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Abstract of the Dissertation
Performance Evaluation of Parallel, Distributed and Grid Systems
by
Milton J. Jackson
Doctor of Philosophy
Stony Brook University

2008

The intent of this work is to improve the performance evauation of a number of
different systems, by developing new methods and performance metrics. A techniqueis
proposed where load sharing is modeled through the use of a set of differential equations.
As examples, these equations are used to describe the flow of data between processors
connected in a linear daisy chain and two dimensional mesh configurations. The
processors have heterogeneous link speeds, processing speeds, and loads. The equations
are designed to model the balancing of these loads over a period of time, by distributing
the loads between the processors, alowing the amount at any processor’'s load to be
accurately calculated at any point in time. A new and novel performance metric,
utilization, is developed using distributed load theory. Four cases are used to determine
utilization. All cases are sequentially distributed tree networks. Two cases have
staggered starts, one with a root that does processing and the other with a root that does
no processing. The other two cases have simultaneous starts, with a processing and a
non-processing root, as above. The speedup of all cases is determined, and the
performance metric of the speedup and utilization are compared. Using the same four
cases as previousy stated a method of performing a signature search, i.e. pattern
recognition is developed. Depending on the type of sequentially distributed load,
individual sets of equations are developed. These equation give the percent of the load a
processor searches within a given time interval. The time interval is determined by
communication delays. The utilization for two different types of linear daisy chains is
found, one with a staggered start without a front end processor and the other with a
simultaneous start with a front end processor. For the linear daisy chain it was necessary
to develop a set of recursive equations to find the ratios between the loads on the
processors before finding the utilization. These equations are not necessary with a tree
network. The speedup for the linear daisy chains are found and compared with the
utilization.
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Chapter 1
1. Introduction
Parallel processing has been used in many instances for problem solving

throughout history. Now its principles are being applied to modern day
computers. A grid search is a good example of this. When people are
tasked to search a large area, each person is assigned a sector to search.
This method greatly decreases the amount of time it takes to conduct the
search. The idea behind this approach is to break a job down into
manageable units. On a computer with more than one processor to
achieve a benefit from parallel processing it is necessary to assign tasks to
different processors. The key factor is communication, the ability to work
at the same time without interfering with ongoing activities. For this to
happen there must be a proper allocation of resources. To accomplish this
flexible operating systems are needed. This is a task easily performed by
the human brain. When sound and sight among other things are
simultaneously processed and a decision is made based on the input and

information in the memory. This is the goal of parallel processing.



1.1 Literature

A large literature on divisible load theory has been generated since the
original work in 1988. Speedup calculations and linear daisy chains are
cover in [9]. In [10] a load sharing problem is presented, where n
processors are connected through a bus. The processors are controlled by
sensors. It was found that a minimum solution time is achieved if all
computations cease at the same time. In [11] closed form solutions for
large symmetric tree networks are investigated. The processors in these
tree networks may or may not have front end processing. Infinite networks
are discussed in [12], where either closed form or numerical methods can
be used to find the equivalent processor speed of a network with an infinite
number of processors. Here the equivalent processor speed of a linear
daisy chain is found. Computation in a two dimensional mesh composed of
communicating processors is studied in [13]. A three dimensional mesh is
considered in [21], where an optimum distributions that finds the minimum
solutions among the processors in this mesh is investigated. Here the load
is distributed from a parent processor in a node to node communication
network, where the communication delays are incorporated into the

process. Parallel distributed systems are used in [14] to distribute load in



the least possible time. The purpose is to solve a problem of scheduling a
divisible load where the communication and computation times are
considered. This method is applied to a two dimensional mesh of
processors. In [15] the front ends of communicating processors are used to
minimize the finish time in a distributed linear network. For a single level
tree network, with or without front end processing, the load is distributed
in multiple installments with the result of minimizing the solution time in
[16]. In [17] load distribution in linear networks, with and without front
end processing is studied. Divisible load theory is introduced in this paper
[18] by summarizing past research and highlighting its accomplishments. In
[19] and [20] tree networks composed of processor with and without front
end processing are investigated. Signature searching is covered in [22],
where linear daisy chains and single level three networks are investigated
by finding the expected time to perform a search for single and multiple
files in parallel databases. In [23], a search is performed on a flat file, and
the expected time for a search for single and multiple signature is found.
Closed form solutions are found in [24]. Here a linear network of
communicating processors is studies. The processors having front end

processing or not is of no consequence. Nor does it matter if the nodes



receive load at the boundary or the interior the nodes of the network. The
closed form solutions are valid. In [25] the instances when load originate at
the parent node of a linear daisy chain as well as the interior nodes are
studied. A linear daisy chain [26] with divisible load is investigated with the
intention of reducing two or more loads into a single processor. The
foundation of divisible load theory is laid out in [27]. Here the advantages
of using divisible load theory are discussed, some of which are tractability
and scalability. Divisible load theory can also be used with a variety of
topologies. In [28] an analogy between superposition in and electrical
network and superposition in a network using divisible load theory (DLT) is
drawn. The linearity of DLT is shown by showing that superposition in DLT
works. In [29] it was shown that a minimum solution time is achieved
when all processors stop computing at the same time. Divisible load theory
is used in [30] to model a grid system. Data from the STAR experiment
facilities at the RHIC at Brookhaven National Labs is used in simulations to

test the model validity.



1.2 Load Balancing

In chapter 2 Modeling load balancing through the use of differential
equation is developed. In this chapter techniques are developed for load
sharing. The loads are balanced using sets of differential equations. These
equations use the concentration of load at a node, and the concentration of
loads on the adjacent nodes to decide if load is to be transmitted or
received. The loads will move from higher concentrations to lower
concentrations until all the loads have reached zero.

First the linear daisy chain configuration is developed for a chain of
nodes of indefinite length. The linear daisy chain is a topology that once
developed can be used to create two dimensional m by n meshes. The sets
of equations and the programs written for them make it possible to
monitor the loads as they dissipated. At any point in time more load can be
added to any node in the network. What this means is that an
underutilized node can have more load directed to it. The processor
speeds and link speeds are heterogeneous. Load can be directed to a node
with a faster process speed, or one with a faster link speed. However it is
not solely these speeds that determine which node will diminish the

fastest. It is a combination of the processor and link speeds, and the



concentrations on the node, and its adjacent nodes. These techniques can
be used in any situation in which there is a load moving from one location
to another. The load can be information or any concentration traveling
through a medium. The load must be divisible. If the amount of load is
known, how fast the concentrations are being processed, and how fast the
concentrations are traveling through the medium. Then the equations in
chapter 2 can be applied.
1.3 Sequentially Distributed L oads

In chapter 3 using divisible load theory, sequentially distributed loads are
analyzed. A new performance metric, utilization is developed. The
equations for utilization and speedup are derived from a Gantt like timing
diagram. The diagrams describe single level tree networks that are
composed of a parent processor also called the root, and the children
processors. Four different sequential distributions are investigated. Case 1
has staggered start and a root that does no processing. Case 2 has
staggered start and a root that does processing. Case 3 has simultaneous
start and a root that does processing. Case 4 has simultaneous start and a
root that does no processing. The four cases were compared using

utilization and speedup. The performance metrics are use to explore the



characteristics of the different cases. Utilization is a new performance
metric and when used with speedup a more traditional metric it offers a
useful comparisons.

1.4 Signature Searching

In chapter 4 the same sequentially distributed cases are investigated.

The speedups are the same so the information gain in chapter 3 can be
used here. Now the performance metrics are use to determine which
network performs the better signature search or patter recognition. A
different set of equations are developed for each of the timing diagram.
How fast a search is being performed is based on parallel processing. Each
processor is looking at different portions of a load that has been divided. So
even though the processors are processing at the same speed the
cumulative effect is that the job is accomplished faster. This is because
when there are more processor looking for certain marker the chance of
finding it faster are greatly increases. Besides the utilization and speedup
performance metrics an additional method that uses the finish time and
communication delay is developed to help validate the utilization and

speedup metrics. The sought after patterns in these searches can range



from radar signatures, DNA and finger prints to a host of data intensive
problems.
1.5 Utilization of Linear Daisy Chains

In chapter 5 the utilization and speedup of two different types of linear
daisy chain configurations are investigated. The first has a staggered start
without front end processing. The second has a hybrid strategy with front
end processing. For the second case the hybrid strategy means that the
processor behaves as one with a staggered start when it is receiving
information. It cannot receive information and compute at the same time.
However it can perform computations while transmitting information at
the same time. Sets of iterative equations were developed to find the ratios
of the loads, as they could not be found using the previous methods. A
description of how information is being processed as it moves through the
network is provided for the linear daisy chain configurations and the timing
diagrams. The timing diagrams describe the information in a manner that
makes it easy to calculate the utilization and the speedup. also a different
aspect of the utilization is use to make a determination about the networks.
This time the average utilization is useful, as well as the utilization and the

speedup.



Chapter 2

2. Modeling Load Balancing Through Differential Equations

2.1 Introduction

In this paper a method is advanced that uses differential equation to
model load sharing. The differential equation are the decisions makers,
and use the amount of load on adjacent processors, to determine if a task
(load) is to be passed to another processor. The exchange of data between
processors in two different topologies is demonstrated. These are the
linear daisy chain and mesh configurations. Both configurations have
heterogeneous link speeds, with processors that function at different rates.
The loads of the linear daisy chain and mesh configurations are divisible,
and have amounts that vary. The decisions made by the differential
equations balance these loads, through a process of redistribution of the
loads among the processors. The load is considered balanced when all the
processors have reached zero. The exact amount of load at any processor

can be determined precisely at any point in time.



2.2 Stateof The Art

There is a large body of literature on load balancing. Most of which is
dedicated to indivisible jobs. Here some representative works will be
considered that also encompass divisible jobs. Load balancing techniques
are often components of an application. Their purpose is to make the
applications perform better. Different techniques are better suited for
certain applications. The types of load balancing techniques and
applications vary. However the common thread in load balancing is the
redistributions of tasks. The methods are diverse as in [1] where a work
stealing algorithm is used that distributes workloads in a parallel system so
that underutilized processors seek out work from other processors.
Mitzenmacher demonstrates the usefulness of this modeling technique.
When a processor is idle it tries to steal a task from a processor selected at
random with uniform distribution. If the chosen processor has more than
one task, a task is stolen. This model employs differential equations. The
differential equations rely on the expected change in the behavior of the
system over small periods of time. That is based on arrivals or departures
of tasks. A core term of these equations is similar to a term in the

equations in this paper, but used differently.
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Another technique is diffusive load balancing [8]. In diffusive load
balancing if a processor has a quantity of tasks greater than its neighbor it
moves a portion of its tasks to the neighboring processor. The decision on
rather to move some of the tasks is based solely on local information, and
the amount of tasks transferred is in proportion to the differential between
the number of tasks on the two processors. Furthermore only the number
of tasks at each node is subject to attempts of equalization. This method of
having nodes with greater loads transfer load to nodes with lesser loads is
used in this paper. Other load balancing techniques are [3], where a high
energy physics application uses a dynamic load balancing technique to
balance the point of imbalance occurring in queues.

An application detailed in [5], where a dynamic load balancing technique
is used as part of an Asynchronous Iterations-Asynchronous
Communication (AIAC) model. Here the load balancing is not based on the
amount of data, but the residual i.e. the max norm of the difference
between a current value and two consecutive iterations. In [6] a dynamic
load balancing method is developed for parallel applications. That has the
purpose of evenly distributing work to processors. To ensure that

processors are not idle while other are busy. For simple data structures the
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application divides the work into groups of equal size and distributes the
groups among the processors. For complex data structures as in
unstructured mashes, partitioning methods are used.

A similar method is in [7], where mesh adaption is shown to be an
effective application for unstructured-grid computation. However a load
imbalance is produced among the processors when used on parallel nodes.
To solve this problem dynamic load balancing is used. The technique
employs partitioning and remapping to balance the load. In [2] a load
balancing algorithm for a distributed system is used. The algorithm has the
purpose of minimizing the expected turnaround time. To prevent a
situation in which a task waits for one particular processor while there is
another idle processor that could process the task. The performance of the
system is increased, when the instantaneous load on the multiple
processors network is balanced. Presented in [4] is an agent based load
balancing technique that is used in a homogeneous min-grid to achieve a
uniform distribution of task to nodes. This solves the scheduling problem
on the grid.

All of the techniques above have in part some bearing on this paper.

This model is a load balancing technique, and could be placed as a

12



component in some of the applications mentioned above. With this
technique underutilized or idle processor are not used as part of the load
balancing technique, but it would immediately detect these conditions.
With changes to the program that uses this technique, the information on
underutilized or idle nodes could be used to increase the rate at which all
nodes reach a desired point. This technique would also detect an
imbalance in queues. This technique would be extremely useful in the
detection of imbalances in a system, since it knows the load at every node,

at every time interval.
2.3 Model Description

Both the linear daisy chain and two dimensional mesh configurations use
the same method for distributing loads. Each node is capable of sharing its
load with its adjacent neighbors. The loads move from the nodes with larger
loads to those with lesser loads. This process continues until a solution is
reached, in other words, the loads reach zero at al nodes.
2.4 Variables For Chapter 1
w(i): the inverse processor speed

z(i): the inverse link speed in the horizontal directions

v(i): the inverse link speed in the vertical directions

13



L: the load

dt: the time interval

sgn(x): the signum function

N: the total number of processors

2.5 Linear Daisy Chain Configuration

In a linear daisy chain configuration, Figure 2.1, the following set of

differential equations describes this process.

Figure 2. 1 Five loads connected in a linear daisy chain
configuration, by four links.

For the linear daisy chain:
i: the number of processors between the first and last processor

dL(1) = dt —ﬁ + ﬁ.ﬁgﬂ([;@) - L(l))] 2.1)

dL2(i) = dt [—wii) + %sgn(L(i 1) = L) + L Seon(L(i— 1) L(@))} (2.2)
1 1

dL3(N) = dt [_u(f\f) oL =) - L(N))] (2.3)
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L(1) = L(1) + dL1(1) L(1) > 0 (2.4)
L(i) = L(i) + dL2(i) LG) > (2.5)
L(N) = L(N)+dL3(N)  L(N) > (2.6)

The derivative of the load (dL) with respect to time is divided into three

equations. The derivative dL1(1) represents the load on the first node, and
the dL3(n) represents the load on the last node. The derivative dL2(i)
represents the loads on interior nodes between the first and last nodes.
The inverse processor speed (w) has a minus sign to insure that the act of
processing always serves to decrease the load when added to the inverse
link speed. The sign of the inverse link speed is determined by the
difference between the loads. If the difference is greater than zero the sign
is positive, and if it is less than zero it is negative. Load is transported from
nodes with larger loads to adjacent nodes with lesser loads. In equation
(2.1), the inverse link speed (z1) and the inverse processor speed (w1l) are
fixed.

The differential equation dL1(1) uses the difference between the first
load(L1) and, its nearest neighbor the second load(L2), and the inverse link
speed between them in its calculations. In equation (2.1) “one” is used for

the load at the first node, and “two” for the load at the second node

15



instead of i. The reason will become clear in the description of dL2(i). The
derivative dL3(N) works similar to dL1(1), the only difference being that
dL1(1) uses the node to its right and dL3(N) used the node to its left in the
calculations. The derivative dL2(i) takes into account its neighbors on either
side. The variable i start at 2 to prevent division by zero in the term ﬁ
of equation (2.2). Other than this dL2(i) functions in the same sense as
dL1(1) and dL3(N).Once the derivatives of the loads are found they are
added to the original loads, L(1), L(i) and L(N) creating a new set of loads.
The process repeats until the loads are balanced, i.e. each node’s load
equals zero. Loads are forced to be no less than zero. When a load reaches
zero it remains at zero unless a new load is added to that particular node.

The load at a node may also be increased at anytime in the process.

