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Abstract of the Dissertation

General Surface Geometric Structures and Their Applications

by
Miao Jin

Doctor of Philosophy
in

Computer Science
Stony Brook University

2008

Geometric structures are natural structures of surfaces, which enable different ge-
ometries to be defined on the surfaces coherently and allow general planar algo-
rithmic constructions to be generalized onto the surfaces directly. For example,
all oriented surfaces have conformal structure. We can generalize planar texture
mapping, texture synthesis, remeshing and mapping algorithms to surfaces based
on their conformal structure without angle distortion. Also polar form splines with
planar domains can be generalized to manifold splines on the surfaces which admit
affine structure and are equipped with affine geometry.

This work presents theoretically rigorous and practically efficient methods
for computing general surface geometric structures, including conformal structure,
affine structure, hyperbolic structure, real projective structure, and spherical struc-
ture. The powerful tool we used is discrete surface Ricci flow. We generalized
surface Ricci flow from continuous to discrete setting, and designed a series of al-
gorithms to compute discrete surfaces Ricci flow, which includes discrete Euclidean
Ricci flow, discrete hyperbolic Ricci flow, and discrete spherical Ricci flow.

We applied surface geometric structures computed from discrete surface Ricci
flow to computer graphics, medical imaging, geometric modeling, and computer
vision. We compute globally conformal parametrization for surfaces of general
topologies, with less area distortion and control of both the number and location
of singularity points; we conformally flatten colon surfaces onto plane, which en-
hances the navigation of virtual colonoscopy system; we design N-RoSy field on
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general surfaces based on flat metric induced from surfaces’ conformal structure;
we construct manifold spline with single singularity using surface affine structure,
which achieves the theoretical minimum of the singularity number; we combine
manifold spline and T-spline to polycube T-spline by building polycube map of
surface which naturally induces surface affine structure; we compute shape space
for general surfaces, where Surfaces are indexed and classified by their conformal
structure.
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the Euclidean coordinate of each vertex in (b) is used as texture co-
ordinate for the vase model in (a), with check board texture. . . . . 62

34 (a) Three human faces sharing the same topology (two holes annu-
lus) are conformally mapped to hyperbolic space. (b) Map between
genus one kitten model and torus. . . . . . . . . . . . . . . . . . . 69

xiv



35 (a) Two groups of deformed teapot models. (b) Corresponding to
two paths in Teichmüller space with each point representing a de-
formed model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

36 Conformal structure of the genus zero surface with 3 boundaries are
determined by the lengths of the boundaries under the uniformiza-
tion metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

37 Genus One Models: Kitten model; Teapot model; Rocker Arm
model; Torus model; Elk model; Knotty torus Model. . . . . . . . . 76

38 Genus Three Models: David model; Genus3 model; Three-Hole
model; Holes3 model. . . . . . . . . . . . . . . . . . . . . . . . . 77

39 Genus Two Models: (a) Amphora model (b) World Cup model (c)
Vase1 model (d) Vase2 model (e) Cup1 model (f) Cup2 model (g)
Eight1 model (h) Eight2 model (i) Knotty model (j) Ding model . . 77

40 (a) Comparison of geodesic spectrum of genus one models. (b)
Comparison of geodesic spectrum of genus three models. . . . . . 79

41 Comparison of geodesic spectrum of genus two models. . . . . . . 79
42 Basic Building Blocks. (a) Building block I: the geodesic lengths

of red labeled curves determine its metric. (b) Building block II:
the geodesic lengths of red labeled curves determine its metric. (c)
Building block III: the geodesic lengths of red labeled curves deter-
mine its metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

43 Using building blocks I, II and III to build all surfaces: using build-
ing block I and II to build genus one surface with two boundaries;
continuously adding building block III to build genus two surfaces
with one boundary; continuously adding building block II to build
genus two surfaces with two boundaries. Repeating to get all sur-
faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

44 The geodesic lengths of the set of color labeled curves determine
the metric of a genus two surface. . . . . . . . . . . . . . . . . . . 80

45 Same model with different triangulation density: 5k, 10k, 20k and
40k. Comparison of Teichmüller space coordinates with different
densities is listed in table 5. . . . . . . . . . . . . . . . . . . . . . 84

xv



46 The dimension of Teichmüller space coordinates for closed
genus two surfaces is seven. Here we visualize the Teichmüller
space coordinates for teapots listed in table 7. . . . . . . . . . . 84

47 David head model mapped to unit sphere using computed spherical
uniformization metric. . . . . . . . . . . . . . . . . . . . . . . . . 88

48 Visualization of two different homotopy classes of mappings be-
tween the vase and the two-hole torus by color coding. Each map-
ping is produced by a different homology basis on each surface. (a)
and (b) give the mapping between the two-hole torus and the vase
with handles right to right, left to left. While we obtain a different
mapping between them in (c) and (d) with the handles right to left,
left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

49 Procedure for computing a canonical fundamental domain, M∗.
Step 1: Compute an irregular cut graph that will open the surface
to a single disk. Step 2: Slice the surface open to a non-canonical
fundamental domain, whose 18 edges are segments of homology
basis curves. Step 3: Glue copies of the domain to itself along cor-
responding segments to form the UCS M̃. Choose a vertex v ∈ M
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Chapter 1

Introduction

One of the fundamental problems in graphics, geometric modeling, compu-
tational geometry and visualization is

How to generalize the algorithms designed for planar domains, spherical domains
or some other canonical domains systematically and straightforwardly to the sur-
face domains.

For example, in computer graphics, texture mapping and texture synthesis gen-
eralize trivial texture mapping or synthesis on planar domains to surfaces with arbi-
trary topologies to greatly enhance visual effects, and are commonly used in com-
puter games.

Another example is coming from digital geometry processing, transforming
processing tasks on planar domains like re-meshing, to the surfaces. Re-meshing
provides highly regular tessellations on the mesh, which is greatly preferred for
numerical computations.

In computer-aided geometric modeling, traditional splines are defined on pla-
nar domains. Manifold splines generalize spline construction from planar domains
to manifold domains with general topologies.

In the medical imaging field, conformal brain mapping has been widely used,
which generalizes comparison between two unit sphere domains to two human
brains by conformally mapping brain surfaces to spheres to facilitate brain regis-
tration, fusion, and comparison.

1



CHAPTER 1. Introduction 2

Geometric structures offer theoretic rigorous and practical efficient solutions
to this central problem. Discrete surface Ricci flow is a powerful and flexible tool
to compute general surface geometric structures.

1.1 Geometry

Different geometries can be defined on the plane R2 and each of them studies
different invariants under the corresponding transformation group of R2. The most
common geometries on the plane are

1. Euclidean geometry The transformation group is the rigid motion group and
each rigid motion has the form φ : R2 → R2

φ(p) = Op+q,O ∈ SO(R,2),q ∈ R2, (1)

where O is a rotation matrix with determinant +1, and SO(R,2) represents
the 2 dimensional special real rotation matrix group. The invariants are the
distance between two arbitrary points, angles of corners, collinearity (i.e., all
points lying on a line initially still lie on a line after transformation) etc.

2. Affine geometry, The transformation group is the affine transformation
group,

φ(p) = Ap+q,A ∈ GL(R,2),q ∈ R2, (2)

where A is a real matrix with a positive determinant, and GL(R,2) denotes the
2 dimensional real general matrix group. The invariants are the collinearity,
ratio between distances, and parallelism.

3. Projective Geometry The transformation group is the real projective trans-
formation, φ ∈ PGL(R,2), where PGL(R,2) represents 2 dimensional real
projective matrix group,

φ(x,y) = (
αx+βy+ γ
δx+ εy+ζ

,
ηx+θy+κ
δx+ εy+ζ

),

∣∣∣∣∣∣∣

α β γ
η θ κ
δ ε ζ

∣∣∣∣∣∣∣
6= 0. (3)

The invariants are the colinearity and the cross ratio among four points on the
line.
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Different algorithms in computer graphics, computational geometry, solid
modeling, and visualization are based on different geometries. The following are
some examples:

1. Voronoi Diagram Given a set of points {pk} ⊂ R2, the whole plane is par-
titioned to cells {Ck}. A point p belongs to Ck, where k = min j |p− p j|.
Therefore, the Voronoi diagram is based on planar Euclidean geometry, where
distance plays vital role.

2. Point location Given a triangulation of the plane and an arbitrary point p, the
point location algorithm will find the unique triangle which contains p. Sup-
pose p is contained in a triangle ∆p0p1p2, then every element of the barycen-
tric coordinates of p (α,β,γ) must be positive, where

p = αp0 +βp1 + γp2.

It is obvious that barycentric coordinates are affine invariants. Therefore, the
point location algorithm solely depends on the affine geometry of the plane.

3. Line segments intersection The sweep line algorithm computes all the inter-
sections among a set of line segments on the plane. colinearity and intersec-
tion relations are invariant under projective transformation. Therefore, line
segment intersection algorithms are based on the projective geometry of the
plane.

1.2 Geometric Structures on Surfaces

Surfaces are manifolds. In general, there are no global coordinates. Instead,
a surface M is covered by a set of open sets {Uα} as shown in Figure 1. Each Uα

can be parameterized by a local coordinate system, and a map φα : Uα → R2 maps
Uα to its parameter domain. (Uα,φα) is a local chart for the surface M. A particular
point p may be covered by two local coordinates systems (Uα,φα) and (Uβ,φβ).
The transformation of the local coordinates of p in (Uα,φα) to those in (Uβ,φβ) is
formulated as the chart transition map φαβ = φβ ◦φ−1

α . Transition maps satisfy the
cocycle condition (see Figure 2):

φαβ ◦φβγ = φαγ,∀p ∈Uαβ∩Uβγ
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Figure 1: Manifold: The manifold is covered by a set of charts (Uα,φα) , where φα : Uα →
R2. If two charts (Uα,φα) and (Uβ,φβ) overlap, the transition function φαβ : R2 → R2 is
defined as φαβ = φβ ◦φ−1

α .

All the charts form the atlas {(Uα,φα)}.

Figure 2: Cocycle condition for transition functions.

If all chart transition maps are rigid motions on R2, then we can discuss the
concepts of angle, distance, and parallelism on the surface locally. These geometric
measurements can be calculated on one chart, and the results are independent of
the choice of the charts. Namely, we can define Euclidean geometry on the surface.
Similarly, if all transition maps are affine, then we can define parallelism on the
surface. If all transition maps belong to a particular transformation group of R2,
we can define the corresponding geometry on the surface. Thurston [48] gave the
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(X ,G) Structure Parameter domain X Trans. group, G Oriented Metric Surfaces
Topology R2 Plane Homeomorphisms Surfaces of arbitrary topology
Differential R2 Plane Diffeomorphisms Surfaces of arbitrary topology
Spherical S2 Sphere Rotation SO(3) Genus zero closed, open
Euclidean R2 Plane Rigid motion Genus one closed, open
Hyperbolic H2 Hyperbolic Space Möbius High genus closed, open
Affine R2 Plane Affine GL(R,2) Genus one closed, open
Projective RP2 Projective space Projective all oriented surfaces

Table 1: Geometric Structures on Surfaces

concept of (X ,G) structure, where X is a topological space, and G is a subgroup of
the transformation group of X , if M has an atlas {(Uα,φα)}, such that the parameter
domain φα(Uα)⊂ X is in space X , and the transition maps φαβ ∈ G are in G.

Surfaces have rich (X ,G) geometric structures, while the existence of a spe-
cific geometric structure on a given surface is determined by the surface topology.
For example, surfaces with positive Euler numbers have spherical structure; sur-
faces with zero Euler numbers have affine and Euclidean structures; surfaces with
negative Euler numbers have hyperbolic structure. Table 1 illustrates the common
geometric structures.

It is a very challenging problem to design rigorous and practical methodology
to compute general geometric structures on surfaces. Ricci flow is developed re-
cently in geometric analysis field for the purpose of proving Poincaré conjecture. It
offers a powerful tool to conquer this problem.

1.3 Contribution

For theory part, this work brought the concepts of surface geometric structures
and surface Ricci flow to engineering fields.

For computation part, this work presented efficient algorithms to compute dis-
crete surface Ricci flow, and a series of algorithms to compute common geometric
structures on general surfaces using discrete surface Ricci flow, including confor-
mal structure, affine structure, hyperbolic structure, real projective structure, and
spherical structure.



CHAPTER 1. Introduction 6

For application part, this work applied general surface geometric structures
to computer graphics, computer vision, geometric modeling, and medical imaging,
which include:

1. Globally conformal parametrization for surfaces of general topologies based
on surface conformal structure, with less area distortion and control of both
the number and location of singularity points;

2. Manifold spline construction for closed high genus surfaces with single sin-
gularity based on surface affine structure, which achieves the theoretical min-
imum of the singularity number;

3. Polycube T-spline construction with automatic polycube map based on sur-
face affine structure;

4. Shape space where surfaces are indexed and classified by their conformal
structure based on surface hyperbolic structure and Techmüller theory;
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Theoretical Background

In this section we briefly introduce the major concepts from algebraic topol-
ogy, differential geometry, Riemann surface to explain geometric structures on sur-
faces. We limit ourselves to those concepts that are directly relevant to our work.
For detailed explanations, we refer readers to [49].

2.1 Glossary on Differential Geometry

2.1.1 Riemannian Metric

Suppose S is a C2 smooth surface embedded in R3 with parameter (u1,u2).
A position vector on S is r(u1,u2) and the tangent vector at the point is defined
as dr = r1du1 + r2du2, where r1,r2 are the partial derivatives of r with respect to
u1 and u2 respectively. We call the length of the tangent vector as the Riemannian
metric and it is represented by the first fundamental form, as follows.

(
du1 du2

)(
g11 g12

g21 g22

)(
du1

du2

)
, (4)

where gi j =< ri,r j >. The symmetric matrix (gi j)2×2 is called the Riemannian
metric matrix.

7
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2.1.2 Conformal Parameterization

A special parameterization can be chosen to simplify the Riemannian metric.
Let g11 = g22 = e2λ and g12 = 0, such parameter is called the isothermal coordi-
nates. In this case, the parameterization r is conformal, and the analytic behavior
on the surface S becomes very simple. For a given surface point, the magnitudes
of all directional derivatives of the function are same and they only depend on the
parametric position of the point (see Fig 3(b)). Moreover, any intersection angles
between two cross lines in the parametric domain is preserved on the surface (see
Fig 3(c)). We call λ the conformal factor of the point with the given parameteriza-
tion.

Suppose u : S → R is a function defined on the surface S, then e2ug is another
Riemannian metric on S. Given arbitrary two tangent vectors at one point, the angle
between them can be measured by either g or e2ug with the same measurement.
Therefore we say e2ug is conformal (or angle presered) to g.

Figure 3: Conformal parameterizations map infinitesimal circles to infinitesimal circles
and preserve the intersection angles among the circles. Here we use finite circles to approx-
imate. Tangency of circles are preserved.

2.1.3 Gaussian Curvature

The Gaussian curvature of a point p on a surface S is defined as the ratio be-
tween the infinitesimal area around p on S and the infinitesimal area on the unit
sphere which is defined by the bunch of normals in the infinitesimal area around
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p. The sign of the Gaussian curvature depends on the shape of infinitesimal neigh-
bor of p on S: zero for plane region, positive for elliptic region and negative for
hyperbolic region.

Gauss-Bonnet Theorem Gauss-Bonnet theorem explains the connection be-
tween the total Gaussian curvatures on a surface S and the topology of S. It tells
that how many times the normal field of S covers the unit sphere is strictly related
with the topology of S.

∫

S
KdA+

∫

∂S
kgds = 2πχ(S), (5)

while K is the Gaussian curvature on S, kg the geodesic curvature along boundaries
of S, and χ(S) Euler number of S.

2.2 Uniformization Theorem

Theorem 1 (Uniformization Theorem) Let (S,g) be a compact 2-dimensional
Riemannian manifold with Euclidean metric g, then there is a unique metric ḡ con-
formal to g with constant Gauss curvatures.

Such a metric is called the uniformization metric. According to Gauss-Bonnet
theorem 5, the sign of the constant Gauss curvature is determined by the Euler
number of the surface. Therefore, all closed surfaces exist unique metrics conformal
with original one, and can be isometrically embedded onto three canonical surfaces,
the sphere for genus zero surfaces with χ > 0, the plane for genus one surfaces with
χ = 0, and the hyperbolic space for high genus surfaces with χ < 0 (see Fig 4).

2.3 Hyperbolic Space Models

One of the anomalies of hyperbolic geometry was the realization that it has
no isometric embedding in Euclidean space. Here are three common non-isometric
embeddings for hyperbolic geometry. One is the Poincaré model. Others are the
Klein model and the Upper Half Plane Model.
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(a) χ > 0 (b) χ = 0 (c) χ < 0

Figure 4: Uniformization Theorem: all surfaces with Riemannina metric can be confor-
mally embedded onto three canonical spaces: sphere, plane and hyperbolic space.

2.3.1 Poincaré Model

The Poincaré model is a unit diskD2 in the complex plane with the Riemannian
metric ds2 = 4dzdz̄

(1−zz̄)2 .
The geodesics are circular arcs perpendicular to the boundary of the unit disk

∂D2. The isometric transformation in this model is the so called Möbius transfor-
mation with the form

φ(z) = eiθ z− z0

1− z̄0z
,z,z0 ∈ C,θ ∈ [0,2π).

The above Möbius transformation maps z0 to the center of the disk, and rotates the
whole disk by angle θ. Hyperbolic circles are also Euclidean circles.

The Poincaré model is a conformal model, whereas the Klein model is a real
projective model.
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2.3.2 Klein Model

The Klein model is another model of the hyperbolic space also defined on
the unit disk D2. Any geodesic in the Klein model is a chord of the unit circle
of the boundary of D2. The map from the Poincaré model to the Klein model is
β :H2 → D2,

β(z) =
2z

1+ z̄z
,β−1(z) =

1−√1− z̄z
z̄z

z. (6)

Any Möbius transformation in the Poincaré model φ becomes a real projective
transformation in the Klein model β◦φ◦β−1.

2.3.3 Upper Half Plane Model

The upper half plane model takes the Euclidean upper half plane as the
”plane”. The geodesics are portions of circles with their center on the boundary.

