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Abstract of the Thesis

Coherent Probes of Strong Field Atomic
Dynamics

by

Uvo Christoph Hölscher

Master of Arts

in

Physics

Stony Brook University

2008

The work presented in this thesis studies the effect of ultrafast electromagnet-
ically induced transparency (EIT) in a time domain picture. We demonstrate
that ultrafast EIT is not only a version of CW laser EIT experiments scaled
in time and field strength but shows a new dynamic. Time dependent Rabi
frequencies of the light fields in conjunction with a short interaction time cause
a suppression of absorption at the transition frequency and a redistribution of
light among the spectrum.

A second experiment in the thesis discusses excitation mechanisms like
adiabatic rapid passage (ARP) for a four level system. We demonstrate a
strong chirp dependence of the excitation paths and explain the behavior in
the dressed states picture. The preparation of the system leads to a collective
emission of excited atoms called superfluorescence. We study the phenomenon
and measure its characteristics.
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Chapter 1

Introduction

The development of ultrafast lasers opened a new magnificent field for physics
and chemistry. Research groups throughout the whole world in the atomic,
molecular and optical community are carrying out experiments to explore
the regime of ultrafast and intense light-matter interaction. Since significant
progress with broadband Ti:Sapphire lasers in the 1990s [39, 40] the manifold
applications of short light pulses have introduced a whole new field of studies.
With Ahmed H. Zewail’s Nobel prize for femtosecond spectroscopy chemistry
in 1999 ultrafast phenomena gained public interest.

Laser pulses in the femtosecond regime provide an excellent tool for time
resolved experiments in a huge field of applications. Their extremely short
durations establish the possibility of monitoring atomic and molecular dy-
namics and chemical reactions. Many processes like vibrational evolution of a
molecule and changes in molecule structure take place on time scales of 100s
of femtoseconds or a few picoseconds and can be optimally explored by short
femtosecond laser pulses. Other processes such as spectral collisional broad-
ening are of comparable time scale or even much longer like in the case of
spontaneous emission.

Optical laser amplifiers are able to produce field strengths on the order
of several 108V/m which is orders of magnitude higher than in usual CW
applications. For many experiments ultrafast lasers provide the potential to
exceed the limits of the weak field regime which is described by perturbation
theory. High field strengths have opened the possibilities to absorb multiple
photons, drive non-linear interactions and strongly influence energy levels of
atoms and molecules.
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The shorter the laser pulses the stronger arose the need for elaborate time
measuring and shaping techniques. Many different devices have been devel-
oped [2, 24, 38, 47] to use autocorrelation of the pulse to determine its field and
phase in time. Pulse shapers [14] increased the variety of possible experiments
with ultrafast pulses even more.

A new way of influence arises from coherent processes [45]. Controlling
interference between different excitation paths with the phase of the light field
yields new means to prepare systems. Selective use of absorption and stimu-
lated emission leads to a powerful tool to tailor the interaction of light field
and matter.

Various experiments reveal new characteristics when carried over from the
weak field to strong field regime as assumptions and approximations do not
hold true any more. New dynamics like non-resonant absorption in multipho-
ton processes, splittings and shifts in quantum mechanical states and non-
linear responses occur.

The aim of my work presented in this thesis is the understanding of two
experiments influenced by strong field atomic dynamics:

Electromagnetically induced transparency (EIT) has only been studied so
far in the weak field regime. We concentrate on a time domain perspective
and explore the dynamics arising from a time dependent amplitude of fields
and Rabi frequencies. Additionally ultrashort pulses allow to study EIT with
a dephasing time much longer than the excitation.

Superfluorescence is a coherent, collective response of an excited system
of atoms. Our measurements reveal insight into the mechanisms of coherent
strong field multiphoton absorption leading to highly populated states. The
excited system develops a macroscopic dipole moment and induces strong las-
ing.

Chapter 2 about the Experimental Setup introduces the reader to general
devices used in experiments in this thesis. Pulse generation with its different
stages, pulse shaping and characterization are discussed in basic terms. The
section on characterization leads over to chapter 3 about the GRENOUILLE.
Configuration and calibration of this time measurement device have been car-
ried out in the beginning of the work in the group.

Chapter 4 on the Theoretical Background discusses in detail the theoretical
fundamentals for EIT and strong field excitation mechanisms. It focuses on
two-level atoms and the dressed state picture presenting the basis for a three-
level picture of EIT.

The main work of my thesis is discussed in chapter 5 about EIT in ru-
bidium. Starting from the properties of rubidium and EIT in the weak field
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regime we approach the case of EIT in the strong field regime. The setup of
the experiment is discussed with an section on the Pulse Applicator Program.
A simulation for EIT as three-level system gives insight into the dynamics of
the population in the system. We present our results and analyze them.

Chapter 6 on broadband excitation in Rb presents further experiments
carried out on rubidium. We observe strong coherent light at three different
transitions at 420 nm, 780 nm and 795 nm to the ground state. The underlying
dynamics are explained in the interaction picture. The last two chapters 7 and
8 give a perspective on Future Work and conclude the thesis.
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Chapter 2

Experimental Setup

This chapter describes the various parts of the experimental apparatus. The
setup can be divided into several functional groups which comprise the gener-
ation of pulses, the shaping of pulses, the characterization of pulses and the
rubidium cell.

2.1 Pulse Generation

The generation of the pulses is based on a Ti:Sapphire laser system emitting
pulses with durations down to 30 fs and with an average energy of 1 mJ. A
broad bandwidth of the gain medium in combination with mode locking of
many frequencies is key to obtain the desired ultra short pulses. The setup
is made up of two components: The oscillator produces the pulses and sends
them to the amplifier which increases the energy of single pulses by a factor
of approximately 106.

To obtain the required broadband lasing the oscillator uses a Ti:Sapphire
crystal which is known for its tunability and its broad emission spectrum.
Pumped with a 532 nm green c©Verdi5 laser the crystal lases around 780 nm
with 50 nm bandwidth. The central frequency of the oscillator can be tuned
within a range of more than 10 nm. The resulting pulses with the repetition
rate of 85 kHz are short and weak in energy.

Mode locking of the frequencies implies a fixed phase relationship between
all modes of the broad spectrum. To obtain this a dispersion control setup
of two prisms is introduced into the beam path. They compensate for all
dispersive effects in the cavity such that the phase relation between different
frequencies stays constant. In conjunction with the phase control a self focusing
effect in the crystal (Kerr effect) suppresses the constant wave (CW) modes
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in favor of the mode locked (ML) operation. Due to the higher intensities in
pulses the self focusing effect is much stronger in ML than in CW.

Two mirrors of the cavity are curved and guide the beam in its spatial
mode. In addition to the radii of the mirrors the extra focusing effect of the
ML operation of the crystal is taken into account. This results in a perfectly
matched cavity for ML. In contrast in the CW operation the mirrors will be
too far apart and hence the quality factor is smaller and favors a stable ML
operation.

A Pockels cell with a 1 kHz repetition rate picks out pulses from the oscil-
lator output and sends them to the amplifier.

To decrease the peak intensity of the light in the amplifying crystal the
pulses are stretched in time before they enter the gain setup. A stretcher in-
creases the temporal width of the pulse. The process is a dispersion control
which introduces a temporal phase into the pulses. This causes the time du-
ration of the pulse to prolong and hence the peak intensity to decrease. A
combination of dispersive gratings, curved mirrors and a retro reflector allows
us to create a chirp (see chapter 3.1 about chirped pulses ) without having a
spread in k-vectors for different frequencies. After the amplification a similar
compressor, reversing the effect, removes the chirp and brings the pulses to
their original temporal width.

The gain setup is a multi pass amplifier pumped by a pulsed c©Quantronix
YLF laser. It increases the pulse energy of a single pulse up to 1 mJ within 12
amplification passes through the crystal. The seed pulses from the oscillator
travel through a ring cavity with a slightly displaced path for every pass.
This leads to a fan of beams which all intersect in the active region of the
amplification crystal. The last pass in this ring cavity falls onto a pick up
mirror and is sent to the compressor.

In every pass the seed travels through a crystal region with high inversion
and hence is multiplied in its energy. The spectral response of this process is
not flat and power dependent so that the spectrum’s shape slightly changes.
A pellicle in the ring cavity can partly compensate as it acts as band filter.
Good alignment of the multi pass and proper spatial and temporal overlap of
pump and seed beam are critical for operation.

After the complete amplification the resultant pulse has almost a Gaussian
shape in time with a FWHM of 30 fs and a flat spectral phase. It can be
directed to following various setups like pulse measurements, experiments or
pulse shaper. A more detailed description of the amplifier is given by Kapteyn
and Murnane [5, 6].
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2.2 Pulse Shaping

An acousto-optical modulator (AOM) is used for shaping the pulses. One
general problem in ultrafast optics is that no electrical or mechanical physical
effects is fast enough to measure or change the pulses in the time domain.
Therefore the principle of the pulse shaping is based on manipulation of the
pulse in the frequency domain. A good introduction to the setup and theory is
given by Warren et al. [14]. Short pulses are hence mapped to the frequency
domain, where they can be handled and manipulated much easier.

P   AOM
150 MHz, 
from digital 
waveform board

Grating 1

Grating 2

Curved Mirror 1

Curved Mirror 2

Fold Mirror 1

Fold Mirror 2

830g/mm

Figure 2.1: Scheme of a Pulse Shaper Setup. The beam is decom-
posed by the first grating and mapped onto the acousto-optical modulator
where it is shaped. The diffracted beam is recomposed in opposite way.

The beam in the shaper is steered onto a grating (830 grooves/mm) which
decomposes the pulse into its frequencies. A following curved mirror collimates
the dispersed beam and focuses it into the AOM which is placed exactly in
the Fourier plane of the setup. The acousto-optical modulator is a crystal in
which an acoustic wave is induced at one side by a high frequency signal. The
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wave runs through the crystal and alternates the local index of refraction. By
the time the laser pulse arrives the crystal, the wave has created a pattern
of regions of higher and lower index of refraction which diffract the incoming
beam. This process can be described as Bragg diffraction at an object which
is in motion. Detailed calculation on the process can by found in Boyd [8].

The velocity of the acoustic wave is so slow in comparison to the short
pulse that the propagation during the passage of the light is neglectable. Nev-
ertheless energy and momentum conservation have to hold true. Hence the
diffracted beam will change its frequency, amplitude, k-vector and phase.

Working with acoustic waves around 150 MHz the light frequency is only
changed by a small amount which does not play any role in the broadband
regime. The amplitude of the diffracted light is to first order proportional to
the amplitude of the acoustic wave. This will allow us to tailor the intensity
of every single frequency by varying the acoustic wave’s amplitude in time.

The phase Φ(t) of a sinusoidal signal is the non constant part of the tem-
poral derivative of the argument of a function

f(t) = sin(ωt · t) (2.2.1)

ωt = ω0 + Φ(t) (2.2.2)

In the AOM every frequency is diffracted by a specific part of the acoustic
wave in the crystal. The phase of a diffracted frequency is proportional to
the phase of the corresponding part of the acoustic wave. Hence a spectral
phase of the pulse can be tailored by the phase of the high frequency signal.
The detailed mechanism is discussed with the introduction of a linear phase in
chapter 5.5 about the Pulse Applicator. The influence of phases on the pulses
is treated in chapter 3.1.

The limits of the process are mainly given by technical constraints. The
crystal’s diffraction efficiency is optimal for the carrier frequency of 150 MHz
and falls off for higher and lower frequencies. Additionally the optical diffrac-
tion limit of the setup restricts the minimal bandwidth for a shaped pulse.
Results are shown in chapter 5.5. Conservation of momentum determines that
beams with different phase acquired slightly diverge. The effect is called space
time coupling. Overall efficiencies up to 36% have been recorded. Changes in
the phase can be put on reliable up to a linear phase of 20 ps and quadratic
chirp rates of about 0.02 ps2.

It is hard to imagine how of a complex amplitude and phase shaping will in-
fluence the temporal shape of the electric field. The mathematical description
is the Fourier transformation of the pulse into the frequency domain, following
manipulation of the frequencies and inverse Fourier transformation.
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The signal for the acoustic wave is created by an arbitrary waveform gen-
erator and can be modulated in amplitude and phase by various computer
programs. From this implementation arises a broad variety of shaping tech-
niques like chirp scans, π-phase-scans and genetic algorithms.

2.3 Pulse Characterization

Pulse characterization is the process of retrieving the electric field and the
phase of the pulse in time and frequency. This task is done by a FROG [47]
and a GRENOUILLE [2]. Detailed information on the principles of pulse
measurement is given in the following chapter Configuration and Calibration
of the GRENOUILLE 3.

The GRENOUILLE usually is used for fast monitoring of the pulse at-
tributes. Its temporal resolution is not as high as the FROG but it reveals
enough information to roughly decide on the pulse quality. The main advan-
tage is that its alignment is very simple and the signal processing happens in
real time. For reasons mentioned later and missing reconstruction software the
phase cannot be retrieved by the GRENOUILLE.

The FROG is used for more precise measurements of phase and electric
field. Up to a certain pulse complexity its results are robust and reliable. The
alignment process is crucial and the data taking time consuming. It is mainly
used to characterize pulses tailored in the pulse shaper.

8



Chapter 3

Configuration and Calibration of the

GRENOUILLE

The characterization of intensity and phase of an ultra short laser pulse is
a challenge. Since 1993 a multitude of technologies to measure fs-pulses
have been introduced like the FROG [47], SPIDER [38], MIIPS [24] and
GRENOUILLE [2]. As mentioned earlier, conventional techniques are not
able to resolve temporal structures in the fs-regime. The only measure which
is available on the same timescale is the pulse itself, hence all characterization
methods are based on nonlinear optics.

The first two sections of this chapter introduce to the mathematical back-
ground of chirped pulses and the general way an autocorrelation measurement
is carried out. In the following the exact mechanism of the GRENOUILLE
is explained in detail. The last section reports on the calibration of the
GRENOUILLE device.

3.1 Chirped Pulses

It is convenient to describe the electric field of a pulse in such a way that
the wave is formed by an envelope which jackets the oscillations. The advan-
tages of this formalism are obviously its easy mathematical description and
the separation of average amplitude and instantaneous frequency.

Short light pulses are superpositions of many different frequencies. For a
few cycles (in the fs-regime) these frequencies add constructively and form
the pulse whereas for most of the time the frequencies add destructively. This
mechanism to generate short pulses is called phase matching.

For optimal short pulse durations the overall spectral phase has to be con-
stant. This means that all different frequencies will add up perfectly in the
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temporal middle of the pulse. The result is an electric field which oscillates
at one constant carrier frequency during the whole pulse duration. Such an
optimal pulse has a Gaussian shape. This property can be proven by Fourier
transforming a normal distribution of frequencies with constant phase. The
widths of the two distributions in frequency and time domain is reciprocal and
their product constant respectively (for Gaussian pulses: ∆ω ·∆t ≈ 0.44).

In practice the overall phase is never perfectly flat such that the oscillations
change their frequency during the pulse. The underlying carrier frequency of
the field envelope is not constant any more. The reason is that every passage of
light through matter adds dispersion to the pulse. Dispersion is caused by an
index of refraction which depends on the frequencies. This results in quadratic
and higher order spectral phase causing the carrier frequency of the pulse to
change in time.

Assuming a Gaussian pulse with flat phase the field is

E(t) = E0 exp(−iω0t) exp(−gt2) (3.1.1)

where the factor g describes its temporal width.

The corresponding spectrum is the Fourier transform with the carrier fre-
quency ω0

E(ω) = F(E(t)) = E0

√
π

α
exp

[
−(ω − ω0)2

4α

]
(3.1.2)

Dispersion occurs as linear and higher order phase dependency of the fre-
quency. For linear dispersion the inverse Fourier transformation of the pulse
results in a uniform displacement in time. This is easy to understand as all
frequencies are retarded by the same amount of phase in the media.

The linear phase is introduced as imaginary term

Ẽ(ω) = E0 exp [−iτ(ω + ω0)]

√
π

α
exp

[
−(ω − ω0)2

4α

]
(3.1.3)

where τ is the displacement in time.

For higher orders like quadratic dispersion (so called chirp) the frequencies
change their relative phase. The resulting field in the time domain shows two
characteristics. As mentioned before the quadratic chirp causes the carrier
frequency to change during the pulse duration from higher to lower frequen-
cies (or the other way round). Furthermore the temporal width of the pulse
broadens. In general the amplitude of the field becomes complex.

