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Abstract of the Dissertation

Performance Evaluation of Parallel, Distributed and Grid Systems

by

Milton J. Jackson

Doctor of Philosophy

Stony Brook University

2008

The intent of this work is to improve the performance evaluation of a number of
different systems, by developing new methods and performance metrics. A technique is
proposed where load sharing is modeled through the use of a set of differential equations.
As examples, these equations are used to describe the flow of data between processors
connected in a linear daisy chain and two dimensional mesh configurations. The
processors have heterogeneous link speeds, processing speeds, and loads. The equations
are designed to model the balancing of these loads over a period of time, by distributing
the loads between the processors, allowing the amount at any processor’s load to be
accurately calculated at any point in time. A new and novel performance metric,
utilization, is developed using distributed load theory. Four cases are used to determine
utilization. All cases are sequentially distributed tree networks. Two cases have
staggered starts, one with a root that does processing and the other with a root that does
no processing. The other two cases have simultaneous starts, with a processing and a
non-processing root, as above. The speedup of all cases is determined, and the
performance metric of the speedup and utilization are compared. Using the same four
cases as previously stated a method of performing a signature search, i.e. pattern
recognition is developed. Depending on the type of sequentially distributed load,
individual sets of equations are developed. These equation give the percent of the load a
processor searches within a given time interval. The time interval is determined by
communication delays. The utilization for two different types of linear daisy chains is
found, one with a staggered start without a front end processor and the other with a
simultaneous start with a front end processor. For the linear daisy chain it was necessary
to develop a set of recursive equations to find the ratios between the loads on the
processors before finding the utilization. These equations are not necessary with a tree
network. The speedup for the linear daisy chains are found and compared with the
utilization.
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Chapter 1

1. Introduction

Parallel processing has been used in many instances for problem solving

throughout history. Now its principles are being applied to modern day

computers. A grid search is a good example of this. When people are

tasked to search a large area, each person is assigned a sector to search.

This method greatly decreases the amount of time it takes to conduct the

search. The idea behind this approach is to break a job down into

manageable units. On a computer with more than one processor to

achieve a benefit from parallel processing it is necessary to assign tasks to

different processors. The key factor is communication, the ability to work

at the same time without interfering with ongoing activities. For this to

happen there must be a proper allocation of resources. To accomplish this

flexible operating systems are needed. This is a task easily performed by

the human brain. When sound and sight among other things are

simultaneously processed and a decision is made based on the input and

information in the memory. This is the goal of parallel processing.
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1.1 Literature

A large literature on divisible load theory has been generated since the

original work in 1988. Speedup calculations and linear daisy chains are

cover in [9]. In [10] a load sharing problem is presented, where n

processors are connected through a bus. The processors are controlled by

sensors. It was found that a minimum solution time is achieved if all

computations cease at the same time. In [11] closed form solutions for

large symmetric tree networks are investigated. The processors in these

tree networks may or may not have front end processing. Infinite networks

are discussed in [12], where either closed form or numerical methods can

be used to find the equivalent processor speed of a network with an infinite

number of processors. Here the equivalent processor speed of a linear

daisy chain is found. Computation in a two dimensional mesh composed of

communicating processors is studied in [13]. A three dimensional mesh is

considered in [21], where an optimum distributions that finds the minimum

solutions among the processors in this mesh is investigated. Here the load

is distributed from a parent processor in a node to node communication

network, where the communication delays are incorporated into the

process. Parallel distributed systems are used in [14] to distribute load in
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the least possible time. The purpose is to solve a problem of scheduling a

divisible load where the communication and computation times are

considered. This method is applied to a two dimensional mesh of

processors. In [15] the front ends of communicating processors are used to

minimize the finish time in a distributed linear network. For a single level

tree network, with or without front end processing, the load is distributed

in multiple installments with the result of minimizing the solution time in

[16]. In [17] load distribution in linear networks, with and without front

end processing is studied. Divisible load theory is introduced in this paper

[18] by summarizing past research and highlighting its accomplishments. In

[19] and [20] tree networks composed of processor with and without front

end processing are investigated. Signature searching is covered in [22],

where linear daisy chains and single level three networks are investigated

by finding the expected time to perform a search for single and multiple

files in parallel databases. In [23], a search is performed on a flat file, and

the expected time for a search for single and multiple signature is found.

Closed form solutions are found in [24]. Here a linear network of

communicating processors is studies. The processors having front end

processing or not is of no consequence. Nor does it matter if the nodes
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receive load at the boundary or the interior the nodes of the network. The

closed form solutions are valid. In [25] the instances when load originate at

the parent node of a linear daisy chain as well as the interior nodes are

studied. A linear daisy chain [26] with divisible load is investigated with the

intention of reducing two or more loads into a single processor. The

foundation of divisible load theory is laid out in [27]. Here the advantages

of using divisible load theory are discussed, some of which are tractability

and scalability. Divisible load theory can also be used with a variety of

topologies. In [28] an analogy between superposition in and electrical

network and superposition in a network using divisible load theory (DLT) is

drawn. The linearity of DLT is shown by showing that superposition in DLT

works. In [29] it was shown that a minimum solution time is achieved

when all processors stop computing at the same time. Divisible load theory

is used in [30] to model a grid system. Data from the STAR experiment

facilities at the RHIC at Brookhaven National Labs is used in simulations to

test the model validity.
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1.2 Load Balancing

In chapter 2 Modeling load balancing through the use of differential

equation is developed. In this chapter techniques are developed for load

sharing. The loads are balanced using sets of differential equations. These

equations use the concentration of load at a node, and the concentration of

loads on the adjacent nodes to decide if load is to be transmitted or

received. The loads will move from higher concentrations to lower

concentrations until all the loads have reached zero.

First the linear daisy chain configuration is developed for a chain of

nodes of indefinite length. The linear daisy chain is a topology that once

developed can be used to create two dimensional m by n meshes. The sets

of equations and the programs written for them make it possible to

monitor the loads as they dissipated. At any point in time more load can be

added to any node in the network. What this means is that an

underutilized node can have more load directed to it. The processor

speeds and link speeds are heterogeneous. Load can be directed to a node

with a faster process speed, or one with a faster link speed. However it is

not solely these speeds that determine which node will diminish the

fastest. It is a combination of the processor and link speeds, and the
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concentrations on the node, and its adjacent nodes. These techniques can

be used in any situation in which there is a load moving from one location

to another. The load can be information or any concentration traveling

through a medium. The load must be divisible. If the amount of load is

known, how fast the concentrations are being processed, and how fast the

concentrations are traveling through the medium. Then the equations in

chapter 2 can be applied.

1.3 Sequentially Distributed Loads

In chapter 3 using divisible load theory, sequentially distributed loads are

analyzed. A new performance metric, utilization is developed. The

equations for utilization and speedup are derived from a Gantt like timing

diagram. The diagrams describe single level tree networks that are

composed of a parent processor also called the root, and the children

processors. Four different sequential distributions are investigated. Case 1

has staggered start and a root that does no processing. Case 2 has

staggered start and a root that does processing. Case 3 has simultaneous

start and a root that does processing. Case 4 has simultaneous start and a

root that does no processing. The four cases were compared using

utilization and speedup. The performance metrics are use to explore the
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characteristics of the different cases. Utilization is a new performance

metric and when used with speedup a more traditional metric it offers a

useful comparisons.

1.4 Signature Searching

In chapter 4 the same sequentially distributed cases are investigated.

The speedups are the same so the information gain in chapter 3 can be

used here. Now the performance metrics are use to determine which

network performs the better signature search or patter recognition. A

different set of equations are developed for each of the timing diagram.

How fast a search is being performed is based on parallel processing. Each

processor is looking at different portions of a load that has been divided. So

even though the processors are processing at the same speed the

cumulative effect is that the job is accomplished faster. This is because

when there are more processor looking for certain marker the chance of

finding it faster are greatly increases. Besides the utilization and speedup

performance metrics an additional method that uses the finish time and

communication delay is developed to help validate the utilization and

speedup metrics. The sought after patterns in these searches can range
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from radar signatures, DNA and finger prints to a host of data intensive

problems.

1.5 Utilization of Linear Daisy Chains

In chapter 5 the utilization and speedup of two different types of linear

daisy chain configurations are investigated. The first has a staggered start

without front end processing. The second has a hybrid strategy with front

end processing. For the second case the hybrid strategy means that the

processor behaves as one with a staggered start when it is receiving

information. It cannot receive information and compute at the same time.

However it can perform computations while transmitting information at

the same time. Sets of iterative equations were developed to find the ratios

of the loads, as they could not be found using the previous methods. A

description of how information is being processed as it moves through the

network is provided for the linear daisy chain configurations and the timing

diagrams. The timing diagrams describe the information in a manner that

makes it easy to calculate the utilization and the speedup. also a different

aspect of the utilization is use to make a determination about the networks.

This time the average utilization is useful, as well as the utilization and the

speedup.
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Chapter 2

2. Modeling Load Balancing Through Differential Equations

2.1 Introduction

In this paper a method is advanced that uses differential equation to

model load sharing. The differential equation are the decisions makers,

and use the amount of load on adjacent processors, to determine if a task

(load) is to be passed to another processor. The exchange of data between

processors in two different topologies is demonstrated. These are the

linear daisy chain and mesh configurations. Both configurations have

heterogeneous link speeds, with processors that function at different rates.

The loads of the linear daisy chain and mesh configurations are divisible,

and have amounts that vary. The decisions made by the differential

equations balance these loads, through a process of redistribution of the

loads among the processors. The load is considered balanced when all the

processors have reached zero. The exact amount of load at any processor

can be determined precisely at any point in time.
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2.2 State of The Art

There is a large body of literature on load balancing. Most of which is

dedicated to indivisible jobs. Here some representative works will be

considered that also encompass divisible jobs. Load balancing techniques

are often components of an application. Their purpose is to make the

applications perform better. Different techniques are better suited for

certain applications. The types of load balancing techniques and

applications vary. However the common thread in load balancing is the

redistributions of tasks. The methods are diverse as in [1] where a work

stealing algorithm is used that distributes workloads in a parallel system so

that underutilized processors seek out work from other processors.