2.4 Fundamental Group and Universal Cover

Two curves are homotopic to each other, if they can deform to each other on
the surface. Closed loops are classified to homotopy classes by homotopic relation.
Two closed curves sharing common points can be concatenated to form another
loop. This operation defines the multiplication of homotopic classes. Therefore, all
the base pointed homotopy classes form the so called the first fundamental group
of Σ, and are denoted as π1(Σ).

The fundamental group is finitely generated. Suppose a surface Σ is with g han-
dles, and there are two distinct generators a,b on each handle. If they intersect once,
but disjoint with generators on other handles, then all g pairs of generators form a
set of canonical fundamental group basis, denoted as {a1,b1,a2,b2, · · · ,ag,bg}.

Suppose that Σ̄ and Σ are surfaces, then (Σ̄,π) is said to be a covering space
of Σ if π is surjective and locally homeomorphic. Furthermore, if Σ̄ is simply con-
nected, (Σ̄,π) is the universal covering space of Σ.

A transformation of the universal covering space φ : Σ̄→ Σ̄ is a deck transfor-
mation, if π = π◦φ. All deck transformations form a group G. It is also called the
Fuchsian group of Σ if the transformation is hyperbolic isometry.
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The deck transformation group is isomorphic to the fundamental group.
Suppose p ∈ Σ is an arbitrary point on Σ, its pre-images are π−1(p) =
{p0, p1, p2, · · · , pn, · · ·} on Σ̄. Suppose a deck transformation φ ∈ G maps p0 to
pk, then a curve on the universal covering space

γ : [0,1]→ Σ̄,γ(0) = p0,γ(1) = pk,

connects p0 and pk and its projection π(γ) is a loop on Σ. The homotopy class of
π(γ) is solely determined by p0 and pk, independent of the choice of γ. By this way,
we get a bijective map from deck transformations to the first fundamental group of
Σ.

A fundamental domain F is a subset of Σ̄, such that the universal cov-
ering space is the union of conjugates of F , and any two conjugates have no
interior point in common. Given a canonical fundamental group generators
{a1,b1,a2,b2, · · · ,ag,bg}, we can slice Σ along the curves and get a fundamental
domain with boundary a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbga−1

g b−1
g .

For any surface Σ, its uniformization metric is also a metric for its universal
cover Σ̄. The universal cover can be isometrically embedded in one of the three
canonical spaces: sphere, plane and hyperbolic space.

2.5 Surface Ricci Flow

Suppose S is a smooth surface with Riemannian metric g. On a local coordi-
nate system, the metric tensor is represented as

g =

(
g11 g12

g21 g22
.

)
(7)

The Ricci flow is the process to deform the metric g(t) according to its induced
Gauss curvature K(t), where t is the time parameter

dgi j(t)
dt

=−K(t)gi j(t). (8)

Suppose T (t) is a temperature field on the surface. The heat diffusion equation
is

dT (t)
dt

=−∆T (t), (9)
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where ∆ is the Laplace-Beltrami operator induced by the surface metric. The tem-
perature field becomes more and more uniform with the increase of t. Eventually,
it will become constant.

It is proven that the curvature evolution induced by the Ricci flow is exactly
the same as heat diffusion on the surface

K(t)
dt

=−∆g(t)K(t), (10)

where ∆g(t) is the Laplace-Beltrami operator induced by the metric g(t). It has
been proven that Ricci flow converges. The metric g(t) is conformal to the original
metric at any time t. Eventually, the Gauss curvature will become constant just
like the heat diffusion K(∞) ≡ const. The corresponding metric g(∞) is called the
uniformization metric.

Ricci flow can be easily modified to compute a metric with a prescribed cur-
vature K̄, then the flow becomes

dgi j(t)
dt

=−(K̄−K)gi j(t). (11)

If the target curvature K̄ is admissible, then the solution metric g(∞) induces K̄ and
is conformal to g(0).

The following theorems postulate that the Ricci flow defined in 8 is convergent
and lead to conformal uniformization metric.

Theorem 2 (Hamilton 1982) For a closed surface of non-positive Euler charac-
teristic, if the total area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is constant everywhere.

Theorem 3 (Chow) For a closed surface of non-positive Euler characteristic, if
the total area of the surface is preserved during the flow, the Ricci flow will converge
to a metric such that the Gaussian curvature is constant everywhere.



Chapter 3

Theoretical Background on Discrete
Surfaces

In engineering fields, smooth surfaces are often approximated by simplicial
complexes (triangle meshes). Major concepts, such as metrics, curvature, and con-
formal deformation in the continuous setting can be generalized to the discrete set-
ting. We denote a triangle mesh as Σ, a vertex set as V , an edge set as E, and a face
set as F . ei j represents the edge connecting vertices vi and v j, and fi jk denotes the
face formed by vi, v j, and vk.
Background Geometry In graphics, it is always assumed that a mesh Σ is em-
bedded in the three dimensional Euclidean space R3, and therefore each face is
Euclidean. In this case, we say the mesh is with Euclidean background geometry
(see Fig. 4(b)). The angles and edge lengths of each face satisfy the Euclidean
cosine law.

Similarly, if we assume that a mesh is embedded in the three dimensional
sphere S2, then each face is a spherical triangle. We say the mesh is with spherical
background geometry (see Fig. 4(a)). The angles and the edge lengths of each face
satisfy the spherical cosine law.

Furthermore, if we assume that a mesh is embedded in the three dimensional
hyperbolic space H2, then all faces are hyperbolic triangles. We say the mesh is
with hyperbolic background geometry (see Fig. 4(c)). The angles and the edge
lengths of each face satisfy the hyperbolic cosine law.

14
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In the following discussion, we will explicitly specify the background geome-
try for a mesh when it is needed. Otherwise, the concept or the algorithm is appro-
priate for all kinds of the background geometries.

3.1 Discrete Riemannian Metric

A Riemannian metric on a mesh Σ is a piecewise constant metric with cone
singularities. A metric on a mesh with Euclidean background metric is a Euclidean
metric with cone singularities. Each vertex is a cone singularity. Similarly, a metric
on a mesh with spherical (or hyperbolic) background geometry is a spherical (or
hyperbolic) metric with cone singularities.

The edge lengths of a mesh Σ are sufficient to define this Riemannian metric,

l : E → R+, (12)

as long as, for each face fi jk, the edge lengths satisfy the triangle inequality: li j +
l jk > lki.

3.2 Discrete Gaussian Curvature

The discrete Gaussian curvature Ki on a vertex vi ∈ Σ can be computed from
the angle deficit,

Ki =

{
2π−∑

fi jk∈F θ jk
i , vi 6∈ ∂Σ

π−∑
fi jk∈F θ jk

i , vi ∈ ∂Σ
(13)

where θ jk
i represents the corner angle attached to vertex vi in the face fi jk, and ∂Σ

represents the boundary of the mesh. The discrete Gaussian curvatures are deter-
mined by the discrete metrics.
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3.3 Discrete Gauss-Bonnet Theorem

The Gauss-Bonnet theorem 5 states that the total curvature is a topological
invariant. It still holds on meshes as follows.

∑

vi∈V

Ki +λ
∑

fi∈F

Ai = 2πχ(M), (14)

where Ai denotes the area of face fi, and λ represents the constant curvature for the
background geometry; +1 for the spherical geometry, 0 for the Euclidean geometry,
and −1 for the hyperbolic geometry.

v1

v2 v3

φ12

φ23

φ31γ1

γ2

γ3

θ1

θ2 θ3

(a) (b)

Figure 5: Circle Packing Metric (a) Circle packing metric on one triangle. (b) Circle
packing metric on planar triangulations.

3.4 Discrete Conformal Deformation

Conformal metric deformations preserve infinitesimal circles and the intersec-
tion angles among them. This fact inspires Thurston to design circle packing met-
ric [48] to approximate discrete conformal metric deformation, which uses circles
with finite radii to approximate the infinitesimal circles.

Fig. 5 illustrates the concept of circle packing metric. Each vertex vi has
a circle. For each edge ei j, the intersection angle is defined by the two circles
centered on vi and v j, which either intersect or are tangent. More precisely, let Γ
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be a function defined on the vertices, Γ : V → R+, which assigns a radius γi to the
vertex vi. Similarly, let Φ be a function defined on the edges, Φ : E → [0, π

2 ], which
assigns an acute angle Φ(ei j) to each edge ei j and is called a weight function on the
edges. The pair of vertex radius function and edge weight function on a mesh Σ,
(Γ,Φ), is called a circle packing metric of Σ.

Two circle packing metrics (Γ1,Φ1) and (Γ2,Φ2) on the same mesh are con-
formally equivalent if Φ1≡Φ2. A conformal deformation of a circle packing metric
only modifies the vertex radii while preserves the intersection angles on the edges.

3.5 Admissible Curvature Space

A mesh Σ with edge weight Φ is called a weighted mesh, which is denoted as
(Σ,Φ). In the following, we want to clarify the spaces of all possible circle packing
metrics and all possible curvatures of a weighted mesh.

Let the vertex set be V = {v1,v2, · · · ,vn}, and the radii be Γ = {γ1,γ2, · · · ,γn}.
Let ui be

ui =





logγi E2

log tanh γi
2 H2

log tan γi
2 S2

(15)

where E2, H2, and S2 indicate the background geometry of the mesh. We rep-
resent a circle packing metric on (Σ,Φ) by a vector u = (u1,u2, · · · ,un)T . Simi-
larly, we represent the Gaussian curvatures at mesh vertices by the curvature vector
k = (K1,K2, · · · ,Kn)T . All the possible u’s form the admissible metric space, all
the possible k’s form the admissible curvature space.

According to the Gauss-Bonnet theory (Eq. 14), the total curvature must be
2πχ(Σ), and therefore the curvature space is n−1 dimensional. We add one linear
constraint to the metric vector u,

∑
ui = 0, for the normalized metric. As a result,

the metric space is also n− 1 dimensional. If all the intersection angles are acute,
then the edge lengths induced by a circle packing satisfy the triangle inequality.
There is no further constraint on u. Therefore, the admissible metric space is simply
Rn−1.
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A curvature vector k is admissible if there exists a metric vector u, which
induces k. The admissible curvature space of a weighted mesh (Σ,Φ) is a convex
polytope, specified by the following theorem. The detailed proof can be found
in [8].

Theorem 4 Suppose (Σ,Φ) is a weighted mesh with Euclidean background geom-
etry, I is a proper subset of vertices, FI is the set of faces whose vertices are in I
and the link set Lk(I) is formed by faces (e,v), where e is an edge and v is the third
vertex in the face,

Lk(I) = {(e,v)|e∩ I = /0,v ∈ I},
then a curvature vector k is admissible if and only if

∑

vi∈I

Ki >−
∑

(e,v)∈Lk(I)

(π−φ(e))+2πχ(FI).

The admissible curvature spaces for weighted meshes with hyperbolic or
spherical background geometries are more complicated. We refer readers to [24]
for detailed discussions.

3.6 Discrete Surface Ricci Flow

Suppose (Σ,Φ) is a weighted mesh with an initial circle packing metric. The
discrete Ricci flow is defined as follows.

dui(t)
dt

= (K̄i−Ki), (16)

where k̄ = (K̄1, K̄2, · · · , K̄n)T is the user defined target curvature. Discrete Ricci
flow is in the exact same form as the smooth Ricci flow (Eq. 11), which deforms
the circle packing metric according to the Gaussian curvature, as in Eq. 16.

Discrete Ricci flow can be formulated in the variational setting, namely, it is
a negative gradient flow of a special energy form. Let (Σ,Φ) be a weighted mesh
with spherical (Euclidean or hyperbolic) background geometry. For two arbitrary
vertices vi and v j, the following symmetric relation holds:

∂Ki

∂u j
=

∂K j

∂ui
.
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Let ω =
∑n

i=1 Kidui be a differential one-form [54]. The symmetric relation guar-
antees that the one-form is closed (curl free) in the metric space.

dω =
∑

i, j

(
∂Ki

∂u j
− ∂K j

∂ui
)dui∧du j = 0.

By Stokes theorem, the following integration is path independent,

f (u) =
∫ u

u0

n∑

i=1

(K̄i−Ki)dui, (17)

where u0 is an arbitrary initial metric. Therefore, the above integration is well
defined, so called the discrete Ricci energy. The discrete Ricci flow is the negative
gradient flow of the discrete Ricci energy. The discrete metric which induces k̄ is
the minimizer of the energy.

Computing the desired metric with user-defined curvature k̄ is equivalent to
minimizing the discrete Ricci energy. For the Euclidean (or hyperbolic) case, the
discrete Ricci energy (see Eq. 17) has been proven to be strictly convex (namely,
its Hessian is positive definite) in [8]. The global minimum uniquely exists, cor-
responding to the metric ū, which induces k̄. The discrete Ricci flow converges to
this global minimum.

Theorem 5 (Chow & Luo: Euclidean Ricci Energy) The Euclidean Ricci en-
ergy f (u) on the space of the normalized metric

∑
ui = 0 is strictly convex.

Theorem 6 (Chow & Luo: Hyperbolic Ricci Energy) The hyperbolic Ricci en-
ergy is strictly convex.

Although the spherical Ricci energy is not strictly convex, the desired metric ū
is still a critical point of the energy. In our experiments, the solution can be reached
using Newton’s method.



Chapter 4

Conformal Structure

4.1 Overview

Conformal maps are also called angle preserving maps, and locally distances
and areas are only changed by a scaling factor. A conformal mapping is intrinsic to
the geometry of a mesh, independent of the resolution of the mesh, and preserves
the consistency of the orientation.

Because of these nice properties, one big application in computer graph-
ics, computer vision and medical images for conformal structures on surfaces is
parametrization. Surface parameterization is the process of mapping a surface to
some domain, usually a planar domain, which converts 3D geometric problems
to 2D ones, thereby improving the efficiency and simplifying the computation.
Parametrization is important for many graphics applications, for example, texture
mapping, remeshing, morphing, and registration. The main challenge is to produce
a planar triangulation that best matches the geometry of the 3D mesh, minimizing
some measure of distortion, for example, in angles or areas.

For the purpose of texture mapping, it is important to reduce the distortion be-
tween the parameter domain and the surface. In theory, such kind of a parameteriza-
tion will preserve the shape locally, and is called conformal parameterization, which
can be easily induced from surface conformal structure. Conformal parametrization
has been proposed for texture mapping [20, 36, 39], geometry remeshing [1], and
visualization [2,17]. Furthermore, all surfaces can be classified easily by conformal

20
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invariants. A method to compute the conformal invariants for meshes is introduced
in [18].

Algorithms of computing conformal parameterizations or conformal structures
can be roughly classified into three categories, according to the types of their out-
puts: vector-valued mapping functions, holomorphic differential forms and flat Rie-
mannian metrics.

Mappings The first category computes a mapping from a given surface to a pla-
nar domain by minimizing the harmonic energy of the mapping function. Levy et
al. [36] approximate the solution to the Cauchy-Riemann equations by finite ele-
ment method. They compute a piecewise linear conformal mapping from a plane
to a surface using least-square energy minimizations. Desbrun et al. [9] provide
a discrete intrinsic parameterization by minimizing Dirichlet energy. Pinkall and
Polthier [43] introduce a discrete version of the Laplace-Beltrami operator, which
has been successfully applied for discrete conformal mappings. Based on the mean
value theorem in harmonic mappings, Floater [11] provide mean value coordinates,
which guarantee flipping-free parameterization. In [9,56], optimal parameterization
methods are introduced using free boundaries.

Holomorphic 1-forms Basically, holomorphic 1-forms represent the derivative
of a conformal mapping, and they can be considered as vector fields defined on
surfaces. Gu and Yau [19] introduce discrete holomorphic 1-forms to compute
global conformal surface parameterizations for high genus surfaces. Jin et al. [27]
compute optimal holomorphic 1-forms to reduce area distortion. Gortler et al. [12]
use discrete 1-forms to parameterize high genus meshes. Recently, Tong et al.
[50] generalized the 1-form method to incorporate cone singularities. The main
disadvantages of using Holomorphic 1-forms is that it is hard to control the number
of singular points and their positions.

Metrics The most general way to compute conformal parameterizations is to
compute a flat Riemannian metric which is conformal to the original induced Eu-
clidean metric of the input surface. Much research has been done on the computa-
tional algorithms for solving such metrics, including angle based flattening (ABF),
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circle packing, circle patterns, and discrete Ricci flows.
Conformal mappings preserve angles. This fact inspires the angle based flat-

tening method [45]. ABF method computes a special configuration of angles of the
input mesh, such that the metric is flat and the angle distortions are minimized. The
stability and efficiency of ABF method is greatly improved in ABF++ [46] by using
advanced numerical method and hierarchical approach.

Kharevych et al. used circle patterns for discrete conformal mappings in [34].
The Euclidean flat cone metric with user prescribed singularities can be obtained
by two stage optimizations. Jin et al. used circle packing to design flat cone metrics
in [24], which handles spherical, Euclidean and hyperbolic discrete metrics. The
algorithm is the discrete analogy of Ricci flow [21]. A linear metric scaling method
for computing Euclidean flat cone metric with prescribed curvatures is introduced
in [3], where the cone singularities can be automatically selected to minimize the
distortion. Circle pattern and discrete Ricci flow are non-linear methods, requires a
preprocessing stage, and get an accurate metric; the metric scaling method is linear
and flexible for general meshes but with less accuracy.

4.1.1 Applications for Conformal Structure

4.1.1.1 Texture Mapping

Least Squares Conformal Maps for Automatic Texture Atlas Generation In
this paper [36], the model to be textured is decomposed into parts with natural
shapes,which are homeomorphic to discs, referred to as charts, and each chart is
provided with a quasi-conformal parametrization based on a least-squares approxi-
mation of the Cauchy-Riemann equations introduced in this paper, then a new pack-
ing algorithm is used to gather them in texture space.

Uniform Texture Synthesis and Texture Mapping Using Global Parametriza-
tion paper [53] uses the global conformal parameterization to convert the 3D sur-
face texture synthesis problem to a 2D image synthesis problem, which is more
intuitive, easier, and conceptually simpler. While the conformality of the parame-
terization naturally preserves the angles of the texture, they provide a multi-scale
technique to maintain a more uniform area scaling factor.This multi-scale method
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synthesizes nonuniform textures on a 2D geometry image by considering the area
stretching factor (the inverse of the conformal factor) in order to obtain the uniform
3D textures.