Furthermore, the number of nodes may be increased to any size n.
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LOAD A8 A FUNCTION OF TIME vs NODE POSITION
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Figure 2.2. Load as a function of time vs. node position. There are five
nodes, and the loads on these nodes are measured at time,
4 x (1 x 10%s) where j represents the number of iterations of
equations (2.1) through (2.6).
In Figure 2.2, the loads as a function of time are plotted against the node
position. The amount of load on each node at a specific time is designated
by the function L(j x dt(s)), where | isthe number of iterations of equations

(2.1) through (2.6), and dt is the time interval, the iteration occurred in, here

1 x 10°s. As can be seen in Figure 2.2, the initial load on nodes one

17



through five are respectively [1 10 4 2 3]. They diminish with time in
accordance with equations (2.1) through (2.6). However a a given time
when j = 3500 and dt = 1 x 10%s, the load at node 4 is increased by 5,
L(j x 10°®s) = L(0.0035 s) = 5. The increase can be seen at node 4 on the
graph above. Note in Figure 2.2 the increase appears to be 4.5 and not 5.
The discrepancy is due to the fact that the information in the graph is plotted
every 1000 iterations. The difference is the amount the load has decreased,
from the time the load isinput to the time the data is updated. Thisincreases
the time it will take for this node to reach zero.
2.6 Mesh Configuration

In the mesh configuration Figure 2.3, the nodes are extended in the
vertical and horizontal directions forming a five by five mesh. In practice
any m by n mesh is possible. There are 25 nodes (N), 24 inverse links speeds
(2) in the horizontal directions, and 20 inverse link speeds (v) in the vertical
directions. This mesh processes |oads the same as the linear daisy chain,
with an extra dimension added. The process is governed by nine equations
that will work for any m by n mesh. However for the equations to work
properly the mesh must be labeled as shown in Figure 2.3. Other labeling
schemes are possible, but result in somewhat different equations. In the nine

equations that describe the process of transferring loads between nodes, mis

18



the number of rows and n is the number of columns. The equations are

numbered (2.7) through (2.15).

Figure2.3. A5 by 5 mesh configuration, composed of 25 nodes, 20
horizontal links and 20 vertical links, here N is the total number
nodes, m is the number of rows and n is the number of
columns.

For the mesh configuration:

i: the number of processors from 1 ton
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fori=il=1

dL1(z) = dt !—ﬁ + z(l—i)sgn(L(i +1)—L(1)) + ﬁsgn(L(i +n)—L(n))| (2.7)

fori=i2=2ton-1, increments of 1

. 1 1 , , 1 . :
0L200) = |~ b —san( L4 1) ) + - sson(LG- 1) - L) e
+ L.sgn(L(i +n) — L(n))]
v(i)
fori=i3=n
dL3(i) = dt {— LU on(Li—1) = L() + ——sgn(L(i +n) — L(i))] (2.9)
w(i)  z(i—1) v(2)
fori=i4 =n+1to (N-n+1) —n, in increments of n
dL4(i) = dt l—i + LS n(L(i+1) — L(i)) + Lq n(L(i+n)— L(i))
el ™ o) (2.10)
1 . . '
=) sgn(L(i —n) — L(i))]
for rows = m-2
g=0torows-1
i=i5=[(n+2):inincrements of 1:to (2n-1) ] + gn
AL5() = dt | ——— + ——sgn(L(i +1) — L(i)) + ———sgn(L(i — 1) — L()
B T R i1 21
' M%sgn(lz(i 0] - L)+ o L (L= ) - L()
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fori=i6=2n:in increments of n: to (N-n)

1

dL6(i) = dt [— <+
1

1
w(i)  z2(i-1)

+ ———sgn(L(i = n) — L(i))]

v(i —n)

fori=i7 =(N-n) +1

dL7(i) = dt [—L - LSgn(ﬂ(i +1) = L(7)) +

) (i)

w(i

sn(L(i — 1) — L(i)) = ——sgn(L(i +n) — L(i))

v(i)

(2.12)

,1 sgn(L(i —n) — L(i))](2.13)

v(i —n)

for i =i8 =(N-n) + 2: in increments of 1: to (N — 1)

dL8(i) = dt [—i - isgn(L(é +1) = L(i)) +

w(i)  2(i)
+ '1 sgn(L

v(i—n)

fori=i9=N

ALO(i) = dt | ——— +

w(N)  2(N-1) |

o R
[ |

.o,

fngiag g ngagagagay

==,

e e N e e N M e e

(i =n) = L(2))
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1

——sgn(L(i — 1) — L(1))
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The mesh in Figure 2.3 is described by nine structures shown individually
in Figure 2.4. Each equation corresponds to a structure, and each structure
has one or more components. Furthermore each component has a center
node. In figure 2.4 only the center node of the first component is shown
when there is more than one component. Inthe 5 by 5 mesh of Figure 2.3,
there is a total of 25 components. The equation numbers (2.7) to (2.15)
correspond to the structure numbers (7) to (15). The structures
representing the upper left and right hand corners, (7) and (9) respectively,
and the lower left and right hand corners (13) and (15) respectively each
have one component, which is composed of three nodes and two links.
Structure (8) has three components corresponding to the number of nodes
(columns) between the first and last node of the first row. Each component
is made up of four nodes and three links. Structure (14) is the complement
of (8). This structure is found in the last row of the mesh, and contains the
same number of components, nodes and links as (8), for the same reasons.
Structure (10) contains three component, based on the number of nodes
(rows) found between the first and last rows of the mesh. It has four nodes
and three links. The final structure, (11) has nine components each

composed of five nodes and four links.
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Figure 2.4. The nine structures describe any m by n mesh. The structure’s
number is the equation’s number with the 2 removed from the
front of the equations designation. For a5 by 5 mesh as in
Figure 2.3, the structures (7), (9), (13) and (15) each have one
component. The structures (8), (10), (12) and (14) each have
three components and structure (11) has nine components.
The center nodes mark the position of the first component
of each structure.
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Once the derivative of a load at a particular node is found it is added to
the current load of that node. This produces a new value for that load.
This process is seen in equations (2.16) through (2.24). As with the linear
daisy chain configuration, the load at each node in the five by five mesh is
plotted as a function of load versus time, and time versus the node

position, Figure 2.5.

FINE BY FIVE MESH CONFIGURATION

O =M WeEOO~@OD
e 5
ra
(a3}

NODE POSITION

Figure 2.5. Plot of the loads versus the loads as a function of time versus
the node position. The x axis gives the nodes position, the y axis
the load as a function of time, and the z axis the load in mega
bytes.
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The rows in Figure 2.5, starting at j equals one represents the initial input
loads on the nodes of the 5 by 5 mesh in Figure 2.3. The 5 by 5 mesh has
been transformed into an array of length 25, and each element of the array
1 through 25 corresponds to the node number and load of the 5 by 5 mesh.
Every 1000 iterations of equations (2.7) through (2.24) produces a new row,
until all load reach zero at j = 7841. At j = 5000, the load at node position
22, L(j x 10°®) is set equal to 10. This node rapidly approaches zero
because there are no load bearing nodes adjacent to it. Equation (2.14)

governs this process.

INDIVIDUAL 5 BY 5 MESH CONFIGURATIONS OVER TIME

@0 0
%gg;%
O@ @‘W -~
7000
EDDD
SUUD

LOAD(MBYTES)

COLUMNS IN MESH

Figure 2.6. Displays the 5 by 5 meshes as time increases. The y axis shows
the number of columns, and the x axis the rows, listed every
1000 iterations.
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With the nodes adjacent to node 22 being zero, the four terms of equation
(2.14) are negative, generating a large negative number. When dL8(i8) is
subtracted from L(i8) in equation (2.23), the load goes to zero within 2000
iterations.

A geometrically clear picture of the surrounding nodes can be seen i
figure 2.6. After the initial 5 by 5 mesh is plotted, with one on the x axis
marking the last row of the 5 by 5 mesh. The mesh is plotted again after
1000 iterations. This process continues until all nodes in the mesh are zero.

The previous graphs have been generated by programming the given
equations. For the one dimensional daisy chain equations (2.1) through
(2.6) were used, and for the two dimensional mesh equations (2.7) through
(2.24). The two dimensional m by n mesh can be extended into three
dimensions by an arbitrary length p, producing and m by n by p mesh. A5
by 5 by 5 mesh would require one additional parameter, the link along the z
axis h. This cube would be composed of the following structures. Eight
corner structures each consisting of one component having three links and
four nodes. Twelve edge structures, where each structure has three
components made of four links and five nodes. Six face structure

comprised of nine components consisting of five links and six nodes. The
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last structure is for the internal nodes of the cube. This structure has 27
components, each having six links, and seven nodes. The center nodes of
the components do not lie on the edges or surfaces of the cube.

2.7 Concluson And Extensions of Chapter 2

For initial equal loads, processors speeds and links speed, if there are no
shared nodes in the structures or if the adjacent nodes are zero the
structures works as would be intuitively expected. The number of links
dictates how fast the load decreases. The structure with the most links
decreases the fastest. This decrease is imperceptible in graphs such as
figure 2.6 and 2.7. However a decrease in the second and third decimal
place is readily seen in the numbers used to generate the graphs, when the
parameters are changed to observe smaller steps, i.e. when the values for
the loads are listed every 10 iterations, instead of increments of 1000
iterations. When the processor speeds, and link speeds are chosen such
that the processor speed is one third that of the link speed, and the loads
are chosen randomly between 1 and 10, the data derived from the
equations demonstrates that the equations perform as intended. In other

words the loads tend to be balanced over time.
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It should be noted that this methodology can be used to model other
protocols involving thresholds for allowing load transfers, different speeds
for different amounts at the loads, and time varying processor and links
speeds. Modeling chemical diffusion through a cell and across the cell

membrane is another potential future application.
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Chapter 3
3. Sequentially Distributed L oads
3.1 Introduction

Divisible load theory (DLT) was developed in response to the need to
handle ever increasing large amounts of data. In DLT a load can be
arbitrarily divided an assigned to different processors and links. With DLT
linear mathematical models are created which allow the investigation of
performance metrics [9]. In this paper the focus is on utilization and
speedup. The equations for utilization and speedup are derived, and
analyzed for four different cases. These are: case 1, sequential distribution,
staggered start, with a root that does no processing; case 2 sequential
distribution, staggered start, with a root that does processing; case 3
sequential distribution, simultaneous start, with a root that does
processing; and case 4 sequential distribution, simultaneous start, with a
root that does no processing.
3.2 Performance Metric Description

Utilization is the ratio of useful time to total time. It is calculated for

each processor in a network, and averaged over the entire network. In the
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literature variables needed to understand performance characteristics such
as utilization and speedup are as follows.

3.3 Variables For Chapter 3

N: the number of processor

0; [load]: The fraction of the load assigned to the link. The sum of the load
fractions a; equals one, the unit load.

z; [second/load]: The inverse link speed.
w; [second/load]: The inverse processor speed.

T.m:  The communication intensity, it is a dimensionless quantity used to
increase or decrease the link speed for a particular job.

Tep:  The computation intensity, it is a dimensionless quantity used to
increase or decrease the processor speed for a particular job.

0;z;T.m [second]: The time required to transmit the load fraction a;over the
ith link.

a; wiT., [second]: The time required to process the load fraction a; of the
entire load on the ith processor

T¢ [second]: The finish time or makespan. This is the time it take the last
processor to complete it computation.
Speedup is the ratio of the time it takes to complete a computation on
one processor, to the time it takes to complete a computation on an entire
tree with N children processors. Speedup is a dimensionless number that

gives the performance gained by using multiple processors.
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e Root or Parent
e e e Children Processors

(a)

Single level tree network with one parent processor Py, and
four children processors P4, . . ., P4

Communication

v
.

Computation

(b)

Building block of a Gantt chart-like timing diagram,
information above the time axis is dedicated to
communication and that below to computation

Figure 3.1.
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3.4 Descriptions of Categories Sited in Cases 1 through 4

Sequential Distribution: In sequential distribution the root first transmits
the entire load to the child processor P4, then to all other child processors
in sequential order.

Staggered Start: When a processor has received the entire load it has been
assigned. The processor begins processing, and continues processing until
the assigned load is exhausted.

Simultaneous Start: The processor immediately starts processing the load
as it is received.

With Front End Processing: Processors with front end processing have the
ability to send and receive load at the same time.

Without Front End Processing: Processors without front end processing

can either send or received load, but not both at the same time.
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35CASE 1
SEQUENTIAL DISTRIBUTION
STAGGERED START
ROOT DOES NO PROCESSING

— 1Z1Tem
[ aZZZTcm
a3Z3Tcm
f 0424 T cm
\ 4 | \ 4 | | |
P t
Py
W1 Tep t
T¢
P, .
aZWZTcp
T¢
Ps ;
a3W3Tcp
T¢
P, t
a4W4Tcp
T¢

Figure 3.2. Timing diagram of single level tree with sequential distribution,
staggered start and a root that does no processing
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In Figure 3.2 the loads are sequentially distributed by the parent
processor to the children processors. The parent processor cannot process
load. The children processors do not have front end processing.

From Figure 3.2

Tfl = alZchm + Oflwljﬁcp (31)
alwl'Tcp
U =— (3.2
T
aqwi T,
U, = L 3.3
YT T + ajw Ty (3.3)
aywyTey
apwyd
Ul - (l’lzl'TC-m_ Qpl’wch'p (34)
arw Ty ayunTey
U= — (3.5)
1= a1z1Tem )
1 + aiu,l'lTCp
For z =1z
U= — 1 (3.6)
1= 2T em '
l + ij.-']_T(_-p
Equation (3.6) gives the utilization of processor P,
From Figure 3.2
Tf2 = Oflzlfrc"m + QQZQT(.‘m + O»'QwQIT(:p (37)
aowy 1.,
Uy = —222CP (3.8)
To
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O{QU’QTcp

Uy =
allecm + @222Tcm + Q’Qw2Tc-p
QZWQTCP
U . aatveTep
2 a1z21Tem 229l + aQwQTC}J
Q'ZwQTc:p QQ““ZE‘,;) Q’-iszT;_:p
1
Uy = .
_I_ izl anzoTem
aswaTep apwe Ty
1
Uy =
(258 Qo Tem
1+ (QQ 22l zz) w2l
Forz=z
1
Uy =

oy ag ) 2l
(a; + Q’g) waTep
Removing the load fraction o;
From Figure 3.2
29T, + Of2w2Tcp = OdlwlTr:p

Forz =1z

g (2T + wolyy) = ayun Ty,

o ’wlTTCp a
2 = 1
Zﬂ:rn + wchp
’wch )
Ky L

ZTcm + wchp
g = kiag

Substituting &% = ;; into equation (3.13)
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(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



1
1_|_ (kll + 1) 2Lem

Uy =

wy T,y
Equation (3.19) gives the utilization of processor P,
From Figure 3.2
Ttz = arz1Tem + anzoTepy + agzgThy, + azwsTy,
U, — azwz Ty,
Ty

Oélilwlitr(zp

Us =
Q’llecm + @222Tcm + Q’SZSTcm + aSwSTcp

azwsley,
agwzTey

a121Tem 29T yn 323 0 azwsT,,
aguwzTey azw3Tep azw3Tey, azwsTey

1

o121 ey 223 Tem azz3Tem 1
Y3y Tap Qgily Tcp O‘3T£)3'T(;p

Us =

1

Us =

oy D] ag . Tcm
(Q3Z1 + as ) + a.ngj) ur3T‘p+1

Forz,=z
1

Q1 o o o oQaz 2em
(aa * as T ﬂs) w3Tep+1

Us =

From Figure 3.2
azzzlem + Of3w3Tcp = a2w2Tcp
Forz,=z

ag (2L + wil,p) = avweTy,,
o wzﬂ:p o
3 —_—
ZTcm + ?U.‘}Tcp
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



w2 Tc P

ko = 3.30
? ZT:::m. + wSﬂ:p ( )
3 — k‘gO&g (331)
Using equation (3.18)
g = kﬂfg@q (332)
Substituting 3—; = k1ko from equation(3.32) and 2—; = ;—2 from equation
(3.31) into equation (3.26) yields
1
Uy = (3.33)
(L pLy 1) L
kiks ko ’w.’ch;p
Equation (3.33) givesthe utilization of processor P;
From Figure 3.2
Ty = arnTem + co22Tem + a323Tem + cuzaTey + aqwiTe, (3.34)
qwyle,
Uy = 24 e (3.35)
Ty
agwy T,
U, = P 3.36
! Q’lZchm + OfQZQT,c:m + Q’SZST:::m + O»’4'24’1-’(:;0 + OfslfwélTlc-p ( )
aqwaTep
o aqwyTep
U4 o aiz1Tem aazolom 3231 + oyzyTey agwy Ty, (337)
gy Tcp gy Tc:xi gy T(_:p (8 FRILY] Tp_p gy T(;p
U ! (3.38)
1= v121Tem 2L em 3231 em )
gi'uichp ziiiﬂp + f’iz’tz[‘?‘lﬂp + 1
1
Uy = . (3.39)
[¢] a3 45 cm
1+ (afizl + OTiZQ + a—zz;g) wal.p
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forzi=z

1
Uy = -
o oay ooz 2Ty
1+ (CM + Oy + @4) wylep
From Figure 3.2
o zyd e + @4w4fzp = Oﬁ'SwSTcp
vy (34’1:-”; + ?.U4Tcp) = Oég’ngcp
i = u’i}f:p o
4 = T 3
Z4Tcm + w4Tcp
wSTcp
ks =
3471:-1% + ’lU:LT,c:p
gy = k‘30¢3
Using equation (3.32) gives

g = klkgkgal
From equation (3.31) a3 = keas and equation (3.45) ay = ksasg

9 1
oy koks

Substituting equations (3.45), (3.46) and (3.47) into equation (3.40)
yields

1

Uy =
' Y (e A S,
kikaks kaks k3 ) wil.p

Equation (3.48) isthe utilization of Processor P,

The general form of the utilization equation for case 1 is

1
U; = _ — p. fori=1,2,.... N
? = cm
1+ {Zj—l Hm:é km ziTcp)

38

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



The general form for the average utilization is

N

1 _
AvgU = FZ;UE; fori=1,2,..,N (3.50)

Here N isthe number of children processors.