Mitzenmacher demonstrates the usefulness of this modeling technique.

When a processor is idle it tries to steal a task from a processor selected at

random with uniform distribution. If the chosen processor has more than

one task, a task is stolen. This model employs differential equations. The

differential equations rely on the expected change in the behavior of the

system over small periods of time. That is based on arrivals or departures

of tasks. A core term of these equations is similar to a term in the

equations in this paper, but used differently.
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Another technique is diffusive load balancing [8]. In diffusive load

balancing if a processor has a quantity of tasks greater than its neighbor it

moves a portion of its tasks to the neighboring processor. The decision on

rather to move some of the tasks is based solely on local information, and

the amount of tasks transferred is in proportion to the differential between

the number of tasks on the two processors. Furthermore only the number

of tasks at each node is subject to attempts of equalization. This method of

having nodes with greater loads transfer load to nodes with lesser loads is

used in this paper. Other load balancing techniques are [3], where a high

energy physics application uses a dynamic load balancing technique to

balance the point of imbalance occurring in queues.

An application detailed in [5], where a dynamic load balancing technique

is used as part of an Asynchronous Iterations-Asynchronous

Communication (AIAC) model. Here the load balancing is not based on the

amount of data, but the residual i.e. the max norm of the difference

between a current value and two consecutive iterations. In [6] a dynamic

load balancing method is developed for parallel applications. That has the

purpose of evenly distributing work to processors. To ensure that

processors are not idle while other are busy. For simple data structures the
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application divides the work into groups of equal size and distributes the

groups among the processors. For complex data structures as in

unstructured mashes, partitioning methods are used.

A similar method is in [7], where mesh adaption is shown to be an

effective application for unstructured-grid computation. However a load

imbalance is produced among the processors when used on parallel nodes.

To solve this problem dynamic load balancing is used. The technique

employs partitioning and remapping to balance the load. In [2] a load

balancing algorithm for a distributed system is used. The algorithm has the

purpose of minimizing the expected turnaround time. To prevent a

situation in which a task waits for one particular processor while there is

another idle processor that could process the task. The performance of the

system is increased, when the instantaneous load on the multiple

processors network is balanced. Presented in [4] is an agent based load

balancing technique that is used in a homogeneous min-grid to achieve a

uniform distribution of task to nodes. This solves the scheduling problem

on the grid.

All of the techniques above have in part some bearing on this paper.

This model is a load balancing technique, and could be placed as a
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component in some of the applications mentioned above. With this

technique underutilized or idle processor are not used as part of the load

balancing technique, but it would immediately detect these conditions.

With changes to the program that uses this technique, the information on

underutilized or idle nodes could be used to increase the rate at which all

nodes reach a desired point. This technique would also detect an

imbalance in queues. This technique would be extremely useful in the

detection of imbalances in a system, since it knows the load at every node,

at every time interval.

2.3 Model Description

Both the linear daisy chain and two dimensional mesh configurations use

the same method for distributing loads. Each node is capable of sharing its

load with its adjacent neighbors. The loads move from the nodes with larger

loads to those with lesser loads. This process continues until a solution is

reached, in other words, the loads reach zero at all nodes.

2.4 Variables For Chapter 1

w(i): the inverse processor speed

z(i): the inverse link speed in the horizontal directions

v(i): the inverse link speed in the vertical directions
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L: the load

dt: the time interval

sgn(x): the signum function

N: the total number of processors

2.5 Linear Daisy Chain Configuration

In a linear daisy chain configuration, Figure 2.1, the following set of

differential equations describes this process.

Figure 2. 1 Five loads connected in a linear daisy chain
configuration, by four links.

For the linear daisy chain:
i: the number of processors between the first and last processor

(2.1)

(2.2)

(2.3)

L1 L2 L3 L4 L5z2 z4z3z1
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(2.4)
(2.5)
(2.6)

The derivative of the load (dL) with respect to time is divided into three

equations. The derivative dL1(1) represents the load on the first node, and

the dL3(n) represents the load on the last node. The derivative dL2(i)

represents the loads on interior nodes between the first and last nodes.

The inverse processor speed (w) has a minus sign to insure that the act of

processing always serves to decrease the load when added to the inverse

link speed. The sign of the inverse link speed is determined by the

difference between the loads. If the difference is greater than zero the sign

is positive, and if it is less than zero it is negative. Load is transported from

nodes with larger loads to adjacent nodes with lesser loads. In equation

(2.1), the inverse link speed (z1) and the inverse processor speed (w1) are

fixed.

The differential equation dL1(1) uses the difference between the first

load(L1) and, its nearest neighbor the second load(L2), and the inverse link

speed between them in its calculations. In equation (2.1) “one” is used for

the load at the first node, and “two” for the load at the second node
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instead of i. The reason will become clear in the description of dL2(i). The

derivative dL3(N) works similar to dL1(1), the only difference being that

dL1(1) uses the node to its right and dL3(N) used the node to its left in the

calculations. The derivative dL2(i) takes into account its neighbors on either

side. The variable i start at 2 to prevent division by zero in the term

of equation (2.2). Other than this dL2(i) functions in the same sense as

dL1(1) and dL3(N).Once the derivatives of the loads are found they are

added to the original loads, L(1), L(i) and L(N) creating a new set of loads.

The process repeats until the loads are balanced, i.e. each node’s load

equals zero. Loads are forced to be no less than zero. When a load reaches

zero it remains at zero unless a new load is added to that particular node.

The load at a node may also be increased at anytime in the process.

Furthermore, the number of nodes may be increased to any size n.
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Figure 2.2. Load as a function of time vs. node position. There are five
nodes, and the loads on these nodes are measured at time,

where j represents the number of iterations of
equations (2.1) through (2.6).

In Figure 2.2, the loads as a function of time are plotted against the node

position. The amount of load on each node at a specific time is designated

by the function , where j is the number of iterations of equations

(2.1) through (2.6), and dt is the time interval, the iteration occurred in, here

1 × 10-6 s. As can be seen in Figure 2.2, the initial load on nodes one
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through five are respectively [1 10 4 2 3]. They diminish with time in

accordance with equations (2.1) through (2.6). However at a given time

when j = 3500 and , the load at node 4 is increased by 5,

L(j × 10-6 s) = L(0.0035 s) = 5. The increase can be seen at node 4 on the

graph above. Note in Figure 2.2 the increase appears to be 4.5 and not 5.

The discrepancy is due to the fact that the information in the graph is plotted

every 1000 iterations. The difference is the amount the load has decreased,

from the time the load is input to the time the data is updated. This increases

the time it will take for this node to reach zero.

2.6 Mesh Configuration

In the mesh configuration Figure 2.3, the nodes are extended in the

vertical and horizontal directions forming a five by five mesh. In practice

any m by n mesh is possible. There are 25 nodes (N), 24 inverse links speeds

(z) in the horizontal directions, and 20 inverse link speeds (v) in the vertical

directions. This mesh processes loads the same as the linear daisy chain,

with an extra dimension added. The process is governed by nine equations

that will work for any m by n mesh. However for the equations to work

properly the mesh must be labeled as shown in Figure 2.3. Other labeling

schemes are possible, but result in somewhat different equations. In the nine

equations that describe the process of transferring loads between nodes, m is
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the number of rows and n is the number of columns. The equations are

numbered (2.7) through (2.15).

Figure2.3. A 5 by 5 mesh configuration, composed of 25 nodes, 20
horizontal links and 20 vertical links, here N is the total number
nodes, m is the number of rows and n is the number of
columns.

For the mesh configuration:

i: the number of processors from 1 to n

1 432 5

6 987 10

11 141312 15

16 191817 20

21 242322 25

z1 z2 z3 z4

v1 v2 v3 v4 v5

z6 z7 z8 z9

v6
v7

v8

z11
z12 z1 z14

v9
v10

z1
z1 z18 z19

v11 v12 v13 v14 v15

v16

z2

v17 v18

z23

v19 v20

z24
z2
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for i = i1 = 1

(2.7)

for i = i2 = 2 to n-1, increments of 1

(2.8)

for i = i3 = n

(2.9)

for i = i4 = n+1 to (N-n+1) –n, in increments of n

(2.10)

for rows = m-2

g = 0 to rows -1
i = i5 = [ (n + 2) : in increments of 1: to (2n-1) ] + gn

(2.11)
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for i = i6 = 2n: in increments of n: to (N-n)

(2.12)

for i = i7 = (N-n) +1

(2.13)

for i = i8 = (N-n) + 2: in increments of 1: to (N – 1)

(2.14)

for i = i9 = N

(2.15)

(2.16)
(2.17)
(2.18)
(2.19)
(2.20)
(2.21)
(2.22)
(2.23)
(2.24)



22

The mesh in Figure 2.3 is described by nine structures shown individually

in Figure 2.4. Each equation corresponds to a structure, and each structure

has one or more components. Furthermore each component has a center

node. In figure 2.4 only the center node of the first component is shown

when there is more than one component. In the 5 by 5 mesh of Figure 2.3,

there is a total of 25 components. The equation numbers (2.7) to (2.15)

correspond to the structure numbers (7) to (15). The structures

representing the upper left and right hand corners, (7) and (9) respectively,

and the lower left and right hand corners (13) and (15) respectively each

have one component, which is composed of three nodes and two links.

Structure (8) has three components corresponding to the number of nodes

(columns) between the first and last node of the first row. Each component

is made up of four nodes and three links. Structure (14) is the complement

of (8). This structure is found in the last row of the mesh, and contains the

same number of components, nodes and links as (8), for the same reasons.

Structure (10) contains three component, based on the number of nodes

(rows) found between the first and last rows of the mesh. It has four nodes

and three links. The final structure, (11) has nine components each

composed of five nodes and four links.
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Figure 2.4. The nine structures describe any m by n mesh. The structure’s
number is the equation’s number with the 2 removed from the
front of the equations designation. For a 5 by 5 mesh as in
Figure 2.3, the structures (7), (9), (13) and (15) each have one
component. The structures (8), (10), (12) and (14) each have
three components and structure (11) has nine components.
The center nodes mark the position of the first component
of each structure.
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Once the derivative of a load at a particular node is found it is added to

the current load of that node. This produces a new value for that load.

