology studies of language 

comprehension have identified two markers for violations in processing semantic and 

syntactic information: N400 – a negative peak at roughly 400ms post stimulus typically 

seen in response to words which do not fit semantically in the context of a sentence and 

P600 – a positive peak seen roughly around 600ms in response to syntactic anomalies in 

a sentence. Although these markers have been identified in separate studies of semantic 

and syntactic violations, there have been arguments and observations that have shown 

evidence that these two processes may be linked in a more complicated manner [163]. In 

a review of these findings, Kuperberg has proposed two competing neural processing 

streams of language comprehension: a semantic memory-based mechanism and a 

combinatorial mechanism that assigns structure to a sentence based on morphosyntactic 

rules, but also on the basis of semantic-thematic constraints.  

In this chapter, the fMRI and ERP results from a language comprehension task 

designed to highlight semantic processing in a contextual sense are presented. Most 

studies of semantic processing, using both these modalities, have used tasks which 

evaluate semantic violations in a sentence [164, 165] or word priming [16, 166]. In 

addition, there have been a few attempts to evaluate semantic violations in a broader 
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context rather than simple sentences [167]. Our task is unique from these previous 

attempts and evaluates semantic processing for single words/options in reference to a 

particular semantic context, represented by each of the four categories in our task.  

We found a significant difference between ERPs for options which fit the 

semantic context and those which do not. Options with semantic context violations 

showed a greater negative peak during the 300 to 500ms time window (N400). This result 

is consistent with previous studies of semantic processing, where a negative peak has 

been observed for semantic violations in sentences [165] or for mismatched semantic 

priming between words [16]. Using our task, we have shown that the same N400 effects 

can be reproduced in words which do not fit the semantic context (yes vs. no) of both 

objective (easy) and subjective (difficult) categories in our task. Although, there were no 

differences between amplitudes of the N400 effect between the two difficulty category 

types, peak latency for the subjective categories was later than the objective ones. Aging 

studies of sentence or word level N400 semantic effects have found reduced N400 peaks 

with age [166]. Both subject age group recruited in our study showed no difference 

between amplitudes of the effect but had different spatial voltage distribution patterns 

with the N400 effect more lateralized on the right for the young and on the left for the old 

group.   

The P600 effects seen with our ERP data were not expected. P600 effects have 

previously been observed in studies of syntactic violations with comprehension [7, 168]. 

Our task was designed to elucidate only semantic violations. The presence of this effect 

(greater P600 amplitude for the semantically related options as compared to the unrelated 

options) can be related to previous findings of P600 peak modulation with semantic 
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expectancy [169]. P600 effects between the subjective and objective categories were 

found significantly different, with a greater amplitude and latency observed for the 

subjective categories. Similar to the N400 results, only spatial voltage distribution 

differences were observed between the two age groups, with no differences in amplitude 

of the effect.  

Different semantic processing for the yes and no options was also reflected as 

hemodynamic differences in BOLD fMRI signal. Two types of ROI analysis methods 

were used with our fMRI data, both methods showing only little agreement. Using ROIs 

defined anatomically, greater BOLD signal for the semantic context violations was found 

only in the left BA44 over both category types and in the left ITG only for the young 

subjects for the easy categories. These results are in agreement with frontal and temporal 

regions previously shown to be associated with semantic information processing [170]. 

Differences in BOLD signal between the semantically related-unrelated options and 

between the two difficulty categories were found in the supramargnial gyrus. Enhanced 

BOLD values for the semantically related options in this region for the objective category 

is consistent with previous findings [16]. Using functional definition of ROIs for analysis, 

only differences between the category types (greater BOLD values for difficult compared 

to easy categories) were found in the left BA45-47 & inferior temporal gyrus. Older 

subjects showed greater difficulty category differences in the inferior temporal region as 

compared to young subjects. However, no differences were found for semantic context 

violations. Both ROI analysis methods showed an absence of a significant effect in 

superior temporal gyrus, an area commonly seen with fMRI tasks of semantic violations. 

This was unexpected considering the role of this region in semantic processing [171].  
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Another important focus of this chapter was to integrate results from fMRI and 

ERP using source analysis. Dipole analysis was used to solve the inverse problem of 

identifying neural sources. To reduce the solution space for this inverse problem, five 

fMRI regions showing significant category and yes-no effects using the ROI analyses 

were selected as seed locations to constraint the dipole analysis. This ROI constraint 

dipole analysis method, allowed us to calculate the amount of variance in the measured 

data explained by each of the seed ROIs over a selected time window. The use of 

explained variance to evaluate correlation of results from fMRI & ERP has been 

previously shown in novel stimulus processing [172]. Using our data, no clear 

relationship between any of the selected fMRI seeds with the ERP time windows was 

found. All fMRI seeds were able to explain only minimal amount of variance in the data 

(<50%). A possible reason for this result is the poor signal to noise ratio of our data sets. 

Filtering the data improved the SNR by almost a factor of two; however this still did not 

improve the amount of explained variance by the fMRI seeds precluding us from making 

any specific conclusions from the source analyses. Another reason could be the presence 

of more than one focal source for the effects seen in our data. If this is the case, then a 

single dipole model will always be limited in explaining maximum variance in the data. 

Our results nevertheless indicate that our task is successful in evaluating semantic 

processing of word stimuli in a contextual sense and these results can be seen with both 

fMRI and ERP modalities.    

 

 

 

 

 

 



 127 

Chapter 9 

White Matter Connectivity and Structure-Function Associations 

 

9.1 Introduction 

 

Diffusion tensor imaging and functional MRI provide complementary information 

in terms of studying neural organization. While fMRI allows mapping the functional 

architecture of the brain, DTI has the ability to image white matter (WM) pathways and 

provide useful insight on the anatomical connections of these functional regions. An 

inherent requirement of DTI based tractography techniques is the need to define a 

hypothesis based seed region of interest (ROI) to initiate fiber tracking. Appropriate 

criteria for selection of these seed ROIs have a significant effect on the validity of DTI 

results. Selecting these seed ROIs based on anatomical knowledge has been the popular 

approach to identify fiber bundles in healthy subjects [59, 173, 174]. However this 

selection may be operator biased and also may not be able to account for changes in 

anatomical pathways in the presence of clinical pathology [54]. An alternate obvious 

choice would be to use fMRI activations directly as seeds for tractography. However, the 

loss of fiber orientation in cortical grey matter due to a characteristic low anisotropy 

limits the extension of WM fiber bundles to these activation voxels and often results in 

tracking only a few fibers part of the complete tract. This has led to a more practical 

approach of using functional information from fMRI as a guide to selecting seed ROIs 

within the WM. The intersection of these two techniques have expanded the utility of 
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each of these techniques used alone and have shown potential to further our 

understanding of how the brain works.  

Integration of these two imaging techniques have been attempted using numerous 

approaches: 1. qualitative evaluations by means of simple overlay of images from these 

modalities [175] or using more advanced 2D and 3D visualization techniques [176, 177]; 

2. statistical evaluations by establishing relationships between quantitative measures from 

the two techniques [178, 179]; 3. selection of seed voxels for tractography located in WM 

regions adjacent to functional activations [180-182]. A number of groups have modified 

the seed voxel techniques to improve seed selection. Toosy et al. have used a robust two 

step seed voxel selection process using anatomical guidelines to control for the inter-

subject variability of traced fibers attributed to variability in seed selection [183]. By 

segmenting the visual pathways using DTI, significant structure-function correlations 

were observed between the measures from these tracts and visual functional activations. 

Instead of fMRI assisting the seeding of DTI, Dougherty et al. have assigned fiber tracts 

to particular cortical ROIs only if the end-points of the fibers were within 2mm of the 

cortical ROI [184]. Schonberg et al. have shown the significance of using fMRI with DTI 

by selecting seed ROIs from a sphere of 15 voxels around the fMRI cluster and 

depending on the directions of fibers approaching the fMRI activation [54]. Using this 

method they successfully mapped deformed WM architecture in patients with space 

occupying lesions.  

Although these attempts to integrate the two techniques have been fairly 

successful, Kim et al. have pointed out challenges and problems associated with these 

integrations [182]: 1. Selection of appropriate threshold to be used for selecting compact 
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seeding ROIs from patchy BOLD activations, and whether or not voxels in these ROIs 

should be treated as homologous regardless of their p-values; 2. Limitations of 

conventional DTI algorithms in extracting fiber tracts for ROIs placed exclusively in the 

cortical grey matter (resulting in very few or zero fibers), which demand a need for an 

automated search algorithm for the closest fiber termination points to be included as part 

of seeding ROI; and 3. Relating typical large voxel sizes from fMRI images to the 

underlying hundreds of thousands of axonal fibers. Although the solution to the last 

challenge is limited by achievable resolution using MRI, the first two problems can be 

resolved by careful post processing algorithms. A few post processing approaches 

towards these problems have been applied with main focus to avoid the manual selection 

of ROIs. Using a Brodmann’s area template containing both cortical GM and sub-cortical 

WM regions as seeds for tractography, Thottakara et al. have used the functional 

relevance of these areas to compartmentalize underlying WM pathways [185]. However, 

this method is limited by its assumption that the functional areas for a subject are 

restricted to the standard anatomical boundaries of the used template. This may not hold 

true for patients where functional areas are often displaced beyond the standard 

anatomical boundaries. Another approach using sophisticated probabilistic techniques 

have been successful in tracking fibers directly from GM cortical ROIs thus requiring no 

manual ROI definition or prior user knowledge of fiber anatomy [53, 64]. While the 

probabilistic tracking algorithm may seem to be robust against most earlier mentioned 

limitations, the main shortcoming of the method is the computation complexity and time 

involved to estimate the probability density function at every voxel, making this approach 

impractical for clinical applications.        
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In this chapter, an automated and less computational intense approach to combine 

DTI-fMRI is proposed and evaluated. Optimization of DT-MRI for tractography on the 

Philips 3T scanner was performed and quantitative measures for GM-WM associations 

were extracted for a group of healthy subjects. 

.   

