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Abstract of the Dissertation

High-Precision Nucleon-Nucleon Interactions
with Brown-Rho Scaling Medium
Modifications

by

Jeremy William Holt

Doctor of Philosophy
in
Physics
Stony Brook University
2008

Today, the foundation for most theoretical calculations of nuclear
properties across the periodic table is one of the several high-
precision nonrelativistic nucleon-nucleon potential models based
on meson exchange. Although these interactions fit with near per-
fection all experimental data available for two interacting nucleons,
it is well known that such interactions alone are insufficient to de-
scribe very accurately the properties of many-nucleon systems close
to nuclear matter density. In this thesis we suggest that density-
dependent nuclear interactions based on the notion of Brown-Rho
scaling can provide one avenue to extend the nuclear interaction
to these density regions.

We first study symmetric nuclear matter based on both the Gold-
stone linked diagram expansion and Landau Fermi liquid theory.
In the former we sum to all orders the particle-particle hole-hole
ring diagrams to obtain the ground state energy as a function of
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density. We find that the main effect of including Brown-Rho scal-
ing is a reduction in both the saturation density and energy. In the
Fermi liquid description of nuclear matter, we show that free-space
nucleon-nucleon interactions are unable to describe the quasipar-
ticle effective mass, compression modulus, symmetry energy, and
anomalous orbital gyromagnetic ratio at nuclear matter density.
By including the effects of Brown-Rho scaling, we show that these
observables are in general better reproduced theoretically. Next,
we explore the anomalously long lifetime of carbon-14, which has
been a persistent puzzle to nuclear structure theorists for decades.
We demonstrate that the dropping rho meson mass decreases the
nuclear tensor force to such an extent that carbon-14 achieves its
archaeologically long lifetime at a density of ~ 85% that of sat-
urated nuclear matter. We discuss future applications as well as
the connection between medium-modified two-nucleon interactions
and many-body forces.
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Chapter 1

Introduction

1.1 Realistic nuclear interactions

Ever since the modern theory of the nucleus was developed following the dis-
covery of the neutron by Chadwick in 1932, perhaps the most important chal-
lenge in low-energy nuclear physics has been to understand the force respon-
sible for binding together a nucleus and determining its properties. Today we
know that nucleons are not fundamental particles nor is the nuclear interaction
a fundamental force of nature. Rather, there is little doubt that all hadrons
are composed of quarks and gluons interacting according to the Lagrangian
for quantum chromodynamics (QCD)

1
NeNer s (1.1)

L =y (iv*(Dy)ij — mdiz) 1y — Tl

where ¢ and G are the quark and gluon fields respectively, and D, is the
covariant derivative defined by

Dy = 0, — igA%,, (1.2)

where ¢, are eight SU(3) matrices. All precision tests of QCD come from
high-energy scattering experiments, which probe a region in which the QCD
coupling constant is small and which therefore is amenable to perturbation
theory techniques. However, in the low-energy regime appropriate for the
description of interacting baryons and mesons, QCD has a large coupling con-
stant and can only be tested accurately by lattice gauge simulations [1, 2].
Presently, lattice gauge theory is unable to accurately describe the interaction
between two nucleons in free space, though the preliminary efforts along these
lines are encouraging [3]. Therefore, one has to rely on models to describe the



interaction between two nucleons, and one model that has proven to be highly
successful since the earliest studies of the nuclear interaction is that of meson
exchange, shown schematically in Fig. 1.1.

Figure 1.1: The nucleon-nucleon interaction arising from the exchange of var-
ious light mesons, such as the 7, o, p, and w.

In the mid-1930’s Yukawa predicted that the strong, short-ranged nuclear
force resulted from the exchange of a massive scalar meson [4, 5], and since
that time the description of the nucleon-nucleon (NN) interaction in terms of
meson exchange has become increasingly complex as the number of mesons ex-
perimentally observed and needed to account for the fine details of the nuclear
interaction has increased. Today, it is well-known that the nucleon-nucleon
interaction arises mainly from the exchange of the pseudoscalar, isovector m
meson; the scalar, isoscalar o; the vector, isovector p; and the vector, isoscalar
w. These mesons couple to nucleon fields through the following Lagrangian
densities

Loy = —gro i T510¢"™ (1.3)
Loiny = =V 202 0 TLtb¢™ (1.4)
Lonn = —go0thd”, (1.5)
Loy = —gutV b, (1.6)

Lo = —g07" 70~ @ — piot Ty (0,80~ 0,8f) . (L7

To account for the finite size of baryons and to regulate divergent integrals
arising in perturbation theory, the vertices are modified by a vertex form



factor typically of the form

A2 —m2\™
<m) ! (1.8)

where A; is the form factor cutoff for meson species i, m; is its mass, k is the
three-momentum transfer, and n; is typically 2. The parameters of the theory
(e.g. the meson masses, coupling constants, and form factor cutoffs) in principle
have a physical meaning and therefore can be confirmed by experiments beyond
NN collisions. Thus, meson exchange provides us with a very economical and
convenient description of the interaction between two nucleons.

The qualitative form of the nucleon-nucleon interaction in relative S-states
is shown in Fig. 1.2, where as an illustrative example we have plotted the 1S
partial wave interaction for the Argonne vig potential [6]. The NN interaction
consists of three distinct regions which are dominated by the exchange of
different types of mesons. The long-range attraction is mediated by the lightest
meson, the pion. The strong intermediate attraction arises from the exchange
of the scalar o meson (or alternatively, correlated two-pion exchange in the
I = J = 0 channel). At short distances the strong repulsion is due to the
exchange of vector mesons, the p and w being the most significant. This
picture has formed the foundation for models of the NN interaction for the
past fifty years, and it was hoped that with additional two-nucleon scattering
experiments it would be possible to constrain more tightly the parameters
entering into the theory.

In the early 1990’s the Nijmegen phase shift analysis [7] led to the construc-
tion of a new generation of high-precision nucleon-nucleon potential models
[6, 8-10]. These interactions all fit the nearly 4000 data for np and pp scat-
tering phase shifts up to a laboratory energy of 350 MeV with a x?/DOF
~ 1. In order to achieve this accuracy, the simple one-boson-exchange poten-
tials with constant masses and coupling constants were replaced by partial-
wave-dependent parameters, particularly for & meson exchange. Among the
numerous high-precision NN interactions constructed to-date, the CD-Bonn
potential and the Nijmegen group of potentials are based completely on meson
exchange. In Table 1.1 we show the exchanged mesons, as well as their masses,
used in these two potentials. Given this next generation of nucleon-nucleon
interaction models in free space, the next step is to apply these potentials to
nuclear many-body problems.
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Figure 1.2: The Argonne vig 7-space nucleon-nucleon interaction in the Sy
partial wave. The interaction can be divided into three relatively distinct
regions: the long-range one-pion-exchange part, the intermediate range at-
traction, and the short-distance repulsion.



CD-Bonn
Pseudoscalars | 7°(135) 7+ (140)
Scalars o1(~ 500) | o2(~ 900)
Vectors p°(770) p(770) | w(782)
Nijmegen 93
Pseudoscalars | 7Y(135) | «%(140) | 7(549) | 7/(958)
Scalars o (760%) ad(983) | a5 (983) | fo(976)
Vectors p°(769%) | pt(768%) | w(782) | ¢(1020)

Table 1.1: Mesons contributing to the CD-Bonn and Nijmegen 93 one-boson-
exchange interactions. The masses of the o1 and oy particles in the CD-Bonn
potential are varied in different partial waves. We indicate with a superscript
that the large widths of the o and p mesons are accounted for in the Nijmegen
93 potential by replacing the propagator of a stable meson with a dispersion
integral [8]. The masses are in units of MeV/c?.

1.2 Low momentum nucleon-nucleon interac-
tions

Before one can apply high-precision nucleon-nucleon interaction models to
problems in finite nuclei and nuclear matter, one must first develop a strategy
for dealing with the strong short-distance repulsion that arises from the ex-
change of the vector mesons. From the form of the S-wave interaction shown
in Fig. 1.2, it is clear that describing the behavior of many interacting nucle-
ons is a strong-coupling problem and that one must be careful when applying
perturbation theory methods. In the past the traditional method to tame
the strong short-distance repulsion was to construct the reaction matrix, or
G-matrix [11-13]. Starting from the full Hamiltonian

H=Hy+ H, (1.9)

where the unperturbed and perturbed Hamiltonians are respectively given by

A

Hy = > (Ti+Uy)
Zjl B

Hy = ) V=) U (1.10)
1<j =1



one defines the G-matrix for nuclear matter at some given density as

Q

W — Iy

Gw)=V+V G(w), (1.11)
where () is the Pauli operator which projects onto states outside of the filled
Fermi sea (determined by the nuclear density), and w is the starting energy
defined below. The single-particle potential U is introduced for convenience,
though it is arbitrary. It defines the single-particle energies

e(m) =T(m)+U(m) (1.12)
as well as the starting energy
w=e(m) +e(n). (1.13)

Typically, the single-particle potential is defined in Brueckner theory by

Um) = n; (mn|G(w)|mn —nm) |, m<kp (1.14)

0 , m > kp

Clearly the G-matrix is energy dependent, where the starting energy w is
determined self-consistently from equations (1.11)-(1.14). Diagrammatically
the G-matrix is obtained by summing the ladder diagrams with intermediate
states blocked by the Pauli exclusion principle, as shown in Fig. 1.3. One can
show that the resulting effective interaction is well-behaved at short distances.

Figure 1.3: Diagrammatic representation of the G-matrix effective interaction.
Hashed lines represent Pauli-blocked intermediate states.

The modern approach to dealing with the strong short-distance repulsion
is to integrate out the high momentum components of the nucleon-nucleon
interaction. This is performed in such a way, however, that the low energy
physics encoded in the scattering phase shifts is preserved. The method for
constructing such low-momentum interactions is described in detail in [14].



Starting from the half-on-shell T-matrix for free space scattering

> Vyn(k',9)T(q, k, k?
NN( aQ) (qa ) )q2d(], (115)

2
T k k) = Vyn (K k) + = /
( y vy ) NN( ) )+7_[_7D 0 kQ_qQ

we define a low-momentum half-on-shell T-matrix by

2 (™ View(?, ) Tiow—x (¢, p, P
ﬂowfk(p/7p7p2) = ‘/lowfk(plvp) + _P/ 2 ( 2) ° D) ( >q2dQ7
™ Jo p”—q
(1.16)
where P denotes the principal value and the cutoff A is in general arbitrary.
These two T-matrices are required to be identical for momenta p < A, and it
can be shown [15] that a Vi, defined by

Vor=Q-@ [Qr@ [afe-a [afa e+

will satisfy this requirement. This is just the Kuo-Lee-Ratcliff folded diagram
effective interaction [16, 17]. In the above equation, Q is an irreducible vertex
function and @’ is obtained by removing from Q all terms first order in the
interaction Vyy. There are several schemes [18, 19] available for accurately
computing Vi,w_x, and each scheme preserves the deuteron binding energy.
Under this renormalization group procedure, all of the high precision Vyy
flow, as A — 2.0 fm~!, to a nearly unique interaction Vioy_x, as shown in Figs.
1.4 and 1.5 reproduced from [14]. The resulting Vi is well-behaved at short
distances and moreover it is energy-independent (in contrast to the traditional
G-matrix). Therefore, low momentum interactions are very convenient for
perturbative calculations of many-body nuclear systems.

The momentum cutoff of A = 2.0 fm~! is the CM momentum corresponding
to a laboratory energy of ~ 350 MeV, which is precisely the energy beyond
which no information from the Nijmegen phase shift analysis is incorporated
into realistic NN interactions. Thus, one can view the construction of low-
momentum interactions as integrating out the experimentally unconstrained
components of the NN interaction.

Eliminating the large-momentum components of the NN interaction in a
way that preserves the phase shifts is reminiscent of the Moszkowski-Scott
separation method [20]. This procedure was employed in the 1960’s to tame
the strong short-distance repulsion in relative S-states by balancing it against
part of the mid-range attraction. The part of the NN interaction that remains
is used as an effective interaction that approximates the G-matrix. In Chapter
2 we compare the momentum-space decimation procedure used to construct
the low momentum nucleon-nucleon interaction Vi,,_) with the configuration-
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Figure 1.4: Diagonal matrix elements of Vi,,_, for different high-precision
potentials in the 1S, partial wave with various cutoffs A. Reproduced from
reference [14].
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space separation method of Moszkowski and Scott. Each procedure defines
a separation of scales in the nucleon-nucleon interaction, and the extent to
which these two scales coincide is studied. By studying the effects of the
separation method on the relative S-state Kallio-Kolltveit potential, it is found
that close agreement with V., _i is obtained as the configuration-space cutoff
is lowered to ~ 1.0 fm. This study helps to illuminate the Vi, _; decimation
procedure and to justify the use of low momentum interactions in nuclear
structure calculations.

1.3 Beyond free-space nuclear interactions

Despite the improved precision of both nuclear interaction models and quan-
tum many-body methods, there remain experimental observables which cannot
be reproduced with two-body interactions alone. The most persistent is the
saturation of nuclear matter. Ever since it was discovered how to tame the
strong short distance repulsion in relative S-states through the construction
of the G-matrix, the main problem for nuclear interaction models has been
to reproduce the saturation energy and density of symmetric nuclear matter.
Since different many-body methods, such as the Goldstone linked-diagram
expansion [13] and variational calculations [21], give very similar results for
the binding energy as a function of density for a given nuclear interaction,
it is widely believed that any deviations from the empirical saturation point
must be due to deficiencies in the nuclear interaction model. From the semi-
emipirical mass formula, which describes the nuclear energy as a function of
proton and neutron number,

Z2(Z-1)  (N-2)?

EB(Z,N> :OélA—OéQA2/3—Oé3 Al/S — Oy A

(1.18)
one can extract the parameter oy to be -16 MeV by fitting across a wide
range of nuclei. This volume term describes the energy of a single nucleon
added to an infinite system of protons and neutrons at a density of nyg =
0.16 nucleons/fm?, the density at which symmetric nuclear matter saturates.
Although different models of the NN interaction give different results for the
binding energy and density at the saturation point, they all lie along the
Coester band which does not pass through the empirical saturation energy
and density [22-25]. Typically, either the saturation density is correct and
the binding is too weak or the binding energy is correct and the saturation
density is too large. In finite nuclei, the analogous problem is that one cannot
simultaneously fit both the binding energy of the nucleus and its rms charge
radius. The fact that no two-nucleon potential that is fit to scattering phase
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Figure 1.6: Some processes that form the microscopic origin of three-nucleon
forces. Shown are (a) nucleon-antinucleon excitations and (b) resonance-hole
excitations (in this case with an intermediate A isobar).

shift data and deuteron properties can reproduce these properties suggests that
something fundamental is missing in this description of the nuclear interaction.

The failure of two-body interactions alone to describe the fine details of
nuclear structure was never really a surprise. In fact, as early as 1939 [26] it
was suggested that three-body forces should be rather significant for nuclear
structure in contrast to atomic structure. Today three-body forces form the
foundation for most studies of dense nuclear matter [27-31]. As shown in
Fig. 1.6, three-body forces commonly result from relativistic effects, such as
intermediate nucleon-antinucleon states, or from effects due to the intrinsic
structure of nucleons.

An alternative approach toward developing a formalism for nuclear struc-
ture calculations at finite density is to consider changes to the properties of nu-
cleons and mesons inside of a nucleus. Since hadrons are composed of quarks,
one ought to expect that inside of a nucleus the individual nucleons, as well as
the exchanged mesons, may have very different properties than in free space.
In fact, the European Muon Collaboration (EMC) [32] made the surprising
discovery that nucleon structure functions are modified inside of a nucleus.
Furthermore, polarization transfer experiments at Jlab [33] have shown that
the electromagnetic form factors of a proton are altered in a dense medium
compared to free space. In fact, the properties of hadrons in-medium is cur-
rently one of the most widely studied topics in nuclear physics.

Modifications to meson properties inside a nuclear medium give rise to
density-dependent two-body interactions, as shown in Fig. 1.7. We have al-
ready emphasized that when a free-space two-body interaction is applied to a
dense nuclear system, certain excitations that are present in the many-body
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Figure 1.7: The medium-modified nucleon-nucleon interaction arising from the
exchange of light mesons whose in-medium masses are expected to differ from
their free-space values.

system are left out. In the language of hadronic medium modifications, these

degrees of freedom give rise to a density-dependent meson mass and width

through many-body self-energy corrections to the meson propagator
1

WZ - q2 - m2 - Zvac<Q) - 2med(("}u q)’

D(w,q) = (1.19)

where contributions to X,.q are shown graphically in Fig. 1.8. In general,

both s-channel and ¢-channel processes can contribute, which give rise to an
in-medium spectral function defined as the imaginary part of the propagator

Alw,q) = 1 Im¥(w, q) . . (1.20)
T (w? —q®> —m?+ ReX(w,q))” + ImX(w, q)?

The real part of the self-energy contributes to the effective mass of the particle
while the imaginary part leads to collisional broadening of the width. In the
low-density limit [34], the in-medium self-energy depends only on the forward
meson-nucleon scattering amplitude f,,5 and the nuclear density n

Zmed((-“)7(1; TL) = nme(w,q). (121>

Such effects have been studied by various groups [35-37], though the results
are not all in agreement. In particular, most studies agree that there is a
significant broadening of the spectral functions for the vector mesons, but the
calculated mass shifts can be significant or negligible. Such phenomena can
also be seen in high-pressure atomic gases, where collisions with background
particles cause both a shift and broadening of the spectral lines.

An alternative motivation for considering in-medium hadronic masses is
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Figure 1.8: Modifications to meson masses (in this case the w meson mass)
in medium due to hadronic many-body effects. Shown are both s-channel (a)
and t-channel (b) contributions.

based on the notion of chiral symmetry restoration in dense matter. Given
the fact that light quarks have masses on the order of 5-10 MeV, while typical
hadron masses are nearly 1 GeV, it is believed that most hadronic mass is
generated dynamically from the nontrivial QCD vacuum. But as the density
increases, the interaction strength among quarks and gluons decreases due to
the running of the QCD coupling constant, which to lowest order in perturba-

tion theory is
1

2 ~—

as(k”) ~ G2 /M)’ (1.22)
where 3y is a constant and A is the QCD scale of ~ 220 MeV. Eventually,
at some critical density n. there exists a phase transition to a state of de-
confined hadronic matter, which is expected to coincide with chiral symmetry
restoration, but along the way it is expected that the dynamically generated
mass will shed. The order parameter associated with this phase transition is
the scalar quark condensate (chiral condensate) (Ggq) or alternatively the pion
decay constant f,, which goes as (f*/ fx)? ~ (Gg)* / {qq), where * denotes an
in-medium quantity.