4.1.1.2 Remeshing

Interactive Geometry Remeshing Paper [1] introduces an interactive remeshing
for surface with irregular geometry. First, the original (arbitrary genus) mesh is sub-
stituted by a series of 2D maps in parameter space, including conformal parametric
domain, area stretching map, mean curvature map and Gaussian curvature map.
The user can easily combine these maps to create a control map which controls the
sampling density over the surface patch. This map is then sampled at interactive
rates allowing the user to easily design a tailored resampling. Once this sampling is
complete, a Delaunay triangulation and fast optimization are performed to perfect
the final mesh.

4.1.1.3 Surface Mapping

Genus zero surface conformal mapping and its application to brain surface
mapping Paper [17] proposes a method which can find a unique mapping be-
tween any two genus zero manifolds by minimizing the harmonic energy of the
map with some constraints added to ensure that the conformal map is unique.

In this chapter, we first introduce our optimal global conformal parametrization
method using discrete one-form (Section 4.2) [27]. Since the space of holomorphic
1-forms on a closed high genus g surface is g complex dimensional, finding a de-
sired conformal parametrization equals to finding a desired holomorphic 1-form,
which can be formulated as a finite dimensional optimization problem under a 2g
holomorphic one form basis space Ω(S).

Then we present another more powerful tool: discrete Euclidean Ricci flow,
which is more flexible for computing high genus surfaces’ global conformal param-
eterizations due to its control of zero points and curvatures on boundaries (Section
4.3) [24].

Several applications based on surface conformal structure are given. One
is virtual colon flattening using discrete one-form method to enhance virtual
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colonoscopy systems (Section 4.4.1) [23]. The other is N-RoSy field design on
general surfaces using discrete Euclidean Ricci flow (Section 4.4.2).

4.2 Optimal Global Conformal Parametrization Us-
ing Discrete One-form

All holomorphic 1-forms on a genus g surface with g equal to or greater than
one form a linear space, and the basis for such a linear space is 2g dimensional.
We compute a basis denoted as {ω1,ω2, · · · ,ω2g}, such that any linear combina-
tion of them is still a holomorphic 1-form. By integrating a holomorphic 1-form, a
global conformal parametrization can be obtained. We formulate different energies
to measure the quality of the global conformal parametrization. One is to measure
the uniformity of the parametrization and the other is to measure the ratio of pa-
rameter area on regions of interest in the surface. They are both denoted as E(ω),
with ω =

∑2g
i=1 λiωi, and E(ω) = E(λ1,λ2, · · · ,λ2g). We need to find the linear

combination coefficients λi to optimize the energy. The necessary condition for the
optimal holomorphic one form is straight forward,

∂E
∂λi

= 0, i = 1,2, · · · ,2g.

If the Hessian matrix ( ∂2E
∂λi∂λ j

) is positive definite, E will reach the minimum; if the
Hessian matrix is negative definite, E will be maximized.

For closed genus zero surfaces, there is no holomorphic 1-form. The global
conformal parametrization is a conformal map φ : S → S2 from the surface S to
the unit sphere S2. Two such kinds of transformations differ by a Möbius transfor-
mation on S2. Suppose both φ1 and φ2 are two conformal parameterizations of S,
consequently

φ2 ◦φ−1
1 = µ,

where µ is a Möbius automorphism of the sphere. All conformal maps from S to S2

can be formulated as µ◦φ1. We compute one conformal map φ1 first, then compose
it with a Möbius transformation µ. By choosing appropriate µ, we can optimize the
energy.



CHAPTER 4. Conformal Structure 25

For open genus zero surfaces, it can be globally conformally parameterized by
the unit disk. Two such kinds of parameterizations differ by a Möbius transforma-
tion defined on the disk. We can find the best one using a similar method.

Topology modification is necessary for two purposes. First, we will slice the
surface open along feature lines and the feature lines will be parameterized as the
boundaries in parameter domain. When two surfaces are matched, the feature lines
can be matched automatically by matching boundaries on the parameter domain.
In other words, we convert geometric matching to topology matching. Second,
in order to improve the uniformity of the parametrization, we need to modify the
topology. For surface regions like narrow tubes, the stretching factor will increase
exponentially with respect to the height of the tube. In order to improve the unifor-
mity of the parametrization, we need to modify the topology by introducing small
boundaries at the top of the tube. We introduce an algorithm to automatically locate
such extreme points and modify the topology.

For genus g surfaces, there will be 2g−2 zero points on any global conformal
parametrization. The stretching factor of a zero point is zero. The neighborhood
of the zero point will be mapped to a very small area on the parameter plane. For
purpose of sampling the neighborhood will be under-sampled. For texture map-
ping purpose, zero points will cause irregular patterns. Therefore, it is desirable to
hide the zero points at the predetermined positions. The distribution of zero points
are determined by the conformal structure of the surface. Zero points can not be
allocated arbitrarily. However, we can still control part of the zero points.

4.2.1 Optimal Global Conformal Parameterizations of High
Genus Surfaces

For high genus surfaces, their conformal structures can be represented as a
holomorphic 1-form basis, which are 2g functions ωi : K1 → R2, i = 1,2 · · · ,2g.
Any holomorphic 1-form ω is a linear combination of these functions. The surface
can be cut open to a topological disk, namely a fundamental domain. By integrating
ω on a fundamental domain, the whole surface can be globally conformally mapped
to the uv plane.

The algorithm to compute the holomorphic 1-form basis {ωi, i = 1,2, · · · ,2g}
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for a triangular mesh is as follows:

• Compute the first homology basis of this triangular mesh.

• Compute the first cohomology basis of this triangular mesh.

• Compute harmonic 1-form basis from computed cohomology basis in last
step using heat flow method.

• For each harmonic 1-form basis, locally rotate it by a right angle about the
normal to get a new one, and the two form a holomorphic 1-form basis.

The computation process is equivalent to solving an elliptic partial differential
equation on the surface using finite element method. The details for computing
holomorphic 1-form are thoroughly explained in [18] and [19].

If surface is with high genus, all its holomorphic one forms form a linear space.
We formulate the functionals as polynomials of the coefficients of {λ1,λ2, · · · ,λ2g}.
Also, we set the total area in the parameter domain to be fixed. Then we use the
Lagrange multiplier and Newton’s method to optimize it.

Uniform Global Conformal Parametrization Given any holomorphic one-form
ω, ω =

∑2g
k=1 λkωk, we require the total parameter area equals to the total area of

the surface in R3. The constraint functional is:
∑

[u,v,w]∈K2

1
2
|ω([u,v])×ω([v,w])|=

∑

[u,v,w]∈K2

S[u,v,w], (18)

where S[u,v,w] is the area of face [u,v,w] in R3. The uniformity functional is defined
as the sum of the squared area differences of faces between parameter area and area
in R3,

E(ω) =
∑

[u,v,w]∈K2

(
1
2
|ω([u,v])×ω([v,w])|−S[u,v,w])

2. (19)

Both the constraint and the energy functional are polynomials with respect to
λi’s. For example, the constraint can be reformulated as a quadratic form as∑2g

i, j=1 ci jλiλ j = const with ci, j =
∑

[u,v,w]∈K2
1
2 |ωi([u,v])×ω j([v,w])|.

We use the Newton’s method to optimize the uniformity energy with the con-
straint. Because the energy is quintic, the extremal points are not unique. We
randomly set initial values for λi’s, by minimizing the uniformity energy, we get
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the most uniform parametrization; by maximizing the uniformity energy, we get
the least uniform parametrization.

Emphasized Global Conformal Parametrization It is also desirable to allocate
more parameter areas for special regions on the surface in real applications. For
example, in surface remeshing, more samples are required for regions with high
Gaussian curvature or sharp features. We design another functional to measure the
quality of parametrization for emphasized regions.

Suppose we subdivide the whole surface to two regions D0 and D1. They two
may be disconnected, with complicated topologies. If we want to maximize the
parameter areas for D0, we define the emphasized area energy as,

E(ω) =
1
2

∑

[u,v,w]∈D0

|ω([u,v])×ω([v,w])|. (20)

with the same constraint in equation 18.
The functional can be represented as a quadratic form directly. Let ci, j =∑

[u,v,w]∈D0
|ωi([u,v])×ω j([v,w])|, then the emphasized area energy is

E(λ1,λ2, · · · ,λ2g) =
2g∑

i, j=1

ci jλiλ j. (21)

We use conjugate gradient method for the optimization after setting initial val-
ues for λi’s. By maximizing this functional, we put more samples on D0; By mini-
mizing it, we put more samples on D1.

Figure 13 is the result of area emphasized optimization for human body model.
Figure 13 (b), (c) and (d) emphasize the bottom part, the left part, and the right
part, with the ration of the parameter area 82.1%, 88.6%, and 87.3% over the total
parameter area respectively.

4.2.2 Optimal Global Conformal Parameterizations of Genus
Zero Surfaces

For closed genus 0 surfaces, they can be conformally parameterized by a unit
sphere. For genus 0 surfaces, Harmonic maps are equivalent to conformal maps. We
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Figure 6: Max Planck Head Model. (a).Most uniform conformal parametrization, energy:
1.605e-5 (b). Least uniform conformal parametrization, energy: 4.231e-5

use Gauss map as the initial map, then the heat flow method to reduce the harmonic
energy with special constraints. The final harmonic map is a global conformal
parametrization. By composing a Möbius map of the sphere, we can obtain all
possible global conformal parameterizations.

For open genus 0 surfaces, we double cover it and get a closed symmetric
surface. We can map this double covered surface conformally to the sphere and
preserve the symmetry with each copy of the original surface mapped to one hemi-
sphere. After we use stereo-graphic projection map one hemisphere to the unit disk,
the surface is then globally conformally parameterized by the disk. By composing
a Möbius map of the disk, we can construct all global conformal parameterizations
for the surface.

For genus zero surfaces, We conformally map them to a unit sphere or a unit
disk. Because the parameter domains are fixed, the constraint 18 is unnecessary.

Although they have no holomorphic 1-forms, we can still use the uniformity
energy and the emphasized area energy, but the admissible transformations are
changed to the Möbius transformations.
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Topological sphere A sphere can be conformally mapped to the complex plane
by a stereographic projection τ : S2 → C,

τ(x,y,z) =
x

1− z
+
√−1

y
1− z

.

The Möbius transformation on the complex plane has the formulae

µ(z) =
az+b
cz+d

,ad−bc = 1,a,b,c,d ∈ C.

A conformal automorphism φ of the sphere can be formulated as φ = τ−1◦µ◦τ,
Given a topological sphere surface, we first compute its conformal map φ0 :

S→ S2 to the sphere. All its admissible conformal mappings can be represented as
φµ = τ−1 ◦µ◦ τ◦φ0.

The uniformity functional becomes

E(µ) =
∑

[u,v,w]∈K2

(|φµ(r(u)),φµ(r(v)),φµ(r(w))|− |r(u),r(v),r(w)|)2, (22)

where |a,b,c| represents the area of the triangle formed by a,b,c. This is a rational
formula with respect to the coefficients of µ. We use Newton’s method to optimize
it without constraint.

Similarly, the emphasized area energy is formulated by

E(µ) =
∑

[u,v,w]∈D0

|φµ(r(u)),φµ(r(v)),φµ(r(w))|. (23)

We use Newton method to maximize the energy also. Because the optimal solutions
are not unique, we randomly choose the initial Möbius transformation µ0, and use
φµ0 as the initial parametrization.

Topological disk For the topological disk case, we use double covering to make
it a symmetric topological sphere. But we restrict the admissible transformations
to be in a subgroup of the Möbius group, which preserves the symmetry; namely
µ(z̄) = µ(z).

The formula for such a Möbius transformation can be written as

µ(z) =
az+b
b̄z+ ā

,aā−bb̄ = 1,a,b ∈ C.
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Figure 7: David Head Model. Möbius transformation from the unit disk to itself.

The other steps are similar to those for the case of a topological sphere. The
Max Planck head surface in figure 6 is a topological disk. The uniformity energy is
minimized by using Möbius transformations. The most uniform global conformal
parametrization is illustrated in (a), and the least one is in (b). Figure 7 illustrates a
Möbius transformation from the disk to itself.

4.2.3 Topological Optimization

For long and narrow surface regions, such as fingers and tails, the area distor-
tion is huge with conformal parametrization. We will show that for such shapes, we
can not get a uniform conformal parametrization by linear combination of the holo-
morphic one-form basis. We have to change the conformal structure of the surface,
which means we need to modify the topology.

First we proof that for long tube shapes, the conformal factor will increase
exponentially. Suppose we have a long thin cylinder and we plan to conformally
parameterize it. If we use polar coordinates (ρ,θ) with The center of the top mapped
to the origin, the conformal factor is a function dependent only on ρ because of
symmetry. The Gaussian curvature of the cylinder is zero, and

k(ρ,θ) =
1
λ2 ∆ logλ = 0. (24)

We can deduce λ(ρ) = eaρ+b, where a,b are constants. No matter what kind of
conformal parametrization we choose, the stretching is exponential, as illustrated
by Figure 8 (a), which has two cylinder shaped branches where parameterizations



CHAPTER 4. Conformal Structure 31

Figure 8: Cactus Model. (a).Most uniform parametrization with cactus model (b). Most
uniform parametrization after one slice on the top of the left branch (c). Most uniform
parametrization after another slice on the top of the right branch.

are under sampled. We have to change the topology of the surface by introducing
a small boundary at the top of the cylinder and let the conformal factor become
constant. Figure 8 (b) shows the new parametrization after one slice on the top of
its left branch, and (c) is the final after adding one more slice on the top of the right
branch.

Figure 9: Bunny Model With Topological Optimization. (a).Conformal Factor is color
encoded into bunny (b). Topological Optimization: three slices in bunny (c). Most Uniform
Global Conformal Parametrization, energy: 0.37e-4 (d). Least Uniform Global Conformal
Parametrization, energy: 2.1e-4

Base on this observation, we design our greedy topological modification al-
gorithm as follows. We first find the most uniform conformal parametrization for
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current surface; then we locate points with extremely high conformal factors and in-
troduce small slices at the neighborhoods of those points; After double covering, we
recompute its conformal structure. The whole process repeats until the uniformity
energy is less than some threshold.

Estimating Conformal Factor Suppose we obtain a global conformal
parametrization induced by a holomorphic 1-form ω. The conformal factor for
each vertex can be estimated by the following formulae:

λ(v) =
1
n

∑

[u,v]∈K1

|r(u)− r(v)|2
|ω([u,v])|2 ,u,v ∈ K0, (25)

where n is the valence of vertex v. In practice, we compute 1
λ instead of computing

itself. Then at the extreme points, the inverse of the conformal factor is very close
to zero.

Locating the Extreme Points We locate the cluster of vertices with relatively
small reversed conformal factors and compute its center of gravity, finding the clos-
est vertex to it. This vertex is an extreme point. Then we introduce a small slice
through these extreme points, double cover the surface, and compute a holomor-
phic 1-form basis. The optimal parametrization of current topology is computed by
minimizing the uniformity energy. We repeat the whole procedure until the energy
is smaller than the threshold or converges to a limit.

We need to address the question of whether the uniformity would really be
improved by this procedure. Suppose at step n, we get a surface Sn. Then any global
conformal parameterizations for Sn is also a global conformal parametrization for
Sn+1, and the minimal uniformity energy of Sn+1 denoted as En+1 is no greater than
that of Sn. The sequence {E0,E1,En+1, · · ·} is nonincreasing and will converge to a
limit. In practice, if the optimal uniformity energy doesn’t decrease too much, the
procedure will terminate.

The procedure and results for topological optimizing bunny model are illus-
trated in figure 9. In (a), the bunny is conformally mapped to a sphere. The con-
formal factors are color encoded with red color indicating high conformal factor
regions. Then in (b) we introduce small boundaries on high conformal areas, two
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Figure 10: Genus two eight model with zero points locating at different positions.

Figure 11: Genus two eight model with zero points locating at different positions.

on the tips of ears and one on the tail, and recompute conformal structure after dou-
ble covering. (c) shows the best parametrization after the topology modification,
and (d) is the worst one with the same topology.

For the horse model and the hull model in figure 15, they all have been intro-
duced 6 boundaries for topological optimization. And the double covering of each
model is a genus 5 surface. Their most uniform and least uniform parametrization
results are showed respectively.

4.2.4 Zero Points Allocation

Definition 7 (Zero Point). Given a Riemann surface S with a conformal structure
A , a holomorphic 1-form ω, with ω = f (z)dz, where f (z) is an analytic function
and z = u + iv is the local parameter. If f (z) equals zero at point p,, p is a zero
point of ω.

For a Riemann surface S with genus g, a holomorphic 1-form ω has 2g−
2 zero points in principle. The stretching factor of a zero point is zero, and the
neighborhood of the zero point will be mapped to a very small area on the parameter
plane, which will cause the neighborhood under-sampled, see figure 10 and 11 For
texture mapping purpose, zero points will cause irregular patterns. Therefore, it is
desirable to allocate zero points at the predetermined less important positions.
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Figure 12: David Half Body Model With Zero Points Hidden. (a). One zero point hidden
under left armpit (b). The other zero point hidden under right armpit

a. Most Uniform b. Emphasize Bottom Partc. Emphasize Left Partd. Emphasize Right Part

Figure 13: Human Body Model.

Although the positions of the zero points are globally related, which means
they are determined by the conformal structure of the surface, and impossible to
allocate all of them arbitrarily, we can still control part of them.

Suppose ω is a holomorphic 1-form, it has p1, p2, · · · , p2g−2 zero points, then
ω(pi) = 0,∀i. Let ω =

∑2g
j=1 λ jω j, we get the linear system

2g∑

j=1

λ jω j(pi) = 0, j = 1,2, · · · ,2g−2. (26)

If {p1, p2, · · · , p2g−2} is a set of zero points for some holomorphic 1-form ω 6= 0, it
is necessary and sufficient that the matrix (ω j(pi)) is degenerated.
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a. Most Uniform b. Least Uniform c. Emphasize Front Partd. Emphasize Back Part

Figure 14: Camel Model and Lion Model.

a. Most Uniform b. Least Uniform c. Most Uniform d. Least Uniform

Figure 15: Horse Model and Hull Model.