10



(a) (b)

Figure 3.1: Influences of Linear Phase on a Gaussian Pulse. The
original Gaussian pulse (a) is centered at t = t0 whereas the pulse with
linear phase (b) is shifted in time and is centered at t = t0 + τ .

The quadratic phase is introduced similarly

Ẽ(ω) = E0 exp
[
−iβ(ω + ω0)2

]√π

α
exp

[
−(ω + ω0)2

4α

]
(3.1.4)

where β is called the spectral chirp rate.

The inverse Fourier transform gives the resulting field

E(t) = E ′0 exp
[
−i(ω0t+ bt2)

]
exp(−at2) (3.1.5a)

E ′0 = E0

√
1

1 + i4αβ
(3.1.5b)

a =
α

1 + 16α2β2
(3.1.5c)

b = − 4α2β

1 + 16α2β2
(3.1.5d)

The parameter α describes the width of the spectrum (comp. 3.1.4) and
the parameter β is a measure of quadratic change in spatial phase leading to
a non constant carrier frequency. Depending on the sign of the chirp rate β
the frequency sweep starts at higher or lower frequencies. The pulse duration
as a function of β is

∆t′ =
√

1 + 16α2β2 ∆t (3.1.6)
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(a) (b)

Figure 3.2: Influences of Quadratic Phase on a Gaussian Pulse.
The original Gaussian pulse (a) is has the shortest time duration. A
quadratic chirp broadens the pulse (b) in the time domain and causes
the carrier frequency to change during the pulse.

3.2 Pulse Characterization Background

The characterization of an ultra short laser pulse is a challenge. As mentioned
earlier, conventional techniques are not able to resolve temporal structures in
the fs -regime. The only measure which is available on this timescale is the
pulse itself, hence all characterization methods are based on nonlinear optics.

Autocorrelation is the process of ”comparing” a signal with some processed
copy of itself. In most cases the processing is a simple shift in time so that the
autocorrelation function A(τ) could be defined as

A(τ) =

∫
f(t) · f(t+ τ)dt (3.2.1)

The Wiener-Khinchin theorem relates the autocorrelation to the power spec-
tral density ρ(ω) via Fourier transformation:

A(τ) = F(ρ(ω)) (3.2.2)

In an experimental apparatus this equation could be satisfied by splitting a
beam in a beam splitter, shifting one beam in time by a variable path length
and creating a second harmonic signal in a nonlinear optic (compare figure
3.3).

12



Spectrometer

SHG crystal

translation stage

Figure 3.3: Schematic Drawing of FROG Setup. The light is split
by a beam splitter and travels different path lengths due to the transla-
tion stage. In the crystal the recombined beams produces a SHG signal
measured by a spectrometer.

Nonlinear responses like second harmonic generation (SHG) are propor-
tional to the intensity of the mixed signal which is the sum of the two merged
beams I ∝ |Ea + Eb|2 = |Ea|2 + |Eb|2 + 2 |Ea · Eb|. When the coopera-
tive signal (|Ea · Eb|) can be separated its intensity will be proportional to
|E(t) · E(t− τ)| which is the needed quantity.

The signal is measured with a spectrometer. Scanning the parameters
delay time τ and frequency ω results in a two dimensional (τ, ω) trace which
contains all information about intensity and phase of the pulse. The resulting
data reads:

S(ω, τ) ∝
∣∣∣∣∫ E(t)E(t− τ)eiωtdt

∣∣∣∣2 (3.2.3)

Several different mathematical algorithms can retrieve the pulse by iter-
ation of Fourier transformations between time and frequency domains. The
mathematical discussion is very complex and can be found in [47].
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Many different technical realizations have been build. The first and maybe
best known is the FROG1 [47]. Further modified approaches follow the ”nam-
ing convention” and are called GRENOUILLE2 [2], SPIDER3 [38] and MIIPS4

[24].
The configuration and calibration of the GRENOUILLE is described in

chapter 3.

3.3 Design of the GRENOUILLE

The GRENOUILLE [2] is one possible experimental apparatus to measure the
field and phase of an ultrafast laser pulse. Its name is the French name for frog
and stands for ”Grating-Eliminated No-nonsense Observation of Ultrafast
Incident Laser Light E-fields”.

The goal of this particular realization is to record the autocorrelation (com-
pare equation 3.2.1) trace with a CCD5 camera in one shot. Its setup can be
divided into two functional groups, one which resolves the time and one which
resolves the frequency. In the FROG approach, time is resolved by a vari-
able path length and the frequency is measured with a spectrometer. The
GRENOUILLE performs both tasks in a nonlinear crystal, the time resolu-
tion in the horizontal plane (top view) and the spectral analysis in the vertical
plane (side view). A key feature is the thick second harmonic generation (SHG)
crystal (3).

Figure 3.4 shows a sketch of both views allowing to demonstrate the pur-
pose of every single element. Before the beam enters the apparatus the beam
is enlarged to a diameter of about one centimeter.

Following the top view path illustrates the time resolution mechanism. The
broadened beam passes through the cylindrical lens (1) without change. This
lens becomes important in the frequency resolution path. Subsequent the beam
enters the Fresnel biprism (2) with an apex angle of 170◦. It is creating two
crossing beams coming to complete overlap in the thick SHG crystal (3) in the
horizontal plane. The beams could be regarded as plane waves at this point
so that they meet each other at a fixed angle in the crystal. This leads to a
situation in which the path length difference of two crossing parts of the beams

1Frequency Resolved Optical Gating
2GRating-Eliminated No-nonsense Observation of Ultrafast Incident Laser Light E-fields
3Spectral Phase Interferometry for Direct Electric field Reconstruction
4Multiphoton Intrapulse Interference Phase Scan
5charge-coupled device, electronic light sensor
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f
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(a): top
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Figure 3.4: Side and Top View of a GRENOUILLE Setup. The
figure part (a) with the top view shows the time resolution beam path, the
figure part (b) the frequency resolution beam path. The elements are the
following: (1) cylindrical lens, (2) Fresnel biprism, (3) thick SHG crystal,
(4) imaging lens with focii f/2 for top view and f for side view, (5) slit
and (6) CCD camera

only depends on their horizontal position in the crystal. Along the middle of
the crystal the difference is zero and scales linear towards the edges.

Therefore the width of the beam in the crystal (about 4 mm) in conjunction
with the biprism apex angle determines the possible path differences between
the two beams. Knowing the speed of light in the crystal (index of refraction
given in figure 3.5) one can derive the maximum time delay between the beams.

The thick crystal is made from a material with a high nonlinear response.
Potassium Dihydrogen Phosphate (KDP) with a length of 10 mm is used in
our setup. Three different beams of second harmonic light will come out of
the crystal. Two are parallel to the incoming beams. They are created by
frequency doubling in the single beams. They do not comprise any information
about the autocorrelation, hence these beams are filtered by the slit (5).
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The third signal is the cooperative one being created by one photon of
each beam. Due to conservation of momentum this beam comes out parallel
to the beam before the biprism. It is the autocorrelation between the pulses.
Depending on where in the crystal the process takes place, the incoming pulses
are shifted in time. Hence the outcoming light provides the time resolution
mapped to space in the horizontal plane. The signal can be imaged with an
additional lens (4) (focal length of 50 mm in this plane) to a CCD chip (6).
Images can be taken with a resolution of 1280× 1024 pixel.

The spectral resolution (side view) works differently. To create SH light
in a non-linear crystal, both the incoming and the SH beam must be phase
matched as the group velocities of the two beams in the crystal usually differ
due to dispersion. This is especially the case if the crystal is thick.

Birefringence nevertheless allows to phase match the beams by choosing
different projections of ordinary and extraordinary polarization for the beams.
The condition on the refractive indices n1 and n2 for matching the group
velocities of the frequencies ω and 2ω is

c/n1(ω) = c/n2(2ω) (3.3.1)

This can be satisfied by tilting the crystal by some angle, namely the phase-
matching angle α. The beams then see a combination of no and neo. The
formula to calculate the right angle for a frequency ω is

sin (α(ω, 2ω))2 =
no(ω)−2 − no(2ω)−2

neo(2ω)−2 − no(2ω)−2
(3.3.2)

for a negative birefringent crystal. The tolerance within the angle for a certain
wavelength mainly depends on the thickness of the crystal. Longer paths in
the crystal imply more destructive interference for imperfectly matched SH
light and therefore a smaller tolerance.

The issue of phase matching is the key to the spectral resolution. Every
single wavelength has a certain phase matching angle. A single wavelength
going into the crystal at its phase matching angle produces constructively
interfering SH photons whereas every different wavelengths has destructive
interference at this angle.

Therefore a thick crystal produces spectrally resolved SH light by mapping
wavelength to different angles. The setup is designed such that the beams
come in focused by an angle large enough to cover all phase matching angles.
For wavelengths between 720 nm and 850 nm the beam focusing angle has to
be greater than 5.6◦ and the crystal axis tilted by 46.1◦. A cylindrical lens (1)
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in front of the biprism which only influences the vertical plane will guarantee
this focus. Afterwards the SH signal is imaged onto the CCD chip with the lens
(4). The imaging lens has a different focal length of 100 mm for the vertical
plane.

The thickness of the crystal is to be chosen with care. If the crystal is
too thin, it will have a low frequency resolution. If the crystal is too thick, it
will disperse the incoming pulses during its passage so that the pulse length
increases. To calculate an appropriate thickness the two following relations
should be fulfilled. The group velocity mismatch (GVM = 1

vg(2ω)
− 1

vg(ω)
)

between SH and fundamental beam multiplied by the length of the crystal L
must be greater than the temporal pulse width τ to maintain good frequency
resolution.

On the other hand the group velocity dispersion (GVD = ∂
∂ω

1
vg(ω)

) multi-

plied by the frequency bandwidth of the pulse ∆ω and the length of the crystal
L should be smaller than the the temporal pulse width τ

GVM · L > τ > GVD ·∆ω · L (3.3.3)

Detailed exemplary calculations have been carried out by Trebino et al. [32]
for Beta Barium Borate (BBO)-crystals. For an ultrafast system with pulses
centered at 780 nm a 1 mm thick crystal can handle pulse durations between
30 fs and 80 fs. Longer pulses need thicker crystals.

3.4 Calibration of the GRENOUILLE

The components of our setup have been chosen by a former student of the
group. The KDP crystal has a thickness of 10 mm which is much too long.
KDP has a slightly lower index of refraction for ordinary and and extraordinary
polarization than BBO, its GVD is almost the same as in BBO (compare figure
3.5).

The optimal thickness for the KDP crystal would be between 1 mm and
2 mm. With the given crystal the dispersion is so high that pulses are prolonged
in time significantly.

To calibrate the axes of the data traces a set of different pulses is measured
with the FROG and with the GRENOUILLE. The FROG gives reliable infor-
mation about time and frequency. Comparing the GRENOUILLE traces with
the FROG values allows us to determine the scales of the axes.
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Figure 3.5: Indices of Refraction for BBO and KDP. The graphs
show the dispersion curves of BBO (a) and KDP (b) for ordinary (highest
line), extraordinary (lowest line) and 45◦ (middle line) polarization. The
values have been calculated with the Sellmeier equations.

A GRENOUILLE trace of a transform limited pulse looks like a two di-
mensional Gaussian distribution. Its relation between horizontal and vertical
expansion depends on the setup. In our setup the traces have a cigar shape.
Typical autocorrelation shapes can be found in [47]. For pulses with a spatial
chirp the trace is tilted [1]. The angle indicates for a specific apparatus the
amount of spatial chirp.

Figure 3.6 shows the GRENOUILLE trace of a 36 fs pulse taken by a CCD
camera. Pixels in the horizontal dimension represent the time scale and pixels
the vertical dimension the frequency scale. The shape is the predicted cigar
shape with some small distortions. Dust on the CCD chip produces dark spots.
Some other spots show an Airy pattern. They might come from diffraction
by small distortions or dust on the optics. The inserted line in the lower part
illustrates the shape of the projection onto the time axis.

For the calibration it is important to recall the reasons for different pulse
duration with equal frequency bandwidth. Most pulses in experiments do
not have the minimal temporal width they could have comparing with the
transform limited pulse duration. The reason is that every pulse picks up a
positive second order phase (compare chapter 3.1 about chirped pulses) by
traveling through optics. Pulse durations prolong with the absolute amount
of the phase (hence are independent from its sign).

For the calibration of the GRENOUILLE a set of pulses with different pulse
duration is created by actively introducing such a second order phase. The
FROG, which has very small internal dispersion (there are no lenses and just a
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Figure 3.6: GRENOUILLE Trace of Short Pulse. The trace of a 36 fs
pulse taken with a CCD camera looks like a cigar and is almost symmetric.
The horizontal dimension represents the time scale, the vertical dimension
the frequency scale. Dust on the optics produces the dark spots. The
inserted line illustrates the shape of the projection onto the time axis.

very thin crystal) does not change the phase during measurement. In contrast
to this, the GRENOUILLE introduces a fixed amount of positive chirp. For
a transform limited pulse this leads to a longer duration but for pulses with
negative phase distortion the GRENOUILLE compensates to some amount
and can even shorten the pulse.

As result the relation between the pulse duration in the FROG and the
pulse duration in the GRENOUILLE is not linear. There even occurs an
ambiguity in the calibration. With a thinner crystal this problem would be
much smaller but the current setup has to take it into account.

There is no way to use the CCD camera data for reconstruction. The
algorithm can not compensate for the ambiguity. Nevertheless the width of
the autocorrelation is a reliable measure of the pulse duration for simple pulses.

It is important to find a robust way to measure the width of the pixel
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distribution. We chose to take the average FWHM of all horizontal lines.
This value represents the mean of all frequencies. Thus the algorithm is not
influenced much by distortions as seen in the image above. The inserted line
in figure 3.6 allows us to determine the FWHM.
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Figure 3.7: GRENOUILLE Pulse Duration Calibration. The cal-
ibration trace shows the FROG pulse durations measured in dependence
of the pixel width of the distribution from the CCD camera. Due to the
dispersion in the thick KDP crystal the curve is not linear and shows an
ambiguity. Phases for data points (a) and (b) are shown in figure 3.9.

Figure 3.7 shows the calibration data. The run of the curve shows clearly
that minimal pulse duration in the FROG and narrowest pixel distribution do
not coincide.

The shortest pulse (30 fs) has a width of 54 px whereas the smallest pixel
width (28 px) has a pulse duration of 58 fs. A pulse of 58 fs has exactly the
amount of negative chirp which the crystal and the lenses introduces positively.
Hence the pixel width becomes minimal. Every measured value broader than
28 pixels corresponds to two possible pulses: one is longer than 58 fs, has
negative chirp and is compressed (upper branch) and the other one is shorter
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than 58 fs, has positive chirp and is stretched (lower branch).
Figure 3.8 shows a reconstructed pulse with its intensity and phase. One

can see that the pulse has a flat temporal phase. This pulse corresponds to
the FROG minimum with 28 fs.
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Figure 3.8: Pulse with Flat Phase. This pulse is the shortest FROG
measure and has a flat phase throughout its intense parts. The solid line
shows the intensity in time, the dashed line indicates the phase. It is flat in
the main region of the pulse. The wings of the pulse have a small influence
on the pulse.

The second pulse shown in figure 3.9 has a negative chirp though it is shown
positively. SHG reconstruction does not allow us to determine the sign of the
phase so that the algorithm picks it randomly. This pulse corresponds to the
GRENOUILLE minimum. It has exactly the right amount of negative chirp
to be compensated in the crystal. The result is a narrowest in pixels.

To use the GRENOUILLE as a fast measure for the pulse duration, the
lower branch of the calibration data is fitted. Assuming that the pulse is
already close to its optimal duration (which means it is on this branch) the
fitted function allows us to determine the pulse duration in real time. Another
student (Brendan Keller) of the group has written the LabVIEW code for the
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CCD camera.
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Figure 3.9: Pulse with Quadratic Phase. This pulse has the narrowest
pixel width in the GRENOUILLE and a negative phase which is compen-
sated by the crystal. The solid line shows the intensity and the dashed
line the phase in time. (The phase is shown positively as the retrieval
algorithm cannot determine its sign.)

The fitted function is

τ(∆x) = (593.68− 46.542∆x+ 1.559(∆x)2 − 0.02703(∆x)3 + 0.00026(∆x)4) fs
(3.4.1)

where τ is the pulse duration in fs and ∆x the pixel width.
The error bars in figure 3.7 indicate the spread of three different traces

taken for every data point. For short and simple pulses the results of the
GRENOUILLE measurement are well reproducible. The mean error in the
pulse duration is ± 1.5 fs. This error adds to the unknown error of the FROG.
The guess for the overall error is < ± 3 fs. Determining the pulse duration
is rather insensitive to the alignment. Misaligned beams are displaced on the
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CCD camera but their width stays almost constant.
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Figure 3.10: GRENOUILLE Wavelength Calibration. The curve
shows the measured frequency dependence from the position on the CCD
camera.

