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Abstract of the Dissertation

Studies on Biological Evolution and Biological
Networks: A Statistical Physics Approach

by

Koon-Kiu Yan

Doctor of Philosophy

in

Physics

Stony Brook University

2007

The availably of completely-sequenced genomes and various kinds

of system-wide datasets have motivated a great deal of interests in

the quantitative studies of biology. Owing to the large amount of

data, statistical analysis is usually employed. In particular, tools

or methods used in statistical physics can be useful in this kind of

analysis. In this dissertation, I summarize my work on genome-

wide or system-wide studies of biological evolution and biological

networks.

Regarding biological evolution, we present a study on the genome-

wide distributions of sequence identities of paralogous protein pairs
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in various model organisms. We introduced a simple birth-and-

death model based on gene duplication, gene deletion and point

mutations to explain the common features in these distributions.

Our mathematical framework revealed many important details in-

cluding the relative rates of the evolutionary processes, previously

unknown universality of intra-protein substitution rates and the

consequences of whole genome duplications.

In the past decade, the idea of biological networks has emerged

as a backbone to understand the complex interactions in biologi-

cal systems. The studies presented in this dissertation cover three

different aspects of biological networks: evolution, dynamics and

algorithm. On the subject of network evolution, we quantified

the topological divergence between paralogs in various protein net-

works and demonstrated that they provide certain functional re-

dundancy. We also found that, at least in yeast, duplicated pro-

teins lose their common regulators at a faster rate than common

physical interaction partners. This can help explain how species

with very similar gene contents can evolve novel properties in a

relatively short timescale.

While the topology of biological networks serves as a starting point,

it is important to study the underlying dynamical processes on

networks. We present a study on the association and dissociation

of proteins in a genome-wide protein interaction network. Like

many biochemical reactions in a cell, physical interactions between
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proteins are stochastic in nature. We studied how fluctuations

in protein abundance lead to those in free protein concentrations

and dimers concentrations. In addition to induced fluctuations,

we studied the thermal noise of the system and found that it is

affected by both the network topology and the heterogeneity in

protein abundance. Our results suggest that undesirable cross-

talk mediated by reversible protein interactions can be significantly

suppressed.

From a practical point of view, very large networks appear in biol-

ogy as a way to represent data from high-throughput experiments.

In the final part of this dissertation, we present a network-based

algorithm to predict and verify indirect regulatory interactions in

a large-scale genetic regulatory network. This algorithm is tailored

for large and heavily interconnected networks, which are of growing

importance due to the rapid accrual of regulatory interactions. We

applied the algorithm to the regulatory networks of several model

organisms curated from literature, resulting in novel predictions

along with calibrated reliability of existing ones.
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Chapter 1

Introduction

Over the past decade, the interface between statistical physics and biology has

expanded rapidly. Apart from traditional connections, new research directions

have emerged, stimulated by advancements in both disciplines.

In statistical physics, the theory of complex systems offers many new in-

sights. Generally speaking, complex systems consist of many heterogeneous

components that interact with each other. The overall behavior of such sys-

tems usually cannot be deduced from the understanding of a single individual.

In fact, complex systems are distinguished by the emergence of collective be-

haviors. As many systems in our world are complex, the study of complex

systems has connections with many branches of science: sociology, computer

science, economics and certainly biology.

Stunning developments have been made in biology as well. New experimen-

tal techniques have yielded an explosion of biological data that are increasingly

quantitative in nature. Examples are the availability of complete sequenced

genomes, high-thoughput methods on protein interactions and various single-
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cell experiments. With these data in hand, quantitative models of biological

systems are now possible.

This thesis consists of a few studies lying on the interface between statistical

physics and biology. In this introduction, I first highlight four important areas:

evolution, networks, noise and bioinformatics, and proceed to outline our

studies, which are motivated by the progress in these particular areas.

Evolution

Evolution is fundamental to life. In fact, it distinguishes life. Stochasticity

is essential to evolution. It allows an organism to explore the configuration

space of an infinitely complicated optimization problem, with the exploration

subjected to natural selection. In such sense, modern life is the consequence

of a stochastic process which has been ongoing for billions years.

There are many examples in statistical physics where random processes

show predictable collective behavior. For instance, the energy of an equilib-

rium system may deviate from its mean value stochastically, but the deviations

always follow a Gaussian distribution. It is natural for physicists to look for

collective behavior behind evolutionary processes. Probably the earliest ex-

ample was reported by Willis and Yule [1], who observed that the distribution

of the number of species in a genus, family or other taxonomic group appears

to follow a power law. Yule offered an explanation as follows. Species are

added to genera by speciation. If we assume that this happens randomly at a

constant rate, it follows that a genus with more species will gain a new species

at a faster rate. Let us further assume that occasionally, the new species pro-
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duced is so different from the others and becomes the founder of an entire new

genus. Thus the number of genera increases steadily, so does the number of

species within each genus. This model is usually called Yule process, and its

solution is a power law distribution.

While the Yule process is based on macroscopic properties related to tax-

onomy, evolution can be studied at different levels. Perhaps the most funda-

mental level is that of molecules. The genome, the complete DNA sequence,

contains all hereditary information. This includes both the genes (protein-

coding sequences) and the non-coding sequences. An important subset of the

genome called proteome, refers to the entire complement of proteins expressed

by a genome. As information in these molecules is translated into 3D struc-

tures of proteins and then functional processes of an organism, the evolution of

an organism can thus be studied in terms of the evolution of these molecules.

The most important processes in molecular evolution include gene duplica-

tions, mutations and gene deletions.

Back in 1970, Ohno [2] proposed that gene duplication is an important

source of raw material for molecular evolution. Whole gene duplications give

rise to new protein-coding regions in the genome. An extra gene copy can be

created by an unequal crossover, gene transposition and polyploidization etc.

The two initially identical genes subsequently diverge from each other in their

sequences and thus, as do the proteins encoded. The divergence in sequences

between a pair of duplicated genes is caused by mutations. This occurs via a

broad spectrum of processes including point substitutions, insertions, deletions

(indels), and transfers of whole domains either from other genes in the same

genome or even from genomes of other species. These changes in the DNA
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sequence may or may not lead to changes in the amino-acid sequences of

proteins encoded. This is because of the existence of a certain redundancy

in the genetic code. Substitution leading to (not leading to) modification in

the amino-acid sequence is called non-synonymous (synonymous) substitution.

Gene deletions happen when genes are no longer required for the functioning

of the organisms. They are either explicitly deleted from the genome or stop

being transcribed and become pseudogenes whose homology to the existing

functional genes is rapidly obliterated by mutations.

Evolution at a molecular level can be mathematically formulated as a

stochastic process. It is interesting to look for collective behaviors or uni-

versal patterns behind the molecular information. Until recently, there were

not enough data to address such issue in a quantitative way. At present, how-

ever, there are more than 3000 completely sequenced genomes. This enables

system-wide study on a wide variety of genomes or proteomes. Interesting

scaling behaviors are indeed discovered. Examples include the power law dis-

tribution of protein family sizes [3, 4], and the scaling between the number of

transcriptional factors in a genome to the total number of genes in the genome

[5, 6]. It is tempting to speculate that such universal statistical laws are re-

sults of simple evolutionary principles. In Chapter 2, we will propose a simple

model of proteome evolution which explains certain universal features in the

distribution of sequence identities among paralogous proteins.
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Networks

In the past decade, a great deal of attention has been focused on networks

(for a collection of important results, see for example Ref. [7]). In short, a

network represents the interactions (links) between many heterogeneous in-

dividual components (nodes) of a system. From a statistical physics point

of view, the network is now widely recognized as backbone of complex sys-

tems that determines the structures, functions and dynamics of systems. As

a result of its generality, the idea of networks penetrate into a wide range of

disciplines. Examples are the power grids and internets in engineering, var-

ious kinds of social networks between people, information networks such as

citation networks and the WWW. Recent progress shows that network theory

is gaining importance in biology. More and more examples shows that un-

derstanding individual genes or proteins is not enough to crack even a simple

biological function. Biological processes typically involve coordinated activity

of many components: genes, proteins, metabolites etc. Just as electrical sys-

tems are represented by circuit diagrams, biological networks offer a starting

point to understand the complex interactions in biological systems. Together

with the advances in high-thoughput methods, there are vast amount of data

on biological networks, leading to the emergent of system biology [8].

There are many ways to classify biological networks. One is based on their

specific functional role in an organism, like the network which regulates the cell

cycle in fission yeast [9], and the SOS response network in E.coli [10] among

other examples. These networks consists a variety of components including

mRNA, proteins and various small molecules. The interactions between these
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components may be different biological processes such as transcriptional regu-

lation, protein-protein binding, phosphorylation and other post-translational

regulations. Even though network sizes are relatively small (∼ 10 nodes),

the application of these networks toward quantitative prediction of biological

systems is extremely challenging. This is certainly one of the most fruitful

direction in the era of system biology.

Another way to look at biological networks is based on the type of indi-

vidual components involved. A classic example is metabolic network, where

all nodes are metabolites, and links are the corresponding chemical reactions.

Networks of this classification are usually in genome-wide scales, as in this

example, the network represents all the chemical reactions between all the

metabolites in an organism. As a result of their complexity (hundreds or thou-

sands nodes and links), one may not be able to speculate specific biological

functions using these networks. However, large-scale networks are particu-

larly useful in providing statistics. Studying structures and dynamics of these

networks sheds light on the general design principles of biological processes,

especially in the context of evolution.

In this thesis, we will focus on genome-wide protein networks. Our con-

cern is the interactions between all the proteins expressed by an organism. In

particular, we are interested in protein interaction networks and genetic regu-

latory networks. Protein interaction networks represent the physical binding

between two proteins. The yeast-two-hybrid method and mass-spectroscopy

are two major high-thoughput methods for studying these interactions (see

Ref. [11] for a recent tutorial). System-wide protein interaction networks used

in our studies include H. pylori [12], S. cerevaise [13, 14] and D. melanogaster

6



[15]. Genetic regulatory networks represent how the expression of a gene regu-

lates the expression of some other genes. Since the expression of a gene results

in the production of a protein that it codes, genetic networks are protein net-

works. (In case where there is no confusion, we may use the terms proteins and

genes interchangeably.) Unlike interaction networks, the regulation of protein

A by B does not imply the reverse, therefore regulatory networks are directed

networks. Moreover, depending on whether the activity of a protein is activat-

ing or repressing the expression of another, edges in regulatory networks carry

either a positive or a negative sign. One of the most well-known regulatory

networks is the transcriptional regulatory network. It involves an important

type of proteins: transcription factors. A transcription factor switches on/off

the expression of a gene by binding directly to its upstream region. A tran-

scriptional regulatory network thus represents how transcription factors regu-

late the activities of other proteins (and themselves, too). We will look at a

system-wide data in S. cerevaise, obtained using the ChIP-chip technique [16].

Where do we start in the study of genome-wide protein networks? Like

many other complex networks in statistical physics, one starts by looking at

its topology. One of the most interesting observation is the existence of hubs

(proteins with many neighbors) or more precisely, a broad degree distribution.

The broad distribution, often taken as a power law distribution, can be ex-

plained by a simple statistical physics model based on gene duplication and

divergence [17], which is a variation of the preferential attachment model rec-

ognized in many systems [18]. Other important statistical properties include

degree correlation [19], and the frequent occurrence of small building units –

network motifs [20]. It is important to bear in mind that the observed networks
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are sharpened by evolutionary processes, and hence topological properties are

therefore traces of evolution. Studying networks sheds light on the general

design principles behind evolution. In addition, networks are the backbones of

complex systems, allowing for further study of dynamical processes happening

on these networks. In Chapter 3, we will look at protein networks from an

evolutionary viewpoint. A dynamical process in a protein interaction network

will be studied in Chapter 4.

Noise

Cellular events are performed by the constituent molecules. The relevant en-

ergy scale for these intermolecular interactions is comparable to the magnitude

of kBT (0.62kcal/mole or 0.03eV) , where kB is the Boltzman constant and T

is the room temperature. As a result, random thermal motion plays an essen-

tial role in biology. Indeed, the interplay between deterministic and thermal

forces give rise to the complex behavior in biological processes. Described in

a more concrete way, molecules come together by chance. Therefore all chem-

ical reactions and physical interactions are stochastic in nature. In principle,

stochasticity is significant only if the average number of molecules are low since

individual reactions change the numbers of molecules by at most one or two.

However this is indeed the case in vivo. Genes are usually present in one or

two copies, many mRNAs are rare and often proteins are present in less than

100 molecules per cell.

There are two important questions concerning noise. First, how can we

explain the robust physiology of a cell when the underlying molecular mecha-
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nisms are random? Second, what kind of benefits can noise provide? The first

question is related to the robustness of biological systems. Most biological

processes involve a series of reactions; noise in the earlier step may propa-

gate forward. It is therefore intriguing to study how nature can attenuate

and tolerate the randomness. The robustness of biological systems is even

more remarkable if one considers the precise regulation in the development of

multi-cellular organisms. Regarding the advantages of noise, one important as-

pect is the generation of heterogeneous populations. A famous example is the

phage-lambda infection process governed by the lysis-lysogeny decision circuit.

Under favorable environmental conditions, most phages upon entering a bacte-

rial cell choose to become lysogens. However, owing to stochastic fluctuations,

it is possible that a small fraction lyse the bacterium. In general, genetically

identical cells and organisms can exhibit great diversity in phenotypic effects

even when they are exposed to the same environment. Such variations among

population are believed to be helpful for the survival of the species.

Even though cellular randomness has long been predicted [21], quantitative

measurements have been possible for only a few years. Owing to the advances

in single cell experiments, astonishing details in cell-to-cell fluctuations are

revealed. By tagging green fluorescent protein (GFP) as a reporter, one can

measure the protein level of an arbitrary gene in a single cell by the fluorescent

intensity. Repeated measurements across a population of cells give the cell-

to-cell variation [22]. Further application of flow cytometry offers a high-

thoughput strategy to measure protein concentration in large number of single

cells [23, 24].

The recent studies of noise have been focused on the issue of gene expres-
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sion and thus protein abundance. To quantify noise in protein abundance,

autocorrelatons summarize both the magnitude and frequency of fluctuations.

However, because of the limitation in obtaining temporal data so far, most

studies employed the stationary averages and variances over an ensemble of

cells. Noise level is usually quantified by the variance among a population of

cells normalized by the mean or the square of the mean.

Recent studies of cellular noise have addressed the distinction between the

so called intrinsic and extrinsic noise [22, 25]. Such classification always de-

pends on the definition of system versus environment. Intrinsic noise refers to

stochasticity inherent in the dynamics of the system, while extrinsic noise is

originated from fluctuations in other cellular processes. If one regards a whole

cell as a single system, intrinsic noise is due to stochastic fluctuations in pro-

duction or degradation of individual proteins, and extrinsic noise corresponds

to synchronous changes, for example, the variation in the cell size and changes

in the outside environment.

Non-equilibrium statistical physics is an essential tool in studying fluctua-

tions in biological systems. As a biological system can be viewed as a system of

chemical reactions, deterministic kinetic rate equations are used to describe the

dynamics of the ensemble averages. Moving from a deterministic approach to a

stochastic process, we are concerned about the probability of the system being

in a certain state and how this probability changes with time. This is done,

in principle, by writing down the master equation. However, as biological sys-

tems of interest usually involve not just a few reactions, master equations are

typically not tractable. Further techniques such as Fokker-Planck equation,

Langevin equation and Monte-carlo simulation [26–28] are therefore important
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to model biological systems with stochasticity. In Chapter 4, we will study the

system-wide effects of fluctuations in protein interaction network using some

of the mentioned methods.

Bioinformatics

Effective computational algorithms play central roles in biology. Indeed, se-

quence oriented algorithms such as sequence assembly and sequence alignment,

have facilitated the complete sequencing of many genomes (including human)

and the identification of coding genes. In the post-genomic era, a vast amount

of sequences are already known and algorithms aimed at understanding the

complex bimolecular interactions are drawing more and more research atten-

tion.

One of the most important technology in the post-genomic era is the DNA

microarray (DNA chip). The uses of DNA microarrays enable one to measure

the expression level of more than 10000 genes simultaneously. The expression

level of a gene refers to its mRNA abundance. A high expression level means

that the gene is switched on. The genome-wide collection of expression levels

is usually called the expression profile. Expression profiles contain important

information because they reflect the state of a cell. Suppose a genome has N

genes, and each of them can only be “on” or “off”. Then the expression profile

would represent 1 out of the 2N possible cellular states. The state of a cell

depends on the environmental conditions, time, and the tissue it belongs to in

multi-cellular organisms.

As genes are not independent of each other, expression profiles are results of
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complex interactions. While the invention of DNA microarray techniques has

lead to accumulation of a tremendous amount of expression profiles, these data

do not immediately yield information about the genetic interaction networks.