UTILIZATION CASE 1 WHEN ALL INVERSE PROCESZ0R SPEEDS ARE EQUAL

08 T T T T T T T

07 2 ETcm=2

iTep =2
g [N . s s e s g ES— R, z2=2
: w=86

05 : Avg Utilization = 0.2831

el o B e e, . s R R ol

UTILIZATION

03
02 : _

[ E—— a w s : B

1]

1 2 3 4

B
NUMBER OFCHILDREMN PROCESS0RS

Figure 3.3. Utilization versus the number of children processors, all inverse
processor speeds are equal

Number of Processors in Case 1 for Utilization to Decrease 99.6%

08 T T T T T T
Tem=2
Gl Tep=2
z2=2
w=6
sl Avg Utilization = 0.0857
Number of Processor at 99.6% Decrease = 20
Number of Processors at zero = 35
05k =
=
2
LN | | S T T e 4
=
03 -
oL I e s il
0.0000
L i Y
F3 30 E5 10

Number of Children Processors

Figure 3.4. The number of children processors added to a network that
will cause the utilization to decrease to 99.6% of its original
value.
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3.5.1 Speedup Case 1

Using equations (3.18), (3.32) and (3.46) listed below respectively
Qo = kloel
3 — kleCkl
Qg = klkgk-g(l'l

And the fact that k; = k;, = ky =k

The loads of a;fori=2to N, are found

i—1
o = H kmai—(i—l) (3.51)

m=1

O:;‘__(-g_l) = X1 (3.52)

The i-(i-1) term assures that a, always appears on the right hand side of the
equation (3.51). The normalization equation for case 1 where the root
does no processing is

ar +as+az+ ... ftay=1 (3.53)

rewriting the normalized equation (3.53)

N
O£1+ZCE?1: 1 fori=1,2,..N
i=2 (3.54)

Substituting equations (3.51) and (3.52) in equation (3.54) for o;
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N -1
a1+ [[Fmwor=1 fori=12_.N (3.55)

i=2 m=1
N -1
ar |1+> ] A] =1 (3.56)
1=2 m=1

The value of o, for this network is

1

{1 + Z?:g - km}

forie=1,2,.... N (3.57)

a1 =

Equation (3.1) with z; =z, w; = w, and a; =1 becomes;

Tr = 2100 + wly, (3.58)

Equation (3.58) is the computation time on a single processor.
Extending equation (3.1) to represent N processors yields

Ty = a12Dey + aquwTy, (3.59)
Equation (3.59) is the computation time on the entire tree with N
processors.

Speedup is the ratio of T¢; / ey,

Tfl _ 21+ ?L"Tcp
T\ 3] (Z Tc:m + chfp)

(3.60)

Dividing the numerator and the denominator by wT, and using o = 2lem

Wiep

Equation (3.60) becomes
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Tfl_ o+1

= (3.61)
T\r (141(0' -+ 1)
T 1
speedup = Ao (3.62)
In o
. Speedup Case 1
38— 5o
3l ~
25— |
-l NIRRRRRRRRRRRRRENRREENY |
&
15 =
[ FTH LR ]| s 4
05— aod
DU a 10 15 20 25 30 35 40

Number of Children Processors

Figure 3.5. Speedup for case 1 as the number of processors are increased
the speedup approaches a constant here a speedup of 4.0
W=6,2=2,Tm=Tp=2

Speedup saturates at 4.0, 99.6% of this is 3.984 this occurs at processor
12
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3.6 CASE 2
SEQUENTIAL DISTRIBUTION
STAGGERED START
ROOT DOES PROCESSING

[ allecm
— 0ZyTem
a3Z3Tcm
l’ a4z4Tcm
\ 4 | \ 4 | | |
Po t
aOWOTcp
Ts
P,
W1 T t
T
P,
aZWZTcp t
Tt
Ps ;
a3W3Tcp
Ts
P, t
a4W4Tcp
Tt

Figure 3.6. Timing diagram a of single level tree with sequential
distribution, staggered start, and a root that does processing
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In Figure 3.6 the loads are sequentially distributed by the parent
processor. The parent processor has a front end processor. The children
processors have no front end processors.

Computation is at 100% in processors Py therefore Uy=1

TfU = a(]’wU'Tcp (363)
o Tro — cnunTyy
U, = Tro (3.64)
.T(’m
Uy =1 A em (3.65)
O"Ou”(]ircp
From Figure 3.6
a1z em + @lwlf:p = a’[)w[)Tcp (366)
ar(z1Tem +wiTep) = apwoTy, (3.67)
w[)Tcp
1 = : 3.68
“ (Zlfrc:m- + TUJT:::p) o ( )
wUTnp
ko = 3.69
’ (Zchr'n. + u/’lT‘cp) ( )
a1 = koo (3.70)
Removing the load o;
Forz,=z .
Uy =1- o (3.71)
O‘O“"Uﬂ:p
U =1— ay 2T (3.72)
ap ) wolep

Substituting equation (3.70) into equation (3.72) gives
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2T,
U — 1 - l{; cm

Equation (3.73) is the utilization of processor P,

From Figure 3.6
sz = a(]’wU'Tcp
Tro — (121 T + 2291 y)
Uy = =
f2
Us=1-— 2z lem + nzolen
apwole,
From Figure 3.6

OfQZQTnm + a2w22—:}p = aleTcp
a2 (22’]:'%‘1 + 'lU2Tcp) - O‘fluf’QIlcp

’wllep
zZﬂ:m + wQTc;U

oy

_ wiTey
ZQIT(:m + “1’21-:::])

k1

9 = kloq
Substituting equation (3.70) into equation (3.81)

iy = kokl (877}

Forz =z
Odlz'Tcm + QQZiE:m
Us=1—
QUUJUT:::p
ap  a,\ 21lem
Uy=1-— (- + —2)
Gy Oy wUTcp
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(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)



Substituting equations (3.70) and (3.84) into equation (3.84) gives

zTem
Uy=1-— (k‘-o + kokl) ( )

wol ¢p
Equation (3.85) is the utilization of processor P,
From Figure 3.6

T3 = agwolyey

o TfS — (a’lzlﬂ:m + (1"2327-,(:”: + Q’SZST:::m)

Us

U o O‘fOU"OR:p - (a’lzlfr’(:m + Of2ZQT:::m + QSZZ}T,czm)
3 —

O{U’wUITcp

Forz=z

CEIZTcm + 0523]7(31?7 + afizﬂzm

Uy=1-—
’ OqujO’]::‘-p

Uy —1— (ngng%) (ZT(:m.)
o g ag ) \wely

From Figure 2.6
323 + azwsTey = aawaTy,,

az(23Ttm + w3ley) = cpwaTy,

a u"QTLJp o
X3 = 2
ZSTICm + wSTcp
’LUQTC.
ko -

ZSTcm + 11,?311(:})
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(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)



g = k‘g(lfg (395)
Substituting equation (3.82) into equation (3.95)
3 — koklk‘-gao (396)

Substituting equations (3.70), (3.82) and (3.96) into equation (3.90)

ZTem
Ug=1-— (k‘(] + koky + k[)k‘-lk’g) ( = )

wolep
(3.97)
Equation (3.97) isthe utilization at processor P;
From Figure 3.6
Tf4 = a(]wUTCp (398)
U4 _ Tf—l - (Oflle,cm + OJQZQT’cm + (ISZST’cm + (3—’4274,1-’(3?”.) (3 99)
Tf4 .
U' — 1 (allecm + QQZQTcm + OJBZST’cm + (1’424,1-’(3?”.) (3 100)
! C“U,I-L"Ucrcp .
Forz,=z
U —1_ (QIZTcm + @2ZTc:m + Q’SZT:::m + OfilZT‘cm) (3 101)
e aUu’UTcp '
2—T(-:rn.
U4_1—<ﬂ+%+%+%)(z' ) (3.102)
ap oy oy ap) \woele
From Figure 3.6
05424Tcm + @4w4fzp = O‘fiﬂwiﬂTcp (3103)
()(,'4(24’1:;«,% + 'lelT:::p) — 05321)3’]1(:10 (3104)
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u’:izjcp
<4 T:E:m + u’4Tcp
ko — u'STcp
'3 =
24Tem + “1’41-::])

g

ay = k3o
Substituting equation (3.96) into equation (3.107)
ay = kokykakso
Substituting equations (3.70), (3.82), (3.96) and (3.108) into

equation (3.102) yields

ZTmn.
U =1- (k[) + koky1 + kokiko + k’{)klekJJ) ( ; )

wDITcp
Equation (3.109) is the utilization of processor P,

The genera from of the utilizationis

i i—1
. : : . 2Tem . -
U,j— 1— [ Hl\,m m for i = 1:2,...,]\'
Jj=1 m=0 4

From equation (3.50) the average utilization is
1 N
AvgU = WZ—;U! fori=1,2,.... N

The number of children processor is represented by N
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(3.107)

(3.108)
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(3.111)



UTILIZATION CASE 2 ALL INVERSE PROCESSOR SPEEDS ARE EQUAL
T T T T T T T

08

O s N < v v R S PR R TR A e
Tem=2
Tep=2
z=2

06 AlLw=6

NUMBER OF PROCESSORS = 10
Avg UTILIZATION = 0.281

=
in

UTILIZATION
o
=

2
w

WUMBER OF CHILDREM PROCESSORS

Figure 3.7. Utilization versus the number of children processors, all inverse
processors are equal.

Number of Processors in Case 1 for Utilization to Decrease 99.6%
08 T T T T T T

Tem=2

Tep=2

2=2

w=6

Avg Utilization = 0.0857

Number of Processor at 99.6% Decrease = 20

07+

06—

Number of Processors at zero = 35

Utilization

0 5 10 15 20 25 30 35 40
Number of Children Processors

Figure 3.8. The number of children processors added to a network that
will cause the utilization to decrease to 99.6% of its origina
value, hereitis 20.
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3.6.1 Speedup Case 2

Using equations (3.70), (3.82), (3.96) and (3.108), listed below
X = kUOéo
g = kgr’{tlcm
g = ]ﬂgklkga’o
Qg — k{)klkgkgao
A general equation for q; is developed

Note k;=k.

The loads of a;fori=1to N, are found
Q; = H k- (i-1)-1) fori=1,2,..,N (3.112)

Qi—(i—-1)-1) = Qo (3-113)

The i-(i-1)-1 term assures that oy always appears on the right hand side of
the equation (3.112) .
The normalization equation for case 2 that has a root that does processing

is given below.

ap+op+Fastaz+ ... Fay =1 (3.114)

rewriting the normalized equation (3.114)
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From equation (3.70)

Substituting (3.116) into equation (3.115)
o ol

oot =1
0 i=2

Substituting equations (3.12) and (3.13) into equation (3.117)

N i—1
(03] -
ATU-FCH—FZH;{;”ICU(}—I

=2 m=0
Substituting again for oo
o N -1 1
1
Ny o+ ST e (_) _1
ko i=2 m=0 ko

o

1 1 N i—1
ko+1+k(}ZHkm] —1

i—=2 m=0

The value of o, for this network is

1

1 1 =N 17i-1 1.
ko +1+ ko Z?ﬁ:? Hm:U Kom

a1 =

Equation (3.63) with w;=w and ay =1 becomes
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(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)



Tro = wily, (3.122)
Equation (3.122) is the computation time on a single processor.
Tro = apwoley = ayw Ty, + o211y, (3.123)
Extending equation (3.123) to represent N processors yields
Forwi=wandz=z

TfN =1 2o + Q‘leC_p (3124)

Equation (3.124) is the computation time on the entire tree with N
processors.

Speedup is the ratio of Tgy / Ty

21};) _ OI(ZT“T; T (3.125)
Dividing by wT,, and using o = %—;
Equation (3.125) becomes
?\? B 041(01+ 1) (3.126)
specdup = 71° = 3127)

TN aq ((T + 1)
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SPEEDUP CASE 2
5 T T T

7| I Y PP PR P el 1| | e -

35 -

SPEEDUP
o
in
T
|

[1} 5 10 15 20 25 30 35 40
NUMBER OF CHILDREM PROCESSORS

Figure 3.9. Speedup for case 2 as the number of processors is increased the
speedup approaches a constant here a speedup of 4.7500.
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3.7CASE 3
SEQUENTIAL DISTRIBUTION
SIMULTANEOUS START
ROOT DOES PROCESSING

t
aOWOTcp
Po T
f
D allecm
Py t
alwchp
Ts
aZZZTcm
P,
a3W3Tcp t
Ts
P3 a3Z3Tcm
t
a3W3Tcp
Ts
0lsZ4 T
P4 _|<_ 4£4 ) cm ‘
OL4W4Tcp
Ts

Figure 3.10. Sequential distribution, simultaneous start, and a root that
does processing

The four boxes in figure 2.10, represented by 032, Tcm, 0,25 Tem, Q3Z3Tem,

and a,z4T.m could just as well been placed side by side on the top portion of
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Py’s time axis. The diagrams are equivalent. These loads are distributed
sequentially from the parent processor to the children processors.

The parent processor and the children processors have front end
processing.