This process is seen in equations (2.16) through (2.24). As with the linear

daisy chain configuration, the load at each node in the five by five mesh is

plotted as a function of load versus time, and time versus the node

position, Figure 2.5.

Figure 2.5. Plot of the loads versus the loads as a function of time versus
the node position. The x axis gives the nodes position, the y axis
the load as a function of time, and the z axis the load in mega
bytes.
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The rows in Figure 2.5, starting at j equals one represents the initial input

loads on the nodes of the 5 by 5 mesh in Figure 2.3. The 5 by 5 mesh has

been transformed into an array of length 25, and each element of the array

1 through 25 corresponds to the node number and load of the 5 by 5 mesh.

Every 1000 iterations of equations (2.7) through (2.24) produces a new row,

until all load reach zero at j = 7841. At j = 5000, the load at node position

22, L(j × 10-6s) is set equal to 10. This node rapidly approaches zero

because there are no load bearing nodes adjacent to it. Equation (2.14)

governs this process.

Figure 2.6. Displays the 5 by 5 meshes as time increases. The y axis shows
the number of columns, and the x axis the rows, listed every
1000 iterations.
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With the nodes adjacent to node 22 being zero, the four terms of equation

(2.14) are negative, generating a large negative number. When dL8(i8) is

subtracted from L(i8) in equation (2.23), the load goes to zero within 2000

iterations.

A geometrically clear picture of the surrounding nodes can be seen i

figure 2.6. After the initial 5 by 5 mesh is plotted, with one on the x axis

marking the last row of the 5 by 5 mesh. The mesh is plotted again after

1000 iterations. This process continues until all nodes in the mesh are zero.

The previous graphs have been generated by programming the given

equations. For the one dimensional daisy chain equations (2.1) through

(2.6) were used, and for the two dimensional mesh equations (2.7) through

(2.24). The two dimensional m by n mesh can be extended into three

dimensions by an arbitrary length p, producing and m by n by p mesh. A 5

by 5 by 5 mesh would require one additional parameter, the link along the z

axis h. This cube would be composed of the following structures. Eight

corner structures each consisting of one component having three links and

four nodes. Twelve edge structures, where each structure has three

components made of four links and five nodes. Six face structure

comprised of nine components consisting of five links and six nodes. The
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last structure is for the internal nodes of the cube. This structure has 27

components, each having six links, and seven nodes. The center nodes of

the components do not lie on the edges or surfaces of the cube.

2.7 Conclusion And Extensions of Chapter 2

For initial equal loads, processors speeds and links speed, if there are no

shared nodes in the structures or if the adjacent nodes are zero the

structures works as would be intuitively expected. The number of links

dictates how fast the load decreases. The structure with the most links

decreases the fastest. This decrease is imperceptible in graphs such as

figure 2.6 and 2.7. However a decrease in the second and third decimal

place is readily seen in the numbers used to generate the graphs, when the

parameters are changed to observe smaller steps, i.e. when the values for

the loads are listed every 10 iterations, instead of increments of 1000

iterations. When the processor speeds, and link speeds are chosen such

that the processor speed is one third that of the link speed, and the loads

are chosen randomly between 1 and 10, the data derived from the

equations demonstrates that the equations perform as intended. In other

words the loads tend to be balanced over time.



28

It should be noted that this methodology can be used to model other

protocols involving thresholds for allowing load transfers, different speeds

for different amounts at the loads, and time varying processor and links

speeds. Modeling chemical diffusion through a cell and across the cell

membrane is another potential future application.
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Chapter 3

3. Sequentially Distributed Loads

3.1 Introduction

Divisible load theory (DLT) was developed in response to the need to

handle ever increasing large amounts of data. In DLT a load can be

arbitrarily divided an assigned to different processors and links. With DLT

linear mathematical models are created which allow the investigation of

performance metrics [9]. In this paper the focus is on utilization and

speedup. The equations for utilization and speedup are derived, and

analyzed for four different cases. These are: case 1, sequential distribution,

staggered start, with a root that does no processing; case 2 sequential

distribution, staggered start, with a root that does processing; case 3

sequential distribution, simultaneous start, with a root that does

processing; and case 4 sequential distribution, simultaneous start, with a

root that does no processing.

3.2 Performance Metric Description

Utilization is the ratio of useful time to total time. It is calculated for

each processor in a network, and averaged over the entire network. In the
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literature variables needed to understand performance characteristics such

as utilization and speedup are as follows.

3.3 Variables For Chapter 3

N: the number of processor

αi [load]: The fraction of the load assigned to the link. The sum of the load
fractions αi equals one, the unit load.

zi [second/load]: The inverse link speed.

wi [second/load]: The inverse processor speed.

Tcm: The communication intensity, it is a dimensionless quantity used to
increase or decrease the link speed for a particular job.

Tcp: The computation intensity, it is a dimensionless quantity used to
increase or decrease the processor speed for a particular job.

αiziTcm [second]: The time required to transmit the load fraction αi over the
ith link.

αi wiTcp [second]: The time required to process the load fraction αi of the
entire load on the ith processor

Tf [second]: The finish time or makespan. This is the time it take the last
processor to complete it computation.

Speedup is the ratio of the time it takes to complete a computation on

one processor, to the time it takes to complete a computation on an entire

tree with N children processors. Speedup is a dimensionless number that

gives the performance gained by using multiple processors.
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3.4 Descriptions of Categories Sited in Cases 1 through 4

Sequential Distribution: In sequential distribution the root first transmits

the entire load to the child processor P1, then to all other child processors

in sequential order.

Staggered Start: When a processor has received the entire load it has been

assigned. The processor begins processing, and continues processing until

the assigned load is exhausted.

Simultaneous Start: The processor immediately starts processing the load

as it is received.

With Front End Processing: Processors with front end processing have the

ability to send and receive load at the same time.

Without Front End Processing: Processors without front end processing

can either send or received load, but not both at the same time.
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3.5 CASE 1
SEQUENTIAL DISTRIBUTION
STAGGERED START
ROOT DOES NO PROCESSING

Figure 3.2. Timing diagram of single level tree with sequential distribution,
staggered start and a root that does no processing

α1z1Tcm

α3z3Tcm

α2z2Tcm

α4z4Tcm

Tf

Tf

t

Tf

Tf

t

t

t

P2

P1

P0

P3

P4

tα1w1Tcp

α2w2Tcp

α3w3Tcp

α4w4Tcp



34

In Figure 3.2 the loads are sequentially distributed by the parent

processor to the children processors. The parent processor cannot process

load. The children processors do not have front end processing.

From Figure 3.2

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

For z = zi

(3.6)

Equation (3.6) gives the utilization of processor P1

From Figure 3.2

(3.7)

(3.8)
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(3.9)

(3.10)

(3.11)

(3.12)

For zi = z

(3.13)

Removing the load fraction αi

From Figure 3.2
(3.14)

For zi = z

(3.15)

(3.16)

(3.17)

(3.18)

Substituting into equation (3.13)
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(3.19)

Equation (3.19) gives the utilization of processor P2

From Figure 3.2

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

For zi = z

(3.26)

From Figure 3.2
(3.27)

For zi = z

(3.28)

(3.29)
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(3.30)

(3.31)

Using equation (3.18)

(3.32)

Substituting from equation(3.32) and from equation

(3.31) into equation (3.26) yields

(3.33)

Equation (3.33) gives the utilization of processor P3

From Figure 3.2

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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for zi = z

(3.40)

From Figure 3.2
(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

Using equation (3.32) gives
(3.46)

From equation (3.31) and equation (3.45)

(3.47)

Substituting equations (3.45), (3.46) and (3.47) into equation (3.40)
yields

(3.48)

Equation (3.48) is the utilization of Processor P4

The general form of the utilization equation for case 1 is

(3.49)
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The general form for the average utilization is

(3.50)

Here N is the number of children processors.

Figure 3.3. Utilization versus the number of children processors, all inverse
processor speeds are equal

Figure 3.4. The number of children processors added to a network that
will cause the utilization to decrease to 99.6% of its original
value.
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3.5.1 Speedup Case 1

Using equations (3.18), (3.32) and (3.46) listed below respectively

And the fact that k1 = k2 = kN = k

The loads of αi for i = 2 to N, are found

(3.51)

(3.52)

The i-(i-1) term assures that α1 always appears on the right hand side of the

equation (3.51). The normalization equation for case 1 where the root

does no processing is

(3.53)

rewriting the normalized equation (3.53)

(3.54)

Substituting equations (3.51) and (3.52) in equation (3.54) for αi
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(3.55)

(3.56)

The value of α1 for this network is

(3.57)

Equation (3.1) with zi = z, wi = w, and α1 =1 becomes;

(3.58)

Equation (3.58) is the computation time on a single processor.

Extending equation (3.1) to represent N processors yields

(3.59)

Equation (3.59) is the computation time on the entire tree with N

processors.

Speedup is the ratio of Tf1 / TfN.

(3.60)

Dividing the numerator and the denominator by wTcp and using

Equation (3.60) becomes
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(3.61)

(3.62)

Figure 3.5. Speedup for case 1 as the number of processors are increased
the speedup approaches a constant here a speedup of 4.0
w =6, z = 2, Tcm = Tcp = 2

Speedup saturates at 4.0, 99.6% of this is 3.984 this occurs at processor
12
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3.6 CASE 2
SEQUENTIAL DISTRIBUTION
STAGGERED START
ROOT DOES PROCESSING

Figure 3.6. Timing diagram a of single level tree with sequential
distribution, staggered start, and a root that does processing
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In Figure 3.6 the loads are sequentially distributed by the parent

processor. The parent processor has a front end processor. The children

processors have no front end processors.