To extract a wealth of information from these huge and noisy data, effective

algorithms are necessary. Correlation analysis is an important component in

mining the data [29]. As genes expressed under similar conditions are likely to

be functionally related, one can identify regulatory modules by looking at the

similarity between genes in different conditions. However, correlation analysis

cannot identify how the correlated genes are causally related. Perhaps the most

intuitive way to study regulatory interactions between genes is to perturb the

system [30]. For example, one can delete or overexpress a gene and observe

the changes in expression profile. If the deletion of a gene g causes a reduction

of expression level in a set of genes, g is positively regulating the set of genes.

Based on this simple idea, different algorithms have been proposed including

Boolean logic [31], Bayesian analysis [32], and topological analysis [33]. In

Chapter 5, we will present a study along these lines.

As practical problems in bioinformatics or networks involve inference or

combinatorial optimization, methods in statistical physics (more precisely spin

glasses) turn out to be very useful. In fact, problems in bioinformatics moti-

vate and enrich theoretical developments in statistical physics. An important

example is the superparamagnetic clustering used in studying the microarray

gene expression data [34]. The algorithm assigns a Potts spin Si for each data

point i, and the coupling constant between two spins is a decreasing function

with respect to the distance between two corresponding data points. While

the spins interact as an inhomogeneous ferromagnetic Potts model, clusters
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appear naturally as regions of aligned spins and can be quantified by the spin-

spin correlation. The temperature T controls the resolution of the clustering.

When T = 0, all spins have the same value, the result is a single cluster. When

T → ∞, all spins are independent and therefore the procedure yields clusters

with a single data point in each. Standard dendrograms can be generated by

gradually tuning the temperature.

Outline

The study of life presents many interesting problems for physicists. The fol-

lowing chapters include several studies concerning biological evolution and

biological networks. Chapter 2 is a study on proteome evolution [35]. We

studied the genome-wide distribution of sequence identities of pairs of paral-

ogous proteins in several model organisms. It is interesting, at least for sta-

tistical physicists, because the distributions in different organisms share a few

common features. To explain the collective behaviors, we introduced a simple

model based on basic evolutionary processes. Our mathematical framework re-

vealed many important details including the relative rates of the evolutionary

processes, universality of intra-protein substitution rates and traces of whole

genome duplications.

Chapter 3, 4 and 5 are all related to networks. In Chapter 3, we studied

the topology of protein networks from an evolutionary standpoint [36]. The

emphasis is on the role of duplicated proteins on a protein network. Using

system-wide data of various protein networks, we quantified their functional

divergence with respect to their divergence in amino-acid sequences. We found
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that in yeast, the rate of divergence in transcriptional regulatory network is

faster than that in protein interaction network. This would help to explain

how species with very similar gene contents can evolve novel properties in a

relatively short timescale. The idea that a pair of duplicated proteins may

act as backup for each other is further corroborated by analysis of data from

gene-knockout experiments.

In Chapter 4, we extend the analysis from topology to dynamics and study

the effects of noise in biological networks. In particular, we investigate the

association and dissociation of proteins in a genome-wide protein interaction

network [37]. In dynamical equilibrium, protein association and dissociation

are in balance, resulting at a mixture of free proteins and dimers in a wide

range of concentrations. We studied the effects of noise in the system, including

thermal fluctuations and fluctuations as a result of noise in protein production

and degradation. Tools such as the fluctuation-dissipation theorem from non-

equilibrium statistical physics were used. We found that thermal fluctuations

could be well suppressed as a result of the network topology and heterogeneity

in protein abundance, and there are dramatic differences between intrinsic and

extrinsic noise.

Chapter 5 is a practical bioinformatics study [38]. The regulatory interac-

tions from high-throughput experiments (e.g. microarray) can be either direct

or indirect in nature. Indirect regulations are important as they constitute

the majority of experimental data. We developed a network-based algorithm

to predict and verify indirect regulatory interactions in a large-scale genetic

regulatory network. This algorithm is tailored for large and heavily intercon-

nected networks, which are of growing importance due to the accrual of data
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from high-throughput experiments. We applied the algorithm to the regula-

tory networks of several model organisms curated from literature, resulting in

novel predictions and calibrated the reliability of existing ones.
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Chapter 2

A Stochastic Model of

Proteome Evolution

2.1 Background

Proteins lie at the heart of all cellular processes, it is therefore important to

understand how evolution shaping the defined proteome of an organism. At

the molecular level, the evolution of a proteome can be understood in terms

of its full repertoire: the set of all protein coding genes in the corresponding

genome. As we have remarked in Chapter 1, the most significant processes

in molecular evolution are gene duplications, gene deletions and changes in

amino-acid sequences.

The recent availability of complete genomic sequences of a diverse group

of living organisms allows one to study these basic mechanisms on an un-

precedented scale. Using sequence alignment algorithms, one could define the

similarity between any two proteins. In molecular evolution, two proteins simi-
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lar in their amino-acid sequences are referred as homologs. Homologs originate

from a common ancestry and are further classified into orthologs and paralogs.

Orthologs are separated by a speciation event, i.e. when a specie diverges into

two species, the two divergent copies of a single gene are orthologs. On the

other hand, paralogs are separated by a gene duplication event, i.e. if a gene

in a genome is duplicated, the two copies (still located in the same genome)

are called paralogs. In this study, we focus on the set of all paralogs within an

individual genome.

The sequence similarity of a pair of paralogs is quantified by a percent-

age called percent identity (PID). For the set of all paralogous pairs in a

genome, the set of their PID is a dynamic entity that changes due to duplica-

tions, deletions, and local changes in amino-acid sequences of its constituent

proteins. For example, duplication events constantly create new pairs of par-

alogous proteins with PID=100%, while subsequent substitutions, insertions

and deletions result in their PID drifting down towards lower values. The

distribution of PID (PID histogram) thus contains indirect information about

past duplications, deletions, and sequence divergence events that took place

in the ancestral genome.

In this chapter, we start by presenting empirical observations of the PID

histograms of six model organisms. They are: prokaryotic bacteria H. pylori,

E. coli, a single-celled eukaryote S. cerevisiae (baker’s yeast), and multi-cellular

eukaryotes C. elegans (worm), D. melanogaster (fly), and H. sapiens (human).

Even though the organisms are diverse in nature, their histograms share a

number of common features. We propose a simple stochastic model involving

only gene duplications, deletions and amino-acid substitutions to explain the
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features. Using our underlying mathematical framework, we then extract the

average rates and some other intrinsic parameters of these basic evolutionary

processes. The implications of our analysis will be discussed.

2.2 Distribution of Sequence Identities of Par-

alogous Proteins

As an operational definition, two proteins are referred as paralogs if they have a

statistically significant sequence similarity. Therefore the set of all paralogous

pairs in a genome can be identified by performing pairwise alignment to all

possible protein pairs in a genome. In this study, we use the BLAST algorithm

(Blastp) [39] to perform the sequence alignment.

Not every pair of BLAST hits are regarded as paralogs. Generally speaking,

a BLAST output is taken as a pair of paralogs if (1) it is statistically significant

(E< 10−10), (2) the length of the aligned region constitutes at least 80% of

the length of the longer protein. The second filter enables us to avoid pairs of

multi-domain proteins homologous over only one of their domains. Table 2.1

shows the sizes of the genomes and some general statistics of the output. The

details of the genomes and the exact procedures are described in Appendix A.

With all the paralogous pairs, one could easily obtain the distribution of

sequence identities (PID histogram). Fig. 2.1 shows the histogram Na(p) of

amino-acid sequence identities p of all pairs of paralogous proteins in the six

genomes. The p-dependence of these histograms has three distinct regions

I,II,III.
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Organism Proteome
size
Ngenes

% of
proteins
with
paralogs

BLASTP
hits

Number
of pairs
in Na(p)

Number
of pairs
in Nd(p)

H.pylori 1590 14 3228 260 148
E.coli 4288 33 16768 2614 1013
S.cerevisiae 5885 29 43915 2297 1025
C.elegans 19099 36 204398 46463 5545
D.melanogaster 14015 30 557047 17621 3238
H.sapiens 25319 37 1330721 31078 6595

Table 2.1: Statistics of genomes used in this study. The first column is the
name of the organism, the second column – the number of protein-coding genes
in its genome, Ngenes, the third column is the percentage of proteins with at
least one paralog, the fourth column - the total number of distinct BLAST
hits generated before we applied subsequent filtering, the fifth column - the
number of paralogous pairs included in Na(p), and the sixth column - in Nd(p).

• Region I: There is a sharp and significant upturn in the PID histogram

above roughly 90-95% compared to what one expects from extrapolating

Na(p) from lower values of p. Apparently the constants (or possibly even

mechanisms) of the dynamical process shaping Na(p) are different in this

region.

• Region II: This region covers the widest interval of PIDs 30% < p <

90%. Na(p) in this region can be approximated by a power-law form of

p−γ with γ ≈ 4 (shown as a dashed line in Fig. 2.1. The best fits to the

power-law form in the Region II are listed in Table 2.2 and (with the

exception of yeast and human ) they fall in the 3 − 5 range.

• Region III: In this region p < 25 − 30% the histogram Na(p) starts

to deviate down from the p−γ powerlaw behavior. This decline is an
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Figure 2.1: Histograms of all amino-acid sequence identities for all pairs of
paralogous proteins in complete genomes of H. pylori (blue stars), E. coli (green
open squares), S. cerevisiae (red crosses), C. elegans (cyan open triangles), D.

melanogaster (magenta filled circles) and H. sapiens (brown filled triangles).
The dashed line is a power-law p−4. Note the logarithmic scale of both axes.
Vertical lines separate regions I, II and III described in the text.

artifact of the inability of sequence-based algorithms such as BLAST

to detect some valid paralogous pairs with low sequence identity. This

explanation is corroborated by the observation that the exact position

of the downturn of Na(p) in the region III is determined by the E-value

cutoff.

As the proteomes have different sizes Ngene (from 1,600 in H.pylori to 25,000
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Figure 2.2: Normalized histograms for all amino-acid sequence identities. Each
histogram in Fig. 2.1 is normalized by the number of gene pairs, i.e. na(p) =
2Na(p)/N2

gene. The histograms of the six genomes are approximately collapsed
to an near-universal shape.

in H. sapiens, see Table 2.1), it is meaningful to normalize the histogram by

the number of gene pairs, approximately N2
gene/2. The near-universality in the

shapes of the PID histograms is perhaps best illustrated by the normalized

histograms as shown in Fig. 2.2.
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2.3 A Model of Proteome Evolution

Birth-and-death model

The near-universality in shapes of PID histograms suggests that different pro-

teomes are driven by similar mechanisms. To explain the features of the PID

histogram, we introduce a simple stochastic model defined as follows.

• Gene Duplication. Random gene duplication happens at rate αdup.

• Gene Deletion. Random gene deletion occurs at rate αdel.

• Mutation. This includes amino-acid substitutions, insertions and dele-

tions. The processes cause the sequence identity of any given pair of

paralogous proteins to decay with time. The decay is described by

dp

dt
= −v(p). For our immediate purposes we will leave it unspecified.

Random gene duplication and deletion events refer to the birth and death of

new protein coding genes. As shown in Fig. 2.3, when a gene A is duplicated

to A’ a new pair of paralogs with PID=100% is created (dotted line) and

thus added to the rightmost bin of the PID histogram. The bin Na(p = 1)

increases in rate αdupNgenes, where Ngenes is the total number of protein-coding

genes in the genome. Furthermore the freshly created gene A’ inherits both

paralogous partners (B and C) of the gene A. The PIDs of these two newly

created paralogous pairs A’-B and A’-C (dashed lines) are also added to the

respective bins in the histogram. Thus a duplication of any of one the two

paralogous genes with PID=p among other things results in the creation of a

new pair of paralogs with the same PID. This process increases Na(p) at a rate
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Figure 2.3: Illustration of gene duplication on PID histogram. A single gene
duplication event A → A′ gives rise to three new paralogous pairs: A′ − A,
A′ −B and A′ −C. Immediately after the duplication the pair A−A′ has the
PID=100% , while PIDs of A′−B and A′−C are equal to those of A−B and
A−C. Thus the PID of every previously existing paralogous pair involving A
gets duplicated along with the duplication A → A′.

2αdupNa(p). The factor two comes from the fact that duplications can happen

in any of the two paralogs. Similarly the deletion of any of the two genes in

this paralogous pair decreases Na(p) at the rate 2αdelNa(p).

To understand the effect of mutation, we summarize the effects of actual

amino-acid substitutions, insertions and deletions via an effective “substitu-

tion rate” µ. Consider two paralogous proteins with PID=p×100%, in the

simplest possible case, changes in their sequences happen uniformly at all

amino acid positions at a constant rate µ. The PID of this paralogous pair

changes according to the equation dp/dt = −2µp. The factor p comes from the
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observation that only changes in still identical parts of two sequences lead to a

further decrease of the PID, while the factor two is because substitutions can

occur in any one of the two proteins. This equation results in an exponentially

decaying PID: p(t) ∼ exp(−2µt), where paralogous pairs are drifting to the

left hand side of the PID histogram. More generally the drift of PID could

be described by the equation dp/dt = −v(p). When the substitution rate

varies for different amino acids within the same protein, the relation between

p and the drift velocity v(p) is no longer linear. The negative drift of PIDs

generates a p-dependent flux of paralogous pairs down the PID axis given by

v(p)Na(p). As shown in Fig. 2.4, the net flux into the PID bin of the width

∆p centered around p is given by Na(p + ∆p)v(p + ∆p) − Na(p)v(p). Adding

up contributions of all three processes, one gets

∂Na(p, t)

∂t
=

∂

∂p
[v(p)Na(p, t)]

+ 2αdupNa(p, t) − 2αdelNa(p, t) + αdupNgenesδ(p − 1), (2.1)

where δ(p − 1) is 1 if p = 1 and 0 otherwise.

In our model the total number of genes Ngenes in the genome exponentially

grows (or decays) according to dNgenes/dt = (αdup − αdel)Ngenes. When the

genome size of an organism remains approximately constant (αdup = αdel),

one can find the stationary asymptotic solution of Eq. 2.1. In general, the

stationary solution for Na(p, t) does not exist for an exponentially growing

or shrinking genome. However, one could define a normalized histogram

na(p, t) = 2Na(p, t)/N
2
gene. Eq. 2.1 is then written as
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Figure 2.4: Illustration of amino-acid substitution on PID histogram. The
PID decay generates a negative flux v(p)Na(p) down the PID-axis. The net
flux into a given bin ∆p is given by v(p + ∆p)Na(p + ∆p) − v(p)Na(p).

∂na(p, t)

∂t
=

∂

∂p
[v(p)na(p, t)] +

2αdup

Ngenes
δ(p − 1). (2.2)

The new equation describing the dynamics in the normalized histogram is

much simpler, and there is a steady state solution given by

na(p) ∼ Na(p) ∼ 1/v(p). (2.3)

The conjecture that the normalized PID histogram na(p, t) = 2Na(p, t)/N
2
gene

indeed is nearly stationary during the course of evolution is corroborated by

the fact that all six na(p) curves in various genomes used in our study approx-
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imately lie on top of each other in Fig. 2.2.

With the equations in hand, we are in the position to explain the near-

universal power law behavior as shown in region II of the histogram. Compar-

ing the empirical form of Na(p) ∼ 1/p4 with Eq. 2.3, one concludes that the

drift velocity in real genomes must obey v(p) ∼ p4. Such a non-linear depen-

dence of v(p) could be explained by the variability of the effective substitution

rate within proteins (intra-protein variability). Assuming the intra-protein

variability of substitution rates µ is described by a probability distribution

ρ(µ), one gets the following expression for p(t) and v(t):

p(t) =

∫ ∞

0

ρ(µ)e−2µtdµ (2.4)

v(t) = −
dp(t)

dt
=

∫ ∞

0

2µρ(µ)e−2µtdµ. (2.5)

Eq. 2.4 could be looked as a generalization of the previously discussed ex-

ponential decay of p(t) derived for a constant substitution rate µ. It simply

weighs these exponentials by their likelihood of occurrence ρ(µ). For any given

ρ(µ) one could eliminate time from Eqs. 2.4 and 2.5 and express v as a func-

tion of p. In the absence of an analytical expression relating v(p) and ρ(µ)

one is limited to use a trial-and-error method. We start with the Gamma

distribution

ρ(µ) ∼ µθ−1 exp(−µ/µo). (2.6)

which has been predominantly used in the literature [40, 41]. Inserting the

defined ρ(µ) into Eqs. 2.4 and 2.5 one gets p(t) = (1 + 2tµo)
−θ and v(t) =
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2θµo(1 + 2tµo)
−(θ+1) which leads to

v(p) ∼ p(θ+1)/θ (2.7)

Na(p) ∼ p−(θ+1)/θ. (2.8)

Intrinsic Parameter θ in Intra-Protein Substitution

Based on Eq. 2.7, the empirically detected power law Na(p) ∼ 1/pγ can

be generated by our model if the intra-protein substitution rate distribution

ρ(µ) follows a gamma-distribution with θ = 1/(γ − 1). The apparent p−4

dependence suggests that θ ≈ 0.33.