Shaped pulses with complicated phases cannot been measured with the
GRENOUILLE. For this reason it is mainly used to check the amplifier output.

A wavelength calibration is carried out with the pulse shaper. Narrow
bandwidth pulses are measured in the GRENOUILLE. Reference spectra have
been measured with a spectrometer. The relation between the position on the
CCD camera and the wavelength is to good approximation linear. Figure 3.10
shows the data. It was fitted to

λ(x) = (808.9− 0.024x) nm (3.4.2)

with the wavelength λ in nm and the position x on the CCD camera in pixel.
This calibration is less important as it does not give more information than a
usual spectrometer. Furthermore it is highly dependent on correct alignment.

With the time calibration the GRENOUILLE is used on an every day basis
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for monitoring the pulse duration.
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Chapter 4

Theoretical Background

The understanding of ultrafast pulses and their interaction with matter re-
quires a detailed description of the electric field and its interplay with atomic
states. Many assumptions known from ”traditional” optics do not hold true in
the fs-regime. Therefore the following chapter will discuss the most important
features of ultrafast pulses interacting with atoms. Furthermore the chemical
element Rubidium is presented with its important properties.

4.1 Two-Level-Atoms

Real atoms usually have very complex internal structures with numerous en-
ergy levels. Nevertheless most experiments are designed to limit the amount
of states which take part in the processes. In a lot of cases the number of
relevant levels can be reduced to two or else two levels mainly determine the
dynamics of the atomic system. So the behavior of two-level-atoms has been
studied comprehensively.

The following chapter explains one approach to two-level-atoms. It is im-
portant to notice that the process of spontaneous emission is not taken into
account in this picture. Introducing the concept of Rabi cycling leads to a de-
scription of these systems in terms of intensity and detuning. The treatment
of two-level-atoms follows Tannor [43]. A similar derivation can be found in
Boyd [8].

The Hamiltonian for these two-level-atoms has the two eigenstates Ψa and
Ψb with the energies Ea = ~ωa and Eb = ~ωb respectively. The transition
frequency is ω0 = ωb − ωa.
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The general wave function for the two-level-atoms thus reads:

Ψ(t) = a(t)e−iωatΨa + b(t)e−iωbtΨb (4.1.1)

The square of the coefficients |a(t)|2 and |b(t)|2 represent the probabilities
of finding an electron in state Ψa or Ψb respectively. A light field interacts
with the states via the dipole moment µ and produces the coupling term
V = −µabε(t). Writing the time-dependent Schrödinger equation in matrix
form leads to

i~
d

dt

(
a(t)e−iωat

b(t)e−iωbt

)
=

(
Ea −µabε(t)

−µbaε(t) Eb

)(
a(t)e−iωat

b(t)e−iωbt

)
(4.1.2)

The electric field is considered to be CW field with a single frequency so that
it can be written as ε(t) = 1/2 ε·(eiωt + e−iωt) and the two dipole moments are
equal µab = µba = µ. This results in a system of coupled differential equations

ȧ(t) = i
µε

2~
(
e+i(ω−ω0)t + e−i(ω+ω0)t

)
b(t) (4.1.3a)

ḃ(t) = i
µε

2~
(
e−i(ω−ω0)t + e+i(ω+ω0)t

)
a(t) (4.1.3b)

The detuning is defined as ∆ = ω − ω0. For the next step the rotating
wave approximation is applied. This means that all fast oscillating terms like
e+i(ω+ω0)t are considered to average to zero. In this case the RWA is a very
good approximation as the detuning is orders of magnitudes smaller than the
transition frequency. Hence we ignore the term.

ȧ(t) = i
µε

2~
e+i∆tb(t) (4.1.4a)

ḃ(t) = i
µε

2~
e−i∆ta(t) (4.1.4b)

A good trial for the solution for the state Ψa is made by

a(t) = Cae
−iβt (4.1.5)

which results in the equation for state Ψb

b(t) = −Ca
2~β
µε

e−i(∆+β)t (4.1.6)
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Using the last two equations with 4.1.4b leads to the condition

β(∆ + β) =
(µε

2~

)2

(4.1.7)

The Rabi frequency is introduced as Ω = µε/~ so that the solution for β
is given by

β± = 1/2
(

∆±
√

∆2 + Ω2
)

= 1/2
(

∆± Ω̃
)

(4.1.8)

The generalized Rabi frequency Ω̃ =
√

∆2 + Ω2 plays the central role in
this description of the two-level-atoms.

Substituting back β into equations 4.1.4 leads to the general solutions

a(t) = − 1

Ω
e+ i

2
∆t
(
A(∆− Ω̃)e+ i

2
Ω̃t +B(∆ + Ω̃)e−

i
2

Ω̃t
)

(4.1.9a)

b(t) = e−
i
2

∆t
(
Ae+ i

2
Ω̃t +Be−

i
2

Ω̃t
)

(4.1.9b)

Choosing the initial conditions to be |a(t0)|2 = 1 and |b(t0)|2 = 0 defines
the constants A = −B = µε/(2~Ω̃). To obtain the populations the solutions
are squared and read

|a(t)|2 =

(
∆

Ω̃

)2

+

(
Ω

Ω̃

)2

cos2(Ω̃t/2) (4.1.10)

|b(t)|2 =

(
Ω

Ω̃

)2

sin2(Ω̃t/2) (4.1.11)

The population of excited state Ψb is plotted in figure 4.1. It rises from zero
to a maximal amount and oscillates between these two values. The maximal
population transfer is given by the ratio Ω/Ω̃, its frequency is given by Ω̃/(4π).
The population transfer is unity for a light field without detuning and smaller
for all fields with non-zero detuning.

Figure 4.1 illustrates this behavior for two different generalized Rabi fre-
quencies. As the frequencies of the sinusoidal parts depend on Ω̃ the two cases
have different transfer rates.

It is important to keep in mind that this picture does not take into account
the spontaneous emission which would decrease the population of state Ψb

and hence lead to some kind of steady state behavior (treated for instance in
Metcalf [28]).
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Figure 4.1: Rabi Oscillations. The oscillations for two detunings differ
in frequency and amplitude. The full line shows the case of zero detuning,
the dashed line has a detuning of ∆ = Ω̃.

In the limit of short times and weak field the sine function can be approx-
imated to be linear. It turns out that the population transfer is proportional
to the intensity (∝ ε2) and does not depend on the detuning.

|a(t)|2 =

(
Ω

2

)2

t2 (4.1.12)

Considering the case that the light field does not have a detuning but is
changing in time the solutions (equations 4.1.14) depend on the ”area” of the
pulse. This solution is known as Area Theorem. The area of a pulse is defined
by

A =

∫ t

0

Ω̃(t′)dt′ (4.1.13)
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such that the populations read

a(t) = cos

(
1

2

∫ t

0

Ω̃(t′)dt′
)

(4.1.14a)

b(t) = i sin

(
1

2

∫ t

0

Ω̃(t′)dt′
)

(4.1.14b)

The importance of the area theorem is that the Rabi cycling in the case of
varying fields does not depend on the particular field shape but just on its
integral. It is easy to see from equations 4.1.14 that total inversion happens
in the case when the ares is equal to π - a so called π-pulse.

4.2 Dressed States

In the dressed state picture, the influence of the presence of a light field is
treated. As long as two-level-atoms are situated in the dark the previously
described states Ψa and Ψb (see chapter 4.1) are the bare eigenstates of the
system. The Hamiltonian is a diagonal matrix and its elements are the eigenen-
ergies. This does not hold true any more when the coupling terms appear in
the off-diagonal matrix elements of the Hamiltonian. New eigenstates which
are superpositions of Ψa and Ψb occur with new eigenenergies.

This chapter introduces the most important changes when taking into ac-
count a combined system of atom and field. The calculations follow Tannor
[43].

To address this problem we first calculate the expectation value of the
dipole moment with the solutions of the two-level-atoms. This treatment shows
that new transition frequencies occur at ω ± Ω̃.

For determining the expectation value of the dipole moment we evaluate

〈µ(t)〉 = 〈Ψ(t) |µ|Ψ(t)〉 (4.2.1)

The dipole moment depends linearly on the integration coordinate r so
that 〈Ψa |µ|Ψa〉 = 〈Ψb |µ|Ψb〉 = 0. Going back to the definition of the wave
function Ψ in equation 4.1.1 the expectation value reads

〈µ(t)〉 = a∗(t)b(t)µe−iωbat + c.c. (4.2.2)

with the coefficients a(t) and b(t).
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Figure 4.2: Dressed State Spectrum. (a) In the weak field regime two
new levels occur with an offset of ∆ such that the light field is resonant
with them. (b) In the strong field regime there are three different transition
frequencies ω, ω± Ω̃ between the two dressed states. Both figures assume
that the detuning is positive.

Plugging in solutions 4.1.9 from the two-level-derivation for a(t) and b(t),
with the given integration parameters A and B, leads to the expression

〈µ(t)〉 = − Ω

4Ω̃2

[
2∆e−iωbat −

(
∆− Ω̃

)
e−i(ωba+Ω̃)t

−
(

∆ + Ω̃
)
e−i(ωba−Ω̃)t

]
µab + c.c. (4.2.3)

This solution shows that the dipole moment oscillates at the fundamental
and two new frequencies ω ± Ω̃. The reason for the behavior is that already
the coefficients a(t) and b(t) oscillate at frequencies different from the light
field. This is called Mollow triplet [30]. Figure 4.2(b) draws a sketch of the
transitions.

In the case of zero detuning the dipole moment oscillates just at the two
new different frequencies

〈µ(t)〉 = − Ω

4Ω̃

[
e−i(ωba+Ω)t − e−i(ωba−Ω)t

]
µab + c.c. (4.2.4)

There is no oscillation at the original frequency. The absorption line is split
into two lines with a spacing proportional to the Rabi frequency.

As mentioned above, the dressed states can be regarded as superposition
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of the atom’s bare eigenstates. Going back to the solutions for a(t) and b(t)
in equations 4.1.9 one can choose the integration parameters A and B to fit
different initial conditions. One possible case is the combination A = 0 and
B = 1 which is identified as Ψ+. Likewise the combination A = 1 and B = 0
is also possible and is labeled Ψ−.

Equation 4.1.9 read now

a+(t) = −∆ + Ω̃

Ω
e−

i
2

(Ω̃−∆)t (4.2.5a)

b+(t) = e−
i
2

(∆+Ω̃)t (4.2.5b)

a−(t) = −∆− Ω̃

Ω
e

i
2

(Ω̃+∆)t (4.2.5c)

b−(t) = e−
i
2

(∆−Ω̃)t (4.2.5d)

We plug these coefficients into the definition of the wave function Ψ 4.1.1
and normalize the solutions. The resultant wave function composes of Ψa and
Ψb.

Ψ± = ∓

√
Ω̃±∆

2Ω̃
exp

[
+i

(
∆∓ Ω̃

2
− ωa

)
t

]
Ψa

±

√
Ω̃∓∆

2Ω̃
exp

[
−i

(
∆± Ω̃

2
+ ωb

)
t

]
Ψb (4.2.6)

These functions are the new eigenstates of the combined system of atom and
field. The can be regarded as the eigenvector of the instantaneous Hamiltonian.
Note that they do not give the eigenenergies as the Hamiltonian is explicitly
time-dependent.

Projecting the functions Ψ± onto the bare eigenstates shows that the prob-
ability of finding the system in Ψa/b is constant in time and hence that they
are stationary states

|〈Ψa|Ψ±〉|2 =
Ω̃±∆

2Ω̃
(4.2.7a)

|〈Ψb|Ψ±〉|2 =
Ω̃∓∆

2Ω̃
(4.2.7b)
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For weak fields (Ω << ∆) one can approximate the generalized Rabi fre-
quency to

Ω̃ ≈ |∆|

[
1 +

(
Ω

∆

)2
]

(4.2.8)

Assuming positive detuning the dressed states reduce to

Ψ+ = −
√

1− Ω2

2∆2
e−iωatΨa +

Ω√
2∆

e−i(ωb+∆)tΨb (4.2.9a)

Ψ− =
Ω√
2∆

e−i(ωa−∆)tΨa +

√
1− Ω2

2∆2
e−iωbtΨb (4.2.9b)

Solution Ψ+ is dominated by the bare eigenstate Ψa and Ψ− by Ψb re-
spectively. Both have small corrections of the other bare eigenstate with a
new frequency associated which can be regarded as newly introduced level
(compare figure 4.2(a)).

For some quantum mechanical problems it can be convenient to work in the
interaction picture. This picture is intermediate between the Heisenberg and
Schrödinger picture and evolves from them by an unitary transformation U .
In the interaction picture the Hamiltonian is split into two parts H = H0 + V
where H0 denotes a well known Hamiltonian which is exactly solvable. The
part V usually contains new terms which make the Hamiltonian more complex.
Any arbitrary choice of the two parts is valid. When chosen properly the time
evolution in the new picture can be much slower than in the other ones.

The new wave function reads

Ψi(t) = ei/~H0tΨs(t) = ei/~H0te−i/~HtΨs(0) (4.2.10)

where Ψs represents the wave function in the Schrödinger picture.
The Hamiltonian in the Schrödinger picture is

Hs =

(
Ea −µε(t)

2
e−iωt

−µε(t)
2
e−iωt Eb

)
(4.2.11)
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In our case it is advantageous to split the Hamiltonian into time-independent
atomic and time-dependent field parts. We define the rotation of the frame
(to go from Schrödinger to interaction picture) by the matrix

U =

(
e−i(ωa−∆/2)t 0

0 e−i(ωb+∆/2)t

)
(4.2.12)

Now the interaction Hamiltonian for a time dependent system reads (with
applying the rotating wave approximation)

Hi = U−1(t)Hs(t)U(t)− i~U(t)U̇−1(t)

=

(
Ea −µε(t)/2

−µε(t)/2 Eb

)
+

(
−~ωa + ~∆/2 0

0 −~ωb − ~∆/2

)
=

~
2

(
∆ −Ω
−Ω −∆

) (4.2.13)

The physical meaning of this interaction picture is that one of the atomic
levels has been shifted by the energy ±~ω so that the energy difference between
them changes from ~ωab to ~∆ = ~ωab − ~ω. The zero point of the energy
has been redefined in the middle of the two new energies such that they are
at ±(1/2)~∆. In the coupling terms only the envelope of the field remains in
form of the Rabi frequency Ω. This is the main reason for going into the new
picture. All fast oscillating terms have been eliminated and the time evolution
just cares about the field envelope. Hence the new interaction Hamiltonian is
much more convenient for further calculations.

To obtain the eigenenergies of the system we diagonalize the matrix Hi.
The corresponding rotation matrix R can be classified by a rotation angle
α = 1/2 arctan Ω/∆

R =

(
cos(α) − sin(α)
− sin(α) − cos(α)

)
(4.2.14)

Like in equation 4.2.13 the transformation with matrix R reads

H̃i = R−1(t)Hi(t)R(t)− i~R(t)Ṙ−1(t)

=

(
E+ 0
0 E−

)
− i~R(t)Ṙ−1(t)

(4.2.15)

If the term −i~R(t)Ṙ−1(t) is small the system can be regarded to behave
adiabatically, otherwise it behaves diabatically. The solution for the adiabtaic
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Figure 4.3: Eigenenergies of Dressed States. The adiabatic eigenen-
ergies of dressed states for a detuned light pulse start in the bare eigen-
states with energies Ea/b, evolves in the dressed states with energies E±
and returns to the bare eigenstates.

eigenenergies E± reads

E± = ±~
2

√
∆2 + Ω2 = ±~

2
Ω̃ (4.2.16)

Figure 4.3 shows the time evolution of the the energies E± for a detuned light
pulse. In case the detuning ∆ is much larger than the Rabi frequency Ω the
eigenenergies can be developed as

E± ≈ ±
~
2

(
∆ +

Ω2

2∆
+ ...

)
(4.2.17)

The second term of the development (without the prefactor ~) is the frequency
AC Stark shift

SAC =
Ω2

4∆
(4.2.18)
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Chapter 5

Electromagnetically Induced Transparency in

Rubidium

Electromagnetically induced transparency (EIT) is a mechanism to render an
optically dense system transparent. It has been observed in many different ex-
periments and can be used for a broad variety of applications. Stephen Harris
et al. were the first to both describe theory [20] and carry out experiments
[7, 19]. EIT has mainly been observed in atomic systems and but there are
experiments in solids as well by Ham et al. [18].