Computation is at 100% in processors P0 therefore U0 = 1

(3.63)

(3.64)

(3.65)

From Figure 3.6
(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

Removing the load αi

For zi = z

(3.71)

(3.72)

Substituting equation (3.70) into equation (3.72) gives
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(3.73)

Equation (3.73) is the utilization of processor P1

From Figure 3.6

(3.74)

(3.75)

(3.76)

From Figure 3.6
(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

Substituting equation (3.70) into equation (3.81)

(3.82)
For zi = z

(3.83)

(3.84)
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Substituting equations (3.70) and (3.84) into equation (3.84) gives

(3.85)

Equation (3.85) is the utilization of processor P2

From Figure 3.6

(3.86)

(3.87)

(3.88)

For zi = z

(3.89)

(3.90)

From Figure 2.6

(3.91)

(3.92)

(3.93)

(3.94)
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(3.95)

Substituting equation (3.82) into equation (3.95)

(3.96)

Substituting equations (3.70), (3.82) and (3.96) into equation (3.90)

(3.97)
Equation (3.97) is the utilization at processor P3

From Figure 3.6

(3.98)

(3.99)

(3.100)

For zi = z

(3.101)

(3.102)

From Figure 3.6

(3.103)

(3.104)
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(3.105)

(3.106)

(3.107)

Substituting equation (3.96) into equation (3.107)

(3.108)

Substituting equations (3.70), (3.82), (3.96) and (3.108) into

equation (3.102) yields

(3.109)

Equation (3.109) is the utilization of processor P4

The general from of the utilization is

(3.110)

From equation (3.50) the average utilization is

(3.111)

The number of children processor is represented by N
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Figure 3.7. Utilization versus the number of children processors, all inverse
processors are equal.

Figure 3.8. The number of children processors added to a network that
will cause the utilization to decrease to 99.6% of its original
value, here it is 20.
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3.6.1 Speedup Case 2

Using equations (3.70), (3.82), (3.96) and (3.108), listed below

A general equation for αi is developed

Note ki = k.

The loads of αi for i = 1 to N, are found

(3.112)

(3.113)

The i-(i-1)-1 term assures that α0 always appears on the right hand side of

the equation (3.112) .

The normalization equation for case 2 that has a root that does processing

is given below.

(3.114)

rewriting the normalized equation (3.114)
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(3.115)

From equation (3.70)

(3.116)

Substituting (3.116) into equation (3.115)

(3.117)

Substituting equations (3.12) and (3.13) into equation (3.117)

(3.118)

Substituting again for α0

(3.119)

(3.120)

The value of α1 for this network is

(3.121)

Equation (3.63) with wi = w and α0 =1 becomes
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(3.122)

Equation (3.122) is the computation time on a single processor.

(3.123)

Extending equation (3.123) to represent N processors yields

For wi = w and zi = z

(3.124)

Equation (3.124) is the computation time on the entire tree with N

processors.

Speedup is the ratio of Tf0 / TfN.

(3.125)

Dividing by wTcp and using

Equation (3.125) becomes

(3.126)

(3.127)
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Figure 3.9. Speedup for case 2 as the number of processors is increased the
speedup approaches a constant here a speedup of 4.7500.
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P0’s time axis. The diagrams are equivalent. These loads are distributed

sequentially from the parent processor to the children processors.

The parent processor and the children processors have front end

processing.

Computation a 100% processors P0, and P1 therefore U0 = 1 and U1 = 1.

(3.128)

(3.129)

(3.130)

(3.131)

From Figure 3.10
(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)
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(3.138)

Substituting equation (3.138) into equation (3.131)

(3.139)

Equation (3.1390 is the utilization of processor P2

From Figure 3.10

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

From Figure 3.10

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)
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(3.150)

(3.151)

Substituting equation (3.138) into equation (3.151) gives

(3.152)

Substituting equations (3.151) and (3.152) into equation (3.144) yields

(3.153)

Equation (3.153) is the utilization at processor P3

From Figure (3.10)

(3.154)

(3.155)

(3.156)

From Figure 3.10

(3.157)

(3.158)

(3.159)

(3.160)
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(3.161)

(3.162)

(3.163)

Substituting equation (3.151) into equation (3.163)

(3.164)

Substituting equation(3.152) into equation(3.163) gives

(3.165)

Substituting equations (3.163), (3.164) and 3.165) into equation (3.156)

yields

(3.166)

Equation (3.166) is the utilization of processor P4

The general form of the equation is

(3.167)

The general form for the average utilization is

(3.168)
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Figure 3.11. Utilization versus the number of children processor, all inverse
processors speeds (w) are equal here w=6

Figure 3.12. The number of children processors added to the tree that will
force the utilization to zero, here 23 processors
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3.7.1 SPEEDUP CASE 3

Using equations (3.138), (3.152) ,(3.165), and the conditions

wi = w, Tcp = T cm, zi = z and ki = k

A general expression for αi is formed.

The loads of αi for i = 2 to N, are found

(3.169)

(3.170)

The i-(i-1) term assures that α1 always appears on the right hand side of
the equation (3.169) .

The normalization equation for case 3 that has a root that does processing
is given below.

(3.171)

From Figure 3.10
(3.172)

(3.173)
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(3.174)

(3.175)

(3.176)

(3.177)

rewriting the normalized equation (3.171)

(3.178)

Substituting (3.176) into equation (3.178)

(3.179)

Substituting equations (3.169) and (3.170) into equation (3.179)

(3.180)

(3.181)

The value of α1 for this network is
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(3.182)

Equation (3.172) with wi = w and α0 =1 becomes;

(3.183)

Equation (3.183) is the computation time on a single processor.

From(3.173)

(3.184)

Extending equation (3.184) to represent N processors yields

For wi = w and zi = z

(3.185)

Equation (3.185) is the computation time on the entire tree with N

processors.

Speedup is the ratio of Tf0 / TfN.

(3.186)

(3.187)

(3.188)
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Figure 3.13. Speedup for case 3 as the number of processors is increased
the speedup approaches a constant here a speedup of 5.0
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These loads are distributed sequentially from the parent processor to the

children processors. The parent processor does no processing. The

children processors have front end processors.

The equations for utilization in case 4 are the same as in case 3.

Comparing figure 3.10 and figure 3.14, the only difference is that figure

3.10 has a root that does processing, denoted as α0w0Tcp. This term does

not enter into the formularization of the utilization equations of case 3.

The derivations of the utilization equations for both case 3 and case 4 start

at the first child processor P1. From this point on the figure are identical,

producing the same set of equations. The utilization equations are

repeated here without their derivations. The original equations numbers

have been updated. The graphs in Figure 3.11 and 3.12 would be identical

in case 4. These graphs are not repeated.

(3.189)

(3.190)

(3.191)
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(3.192)

(3.193)

3.8.1 SPEEDUP CASE 4

Unlike utilization, the speedup in case 4 will be different from case 3.

From figure 3.14

(3.194)

(3.195)

As in case 3 using equations (3.138), (3.153), (3.165), listed below

A general expression for αi is formed, using the conditions wi = w, Tcp = Tcm,

zi = z and ki = k

(3.196)

(3.197)

Here the normalization equation is



67

Rewriting the normalization equation

(3.198)

Substituting equations (3.196) and (3.197) into equation (3.178)

(3.199)

(3.200)

The value of α1 for this network is

(3.201)

Equation (3.194) with wi = w and α1 = 1 becomes;

(3.202)

Equation (3.184) is the computation time on a single processor

Extending equation (3.194) to represent N processors yields

For wi = w



68

(3.203)

Equation (3.185) is the computation time on the entire tree with N
processors.

Speedup is the ratio of Tf1 / TfN.

(3.204)

(3.205)

(3.206)

Figure 3.15. Speedup for case 4 as the number of processors is increased
the speedup approaches a constant here a speedup of 4.0
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3.9 ANALYSIS OF RESULTS/CONCLUSION OF CHAPTER 3

The utilization results in case 1 and case 2 are unexpected. Comparing

Figure 3.3 and Figure 3.4 of case 1 with Figure 3.6 and Figure 3.7 of case 2,

shows that the results are identical. The equations are derived from

different sources using different methods. As can be seen in the timing

diagrams of Figure 3.2 and Figure 3.6, in Figure 3.6 the parent processor

has a front end processor. In Figure 3.2 the parent processor has no such

processor. As a result there is an additional k term, k0 in the equations

derived for case 2. Comparing equations (3.6) of case1 and (3.73) for zi =

z1, the two equations reduce to an equivalent expression.

For U1 in case 1 with zi = z

(3.207)

(3.208)

(3.209)

Using equation (3.69) with the above condition yields

(3.210)
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Substituting equation (3.210) into equation (3.210)

For U1 in case 2

(3.211)

(3.212)

(3.213)

(3.214)

(3.215)

Equations (3.209) and (3.215) are equal

The reason equation (3.211) reduces to an equivalent expression is that

in the equations of case 2 the total time is given by α0woTcp. The utilization

for the children processors are written in terms of this total time. This

produces equations that have a constant term (zTcm/w0Tcp) that multiplies

each equation derived in case 2, as can be seen in equation (3.110). The

denominator of this term, which represents the inverse processor speed of

the parent processor’s cancels like terms in the only term that the

equations share that is different, k0. This means that the parent processor
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having the ability to send and receive load at the same time does not

improve utilization.

In equation (3.85)

(3.216)

The term (k0 + k0k1 ) = k + k2 is a power series

1/(1 – x) = 1 + x + x2 + .... + xN for |x| < 1

Equation (3.216) is represented by a power series times a constant which is

then subtracted from 1. This produces the exponentially decreasing

utilization curves. It has already been shown that equation (3.73) can be

rewritten as (3.6).

From the data used to generate Figure 3.5, the speedup in case 1

saturates at 4.0. The same data shows that the first occurrence of 4.0

corresponds to 39 children processors. This indicates that the network

could be expanded to 39 children processors and still benefit from the

advantages of parallel processing. When viewing the graph in Figure 3.5, a

value of 19 children processors on the x axis is a good visual estimation.

Using the numerical data this value is found to be 99.6 % of the saturation
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value of 4.0. This percentage is used to find the number of children

processors that the network can expand to in all other speedup

calculations. Four decimal places are used in order to decide which value is

actually the closest to 99.6%.