9.2 Optimization of Diffusion Tensor Imaging 

 

The DT-MRI sequence parameters were optimized on the Philips 3T Achieva 

Scanner at Stony Brook University Hospital. Sequence optimization was done for b-

value, number of diffusion encoding directions and number of signal averages. Effects of 

cardiac noise on diffusion tractography were also evaluated.  

 

9.2.1 Methods 

 

9.2.1.1 Imaging Parameters 

 

Four healthy, right handed subjects participated in this study. DT-MR Imaging 

was done using an 8-channel SENSE head-coil. An echo planar imaging (EPI) spin echo 

sequence with a SENSE factor of 2.4 and flip-angle of 90° was used. A non-cardiac gated 

DT-MRI sequence at b = 800 s/mm
2
 and 3 cardiac gated DT-MRI sequences at b = 800, 

1000 and 1200 s/mm
2
 were obtained using a medium (15 direction) diffusion encoding 

resolution for all the subjects. For 3 of the 4 subjects, high (32 direction) diffusion 

encoding DT-MRI scans were obtained at b = 800 & 1000 s/mm
2
. The echo times (TE) 
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for the scans corresponding to the respective b factor were as follows: 58ms for 800 

s/mm
2
, 60ms for 1000 s/mm

2
 and 63ms for 1200 s/mm

2
. A repetition time (TR) of 2.7s 

for the non-cardiac gated scans and 4s for the cardiac-gated scans was used. All scans 

were collected using a matrix size of 112*112. Thirty contiguous axial slices each 4mm 

thick and a FOV of 22cm were used to cover the whole-brain. Three runs of the medium 

resolution scans and two runs of the high resolution scans were collected to match for 

scan time at the two levels of diffusion encoding resolutions. The scan time for a medium 

resolution non cardiac gated scan was 52s and for a cardiac gated scan was 1min 16s. 

Scan time for each high resolution non cardiac gated scan was 1min 40s and for a cardiac 

gated scan was 2min 24s.  

 

9.2.1.2 Data Analysis 

 

DT-MRI data analysis was done offline using a diffusion tensor computation and 

fiber bundle tracking tool - DTIstudio [186]. The fiber tracking algorithm implemented in 

DTIStudio is based on the Fiber Assignment by Continuous Tracking (FACT) and brute-

force reconstruction approach. Fiber tracking was done for voxels with fractional 

anisotropy (FA) values > 0.3 and stopped at voxels with FA < 0.18 or if the fiber turning 

angle was > 40°.  

 Two sets of fiber bundles were tracked: the pyramidal tract and corpus callosum. 

For the pyramidal tract visualization, a multiple ROI seed-target approach was used. Seed 

ROIs in the bilateral cerebral peduncles were defined and all fibers originating from these 

ROIs and passing through the bilateral precentral gyrus (target ROI) were assigned as the 
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pyramidal tract. For the corpus callosum, frontal and posterior “U” fibers were tracked 

using single ROIs placed in the splenium and genu respectively.      

 

9.2.1.3 Sequence Evaluation 

 

For sequence evaluations, fiber tracking results were qualitatively and 

quantitatively evaluated. Qualitative evaluations were done by judging the integrity of the 

tracked fiber bundles and identifying spurious fibers, while the number of fibers tracked 

and fiber density were used for quantitative evaluation. Fiber density was calculated as 

the total number of tract fibers arising from the seed ROI and reaching the target ROI as 

compared to the total number of fibers arising from the seed ROI alone. Fiber density 

evaluation was done only for the pyramidal tract (since a seed-target approach was not 

used for U-fibers).  

ROIseedfromfiberstotal

fiberstract
DensityFiber

#

#
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9.2.2 Results 

 

9.2.2.1 Cardiac vs. Non-Cardiac Gating 

 

Effect of cardiac noise was evaluated at b=800. Non-cardiac-gated DT-MRI 

showed more spurious fibers (Fig. 9.1) in 3/4 subjects for the pyramidal tract and 2/4 

subjects for the U-fibers (of the remaining two subjects, one showed no spurious fibers 

while spurious fibers were seen for both the scans for the other subject). 
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Figure 9.1: Cardiac-gated (left) and Non-cardiac-gated (right) DT-MRI evaluation for one 

subject. U-fibers (pink) and fibers belonging to the corticospinal tract (green) are shown. 

Spurious fibers (marked with blue arrows) seen for the non-cardiac gated data. 

 

9.2.2.2 Optimization of b value 

 

Fiber density and # fibers were compared for b=800, 1000 & 1200 with medium 

and at b=800 & 1000 with high resolution. Significant differences for fiber density were 

found between b800 & b1000 at high (p=0.035, b800<b1000) (Fig. 9.2) and for # fibers 

between b800 & b1000 at medium (p=0.002, b800<b1000) encoding (Fig. 9.3). 

Pyramidal tract visualization was better or comparable for b1000 than b800 at both 

encoding resolutions. The b1000 scan was comparable or better than b1200 for 3 of the 4 
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subjects (except subj1). U-fiber visualization was equivalent or worse for b1200, whereas 

both b800 and b1000 had equivalent fiber visualization.  
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Figure 9.2: Comparison of Pyramidal Tract Fiber Density values for the DT-MRI 
sequences. * p=0.035, b800 high <b1000 high 
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Figure 9.3: Comparison of Number of Fibers from seed ROI for Pyramidal Tract for the 

DT-MRI sequences. * p=0.002, b800 medium <b1000 medium 
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Figure 9.4: Comparison of Number of Fibers from seed ROI for U fibers for the DT-MRI 
sequences. * p=0.035, medium > high at b800; ^ p=0.047, medium > high at b1000. 

 

9.2.2.3 Optimization of diffusion encoding directions 

 

Significant differences for # fibers (medium>high) were found at b=800(p=0.035) 

& b=1000(p=0.047) only for the U-fibers (Fig. 9.4). A careful interpretation of this result 

is required as subj1 which showed the maximum difference between # fibers for medium 

and high encodings, also had the most spurious fibers for the medium data sets. For the 

pyramidal tract, better visualization was obtained for the higher resolution for all subjects 

at b1000 and 2/3 subjects for b800. Although not significant, mean fiber density for the 

pyramidal tract was higher for the high resolution encoding as compared to the medium 

resolution encoding for both b = 800 & b = 1000 (Figure 9.2). 

 

 



 136 

9.2.3 Conclusion 

 

Our results show that optimum diffusion tensor imaging can be done using a 

cardiac gated DT-MRI sequence with 32 directional diffusion-weighted encoding at a b 

value of 1000 s/mm
2
 with a total scan time of 4min 48s (two averages). 

 

9.3 Algorithm to integrate DTI/fMRI 

 

9.3.1 Methods 

 

9.3.1.1 Algorithm 

 

An inherent assumption for integration of structure and function is that the WM 

structure associated with GM functional activations lies in close proximity to regions 

recruited for function. This algorithm is also based on the same assumption that the 

language WM pathway (called arcuate fasciculus (AF)) connecting the frontal activation 

(Broca’s area) and the temporal activation (Wernicke’s area) seen in language functional 

tasks lies in the WM close to these regions. Using different size combinations of frontal 

(seed) and temporal (target) ROIs with DTI tractography, it is possible to estimate the 

appropriate combination of the two ROI sizes which will result in extraction of fibers 

belonging only to the WM pathway connecting these two regions.  
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Rationale for the validity of the proposed algorithm: 

 

The rationale for existence of such a combination of ROI sizes can be understood 

by considering how the anatomy of fibers tracked changes with iterative increments of 

combinations of the two ROIs. Every iteration step, for which the size of one seed point 

is increased, basically involves the addition of fibers to the number of fibers tracked in 

the previous iteration. The number of fibers added depends on the relative increase in 

sizes of the two ROIs for that iteration.  As an example, a plot of the number of fibers 

tracked (y-axis) for different combinations of frontal (F-‘n’voxels) and temporal ROI 

sizes (T-‘n’voxels on x-axis) for one representative subject are shown in Fig. 9.5. Here 

‘n’ represents the radii of the ROI in number of voxels. The graph is divided into 

different sections and description how the fibers tracked change with iterations in each 

section in provided below: 

 

Section A:  For ROI size combinations marked by section A (F-1voxel to F-3voxels & T-

1voxel to T-18voxels), the size of the frontal seed ROI is minimal and only a minimum 

number of fibers are tracked from this ROI. Since this ROI size is small, presumably all 

fibers tracked belong to the AF. Next the size of the target ROI is iteratively incremented. 

For the first few increments in target ROI size (T-1voxel to T-7voxels), limited target 

ROI size allows only a few fibers tracked from the seed ROI to reach the target ROI. Any 

further increments in sizes of the target ROI (T-8voxels to T-10voxels) will add more 

fibers arising from the seed ROI to reach the target ROI. When the size of the target ROI 

is big enough (T-11voxels to T-18voxels) to allow all fibers tracked from the seed ROI 
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(F-3voxels) to reach the target ROI, any further increments in size of the target ROI do 

not change the number of fibers tracked. This can be seen as a plateau in section A 

(plateau 1) in Fig 9.5. Figure 9.5.a shows the fibers tracked for combination of F-3voxels 

& T-15voxels.   

 

Section B: Consider the combinations of ROI sizes in section B (F-4voxels to F-13voxels 

& T-7voxels to T-11voxels). For combinations of seed and target ROI less than the 

optimum value (F-4voxels to F-9voxels and T-7voxels to T-11voxels), these iterations 

will result in a drastic increase in the number of fibers tracked (as compared to Section A) 

with all tracked fibers belonging to the AF fiber bundle. For combination of seed-target 

ROIs, where the size of the seed ROI is greater than optimum but target ROI is less than 

optimum (F-10 voxels to F-13voxels & T-7voxels to T-11voxels), iterations will result in 

tracking of additional fibers not belonging to the AF (e.g. other fibers going frontal or 

fibers of the inferior fronto-occipital fasciculus running parallel and adjacent to the AF). 

This can be seen as a large slope in the plot (slope 1).   