The Gamma-distribution ∼ µθ−1 exp(−µ/µo) is traditionally used to model

and fit the distribution of substitution rates in individual families of proteins

(this tradition goes back to [42]). Our approach extends this to a proteome-

wide scale and demonstrates that beyond its role as a ad hoc fitting function,

the Gamma distribution indeed provides an excellent quantitative description

of variability of intra-protein substitution rates. The genome-wide value of

the exponent θ ≈ 0.33 obtained in our analysis is consistent with its previous

estimates in large protein families. For example, the fitting performed by Refs.

[40, 41] resulted in the exponent θ in the 0.2 − 0.4 range.

It is important to emphasize that our result - the power-law form of Na(p)

depends only on the intra-protein variability of substitution rates at differ-

ent amino-acid sites within the same protein. Such variability should not be

confused with a much larger protein-to-protein variability of average substitu-

tion rates. Indeed, different proteins encoded in the same genome are known
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to have vastly different average rates of amino-acid substitutions. Some se-

quences, such as those of ribosomal proteins, remain virtually unchanged over

billions of years of evolution, while others evolve at a much faster pace. In

fact, the very importance of a protein is sometimes quantified by its average

rate of evolution as more essential proteins involved in core cellular processes

tend to evolve at slower than average rates.

2.4 Extracting the Rates of Gene Duplication

and Deletion

So far we have focused on the power law behavior in region II of PID his-

tograms. In this section, we will explain features in region I and use our

mathematical formalism to extract the relative rates of evolutionary processes

in different genomes. The results are summarized in Table 2.2. In particular,

the power law exponent we discussed are presented in the third column. Let

us start by introducing the idea of true duplicated pairs in contrast to the set

of all paralogous proteins.

Distribution of sequence identities of true duplicated pairs

Even though paralogs are originated from gene duplication, it is important

to note that a pair of paralogs may not be a direct result of a single gene

duplication event. Consider a simple example. The family of four evolution-

ary related proteins A,B,C,D contributes six paralogous pairs to Na(p). This

family was actually created by three subsequent duplication events: first A
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Organism Proteome size γ α∗
dup/µ̄ αdup/µ̄ αdel/µ̄ α∗

del/µ̄

H.pylori 1590 3.1 0.73 0.032 0.16 67
E.coli 4288 4.4 1.37 0.038 0.10 64
S.cerevisiae 5885 1.8 1.61 0.24 0.24 27
C.elegans 19099 4.2 3.16 0.27 0.37 41
D.melanogaster 14015 4.4 0.35 0.084 0.22 30
H.sapiens 25319 2.4 2.82 0.85 0.16 19

Table 2.2: Parameters of proteome evolution. The first column contains the
name of the organism, the second column – Ngenes, the number of genes in its
genome, the third column is the value of the exponent γ in the best fit with
p−γ to Na(p) in the region II. The fourth, fifth, sixth and seventh columns
are correspondingly the ratios α∗

dup/µ̄, αdup/µ̄, αdel/µ̄, and α∗
del/µ̄ defined and

measured as described in the text.

duplicated to give rise to B, then B duplicated to C and finally C duplicated

to D. Thus only three out of total six paralogous pairs are directly produced

in gene duplication events. The actual number of duplicated pairs could be

even smaller if some intermediate genes were deleted in the course of the evo-

lution. In general a family consisting of F proteins contributes at or around

F (F − 1)/2 paralogous pairs to Na(p), but only F − 1 duplicated pairs, which

we quantify by Nd(p).

Nothing in the BLAST output for a given paralogous pair contains any in-

formation if it should or should not be included in the Nd(p). However, using

the set of all sequence identities of proteins for a given family, one could tenta-

tively reconstruct the course of duplication events that led to the appearance

of this family. Generally speaking, this is a complicated task involving build-

ing the most parsimonious phylogenetic tree for every family in a genome. In

this study, we use a much simpler alternatives based on the Minimum Span-

ning Tree (MST) algorithm (see Appendix A). For a family consisting of F
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proteins, this algorithm generates F − 1 duplication events in its past history,

contributing to the set Nd(p). Numbers of pairs included in Na(p) and Nd(p)

distributions in different organisms are listed in the Table 2.1.

The dynamics of the distribution of duplicated pairs Nd(p, t) is described

by simply excluding the duplication term 2αdupN(p, t) from the equation for

Na(p, t). Indeed, this term is caused by PIDs of non-duplicated paralogs A’-B

and A’-C (dashed lines in Fig. 2.3) generated when a gene A was duplicated.

However, only the actual duplicated pair A-A’ with initial PID of 100% (dotted

line in Fig. 2.3) is included in the distribution of duplicated pairs Nd(p). Thus

the dynamics of Nd is described by

∂Nd(p, t)

∂t
=

∂

∂p
[v(p)Nd(p, t)] − 2αdelNd(p, t) + αdupNgenesδ(p − 1). (2.9)

Once again the stationary solution exists for the normalized distribution. How-

ever, in this case the correct normalization factor is given by Ngenes and not

N2
genes/2 as for Na(p). Thus the normalized PID histogram of duplicated pairs

nd(p, t) = Nd(p, t)/Ngenes evolves according to

∂nd(p, t)

∂t
=

∂

∂p
[v(p)nd(p, t)] − (αdup + αdel)nd(p, t) + αdupδ(p − 1). (2.10)

According to our empirical findings the average rate of sequence divergence

of paralogous proteins in most organisms is described v(p) = 2µ̄pγ , where µ̄

is the substitution rate averaged over all amino-acid positions in all proteins,

and γ ≈ 4 is the exponent related to the intra-protein variability of µ. By
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solving the steady state solution of Eq. 2.10, one arrives at

Nd(p) ∼ nd(p) ∼
1

pγ
exp

(

−
αdup + αdel

2µ̄(γ − 1)pγ−1

)

. (2.11)

We will make use of this equation for extracting information on αdup and αdel

later on.

Deletion rate of recent duplicates

A very pronounced and reproducible feature in all organism-wide histograms

is an abrupt drop as is lowered from 100% down to about 90-95% (region I

in Fig. 2.1). The drop is as large as 30-fold in prokaryotes and is around

3-to-10 fold in eukaryotes. One of the most plausible explanation for this

initial drop in the region I is that freshly duplicated genes are characterized

by a much higher deletion rate, i.e. α∗
del ≫ αdel [43]. Functional roles of

such genes have not had enough time to diverge from each other making each

of them more disposable than an average gene in the genome. Indeed, for S.

cerevisiae it was empirically demonstrated [44] that the deletion or inactivation

of genes with a highly similar paralogous partner in the genome is up to 4 times

more likely to have no consequences for the survival of the organism than the

deletion/inactivation of genes lacking such a partner. A similar analysis along

this line will be discussed in Chapter 3.

The Na dynamics in the region I is described by

∂Na(p, t)

∂t
=

∂

∂p
[2µ̄Na(p, t)] + (2αdup − 2α∗

del)Na(p, t) + αdupNgenesδ(p− 1) .

(2.12)
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while the normalized distribution na obeys

∂na(p, t)

∂t
=

∂

∂p
[2µ̄na(p, t)]+(2αdup−2α∗

del)na(p, t)+
2αdup

Ngenes
δ(p−1) . (2.13)

Here 2µ̄ = v(100%) is the average substitution rate in freshly duplicated pairs

and α∗
del is the deletion rate inside region I. For α∗

del ≫ αdel, the equation has

an exponentially decaying stationary solution given by na(p) ∼ exp(α∗
delp/µ̄).

This functional form is consistent with the empirical data for p just below

100% and the best fits to α∗
del/µ̄ are listed in the seventh column of the Table

2.2.

Ref. [43] analyzed the distribution of silent substitution numbers per silent

site Ks between pairs of recently duplicated genes. Under the same “drift and

deletion” hypothesis used to derive the Eq. 2.12, the distribution of all du-

plicated pairs Nd in terms of Ks should also have an exponential decaying

form Nd(Ks) ∼ exp(−α∗
delKs/µ̄s), where µ̄s is the average drift velocity of Ks

immediately following the duplication event. Fits to this exponential func-

tional form performed in Ref. [43] resulted in α∗
del/µ̄s ∼ 7− 24. Our estimates

α∗
del/µ̄ ∼ 20−70 are consistent with those of [43] provided that the µ̄/µ̄s ratio

is in 0.1 − 1 interval.

Long- and short-term duplication rates.

The number of paralogous pairs with PID≃100% also contains information

about the raw duplication rate α∗
dup in the genome. This rate is subsequently

trimmed down to its long-term stationary value αdup by the removal of a large

fraction of freshly created pairs as described in the previous subsection. New
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pairs with PID=100% are created at a rate α∗
dupNgenes, while they leave the

bin containing PID=100% at a rate 2µ̄Na(100%)/∆p . Here ∆p is the width

of the bin and Na(100%) is the number of pairs in this last bin. The width of

the bin is assumed to be small enough so that the removal of genes from the

bin due to deletion is negligible in comparison to that due to the drift in their

sequences. Thus α∗
dup/µ̄ = 2Na(100%)/(Ngenes∆p) . The average duplication

rates calculated this way are presented in the fourth column of Table 2.2 .

They are compatible with α∗
dup/µ̄s calculated in [45], where the same idea was

applied to Nd(Ks).

The rate α∗
dup includes the creation of some extra duplicated pairs which

are then quickly (on an evolutionary timescale) eliminated from the genome

during a “trial period” for PID>90%. We have already demonstrated that

such a deletion happens at a very high rate α∗
del and thus has to be treated

separately from the background deletion rate αdel. The duplication rapidly

followed by a deletion does not change the overall distribution of paralogous

pairs. Therefore, the long-term average duplication rate αdup used in Eqs.

2.3 and 2.11 is in fact considerably lower than the raw duplication rate α∗
dup.

An approximate way to calculate it is to use power-law fits to Na(p) in the

region II to extrapolate it up to 100%. Such extrapolated value N ext
a (100%)

could then be used to calculate the long-term average duplication rate as

αdup/µ̄ = 2N ext
a (100%)/(Ngenes∆p) (see the fifth column of Table 2.2).
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Long-term stationary deletion rate

Finally let us estimate the average of deletion rates. We performed a two-

parameter fit to the Nd(p)/Na(p) ratio with A exp(−B/(γ − 1)pγ−1) (see Eqs.

2.3 and 2.11) in the 30% < p < 90% interval (region II in Fig. 2.1). Here A

and B = (αdup + αdel)/(2µ̄) are the two free fitting parameters. The exponent

γ used in the fitting formula itself was obtained from the best fit to Na(p) in

the same region with the power-law form p−γ (see column 3 in Table 2.2). The

ratio αdel/µ̄ was extracted from the best-fit value of B. Using the previously

estimated values of αdup/µ̄ as shown in the fifth column, the ratio αdel/µ̄ are

calculated (the sixth column of the Table 2.2).

Genome size dependence of average duplication and dele-

tion rates

Our data indicate that the long-term stationary duplication rate αdup is of the

same order of magnitude as the stationary deletion rate αdel (compare columns

5 and 6 in the Table 2.2). This is to be expected since any large discrepancy

in these rates would generate much larger differences in genome sizes than

actually observed in these model organisms. However, as was proposed by

[43] both of these rates are considerably smaller than their raw counterparts

α∗
dup and α∗

del that include only recently duplicated pairs. Our rates for the

fruit fly D. melanogaster are consistent with an earlier observation [45] of an

abnormally low average duplication rate in this organism. According to our

data α∗
dup/µ̄ is about 9 times lower than that in the genome of C. elegans. The

long-term stationary duplication rate αdup/µ̄ in the fly is also the lowest in all
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eukaryotic genomes used in this study but is only 3 times lower than that in

the worm.
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Figure 2.5: Correlation between the number of genes in an organism and its
duplication/deletion rates. Evolutionary parameters αdup/µ̄ (open diamonds),
αdel/µ̄ (filled circles), α∗

dup/µ̄ (open squares), and α∗
del/µ̄ (filled triangles) plot-

ted versus the total number of genes Ngenes in an organism. Organisms in
the order of increasing number of genes are H. pylori, E. coli, S. cerevisiae, D.

melanogaster, C. elegans, and H. sapiens. As explained in the text, more com-
plex organisms (those with larger Ngenes) tend to be characterized by higher
values of the first three ratios but lower values of the last ratio.

Intriguingly αdel/µ̄, αdup/µ̄, and α∗
dup/µ̄ ratios are all positively correlated
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with the complexity of the organism quantified by the total number of genes in

its genome (see correspondingly filled circles, open diamonds, and open squares

in Fig. 2.5). This means that either the per-gene duplication rate in more

complex organisms is consistently higher than in their simpler counterparts or

that their average amino-acid substitution rate is lower. It is likely that both

trends operate simultaneously. A plausible explanation for the latter trend

is that more sophisticated mechanisms of DNA copying and repair of higher

organisms lead to lower average amino-acid substitution rates.

On the other hand, consistent with findings of Ref. [46], we find that

the deletion rate of recent duplicates, α∗
del/µ̄, (filled triangles in Fig. 2.5)

exhibits a negative correlation with the number of genes in the genome. A

likely explanation of this correlation proposed in Ref. [46] is via the decrease

in the effective population size Ne in more complex organisms.

2.5 Effects of Whole Genome Duplications on

the Histogram of Sequence Identities

Two of the organisms used in our study (S. cerevisiae and H. sapiens) are

characterized by a dramatically lower value of the power-law exponent γ (1.8

for yeast and 2.4 for human) and the overall poor quality of the power law fit to

Na(p). One plausible explanation is in terms of Whole Genome Duplications

(WGD) in lineages leading to these genomes. It is well established [47] that

baker’s yeast underwent a WGD event, which most likely occurred about 100

millions years ago. While the subject remains controversial, it is now com-
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monly believed that vertebrate lineage leading to human also underwent one

or several large-scale duplication events [48, 49]. In the immediate aftermath

of a whole genome duplication event the PID distribution change as follows:

Na(p) → 4Na(p) for p<100%, while Na(100%) → 4Na(100%)+Ngenes. Indeed,

every ancestral paralogous pair A-B would give rise to 3 new pairs with the

same PID: A-B’, A’-B, and A’-B’. At the same time the bin containing the

PID=100% would in addition get Ngenes (or fewer for a large segmental du-

plication) of freshly created duplicated pairs of the type A-A’ and B-B’. The

subsequent spread of this enormous peak at PID=100% towards lower values

of PID accompanied by a rapid deletion of redundant copies would result in an

effective flattening of the Na(p) histogram in its upper range and thus lower

effective value of the exponent γ.

To further test this hypothesis we analyzed the recent sequenced genome

[50] of a ciliate Paramecium tetraurelia. This organism underwent as many as

four separately identifiable WGD events [50]. We used our standard methods

to construct the PID histogram Na(p) from the all-to-all alignment of its nearly

40,000 genes (see Appendix A). Solid diamonds in Fig. 2.6 correspond to its

full PID histogram consisting of 103,828 paralogous pairs. Ref [50] identified

the lists of putative pairs of duplicated genes generated in each of the four

WGD events in the lineage leading to this genome. By dropping one randomly-

selected gene from these WGD pairs, we generated the set of four progressively

more narrow PID histograms. These histograms are also shown in Fig. 2.6:

41,890 pairs excluding the genes generated in the latest WGD event (solid

squares), 25,342 pairs excluding those generated in the latest two WGD events

(solid circles). 22.287 pairs excluding the genes generated in the last three
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Figure 2.6: Histograms of sequence identities in P. tetraurelia and the relation-
ship with WGD. The histogram of sequence identities of 103,828 paralogous
pairs among 39642 proteins in the genome of Paramecium tetraurelia (solid di-
amonds) detected by an all-to-all blastp alignment. Other histograms shown
in this plot correspond to a progressive removal of new proteins created in the
four WGD events [50]: 41,890 pairs among 27,616 proteins excluding those
generated in the latest WGD event (solid squares), 25,342 pairs among 23,618
proteins excluding those generated in the latest two WGD events (solid cir-
cles). 22,287 pairs among 22,853 excluding those generated in the last three
WGD events (open triangles), and 21,417 among 22,635 proteins excluding
those generated in all four WGD events (red stars). One can see that by pro-
gressive elimination of pairs generated in WGD events the functional form of
the Na(p) histogram in P. tetraurelia approaches the universal scaling form:
Na(p) ∼ p−4 (dashed line). For comparison we copy from Fig. the histogram
of 31,078 pairs among 25,319 H. Sapiens proteins (blue x’s).
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WGD events (open triangles), and 21,417 excluding those generated in all

four WGD events (red stars). One can see that by progressive elimination of

pairs generated in WGD events the functional form of the Na(p) histogram

in P. tetraurelia approaches the universal scaling form: Na(p) ∼ p−4 (dashed

line). The analysis of P. tetraurelia provides an additional strong support to

our conjecture that the unusually flat PID histograms in human and yeast

are caused by WGD events in lineages leading to these two organisms (for

comparison, Fig. 2.6 also reproduces the histogram of H. sapiens).