In case 2 the speedup saturates at 4.7500, 4.7500×0.996 = 4.731,

comparing this value to the numerical data corresponds to 17 children

processors. In case 3 the speedup saturates at 5.0 following the same

process gives an extension of 10 children processors. In case 4 the speedup

saturation is 4.0. This equates to 18 children processors.

There is no fix percentage for speedup used; values range from 95% and

up. The initial speedup saturation values such as 4.0 are found through

computer computations. Here a strict definition of saturation is defined as

a value that does not increase regardless of how many additional children

processors are added.

For a network of 10 children processor as shown in Figure 3.3, if the

strict definition of saturation is used, it implies that the network could

expand to 39 processors and still benefit from parallelism. However the

utilization curve in Figure 3.4 shows that the utilization at 35 is zero. In this
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situation the strict definition is not valid; the estimation of 99.6 %

corresponds to a realistic value in Figure3.4.

Utilization is a useful performance metric , and compliments the

traditional performance metrics such as speedup and finish time

(makespan)

3.10 RESEARCH GOALS

To calculate the utilization of a linear daisy chain and mesh

configurations. Furthermore to investigate new and novel performance

metrics that can be applied to divisible load scheduling.
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Chapter 4

4. Signature Searching

4.1 Introduction

Signature searching or pattern recognition is a process by which the task

of searching large amounts of data is accomplished by distributing the load

among a number of processors and having each processor search its

assigned load for a distinct marker, for example the occurrence of a certain

voltage. In this chapter signature searching is applied to the sequentially

distributed single level tree networks of chapter 3.

Four different types of networks are investigated, in order to find which

is better suited for an optimal search of a divisible load. These are

staggered start with and without a root that does processing, and

simultaneous start with and without a root that does processing. The

results are compared with utilization and speedup results from chapter 3.

A third metric is developed using the finish time and the last

communication delay of the network.
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the communication delays, i.e. T1 through T4. Since this distribution has a

staggered start, the loads are completely transmitted before the processors

begin computations. So the load α1 of T1 is entirely transmitted over link z1

in the time α1z1Tcm before processor P1 starts processing at time T1. This

process continues until all values from T1 to TN are transmitted.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Each processor P1 through P4 all of which are children processors finish

processing at the same time, the finish time Tf.

(4.6)

The computation speed of the processor is given by αNwNTcp. Where αN is

the load transmitted to processor N, wN is the inverse processing speed, and

Tcp is a dimensionless number used to increase or decrease the computation

speed. The variable Tcm performs a function similar to that of Tcp, but for the

communication speed.
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The percent of the load processors P1 through P4 searchers within an

interval is defined as αT%, and given by the following equations.

(4.7)

(4.8)

(4.9)

(4.10)

For

(4.11)

Where T is in the interval of

For (4.12)

And T is in the interval of

For (4.13)

The total time is equal to the combined intervals of equation (4.12) and

(4.13).

In chapter 3 finding α1 was sufficient for all calculations. However in

chapter 4 to explain the behavior of equation (4.11), and Figure 4.2, the
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values of α1 through αN are necessary. Since case 1 of chapter 3 and case 1

of chapter 4 use the same conditions and timing diagrams, the values of α1 is

found using equation (3.57) repeated below.

(4.14)

With each value of N a different α1 is found. In a network with four

processors the value of α1 is 0.3657. This value is used to calculate the

remaining alpha’s of which α1 is the largest.

The normalized equation is equation(3.53)

(4.15)

Knowing this and using the following conditions:

wi = 6, zi = 2, Tcm = Tcp = 2, N = 4 and α1 = 0.3657

The ratios of the alpha’s are found

For i = 1 to N-1

(4.16)

The number of k’s is equal to N-1.

Equation (3.51) below

(4.17)
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for i = 2 to N is used to produce equations (3.18), (3.32) and (3.46), listed

below respectively:

Using the above conditions the k’s equated to:

An array with the first element set to 1 is created.

(4.18)

(4.19)

The sum of the elements of α must equal one.
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Figure 4.2. Percent of load processed (αT%) versus time for three different
values of N. For staggered start with a root that does no
processing, case 1.

In the calculation of αT% for equations (4.7) through (4.10) the variable

T is replaced by the term on the right hand side of the interval before the

equations in order to find the end points. The equations also allow for the

exact percentage of the load searched at any time T in the interval to be

determined. When the end points of αT% are plotted versus time as

determined by T1 through TN plus Tf, Figure 4.2, it is found that for

homogeneous link speeds and processors speeds the slope from point to

point increases and the time between the points decreases, with the

exception of the interval . The time between the points
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decreases because the alpha’s of equation (4.5) decrease as demonstrated by

equation (4.19).

The slope between the points in Figure 4.2 is an indicator of processor

speed. Each successive processor is helped by the previous processor. For

P1 one processor is processing, for P2 both processors are processing. At the

final processor all processors in the network are processing load. So even

thou the individual processors speeds are the same the cumulative effect is

that load is being processed faster in the network as a whole. This can be

seen by the increase in the slope over time. The slope between TN and Tf

does not follow the same pattern as the slopes from T1 to TN. On the plots in

figure 4.2, αT% must reach 100% at the finish time, if not the network is not

optimized because it is possible for a processor to continue processing. The

finish time of equation (4.6) depends on α1, and α1 depends on the number of

processors, when z1Tcm and w1Tcp are held constant. For example with N =

4, α1 = 0.3657 and Tf = 5.814. If N = 10, α1 = 0.2449 and Tf = 4.2387. This

shows that the finish time decreases as processors are added. As the

network increases in size, Tf approaches TN, this can be seen on Figure 4.2.

Here the value of TN is fixed at the same value for all plots. This is because

in equation (4.6) the alpha’s sum to one which means that the value of TN is

determined by Tcm and z. In these plots TN = 4. When Tf converges to a
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value that is closest to the margin of TN + 0.4% of TN the number of

processors this occurs at is noted and considered the maximum number of

processor allowed for this type of distribution with the given conditions.

Here it is N = 19. If Tf = TN the load would be distributed to the processor

but no computation would take place as the finish time would occur as the

distribution was completed. If Tf < TN the transmission would cease at the

finish time, and would not be fully distributed. Furthermore no computation

would take place. This says that the network had too many processors for

the given conditions. In Figure 4.3 the processor speeds are plotted against

the number of processors. Here as above the processor speeds are

homogenous. The slope is constant from processor to processor as expected.

The maximum speed for this particular network for the given conditions is

the processor speed at processor 19, which is 3.1667.
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Figure 4.3. Processor speeds versus the number of processor in the network,
where the root does no processing, case 1. The speed on a
single processor is , where w = 6. All processor speeds are the

are the same.
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In Figure 4.4, T1 through T4 represents the loads that are sequentially

distributed, similar to figure 3.6. Figure 4.4 is different from Figure 4.1 in

that the root does processing. As in Figure 4.1, T represents the amount of

load searched by the processor in an interval defined by the

communication delays, T0 through T4 , where the communication delay of T0

is zero. In Figure 4.4, the root Po has front end processing and can process

and transmit at the same time. As a result the root begins processing at To,

and transmitting the load α1 of T1 to processor P1 over link z1 at time To.

Just like in Figure 4.1 the load being transmitted to P1 will not start

processing until the entire load has been transmitted. From this point on

the timing diagrams of Figures 4.1 and Figure 4.4 are identical and perform

the same.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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All processors P0 through P4 finish processing at the same time Tf.

(4.26)

The percent of the load searched by processors P0 through P4 within an

interval is given by αT%, and is defined by the following equation.

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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For

(4.32)

Where T is in the interval of

For (4.33)

And T is in the interval of

For (4.34)

The total time is equal to the combined intervals of equation (4.33) and

(4.34).

Case 2 of chapter 3 and case 2 of chapter 4 use the same timing diagram.

The normalized equation from is equation(3.114)

(4.35)

From equation (3.116)

(4.36)

Here α1 is found using equation (3.121) repeated here as

(4.37)

As before in case 1 each value of N produces a different α1, the α1 used

depends on the size N of the network. Here processors P1 to P4 are children

processors and N refers to the number of children processors. In case 2 for
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N = 4, α1 = 0.2458 and α0 = 0.3278. The ratios of the alpha’s, the k’s are

found using equation (4.16), with i = 0 to N-1. The equation that shows the

relationship between the alpha’s and the k’s equation (3.112) is repeated

below.

for (4.38)

Using the same conditions as in case 1 the values of the k’s are the as before

same, ki = k = 0.75, and the number of k’s is equal to N. Equation (4.36)

reproduces equations (3.70), (3.82), (3.96) and (3.108) listed below.

Using the above conditions the k’s equate to:

As in case 1 an array KA is formed with the first element set to 1.

(4.39)
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(4.40)

The sum of the elements of α must equals one.

In the calculation of αT% for equations (4.27) to (4.31) the variable T is

replaced by the term on the right hand side of the interval above the

equation. This as in case 1 provides the end points. The end points are

plotted versus time in a similar fashion as in the previous case, and under the

same conditions, Figure 4.5.

Figure 4.5. Percent of load processed (αT%) versus time for three different
values of N. For staggered start with a root that does processing,
case 2.

The slopes increase from point to point, and the time between them

decreases in interval . In the interval for N = 4

the slope increases with respect to the previous slope on the same plot,

however not the steady increase seen up to this point. The time between TN
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and Tf is at its greatest for any value of N larger than four. For N = 10 the

slope increases by a greater degree, and the time decreases. At N = 19 the

slope and the time now conform to a pattern consistent with that established

in the interval .

Unlike case 1 the value of TN is not the same for all plots. This is

because in equation (4.23) the alpha’s do not sum to one. In this case the

normalized equation (4.33) includes α0, a term not found in equation (4.33).

With each new value of N the sum of α1 to αN increases. At the same time Tf

which depends on α0 decreases, because α0 decreases with each new value of

N. This is due to the redistribution of the load, which must sum to one,

while incorporating more alpha’s. For this type of network the first alpha, α0

remains the largest after redistribution. This creates a situation where Tf and

TN are moving toward each other. When Tf converges to a value that is

closest to the margin of TN + 0.4% of TN, the processor this occurs at is

noted and considered to be the maximum number of children processors for

this distribution and conditions. Again this occurred at N = 19, as in case 1.