In our discrete setting, ω =
∑2g

i=1 λiωi, and we use the following to approxi-
mate ω(v),v ∈ K0.

ω(v) =
∑

[u,v]∈K1

ω([u,v])
|r(u)− r(v)| =

∑

[u,v]∈K1

2g∑

i=1

ωi([u,v])
|r(u)− r(v)| .

Suppose we want to set n zero points {v1,v2, · · · ,vn}, where n < 2g−2, then
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we need to minimize the following energy

E(ω) =
n∑

i=1

|ω(vi)|2. (27)

This functional is a quadratic form of λ1,λ2, · · · ,λ2g and can be solved easily
using conjugate gradient method. As long as n is not greater than g, we can fix the
zero points to the predetermined positions.

For david half body model in Figure 12, We predetermine the positions of
two zero points under armpit, and by minimizing the energy 27 to get the desired
holomorphic 1-form and parametrization.

4.3 Surface Global Conformal Parameterization Us-
ing Discrete Euclidean Ricci Flow

Discrete Euclidean Ricci flow is a more powerful and flexible tool to compute
surfaces’ global conformal parameterizations. For surfaces with zero Euler number,
like the torii and the annuluses, we can find a special metric called flat uniformiza-
tion metric, which is conformal to the original one, using discrete Euclidean Ricci
flow with all target curvatures of vertices set to zero. Then surfaces with their flat
uniformization metric can be conformally flattened to the plane.

For surfaces with with non-zero Euler number, according to Gauss-Bonnet
theorem, there must be some singularities for the parameterizations where the cur-
vatures are not zeros. We can either concentrate all curvatures onto the singularities
, while the target curvatures of all other vertices are set to zero; or if the surface is
open, we can push those curvatures to the boundaries and set the target curvatures
of interior vertices zero. It is flexible for the numbers and locations of singularities,
same as the boundary curvatures of open surfaces, as long as the sum of curvatures
satisfy Gauss-Bonnet theorem.

The main issues are the computation of the flat uniformization metric (Section
4.3.1), and the flatten of the surface on plane with such metric (Section 4.3.2).

4.3.1 Computing Flat Uniformization Metric
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Figure 16: (a) Horse model with four boundaries on its hoofs. (b) All curvatures are push-
ing to its four boundaries, and all interior vertices are ’flat’, with zero Gaussian curvature.
(c) The horse is embedded on the plane with the new metric. (d) All curvatures are concen-
trated on one singularity vertex, which is marked with red. (e) The horse is embedded on
the plane with the new metric.

Initial Circle Packing Metric First, we compute an initial circle packing metric
(Γ,Φ) which approximates the original Euclidean metric on the given mesh by the
following procedures:

1. For each corner of a vertex vi related with the face fi jk, we compute a radius
for the vertex vi with respect to fi jk:

γ jk
i =

lki + li j− l jk

2
,

where li j, l jk, lki indicate the lengths of the edges ei j,e jk,eki, respectively.

2. For each vertex vi, we approximate the radius γi by averaging the radii from
the faces adjacent to vi:

γi =
1
m

∑

fi jk∈F

γ jk
i ,

where m is the number of the adjacent faces to vertex vi.

3. For each edge ei j, we compute its edge weight φi j using the Euclidean cosine
law:

l2
i j = γ2

i + γ2
j +2γiγ j cosφi j, E2 (28)
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where li j represents the edge length between vertex vi and v j.

Discrete Euclidean Ricci Flow With the initial circle packing metric (Γ,Φ), the
discrete Euclidean Ricci flow can be numerically implemented with the following
steepest descent method. Notice that during the computation the vertex radii Γ vary
with the change of the time while the edge weights Φ are fixed.

1. For the given mesh, assign the radius γi for each vertex vi and the weight φi j

for each edge ei j by the initial circle packing metric (Γ,Φ)(see Section 4.3.1).

2. Compute each edge length li j from current vertices radii γi and γ j and fixed
edge weight Φi j, by using the Euclidean cosine law Eq. 28.

3. Compute the angle θ jk
i related to each corner i∠k

j, from current edge lengths
li j, l jk and lki, by using the inverse cosine law:

l2
i j = l2

jk + l2
ki−2l jklki cosθk, E2 (29)

4. Compute the discrete Gaussian curvature Ki of each vertex vi by using Equa-
tion 13.

5. Update the radius γi of each vertex vi with

γi =
{

γi + ε(K̄i−Ki)γi, E2 (30)

where K̄ is the target Gaussian curvature, the sum under the constraint of the
Gauss-Bonnet theorem.

6. The vertex radii need to be normalized such that the sums of all γi are equal
to 1 or some constant number.

7. Continue the procedures from 2 to 6, until the max |K̄i−Ki| among all vertices
satisfies the user-specified error tolerance, which in our experiments is set to
1e−6, which is good enough for later embedding, no folding or overlapping.

Newton’s Method Discrete Euclidean Ricci flow is the gradient flow for mini-
mizing the Ricci energy (i.e.,Eq. 17), with the convergence and uniqueness guar-
anteed by Theorem 5. So we can further improve the speed by using Newton’s
method.
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The key step is to compute the Hessian matrix. Let ui = logγi, then the Ricci
energy (i.e., Eq. 17) is a convex function of ui. We can measure the variation of the
Gaussian curvatures Ki of a given vertex vi, with respect to the variation of the radii
related with vi and its neighbor vertex v j (i.e., ∂Ki/∂ui and ∂Ki/∂u j).

From Eqs. 13 and 28 we can obtain the relationship between the Gaussian
curvature Ki, γi, γ j, and γk as follows.

Ki = 2π−
∑

fi jk∈F

cos−1 (
γ2

i + γiγ j cosφi j + γkγi cosφki− γ jγk cosφ jk
)

From the above equation, we can deduce ∂Ki/∂ui and ∂Ki/∂u j, as follows.

∂Ki

∂ui
=

∂γi

∂ui

∂Ki

∂γi
= γi

∑

fi jk∈F

AD−BC

A
√

A2−B2

∂Ki

∂u j
=

∂γ j

∂u j

∂Ki

∂γ j
= γ j

∑

fi jk∈F

AF−BE

A
√

A2−B2

, where
A = 2li jlki

B = l2
i j + l2

ki− l2
jk

C = 2(γi + γ j cosφi j) lki
li j

+2(γi + γk cosφki)
li j
lki

D = 2
(
2γi + γ j cosφi j + γk cosφki

)

E = 2(γ j + γi cosφi j) lki
li j

F = 2
(
γi cosφi j− γk cosφ jk

)

4.3.2 Embedding One Domain on Plane

After the discrete Euclidean ricci flow finishes, we can derive the desired con-
formal metric represented as the deformed edge lengths from the final circle packing
metric, then embed the given mesh onto plane.

4.3.2.1 Computing Edge Lengths

It is straightforward to compute edge lengths ei j from the final circle packing
metric: vertices radii γi and γ j, and fixed edge weight φi j, using the Euclidean cosine
law Eq. 28.
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4.3.2.2 Embedding With Computed Metric

After computing the desired circle packing metric (Γ,Φ), we embed the mesh
to the plane, denoting the embedding map is τ : Σ→ R2.

1. Select an arbitrary face f012 as the first face to embed, compute the corner
angles θ0,θ1,θ2. Set τ(v0) to be (0,0),τ(v1) to be (l01,0), and τ(v2) to be
l02(cosθ0,sinθ0). Put all faces sharing an edge with f012 to a queue.

2. Pop the first face fi jk from the queue. If all vertices vi,v j,vk have been em-
bedded, continue. Otherwise, assume vk has not been embedded, then vi,v j

must have been embedded already. Then the τ(vk) is one of the two inter-
section points of the two circles |τ(vk)− τ(vi)|= lki and |τ(vk)− τ(v j)|= l jk.
Further more (τ(v j)− τ(vi))× (τ(vk)− τ(vi)) > 0. Put all faces which have
not been embedded and share one edge with fi jk to the queue.

3. Repeat step 2 until the queue is empty.

(a) (b) (c) (d) (e) (f)

Figure 17: (a) Genus one kitten model marked with a set of canonical fundamental group
generators which cut surface into a topological disk with four sides: a, b, a−1, b−1. (b) One
period is conformally Embedded onto plane, marked with four sides. (c)One translation
moves the side b of one copy of the period matching the side b−1 of itself. (d) Another
translation moves the side a of another copy of the period matching the side a−1 of itself.
(e) A portion of tessellate of the kitten in planar domain. (f) The Euclidean coordinate of
each vertex in (b) is used as texture coordinate for the kitten model in (a), with check board
texture.

4.3.3 Embedding Periodically

A mesh Σ with zero Euler number can be periodically embedded onto the
Euclidean plane, which means a layout of infinite copies of the given mesh. To do
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tiling, we need to compute the embedding of the canonical fundamental domain of
the given mesh first, then generate a set of deck transformations, which will produce
the Tessellation. The following will give a detailed explanation.

Embedding the Canonical Fundamental Domain We first compute a set of
canonical fundamental group generators {a1,b1}. From definition, a1 and b1 are
closed loops and with only one geometric intersection point. The algorithms to
compute the canonical fundamental group generators have been studied in compu-
tational topology and computer graphics literature. We adopted the methods in-
troduced in [6] directly because of its simplicity. Figure 17(a) shows one set of
canonical fundamental group generators marked on kitten model with zero Euler
number.

If we slice surface M along the curves, we can get a topological disk domain
with boundary ∂M = aba−1b−1, called canonical fundamental domain. The embed-
ding of the canonical fundamental domain is simple, exactly the same procedure as
we introduced in Sec. 4.3.2. Figure 17(b) gives the embedding of the canonical
fundamental domain for kitten model on plane.

Computing Deck Transformation Group Generators The embedding of the
canonical fundamental domain for a closed zero Euler number surface has 4 differ-
ent sides, ρ(a),ρ(b),ρ(a−1),ρ(b−1) (see Fig. 17(b)), where a coincides with a−1 in
original model, same as b and b−1, which induce 4 translations defined on the plane.
These translations and their compositions form a group called deck transformation
group, which can generate the tessellation of the surface on plane.

One deck transformation group generator β : R2 → R2 which maps the side
ρ(b−1) of a copy of the fundamental domain ρ(D) coinciding with the side ρ(b) of
ρ(D), as shown in Fig. 17(c), can be easily found by computing a translation which
moves one randomly chosen boundary edge on side ρ(b) to its mate on side ρ(a)−1.

Another deck transformation group generator α which satisfies α ◦ ρ(a) =
ρ(a−1), as shown in Fig. 17(d), can be found similarly,

Generating Tessellation With the computed 2 generators, it is easy to generate
more from its compositions. Putting each of these transformations on the canonical
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fundamental domain of given surface, we can generate a Tessellation of the surface
on its corresponding domain. Figure 17(e) illustrates the tessellation of kitten model
on plane.

4.4 Applications

4.4.1 Conformal Virtual Colon Flattening

Virtual colonoscopy uses computed tomographic (CT) images of patient’s ab-
domen and a virtual fly-through visualization system [37] that allows the physician
to navigate within a 3D model of the colon searching for polyps, the precursors of
cancer. Virtual colonoscopy has been successfully demonstrated to be more conve-
nient and efficient than the real optical colonoscopy. However, because of the length
of the colon, inspecting the entire colon wall is time consuming, and prone to er-
rors. Moreover, polyps behind folds may be hidden, which results in incomplete
examinations.

In paper [23], we propose a novel method for colon flattening by computing
the conformal structure of the surface, represented as a set of holomorphic 1-form
basis. It has the following advantages:

1. The algorithm is rigorous and theoretically solid, which is based on the Rie-
mann surface theory and differential geometry;

2. It is general, so it can handle high genus surfaces;

3. The global distortion from the colon surface to the parametric rectangle is
minimized, which is measured by harmonic energy;

4. It is angle preserving, so the shape of the polyps is preserved;

5. The topology noise is removed automatically by our shortest loop algorithm.
Combined with the direct volume rendering method, the flattened 2D colon
image provides an efficient way to enhance virtual colonoscopy systems.

The colon wall is first segmented and extracted from the CT data set. The
topology noise (i.e., minute handle) is located and removed automatically. The
holomorphic 1-form, a pair of orthogonal vector fields, is then computed on the
3D colon surface mesh using the conjugate gradient method (see Fig. 18). The



CHAPTER 4. Conformal Structure 43

colon surface is cut along a vertical trajectory traced using the holomorphic 1- form.
Consequently, the 3D colon surface is conformal mapped to a 2D rectangle, and
rendered using a direct volume rendering method accelerated with the GPU (see
Fig. 19). The shape of the polyps is well preserved on the flattened colon images,
which provides an efficient way to enhance the navigation of a virtual colonoscopy
system.

(a) (b)

Figure 18: Conformal Virtual Colon Flattening: (a) The colon wall (b) The holomorphic
one-form on the colon surface is illustrated using texture-mapping with a checker board
image.

4.4.2 Metric-Driven N-RoSy Fields Design

4.4.2.1 Overview

Many objects in computer graphics and digital geometry processing can be
described by rotational symmetries, such as brush strokes and hatches in non-
photorealistic rendering, regular patterns in texture synthesis, and principle cur-
vature directions in surface parameterizations and remeshing. N-way rotational
symmetry (N-RoSy) has been proposed to model these objects.

The most important requirement for an N-RoSy field design system is to allow
the user to fully control the topology of the field, including the number, positions
and indices of the singularities, and the turning numbers of the loops [42,44]. Auto-
matic generation of N-RoSy fields with user prescribed topologies remains a major
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Figure 19: A flattened image for a whole colon data set is shown in three images, with
polyps marked with small circles.

challenge. Fields with less singularities are often preferred, because singularities
cause visual artifacts in real applications.

The method in [42] generates fields with user defined singularities, but it also
produces excess singularities, which requires further singularity pair cancelation
and singularity movement operations. The method in [44] is the first one that guar-
antees the correct topology of the field, but it requires the user to provide an initial
field with all singularities at the desired positions. In practice, finding such an initial
field is the most challenging step.

We provide a rigorous and practical method based on flat metric induced from
surfaces’ conformal structure which allows the user to design N-RoSy fields with
full control of the topology and without inputting any initial field. Furthermore, the
algorithm can automatically generate a smooth field with the desired topology and
allow the user to further modify it interactively.

4.4.2.2 N-RoSy Fields Design

Our algorithms to design N-RoSy fields on general surfaces can be summa-
rized as follows: 1. the user specifies the desired singularities of the vector field;
2. we compute surface conformal structure which induces a flat cone metric, such
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Figure 20: Algorithm pipeline (a). User specifies the desired singularities with both posi-
tions and indices. Here one singularity at the blue point with the index −2. The curves are
homotopy group basis. (b) We compute a flat metric, the curvature at the singularity is−4π,
everywhere else 0. The surface is cut along the base curves and flatten to the plane. Note
that the boundaries of the same color can match each other by a rigid motion. (c) Parallel
vector field. The field has discontinuities along the red curve. (d) Compute a harmonic 1-
form to compensate the holonomy. (e) The smooth vector field after rotation compensation.
(f)(g) User inputs geometric constraints (red arrows) to guide the direction of the field, then
the field is modified from (f) to (g).

that all the cone singularities coincide with those of the field; 3. we parallel trans-
port a tangent vector at the base point to construct a parallel vector field; 4. if the
parallel field has jumps when it goes around handles or circulates singularities, we
apply two methods to eliminate the jumps: rotation compensation adjusts the ro-
tation of the vector field; metric compensation modifies the rotation of the loops
by deforming the surface. In the second stage, the vector field is further modified.
we interactively edit the rotation and the magnitude of the vector field to incorpo-
rate user constraints. Figure 25 illustrates the pipeline using rotation compensation
method.

4.4.2.3 Experimental Results

Remeshing We use the metric compensation method to adjust the metric to satisfy
the tessellation compatibility condition. Then we develop the mesh to the plane, and
tessellate the development. This induces a desired tessellation.

Figure 21 demonstrates the results of N-RoSy field on the buddha model.
Frame (a) shows a 4-RoSy field on the buddha model, which induces a quad-
remeshing as shown in (b).
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(a) a 4-RoSy field on buddha model (b) quad-remeshing

Figure 21

Celtic Knot on Surface Celtic knot refers to a variety of endless knots, which in
most cases contain delicate symmetries and entangled structures. The local symme-
try and the quality of remeshing of the surfaces play crucial roles for the knotwork
on surfaces. Based on our remeshed results, those uniform quads and triangles pro-
vide a perfect canvas for Celtic knot design. Similar to the method in [32], we set
control points directly on surfaces, connecting them using polynomials based on
the knot designing rules. Compared with traditional geometric texture synthesis
approaches, we do not need shell mapping from planar domains to surfaces. Figure
22 shows our Celtic knots synthesis results on several surfaces. The knotwork has
complicated structures and rich symmetries.

(a) (b) (c)

Figure 22: Celtic knots designed surfaces
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Pen-and-ink Sketching of Surfaces Pen-and-ink sketching of surfaces is a non-
photorealistic style of shape visualization. Hatch directions can be treated as a
4-RoSy field. Since our method to construct 4-RoSy field enables the user to not
only fully control singularities, but also edit the field interactively, our system is
desirable for NPR applications.

For example, the editing process improves the hatching quality on the Bimba
model shown in 23.

(a) (b) (c) (d)

Figure 23: Pen-and-ink sketching of bimba before ((a) and (b)) and after editing ((c) and
(d)). The hatch directions follow the natural directions better (e.g. neck,arm).
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Affine Structure

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 24: Affine atlas automatically acquired by using discrete Euclidean Ricci Flow.
First, the user selects one singular point as shown in (a). Then a cut graph is labeled either
manually or automatically as the dark curves in (a), where the cut graph is a set of canonical
homology basis curves passing through the singular vertex. Second, the flat circle packing
metric is computed using Ricci flow, illustrated in (b). The flat metric induces an planar
embedding. The entire surface is sliced open along the cut graph to form a topological disk
(i.e. fundamental domain). The interior of the fundamental domain is bijectively mapped
to the plane. The mapping of the one-ring neighbor of the singular vertex is not 1 to 1, but
2g− 1 to 1 shown in (d). Other charts covering the cut graph are constructed as shown in
(e) and (f), and their overlapping relation with the central chart is shown in (g) and (h) by
encoded colors, respectively.