Computation a 100% processors Py, and P, therefore Uy=1 and U; = 1.

ng =21y, + OfQ’LUQ'TCp (3128)
QQU-’QTCJ
Us = L 3.129
? alzlq—:ﬂp + O/’QwQITc:p ( )
QQWQTCP
ot .,
Uy = e (3.130)
05211"2!11"1) O‘Q'UJ"QTC;:
1
Uy = - (3.131)
(5] Z1dep
1 + (Q_Q) u"ZTc:p
From Figure 3.10
OflleCm + QZWQTCp = Oflu’lﬂzp (3132)
OflleCm - oalwchp = _leQU.’QTCp (3.133)
O52’“1"22—70}9 = Oﬂflwchp — a1 z1Tom (3134)
aywy Ty, = on(w 1oy — 21 Tom) (3.135)
- T:t — 211 m
oy = 1 Ter _alc ), (3.136)
w2Tcp
T::" _ T m
by = (T — 21Tom) (3.137)

’U)QTCP
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Qo = kloq
Substituting equation (3.138) into equation (3.131)
1

L Zchp
1 + (k‘l) ’IHQT(‘;,

Equation (3.1390 is the utilization of processor P,

U, =

From Figure 3.10

Tf3 = a1 Lo + a1y, + a’3w3'Tcp

U a:irwi}Tcp
3 pu—
O‘lelen + OL’ZZ?Tcm + QSUJBTcp
aﬁwRTnp
agwsTep
T 11 Tom 229 em azwallp
Q.‘}wiiT{:p Qiiwi_!Tr_tp QIEU’:',:R_EP
I 1
3= 1 _|_ a121Tem 22T em
azws3lep azwzTep
1
Us =

4] 21l a2 | z2lem
1+ () e+ () 2
From Figure 3.10

05222Tcm + 053%'311013 = OJQwQTcp

ozod e — OfQIwEITCp = _053%'321:}9
05371}321(:13 = in‘u'QT(_’p — 2ol ey,
O("SwSTcp — Q2(u*’2Tcp - ZQTcm)

(H‘IZII-,C}) — ZZR:m)
u}iiTcp

3 = X2
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(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

(3.145)
(3.146)
(3.147)

(3.148)

(3.149)



Tr‘ - Tcm
hy = L2ep — 22 (3.150)
u”Sﬂ:p

a5 = kscrs (3.151)
Substituting equation (3.138) into equation (3.151) gives

a3 = kikscyy (3.152)
Substituting equations (3.151) and (3.152) into equation (3.144) yields

1

ngl_,_(l)ﬂﬂ_,_(L)M (3.153)
kika ) wsly, ks ) wsle,
Equation (3.153) is the utilization at processor P;
From Figure (3.10)
Tty = a2 o + azoTep, + 03231 + agwyTy, (3.154)
Us = a1 z1Tem (1232Tc(: ":‘iT‘:angm agwylep (3.155)
agwaTey | oqwile, | aswile, | aawgTe,
1
1+ (a—) A+ (a—) o ks (a_) i (3.156)
From Figure 3.10
a3z3Ley + agwyly, = azwsly, (3.157)
3237 — ﬂ:s’lt’:sTcp = —Of4w4Tcp (3.158)
gyl = azwsTe, — azz3Tey, (3.159)
aywy Ty = ag(wsTey — 23T0) (3.160)
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(U"S,I::fp - ZBTCm)
Qg = ag
wyTep

wZiTcp — Z3 Tcm

kg =
w 4]—:[ P

ay = kzag
Substituting equation (3.151) into equation (3.163)
vy = koksan
Substituting equation(3.152) into equation(3.163) gives

g = kl r’ﬂgk‘-gOzl

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

Substituting equations (3.163), (3.164) and 3.165) into equation (3.156)

yields
1

1 Zchm 1 ZZTc-m L ZSITcm
1+ (k’lk’zk:;) wyTep + (k’-zk’:j) wyTep + (fis) waTey

Equation (3.166) is the utilization of processor P,

Uy =

The general form of the equation is

U, = L fori =2.3,...N

i—1 i—1 1 TL‘iTcp
L+ Zj:l ]._.[mzj E} 2Tem

The general form for the average utilization is

AvgU = %ZU,-

N
1=1
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UTILIZATION CASE 3 WHEN ALL INVERSE PROCESSORS SPEEDS ARE EQUAL
T T T T T T T

ngbo RN s .
Tem=2
Tep =2

08 ; : 2=2
w=6

Avg Utilization = 0.2948

UTILIZATION

5 6 7
WUMBER OF CHILDREM PROCESSORS

Figure 3.11. Utilization versus the number of children processor, all inverse
processors speeds (w) are equal here w=6

NUMBER OF PROCESSORS IN CASE 3 FOR UTILIZATION TO REACH ZERD
T T T

Tem=2

Tep =2

z=2

w=6

Avg Utilization = 0.12

Number of Processors at 99.6%
Decrease = 20

Number of Processor at zreo = 25

UTILIZATION

15 20 25 30
WUMBER OF CHILDREM PROCESSORS

Figure 3.12. The number of children processors added to the tree that will
force the utilization to zero, here 23 processors
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3.7.1 SPEEDUP CASE 3
Using equations (3.138), (3.152) ,(3.165), and the conditions
Wi=W, T =T m, 2=z and ki=k
A general expression for q; is formed.
g = kl(]tl
X3 = klkg(.kl
g = klkgkga’l

The loads of a;fori=2to N, are found

i—1
; = Hkmai—(?ﬁ—l) for Z:LQN

m=>0

Qi—(i—1) =

(3.169)

(3.170)

The i-(i-1) term assures that a; always appears on the right hand side of

the equation (3.169) .

The normalization equation for case 3 that has a root that does processing

is given below.
apg+ar+as+az3+ ... +ay =1

From Figure 3.10
Tf 0— a(]u’UTcp

Of{)w(}Tcp = Oﬂlwchp
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rewriting the normalized equation (3.171)

N
ap + ap + a; = 1
=2

Substituting (3.176) into equation (3.178)

N
(0%
ooty =1
1=2

Substituting equations (3.169) and (3.170) into equation (3.179)

N i-1
%+al+znkﬂlal:1

i=2 m=1

o

i—=2 m=1

The value of o, for this network is
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(3.174)

(3.175)

(3.176)

(3.177)

(3.178)

(3.179)

(3.180)

(3.181)



1

1 N 1—1
o +1+ Zi:Q H-m:l Ko

] =

Equation (3.172) with w;=w and ay =1 becomes;

Tf(} = wﬂ:p

Equation (3.183) is the computation time on a single processor.

From(3.173)
Tr = oqwidy,
Extending equation (3.184) to represent N processors yields
Forw;=wand z =

TfN = ale(_’p

Equation (3.185) is the computation time on the entire tree with N

processors.

Speedup is the ratio of Ty / e,

Tf[) L wT(.‘p . 1

T:N' aw Tcp a

T 1
speedup = % = —
N 231

speedup =

1 N -1
ko—}_l—i—ZHkm]

1=2 m=1
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(3.183)

(3.184)

(3.185)

(3.186)

(3.187)
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SPEED UP CASE 3

SPEEDUP

a 5 10 14 20 25 a0 34 40 45
MUMBER OF CHILDREMN PROCESS0ORS

Figure 3.13. Speedup for case 3 as the number of processors is increased
the speedup approaches a constant here a speedup of 5.0
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3.8CASE 4
SEQUENTIAL DISTRIBUTION
SIMULTANEOUS START
ROOT DOES NO PROCESSING

t
Po
I allecm
P, t
alwchp
Ts
aZZZTcm
P,
a2W2Tcp t
Ts
P3 a3Z3Tcm )
a3W3Tcp
Ts
0lsZ4aT
P4 _|4— 4£4 1 cm )
OL4W4Tcp

Ts

Figure 3.14. Sequential distribution, simultaneous start, and a root that
does no processing.

Just as in Figure 3.13, the four boxes in figure 3.14, represented by
0121 Tem, 025 Tem, 03Z3Tem, @and 024 T, could just as well been placed side by

side on the top portion of Py’s time axis. The diagrams are equivalent.
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These loads are distributed sequentially from the parent processor to the
children processors. The parent processor does no processing. The
children processors have front end processors.

The equations for utilization in case 4 are the same as in case 3.
Comparing figure 3.10 and figure 3.14, the only difference is that figure
3.10 has a root that does processing, denoted as agwgT.,. This term does
not enter into the formularization of the utilization equations of case 3.
The derivations of the utilization equations for both case 3 and case 4 start
at the first child processor P,. From this point on the figure are identical,
producing the same set of equations. The utilization equations are
repeated here without their derivations. The original equations numbers
have been updated. The graphs in Figure 3.11 and 3.12 would be identical

in case 4. These graphs are not repeated.

1
U, — . (3.189)
1 ]. ZITCF‘
+ = waTey
1
U, — (3.190)
1 + 1 21 e 1 z2adem
kike | wsTep ka ) wsTep
1
U, — (3.191)

T, 1 20T, 1 231,
1 1 Z1dem 24 em 4 34Lem
+ kikoks ) wyT,p + kaks | wilep + ks ] wyTep
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1

U; = PR R fori=2,3,...N (3.192)
1+ [Ej—l Ha’n:j m} ﬁ
1 =
AvgU = — PR (3.193)
i=1
3.8.1 SPEEDUP CASE 4

Unlike utilization, the speedup in case 4 will be different from case 3.
From figure 3.14
Tfl = al'wchp (3194)

ng = o129 L + OfQ’LUQ'TCp (3195)

As in case 3 using equations (3.138), (3.153), (3.165), listed below
Qo = lcloq
Qg = k‘ﬂfg(kl
g = ler’{:Qk‘gOzl

A general expression for a; is formed, using the conditions w; = w, Te, = Te,

zi=zand k;=k

i—1
; = H kmai—(?ﬁ—l) for i = 1, 2: N (3196)

m=>0

Qi—(i—1) = Q1 (3.197)
Here the normalization equation is

ol +as+azg+...+ay =1
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Rewriting the normalization equation

N

Substituting equations (3.196) and (3.197) into equation (3.178)

N i1
oy + Z H kmﬂ‘l =1
=2 m=1
N i1
o 1+ZHkm] 1
i—=2 m=1

The value of o, for this network is

1
N i—1
{1 + Zi:Q H-m:l km]

] =

Equation (3.194) with w;=w and a; = 1 becomes;

Tfl = wﬂ:p

Equation (3.184) is the computation time on a single processor

Extending equation (3.194) to represent N processors yields

Forw;=w
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TfN = (l"lecp (3203)

Equation (3.185) is the computation time on the entire tree with N
processors.

Speedup is the ratio of T¢; / Ti.

Tfl B wT_p B 1

Tn aywly, o (3.204)
speedup = In = 1 (3.205)
I-l"\r oF]

speedup =

1=2 m=1

N i1
1+> 1] k] (3.206)

SPEED UP CASE 4

# T
35
3l ]
251 -
150 -
+| N T I I O I Y O O O R O O R N O DN DN
05—
n

10 15 2 2 a0 3 0

NUMBER OF CHILDREM PROCESSORS

SPEEDUR
)
T

Figure 3.15. Speedup for case 4 as the number of processors is increased
the speedup approaches a constant here a speedup of 4.0
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3.9ANALYSISOF RESULTS/CONCLUSION OF CHAPTER 3

The utilization results in case 1 and case 2 are unexpected. Comparing
Figure 3.3 and Figure 3.4 of case 1 with Figure 3.6 and Figure 3.7 of case 2,
shows that the results are identical. The equations are derived from
different sources using different methods. As can be seen in the timing
diagrams of  Figure 3.2 and Figure 3.6, in Figure 3.6 the parent processor
has a front end processor. In Figure 3.2 the parent processor has no such
processor. As a result there is an additional k term, kq in the equations
derived for case 2. Comparing equations (3.6) of casel and (3.73) for z; =
z; the two equations reduce to an equivalent expression.

For U; incase 1 withz;=z

1

U= — (3.207)
L+ o
1

T e (3.208)

il_Fchp

wi e

U, = P 2
: ﬂ"‘lﬂ:p + Zﬂ:m (3 09)
Using equation (3.69) with the above condition yields
w(]irr:p
ko = —
(zT:i:m + u»’lTL'.p) (3210)
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Substituting equation (3.210) into equation (3.210)

For U, in case 2

Ur =1— ko (;(T ) (3.211)
‘0L cp
w OTTC';U < ir( m
U =1- 3.212
! (ZTcm + 1U1Tc-p) (wUTcp> ( )
ZTem
U =1- : 3.213
! (zTcm + wchp) ( )
Zcr(':n. + wy f') - ZCF(_:m
U, = : ! 3.214
! ( ZTcm + wlpr ( )

wchp
ZTcm + wlT::fp

Uy (3.215)

Equations (3.209) and (3.215) are equal

The reason equation (3.211) reduces to an equivalent expression is that
in the equations of case 2 the total time is given by aow,T.,. The utilization
for the children processors are written in terms of this total time. This
produces equations that have a constant term (zT.m/WoT¢,) that multiplies
each equation derived in case 2, as can be seen in equation (3.110). The
denominator of this term, which represents the inverse processor speed of
the parent processor’s cancels like terms in the only term that the

equations share that is different, ko. This means that the parent processor
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having the ability to send and receive load at the same time does not
improve utilization.

In equation (3.85)

zTem
UQ =1 — (k(} + k[‘)kfl) ( )

wolep

(3.216)
The term (ko + kok; ) = k + k* is a power series
1/(1-x)=1+x+x>+...+x" for|x| <1
Equation (3.216) is represented by a power series times a constant which is
then subtracted from 1. This produces the exponentially decreasing
utilization curves. It has already been shown that equation (3.73) can be
rewritten as (3.6).

From the data used to generate Figure 3.5, the speedup in case 1
saturates at 4.0. The same data shows that the first occurrence of 4.0
corresponds to 39 children processors. This indicates that the network
could be expanded to 39 children processors and still benefit from the
advantages of parallel processing. When viewing the graph in Figure 3.5, a
value of 19 children processors on the x axis is a good visual estimation.

Using the numerical data this value is found to be 99.6 % of the saturation
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value of 4.0. This percentage is used to find the number of children
processors that the network can expand to in all other speedup
calculations. Four decimal places are used in order to decide which value is
actually the closest to 99.6%.

In case 2 the speedup saturates at 4.7500, 4.7500x0.996 = 4.731,
comparing this value to the numerical data corresponds to 17 children
processors. In case 3 the speedup saturates at 5.0 following the same
process gives an extension of 10 children processors. In case 4 the speedup
saturation is 4.0. This equates to 18 children processors.

There is no fix percentage for speedup used; values range from 95% and
up. The initial speedup saturation values such as 4.0 are found through
computer computations. Here a strict definition of saturation is defined as
a value that does not increase regardless of how many additional children
processors are added.

For a network of 10 children processor as shown in Figure 3.3, if the
strict definition of saturation is used, it implies that the network could
expand to 39 processors and still benefit from parallelism. However the

utilization curve in Figure 3.4 shows that the utilization at 35 is zero. In this
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situation the strict definition is not valid; the estimation of 99.6 %
corresponds to a realistic value in Figure3.4.

Utilization is a useful performance metric , and compliments the
traditional performance metrics such as speedup and finish time
(makespan)

3.10 RESEARCH GOALS

To calculate the utilization of a linear daisy chain and mesh
configurations. Furthermore to investigate new and novel performance

metrics that can be applied to divisible load scheduling.
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Chapter 4
4. Signatur e Sear ching
4.1 Introduction

Signature searching or pattern recognition is a process by which the task
of searching large amounts of data is accomplished by distributing the load
among a number of processors and having each processor search its
assigned load for a distinct marker, for example the occurrence of a certain
voltage. In this chapter signature searching is applied to the sequentially
distributed single level tree networks of chapter 3.

Four different types of networks are investigated, in order to find which
is better suited for an optimal search of a divisible load. These are
staggered start with and without a root that does processing, and
simultaneous start with and without a root that does processing. The
results are compared with utilization and speedup results from chapter 3.
A third metric is developed using the finish time and the last

communication delay of the network.
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42CASE 1
SEQUENTIAL DISTRIBUTED

STAGGERED START
ROOT DOES NO PROCESSING
T Tof T3 Ta
PO | : | | t
T
Pl ' | )
alwchp t
PR T
T
P, !
aZWZTcp t
T2 i i Tf
. i t
a3W3Tcp
LE! E T
5
P, t
a4w4Tcp
T, Ts

Figure 4.1. Timing diagram of a single level tree with sequential
distribution, staggered start, and a root that does no processing.

In Figure 4.1, T, through T, represent the loads that are sequentially
distributed, similar to Figure 3.2. Here T represents the amount of load

searched by a particular processor within the time intervals determined by
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the communication delays, i.e. T; through T,. Since this distribution has a
staggered start, the loads are completely transmitted before the processors
begin computations. So the load a; of T, is entirely transmitted over link z;
in the time a,z,T., before processor P, starts processing at time T;. This

process continues until all values from T, to Ty are transmitted.

Ty = (an2)Tem (4.1
Ty = (21 + az22)Tem (4.2)
Ty = (a121 + a2z + a323) Tem (4.3)
Ty = (121 + az20 + aszg + agzg) Tom (4.4)
Ty = (121 + aszs + aszg + agzg + oo + avan)Tem (4.5)

Each processor P; through P, al of which are children processors finish
processing at the same time, the finish time T.

Ty = a1, +ajwdly, (4.6)
The computation speed of the processor is given by aynwnTg,. Where oy is
the load transmitted to processor N, wy is the inverse processing speed, and
T is a dimensionless number used to increase or decrease the computation
speed. Thevariable T, performs afunction similar to that of T, but for the

communication speed.
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The percent of the load processors P; through P, searchers within an

interval is defined as o'T%, and given by the following equations.