The same pronouncement for the parameters of Tf = TN and Tf < TN in case 1

hold for case 2.

In Figure 4.6 the processors speeds are plotted versus the number of

processors. The processors speeds are homogenous, and as in case 1 the
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slope is constant from processor to processor. However in this case the

processor P0 is included. At N = 19 the maximum speed for this type of

network for the given condition is 3.3333. However there are 20 processors

working at the same speed that produces this result.

Figure 4.6. Processor speeds versus the number of processors in the
network, where the root does processing, case 2. The speed
on a single processor is , where w = 6. All processor speeds

are the same.
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processing as soon as part of it is received because the processors have

simultaneous start. When the transmission is complete, the load of T2 is

transmitted, this process continues until all the loads are transmitted. The

equations below describe the working of Figure 4.7.

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

All processors P0 through P4 finish processing at the same time Tf.

(4.47)

The percent of the load searched by processors P0 through P4 within an

interval is given by αT%. The same set of equations for the calculation of

αT% in case 2, (4.31) to (4.27) applies to case 3, repeated below.
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(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

For

(4.53)

Where T is in the interval of

For (4.54)

And T is in the interval of

For (4.55)
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The total time is equal to the combined intervals of equation (4.54) and

(4.55). Case 3 of chapter 3 and case 3 of chapter 4 use the same timing

diagram. The normalized equation from (3.171) is

(4.56)

From equation (3.175)

(4.57)

And from equation (3.177)

(4.58)

The alpha’s are calculated using equation (3.182) repeated below

(4.59)

As in the previous cases for each new value of N a different α1 is found.

The ratios of the k’s are found using a generalized form of equation

(3.162)

(4.60)

For homogenous processor speeds and link speeds, which include both

parent and children processors wi = w and zi = z. The intensity parameters

are set at Tcp = Tcm = 2. Using the above conditions in equation (4.60),

ki = k = 0.6667, for i = 1, 2, ..., N.
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In case 3 for N = 4, α1 = 0.2935 since wi = w, equation (4.58) yields k0 = 1.

From equation (4.57) α1 = α0 = 0.2935.

The equation that shows the relationship between the alpha’s and the k’s

(3.169) is repeated below.

(4.61)

This equation reproduces equation (3.138), (3.178) and (3.165) listed below.

Using the above conditions the k’s equate to:

In case 2 the first element of the array is set to 1, however in this case 3 the

first two elements are set to 1. This is due to the fact that α1 = α0.

(4.62)

(4.63)

In agreement with the normalized equation (4.56), the elements of α array

sum to one.
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The percent of load processed (αT%) is found for equations (4.48) to

(4.52) following the same procedure as in case 2. Similarly the end points

are determined and plotted versus time, Figure 4.8.

Figure 4.8. Percent of load processed (αT%) versus time for three different
values of N, for simultaneous start with a root that does
processing, case 3.

As in case 2 the slope from point to point increases, and the time between

them decreases in interval T0 ≤ T ≤ TN. In interval TN≤ T ≤ Tf, for N = 4

the finish time is at its greatest value as compared with any other finish time

for a N of greater value. Furthermore the slope has increased, but not with at

the same rate as the previous slopes on the plot. Here as in case 2, Tf and TN

are moving toward each other, because the alpha’s of equation (4.46) do not

sum to one. For N = 7, the same pattern as in case 2 appears. As the size of

the network increases the slope increases and the finish time decreases. At,
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so the actual number of processor is the parent plus the children processor

totaling 16. The same reasoning for the parameters of Tf = TN and Tf < TN

in case 1 and case 2 hold for case 3.

In Figure N = 15, the processor at which the finish time converges to a

value nearest the margin of TN + 0.4% of TN is reached. Here N = 15 is the

maximum number of children processor for this distribution and conditions.

As stated before the parent processor aids in increasing the overall speed of

the network4.9 the processors speeds are plotted versus the number of

processors. The processor speeds are homogenous as in the previous cases.

The root does processing so the parent is included. At N = 15 the maximum

speed for this type of network for the given condition is 2.6667.
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Figure 4.9. Processor speeds versus the number of processor in the
network, where there is simultaneous start and the root does
processing, case 3. The speed on a single processor is where

w = 6. All processors are equal.
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In Figure 4.10 the communication delays are depicted as boxes

numbered T1 to T4 on top of the axis. Below the axis the same T1 through T4

mark the beginning of the communication delays. The computation portion

of the processor is also below the t axis. The T besides the downward

pointing arrow is an indicator of what percent of the processor is being

searched in a given interval. Here the loads are transmitted sequentially, as

in case 3. As soon as any part of the load is received computation starts.

The computation starts in processor P1 at T1, and at processor P2 at T2.

From this point on both processor P1 and P2

are computing. When all the loads are transmitted each processor will be

engaged. Upon reaching the finish time Tf all processor cease

computations. The equations that described this timing diagram are listed

below.

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)
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Each processor P1 through P4 all of which are children processors finish

processing at the same time, the finish time Tf.

(4.69)

The percent load searched by processor P1 to P4 within a given interval is

defined as αT%. These are in fact the same set of equations from case 1,

(4.7) to (4.10), and (4.12) and (4.13) repeated below.

(4.70)

(4.71)

(4.72)

(4.73)

For

(4.74)

Where T is in the interval of

For (4.75)

And T is in the interval of

For (4.76)
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The total time is equal to the combined intervals of equation (4.75) and

(4.76).

Case 4 of chapter 3 and case 4 of chapter 4 use the same timing diagram.

The portion of the load α1 is found using equation (3.201) repeated below.

(4.77)

As in all previous cases each new value of N produces a different α1.

The ratio of the α’s, the k’s using equation (4.60) repeated below

(4.78)

The equation that shows the relationship between the alpha’s and the k’s is

equation (3.220) shown below

(4.79)

Using the conditions wi = w = 6, zi = z = 2, and Tcp = Tcm = 2. The value of

the k’s are ki = k = 0.6667. For N = 4 the number of k’s is N-1.

Equation (4.79) reproduces equations (3.138), (3.153) and (3.165), derived

in chapter 3, they are listed below respectively.
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Using the above conditions the k’s equate to:

As in case 1 an array KA is formed with the first element set to 1.

(4.80)

(4.81)

The elements of α sum to one, as required by the normalization equation

(4.15).

The percent load processed (αT%) is found as is case 1. Using equation

(4.70) to (4.73), the end points are determined and plotted in a similar

fashion. In this figure TN from equation (4.68) is not stationary. This is

because T1 = 0 equation (4.64) and the first usage of α1 appears in T2

equation (4.65). Since the normalized equation (4.15) is

α1 + α2 + α3 + α4 = 1, for N = 4. The sum of the alpha’s of equation (4.67) is

not equal to one. This means that TN or T4 here does not solely depend on

the link speed (z) and the communication intensity (Tcm), which for

homogeneous link speeds would hold the value of TN constant for all values

of N.
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Figure 4.11. Percent of load processed (αT%) versus time for three different
values of N for simultaneous start with a root that does no
processing, case 4.

As expected from the previous cases, in Figure 4.11 the slopes increase

from point to point and the time between them decreases in the interval

T1 ≤ T ≤ TN. In the interval TN ≤ T ≤ Tf, increases in the size of the

network cause the finish time decrease. The number of processors required

for the finish time to close within a value that is closest to the margin

determined by TN + .4% of TN is, N = 15 for this type of network and

conditions. The same reasoning for the parameters of Tf = TN and Tf < TN in

the previous cases applied to case 4.
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In Figure 4.12 the processor speeds are plotted versus the number of

processor. At N = 15 the maximum speed for this type of network for the

given conditions is 2.5.

Figure 4.12. Processor speeds versus the number of processors in the
network, that uses simultaneous start and a root that
does no processing, case 4. The speed on a single processor
is , where w = 6. All processor speeds are equal.
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4.6 ANALYSIS OF RESULTS/ CONCLUSION OF CHAPTER 4

Two sets of equations and their intervals are used to find the percent load

processed. The type of parent processor determines which set is used.

Set 1 and set 2 are described basically by the same equation. Set 1 is for a

root that does no processing (RDNP) equations (4.11) and (4.74)

, for i = 1 to N. Set 2 is for a root that does

processing (RDP) equations (4.32) and (4.53), for

i = 0 to N.

The upper limit of the summation i represents the number of computing

processors, and m takes its value from the first value of i. In the four cases

i = 1 to N for a root that does no processing, and i = 0 to N for a root that

does processing.

The intervals are stated below:

for i = 1 to N-1 equations (4.12) and (4.75)

for i = 0 to N-1 equations (4.33) and (4.54)

for i = N equations (4.13), (4.32), (4.53) and (4.75)

The limits of the interval are controlled by the communication delays and

finish time.

The speedup and utilization of chapter 3, along with performance metrics

are compiled in Table 1.
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case Type
of
start

RDP
RDNP

N
TN,Tf

max
speed

TN Tf EQs N
util

N
speedup

1 Stag RDNP 19 3.1667 4.0000 4.0170 1 20 19
2 Stag RDP 19 3.3333 2.9968 3.0095 2 20 18
3 Sim RDP 15 2.6667 2.9949 3.0051 2 14 17
4 Sim RDNP 15 2.5000 3.9954 4.0092 1 14 18

Table 1. Complication of parameters from chapter 3 and 4.

Stag = Staggered start
Sim = Simultaneous start
RDP = Root does processing
RDNP = Root does no processing
NTN,Tf = Performance metric
max speed = Maximum cumulative processor speed
TN = Last communication delay in a network
Tf = Finish time
EQs = Equation set
NUtil = Performance metric
Nspeedup = Performance metric
w = The inverse processor speed
z = The inverse link speed

When a root does processing the max speed is greater for processors in

set 2 as compared with set 1. This is reasonable due to the cumulative effect

of the processors, the more processors processing information the faster the

overall network performance.