 

Section C: Consider section C, where the size of both the ROIs is very close and less than 

the optimum value (F-6voxels to F-9voxels & T-12voxels to T-14voxels). When the 

number of fibers tracked is very close to the total number of fibers belonging to the AF 

i.e. seed and target ROI sizes are close to optimum, successive increments in the target 

ROI will result in a plateau. The highest plateau point gives the optimum combination of 

seed-target ROI sizes (plateau 2 & Figure 9.5.b).  
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Section D: Consider section D, which contains iterations where the size of the seed ROI 

is below the optimum value and that of the target ROI is beyond the optimum value (F-

4voxels to F-9voxels & T-14voxels to T-18voxels). As the size of the target ROI is 

further increased beyond the optimum seed-target size, the target ROI will be large 

enough to include fibers from the neighboring fiber bundles thus resulting in again a 

drastic increase in the number of fibers tracked (slope 2 & Figure 9.5.c, additional fibers 

marked with red arrow).  

 

Section E: This section contains iterations where both the seed and target ROI sizes are 

beyond optimum values (F-10voxels to F-13voxels & T-12voxels to T-18voxels). For 

iterations with increments of the seed ROI beyond the optimum seed size, the size of the 

seed ROI is large enough that even a small increment in target ROI will result in tracking 

of neighboring fibers in addition to those belonging to the AF (Figure 9.5.d, additional 

fibers marked with red arrows). This results in a progressive increase in slope of the plot 

for increments in seed size (slope 3 & Figure 9.5.e).             

 

Proposed Algorithm:  

 

Practically, the integration of fMRI and DTI was done using the following steps: 

Step1: Defining the functional activation areas 

To define the two functional activation areas, the verb generation task included in 

our study was used. Functional activation clusters in both the areas were identified using 

all words vs. control contrast at an uncorrected level of p=0.05. For the Broca’s area, 
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activations were restricted to the BA44 ROI, while the Wernicke’s area ROI was used to 

define the temporal activations. These fMRI activation clusters were transferred from 

normalized MNI space to the individual subject diffusion space using the image 

registration tool (FLIRT) in FSL [187]. 

 

Step 2: Segmentation of WM 

For extracting the WM for every subject, the high resolution T1 weighted SPGR 

data was used. The sagittal anatomical data was first resliced in the same orientation as 

the DT-MR images (axial) using the Multi Planar Reconstruction (MPR) tool available 

on the Philips MR scanner. The axial anatomical images were then resampled and 

registered to the DT-MR images using the FLIRT tool. Segmented white matter image 

for every subject was then obtained using the segmentation routine provided with the 

SPM2 package. 

 

Step 3: Identification of centers of ROI for fiber tracking 

 The main problem in using fMRI activation clusters to track the WM pathways is 

that the activation ROI is located in the low anisotropic GM area preventing the WM 

fiber tracts from extending into the seed ROI. To overcome this problem, new seed and 

target sphere ROIs were defined. The centers of these ROI spheres were determined as 

points on the WM/GM boundary nearest to the functional ROI. To determine these 

points, the center of mass for the activation cluster was calculated and the WM/GM 

boundary point at the shortest Euclidean distance from this center of mass was identified 
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as the center of the sphere. New centers were identified for both the frontal and temporal 

functional ROIs. 

 

Step 4: Determining the optimum radii for the seed and target ROIs 

An iterative approach was used to identify the optimum radii for these new, 

extended seed and target ROIs. At each iteration step, the radius of the seed ROI was 

incremented from the previous step and then held constant while iteratively increasing the 

radius of the target ROI. The initial radius for each ROI was 1 voxel dimension 

(1.72mm). A total of 18 iterations with a step size of 1 voxel dimension were performed. 

Fiber tracks for all combinations of the seed and target ROI radii were extracted. Fiber 

tracking was performed using a streamline tracking algorithm based on the FACT method 

[50] and 4
th

 order Runge-Kutta [51] integration. A stopping criterion of FA < 0.18 or 

fiber turning angle > 40° was used. Since a seed-target approach was used, only fibers 

generated from the seed ROI and reaching the target ROI were included as part of the 

tract. The numbers of fibers for all combinations of seed-target radii were then plotted. 

The optimum radii for the seed and target ROI were determined from the highest plateau 

point in the plot (plateau 2, Figure 9.5).  
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Figure 9.5: DTI-fMRI Algorithm Plot for all combinations of seed (frontal: F-‘n’voxels) and 
target (temporal: T-‘n’voxels) radii for one subject. Numbers indicate size of ROI in mm. a – 

Fibers for seed-target combination in Section A; b – Fibers for optimum seed & target size 

(Section C); c – Fibers for optimum seed ROI, but target ROI size > optimum target size (Section 

D); d – Fibers for optimum target ROI, but seed ROI size > optimum seed size (Section E); e – 

Fibers for both seed & target ROI size > optimum seed-target sizes (Section E). Slope 1,2,3 & 

Plateau 1,2 are features identified in the plot. Spurious fibers (fibers other than AF) are marked by 

red arrows.     

 

9.3.1.2 Evaluation of Algorithm 

 

Subjects & Data Collection 

  

DTI data was collected for eighteen of the subjects who participated in the fMRI 

study. Data from sixteen subjects was used for evaluation of the DTI/fMRI algorithm. No 
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significant Wernicke’s area activations were present for the remaining two subjects and 

hence were excluded from this analysis. DT-MR Imaging was done using the optimized 

sequence for 9/16 subjects. For the remaining 7 subjects, scanning was done before the 

DTI optimization study and had the following parameters: b = 800 s/mm
2
, medium 

diffusion encoding resolution (15 directions) and 3 NEX. The total scan time for these 

scans was 2min 18s. 

 

Data Analyses 

 

All DT-MRI scans were first corrected for eddy current induced image distortions 

using a 3D affine registration algorithm from the AIR package [188]. New DTI gradient 

tables for individual subjects were generated after correction for slice angulations, slice 

orientation and co-registration parameters (due to eddy current correction) using the DTI 

gradient table creator software [189]. 

AF Fiber tracts in both hemispheres from three analysis methods were extracted 

and compared to evaluate our proposed DTI-fMRI algorithm: 1. Complete AF tract using 

the proposed algorithm, 2. Section of this AF tract restricted to within and between the 

frontal and temporal ROI (this would allow to exclude sections of the track continuing 

beyond the two ROIs and restrict only to the tract section physically connecting the two 

ROIs) and 3. AF tracked using a manual two-plane approach. 

The manual two-plane approach used for comparison is based on the method 

proposed by Wakana and colleagues [173]. In short, this method is based on using RGB 

color maps and defining two planes for selection of ROIs to track the fiber bundle (See 
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Fig. 9.6). For the first ROI, the lowest axial slice in which the fornix can be identified is 

selected. Then a coronal slice is selected at the middle of the posterior limb of internal 

capsule (Fig. 9.6.a). In this slice, the first ROI is defined to include the core of the 

superior longitudinal fasciculus (SLF) (seen as a green triangular section) and all 

branches coming out from this area (Fig. 9.6.b, c, d). For the second ROI, a coronal slice 

at the middle of the splenium of the corpus callosum using the mid sagittal plane is 

selected. The second ROI is then chosen to include all the labeled fibers (Fig. 9.6.e&f).  

Both qualitative and quantitative comparisons of the three sets of tracked fiber 

bundles were performed. Qualitative comparisons were done to ensure that the tracked 

fiber bundles contained only fibers belonging to the arcuate fasciculus and no 

neighboring fiber bundles. Checks were also performed to ensure that the proposed 

algorithm was able to track the complete arcuate fasciculus. For quantitative 

comparisons, mean values of FA, ADC, axial ADC (λ1) and radial ADC ((λ2+λ3)/2) 

measures over each fiber bundle were extracted. A repeated measures ANOVA with 

laterality (left/right) and fiber tracks (3 sets of fiber bundles) as within-subject factors and 

age group as between-subjects factor was used to compare each of the quantitative 

measures extracted for the three fiber bundles and also to compare the left vs. right 

hemispheric fiber tracts.   

      



 145 

 
 

Figure 9.6: Manual two-plane approach for tracking the Arcuate Fasciculus. Figure taken 

from [173]. At the middle of the posterior limb of the internal capsule (a, PLIC), a coronal slice is 

selected (b). The SLF can be identified as an intense triangle-shape green structure. The first ROI 

is shown in (c: coronal) and (d: sagittal). For the second ROI, a coronal slice (e) is selected at the 

splenium of corpus callosum (SCC) (f). 

 

9.3.2 Results 

 

Qualitative Evaluation: 

Qualitatively, the left AF bundle was tracked successfully in 13 of 16 subjects 

using both the proposed algorithm and the manual two-plane approach. For the remaining 

3 subjects, either method was not successful in tracking the complete AF bundle.  
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• Proposed algorithm superior: 2/13 subjects. 

• Equal performance: 6/13 subjects.  

• Manual method superior: 5/13 subjects. For 3/5 subjects, additional spurious 

fibers were tracked using the proposed algorithm in comparison to the manual 

approach. However, most of these spurious fibers were reduced or eliminated 

after restricting the fiber tracks to only between the seed and target ROIs. For 2/5 

subjects, the fiber density was visually less for the proposed method than the 

manual method.  

The right AF fiber bundle comparison was performed for 14 of the 16 subjects. The 

remaining 2 subjects did not show right Wernicke’s area fMRI activation and were 

excluded. Tracking of the right AF bundle was successful for 12/14 subjects using the 

two-plane approach and for 11/14 subjects using the proposed algorithm.  

• Equal performance: Successful equal performance in 5/14 subjects for both 

methods.  

• Manual method superior: 7/14 subjects. For 5/7 subjects, the fiber density was 

visually less for the proposed algorithm. For 1/7 subject, additional spurious 

fibers were observed using the proposed algorithm, which were eliminated after 

using the cut operation. For 1/7 subjects, proposed method failed completely. 

• Both methods failed: 2/14 subjects. 