Most experiments up to now have been carried out in the perturbative field
strength regime and many aspects of the phenomena are well understood. In
this domain the dynamics of the system are described with a perturbation
theory solution of the three-level-atom.

However the exploration of EIT with strong and ultrafast fields has just
started. Our experiments introduce a time domain perspective to EIT. The
new aspects in this picture are based on two circumstances: On the one hand
dephasing mechanisms are much slower than the excitation such that coherence
between states can be maintained during the whole interaction. On the other
hand field envelopes vary very rapidly in time and for this reason influence the
dynamics.
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5.1 Properties of Rubidium

5S1/2

5P3/2

5P1/2

5D3/2

6P3/2

776nm

780nm

762nm

795nm

420nm

5720nm

Figure 5.1: Rubidium Energy
Diagram. The dashed lines show
most important transitions. All
lines connecting to 5P states lie
within the bandwidth of the laser.

Rubidium (Rb) is a silvery-white looking
alkali metal. It is very soft and like most
of the alkali metal highly reactive with
oxygen and water. Two natural isotopes
occur with 85 (72.17%) and 87 (27.83%)
nucleons.

Rb-87 is slightly radioactive with a
nuclear life time of 4.88 · 1010 years.
The melting point at atmospheric pres-
sure is 39.31◦C, the boiling point is at
668◦C. Its atomic mass is 86.91u = 1.443·
10−25 kg. Ionization is observed for ener-
gies larger than 4.177 eV =̂ 33690 cm−1.

Rubidium has 37 electrons which all
except one are located in fully occu-
pied orbitals. Almost all physical and
chemical processes comprise just this sin-
gle valence electron leading to an easy
hydrogen like description. The ground
state is 52S1/2 with the configuration
4p65s. The following energy diagram
5.1 (taken from NIST Atomic Spectra
Database [34]) shows the atomic levels.

Four transitions lie within the band-
width of the laser. Two of them lead
from the ground state 5S to the interme-
diate levels 5P1/2 and 5P3/2. The other
two transitions lead from the intermedi-
ate levels to the upper level 5D3/2. In the following experiments the transitions
5S1/2 → 5P3/2 and 5P3/2 → 5D3/2 are used for the EIT, all four transitions are
used for the superfluorescence.

All wavelengths and dipole moments are listed in table 5.1. The dipole
moment for the 5P1/2 → 5D3/2 is unknown but Warren et al. [44] indicate
that it is small in comparison to the other three of the discussed transitions.
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Table 5.1: Transition Data of Rb

transition λ / nm dipole moment/ 10−29 Cm source

5S1/2 → 5P1/2 794.7 1.967 [34]
5S1/2 → 5P3/2 780.0 4.97 [10]
5P1/2 → 5D3/2 794.7 — [34]
5P3/2 → 5D3/2 775.9 1.50 [10]
5D3/2 → 6P3/2 5720 — [34]
6P3/2 → 5S1/2 420.2 — [34]

The state 6P3/2 becomes important for the measurements in the section 6.2
on superfluorescence.

Rubidium has a hyperfine structure as the nuclei have spin 5/2 (Rb-85) and
3/2 (Rb-87). The resultant energy shifts are on the order of 100 MHz. These
shifts correspond to a wavelength difference of 20 pm being orders of magni-
tudes smaller than resolvable with the available spectrometers. Therefore all
experimental data will not be able to resolve the structure.

In quantum mechanics the time evolution of a state is always relative to
another state. It is proportional to the energy difference between the two
states. In the case of the Rubidium the time scale for phase evolution between
hyperfine levels is of the order of 100 ms which is very long in comparison to
the time scales of the experiments. Hence the evolution can be neglected.

The Einstein Aki coefficients for the 5S1/2 → 5P3/2 and 5P3/2 → 5D3/2

transitions are 3.81 · 107 s−1 and 3.61 · 107 s−1 respectively (taken from NIST
database [34]). Calculating the lifetimes of the excited states results in about
25 ns. This means that they all are at least four orders of magnitude longer
than the time scale of the experiments. For this reason spontaneous emission
can be neglected during the experiment. Hence the two-level-atom approxi-
mation (see chapter 4.1) which neglects spontaneous emission applies well to
the case of rubidium as long as just a single transition is excited.

The vapor pressure PV in Torr for the liquid phase is given by

log10 PV = 15.882− 4529.6

T
+ 0.000586T − 2.991 log10 T (5.1.1)

with the temperature T in K. At low pressures it is satisfactory to assume an
ideal gas which leads to the density-temperature diagram 5.2.

All numbers - if not indicated differently - are taken from Steck [41].
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Figure 5.2: Rubidium Density Diagram. The curve shows the depen-
dence of the rubidium density on temperature.

5.2 Electromagnetically Induced Transparency

The technique of EIT for eliminating resonant transitions has been used in
many experiments. Maybe best known is the application of ”slow light” [21]
where EIT is used to generate a system with a very small group velocity.
Nonlinear processes can profit strongly from EIT as demonstrated with second
harmonic generation in hydrogen [17]. Furthermore EIT relates to topics like
lasing without inversion [37].

EIT in atomic experiments can only be observed in three- (or multi) level
systems. These either ladder- or lambda-type energy levels have three states
which we denote |a〉, |b〉, |c〉 (compare figure 5.3). In the case of a ladder
system one also finds ”ground state”, ”intermediate state” and ”excited state”
in some literature. The nomenclature is chosen such that the state |c〉 always
connects to both |a〉 and |b〉. The coupling transition with frequency ωc links
the states |b〉 and |c〉 and the probe transition with frequency ωp states |a〉 and
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|c〉 respectively.

|a>

|b>

|c>
ωcωp

ωc

ωp

(a)

(b)

|a>

|c>

|b>

Figure 5.3: EIT Level Systems. (a)
In a lambda system the levels are la-
beled |a〉, |b〉 and |c〉 with the coupling
ωc and probe ωp transitions frequencies.
(b) For ladder systems the |c〉 states
corresponds to the intermediate state.

There is no allowed dipole transi-
tion between |a〉 and |b〉.

Understanding EIT requires a
quantum mechanical point of view.
The key to the description is inter-
ference between wave functions ex-
cited to |c〉 from two different states,
namely |a〉 and |b〉. If both coupling
and probe fields are close to reso-
nance on their transitions they are
introducing quantum coherence be-
tween the states |a〉 and |b〉. Inter-
ference reduces the effective transfer
into state |c〉 dramatically. This phe-
nomena is called coherent population
trapping (CPT) [3].

The levels in figure 5.3 are dressed
by the light field. When the light
field appears as off-diagonal elements
in the Hamiltonian, the bare states
of the atoms evolve to dressed states
|p,m〉 which are coherent superposi-
tion of the bare states |a〉 and |b〉.
Considering the light fields to be
probe (with Rabi frequency Ωp) and
coupling (with Rabi frequency Ωc)
fields the dressed states are

|p,m〉 ∝ Ωp |b〉 ± Ωc |a〉 (5.2.1)

where Ωc and Ωp denote the coupling
and probe Rabi frequencies.

We calculate the expectation
value of the dipole operator µ̂ for the
two levels |c〉 and |m〉

|〈c| µ̂ |m〉|2 ∝ |〈c| µ̂ (Ωp |b〉 − Ωc |a〉)|2 ∝ |ΩcΩp − ΩpΩc|2 = 0 (5.2.2)
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Figure 5.4: Imaginary part of the susceptibility. The absorption line
for zero coupling (a) splits into two lines (b) for a coupling Rabi frequency
of Ωc = 2γ.

The result from the vanishing expectation value of the dipole moment is
that atoms put into state |m〉 cannot be excited any more to state |c〉. Conse-
quently they do not contribute any more to absorption processes. Furthermore
there is no dipole moment that connects the two superpositions |p〉 and |m〉.
Hence population - once transfered to |m〉 - is trapped in this state. As the
rate of population transfer into this state is nonzero for all times population
accumulates in the trapped state and does not take part any more in the
dynamics.

This behavior leads to EIT in the case that a coupling field εc introduces
the coherences on the |b〉 → |c〉 transition. A probe field εp on the |a〉 → |c〉
transition has no population to interact with. Hence the usually optical dense
transition is transparent.

The time scales on which the EIT forms depends on whether the initial
state is empty or populated. For the case that states |a〉 and |c〉 are both
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Figure 5.5: Real Part of the Susceptibility. The index of refraction
without coupling (a) shows the usual changes between normal and anoma-
lous dispersion. The shape splits like the absorption with a coupling Rabi
frequency of Ωc = 2γ (b) into two features and has a steep slope in the
transparent region.

populated it takes several decay times of the state |c〉 to populate the trapped
state [19]. In the case of just state |a〉 being populated Harris et al. [16] found
the time for establishing the trapped state to be greater than 1/Ωc.

The effect of coherent population trapping is not only used in EIT experi-
ments, but also for example in laser cooling [28] and for atomic clocks [22].

Classical pictures describes an EIT system with two damped oscillators.
Without the interaction of the coupling field both oscillators have the same
oscillation frequency ω0. Turning on the coupling field shifts one oscillation
frequency up and the other down. Driving both oscillators at the frequency ω0

causes a situation where one oscillator is driven above and one below resonance.
For sufficiently large splitting between the oscillator frequencies (> several
resonance widths) the phases of two damped oscillators are almost opposite.
The contributions cancel to a great extent.
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Though this picture might be qualitatively right, it is not quantitatively.
For small detunings (smaller than the resonance width) the picture does not
show the right cancellation any more. Furthermore the classical picture does
not explain why the cancellation of absorption can be 100%

For a correct description one has to go back to the reduced differential
equations for a two-level-system and extend them to the three-level case with
probe Rabi frequency Ωp and coupling Rabi frequency Ωc. This set of equations
can be solved in the weak field regime by a perturbation expansion. With
the usual rotating wave approximation and initial conditions one derives the
expectation value of the induced dipole moment. This consequently leads
to the polarization and hence to the susceptibility. The complete extensive
derivation can be found in Boyd [9].

The real and imaginary part of the susceptibility determine the shape of
the absorption line and the index of refraction. They read

χ(∆p) ∝
∆p

Ω2
c − 4∆2

p + i2γp∆p

(5.2.3)

with the detuning of the probe field ∆p = ωp − ωac, the line width γp of the
transition |c〉 → |a〉 and the Rabi frequency of the coupling field Ωc. Figure 5.4
illustrates the imaginary part of the function χ(∆p) for two different coupling
fields. The case of zero coupling (a) shows the usual Lorentzian line shape.
The corresponding index of refraction (n−1) in figure 5.5 changes from normal
to anomalous dispersion and back. The steep slope of the curve was interesting
to explore but it is practically not accessible due to the high absorption.

In the case of the coupling Rabi frequency being twice the line width Ωc =
2γp (b) one finds the absorption line to be split. In the middle of the two
maxima the absorption goes down to zero. This feature leads to EIT. Resonant
probe light encounters full transparency. The index of refraction still has a
(opposite) steep slope. This can for example be used for creating slow light as
the group velocity dispersion is proportional to n− λ(dn/dλ).

There are numerous different EIT experiments carried out on atomic Rb.
The following overview does not claim completeness but intends to point out
some important works. We focus on experiments in Rb though this atomic
system does not show any fundamental differences to other atoms.

The first observation of EIT in Rb was reported in 1995 by Xiao et al.
[23]. They have reduced the absorption of the 5S1/2 → 5P3/2 transition by
64.4% with a coupling field resonant on the 5P3/2 → 5D3/2 transition. An-
other experiment uses the hyperfine structure for EIT like Scully et al. [36]
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have demonstrated. The transparency has been established with a comb of
short optical pulses introducing the discussed coherences between the hyper-
fine ground states. Experiments with the strong change in index of refraction
have been carried out by Maleki et al. [42]. They have studied nonlinear
optical properties of EIT in Rb and focussed on the group velocity / EIT reso-
nance dependency on the probe intensity. Welch et al. [29] have demonstrated
a group velocity of vg ≈ −80 m/s and explored the transition of the ultraslow
to ultrafast light regime.

The approach to ultrafast EIT is different than described before in the
chapter and the cited papers. There is very little work on strong field EIT.
The only paper dealing with strong fields is [12].

In strong field physics equation 5.2.3 does not hold true any more as the
EIT is not in the pertubative limit. Two different views - a frequency and
a time domain perspective - allow us to understand the new mechanisms. It
is important in the following consideration that the probe pulse (5S1/2 →
5P3/2) intensity is small in comparison to the coupling pulse (5P3/2 → 5D3/2)
intensity.

ωp

ωc

ωp

ωc

5S1/2

5P3/2

5D3/2

(a) (b)

Ωc

Figure 5.6: EIT Level Splitting Dia-
gram. (a) For a weak coupling field the
effect of the dressed states is neglectable
and much smaller than the bandwidth of
the probe pulse. (b) For a strong coupling
field the state 5P3/2 splints and shifts out
of resonance with the probe.

Sections 4.2 and 4.1 about
two-level-atoms and dressed states
have given insight into the strong
field dynamics of atoms. Rb in
our experiment is not a two-level
system but a three-level ladder
system (see figure 5.1). Nev-
ertheless the theoretical results
of these chapters apply here to
some extent as the probe field
is at least two orders of mag-
nitude weaker than the coupling
and does not dress any states.

In the frequency domain per-
spective the splitting of the ab-
sorption line described above for
”usual” EIT is introduced by the
two-level-atom dynamics. For
the first approach it is reason-
able to think of the coupling as
so strong that it dominates the
dynamics of the Rb system. Con-
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sequently the coupling field interacts with the atomic system and dresses the
states of the resonant transition. The bare eigenstates 5P3/2 and 5D3/2 of
figure 5.6(a) transform into the dressed states Ψ± given by equation 4.2.6.

For the coupling field, equation 4.2.3 describes the expectation value of
the dipole moment. The oscillation of the dipole happens at the undressed
coupling transition frequency ωc and at two frequencies below and above the
transition frequency. These new frequencies occur at ωc ± Ωc where Ωc is the
coupling field Rabi frequency. The scheme of the transition frequencies in
figure 4.2 changes to the following diagram 5.6(b).

The ground state 5S1/2 in 5.6(b) remains undressed. Due to the splitting
of the intermediate state 5P3/2 the transition frequency for the probe fields
turns into a doublet. Its dipole moment oscillates with the new frequencies
ωp±1/2Ωc above and below the bare resonance. The separation of the splitting
is proportional to the coupling field strength.

The linewidths of the states can be neglected in this treatment. They are
orders of magnitudes smaller than the bandwidths of the fields and the Rabi
frequency Ωc.

When the coupling field is sufficiently intense the splitting is wide enough to
let a noticeable fraction (or the total) of the probe bandwidth pass in between
the two absorption peaks corresponding to the dressed states. The width of the
split absorption lines and the region of strong change in the index of refraction
for a constant coupling Rabi frequency Ωc is much smaller than the splitting
itself. Hence the part of the spectrum between the split levels encounters very
low absorption and a small change in group velocity. However the resonant
parts of the pulse are absorbed and have a different group velocity. This
splitting is known as Autler-Townes Splitting [4].

In the time domain perspective the transparency can be explained by inter-
ference of wave functions. First we recall the mechanisms of a two-level-system
with the transition frequency ω0. We define the zero energy as the energy of
the ground state. The energy of the excited state is Eex = ω0~ such that its
phase evolves with the propagator e−i(Eext/~) = e−iω0t.

We break up the light field with the frequency ωl in lots of small parts in
time. The first part of the field at t0 excites a small fraction of the ground
state to the excited state. This exited state amplitude evolves in the state and
picks up a phase.

The next part of the field at t0 + τ excites a following fraction of the wave
function. Its phase is just determined by the phase of the light field as the
ground state does not evolve in phase. The light field phase is proportional to
its frequency such that the second fraction of the wave function has the phase
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e−iωlτ . The fraction of the wave function in the excited state has evolved in
phase during the time τ by e−iω0τ . Both fractions add up.

If the light field is resonant, namely ωl = ω0, the phase evolution in the
excited state exactly is matching the phase of the second excited fraction of
the wave function. Without phase difference the two fractions do not interfere
and add up constructively.