48
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5.1 Overview

For affine structure, X is R2, and G is the group of affine transformations. A 2
dimensional manifold M with an atlas (Uα,φal pha), if all chart transition functions

φαβ := φβ ◦φ−1
α : φal pha(Uα∩Uβ → φβ(Uα∩Uβ))

are affine, then the atlas is called an affine atlas, and M is called an affine manifold.
Two affine atlases are compatible if their union is still an affine atlas. All the

compatible affine atlases form an affine structure of the manifold. For closed sur-
faces, only genus-one surfaces have affine structures ( [4,30]), but all open surfaces
have affine structures.

One direct application for affine structure is manifold spline introduced in [15]
based on polar form. They demonstrated the equivalence between manifold splines
and the affine structure, and gave a systematic way to generalize splines defined
on planar domains to manifold domains. They also gave the method constructing
affine structures from conformal structures of surfaces with general topologies us-
ing discrete one-form method.

In this chapter, we first introduce another more flexible method to compute
affine structures for surfaces with general topologies using discrete Euclidean Ricci
flow (Section 5.2) [24]. Then we introduce our method to construct manifold spline
for high genus surfaces with single singularity (Section 5.3.1) [14] instead of 2g−2
singularities in [15]. We present another method to construct manifold T-spline
based on polycube maps which naturally induce surface affine structure (Section
5.3.2) [52] .

5.2 Computing Surfaces Affine Structures

Surfaces affine structures can be induced from their conformal structures by
quotient those singularity points, which has been proved in [15]. The method of
constructing affine structures from conformal structures in [15] is using discrete
one-form, which has to remove 2g−2 singularity points for genus g surfaces. Also
the positions of singularity points are hard to control. Here, we introduce construct-
ing affine structures from conformal structures using discrete Euclidean Ricci flow
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method, which can reduce the number of singularity points to the theoretical min-
imum: one singularity point for any closed genus g > 1 surfaces and singularity
point free for any open surfaces. This method is also flexible for position of the
singularity point.

Given a surfaces Σ with arbitrary topology, we first compute its flat uniformiza-
tion metric (Section 4.3.1) by concentrating all its curvatures to one vertex for
closed high genus surfaces, or pushing curvatures to boundary vertices for open
high genus surfaces, with all other vertices set to flat. Then we construct a family of
open sets {Uα}, such that the union of the open sets covers the surface Σ, Σ⊂⋃

Uα.
Then we embed each Uα in the plane, as π−1(Uα). The embedding gives each Uα of
the local coordinates, namely φα. If one point p ∈ Σ on the surface Σ is covered by
two charts (Uα,φα) and (Uβ,φβ), suppose pα ∈ Ūα and pβ ∈ Ūβ, the chart transition
map φαβ with the form

φαβ = φβ ◦φ−1
α ,

where φαβ is an affine transformation. Therefore we construct an affine atlas
{(Uα,φα)} which induces affine structure of the surface.

Figure 24 shows the flat uniformization metric of a genus two surface and its
affine atlas.

5.3 Applications

5.3.1 Manifold Spline With Single Singularity

5.3.1.1 Overview

We develop a novel computational technique to define and construct power-
ful manifold splines with only one singular point by employing discrete Euclidean
Ricci flow. The central idea and new computational paradigm of manifold splines
are to systematically extend the algorithmic pipeline of spline surface construction
from any planar domain to arbitrary topology. As a result, manifold splines can
unify planar spline representations as their special cases. Despite their earlier suc-
cess, the existing manifold spline framework is plagued by the topology-dependent,
large number of singular points (i.e., |2g− 2| for any genus-g surface), where the
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analysis of surface behaviors such as continuity remains extremely difficult. The
unique theoretical contribution of our method is that we devise new mathematical
tools so that manifold splines can now be constructed with only one singular point,
reaching their theoretic lower bound of singularity for real-world applications. Our
new algorithm is founded upon the concept of discrete Ricci flow and associated
techniques. First, Ricci flow is employed to compute a special metric of any man-
ifold domain (serving as a parametric domain for manifold splines), such that the
metric becomes flat everywhere except at one point. Then, the metric naturally
induces an affine atlas covering the entire manifold except this singular point. Fi-
nally, manifold splines are defined over this affine atlas. The Ricci flow method is
theoretically sound, and practically simple and efficient. We conduct various shape
experiments and our new theoretical and algorithmic results alleviate the modeling
difficulty of manifold splines.

Manifold Spline Definition and Concept of Manifold Spline A manifold spline of
degree k is a triple (M,C,F), where M is the domain manifold with an atlas. F is
a map representing the entire spline surface. The knots are defined on M directly.
C is the control point set, each control point is associated with a set of knots, such
that

1. On each chart of the atlas, the restriction of F and C is a spline surface patch.

2. The evaluation of F is independent of the choice of the charts.

Equivalence to Affine Atlas The central issue of constructing manifold splines
is that the atlas must satisfy some special properties in order to meet all the re-
quirements for the evaluation independence of chart selection. Because the existing
planar spline schemes are parametric affine invariant, this requires that all the chart
transition functions are affine.

Existence in order to define a manifold spline, an affine atlas of the domain
manifold must be found first. General closed 2-manifolds do not have an affine
atlas. On the other hand, all open surfaces admit an affine atlas. In order to define
manifold splines, the domain manifold has to be modified to admit an atlas by re-
moving a finite number of points. This offers a theoretical evidence to the existence
of singular points due to the topological obstruction. A classical result from char-
acteristic class theory claims that the only closed surface admitting affine atlas is of
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genus one.

5.3.1.2 Construction of Manifold Spline with Single Singularity

Figure 25 gives the pipeline to construct manifold spline with single singu-
larity. The first step is to select singularity point; at the second step, connectivity
around that singularity vertex is modified; the third step is to construct affine struc-
ture of given surface with arbitrary topology; manifold spline can be build based
on the last step. We give detailed explanation for step one and two. Step three has
been introduced in Section 5.2. For step four, we show some experimental results.
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Figure 25: The pipeline to construct manifold spline with single singularity using discrete
Euclidean Ricci flow. (a) Singularity Selection (b) Connectivity Modification (c) Ricci flow
(d) One chart (e) Parametric domain (f) Manifold splines (g) Spline patchwork (h) Control
point distribution.

Step 1: Selecting Singularities We can select the singular vertices
{v1,v2, · · · ,vk},k ≥ 0 anywhere on the mesh arbitrarily, then we assign the target
curvature of the singular vertices such that

k∑

i=1

K̄(vi) = 2πχ,
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where χ is the Euler number the surface; the target curvature of other vertices are
zero. Note that, there are several special cases that must be addressed.

• If the surface is a closed genus one mesh, then no singular vertex is selected.

• For a high genus mesh, we can select only one singular vertex and concentrate
all curvature on it.

• If the mesh is open, we can assign the target curvatures for all the interior
vertices to be zero and assign the target curvatures for boundary vertices such
that the total boundary curvature equals to 2πχ. By this way, all the non-zero
curvature will be pushed to the boundary.

Ricci flow only changes the vertex radii, therefore, the resulting metric is con-
formal to the original one, no angle distortion will be introduced. But the area
distortion is unavoidable. The uniformity of the parameterization varies drastically
depending on the choice of singularities. Our selection is based on the computa-
tion of area distortion for all possible cases, which sets every vertex as the single
singularity in every case.

The area distortion error is measured with the following equation:
∑n

i=1(− log(Si)− log(si))2

n

where Si is the ith triangle area in surface, si is its area in parametrization domain,
and n is the total number of triangles. Figure 26(a) shows the distribution of the area
distortion, blue area with low distortion, and red area with high distortion. In figure
26(b), the path of the arrow illustrates the rough behavior of the error distribution
for the eight model.

When we sort the vertices with the area distortion errors, we may find the
best position to put the singularity. Figure 27 gives five different cases of setting
singularity. From the left to the right, the area distortion is increasing, with the left
most being the best parameterized and the right most being the worst parameterized.

Step 2: Modify Local Connectivity around the Singular Vertex If both the ini-
tial curvature configuration and the target curvature configuration satisfy the con-
straints, any intermediate curvature configuration during Ricci flow will satisfy the
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(a) (b)

Figure 26: (a) The distribution of the area distortion is color encoded. (b)The path of the
arrow illustrates the rough behavior of the error distribution for the eight model.

Figure 27: The first row gives the different positions of singularities on the same model;
The second row shows their corresponding flat metric. From left to right, the area distortion
increases.

constraints. Thus, it is enough to only consider the target curvature. If some sin-
gularities have high target curvature concentration, we need to modify the local
connectivity in their neighborhoods.

We make the sampling in the neighborhood of the singularity much denser
and increase the connectivity of the singularity no less than four times of genus,
and vertices in the neighborhood have valence of about 6.

Step 4: Manifold Spline with Single Sibgularity We choose manifold triangular
B-spline because of its flexibility in domain construction. This method can be also
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applied to other manifold splines, such as T-splines and Powell-Sabin splines. The
implementation details are described in [15].

One example of manifold triangular B-splines with single extraordinary is
shown in Figure 28.

(a) (b) (c) (d)

Figure 28: Example of manifold splines with single extraordinary point for closed high
genus surfaces. (a) domain manifold with extraordinary point removed (b) manifold spline
with extraordinary point filled (c) manifold spline with patchwork (d) manifold spline with
control net

5.3.2 User-controllable Polycube T-spline

5.3.2.1 Overview

Polycube T-spline has been formulated elegantly that can unify T-splines and
manifold splines to define a new shape representation for surfaces of arbitrary topol-
ogy by using polycube map which naturally induces the affine structure with a finite
number of extraordinary points. The data fitting quality using polycube T-splines
hinges on the construction of underlying polycube maps. However, existing meth-
ods for polycube map construction exhibit some disadvantages. For example, ex-
isting approaches for polycube map construction either require projection of points
from a 3D surface to its polycube approximation, which is therefore very difficult
to handle the cases when two shapes differ significantly; or compute the map by
conformally deforming the surfaces and polycubes to the common canonical do-
main and then construct the map using function composition, which is challenging
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to control the location of singularities and makes it hard for the data-fitting and
hole-filling processes later on.

We propose a novel framework of user-controllable polycube maps using dis-
crete Euclidean Ricci flow, which can overcome the disadvantages of the conven-
tional methods and is much more efficient and accurate. The current approach
allows users to directly select the corner points of the polycubes on the original
3D surfaces, then construct the polycube maps using discrete Euclidean ricci flow.
We develop algorithms for computing such polycube maps, and show that the re-
sulting user-controllable polycube map serves as an ideal parametric domain for
constructing spline surfaces and other applications. The location of singularities
can be interactively placed where no important geometric features exist. Experi-
mental results demonstrate that the proposed polycube maps introduce lower area
distortion and preserve small angle distortion as well, and subsequently make the
entire hole-filling process much easier to accomplish.

5.3.2.2 Construction of Polycube Maps

Corner Selection Given a mesh M with arbitrary topology, user can design the
polycube P based on the shape of the surface by directly selecting corners of P on
M. The choices of the corners reflect the symmetry of M. The curvature at each
corner c equals to (2− k

2)π, where k is the valence of c on the polycube p. Namely,
protruding corners are with π

2 , recessed corners are with −π
2 . The total curvatures

of all corners equals to 2πχ(M), where χ(M) is the Euler-characteristic number of
M. Figure 29(a) and (b) shows the selected corner points on Buddha model. The
red corners are the protruding corners, the green corners are the recessed corners.
For non-corner vertices, we set the curvature to be zeros.

Mesh Partition We use the discrete Euclidean Ricci flow to compute a new
circle packing metric according to the target curvature. For any two corners c1,c2

on the mesh, whose correspondences are connected on the polycube, we compute
the shortest path connecting them on the mesh under the new metric using Dijkstra’s
method (figure 29(c) and (d)). All such shortest paths segments partition the mesh
to patches. Figure 30 (a) shows one patch from the partition of the buddha mesh by
this step, which corresponds to one face of the polycube.

Rectification Each patch is a planar quadrilateral under the new metric, but



CHAPTER 5. Affine Structure 57

may not be a rectangle. We can use the Ricci flow method to rectify the planar
quadrilateral to the rectangle by setting the target curvatures of 4 corners to be π

2 ,
and all the other interior and boundary vertex curvatures to be zeros. Ricci flow can
find a flat metric, the layout of the mesh under the flat metric is a rectangle. The
aspect ratio of the rectangle is solely determined by original geometry of the patch.
Figure 30 (b) illustrates the rectification result.

Polycube Assembly Assemble all the rectangles to a polycube, scale each rect-
angle along x and y directions when it is necessary. First, we build the dual graph of
the polycube, each node represents a face of the polycube, each edge corresponds
to an edge. Then we use breadth first searching method to traverse the dual graph.
We first embed the root face, each time we access a new face, we determine the
coordinates of its corners. In this way, we can embed the whole polycube in R3.
Figure 30(c) and (d) shows the polycube map for genus-0 buddha model.

If two rectangles on the polycube share one edge, make the corresponding
vertices to align each other. Then we use a discrete harmonic map to relax the
positions of the interior vertices of each rectangle with the fixed boundary condition.

In the above construction, the mapping between the polycube and the surface
is automatically established. The shape of the polycube and the correspondence
are fully determined by corner points. Therefore, the choices of the corner points
are crucial. The followings are the important criteria for choosing the positions of
the corners: the corners should be at regions with less geometric features for the
purpose of better hole filling; the configuration of the corners should reflect the
symmetry of the original surface.

5.3.2.3 Experimental Results: Polycube T-spline

Part of our experimental results in Figures 31 and 32 show that our method
gives users more freedom to design the polycube; it induces lower area distortion
between the surface and the polycube; it is capable to handle surfaces with more
complicated topologies, such as high genus surfaces or open surfaces, which are
difficult to handle by conventional methods.
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(a) (b) (c) (d)

Figure 29: (a) and (b): Corner points are marked on Buddha model, red ones with π/2
target Gaussian curvature, and green ones with −π/2 target Gaussian curvatures. (c) and
(d): Geodesics between corner points are marked with sharp edges, which are computed
using Dijkstra’s algorithm with computed conformal metric as edge lengths.
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(a) (b) (c) (d)

Figure 30: (a) and (b): One patch from Buddha model after partition, which corresponds
to one face of the polycube. The one on the left is the quadrilateral before rectification, the
one on the right is the rectangle after rectification. (c) and (d): User-controllable Polycube
Map for Buddha Model.

(a) (b) (c) (d)

Figure 31: (a) User-controllable Polycube map (b) Polycube T-spline (c) T-junctions on
polycube spline (d) Close-up of control points
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(a) (b) (c) (d)

Figure 32: (a) User-controllable Polycube map (b) Polycube T-spline (c) T-junctions on
polycube spline (d) Close-up of control points



Chapter 6

Hyperbolic Structure and Real
Projective Structure

6.1 Overview

For hyperbolic structure, X is H2, and G is the group of Möbius transforma-
tions. For projective structure, X is RP2, and G is projective transformations. Hy-
perbolic structure was applied in [10] for topological design of surfaces, where the
high genus surfaces were represented as quotient spaces of the Poincaré disk over
Fuchsian group actions. In [13], Grimm and Hughes defined parameterizations
for high genus surfaces and constructed functions on them. Wallner and Pottmann
introduced the concept of spline orbifold in [51], which defined splines on three
canonical parameter domains, the sphere, the plane and the Poincaré. But their
works only consider the topology and ignore the geometry of the surface. For real
applications, such as texture mapping, shape analysis and spline constructions, con-
formality between the original and the final metrics is highly desirable.

In this chapter, we first give the method computing surfaces hyperbolic struc-
ture and real projective structure using discrete hyperbolic Ricci flow (Section
6.2) [25]. Then we introduce shape space 6.3 [26, 28], using surfaces hyperbolic
structure, which can be used as shape index for surfaces classification purpose.

61
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6.2 Computing Surfaces hyperbolic Structure and
Real Projective Structure

High genus surfaces have hyperbolic structures and real projective structures.
Both of them can be induced from hyperbolic uniformization metrics on surfaces.
The following algorithms are designed to compute the hyperbolic uniformization
metric, hyperbolic structure and real projective structure for a given surface Σ with
genus g greater than one.

1. Compute a canonical homology basis and canonical fundamental domain of
the surface Σ.

2. Compute hyperbolic uniformization metric of the surface Σ using Discrete
hyperbolic Ricci flow method.

3. Compute its Fuchsian group generators in the Poincaré disk model.

4. Construct a hyperbolic atlas.

5. Convert the hyperbolic atlas to the real projective atlas.

The algorithm in the first step has been introduced in [6].

Figure 33: (a) Genus two vase model marked with a set of canonical fundamental group
generators which cut surface into a topological disk with eight sides: a1, b1, a−1

1 , b−1
1 , a2, b2,

a−1
2 , b−1

2 . (b) One period is conformally Embedded onto Poincaré disk with uniformization
metric, marked with eight sides. (c)One Möbius transformation moves the side b1 of one
copy of the period matching the side b−1

1 of itself. (d) Eight Möbius transformations move
sides of eight copies of the period matching the corresponding sides of itself. (e) A portion
of tessellate of the vase in Poincaré disk. (f) Zoom in of the tessellation, showing no folding
or overlapping. (g) Considering an Euclidean unit disk which is coincide with the Poincaré
disk, the Euclidean coordinate of each vertex in (b) is used as texture coordinate for the
vase model in (a), with check board texture.
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6.2.1 Computing Hyperbolic Uniformization Metric

The discrete hyperbolic Ricci flow method is simple and powerful for comput-
ing the uniformization metrics of high genus surfaces. Compared with Euclidean
Ricci flow, there are two major differences

1. Suppose a triangular face on the mesh with edge lengths. Instead of treating
it as a triangle in the Euclidean space, we treat it as a triangle in hyperbolic
space. Then all the angles in the triangle can be calculated using the hyper-
bolic cosine law:

cosh li j = coshγi coshγ j + sinhγi sinhγ j cosφi j. H2 (31)

2. In the energy form in equation 17, let ui = ln tanh γi
2 , therefore the Hessian

matrix of the energy f is

∂2 f
∂ui∂u j

=
∂Ki

∂r j
sinhr j.