 

Overall the density of the AF track was less in the right as compared to the left 

hemisphere. 
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Quantitative Evaluation: 

No significant main effects for differences between the three sets of tracked fiber 

track bundles i.e. complete AF and section of AF using the proposed algorithm, and AF 

tracked using the manual two-plane method were found for any of the quantitative DTI 

measures. A significant main effect of laterality was found for mean FA (left > right; 

F(1,10) = 54.9, p<0.001) and mean radial ADC values (left < right; F(1,10) = 14.6, 

p=0.003). A greater difference between left and right fiber bundles was found using the 

proposed algorithm as compared to the manual approach (laterality*fiber bundle set 

effect: using mean FA: F(2,20) = 14.5, p=0.002; using mean radial ADC: F(2,20) = 24.4, 

p<0.001). Similar trends (p<0.1) for main laterality effect (left < right) and 

laterality*fiber bundle set was observed for mean ADC values.  

 

 Complete AF  

(proposed algorithm) 

AF section 

(proposed algorithm) 

Manual two-plane  

method 

 left right left right left right 

mean FA 
young 0.428 ± 0.013 0.380 ± 0.027 0.432 ± 0.012 0.380 ± 0.034 0.415 ± 0.021 0.390 ± 0.007 

old 0.428 ± 0.025 0.396 ± 0.034 0.428 ± 0.026 0.390 ± 0.031 0.412 ± 0.037 0.407 ± 0.041 

mean ADC (um
2
/msec) 

young 0.759 ± 0.037 0.790 ± 0.024 0.758 ± 0.039 0.789 ± 0.026 0.762 ± 0.029 0.781 ± 0.031 

old 0.760 ± 0.051 0.771 ± 0.057 0.759 ± 0.052 0.770 ± 0.056 0.762 ± 0.060 0.766 ± 0.062 

axial ADC (um
2
/msec) 

young 1.130 ± 0.052 1.125 ± 0.010 1.130 ± 0.055 1.122 ± 0.016 1.121 ± 0.043 1.126 ± 0.037 

old 1.125 ± 0.052 1.105 ± 0.055 1.124 ± 0.052 1.097 ± 0.059 1.111 ± 0.057 1.114 ± 0.067 

radial ADC (um
2
/msec) 

young 0.574 ± 0.033 0.622 ± 0.035 0.572 ± 0.034 0.622 ± 0.039 0.582 ± 0.028 0.609 ± 0.029 

old 0.577 ± 0.051 0.604 ± 0.060 0.577 ± 0.053 0.606 ± 0.057 0.589 ± 0.064 0.592 ± 0.065 

 

Table 9.1: Mean ± SD for quantitative DTI measures obtained from the three analysis 

methods. There were no significant differences (i.e. main effect) found between the three 

tested tracking algorithms. 
 

The only age-group effect observed was a trend between age-related laterality 

differences (laterality*age group) in mean FA value (F(2,20) = 3.56, p=0.089). The mean 
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DTI quantitative measures for the left and right fiber bundles for both age groups are 

summarized in Table 9.1.      

   

9.4 Quantification of WM Tracts and their associations with function. 

 

Next, the DTI quantitative parameters obtained in the previous section were tested 

for changes with age and associations with GM fMRI activations. We also present results 

from the Brodmann’s area template approach [185]. This method was used as an initial 

attempt to extract quantitative measures from fiber bundles associated with BA44-45 

areas and was replaced by the newly developed algorithm method for future analyses.  

 

9.4.1 Methods 

 

9.4.1.1 DTI/fMRI Algorithm 

 

DTI quantitative measures obtained in the previous section were used: mean 

values of FA, ADC, axial ADC, radial ADC, all of which were evaluated over the section 

of AF, derived from the proposed algorithm and from the manual two-plane method. A 

laterality index value for each of these measures was also calculated. Similarly, LI using 

pixel counts for all words (LIAll) and difficult minus easy (LIDE) in the frontal and 

temporal regions (see section 7.2.3.2) and LI values using %BOLD values for BA44, 

BA45, BA47, ITG, MTG & STG were also separately calculated and correlated with DTI 

LI values using a Pearson’s correlation.    
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9.4.1.2 Tractography using Brodmann’s area template 

 

DT-MRI data (medium diffusion encoding and b=800 s/mm
2
) from nine healthy 

subjects was used for this method (4 females; mean age, 31; range, 19-64). A 

Brodmann’s area template was used to compartmentalize the underlying white matter 

pathways and obtain a probabilistic tractography connectivity map of the white matter 

pathways specific to a particular Brodmann’s Area [185]. Similar to the algorithm 

method, no manual intervention was required. The main limitation of this method is that 

all fibers associated with the BA are tracked with no distinction between specific fiber 

tracks. Hence prior anatomical knowledge of fiber pathways is necessary to separate 

different tracks.  

The BA template available with MRIcro software was used for definition of each 

area. This template consists of forty six discrete cortical divisions (each representing a 

BA) and includes cortical grey as well as part of the subcortical white matter. This 

template is aligned to the T1 weighted brain image normalized in MNI coordinate space, 

also available with MRIcro. The Multi Planar Reconstruction (MPR) tool available on the 

Philips MR scanner was used to reslice the individual subject 3D anatomical data at the 

same orientations as the DT-MR images (axial). To avoid rotating diffusion tensors, 

tractography was performed in the diffusion space for each individual subject. Individual 

subject MPR images, BA template and T1 brain image from MRIcro were transferred to 

individual subject diffusion space. Registration was performed using the FLIRT tool from 

FSL. Next, tractography was performed to extract all WM fiber tracts using the BA44-45 

ROI as seed points. Fiber tracking was done using DTI Studio [186] for all voxels with 
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FA>0.3 and was terminated at voxels with FA<0.15 or when the turning angle was 

greater than 45°. A binary mask of the white matter fiber tracts was then generated. This 

binary tract mask and the individual subject FA maps were then transformed back into 

MNI space for remaining analysis. The binary tract mask was averaged over all subjects 

and thresholded to include voxels demonstrating fibers in at least 25% of individuals, 

resulting in a high probability WM pathway (Fig. 9.7). Two anterior-posterior pathways 

were highlighted: the arcuate fascicle (AF) and the superior longitudinal fascicle (SLF) 

(Fig. 9.8). The high probability WM pathway was then divided into 18 parts along the 

length of the pathway for both the left and right hemispheres.   

Left and right hemisphere nonparametric comparisons of mean FA (Wilcoxon 

Signed Test) were done for: 1) whole brain WM; 2) all WM from axial slices covering 

the language areas; 3) WM pathway for each individual using the high probability WM 

pathway mask; 4) WM from the axial slices covering the language areas but not part of 

the high probability mask; and 5) the separate eighteen parts of the WM probability 

pathway. Similar to the earlier method, structure-function associations were evaluated by 

correlating the L-R difference for each of these FA measurements with VG fMRI 

laterality index. 

 

 

 

 
Figure 9.8: Arcuate fascicle (AF) and the 

superior longitudinal fascicle (SLF) 

pathways from the High Probability Map 

and its division into 18 parts. The last 

coronal slice for division in MNI space is 

marked. 
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Figure 9.7: High Probability Map of the White Matter Pathways arising or terminating in 
the BA44-45 area. Color scale value at a voxel indicates number of subjects for which the 

generated fiber tract passed through that voxel. High probability map for WMT generated by only 

including voxels demonstrating fibers in atleast 25% (2 out of 9) of all individuals. Images are in 

radiological convention.  

 

 

9.4.2 Results 

 

9.4.2.1 DTI/fMRI Algorithm 

 

Mean FA: A significant correlation of the mean FA LI using the proposed algorithm and 

LIDE in MTG was obtained (r(12) = 0.665; p=0.018).  

Mean ADC: Correlations of mean ADC LI value using the proposed algorithm were 

significant with LIAll in MTG (r(12) = 0.788; p=0.002) and LIDE in frontal region (r(12) = 
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0.581; p=0.047). Mean ADC LI value using the manual approach correlated significantly 

with LIAll in MTG (r(14) = 0.711; p=0.004), LIDE in MTG (r(12) = -0.6; p=0.023) and 

ITG (r(10) = -0.662; p=0.037).  

Axial ADC: Axial ADC LI values for both methods correlated significantly with LIAll in 

MTG (proposed algorithm: r(12) = 0.7; p=0.011 and manual approach: r(14) = 0.572; 

p=0.033).  

Radial ADC: Correlations of radial ADC LI values using the proposed algorithm were 

significant with LIAll (r(12) = 0.771; p=0.003) and LIDE (r(12) = -0.63; p=0.028) in MTG. 

Radial ADC LI values using the manual approach had significant correlations with LIAll 

(r(14) = 0.729; p=0.003) and LIDE (r(14) = -0.635; p=0.015) in MTG, LIDE in ITG (r(10) 

= -0.708; p=0.022) and LIDE in BA45 (r(14) = -0.57; p=0.034).   

 

9.4.2.2 Tractography using Brodmann’s area template method 

 

Differences between mean FA (left>right) were observed in all brain WM 

(z=2.666; p=0.008), WM from axial slices covering the language areas (z=2.666; 

p=0.008), AF part of the high probability WM pathway (z=2.073; p=0.038), WM outside 

the high probability WM pathway (z=2.666; p=0.008), and parts of the AF – coronal -62 

to -52 (vicinity of Wernicke’s area, z=2.192;p=0.028), coronal -12 to -2 (vicinity of 

Broca’s area, z=2.666;p=0.008) & coronal -2 to 8 (z=2.073,p=0.038). No significant 

statistical differences between the left and right were seen for the SLF. Figure 9.9 shows 

a comparison of mean FA values in both the hemispheres. Finally, no significant 
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correlation was observed between fMRI laterality index and the FA difference for the AF 

pathway. 

Comparison of mean FA values in the left and right hemispheres
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Figure 9.9: Comparison of Mean FA values in the left and right hemisphere: 1 – All brain 

WM (z=2.666; p=0.008); 2 - WM from axial slices covering the language areas (z=2.666; 

p=0.008); 3 – AF (z=2.073; p=0.038); 4 – SLF; 5 - WM not part of the WM pathway (z=2.666; 

p=0.008). 