2.6 Conclusion and Outlook

We have introduced a stochastic birth and death model of proteome evolution.

Several versions of such models were previously [3, 4, 51], used in the context

of power law distribution of protein family sizes. Our model extends these

attempts by concentrating on the evolution of sequence identities as opposed

to just the number of proteins in families.

The idea of quantifying evolutionary parameters using the histogram of

some measure of sequence similarity of duplicated genes in itself is not new. It

was discussed by Gillespie (see [52] and references therein) and later applied

by Lynch et.al. [43] to measure the deletion rate of recent duplicates. There

are two important differences between our methods and those of the Ref. [43]:

1) We use the histogram of amino-acid sequence identities as opposed to that

of silent substitutions used in Ref. [43]. This allows to dramatically extend the

range of evolutionary times amenable to this type of analysis. 2) We combine

the study of a highly redundant dataset of all paralogous pairs with that of
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protein pairs that were actually created by a duplication event. The shape of

the histogram of sequence identities in the former set is to a first approximation

independent of duplication and deletion rates and thus allows us to study fine

properties of amino-acid substitution rates.

Probably the best demonstration of universality by our birth-and-death

model is value of θ. Our model is based on a simplified picture of genome

evolution. In particular, we implicitly assumed the neutrality of gene duplica-

tion and deletion events and thus the homogeneity of duplication and deletion

rates for different proteins. Such an assumption is, strictly speaking, not true.

Families containing essential genes were recently shown to be characterized by

higher average duplication and deletion rates [53]. However, we would like to

emphasize that the validity of the exponent goes beyond the validity of the

approximation. The advantage of using the histogram of sequence identities

generated by the all-to-all alignment lies in its remarkable universality and ro-

bustness. When the formalism is applied to individual families one can see that

family-to-family variation of (and correlations between) the duplication rate

αdup, the deletion rate αdel, and the average substitution rate µ0 affect only

the pre-factor in the powerlaw form of Na(p). Thus the exponent γ = 1 + 1/θ

describing this power law is very robust and depends only to the exponent θ

quantifying the intra-protein variability of amino-acid substitution rates.

The exact mechanisms behind are not entirely clear. Chances are that it is

dictated more by the protein physics rather than by organism-specific evolu-

tionary mechansims. A possible path towards an explanation of the exponent

θ from purely biophysical principles starts with the results of Ref. [54], which

models the effects of (correlated) multiple amino-acid substitutions on stability
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of the native state of a protein.
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Chapter 3

Evolution of Molecular

Networks

3.1 Background

Evolution modifies an organism on multiple levels, ranging from sequences

of individual molecules, their coordinated activity in the cell (molecular net-

works), all the way up to the phenotype of the organism itself. In the previous

chapter, we looked at evolution at the level of protein sequences. In this chap-

ter, we move to a higher level and look at evolutionary changes at the level of

protein networks, including protein interaction networks and transcriptional

regulatory networks.

Evolution in protein networks is the result of changes in individual pro-

teiins. Immediately after a duplication event the pair of freshly duplicated

proteins is thought to be identical in both sequences and functional roles in

the cell. With the presence of two copies, the duplicates are allowed to accu-
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mulate various mutations as the selection pressure is relaxed. The functions

of the ancestral gene might then be shared by two duplicates, and each of

them might independently develop new functions. This process causes func-

tional divergence for the duplicates. Even though the picture is intuitive, the

term “function” is subtle and difficult to quantify. Networks thus offer a more

concrete approach in quantifying functional divergence.

The fate of duplicated genes can be studied by looking at the position

of paralogs in a protein network. Right after a gene duplication event, the

two copies share the same set of neighbors. With subsequent mutations, the

number of common neighbors reduces and each of them has independently

gained new neighbors. We use a concept of overlap to quantify this divergence.

For a pair of paralogs, the overlap Ω is defined as the number of common

neighbors they have in the network. To take into account the original number

of neighbors, normalized overlap could be used (see Fig. 3.1 for illustration).

In this chapter, we quantify the functional divergence of paralogs using the

idea of overlap for a number of system-wide datasets. We start by looking

at baker’s yeast S. cerevisiae. To this end we measure: 1) The similarity of

positions of paralogs in the transcription regulatory network given by overlap in

transcription regulators, 2) The similarity of the set of binding partners. These

measures reflect, correspondingly, the upstream and downstream properties of

molecular networks around duplicated genes. We then repeat the analysis

using species-wide data on protein interaction networks in a bacterium H.

pylori and a fruit fly D. melanogaster. We end this chapter by looking at the

functional roles of duplicated proteins, more precisely the ability to substitute

for each other. This is demonstrated using data from a single gene knockout
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overlap (Ω)

a pair of paralogs
Figure 3.1: Illustration of the concept of overlap in a molecular network. For
a pair of paralogs the overlap Ω is defined as the number of common neighbors
they have in the network. In the case of transcription network the regulatory
overlap Ωreg counts transcription factors regulating both paralogs, while for the
physical interaction network the interaction overlap Ωint counts their common
binding partners. The pair of paralogs used in this illustration has the overlap
Ω = 2 out of the total of 5 distinct neighbors of the pair. That corresponds to
a normalized overlap of 2/5 = 0.40.

experiment in S. cerevisiae and a RNAi experiment in a nematode worm C.

elegans.

3.2 Divergence of Duplicated Genes in Net-

works of S. cerevisiae

The first measure of the divergence of duplicated genes compares sets of their

transcriptional regulators. Such a set contains information about different
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conditions under which a given gene is expressed, and thus reflects the spec-

trum of its functional roles in the cell. In this context, the overlap of a pair

of paralogs is given by the number of transcription factors that bind to up-

stream regulatory regions of both these genes. The system-wide data for the

transcription regulatory network in yeast was taken from the ChIP-on-chip

experiment by Lee et al. [16] which investigated in vivo binding patterns be-

tween 106 yeast transcription factors and upstream regulatory regions of all

6270 yeast genes. Using the set of paralogous proteins in yeast (see Appendix

A for details), we study for each pair of paralogs, the relation between the

overlap and their sequence similarity. As shown in Fig. 3.2A, one can see that

the regulatory overlap has a tendency to decrease as a function of PID. While

multiple overlaps dominate the distribution for PID ≥ 80%, they gradually

disappear at lower PIDs.

Fig. 3.2B shows the average value of the regulatory overlap as a function

of PID. The regulatory overlap in this plot is normalized by a proxy to the

ancestral connectivity of a gene, estimated as the total number of distinct

transcription factors that are involved in regulation of at least one of the pair

of proteins (see Fig. 3.1). The correlation between the normalized regula-

tory overlap Ωreg and the PID is highly statistically significant: the Pearson

correlation is 0.34 (P-value around 10−70 for 2275 data points). Even for the

lowest value of PID=20% the average Ωreg significantly exceeds its value in

non-paralogous proteins. One interesting feature of the graph in Fig. 3.2B is

that even pairs of proteins whose amino acid sequences are 100% identical to

each other on average have only about 30% overlap in their upstream regula-

tion. Such low regulatory overlap of recently duplicated genes can be partially
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Figure 3.2: Divergence of the upstream transcriptional regulation of duplicated
genes in yeast. A) The distribution of the regulatory overlap Ωreg of paralogous
proteins. The Y-axis – Ωreg – is the number of transcription factors that cis-
regulate both genes encoding a pair of paralogous proteins. The X-axis is the
percent identity (PID) of amino acid sequences of these two proteins. The
colorbar shows the likelihood of finding a given Ωreg in a given PID bin (note
the logarithmic scale). B) The average regulatory overlap Ωreg normalized
by the total number of regulators of either one or the other paralog plotted
as a function of the PID. Error bars are estimated by the square root of the
total number of shared regulators in a PID bin. The solid line is the best
fit to the exponential form: Ωreg ∼ exp(γPID) with γ = 0.03. The dashed
horizontal line at 0.015 is a null-model expectation of the normalized overlap
of two randomly selected proteins (not necessarily paralogs).

attributed to false positives and false negatives present in the dataset. It

might also be sometimes caused by an incomplete duplication of the upstream

regulatory region of a gene, or by a burst of very rapid evolution of the regu-

latory region immediately following the duplication event. The second feature

of the Fig. 3.2B is a gradual decline of the average regulatory overlap over

the whole range of sequence similarities. The data in Fig. 3.2B can be fitted

with an exponential decay with a rate corresponding to an average 3% loss of

common regulators of a paralogous pair for every 1% decrease in their amino
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acid sequence identity. Thus already at PID=80% about half of the common

regulations present at PID=100% are lost.

There are studies which are similar but nicely complement our findings.

One is by Gu et.al. which reported the decline of similarity between microar-

ray profiles of paralogs [55]. In fact, due to a more direct information about

transcriptional regulation contained in the ChIP-on-chip dataset of [16] com-

pared to microarray experiments, our analysis extends the gradual decline to

much lower PID than was detected in Ref. [55]. Another study by Papp et.al.

[56] has reported a rapid decline in the number of shared regulatory motifs of

duplicated genes (a short piece of DNA in which transcription factors bind to).

This study is carried out as a function of a much faster silent substitution rate

Ks compared to our PID. Indeed, in their analysis Papp et al. logarithmically

binned the Ks into four broad bins: below 0.01, 0.01-0.1, 0.1-1, and above

1. Since the reliability of the measured silent substitution rate dramatically

decreases at high values of Ks, the whole long-time behavior (i.e. that for

PID < 75% which in yeast roughly corresponds to Ks > 1) of the regulatory

overlap remained inaccessible to the analysis of Ref. [56].

The rate of divergence between sets of upstream transcriptional regulators

of paralogous proteins has an obvious downstream counterpart: it is the rate

at which paralogous transcription factors loose their downstream targets. Un-

fortunately, an attempt to quantify this rate using the same dataset that we

used above for the rate of upstream divergence would be limited to only 4

paralogous pairs formed by 106 transcriptional regulators studied in [16].

We now consider the second measure of the divergence, systematically com-

paring functional roles of duplicated (paralogous) proteins in the physical in-
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Figure 3.3: Divergence of the downstream function of duplicated genes. The
average value of the interaction overlap Ωint – the number of physical inter-
action partners shared by a pair of paralogous proteins – as a function of the
similarity of their amino acid sequences. The physical interaction data are
taken from the set of Uetz et al. [13] (crosses), core dataset of Ito et al. [14]
(diamonds), and the non-redundant combination of the two (filled circles).
Note the apparent plateau for PID’s between 60% and 100% in both datasets.
Solid lines are guides for the eye. The average interaction overlap in the com-
bined dataset for a random (usually non-paralogous) pair of proteins is equal
to 8 × 10−3 (off-limits in the figure).

teraction network. The functional similarity of a pair of proteins is in part

reflected in the “interaction overlap” Ωint given by the number of other pro-

teins that physically interact with both of them (See Fig. 3.1). In our study

we use the system-wide information about protein-protein physical interac-

tions obtained by combining two high-throughput two-hybrid experiments:

Uetz [13] and Ito [14]. Fig. 3.3 shows the average value of the interaction
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overlap Ωint between pairs of paralogous proteins as a function of PID – their

amino-acid similarity. Again Ωint typically decreases with decreasing PID, re-

flecting the gradual loss/change of binding partners of proteins in the course

of evolution. A similar analysis, but as a function of the silent substitution

rate (Ks) was previously reported by Wagner [57]. In agreement with that

study, we find that paralogous proteins are more likely to share interaction

partners than one expects by pure chance alone (see the caption to the Fig.

3.3). Our set of yeast paralogs contains 189 paralogous pairs such that both

paralogs physically interact with at least one other protein in the combined

dataset of Refs. [13, 14]. Out of these pairs 60 (30%) share at least one inter-

action partner. The correlation between the Ωint and the PID in the combined

two-hybrid dataset is highly statistically significant: the Pearson correlation

is 0.36 (P-value around 5 × 10−6 for 189 data points). The most interesting

observation from Fig. 3.3 is that the divergence in the set of binding partners

becomes systematic only for PID< 70%, while above 70%, it remains roughly

constant in both Uetz, Ito and combined datasets .

Having presented different measures of upstream and downstream diver-

gence of duplicated genes in yeast S. cerevisiae we are now in a position to

discuss them in a wider context. Comparing Fig. 3.2 to Fig. 3.3 one con-

cludes in yeast the upstream regulation of genes evolves more rapidly than

downstream functions of their protein products. Indeed, the overlap in the set

of binding partners remain virtually constant down to PID of 70%, at which

point their average regulatory overlap has dropped to about 40% of its maxi-

mum. This is in accordance with a view which puts regulatory changes as one

of the main driving forces of evolution.
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3.3 Divergence of Physical Interactions of Par-

alogous Genes in H. pylori and D. melanogaster

The analysis of evolution of molecular networks advocated in this paper re-

quires a large (preferably genome-wide) and unbiased (i.e. no anthropogenic

selection present in databases) dataset describing a molecular network in a

given species. Apart from yeast, which is arguably the best studied model

organism, system-wide two-hybrid physical interaction assays were published

for a simple bacterium H. pylori [12], and a fly D. melanogaster [15]. In Fig.

3.4 we used these two datasets to quantify the decay of the average interaction

overlap as a function of amino-acid sequence similarly. The correlation between

Ωint and PID is highly statistically significant in both cases: the Pearson cor-

relation of 0.43 (P-value around 3×10−4 for 65 data points) for H. pylori, and

0.19 (P-value around 10−26 for 2843 data points) in D. melanogaster.

Our basic conclusions agree for all quite diverse organisms used in this

study: paralogous proteins are much more likely to share binding partners

than expected by pure chance alone. Furthermore, the number of common

interaction partners goes down as PID of their amino acid sequences decreases.

In yeast and H. pylori we see the evidence of an initial plateau at which the

average overlap appears to be independent of PID. On the other hand in D.

melanogaster there is no evidence of such plateau, which makes the average

rate of loss of common binding partners (about 4.5% for every 1% of change in

PID) quite high in this organism. However, in the absence of system-wide data

on transcription factors’ binding in D. melanogaster and H. pylori we could not

quantify rates of upstream changes in these two organisms, and consequently
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cannot compare them to the corresponding downstream rates.

Figure 3.4: Divergence of the physical interaction neighborhoods of duplicated
genes in H. pylori and D. melanogaster. The average value of the interaction
overlap Ωint of paralogous proteins in H. pylori (A) and D. melanogaster (B)
as a function of the amino acid sequence similarity. The physical interaction
data are taken from Ref. [12] for H. pylori (A) and from Ref. [15] for D.

melanogaster. Note the apparent plateau for PID’s between 50% and 100% in
panel A and its absence in panel B. Dashed horizontal lines show the average
interaction overlap for a random (usually non-paralogous) pair of proteins.
The solid line is the best fit to the exponential form: Ωint ∼ exp(γPID) with
γ = 0.045.

3.4 Functional Divergence: Robustness against

Knockout

Apart from counting neighbors in networks, to quantify the extent of diver-

gence/redundancy of paralogs, one could examine phenotypes of null-mutants

lacking one of them. This is an alternative but more direct appraoch. Gu et.al

used a systematic gene-deletion study in yeast to compare the fraction of es-

sential genes (so that their null-mutants have lethal phenotype) between genes
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with and without paralogs in the genome [44]. It was found that the fraction

of essential genes is approximately 4 times higher among singleton genes than

among ones protected by a highly similar paralog. It was also demonstrated

that such protection by a paralog persists down to rather low levels of its

amino-acid sequence similarity (PID) with the deleted protein. Using a more

recent and larger systematic study [58] of viability of null-mutants in yeast

(see Appendix A), we confirm these findings. As shown in Fig. 3.5, proteins

having paralogs similar to themselves are less likely to be essential. Notice

that the fraction of essential proteins shows a dramatic increase as the PID to

their closest paralog falls below 50%. Thus paralogous proteins with sequence

similarity above 50% can typically substitute for each other. Interestingly, the

magnitude of this protective effect is the strongest in the nucleus, where the

largest fraction of essential proteins resides.