The other parts of the algorithm are identical to those of the Euclidean Ricci flow.
The hyperbolic Ricci energy is strictly convex, with a unique global minimum,
which gives us the desired hyperbolic uniformization metric.

6.2.2 Computing Fuchsian Group Generators in the Poincaré
Disk Model

This step aims to compute the canonical Fuchsian group generators used for
computing the universal covering space and hyperbolic structure.

6.2.2.1 Computing Fundamental Group Generators

We first compute a set of canonical fundamental group generators
{a1,b1,a2,b2, · · · ,ag,bg}. Assume the base point is p, then ai’s and b j’s
are closed loops through the base point. The surface S is sliced open
along the fundamental group generators to form a topological disk F called
the canonical fundamental domain. The boundary of F has the form ∂F =
a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · ·agbga−1

g b−1
g .
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6.2.2.2 Isometric Embedding in Hyperbolic Disk

We isometrically embed the universal covering space Σ̄ onto the Poincaré disk
using the uniformization metric computed from Section 6.2.1, and let φ : Σ̄ → H2

denote the isometric embedding.
We first select a face f012 from Σ arbitrarily. Suppose three edge lengths are

{l01, l12, l20}, and the corner angles are {θ12
0 ,θ20

1 ,θ01
2 } under the uniform hyperbolic

metric. We simply embed the triangle as

φ(v0) = 0,φ(v1) =
el01 −1
el01 +1

,φ(v2) =
el02 −1
el02 +1

eiθ12
0 .

Then we can embed all the faces which share an edge with the first embedded face.
Suppose a face fi jk is adjacent to the first face, and vertices vi,v j have been em-
bedded. A hyperbolic circle is denoted as (c,r), where c is the center, and r is the
radius. Then φ(vk) should be one of the two intersection points of the two hyper-
bolic circles (φ(vi), lik) and (φ(v j), l jk). Also, the orientation of φ(vi),φ(v j),φ(vk)
should be counter-clockwise. In the Poincaré model, a hyperbolic circle (c,r) coin-
cides with an Euclidean circle (C,R), satisfying

C =
2−2µ2

1−µ2|c|2 c,R2 = |C|2− |c|2−µ2

1−µ2|c|2 ,

where µ = er−1
er+1 . So the intersection points between two hyperbolic circles can be

found by intersecting the two corresponding Euclidean circles. The orientation of
triangles can also be determined using Euclidean geometry on the Poincaré disk.

We can continuously embed faces which share edges with embedded faces in
the same manner, until we embed enough portion of the whole Σ̄ onto the Poincaré
disk.

6.2.2.3 Computing Fuchsian Group Generators

Given two pairs of points (p0,q0) and (p1,q1) in the Poincaré disk, such that
the geodesic distance from p0 to q0 equals that from p1 to q1. Then there exists a
unique Möbius transformation φ, such that p1 = φ(p0) and q1 = φ(q0). φ can be
constructed in the following way: construct a Möbius transformation φ0 mapping
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p0 to the origin and q0 to a positive real number, with

φ0 = e−iθ0
z− p0

1− p̄0z
,θ0 = arg

q0− p0

1− p̄0q0
.

Similarly, we can define another Möbius transformation φ1, which maps p1 to the
origin, q1 to a real number, and φ1(q1) equal to φ0(q0). Then the desired Möbius
transformaion φ is: φ = φ−1

1 ◦φ0.
Let ak,a−1

k ⊂ ∂F are two boundary curve segments with their starting and
ending vertices ∂ak = q0 − p0 and ∂a−1

k = p1 − q1, then the Mobius transfor-
mation (p0,q0) → (p1,q1) is the Fuchsian generator βk corresponding to bk. In
fact, βk maps ak to a−1

k . Similarly, we can compute αk which maps b−1
k to

bk. Therefore, we can compute a set of canonical Fuchsian group generators
{α1,β1,α2,β2, · · · ,αg,βg} corresponding to the set of canonical fundamental group
generators {a1,b1,a2,b2, · · · ,ag,bg} computed from Section 6.2.2.1.

6.2.3 Constructing Hyperbolic Structure

With the computed universal covering space and the Fuchsian group genera-
tors, now we can construct the hyperbolic structure of the given surface now. First
we construct a family of open sets {Uα}, such that the union of the open sets covers
the surface Σ, Σ ⊂⋃

Uα. Then we locate a pre-image of each Uα in the universal
covering space Σ̄, as π−1(Uα). The embedding of the pre-image π−1(Uα) in the
Poincaré disk gives the local coordinates of Uα, namely

φα := φ◦π−1.

where φ is the embedding map for the universal covering space to the Poincaré
disk. If one point p ∈ Σ on the surface Σ is covered by two charts (Uα,φα) and
(Uβ,φβ), suppose pα ∈ Ūα and pβ ∈ Ūβ, and a curve connecting pα, pβ is denoted
as γ. The homotopy class of π(γ) is determined by pα, pβ, denoted as [p̄α, p̄β].
Assume [p̄α, p̄β] = γ1γ2γ3 · · ·γn, where γk is one of the ai’s or bi’s, we replace ai in
[p̄α, p̄β] by αi, bi by βi in γ to get the chart transition map φαβ with the form

φαβ = φ1 ◦φ2 ◦φ3 · · ·φn,

where φ j is one of the αi’s or βi’s. Therefore we construct a hyperbolic atlas
{(Uα,φα)} which induces the hyperbolic structure of the surface.
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6.2.4 Constructing Real Projective Structure

For a closed surface Σ with genus g > 1, its real projective atlas can be deduced
from its hyperbolic structure ( but the reverse is not true). Suppose {(Uα,φα)} is a
hyperbolic atlas of Σ, then a real projective atlas {(Uα,τα)} can be straightforwardly
constructed. Let

τα = β◦φα and ταβ = β◦φαβ ◦β−1,

where β is the map from the Poincaré model to the Klein model defined in Eqn. 6.
Suppose φα has the form

φα = eiθ z− z0

1− z̄0z
,

where z0 = x0 + iy0, we use homogenous coordinates (xw,yw,w) to parameterize
the points (x,y) on the Klein model, then the transition map ταβ has the following
form: ταβ = 1

λOT , where λ = x2
0 +y2

0−1, and O is the rotation matrix. O and T are:

O =




cosθ −sinθ 0
sinθ cosθ 0
0 0 1


 ,T =




1+ x2
0− y2

0 2x0y0 −2x0

2x0y0 1− x2
0 + y2

0 −2y0

2x0 2y0 −1− x2
0− y2

0


 6= 0,

(32)

6.3 Application: Shape Space

6.3.1 Overview

With the development of graphics hardware 3D scanning devices, the number
of 3D geometric models in online repositories is dramatically increasing. The de-
mand for effective retrieval of shape models is pressing. The primary challenge in
building a shape-based classification and retrieval system is to find a computational
representation of shape descriptors for which an index can be built, and similarity
queries can be answered efficiently.

The problem of shape classification and comparison is very challenging. For
a geometric algorithm, all the information that can be utilized is only the topology
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and geometry of the shape. But for human beings, shape classification and com-
parison involves the expectations of the functionalities of the objects. For example,
for a human observer, the slatted chairs can still be quite similar even if they have
a different number of slats; but for a computer, the objects are quite different be-
cause they have different topologies. Low level algorithms based on the geometric
information need to be developed first to lay down the foundation for high level
methods, which are closer to the human intelligence. The algorithms in both levels
have fundamental importance. This work focuses on the algorithms solely based on
the geometric information.

Shape descriptors can constructed using different levels of geometric informa-
tion. For example, surfaces can be classified by their topological properties, such
as the number of the handles and the boundaries. Shapes can be differentiated more
precisely by differential geometric properties, such as principle curvatures and fun-
damental forms. Topological descriptors are global, succinct and intuitive, but less
discriminating; whereas differential geometric descriptors are local, redundant, and
counter intuitive, but much more discriminating. The huge storage requirements
prevent differential geometric descriptors from practical applications. This work
introduces a novel approach for shape classification and comparison, the descrip-
tors are based on conformal geometry. Although they are not intuitive, conformal
geometric descriptors are global, succinct and discriminating. In reality, it is hard
to find two natural shapes with handles to share the same conformal descriptors.
Conformal shape descriptors are intrinsic, independent of rotation, translation and
scaling, also invariant with different triangulations and isometric deformation. They
are stable, for deformations with small area stretching, like the posture change of
a human skin surface, which changes slightly. They are efficient, easy to compute
and compare. Therefore, we believe conformal geometric approach for shape clas-
sification and comparison has the potential for real applications.

6.3.2 Conformal Equivalence

A conformal map, also called an angle-preserving map, preserves local angles
between two surfaces. We say two surfaces are conformal equivalent or with the
same conformal structure if there exists a bijective conformal map between them.
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Surfaces can be easily differentiated by the conformal equivalence. For example,
the three human faces in Fig. 34 are topological equivalent, because all of them are
two-holed annuli, but they are not conformal equivalent. This fact can be verified by
checking their conformal descriptors. First, we conformally deform them onto the
hyperbolic space as shown in the middle row in the figure, such that all boundaries
are deformed to geodesics. Each surface is mapped to two congruent right-angled
hyperbolic polygons. The edge lengths of the hyperbolic hexagon (determined by
the lengths of 3 boundaries) form the conformal descriptor. The bottom row in
figure 34 shows two genus one surfaces which are conformal inequivalent. The
figure shows a map between them, which transfers the checker-board texture from
the kitten surface to the rocker-arm surface. The right corner angles on the kitten
surface are distorted on the rocker-arm, this shows the map is not conformal.

This work proposes to classify surfaces based on Teichmüller space theory. In
this work, we only consider oriented surfaces. We use (g,r) to represent the topo-
logical type of the surface, g means the number of handles (genus), r the number of
boundaries. Fix the topology of the surfaces, all conformal equivalent classes form
a finite dimensional manifold, the so-called Teichmüller space [5]. The dimension
of the Teichmüller space of (g,r) is 6g− 5 + 3r, where each point represents con-
formal equivalence class, and the conformal map is homotopic to Identity. A curve
connecting different points represents a deformation process from one class to the
other. Figure 35 illustrates the concept. The teapot surface has one handle and
one boundary at the spout, therefore is of topological type (1,1). The Teichmüller
space is 3 dimensional. The teapot in the middle is twisted, the deformation pro-
cess is indicated by the blue curve. The further away the curve goes, the greater the
distortion is. Another deformation process is depicted by the red curve, the teapot
is pulled taller and taller. The two deformation paths are illustrated in both R3 and
the Teichmüller space.

We briefly summarize the Teichmüller spaces for surfaces with different Euler
numbers. The Euler number of type (g,r) is 2− 2g− r. The computational algo-
rithms for the Teichmüller coordinates of surfaces with non-negative Euler numbers
have been introduced before. This work focuses on surfaces with negative Euler
numbers.

• The Teichmüller space for (0,0) type surfaces, namely genus zero closed
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Figure 34: (a) Three human faces sharing the same topology (two holes annulus) are con-
formally mapped to hyperbolic space. (b) Map between genus one kitten model and torus.
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surfaces, has only one point. That means, all genus zero closed surfaces are
conformally equivalent. In this case, we conformally map the surface to the
unit sphere. By mapping different surfaces to the unit sphere, we can easily
construct the conformal mapping between two surfaces. The area distortion
induced by the conformal mapping is called the conformal factor. In [16]
we proved that the conformal factor and the mean curvature determine the
surface unique up to a rigid motion in R. We use area distortion and mean
curvature as shape descriptors for shape comparison purpose in [16].

• The Teichmüller space for (0,1) type surfaces,namely genus zero surface
with a single boundary, consists of a single point. All such surfaces can be
mapped to the unit disk. Similarly, the conformal factor and mean curvature
can be applied as shape descriptors, which determines the surface unique up
to a rigid motion.

• The Teichmüller space for (1,0) type surface, namely tori, is two dimen-
sional. The Teichmüller coordinates of a torus can be computed using global
surface conformal parameterization method [19]. Basically, we can compute
a holomorphic 1-form. By integrating the 1-form, we can map the universal
covering space of the surface to the plane R2. Each fundamental domain is
mapped to a parallelogram. The Teichmüller coordinates of the torus are the
length ratio between two adjacent edges of the parallelogram and the angle
between two adjacent edges. We refer readers to [19] for details.

• For all the other surfaces, the Euler numbers are negative. The coordinates
in Teichmüller space can be computed in the following method. First, there
exists a unique Riemannian metric, called the hyperbolic uniformization met-
ric, which is conformal to the original metric of the surface and induces −1
constant Gaussian curvature everywhere. Furthermore, all the boundaries
become geodesics under the uniformization metric. Two closed curves are
homotopic, if one can deform to the other without leaving the surface. Un-
der the hyperbolic uniformization metric, each homotopy lass has a unique
geodesic. We choose a special set of homotopy classes on the surface, then
compute the unique geodesic in each class, the lengths of these geodesics
are Luo’s coordinates [38], which form the length coordinates of the surface
in Teichmüller space. This work focuses on the computation of the length
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Figure 35: (a) Two groups of deformed teapot models. (b) Corresponding to two paths in
Teichmüller space with each point representing a deformed model.

coordinates of surfaces with negative Euler numbers.

The major goal of this paper is to develop rigorous and practical algorithms
to compute length coordinates of surfaces in Teichmüller space with negative Euler
numbers. The major contributions of this work are

1. it proposes a theoretical framework to model all negative Euler number sur-
faces in a shape space, Teichmüller space. The framework has deep roots in
modern geometry and is practical for computation. It offers novel views and
tools for tackling engineering problems.

2. it introduces a series of practical algorithms for computing length coordinates
of surfaces in Teichmüller space with complicated topologies. They classify
surfaces according to their conformal class, which can be applied for shape
indexing and classification.

We first introduce our algorithms to compute geodesic spectrum for general
surfaces (Section 6.3.3) [26]; then generalize computing geodesic spectrum to com-
puting Teichmüller coordinates (Section 6.3.4) [28].
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6.3.3 Geodesic Spectrum

6.3.3.1 Overview

The geodesics are the locally shortest curves on surfaces. Computing geodesic
paths on discrete setting has been intensively studied in the literature. The MMP al-
gorithm [41] firstly provided an exact solution for the single source, all destination
shortest path problem on a triangle mesh. Their algorithm partitions each mesh edge
into a set of intervals (windows) over which the exact distance computation can be
performed atomically. They proved a worst case running time of O(n2 logn). [47]
implemented this algorithm, and extend with a merging operation to obtain com-
putationally efficient (running time O(n logn)) and accurate approximations with
bounded error. Other works include an exact geodesic algorithm with worst case
time complexity of O(n2) described by [7] and partially implemented by [31], an
algorithm for the single source, single destination geodesic path between two given
mesh vertices, in O(nlog2n) time described by [33], and a variation of the fast-
marching method to compute approximate geodesics on meshes in O(nlogn) time
by [35].

The geodesic lengths are closely related to metric, and reflect the global infor-
mation of the surface. On general surfaces, there may be multiple geodesics in each
homotopy class. For surfaces with uniformization metrics, the geodesics are unique
in each homotopy class.

Theorem 8 (Geodesic Uniqueness) Suppose (Σ,g) is a closed compact surface
with Riemannian metric g, if Gauss curvature is neigative everywhere, then each
homotopy class has a unique geodesic.

The proof is based on Gauss-Bonnet theorm. We refer readers to [40] for details.
For our study of conformal structures, we can always deform the surface metric

to the uniformization metric, then the geodesic lengths in each homotopy class form
the length spectrum.

Definition 9 (Length Spectrum) Let (Σ, ḡ) be a surface with uniformization met-
ric, the set of the lengths of closed geodesics on Σ is called the length spectrum of
the surface Σ.
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The number of homotopy class of closed curves on a compact surface is count-
able. Since each homotopy class contains only one geodesic curve, also the length
spectrum of a Riemann surface is countable. If two surfaces are conformal equiva-
lent, they have same length spectra.

6.3.3.2 Computing Geodesic Spectrum of Genus Zero Surfaces

All closed genus zero surfaces are conformal equivalent. That means they are
indistinguishable under their conformal structures. For genus zero surfaces with
boundaries, their conformal structures are not identical any more. For example, for
genus zero surfaces with three boundaries, there are infinite conformal equivalent
classes, which form a 3 dimensional space.

Suppose Σ is a genus zero surface with three boundaries ∂Σ = {γ0,γ1,γ2}. Un-
der the hyperbolic uniformization metric ḡ, the three boundaries become geodesics,
the conformal structure of Σ is determined by the geodesic lengths of the boundaries
{l(γ0), l(γ1), l(γ2)}.

There exist three geodesics {η0,η1,η2} perpendicular to the boundaries
and separate the surface to two congruent hyperbolic hexagons with all right
inner angles. The lengths of {η0,η1,η2} are determined by the lengths of
{l(γ0), l(γ1), l(γ2)}. Therefore the shape of the hexagon also determines the confor-
mal structure of the surface.

Figure 36 shows three genus zero surfaces, each of them with three boundaries,
and their congruent hyperbolic hexagons embedded in the Poincaré disk.

6.3.3.3 Computing Geodesic Spectrum of Genus One Surfaces

By the Uniformization theorem, a surface Σ with zero Euler number can be
represented as E2/Deck(Σ), where the deck transformation group consists of trans-
lations mapping the Euclidean plane R2 onto itself. The set of the lengths of closed
geodesics on Σ can be computed algebraically from group Deck(Σ). Therefore the
whole procedure is to compute Euclidean Uniformization metric first, then the deck
transformation group generators and finally the geodesic spectrum.
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r0 

r1 r2 

Figure 36: Conformal structure of the genus zero surface with 3 boundaries are determined
by the lengths of the boundaries under the uniformization metric.

All elements in the fundamental group of Σ has the form γm,n = ma+nb, there-
fore the corresponding deck transformation is τm,n = αm ◦βn. All deck transforma-
tions are translations. We use a planar vector to represent each deck transformation.
In practice, we normalize α to be (1,0) by scaling and rotating on R2, this won’t
affect the conformal structure of Σ, assume β = (x,y), then τm,n = (m+nx,ny), the
geodesic length in homotopy class γm,n is

√
(m+nx)2 +n2y2.