<<, L 47
(0% .

1 I (4.7)

T -1 T -1,

< T < S 4,

LET<Ty ot p o (4.8)

1T =13 T =1 T — 1T
T, <T<T Y . : 49
3 4 Tf—T1Ql+Tf—TQQ2+Tf—Ra3 (4.9)

T -1 T —1T5 1 — 1Ty T -1y
T, <T<T . vy (4.10
1Tty et et oot oo 410
Fori=1,2,...N

i
T —1T:
T%; = o 4.11
oT %, mz_le—T?:a (4.11)

Where T isin theinterval of

T, <T<T For i=1,2,...N—1 (4.12)
And T isintheinterval of

Ty <T < Ty For i=N (4.13)

The total time is equal to the combined intervals of equation (4.12) and
(4.13).
In chapter 3 finding a; was sufficient for all calculations. However in

chapter 4 to explain the behavior of equation (4.11), and Figure 4.2, the
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values of o, through oy are necessary. Since case 1 of chapter 3 and case 1
of chapter 4 use the same conditions and timing diagrams, the values of o, is

found using equation (3.57) repeated below.

1
- N -1 §,
1 + Zi:‘z Hm:l k‘m

(4.14)

03]

With each value of N a different o, is found. In a network with four
processors the value of o, is 0.3657. This value is used to calculate the
remaining alpha’s of which o, isthelargest.
The normalized equation is equation(3.53)

a4+ oo+ a3 +ag=1 (4.15)
Knowing this and using the following conditions:
Wi=6,z=2Ten=Tep =2, N=4and o, = 0.3657
The ratios of the apha' s are found
Fori=1toN-1

W T'r D

ke = = 0.75 (4.16)

Z?l-l-lﬂ:iﬁ + u"i+1T:c:p

The number of k’sisequal to N-1.

Equation (3.51) below

i—1
o = H flf--m,Oc‘-.if(?:q) (4.17)

m=1
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for i = 2 to N is used to produce equations (3.18), (3.32) and (3.46), listed

below respectively:

s = ko

g = k1koory

ay = kikokson
Using the above conditions the k’ s equated to:

ki =k=0.75

K1k = k* = 0.5625

kikoks = k3 = 0.4219
An array with the first element set to 1 is created.
ka=[1Fk K K ]=[1 075 05625 0.4219 |
o =aks = [ 0.3657 0.2743 0.2057 0.1543 |

The sum of the elements of o must equal one.
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Percent of Load Processed vs Time for N =4,10, 19

Percent Load Processed

I
15 2 25 3 a5 4 45 5 55 5]
Time

Figure 4.2. Percent of load processed (a.T%) versus time for three different
values of N. For staggered start with aroot that does no
processing, case 1.

In the calculation of aT% for equations (4.7) through (4.10) the variable

T is replaced by the term on the right hand side of the interval before the

equations in order to find the end points. The equations also allow for the

exact percentage of the load searched at any time T in the interva to be
determined. When the end points of aT% are plotted versus time as
determined by T, through Ty plus Ty, Figure 4.2, it is found that for
homogeneous link speeds and processors speeds the slope from point to

point increases and the time between the points decreases, with the

exception of the interval T <7 <7Ty. The time between the points
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decreases because the alpha’ s of equation (4.5) decrease as demonstrated by
equation (4.19).

The slope between the points in Figure 4.2 is an indicator of processor
speed. Each successive processor is helped by the previous processor. For
P, one processor is processing, for P, both processors are processing. At the
final processor all processors in the network are processing load. So even
thou the individual processors speeds are the same the cumulative effect is
that load is being processed faster in the network as a whole. This can be
seen by the increase in the sope over time. The slope between Ty and T;
does not follow the same pattern as the slopes from T, to Ty. Onthe plotsin
figure 4.2, aT% must reach 100% at the finish time, if not the network is not
optimized because it is possible for a processor to continue processing. The
finish time of equation (4.6) depends on a4, and a; depends on the number of
processors, when z; T, and w; T, are held constant. For example with N =
4, 0y =0.3657 and Ty = 5.814. If N =10, oy = 0.2449 and T = 4.2387. This
shows that the finish time decreases as processors are added. As the
network increases in size, T; approaches Ty, this can be seen on Figure 4.2.
Here the value of Ty isfixed at the same value for al plots. Thisis because
in equation (4.6) the alpha’s sum to one which means that the value of Ty is

determined by T, and z. In these plots Ty = 4. When T; convergesto a
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value that is closest to the margin of Ty + 0.4% of Ty the number of
processors this occurs at is noted and considered the maximum number of
processor alowed for this type of distribution with the given conditions.
HereitisN = 19. If Ty = Ty the load would be distributed to the processor
but no computation would take place as the finish time would occur as the
distribution was completed. If Ts < Ty the transmission would cease at the
finish time, and would not be fully distributed. Furthermore no computation
would take place. This says that the network had too many processors for
the given conditions. In Figure 4.3 the processor speeds are plotted against
the number of processors. Here as above the processor speeds are
homogenous. The slope is constant from processor to processor as expected.
The maximum speed for this particular network for the given conditions is

the processor speed at processor 19, which is 3.1667.
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Cumulative Fracessor Speed vs Mumber of processoars
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Figure 4.3. Processor speeds versus the number of processor in the network,
where the root does no processing, case 1. The speed on a
single processor is % wherew = 6. All processor speeds are the
are the same.
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4.3 CASE 2
SEQUENTIAL DISTRIBUTED

STAGGERED START
ROOT DOES PROCESSING
o | e t
i E E E T¢
Tooboo
NS
R
P, 5o
' ! ! alwchp t
2NN T
v
3 e
| | W Tep t
" n
LT
2 s :
E a3W3Tcp
T3E Ts
.
Ly
P, t
a4w4Tcp

Figure 4.4. Timing diagram of a single level tree with sequential
distribution, staggered start, and a root that does processing.
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In Figure 4.4, T, through T, represents the loads that are sequentially
distributed, similar to figure 3.6. Figure 4.4 is different from Figure 4.1 in
that the root does processing. As in Figure 4.1, T represents the amount of
load searched by the processor in an interval defined by the
communication delays, Ty through T,, where the communication delay of T,
is zero. In Figure 4.4, the root P, has front end processing and can process
and transmit at the same time. As a result the root begins processing at T,
and transmitting the load a; of T, to processor P, over link z; at time T..
Just like in Figure 4.1 the load being transmitted to P; will not start
processing until the entire load has been transmitted. From this point on

the timing diagrams of Figures 4.1 and Figure 4.4 are identical and perform

the same.
Ty =0 (4.20)
Ty = (o121) Lo, (4.21)
Ty = (o121 + aze) 1o, (4.22)
Ts5 = (a121 + aozo + azz3) Tem (4.23)
Ty = (121 + 222 + azzy + yza) Tem (4.24)
Ty = (21 + vz + a3z + agzg + ... + anay)Tom (4.25)
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All processors P, through P, finish processing at the same time Ts.

Tf = O‘waUTcp (426)
The percent of the load searched by processors Py through P, within an

interval is given by aT%, and is defined by the following equation.

To<T <T
'T—TU

4.27
T —Tp " (4.27)
I <T<T
'T—TU T-—1T;

o : 4.28
Tf—TOQO+Tf—T1a1 ( )
T <T<Ty
1 -1 T -1 T —"1T5

: — 4.29
- T T T o™ (4.29)
I <T<T,
'T—TU 1—1 1T — 1T T—T3
— — 4.30
Tf*TDOO+Tf*T1Ql+Tf*T2&2+Tf*T:}OfS ( )
I, <T<Ty
'T—TU T—Tl T—TQ T—T;; T—T4 (431)

o T oo o o™
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For:=0,1,2,.... N

aT%; = T ; (4.32)
m=0 "1

Where T isin theinterva of

T, <T<T For i=0,1,2,...N —1 (4.33)

And T isin theinterva of

Iy <T <Ty For 1= N (4.34)

The total time is equal to the combined intervals of equation (4.33) and
(4.34).
Case 2 of chapter 3 and case 2 of chapter 4 use the same timing diagram.

The normalized equation from is equation(3.114)

g+ ] + ... +ay = 1 (435)
From equation (3.116)
ap = 2 (4.36)
ko

Here o, isfound using equation (3.121) repeated here as

1

(4.37)
}; +1+ Z? 2Hm =0 ’”

As before in case 1 each value of N produces a different a,, the o, used
depends on the size N of the network. Here processors P; to P, are children

processors and N refers to the number of children processors. In case 2 for
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N =4, a; = 0.2458 and ap = 0.3278. The ratios of the apha's, the k's are
found using equation (4.16), withi = 0 to N-1. The equation that shows the
relationship between the apha's and the k's equation (3.112) is repeated

bel ow.

i—1
o = H ki»no,’.i_(i_]_)_]_ for 1 = 1 2, vees N (438)

m=0

Using the same conditions asin case 1 the values of the k’s are the as before
same, ki = k = 0.75, and the number of k’s is equal to N. Equation (4.36)
reproduces equations (3.70), (3.82), (3.96) and (3.108) listed below.

o = koay

gy = kokyayg

ag = kokikaay

ay = kokykoksay
Using the above conditions the k’ s equate to:

ko =k =0.75

koky = k* = 0.5621

kokika = k* = 0.4219

kokikoks = k* = 0.3164
Asincase 1l an array K, isformed with the first element set to 1.

ka=[1k K K E']=[1 075 05625 4219 0.3164 ]  (4.39)
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o = apgka = [ 0.3657 0.2459 0.1844 0.1383 0.1037 ] (4.40)

The sum of the elements of o must equals one.

In the calculation of aT% for equations (4.27) to (4.31) the variable T is
replaced by the term on the right hand side of the interval above the
equation. This as in case 1 provides the end points. The end points are
plotted versus time in asimilar fashion as in the previous case, and under the

same conditions, Figure 4.5.

Plot of Load Processed vs Time forN =410, 19
T T T

D R R R e L R e R R R R R e e L Al R -

0E[- : :

Percent Load Processed

DT s v s e L S S S R SRR e e R A A S B S <

[r] A AU — el PR SR — T—— 4

Figure 4.5. Percent of load processed (a.T%) versus time for three different
values of N. For staggered start with aroot that does processing,
case 2.

The dlopes increase from point to point, and the time between them

decreasesininterval 1y < 7' < Ty. Intheinterval Ty <71 <7 for N =4

the dope increases with respect to the previous slope on the same plat,

however not the steady increase seen up to this point. The time between Ty
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and T; is at its greatest for any value of N larger than four. For N = 10 the
slope increases by a greater degree, and the time decreases. At N = 19 the
slope and the time now conform to a pattern consistent with that established
intheinterva 1y <1 < Tl.

Unlike case 1 the value of Ty is not the same for al plots. This is
because in equation (4.23) the apha's do not sum to one. In this case the
normalized equation (4.33) includes ay, aterm not found in equation (4.33).
With each new value of N the sum of a; to oy increases. At the sametime T;
which depends on o decreases, because oy decreases with each new vaue of
N. This is due to the redistribution of the load, which must sum to one,
while incorporating more alpha's. For this type of network thefirst alpha, ag
remains the largest after redistribution. This creates a situation where T; and
Ty are moving toward each other. When T; converges to a value that is
closest to the margin of Ty + 0.4% of Ty, the processor this occurs at is
noted and considered to be the maximum number of children processors for
this distribution and conditions. Again this occurred at N = 19, asin case 1.
The same pronouncement for the parametersof T; =Ty and T;< Tyincase 1
hold for case 2.

In Figure 4.6 the processors speeds are plotted versus the number of

processors. The processors speeds are homogenous, and as in case 1 the
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slope is constant from processor to processor. However in this case the
processor P, is included. At N = 19 the maximum speed for this type of
network for the given condition is 3.3333. However there are 20 processors

working at the same speed that produces this result.

Cumulative Processor Speed vs Number of processors
35 T T T T T T T T

Processor Speed

10
Processors

Figure 4.6. Processor speeds versus the number of processorsin the
network, where the root does processing, case 2. The speed
on asingle processor is i wherew = 6. All processor speeds
are the same.
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4.4 CASE 3
SEQUENTIALLY DISTRIBUTED
SIMULTANEOUS START
ROOT DOES PROCESSING

Po .
Y T aOWOTcp
7] o T
T
P ‘
Ti G
%
P, —
+T . . aZWZTcp t
oo E Ty
Ts I
P |
3 1 t
Ty T
T,
Ps t
+ T a4w4Tcp
T4 T P

Figure 4.7. Timing diagram of a single level tree with sequential
distribution, simultaneous start and a root that does processing
In Figure 4.7 the communication delays are represented by T, to T,
shown in boxes above the t axis. The additional T, through T, shown
below the t axis marks the beginning of the communication delays for the

same variable. First the load of T, is transmitted to processor P, it starts
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processing as soon as part of it is received because the processors have
simultaneous start. When the transmission is complete, the load of T, is
transmitted, this process continues until all the loads are transmitted. The

equations below describe the working of Figure 4.7.

Ty =0 (4.41)
1 =0 (4.42)
Ty = (a121)Tem (4.43)
T5 = (21 + aozo) o, (4.44)
Ty = (o121 + aoze + az23) T, (4.45)
Ty = (onz1 + gz +agzg + ..o+ anen) Tom (4.46)

All processors P, through P, finish processing at the same time Ts.
Ty = apwpTt, (4.47)
The percent of the load searched by processors P, through P, within an
interval is given by aT%. The same set of equations for the calculation of

aT%in case 2, (4.31) to (4.27) appliesto case 3, repeated below.
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To<T <T)

T — TU
(8}
Ty —Ty °

I <T<T

'T—TU +T—T1
(8 (84
T, —Ty " Tp—T,

I <T<T

T —"1T T -1 T-1T,

FY TR P TR

I3 <T <Ty

'T—TU T—Tl T_T2

T -n T M T o T o™

T, <T <Ty

'T—TU T—T1 T—TQ

7 T P DR i e P T

For:=0,1,2,....N

T -1,
aT%i—ZT Tozi
F—

m=0

Where T isin theinterval of
TT?STS]?-I-I Fori:09112:
And T isintheinterval of

Ty <T < Tf For

o

T—1T,

T-T,
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(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)



The total time is equal to the combined intervals of equation (4.54) and
(4.55). Case 3 of chapter 3 and case 3 of chapter 4 use the same timing

diagram. The normalized equation from (3.171) is

ag+ a1+ ... +ay =1 (456)
From equation (3.175)
ap = 2 (4.57)
ko
And from equation (3.177)
ky = —2 (4.58)
w1

The alpha s are calculated using equation (3.182) repeated below

1

a1 = N i1 (4.59)
% + 1 + Zi:2 Hm:l k‘m

Asin the previous cases for each new value of N adifferent o, isfound.
Theratios of the k’s are found using a generalized form of equation

(3.162)

o wiircp - ZiTcm

k; i=1,2,..,N (4.60)

U»'f+1Tcp
For homogenous processor speeds and link speeds, which include both
parent and children processors w; = w and z; = z. The intensity parameters
areset at Tgp, = T = 2. Using the above conditions in equation (4.60),

ki=k =0.6667,fori =1, 2, ..., N.
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Incase3for N =4, a; =0.2935 since w; = w, equation (4.58) yields ko = 1.
From equation (4.57) o, = ag = 0.2935.
The equation that shows the relationship between the alpha’ s and the k’s

(3.169) is repeated below.

i—1
oy = H kmaif(ifl) = 2 3, . N (461)

m=1

This equation reproduces equation (3.138), (3.178) and (3.165) listed below.
oy = kloq

ag = kikoory
ay = kikoksaq
Using the above conditions the k’ s equate to:
k1 =k = 0.6667
kiky = k* = 0.4445
kykoks = k* = 0.2963
In case 2 the first element of the array is set to 1, however in this case 3 the

first two elementsaresetto 1. Thisisdueto the fact that oy = ap.

ka=[11Fk Kk E]=[11 06667 0.4445 0.2963 | (4.62)
a=atks = [0.2935 0.2935 0.1957 0.13042 0.0870 | (4.63)

In agreement with the normalized equation (4.56), the elements of a array

sum to one.
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The percent of load processed (aT%) is found for equations (4.48) to
(4.52) following the same procedure as in case 2. Similarly the end points
are determined and plotted versustime, Figure 4.8.