One might expect the protective effect of paralogs to be unique to single-

celled organisms such as yeast. Indeed, in multicellular organisms duplicated

proteins are often expressed only in specific tissues and therefore unable to

substitute for each other. However, using a systematic study of RNAi (RNA

Interference) phenotypes in a nematode worm C. elegans [59] (see Appendix

A for details of the data) we found such protection to be equally strong in this

multicellular organism (See Fig. 3.6). As in Fig. 3.5, the x-axis in Fig. 3.6

is PID – the similarity of amino acid sequences between a given protein and

its closest related paralog (all singleton proteins without paralogs are clumped

into the 0% PID bin). The y-axis is the fraction of tested proteins whose

elimination by the RNAi technique was found [59] to give rise to a nonviable

phenotype (embryonic or larval lethality or sterility). In worm the protection
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Figure 3.5: Protective effect of paralogs in a S.cerevisae. The fraction of
essential (lethal null-mutant) proteins among all proteins tested in Ref. [58]
as a function of PID to their most similar paralog in the yeast genome. Proteins
with no paralogs (singletons) are binned at 0% PID. The inset (note the change
of scale on the y-axis) shows the fraction of essential proteins in the subset of
all proteins known to be localized in the yeast nucleus. Here the effect becomes
even more pronounced so that all 18 nuclear proteins protected by a paralog
with at least 50% similarity were found to be non-essential.

of having a paralog starts to gradually weaken for PID < 70%. In both worm

and yeast there seems to be a four-fold drop in the fraction of essential proteins

between PID=0% and 100%.

In the inset to Fig. 4 we kept all successfully cloned genepairs, while

in the main panel we dropped those genepairs whose product was predicted

[59] to target mRNA product of more than one gene in the genome. It is
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Figure 3.6: Protective effect of paralogs in a nematode worm C. elegans.
The fraction of essential (non-viable RNAi phenotype [59]) proteins among
all tested worm proteins as a function of PID to their most similar paralog in
the worm genome. The plot in the inset uses all RNAi phenotypes reported
in Ref. [59], while the main panel drops RNAis that are predicted to target
mRNA products of more than one gene. Note that while the graph in the main
panel is qualitatively similar to that in Fig. 3B, in the inset the fraction of
essential proteins at PID=100% rises to its level for singleton proteins. Thus
when mRNAs of highly similar paralogs are eliminated along with the target
mRNA, the protective effect totally disappears.

instructive that the fraction of essential genes as a function of PID shown in

the inset to Fig. 4 has a well pronounced minimum around PID=70% and then

subsequently starts to rise for higher values of PID. The tentative explanation

for this behavior is that unlike single-gene deletion technique used in yeast, the

RNAi technique is based on RNA complementarity and can eliminate several
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different mRNAs with similar sequences. Therefore, paralogous genes with

nearly identical DNA sequences prove to be useless from the point of view of

protection against RNAi since their mRNA products would be eliminated at

nearly the same rate as the intended targets. This neatly explains why in the

inset to Fig. 4 the fraction of nonviable phenotypes for genes with a 100%

identical paralog in the genome approaches that of unprotected genes without

paralogous partners (keep in mind that in this plot we use amino acid sequence

identity of proteins and not of their mRNA precursors.) This observation also

reinforces the point of view that the decline in the fraction of essential genes

vs PID shown in Figs 3.5 and 3.6 is indeed caused by protective effects of

paralogs and cannot be explained by a possible tendency of nonessential genes

to duplicate more frequently.

3.5 Conclusion and Outlook

Our results showed evidences of duplication and divergence in molecular net-

works. For all molecular networks studied in this work, we found that even

the most distantly related paralogous proteins on average have more similar

positions within a network than a randomly selected pair of proteins. That

means that paralogous proteins are likely to at least partially retain their func-

tional redundancy for extremely long time after the duplication event. This is

further supported by the analysis of yeast knockout experiment and the worm

RNAi experiment.

There are numerous examples that redundancy resulting from gene dupli-

cation is important in achieving robustness in biological systems [60]. However,
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it is not clear to what extent biological robustness is maintained by genetic

redundancy. It is likely that redundancy is not the most important factor. For

example, using the same RNAi dataset as we did, Ref. [61] found that out of

the 16000 genes, more than 7500 singleton genes show no detectable phenotypic

effect. Apart from redundancy, network organization is widely recognized as

a way to achieve robustness. Even though there are models which capture the

robust behaviors of biological systems, a general quantification of biological

robustness is still not available.

Our results also indicate that the genetic regulation of paralogous proteins

changes faster than both their amino acid sequences and the set of their protein

interactions partners. It is tempting to extend this observation to pairs of

homologous proteins in different species (orthologs) that diverged from each

other as a result of a speciation (as opposed to a gene duplication) event.

This would help to explain how species with very similar gene contents can

evolve novel properties on a relatively short timescale. However, such an inter-

species comparison of molecular networks has to wait for the appearance of

whole-genome data on molecular networks in closely related model organisms.
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Chapter 4

Dynamics and Noise in Protein

Binding Network

4.1 Background

Recent high-throughput experiments have revealed networks of protein protein

interactions (PPI) that are interconnected on a genome wide scale. In the

last chapter, we have studied PPI networks from an evolutionary perspective.

In this chapter, we go further away from the basic topology and study the

dynamical processes on these networks.

An important element associated with every protein in a PPI network is

its abundance. Experiments in yeast [24, 62] showed that protein abundance

is highly heterogeneous. Average protein concentrations range between 50

to 106 molecules per cell with a median value around 3000. As binding is

a reversible process, a cell consists of a mixture of free proteins and dimers

in dynamical equilibrium. Equilibrium is attained when the forward reaction
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(binding) rate balances the backward reaction (unbinding) rate. The reaction

rates are proportional to the product of concentrations of reactants. This is

commonly known as the law of mass action (LMA).

What happens if the equilibrium is perturbed? Suppose the total concen-

tration of a certain protein is increased by a significant amount, say two-fold,

the free concentrations (and at the same time dimers concentrations) of its

neighbors will be perturbed, and changes may propagate to its next nearest

neighbors and so on. Recent studies [63, 64] show that on average, the mag-

nitude of cascading changes in equilibrium free concentrations exponentially

decays with the distance from the source of perturbation. Therefore in gen-

eral undesirable cross-talks presented by such a highly connected network are

suppressed. Of further interest is that a significant number of pathways are

found, along which perturbations can survive over a substantial length (up to

4 steps). These pathways are suggested as possible candidates for functional

signalling.

While Refs. [63, 64] have focused on large perturbations (real signals) to the

equilibrium state, protein concentrations are subject to stochastic fluctuations

in the course of their production and degradation. This affects the concen-

trations of free proteins and dimers. Apart from this, thermal fluctuations

exist in the binding and unbinding processes. All these result in dynamical

fluctuations in the LMA equilibrium state. In this work, we analytically and

numerically studied the individual effect of thermal noise and noise originated

from protein production and degradation in a PPI network, we found that the

network affects the two kinds of noise quite differently.

First, we will present the general formalism, the PPI network of a model
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organism S. cerevisiae (baker’s yeast) will be used for detailed calculation.

Readers are asked to refer to Appendix B for details of the datasets. While its

systemwide interaction network and protein abundance are well documented,

the binding energies between proteins are not extensively measured. In the

absence of genome-wide information regarding the value of dissociation con-

stants, we assume them to be the same Kij = Kd. In the following study,

we use Kd = 10nM ∼ 340 molecules/cell in yeast, which is comparable to the

average of the dissociation constants found in the PINT database [65]. With

the use of a homogeneous dissociation constant, however, one cannot infer the

biology of individual proteins. Nonetheless, we can focus specifically on the

role of network topology and protein concentrations. It should be stressed that

the general formalism can further be applied for cases involving heterogeneous

dissociation constants.

4.2 General Formalism of Temporal Variation

We represent a system of N distinct types of interacting proteins by an N ×

N adjacency matrix A (Aij = 1 if protein i, and j could interact to form

heterodimer ij, and 0 otherwise). We are interested at the concentration of

free protein i (Fi) and dimers ij (Dij). At any time, they are related to the

concentration, Ci, by the mass conservation equation

Ci = Fi +
∑

j

AijDij . (4.1)

Followed from the law of mass action, the concentrations satisfy the chem-

59



ical kinetic equation

dDij

dt
= r

(on)
ij FiFj − r

(off)
ij Dij, (4.2)

where r(off) and r(on) are the dissociation and association rate constants re-

spectively. Eq. 4.2 describes the dynamics through which the system attains

equilibrium. The steady state solution for each heterodimer ij is

F̄iF̄j = KijD̄ij, (4.3)

where Kij = r
(off)
ij /r

(on)
ij is referred as the dissociation constant.

In this chapter, we are interested in cases where the system is close to

equilibrium. Assume the total concentrations are constant, a linearization of

Eq. 4.2 and the mass conservation implies

−
1

r
(off)
ij

d

dt
δDij =

1

Kij

(F̄i

∑

k1

Ajk1
δDjk1

+ F̄j

∑

k2

Aik2
δDik2

) + δDij . (4.4)

By labeling the indices using edges instead of vertices, Eq. 4.4 can be repre-

sented by a E × E matrix Γ where E is the number of edges in the network.

−
1

r
(off)
µ

d

dt
δDµ =

∑

ν

ΓµνδDν , (4.5)
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where Γµν is defined as

Γµν =



































1 + Dµ

Fj
+ Dµ

Fi
if µ = ν,

Dµ

Fj
if µ 6= ν but connected via j,

Dµ

Fi
if µ 6= ν but connected via i,

0 if µ 6= ν and not connected.

(4.6)

Here I assume the dimer µ is formed by proteins i and j. From now on, we use

Greek indices to indicate dimers (edges), and Latin to label proteins (nodes).

Eq. 4.2 is the dynamical equation for dimer concentrations. As a result of

mass conservation, it is equivalent to describe the system by free concentrations

and rewrite Eq. 4.2 as

dFi

dt
=

∑

j

r
(off)
ij AijDij −

∑

j

r
(on)
ij AijFiFj , (4.7)

and linearize around the equilibrium. For mathematical simplicity, we further

impose that all Kijs are identical. Indeed if that is the case, one can write

−
1

r(off)

d

dt
δFi =

∑

j

ΛijδFj, (4.8)

where the N × N matrix Λ is given by

Λij =
F̄i

Kd
Aij + δij

Ci

F̄i

. (4.9)

The ith diagonal element of Λ is the sequestration level of protein i. The

perturbation of a highly sequestered protein will relax rapidly. However, it will
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not contribute much to the relaxation of its neighbors since its cross section

F̄i/Kd is rather low. As we only consider scenarios near equilibrium, we will,

from now on, drop the bar on equilibrium concentrations.

The relaxation of the system from any fluctuation δD (or δF) towards the

steady state is determined by the spectral properties of the matrix Γ (or Λ).

These matrices can be symmetrized by the following similarity transforms,

SΓ = D−1/2ΓD1/2 (4.10)

SΛ = Q−1/2ΛQ1/2, (4.11)

where D and Q are diagonal matrices with Dµµ are the concentration of dimer

µ and Qii are the concentration of free protein i. Due to the symmetrization,

the eigenvalues of Γ and Λ are therefore real. In fact, the eigenvalues are

all positive, and the system will therefore always return to equilibrium. The

relaxation of any perturbation can be decomposed into eigenmodes. Each

eigenmode has its own characteristic decay time τ (α) given by (r(off)λ(α))−1,

where λ(α) is the corresponding eigenvalue. The eigenmodes are useful in

understanding the system. An important property is that they are actually

quite localized to a few vertices. This could be verified by the calculating

the so called participation ratio for each eigenmode. The participation ratio

(PR) is defined as (
∑

x4
i )

−1 where xi are the components of a normalized

eigenvector. The value of PR = 1 if the eigenvector is concentrated on a single

component, but takes the value n if the eigenvector spreads uniformly over all

the n components. For the Λ matrix we defined in Eq. 4.9, there are 1439

nodes, but the mean PR is only about 2.7. We will explain the implication of
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localized eigenmodes in the later part of this chapter.

4.3 Thermal Noise: Two Proteins Case

Association and dissociation between proteins are kinetic proceses. As a re-

sult, the concentrations of free proteins and dimers always fluctuate near the

equilibrium values given by Eq. 4.3. We refer to these fluctuations as thermal

noise. To estimate the thermal fluctuations in dimer/free concentrations for a

given cell, we assume the total concentrations of proteins are constant. This

is because the total concentration of a protein in a cell fluctuate rather slowly,

compared to the characteristic time scale of the relaxation of the system, as a

result of binding and unbinding.

Before going to the general network case, we start by looking at how two

proteins (say A and B) bind to form dimers. The deterministic equation

is a simplified version of Eq. 4.4. To include the effect of stochasticity, a

fictitious random force is added. Following the argument by Bialek et.al.

[66], the random force can be considered to be caused by the variation of

the association and dissociation rate constants. By linearizing Eq. 4.2 with

additional variations of r(on) and r(off), one arrives at

1

r(off)

d

dt
δDAB = −(

FA

Kd

+
FB

Kd

+ 1)δDAB + (
δr(on)

r(on)
−

δr(off)

r(off)
)DAB. (4.12)

This equation is similar to Eq. 4.4, with an extra term describing the stochas-

ticity. Multiplying the whole equation by r(off), we have δr(on)FAFB and

δr(off)DAB respectively. As r(on)FAFB and r(off)DAB are the increment and
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decrement to DAB via forward and backward reactions, the two extra terms

can be regarded as the variance of these contributions.

The rate constants are related to the binding energy g of the dimer AB

via detailed balance given by

r(off)

r(on)
= exp(

1

kT
g). (4.13)

By substituting the log-derviative of Eq. 4.13 to Eq. 4.12, we have

−
1

r(off)

d

dt
δDAB = (

FA

Kd
+

FB

Kd
+ 1)δDAB +

δg

kT
DAB. (4.14)

With δg as the thermodynamic conjugate of δD (assume the system is in

a unit volume), we define the dynamic susceptibility of the system by trans-

forming Eq. 4.14 to the frequency space, arriving at

α(ω) =
δDAB

δg
=

DAB

kT

1

FA/Kd + FB/Kd + 1 − iω/r(off)
. (4.15)

Using the Fluctuation-Dissipation theorem which relates the dissipative

part of the dynamic susceptibility to the power spectrum of the spontaneous

fluctuations, the power spectrum of δD is given by

|δDAB(ω)|2 =
2kT

ω
Im(α(ω)), (4.16)

where Im(α) denotes its imaginary part. The steady state fluctuation is given
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by the area under the spectrum.

〈δD2
AB〉 =

∫ ∞

−∞

2kT

ω
Im(α(ω))

dω

2π

= kTα(0)

= DAB
1

FA/Kd + FB/Kd + 1
. (4.17)

An intuitive way to understand Eq. 4.17 is to view the average fluctuations as

an balance between “kick out” and “drag back”. DAB is a source of randomness

which kicks the system out of equilibrium, while at the same time, the term

(FA/Kd + FB/Kd + 1)−1 brings the system back.

To quantify the noise for the stochastic variable DAB, it is instructive to

use the so called Fano factor η, defined as the ratio between the variance and

the mean. In this case, we have

η =
1

FA/Kd + FB/Kd + 1
. (4.18)

For Poisson process where the birth/death events are independent, the Fano

factor is exactly one. Note that in Poisson process, when the number is more

than average, there will be more candidates for death and thus the system

will be brought back to normal. Eq. 4.18 suggests that the Fano factor in

thermal fluctuations is narrower than a Poisson process. This is because once

a dimer breaks down, not only there are more candidates for binding, the

probability of binding also increases by the law of mass action. This additional

effect further enhances the tendency to return to normal and therefore give a

narrower distribution. This also explains why large FA and FB give a lower
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Fano factor and η → 1 if both A and B are highly sequestered.

To explore further this example, let us assume CA < CB, label the proteins

of type A and define for each of them a time series xi(t) as

xi(t) =











1 if i forms a dimer with protein B

0 otherwise
(4.19)

Define X =
∑

i xi, we have 〈X〉 = DAB and σ2
X = DABη. Let us assume xis

are i.i.d. (which is not true and we will return immediately). σ2
X will then

be
∑

i σ
2
Xi

. From ergodicity the ensemble average σ2
Xi

is equal to the time

average 〈x2
i 〉t − 〈xi〉

2
t . As xi can only be 0 or 1, the expression is the same as

〈xi〉t(1 − 〈xi〉t), which is equal to DAB

CA
(1 − DAB

CA
). The last step follows again

from ergodicity. Therefore if xis are i.i.d., σ2
X is equal to DAB(1 − DAB

CA
).