There are a number of models that connect the order parameter for chiral
symmetry restoration with dynamical mass generation. Unfortunately, lattice
gauge theory is presently unable to solve QCD at finite density, so one must
rely on these models to describe the behavior of hadronic matter in this region
of the phase diagram. In the Nambu-Jona-Lasinio (NJL) model, which models
QCD as a system of quarks interacting through zero-range contact interactions,
the dynamical hadron mass results from the nonzero scalar quark condensate.
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Figure 1.9: The pion decay constant f, as a function of temperature and
density in the NJL model. Figure taken from [40].

In vacuum, where the quark condensate is nonzero, bare quarks evolve into
constituent quarks with masses approximately 300 MeV. In the NJL model the
constituent quark mass is directly proportional to the scalar quark condensate

. _ ok o\ 2
m ) (ﬁ) , (1.23)
m {qq) fr
which is known as “Nambu scaling”. This scaling seems to come out in QCD
sum rule calculations [38] also. It holds in the Harada and Yamawaki renor-
malization group theory [39] for high temperatures or densities approaching
chiral restoration which takes place at the fixed point where mj, and gy, go
to zero. In Fig. 1.9 we show the order parameter for chiral symmetry restora-
tion as a function of temperature and density [40] calculated within the NJL
model. We see that even at nuclear matter density, pg, the pion decay constant
decreases by approximately 20-30%.

Another way to see that dynamically generated masses scale was introduced

by Lutz et al. [41] through the Gell-Mann, Oakes, Renner relation

famz = 2m(qq), (1.24)

where m is the bare quark mass. Both m and m,, which is protected against
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scaling to the extent that it is a Goldstone boson, do not scale. This relation
would then produce

fr_Via)”

fe o Vaa)
which holds quite well for low densities'. In fact, for low densities one has the
relation [42-44]

(1.25)

<q__Q>* —1— OrN n
(qq) frm3
where n is the vector density and o,y is the pion-nucleon sigma term known
experimentally to be ~ 45 MeV. Eq. (1.26) holds to linear approximation.
In Brown-Rho scaling (BRS) [45], which was motivated by the attempt to
build scale invariance into chiral effective Lagrangians, one associates hadronic
masses with the breaking of chiral symmetry according to

(1.26)

* * * *
gamy _ Mg _ My _ My _ Jx _

g:kéx mn me my my, f7r

O(n), (1.27)

where g4 is the axial coupling constant, ® is a function of the nuclear density
n with ®(ng) ~ 0.8 from Eq. (1.26). This linear dependence on the pion decay
constant, rather than its square, is different from that obtained by QCD sum
rules and low density theorems, though at higher densities Koch and Brown
[46] showed that the entropy from reduced mass hadrons fit the entropy from
lattice gauge simulations if one had Nambu scaling (1.23) i.e., the hadron
in-medium mass scaled linearly with the quark scalar density. Today, Brown-
Rho scaling has a firm foundation in the Hidden Local Symmetry (HLS) field
theory. Since the particular details will not be of immediate importance to
the rest of our discussion, we provide in Appendix A a short summary of HLS
and how it relates to BRS at finite temperature and density.

Experimental efforts to determine the properties of hadrons in medium can
be classified into two categories: heavy ion collisions and energetic probes of
cold nuclear matter. The advantage of the former is that the temperature and
density of the matter created at the instant of such collisions are large enough
that chiral symmetry is expected to be restored, if only very briefly. It has
been suggested [47-50] that as the hot/dense matter evolves from the chirally
restored phase to the normal hadronic phase, the dileptons emitted during
all stages of the fireball evolution should be able to probe the restoration
of chiral symmetry through their decays from the vector mesons, the most

!To be precise, this relation in medium is a relation for the space component of the
pion decay constant which is different from the time component since Lorentz invariance is
broken.
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important of which is the short-lived p meson. Although relativistic heavy ion
collisions are promising as a source of information regarding chiral symmetry
breaking/restoration in hot and dense matter, they are only indirectly relevant
for understanding nuclei under normal conditions.

Experiments involving energetic probes of cold nuclear matter are more
important for the purposes we are pursuing in the present work. In principle
they can provide information about the spectral properties of mesons propa-
gating through nuclear matter and thereby help to understand the medium-
dependent nuclear interaction. Such experiments have, in fact, been performed
for all of the light mesons important in nuclear structure physics. Studies of
deeply-bound pionic atoms [51] find only a small increase in the 7~ mass at
nuclear matter density and a related decrease in the 7+ mass. Experimental
information on the scalar and vector particles comes from mass distribution
measurements of in-medium decay processes. Recent photoproduction experi-
ments [52] of correlated pions in the I = J = 0 channel (¢ meson) have found
that the distribution is shifted to lower masses in medium. The vector mesons
have been the most widely studied. Whereas the situation is clear with the w
meson, the mass of which drops by ~ 14% at nuclear matter density [53], with
the p meson it is still unclear [54, 55].

BRS was one of the first attempts in nuclear physics to formulate medium
dependent effects associated with the approach to chiral restoration as the
scale, either with temperature or density or with both, was increased. Al-
though 3NF play a large role in many modern discussions of in-medium nu-
clear interactions, relatively little emphasis has been devoted to the study of
medium-modified two-body interactions. Indeed, it is one of the aims of this
thesis to encourage the application of hadronic medium modifications to prob-
lems in nuclear structure and to better understand the connection between this
approach and the more traditional use of three-body forces. Our ultimate goal
is to apply these in-medium interactions to studies of both finite nuclei and
nuclear matter to test whether the hypothesis of dropping masses is consistent
with what we know experimentally from nuclear structure.

In Chapter 3 we begin our discussion with a study of nuclear matter, one
of the simplest nuclear many-body systems. We revisit the problem of the
saturation of symmetric nuclear matter by way of an all-order ring diagram
summation. We find that low-momentum interactions succumb to the same
problem that has traditionally plagued realistic models of the NN interaction,
namely, that the saturation density is much too high. We consider the effect of
introducing modified meson masses in the Nijmegen I potential and the Bonn-
B potential. We find that in both cases the saturation density is in much
better agreement with experiment, though the binding is slightly weak. By
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generalizing the ring diagram summation for asymmetric nuclear matter, we
turn our attention to the neutron star equation of state. From the medium-
modified Bonn-B potential we extract the neutron excess as a function of the
neutron star density. We suggest that such calculations might be important
for the understanding of kaon condensation in neutron stars.

In Chapter 4 we discuss symmetric nuclear matter within the framework of
Landau Fermi liquid theory. The low momentum nucleon-nucleon interaction
View—r 1s used to calculate the effective interaction between quasiparticles on
the Fermi surface, from which we extract the quasiparticle effective mass, the
nuclear compression modulus, the symmetry energy, and the anomalous or-
bital gyromagnetic ratio. The exchange of density, spin, and isospin collective
excitations is included through the Babu-Brown induced interaction, and it is
found that in the absence of three-body forces the self-consistent solution to
the Babu-Brown equations is in poor agreement with the empirical values for
the nuclear observables. This is improved by lowering the nucleon and me-
son masses according to Brown-Rho scaling, essentially by including a scalar
tadpole contribution to the meson and nucleon masses, as well as by scaling
the axial coupling constant g4. We suggest that modifying the masses of the
exchanged mesons is equivalent to introducing a short-range three-body force,
and the net result is that the Brown-Rho double decimation [56] is accom-
plished all at once.

Our study of finite nuclei begins in Chapter 5 by revisiting the old problem
of Kuo-Brown shell model effective interactions. Previous G-matrix calcula-
tions showed that when core polarization diagrams are included to all orders
in perturbation theory, the final effective interaction very close to the original
bare G-matrix alone. We discuss a new method for summing an infinite num-
ber of core polarization diagrams using the low-momentum nucleon-nucleon
interaction Vigw_k. The summation is based on the Kirson-Babu-Brown (KBB)
induced interaction approach in which the vertex functions are obtained self
consistently by solving a set of non-linear coupled equations. It is found that
the solution of these equations is simplified by using Vi,w_k, which is energy
independent, and by employing Green functions in the particle-particle and
particle-hole channels. We have applied this approach to the sd-shell effective
interactions and find that the results calculated to all orders using the KBB
summation technique are remarkably similar to those of second-order pertur-
bation theory, average differences being less than 10%. Thus, in our future
calculations we can be confident that a second-order calculation should be
sufficient to capture the essentials of an all-order calculation.

In Chapter 6 we present shell model calculations for the (-decay of the
¢ ground state to the *N ground state, treating the states of the A =
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14 multiplet as two Op holes in an 'O core. This decay has long been a
puzzle for nuclear structure theorists because the decay is an allowed Gamow-
Teller transition, and therefore its half-life should be on the order of tens of
minutes instead of the observed half-life of 5730 years. Our calculation employs
low-momentum nucleon-nucleon interactions derived from the realistic Bonn-B
potential, and we find that the Gamow-Teller (GT) matrix element is too large
to describe the known lifetime. By using a modified version of this potential
that incorporates the effects of Brown-Rho scaling medium modifications, we
find that the GT matrix element vanishes for a nuclear density around 85%
that of nuclear matter. We find that the splitting between the (J™,T) = (17, 0)
and (J™,T) = (07, 1) states in "N is improved using the medium-modified
Bonn-B potential and that the transition strengths from excited states of 4C
to the N ground state are compatible with recent experiments. Our findings
present compelling evidence that the anomalously long lifetime of *C results
from medium effects on nuclear interactions.

Taken as a whole, these initial studies suggest that the use of medium-
modified nuclear interactions can provide a convenient formalism for extending
the model of the nuclear interaction into regions close to nuclear matter density.
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Chapter 2

Viow—r and the Moszkowski-Scott
Separation Method

2.1 Introduction

The central idea in the effective field theory (EFT)-renormalization group
(RG) approach to constructing low momentum NN interactions is that the fine
short-distance details of the nuclear interaction are unconstrained by low en-
ergy physical observables. As evidenced by the large number of high-precision
NN potential models [6, 8-10], which all reproduce the nearly 4000 experi-
mental phase shift data with a x?/DOF~ 1, one might expect there to be
infinitely many interactions which differ in their short-distance dynamics but
which yield the same low energy nuclear observables. These ideas are based on
the notion of the separation of scales, whereby the degrees of freedom beyond
some scale A\ are integrated out and incorporated into the low-energy theory
through counterterms [57]. The main idea is that there exists a separation of
scales that facilitates this division, and in the case of standard chiral effective
field theory, one uses the chiral symmetry breaking scale A,sp ~ 1 GeV. In
low energy nuclear physics there is another scale of importance: the pion pro-
duction threshold in two-nucleon scattering, which becomes important near
a laboratory energy of 350 MeV. In fact, beyond this lab energy, no exper-
imental phase shift data is incorporated into realistic NN potential models.
It has been shown [14, 58] that by introducing a momentum space cutoff A,
all high precision NN potentials that reproduce the experimental phase shift
data up to E,, ~ 350 MeV flow to a nearly unique interaction Vi,,_x as the
cutoff is lowered to A ~ 2 fm~!. Removing the large momentum modes of an
interaction corresponds to removing the short distance details, but the exact
extent to which the momentum space decimation procedure removes these
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short distance details is not well understood. In particular, it would be useful
to understand whether the momentum space cutoff of ~ 2 fm~! corresponds
to an approximate cutoff in position space. The purpose of the present paper
is to investigate this question.

The more effective effective field theory approach, which introduces this
second decimation scale, is reviewed in [56]. It is more effective in the sense
that the cutoff A is chosen so as to include all experimental data that have
been converted into precision NN potentials. Since the maximum momentum
in the data corresponds to a cms momentum A ~ 2 fm™!, it makes no sense to
increase A, which would then include contested inner parts of the potentials, or
to decrease A, which would mean cutting out some of the experimental data.
With A chosen as it is, all well measured and well analyzed data are included
in the nearly unique Vigy_x.

Removing the large momentum or short distance details of an interaction
in order to construct an effective interaction is not, however, a new tool in
nuclear physics. The separation method of Moszkowski and Scott [20] provided
40 years ago a means by which the nuclear interaction can be uniquely divided
into a short distance and long distance part. This separation is made in such
a way that the short distance potential gives no phase shift for free particle
scattering; the long distance part then gives the same phase shift as the full
interaction and is used as a first approximation to the effective interaction in
nuclear matter. Both the separation method and Vj,,,_; decimation establish
a separation of scales in the nuclear interaction, the former in configuration
space and the latter in momentum space. The extent to which these two scales
coincide will be a further investigation of this paper.

We have chosen to compare the RG/EFT approach and the separation
method by way of the Kallio-Kolltveit potential [59, 60], a relative S-state
potential that has been chosen primarily for its simplicity. By comparing the
resulting long-distance interactions, it is hoped that semi-quantitative connec-
tions can be established between the two methods.

2.2 Low momentum nucleon-nucleon interac-
tions

Because the nuclear force cannot at present be derived from the underlying the-
ory of QCD, a number of phenomenological meson-exchange models have been
developed to describe the NN interaction. At large distances all of these po-
tentials have the one-pion-exchange character, but at intermediate and short
distances they differ significantly. Despite these differences, all of the high
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precision potentials correctly reproduce the experimentally observed deuteron
binding energy and low energy nucleon phase shift data. To remove the model
dependence in the NN interaction, the renormalization group is used to con-
struct a unique low momentum effective interaction Vi, _x according to the
procedure described below.

A principal requirement of any RG procedure is that low energy observables—
in this case the deuteron binding energy and low energy T-matrix—be preserved
under the RG transformation. So, beginning with the full-space half-on-shell
T-matrix

00 / 2
VNN(]{: aQ)T<Qa ka k )q2dq, (21)

2
T Kk k%) = K.k -
( 3 Uy ) VNN( ) )+7TP/0 kQ_qQ

we define a low-momentum half-on-shell T-matrix by

‘/low—k(p/7q>ﬂow—k<Q7pap2> 2d
s q*dq,

pT—q
(2.2)
where P denotes the principal value and the cutoff A is arbitrary for the
moment. These two T-matrices are required to be identical for momenta

p < A, and it can be shown [15] that a Vi,y_x defined by

Vo =Q-@ [Qr@ [afa-a[afafar ey

will satisfy this requirement. In the above equation, Q is an irreducible vertex
function and Q' is obtained by removing from Q all terms first order in the
interaction V. Under this RG procedure, all of the high precision Vi flow,
as A — 2.0 fm™!, to a nearly unique interaction Vioy_x, whose relative S-states
will be a subject of analysis later in the paper.

2 A
j—iowfk(p,apap2) = ‘/IOW*k(p/hp) + ;P/
0

2.3 The separation method

Idealized nuclear matter, an infinite system of protons and neutrons at con-
stant density interacting through only the strong force, represents one of the
simplest nuclear many-body systems. The properties of nuclear matter around
the saturation point are well-known empirically, which makes this system con-
venient for testing models of the NN interaction. Although many-particle
correlations (that is, greater than two) could in theory be important for de-
scribing nuclear matter, it is generally assumed that they should be small [61].
This leads to the independent pair approximation for nuclear matter in which
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the interaction between two particles is treated exactly within the model, and
the effect of all remaining particles is to produce an average single-particle
(s.p.) potential U. This average potential determines the s.p. unperturbed
wavefunctions through

H0¢ab = (T + U)¢ab - 6ab¢ab- (24)

The unperturbed relative wavefunction ¢, is then just the antisymmetrized
product wavefunction of ¢, and ¢,. The perturbed wavefunction v, is defined
by

[T(a) -+ T(b) -+ VNN(G, b)]wab = eapWab- (25)

Typical perturbed and unperturbed wavefunctions for a hard core potential
are shown in Fig. 2.1

V

AWM

Figure 2.1: Unperturbed wavefunction ¢ and perturbed wavefunction ¢ for a
hard core potential.

Expanding ¢ in terms of the eigenstates {¢;} and imposing antisymmetry
on the total N-particle wavefunction leads to the Bethe-Goldstone equation

Qab
ab — Pa V aby 2.6
Yap ¢b+eab_H0 NNUYab (2.6)

where () is the Pauli operator which projects outside of the filled Fermi sea.
Defining the G-matrix (or reaction matrix) analogous to the 7-matrix for free-
particle scattering we obtain

Go = V. (2.7)
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Rewriting Eq. (2.6) we find the operator equation
Q

W — Iy

Gw)=V+V G(w), (2.8)

for the G-matrix. The starting energy w is defined by
W= €n+ € (2.9)

for the scattering of states m and n. The mean field potential U defining the
single-particle energies accounts for the average effect from all other nucleons

Z (mn|G(w)|mn —nm) , m<kp

U(m) = n<he (2.10)

0 R m > kp

Thus, in the independent-pair approximation, two-particle scattering in-medium
is treated with the Brueckner G-matrix while the effect of all other particles
is incorporated into the s.p. potential U. The total energy is therefore just
the sum of the individual kinetic energies together with the interaction ener-
gies of each pair of particles (the latter being determined by the two-particle
scattering properties encoded in the reaction matrix)

E:ZTm+%Z(mn|G(w)|mn—nm>, (2.11)

where the sums are performed over just the occupied states defined by the
Fermi momentum kg.

Moszkowski and Scott introduced the separation method [20] to simplify
and illuminate Brueckner’s approach to the nuclear many-body problem. The
purpose of the G-matrix is to deal with the difficulties associated with the
strong short-distance repulsion in the nuclear interaction. This repulsion
makes impossible a simple treatment with perturbation theory, but the con-
struction of the reaction matrix produces an effective interaction that is well-
behaved at short distances. However, in general the G-matrix is not simple to
calculate. The invention of the separation method was guided by insight into
the properties of the two-particle relative wavefunction in nuclear matter, and
it provides us with an elegant method for approximating the G-matrix, as we
now describe in detail.