The number of processors a particular network can have is based on three

different performance metrics. In Table 1, NTN,Tf is the number of processors

a network can have based on the finish time and TN the last communication

delay in the network. Here NTN,Tf is the processor at which the finish time
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converges to a value closest to the margin of TN + 0.4% of TN. When the

processor speeds versus the number of processor, including the root are

plotted. The result is the maximum speed for the network, Figures 4.3, 4.6,

4.9, and 4.12.

The performance metric NUtil is based on how many processors it would

take to force the utilization to zero. Here zero is defined as when the first

processor’s utilization has declined 99.6% from its original value. The

number of the processor this occurs at is considered to be the number of

processors the network can sustain, Figures 3.4, 3.8, and 3.12.

The final performance metric, Nspeedup is the number of processors that can

be added to a network and still befit from parallel processing. It is found by

taking 99.6% of the number at which speedup saturates, and matching it

with the number of the processor it occurs at.

Speedup is an established performance metric, utilization was developed

in chapter 3, and using the finish time and the TN is another way found to

check the validity of utilization. The performance metric NUtil is consistently

one off from NTN,Tf. For staggered start it is one greater, and for

simultaneous start it is one less. The speedup is higher for simultaneous

start. Overall for the four cases NUtil and NTN,Tf are a better match then

speedup under these particular conditions.
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Case 3 has the best finish time and uses the fewest processors. It would

process the same load as case 2 with fewer processors and at a slightly

smaller finish time. The maximum speed is higher in case 2, but the max

speed is based on how many processors there are. So even though the

maximum speed of case 3 is less than that of case 2 it accomplishes more

with fewer processors. This is readily seen in Figure 4.5 case 2 and figure

4.8 case 3, although the exact values of the finish times cannot be discerned

from the plots.

For a divisible load that can be partitions as that of α in equation (4.63).

This is a result of having homogeneous processor and link speeds. A

network that is sequentially distributed has simultaneous start, and a root

that does processing will perform the best signature search.
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Chapter 5

5. Linear Daisy Chain Configurations

5.1 Introduction

Linear daisy chains are the basic building blocks of network topologies,

with the exception of a single node. The smallest linear daisy chain (LDC)

the equations in this chapter can work with is one compose of three nodes

(processor) or more. Understanding how the LDC’s work makes it possible

to create more complicated structure. For example in chapter 1 first a

linear daisy chain of five nodes was designed. This was expanded to a

mesh, and can be further expanded into three dimensions.

In this chapter two types of linear daisy chain are investigated. One is

with staggered start without front end processing, the other has a hybrid

strategy and front end processing. Staggered start means that when loads

are transmitted to a processor all loads must arrive at that processor before

processing can start. The hybrid strategy means that it has properties of

staggered state and simultaneous start, depending on rather it is

transmitting or receiving loads. The simultaneous starts can process

information and transmit at the same time.
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5.2 UTILIZATION OF LINEAR DAISY CHAIN
STAGGERED START
WITHOUT FRONT END PROCESSING

Figure 5.1. Five processors connected in a linear daisy chain configuration

In Figure 5.1 the loads on processor P1 are α2, α3, α4 and α5. Processor

P1 does not have front end processing, it can transmit loads but not process

them. The loads on P1 are transmitted to P2 over link z1. Because the linear

daisy chain has staggered start after all the loads have arrived at P2,

processing can begin. The load α2 is absorbed by P2, meaning that P2 is

processing α2. The remaining loads α3, α4 and α5 are transmitted to P3 over

link z2. Here α3 is absorbed by P3 and loads α4 and α5 are transmitted to P4

over link z3. Following the same procedure load α4 is absorbed by

processor P4, and α5 is transmitted to P5 over link z4 where it is absorbed.

The communication delays of Figure 5.2 and the loads within them are

listed below.

P1 P2 P3 P4 P5
z2 z4z3z1
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(5.2)
(5.3)
(5.4)
(5.5)

Figure 5.2. Timing diagram of a linear daisy chain with staggered start and
no front end processing.

The timing diagram in Figure 5.2 is another way of representing the

linear daisy chain configuration of Figure 5.1. The function is the same.
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Only now it has been put in a form that makes it easy to calculate the

utilization and speedup. The discussion is the same. First T2 is transmitted

to processor P2 over link z2. Processor P2 absorbs α2 from T2 and

transmitted α3, α4, and α5 to processor P3, over link z2 by means of T3.

Processor P3 now absorbs α3 from T3, and the remaining loads α4 and α5 are

transmitted over link z3 to Processor P4 by means of T4. Processor P4

absorbs α4 from T4, and transmits α5 to processor P5 over link z4, using T5.

Processor P5 absorbs α5 from T5 completing the process.

The utilization of the linear daisy chain is calculated as in chapter 3,

useful time divided by total time.

The total time of P2 is given by

(5.6)

(5.7)

(5.8)

(5.9)
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(5.10)

The utilization of processor P2 is

(5.11)

The Total time of Processor P3 is given by

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

The utilization of processor P3 is

(5.17)
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The total time of processor P4 is given by

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

The utilization of processor P4 is

(5.23)

The total time of processor P5 is

(5.24)

(5.25)
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(5.26)

(5.27)

(5.28)

The utilization of processor P5 is given by

(5.29)

In chapter 3 the ratios of the alpha’s the k’s, are found by writing an

expressing based on the timing diagram. The alpha’s are isolated and set

equal to the remaining parameters in the expression. They are the link speed

, processor speeds , and the intensity parameters associated with the

link speed and the processor speed, Tcm and Tcp respectively. This ratio is

then set equal to a parameter k. It is possible to reduce all expressions in

the timing diagrams of chapter 3 to a ratio of two alpha’s and a k. However

in Figure 5.2 there are more than two alpha’s in all but one of the expression

that can be derived from the timing diagram. This one expression is a result

of the computation times of processors P4 and P5 being equal.
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From Figure 5.2 processors P4 and P5 yield

(5.30)

(5.31)

From processors P3 and P4

(5.32)

(5.33)

(5.34)

From processors P2 and P3

(5.35)

(5.36)

(5.37)

Rewriting equations (5.36), (5.33) and (5.30) yields

(5.38)
(5.39)
(5.40)
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A general method for reproducing equations (5.37), (5.38), and

(5.59) is

(5.41)

The general form for finding the k’s is

(5.42)

The ratio of the loads on the last two processors in the network is found

first, in equation (5.30). The inverse processors speeds wi is known so the

exact value of k5 known. Using an iterative process the values of the rest of

the k’s in the network are found.

In a network with N = 5 processors , with i = N - 1 to 2, wi = w and zi = z

the values of are :

(5.43)

From equation (5.30)
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The inverse is placed in the next equation, giving a numerical value for

(5.44)

From equation (5.33)

(5.45)

From equation (5.36)

Using equations (5.38) and (5.39) , and

both k4 and k5 are known from the previous equations.

The general expression for Utilization is

(5.46)
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Note at N = 5 the outer summation’s upper index is 6. This means that m in

the inner summation takes on values from 2 to 6. When the value of m = 6

the summation will equal zero and the process will terminate.

The conditions for Ui are as follows:

For the ratio found in the summation of equation (5.45)

Equation(5.45) for i = 2 to N, produces equations (5.10), (5.16), (5.22)

and (5.28). They are reproduced on the first line of equations (5.46) to

(5.48) for comparison. Applying the above conditions produces the second

line in equations (5.46) to (5.48).

(5.47)

(5.48)
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(5.49)

(5.50)

The utilizations for N = 5 and N = 22 are plotted in Figure 5.3 and

Figure 5.4 respectively.

Figure 5.3. The utilization of a linear daisy chain without front end
processing
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Figure 5.4. The utilization of a linear daisy chain without front end
processing. At N = 13 the utilization has decrease 99.6%
from its original value . At N = 22 the utilization is zero.

The speedup for the network is found by taking the ratio of the time it

takes to finish a computation on one processor divided by the time it takes to

complete computations on the entire network.

TP : is the time to complete computations on a single processor

TPN : is the time to complete computations on an entire network

(5.51)

Using equations (5.37), (5.38) and (5.39) repeated below respectively
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Rewriting them yields

(5.52)

(5.53)

(5.54)

A general expression is found for αi

(5.55)

(5.56)

For the above conditions in equation (5.54)

The normalized equation for this network is

(5.57)

The load on the first processor , because the processor P1 does

not retain any of the load, it transmits the entire load to processor P2.

rewriting the normalized equation (5.56)

(5.58)

Substituting equations (5.54) and (5.55) in equation (5.56) for αi

(5.59)
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(5.60)

The value of α2 for this network is

(5.61)

The time to perform computations on a single processor is

(5.62)

For and equation (5.61) becomes

(5.63)

The time to perform computations on the entire network is

(5.64)

When equation (5.63) becomes

(5.65)

(5.66)

(5.67)



126

Speedup is plotted versus the number of processors, Figure 5.5. A

network of N = 22 is used because this is the number of processors used for

utilization in Figure 5.4. The speedup saturates at 2.7321. The number of

processors that can be added to a network and still receive a benefit from

parallel processing is found by taking 99.6% of the saturation value. In this

case it is 99.6% of 2.731 this equates to 2.27. The number of the processor

this occurs at is N = 11.

Figure 5.5. Speedup of a linear daisy chain without front end processing
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5.3 UTILIZATION OF LINEAR DAISY CHAIN
USING A HYBRID STRATEGY
WITH FRONT END PROCESSING

Figure 5.6. Five processors connected in a linear daisy chain configuration

The linear daisy configuration of Figure 5.6 and the timing diagram of

Figure 5.7, implement a hybrid strategy. In that they contain aspects of

both staggered start and simultaneous start. Behavior characterized by a

simultaneous start is that the processor can transmit and process

information. This is a front end property. They have staggered start

behavior because the processors can receive information but cannot

process the information at the same time. This describes a processor

without front end processing.

In Figure 5.6 the loads on processor P1 are α1, α2, α3, α4, and α5.