 

9.5 Discussion  

 

In this chapter, a completely automated algorithm for extraction of DTI measures 

was developed and tested to study the association between DTI and fMRI imaging 

modalities. Although DTI and fMRI are different in terms of the nature of information 

each modality can provide, studying underlying WM structure (using DTI) can provide 

useful information about development of cortical function (using fMRI). This is relevant 

in studying recovery of language in stroke patients where the dynamics of language 
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recovery vary over a wide range and can provide useful hints of the final outcome of 

functional recovery [30, 40]. As discussed in the introduction, a number of methods to 

combine these two techniques have been proposed earlier. Most of these methods have 

been based on appropriate selection of an initial seed point, with potential operator 

dependent bias. Probabilistic tractography algorithms on the other hand are completely 

automated and accurate [53]. These methods however are computationally intense 

requiring an initial processing time of more than a few hours to calculate the probabilistic 

density functions at every voxel and then an additional time (depending upon the number 

of seed voxels selected) to perform tractography, thus making them impractical for 

clinical settings. The proposed algorithm is an attempt to bridge the two types of methods 

by removing operator dependence and reducing computational time considerably, making 

it appropriate for use in clinical applications.  

The proposed algorithm is based on the assumption that the WM structures 

associated with fMRI activations should be present in close proximity to the activations. 

This is a reasonable assumption based on post mortem studies which have shown that 

WM structures are connecting axonal pathways between functional cortical areas [1]. The 

method uses the focal point of the fMRI activation to determine an initial seed point as 

center of sphere ROIs in the WM, thus overcoming the problem of WM fibers 

terminating before reaching the GM and avoiding the issue of quantification of fMRI 

activations as seed points [182]. The method worked reasonably well in comparison to a 

manual approach to extract the AF fiber bundle, selected as gold standard for 

comparison. The manual method selected has been shown to be reliable in extracting 

fiber bundles reproducibly [173] but requires careful selection of planes to avoid 
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selecting fibers from adjacent fiber bundles. In some subjects with this method, additional 

spurious fibers had to be clipped off in order to extract fibers only belonging to the AF 

bundle.  

Although there were few qualitative differences (decrease in fiber density) in the 

fiber bundles tracked using the proposed algorithm as compared to the gold standard 

(especially in the right hemisphere), quantitative measures were not found statistically 

different. Spurious fibers observed with the proposed algorithm were reduced and in most 

cases eliminated by restricting the fiber bundle to only between the seed and target ROIs. 

Although this seed-target approach of the proposed method allows the added flexibility of 

studying only the section of the fiber bundle between fMRI activations, it necessitates 

that both seed and target activations are present to track the fiber bundle. The proposed 

method completely failed in comparison to the manual approach only for one subject. A 

careful investigation for that subject showed that both the seed-target fMRI activations 

for that subject were too far from the AF fiber bundle, thus violating the main assumption 

of the method. An additional iterative step to determine a new seed point closer to the 

fiber bundle could help in resolving such a problem. However, it is important to note that 

out of all subjects only one subject showed this problem and could be classified as a 

possible outlier. The method nevertheless was robust and performed well even in subjects 

with one of the fMRI activations quite far from the fiber bundle.  

Using both approaches, mean FA, mean ADC and radial ADC values were 

significantly different between the left and right fiber bundles. The right fiber densities 

were also visually smaller using both methods. This is in agreement with previous studies 

of left-right asymmetry of the AF fiber bundle in right handed individuals [62, 190-192]. 
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FA was higher while mean ADC and radial ADC values lower in the left fiber bundles. 

Higher FA values indicate better orientation of the fiber tracts, while lower radial ADC 

value is an indicator of increased mylination commonly seen with brain development. In 

addition, this left-right asymmetry difference was more enhanced with the proposed 

method as compared to the manual method (p<0.01). Interestingly, although not 

significant, a trend (p<0.1) was observed in FA laterality differences with age. Reduction 

in FA asymmetry in the older group of subjects is in agreement with reduced hemispheric 

asymmetry commonly observed with age in functional [20] and diffusion tensor imaging 

studies [193].      

The left-right laterality of the DTI measures also correlated significantly with the 

fMRI laterality values calculated using both pixel counts as well as %BOLD signal, thus 

validating WM-GM associations. These correlations were significant mainly in BA45 

and temporal regions (MTG & ITG). Task difficulty dependent laterality (Difficult minus 

Easy) in the MTG correlated significantly with FA laterality and negatively with mean 

and radial ADC. Difficulty dependent laterality in ITG correlated negatively with mean 

and radial ADC values and in BA45 a negative correlation was present only with radial 

ADC values. This is in agreement with our hypothesis that laterality shifts observed with 

task difficulty have associations with the underlying WM structure. However surprisingly 

positive correlations between mean and radial ADC values and task difficulty 

independent %BOLD MTG values were also observed. Both these results together seem 

to reiterate the importance of consideration of task difficulty effects when studying 

language development.  
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Our initial attempt to study structure-function relationships using a Brodmann’s 

area template to obtain a probabilistic mask of the fiber pathway was unsuccessful in 

establishing any relationships with the fMRI data. As mentioned in the introduction, the 

main limitation of this method is its underlying assumption that the fMRI activations are 

restricted within the boundaries of the template. Also, the method was unable to account 

for individual variability between fiber tracks of subjects, potentially precluding from 

establishing any associations with GM. Considering the large amount of variability 

expected in terms of fiber tracks and location of functional activations, this method may 

not be a good choice for studying stroke patients.      

In summary, a novel automated algorithm to combine DTI and fMRI modalities 

was proposed and evaluated and GM-WM associations were established for a group of 

healthy subjects.  
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Chapter 10 

Study and evaluation of functional connectivity and low frequency 

fluctuations in resting state brain activity with BOLD fMRI 

 

10.1 Introduction 

 

‘What does the brain do during rest?’ has been a recent topic of interest in 

neuroimaging research. Understanding neural dynamics when the brain is not doing any 

particular activity can help advance our understanding of results from neuroimaging 

studies which in general quantify brain function in comparison to a state of rest. Low 

frequency fluctuation Blood Oxygenation Level Dependent (BOLD) fMRI signal 

changes (0.012-0.1Hz) in the resting brain have been identified to give useful information 

of functional connectivity [69, 75, 83]. Studying regional coherence of these fluctuations 

has led many groups to identify spatial resting state networks related to various functions 

[81, 82]. In addition, many groups have attempted to establish relations of these low 

frequency fluctuations with brain pathophysiology. To illustrate a few, Quigley et al. 

studied the effect of focal and diffuse cerebral lesions on both resting state and task-

related functional connectivity in patients [194]. Li et al. were the first to define mental 

synchrony using cross correlation coefficients of resting state fMRI within the 

hippocampus and show its potential as a diagnostic marker in Mild Cognitive Impaired 

and Alzheimer patients [195]. Another study has shown decreased default resting state 

activity in the posterior cingulate and hippocampus as useful biomarkers of incipient 

Alzheimer’s disease [196]. Using resting state fMRI, a reduced functional connectivity 
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between right and left primary motor cortices was observed for MS patients as compared 

to their control cohorts by Lowe and colleagues [197]. In an initial attempt to evaluate 

changes in resting state fluctuations following motor stroke and after recovery, Golestani 

et al. found resting state connectivity decreased immediately after stroke, and resolved to 

normal following recovery [86].     

With respect to language function, a few groups have attempted to study language 

networks in the resting brain. Hampson and colleagues investigated low frequency 

temporal correlations both in resting state and continuous listening task [75]. They found 

similar patterns of correlations suggesting that resting state data reflect connectivity 

between regions of higher order functional networks. In another study, Bartels and Zeki 

studied interregional correlations in the brain while subjects viewed a continuous movie 

[198]. Using independent component analysis, they found significant correlations 

between anatomically connected language areas during both natural viewing and rest 

with stronger correlations during natural viewing.  

Until recently, studies of low frequency BOLD fluctuations have mainly 

concentrated on developing analysis strategies for resting state data [199], establishing 

resting state networks in healthy controls [81] and evaluation of how these networks 

differ in patient populations [195, 197, 200]. There have only been a few attempts in 

studying the potential of resting state fluctuations as markers of cerebral organization 

[86]. Resting state fMRI may prove to be a useful addition to study responsiveness to 

aphasia therapy especially since it does not require any task performance from the subject 

unlike traditional functional connectivity study measures. This chapter is an initial step 

towards realizing resting state application to brain plasticity. In this chapter, the resting 
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state network related to language was identified using different data analysis strategies in 

a group of healthy senior subjects. Both hypothesis driven and data driven techniques for 

analysis were evaluated. Data for this group of subjects will be used as control norm in 

future studies of brain plasticity in patient populations.    

 

10.2 Methods 

 

10.2.1 Data Collection 

 

Resting State MRI data was collected for 10 subjects (4 male, 6 female; mean age 

= 61.3yrs; SD = 8yrs). An echo planar imaging (EPI) sequence with the same parameters 

as those for the functional task runs was used: TE = 30ms, TR = 2000ms, flip angle = 

90°, SENSE factor of 2, scan matrix = 64*64 and a field of view (FOV) of 20cm. The 

slice orientation was kept the same as the other functional scans using thirty transverse 

contiguous slices of thickness 4mm each. A total of 184 frames were collected, resulting 

in a total scan time of 6min 8s. Prior to any analyses, the first four frames were excluded 

to allow for equilibrium of the magnetization. 

Subjects were instructed to refrain from any cognitive or mental effort while keep 

their eyes closed for the entire duration of the resting state scan. At the end of the 

imaging session, all subjects went through an informal interview to judge how successful 

they were in following these instructions.  
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10.2.2 Data Analysis – Correlation Analysis Approach 

 

The correlation analysis approach is a hypothesis driven functional connectivity 

analysis method where temporal correlations of the BOLD fMRI signal fluctuations are 

evaluated on a voxel by voxel basis with respect to a seed ROI. Regions within a tightly 

coupled neural network have been shown to have high temporal correlations of BOLD 

signal fluctuations [75]. Data preprocessing and statistical inferences were carried out 

using the SPM2 software package. 