In the case of a non-resonant field ωl = ω0 + ∆ the two fractions of the
wave function add up with a phase difference of e−i∆τ . This leads to partial
cancellation of the exited state amplitude. Consequently all parts of the excited
wave function have different phases leading to a complete cancellation. This is
an explanation of why only resonant fields can transfer population in the limit
of long excitation pulse.

EIT experiments are based on the a similar cancellation of wave function.
As in this case the probe is resonant, the mechanism for phase mismatch has
to be based on the third state.

The probe transition from the ground state 5S1/2 to the intermediate 5P3/2

is where the cancellation takes place. At the same time the probe field excites
a fraction of wave function, the coupling field takes this fraction and cycles it
between the states 5P3/2 and 5D3/2. Its field strength is much higher than the
probe’s whereas the dipole elements are comparable. Thus the higher Rabi
frequency of the coupling field implies that the cycling transfer rate is faster
than the excitation from the ground state.

Parts of the wave function which come back to the intermediate state 5P3/2

after the cycling do not have their previous phase. Consequently the following
probe field excitation adds up with a phase difference. Generally speaking a
strong coupling field randomizes the phase of the intermediate state at a higher
rate than the coherent excitation happens.

The cycling can reduce the amount of transferred population dramatically.
Section 5.8 on Simulations for EIT in Rubidium shows numerical simulations
proving that this mechanism can reduce the effective amount of transferred
population by a factor of 50.

The two described pictures give insight into the mechanism of EIT in the
strong field regime. However they are based on the assumption that probe
and coupling fields just interact with their assigned transitions. Laser pulses
from the amplifier system with a bandwidth of 30 nm are not suitable to act
as probe and coupling pulses. The pulse shaper is able to create narrow band-
width pulses with desired width and amplitude within the given wavelength
range. Section 5.5 on the Pulse Applicator Program explains this in detail. All
explanations up to now have neglected the effects of propagation. Resulting
problems and ways to address them are discussed in the following section.
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5.3 Simulations for EIT in Rubidium

The first approach to quantify the EIT in Rubidium is founded on simulations.
The last section Electromagnetically Induced Transparency 5.2 has introduced
the qualitative pictures of how a transition can be rendered transparent.

One step further from the two-level-systems towards a better understand-
ing is the calculation of a three-level-system. To our knowledge there is no
analytical treatment of such a system for short and intense pulses. Equa-
tion 4.1.7 of the two-level case becomes non-algebraic and cannot be solved
analytically any more.

Nevertheless the Schrödinger equation for a three-level-system can be in-
tegrated numerically. We use a similar approach as in the two-level-atom and
describe the wave function of the system as superposition of the three bare
states

Ψ(t) = a(t)e−iωatΨa + c(t)e−iωctΨc + b(t)e−iωbtΨb (5.3.1)

The probabilities to find an atom in the bare states are given by |a(t)|2, |b(t)|2
and |c(t)|2. A light field ε(t) = ε1(t)e−iω1t + ε2(t)e−iω2t composed of two pulses
couples the states. Two- and multiphoton processes are neglected. The time-
dependent Schrödinger equation in matrix form reads

i~
d

dt

a(t)e−iωat

c(t)e−iωct

b(t)e−iωbt

 =

 Ea −µacε(t) 0
−µcaε(t) Ec −µcbε(t)

0 −µbcε(t) Eb

a(t)e−iωat

c(t)e−iωct

b(t)e−iωbt


(5.3.2)

This equation translates with the help of the rotating wave approximation
into the equation of motion for the coefficients a(t), b(t) and c(t)

∂

∂t

a(t)
c(t)
b(t)

 =

0 A 0

Ã 0 B

0 B̃ 0

a(t)
c(t)
b(t)

 (5.3.3)

with the terms A, Ã, B, B̃ defined by the dipole moments µac = µca and µbc =
µcb, the two envelopes of the fields ε1(t) and ε2(t) and the detunings of the

46



fields 1 and 2 from the transitions a→ c and b→ c

A = −µac
[
ε1(t)e−i∆ac,1t + ε2(t)e−i∆ac,2t

]
(5.3.4a)

Ã = −µac
[
ε1(t)e+i∆ac,1t + ε2(t)e+i∆ac,2t

]
(5.3.4b)

B = −µcb
[
ε1(t)e−i∆cb,1t + ε2(t)e−i∆cb,2t

]
(5.3.4c)

B̃ = −µcb
[
ε1(t)e+i∆cb,1t + ε2(t)e+i∆cb,2t

]
(5.3.4d)

The first order differential equation 5.3.3 can be integrated numerically. In
this case Matlab R© 7.1 is used. The integration code was written to explore
different important parameters for the simulation. Running the program pro-
vides either the population of the three levels in time or the final population
of the levels in dependence of intensity and pulse delay between two pulses.

Goal of the program is to determine whether a coupling field (in the sense of
chapter 5.2) can reduce population transfer on the probe transition. The code
allows us to study how the interaction of the coupling influences the dynamics
of the system. Less population transfer on the probe transition would imply a
reduction of absorbed photons and hence lead to transparency. The program
does not include propagation effects as the described model does not comprise
changes in the field.

The code determines the electric field envelope from the two input parame-
ters maximum field strength and wavelength full width half maximum(FWHM).
The wavelength FWHM translates into a temporal FWHM via the assumption
that the pulse is Gaussian in shape and has a flat phase (transform limited:
∆ω ·∆t = 0.44).

The actual differential equation is integrated with the built-in function
ode23. This function allows us to integrate explicitly time-dependent first
order differential equations given in matrix form. It would be possible to use
Runge-Kutta 4th order instead, but the possible gain in computing time would
not compensate for the possibility to scale the ode23 in relative and absolute
tolerance.

In the first operation mode the program generates a one dimensional time
array which is fine enough to integrate the equations with the required accu-
racy. It matches the field envelopes to this time array and passes all informa-
tion to ode23.

As this simulation does not comprise absorption (the electric field remains
unchanged) we need to examine the atomic state dynamics to get insight about
EIT. One good alternative measure for absorption is the amount of transferred
population. It is proportional to the amount of absorbed photons as long as
no stimulated emission occurs. To study this behavior the probe pulse is
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chosen to be a π pulse (compare equations 4.1.14), meaning that it inverts
the population of its transition completely. This is definitely not the way the
experiment should be set up but it increases the contrast of the simulations.

Note that spontaneous emission is and can be neglected. Coupling and
probe wavelength FWHM are chose to be close to experimental values as 1 nm
and 0.5 nm respectively. Both pulses are centered in time such that their
temporal overlap is maximal.
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Figure 5.7: Simulation of the Time Development of the Popula-
tion of Rb in EIT Experiment. The probe is a π pulse and the coupling
has a field strength of 1.4 ·108 V/m. The coupling pulse almost completely
prevents the probe from population transfer into the 5P3/2 state. In the
end the population in the ground state is 98.5%.

Figure 5.7 illustrates the population dynamics with a coupling pulse with
a maximum field strength of 1.4 · 108 V/m. This value is presumably high as
the probe pulse is a π pulse. In the experiments the effects can be found for
smaller field strength.
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In the beginning of the interaction (negative times) population of the the
ground state 5S1/2 is started to be pumped into the intermediate state 5P3/2.
As soon as the coupling field turns on and cycles the 5P3/2 → 5D3/2 tran-
sition, the coherence between ground 5S1/2 and intermediate state 5P3/2 is
destroyed. Hence following population excited from the ground state adds up
with the intermediate wave function in distorted phase. This process causes
fast oscillations in the populations. In the end of the interaction the remaining
population in the intermediate state 5P3/2 declines and settles at about 1.5%.
The population in the excited state 5D3/2 is neglectably small. Hence the ef-
ficiency of the population transfer has been reduced by more than a factor of
50. This result leads to the expectation that the overall absorption of photons
is reduced by about the same factor.

The second operation mode of the code generates a two dimensional array
of time delay and field strength values. A time delay corresponds to a shift of
one of the pulses in time in respect to the other. This allows us to determine
how important the temporal overlap is and how the EIT appears for partial
temporal overlap. In the field strength dimension, the intensity of the probe is
held constant, but the coupling is ramped in strength. It gives insight in how
the EIT scales with coupling intensity.

Figure 5.8 depicts the result of a time delay of -2 ps to +2 ps and a maximal
field strength of 1.5 · 108 V/m. The time delay dimension shows that the
interaction between the two pulses is on the order of 2 ps. This is a little less
than the sum of the pulses FWHMs (2.67 ps) and fulfills the expectations that
the effects occur when the pulses overlap significantly. With higher coupling
field strengths the temporal interaction becomes longer.

The field strength dimension shows robust prevention of population transfer
for field strengths greater than 3 · 107 V/m. We can run the simulations with
smaller probe intensities decreasing the coupling threshold for prevention of
population transfer a little. However the contrast of the simulations decreases
as well.

We want to determine whether the influence of the coupling pulse on the
5S1/2 → 5P3/2 transition is important. Therefore a modified simulation is car-
ried out shown in figure 5.8. The new simulation suppresses the coupling pulse
affecting to the probe transition and vice versa. This was done by changing the
Hamiltonian in the following way. In equations 5.3.4 the terms for the far de-
tuned field envelopes are removed and therefore the cross talking of the pulses
is eliminated. The result of the new simulation is shown in figure 5.9. We find
the overall behavior to be different from the other simulation. Just two peaks
with highly suppressed population transfer occur, the depth of the minimum
between them is strongly dependent of the coupling pulse wavelength band-
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Figure 5.8: Simulation of the Population of the Ground State
in Rb in EIT Experiment. For small coupling field strength the probe
exhausts the ground state completely (π pulse). For strong coupling pulses
the ground state population is close to one. The temporal FWHM is about
±1ps and therefore close to the sum of the pulses FWHMs.

width. Broader bandwidth of the coupling pulse than in the simulation shown
in 5.9 leads to less pronounced minima. A coupling FWHM of 3 nm fills the
gaps nearly completely and hence produces a uniform population transfer sup-
pression for the probe pulse for all coupling field strengths above the threshold
of 3 · 107 V/m.

Our conclusion from this result is that the cross talking cannot be neglected
in the experiment. Though further calculations show that coupling pulses with
intensities used in the experiment do not transfer population on the probe
transition, the coupling field can still enhance or degrade the suppression of
population transfer depending on the choice of pulse FWHMs. Later measure-
ments show that this is mainly due to the coupling Stark shift of the probe
transition.

50



time delay [ps]

co
up

lin
g 

fi
el

d 
st

re
ng

th
 [

V
/m

]

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14
x 10

7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.9: EIT Simulation Ground State 2. The coupling field just
interacts with the coupling transition and the probe field just with its
transition. The overall behavior is different. The simulation proves that
the cross talking cannot be neglected with this set of parameters.

As mentioned before, these simulations have some limitations and assump-
tions which do not hold true in the experiment. The most severe one is that
the simulations do not take into account propagation. Effects of the propaga-
tion effects can be guessed from figure 5.7. Though the final population of the
ground state is close to 100% for intermediate times it goes down to 30% and
oscialltes very fast. This behavior implies that the light field excites popula-
tion by absorption on the 5S1/2 → 5P3/2 in the first half of these cycles. In the
second half most of the excited population is transferred back into the field by
stimulated emission. This process has a strong influence on the propagation
of the pulse.

The second assumption not holding true is that the time delay between
the pulses is constant through the whole interaction. As a direct consequence
of propagation the group velocities of the two pulses depend on the index of
refraction which is coupled to the shape of the absorption line (see section
5.2 about EIT). With the atoms behaving as shown above, the probe pulse is
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resonant on a populated transition and hence sees a strong structure in the
index of refraction. In contrast the coupling pulse is in fact resonant, but
its two transition states are almost empty (when using a probe pulse with an
area � π ). This implies that the two pulses propagate with different group
velocities.

One more problem is that in the experiment the field strength of probe
and coupling are not constant in space. Our beams usually have a Gaussian
profile. For a setup with focusing, the longitudinal beam diameter changes as
well. Both circumstances lead to intensity volume averaging.

The overall conclusion from the simulations is that there can be a robust
region in the time delay - field strength space with strongly suppressed popula-
tion transfer when the effects of the problems mentioned above are minimized.
Absolute values for the field strength threshold for EIT cannot be named,
but they indicate the order of magnitude for the field strength in the exper-
iment. The values for time delay are reasonable and give some guidance for
the experiment although they do not account for propagation.

5.4 EIT Setup

The setup of the Rb EIT experiments involves the pulse shaper, an imaging
system, the Rb cell and the spectrometer. A sketch is shown in figure 5.10.

A 30 fs pulse is generated by the laser system centered at 780 nm. The
pulse shaper is used to create the coupling and probe pulses at 776 nm and
780 nm respectively by cutting out narrow bandwidth fields. The next chapter
5.5 about the Pulse Applicator Program explains the process in detail.

It is important for the Rb experiment to create a long Rayleigh range for
the focus of the beams in the cell. This reduces the effect of longitudinal
intensity averaging. In comparison to previous setups with a strong focus into
the cell we find a strongly reduced influence of the averaging with the current
setup. To obtain the long Rayleigh range a 1000 mm lens is used to focus the
beam coming from the pulse shaper.

The following imaging system with a 300 mm lens projects the focus into
the cell with a magnification of about 3.7. This combination of optics allows us
to create a reasonably small spot size with a sufficiently long Rayleigh range.
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Figure 5.10: EIT Setup with Rb cell. The laser system produces
a 30 fs laser pulse which the pulse shaper turns into coupling and probe
pulses. A lens focuses with a long focal length. The focus is imaged into
the Rb cell having a long Rayleigh length. The center of the cell is imaged
onto the pinhole in front of the spectrometer.

Every Gaussian beam focused by an optic has a diffraction limited beam
waist. In the limit of small angles its radius (HWHM1) for the electric field is

w0 =
λf

rπ
(5.4.1)

with the wavelength λ, the focal length f of the focusing optic and the beam
radius r on the optic. The distance between beam waist with radius w0 and
the point where the beam radius has increased to

√
2w0 is called Rayleigh

range zR

zR =
πw2

0

λ
(5.4.2)

In an imaging setup with magnification M the new waist w
′
0 and Rayleigh

range z
′
0 are

w
′

0 = Mw0 (5.4.3a)

z
′

0 = M2z
′

0 (5.4.3b)

1half width at half maximum
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Using equations 5.4.1 to 5.4.3b the resulting beam diameter in the focus in
the cell is about 440µm with a Rayleigh range of 195 mm.

The glass cell contains Rb without a buffer gas. It is heated by heating
elements wrapped around the exterior of the cell. We can adjust the cell
temperature between 21◦C and 200◦C. Figure 5.2 shows the gas density as a
function of temperature and equation 5.1.1 gives the vapor pressure in the cell.
Aluminum foil wrapped around the heating elements and the cell insulates the
setup. The windows of the cell are the only parts which cannot be shielded.
To prevent them from extensive cooling, two insulated extending metal tubes
have been added to the cell in the beam direction and create a buffer zone. A
thermocouple measures the temperature at the outer surface of the cell. The
length of the cell is 60 mm which is about 15% of twice the Rayleigh range.
This implies that changes in the beam diameter throughout the interaction
region are on the order of 6%.

A second imaging system projects the light from the cell onto the 75µm
pinhole in front of the spectrometer. There is no magnification. The pinhole
selects the center of the beam reducing the problem of transverse intensity
averaging. Furthermore the 10µm slit of the spectrometer in the vertical
plane increases the spatial selectivity in the beam. Both apertures together
reduce the effect of transverse intensity averaging to a tolerable amount.

The spectrometer is the USB spectrometer HR4000 from the company
OceanOptics. Its spectral range spans from 696 nm to 884 nm with a total of
3648 pixels. We measured with a slit width of 10µm the spectral resolution
to be 0.16 nm at 780 nm. The integration time can be chosen from 4 ms up-
wards; spectra can be averaged. An inbuilt dark signal subtraction allows us
to take spectra without background signal. The noise level is according to the
manufacturer below 3%. We can confirm the noise level for optimal operation
but measured a slightly higher value for disadvantageous integration values
and too long USB cables. In all our measurements we paid attention to avoid
these problems.
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5.5 Pulse Applicator Program

The EIT experiment depends strongly on the possibility to control the ampli-
tude and phase of the light field in frequency and time. In earlier chapters
(see 2.2, 3.1) the abilities and methods of manipulating the light field with an
acousto-optical modulator were discussed. This chapter describes the imple-
mentation in form of a LabVIEW R© program for the particular needs of the
EIT experiment.