Absorption (processing) of α1 by processor P1 starts immediately because

there is no need to transmit α1 over a link. At the same time processor P1 is

absorbing α1, it sequentially distributes the loads α2, α3, α4, and α5 by

transmitting them over link z1 to processor P2. When all the loads have

P1 P2 P3 P4 P5
z2 z4z3z1
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been received by processor P2 absorption of α2 can begin. The loads α3, α4,

and α5 are transmitted over link z2 to processor P3 at the same time

absorption starts. After the arrival of all loads at processor P3 absorption of

α3 begins, and the transmission of α4 and α5 over link z3 to processor P4

starts. When α4 and α5 have arrived at processor P4, the absorption of α4

starts ,and α5 is transmitted to processor P5 over link z4. Upon complete

arrival of α5 at processor P5 absorption of α5 by processor P5 starts.

The timing diagram if Figure 5.7 is an alternative representation of the

linear daisy chain configuration. The description is the similar. Processor P1

absorption of α1 starts immediately , the loads α2, α3, α4, and α5 are

sequentially distributed to processor P2 over link z2 by means of T2. After

the arrival of all loads at P2, absorption of α2 can start. When the

absorption starts loads α3, α4, and α5 are transmitted to processor P3 over

link z3 by means of T3. After all the loads have been received by processor

P3, absorption of α3 starts. With the absorption of α3, the remaining loads

α4, and α5 are transmitter over link z3 by mean of T4 to processor P4. After

the complete arrival of α4 and α5 at Processor P4, absorption of α4 by

processor P4 starts. When absorption starts the final load α5 is transmitted

over link z4 to processor P5. After being received α5 is absorbed by
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processor P5. The communication delays of Figure 5.7 and the loads within

them are listed below.

(5.68)
(5.69)
(5.70)
(5.71)

Figure 5.7. Timing diagram of a linear daisy chain that implements a
hybrid strategy, and front end processing

The utilization of the linear daisy chain is calculated the same as in chapter

5.2, by finding the ratio of useful time to total time.

α1w1Tcp

T3

T4

α4 α5

α5

Tf

P2

t

Tf

Tf

Tf

t

t

t

P3

P4

P5

α3w3Tcp

α4w4Tcp

α5w5Tcp

α2w2Tcp

α3 α4 α5

T5

Tf

α2

t

P1

α3 α4 α5

T2



130

The total time is given by

(5.72)

(5.73)

(5.74)

(5.75)

The utilization of processor P2 is

(5.76)

The total time of processor 3 is given by

(5.77)

(5.78)

(5.79)
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(5.80)

The utilization of Processor P3 is

(5.81)

The total time for processor P4 is given by

(5.82)

(5.83)

(5.84)

(5.85)

The utilization of processor P4 is

(5.86)

The total time of processor P5 is given by
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(5.87)

(5.88)

(5.89)

(5.90)

The utilization of P5 is

(5.91)

The procedure for finding the ratio of the alpha’s the k’s is the same as in

the previous section 5.2. An expression is derived from the timing diagram.

From Figure 5.7 processors P4 and P5

(5.92)

(5.93)

(5.94)

From processors P3 and P4
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(5.95)

(5.96)

(5.97)

From processor P2 and P3

(5.98)

(5.99)

(5.100)

Rewriting equation (5.99), (5.96) and (5.93) yields

(5.101)
(5.102)
(5.103)

Equation (5.40) is general method for reproducing these equations

repeated below

(5.104)

Here can also be used, but there is no need to find

. The utilization is one for processor P1. This can be seen from

Figure 5.7, the computation time goes from zero the finish time Tf, 100%.

The general form for finding the k’s is developed using equation (5.93),

(5.96) and (5.99).
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(5.105)

As in section 5.2 the ratio of the loads on the last two processors in the

network is found. In this section it is equation (5.93). The inverse processor

speeds (wi) are known so the exact value of k5 is known. Using the same

iterative process as is 5.2 the remaining k’s are found.

In a network with N = 5 processors, with i = N-1 to 2, wi = w and zi=z,

and know values of Tcm and Tcp the values of the ’s are:

(5.106)

The inverse of is placed in the next equation change

(5.107)
The inverse of is placed in the next equation
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(5.108)

From equation (5.101), and (5.102)

(5.109)

(5.110)

Since all other parameters in equation(5.107) are known, and and

have been calculated above is also known.

The general expression for utilization is

(5.111)

This is the same as equation (5.45), except for a change in the upper index of

summation on the outer summation, has been change to .

The conditions for Ui are the same as in section 5.2

For the ratio found in the summation of equation (5.110)
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Equation (5.110) for i=2 to N, produces equations (5.75), (5.80) and

(5.85). They are reproduced on the first line of equation(5.111 ) to (5.114 )

for comparison. Applying the above conditions produces the second line in

equations (5.111 ) to ( 5.114).

(5.112)

(5.113)

(5.114)
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(5.115)

Figure 5.8. The utilization of a linear daisy chain with front end processing

Figure 5.9. The utilization of a linear daisy chain with front end processing.
At N = 11 the utilization has decreased 99.6% from its original
value. At N = 20 the utilization is zero.
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Speedup for the network is found as in section 5.2, by taking the ratio of

the time it takes to finish computation on one processor divided by the time

it takes to complete computations on the entire network.

TP : is the time to complete computations on a single processor

TPN : is the time to complete computations on an entire network

(5.116)

Using equations (5.100), (5.101) and (5.102) repeated below respectively

Rewriting them yields

(5.117)

(5.118)

(5.119)

A general expression is found for αi , it is the same equation as in section

5.2 with slight modifications of the index to accommodate the addition

processor, add because there is now front end processing.

(5.120)

(5.121)

For the above conditions in equation (5.119)
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The normalized equation for this network is

(5.122)

rewriting the normalized equation (5.121)

(5.123)

Substituting equations (5.119) and (5.120) in equation (5.122)

(5.124)

(5.125)

The value of α1 for this network is

(5.126)

The time to perform computations on a single processor is

(5.127)

For and equation (5.126) becomes

(5.128)

The time to perform computations on the entire network is

(5.129)

When equation (5.128) becomes
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(5.130)

(5.131)

(5.132)

As in section 5.2 speedup is plotted versus the number of processors,

Figure 5.10. A network of N = 20 is used because this is the number of

processor used for the utilization in Figure 5.9. Here the speedup saturates

at 2.3028. Taking 99.6% of the saturation value gives 2.29. This equates to

9 processors.

Figure 5.10. Speedup of a linear daisy chain with front end processing.
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5.4 ANALYSIS OF RESULTS/CONCLUSION OF CHAPTER 5

The performance metric N99.6% and speedup are used to determine if a

particular network performs better than another, Table 1.

WOFE stag WFE Hyb

N99.6% 13 11

Speedup 11 9

Table 2. Compilation of data from Figures 5.4, 5.5, 5.9, and 5.10
Wi = w = 6, zi = z = 2, Tcm = Tcp = 3

N99.6% = The processor at which the utilization had decreased 99.6% from its
original value

Speedup = The processor at which 99.6% of the saturation value is found
WOFE stag = Daisy chain without front end processing and staggered start
WFE Hyb = Daisy chain with front end processing and Hybrid strategy
W = Inverse processor speed
z = Inverse speed
Tcp = Computation intensity
Tcm = Communication intensity

This data shows that WOFE can add two more processors and still benefit

from parallel processing. The performance metric N99.6% shows how many

processors can be added to a network before the utilization drops to a point

at which utilization is consider too low for the entire network. The numbers

are close, but seem to suggest a slight advantage to having a network based

of WOFE.
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However for the linear daisy chain configuration this is misleading.

When the average utilization is considered for a network with N = 5

processors. The linear daisy chain with front end processing has an average

utilization that is about 23% better than that of WOFE.

For large network with N= 30 processors WFE is about 5% better, Table 2.

N 5 8 9 11 13 20 30

WOFE
AvgU

0.2238 0.1301 0.1138 0.0911 0.0759 0.0479 0.0314

WFE
AvgU

0.4563 0.2878 0.2558 0.2093 0.1775 0.1145 0.0768

%WFElarg 23.3 15.8 14.2 11.8 9.6 6.7 4.5

%inc 103.9 121.2 124.8 129.7 133.9 139.0 144.6

Table 3. Average utilizations for linear daisy chain with and without front
end processing. The values are taken for different size networks.

AvgU = Average utilization
WOFE = Without front end processing
WFE = With front end processing.
%WFElarg = Percent WFE is larger than WOFE
%inc = Percent increase of WFE over WOFE
W = Inverse processor speed
z = Inverse speed
Tcp = Computation intensity
Tcm = Communication intensity

A 100% utilization of processor P1 in the linear daisy chain (LDC) with

front end processing plays a role in its high average utilization. The

utilization at P1 is removed. That is easily done because U1 is set to one in
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the program. The average utilization is still 4% better for small networks, N

= 5. The average utilization is lower when there is no front end processing

because the staggered star also play role in the average utilization. In

Figure 5.2 the total time for processor P2 is found by summing T2 + T3 +

α2w2Tcp, this is equal to Tf2, equation (5.5). This total time is the

denominator of the utilization. Comparing equation (510) which does not

have front end processing and equation (5.75) which has front end

processing, it is shown that summing the communication delays and the

computation time as in equation (5.10) creates more terms in the

denominator increasing its size and as a result lowering the utilization. In

Figure 5.7 if the front end processing was removed and the total time for

processor P2 was found as above. It would be T2 + α2w2Tcp the terms of T3

would not increase the size of the dominator. As the networks increase in

size, Table 2, the percent of the difference between the decreases. Although

the average utilization of the linear daisy chain with front end process

remains higher they converge. In chapter 3 this was shown that this

decrease is that of a power series. The percent increase of WFE to WOFE

increases as the number of processors N increases.

When comparing the two linear daisy chains if the goal is to have a better

average utilization over the entire network the linear daisy chain with the
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front processor and the hybrid start would be preferred. If there is a need for

the last two processors in a network to remain equal as the changes, the

linear daisy without front end processing, and staggered start would be

preferable.

In this chapter the utilization as a performance metric is shown to be

versatile. When comparing the number of processor at which a certain event

occurs does not give insight into the network, another aspect of the

utilization can be used to get a better understanding of the network. It has

shown that it is another performance metric that can be used in conjunction

with speedup.
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