The variables xis are not independent. The reason is there are only finite

amount of B, the binding of a B molecule to a particular A protein will

decrease the chance of another A protein being bound. As a result, for two A

proteins i and j, xi(t) and xj(t) are correlated in the sense 〈xixj〉t < 〈xi〉t〈xj〉t.

The actual Fano factor σ2
X/DAB is bounded by (1 − DAB

CA
), which is a tighter

bound compared to 1.

Mathematically, one can arrive at the same result using Eq. 4.18. As

CA < CB and thus FA < FB, we have

η ≤
1

1 + FB/Kd

= 1 −
DAB

CA

= 1 −
DAB

Dm
. (4.20)
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Here Dm is the maximum number of possible dimers formed by proteins A and

B, which is min(CA, CB). Such an upper bound is reached if CB ≫ CA, which

is exactly a scenario where the A molecules can be regarded as independent

due to the abundance of B.

Relation with chemical Langevin equation

Eq. 4.12 is reminiscent of the chemical Langevin equation introduced by Gille-

spie [67]. Indeed, one could write down the chemical Langevin equation in this

case as

d

dt
DAB = FAFBr(on) − DABr(off) +

√

FAFBr(on)ζ1 −
√

r(off)DABζ2, (4.21)

where ζs are two independent white noise defined as lim
dt→0

N(0, 1/dt). Here

N(a, b) stands for a Gaussian variable with mean a and variance b. A lin-

earization gives us

d

dt
δDAB = −(

FA

Kd
+

FB

Kd
+1)δDABr(off)+

√

FAFBr(on)ζ1−
√

r(off)DABζ2. (4.22)

Compare Eq. 4.22 with Eq. 4.12, we can identify the binding term
δr(on)

r(on)
DABr(off)dt

as N(0, FAFBr(on)dt) and the other
δr(off)

r(off)
DABr(off)dt as N(0, DABr(off)dt).

Chemical Langevin equation is an approximation to the chemical master

equation. In this example, it assumes that the increase in dimer number due

to association and the decrease in dimer number due to dissociation follow

two independent Gaussian distribution. The stochastic process (the number of

dimer with respect to time) is completely the result of the molecular collisions.
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This is the reason why temperature does not enter the average magnitude of

fluctuations as shown in Eq. 4.17. Of course, since dissociation constants

are functions of temperature, the Γ matrix and thus σ depend implicitly on

temperature.

The essence of our approach is to translate the Gaussians as a result of

a fictitious variation in binding energy and apply the Fluctuation-Dissipation

theorem. It relies on only the macroscopic kinetics and bypasses the micro-

scopic description. Alternatively, one can find the steady state fluctuation

using the linear noise approximation [26, 27], which is introduced in biologi-

cal context by Paulsson [68, 69]. The final result by Paulsson is an equation

which relates the covariance matrix σ, the magnitudes of fluctuation sources

(ζs) and the dissipation matrix Γ, which is also commonly referred as the

Fluctuation-Dissipation theorem in literature.

4.4 Thermal Noise: General Network Case

One can generalize from an isolated dimer to interconnected dimers. In this

case, Eq. 4.14 is replaced by

1

r
(off)
ij

d

dt
δDij = −

1

Kij

(Fi

∑

k1

Ajk1
δDjk1

+ Fj

∑

k2

Aik2
δDik2

) − δDij + Dij
δg

kT
,

(4.23)

or in terms of the Γ matrix,

d

dt
R−1δD = −ΓδD + Dδg/kT, (4.24)
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where R is a diagonal matrix whose entries are the r(off)s of dimers and D

is another diagonal matrix formed by the equilibrium dimers concentrations.

The components of the column vector δg can again be thought as the variation

of binding energy of the dimers.

Following the previous procedures, the dynamic susceptibility is defined by

Fourier transforming Eq. 4.24:

α(ω) = (Γ − iωR−1)−1D
1

kT
. (4.25)

Using the Fluctuation-Dissipation theorem, which is multi-dimensional in this

case, the power spectrum of δD is therefore

(δDµδDν)ω =
ikT

ω
(α∗

νµ − αµν). (4.26)

where α∗
νµ is the complex conjugate of ανµ.

A direct application of Eq. 4.26 gives us the correlation function

〈δDµ(t)δDν(t
′)〉 =

∫

(δDµδDν)ω exp(−iω(t − t′))
dω

2π
. (4.27)

More importantly, we have the steady state covariance matrix σ defined as

σµν = 〈δDµδDν〉 =

∫

(δDµδDν)ω
dω

2π
. (4.28)

The integral can be evaluated using the dispersion relations and the fact that
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the imaginary part of α(ω) is an odd function. The final result becomes

σµν = kTαµν(0) = (Γ−1D)µν . (4.29)

As we are dealing with the steady state fluctuations, the decaying time scales

r(off)s do not enter the final expression.

σµν appears to be asymmetric as Γ is not a symmetric matrix. However,

recall Eq. 4.10, σµν is in fact symmetric with respect to interchange in µ and

ν. Using Eq. 4.29, the steady state fluctuation 〈δD2
µ〉 of a dimer µ is given by

Γ−1
µµDµ. Thus the relative fluctuations

√

〈δD2
µ〉/Dµ scales with 1/

√

Dµ. Or in

the other words, the Fano factor η of dimer µ is Γ−1
µµ .

Properties of thermal fluctuations are implicitly stored in the matrix Γ. Of

particular interest is the inequality Γ−1
µµ < Γ−1

µµ , resulting a lower bound for η

(see Appendix C for a detailed mathematical proof)

ηµ ≥ (
Fi

Kd
+

Fj

Kd
+ 1)−1. (4.30)

Here we label the dimer ij by the index µ. The bound is interesting because for

proteins i and j in the PPI network with free concentrations Fi, Fj and dimer

concentration Dij, the right hand side of the inequality resembles the Fano

factor of thermal fluctuations in a isolated system of two physically interacting

proteins with the same set of concentrations (see also Eq. 4.18). In the other

words, the network as a whole amplifies the thermal fluctuations for a pair of

interacting proteins compared to a case in which the two proteins are isolated.

Can amplification occur without limit? The answer is obviously no by
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Figure 4.1: Thermal fluctuations in protein interaction network. Fano factor
η of a dimer is defined as the ratio between the variance and the mean of its
concentration. The calculation of η is described in the main text. The maximal
η is 1, which is the case of a Poisson process. The inset is the histogram of η.
About one third of the dimers lie at the bin closest to 1. For each dimer ij,
Dm is defined as min(Ci, Cj). The ratio D/Dm is a measure of occupation.
Dimers with low occupations have lower Fano factors. It is clear from the plot
that all points lie below the diagonal defined by the equation y = 1 − x.

numerically calculating the Fano factors. The inset of Fig. 4.1 shows histogram

of the Fano factors for all dimers in our curated protein interaction network.

As we have explained in the case of two proteins, the Fano factors of thermal

fluctuations in reversible binding processes have values less than one. Out
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of the 3880 dimers in our network, one third of them lie at the bin with

η > 0.95. However, if one repeats the analysis using a network in which

the total concentrations are reshuffled, over one half of the dimers will fall at

the last bin. The same is true if one randomizes the network by swapping

the edges while preserving the degree distribution [19]. Real-life PPI networks

may, in general, have narrower thermal fluctuations compared to their random

counterparts.

From the values of Fano factors, thermal fluctuations are narrower com-

pared to Poissonian fluctuations. It is interesting to compare thermal fluctu-

ations with the fluctuations in the production or degradation of proteins. In

single gene expression model [70], the Fano factor is given by 1 + b where b

is the average number of proteins translated per mRNA molecule. In other

words, such fluctuations are always larger than thermal fluctuations. In the

later part of this chapter, we will discuss the effects of fluctuations due to

protein production and degradation.

Motivated by the Eq. 4.20, for each dimer, we plot in Fig. 4.1 η against

the ratio between its equilibrium concentration and its maximal possible con-

centration Dm = min(Ci, Cj). We call this ratio the occupation factor. It is

important to note that even though Dm is the maximum possible concentra-

tion for a particular dimer, it is not possible for a set of dimers to reach their

corresponding Dm simultaneously. Therefore, the actual maximum concentra-

tion should be effectively smaller. As we can observe in Fig. 4.1, it is clear

that for every dimer µ, ηµ ≤ 1 − D/Dm.

A hint to explain this is to use the hypothetical i.i.d. scenario discussed in

the previous section for a case of two isolated interacting proteins. With the
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presence of other proteins, say C, D, E etc, one can still define xi(t) such that

xi(t) = 1 if protein i of type A is bound to a B molecule and 0 otherwise. If

xis are i.i.d., the variance of X (which is defined as
∑

i xi(t)), σ2
X , is equal to

DAB(1−DAB/CA), thus the corresponding η is 1−DAB/CA, i.e. the observed

upper bound. Like the case for two proteins only, there is a discrepancy

between the real η and the bound since the A proteins, say i and j, compete

with each other for Bs, resulting at 〈xixj〉t < 〈xi〉t〈xj〉t. On the top of that,

in the presence of C, D, E etc, the real” η deviates further from the bound as

the extra proteins compete with B in binding with protein j. To sum up, for

any dimer µ which is formed by µ1 and µ2, we have

1

1 + Fµ1/Kd + Fµ2/Kd
≤ ηµ ≤ 1 −

Dµ

Dm
, (4.31)

where Dm = min(Cµ1, Cµ2).

Eq. 4.31 suggests a coordinate transform

ηµ = (1 − ζ)ηmin + ζηmax, (4.32)

where ηmin and ηmax are the two bounds respectively. Fig. 4.2 is a histogram

of the parameter ζ . The parameter quantifies the thermal fluctuations of a

dimer relative to the two extremal values. When ζ = 0, η = ηmin. When

ζ = 1, η = ηmax. The pileup against the upper limit suggests that, despite

the i.i.d. assumption, the Fano factor of a dimer is very close to the upper

limit. Besides, there exists dimers whose Fano factors are close to the lower

limit, i.e. they are rather isolated from the network. Indeed most of them are

73



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

ζ

H
is

to
gr

am

Figure 4.2: Histogram of ζ , a parameter to quantify thermal fluctuations be-
tween two extremal values. When ζ = 0, η = ηmin. When ζ = 1, η = ηmax.

hanging at periphery of the network. It is important to note that the isolated

is not only in the sense of topology. It is incorporated by the concentrations.

For those dimers with low ζs, their thermal fluctuations are likely due to their

own association and dissociation, rather than the influence of other dimers in

the network.
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Power spectrum of thermal fluctuations

As a result of the damping effects induced by the matrix Γ, it is interesting to

look at the power spectrum of our stochastic variable, δDµ. Being consistent

with the chemical Langevin equation, the stochastic effects of binding and

unbinding are assumed to be white noise, i.e. the power spectrum is flat.

Using our formalism, the noise power spectra of dimers can be easily found

numerically using Eq. 4.25 and 4.26. A more general approach could be found

in [71].

Fig. 4.3 shows the noise spectra for a few dimers. Most dimers have power

spectra like the red and blue curves. The main observation is the existence of

a cut-off frequency. Below the cut-off, the spectral density is apparently flat.

As the frequency increases above the cut-off, the noise power decreases with

1/ω2. This is usually called the low-pass-filtering property. One can fit the

power spectra using the function

S(ω) =
θ

(ω/r(off))2 + ω2
o

. (4.33)

Here, ωo is interpreted as an effective time scale of the relaxation process.

When ωo is large, fluctuations are rapidly damped, the noise level is therefore

low. At the same time, a system with a large ωo has a fast response fast and

thus the system has enough time to catch up provided that the noise frequency

is not extremely high. The flat region of the spectrum is therefore wide. Note

that the area under the power spectrum is the average fluctuation. From these

observations, it can be concluded that a large ωo leads to smaller fluctuations.

Green data points in Fig. 4.3 refer to a dimer with two relaxation time
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Figure 4.3: Examples of power spectra for three dimers. Data points are
obtained numerically using Eq. 4.25 and 4.26. The red and blue data
points are typical cases. The lines are results of the best fit to the function

S(ω) =
θ

(ω/r(off))2 + ω2
o

. The values of the fitting are shown in the legend.

The red curve has a shorter effective relaxation time compared to red. The
green data refer to a dimer with two relaxation time scales as described in the
main text. The inset is the distribution of effective relaxation rates ωo for all
dimers.

scales. Indeed, one can project the fluctuation of a dimer on the eigenvectors

of Γ. As the eigenvectors are in general localized, the fluctuation is likely to lie

along a particular eigenvector, and its relaxation time-scale will be likely re-

flected by the eigenvalue of that particular eigenvector. However, even though

it is rare, there are dimers (e.g. dimer as shown in Green data points) whose
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fluctuations involve significantly more than one eigenvector in a significant

way.

In general, one can obtain the effective relaxation rates of all dimers by

fitting all the power spectra using Eq. 4.33. The effective relaxation rates

follow a broad distribution which resembles the distribution of eigenvalues of

the matrix Γ (see inset of Fig. 4.3).

4.5 Effects of Noise in Total Concentrations

Apart from thermal noise, total concentrations of proteins fluctuate due to

stochasticity in production and degradation. Or in an ensemble point of view,

the total concentration of a protein varies from cell to cell, which is recently

measured experimentally by [24]. Since the function of a free protein molecule

can be very different from a dimer, it is significant to decompose the noise

into more biologically meaningful components: concentrations of individual

free proteins and concentrations of individual heterodimers.

Consider a case where there is an abrupt but small change in total concen-

trations, i.e. δC is a step function. To incorporate heterogeneous dissociation

constants, one can use Eq. 4.5 and study the effects on dimer concentrations.

But for mathematical simplicity, let us assume the dissociation constants are

identical and look from the view of free proteins. By taking into account the

change in total concentration δC in Eq. 4.1, Eq. 4.8 can be rewritten as

−
1

r(off)

d

dt
δFi =

∑

j

ΛijδFj − δCi. (4.34)
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Instead of looking at the relaxation of δFi, it is more relevant to study the

relative perturbation, δFi/Fi. Note that Fi is the equilibrium concentration,

and therefore a constant. Using the definition of Λ and dividing Eq. 4.34 by

Fi, we have

−
1

r(off)

d

dt

δFi

Fi

=
∑

j

(
Fj

Kd

Aij + δij
Ci

Fi

)
δFj

Fj

−
δCi

Ci

Ci

Fi

. (4.35)

It is interesting to point out that the relaxation of δFi/Fi is governed by the

transpose to the Λ, which determines the relaxation of δF .

As fluctuations in C are rather slow compared to the time required to

attain equilibrium, we are interested in the long time limit of the solution of

Eq. 4.35 which is given by

δF

F
= (ΛT )−1Z

δC

C
, (4.36)

where Z is a diagonal matrix with elements Zii = Ci/Fi. The role of (ΛT )−1Z

is a transfer function, which maps the relative change in total concentrations

to relative changes in free concentrations.

Eq. 4.36 implies that there could be very different consequences if two

proteins are increased by the same percentage in their total concentrations.

Because of the Z matrix, if the total concentration of a highly sequestered pro-

tein is increased, the effect could then be magnified. In addition, by spectrally

decomposing Λ into its left and right eigenvector |lk〉 and |rk〉, we have

δF

F
=

∑

k

1

λk

|lk〉

〈

rk|Z
δC

C

〉

, (4.37)
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where λks are the eigenvalues. Therefore, if a fluctuation δCi/Ci is dominated

by an right eigenvector of Λ with a small eigenvalue, the resultant response

δF/F is more significant. Moreover, the response could spread further apart

spatially on the network if the corresponding left eigenvector has a large partic-

ipation ratio. Eq. 4.37 allows one to extract the proteins whose concentrations

may change dramatically by a fluctuation in a particular protein. This is a

more mathematical approach of finding concentration-coupled proteins intro-

duced in Ref. [64].

As it has been already emphasized in Ref. [63], real-ife PPI networks

would be more prone to propagating perturbations than their randomized

counterparts. While this allows effective propagation of signals, it suffers from

the effects of noise. It is interesting to compare the thermal noise case, where

real-life networks have narrower thermal fluctuations compared to randomized

versions.

Several studies [22, 72, 73] have distinguished the so-called intrinsic and

extrinsic noise. The intrinsic noise is due to the independent stochastic fluc-

tuations in production and degradation, therefore lacks correlation between

proteins. On the other hand, the extrinsic noise corresponds to correlated

shifts in abundance of several proteins, which could be attributed to, e.g. the

ribosome-mediatd noise or the variation in cell size. Despite experimental

measures of protein abundance [24], it is hard to separate the effect of these

two factors.