First, we note that the two-particle relative wavefunction in nuclear matter
has no phase shift. In other words, as r — 00, ¥, — ¢a. This follows from the
Pauli principle, which allows only virtual scattering to states above the filled
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Fermi sea. From the Bethe-Goldstone equation (2.6), all of the contributions to
the perturbed wavefunction beyond the leading unperturbed wavefunction go
to zero at large r since it is assumed that the potential V' vanishes sufficiently
rapidly at large distances. In free-space scattering this argument does not
apply because the denominator can vanish for intermediate states with the
same energy as the incident pair. But in nuclear matter there are no such
states available. Therefore, the contributions from states outside of the filled
Fermi sea can only deform the relative wavefunction at short distances, and a
measure of this deformation is the wound integral defined by

Ragb = / |¢ab — ¢ab|2 dSTldg’Fg. (2.12)

If kg is small, we expect the independent pair approximation to be valid. Cal-
culations [12] performed within the framework of Brueckner theory show that
the two-particle relative wavefunction in nuclear matter is essentially equal to
the unperturbed wavefunction beyond ~ 1 fm. Because of the Pauli exclusion
principle, it must “heal” to the unperturbed wavefunction at a distance of
~kpt ~ (2m,)7L

The essential idea of the separation method is to “cancel” the problematic
hard core with part of the short-distance attractive well and use the remaining
long-distance part as the effective interaction. A repulsive interaction—even an
infinite hard core—produces a finite negative phase shift, whereas an attractive
potential produces a positive phase shift. For incident energies that are not
too large, realistic models of the NN interaction give an overall positive phase
shift in relative S-states. In these cases it is possible to combine the repulsive
core with the attractive well up to a distance d such that the combination of
the two “cancels”. One way to quantify this is to require that the phase shift
for the short-distance potential, Vi(r) = V(r)8(d — r), gives zero phase shift
for free particle scattering. The remaining part of the potential, called V;, will
then produce the same free particle phase shifts as the original, but without
the presence of the hard core. Thus,

VNN :‘/;+W :VNNQ(d—T)—i—VNN@(T—d) (213)

Fig. 2.2 shows the separation for a general NN potential. If the free-particle
phase shift is zero for V, alone, then we obtain for the separation distance d

1 d(r@bF)

ryf  dr

_ 1d(r9)

= (2.14)

d
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Figure 2.2: Separation of the NN potential into short and long distance parts
by requiring equality of the logarithmic derivatives for the unperturbed and
perturbed relative wavefunctions.

simply by solving the Schrodinger equation for » < d and matching it to the
unperturbed wavefunction for > d. In this equation the superscript F' refers
to the free-space perturbed wavefunction.

Since free particle phase shifts will depend on both the relative angular mo-
mentum state of the interacting nucleons and their relative linear momentum,
so too will the separation distance. In practice, one can work with a separa-
tion distance that is momentum dependent or else fix the separation distance
and include corrections. Indeed, in the Kuo-Brown interaction [62] the sep-
aration method was used to construct a momentum-independent separation
distance for the individual S-states, but the Reference Spectrum method [63]
was convenient for states of other angular momenta.

By separating the potential into Vs and V; in the manner described above,
the in-medium relative wavefunction is approximately equal to the free-space
perturbed wavefunction ¢, due to V; alone. For r < d the two-particle relative
wavefunction in free space 1! is equal to 15, the free-space relative wavefunc-
tion due to V, alone. At small distances, contributions to 1/ come largely from
high-momentum states. Small momentum states that would not be included
in the in-medium relative wavefunction do contribute to 1", but their phase
space is much smaller than for the large-momentum states. In other words,
effects due to nuclear matter are relatively weak below d, and ¥ = ¢, (r < d)
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should be a good approximation to v in this region. For distances larger than
d, 1® is just the two-particle unperturbed wavefunction ¢, which we already
argued is a good approximation to the in-medium relative wavefunction for
large distances due to the Pauli principle “healing” of the wavefunction. Sim-
ilarly, the free-space relative wavefunction due to V; alone is equal to ¢ for
r < d, and for distances larger than d, ¥, = 1. These observations are shown
in Fig. 2.3

Vs Ve

Figure 2.3: The top figure shows the comparison between the unperturbed
relative wavefunction ¢ and the free-space perturbed wavefunction 1", which
are tangent at some distance d defining the separation of V' into V, + V. The
bottom two figures show the free-space relative wavefunctions due to V; and
V; alone and how they relate to ¢ and .

We can approximate the full G-matrix as an expansion in V; and V; by
performing the following mathematical manipulations. We begin by defining
two scattering matrices

Q
e

G=V+V=G (2.15)
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and .
T, =V, + V,—T,, (2.16)
€0

where the latter equation is the just the T-matrix equation for scattering in
free space and eq is the free space energy. Introducing the wave operators §2
and €

Q

1
O=14+—=G and Q, =1+ —T, (2.17)
e €0
one can show that

Q_1

G = T;+Tj( )G+Q§(V—VS)Q
(& €0

e e e

+TS%VI+VZ%TS+VZ§VZ+---, (2.18)

-1 1 1
= T8+W+T5Q T5+Ts(___>Ts

where we have made the substitution TsT = T. Note that if V; is defined to
give zero phase shift for free particle scattering, the corresponding 7T-matrix
will be zero. Thus, to first-order in the above expansion we find the simple
relation

G~V (2.19)

In fact, the second-order terms are rather small compared to the first-order
term as shown in [20]. Thus, it appears that under this separation of the NN
interaction, to a good approximation one can model the full G-matrix with
just the long distance part of the NN interaction.

2.4 Kallio-Kolltveit potential

In this section we apply the above methods to the Kallio-Kolltveit (KK) po-
tential [59, 60] defined for relative S states as

_3+0‘1'0'2
B 4

1—0’1'0'2

V() -

Vi(r) + Vi(r), (2.20)

where

00 for r <04 fm

W = { —A;eir=04) for r > 0.4 fm for ¢ = 5,1 (2.21)

The four parameters were determined by fitting the scattering length and
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effective range:

A, =330.8 MeV, «y = 2.4021 fm™!

Ay =475.0 MeV, o = 2.5214 fm™", (2.22)

It is important to include the infinite hard core, known to schematize the
vector meson exchange, in the effective potential. To compensate for this
the potentials must be very attractive, as shown by A, and A;, so that the
separation distance will change only slowly with incident energy. Applying
the separation method to this potential yields singlet and triplet separation
distances that vary slowly with the relative momentum [59], and for small
momenta dy, = 1.025 fm and d; = 0.925 fm.

2.5 Results and discussion

In order to directly compare the KK potential with Vi, _y, it is convenient to
transform the KK potential into k-space according to

™

2 o0
Vik K = 2 / V2o (k) Vijo (k') dr, (2.23)
d

Figures 2.4 and 2.5 compare the results of the Fourier transformation with
View—k.  Of course, since the KK potential fits only the scattering length
and effective range, it should not be expected to agree precisely with Vi, .
Nevertheless, the agreement between the two appears generally good for the
1Sy state but slightly worse for the 2S; state. It is not surprising that a local
approximation is less good for the 3S; state than for the 1S, state, because a
good fraction, ~ 1/3, of the 35 attraction comes from the second order tensor
interaction. The contributions peak quite sharply around intermediate states
with momenta ~ 2 fm™" [64], so a local approximation is quite good, but to
be completely local the peak would have to be a d-function.

We can gain some insight into the relationship between the low momentum
decimation procedure and the separation method by examining the effects
of varying the separation distance. Figure 2.6 shows how the k-space KK
potential compares to Vigw_i for separation distances of 0.9 fm and 1.1 fm in
the 1Sy channel. It appears that for the 1S, state, a separation distance of
~ 1.0 fm produces the closest agreement with Vi,,_k. Figure 2.7 shows the
effect of raising the separation distance of the 3S; state to 1.025 fm. The
agreement with V., _x is notably better. We suggest that this is explained by
the common scale in Vigyw_x.

The other question in comparison with Vi, _x is as to the momentum com-
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Figure 2.4: The 'S, diagonal matrix elements of Viow_x and the Kallio-
Kolltveit potential for a configuration space cutoff of 1.025 fm.
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Kolltveit potential for a configuration space cutoff of 0.925 fm.
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ponents above A = 2.0 fm~!, which are taken to be zero in Vigw_s because they
have not been measured experimentally. We show these momentum compo-
nents for the KK potential in Figure 2.8. From Figure 2.8 we see that the
diagonal matrix elements are very small for k& > A ~ 2 fm~!. Importantly, the
sharp cutoff on the potential does not introduce appreciable artifacts.

k [fm ]
6 8
E
=2
<
>
/ 1 S
/ — V  ford=1.025 fm
Y ——— V' ford=1.025fm

-15 : ! : ! : !

Figure 2.8: Diagonal matrix elements of the Kallio-Kolltveit potential, includ-
ing momenta above the Vig,_i cutoff of 2.0 fm~!.

We thus note that the S-wave treatment of Kuo and Brown [62], mod-
ulo the small adjustment we made here to have equal cutoffs in singlet and
triplet channels, using the MS separation method was equivalent to the low
momentum decimation procedure which results in Vi, _x. Since model depen-
dence in terms of high-momentum Fourier components above those accessed
in the nucleon-nucleon scattering experiments will occur predominantly in the
S-wave channels, this gives an answer to why the Kuo-Brown interactions
have endured for 38 years; namely, to a large extent these model-dependent
momenta were not present in the KB interaction.

These comparisons seem to suggest first that the low momentum decima-
tion procedure and Moszkowski-Scott methods predict a similar separation of
scales in the nuclear interaction, with closer agreement reached in the singlet
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channel than in the triplet channel. However, the fact that close agreement
between Vi,_1 and the KK potential is reached at a separation distance of
1.0 fm for both angular momentum states suggests that integrating out mo-
menta beyond 2.0 fm~! via the RG corresponds roughly to removing the short
distance details below 1.0 fm in the singlet states.

We are not suggesting a replacement for Vj,,_x, which has been astonish-
ingly successful in nuclear structure calculations. But we do show that with
S-wave potentials with the usual schematic hard core of conventional 0.4 fm
radius, which fits the scattering length and effective range, we can get a good
approximation, local in r, to Vi,w_k by choosing the separation distance cor-
rectly. It should be noted that the parameters in the KK potentials were
chosen in order to get the scattering lengths and effective range correct. It
thus appears that in addition to this some schematization of the short range
repulsion is needed. With these minimal requirements one then has a good
tool for nuclear structure physics. We suggest that these local potentials may
be useful in schematic calculations where nuclear interactions have to be taken
into account.

Our discussion here concerns only the G-matrix of Kuo and Brown [62],
where we show the S-wave interactions to be essentially those of Viow_k. The
important remaining question which occupied research workers for many years
was the validity of the polarization bubble that they used. We plan to show
in a future publication [65] using the Babu-Brown formalism [66] which sums
all planar particle-hole diagrams, that higher-order rescattering corrections
reduce the strength of the bubble somewhat, especially at higher densities,
but leave most of it. The higher-order corrections are only appreciable in the
spin- and isospin-independent channels, affecting especially the compression
modulus.
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Chapter 3

Nuclear Matter Equation of
State

3.1 Introduction

Understanding the equation of state (EOS) for nuclear matter is one of the
most important goals in nuclear structure physics. The aim is to determine
the ground state energy as a function of number density n = A/V and neu-
tron excess @ = (n, — n,)/n for an infinite system of protons and neutrons
interacting only through the strong force. At zero temperature this idealized
system can provide a good model for both normal nuclear matter at the cen-
ter of heavy nuclei as well as cold neutron stars with a large neutron excess.
Empirical constraints on the EOS are available only for densities close to that
of nuclear matter n = ng and proton fractions close to x = 0.50, though the
development of new radioactive beam facilities studying neutron-rich nuclei
will greatly increase our understanding of the low x region.

A great deal of effort has been devoted to computing the binding energy as
a function of density starting from a microscopic many-body theory. For many
years, Brueckner Hartree-Fock (BHF) theory [67-69] and variational methods
[70, 71] have been the primary calculational tools for nuclear matter studies,
though the BHF approach has proven to be generally more versatile in that
it can accomodate any of the modern realistic NN interactions. Nevertheless,
such calculations showed that it is very difficult to obtain both the saturation
energy Ey/A and density ng satisfactorily with realistic two-body interactions
alone. Plotting the saturation energy vs. density (Fy/A vs. ng), the results of
a number of such calculations actually lie on a band, often referred to as the
Coester band [22, 23], all deviating significantly from the empirical values for
the saturation energy and density of nuclear matter. As we shall discuss later,
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the BHF method is a lowest-order G-matrix theory; it has several drawbacks
which can be improved upon.

In the present work, we shall carry out calculations for symmetric and
asymmetric nuclear matter using a framework based on a combination of
the recently developed low-momentum NN interaction Vie,_x [14, 15, 72-75]
and the ring-diagram method for nuclear matter of Song et.al. [76]. This
ring-diagram method is a model-space approach where the particle-particle
hole-hole (pphh) ring diagrams for the potential energy of nuclear matter are
summed to all orders. With a model space of size ~ 3 fm~!, previous stud-
ies [76] obtained satisfactory results in both the binding energy per nucleon
and the saturation momentum. Comparing with the BHF theory, the above
ring-diagram approach has certain desirable features: the ground-state energy
shift AFEy in the BHF approach is given by the lowest-order reaction matrix
(G-matrix) diagram (corresponding to diagram (b) of Fig. 3.2 with the dashed
vertex representing (). It does not include diagrams corresponding to the
particle-hole excitations of the Fermi sea. Such excitations represent the ef-
fect of long-range correlations. In contrast, the pphh ring diagrams, such as
diagrams (c) and (d), are included to all orders in the ring-diagram approach.
The single-particle (s.p.) spectrum used in the ring-diagram approach is also
different from that traditionally used in BHF. In BHF theory one typically
employs a self-consitent s.p. spectrum for momenta k < kpr (the Fermi mo-
mentum), while for & > kp a free-particle spectrum is used. Thus the s.p.
spectrum has a large artificial discontinuity at kr. The s.p. spectrum used in
the ring diagram approach is more desirable: for k& < A, the boundary of the
momentum model space, it employs a self-consistent s.p. spectrum while a free
particle spectrum is used for £k > A. A is generally considerably larger than
kr and the discontinuity of the s.p. spectrum at A is rather small [76].

The above ring-diagram approach [76] employed the G matrix interaction
which is energy dependent. This energy dependence has largely complicated
the ring diagram calculations, and it would be very helpful if this energy
dependence were circumvented. In the past several years, there has been
much progress in the renormalization group approach to the NN interaction,
and a low-momentum NN interaction Vi, _x has been developed [14, 15, 72—
75]. As discussed in these references, this Vi, _j interaction has a number of
desirable properties, such as being nearly unique and being well behaved at
short distances and thus convenient for calculations. Furthermore, Viw_p is
energy independent, making it an “ideal” candidate for the interaction used
in ring diagram calculations of nuclear matter.

The Viow_k interaction has been extensively used in nuclear shell-model
calculations for nuclei with few valence nucleons outside a closed shell. As
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reviewed recently by Coraggio et al. [77], the results obtained from such shell-
model calculations are in very good agreement with experiments. However,
applications of the Vi, _, interaction to nuclear matter have been relatively
few [78-81]. A main purpose of the present work is to study the suitability
of describing symmetric nuclear matter using Viow_r. A concern about such
applications is that the use of Vi,w_ alone may not provide satifactory nuclear
saturation. As illutrated in [78] and plotted in Fig. 3.1 below, Hartree-Fock
calculations of nuclear matter using Vi, do not yield nuclear saturation, the
calculated E/A decreases monotonically with kg up to the decimation scale A.
Their calculations used A ~ 2.0 fm~! for Viow—x. The need for 3-body inter-
actions for nuclear saturation has been extensively discussed in the literature
(see Ref. [79] and references quoted therin). As we shall discuss, ring-diagram
correlations at intermediate momentum (k ~ 2.0 fm™') have strong medium
dependence and are important for saturation. To include their effect one needs
to use a sufficiently large decimation scale A so that the above momentum re-
gion is not integrated out. Our results will indicate that satisfactory saturation
can be attained by our present ring-diagram calculations using a decimation
scale of A ~ 3 fm~!.

3.2 Symmetric nuclear matter

In this section we describe how we calculate the properties of symmetric mat-
ter using the low-momentum ring diagram method based on a model-space
approach [82]. We employ a momentum model space where all nucleons have
momentum k£ < A. By integrating out the & > A components, the low-
momentum interaction Vi,,_ is obtained and used for calculating the pphh
ring diagrams within the model space.

We shall calculate the all-order sum, denoted as AE{”, of such diagrams.
Each vertex in a ring diagram is the renormalized effective interaction Vigy_g
corresponding to the model space k >~ A. As discussed in previous chapters,
it is obtained from the following T-matrix equivalence equations

L o)T(q, k, k)
k.Q _ q2 ’

Tk K2) = V(K k) +P/ g (3.1)
0

where V' is a bare NN potential. Notice that in the above the intermediate
state momentum ¢ is integrated from 0 to co. We then define an effective
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Figure 3.1: The ground state energy of symmetric nuclear matter calculated to
lowest order in Hartree-Fock approximation with the low-momentum nucleon-
nucleon interaction Vigy_p.

low-momentum 7-matrix by

T’low—k(p/7p7p2) = ViOW—k<p/7p)
A ! 2
VW— 9 T W — ) 9
N P/ AL K(p q2) 1o2k(qpp)7
0 b —q

(3.2)

where the intermediate state momentum is integrated from 0 to A, the momentum-
space cut-off. Vi, _ is then obtained from the above equations by requiring
the the equivalence condition

T, p,p*) = Tiow—x (', p,0*); (P, p) <A. (3.3)

The iteration method of Lee-Suzuki-Andreozzi [18, 75, 83] has been used in
calculating the above Vigy_.
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Figure 3.2: pphh ring-diagram summation in the calculation of the ground
state energy shift.