 

Data Preprocessing: 

Motion correction, spatial normalization and smoothing were done as described in 

Chapter 7.2.3. To correct for possible scanner drift or fluctuation, all voxel intensities 

were scaled by dividing the value at each time point by the mean brain image intensity 

for that time point. The data was also filtered using a band pass filter of 0.012-0.1Hz. The 

specifications of this filter were chosen from experiences of previous studies which have 

identified the resting state BOLD fMRI signal oscillations to take place within this band 

of frequencies [69, 74].    

 

Mapping the language resting state network: 

To map the language resting state network, a voxel based correlation analysis 

using the left Broca’s area as the seed ROI was performed. This analysis was performed 

for two definitions of the Broca’s area: 1. the complete anatomical ROI defined by left 

BA44 & 45; 2. functional ROI defined by using the task difficulty independent VG task 
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(see Chapter 7.2.3). The second analysis was used to evaluate the sensitivity of 

functionally-defined seed points compared to anatomically-defined seed points. For both 

analyses, a mean time series over the defined seed ROI was extracted from the resting 

state data and defined as covariate of interest in a GLM based regression analysis. In 

addition, time series from ventricles and a white matter region were selected to regress 

out any noise fluctuations in the data which would be common to all regions. In addition, 

motion parameters were also added as regressors to regress out any effects due to motion. 

Individual subject contrast images corresponding to positive correlation with the left 

Broca’s area were determined (first level analysis) and entered into a second level 

random effect analysis to test for group effects. A threshold of p<0.01 and extent of 5 

voxel clusters were used to identify brain areas which are functionally connected to the 

seed ROI. 

 

Correlation between language resting state connectivity and DTI measures from arcuate 

fasciculus:   

Hemisphere specific correlations between the Broca’s and Wernicke’s area were 

calculated to evaluate hemispheric differences and relate these differences to underlying 

WM tracts. Individual subject GLM analysis was performed using motion parameters, 

ventricles and WM time series as covariates of no interest. The residuals from this 

analysis were used to extract left and right Broca’s and Wernicke’s time series. Similar to 

the above, analysis was performed for both anatomical and functional definitions of all 

ROIs. A paired t-test was used to test for hemisphere specific differences in Broca’s – 

Wernicke’s area correlations. Laterality indices for the correlation values were also 
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calculated and correlated with the DTI laterality index values for the arcuate fasciculus 

tract (see section 9.4) using a linear regression analysis.   

 

10.2.3 Data Analysis – Independent Component Analysis Approach 

 

This approach uses the Probabilistic Independent Component Analysis (PICA) to 

characterize resting state networks [199]. This method is completely data driven and is 

not limited to prior expectations of resting state patterns associated with predefined ROI. 

All data analysis were performed using the PICA algorithm implemented in the 

MELODIC (Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components) [80] function in FSL.  

 

Probabilistic Independent Component Analysis (PICA): 

 

Independent component analysis (ICA) is a hypothesis driven analytical technique 

to find independently distributed spatial patterns that depict source processes in the data. 

The basic goal of ICA is to solve the blind source separation problem by expressing a set 

of random variables (observations) as linear combinations of statistically independent 

component variables (source signals). In an fMRI experiment, the fMRI data matrix can 

be represented as X, a (p x n) matrix, where n is the total number of voxels and 

measurements at each voxel are collected at p different time points. This matrix can be 

written as a product of a mixing matrix A and a source matrix S.  

SAX =  
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Assuming that m independent sources exist, the matrix A can be represented as (p x m), 

where each column represents the time series associated with an independent source, and 

the source matrix as (m x n), where each row represents a spatial map for each source.   

Alternatively, the source matrix can be expressed as a product of an unmixing matrix W 

and the data matrix as follows: 

XWS =   

where, W = A
-1

. The goal of ICA is to estimate the source matrix by iteratively optimizing 

the un-mixing matrix W in such a way that the source matrix S contains mutually 

independent rows, representing independent spatial patterns. This classical ICA technique 

most often makes an assumption that the number of independent sources present in the 

data is equal to the number of data points measured (m = p) i.e. A is a square matrix. It 

also makes no assumption about the amount of noise present in the data. This often leads 

to problems of over-fitting a noise-free generative model to noisy observations. In the 

case of fMRI, in addition to actual fMRI sources, a number of noise sources are present 

in the data. These noise sources maybe attributed to motion, physiological and MR 

artifacts, and even Gaussian noise. This necessitates a suitable probabilistic model that 

controls the balance between what is attributable to ‘real effects’ of interest and what is 

simply due to observational noise. 

The PICA technique implemented in MELODIC addresses these problems by 

allowing for non-square mixing process and assuming that the data are confounded by 

additive Gaussian noise. PICA uses the concept that once the Gaussian noise in the data 

is estimated, the real source components in the data will be the ones with a distribution 

significantly deviated from gaussian. In short, PICA first estimates the number of unique 
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components present in the data using an estimate of the Gaussian noise in the data 

(instead of assuming the number of sources equal to the number of observations) and then 

solves for the source matrix. A detailed explanation of the PICA algorithm can be found 

in [80].    

 

Data Preprocessing: 

For all subjects, data preprocessing for this method was done using the tools 

available as part of FSL software. FSL was used for data pre-processing rather than 

SPM2 to avoid data compatibility problems. Similar to the correlation analysis, 

individual subject data were first motion corrected, spatially normalized in MNI space 

and spatially smoothed using an 8mm Gaussian kernel. Next a mean based normalization 

of all fMRI data volumes and a high pass temporal filtering at a cutoff of 250s (0.004Hz) 

was applied. Using PICA, the preprocessed data were decomposed into sets of vectors 

which describe signal variation across the temporal domain (time courses), the subject 

domain and across the spatial domain (maps). A total of 42 independent components 

were estimated. Estimated spatial maps were converted to z-statistic maps by dividing the 

raw estimate by the estimate of voxel-wise noise standard deviation. A threshold level of 

0.5 – which places an equal loss on false positives and false negatives – was used.      

 

Identification of Resting State Components: 

 

An automated two step process suggested by Greicius et al. [196] was used to 

identify the resting state components. Resting state components have maximum power in 
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the low frequency range i.e. 0.01 to 0.1Hz. In the first step, a frequency filter was applied 

to remove components in which the high frequency signal (>0.1Hz) constituted more 

than 50% of the power in the Fourier spectrum. Next, to identify the language resting 

state network component from the remaining low frequency components, a template of 

the left and right Broca’s area and a z-map of all the components (indicating how well the 

voxel’s time series correlates with the ICA component time series) were used. A template 

matching procedure was used where the average z score of voxels falling within the 

template and the average z score of voxels outside the template were calculated. The 

difference between these two values was used as a measure of the correspondence of the 

particular ICA component with the Broca’s area template. Component with the highest z 

difference was selected as the best fitting component to the template.   

  

10.3 Results 

 

10.3.1 Correlation Analysis 

 

Mapping the language resting state network: 

 

Using the random effects analysis, similar language resting state networks were 

identified using both the anatomically and functionally defined left Broca’s area (Fig. 

10.1). The main regions identified as part of the network were: bilateral inferior frontal 

gyrus, bilateral pre-motor cortices (precentral gyrus), bilateral superior and medial frontal 
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gyrus, anterior cingulate cortex, right superior temporal gyrus, left medial temporal 

cortex and bilateral parietal lobule.     

 

Correlation between language resting state connectivity and DTI measures from arcuate 

fasciculus:  

 

Using the paired t-test, no significant differences in the Broca-Wernicke’s area 

correlation were found between the two hemispheres. Also, no significant correlations 

were observed between the resting state correlation measures and any of the DTI 

measures. 

 

z = 0 z = 9 z = 27 z = 45 z = 54z = -6L

z = 0 z = 9 z = 27 z = 45 z = 54z = -6L

z = 0 z = 9 z = 27 z = 45 z = 54z = -6L z = 0 z = 9 z = 27 z = 45 z = 54z = -6L

z = 0 z = 9 z = 27 z = 45 z = 54z = -6L z = 0 z = 9 z = 27 z = 45 z = 54z = -6L

 
 

Figure 10.1: Resting language network identified from correlation analysis using 
anatomical (top row) and functionally (bottom row) defined left Broca’s area. Images are in 

neurological convention (left is left) Slice location in MNI space is indicated above each slice (in 

mm). Voxels with correlations at p<0.01 significant level and within 5 voxel clusters are shown. 

For both analyses, bilateral inferior frontal gyrus, bilateral pre-motor cortices, anterior cingulate 

cortex, bilateral superior and medial frontal gyrus, right superior temporal gyrus, left medial 

temporal cortex and bilateral parietal lobule showed significant correlation with Broca’s area..   