6.3.3.4 Computing Geodesic Spectrum of High Genus Surfaces

The computation for geodesic spectra of closed surfaces Σ with high genus
number is very similar with those of genus one surfaces but more complicated.

Suppose a surface Σ is with negative Euler number, and ḡ is its uniformization
metric. Then its universal covering space Σ̄ with ḡ can be isometricly embedded
in the hyperbolic space H2. Each deck transformation τ : H2 → H2 is a Möbius
transformation in upper half plane model of H2. τ has a matrix representation,
τ ∈ PGL(R,3),

τ(z) =
az+b
cz+d

,a,b,cd ∈ R,ad−bc = 1,z ∈ C. (33)
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All deck transformations form the Fuschian group of Σ.
Let γ be a closed curve and τ be the deck transformation corresponding to the

homotopy class of γ, Φ(τ) = [γ], then τ is a linear rational transformation as 33. The
coefficient matrix of τ is (

a b
c d

)
,

which has two real eigenvalues λ1 and λ2. Let λ = max{λ1,λ2}, then λ2 is called
the multiplier of γ. It can be proven that the unique geodesic homotopic γ is with
length 2lnλ.

After computing the Fuchsian group generators, the geodesic spectrum of the
high genus surface can be algebraically computed in a straightforward way. Sup-
pose Σ is a closed high genus surface (if Σ is open, we use its double covering)
with hyperbolic uniformization metric, {a1,b1,a2,b2, · · · ,ag,bg} is a set of funda-
mental group generators and {α1,β1,α2,β2, · · · ,αg,βg} is the set of correspond-
ing Fuchsian group generators. we want to compute the length of the geodesic
in the homotopy class γ = w1w2 · · ·wn, where wk is one of the ai’s or bi’s. We
replace ai in γ by αi, b j by β j in γ to get a Fuchsian transformation τ. For exam-
ple, Suppose γ = a1b1a−1

1 b−1
1 , then its corresponding Fuchsian transformation is

τ = α1β1α−1
1 β−1

1 . We transform τ from Poincaré disk model to upper half plane
model with h−1 ◦ τ◦h.

Denoting the length of the geodesic homotopy to γ as l, the trace of the matrix
τ satisfy the following relation: tr(h−1 ◦τ◦h) = 2cosh( l

2), then the geodesic length
l is:

l = 2acosh(
tr(h−1 ◦ τ◦h)

2
) (34)

6.3.3.5 Results

The algorithms for computing geodesic spectrum from Fuchsian group gener-
ators are purely algebraic, easy to implement and fast to compute. We performed
extensive experiments on general triangular meshes with complicated topologies.

The experimental results for genus one surfaces are shown in Figure 37, Figure
40(a) and table 2. Figure 37 shows six genus one closed surfaces. Table 2 lists
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Figure 37: Genus One Models: Kitten model; Teapot model; Rocker Arm model; Torus
model; Elk model; Knotty torus Model.

model Geodesic Spectra of Genus One Surfaces
Kitten 1.0000 2.0000 2.1716 2.3889 2.3926 2.9493 2.9552 2.9999
Teapot 1.0000 2.0000 3.0000 3.0275 3.1881 3.1886 3.6280 3.6289

Rocker Arm 1.0000 1.2951 1.6260 1.6463 2.0000 2.3687 2.3966 2.5902
Torus 1.0000 2.0000 2.2920 2.5007 2.5007 3.0000 3.0419 3.0419
Elk 1.0000 2.0000 3.0000 3.7649 3.8941 3.8968 4.2606 4.2657

Knot 1.0000 1.9999 2.9999 3.9999 4.9999 5.9999 6.9999 7.9999

Table 2: Geodesic Spectrum of Genus One Surfaces.

part of their geodesic spectra, lengths of the first 8 shortest geodesic. Figure 40(a)
depicts the spectra for easier comparison purpose.

The experimental results for genus two surfaces are illustrated in Figure 39,
Figure 41 and Table 4.

Genus three surface examples are demonstrated in Figure 38, Figure 40(b) and
Table 3.

Because the geodesic spectrum indicates the conformal structures, the experi-
mental results show that all the surfaces are conformally inequivalent.

The programs are coded in C++ and on Windows platform. The time consum-
ing part of the pipeline is the computation of Ricci flow. For meshes with 30k faces,
it takes around 2 minutes to compute the uniformization metric on a PC with 2GHz
main frequency and 1G memory. The experimental results shows the algorithm is
efficient and robust.



CHAPTER 6. Hyperbolic Structure and Real Projective Structure 77

Figure 38: Genus Three Models: David model; Genus3 model; Three-Hole model; Holes3
model.

model Geodesic Spectra of Genus Three Surfaces
David 0.837531 1.031991 1.092184 1.675063 2.063981 2.184367

3.369938 3.549802 3.728019 4.276527 4.402193 4.499322
Genus3 2.608251 2.750676 2.848831 3.841951 3.841954 3.841958

3.841965 5.032769 5.216501 5.225431 5.290124 5.423762
Three-Hole 1.676075 1.690413 1.708316 3.319118 3.352150 3.380825

3.393546 3.409811 3.416633 3.977163 4.040855 4.054275
Holes3 2.349592 2.354404 2.358875 2.376324 2.702315 3.588764

3.605088 3.614748 3.675990 3.698398 4.699184 4.708807

Table 3: Geodesic Spectrum of Genus Three Surfaces.

Figure 39: Genus Two Models: (a) Amphora model (b) World Cup model (c) Vase1 model
(d) Vase2 model (e) Cup1 model (f) Cup2 model (g) Eight1 model (h) Eight2 model (i)
Knotty model (j) Ding model
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model Geodesic Spectra of Genus Two Surfaces
Amphora 1.490120 1.609724 2.656259 2.813498 2.980240 3.215555

3.219448 3.367869 3.377852 3.396115 4.470360 4.829173
World Cup 0.664031 0.697533 1.328062 1.395066 1.992093 2.092599

3.972944 4.071525 4.088756 4.104232 4.179075 4.187586
Vase1 0.985969 1.090920 1.971938 2.181839 2.957907 3.272759

3.363453 3.570146 3.653931 3.675576 3.796436 3.835419
Vase2 1.128277 1.169550 2.256553 2.339099 2.890490 2.962423

3.241003 3.251659 3.270609 3.315054 3.384830 3.508649
Ding 0.813765 0.830969 1.627529 1.661937 2.441294 2.492906

3.629781 3.671329 3.785691 3.826148 3.827988 3.852406
Cup1 1.524061 1.843765 2.488011 2.894771 3.048121 3.320270

3.336563 3.470016 3.476492 3.687530 3.976158 4.424202
Cup2 0.718974 0.762490 1.437948 1.524981 2.156923 2.287471

3.820927 3.896118 3.931505 4.031120 4.038830 4.093943
Eight1 1.121486 1.142314 2.242971 2.284627 3.264045 3.301251

3.364457 3.426941 3.569755 3.613231 3.619477 3.626651
Eight2 1.450139 1.461345 2.900279 2.922690 3.040154 3.059321

3.512027 3.552606 3.587788 3.648212 4.350418 4.384035
Knotty 0.178828 0.180419 0.357656 0.360838 0.536484 0.541256

2.932014 4.275073 7.142782 7.147029 7.155080 7.160804

Table 4: Geodesic Spectrum of Genus Two Surfaces.
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Figure 40: (a) Comparison of geodesic spectrum of genus one models. (b) Comparison of
geodesic spectrum of genus three models.
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(a) Building Block I (b) Building Block II (c) Building Block III

Figure 42: Basic Building Blocks. (a) Building block I: the geodesic lengths of red labeled
curves determine its metric. (b) Building block II: the geodesic lengths of red labeled
curves determine its metric. (c) Building block III: the geodesic lengths of red labeled
curves determine its metric.

Figure 43: Using building blocks I, II and III to build all surfaces: using building block I
and II to build genus one surface with two boundaries; continuously adding building block
III to build genus two surfaces with one boundary; continuously adding building block II to
build genus two surfaces with two boundaries. Repeating to get all surfaces.

6.3.4 Teichmüller shape space Coordinates

6.3.4.1 Overview

There are several coordinates defined in Teichmüller space. Here we adopt
Luo’s coordinates in [38].

Figure 44: The geodesic lengths of the set of color labeled curves determine the metric of
a genus two surface.
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In the following discussion, we use Σg,r to represent a surface Σ with topolog-
ical type (g,r), where g represents the genus, r means the number of boundaries.

Given a surface Σg,r with negative Euler number, we can decompose the sur-
face to three types of building blocks, as shown in Fig. 42. The procedure to build
Σ from the building blocks is illustrated by Fig. 43. We use I

⋂
II to denote the

process to glue the block I to the block II. The gluing doesn’t mean combining two
blocks along their corresponding boundary curves, but by identifying their overlap-
ping regions. For example, in the first gluing step in the figure, the overlapping
region of I and II is a two-holed annulus. From left to right, we use basic build-
ing blocks I and II so that I

⋂
II is homeomorphic to Σ1,2, a genus one surface

with two boundaries; continuously, adding building block III, so that Σ1,2
⋂

III is
homeomorphic to Σ2,1, a genus two surface with one boundary; then adding build-
ing block II, so that Σ2,1

⋂
II is homeomorphic to Σ2,2, a genus two surface with

two boundaries; repeat this procedure, we can generate all types of surfaces with
negative Euler surfaces.

By this construction, a simple method is provided to define Luo’s coordinates
in Techmüller space for general surfaces. For each building block, its conformal
structure is determined by the lengths of geodesics homotopic to those red loops
under the hyperbolic uniformization metric.

The geodesics are the locally shortest curves on surfaces. On general surfaces,
there may be multiple geodesics in each homotopy class. For surfaces with hyper-
bolic uniformization metric, the geodesic is unique in each homotopy class, which
can be proved by Gauss-Bonnet theorem.

When two building blocks are glued together to form a new surface, non-
homotopic loops on the original blocks may become homotopic on the result sur-
face. After canceling off the redundant loops, the lengths of geodesics homotopic to
remaining loops determine the conformal structure of the result surface, which are
the coordinates of this surface in Techmüller space. For example, a closed genus
2 surface shown in Fig. 44, constructed from two building block I and one build-
ing block II, its Techmüller coordinates are the lengths of geodesics homotopic to
those loops marked with different colors. Loops with same color indicate that they
come from same building block. In general, for a surface Σg,r with a negative Euler
number, their Teichmüller coordinates are determined by the lengths of 6g+3r−5
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closed geodesics.

6.3.4.2 Algorithms of Computing Teichmüller Shape Space Coordinates

Teichmüller coordinates are obtained by measuring the lengths of geodesics
homotopic to a group of loops on surfaces under hyperbolic uniformization met-
ric, and the geodesics are unique in each homotopy class since Gauss curvature is
constant negative everywhere.

Algorithm 1 Compute Teichmüller Coordinates
1. Decompose the surface to building blocks.
2. Determine the homotopy classes of the geodesics.
3. Compute the lengths of the geodesics in each homotopy class.

In the above steps, the algorithms to compute the canonical homology ba-
sis {a1,b1,a2,b2, · · · ,ag,bg} and the corresponding Fuchsian group generators
{α1,β1,α2,β2, · · · ,αg,βg} have been introduced in Section 6.2.2. The goal is to
compute the lengths of geodesics homotopic to those loops marked in Fig. 42.
After redundant loops belonging to the same homotopic class removed out, for ex-
ample, the remaining loops for a closed genus two surface is depicted in Fig. 44.

To compute the length of geodesic homotopic to a loop γ on surface, we first
use the algorithm in [29] to determine its homotopy class, which can be symboli-
cally represented, for example: γ = a1b1a−1

1 b−1
1 . Then by mapping each ai to αi

and b j to β j, we get its representation using corresponding Fuchsian transforma-
tions, still the previous example: φγ = α1β1α−1

1 β−1
1 . Let the length of γ denoted

as lγ, and we use the matrix representation of φγ on the upper half plane. lγ can be
easily computed from the following relation: |tr(φγ)|= 2cosh( lγ

2 ).
We have implemented the algorithms for computing the length coordinates in

Teichmüller space using C++ on the Windows platform. We verify our method by
computing the shape coordinates on a large number of surface models with various
topologies. The resolutions of the models range from thousands to tens of thousands
of triangular faces. Due to the page limit, we only list part of our experimental
results.
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Robustness Length coordinates in Teichmüller space are intrinsic properties of
surfaces, independent of translation , rotation, scaling, and also insensitive to local
noises, insensitive to the resolutions of the surface. We tested the robustness of
our algorithm by computing one model with different resolutions. Figure 45 illus-
trates one such example. The vase model is triangulated using different resolutions,
and the number of faces are 5k, 10k, 20k and 40k respectively. We tested our Te-
ichmüller coordinates algorithm, the results are listed in the table 5. The relative
error is less than 0.3%.

Surface Indexing and Classification Teichmüller coordinates can be directly ap-
plied for indexing and classification of surfaces with the same topology. The dis-
tance among shapes in the Teichmüller space can be approximated directly using
the Euclidean distances among their Teichmüller coordinates. In our experiments,
we tested genus two closed surfaces and genus three closed surfaces.

For closed genus two surfaces, the dimension of Teichmüller space is seven.
The Teichmüller coordinates for eight genus two teapot models are illustrated in
Fig. 46. The distances in the Teichmüller space among 23 genus two surfaces are
listed in the Table 6. We cluster the shapes according to their Teichmüller distance.
For example, table 7 shows a neighborhood of the shape of the teapot7 model in
the Teichmüller space. The surface closest to the teapot7 looks very similar to it.
This matches our intuition. Another example is shown in Table 8, which gives the
neighborhood of the eight model in Teichmüller space. Again, the closest model to
eight is the one that looks most similar to it. Furthermore, by examining the Table
6, we can also find that the knotty bottle model (the fifth model of the first row)
is further away from all the others in the Teichmüller space, because its geometry
is quite different from the others. Therefore, Teichmüller coordinates match our
intuition.



CHAPTER 6. Hyperbolic Structure and Real Projective Structure 84

Coordinates of Vase Model
Vase Model 1st 2nd 3rd 4th 5th 6th 7th
Face #: 5k 3.55027 0.99990 3.88055 5.55885 6.11438 3.33029 3.66071

Face #: 10k 3.55700 0.99832 3.88144 5.55611 6.11180 3.33369 3.66703
Face #: 20k 3.55805 0.99759 3.88316 5.55517 6.11112 3.33357 3.66713
Face #: 40k 3.55905 0.99559 3.88416 5.55417 6.11012 3.33367 3.66813

Table 5: Comparison of Coordinates of Vase Model with Different Densities. The dimen-
sion of Teichmüller space coordinates for closed genus two surfaces is seven.

Figure 45: Same model with different triangulation density: 5k, 10k, 20k and 40k. Com-
parison of Teichmüller space coordinates with different densities is listed in table 5.
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Figure 46: The dimension of Teichmüller space coordinates for closed genus two sur-
faces is seven. Here we visualize the Teichmüller space coordinates for teapots listed
in table 7.
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Dist.

4.09 5.39 3.22 4.49 6.69 2.22 2.16 2.21 2.39 2.32 4.38 3.87 4.88 3.51 3.52 3.42 3.25 4.02 3.29 3.20 3.44 3.26 3.41

7.75 3.06 6.74 9.98 2.11 2.37 2.82 2.05 2.14 4.59 3.68 4.97 2.76 2.84 3.01 3.59 2.81 2.99 3.64 4.78 3.73 4.30

4. 95 1.04 7.92 6.62 5.95 5.62 6.17 6.17 7.27 7.89 7. 34 7.46 6.56 6.48 5.61 6.97 6.32 5.63 4.72 5.56 5. 23

3.94 8.99 2.47 1.73 1.64 1.85 1.83 4.27 4.27 4.56 3.08 3.43 3.22 2.37 3.84 3.02 2.52 2.75 2.43 2.64

7.79 5.61 4.92 4.59 5.16 5.14 6.35 6.91 6.45 5.44 5.56 5.48 4.57 6.00 5.30 4.60 3.71 4.53 4.21

8.48 8.48 8.35 8.61 8.62 9.27 9.13 9.57 8.75 8 .65 8.68 8.48 8.95 8.57 8.40 8.08 8.43 8.31

0.83 1.51 0.73 0.71 4.05 3.15 4.51 2.09 1.92 1.51 2.27 2.42 1.51 2.36 3.59 2.43 3.12

0.79 0.65 0.25 3.72 3.15 4.17 1.79 2.30 1.8 6 1.44 2.88 1.48 1.60 2.83 1.63 2.37

1.40 0.92 3.10 2.83 3.52 2.51 3.02 2.64 1.54 3.62 2.14 1.26 2.13 1.28 1.61

0.59 4.28 3.60 4.53 2.36 2.76 2.40 2.95 2.28 2.51 2.18 3.38 2.21 2.96

3.71 3.07 4.16 1.63 2.20 1.76 1.62 2. 76 1.30 1.74 3.01 1.79 2.52

1.62 0.64 5.21 5.71 5.40 4.61 6.26 4.83 4.30 4.03 4.35 3.88

1.19 4.43 4.86 4.58 4.24 5.33 4.10 3.97 4.30 4.06 3.94

5.67 6.19 5.88 5.02 6.73 5.31 4.92 4.82 4.86 4.63

0.37 0.62 1.14 1.14 0.62 1.30 2.55 1.36 1.61

0.63 1.63 0.63 0.96 1.80 2.9 7 1.87 2.58

1.25 1.09 0.60 1.45 2.68 1.49 2.23

2.20 0.87 0.34 1.47 0.29 1.03

0.53 1.39 3.57 2.45 3. 18

0.96 2.22 1.04 1.75

1.28 0.18 0.80

1.24 0.57

0.76

Table 6: Distances between genus two surfaces in Techmüller space.
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Models Teapot5 Teapot6 Teapot2 Teapot4 Teapot1 Teapot0 Teapot3

distance

0.6468 1.1923 3.5202 4.1694 4.1742 4.5179 4.53

Table 7: The sorted distances between teapot7 and other genus two models in Techmüller
space. Here we only show the closest ones.