The first and most important feature of the program is the possibility to
selectively vary the spectral intensity. As mentioned above, the broadband
(30 nm) light of the amplifier is used to obtain multiple pulses with narrow
bandwidths (∼ 1 nm).

All changes induced by the AOM are controlled by a 1 GHz arbitrary wave-
form generator (AWG) with 1 ns sampling. This signal is created from an array
of 8500 values for both time and phase which is send to an digital to analog
converter. The output array length is chosen to correspond to 8500 ns such
that the 3.4 cm width of the crystal is filled with the propagating acoustic
wave (acoustic velocity 4200 m/s) when the light pulse arrives. This results in
a mapping of the 8500 pixel of the array to first time in the high frequency
signal and following via acoustic wave velocity to different spots in the crystal
and hence to wavelengths. All in all pixels map to wavelengths unambiguously.

The idea behind the LabVIEW R© program is to set most of the 8500 ampli-
tude pixels to zero with the possibility to change small fractions of about 200
values in between. In this case the acoustic wave is just non-zero at particular
positions in the crystal. These positions are chosen such that they pick out
the right wavelengths for the experiment.

The program allows us to create three of these wavelength windows. Every
window is defined by its initial and final value. As wavelength to space mapping
in the crystal is very sensitive to alignment these values are not preset but can
be chosen manually. Furthermore this offers the possibility of detunings. The
amplitude between the initial and final value is determined by 10 amplitude
sliders whose values are interpolated. This allows us to fine tune the shape of
the pulse.

Additionally there are settings for an overall gain, a parallel offset of the
window and a global on/off.

Figure 5.11 shows the dialog for one frequency window. The amplitude
array is set high between pixels 2700 and 2900. As all sliders are up to full
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Figure 5.11: Dialog of Pulse Applicator Program. The settings al-
lows to determine the shape of a particular part of the high frequency
signal. Initial and final pixels can be set and 10 sliders dictate the am-
plitude shape. In addition the overall amplitude and an offset can be
changed.

value the shape of the frequency window is a simple square function. The
overall gain is set to 0.05, there is no offset. Three of these windows can be
used for probe, coupling and a reference pulse.

The second feature of the code is the possibility to introduce a time delay
between the pulses. Equation 3.1.3 has shown that a linear phase in the
frequency domain translates into a proportional delay in the time domain.

Due to conservation of energy and momentum the phase of the acoustic
wave in the crystal is transferred to the light field. As mentioned before every of
the 8500 amplitude pixels of the array corresponds to a particular wavelength.
This also holds true for phase pixels. Non-zero values for these pixels lead to
a phase in the acoustic wave and hence are transferred to the light field.

The output of the AWG therefore can be written as

f(t) = A(t) sin (ν0t+ φ(t)) (5.5.1)

with the amplitude pixel array A, the phase pixel array φ and the carrier
frequency ν0 = 150 MHz. In the program φ is zero for all pixels in which the
probe and the reference window lie. Just the coupling pulse is delayed with
respect to the probe pulse by a non-zero slope in the phase array as shown in
figure 5.12. The reason for this is space time coupling in the pulse shaper.
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Figure 5.12: Amplitude and Phase Array. The two plots show a
section of the amplitude array (upper graph) composed by three frequency
windows and a section of the phase array (lower graph) with a linear phase
for the coupling pulse.
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Figure 5.13: Pulse Applicator Output. The high frequency signal is
measured with the scope. The zero point of the time axis does not exactly
match the beginning of the wave. For the right window the amplitude is
not constant like seen before in the amplitude array of figure 5.12.

Figure 5.12 shows a section of amplitude and phase array. The amplitude
array (upper graph) was composed of three windows. The right window is the
coupling with a shaped amplitude (sliders are not at full values). The other
two are the probe and a reference pulses. The output of the AWG measured
with an oscillator can be seen in figure 5.13. A change in the frequency of the
carrier wave due to the phase can just be seen when zoomed in as it is small
in comparison to the carrier frequency. The slope in the phase array (lower
graph in figure 5.12) starts between probe and coupling pulse such that just
the coupling is influenced. The calibration of the phase slope is given by 5.5.4.

The spectral FWHM of a pulse, created by a window, depends on the pixel
width. For windows broader than 50 pixel the FWHM scales linearly with
the width. Below 50 pixels the FWHM settles at about 0.45 nm. Figure 5.14
shows the interesting region for the experiment below 100 pixels.

58



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

width [pixels]

F
W

H
M

 [
nm

]

Figure 5.14: Resolution of the AOM. For windows broader than 50
pixels the wavelength FWHM scales linearly with pixels. For smaller win-
dows the FWHM settles at about 0.45 nm.

We find that the behavior of the FWHM does not come from the AD
converter or any following amplification device. The high frequency signal can
resolve a few pixels.

In conjunction with this the maximal amplitude of the pulse declines rapidly
for pixel width smaller than 75 pixels. Figure 5.15 shows this behavior.

The entrance slit of the AOM is about 3.3 mm long covering a total of
65 nm of the spectrum. Knowing the spectral FWHM of the AOM resolution
(0.45 nm) we can calculate the spatial FWHM of the crystal resolution

0.034 m · 0.45 nm

62 nm
= 2.3 · 10−4 m (5.5.2)

Equation 5.4.1 gives the diffraction limited spot size on the AOM crystal.
The mirrors of the pulse shaper have a focal length of 750 mm and the beam
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Figure 5.15: Intensity of the Diffracted Wave from the AOM. For
windows smaller than 75 pixels the intensity declines almost linearly with
the width showing the limitations of the diffraction process in the crystal.

size is 1.5 mm. The diameter (FWHM) for intensity at the focal point is

d = 2/
√

2 · w0 = 1.8 · 10−4 m (5.5.3)

Taking into account that the spot size is just an estimation, the mode of the
laser is not perfect and the beam has a Rayleigh range it seems likely that the
resolution of the pulse shaper is optically limited.

For the time delay calibration of the Pulse Applicator phase slope two
delayed pulses at different wavelength were measured with the FROG. The
resulting autocorrelation of two delayed pulses has four peaks. Two are at
time zero (no path length difference between the two pulses) with the peaks
being centered at half the wavelength of the input pulses (note: the signal
is the SH light). The other two peaks are at plus and minus the delay time
centered at half the average wavelength. Figure 5.16 shows a FROG trace for
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Figure 5.16: Pulse Applicator Time Delay Calibration. The FROG
trace shows the autocorrelation for two pulses delayed by 1200 fs. The
wavelength axis is not correct.

a phase slope of 8 in the Pulse Applicator. This corresponds to a time delay of
1200 fs. The wavelength axis is not right as the FROG program has problems
to read out the spectrometer wavelength data, which is of no influence on this
measurement. Six traces have been taken and give a slope delay conversion
factor of

dps = (150± 8) fs/unit slope (5.5.4)

The autocorrelation is by definition symmetric in time. For two given
pulses the delay can be determined but not the order of the pulses. Hence the
time delay is undefined in sign. To find the order of the pulses we measured
two more correlation delay scans.

The first scan was carried out with a 150µm BBO crystal. Two beams
at different wavelength were generated and delayed in respect to each other
with the pulse shaper. Both beams overlap in the crystal and produce blue SH
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light. A spectrometer takes traces of the SH signal. The cooperative signal is
maximal for best overlap, hence this measurement determines the phase slope
at which both pulses arrive at the crystal at the same time. As predicted this
value is very close to zero.

The second scan was carried out with the former setup and a 2 cm thick
glass optic. It is inserted before the crystal to introduce a dispersive time
delay. Glass has a normal dispersion for wavelengths around 780 nm causing
the shorter wavelengths to come out later (nλ1 < nλ2 for λ1 > λ2). In the
measurement the maximum shifts towards positive delay times. This implies
that for these positive numbers the pulse shaper sends out smaller wavelength
first (always corresponding to the coupling pulse in our experiment).

5.6 Measurements

We carry out several measurements to characterize the effect of the coupling
pulse on the interaction of the pump pulse with the Rb gas.

One assumes that the two pulses have different group velocities in the Rb
cell. The probe pulse encounters a spectral structure in the index of refraction
because the transition comprises the populated ground state. However the
transition of the coupling pulse does not include a populated state. Therefore
the probe pulse has a slower group velocity than the coupling pulse. Figure
5.17 shows a cross correlation between the two pulses before and after the Rb
cell.

A second harmonic generation crystal is placed at either front or back side
of the cell producing a blue doubled signal from the pulses. The cooperative
signal is recorded with a spectrometer at different delay times. For best tem-
poral overlap between probe and coupling pulse in the crystal the signal is
maximal and decreases for every other delay time.

Figure 5.17 shows a maximum close to zero delay time for the crystal
before the cell indicated by the dashed line. This means that the pulses are -
as expected - very well overlapped without delay from the pulse shaper.

However the solid line indicates the same measurement with the crystal
after the cell. We find the the probe pulse to be retarded by about 5 ps in
respect to the coupling pulse. Additionally the shape of the right wing of
the cross correlation has broadened implying that the probe pulse is not just
slowed down but also reshaped in its temporal profile.
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Figure 5.17: EIT Group Velocity. The two curves show the cross cor-
relations of the pulses before and after the cell. The dashed line indicates
the measurement before the cell. After the cell (solid line) the maximum
in the cross correlation has shifted by 5 ps indicating that the transition
through the cell delays the probe pulse by this amount.

The coupling pulse used in the following measurements has a duration of
about τ = 3.5 ps, the probe pulse is three times shorter. These values are
derived from the cross correlation measurement shown in figure 5.17. The
figure does not show the coupling pulse used in the measurement below but a
similar one with smaller bandwidth. We can derive from the this measurement
the pulse duration of the coupling pulse used in the 2D scan. The error of this
value is about 30%.

The maximal field strength of the coupling pulse εmax is estimated from
the measured energy of the pulse U = 1.6µJ, the pulse duration τ and the
radius of the spot size in the cell r = 220µm (see section 5.4)

εmax ≈
1

r

√
2U

πε0cτ
= 4.7 · 107V/m (5.6.1)
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Here c is the speed of light and ε0 the the dielectric permittivity. There is
an error of 35% on the pulse energy as the used power measuring device is
operated at its very limit. Together with the error of the pulse duration these
two quantities dominate the uncertainty. The total error of εmax is 39%.
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Figure 5.18: EIT Time Delay Scan. (a) shows the probe spectrum as a
function of time delay between coupling and probe pulse. Around -3 ps the
regular absorption line changes into a symmetric structure of three gain
and two absorption regions. (b) shows the projection of the data onto the
delay time axis. For 0 ps and -7 ps the probe pulse shows a reduction of
20% in integrated intensity whereas for -3 ps there is none.

The 2D scan 5.18(a) displays the spectrum of the probe pulse as a func-
tion of coupling pulse time delay. Using the pulse shaper we vary the time
delay between -15 ps and +7 ps to cover all possible pulse sequences. For pos-
itive numbers the coupling pulse arrives at the cell before the probe pulse, for
negative numbers vice versa.
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All spectra at different delay times are normalized with a reference pulse
centered at a frequency far away from the transitions (not visible in the scan).
This guarantees a comparability of intensity throughout the scan.

The data shows an absorption line at 780 nm in the spectrum for extreme
delay times like -14 ps or 6 ps. As discussed before in section 5.4, the 0.16 nm
resolution of the spectrometer is not capable of resolving the shape of the
absorption line which is much smaller. We measure the convolution of the line
shape with a 0.16 nm broad distribution. This explains why the absorption
line appears as a broad but shallow reduction.

For delay times around -3 ps the data indicates a strong, completely dif-
ferent interaction of the probe pulse with the Rb gas. This value is in good
agreement with the EIT group velocity measurement (figure 5.17). The 2D
scan shows the average interaction of the probe pulse for all places and hence
all delay times in the cell arising from different group velocities. One expects
the interactions to be strongest if the coupling pulse (which propagates faster)
is retarded by the pulse shaper by half the delay of 5 ps the probe pulse picks
during its passage.

The data at -3 ps shows a threefold structure slightly displaced to higher
wavelengths stretching over an interaction delay range of 9 ps. The peak in
the middle of the spectrum is shifted in respect to the absorption line. Two
regions of absorption occur to the sides of the center peak going over to regions
of stimulated emission at the edges of the probe spectrum.

We project the data on the time axis. Figure 5.18(b) shows this integrated
intensity as a function of the delay time. The curve is normalized to delay
times without interaction (-14 ps and +6 ps).

For times between -8 ps and -4 ps and also between -2 ps and +2 ps the
probe and coupling pulses are partly overlapped and cause losses. With best
overlap at -3 ps the integrated intensity has its maximum. The explanation
for the behavior is developed in the following section.

The integrated intensity is good indication that the coupling pulse does
not transfer population on the probe transition. If this was the case the curve
would have an offset for positive delay times when the coupling pulse comes
before the probe. Furthermore simulations similar to those in section 5.8 show
that the coupling field is sufficiently far detuned from the probe transition to
excite any significant amount of population on this transition.

Looking at lineouts of the 2D scan helps to quantify the observed struc-
ture. Figure 5.19 shows two lineouts with different delay times. The solid
line is taken from -15 ps and represents the probe spectrum with the regular
absorption line (broadened by the finite spectrometer resolution). The dashed
line shows the spectrum at -3 ps. Its shape shows the threefold structure. The
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Figure 5.19: EIT Time Delay Scan Spectra. The solid line shows the
spectrum for the probe pulse without interaction, the dashed line shows
the spectrum at a delay time of -3 ps. Separation (a) is the splitting for
the emission peaks, separation (b) indicates the Stark shift and separation
(c) is the splitting between the absorption regions.

middle peak is AC Stark shifted by 0.2 nm (b) from the transition to longer
wavelengths. This is caused by the coupling pulse which has a negative detun-
ing (shorter wavelength) on the probe transition and hence pushes the probe
transition towards longer wavelengths (see [43, 45]).

We calculating the AC Stark shift SAC with equation 4.2.18 for the probe
transition. The coupling field strength is εmax = 4.7 · 107V/m and the wave-
length detuning ∆λ = 4 nm translates to a frequency detuning of ∆ω =
2.0 THz. The calculation yields SAC = 0.15 THz corresponding to a wave-
length shift of 0.30 nm. Given the fact that the two pulses shift in time in
respect to each other during their passage through the cell one expects the
probe to see an averaged Stark shift.

We have not solved the Maxwell-Bloch equations to describe the propaga-
tion effect. An estimation for the average intensity overlap indicates that the
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actual Stark shift should be about half of the value calculated for the maxi-
mal field strength εmax. Given the large uncertainty in the field strength the
measured and calculated values agree.

Two regions of strong absorption occur in figure 5.19 to the sides of the
middle peak separated by 0.6 nm (c). They have a width much broader than
a linewidth of a transition. Even further to the sides two symmetric regions
of stimulated emission appear at a separation of 1.2 nm (a). Their spectral
intensities are about 50% higher than for the solid line.

The occurrence of absorption and stimulated emission symmetrically around
the shifted transition is caused by the split dressed states discussed in section
5.2 on EIT. We therefore calculate the Rabi frequency, which is the splitting
separation, with the coupling field strength εmax. We obtain Ωc = 1.1 THz
corresponding to a wavelength splitting of 2.1 nm. Again we have to take into
account that the scan averages over many different pulse delays in the cell.
In this case the averaging is in the field strength which varies slower around
the peak than the intensity. The measured value should be about one third
smaller than the calculated value. Additionally we have to take into account
that this value has got an error of 39% from the field strength.

The following section 5.7 on the time domain picture shows that the sepa-
rations (a) and (c) are on the order of the maximal splitting but can be smaller
by a factor of two or three. The time domain picture explains in detail the
mechanisms leading to the change from absorption to stimulated emission and
their relative position in the spectrum.

5.7 Time Domain Picture of Ultrafast EIT

The data presented in the last section is best understood in a time domain
picture. We therefore have a closer look at the temporal evolution of the phases
of the system.

When coupling and probe pulses overlap in time, state 5P3/2 splits accord-
ing to section 5.2 into the dressed states such that probe pulse sees two new
transition frequencies at ωd1,2(t) = ωp ± 1/2Ωc(t). Note that this frequency
is - like the coupling Rabi frequency - time dependent. The probe light field
however is tuned to the middle of these frequencies at ωp.