With Vigw_&, our ring diagram calculations are relatively simple compared
with previous studies [76] involving the G-matrix. The ground state energy
shift AEj for nuclear matter, is defined as the difference (Ey — E]"™) where
Ejy is the true ground-state energy and Eg "“ is the corresponding quantity for
the non-interacting system. In the present work, we consider AEj as given by
the all-order sum of the pphh ring diagrams as shown by diagrams (b) to (d)
of Fig. 3.2. The contribution from (b) to AEj is given by

2T

-1 o0 )
AEPP(1) = — / dwe™ " Fij(w)Vijis, (3.4)

o @]
where Fj; is the unperturbed pair propagator

’Fliﬁj nin;

Fij(w) = — = .
(@) w—(6+€)+i0 w—(&+e¢€)—1i0

(3.5)

with n; =1 for k; < kp, n; =0 for k; > kr, and 7 = 1 — n. Repeated indices
are summed over and must lie within the model space, and the terms Vj,u,
are the antisymmetrized Vi,y,_, matrix elements. Higher-order contributions
to AEjy, such as diagrams (c) and (d) of Fig. 3.2, are defined similarly, and
the total sum of pphh ring diagrams is given by

o0

-1 . 1 1
AEY = — | dwe™ trp (FV +5(FEV) S (FV)P ) . (36)

2m J_ o
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where the trace trp denotes summation over repeated indices within the model
space. This expression can be cast in the form of a geometric series by intro-
ducing the strength parameter \ as follows

A
AEY = o— / / dwe™ trp (AFV + (AFV)? + (AFV)? 4 ---)
T

(3.7)
For actual calculations it is convenient to define a A-dependent Green func-
tion

G, A) = Fij(w)dijpm + Fij (@) AVijmn Goga (@, A), (3.8)

which allows us to rewrite the ground state energy shift as

AEP = 27”/ d)\/ dwe™® trp (G (w, )V A) . (3.9)

The advantage is that we can use the Lehmann representation of GPP

Xalig, VX5 (kLN 5 Y (if, N)Y5 (KL, A)

P = 1
Gijra(w, A) ; w — wt(A) + 10 w—w,(A)—i0 "’ (3.10)

where

) = B0 - Ef(N)

) = BN - By 2( ),

) = (TF(V]aja T2 (),

) = (T2 (Nlajai U5 (V). (3.11)

Y

The A-dependent eigenfunctions and eigenvalues are defined by
(Ho + NH) U3 (N) = ES(N)WE(N), ete. (3.12)
Finally, the substitution of Eq. (3.10) into Eq. (3.9) yields
AEPP = / ax =N Vaulig VY (KL A AV (3.13)
mijkl<A

The amplitudes Y,, are computed from the model space RPA equation

> (e +€)0ier + Mning — nin;) (i5|Viow—sle f)]
of
xYo(ef,A) = waYu(ig, ), (i,5,e, f) <A, (3.14)
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where the normalization condition for Y, is (Ym|é\Ym> = —1 and Q(i,j) =
(nn; — ning). In Eq. (3.13), ¥,, means we sum over only those solutions
of the RPA equation (3.14) which are dominated by hole-hole components
as indicated by the normalization condition. We use the Hartree-Fock s.p.
spectrum given by Vi,_x within the model space and free particle spectrum
beyond. Namely

e = WK /2m+ > (kh[Vigw_rlkh); k <A,
h<kp

= R*E*/2m; k> A. (3.15)

The above s.p. spectrum is medium (kr) dependent.

The all-order sum of the pphh ring diagrams as indicated by diagrams (b-d)
of Fig. 3.2 is given by the above AE”. Since we use the HF s.p. spectrum,
each propagator of the diagrams contains the HF insertions to all orders as
indicated by part (a) of the figure. Clearly our ring diagrams are medium de-
pendent; their s.p. propagators have all-order HF insertions which are medium
dependent, and so is the occupation factor (n;7; —n;n;) of the RPA equation.

3.2.1 Single-particle spectrum and nuclear binding en-
ergy

With this framework at hand we calculate first the single-particle spectrum
of low momentum interactions for various values of the model space cutoff A.
Within the model space approach, € is given by the Hartree-Fock spectrum
for £ < A and for k£ > A it is taken as the free kinetic energy. As emphasized
before, the single-particle spectrum defined in this way will in general have
a discontinuity at the boundary of the model space. In Fig. 3.3 we plot the
s.p. spectrum for various values of A ranging from 2.0 fm~! to 4.0 fm~!. For
a model space cutoff of 2.0 fm™! or 4.0 fm™!, the resulting gap in the s.p.
spectrum is rather large. However, for cutoffs between 2.5 and 3.0 fm~! the
s.p. spectrum is nearly continuous and therefore physically reasonable. For
this reason, in our subsequent calculations we shall employ a cutoff within this
desirable range.

We next consider the effect of A on the nuclear binding energy. Once
the s.p. energies are obtained, the all-order ring diagram calculation can be
performed. We choose the CD-Bonn potential to study the role of varying
the cutoff around the physically reasonable cutoff range discussed above. The
results are plotted in Fig. 3.4. We see that the results in general agree with
calculations from the traditional hole-line expansion and variational methods,
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Figure 3.3: Dependence of the model-space s.p. spectrum on the decimation
scale A. Shown are the results for low-momentum CD-Bonn potentials for
different values of A.

which both yield saturation at too high a density for realistic NN interactions.
As we have stated before, previous attempts to correct this deficiency have
centered around the introduction of three-body forces. However, in this work
our aim is to determine whether or not medium-modified nuclear interactions
inspired by Brown-Rho scaling (BRS) can provide a suitable alternative to
3NF.

We study such density-dependent effects in two models. The first is the
medium-modified Bonn-B potential of [84]. In this study dropping meson
masses were incorporated into the Bonn-B potential and found to have a ben-
eficial effect on the saturation properties of nuclear matter within the Dirac-
Brueckner-Hartree-Fock formalism. This interaction treats scalar meson ex-
change microscopically by replacing the o boson in the Bonn-B potential with
a pair of correlated pions with I = T = 0. Further details can be found in
Chapter 6. We also use the Brown-Rho-scaled Nijmegen 1 potential, which
has contributions from the p, w, and ¢ vector mesons as well as partial-wave-
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Figure 3.4: Ring diagram summation for the low momentum CD-Bonn inter-
action for different values of the model space cutoff A.

dependent ¢ mesons. We decrease the light vector mesons according to
m
L2 =1-C,0—, (3.16)
0

where we take C,,, = 0.14 in agreement with recent experimental results [53].
The heavy vector meson ¢ is composed of a strange quark and antiquark pair
and therefore should not be scaled as the light vector mesons. In this work we
choose to scale ¢ according to (3.16) except with Cy = 1C, . Similarly, the
o mesons are scaled again by half that of the vector mesons since it has been
shown [84] that when the o meson is treated microscopically as 27 exchange,
the effective scaling is significantly weaker than that proposed in the original
BRS scenario.

In Fig. 3.6 we plot the ground state energy for symmetric nuclear matter
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Figure 3.5: Results of the ring diagram summation for nuclear matter calcu-
lated from several realistic NN interactions with A = 3.0 fm~!.

calculated from the two medium-modified interactions described above. The
main effect is a significant lowering of the saturation density. The large de-
crease in the w meson mass together with a weakening of the second-order
tensor force, which plays a large role in nuclear binding, give the most impor-
tant contributions to this effect. Although both interactions produce a binding
that is still too weak compared to experiment, it is interesting to observe that
our results compare well with those of Bogner et al. [79], who included the
leading-order chiral 3N interaction together with Vj,,_x. In particular, both
methods lead to saturation at the correct density but with too little binding.
The compression modulus, defined by

2E
K= (k2 —) (3.17)
Pdkz ),

0
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Figure 3.6: Ground state energy of symmetric nuclear matter calculated with
the ring diagram partial summation for the medium-modified (MM) Nijmegen
I potential and Bonn-B potential.

is known experimentally to be 200 — 300 MeV [85, 86]. Given our two models
we extract values of

’CNijmegen = 130 MeV
,CBonn—B = 210 MeV. (318)

3.3 Asymmetric nuclear matter

Understanding the structure of neutron stars requires the nuclear matter EOS
at high densities and at various values of the proton fraction x (see Ref. [87] for
detailed discussion of the neutron star equation of state). Since two-nucleon
interactions alone have proven unable to produce the correct saturation energy
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and density of symmetric nuclear matter, three-body forces have been used in
the past to remedy this problem. However, modeling high density nuclear mat-
ter is a significant challenge, for the EOS is highly sensitive to the three-body
force used. In this work we choose to study the effects of Brown-Rho scaling
on the neutron star EOS. This provides a simpler approach than introducing
three-body forces, but we suggest that the two methods can capture the effects
of degrees of freedom that are missing in the construction the two-body part
of the interaction.

For asymmetric nuclear matter we define the neutron excess as a = (n,, —
n,)/n, where n,, n,, and n are the neutron, proton, and total nuclear number
density respectively. There are then two Fermi surfaces for the two species of
nucleons defined by

k? = (37r2np)1/3
K = (3n°n,)'?. (3.19)

The binding energy as a function of density and neutron excess is given by

E, . E ABin AEp,
Z(na O./) - Z(nv O) + A (na Oé) + A

(n,q), (3.20)

where the first term is the binding energy of symmetric nuclear matter and
the next two terms represent deviations due to isospin asymmetry from the
kinetic energy and potential energy respectively. From Eq. (3.19) the isospin
asymmetric kinetic energy term can be written

AElkin
A

(ma)zgggwmum%%[u+afﬁ+(y_@w3_ﬂ. (3.21)

It is useful to expand this expression in powers of o

AFyn, 1 h? 2
Tk(n,oz) = g%(37rn/2)2/3042 <1+%—|—~~) . (3.22)

For the potential energy correction in Eq. (3.20) it turns out to be a good ap-
proximation to expand in powers of o as well, which we will see from explicit
calculations below. Therefore, we introduce the terms Ss, Sy, ... and sepa-
rate the energy per nucleon into density-dependent and isospin asymmetry-
dependent components

n,a) = Z(n,0) + Sy(n)a? + Sa(n)a + - - - (3.23)

Z( A
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Note that the dependence on nuclear density and isospin asymmetry have been
separated. It is usually sufficient to keep only the quadratic term in o. We
will now discuss how to calculate the terms S; in our ring diagram formalism.
For asymmetric nuclear matter one must distinguish between protons and
neutrons. The model space is chosen to be independent of nucleon species,
that is, A, = A, = A. Single-particle energies within the model space are

defined as
€ = k2 )2m + U (ks 77) (3.24)

where the subscript i stands for the momentum, spin, and isospin of the i
nucleon and the single particle potential U(k;, 7;) is given by

1
U(ki,m) = 5 > (kAView—k|kh); ki <A, (3.25)

i
Tj,si,Sj,k:j <kF

where ¢ represents both momentum and isospin. We can derive analogous
expression to Egs. (3.13) and (3.14) above except that in the summations one
must be careful to distinguish protons and neutrons since they have different
single particle energies. Thus, by varying the neutron excess « to give different
Fermi momenta for protons and neutrons, the above formalism can be used to
determine the equation of state as a function of density and neutron excess.
In Fig. 3.7 we show for comparison the equation of state for symmetric nuclear
matter and pure neutron matter calculated from the medium-modified Bonn-B
potential of [84].

3.4 Neutron star equation of state

Neutron stars are born with temperatures on the order of tens of MeV, but they
cool very quickly by neutrino emission to a temperature of less than 1 MeV.
Typically this process takes on the order of minutes. Therefore, it is a good
approximation to treat neutron stars as zero temperature nuclear matter. The
ground state is determined by enforcing charge neutrality and beta chemical
equilibrium. We assume that the matter is composed of only protons, neutrons,
and electrons, so that exotic forms of matter (such as strange particles) are
neglected and neutrinos are assumed to leave the system immmediately upon
production.
The two reactions which continually take place in neutron stars are

n—p+e +7 and p+e —n+r.. (3.26)
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Figure 3.7: The ground state energy as a function of Fermi momentum for
the medium-modified Bonn-B potential in both symmetric nuclear matter and
pure neutron matter.

Then chemical equilibrium implies

Hn — Hp = He- (327)

The proton and neutron chemical potentials are defined as

Oe
- 3.28
H’p anp . ( )
and 3
€
= 5 . (3.29)

where € is the total energy inclusive of rest mass. The difference between the
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two chemical potentials can be written in the convenient form

Fn = fp = — 5 (3.30)

where z is the proton fraction x = (1 — «)/2. Combining Eqs. (3.23) and
(3.30), we find

fe = fin — fp = 4a(Sa(n) + 2S4(n)a® + - - -). (3.31)

Charge neutrality implies that k% = k%, and assuming that the electrons are
relativistic, one can rewrite Eq. (3.31) as

1/3
4a(Sa(n) 4+ 284(n)a® + -+ +) = he (37r2n1 ; O‘) : (3.32)

Thus, once we determine the symmetry energy terms Sq(n), Sy(n), etc. we can
determine the neutron excess as a function of the nuclear density.

The symmetry energy is easily calculated from our ring diagram summation
for asymmetric nuclear matter. We show in Fig. 3.8 the system energy as a
function of neutron excess for densitites up to ng. We have fit the calculated
energies with the function

%(n, a) = %(n, 0) + S(n)a. (3.33)
from which we extract the symmetry energy term S5 as a function of density.
We note that the quadratic approximation provides a very good fit to the
calculated energies. The results for S, are shown in Fig. 3.9. The symmetry
energy at nuclear matter density is known to be 25 — 35 MeV [86, 88]. Our
result of 21.1 MeV is slightly below this value but in good agreement with the
value obtained in the context of Fermi liquid theory in Chapter 4. Neglecting
terms higher than Sy in Eq. (3.32), we find a simple equation determining the
equilibrium neutron excess as a function of the density:

1—a 1/3
4auSs(n) = he (37r2n 5 ) : (3.34)

We show in Fig. 3.10 the electron chemical potential as function of density up
to 1.5ng. The electron chemical potential is important not only for determining
the equation of state for cold, catalyzed neutron star matter, but it also plays
a role in determining the onset of kaon condensation [89]. We solve Eq. (3.32)
to linear order in a? and plot the resulting proton fraction z = (1 — /2) in
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Figure 3.8: The energy per nucleon of asymmetric nuclear matter as a function
of neutron excess o from which one can extract the lowest-order symmetry
energy term Sy. Fach curve corresponds to a different value of the nuclear
density.

Fig. 3.11. Finally, we show in Fig. 3.12 the equation of state for symmetric
nuclear matter, pure neutron matter, and cold catalyzed neutron star matter
up to a density of n = 1.5n,.

3.5 Conclusions

We have seen how Brown-Rho-scaled NN interactions, when used in the ring
diagram partial summation for calculating nuclear binding energies, can signif-
icantly improve the saturation density for nuclear matter. The binding energy
remains slightly weak, though this is in agreement with previous calculations
using low momentum interactions supplemented with 3NF. In the Walecka
model of nuclear matter, the binding energy results from a cancellation be-
tween the large attractive scalar field o and the large repulsive vector field w.
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Figure 3.9: Symmetry energy S5 as a function of the nuclear density for the
medium-modified Bonn-B potential.

Obtaining the saturation energy is therefore a fine-tuning problem, which will
be sensitive to how BRS is implemented. Nevertheless, we have found that
the main effect is a lowering of the saturation density to its correct value.
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Figure 3.10: Electron chemical potential obtained from the symmetry energy
Sy by imposing charge neutrality and beta equilibrium. The results are plotted
as a function of the nuclear density for the medium-modified Bonn-B potential.
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Chapter 4

Fermi Liquid Theory and
Brown-Rho-Scaled NN
Interactions

4.1 Introduction

Landau’s theory of normal Fermi liquids [90-92] describes strongly interacting
many-body systems in terms of weakly interacting quasiparticles. Provided
that the quasiparticles lie sufficiently close to the Fermi surface, they will be
long-lived and constitute appropriate degrees of freedom for the system. The
central aim of the theory is to determine the quasiparticle interaction, either
phenomenologically or microscopically, with which it is possible to describe the
low-energy, long-wavelength excitations of the system. This, in turn, is suffi-
cient for the description of many bulk equilibrium properties of the interacting
Fermi system. The initial application of Fermi liquid theory to nuclear physics
was the phenomenological description of finite nuclei and nuclear matter by
Migdal [93, 94], and later a microscopic approach to Fermi liquid theory based
on the Brueckner-Bethe-Goldstone reaction matrix theory was developed by
Béckman [95, 96] and others [97, 98] to describe nuclear matter. Although
the latter approach was quantitatively successful, it was observed [98] that
Brueckner-Bethe-Goldstone theory is less reliable in the vicinity of the Fermi
surface due to the use of angle-averaged Pauli operators and the unsymmetri-
cal treatment of particle and hole self energies, which leads to an unphysical
energy gap at the Fermi surface.

With the recent development of a nearly universal low-momentum nucleon-
nucleon (NN) interaction Vioy_x [14] derived from renormalization group meth-
ods, the application of Fermi liquid theory to nuclear matter has received
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renewed attention [74, 99, 100]. The strong short-distance repulsion incorpo-
rated into all high-precision NN potential models is integrated out in low mo-
mentum interactions, rendering them suitable for perturbation theory calcu-
lations. Although limited Brueckner-Hartree-Fock studies [101] indicate that
saturation is not achieved with V,,_i at a fixed momentum cutoff A, it has
recently been shown [79] that by supplementing Viow_ with the leading-order
chiral three-nucleon force, nuclear matter does saturate, thereby justifying the
use of Viow_r In studies of nuclear matter.

Although many properties of the interacting ground state are beyond the
scope of Fermi liquid theory, the quasiparticle interaction is directly related
to several nuclear observables, including the compression modulus, symmetry
energy, and anomalous orbital gyromagnetic ratio. As originally shown by
Landau, the quasiparticle interaction is obtained from a certain limit of the
four-point vertex function in the particle-hole channel. It is well known that
using realistic NN interactions in the lowest order approximation to the quasi-
particle interaction is insufficient to stabilize nuclear matter, as evidenced by
a negative value of the compression modulus. This general phenomenon is
observed in our calculations with Vi,,_x as well. However, stability is achieved
by treating the exchange of density, spin, and isospin collective excitations
to all orders in perturbation theory. The inclusion of these virtual collective
modes in the quasiparticle interaction is carried out through the induced in-
teraction formalism of Babu and Brown [66], which was originally developed
for the description of liquid *He and later applied to nuclear matter by Sjoberg
[102, 103]. Subsequent work [104, 105] has confirmed the importance of the
induced interaction in building up correlations around a single quasiparticle,
thereby increasing the compression modulus.

Our study is motivated in part by the work of Schwenk et al. [74], who were
able to predict the spin-dependent parameters of the quasiparticle interaction
from the experimentally extracted spin-independent parameters. Crucial to
these calculations was a novel set of sum rules, derived from the induced
interaction formalism, based on a similar treatment by Bedell and Ainsworth
[106] to liquid *He. In this paper we present a fully self-consistent solution to
the Babu-Brown induced interaction equations for symmetric nuclear matter.
Our iterative solution turns out to be qualitatively similar to the results of
[74], but we find that at nuclear matter density the compression modulus and
symmetry energy are smaller than the experimentally observed values while the
anomalous orbital gyromagnetic ratio is too large, suggesting the possibility
that important phenomena have been neglected.

We propose to extend this study by including hadronic modifications as-
sociated with the partial restoration of chiral symmetry at nuclear matter
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density, as suggested in [45]. In this scenario, referred to as Brown-Rho scal-
ing, the dynamically generated hadronic masses drop in the approach to chiral
restoration, and at nuclear matter density it is expected that the masses of the
light hadrons (other than the masses of the pseudoscalar mesons, which are
protected by their Goldstone nature) decrease by approximately 20%. The
success of one-boson-exchange and chiral EFT potentials in describing the
nucleon-nucleon interaction suggests that a modification of meson masses in
medium ought to have verifiable consequences in low energy nuclear physics.
Although there is much current theoretical and experimental effort devoted
to the program of assessing these medium modifications, the consequences for
low-energy nuclear physics have yet to be fully explored.