Plot of Load Processed vs Time forN=4,7, 15
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Figure 4.8. Percent of load processed (a.T%) versus time for three different
values of N, for simultaneous start with aroot that does
processing, case 3.

Asin case 2 the slope from point to point increases, and the time between
them decreasesininterva To < T < Ty. Ininterval Ty T<T;,forN =4
thefinish timeis at its greatest value as compared with any other finish time
for aN of greater value. Furthermore the slope has increased, but not with at
the same rate as the previous slopes on the plot. Hereasin case 2, Ty and Ty
are moving toward each other, because the alpha's of equation (4.46) do not

sum to one. For N = 7, the same pattern asin case 2 appears. Asthe size of

the network increases the slope increases and the finish time decreases. At,
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so the actual number of processor is the parent plus the children processor
totaling 16. The same reasoning for the parametersof T; = Ty and Ty < Ty
in case 1 and case 2 hold for case 3.

In Figure N = 15, the processor at which the finish time converges to a
value nearest the margin of Ty + 0.4% of Ty isreached. Here N = 15 isthe
maximum number of children processor for this distribution and conditions.
As stated before the parent processor aids in increasing the overall speed of
the network4.9 the processors speeds are plotted versus the number of
processors. The processor speeds are homogenous as in the previous cases.
The root does processing so the parent isincluded. At N = 15 the maximum

speed for thistype of network for the given condition is 2.6667.
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Cumnulative Processor Speed vs Number of processors
T T T I T T

Processor Speed

Processors

Figure 4.9. Processor speeds versus the number of processor in the
network, where there is simultaneous start and the root does
processing, case 3. The speed on a single processor is i where
w = 6. All processors are equal.
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45CASE 4
SEQUENTIALLY DISTRIBUTED
SIMULTANEOUS START
ROOT DOES NO PROCESSING

Po t
Ty
Py
+T alwchp t
T¢
Ta
T,
P,
+ T (XszTcp t
TZ Tf
P, T3 \
t
+T a3W3Tcp
P, Ta t
+ T a4W4Tcp
T
4 T,

Figure 4.10 Timing diagram of a single level tree with sequential
distribution, simultaneous start and a root that does
no processing.
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In Figure 4.10 the communication delays are depicted as boxes
numbered T; to T, on top of the axis. Below the axis the same T, through T,
mark the beginning of the communication delays. The computation portion
of the processor is also below the t axis. The T besides the downward
pointing arrow is an indicator of what percent of the processor is being
searched in a given interval. Here the loads are transmitted sequentially, as
in case 3. As soon as any part of the load is received computation starts.
The computation starts in processor P, at T;, and at processor P, at T,.
From this point on both processor P; and P,
are computing. When all the loads are transmitted each processor will be
engaged. Upon reaching the finish time T; all processor cease

computations. The equations that described this timing diagram are listed

below.
T1=0 (4.64)
Ty = (ar21)Tem (4.65)
Ts = (121 + @929) T (4.66)
Ty = (121 + oz + a323) T (4.67)
T = (o121 + aozo + azzs + ayzy + ... + anzn) T (4.68)
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Each processor P; through P, al of which are children processors finish
processing at the same time, the finish time T;.

Ty = ayuny, (4.69)

The percent load searched by processor P; to P, within a given interval is

defined as aT%. These are in fact the same set of equations from case 1,

(4.7) to (4.10), and (4.12) and (4.13) repeated below.

T—-T,
T, <T<T .
1 2 T _Tlﬂfl (4.70)
T—-T; T—-T5
T <T<T . =iy .
2 3 'Tf—T1a1+'Tf—Tgaz (471)
T_Tl T_T2 T_Ti
T, <T<T ] . . .
3 4 Tf — Tlal + Tf — TQQZ —+ Tf — TE}O{S (4 72)
T-T; T—-T5 T — T3 T—-T,
T, <T<T : 5+ —— )
4 f Tf_TlOcl—l—_Tf_T2Q2+Tf_T3(Lg+Tf_T4Q4 (4.73)
For:=1,2,....N
i
T —-T,
T%; = Loy 4.74
aT%; mz_l Tf—T,;a (4.74)
Where T isin theinterval of
T, <T <Ti1 For i =1,2,....N—1 (4.75)
And T isin theinterval of
Ty <T <Ty For i =N (4.76)
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The total time is equal to the combined intervals of equation (4.75) and
(4.76).
Case 4 of chapter 3 and case 4 of chapter 4 use the same timing diagram.

The portion of theload o, is found using equation (3.201) repeated below.

1
= F—— (4.77)
1+ Z-z:‘z Hmzl k‘m
Asin all previous cases each new value of N produces adifferent a,.
Theratio of the a’s, the k' s using equation (4.60) repeated below
iy — Lilep = Zidem i=1,2,..,N (4.78)
U""i—l—lf-r(:p

The equation that shows the relationship between the apha's and the k’s is

equation (3.220) shown below

i—1
o = H k?n&l’_(i_l) 1= 2 3, . N (479)

m=1
Using the conditionsw; =w =6,z =2z=2,and T, = Tcn = 2. The value of
thek’sarek; =k =0.6667. For N = 4 the number of k’sis N-1.
Equation (4.79) reproduces equations (3.138), (3.153) and (3.165), derived
in chapter 3, they are listed below respectively.
as = k1o

Qg = kleCk‘l
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ay = k1koksan
Using the above conditions the k’ s equate to:

k1w =k = 0.6667

kiko = k% = 0.4445

kykoks = k3 = 0.2963
Asincase 1l an array K, isformed with the first element set to 1.
ka=[1k K k] =[1 06667 0.4445 0.2963 | (4.80)
a=arky = [ 04154 0.2769 0.1864 0.1230 | (4.81)
The elements of a sum to one, as required by the normalization equation
(4.15).

The percent load processed (aT%o) is found asis case 1. Using equation
(4.70) to (4.73), the end points are determined and plotted in a similar
fashion. In this figure Ty from equation (4.68) is not stationary. This is
because T, = 0 equation (4.64) and the first usage of a; appears in T,
equation (4.65). Since the normalized equation (4.15) is
a1+ o+ o3+ as =1, for N=4. Thesum of the alpha’s of equation (4.67) is
not equal to one. This means that Ty or T4 here does not solely depend on
the link speed (z) and the communication intensity (T.,), which for
homogeneous link speeds would hold the value of Ty constant for all values

of N.
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Plot of Load Processed vs Time forN=4, 7, 15

Percent Load Processed
T
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Figure4.11. Percent of load processed (aT%) versustime for three different
values of N for simultaneous start with aroot that does no
processing, case 4.

As expected from the previous cases, in Figure 4.11 the slopes increase

from point to point and the time between them decreases in the interval

T, <T < Ty Intheinterval Ty < T < Ty, increases in the size of the

network cause the finish time decrease. The number of processors required

for the finish time to close within a vaue that is closest to the margin

determined by Ty + .4% of Ty is, N = 15 for this type of network and

conditions. The same reasoning for the parametersof T; =Ty and T; < Ty in

the previous cases applied to case 4.
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In Figure 4.12 the processor speeds are plotted versus the number of

processor. At N = 15 the maximum speed for this type of network for the

given conditionsis 2.5.

Cumulative Processor Speed vs Number of processors

Processor Speed

Processors

Figure 4.12. Processor speeds versus the number of processorsin the
network, that uses simultaneous start and a root that
does no processing, case 4. The speed on a single processor
IS % wherew = 6. All processor speeds are equal.
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4.6 ANALYSISOF RESULTS CONCLUSION OF CHAPTER 4

Two sets of equations and their intervals are used to find the percent load
processed. Thetype of parent processor determines which set is used.
Set 1 and set 2 are described basically by the same equation. Set 1 isfor a

root that does no processing (RDNP) equations (4.11) and (4.74)

aT%; =3, 1 74, for i = 1to N. Set 2 is for a root that does
processing (RDP) equations (4.32) and (4.53), aT%; = S! _, %a@ for

I =0toN.
The upper limit of the summation i represents the number of computing
processors, and m takes its value from the first value of i. Inthe four cases
I =1 to N for aroot that does no processing, and i = 0 to N for a root that
does processing.
The intervals are stated below:
T, <T <T;;, fori =1toN-1equations (4.12) and (4.75)
for i = 0 to N-1 equations (4.33) and (4.54)
Ty <T <7Tj fori=N equations(4.13), (4.32), (4.53) and (4.75)
The limits of the interval are controlled by the communication delays and
finish time.
The speedup and utilization of chapter 3, along with performance metrics

are compiled in Table 1.
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case | Type | RDP | N max TN Ts EQs | N N
of RDNP | T, T | Speed util | speedup
start

1 Stag | RDNP | 19 3.1667 | 4.0000 | 4.0170 | 1 20 |19

2 Stag | RDP |19 3.3333 | 2.9968 | 3.0095 | 2 20 |18

3 Sm |RDP |15 2.6667 | 2.9949 | 3.0051 | 2 14 |17

4 Sm | RDNP| 15 2.5000 | 3.9954 | 4.0092 | 1 14 |18

Table 1. Complication of parameters from chapter 3 and 4.

Stag = Staggered start

Sim = Simultaneous start

RDP = Root does processing

RDNP = Root does no processing

Nt 1¢ = Performance metric

max speed = Maximum cumul ative processor speed
Ty = Last communication delay in a network
T: = Finish time

EQs = Equation set
Nui = Performance metric

Ngpeedup = Performance metric

w = The inverse processor speed
z=Theinverse link speed

When a root does processing the max speed is greater for processors in

set 2 as compared with set 1. Thisis reasonable due to the cumulative effect

of the processors, the more processors processing information the faster the

overall network performance.

The number of processors a particular network can have is based on three

different performance metrics. In Table 1, Ny 1 1S the number of processors

a network can have based on the finish time and Ty the last communication

delay in the network. Here Ny 1¢ IS the processor at which the finish time
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converges to a value closest to the margin of Ty + 0.4% of Ty. When the
processor speeds versus the number of processor, including the root are
plotted. The result is the maximum speed for the network, Figures 4.3, 4.6,
4.9, and 4.12.

The performance metric Ny is based on how many processors it would
take to force the utilization to zero. Here zero is defined as when the first
processor’s utilization has declined 99.6% from its origina value. The
number of the processor this occurs at is considered to be the number of
processors the network can sustain, Figures 3.4, 3.8, and 3.12.

The final performance metric, Ngeedyp 1S the number of processors that can
be added to a network and still befit from parallel processing. It isfound by
taking 99.6% of the number at which speedup saturates, and matching it
with the number of the processor it occurs at.

Speedup is an established performance metric, utilization was developed
in chapter 3, and using the finish time and the Ty is another way found to
check the validity of utilization. The performance metric Ny is consistently
one off from Nqy1s. For staggered start it is one greater, and for
simultaneous start it is one less. The speedup is higher for simultaneous
start. Overal for the four cases Nyg and Nty 1 are a better match then

speedup under these particular conditions.
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Case 3 has the best finish time and uses the fewest processors. It would
process the same load as case 2 with fewer processors and at a dightly
smaller finish time. The maximum speed is higher in case 2, but the max
speed is based on how many processors there are.  So even though the
maximum speed of case 3 is less than that of case 2 it accomplishes more
with fewer processors. This is readily seen in Figure 4.5 case 2 and figure
4.8 case 3, athough the exact values of the finish times cannot be discerned
from the plots.

For a divisible load that can be partitions as that of a in equation (4.63).
This is a result of having homogeneous processor and link speeds. A
network that is sequentially distributed has simultaneous start, and a root

that does processing will perform the best signature search.
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Chapter 5

5. Linear Daisy Chain Configurations

5.1 Introduction

Linear daisy chains are the basic building blocks of network topologies,
with the exception of a single node. The smallest linear daisy chain (LDC)
the equations in this chapter can work with is one compose of three nodes
(processor) or more. Understanding how the LDC’s work makes it possible
to create more complicated structure. For example in chapter 1 first a
linear daisy chain of five nodes was designed. This was expanded to a
mesh, and can be further expanded into three dimensions.

In this chapter two types of linear daisy chain are investigated. One is
with staggered start without front end processing, the other has a hybrid
strategy and front end processing. Staggered start means that when loads
are transmitted to a processor all loads must arrive at that processor before
processing can start. The hybrid strategy means that it has properties of
staggered state and simultaneous start, depending on rather it is
transmitting or receiving loads. The simultaneous starts can process

information and transmit at the same time.
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5.2UTILIZATION OF LINEAR DAISY CHAIN
STAGGERED START
WITHOUT FRONT END PROCESSING

Figure 5.1. Five processors connected in a linear daisy chain configuration

In Figure 5.1 the loads on processor P, are a,, a3, a4 and as. Processor
P, does not have front end processing, it can transmit loads but not process
them. The loads on P, are transmitted to P, over link z;. Because the linear
daisy chain has staggered start after all the loads have arrived at P,,
processing can begin. The load a, is absorbed by P,, meaning that P, is
processing a,. The remaining loads a3, a4 and a5 are transmitted to P; over
link z,. Here a3 is absorbed by P; and loads a, and as are transmitted to P,
over link z;.  Following the same procedure load a, is absorbed by
processor P, and as is transmitted to Ps over link z; where it is absorbed.

The communication delays of Figure 5.2 and the loads within them are

listed below.
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P1

P2

Py

Ps

TQ = ((}JQ + Q3 + Qg + QS)zlE:m
T35 = (043 + oy + QSJZQTc:m,
T4 = ((1’4 + @5)23Tcm
TE. = (a5)Z4Tcm
T,
A
-
(05} O3 Oy (013
T3
Q3 (07} Qs
a2W2Tcp
T, Ts
Qg Qs
a3W3Tcp
Ts Tt
Qs
a4W4Tcp
Ts
aSWSTcp
T¢

(5.2)
(5.3)
(5.4)
(5.5)

Figure 5.2. Timing diagram of a linear daisy chain with staggered start and
no front end processing.

The timing diagram in Figure 5.2 is another way of representing the

linear daisy chain configuration of Figure 5.1. The function is the same.
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Only now it has been put in a form that makes it easy to calculate the
utilization and speedup. The discussion is the same. First T, is transmitted
to processor P, over link z,. Processor P, absorbs a, from T, and
transmitted as, a4, and as to processor Ps;, over link z, by means of T;
Processor P; now absorbs az from T3, and the remaining loads o, and a5 are
transmitted over link z3 to Processor P, by means of T,. Processor P,
absorbs a, from T4, and transmits as to processor Ps over link z4, using Ts.
Processor Ps absorbs as from Ts completing the process.
The utilization of the linear daisy chain is calculated as in chapter 3,

useful time divided by total time.