We define the ground state as zero energy. Thus the phases of the dressed
states are described by e−i(ωd1,2(t))t = e−i(ωp±1/2Ωc(t))t whereas the the light field
phase is e−iωpt. One of the phases of the dressed states advances and the other
falls behind the excitation field. In the rotating frame of the field its phase is
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constant and the states evolve with the phase e∓i(1/2Ωc(t))t.
Usually, in the case of long excitation times, a phase mismatch like this

leads to cancellation of population in the excited state. When field and state
are in phase light is absorbed. The phase difference develops and a short time
later field and state are π out of phase. Hence the light field stimulates emis-
sion. This alternation between absorption and emission repeats very rapidly.
Averaging over many cycles for long excitation times prevents from effective
population transfer. Additionally dephasing processes like for instance spon-
taneous emission or collisions randomize the phase such that the coherence
between field and state is reduced.
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Figure 5.20: EIT Phase Evolution. The absolute value of the phase of
the dressed states in the rotating frame |Φ1,2(t)| is shown with the dashed
line. The solid line indicates the intensity of the coupling pulse. Solid
arrows in the insets represent the (constant) phase of the field, dashed
arrows the phases of the dressed states. The evolution of the phases dur-
ing the probe pulse duration switches between absorption and stimulated
emission.
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The ultrafast EIT experiment is different from this behavior in two funda-
mental ways:

During the short duration of the probe field the phase evolves just by a few
π. In this case absorption and emission do not necessarily cancel any more.
Dephasing on this time scale is very small.

Even more important is the fact that the dressed state splitting is not
constant in time but changes with the time dependant coupling Rabi fre-
quency Ωc(t). Though the coupling pulse has a longer duration than the
probe pulse its field strength changes significantly during the interaction time
of the probe pulse. This means that the transition frequency between ground
state and dressed states varies on the same time scale as the evolution of the
phase. Consequently absorption happens at different frequencies than stimu-
lated emission. Both processes do not cancel any more but redistribute light
between frequencies.

To quantify this statement we calculate the phase of the dressed states in
the rotating frame at any given point in time for pump and probe pulse having
no delay

Φ1,2(t) = ∓1/2

∫ t

t0

Ωc(τ)dτ (5.7.1)

Here t0 is the starting time of the probe pulse. We assume that both pulses
have a Gaussian profile in time and use the maximal field strength εmax for the
coupling field. Figure 5.20 shows the phase as dashed line and the normalized
intensity of the probe pulse as solid line. The zero point of the phase difference
is set such that it is at the beginning of the probe pulse.

Field and states at this time are in phase such that light is absorbed (lower
inset). As the coupling pulse is longer than the probe pulse its field strength
is at about 60% at this time. Likewise the dressed states splitting should have
developed that far. Consequently the probe pulse is being absorbed at two
frequencies above and below the undressed transition frequency at about 60%
of the maximal splitting Ωc max. With increasing coupling field strength the
absorption lines are pushed further out leading to absorption feature much
broader than usual transition lines. They can be regarded as summation of
many absorption lines close to each other. Simultaneously the phases increase
and reduce the strength of the absorption.

When the phases have evolved to π/2 (intermediate inset) absorption and
stimulated emission cancel each other. However the excited state keep their
population from the previous absorption.
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The splitting and phase develop further such that now stimulated emission
dominates. At the time when the probe pulse intensity is about 95% of its
maximum the phase difference has evolved to π causing just stimulated emis-
sion (upper inset). The light which has been absorbed in the first part of the
interaction is now reemitted. However the coupling field strength and hence
the dressed states splitting is maximal now. The stimulated emission happens
at frequencies even further apart from the undressed transition frequency.

This cycle between absorption and stimulated emission happens once again
in the second half of the pulse. Frequencies at intermediate splittings of the
dressed states are absorbed and now reemited with a smaller splitting.

This mechanisms of absorbing light at intermediate splittings and emitting
it at both maximal and small splittings explains the threefold structure of
figures 5.18 and 5.19. One can see in the 2D scan that the stimulated emis-
sion is not limited to the bandwidth of the probe pulse but can create new
frequencies.

There is no general need for the circumstance that absorption happens at
intermediate splittings and stimulated emission happens around the extremum
of the splitting. The number of cycles between absorption and emission and
their positions in the spectrum depends on the relation of the durations of the
pulses and the field strength of the coupling pulse. These values have been
given in the last section with a large error. It could well be that the phase
difference in figure 5.20 during the probe pulse duration evolves over a slightly
different number.

The spectrum in figure 5.19 actually might even show at the very left edge
the beginning of a second absorption cycle in the probe spectrum indicating
that the phase evolution is faster than calculated.

To predict the exact shape of the probe pulse after the passage through the
cell we have to average once again over all delay time sequences which occur
due to the different group velocities. Additional one has to take into account
that probe and coupling pulses are not Gaussian in their temporal profile. To
good approximation the profile is the Fourier transformations of their spectra.
These are determined by the pulse shaper and tend to have steeper flanks
than a Gaussian distribution. The probe pulse presumably changes its profile
during the passage due to dispersion. Reliable predictions could be made with
the Maxwell-Bloch equations.

For delay times with poor averaged overlap between probe and coupling
pulse the phase evolution of the dressed states is much smaller. The situation
occurs when the probe pulse in figure 5.20 is centered at for example ±4 ps.
In this case the phase just evolves by about π/2 implying that absorption
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never changes to stimulated emission. Hence the excited population stays in
the state after the passage of the pulse and decay by spontaneous emission.
This leads to losses in the integrated probe spectrum intensity. Figure 5.18(b)
shows this behavior for delay times of -6 ps and 0 ps.
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Chapter 6

Broadband Excitation in Rubidium

Up to now we have discussed the interaction of narrow bandwidth light fields
with Rb atoms. The response of the system is completely different when using
the entire 30 nm bandwidth of the laser. These short intense pulses can drive
a population inversion on the 5S1/2 → 5P3/2 → 5D3/2 ladder system which
leads to superfluorescence. A detailed discussion of what superfluorescence is
and how it occurs follows in section 6.2.

Experiments on Rb with broadband ultrafast lasers have been carried out
by several groups. Noordam et al. have studied the excitation along the
5S1/2 → 5P3/2 → 5D3/2 ladder system with frequency sweeps [10] and have
explained the exact mechanism of adiabatic rapid passage (ARP) for a 9 nm
bandwidth laser centered at 780 nm [25]. These experiments do not include the
state 5P1/2. Sauerbrey et al. [31] have carried out pump-probe1 experiments
on the Rb system including the state 5P1/2 and find a strong chirp dependence
of the excitation.

Our interest in the broad bandwidth excitation of Rb started with observ-
ing strong coherent emission after excitation with the full spectrum of the
laser. Figure 6.1 shows a typical spectrum of the beam after the Rb cell. The
excitation light is centered at 778 nm and spans from 745 nm to about 800 nm.

The spectrum shows three interesting features: (b) and (c) are lines of
strong coherent emission which have not been in the spectrum before the cell.
In the section 6.2 about superfluorescence we discuss the characteristics of
the light. The wavelength of the two superfluorescence peaks match exactly
the 5S1/2 → 5P3/2 and 5S1/2 → 5P1/2 transitions from the ground to the
intermediate states in Rb. The absorption feature (a) is at the wavelength of
the 5P3/2 → 5D3/2 transition from the intermediate to the exited state.

1pump-probe experiments excite an atomic / molecular system with a pump pulse and
explore the changes in the system with a delayed probe pulse
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Figure 6.1: Superfluorescence at 795 nm and 780 nm. Strong co-
herent superfluorescence light overlays the excitation spectrum (no chirp).
The two emission lines (b) and (c) are at the wavelength of the 5S1/2 →
5P3/2 and 5S1/2 → 5P1/2 transitions. Absorption feature (a) corresponds
to the 5P3/2 → 5D3/2 transition.

Line (b) furthermore shows a strong asymmetric shape with a change from
emission for lower wavelength to absorption for higher wavelength. Warren
et al. [15] have reported similar line shapes for propagation of laser pulses in
optically dense Rb.

We have also found superfluorescence at 420 nm on the 6P3/2 → 5S1/2

transition as shown in figure 6.2. This blue light appears when the system is
excited via two photon absorption. A part of this population decays to the
state 6P3/2 with emission at 5720 nm. From here the superfluorescence occurs.
Work on a similar system in Na [45] has demonstrated yoked superfluorescence
in a ladder system. This could also be the case in Rb, but we do not have the
means to measure the light at 5720 nm.

The next sections explain superfluorescence and the excitation mechanism.
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Figure 6.2: Superfluorescence at 420 nm. The spectrum shows the
excitation pulse around 780 nm and the superfluorescence on the 6D3/2 →
5S1/2 transition at 420 nm.

6.1 Excitation Mechanisms

The excitation mechanism is presumably an adiabatic following of dressed
states. It is called adiabatic rapid passage (ARP, see for example [43]) as the
time scale is fast in comparison to dephasing mechanisms. Noordam et al.
demonstrate ARP in Rb for the 5S1/2 → 5P3/2 → 5D3/2 ladder [25].

We intend to understand the excitation paths along the various level in the
Rb system and their nature. ARP is based on a sweep of the frequency from
below the resonance to above the resonance. A chirped pulse can lead to the
same effect. Therefor we carry out chirp scans and observe the emitted light.

Like all other lasing processes we assume the superfluorescence to be non-
linear in the population inversion. Therefore it is not well suited as indicator
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for the absolute amount of transferred population. However the superfluores-
cence intensity should be monotonically increasing with inversion and indicates
significant population transfer.

We define the intensity I0 = 1
2
cε0 (ε(t))2 = 3.3 · 1012 W/ m2 with the di-

electric permittivity ε0 as the minimal intensity of the excitation pulse for
observing superfluorescence in figure 6.1.
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Figure 6.3: Superfluorescence Scan at 780 nm. The amount of coher-
ently emitted light on the 5S1/2 → 5P3/2 transition (780 nm) is maximal
for small negative chirp rates at 1.5I0. Positive chirp rates are less effec-
tive where small positive chirp rates have poor transfer. Efficient emission
begins with the defined intensity I0.

Figure 6.3 shows a chirp scan on superfluorescence at the 5S1/2 → 5P3/2

transition (780 nm). The energy in the superfluorescence peak on the spec-
trum is measured and plotted against the chirp rate and the intensity of the
excitation pulse. Neighboring wavelength are used to subtract out the excita-
tion light such that just the peak on top of the spectrum is integrated. The
figure shows the results for chirp rates between -0.005 ps2 to 0.005 ps2 with an
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intensity between zero and 2.5I0.
Appearance of superfluorescence starts with I0. The most efficient produc-

tion of superfluorescence happens for small negative chirp rates. The effect
increases with intensity up to about 1.5I0 and declines for higher intensities.
Positive chirp rates also are producing superfluorescence, however they are less
effective. Especially small chirp rates do not yield much emission.
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Figure 6.4: Superfluorescence Scan at 795 nm. The amount of co-
herently emitted light on the 5S1/2 → 5P1/2 transition (795 nm) shows a
very pronounced asymmetry. Positive chirp rates excite efficiently and lead
to superfluorescence, negative chirp rates suppress the population transfer
completely such that no superfluorescence occurs.

Figure 6.4 is the corresponding scan for the 5S1/2 → 5P1/2 transition
(795 nm). The plot shows a strong asymmetry in the superfluorescence yield.
Positive chirp rates lead to strong emission without a clear optimal intensity as
in the case of the previous 5S1/2 → 5P3/2 transition. For negative chirp rates
there is no light implying that population transfer to the state 5P1/2 does not
exceed the superfluorescence threshold.
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Figure 6.5: Superfluorescence Scan at 420 nm. The amount of coher-
ently emitted light on the 6P3/2 → 5S1/2 transition (420 nm) is a measure
for the population in the excited state 5D3/2. For positive chirp rates the
system is excited almost chirp independently for intensities higher than
1.5I0. For negative chirp rates the system stays much longer in diabatic
states and is transfered for intensities higher than 2.5I0 to 5I0.

Population from state 5D3/2 decays along the ladder 5D3/2 → 6P3/2 →
5S1/2. The transition 6D3/2 → 5S1/2 has a wavelength of 420 nm which we
measure as superfluorescence. (Scholten et al. [27] have reported on blue
upconversion in Rb with light at 420 nm.) With the current setup we do not
have the means to measure the light at 5720 nm from the 5D3/2 → 6P3/2

transition.

Figure 6.5 shows the chirp scan on the blue light. The scan ranges from
-0.01 ps2 to 0.01 ps2 with an intensity between zero and 9.6I0. For positive
chirp rates the emission from state 6P3/2 starts for intensities of about 1.5I0.
Small chirp rates lead to slightly better yields than greater ones, but the over-
all dependence on the chirp rate is not very strong. From about 2.5I0 the
superfluorescence almost saturates.
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For negative chirp rates the turn on is shifted to higher intensities. Efficient
production of superfluorescence happens dependent on the chirp rate for inten-
sities between 2.5I0 and 5I0. The best transfer is again found for small values.
This behavior for negative chirp rates is in agreement with Noordam [25]. For
pulses with zero chirp rate the population transfer efficiency is reduced.

To understand the detailed dynamics of the system we examine the Rb
system in the dressed state picture discussed in chapter 4.2. With four lev-
els and four transitions the system is too complex for analytical approaches
like the two-level-atom. Numerical results however can be retrieved from the
Hamiltonian in the interaction picture.

We consider the Hamiltonian for the Rb system with all four levels for the
light field ε(t) = 1

2
ε0(t) (e−iωt + e+iωt). The dipole moments for the transi-

tions are given in table 5.1. µP1/2→D3/2
has to be estimated and is set to be

1/5µP3/2→D3/2
.

H(t) =


ES1/2

µS1/2→P3/2
ε(t) µS1/2→P1/2

ε(t) 0

µS1/2→P3/2
ε(t) EP3/2

0 µP3/2→D3/2
ε(t)

µS1/2→P1/2
ε(t) 0 EP1/2

µP1/2→D3/2
ε(t)

0 µP3/2→D3/2
ε(t) µP1/2→D3/2

ε(t) ED3/2


(6.1.1)

The rotation matrix U for the transformation into the interaction picture
redefines the zero energy at the state 5P3/2 and shifts the remaining levels such
that their energy is given by their detuning.

U(t) =


A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 D

 (6.1.2)

with the coefficients

A = exp
[
−i
(
−ωS1/2

+ ∆S1/2→P3/2

)
t
]

(6.1.3a)

B = exp
[
−i
(
−ωP3/2

)
t
]

(6.1.3b)

C = exp
[
−i
(
−ωP1/2

+ ∆S1/2→P3/2
−∆S1/2→P1/2

)
t
]

(6.1.3c)

D = exp
[
−i
(
−ωP3/2

−∆D3/2→P3/2

)
t
]

(6.1.3d)
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We apply the transformation Hi = U−1(t)Hs(t)U(t) − i~U(t)U̇−1(t) and
then the rotating wave approximation. The resulting interaction Hamiltonian
is similar to 4.2.13 and reads

Hi(t) =

~
2


2∆S1/2→P3/2

ΩS1/2→P3/2
(t) ΩS1/2→P1/2

(t) 0

ΩS1/2→P3/2
(t) 0 0 ΩP3/2→D3/2

(t)

ΩS1/2→P1/2
(t) 0 2

(
∆S1/2→P3/2

−∆S1/2→P1/2

)
ΩP1/2→D3/2

(t)

0 ΩP3/2→D3/2
(t) ΩP1/2→D3/2

(t) −2∆P3/2→D3/2


(6.1.4)

The eigenenergies of the four dressed states can be obtained by diagonal-
izing the Hamiltonian Hi. We are particularly interested in the change of the
eigenenergies with central wavelength of the pulse. In the case of a chirped
pulse (see chapter 3.1 on chirped pulses ) the light field starts at one end of
the spectrum and sweeps through to the other.

Figure 6.6 illustrates the numerical results for diagonalizing this interaction
Hamiltonian for a field strength of ε0 = 5 · 107 V/m which corresponds to the
intensity I0.

The central wavelength spans from 775 nm to 805 nm covering all avoided
crossings in the states. Solid lines show the eigenenergies of the dressed states.
For comparison the dotted lines show the energies of the bare states.

The figure explains the transfer mechanisms, especially for chirped pulses.
For negative chirp rates (short to long wavelength) the system follows the
dashed arrow (a). The population starts in the ground state 5S1/2 with short
wavelengths. It continues along the dressed state with increasing wavelength.
At the first avoided crossing the system can go both ways: remaining in the
dressed state or pass diabatically to the neighboring dressed state. For long
wavelengths in the end of the pulse one finds the system in both the interme-
diate state 5P3/2 and the excited state 5D3/2.