Applying the mass scaling suggested in [45] to our calculations of nuclear
matter, we obtain a set of Fermi liquid coefficients in better agreement with
both experiment and the nontrivial sum rules derived in [74]. Explicit three-
body forces, though essential for a complete description of nuclear matter,
have been neglected in this study. However, we argue that modifying the
vector meson masses is equivalent to including a specific short-ranged three-
body force. We conclude with a discussion of the consequences of Brown-Rho
scaling on the tensor force, which is diminished by the increasing strength of
p-meson exchange.

4.2 Fermi liquid theory

In this section we present a short description of Fermi liquid theory and its ap-
plication to nuclear physics with emphasis on the microscopic foundation of the
theory. The main assumption underlying Landau’s description of many-body
Fermi systems is that there is a one-to-one correspondence between states of
the ideal system and states of the interacting system. As one gradually turns
on the interaction, the noninteracting particles become “dressed” through in-
teractions with the many-body medium and evolve into weakly interacting
quasiparticles. The interacting system is in many ways similar to an ideal
system in that the classification of energy states remains unchanged and there
is a well-defined Fermi surface, but the quasiparticles acquire an effective mass
m* and finite lifetimes 7 ~ (k — kp)~2. The energy of the interacting system
is a complicated functional of the quasiparticle distribution function, and in
general the exact dependence is inaccessible. But one can extract important
information about bulk properties of the system by considering small changes
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in the distribution function. Expanding to second order, one finds

0E =" a)on(k) + Z fki, ko)on(ky)on(ky) + O(0n?).  (4.1)
k1 k17k2
In this equation 2 is the volume of the system, 61((01) is the energy added to the

system by introducing a single quasiparticle with momentum k; (note that for
k1| = k1 = kp, ekl) is just the chemical potential), and f(k;, ko) describes the
interaction between two quasiparticles.

Since the quasiparticle interaction f(ki, ko) is the fundamental quantity
of interest in Fermi liquid theory, we will carefully discuss its properties and
its relationship to nuclear observables. Assuming the interaction to be purely

exchange, it can be written as

1
flki, ko) = F[F(k1,k2)+F/(k17k2)Tl'T2+G(k1>k2)01
0

-+ G/(kl, kQ)Tl +T9071 * 0'2], (42)
where we have factored out the density of states per unit volume at the Fermi
surface, Ny = %, which leaves dimensionless Fermi liquid parameters de-

noted by F, G, F',G'. The spin-orbit interaction is neglected because it van-
ishes in the long wavelength limit in which we will be interested. Also, we
have not included tensor operators (which would greatly complicate our cal-
culation) because the tensor force contributes almost completely in second
order, as shown in the original paper by Kuo and Brown [62], as an effective
central interaction in the 35) state. In [74] the tensor Fermi liquid parame-
ters for symmetric nuclear matter were calculated from Vj,,_r in which the
dominant second-order contributions from one-pion exchange were included.
Since quasiparticles are well-defined only near the Fermi surface, we assume
that k; = krp = ko. In this case the dimensionless Fermi liquid parameters
F,F',G,G" depend on only the angle between k; and ky, which we call 6.
Then it is convenient to perform a Legendre polynomial expansion as follows

F(k,X) = ZF;PI cos 0), Gk, k)= ZGlPl(cos 6), etc. (4.3)
I

The Fermi liquid parameters Fj, G;, ... decrease rapidly for larger [, and so
there are only a small number of parameters that can either be fit to experiment
or calculated microscopically.

In the original application of the theory to liquid *He and nuclear sys-
tems, the quasiparticle interaction was obtained phenomenologically by fitting
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the dimensionless Fermi liquid parameters to relevant data. For nuclear mat-
ter several important relationships exist between nuclear observables and the
Fermi liquid parameters. Galilean invariance can be used [90] to connect the
Landau parameter Fj to the quasiparticle effective mass

m*

=1+ R/3 (4.4)

Adding a small number of neutrons and removing the same number of pro-
tons from the system will increase and decrease, respectively, the density of
protons and neutrons in the system (and therefore the Fermi energies of the
two species). The change in the energy, described by the symmetry energy (3,
can be related [94] to the Landau parameter F{|

R

~ 6m*

B (1+ Fp). (4.5)

In a similar way, the equal increase or decrease of the proton and neutron
densities leads to a relationship between the scalar-isoscalar Landau parameter
Fy and the compression modulus K

3%

m*

K

(1+ ). (4.6)

Finally, it can be shown [94] that an odd nucleon added just above the Fermi
sea induces a polarization of the medium leading to an anomalous contribution
to the orbital gyromagnetic ratio of the form

g = [L—dglun
g = [balpw, (4.7)
where dg; is given by
1 F—F
Sg = ————. 4.8
=61+ /3 (48)

Clearly there are certain values of the Landau parameters that are physi-
cally unreasonable. For instance, if F; < —3 or Fy < —1, the effective mass
or compression modulus would be negative. Quite generally it can be shown
[107] that the Landau parameters must satisfy stability conditions

X; > —(20+1), (4.9)
where X represents F, G, F', G'.

A rigorous foundation for the assumptions underlying Landau’s theory can
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be obtained through formal many-body techniques [108, 109]. It is not our goal
to reproduce the original arguments [92], but rather to give a clear motivation
for the diagrammatic expansion leading to the quasiparticle interaction. Start-
ing from the usual definition of the four-point Green’s function in momentum
space

Gopros(k, ko ks, ky) = (27T)85(4)(l€1 + ko — kg — ky)
X [Gan (K1) Gs (k)8 (k1 — k) — Gas(k1)Gan (k) 3™ (ky — k3)

G (k1) G (k2) G (k3) G (kea) Tapns (i, beas Ko, )], (4.10)

i
(2m)4
where G(ky) is the Fourier transform of G(xt,2't') and kq,..., ks represent
four-vectors (e.g. k1 = (ki,wq)), it can be shown that the quasiparticle inter-
action is related to a certain limit of the four-point vertex function I'y g 5 (k1, k2;
ks, k4). From energy-momentum conservation (k; + ks = k3 + k4) we can write
ks — ki = K = ko — k4 and therefore define I'(ky, ko; K) = ['(kq, ko; k3, k).
The important point is that since we are considering only low-energy long-
wavelength excitations, the particle-hole energy-momentum K should be small.
We can write a Bethe-Salpeter equation for the fully reducible vertex function
[ in terms of the ph irreducible vertex function I' in the direct channel with
momentum transfer K:

Fa5775(k1ak2;K) = faﬁ,75<klak2;K) (411)

. diq -
ﬁ/;;/f§wyww@thxmqu+wa@@¢%K)

shown diagrammatically in Fig. 4.1. The product of propagators may have
singularities in the limit that K — 0, in which case the poles can be replaced
by d-functions inside the integral:

2irz?q - K

G(q)G(q+ K) = m

(e — 1)0(q — k) + dla), (4.12)
where z is the renormalization at the quasiparticle pole and ¢(q) accounts for
the multipair background. The limit K = (w, K) — 0 depends on the relative
ordering of the two limits K — 0 and w — 0. Defining

[“(ki, ko) = lim lim I'(ky, ko; K)  and

w—0 K—0

D5 (ky, ko) = lim lim T(ky, ko; K, (4.13)

K—0w—0
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Figure 4.1: The Bethe-Salpeter equation for the fully irreducible vertex func-
tion I' in terms of the ph irreducible vertex function I'.

from eq. (4.12) we see that the product of propagators is regular for I'*. Thus,
to calculate I'Y we must first calculate the ph irreducible diagrams belonging
to I' and then iterate via the Bethe-Salpeter equation with the intermediate
multipair background ¢. The é-function singularities in I' can be used to
perform the integrals over ¢y and |q|, and through algebraic manipulation it
is possible to combine I'* and I' into a single integral equation

Dk ka) = T 5(k, ko)

1
- Ny / 4% (k)5 (g, k). (4.14)
€1

Physically, I'* represents the exchange of virtual excitations between quasipar-
ticles, and ' represents the forward scattering of quasiparticles at the Fermi
surface. By relating these vertex functions to the equations describing zero
sound, Landau [92] was able to make the identifications

[k, ky) = 2°T%(ki, ko) and
(l(k’l,k’Q) = ZQFk(kfl,k'Q), (415)

where f(ki,ks) is just the quasiparticle interaction introduced earlier and
a(ky, ko) is the physical scattering amplitude.
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Figure 4.2: The diagrammatic relationship between the physical scattering
amplitude a and the quasiparticle interaction f.

4.3 Induced interaction

In principle one could exactly calculate the quasiparticle interaction by sum-
ming up all ph irreducible diagrams contributing to the ph vertex function in
the limit k/w — 0. Since this is not practicable in general, one must limit the
calculation to a certain subset of diagrams. We could proceed by calculating
the relevant diagrams order by order, but this would miss an essential point,
which we now elaborate. From eqgs. (4.14) and (4.15), we see that the phys-
ical scattering amplitude a(kq, ko) iterates the quasiparticle interaction to all
orders through an integral equation shown schematically in Fig. 4.2. If only
a finite set of diagrams are included in the quasiparticle interaction, then the
scattering amplitude will not be antisymmetric. For instance, if we include
only the bare particle-hole antisymmetrized vertex shown in Fig. 4.3(a), then
diagram (b) will be contained in the equation for the scattering amplitude but
its exchange diagram, labeled (c), will not. Quantitatively, the fact that the
scattering amplitude is antisymmetric requires that it vanish in singlet-odd
and triplet-odd states as the Landau angle 6 approaches 0. This leads to two
constraints [92, 110] on the Fermi liquid parameters in the form of sum rules:

F G B
Z(1+Fz/(2l+1)+31+G;/(2l+1)> =0 (4.16)

l

2 B F e
Zl: (§1+E/(2l+ D 1+F//(l2l+ D 11 Gyt 1)) =0 (417)

Clearly, the sum rules must be satisfied for the “correct” set of Fermi liquid
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(@) (b) (c)

Figure 4.3: Diagrams contributing to the quasiparticle interaction f and the
scattering amplitude a. Diagrams (a) and (c¢) contribute to f, whereas all
three contribute to a.

parameters describing nuclear matter. To account for this infinite set of ex-
change diagrams, Babu and Brown [66] proposed separating the quasiparticle
interaction into a driving term and an induced term:

f(k’ k,) :fd(kv k/)+fz(ka k,)a (418)

where the induced interaction is defined to contain those diagrams that would
be the exchange terms necessary to preserve the antisymmetry of a(kq, ko).
Then the induced interaction is given by a diagrammatic expansion shown in
Fig. 4.4. Physically, the induced interaction represents that part of the quasi-
particle interaction that results from the exchange of virtual collective modes,
which can be classified as density, spin, or isospin excitations. In the limit that
k; — ky it can be rigorously proved [66] that the coupling of quasiparticles
to these collective excitations is precisely through the quasiparticle interaction
itself, thereby justifying the diagrammatic expression in Fig. 4.4.

The relationship between the induced interaction and the full quasiparticle
interaction was derived by Babu and Brown [66] for liquid *He and applied to
nuclear matter by Sjoberg [102]. To lowest order in the Fermi liquid parame-
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Figure 4.4: The diagrammatic form of the induced interaction. In the limit

that ky = ko it can be shown that the external lines exactly couple to particle-
hole excitations through the f function.

ters, the induced interaction is given by

F 2 F 2 2 12
AF, = 0 n 3F) / I 3G0 4 9G0 , o
1—|—F0050 1—|—F0CY0 1—|—G0050 1—|—G0050
o - | B BR® G sG]
! 14 F()Oéo 1+ FOIOJO 1+ G()Oéo 14 GOIQ’O 0
i R R L 3G 3G,? ] .
‘ 1+ F()Oéo 1+ F()/Oéo 1+ G()Oéo 1+ GOIOZO 0
[ F 2 F 12 2 12 1
4G, = ° __ 9 Go + Go — | (4.19)
1—|—F0050 1—|—F0050 1+G00&0 1+G00&0
where _ " . 12
q F F—4q
_ )=+ 21 -2 ) |p2—_*= 4.20
e e L N ED

is the Lindhard function, which is related to the density-density correlation
function x,, by

_ —x(qw)
1+ Fyag(q,w)’

and q = k; — ko. The interpretation of equation (4.19) is as follows. The
Landau parameters in the numerator describe the coupling of quasiparticles
to particular collective modes. For instance, the F{ represents the coupling to
density excitations, GGg the coupling to spin excitations, etc., and the denomi-
nators enter from the summation of bubbles to all orders. Including the [ =1

Xpp(Qs W) (4.21)
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Figure 4.5: A selection of diagrams contributing to the driving term in the
quasiparticle interaction. Diagrams (d) and (e) are included implicitly through
the renormalization at the quasiparticle pole.

Fermi liquid parameters, the induced interaction is given by

e F02040 _ q2 F12041 3G02Oé0 _ q2 3G12041
4E _ |:1+F0a0 + (1 4]{:FE 1+ Froq + 1+G0a0 + 1 4]<;FE 1+Gro1

3F0’2a0 _ q2 3F1/2a1 9G0/2a0 _ q2 9G1’2a1
+1+F0’040 + 1 4]{% 1+F1 aq + 1+Go’ ap + 1 4k% 1+G1'oq | ?

(4.22)

where a4 defined by

113 kb (K ke 3¢ ke + /2
_ 113 ke Kp | FF 1 4.2
ai(q,0) = 5 {8 202 (2q3 T " 32k ) M\ — g2 2

is related to the current-current correlation function, and analogous expres-
sions hold for the spin- and isospin-dependent parts of the induced interaction.
These equations were first obtained in [105], carried far enough to include
velocity-dependent effects in terms of an effective mass, in the approximation
of quadratic spectrum.

Having characterized the induced part of the quasiparticle interaction, let
us now elaborate on the driving term. By definition, this component of the
interaction consists of those diagrams that cannot be separated into two dia-
grams by cutting one particle line and one hole line. Some of the low order
terms contributing to the driving term are shown in Fig. 4.5, where the inter-
action vertices are assumed to be antisymmetrized. Some higher-order terms,
such as diagram (d) in Fig. 4.5, are included implicitly through the quasipar-
ticle renormalization z and need not be calculated explicitly, as described in
detail in [111]. In order to preserve the Pauli principle sum rules (4.16) and
(4.17) the driving term must be antisymmetrized. Thus, including Fig. 4.5(d)
requires that (e) also be included in order for the scattering amplitude to be
antisymmetric.
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4.4 Calculations and results

According to the discussion in the previous section, the starting point of a
microscopic derivation of the quasiparticle interaction is a calculation of the
antisymmetrized driving term to some specified order in the bare potential.
Nearly all previous calculations have used the G-matrix, since it is well known
that the unrenormalized high-precision NN potentials are unsuitable for per-
turbation theory calculations due to the presence of a strong short-distance
repulsion. The resummation of particle-particle ladder diagrams in the G-
matrix softens the potential but introduces several undesirable features from
the perspective of Fermi liquid theory. Most important is the unphysical gap
in the single particle energy spectrum at the Fermi surface due to the fact
that hole lines receive self-energy corrections but particle lines do not. In the
past it was suggested [98, 103] that introducing a model space, within which
particles and holes are treated symmetrically, could overcome this difficulty.

An alternative method for taming the repulsive core is to integrate out the
high momentum components of the interaction in such a way that the low
energy dynamics are preserved [14, 58]. This is accomplished by rewriting the
half-on-shell T-matrix

2 00 ! T 2
/ VNN(paq) (qapvp )q2dq (424)
0

T, p,p*) = Van (@' —
(¥, p,p%) nn (P, p) + WP P2 —

with an explicit momentum cutoff A, which yields the low momentum 7T-matrix
defined by

2 [ View—r (0 @) Tiow—i(q, p, p?
ﬂow*k(p/7p7p2) = ‘/iowfk(p/7p) + ;P/ ) ( p2) 0q2 ( )
. —

¢dg.

(4.25)
Enforcing the requirement that Tiow (', p,p?) = T(p',p,p?) for p';p < A
preserves the low energy physics encoded in the scattering phase shifts. Re-
markably, under this construction all high-precision NN potentials flow to a
nearly universal low momentum interaction Vi,,_j as the momentum cutoff A
is lowered to 2.1 fm~!. In fact, £ = 2.1 fm~?! is precisely the CM momentum
beyond which the experimental phase shift analysis has not been incorporated
in the high-precision NN interactions.

For an initial approximation to the driving term, we include the first-
order antisymmetrized matrix element shown diagrammatically in Fig. 4.5(a)
as well as the higher order diagrams, such as (d) and (e), that are included
implicitly through the renormalization strength at the quasiparticle pole. The

66



quasiparticles are confined to a thin model space P near the Fermi surface

P=lm % [k)kl (4.26)
kp<k<kp+9d

and the first-order contribution is given by
(k1ko STV |(ksky — kyks)ST) = (k,0ST|V|k,05T), (4.27)

where ki = ko = k3 = ky = kp, 0 is the angle between the two momenta, and
the relative momentum k = kpsin(f/2). Given the Vi, _ matrix elements in
the basis |klSTJ), we project onto the central components and change from
a spherical wave basis to a plane wave basis. Then the dimensionful driving
term is given by

(kST|V4|kST) = 2

4
55T 22T+ D1 = (D)) (RIS TT|View 4| ISIT).
J)l

(4.28)
Inserting the form of the quasiparticle interaction in eq. (4.2) into the left

hand side of eq. (4.28), we obtain the Fermi liquid parameters in terms of
Vsr(k) = (kST|V|kST). The result is

1 3 3 9

I = 1—6‘/00 + 1—6V01 + EVIO + E‘/ll
g = —1—16‘/00— %%1+1—16‘/10+%V11
o= _1_16%0 + %Vm - 1—36‘/10 + %Vn
g = 1—161/00 - %Vm - %Vw + 1%‘/“’ (4.29)

where the momentum dependence has been suppressed for simplicity. From
eq. (4.4) it can be shown that

*

m 1

m 1= pf/3 0

where p = 2mkp/m*h* = 2 Nj, from which we construct the dimensionless

Fermi liquid parameters. In all of our calculations we include partial waves up
to J = 6. In Table 4.1 we show the Landau parameters of the driving term
derived from three different low momentum interactions obtained from the
Nijmegen I & II potentials [6] and the CD-Bonn potential [9] for a momentum

cutoff of A = 2.1 fm~' and a Fermi momentum of kr = 1.36 fm™"'.