The total time of P, is given by

Tf2 = 21 Tem + g2 Tem + @az1Tem + asz1Ten

5.6
+ azzoTey + Q4zoem + 52Ty + QQ’LUQZ}-Q; ( )
Odg’wg'T,
U, — 222t (5.7)
To
aaws T
Uy — p (5.8)
(CVQ + o3+ ay + 055)21’1:5:”3 =+ ((}33 + ay + QS)ZQT’(:?H + QQw‘ZTL:p

Qi Tcp

oW Tc-p
U, — 5.9
27 (agtastastas) 5Ty, | (astastas) 5T, | cowsly (5.9)

a9 waTyy, 9 wolep aswo Ty,
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Uz = (aotagtoatas) 21 Tem 4 (az+as+as) 20T, +1 (5.10)
g wyTey g wyTey
The utilization of processor P, is
U; = ! 511
2= 1+ (():2 + a3 _|_ ay + 05)/;12 {7:1 + ((1’5 _|_ oy _|_ (15)72(%2 (5.11)

The Total time of Processor P is given by

Tf3 = O[ZZ]Tcm + a3Z1Tcm + a4Z1Tcm + alﬁlecm
+ azzoT,, + qazoem  + aszolen, (512)
+ ayzgl ey + aszy + Ofg’ngCp

: ‘T(’m
U, = L3 Tem (5.13)
Tt
Us = i eik (5.14)

(062 + ag + oy + QS)EITCm + (063 + ay + 055)Z2Tcm + (04 -+ Q&)zSTcm + QSH"BTcp

agwsTy,
agus T,
Us = : - 5.15
3 (otagtastas) 21 Te, (ag+as+as) 20T, (ag+as) 23T, m agwg T, ( )
a3 TUSTCP a3 wST(:p 3 wSTcp (lSWSTcp
U ! (5.16)
37 (astastoatas) 51 Tem | (@3t0u4t05) 2T | (Qatas) zgTom +1 '
a3 wzTe, a3 wzTep 3 w3y
The utilization of processor Ps is
) 1
Us = (5.17)

a2 o3 4 g 4 os\alem 4 (o3 | o4 | os\2Tew | (a4 05\23Tm
14 (%2422 4 &1 4 90)20em | (83 4 G4 4 G5)22em | (G4 4

a3 ' oaz | oaz 0 az/wsTy, a3 | oaz o az/wsly, a3 03) STLp
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The total time of processor P, is given by

Tf4 = CEQZle + O[jZ]sz + 05421T»m + QVZ]T(um

+ azzod oy + uzoey  + szl

(5.18)
+ agz3Tem + 5231 ey,
+ a5z Ty + agwyTy,
Od4’UU4T,
U, = dWtEep (5.19)
Ty
. (I‘4'LU4T-.
U, = _ o _ (5.20)
[052 + (3 + vy + a!’))zllﬂm T (Qg + y + QS)zQIr:'rn. + (Q-'l + Q"!’;]ZSI‘(;-”, + ( jﬂl{un + ayw ll{rp
gy Tep
_ “‘4’”-'471(:1: 5 21
U’l o (otasztagtas) 2 Tem (as+outas) 29T, (egtag )ng,,m ‘|' ( )~4T(m crgwy Ty ( ) )
y wyTep oy wyTep g wyT, g wylep  oawy Ty
T ! (5.22)
¢~ (QQ+Q'3+Q4-'-&5) z1dlem (Q3+a4+0‘5} z22dem (a4+0‘5} z3lem (O‘r 4-1-Irm _l_ 1 )
oy waTep vy waTey iy wyTey oy wyley
The utilization of processor P, is
1
U, = (5.23)

1+ (<t2_|_<ts_|_fn _|_W) alem ({t;_l_{tl_l_{tr') lem _|_({14+::_.z)2:s'1}-1r1

ap ooy ooy gl ugTyy ap ooy gl wgTy N wyTep
Thetotal time of processor Psis

Tf5 = OfiZle(:m + Of3le(:m + a’4le(zm + af)lecm
+ azzoley + qazoen, + a5zl
+ a4z3,-rcm + Ct523ﬂ:?-r,_

_I_ (”_'1) Z41em
kg “"471(]1

(5.24)

+ Of5Z4T(gm + a’5w5Tcp

a-’)wf)Tap

U- —
5 T
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5y I, i

U = (5.26)
(Q"? + a3+ o+ aﬁ)f:llr'm T (CI;), + g+ GS)EQL‘JH T (G.L + (}'!";jz:drm + (&.ﬁjz-ll{rm + Q;’J'w-’)l{rp
st Ty

U- = astws Ty (5 27)

2 (antagtagtas) 2 Tom + (as+astas) 29T + (aatag) 23T (as) 24Te., asws Tep ’
as wsTep a5 wsTep s wylyy, a5 wyley asws Tep

U '1 (5.28)

0 (agtoztoytas) 2Ty (agtastas) 20T, | (oatas) 25T, | (a5) 24Tm 1 )
[0 'M-‘_':,:fl-”,. 5 'H-‘_'jri”t-p [0 1;.-‘-_1,'1‘(_-;” x5 ':'t-'.;:l';_-p

The utilization of processor Ps is given by

1
{jla B ] 15] ‘I‘ a3 ‘I‘ & —I— “—;)—:]I;'”" _I_ (“_} _I_ a4 _I_ “_"J) 220 em _I_ (f]_l fl_,-“,)i.';}'_f:..”, _I_ (“_5);-11;'.'” (5.29)
T (n,-, as ooy a5/ wsley as | as/ wilyy T wsTep a5’ wsTyy

r5 X5 43 431

In chapter 3 the ratios of the apha's the k’'s, are found by writing an
expressing based on the timing diagram. The alpha's are isolated and set
equal to the remaining parametersin the expression. They are the link speed
(1), processor speeds (1), and the intensity parameters associated with the
link speed and the processor speed, T and T, respectively. This ratio is
then set equal to a parameter k. It is possible to reduce all expressions in
the timing diagrams of chapter 3to a ratio of two alpha’'sand ak. However
In Figure 5.2 there are more than two apha sin al but one of the expression
that can be derived from the timing diagram. This one expression is a result

of the computation times of processors P,and Ps being equal.
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From Figure 5.2 processors P, and Ps yield
@4w4Tf:p = &F)wSTcp

% o u"Sf:p L Wy

as wqly, oy
From processors P; and P,
CE;;’LL-‘;;TCP = as24Lem + 054%‘4sz

azwsT'c,  aszyTey — aqwyTyy

aqwyde,  aqwile,  qwydy,

a3 Qs Tem wy
—=|—x +— =ky
oy ay w3l w3

From processors P, and P;

Of2w2Tcp = OdélZSTcm + 0‘552:4Tcm + a:inTcp

OJQUJ'QTCp o @42317(3”1 @52417(3,” Offiu*'.‘:‘sTcp

azwolr,  azwil,, azwil,, azwly,

Rewriting equations (5.36), (5.33) and (5.30) yields

Qg = k‘gOﬁg
ag = kyay
ay = kyas
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(5.35)

(5.36)
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(5.40)



A genera method for reproducing equations (5.37), (5.38), and
(5.59) is
o = ki1agaq fori=2,...,.N—1 (5.41)

The general form for finding thek’sis

1 Q T, w a
tm cm Wi+1 Xy . .
Kip1 = E (—Z-m—l) + = fori =2,3,..,. N —1

Qj+1 w;iTey w; Qi+1

m=i+2

(5.42)

The ratio of the loads on the last two processors in the network is found
first, in equation (5.30). The inverse processors speeds w; is known so the
exact value of ksknown. Using an iterative process the values of the rest of
the k’sin the network are found.

In anetwork with N =5 processors, withi = N-1to2,wi=wandz =z

thevaluesof k£;.q are:

fori=N—-1,..2

N=5 | |
2 B Uy Tcm Wi+1 = &
A+1 — M — E —Zm-1 + =
i w;i Ty, w;

Qo Q;
m=:i+2=6 i+1 1 (5 43)
Ws gy
Wy s

From equation (5.30) k5 = *

as
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Theinverseis placed in the next equation, giving a numerical value for

ky = %

(&%)

Q11 iLep wy Q7S]
(5.44)
(874 T(‘m Wy a3
Qy w3, w3 ay
From equation (5.33) k4 = 32
= a T, w o
m cm Ji+1 i
=k = > (2o, ) T i
g \ Qi1 wiley, — w; Qg1
(5.45)

7] s Tem w3 8%
= | —z3+ Z4 + = —
Q3 o3 wile,  wa a3

From equation (5.36) k3 = g—g

1

Using equations (5.38) and (5.39) a3 = ki = kyksas, and = E

both k, and ks are known from the previous equations.

The general expression for Utilization is

1

= ) N —~ . 7 fori=2,3,.... N (5.46)
1+ Z,;:Q (Z.mzj (na_:") ?w?-_%fc‘;m)

Ui
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Note at N =5 the outer summation’s upper index is6. This meansthat min
the inner summation takes on values from 2 to 6. When thevaue of m=6
the summation will equal zero and the process will terminate.

The conditions for U; are as follows:

For theratio (“) found in the summation of equation (5.45)

’l'

1 if a,=a - (%) —1
T

] | an \ _ TTm
2. ]f (87 ) 2 Ky — (ﬁ) — Hr =i+1

. an Y TTE .
3. if apiozap — ( o ) - Hc-=m+l ke

PR-|>_.

Equation(5.45) for i =2 to N, produces equations (5.10), (5.16), (5.22)
and (5.28). They are reproduced on the first line of equations (5.46) to
(5.48) for comparison. Applying the above conditions produces the second

line in equations (5.46) to (5.48).

1
U‘2 = 9 _i m cvr, 21T em
1+ (02 T o Tt )“,QTCP
o (5.47)
- 1 1 1 z Tcm.
1 + (]' + E + kaky + k3k4k5)“}21—:~p
T :
LL;: 1+(ﬂ;2 +n5+(!1+(YJ)21 cimn +(Q5+ﬂ1 —I— )Zthm +(ﬂ+ﬂ)513z:!lli-
g g /Ul }lfp g g UJLJJ a3 a5} 'U-‘;}IL-;;
] (5.48)
= ) 1 1 T 29T wm 1 z3Lem
1+ (ks +1+ mT s )u]g +(1 + YRR L Vit 5Tep T (H + f-xks) iffs'll-p
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1
2 om r m £ 5y & ]:-Ju g Y 2 I;'rn
(rn 1 Qg + oy + 5 )“ e n (II; + gy + i )” S + (f‘_l 1 ::_l) u':T(.J., + (L)n']_lTr.“

(¥4 171 o [i¥ (k4 (¥4 17 ] [i¥
1
+ (ki + byt Lk )3 o (k4 14 )2+ (L4 )2 4 () 2

wyT, wilep 5/ waley

Uy=

(5.49)

1
1 (92 ag a4 as ) :m 1 (”_S oy O ) r m (“I. 1 f]_.':)-_-"s.-f:-m (”_:) 211 em
I ( to T -I_ Wy Tr“ ¥g Tt ws t as - as/ wsTy, + ag/ wsTy

o5 (s 5 ¥ 5 ep

|
+ (kgkaks + kuks 4 ks + 1) 220 4 (ks + ks + 1) 582 (ks + 1) 2L + (1)L

Tep wslep wsTep wsTep

.
(/'I 3] —

v

(5.50)

The utilizationsfor N =5 and N = 22 are plotted in Figure 5.3 and
Figure 5.4 respectively.

Utilization of Linear Daisy Chain Without Front End Processing

0s I T T T T
045 -
Tem=2
: Tep =2
Baboii. . [N ‘w=8
z=2
035 - Avg Utilization = 0.2793

o
w
T

Utilization
=
wil I
i 3
T T

o
o
T

B S - .

1 3
Processors

Figure 5.3. The utilization of alinear daisy chain without front end
processing
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Utilization of Linear Daisy Chain Without Front End Processing

z=2

Avg Utilization =0.0523

Number of Processors at 99.6% Decrease =13
Number of Processors at zero = 22

Utilization

=1
)

0.0017] ; 0.0000
10 15 20 %
Processors

Figure 5.4. The utilization of alinear daisy chain without front end
processing. At N = 13 the utilization has decrease 99.6%
fromitsorigina value. At N =22 the utilization is zero.

The speedup for the network is found by taking the ratio of the time it
takes to finish a computation on one processor divided by the time it takes to
compl ete computations on the entire network.

Tp: isthe time to complete computations on a single processor

Tpn : ISthe time to complete computations on an entire network

T
speedup = T—P (5.51)
PN

Using equations (5.37), (5.38) and (5.39) repeated bel ow respectively
Q9 = /lngig

az = kyoy
g = k5()é5
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Rewriting them yields

1
(Ya = —
1
g = —«
4 k4 3
1
&y — —Qy

A general expression isfound for a

|
k‘m

Q; =

m=3

O —(i—2) = (2

A —(i—2)

fori=34,...,N

For the above conditions in equation (5.54)

The normalized equation for this network is

oy + oy + ..o+ ay = 1

The load on the first processor «; = 0, because the processor P; does

not retain any of the load, it transmits the entire load to processor P».

rewriting the normalized equation (5.56)

N
9 —+ E ;= 1
i=3

Substituting equations (5.54) and (5.55) in equation (5.56) for o;

N i
a;g—O—ZHkL&g:l for:=3,....N

1=3 m=3

T
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(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)



N i

1+ZH;] =1 (5.60)

L 5 T
i=3 m=3

oy

The value of o, for this network is

1
vy = fori=3,4,.... N (5.61)

N i
[1 + 21':3 Hm=3 i}

The time to perform computations on a single processor is
Tps = aswaly, (5.62)
For o, = 1 and w; = w equation (5.61) becomes
Tpy = wTy, (5.63)
The time to perform computations on the entire network is
Tpn = aowoy, (5.64)
When w; = w equation (5.63) becomes

TpN = OC'Qchp (565)

speedup = i = Wy = 1 (5.66)

Tpn afZU"’IL'.p a2

i

N
Z H ] fori=3,4,..,N (5.67)
=3 m—=3

speedup =




Speedup is plotted versus the number of processors, Figure 5.5. A
network of N =22 is used because this is the number of processorsused for
utilization in Figure 5.4. The speedup saturates at 2.7321. The number of
processors that can be added to a network and still receive a benefit from
parallel processing is found by taking 99.6% of the saturation value. In this
caseitis99.6% of 2.731 thisequatesto 2.27. The number of the processor

thisoccursat isN = 11.

Speedup of Linear Daisy Chain Without Front End Processing
T T

o
[1} 1 10 15 20 25

Processors

Figure 5.5. Speedup of alinear daisy chain without front end processing
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5.3UTILIZATION OF LINEAR DAISY CHAIN
USING A HYBRID STRATEGY
WITH FRONT END PROCESSING

Figure 5.6. Five processors connected in a linear daisy chain configuration

The linear daisy configuration of Figure 5.6 and the timing diagram of
Figure 5.7, implement a hybrid strategy. In that they contain aspects of
both staggered start and simultaneous start. Behavior characterized by a
simultaneous start is that the processor can transmit and process
information. This is a front end property. They have staggered start
behavior because the processors can receive information but cannot
process the information at the same time. This describes a processor
without front end processing.

In Figure 5.6 the loads on processor P; are ay, a,, 03, 04 and as.
Absorption (processing) of a; by processor P, starts immediately because
there is no need to transmit a; over a link. At the same time processor P, is
absorbing a, it sequentially distributes the loads a,, a3, a4, and as by

transmitting them over link z; to processor P,. When all the loads have
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been received by processor P, absorption of a, can begin. The loads as, o,
and as are transmitted over link z, to processor P; at the same time
absorption starts. After the arrival of all loads at processor P; absorption of
a3 begins, and the transmission of a, and as over link z; to processor P,
starts. When a, and as have arrived at processor P,, the absorption of a,
starts ,and as is transmitted to processor Ps over link z,. Upon complete
arrival of as at processor Ps absorption of as by processor Ps starts.

The timing diagram if Figure 5.7 is an alternative representation of the
linear daisy chain configuration. The description is the similar. Processor P,
absorption of a; starts immediately , the loads a,, o3, o4, and as are
sequentially distributed to processor P, over link z, by means of T,. After
the arrival of all loads at P, absorption of a, can start. When the
absorption starts loads a3, a,, and as are transmitted to processor P; over
link z3 by means of T;. After all the loads have been received by processor
P3, absorption of o starts. With the absorption of as, the remaining loads
o4, and as are transmitter over link z; by mean of T, to processor P,. After
the complete arrival of a, and as at Processor P,, absorption of a, by
processor P, starts. When absorption starts the final load as is transmitted

over link z, to processor Ps. After being received as is absorbed by
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processor Ps. The communication delays of Figure 5.7 and the loads within

them are listed below.