The avoided crossing to the third dressed state (ending in the 5P1/2 state for
long wavelength) is so pronounced that population transfer along the diabatic
states is very unlikely.

The conclusion from this scheme is that population transfer along the lad-
der system 5S1/2 → 5P3/2 → 5D3/2 happens effectively for adiabatic negative
chirp rates. Both excited states are populated. On the other hand transfer to
the state 5P1/2 is very unlikely. Furthermore for adiabatic transfers there is
no way for the population to stay in the ground state 5S1/2 implying that the
ground state will be emptied to a great extent.
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Figure 6.6: Eigenenergies of Dressed States. The solid lines show the
eigenenergies for the Hamiltonian in the interaction picture in dependence
of the central wavelength of the pulse. Dotted lines show the corresponding
bare states.

We observe this behavior in the three chirp scans shown before. Both the
scan 6.3 on 780 nm light from state 5P3/2 to the ground state and the scan 6.5
on 420 nm emission coming from the decay 5D3/2 → 6P3/2 show fluorescence
for negative chirps rates. The scan 6.4 for 795 nm (5P1/2) has like predicted
no superfluorescence yield.

The shifted turn on in scan 6.5 on 420 nm emission for negative chirp rates
results from the fact that the system stays in the diabatic states up to higher
excitation intensities than in the case of positive chirp rates.

For positive chirp rates the system follows the dashed arrow (b). Again the
population starts in the ground state 5S1/2 - now at long wavelengths. At the
first avoided crossing (the intersection of the diabatic states 5S1/2 and 5P1/2)
the system can go along the original dressed state or pass to the neighboring
dressed state. The transfer through this avoided crossing is strong for great
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positive chirp rates and weak for small positive chirp rates. The following
avoided crossing in the upper branch at the intersection of the diabatic states
5D3/2 and 5P1/2 is very weak as the dipole moment for the corresponding
transition is small. The system can take both ways here and ends up for small
wavelengths in either intermediate states 5P1/2 or excited state 5D3/2.

The lower branch splits once again at the the intersection of the diabatic
states 5D3/2 and 5P3/2. For transfer to the neighboring the dressed states the
system ends in the intermediate state 5P3/2. If the system follows its dressed
state it retuns to the upper branch.

Consequently the system can end in both intermediate states 5P1/2 and
5P3/2 and the excited state 5D3/2. Like in the case of negative chirp rates there
is no way for the population to stay in the ground state 5S1/2 for adiabatic
transfer.

Here again the measurements agree with the predictions. All three scans
show superfluorescence for positive chirp rates. The small yield in scan 6.3 on
780 nm emission is result from the two avoided crossings which the population
has to pass. A passage to the state 5P1/2 is much easier as the avoided crossing
is small. The corresponding chirp scan 6.4 on the 795 nm light shows very
pronounced superfluorescence for positive chirp rates.

Sauerbrey et al. [31] find a similar chirp dependence in the excitation of
the Rb system in their pump-probe experiment for positive and negative chirp
rates. They do not observe superfluorescence but explore the population trans-
fer with a weak probe pulse after exciting with a much stronger pump pulse.
In agreement with the presented data they measure population transfer to the
state 5P1/2 for positive chirp rates and to the state 5P3/2 for negative chirp
rates.

6.2 Superfluorescence

The emission process from the excited states cannot be explained by the picture
of a partly excited states emitting spontaneously photons. The measured light
in the emission features in figures 6.1 and 6.2 has two characteristics: it is
spectrally narrow and highly directional.

Two different emission mechanism explain these characteristics in ensem-
bles of exited atoms: amplified spontaneous emission (ASE) and superfluo-
rescence / superradiance. Both processes lead to a collective response of the
system. The main difference is the degree of coherence in the phases of the
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excited atoms. A study of similarities and differences of the effects has been
published by Boyd et al. [26].

ASE is observed in incoherently excited optical media with high gain. Ini-
tially spontaneous emitted photons experience strong amplification along their
way through the medium and build up light fields. The power of the emitted
ASE scales with the number of atoms N . All phases of the excited atoms
are randomly distributed meaning their dipole moments oscillate without any
relation in respect to each other. Summing over all dipole moments yields a
vanishing macroscopic dipole moment. The beam can be regarded as accumu-
lation of spontaneous seeded and stimulated amplified light fields. Hence its
temporal coherence is smaller than in processes starting with a single seed.

For media with a large aspect ratio the resulting beams can have significant
spatial coherence. Photons with k-vectors along the long axis of the medium
undergo high amplification without seeing any absorption. All photons with
off-axis k-vectors run out of the gain region and experience strong absorption.
Consequently forward and backward amplified beams dominate the process.
Allen and Peters have studied various ASE attributes in their paper series
starting with [33]. The threshold condition for the lowest density N0 to observe
the effect is derived to be

N0 =
8π∆νD τl

3Lλ2α
(6.2.1)

with the lifetime of the excited state τl, the Doppler broadened line width
∆νD, the length of the active region L, the emission wavelength λ and the
branching ration α. It cannot be regarded as sharp threshold but is rather
diffuse.

Dicke [13] and Rehler and Eberly [35] have calculated many attributes
of superradiance and superfluorescence. It occurs if the atoms are excited
coherently. The first spontaneously emitted photons couple the atoms in the
gain region and rearrange their phases. This synchronization of their phases
can only take place if the rearrangement happens faster than the dephasing
mechanisms. Hence the ensemble of atoms develops a macroscopic dipole
moment. The following collective emission releases a strong and short pulse of
spatial and temporal coherent light. Its time duration τSF and delay time τD
are given in [26]. For many systems the delay time is in the ps-range implying
that the superfluorescence pulse already starts to propagate while the short
excitation pulse still passes through the medium.

In contrast to ASE the superfluorescence power scales with the square of
the number of atoms N2. Its peak intensity is higher and its pulse duration
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Figure 6.7: Superfluorescence Intensity vs. Density. The emission
of light on the 5S1/2 → 6P3/2 transition at 420 nm starts at a threshold
density of about 0.4 · 1019 m−3. The dependence is quadratic up to a
density of 1.6 · 1019 m−3 (see inset for quadratic fit). Higher densities show
a saturation.

much shorter. Due to its time delay and the synchronized phases the superflu-
orescence usually propagates just into excitation direction but not backwards.

In our experiment a beam with diameter 440µm excites a 60 mm long
region in the Rb cell. Consequently the aspect ratio of the gain region is
1:136. This value is suitable for both mechanisms to produce highly directional
beams.

Figure 6.7 shows the dependence of the amount of light from the 5S1/2 →
5P3/2 transition at 420 nm as a function of the cell density. The blue beam
coming out of the cell is filtered with a red blocking and blue transmitting filter2

2BG39
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and measured with a photodiode. A thermocouple reads the temperature from
which the density is calculated with equation 5.1.1. The blue light at 420 nm
is just observed in the forward direction.

Assuming that the threshold condition 6.2.1 holds true for both ASE and
superfluorescence we calculate a minimal density of N0 = 0.24 · 1019 m−3. The
graph starts to be nonzero from a value of about 0.4 · 1019 m−3. Given a fairly
large uncertainty in this number and the threshold condition being slightly
diffuse both values agree.

In the density region between 0.4 · 1019 m−3 and 1.6 · 1019 m−3 the curve is
fitted well with a quadratic function (see inset). For higher densities the curve
shows a saturation effect. One possible explanation might be that the used
photodiode works a non-linear region.

Likewise there is the possibility of being limited by the amount of photons.
For high densities the number of resonant photons in the light field is much
smaller than the number of gas atoms in the active region of the cell than. In
this case a further increase of the density would not show the N2 dependency
but a saturation.

The measurements indicate that we have observed superfluorescence ans
not ASE. A measurement of the temporal characteristics is not possible. The
ps-regime is not accessible with photodiodes as their rise and fall times are too
slow. The FROG however is limited by the stepper motor and does not work
reliable for longer times than 10 ps.

Apart from the effect of superfluorescence figures 6.1 and 6.2 imply another
interesting detail about the system. For any kind of lasing the population of
the medium has to meet the inversion condition. All three emission features
happen along transitions to the ground state 5S1/2 implying that this state has
lower population than the intermediate states 5P1/2, 5P3/2 and 6P3/2. Trallero
[45] has demonstrated in a similar atomic system in Na a threshold of 0.66
for the population of the upper level of the superfluorescence transition. We
presume that this condition is close to the condition for Rb. As seen in the
previous section these high transfer efficiencies are best achieved with chirped
pulses.

There is no superfluorescence observed at the transitions from the excited
state 5D3/2 to the intermediate states 5P1/2 and 5P3/2. The explanation is
that the mechanism distributes the population among the states such that
the population condition is not met. Figures 6.3 and 6.4 indicate significant
population in the corresponding states 5P1/2 and 5P3/2. State 5D3/2 is not
populated highly enough to show superfluorescence.
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In the case that all resonant light from the excitation pulse has been ab-
sorbed the following superfluorescence could maximal be as intense as the res-
onant excitation light. Hence the absorption line in the excitation spectrum
could at most be completely filled with light from the superfluorescence.

In contrast to this we find peaks at the transition frequencies. The spectral
density in the peaks in figure 6.1 is at least 20% higher than in the excitation
light. This phenomena is proof for non-resonant absorption for short pulses
with following ressonant emission. It leads to redistribution of frequencies.
Especially feature (b) in figure 6.1 illustrates how frequencies in the neighbor-
ing surroundings of the transition are absorbed and emitted at the transition
frequency.
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Chapter 7

Future Work

7.1 Future Work on EIT

The chapter 5 about EIT in Rb has left several questions. One problem we
encountered during interpretation of the measured data was the influence of
propagation effects. As soon as the system not only absorbs photons but also
puts them back into the light field the description based on two- and multi-
level-atoms does not account for the reemitted light.

The physical correct description for the dynamics along the path through
the cell is given by the coupled Maxwell-Bloch-equations. Basic idea behind
these equations is that the Bloch equations are the equations of motion for
the density matrix when interacting with a light field (see for example Metcalf
[28]). In combination with the Maxwell equations they allow to determine the
interplay between field and atoms. In particular they predict the changes to the
field during propagation. The basic concept is explained in Boyd [8]. Solving
these equations would possibly answer some of the remaining questions.

According to the physical picture in section 5.7 about the time domain
picture of EIT the mechanisms gives a certain possibility to redistribute colors
in a spectrum. This might lead to interesting applications. One could for
example collect light from a broad spectrum and reemit in a narrow bandwidth
or vice versa. The required coupling pulse has to be tailored in temporal
amplitude and central frequency. A local control algorithm could possibly
find simple pulse shapes in theory or a genetic algorithm pulse shapes in an
experiment.

All data for the EIT experiments has been taken with a USB spectrometer
with limited resolution but in real time availability. A spectrometer which
can resolve the line width of the probe absorption line would give insight
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into the development of the structure of the line. We have tried to use a
high resolution spectrometer but encountered several problems. The first is
an undetected source for noise. Maybe more problematic in general is the
fact that the quality of the data of the current setup is fairly dependent on
imaging the right part of the cell. The beam cannot be focused onto the
spectrometer input but has to be filtered by the pinhole. The live feedback of
the USB spectrometer has been very helpful for proper alignment. With the
high resolution spectrometer comes no possibility to have a live feedback on
the signal, hence the alignment will be tedious.

When describing the emission of blue light at 420 nm we have not paid
much attention to the emission at 5720 nm because we do not have the means
to detect it. A very interesting experiment in regard to this radiation and to
EIT would be to characterize the behavior of a beam with both the light at
5270 nm and at 420 nm pass through a second Rb cell. The cascading emission
effect may introduce a time delay between the two fields. An experiment could
possibly detect EIT for the light at 420 nm in the second cell as the light at
5720 nm comes first and dresses the states of the system. Pichler et al. [48]
have just recently demonstrated EIT for the blue light at 420 nm in Rb with
a coupling field at 5720 nm. It is also possible that the superfluorescence is
yoked [11] which would mean that both fields come at the same time.

The problem arising for the setup is the material of the cells. All windows
of our cell are presumably made from BK7 or Pyrex R©. These two glasses glass
are just transparent to wavelength of 2µm to 3µm. Hence this experiment
would need two new cell with windows transparent at 5720 nm. Sapphire is
the only window material meeting this requirement.
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7.2 Future Work on Broadband Excitation

The characterization of the superfluorescence has so far just been based on the
dependence of the intensity on the density and the direction. A measurement
of the time delay and duration would be helpful to further validate the ASE
characteristics of the observed light. However the setup for the time measure-
ment is difficult as the time scale is on the order of 10 ps to 100 ps. Fast photo
diodes cannot resolve this regime. The FROG is limited by the range of the
stepper motor and does not work reliable for times longer than 10 ps.

In a similar experiment on sodium (Na) [46] strong and highly directional
coherent light has been observed. The atomic level scheme resembles the
scheme for the blue light at 420 nm but with a non-resonant intermediate
state. Photons follow the 3S → 3P → 4P ladder system and can decay back
the same way to the ground state. The state 3P is non-resonant but the
state 4P is two photon resonant. When decaying back along the 3S → 3P
transition (Na D-line) strong coherent light is emitted in the forward direction
which has been characterized as superfluorescence. A direct comparison of the
two systems might reveal similarities and differences in their responses.
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Chapter 8

Conclusions

In this thesis we have treated the configuration and calibration of the auto-
correlator GRENOUILLE, a time domain perspective on ultrafast EIT and a
broadband excitation experiment.

The GREOUILLE allows the group to monitor the pulse of the amplifier
in a very convenient and fast way. The device can resolve the pulses in time
and frequency with a CCD camera. Certain constraints of the setup prevent
from reconstructing the field in phase and time. Nevertheless the established
calibration in conjunction with a LabVIEW program determines the pulse
duration in real time. The mechanism is robust and does not require time
consuming alignment so that the GRENOUILLE is used on a daily basis.

Our ultrafast EIT experiments provide a time domain perspective on a
mechanism which has been explored in a frequency domain before. We demon-
strate a complex interplay between coupling pulse, probe pulse and Rb system.
The physical explanation is based on a modified two-level system approach and
a phase difference evolution between field and states. Two new aspects are
distinctive for the dynamics in comparison to regular EIT: a time dependent
couling Rabi frequency and the interplay between absorption and stimulated
emission.

It arises the question whether the measured dynamics still can be named
EIT. Cons are that regular EIT is a phenomenon which is described in the fre-
quency domain. No time domain picture and varying coupling Rabi frequency
are required. Its explanation lies in the population trapped states and the
shape of the susceptibility of the transition. Pros are that the spectral inten-
sity at the transition frequency does not get reduced and the fact that the setup
requires the same three-level system and probe and coupling field as regular
EIT. The lack of absorption at the transition can be called transparency. It is
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induced by the electromagnetic coupling field, hence the experiment matches
exactly the name of electromagnetically induced transparency.

We do not want to rule in favor of one or the other at this point. The
observed dynamics are different, but lead to a similar result. Thus the name
of the last section has been chosen with care in regard to this question. We
suggest to refer to a ”time domain picture of ultrafast EIT”.

The broadband excitation experiment gives detailed insight into a mostly
adiabatic excitation mechanisms. We measure population transfer in a four-
level system with chirped pulses. The resulting scans show significant differ-
ences between positive and negative chirp rates. A theoretical description can
be given in the dressed states picture applied to chirped pulses.

The measured superfluorescence indicates that the excitation transfers pre-
sumably much more than 66% of the population from the ground to excited
states. Further experiments demonstrate the characteristics of superfluores-
cence.
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group velocity dispersion, 17
group velocity mismatch, 17

Hamiltonian, 25, 31
hyperfine structure, 36

index of refraction, 41
interaction picture, 31, 77

KDP, 17

lifetime, 36

Maxwell-Bloch-equations, 85
MIIPS, 14
mode locking, 4
Mollow triplet, 29
multi pass amplifier, 5

phase, 7, 66
phase-matching angle, 16
Pockels cell, 5
probe, 38
Pulse Applicator program, 54

Rabi frequency, 26, 29, 38, 43
Rabi oscillations, 27
Rayleigh range, 51
ring cavity, 5
rotating wave approximation, 25, 32,

78
rubidium, 2, 35
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second harmonic generation, 12, 14
setup, 51
SPIDER, 14
stretcher, 5
strong field excitation, 71
super radiance, 80
superfluorescence, 2, 80
susceptibility, 41

Ti:Sapphire laser, 4
time delay calibration, 60
time domain picture, 66
time-dependent Schrödinger equation,

25
trapped state, 40
two-level-atoms, 24

wavelength, 36
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