From
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Nijmegen I

l E G, F] G

0-1.230 | 0.130 | 0.392 | 0.619
11-0.506 | 0.241 | 0.252 | 0.118
21-0.201 | 0.120 | 0.101 | 0.021
31-0.110 | 0.054 | 0.051 | 0.009

Nijmegen II

l E G, F] G

0|-1.4751]0.248 | 0.549 | 0.583
11-0.445 | 0.161 | 0.172 | 0.225
21-0.213 | 0.127 | 0.106 | 0.020
3 1-0.120 | 0.060 | 0.056 | 0.007

CD-Bonn

[ E G F] G

0-1.199 | 0.135 | 0.350 | 0.603
11-0.498 | 0.240 | 0.259 | 0.118
21-0.200 | 0.122 | 0.101 | 0.022
31-0.111 | 0.055 | 0.051 | 0.010

Table 4.1: The Fermi liquid parameters of the NN interaction Vi,y_j derived
from the Nijmegen potentials and CD-Bonn potential for a cutoff of A = 2.1
fm~! and Fermi momentum 1.36 fm~"'.

the available theoretical analyses of nucleon momentum distributions [112],
we take the quasiparticle renormalization strength to be z = 0.7 for nuclear
matter.

The induced interaction is obtained by iterating equations (4.18) and (4.22)
until a self-consistent solution is reached. The density-density and current-
current correlation functions in (4.22) introduce a momentum dependence in
the induced interaction, and the Fermi liquid parameters for the induced in-
teraction are obtained by projecting onto the Legendre polynomials

20+1 [*
F, = ZT+ F;(0)P,(cos 0) d(cos 0), etc. (4.31)
-1

For the first iteration we use the Landau parameters obtained from the bare
low momentum interaction as an estimate for the full quasiparticle interaction
in eq. (4.22). However, since F does not satisfy the stability criteria (4.9)
for either the Nijmegen or CD-Bonn potentials, in the first iteration we re-
place it in both cases with an arbitrary value that does. The convergence of

68



Full

l F G F’ G’
0]-0.476 | 0.025 | 0.221 | 0.784
11-0.335| 0.263 | 0.273 | 0.171
21-0.238 | 0.139 | 0.117 | 0.020
31-0.101 | 0.055 | 0.050 | 0.014
Driving
l Ey Gy F; G
0]-1.276 | 0.144 | 0.373 | 0.642
11-0.530 | 0.256 | 0.275 | 0.125
21-0.212 | 0.130 | 0.107 | 0.024
31-0.119 | 0.059 | 0.054 | 0.011
Induced
[ E; G F! G
0] 0.801 |-0.119 | -0.152 | 0.142
11 0.195 | 0.007 |-0.002 | 0.048
21-0.026 | 0.009 | 0.010 |-0.003
31 0.018 | -0.004 | -0.004 | 0.003

Table 4.2: The self-consistent solution of the Babu-Brown equations for the
low momentum CD-Bonn potential. The full Fermi liquid parameters are ob-
tained by projecting the quasiparticle interaction in Fig. 4.6 onto the Legendre
polynomials.

the iteration scheme is generally rapid and relatively insensitive to the set of
initial parameters chosen for the low-momentum Nijmegen I and CD-Bonn po-
tentials. In contrast, the low momentum Nijmegen II potential exhibits poor
convergence properties, though a solution to the coupled equations can still
be found. For a completely consistent solution at each iteration we recalculate
the driving term with the new effective mass.

The final self-consistent result for the quasiparticle interaction is shown
in Fig. 4.6 for the CD-Bonn potential, and the Fermi liquid parameters for
the driving term, induced interaction, and full quasiparticle interaction are
shown in Table 4.2. For comparison we list the Fermi liquid parameters
obtained in [74] where the spin-independent Landau parameters were taken
from experiment and used to calculate the spin-dependent parameters with
a set of nontrivial sum rules: Although the experimental values for the spin-
independent parameters are appreciably different from the self-consistent solu-
tion we have obtained, our values for the spin-dependent parameters fall within
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Figure 4.6: The self-consistent solution for the full quasiparticle interaction
as a function of k = 3|k; — ko| derived from the low momentum CD-Bonn
potential.

Fo=-027| Gp=0.15+03 | F;/ =0.71 | G’ =1.0+£0.2
Fi=-085| G =045+03| Fy'=0.14 | G, =0.0+0.2

Table 4.3: Fermi liquid parameters deduced from renormalization group equa-
tions in [74].
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Nijmegen I | Nijmegen II | CD-Bonn
m*/m 0.887 0.930 0.888
K [MeV] 136 102 136
B [MeV] 18.1 20.5 17.6
dgr [n] 0.682 0.452 0.685
051 0.20 0.16 0.27
055 -0.04 -0.02 -0.04

Table 4.4: Nuclear observables obtained from the self-consistent solution of the
Babu-Brown equations and deviations .57 and 055 from the Pauli principle
sum rules.

the errors predicted from the sum rules. However, the main effect of the in-
duced interaction is to cut down the strong attraction in the spin-independent,
isospin-independent part of the quasiparticle interaction. In fact, the repul-
sion in this channel coming from the induced interaction is large enough for
the resulting Fj to satisfy the stability condition in (4.9). The effective mass,
compression modulus, and symmetry energy are shown in Table 4.4 together
with the deviations §.57 and 655 from the sum rules (4.16) and (4.17). We list
the results for the three different bare potentials with a momentum cutoff of
A =21 fm~!. In calculating the contributions to (4.16) and (4.17) we have
included Landau parameters for [ < 3. The compression modulus for nuclear
matter is extrapolated from the data on giant monopole resonances in heavy
nuclei, with the expected value being 200 — 300 MeV [85, 86]. The symmetry
energy is determined by fitting the data on nuclear masses to various versions
of the semi-empirical mass formula [113], and currently the accepted value is
B = 25-35 MeV [86, 88]. Both the compression modulus and the symmetry
energy shown in Table 4.4 are significantly smaller than the experimental val-
ues. On the other hand, the anomalous orbital gyromagnetic ratio, determined
from giant dipole resonances in heavy nuclei, is too large compared with the
experimental value of dg7 = 0.23 + 0.03 [114].

As suggested in the introduction, we propose to remedy these discrepancies
by considering the effects of Brown-Rho scaling on hadronic masses. The
proposed scaling law for light hadrons — other than the pseudoscalar mesons,
whose masses are protected by chiral invariance — is [45, 115]

* * *
my  m, gAmN_1 On
- - - - _7
my Mgy gamy g

(4.32)

where the subscript V' denotes either the p or w vector meson, o refers to
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Figure 4.7: Walecka mean field contribution of the scalar tadpole to the nucleon
mass (a) and its extrapolation to constituent quarks in vector mesons (b).

the scalar meson, g4 is the axial vector coupling, and n/ng is the ratio of the
medium density to nuclear matter density. This scaling can be thought of as
extending Walecka mean field theory, in which the scalar tadpole contribution
to the nucleon self-energy lowers the effective mass, to the level of constituent
quarks. Attaching a scalar tadpole on the nucleon line, as shown in Fig.
4.7(a), lowers the mass according to (4.32), and a scalar tadpole connected to
the vector mesons gives an effective three-body force as shown in Fig. 4.7(b).
Including the in-medium scaling of the axial-vector coupling, which should
approach g% = 1 at chiral restoration, the net result is a lowering of the in-
medium m{, by ~ 2/3 as much as m},. Recent experimental results [53, 54]
are consistent with the scaling law (4.32) for C' = 0.14 and 0.092, respectively.
The Brown-Rho “parametric scaling” has C' = 0.2. However, the dense loop
term AM [116] gives a shift of the p-meson pole upwards. So far no one has
been able to calculate it at finite density.

A number of previous studies [117-119] were successful in describing nu-
clear matter by starting from a chiral Lagrangian with nuclear, scalar, and vec-
tor degrees of freedom in which the hadronic masses were scaled with density
according to (4.32). In particular, the compression modulus and anomalous
orbital gyromagnetic ratio were found to be in excellent agreement with exper-
iment, which suggests that a similar approach may prove fruitful in our present
analysis. An alternative approach, complementary to the chiral Lagrangian
method, is to include medium modifications directly into a one-boson-exchange
potential. Such a calculation was carried out in [84] to study the saturation
of nuclear matter. In their work it was suggested that the o particle should
be constructed microscopically as a pair of correlated pions interacting largely
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through crossed-channel p exchange. Medium modifications to the o mass
then arise naturally from the density-dependence of the p mass. The final
conclusion established in [84] is that at low densities the o scales according to
(4.32) but that toward nuclear matter density the scaling is slowed to such an
extent that saturation can be achieved.

We proceed along the lines of [84] and introduce medium modifications
directly into a one-boson-exchange potential. The most refined NN potentials
in this category are the Nijmegen I, Nijmegen II, and CD-Bonn potentials. The
Nijmegen potentials include contributions from the exchange of p,w, @, o, fo,
and ag mesons, as well as the pseudoscalar particles which do not receive
medium modifications in Brown-Rho scaling. The CD-Bonn potential includes
two vector particles (the p and w) and two scalars (o7 and o3). For both
potentials we scale the vector meson masses by 15% and the scalar meson
masses by 7%. In this way we roughly account for the decreased scaling of the
scalar particle mass observed in [84]. In the full many-body calculation we also
scale the nucleon mass by 15% and with an additional \/¢% /g4 ~ 1/v/1.25 at
nuclear matter density. It is essential to also scale the form factor cutoffs Ay
of the vector mesons in the boson-exchange potentials.

In Table 4.5 we show the effective mass, compression modulus, symmetry
energy, and anomalous orbital gyromagnetic ratio for the Nijmegen I & II
and CD-Bonn potentials with the in-medium modifications. We also show for
comparison the results from the Nijmegen93 one-boson-exchange potential,
which has only 15 free parameters and is not fine-tuned separately in each
partial wave. We observe that the iterative solution is in better agreement
with all nuclear observables. The anomalously large compression modulus
in the CD-Bonn potential results almost completely from the presence of a
large w coupling constant g2y, /47 = 20.0. With the same g2y, /47 and
Bonn-B potential, Rapp et al. [84] obtained I = 356 MeV. The compression
modulus is very sensitive to this parameter, as we have checked that dropping
this coupling by 20% cuts the compression modulus in half but alters the
other nuclear observables by less than 5%. The naive quark model predicts
a ratio of g2 yn/gony = 9 between the w and p coupling constants, which is
largely violated in the CD-Bonn potential g2y y/gony = 24 though roughly
satisfied in the Nijmegen potentials g2yy/goxy = 11, perhaps resulting in
better agreement with experiment.

Thus, by extension of the Walecka mean field on nucleons to those on
constituent quarks, we obtain the Fermi liquid parameters for the theory that is
now essentially Brown-Rho scaled, as shown in Table 4.6. One should note that
these results are only for infinite nuclear matter and especially the three-body
term will act in many different diagrams in the finite systems. However, our
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Van Vam Vnos | Vops

m*/m | 0.721 | 0.763 | 0.696 | 0.682
K[MeV] | 218 | 142 | 190 | 495
3MeV] | 204 | 255 | 237 | 192

g1 0.246 | 0.181 | 0.283 | 0.267

Table 4.5: Nuclear observables obtained from the self-consistent solution to
the Babu-Brown equations incorporating Brown-Rho scaling. Four different
bare potentials — the CD-Bonn potential (Vopg), Nijmegen I (Vir), Nijmegen
IT (Vam), and Nijmegen93 (N93) potentials — were used to construct low mo-
mentum interactions for a cutoff of A = 2.1 fm~!.

l F G F G

0 | -0.20 & 0.39 | 0.04 £ 0.11 | 0.24 & 0.16 | 0.53 = 0.09
1]-0.86+0.10 | 0.19 + 0.06 | 0.18 & 0.05 | 0.17 & 0.12
9 | -0.21 £ 0.01 | 0.12 £ 0.0 | 0.10 & 0.02 | 0.01 = 0.02
3| -0.09 £ 0.01 | 0.05+ 0.01 | 0.05 £ 0.01 | 0.01 & 0.01

Table 4.6: Fermi liquid coefficients for the self-consistent solution to the Babu-
Brown equations using Brown-Rho scaled nucleon and meson masses in the
four low momentum CD-Bonn and Nijmegen potentials listed in Table 4.5.
The tabulated values display the average and spread from the four different
potentials and not the actual uncertainties associated with the Fermi liquid
parameters.

arguments suggest that the three-body terms intrinsic to Brown-Rho scaling
will be useful in stabilizing light nuclei.

4.5 Discussion of the tensor force

The tensor force contributes chiefly in second order perturbation theory as an
effective central force in the I = 1 channel. As the density increases, some of
the intermediate states are blocked by the Pauli principle. In the two-body
system the tensor force contributes to the 35; state, but not to the 1S state,
and gives most of the attractive interaction difference between the 3S; and
1Sy states, effectively binding the deuteron. However, the intermediate state
energies relevant for the second-order tensor force are > 225 MeV (See Fig. 69
of [64] which is for *°Ca. For nuclear matter the intermediate state momenta
would be higher.), well above the Fermi energy of nuclear matter, and most
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Figure 4.8: Reduction in the strength of the tensor force due to a scaled p-
meson mass. Contributions from both m-meson and p-meson exchange are
included in both curves. We have used the Brown-Rho parametric scaling, so
that at nuclear matter density mj = 0.8m,.

intermediate momenta are above the Vi, _; upper model space limit of 420
MeV /¢, so the tensor force is largely integrated out.

However, since the beginning of Brown-Rho scaling it has been understood
that the tensor force is rapidly cut down with increasing density. That is
because the pion mass does not change with density, being protected by chiral
invariance, but the p-meson mass, which is dynamically generated, decreases
by 20% (parametric scaling) in going from a density of n = 0 to nuclear matter
density n = ng. Since the p-meson exchange contributes with opposite sign
from that of the pion, this cuts down the tensor force substantially. In Fig.
4.8 we show the total tensor force from 7 and p exchange at zero density and
nuclear matter density ng. Since it enters in the square, this means a factor
of several drop in the tensor contribution to the binding energy, as shown in
Fig. 4.9.

We believe that the work of ref. [53] shows unambiguously that the mass of
the w-meson is ~ 14% lower at nuclear matter density than in free space. It is
remarkable that nuclear structure calculations have been carried out for many
years without density-dependent masses but with results usually in quanti-
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Figure 4.9: Reduction of the tensor force in second order perturbation theory
due to a scaled p-meson mass. The intermediate state energy is approximated
as 225 MeV. Contributions from both 7-meson and p-meson exchange are
included in both curves. At nuclear matter density, ng, we have used the
parametric scaling my; = 0.8m,,.
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tative agreement with experiment. In [56] Brown and Rho showed that in
cases where the exchange of the m-meson is not important, such as in Dirac
phenomenology, there is a scale invariance such that if the masses of all rel-
evant mesons are changed by the same amount, the results for the physical
phenomena are very little changed.

Since the pion exchange gives the longest range part of the nucleon-nucleon
interaction, it is amazing that there are not clearcut examples in nuclear spec-
troscopy such as level orderings that are altered by the p-meson exchange
playing counterpoint to the m-meson exchange, as we find in this paper for
nuclear saturation. The in-medium decrease in the p-mass increases the effect
of p-exchange, which enters so as to cut down the overall tensor force, the p
and 7 exchange entering with opposite sign.

Finally, nearly forty years since the Kuo-Brown nucleon-nucleon forces were
first published, it was shown [65] that the summation of core polarization
diagrams to all orders is well-approximated by a single bubble. However, in
light of the double decimation of [56] being carried out here in one step, these
forces should be modified to include the medium dependence of the masses.
Phenomenologically this can be done by introducing three-body terms, as we
did here, but from our treatment of the second-order tensor force it is clear
that this should be done at constituent quark level.

4.6 Conclusion

We believe that by discussing the nuclear many-body problem within the con-
text of Fermi liquid theory with the interaction Viy,_x following the work of
Schwenk et al. [74] we have a format for understanding connections between
the physical properties of the many-body system and the nuclear potentials.
We carried out an iterative solution of the Babu-Brown equations, which in-
clude both density-density and current-current correlation functions, calculat-
ing input potentials via a momentum space decimation to Vi, _x. By including
Brown-Rho scaling through scalar tadpoles, as suggested by Walecka theory,
our iterative solution provides the empirical Fermi liquid quantities. Our nu-
cleon effective mass is on the low side of those usually employed, as is common
in Walecka mean field theory.
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Chapter 5

All-Order Core Polarization and
Shell Model Effective

Interactions

5.1 Introduction.

Understanding the properties of finite nuclei starting from realistic models of
the NN interaction in free space is one of the most important programs in
nuclear physics. In the previous chapters we described the first step in devel-
oping a formalism for such studies: taming the strong short-distance repulsion
in relative S-states. Traditionally, microscopic studies of finite nuclei have re-
lied on first constructing the G-matrix, but the development of low momentum
interactions that are energy-independent and well-behaved at short distances
have provided a compelling new framework for calculating the properties of
finite nuclei from realistic NN interactions.

Since the early works of Bertsch [120] and Kuo and Brown [62], the effect
of core polarization in microscopic calculations of finite nuclei has received
much attention. Core polarization is particularly important in the shell model
effective interactions, where this process provides the long-range inter-nucleon
interaction mediated by excitations of the core [64]. In microscopic calcula-
tions of effective interactions, core polarization has played an essential role, as
illustrated by the familiar situation in '¥O. There the spectrum calculated with
the bare G-matrix was too compressed compared with experiment, while the
inclusion of core polarization had the desirable effect of both lowering the 0
ground state and raising the 4™ state, leading to a much improved agreement
with experiment [62, 120]. As pointed out by Zuker [121], the Kuo-Brown
matrix elements, although developed quite some time ago, continue to be a

78



highly useful shell model effective interaction. It should be noted that the core
polarization (CP) diagrams associated with the above interactions were all cal-
culated to second order (in the G-matrix) in perturbation theory. But what
are the effects of core polarization beyond second order, and how can they
be calculated? In this chapter we would like to address these questions and
present an all-order summation of CP diagrams for the sd-shell interactions.

There have been a number of important CP studies beyond second order.
Third-order core polarization diagrams, including those with one fold, were
studied in detail by Barrett and Kirson [122] for the sd-shell effective interac-
tions. Hjorth-Jensen et al. [123] have carried out extensive investigations of
the third-order CP diagrams for the tin region. A main result of these studies
is that the effect of the third-order diagrams is generally comparable to that of
the second order; the former cannot be ignored in comparison with the latter.
As is well known, high-order CP calculations are difficult to perform, largely
because the number of CP diagrams grows rapidly as one goes to higher or-
ders in perturbation theory. The number of diagrams at third order is already
quite large, though still manageable. Primarily because of this difficulty, a
complete fourth-order calculation has never been carried out. It was soon re-
alized that an order-by-order calculation of CP diagrams beyond third order
is not practicable. To fully assess the effects of core polarization to high order,
a non-perturbative method is called for.