 

 



 168 

10.3.2 Independent Component Analysis 

 

Language resting state network: 

 

Out of the 42 components, 22 components were found to have maximum power in 

the low frequency range of interest.  Using the language template matching procedure on 

these components, the best fit component was identified with a mean z-stat (inside and 

outside the template) difference of 0.81. However a spatial evaluation of the component 

revealed no language areas to be a part of the network. The component mainly contained 

a continuous rim of left frontal voxels, possibly due to some motion or signal dropout 

artifacts in that region. The second best fit component was identified with a main z-stat 

difference of 0.55 and included voxels in bilateral frontal, left temporal, medial frontal 

and anterior cingulate cortex areas. These areas identified as part of the spatial map of the 

component are similar to the areas of the language network identified using the 

correlation analysis technique. The spatial map, time series and power spectrum for the 

component are shown in Fig. 10.2. 
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Figure 10.2: Component identified as Language resting network from Independent 
component analysis. A. Spatial map of the component (Alternative hypothesis threshold p>0.5 

was used to threshold the voxels) (radiological convention – L indicates left), Voxels in the 

bilateral inferior frontal region, medial frontal region, left temporal cortex and anterior cingulate 

region were determined as part of the network.  B. Component estimated time series over 184 

fMRI scans, and C. Power spectrum of time course indicating maximum power in the low 

frequency range (0-0.12Hz).  
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Figure 10.3: Comparison of Resting State Networks identified in the DeLuca study [82] 
(left) and networks identified in our study (right): RSN1 – Visual Functional Network; RSN2 

– Emotion/Visuospatial Network; RSN3 – Sensory & Auditory Network; RSN4 – Dorsal 

Pathway; and RSN5 – Ventral Pathway. (Images thresholded using an alternative hypothesis 

threshold p>0.5) (radiological convention) 

 

Other resting state networks: 

In addition to language, the remaining components were visually assessed to 

identify resting state networks previously identified in other studies. The five main 

resting state networks identified in the study by De Luca and colleagues [82] were also 

identified in our data: 

1. RSN1 – Network mainly including the occipital and temporal-parietal areas and 

associated with visual function processing; 
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2. RSN2 – Emotion/visuospatial processing network mainly including the 

posterior cingulate region, superior temporal gyrus, medial forntal gyrus and 

thalamus. This functional network has been shown to be related to internal 

monitoring and states of consciousness (default mode network).    

3. RSN3 – Sensory and Auditory system including the cingulate gyrus, precentral 

gyrus and superior temporal gyrus. This network reflects functional and 

anatomical interactions relevant to control of action (motor and 

somatosensation).  

4. RSN4 – Dorsal pathway network including the inferior parietal lobule, inferior 

temporal gyrus and prefrontal cortices. These regions are closely functionally 

integrated in a wide range of cognitive processes and the pattern of regions in 

this network has been shown associated to visual perception of action or the 

‘where’ pathway [201].   

5. RSN 5 – Ventral pathway including the medial temporal gyrus, inferior frontal 

gyrus and inferior parietal cortices. The regions of this network are more 

inferior compared to those in RSN4 and are shown to be associated with the 

visual perceptual ‘what’ pathway [201].  

Figure 10.3 shows a comparison of networks identified in the De Luca study (left) 

and those identified using our data (right). The two sets of networks seem to be spatially 

similar for most cases except for RSN 4 & 5 where the main differences are seen as 

reduced frontal regions recruited for networks identified using our data. Difference in 

participant age groups in the two studies (senior age group in our study as against a 

broader range group 22-51 yrs for the De Luca study) could be one of the reasons for 
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these differences. In spite of the similarity of regions recruited for RSN1 & RSN4, an 

additional continuous rim of activated voxels can be seen in the axial slice (RSN1) & 

coronal slice (RSN4). This observation appears non-functionally related and possibly a 

motion artifact. More careful investigations to confirm the validity of these networks and 

their relevance to function are required.   

      

10.4 Discussion 

 

Over the past few years, the neuroimaging community has shown considerable 

interest in understanding low frequency BOLD fluctuations and how they can be applied 

to studying functional connections in both healthy and diseased subject groups [69, 74, 

75, 81, 200]. Studies testing neuronal origins of low frequency fluctuation have 

established the validity of using these signals as markers of intact neuronal function [82]. 

One of the biggest advantages of using low frequency BOLD fluctuations is that they do 

not require performance of difficult functional tasks unlike those commonly used in 

functional neuroimaging studies. This is especially beneficial for patients such as stroke-

induced aphasics who may have limited understanding of instructions or success in 

performing desired functional activities in the scanner environment. 

In this chapter, we used low frequency fluctuations to establish functional 

relationships between language regions in an elderly group of subjects. These 

relationships will serve as norms for comparison in future studies of cerebral 

reorganization in aphasia stroke populations. There have been only few attempts in 

studying changes of low frequency fluctuations with brain plasticity [86]. It would be 
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interesting to test whether or not the spatial nature or inter-regional strength of 

correlations of these fluctuations changes with functional cerebral reorganization in 

stroke patients. Two analysis strategies were used to establish these resting state 

networks: hypothesis driven correlation analysis and data driven independent component 

analysis. Both of these methods were successful in establishing language resting state 

networks using our data. Using the correlation based analysis, we also tested the 

advantage of using correlation seed points defined using a separate functional task in 

comparison to those defined anatomically. Language resting state networks using both 

definitions resulted in similar areas and not establishing advantage of one method over 

the other. However, in comparison to the correlation analysis strategy, the data driven 

independent component analysis provided an additional advantage in separating noise 

sources in the data as separate components, resulting in less noisy language resting state 

maps. In addition using the independent component analysis strategy, we were able to 

separate different resting state networks previously identified in the literature in the same 

analysis [82].  

There were some differences in the spatial extent of regions recruited in our 

networks in comparison to the De Luca study. Given that functional networks change 

with age [20] and the different age groups of participants in both studies, we could 

associate these differences as age related. The success of using independent component 

analysis approach lies in the accurate identification of relevant components. Using power 

spectrum filtering and a template matching algorithm, we were successful in identifying 

relevant components. As previously shown [196], we could use the goodness of fit 

measure obtained from template matching to quantify deviation from a healthy control 
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network and its relationship to recovery when studying stroke patients. We also tested for 

associations of resting state correlations between frontal and temporal regions (Broca’s 

and Wernicke’s areas) with quantitative measures from the white matter tract connecting 

these two regions (arcuate fasciculus). However, we did not see any significant 

associations. This could be due to the low sample size for testing these relationships and 

retests after adding more subjects is necessary before making any conclusions related to 

the two measures. 

In summary, we have established a language resting state network in a control 

population with age group more appropriately matched to the expected age group of 

stroke patients and identified potential markers which could be used to study correlation 

with recovery in stroke patients.      
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Chapter 11 

Future Directions 

 

The motivation behind the work in this thesis has been to take an initial step 

towards improving clinical management of stroke aphasic patients by strategically 

combining what we can learn from existing neuroimaging techniques. Studies of brain 

plasticity in patients, during the course of drug and rehabilitation therapies, will benefit 

most by a multi-modality fusion approach. The wealth of information from these 

integrations could aid clinicians in making choices about treatment strategies best suited 

for a particular patient. In this chapter, a road map for future studies is suggested. The 

work done in this thesis could be considered as Phase I of this road map in which the 

necessary tools were developed and evaluated in a healthy subject population. Future 

study protocols (Phase II & III) with their specific aims and hypotheses are proposed 

below. 

 

Phase II: Evaluation of developed neuroimaging tool with an aphasic patient 

population. 

 

The goal of this phase will be to evaluate the sensitivity of the proposed multi-

modality approaches to brain plasticity in an aphasic patient population. A longitudinal 

aphasia patient study is proposed in which neuroimaging measurements developed in 

Phase I will be made before and after a period of intensive language therapy. Stroke 
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affected patients in acute and sub-acute stages (3 days to 4 weeks post-stroke) with 

clinically diagnosed aphasia condition will be recruited.  

 

Proposed study protocol: 

 

Day 1:  

1. Neuropsychological Tests: Boston Diagnostic Aphasia Exam and Mini Mental 

State Exam will be used to score severity of aphasia and cognitive health of 

patients.  

2. Behavioral session containing a mock version of the developed functional tasks to 

ensure subjects understand task instructions and are capable of performing them 

successfully.  

3. Neuroimaging protocol: Half subjects will undergo MRI protocol first. Same 

order will be followed for the post-therapy sessions. 

a. MRI Protocol: fMRI picture naming task, fMRI verb generation task, 

fMRI comprehension task, resting-state BOLD study, DTI study, other 

pertinent clinical stroke-protocol studies (e.g., T2, FLAIR, Perfusion). 

b. EEG Protocol: EEG picture naming task, EEG verb generation task, EEG 

comprehension task.  

 

Day 7: 

1. Neuroimaging protocol: Subjects who had MRI first, will have EEG in this 

session and vice versa. 



 177 

 

Day 8 – Day 128:  

1. Four months of intensive speech language therapy, 45-minute sessions, 3 times a 

week (therapy sessions will be outlined by speech pathologist). 

2. Neuropsychological aphasia battery on day 68 (end of 2 months). 

 

Day 129: 

1. Neuroimaging protocol (Same order of MRI & EEG protocol will be followed). 

2. Neuropsychological Tests. 

 

Day 136: 

1. Neuroimaging protocol. 

   

Specific Aims: 

1. Evaluate usefulness of our developed language tasks and concept of task 

difficulty in mapping the language functional architecture and brain 

plasticity following intense language therapy period. 

Hypothesis & Rationale: Our battery of developed language tasks, using both fMRI 

and ERP, will serve to map the language functional network, evaluate and quantify 

extent of language damage and compensatory recruitment following stroke. Task 

difficulty in performing language tasks maybe an important confound in studying 

brain reorganization. We have observed task difficulty in language functional 

activation to change with healthy aging (For details, see chapter 7). The ability to 
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perform tasks is severely affected in stroke, where simple tasks can become difficult 

and difficult tasks almost impossible. Accounting for this difficulty will help in 

understanding compensatory mechanisms recruited by patients.   

 

2. Evaluate whether cortical GM compensation can be explained with WM 

changes. 

Hypothesis & Rationale: WM structures have shown to change with development, 

age and disease. GM functional changes have found to be related to underlying WM 

structures. We have shown associations of language function with DTI quantitative 

measures extracted from the arcuate fasciculus or the WM fiber pathway connecting 

frontal and temporal language areas (For details, see section 9.4). In the case of 

aphasia patients, re-recruitment of dominant hemisphere following stroke induced 

damage has been associated with maximum rehabilitation. WM changes should 

precede cortical functional changes and could serve as early markers of these 

compensatory cortical functional changes. An early predictor of these changes could 

aid clinicians in altering rehabilitation strategies to improve recovery.  

 

3. Evaluate whether resting state MRI serve as markers of cerebral 

reorganization. 