P1

P2

Ps

Py

Ps

Figure 5.7. Timing diagram of alinear daisy chain that implements a

hybrid strategy, and front end processing

.TQ - (O@ + a3 4y + (1{5)2111(:{;‘1. (568)
.T3 - ((}’3 + oy + QS)ZQITJcm (569)
.T4 - ((-}"4 + a5)ZSTcm (570)
.T5 - (0’5)24Tcm (571)
T,
N
4 N\
Qa, Q3 Oy Qg

alwchp t

T3 T

f—%
03 Oy Qs

a2W2Tcp t

T¢

(_H
a, | as

o3W3Tp t

T5 Tf

(_A_\
Qs

(X4W4Tcp t

Ts
a5W5Tcp t

T¢

The utilization of the linear daisy chain is calculated the same as in chapter

5.2, by finding the ratio of useful time to total time.
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Thetota timeis given by

Tf2 = OfQthTcm + a3le(_’m + a421Tcm + Oszchm + QQwQTcp

QQR}QTCP
Uy = 22
T
U QQU’ZTC;U
2 pu—
05221Tcm + O‘fSZchm + @4lecm + OfE-Zchm + a2w2Tcp
agwaly,,
U, — aswa Ty,
2 (02+a3+a4+oz5) 21T agwoTep
g woTep aowsTey,
The utilization of processor P, is
1
vem 14 (9245 oaa g os)yaile,
Q2 Q2 Q2 o/ wolyy,

The total time of processor 3isgiven by

Tj3 = ooz Lo + a3z Tem + auziTom + asz21Ten

+ a3zl + a4z + a5zoTly + O‘ST-U?)jj(:p

33y Tcm

U, —
3 Ty

053111"3T(.‘p

Us =
(052 + a3 + Oy + @5)217-,CNI + (O‘B + g + OK-S)ZQT’(:m + QSwST(:'p
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(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)



agwzTey,

Of3'w3Tcp
Us = (5.80)
((1‘2+(]53+(14+()c5) 1T e 1 ((13+044+f15) 291 o, azwslep
Qg w3 ep a3 w3l ep azwze,

The utilization of Processor P is

1

U3= 1+(02_~_a3+a4+a5)z1?cz ((1"3_~_(1’4_~_(1‘0)32T2(;:;

(5.81)

Thetotal time for processor P, is given by

Tf4 = QZZchm + QSZITcm + a4Z1Tcm + al}Zchm
+ O—’BZQT(':m + 4290 T+ QBZQTCm (582)
+ 23 Tem + asz3 + agwily,

a4w4Tj
U, = Y4Wile (5.83)
Ty
B aqwyTe, (5.84)
((12 + a3 + Qg + (-}-'5)Z1 T{:m + ((-ES + Y + (lIE)ZQ’I:.'m + (054 + (15)73]—;11 + (24'?1.4‘3'1—;;“
gy Ty
— agwsTep
U4 o (a2+a3+a4 +ﬂ5) Zchm (a3+a4 +(E5) ZQTcm ((M +a5) Z3TCTIL Gy w’]TffP (585)
a wiTep ay wi T, oy waTep  oqwaTyy
The utilization of processor P,is
U ! (5.86)
I4 ¥o Dc3 Oz] Z]T 17 053 Oq ZQT (8% (235 T T
1+( + _I_ +01)’U»1fc;+( + —l_m)tulr::_l_(ﬂ_'i—l_a) 11’(:;

The total time of processor Ps is given by
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Tys = aoz1Tom + azziTom + a2 Loy + a5z,
+ azzol oy, + Qazoen,  + aszll,
+ ayz3Tem + 52310y,

+ QSZ4T(Em + a{)w{)Tcp

O{Su}STCp
Us = ——
Tys

(5 w";Tr i

T
[

fl:";"'f"."uTr:p
aswsTey,

agws Ty asws ey
aswsTep

.) —
- ((]:2—|—f}:_'1,-|-(}:4-|—(}‘:',) 21T em + (n-_-;—-—n:_;—l—r}ﬁ) 290 em (rxﬁ—n: }ZiTr
ag 'wﬁT;-;, g 'wﬁTr?p g tL4T

m_l_( )z-lj:TP]+

The utilization of Psis

1

.
Us =

a5 | a5 Qg g (g ep 5 ep a5

Qg | 03 | Oy “")v]l;:m a3 | 0y “")7’-{”” (fg 053 231 em (ft_n):nlf};m
I+ ( + to T w5 T em ( To T ws T, : +r'1,1)urT + ws oy

(5.87)

(5.88)

[0'32 T3yt aﬂ,’jﬂ;m T (ai’. +ay+ QSJ":Q'I;'.M + (Q.-L + Qfﬁjzi’;]}“m + (&sz-'ll{}-'arf + aﬁ'ufﬁl}-;J(S.SQ)

(5.90)

(5.91)

The procedure for finding the ratio of the alpha’ sthek’sisthe sameasin

the previous section 5.2. An expression is derived from the timing diagram.

From Figure 5.7 processors P, and Ps

054%‘47-:337 = 52T em 1 a5w5Tcp

Od4’LU4TCp _ Op Z4ﬂ:m QSH’STC})

aswyTe, aswydy, aswid,,

as\ 241, ws 1,
_4_( a) 4 (.m,+ o+ ep :kS

as as ) wily, wy

From processors P; and P,
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aiiwiiTcp = OﬁélZSTcm + 0552:3Tcm + a4w4Tcp

azwsley,  auz3len  asz3le,  oaqwidep

agwale, agwsly, ogwsT,, owsl.p

ag ay as 231, | wy
— ==+ +— =k
4 oy oy ) wiley, w3

From processor P, and P;
aQwQﬂ:p = al_‘}z?'Tcm + 05422Tcm + 0552‘2'Tcm + a’:iwi‘}T(_’p

QaWs T(?p . 322 T::-m Q4 32]7(3-:?7 5 22]70-:?7 a3 wiiTnp

QST-UET’CJU OfSw‘ZfIL:p OfSw?’IL:p (1’311)2’1:-_10 05311)2.11‘::})

(05 Qs Xy g
— = (— +—+

a3 a3 a3

29T e w3
+— =
(0%}

— ks
wale, — wo

Rewriting equation (5.99), (5.96) and (5.93) yields

Qo = k‘30¢3
ag = kyay
g = k’5055

Equation (5.40) is general method for reproducing these equations

repeated below

a; = ki fori=2,...,N—1

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)
(5.102)
(5.103)

(5.104)

Here i =1,...,N — 1 can aso be used, but there is no need to find

a1 = ksars. The utilization is one for processor P;. This can be seen from

Figure 5.7, the computation time goes from zero the finish time Tf, 100%.

The general form for finding the k’s is developed using equation (5.93),

(5.96) and (5.99).
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N
am \ zilem  w; Q; . .
L}'+1 _ Z ( m ) it em + i+1 — 1 for i = 2131 s N —1

@iy1) wilyy wi Qj+1

m=i+1

(5.105)

As in section 5.2 the ratio of the loads on the last two processors in the

network isfound. Inthissectionitisequation (5.93). The inverse processor

speeds (w;) are known so the exact value of ks is known. Using the same
iterative process asis 5.2 the remaining k’ s are found.

In a network with N = 5 processors, with i = N-1 to 2, w; = w and z=z,

and know values of T.y, and T, the values of the £; 'S are:

forir=N—1,...,2

N=5H
Qi Zidlem Wi Q;
kayr = ks = =+ = —
m=i+1=5 @i+1/ Wilep wj 41
(5.106)
_ (%) 24 em n W5 Oy
5 w4Tcp w4y 5
Theinverse of £+ is placed in the next equation change
N=5h o T w N
m iLem Ji4+-1 i
k31 =ky= Z ( ) =+ = —
meiti=a \Yit1/ Wiltep wi Q41
Qy Qs Z3Tcm Wy 3
=\ —t + =2
ay  ag) wile, wsz oy
(5.107)

Theinverse of £* is placed in the next equation
4
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N=5
Gy Zﬂ;rcm Wi+1 . 87
koyr = k3 = E - =
wilep w;

m=i+1=3 Qit1 Qi+l

(5.108)

:(%_'_%_{_a’:) ZQTC?H_’_%:%

a3 az  az) wl, w2 o3

From equation (5.101), a3 = ksay and (5.102) oy = ksas
ag = kyoy = kaksas (5.109)
Qs 1
= = —— 11

s r’€4k5 (5 0)

Since all other parameters in equation(5.107) are known, and %, and ks

have been calculated above k3 = f;—i is aso known.

The general expression for utilization is

1

U. =
: 1 i N Oy Zj—1 Tc‘ m
+ Zj:Q Z-m=j oy w;Tep

fori=2,3,.... N (5.111)

Thisisthe same as equation (5.45), except for a change in the upper index of
summation on the outer summation, 7 + 1 has been changeto :.

The conditions for Ui are the same as in section 5.2

o

For theratio (“—) found in the summation of equation (5.110)
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]_. jf Q{T” = sz —_— (Qm) — 1

(643

2,00 a0 = ap - (?;:L) - H:n:H_l k%
3. if Q12 2 - (fl_r?) - Hi:'f”_‘_l ke
Equation (5.110) for i=2 to N, produces equations (5.75), (5.80) and

(5.85). They are reproduced on the first line of equation(5.111) to (5.114)

for comparison. Applying the above conditions produces the second line in

equations (5.111) to ( 5.114).
1
U2 = 1 + (Qz + _l + 0:,1 055)21Tm-,»;1
%) (12 “--'2TC:D
v (5.112)
- 1 1 1 21 Tem
L+ (1 + ks + kska + kskaks 'tL}QTcp
1
(]3 = 1_|_ (C‘u +_i+ g + a:,)lerm + (ﬂ+a_4 4 as\ z22lem
3 waTep g g oz wsly
| (5.113)

I R e il o7 v il s O R o o o

ks /w3 Tcp

1
1+ (QZ+Qd+01+04)21ﬂrr1+(a3+01_I_a4)z2ﬂm_|_(ﬁ_|_%)53;im

'U-'l-ifp U~4lip g u"aljt'p

; TR (5.114)

Uy =

1 ('m = T(m Tmn
+ (kghy + ks + 1+ 7 )z +(k4+1+ = kv + (14 ) g

wylyp
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Utilization Linear Daisy Chain With Front End Processor

Tem=2
Tep =2
............. ‘wW=86
z=2
Avg Utilization = 0.4563

Utilization

3
Processors

Figure 5.8. The utilization of alinear daisy chain with front end processing

Utilization Linear Daisy Chain With Front End Processing
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Number of Processors at zero =22

=
o

Utilization
[

=1
=

=
w

=1
)

0.1

10 15 20 %
Processors

Figure 5.9. The utilization of alinear daisy chain with front end processing.

At N = 11 the utilization has decreased 99.6% from its origina
vaue. At N =20 the utilization is zero.
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Speedup for the network is found as in section 5.2, by taking the ratio of
the time it takes to finish computation on one processor divided by the time
it takes to complete computations on the entire network.

Tp: isthetimeto complete computations on a single processor

Tpy : ISthe time to complete computations on an entire network

T
speedup = T—P (5.116)
PN

Using equations (5.100), (5.101) and (5.102) repeated bel ow respectively

Qg = kfg()ﬁg
az = kyoy
g = k5055
Rewriting them yields
1
a3 = — (5.117)
ks
1
ks
1
a5 = -0y (5119)
ks

A general expression isfound for o, , it is the same equation as in section
5.2 with dlight modifications of the index to accommodate the addition

processor, add because there is now front end processing.

oy = H k—ai,(i,l) for i = 2, ceey N (5120)

5 vm
m=2

Ofi.—(i.—l) = (5121)

For the above conditions in equation (5.119)
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The normalized equation for this network is
ar+ast+ag+ ... t+ayv=1

rewriting the normalized equation (5.121)

N
aq + Z a; =1
i—2

Substituting equations (5.119) and (5.120) in equation (5.122)

The value of o, for this network is

1

N i
[1 + 21':2 Hm:? i}

fori =2.3,...,.N

1 =

The time to perform computations on a single processor is
Tp1 = aqw Ty,
For o; = 1 and w; = w equation (5.126) becomes
Tpr =wly,
The time to perform computations on the entire network is

Tpy = alwchp

When w; = w equation (5.128) becomes
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(5.124)

(5.125)
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(5.127)
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TI’N = a-le(-,.p (5130)

Tpy wT. 1
speedup = = E — — 5.131
PP = ow  amuTy o (5-131)

speedup =

N i

| _ ]

1+ Z H k-m] fori=2,3,...,N (5.132)
i=2 m=2 '

As in section 5.2 speedup is plotted versus the number of processors,
Figure 5.10. A network of N = 20 is used because this is the number of
processor used for the utilization in Figure 5.9. Here the speedup saturates
at 2.3028. Taking 99.6% of the saturation value gives 2.29. This equates to
9 processors.

Speedup of Linear Daiay Chain With Front End Processing
25 T T T T

Speedup

05

a
[1} g 10 15 20 25

Processors

Figure 5.10. Speedup of alinear daisy chain with front end processing.
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54 ANALYSISOF RESULTS/CONCLUSION OF CHAPTER 5
The performance metric Nggg0, and speedup are used to determine if a

particular network performs better than another, Table 1.

WOFE stag WFE Hyb
Noo 6% 13 11
Speedup 11 9

Table 2. Compilation of datafrom Figures5.4, 5.5, 5.9, and 5.10
Wi=w=6,z2=2=2,Ten=Txp=3

Ngg.69, = The processor at which the utilization had decreased 99.6% from its
origina value

Speedup = The processor at which 99.6% of the saturation value is found
WOFE stag = Daisy chain without front end processing and staggered start
WFE Hyb = Daisy chain with front end processing and Hybrid strategy
W = Inverse processor speed
Z = Inverse speed
T = Computation intensity
Tem = Communication intensity

This data shows that WOFE can add two more processors and still benefit
from parallel processing. The performance metric Ngg g, ShOWSs how many
processors can be added to a network before the utilization drops to a point
at which utilization is consider too low for the entire network. The numbers

are close, but seem to suggest a slight advantage to having a network based

of WOFE.
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However for the linear daisy chain configuration this is misleading.
When the average utilization is considered for a network with N = 5
processors. The linear daisy chain with front end processing has an average
utilization that is about 23% better than that of WOFE.

For large network with N= 30 processors WFE is about 5% better, Table 2.

N 5 8 9 11 13 20 30

WOFE 0.2238 | 0.1301 | 0.1138 | 0.0911 | 0.0759 |0.0479 |0.0314
Avgu

WFE 0.4563 | 0.2878 | 0.2558 |0.2093 | 0.1775 |0.1145 | 0.0768
AvgU

YWFE5q | 23.3 15.8 14.2 11.8 9.6 6.7 4.5

%inc 1039 |121.2 |1248 |129.7 |1339 |139.0 |1446

Table 3. Average utilizations for linear daisy chain with and without front
end processing. The vaues are taken for different size networks.

AvgU = Average utilization

WOFE = Without front end processing

WFE = With front end processing.

%WFE, 4 = Percent WFE islarger than WOFE
%inc = Percent increase of WFE over WOFE
W = Inverse processor speed

z = Inverse speed

T, = Computation intensity

Tm = Communication intensity

A 100% utilization of processor P; in the linear daisy chain (LDC) with
front end processing plays a role in its high average utilization. The

utilization at P; is removed. That is easily done because U, is set to one in

142




the program. The average utilization is still 4% better for small networks, N
= 5. The average utilization is lower when there is no front end processing
because the staggered star aso play role in the average utilization. In
Figure 5.2 the total time for processor P, is found by summing T, + T; +
a W, T, this is equal to Ty, equation (5.5). This total time is the
denominator of the utilization. Comparing equation (510) which does not
have front end processing and equation (5.75) which has front end
processing, it is shown that summing the communication delays and the
computation time as in equation (5.10) creates more terms in the
denominator increasing its size and as a result lowering the utilization. In
Figure 5.7 if the front end processing was removed and the total time for
processor P, was found as above. It would be T, + a,w,T¢, the terms of T;
would not increase the size of the dominator. As the networks increase in
Size, Table 2, the percent of the difference between the decreases. Although
the average utilization of the linear daisy chain with front end process
remains higher they converge. In chapter 3 this was shown that this
decrease is that of a power series. The percent increase of WFE to WOFE
Increases as the number of processors N increases.

When comparing the two linear daisy chainsif the goal is to have a better

average utilization over the entire network the linear daisy chain with the
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front processor and the hybrid start would be preferred. If thereisaneed for
the last two processors in a network to remain equal as the changes, the
linear daisy without front end processing, and staggered start would be
preferable.

In this chapter the utilization as a performance metric is shown to be
versatile. When comparing the number of processor at which a certain event
occurs does not give insight into the network, another aspect of the
utilization can be used to get a better understanding of the network. It has
shown that it is another performance metric that can be used in conjunction

with speedup.
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