In this chapter we introduce a new formalism for summing core polarization
diagrams to all orders. The non-perturbative method we use is based on
the elegant and rigorous induced interaction approach of Kirson [124, 125]
and Babu and Brown [66], hereafter referred to as KBB. Other successful
non-perturbative summation methods have also been developed, such as the
parquet summation [126, 127] and coupled cluster expansion [128]. In the KBB
formalism the vertex functions are obtained by solving a set of self-consistent
equations, thereby generating CP diagrams to all orders. Using this approach,
Kirson has studied *O and '8F using a G-matrix interaction, and Sprung and
Jopko [129] have carried out a model study of this approach using a separable
interaction. A main conclusion of both studies is that when CP diagrams are
included to all orders the effective interaction is very close to that given by
the bare interaction alone. In contrast, Sjoberg [102] applied the Babu-Brown
formalism to nuclear matter and found that the inclusion of CP diagrams to all
orders has a significant effect on the Fermi liquid parameters, in comparison
with those given by the bare interaction. These conflicting results for CP
studies of finite nuclei and infinite nuclear matter have served as a primary
motivation for our present re-examination of the CP effect.

Our application of the KBB formalism to shell-model effective interactions
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is similar to that of Kirson, but our treatment is different in a number of
important regards. As we will discuss, the particle-core and hole-core coupling
vertices used in the present work include a larger class of diagrams than have
been previously studied. We will show how the inclusion of these diagrams
is facilitated by using the recently developed low-momentum nucleon-nucleon
interaction View—x [14, 15, 57, 73, 75, 130, 131] instead of the previously used
G-matrix. This is primarily because the G-matrix [123, 132] depends on both
starting energy and Pauli exclusion operator, while Vi, _) depends on neither.
It is noted that the S-wave interactions calculated from the Moszkowski-Scott
separation method gave essentially the same matrix elements as Vioy_.[69, 133]
In the subsequent Formalism section we will discuss these topics in greater
detail, and in the final section we present our results together with a summary.

5.2 Formalism

The many-particle Schrodinger equation describing the state of a nucleus is
given by
HY, = FE,V,, (5.1)

which cannot be solved exactly beyond just a few interacting nucleons. There-
fore, it is practical to assume that we can neglect the detailed dynamics of
nucleons filling the closed nuclear shells. In this way, we focus directly on the
valence nucleons and attempt to derive the energy spectrum by considering
the model space problem

PH.; PV, = (E, — E)U,, m=12_..4d (5.2)

where P is the projection operator

P = Z |©;) (@i (5.3)

that projects onto the model space consisting of the valence nucleons (labeled
1,2,...,d). These valence nucleons occupy the unperturbed shell model states
®; defined by

Hy®,, = €,P,. (5.4)

The unperturbed Hamiltonian H consists of the kinetic energy and a single
particle harmonic oscillator potential U

Hy=T+U (5.5)
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Figure 5.1: The 4*® order diagram calculated in the text below.

and the perturbed Hamiltonian is then
H =Vyy—-U (5.6)

so that
H=H,+ H;. (5.7)

There are d energy eigenvalues calculated with respect to the binding energy
E§ of the closed core. The question is how to compute H.rr = Hy+ Vess. One
method is the folded diagram expansion in which the effective interaction Vs
is calculated from

Va=Q-@ [Qra [afa- . 55)

where Q is the irreducible pp vertex function consisting of valence-linked ir-
reducible diagrams, and Q’ is obtained by removing from @ all terms that
are first order in the perturbing potential. This folded diagram series can be
summed to all orders with the Lee-Suzuki iteration method as discussed in
[123]. Therefore, the problem is reduced to calculating the irreducible pp ver-
tex function. In most studies one sums the terms in this series order by order,
but our aim is to develop a formalism for including an infinite number of core
polarization diagrams in the pp vertex function.

To best illustrate the techniques involved in these types of diagrammatic
calculations, we begin by explicitly calculating the fourth order core polar-
ization diagram shown in Fig. 5.1 that could be included in @, if so desired.
Although many of the diagram rules used in this brief derivation will not ap-
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pear explicitly in the discussion of our all-order method, we strictly adhere to
them in our calculations, and all details can be found in Ref. [134]. In the
uncoupled angular momentum representation, the diagram shown in Fig. 5.1
is given by

(—1)? 3 (p1h | Lpn | psp) (pp2 | Lypp | hpa)

diag. 1 =
& 20 (€5 +€1) — (€5 — €n + €y + €2)

, (5.9)

where the sum is over all intermediate particle-hole states and L, and L, rep-
resent the two-interaction ladders to be discussed shortly. In this uncoupled
representation, we have the phase factors, energy denominators, and matrix
element form, but when the initial and final states are coupled to some given
angular momentum, we must include the proper coupling factors. To deter-
mine these factors, we take the initial diagram in which the incoming and
outgoing states are coupled to definite J and T values and cut the ph pair to
get the new couplings as shown in Fig. 5.2. Applying the diagram rules for
this coupling, we have

1 .
diag. 1 = JiT1
& Z(Eg+€4)—(€3—€h+€p+62)

ph
ps ps J 1l
X Z X P11 P2 J X % % T
JIT J J 0 7 T 0
x J'T" (prh | Ly | psp) (ppa | Lyp | hps), (5.10)

where A = v/2A + 1 and the X-coefficient is defined in terms of the 6- j symbol
as follows

VR Y .
X| k1 o |=dg—1ptethwd ] T4
y oy 0 I k vy

To continue, further cuts must be made to evaluate the L,, and the L, terms,
as shown in Figs. 5.3 and 5.4, where each gives two cross-coupled matrix el-
ements. With the appropriate angular momentum coupling coefficients, the
final step in evaluating this diagram is the calculation of the cross-coupled
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Figure 5.2: This fourth-order core polarization diagram can be factorized by
performing the “cut” shown here and applying the appropriate angular mo-
mentum recouplings.

matrix elements that result, where, for example

! J'] 1o~ —1 A Ps D1 J % % T’
b | Vipsp) = J T Sgrx|op o hoJ x| L LT
J’J JrTr J’/ J// 0 T// T/l 0

X(p1thJ"M | V| pspJ" M).

Now that we have seen how to calculate the second-order core polarization
diagram, we turn to our attention to a non-perturbative all-order approach.
The diagram in Fig. 5.5 illustrates the key features that the all-order method
should capture, though it is obviously too complicated to calculate explicitly.
As indicated in the figure, pp and ph vertex corrections in addition to general
pp and ph corrections deeper in the diagram should all be generated including
the bubble-inside-bubble structures.

The KBB induced interaction approach provides a very appealing way
for summing up planar diagrams to all orders. Its fundamental requirement
is that the irreducible vertex functions be calculated self-consistently. This
means that any core polarization term contained in a vertex function must
be generated self-consistently from the same vertex function. We note that it
is this requirement which plays the essential role of generating CP diagrams
to all orders. To see this point, it may be convenient to first consider the
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Figure 5.3: Further “cutting” that is needed to calculate the L, term.

Figure 5.4: Further “cutting” that is needed to calculate the L,, term.
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‘::A)
Figure 5.5: An example of the type of core polarization diagram our iteration
method will include.

particle-hole (ph) vertex function f. (We shall consider the particle-particle
vertex a little later.) As shown in Fig. 5.6, f is generated by summation of
the driving term V' and core polarization terms, the latter being dependent on
f. This then gives the self-consistent equation for f

f =V + EgphZ + EgpfufgphE + EgphfgphfgphE + - (511)

where g, is the free ph Green function, and X denotes the vertex for particle-
core and hole-core coupling. The second-order CP diagram of Fig. 5.6 is the
lowest-order term contained in ¥g,,%. We note that for simplicity the bra
and ket indices have been suppressed in the above equation as well as the
equations that follow. For example, in Eq. (5.6) the f on the LHS represents
(1271|3471, while the fifth and sixth ¥’s on the RHS represent (1ph~!|3|3)
and (27! |Z|p'R/71471), respectively.

The generation of high-order CP diagrams may be seen easily for the special
case ¥ = V. In this case Eq. (5.11) becomes

=V +VagnV+VaunfgnV +VagpnfgonfgmV +---. (5.12)

Since f appears on both sides of this equation, it is clear that an iterative
solution for f will yield core polarization diagrams to all orders, including those
with “bubbles inside bubbles,” like those shown in diagram (a) of Fig. 5.8.
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Figure 5.6: Self-consistent diagrammatic expansion of the ph vertex function,
f, where ¥ is defined in the text.

3

Figure 5.7: Structure of our generalization of the second-order diagram.
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(a) (b)

Figure 5.8: Higher-order terms contributing to the vertex functions f and I,
including (a) nested bubbles in bubbles and (b) particle-core and hole-core
couplings.

For nuclear many-body calculations in general, we also need the particle-
particle (pp) vertex function I'. Like f, I' is given by a driving term plus
core polarization terms. Furthermore, the diagrammatic representation of I'
is identical to Fig. 5.6 except that the hole lines 2 and 4 are replaced by
corresponding particle lines. This gives the self-consistent equation for I'

U=V + 29,12 + Xgpnf gpn 2 + Egpn f gpn [ gpnS + - - . (5.13)

To clarify our compact notation, we note that the external lines of the X
vertices in I' are different than those shown in Fig. 5.6. The upper X vertex,
for example, now represents (2|X|ph~'4). These different ¥ vertices can be
related to each other, however, via appropriate particle-hole transformations.

Finally, the vertex functions f and I' are coupled together via the coupling
vertex Y. In the present work we choose

Y o= V4 X+ X,
Z]ph = Vgphv + Vgphfgphv + Vgphfgphfgphv + - 5
Y = VgV +Vgl'gV + Vgl gl g,V + - (5.14)

where gy, is the free pp Green function.

The self-consistent vertex functions f and I' are determined from Egs.
(5.11) and (5.13-5.14). These are similar to the equations used by Kirson [124,
125], except that our X includes both X, and 3,,, while the equivalent term
in Kirson’s calculations only includes ¥, [124, 125, 135]. To see the role of
the X vertices, let us consider diagram (b) of Fig. 5.8. Here the lower particle-
core vertex, which contains repeated particle-particle interactions, belongs to
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A A A
= + +

Figure 5.9: Diagrammatic representation of the coupling vertex ..

A A A
— + .+ + ..

Vg,V

Figure 5.10: Some typical diagrammatic contributions to the ph coupling ver-
tex th.

>,p, While the upper one, which contains repeated particle-hole interactions,
belongs to . It is, of course, necessary to include ¥, in order to have such
CP diagrams in the all-order sum. Our equations are equivalent to those of
Kirson when X, is set to zero, and in this case I' does not enter the calculation

of f.

Solving the above equations for f and I' may seem complicated, but we
have found their solution can be simplified significantly through use of the true
ph and pp Green functions

Gph = Gph T gpthpha
Gpp = Gpp + Gppl Gpp- (5.15)

Using these Green functions to partially sum and regroup our series, the self-
consistent Egs. (5.11) and (5.13-5.14) assume a much simpler form

f = V+IGuY,
I = V+3Gu%,
S o= V4 VGV + VG,V (5.16)
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The above simplifications also aid our numerical efforts, and using the following
iterative method we find our coupled equations can be solved rather efficiently.
For the n'? iteration, we start from f and I'™, to first calculate G;Z) and

G5 followed by (™ as seen from Eqs. (5.15)-(5.16). The vertex functions for
the subsequent iteration are then obtained by taking f*+!) = V4% GZ()Z)Z(”)
and T+D) =V 4 E(”)G;Z)Z(”). The entire iterative process begins from the
initial f© =V + Vg,V and IT'®© =V 4 Vg,,V, and typically converges after
just a few iterations.

In the present work, we have included folded diagrams to all orders. As
detailed in [17], we use this method to reduce the full-space nuclear many-
body problem HWV, = E,V, to a model space problem HegXm = EnXm,
where H = Hy+ V', Heg = Hy + Veg and V' denotes the bare NN interaction.
The effective interaction Vg is given by the folded-diagram expansion

We consider the effective interactions for valence nucleons, and in this case
Q is the irreducible pp vertex function which we shall calculate using the
KBB equations. In Ref. [124, 125], the effect of higher order CP diagrams
to the non-folded Q term was extensively studied. In the present work, we
first calculate Q including CP diagrams to all orders. Then the above folded
diagram series for Vg is summed to all orders using the Lee-Suzuki iteration
method as discussed in Ref. [123]. In this way, folded CP diagrams are included
to all orders.

For the present calculation we have chosen to use the low-momentum
nucleon-nucleon interaction, Vi, _x. Since the vertex functions f and I" both
depend on the starting energy, there would be off-energy-shell effects present in
many CP diagrams if the G-matrix interaction were chosen. This would make
the calculation very complicated. Vi,,_x, on the other hand, is energy inde-
pendent so no such difficulties are encountered. Since detailed treatments of
Viow—x have been given elsewhere [14, 15, 57, 73, 75, 130, 131], here we provide
only a brief description. We define Vjo_k through the T-matrix equivalence
T, p,p*) = Tow—x('s0,0?); (P/,p) < A where T is given by the full-space
equation T' = Vyn + VyngT while Tioy—x by the model-space (momenta < A)
equation Tiow_1x = View—k + View—k9Tlow_k- Here Vyy represents some realistic
NN potential and A is the decimation momentum beyond which the high-
momentum components of Vyy are integrated out. Vi, _i preserves both the
deuteron binding energy and the low-energy scattering phase shifts of Vyy.
Since empirical nucleon scattering phase shifts are available only up to the
pion production threshold (Ejq, ~ 350 MeV), beyond this momentum the re-
alistic NN potentials cannot be uniquely determined. Accordingly, we choose
A ~ 2.0 fm~! thereby retaining only the information from a given potential
that is constrained by experiment. In fact for this A, the Vi,y_x derived from
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Figure 5.11: A comparison of the second-order core polarization matrix ele-
ments with those of the all-order KBB calculation.

various NN potentials [6, 8-10] are all nearly identical [14]. Except where
noted otherwise, in our calculations we employ the Vi, _i derived from the
CD-Bonn potential [9].

5.3 Results and discussion

As an initial study, we have carried out a restricted all-order CP calculation
for the sd-shell effective interactions. In particular, we sum only the TDA dia-
grams for the Green functions G,, and G, leaving a study of RPA diagrams
to a future publication. We have used two choices for the shell model space:
one with 4 shells (10 orbits from 0s; 2 to 1p;/2) and the other with 5 shells (15
orbits from 0s1/5 to 3s1/2), both with oscillator constant fw=14 MeV. Only
core excitations within this space are included. Vary, Sauer and Wong [136]
have pointed out that for CP diagrams one needs to include intermediate states
of high excitation energies (up to ~ 10hw) in order for the second-order core
polarization term to converge. In their work a G-matrix derived from the Reid
soft-core potential was used, and our use of V,,_; may yield different results
as it has greatly reduced high-momentum components. We have found that
the difference between our five-shell and four-shell calculations was minimal;
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Figure 5.12: Spectra for the 80 system calculated to different orders in per-
turbation theory. Dashed lines indicate levels with large intruder state mixing,
and all calculations were performed using the experimental single particle en-
ergies of 170.
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the results differing by about 2% or less. This finding is supported by recent
studies which show desirable convergence properties of Viow_i [79]. We plan
to study this convergence problem for Vj,,_i in the near future.

With these restrictions, we have calculated Veg from Egs. (5.15)-(5.16). A
large number of angular momentum recouplings are involved in calculating
the CP diagrams. In this regard, we have followed closely the diagram rules
in [134]. Previous second-order calulations [15, 123] included in the Q-box
the first-order pp diagram, the second-order pp and hh ladder diagrams, and
the second-order CP diagram. Our all-order calculation includes these same
diagrams except the second-order CP diagram is replaced with the all-order CP
diagrams from KBB. In Fig. 5.11 we compare the sd-shell V.g matrix elements
calculated from the second-order and all-order Q—boxes just described, both
using the 5-shell space mentioned above. A least-squares fit was applied to
the data, and it is apparent that the effect of including CP to all orders in
our calculation is a mild suppression of the second-order contributions. This
conclusion is further born out in the calculation of the 0 and '8F spectra,
the results of which are shown in Figs. 5.12 and 5.13. Here we observe a weak
suppression of the second-order effects in '¥0 but a moderate suppression in
I8F. In the same figures we also observe that the spectra for different Vigy_i
derived from the CD-Bonn and Nijmegen bare potentials are nearly identical.

5.4 Conclusion

In summary, we have presented a method based on the KBB induced interac-
tion formalism for efficiently summing core polarization diagrams to all orders
in perturbation theory. This summation is carried out by way of the KBB
self-consistent equations whose solution is significantly simplified by the use of
the true pp and ph Green functions, and by the use of the energy-independent
Viow—x. Although our calculation was restricted in several important aspects,
we find that our final renormalized interaction is remarkably close to that
of second-order perturbation theory. This is of practical importance and a
welcoming result, for it allows one to use the results from a second-order
calculation to approximate the contributions resulting from a large class of
higher-order diagrams. In the future we intend both to expand our treatment
by including additional diagrammatic contributions (RPA) and to generalize
our method to study the all order CP effects for effective operators such as
magnetic moment.
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Chapter 6

The 1“C Dating Beta Decay

with Brown-Rho-Scaled NN
Interactions

6.1 Introduction

The application of density-dependent interactions to finite nuclei is more dif-
ficult than for nuclear matter. Whereas nuclear matter by definition has a
uniform density, for finite nuclei the wavefunctions of the valence nucleons,
which largely determine the properties of the nucleus, will be spread over a
region with widely varying density. Moreover, shell model calculations are
more reliable and practicable for few particles above and below closed shells
(the latter can be treated with nucleon hole formalism). But just above a shell
closure the nuclear density sampled by the valence nucleons will be too small
for medium effects to be noticeable. Finally, as we have already discussed,
realistic NN interactions are fine-tuned, especially with respect to the proper-
ties (masses and coupling constants) of the o meson. Therefore, in order to
make model-independent predictions for finite nuclei, we should attempt to
find properties which are generally insensitive to how we scale the o mass. As
we now discuss, the beta decay of *C is a nearly perfect example for testing
the hypothesis of Brown-Rho scaling.