Hypothesis & Rationale: Using resting state MRI, we have been able to identify 

different functional networks in a single functional scan without requiring any task 

performance (For details, refer chapter 10). This is particularly useful in stroke 

patients who may be challenged in understanding task instructions and performing 
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them successfully. We expect language functional networks and connectivity 

measures between different language areas to change with stroke. In this phase, we 

will determine whether or not these measures are sensitive to changes with brain 

plasticity following rehabilitation.     

 

4. Evaluate whether any of the obtained quantitative measures can predict 

severity of aphasia. 

Hypothesis & Rationale: The main goal of this phase is to evaluate sensitivity of our 

developed tool to severity of aphasia. Quantitative measures established in this thesis 

will be correlated with neuropsychological aphasia measures. These relationships will 

serve to evaluate different rehabilitation strategies in recovery of language function.     

 

Phase III: Clinical trials studying efficacy of rehabilitative drugs and combination 

of treatment strategies in aphasia. 

  

Once the sensitivity of our developed tool to changes in brain plasticity in aphasia 

patients has been established, and specific quantitative measures of interest have been 

identified, future studies evaluating different treatment strategies can be undertaken. This 

phase of the road map will serve to evaluate whether pharmaco-therapeutic agents 

combined with language therapy (or different combinations of different rehabilitation 

strategies such as the effect of varying the intensity and frequency of speech therapy) can 

be more effective in rehabilitation.  A double blinded longitudinal study with pre and post 
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rehabilitative drug or placebo treatments with chronic stage aphasia patient group (4 

months post-stroke) is proposed as an example.  

 

Proposed Study Protocol: 

 

Day 1: 

1. Neuropsychological Tests: Boston Diagnostic Aphasia Exam and Mini Mental 

State Exam. 

2. Behavioral session containing a mock version of the developed functional tasks to 

ensure subjects understand task instructions and are capable of performing them 

successfully.  

3. Neuroimaging protocol: Half subjects will undergo MRI protocol first. Same 

neuroimaging protocol proposed in Phase II will be used.  

 

Day 7: 

1. Neuroimaging protocol: Subjects who had MRI first, will have EEG in this 

session and vice versa. 

 

Day 8 – Day 128: 

1. Four months of drug or placebo treatment augmented with language therapy 

(course of drug treatment will be outlined by neurologist, language therapy - 45-

minute sessions, 3 times a week). 

2. Neuropsychological Tests on Day 38. 
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Day 129: 

1. Neuroimaging protocol (Same order of MRI & EEG protocol will be followed). 

2. Neuropsychological Tests.  

 

Day 136:  

1. Neuroimaging protocol. 

      

Specific Aims: 

1. Evaluate sensitivity of developed neuroimaging tool to study effects of 

pharmaco-therapeutic agents together with language therapy in brain 

function reorganization. 

Hypothesis & Rationale: The main goal of this phase will be to evaluate whether our 

developed neuroimaging methods are sensitive to differences in changes of language 

function brain remodeling in response to different rehabilitation strategies such as the 

effect of varying the intensity and frequency of speech therapy, and the effects of 

pharmaco-therapeutic agents in augmenting rehabilitation. This evaluation will help 

in strategizing rehabilitation therapies best suited for a particular patient.  
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Chapter 12 

General Discussion and Conclusion 

 

Aphasia or impairment of the ability to produce and/or comprehend language is a 

common functional disability seen in majority of stroke patients. Cerebral function 

reorganization immediately post-stroke and over a period of therapy can predict extent of 

damage and final outcome of recovery. A thorough understanding of how the brain 

rewires post-stroke can help clinicians to make informative choices of rehabilitation 

strategies most appropriate for individual patients. The goal of this thesis was to develop 

methods which can be used for improving the understanding of brain plasticity following 

post-stroke aphasia. A number of neuroimaging techniques have evolved over the last 

few decades. Hemodynamic based methods like fMRI and PET have successfully 

mapped functional architecture of a number of cognitive processes. Neuronal based 

methods like EEG and MEG have provided more direct understanding of function by 

extracting temporal components associated with neural processes responsible for that 

function. With in vivo abilities to map underlying white matter architecture, diffusion 

tensor imaging has complemented the understanding of how functional areas are 

anatomically mediated. Resting state low frequency BOLD signal has provided the 

flexibility of identifying functional coherent cerebral regions without requiring 

performance of difficult cognitive tasks. Although invention of each of these modalities 

has revolutionized our understanding of how the brain functions, each neuroimaging 

modality by itself is limited in the nature and extent of neural information it can provide. 

We hypothesized that a multimodality neuroimaging approach will allow to bridge gaps 
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between each of these modalities and further our understanding of neural dynamics of 

reorganization. With this underlying hypothesis, this dissertation was aimed at using 

currently existing neuroimaging techniques – functional MRI, diffusion tensor imaging, 

electroencephalography and resting state BOLD MRI – to develop a multi-modality 

neuroimaging tool for future applications to study brain plasticity in aphasia patients. 

 In this dissertation, we have developed a battery of functional tasks including two 

word production tasks – picture naming (PN) and verb generation (VG), and one 

language comprehension task. All three tasks were designed with two motives: 1. each 

task should be an efficient design for analysis of data from both fMRI and EEG 

modalities, and 2. tasks are simple considering the limited ability of stroke patients in 

understanding and performing them. This required us to perform a careful evaluation and 

selection of stimuli for each of these tasks. Our task designs also permitted retrospective 

categorization of stimuli based on task difficulty. Task difficulty is a particularly 

important issue in functional imaging in post-stroke patients, where simple tasks can 

become difficult and difficult ones almost impossible. This necessitates a thorough 

understanding of how brain functions are affected by task difficulty and demands for an 

appropriate method to characterize this effect. We evaluated the possibility of using the 

time required for performing a task (reaction times) as a measure of task difficulty. We 

found that task difficulty effects can be demonstrated in functional activations in both the 

frontal and temporal regions using the verb generation task. In comparison to using a pre-

determined definition of task difficulty for each stimulus, a stronger effect size was 

recorded for the left-sided frontal activations with subject-specific-defined difficulty. 

Individual definitions of reaction times allowed the added flexibility of modeling 
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individual variability in performing language tasks, which is relevant and applicable in 

studying these effects in individual stroke patients.  

Furthermore, an overall shift in language recruitment of the non-dominant 

hemisphere with increased task difficulty was observed, indicating compensatory 

recruitment for successful performance of language function. Task difficulty effects were 

also found to change with age, with older subjects showing increased functional 

recruitment effects even for simple tasks. This also highlights the necessity of recruiting 

subjects from appropriate age groups to serve as normal cohorts in such studies. Similar 

task difficulty effects were also observed with both picture naming and verb generation 

EEG data. With picture naming, a significant effect of task difficulty on the negative 

amplitude in the 360-600ms time window was observed. The negative peak in this time 

window was found to increase with difficulty in naming pictures. This effect is consistent 

with the semantic related N400 effects seen with ERP studies in picture naming [88]. 

Similar to fMRI, strongest task difficulty effects were seen with verb generation EEG 

data. However the time window for these effects was much later than those observed in 

picture naming. Using source analysis, we confirmed that the two effects seen in both the 

tasks were in fact similar and associated with the same underlying neural source 

locations. Although we did not find age related effects in amplitude of the ERP 

components, older subjects showed a later time window for semantic processing in verb 

generation as compared to their young counterparts.  

The language comprehension task was successful in showing effects related to 

semantic processing in both subjective and objective contexts. As expected, greater N400 

peak, a marker of intact semantic processing, could be detected for context unrelated 
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stimuli, irrespective of nature of context (i.e. subjective or objective), over all healthy 

subjects. This peak was also found to be delayed for the subjective categories as 

compared to the objective ones. Additionally, a P600 effect i.e. greater late positivity for 

semantically related stimuli as compared to unrelated stimuli was found in spite of no 

syntactic differences between the two stimuli types. This confirmed the role of P600 in 

integration of semantic information additional to syntax processing [7]. The P600 peak 

was seen as much later and stronger for subjective categories, indicating greater semantic 

demands as compared to objective ones. Differences between the semantically related 

and unrelated categories were also observed in left BA44, left inferior temporal gyrus and 

right supramarginal gyrus using our fMRI data. However no associations with EEG data 

could be established using source analyses. Although ERP-fMRI integration was not 

successful for this task, the effects observed using this task in a healthy subject group can 

be used to evaluate the integrity of semantic processing in stroke patients.  

 Integration of fMRI with DTI can help establish anatomical associations between 

functionally connected regions. The arcuate fasciculus is a WM pathway connecting the 

frontal (Broca’s) and temporal (Wernicke’s) language areas. We hypothesized that 

quantitative DTI measures in this pathway, quantifying structural integrity of this tract, 

could be associated with functional activations. If this relationship could be established, 

these measures could be used as early predictors of functional reorganization. We 

developed a novel automated method to track the arcuate fasciculus fiber bundle using 

frontal and temporal fMRI activations from the verb generation task. This method was 

tested and found to work as well compared to a manual method of parcellating the 

arcuate fasciculus. DTI measures from the obtained tracts revalidated the hemispheric 
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asymmetry expected between fiber bundles [192] and also showed significant 

associations with cortical fMRI laterality measures. Normal quantitative measures in a 

group of healthy subjects for comparison in studies with patient populations were also 

established.  

Finally, fMRI driven correlation analysis approach to analyze resting state fMRI 

data was implemented and qualitatively compared to a data driven independent 

component analysis approach. Using fMRI activations from the verb generation task, we 

were able to establish the language resting state network in our healthy subject group. A 

similar language resting state network was also obtained using the data driven approach. 

These established networks will be used to determine if resting state connectivity 

between recruited network regions could predict cerebral reorganization post-stroke.  

In conclusion, a neuroimaging tool by integration of four independent 

neuroimaging modalities was developed and evaluated using a healthy subject 

population. Using this tool, we have identified a number of potential markers which will 

be relevant to study brain plasticity in post-stroke aphasia patients. While the developed 

methods have shown promise in understanding language functions in healthy individuals, 

future studies to evaluate the performance and sensitivity of this tool using a patient 

population are required.      
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