To study the effects of extrinsic and intrinsic noise on binding network,

we consider two cases where the protein concentrations are either all coherent

(extrinsic) or independent (intrinsic). Suppose the concentrations of all pro-
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Figure 4.4: Relative response in free concentrations as a result of fluctuations
in total concentrations. The response is calculated by Eq. 4.36 where the
fluctuation in total concentration is assumed to be 20% for each protein. The
relative changes in the steady state free concentrations δFi/Fi, normalized by
0.2 in this case, are plotted against the original free concentrations Fi. Re-
sponse to intrinsic fluctuations (right panel) are in general orders of magnitude
higher than the response to extrinsic fluctuations (left panel).

teins change by 20% (around the average magnitude from experiment [24]),

the relative perturbation in free concentrations can be found using Eq. 4.36.

As shown in Fig. 4.4, in case of correlated fluctuations (left panel), the re-

sultant changes in free concentrations are tiny. It means that the fluctuations
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in total concentrations tend to cancel each other. In contrast, intrinsic fluc-

tuations (right panel) contributed from different proteins can sometimes add

up and cause considerable changes in the steady state free concentrations,

which could be orders of magnitude higher than the corresponding changes for

extrinsic fluctuations.

It is also interesting to look at the case for the random counterpart. We

found that if the concentrations are reshuffled, the intrinsic noise can be not

added up to the level as in case of the real-life network. This is consistent with

the conclusion that real-life network is more likely to propagate noise in total

concentrations.

So far, we have focused on the steady state response to total concentrations.

More generally, one could study the average dynamical fluctuations by Fourier

transforming Eq. 4.34 to the frequency space

δF (ω) = (Λ − i
ω

r(off)
I)−1δC(ω). (4.38)

The power spectrum is thus

S(ω) = 〈δF (ω)δF (ω)†〉 (4.39)

= (Λ − i
ω

r(off)
I)−1〈δC(ω)δC(ω)†〉(ΛT + i

ω

r(off)
I)−1. (4.40)

Given the fluctuations in total concentration 〈δC(ω)δC(ω)†〉, the noise in free

concentrations could be evaluated by the area under the spectrum. While

the fluctuations in single gene expression are well studied, analytical models

on expression of many interrelated genes are intractable. We will not go into
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details in this study.

4.6 Conclusion and Outlook

We have presented the mathematical formalism for studying dynamical pro-

cesses in protein binding networks governed by the law of mass action. In

particular, we use the formalism to study the thermal noise and the noise due

to fluctuations in total concentrations. It turns out that real-life PPI networks

respond quite differently to these two kinds of noise. While real-life PPI net-

works suffer the problem of noise due to fluctuations in total concentrations,

it usually has smaller thermal fluctuations. It is in general true that thermal

noise is rather mild, however, as the number of proteins in a cell could be

rather small and biological systems can sometimes be so sensitive, its effect is

still not negligible.

In this chapter, our analysis is mostly statistical. In fact, apart from

system-wide analysis, it is fruitful to look at how dynamical fluctuations

(change in concentrations) are transmitted in a pathway through successive

binding and unbinding. More interestingly, one can aim at how noise prop-

agates or attenuates along the pathway. This allows one to generalize the

studies in [63, 64] to include fluctuations in all frequencies.

As a simple example, one could consider binding as a kind of post-translational

regulation. Suppose B is a binding partner of A. Without B, the noise of the

free concentration of A is just the noise of its total concentration, which is the

result of stochasticity in transcription, translation and degradation. On the

other hand, if A is regulated by its binding partner B, this kind of noise is re-
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duced. A larger reduction is even possible if A is highly sequestered. However,

the use of B may induce extra noise sources, including the fluctuations in the

total concentration of B and thermal effect. In general, the result changes in

noise amplitude are frequency dependent.

The mathematics we presented give the power spectrum in concentrations

for different components in a pathway. As noise in different frequencies may

have different effects in the system, for example, high frequency noise is usually

less important as the system is not fast enough to respond, the area under the

spectrum may not be the best measure of noise. It is instructive to start from

simple topologies (linear cascades, stars) and quantify the noise using the

spectra. Methods along in this line have been used in simple genetic networks

[74, 75].
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Chapter 5

Large-scale prediction and

verification of indirect

regulatory interactions in model

organisms

5.1 Background and Introduction

The development of high-throughput experimental techniques has lead to ac-

cumulation of tremendous amount of data describing regulatory interactions in

model organisms. In order to understand biological processes at a system-wide

level, effective computational algorithms are necessary [76, 77].

The regulatory interactions from high-throughput experiments can be ei-

ther direct or indirect in nature. We call the regulation from a regulator to a

target protein direct if it is mediated by a direct molecular mechanism such as
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transcriptional regulation of a target protein’s level by a transcription factor

or phosphorylation by a kinase. Conversely, regulations involving any number

of intermediate proteins are referred to as indirect. In fact, indirect regula-

tions are vastly more common than the direct ones and thus easier to detect

experimentally.

There are many approaches to study regulation interactions. Methods like

Boolean function [31], Bayesian analysis [32] are proved to be very useful.

However, these methods are conceptually more complicated, and they are ap-

plicable only if the available data contains specific details like carefully chosen

perturbation conditions and temporal information. In practice, one may have

a large and noisy dataset of regulations (including both direct and indirect)

specifying only the signs. In this case, simpler method based on network topol-

ogy can be more useful. The idea is to represent the data in terms of a directed

network in which edges carry signs. A directed edge tells which gene regulates

which other gene, and the sign represents whether the regulation is activation

(positive) or inhibition (negative). In spite of its simplicity, topological analy-

sis has been proved to be a powerful tool in extracting a wealth of information

from noisy regulatory data [33]. In this work, we develop a network-based

algorithm which allows one to verify existing indirect regulations and to pre-

dict missing ones. The algorithm is applicable to large and heavily connected

networks combining direct and indirect regulatory interactions.

Consider a protein i regulating (either directly or indirectly) a protein k

which in its turn is known to regulate (again directly or indirectly) a protein j,

then it is rather likely to also have an indirect regulatory interaction between

i and j. This simple observation could be further extended in two ways.
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Firstly, indirect regulations could propagate along longer protein cascades,

thus a series of regulations i → k1 → k2 → j increases the likelihood of

an indirect regulation i → j. Secondly, having multiple parallel pathways

reinforce the predictability. Therefore, if protein i regulates proteins k1, k2

and each of them regulates protein j, it is even more likely to find an indirect

regulation from i to j.

Naively, to predict or verify an indirect regulation between protein i and

protein j, one could simply count the number of paths connecting i and j.

However, this counting scheme has to take into account two important obser-

vations. First of all, paths should be weighted differently according to their

lengths. Inferences based on cascades is less reliable, and thus such should

contribute less to the likelihood. Secondly, the inferred sign of the indirect

regulation from different paths should agree with each other. In general, if a

protein i and a protein j are connected by a multi-step path, the sign of the

resultant indirect regulation between i and j is given by the product of signs

of all intermediate edges. It is natural to assume that the effect of a positive

path (whose edges give a positive product) and the effect of a negative path

(whose edges give a negative product) contradict and to some extent cancel

each other.

In the next section, we will show that this central idea of predicting likely

indirect regulations could be easily incorporated using a matrix formalism.

Obviously, the likelihood can serve as a quantitative measure of the reliability

of any regulation in a dataset. Thus one could also verify already known regu-

lations based on this calculated likelihood. A regulation with a high likelihood

is deemed reliable. On the other hand, indirect regulations missing from the
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dataset could be reliably predicted. As always, there is a tradeoff between

the number of predictions and their quality. Due to the usage of multi-steps

indirect paths from one protein to another, our method is tailored for heavily

interconnected networks in which such multiple regulations are common.

We applied our algorithm to the set of genetic regulations extracted from

contents of the entire PubMed database (14,000,000 abstracts) and 47 full

text journals. The automatic extraction of interactions was made possible by

the Medscan algorithm based on Natural Language Processing (NLP) tech-

niques [78]. Both direct and indirect regulatory interactions were collected for

four model organisms: Homo sapiens, Saccharomyces cerevisiae, Arabidopsis

thaliana and Drosophila melanogaster (see Table 5.1 for details). As reflected

in their inter-connectedness index IC = 〈kinkout〉/〈kin〉, all these networks

are globally connected (IC > 1). In particular, since the network of human

proteins is the largest and the most heavily connected (IC ≃ 60) among the

networks used in this study, we will illustrate our algorithm using mostly this

network.

Large-scale network analysis of indirect regulatory interactions in yeast

was recently studied in [33, 79, 80]. These works focused on the classification

of regulations as either direct or indirect and subsequently pruning of indi-

rect regulations. Pruning of indirect regulations is a useful procedure from the

point of network simplification. However, being developed for relatively sparse

networks, these algorithms assume all links are equally reliable and neither of

these algorithms performs well for heavily interconnected networks considered

in this study. Owing to the accrual of data from high-throughput experiments,

heavily entangled networks are evidently unavoidable. Indeed, to effectively
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Table 5.1: Regulatory networks of the four model organisms. The IC (inter-
connectedness) index, defined as 〈kinkout〉/〈kin〉, quantifies whether a single
perturbation typically spreads over a network (IC > 1) or dies out (IC < 1).
Here kin and kout stands for the in and out-degree of the nodes respectively.
Golden sets consist of frequently reported regulations which are used as highly-
trustable references in this study.

Number of Number of links Size of Golden set
Organisms Proteins IC positive negative positive negative

Homo sapiens 7853 61.9 36426 16436 3442 1671
Saccharomyces cerevisiae 1218 3.42 1208 813 125 85

Arabidopsis thaliana 490 2.84 426 252 42 25
Drosophila melanogaster 569 1.39 410 203 46 25

study large and heavily connected networks, one is forced to weigh links by

their reliability. In principle, our algorithm for links verification could be effi-

ciently used for pruning a network. However, we choose to focus on prediction

and verification of novel indirect regulations.

5.2 Algorithm for Prediction and Verification

Matrix formalism

In this work, we represent the dataset of all known direct and indirect reg-

ulatory interactions in a given organism as a directed network. In matrix

notation, it is fully defined by an adjacency matrix A taking the values

Aij =























+1 if i positively regulates j,

−1 if i negatively regulates j,

0 if i is not known to regulate j.

(5.1)
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To predict new indirect regulations and to quantify the reliability of the

existing ones, we use another matrix X given by

X = A2 + λA3 + λ2A4 + λ3A5 · · · ,

=
A2

I − λA
(5.2)

where λ is a parameter to be discussed later. Xij includes the contribution of

all paths from i to j. (An)ij is the net number of paths (number of positive

paths minus the number of negative paths) of length n from node i to node j,

the sign of Xij is based on whether positive paths or negative paths dominate.

If positive (negative) paths dominate, Xij is positive (negative), and it is likely

that i is indirectly activating (repressing) j.

The parameter λ in Eq. 5.2 is basically a free parameter which could be

optimized later to provide the best performance for the algorithm. Generally

speaking, λ determines the weights of different paths. If λ is chosen to be less

than one, the contribution from long paths is exponentially suppressed. In this

work, we have chosen different λ’s for different networks in order to optimize

the performance of our algorithm. We will first present our results using the

optimal value of λ. The definition of the optimal λ and its determination will

be addressed later on.

Calibration of reliability

We have argued that the absolute magnitude of matrix elements of X is a

measure of reliability of indirect regulations. Following the matrix formalism,

we calculate X for four different regulatory networks: H. sapiens, S. cerevisiae,
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A. thaliana and D. melanogaster.

In our algorithm, every non-zero element of X possesses certain predictive

power. We collect all possible predictions by picking out all non-zero Xij’s.

The validity of our algorithm is evident if pairs i and j with large value of

|Xij| are likely to correspond to more reliable regulations. To show this is

indeed the case, one needs to use “golden set” containing completely trustable

regulations, which however is not readily available. For this purpose, we define

the golden set to be regulations which are frequently reported in the literature

(for details of the cutoff, see Appendix D). These regulations form the most

reliable part within the original network. In fact, the values of the median

value of |X| for all the non-zero matrix elements and those within the golden

set are 3.9 × 10−3 and 3.5 respectively.

Fig. 5.1 shows a more detailed calibration of the matrix elements. We

define a predictive set of size n using the n predictions with the largest values

of |Xij |. If all the possible predictions are used, the size of the set is huge

(up to 107). The number of predictions covered in the golden set is counted

and normalized by the corresponding number obtained by a set of n random

predictions. As shown in Fig. 5.1, the overlap between the golden set and

the best 100 of our predictions is 10, 000 (sic!) times better than what is

expected by pure chance alone. The advantage decreases when predictions

with smaller values of |Xij | are included. In case all possible predictions are

used, the predictive set is only sightly better (2-fold) than a random set. This

is expected since predictions with smaller values of |Xij| are much less likely

to be reliable.

Large |Xij | is a result of confirmation by multi-step paths from i to j,
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Figure 5.1: Advantage of our prediction scheme over random predictions. The
x-axis shows the number of predictions ranked by the values of |Xij|. The
vertical axis shows the the number of predictions in the golden set normalized
by the null-model expectation. The ratio decreases as the size of the predictive
set increases.

therefore such predictions are likely to be indirect in nature. To prove that it

is indeed the case, we separate the golden set into direct and indirect subsets

based on the information whether a regulation is transcriptional regulation or

not. Such information information is again obtained from literature using the

Medscan algorithm (see Appendix D). In agreement with our expectation, the

predictions are biased toward the indirect subset as shown in Fig. 5.2 (see

caption for details).
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size of the direct (indirect) golden set. Data points closer to the origin refer to
predictions with larger average value of |Xij|, and therefore presumably more
reliable. As reflected by the convexity of the curve, those regulations are more
likely to be indirect rather than direct.

An important use of the matrix elements is to determine whether the regu-

lations are positive or negative. Under our formalism, regulations correspond-

ing to large positive matrix elements are likely to represent positive regulations.

In order to calibrate the reliability for a set of predictions, we define the av-

erage quality by counting the fraction of prediction whose inferred sign agrees

with that reported in the golden set. Fig. 5.3 shows the tradeoff between the
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Figure 5.3: The tradeoff between the number of predictions and their average
quality (panel A for positive predictions and B for negative predictions). For a
set of predictions, the average quality is defined as the fraction of predictions
whose sign agrees with that in the golden set. The dotted line is the quality
expected for a null model as described in the main text.

number of predictions and the average quality. As shown in Fig. 5.3A, a set of

predictions with average quality 100% offers about 100 predictions of positive

regulation. However, if one is willing to downgrade the quality to 95%, the

number of predictions is up to 5000. By including all the positive entries in

X, we are offered a huge number of predictions, but with a relatively low qual-

ity. However, even in that case, the average quality is still much better than
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a null model, which is defined as the fraction of positive regulations among

all the regulations in the golden set. Thus the quality of our null model

for positive (negative) regulations in human is 3442/(3442 + 1671) = 0.67

(1671/(3442+1671)=0.33). They are shown as dashed lines in Fig. 5.3. Using

negative matrix elements, one could also predict negative regulations. Large

negative elements of X are indeed more likely to have negative signs in our

golden set (see Fig. 5.3B).

To understand better the quality of our sign predictions, we study the Re-

ceiver Operating Characteristic (ROC) curves. Fig. 5.4A is the ROC curve for

positive-sign predictions. It shows the sensitivity against specificity in different

predictive sets as described by varying the |Xij| threshold. For positive-sign

prediction, sensitivity is defined as the fraction of regulations in the positive

golden set which are predicted to be positive by our algorithm. Specificity,

on the other hand, is defined as the fraction in the golden negative set that

are predicted to be positive by our algorithm. Data points close to the origin

consist of predictions with large Xij. The most important observation is the

convexity of the curve, which means that the sign of interaction predicted by

our method is more likely to be correct than expected by pure chance. In

fact for a totally random predicted set, the ROC curve would be a straight

line y = x. The area under a ROC curve is commonly used to quantify the

performance of an algorithm. Using the negative Xij to predict negative regu-

lations, one could similarly define sensitivity and specificity resulting another

ROC curve as shown in Fig. 5.4B.

Making use of the ROC curves, we could address the primary assumption

behind our definition of the golden set: the larger is the number of papers

94



0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Specificity

S
en

si
tiv

ity

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Specificity

S
en

si
tiv

ity

A B

Figure 5.4: ROC curves for sign predictions using positive Xij (panel A) and
negative Xij (panel B). Each data point corresponds to a predictive set defined
by a particular threshold of Xij. The dotted lines are y = x which is the null-
model expectation. The area under the ROC curve to the left of the solid line
measures the performance of our algorithm.

reporting a given interaction, the more reliable it is. We define different golden

sets by varying the publication cutoff. Golden sets arising from a high cutoff

consists of regulations with the largest number of papers reporting it. The size

of the set is thus smaller but it is supposed to be more reliable. By comparing

the area of the ROC curves obtained from different golden sets, we find that

indeed the ROC curve from a high-cutoff golden set encloses a larger area (see
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Figure 5.5: ROC curves of the human regulatory network using golden sets
of different cutoffs. A golden set is defined by regulations which are highly
reported in literature. An interaction belonging to the golden set with cutoff
5% is among the top 5% of the dataset in terms of the number of papers in
reporting. Data points labeled by ◦, △ and ⋆ are the results of golden sets
whose sizes are 5%, 10% and 20% of the original network. The ROC curves
(positive and negative) corresponding to a high-cutoff golden set enclose larger
areas.