Distance

0.3732 0.6223 0.6239 1.1427 1.1439 1.3072 1.3664 1.6182

Table 8: The sorted distances between eight and other genus two models in Techmüller
space. Here we only show the closest ones.



Chapter 7

Spherical Structure and Topological
Structure

7.1 Spherical Structure

Closed genus zero surface has spherical structure, where X is S2 and G is the
group of rotation, which can be induced from its conformal map to the unit sphere.

One method based on non-linear heat flow to construct conformal maps be-
tween a closed genus zero surface and the unit sphere S2 is introduced in [17]. The
spherical uniformization metric and spherical structure can be induced by these
conformal maps.

Another method is to directly compute spherical uniformization metric of
closed genus zero surfaces using discrete spherical Ricci flow, then embed onto
unit sphere, which induces spherical structure of surfaces [24]. Compared with dis-
crete Euclidean Ricci flow and discrete hyperbolic Ricci flow, there are two major
differences for discrete spherical Ricci flow:

1. Suppose a triangular face on the mesh with edge lengths. Instead of treating
it as a triangle in the Euclidean space or hyperbolic space, we treat it as a
triangle in unit sphere. Then all the angles in the triangle should be calculated
using the spherical cosine law:

cos li j = cosγi cosγ j− sinγi sinγ j cosφi j. S2 (35)

87
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Figure 47: David head model mapped to unit sphere using computed spherical uniformiza-
tion metric.

2. In the energy form in equation 17, let ui = ln tan γi
2 , therefore the Hessian

matrix of the energy f is

∂2 f
∂ui∂u j

=
∂Ki

∂r j
sinr j.

Figure 47 shows David head model mapped to unit sphere using computed spherical
uniformization metric.

7.2 Topological Structure

Arbitrary topology surface has topological structure, where X is R2, and G is
the group of Homeomorphisms. Inspired by the rich theory of topology as well as
the existing works on surface mapping, we present a novel solution to the problem
of computing continuous maps with different homotopy types between two arbi-
trary triangle meshes with the same topology in [6] (Section 7.3).

7.3 Application: Topology-based Surface Mapping

Surface mapping is of prime significance in many graphics applications in-
cluding shape analysis, texture mapping, animation transfer, shape morphing, fea-
ture registration, and many other digital geometry processing methods. Although
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Figure 48: Visualization of two different homotopy classes of mappings between the vase
and the two-hole torus by color coding. Each mapping is produced by a different homology
basis on each surface. (a) and (b) give the mapping between the two-hole torus and the vase
with handles right to right, left to left. While we obtain a different mapping between them
in (c) and (d) with the handles right to left, left to right.

topological concepts and techniques have been broadly applied in computer graph-
ics and geometric modeling, the homotopy type of a mapping between two surfaces
has not been addressed before. While other surface mapping methods focus on a
single homotopy class, we articulate a theoretically rigorous method that produces
many continuous maps of different homotopy type between two arbitrary triangle
meshes with the same topology (see Figure 48 ).

The intent of our method is to create a continuous, piecewise-linear map be-
tween triangulated surfaces with the same genus and number of boundaries. We first
obtain a common domain for the surfaces, from which to extract the final mapping.

To obtain this, we first compute a special set of curves (edge paths), a canonical
homology basis, for the surface (see Fig. 49). This set of curves defines a regular cut
graph, along which we slice each surface open in a canonical way. The homotopy
type of the mapping is governed by the choice of a homology basis for each surface,
as well as the one-to-one matching between these sets of curves. This will produce
a mapping that belongs to a unique homotopy class of surface mappings.

Once we have the two homology basis sets and a matching between them, the
surface can be parameterized over the canonical fundamental domain M∗. Every
surface with the same genus can be cut open to a disk in this manner. The overall
alignment of mesh features is governed by the way in which the curves on two



CHAPTER 7. Spherical Structure and Topological Structure 90

Figure 49: Procedure for computing a canonical fundamental domain, M∗. Step 1: Com-
pute an irregular cut graph that will open the surface to a single disk. Step 2: Slice the
surface open to a non-canonical fundamental domain, whose 18 edges are segments of
homology basis curves. Step 3: Glue copies of the domain to itself along corresponding
segments to form the UCS M̃. Choose a vertex v ∈ M and a preimage of v, ṽ0 ∈ Ñ. Trace
paths between ṽ0 other preimages ṽk ∈ M̃ of v, each of which corresponds to a single ho-
mology class of curves on M. Step 4: Find a combination of such curves that forms a
canonical homology basis. Step 5: Slice the surface along this cut graph, constructing a
canonical fundamental domain M∗. The ith handle is sliced open along the curve sequence
ai,bi,a−1

i ,b−1
i .

surfaces correspond. In our system, the curve mappings can be controlled by the
user before and after the mapping to the plane. Once we have cut the surfaces open,
we parameterize them onto the plane. Then, we align these planar domains and
extract the mapping from the two sets of vertices and faces (see Fig. 50).

With a simple rotation that re-aligns the boundary edges of the polygonal do-
main regions (which translates to curve matching on the original surfaces), we can
easily change the homotopy type, or global structure, of the mapping (see Fig. 51).
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Figure 50: An overview of the surface mapping process. The vase and the two-hole torus
are cut open along a common set of curves and parameterized over the canonical funda-
mental domain M∗. The final mapping is extracted from the overlaid meshes. τ can be used
to change the homotopy type of the mapping.

Figure 51: Surface mapping between horse and lizard. The color-coding shows the map-
ping of each region, guided by eight user-specified feature curves. Our topology-driven
method provides mappings of different homotopy type between the two surfaces as shown
in (c) and (d). We show feature curves in red.



Chapter 8

Performance Analysis

Discrete Ricci flow is a powerful tool for computing geometric structures on
general surfaces. In the following, we report part of our experimental results and
analyze the performance of our algorithms computing general surface geometric
structures using Ricci flow from the following aspects.

8.1 Convergence

For both the Euclidean and hyperbolic cases, the discrete Ricci energies are
convex. Therefore, there exists a unique global minimum. Both gradient descent
and Newton’s method converge to it stably. For the spherical case, the Ricci energy
cannot be theoretically proven to be strictly convex. The desired metric is a critical
point of the energy. In our experiments, the desired spherical metrics still can be
reached efficiently using Newton’s method.

8.2 Speed and Time Complexity

In the whole algorithm pipeline of computing general surface geometric struc-
tures, the most time consuming part is to compute the uniformization metrics using
discrete surface Ricci flow. Figures 52 and 53 show the statistics for the compu-
tations of uniformization metrics for models with general topologies. They are all
with 20k faces. The x-axis indicates the time, and the y-axis shows the maximal

92
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Figure 52: (a) Performance of discrete Euclidean ricci flow: blue curves are with Newton’s
method; green curves are with steepest descent method. (b) Performance of discrete hy-
perbolic ricci flow: blue curves are with Newton’s method; green curves are with steepest
descent method.
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Spherical Ricci Flow on Sculpture Head Model (#Face:20k)

Figure 53: Performance of discrete spherical ricci flow: blue curves are with Newton’s
method; green curves are with steepest descent method.

curvature error. We compare the performances of the optimization of Ricci en-
ergy using Newton’s method (the blue curves) and the gradient descent method (the
green curves). It is obvious that Newton’s method is much faster than the gradient
descent method for optimizing Ricci energy. We implemented our system using
C++ on a Windows platform desktop with 3.4GHz CPU Intel Xeon, 4.0G RAM
using Newton’s method. We report the timings to compute the desired metric in
Table 9. The speed for the hyperbolic case is the slowest.
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Mesh Model # Face genus Bnds Sing Type Time (Sec)

20438 1 0 0 E2 3.53

12186 0 4 0 E2 2.365

12186 0 4 1 E2 2.528

4117 2 0 0 H2 3.89

20010 2 0 0 H2 9.86

19638 3 0 0 H2 13.45

20226 0 0 0 S2 3.76

Table 9: Time of computing discrete Ricci flow.
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8.3 Conformality

Fig. 54 shows an irregular planar domain in (a) is mapped to a disk in (b). The
conformality is shown with checker-board texture mapping in (c). We compute the
ratio between each corner angle in (a) and in (b). The histogram of the ratios is
illustrated in (d), and we can see the ratio is highly concentrated around 1.

Figure 54: Conformality Testing Discrete Euclidean Ricci flow conformally maps an
irregular shape in (a) to a disk in (b). The parameterization is illustrated as the check board
texture mapping in (c), where all the corners of the checkers are well-preserved visually.
The histogram of the angle ratio, which is defined as the ratio of the original angle value
and the new one after mapping, is calculated and shown in (d). The distribution highly
concentrates at 1.

8.4 Accuracy

From our experiments, we found that it is relatively easier to compute the met-
ric, but it is more challenging to compute the layout due to the accumulation error,
especially for the hyperbolic case. In order to improve the accuracy for hyperbolic
flattening, we adapt the following methods.
a) Control the target metric by the maximum curvature error. We found the quality
of the final embedding is strongly affected by the quality of the final metric. On
the other hand, the running time depends on the maximum curvature error also.
Through thorough testing, we find a good balance to set the maximum curvature er-
ror to be 1e−6 for a mesh with 30k faces, then the embedding result is satisfactory
and the computation speed is reasonable.
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b) Move all of the computation to the center of the Poincaré disk. Because the area
distortion in the Poincaré disk is non-uniform, computations near the boundaries
are highly unstable, where the area distortion goes to infinity. We use a Möbius
transformation to move each current processing face to the center of the Poincaré
disk, where the area distortion is close to 1 and the computation is much more sta-
ble.
c) In flattening each face, we avoid using trigonometric functions and use more al-
gebraic functions. For example, in order to set the third vertex position of a triangle,
we compute the intersection points of two circles.
d) Instead of flattening face by face for embedding the universal covering space, we
compute the deck transformations and flatten fundamental domain by fundamental
domain. This greatly reduces the accumulated error.
e) Divide and conquer. If the mesh is big, we partition it into patches and flat-
ten each patch, then use Möbius transformations to glue different patches together.
Each edge on the cut determines a Möbius transformation; we take the average of
the transformations induced by all the edges on the same cut.

We conduct a special experiment to test the hyperbolic accuracy as shown in
Fig. 55. We flatten a genus two mesh in (a) with hyperbolic uniformization metric
onto the Poincaré disk. We started from different seed faces marked with different
colors and get different layouts of its canonical fundamental domain (its canonical
fundamental generators are marked with red in both (a) and (b)), as shown in (c),
(d), and (e). By using Möbius transformations given in table 10, the layouts in (d)
and (e) are transformed to align perfectly with the layout in (c). Then we compute
a deck transformation to glue two layouts as shown in (g). The deck transformation
is computed three times using different edges on the same side as shown in (f),
where three edges are colored as red, green, and blue. Each Möbius transformation
is represented by two parameters: an angle θ and a center z0, listed in table 10.
The differences among the three angles are less than 1e−6; the differences among
three centers are also less than 1e− 6. This shows the accuracy of our hyperbolic
embedding method.
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Figure 55: Accuracy Testing for Hyperbolic Layout Frame (a)-(b): a set of fundamental
group generators are marked with red on a genus two eight model with 4k faces, and three
randomly chosen seed faces are marked with red, green, and blue respectively. Frame (c)-(e)
show the flattened results on the Poincaré disk using the hyperbolic uniformization metric,
with different seed faces. Any two of them only differ a Möbius transformation. Frame (f):
randomly chosen Edges marked with different colors can be used to compute the same deck
transformation shown in (g).

Möbius Trans. θ Z0
M0 2.917271 (−0.200690,−0.568453)
M1 0.567858 (0.197063,−0.776343)
M2 −2.982119 (0.187574,0.951998)
M3 −2.982118 (0.187576,0.951999)
M4 −2.982113 (0.187578,0.951990)

Table 10: Accuracy Testing for Hyperbolic Layout in Fig. 55. Möbius transformation M0
moves domain in (d) to (c); M1 moves (e) to (c); M2, M3, and M4 are deck transformations
computed from different edges on the same boundary segment.



Chapter 9

Summary and Future Research

9.1 Summary

In this work, theoretically rigorous and practically efficient methods for com-
puting general surface geometric structures, including conformal structure, affine
structure, hyperbolic structure, real projective structure, and spherical structure, are
presented. The powerful tool we used is discrete surface Ricci flow. We generalized
surface Ricci flow from continuous to discrete setting, and designed a series of al-
gorithms to compute discrete surfaces Ricci flow, which includes discrete Euclidean
Ricci flow, discrete hyperbolic Ricci flow, and discrete spherical Ricci flow.

We applied surface geometric structures computed from discrete surface Ricci
flow to computer graphics, medical imaging, geometric modeling, and computer
vision. We compute globally conformal parametrization for surfaces of general
topologies, with less area distortion and control of both the number and location
of singularity points; we conformally flatten colon surfaces onto plane, which en-
hances the navigation of virtual colonoscopy system; we design N-RoSy field on
general surfaces based on flat metric induced from surfaces’ conformal structure;
we construct manifold spline with single singularity using surface affine structure,
which achieves the theoretical minimum of the singularity number; we combine
manifold spline and T-spline to polycube T-spline by building polycube map of
surface which naturally induces surface affine structure; we compute shape space
for general surfaces, where Surfaces are indexed and classified by their conformal

98
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structure.

9.2 Future Research

My previous research focused on computing geometrical structures on sur-
faces. While studying the topological and geometric structures on three dimensional
manifolds also has fundamental importance in both science and engineering. Com-
putational algorithms for 3- manifolds can not only help topologist and geometers
to investigate the complicated structures of 3-manifolds, but also have great poten-
tial for wide applications in engineering fields, including volumetric parameteriza-
tions, volumetric shape analysis, volumetric deformation, and volumetric modeling
etc. Currently we are doing harmonic volumetric parameterization using Green’s
functions on star shapes [22] and computing discrete curvature flow for hyperbolic
3-manifolds with Complete Geodesic Boundaries [55].

9.2.1 Harmonic Volumetric Parameterization Using Green’s
Functions on Star Shapes

Parameterization plays a fundamental role in geometric processing, and har-
monic maps have been broadly applied for surface parameterizations. A harmonic
map from a topological disk to a convex planar domain is smooth, one-to-one and
onto (a diffeomorphism), if the restriction of the map on the boundary is a homeo-
morphism, which lays down the foundation for harmonic surface parameterization.
The major difficulty for generalizing harmonic parameterizations from the surface
case to the volumetric case is that there is no theoretic results to ensure the harmonic
maps between topological balls and convex domains to be diffeomorphisms.

We proposes a novel method to tackle this problem based on the Green’s func-
tions on star shape domains. We prove that a Green’s function of a volumetric
start shape has a unique critical point. Then we construct maps between volumetric
star shapes in the following way: First we construct a Green’s function on each of
them, and compute a conformal map between their boundaries. Then we match
their level sets and gradient lines. Each point is the intersection of a level set and a
gradient line. This procedure induces a map between the two star shapes, which is
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guaranteed to be a diffeomorphism.
In order to parameterize a general volume, we construct a volumetric polycube

with similar shape, then match the boundaries of the two volumes using polycube
maps. Next we decompose both volumes to star shaped segments, and use Green’s
functions to match the corresponding segments with consistent boundary condi-
tions. Finally we glue the local maps together, and use volumetric harmonic map to
improve the smoothness of the map along the boundaries between segments. The
whole pipeline of our algorithms is illustrated in 56.

9.2.2 Discrete Curvature Flow for 3-Manifolds

A 3-manifold with complicated topology is shown in figure 58. In general,
topology of 3-manifolds is extremely difficult to analyze. The perception of the
topological structures of 3-manifolds is in general beyond humans intuition, be-
cause most 3-manifolds can not be realized in R3.

While like all surfaces embedded in the three dimensional Euclidean space
have a canonical Riemannian metric, which induces constant Gaussian curvature,
three dimensional manifolds also have canonical metrics, which induce constant
sectional curvature. Canonical metrics on 3-manifolds are valuable for studying
their topologies and have the potential for volumetric parameterization and shape
matching. We have generalized discrete curvature flow for surfaces with negative
Euler numbers to hyperbolic 3-manifolds with complete geodesic boundaries. The
metric deforms according to the curvature, until the curvature is constant every-
where.

We apply our discrete hyperbolic curvature flow to visualize 3-manifolds,
which are given by abstract tetrahedron meshes and can not be realized in R3.
Figure 58 shows one example. This can be applied to verifying whether two 3-
manifolds are homeomorphic by comparing their hyperbolic volumes in the future.
If two hyperbolic 3-manifolds with geodesic boundaries are homeomorphic, then
their hyperbolic volumes should be identical, independent of their triangulations,
which will be one of our future directions.

In the future, I will go alone the volumetric direction, generalizing discrete
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 56: Algorithm pipeline. Given the genus zero sheep model, let ∂M be the boundary
surface (a). We first construct a conformal polycube map φ0 : ∂M −→ ∂D (b). Then we
decompose both the 3D model and polycube into three components Mi,Di, i = 1,2,3 (see
(c) and (d)). Each of Mi or Di is a star shape, for example, the sheep head in (e) and (f).
Next, we conformally map ∂Mi and ∂Di to a sphere (see (g) and (h)). Then we compute
Green’s functions on the spheres. The cut views of the Green’s function are shown in (i)
and (j). The Green’s function induces a one-to-one map between Mi and Di as shown in (k)
and (l). By gluing the segmented components together and improving the continuity along
the cutting boundaries, we get the global volumetric parameterization between M and D.
(m),(o) and (p) show the hexahedral remeshing results using the constructed volumetric
parameterization.

2-dimensional Ricci flows to 3-dimensional volumetric curvature flows, and ap-
ply them in volumetric shape mapping, and volumetric parametrization for general
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(a) front view (b) back view

Figure 57: The boundary surface of a 3-manifold, Thurstons knotted Y. The volume can be
treated as a solid ball with three entangled tunnels.

Figure 58: Embedding the 3-manifold periodically in the hyperbolic space H3 with differ-
ent viewpoints.

shapes in computer graphics; volumetric medical data registration and fusion in
medical imaging; volumetric shape registration, analysis, and retrieval in computer
vision; volumetric spline in geometric modeling.
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