Fig. 5.5).

The optimal value of λ

With ROC curves in hand, we are in a position to choose an appropriate λ

for Eq. 5.2. As a common practice, the quality of a ROC curve is quantified
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by the area under the curve (see Appendix D for the estimation of the area).

The optimal λ is thus the one whose ROC curve encloses the largest area.

However, the direct comparison of different areas may be ambiguous. For

example, compare the ROC curves from Fig. 5.4, the one on the left panel

encloses a larger area while at the same time, the length covered in the x-axis

is longer. To overcome the problem, we introduce a cutoff in the x-axis, and

integrate area from 0 up to the cutoff. In this study, the cutoff is chosen to

be 0.1. As the beginning region of the ROC curve refers to the highly reliable

predictions, the introduction of the cutoff restricts ourselves in comparing the

most reliable predictions. Thereafter, we define a quantity θ to measure the

overall performance of the algorithm, which is the ratio between the area

under the ROC curve from 0 to the cutoff and the corresponding area under

the straight line y = x. The ratio could be understood as the advantage of

our algorithm over random predictions.

The performance of a particular λ in Eq. 5.2 could be quantified by the

resultant θ. In Fig. 5.6, we plot θ against different λ’s for positive and negative

ROC curves in the human dataset. In short, the optimal λ is the one which

gives the largest θ. From Fig. 5.6, the optimal λ for positive and negative

predictions are 0.025 and 0.030 respectively.

5.3 Validation of New Predictions

The practical application of our algorithm is to generate novel predictions

of indirect regulations. Every non-zero matrix element of X stands for a

prediction. However, predictions could fall into two categories: those covered
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Figure 5.6: Determination of the optimal value of λ. The optimal λ maximizes
θ defined by the ratio between the area under the ROC curve from 0 to 0.1 and
the corresponding area under the straight line y = x. For human network, the
optimal λ for positive and negative predictions are 0.025 and 0.030 respectively.

in the golden set and those not. Using the predictions covered in the golden

set, we have calibrated the reliability. Next, we are going to focus on the

predictions missing from the golden set. First of all, we do not consider these

regulations as defects. In fact, being in the same predictive set, they possess

the same quality as those covered in the golden set. Therefore, we could use

them as real predictions of missing regulations and expand the original dataset

with these predictions.
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Table 5.2 shows the number of the these new predictions offered by our al-

gorithm for the four model organisms. Two different quality cutoffs 95% and

75% are used. The number of predictions offered varies among the datasets,

this is because the datasets have different number of nodes, links and topolo-

gies. However, in all cases, one could gain more predictions by lowering the

quality cutoff. We would like to stress that the term quality is only calibrated

within a dataset, therefore it is not meaningful to compare the new predictions

in human and yeast even though the apparent qualities are the same. In fact,

predictions from human dataset are the most reliable, because our algorithm

is benefited from the heavily connected nature of the human dataset.

Without experimental verification, it is hard to validate our new predic-

tions. To demonstrate our new predictions indeed make biological sense, we

compare our new predictions to a dataset of human regulatory interactions.

The dataset is also obtained from literature using the Medscan algorithm but

all the regulations are not included in Table 5.1 and the matrix A (see Ap-

pendix D for details). We find that a significant fraction of our new predictions

coincide with this dataset. As shown in Table 5.2, we have generated 2500 new

predictions with an average quality of 95% for the human network. Among

them 750 are indeed verified in the extra dataset. The corresponding P-value

with respect to a random model is less than 10−100. It is important to point out

again that our algorithm predicts the signs of these 750 regulations, however,

these have to be waited for future validation.
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Table 5.2: Number of new predictions offered by our algorithm in regulatory
networks of different organisms.

Organisms 95% sign quality 75% sign quality
Homo sapiens 2500 1.8 × 107

Saccharomyces cerevisiae 190 7100
Arabidopsis thaliana 85 13000

Drosophila melanogaster 650 1400

5.4 Conclusion

To sum up, we have developed a novel algorithm which allows one to verify

already known indirect regulations, infer their signs (if it is not known), and to

predict the new ones, which have not yet been experimentally detected. As an

input it uses a network consisting of all presently known regulatory interactions

(both direct and indirect). Our algorithm also allows one to make an educated

guess about which of the interactions in the original network are direct and

which are indirect in cases when this information is not readily available (as

e.g. in microarray experiments following a perturbation localized on one or

several genes). Thus it contributes to a popular topic of reconstructing direct

regulatory network from microarray data [32, 81].
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Appendix A

Details of Proteomes and
Generation of Paralogous
Proteins

Generating lists of paralogous proteins

The proteomes of H. pylori strain 26695 and E.coli strain K12-MG1655 were
downloaded from the Comprehensive Microbial Resource (CMR, http://cmr.tigr.org)
version 1.0. Sequences of S. cerevisiae proteins are from the Saccharomyces
Genome Database (SGD, http://www.yeastgenome.org) version number 20031001.
The D. melanogaster’s sequences are from the Berkeley Drosophila Genome
Project (http://www.fruitfly.org), release 3.1. C. elegans and H. sapiens were
from Wormbase (http://www.wormbase.org), release WS127 and the NCBI
database (ftp.ncbi.nlm.nih.gov/genomes/H sapiens), build 34.1 respectively.

The initial set of paralogous pairs for each of the organisms was iden-
tified by an all-to-all alignment of sequences of its proteins to each other
using the BLASTP program [39]. For H. pylori, E. coli, S. cerevisiae, and
D.melanogaster genomes, the E-value threshold of 10−10 was employed. This
corresponds to p-values of the order of 10−12 (for H. pylori) and lower. Due
to larger genome sizes of C. elegans and H. sapiens an even more conserva-
tive E-value of 10−30 was used to reduce the number of hits generated by the
algorithm.

The “raw” datasets for worm, fly and human often contain multiple over-
lapping protein sequences predicted by different gene models of the same gene
(including but not limited to different splicing variants). To avoid spurious
hits we first mapped entries in raw datasets to unique gene IDs. This was
easy to accomplish in the fly and worm datasets, where names of different
gene models differ from each other by the last letter. In human genome,
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this was done by mapping the gi numbers of sequences in the raw dataset
to unique GeneID (LocusLink) identifiers from the Entrez Gene database
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene). Subsequently, if
multiple BLAST hits were connecting the same pair of gene IDs we kept the
one with the longest aligned region. This way we were guaranteed that one
and only one pair of splicing (or gene model) variants per pair of gene IDs
would contribute to the PID histogram.

In all genomes, only pairs in which the aligned region constituted at least
80% of the length of the longer protein were kept [45]. This excludes contri-
bution from pairs of multi-domain proteins paralogous over only one of their
domains.

Initially, the PID histogram in S. cerevisiae had two very sharp peaks at
51% and 70%. A close inspection revealed that these peaks are produced
by evolutionary related subfamilies of nearly identical transposable elements.
To correct for this obvious artifact in S. cerevisiae we removed 108 proteins
encoded by known transposable elements listed in the Saccharomyces Genome
Database and their homologs.

The overall shape of the PID histogram in regions I and II is not sensitive
to the E-value cutoff chosen. Similarly, the results are nearly independent on
the type of the BLOSUM substitution matrix used (in the end we opted for
the BLOSUM45.) Finally, we verified that our results are independent of the
alignment algorithm utilized to calculate PIDs. Indeed, in the fly dataset we
have recalculated PIDs for all paralogous pairs detected by BLAST using much
more sophisticated Smith-Waterman algorithm [82]. The resulting histogram
is virtually indistinguishable from that based on the blastp output [35].

Study of P. tetraurelia

The proteome of P. tetraurelia were downloaded from the ParameciumDB
(http://paramecium.cgm.cnrs-gif.fr/db/index). The lists of putative pairs of
duplicated genes generated in each of the four WGD were downloaded from
the supplementary materials of Ref. [50]. E-value of 10−30 was used due to the
large size of the proteome. The procedures used to generate the paralogous
pairs are described as above.

Identification of true duplicated pairs by the minimum

spanning tree algorithm

We are naturally not in possession of the set of protein pairs that actually
underwent duplication in the course of evolution of a given genome. The iden-
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tification of the most likely candidates for these “true” duplicates is in general
a rather complicated task which involves building the actual phylogenetic tree
for every family in a genome. However we could make a much simpler edu-
cated guess by connecting paralogous proteins with the Minimum Spanning
Tree (MST). The MST is a tree maximizing the sum of PIDs along its edges
(or, to agree with its name, minimizing its opposite sign value). For a family
consisting of F proteins such a tree has exactly F − 1 edges representing our
best guess about the actual duplication events. One can prove the truth of
this by induction: when a freshly duplicated pair is created with PID=100%
it extends the previously existing Minimum Spanning Tree of a family by one
edge. Assuming a constant rate of divergence for all paralogous pairs in a given
family, the set of duplicated pairs would continue to form the Minimum Span-
ning Tree at all times. We used the Kruskal algorithm [83] to approximately
detect the MST.
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Appendix B

Details of Various Datasets
Used

The transcriptional regulatory network of yeast used in
Chapter 3

The network was taken from Ref. [16], which reported the so-called “ChIP-
on-chip” study of in vivo binding of 106 transcription factors to upstream
regulatory regions of genes encoding all 6270 of yeast proteins. Since the num-
ber of transcriptional regulators in this dataset is quite large, the probability
that by pure chance the same transcription factor would be incorrectly de-
tected among upstream regulators of both duplicated genes is small (of order
of 1%). Thus the contribution of false positives of the dataset of Ref. [16] to
the regulatory overlap Ωreg is quite insignificant. We therefore use a P-value
cutoff equal to 10−2 (12854 regulations) less conservative than the 10−3 cutoff
(4418 regulations) of Lee et al. [16].

Protein interaction network of yeast used in Chapter 3

As a source of information about binding partners of yeast proteins we com-
bined the data from two independent high-throughput two-hybrid experi-
ments: the core dataset of Ito et. al. [14] (806 interactions among 797 proteins)
and the extended Uetz et. al. dataset [13], downloaded from the website of
this group (1446 interactions among 1340 proteins). The resulting network
consists of 1734 proteins joined by 2111 non-redundant interactions. Using
this combined dataset we found that even 100% identical proteins share on
average only 30% of their binding partners. However, unlike for upstream
regulation, the set of interaction partners of a protein is fully determined by
its amino acid sequence. Therefore, an imperfect overlap in the set of binding
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partners of identical proteins has to be attributed to false positives/negatives
inevitably present in high-throughput two-hybrid experiments. The relatively
high rate of false negatives in genome-wide two-hybrid experiments is further
corroborated by the fact that datasets used in our study coming from two
independent experiments [13, 14] have only 141 interactions in common.

Protein interaction network of H. pylori in Chapter 3

The two-hybrid assay of protein-protein inetractions in H. pylori used in Fig.
3.4 was obtained from the supplementary materials of Ref. [12]. It contains
1465 interactions between 732 proteins.

Protein interaction network of D. melanogaster used in

Chapter 3

Our analysis of the interaction overlap between paralogous proteins in D.

melanogaster is based on the full dataset of the high-throughput two-hybrid
experiment [15]. It consists of 20671 protein-protein physical interactions in-
volving 7002 of fly proteins.

Dataset of the yeast knockout experiment

The system-wide data on viability of S. cerevisiae null-mutants used in our
study was obtained from Ref. [58] in which 1103 essential (non-viable null-
mutants) and 4678 non-essential (viable null-mutants) yeast proteins were re-
ported. The lists of viable and non-viable null-mutants as discovered in Ref.
[58] were downloaded from the Saccharomyces Genome Database
(http://www.yeastgenome.org/).

Dataset of the RNAi phenotypes in C.elegans

Our analysis of protective effects of paralogs in C. elegans is based on the set
of 15587 viable and 1170 non-viable (embryonic or larval lethality or sterility)
RNAi phenotypes reported in [59]. The information about worm paralogs is
obtained from the EuGenes database (http://iubio.bio.indiana.edu:8089/) and
consists of 30036 paralogous pairs involving 10071 worm proteins (blastp with
10−30 cutoff and no requirements on the length of aligned region). In Fig. 3.6
we used 13884 RNAi phenotypes for which we were able to uniquely map the
genepair name to the worm protein name used in EuGenes.
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Datasets used in the study of Chapter 4

The curated PPI network data used in our study is based on the 2.020 release
of the BIOGRID database [84]. We kept only pairs of physically interacting
proteins that were reported in at least two publications. That left us with
5798 non-redundant interacting pairs. Further restrictions for both proteins to
have experimentally measured total abundance [62] narrowed it down to 4185
interactions among 1740 proteins. We further took the strongly connected
component, resulting at a network with 1439 nodes and 3880 edges.
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Appendix C

Proof of Eq. 4.30

Here we give a proof of Eq. 4.30,

ηµ ≥ (
Fi

Kd
+

Fj

Kd
+ 1)−1, (C.1)

where µ is the dimer formed by proteins i and j.
Using Eq. 4.29, ηµ is given by the matrix element (Γ−1)µµ. Recall the

definition of Γ from Eqs. 4.4 and 4.5, the RHS is the reciprocal of Γµµ. We
are going to prove that (Γ−1)µµ > (Γµµ)−1.

First of all, Γ can be symmetrized by Eq. 4.10, i.e.

S = D−1/2ΓD1/2, (C.2)

where D is a diagonal matrix as defined in Eq. 4.10. As S is symmetric, we
can further diagonalize it by an unitary matrix U .

S = UDU−1, (C.3)

where D is another diagonal matrix formed by the eigenvalues of Γ, and we
know they are all positive.

Denote Q = D1/2U , we can write down the matrix element Γµµ as

Γµµ =
∑

k

QµkDkk(Q
−1)kµ. (C.4)

Similarly,

(Γ−1)µµ =
∑

k

Qµk(D
−1)kk(Q

−1)kµ. (C.5)
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Using Q = D1/2U one can simplify Eqs. C.4 and C.5, arrive at

Γµµ =
∑

k

(Uµk)
2Dkk (C.6)

(Γ−1)µµ =
∑

l

(Uµk)
2(Dkk)

−1. (C.7)

Here, we have used the unitarity of U .
As Dkk are positive, for a convex function f , we have

f(
∑

k

(Uµk)
2Dkk) <

∑

k

(Uµk)
2f(Dkk). (C.8)

The inequality (Γ−1)µµ > (Γµµ)−1 follows as the function f(x) = 1/x is indeed
convex.
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Appendix D

Methods and Datasets Used in
Chapter 5

Collections of regulatory networks

The regulatory networks for different model organisms are obtained by the
Medscan algorithm based on Natural Language Processing (NLP) [78]. The
term “regulation” refers to the general influence of the activity of one protein
by another. Therefore, apart from transcriptional regulations (which are direct
regulations), regulations might be results of any post-transcriptional or post-
translational interactions between proteins.

Regulations are extracted from over 14 million PUBMED abstracts and
47 full text journals. Properties of regulations including the sign (positive or
negative) and its nature (direct and indirect) are parsed whenever the infor-
mation could be extracted. The number of times a regulation is reported in
literature is kept for the definition of golden sets. Details of each network is
shown Table 5.1.

Apart from the data as shown in Table 5.1, we have extracted an additional
set (35672) of human regulations. The regulations are not included with the
datasets in Table 5.1 because their signs could not be parsed. In this study,
we use them as independent validation for the new predictions generated by
our algorithm.

Definition of golden sets

For each organism, the corresponding positive (negative) golden set is defined
by the top 10% most frequently reported positive (negative) regulations. The
size of each golden set could be found in Table 5.1. Comparing the whole
human dataset and its corresponding golden set, the average number of times
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that an interaction is reported are 3.35 and 22.6 respectively. The ratios
between the two numbers are roughly the same for the other organisms.

Estimation of the area under a ROC curve

For each ROC curve, we fit the data point by the function y = AxB using the
MATLAB function fminsearch, which is based on the Nelder-Mead method
in non-linear optimization. The area under the fitted curve is numerically
evaluated in MATLAB by the function quadl using the adaptive Lobatto
quadrature.

To exclude the data points far from the origin, which are results of less
reliable predictions, we introduce a cutoff in the x-axis. Area is integrated
from 0 up to the cutoff. In this study, a cutoff of value 0.1 is used.
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