The anomalously long beta decay lifetime of “C has long been an im-
portant test for low energy nuclear structure models. The nuclear transition
matrix element is very small (~ 2 x 1073), and is expected to result from
an accidental cancellation among the different components contributing to
the transition amplitude. This decay has therefore been used to investigate
phenomena not normally considered in studies of allowed transitions, such as
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Transition End-Point Energy Lifetime
HC = UB +et + 1, 1.98 MeV 20.4 min
BN — BC 4et + v, 2.20 MeV 10.0 min
0 — YN 4et + v, 5.14 MeV 1.18 min
5O — BN et + 1, 2.75 MeV 2.04 min
HC - UN 46~ + 7, 0.156 MeV 2 x 10Y min

Table 6.1: Typical half-lives of allowed transitions in p-shell nuclei. Data
obtained from [142].

meson exchange currents [137, 138], relativistic effects [139], and configuration
mixing [140, 141]. More importantly, the suppressed Gamow-Teller strength is
a challenge for models of the in-medium nuclear interaction and in particular
for the current program to extend the microscopic description of the nuclear
force beyond that of a static two-body potential fit to the experimental data on
two-nucleon systems. The connection between this decay and the radiocarbon
dating method, whose importance for all of science can hardly be exaggerated,
makes this problem of broad interest even beyond nuclear physics.

A priori one would not expect *C, which beta decays to the N ground
state, to be a good isotope for radiocarbon dating over archaeological times
because the quantum numbers of the initial and final states, (J7,T;) = (07, 1)
and (JF,Ty) = (17,0), satisfy the selection rules for an allowed Gamow-Teller
transition. The expected half-life would therefore be on the order of hours
as shown in Table 6.1, far from the unusually long value of 5730 years [142]
observed in nature. In fact, the *O transition would be suppressed as well,
except that there exists an additional decay mode to the 2.31 MeV 07 excited
state of 1N. The decay of O to the N ground state was studied in [143].
Although nearly two orders of magnitude shorter, the half-life of this transition
was found to also be highly suppressed.

In this chapter, we suggest that a large part of the suppression arises from
in-medium modifications to the nuclear interaction. Such contributions include
three-nucleon forces, which have been tested in ab initio nuclear structure
calculations of light nuclei [144, 145], or hadronic medium modifications in
which the masses of nucleons and mesons are altered at finite density due
to either many-body interactions [35, 146] or the partial restoration of chiral
symmetry at finite density [38, 147, 148]. In fact, three-nucleon forces and
hadronic medium modifications are not unrelated, for they both parameterize
the effects of missing degrees of freedom, such as resonance-hole excitations
and virtual nucleon-antinucleon excitations. We study the problem of the *C
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beta decay from the perspective of Brown-Rho scaling (BRS) [45, 56], which

was the first model to make a comprehensive prediction for hadronic masses

in medium. In BRS the masses of nucleons and most light mesons (except the

pion whose mass is protected by its Goldstone boson nature) decrease at finite

density as the ratio of the in-medium to free-space pion decay constant:
] (.1
gamy  me m, M, fr

where g4 is the axial coupling constant, ® is a function of the nuclear density
n with ®(ng) ~ 0.8, and the star indicates in-medium values of the given
quantities. Since all realistic models of the NN interaction are based on meson
exchange and fit to only free-space data, Eq. (6.1) prescribes how to construct
a density-dependent nuclear interaction that accounts for hadronic medium
modifications. This program has been carried out in several previous studies
of symmetric nuclear matter [80, 84|, where it was found that one could well
describe saturation and several bulk equilibrium properties of nuclear matter
use such Brown-Rho-scaled NN interactions.

The case of the *C beta decay provides a nearly ideal situation in nuclear
structure physics for testing the hypothesis of Brown-Rho scaling. Just below
a double shell closure, the valence nucleons of “C will inhabit a region with
a large nuclear density. But more important is the sensitivity of this GT
matrix element to the nuclear tensor force, which as articulated by Zamick
and collaborators [149, 150] is one of the few instances in nuclear structure
where the role of the tensor force is clearly revealed. In fact, with a residual
interaction consisting of only central and spin-orbit forces it is not possible to
achieve a vanishing matrix element in a pure p~2 configuration [151]. Jancovici
and Talmi [152] showed that by including a strong tensor force one could
construct an interaction which reproduces the lifetime of *C as well as the
magnetic moment and electric quadrupole moment of '*N, although agreement
with the known spectroscopic data was unsatisfactory.

The most important contributions to the tensor force come from 7 and p
meson exchange, which act opposite to each other:

fx 1 1 1]
T — P X _ mpr 9
V, (r) A TeT T2 ( S12 {(mpr)?’ + () + 3mpr] e ) ,  (6.2)
2
T o fN7r . 1 1 1 —MT
Vo(r)= 1 MyT1 * T2 (512 {(TTLWT)?’ + (mar)? + 3mwr} e ) . (6.3)
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Since the p meson mass is expected to decrease substantially at nuclear mat-
ter density while the m mass remains relatively constant, an unambiguous
prediction of BRS is the decreasing of the tensor force at finite density, which
should be clearly seen in the GT matrix element. In fact, recent shell model
calculations [153] performed in a larger model space consisting of p~2 + 2hw
excitations have shown that the J-decay suppression requires the in-medium
tensor force to be weaker and the in-medium spin-orbit force to be stronger
in comparison to a typical G-matrix calculation starting with a realistic NN
interaction. As originally shown in Chapter 4, in Fig. 6.1 we plot the radial
part of the tensor interaction V'(r) = V/I'(r) + V' (r) at zero density and
nuclear matter density assuming that m’(ng)/m, = 0.80.

r [fm]

Figure 6.1: The radial part of the nuclear tensor force given in Egs. (6.2) and
(6.3) from 7 and p meson exchange at zero density and nuclear matter density
under the assumption of BRS.

6.2 Medium-modified Bonn-B potential

In Chapter 1 we have already reviewed the experiments designed to study the
properties of hadrons in medium directly. However, we suggest the possibility
that normal nuclei can give evidence — although perhaps indirect — for these
medium modifications. In particular, our present study may test the decrease
in p mass more simply.

Today there are a number of high precision NN interactions based solely
on one-boson exchange. In the present work we use the Bonn-B potential
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[68] which includes the exchange of the 7, 7, o, ag, p, and w mesons. In [84]
the consequences of BRS on the free-space NN interaction were incorporated
into the Bonn-B potential and shown to reproduce the saturation properties
of nuclear matter in a Dirac-Brueckner-Hartree-Fock calculation. The masses
of the pseudoscalar mesons were unchanged, and the vector meson masses as
well as the corresponding form factor cutoffs were decreased according to

A*

* n
=Y =—=1-0.15—. 6.4
m, My A no (6-4)

The medium-modified (MM) Bonn-B potential is unique in its microscopic
treatment of the scalar o particle as correlated 27 exchange. In [84] it was
shown that scaling the o meson as in Eq. (6.1) led to a NN interaction that was
much too attractive at large densities. This was observed in their calculations
of the binding energy of symmetric nuclear matter, which saturated at much
too high a density. To overcome this difficulty, it was suggested that the o
meson be replaced by a pair of pions coupled to a J™ = 0" state. This can
be calculated from dispersion relations together with the experimental results
from 7N and 77 phase shift data as discussed in [154]. Their model for the
pionic interaction V., is shown in Fig. 6.2. It includes the exchange of various
mesons, and is coupled to the KK interaction. From V. one can calculate
the T-matrix for 77 scattering

T7r7r - V7r7r + V7T7TG7T7TM7T7T7 (65)

where medium modifications are induced both in changes to the 27 propa-
gator M, and to the m7 interaction. The latter is altered by the scaling of
the p meson mass and form factor cutoff. The 77 interaction is then used
to calculate the NN — 7w — NN reaction. This is then related to the 27
exchange process in the NN channel through dispersion relations and crossing
symmetry. Given this model for the medium-modified NN interaction, satis-
factory results were obtained for the saturation of nuclear matter within the
Dirac-Brueckner-Hartree-Fock formalism [84].

6.3 Formalism

One traditional difficulty associated with using realistic NN interactions in
many-body perturbation theory is that the interaction for relative S states
becomes strongly repulsive at short distances. The modern solution to this
problem is to integrate out the high momentum components of the interac-
tion in such a way that the low energy physics is preserved. The details
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Figure 6.2: The 7 interaction calculated from the exchange of various mesons.
Figure reproduced from [154].

for constructing such a low momentum interaction, Vi,w_x, are described in
(15, 155]. We define Vi, _i through the T-matrix equivalence T'(p/, p, p?) =
Tow_x (P, p,p?) for (p/,p) < A, where T is given by the full-space equation
T = Vnn + VangT and Tjoy—x by the model-space (momenta < A) equation
Tow—x = Viow—k + View—x9T1ow_x. Here Vyy represents the Bonn-B NN poten-
tial and A is the decimation momentum beyond which the high-momentum
components of Vi are integrated out. Since pion production starts around
Era, >~ 300 MeV, the concept of a real NN potential is not valid beyond that
energy. Consequently, we choose A ~ 2.0 fm~! thereby retaining only the in-
formation from a given potential that is constrained by experiment. In fact for
this A, the Viow_x derived from various NN potentials are all nearly identical
[155].
We use the folded diagram formalism to reduce the full-space nuclear many-
body problem
HY, =FE,V, (6.6)

to a model space problem

Hefme = LmXm (67)
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as detailed in [17]. Here
H=Hy+V and Heg = Hy+ Ve (6.8)

where E,, = E,(A = 14) — Ey(A = 16, core), and V denotes the bare NN in-
teraction. The effective interaction V.4 is derived following closely the folded-
diagram method detailed in [123]. A main difference is that in the present work
the irreducible vertex function (Q-box) is calculated from the low-momentum
interaction Vipw_k, while in [123] from the Brueckner reaction matrix (G-
matrix). In the Q-box we include hole-hole irreducible diagrams of first- and
second-order in Vi _gas shown in Fig. 6.3. Previous studies [65, 79, 156] have

- O O

————— o ><H>< I8

Figure 6.3: Diagrams contributing to the (Q-box in our calculation of the
effective interaction V.

found that Vi, _ is suitable for perturbative calculations; in all of these ref-
erences satisfactory converged results were obtained including terms only up
to second order in Vigw—_z.

Our calculation was carried out in jj-coupling where in the basis {pl’/é,

pl_/12pg /12, pg/é} one must diagonalize

00 0
Val+10 € 0 |, (6.9)
00 2

to obtain the ground state of N (and a similar 2 x 2 matrix for C). We
used € = e(pl_/lg) - e(pg/g) = 6.3 MeV, which is the experimental excitation

energy of the first %7 state in ®N. One can transform the wavefunctions to
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LS-coupling, where the *C and N ground states are

Vi = z|'S)+y[’h)
vy = al’S1)+b|"P) +c|’Dy) (6.10)

and the Gamow-Teller matrix element Mg is given by

>~ Wyllo(k)r () i) = —V/6 (wa — yb/V3). (6.11)

k

For central and spin orbit forces only, the matrix element is equal to [151, 157]

_ S|V Sy — 61)
Mgt \/6<1+ BRIVER o) (6.12)
where €; and €, are the ground state energies of N and *C respectively. Since
S|V [3S1) > € and (®P|V [?Py) > €3, the matrix element cannot vanish
since the two terms inside the parentheses have the same sign. Therefore, with
central and spin-orbit forces only, it is not possible to achieve a zero matrix
element in a p~2 configuration. Since x and y are expected to have the same
sign [151], the GT matrix element can vanish only if a and b have the same
sign, which requires that the (35;|V.g |>D;) matrix element furnished by the
tensor force be large enough [152].

6.4 Calculation and results

In Table 6.2 we show the ground state wavefunctions of *C and N, as well
as the GT matrix element, calculated with the MM Bonn-B interaction.

n/mno x Y a b c Mear
0 0.844 | 0.537 | 0.359 | 0.168 | 0.918 | -0.615
0.25 | 0.825 | 0.564 | 0.286 | 0.196 | 0.938 | -0.422
0.5 | 0.801 | 0.599 | 0.215 | 0.224 | 0.951 | -0.233
0.75 | 0.771 | 0.637 | 0.154 | 0.250 | 0.956 | -0.065
1.0 |1 0.737 10.675 | 0.103 | 0.273 | 0.956 | 0.074

Table 6.2: The coefficients of the LS-coupled wavefunctions defined in Eq.
(6.10) and the associated GT matrix element as a function of the nuclear
density n.

In Fig. 6.4 we plot the resulting B(GT) = ﬁ\MGTP values for tran-
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sitions between the low-lying states of 4C and the N ground state for the
in-medium Bonn-B NN interaction taken at several different densities. Recent
experiments [158] have determined the GT strengths from the N ground
state to excited states of 4C and O using the charge exchange reactions
YN(d,?He)'"*C and "N (*He, t)**0, and our theoretical calculations are in good
overall agreement. The most prominent effect we find is a robust inhibition
of the ground state to ground state transition for densities in the range of
0.75 — 1.0ng. In contrast, the other transition strengths are more mildly in-
fluenced by the density dependence in BRS. In Fig. 6.5 we show the resulting
half-life of *C calculated from the MM Bonn-B potential.

0.75

o2

+

o2 |

B(GT)

Expt.

Figure 6.4: The B(GT) values for transitions from the states of “C to the
1N ground state as a function of the nuclear density and the experimental
values from [158]. Note that there are three experimental low lying 27 states
compared to two theoretical 2* states in the p~2 configuration.

The half-life goes as the inverse square of the Gamow-Teller matrix element

1 2m3 kY In2

(6.13)
T2 B mict |5 < MO0 (B)| MG >

Ty =

29
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Figure 6.5: The half-life of *C calculated using the medium-modified Bonn-B
potential.

where Ej is the end-point energy (the maximum kinetic energy of the emitted
electron) and f(Z, Ey) is the Fermi integral defined by

F(Z, Ey) = /F(Z,Ee) ( pec)Q (EO_Ee)z dpe. (6.14)

Me M2 meC

In (6.14) E. is the kinetic energy of the emitted electron, and the Fermi func-
tion F(Z, E.) accounts for changes to the electron density of final states due to
Coulomb effects from the nucleus. The Fermi integral f(Z, Ey) must be evalu-
ated numerically [159], and the dependence on Z and Ej is plotted in Fig. 6.6
taken from [159]. For the (3 decay of 1*C, we find that f(7,0.156MeV) ~ 0.006.
The small end-point energy of the decay (shown in Table 6.1) compared to
other allowed transitions in p-shell nuclei helps to suppress the transition.
However, this is not nearly sufficient to account for the observed lifetime. In
order to obtain the anomalously long half-life of 5730 years, the GT matrix
element must be Mgy >~ 2 x 1073,

The nuclear density experienced by a valence p-shell nucleon is close to
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Figure 6.6: Plot of the Fermi integral as a function of the atomic mass Z and
end-point energy Ey for both 5~ and 5% decay. Figure reproduced from [159].

that of nuclear matter, as we show in Fig. 6.7. As an estimate of the nuclear
density, we plot twice the charge distribution of N obtained from electron
scattering experiments (see [160, 161]) fit to the harmonic oscillator density
distribution )

n(r) o <1 + b%) e e (6.15)
as well as the radial part of the Op wavefunctions. The first excited 0T state
of 1N together with the ground states of *O and “C form an isospin triplet.
The splitting in energy between this state and the ground state of N is shown
in Fig. 6.8, where the experimental value is 2.31 MeV.

In summary, we have shown that by incorporating hadronic medium mod-
ifications into the Bonn-B potential the decay of *C is strongly suppressed
at densities close to that experienced by valence nucleons in **C. In a more
traditional approach such medium modifications would be built in through
phenomenological 3N forces, and we suggest that calculations with free-space
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Figure 6.7: Twice the charge distribution of N taken from [160,161] and the
fourth power of the p-shell wavefunctions.

2N interactions supplemented with 3N forces should also inhibit the GT tran-
sition.
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Chapter 7

Summary and Outlook

It is well known that the nuclear interaction in-medium is different than in
free space. One of the primary deficiencies in applying free-space NN inter-
action models to problems in dense nuclear systems is that traditionally, once
the interaction is defined in free space, all degrees of freedom responsible for
the interaction are “frozen out”. Such degrees of freedom include mesons, of
course, but also excited states of the nucleon (such as A states that account
for the intrinsic structure of nucleons). A complete theory of the nuclear force
would of course treat these degrees of freedom explicitly in a dense nuclear
system. However, this would represent a truly formidable task. Although the
traditional means for incorporating such neglected degrees of freedom is to in-
troduce three-nucleon forces, it has been our primary thesis that modifying the
masses of the exchanged mesons in one-boson-exchange interactions can pro-
vide a promising alternative framework for incorporating density dependence
into the nuclear interaction. Moreover, such an approach has the advantage
that there is a more direct connection to chiral symmetry breaking and the
dynamical generation of hadron mass.

We have demonstrated how medium-modified nuclear interactions inspired
by Brown-Rho scaling can give us an understanding of nuclear properties close
to nuclear matter density. The inability of two-body interactions alone to re-
produce the saturation energy and density of symmetric nuclear matter has
long been disappointing. However, we have found that the use of Brown-
Rho-scaled NN interactions in an all-order ring diagram summation brings
the saturation density well in line with experiment, and the binding energy
at saturation is similar to that found with the introduction of three-nucleon
forces. Extending this description to asymmetric nuclear matter, we extracted
the nuclear symmetry energy and constructed the equation of state of cold,
catalyzed neutron star matter. Some of these results were confirmed by study-
ing symmetric nuclear matter within the framework of Landau Fermi liquid
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theory. Here we found close agreement with the compression modulus and
symmetry energy found in our ring diagram calculation.

Finite nuclei present a more difficult testing ground for medium-modified
nuclear interactions. Not only do most properties of normal nuclei depend
on the valence nucleons, whose wavefunctions are spread across a region with
widely varying density, but those densities are generally too small to give rise to
much of a medium effect. We suggest that an exception is the **C dating beta
decay. Not only do the valence nucleons sample a large nuclear density, but this
decay is particularly sensitive to the nuclear tensor force, which unambiguously
decreases in Brown-Rho scaling. Our results are in very good agreement with
the experimental lifetime, and thus in-medium nuclear interactions may be a
significant part of the complete solution to this long-standing problem.

We look forward to continuing the study of medium-modified nuclear in-
teractions and their applications to problems in nuclear structure. It is true
that realistic NN potential models are finely tuned to free-space data and that
variations in the implementation of BRS will have important consequences for
the results of calculations. Therefore, we have chosen in these studies to focus
on results which we believe are model-independent. That is, even if future
theoretical and experimental work give us new information about the scaling
of hadron mass in medium, as long as the findings are qualitatively similar to
the models we have used, then we expect our main conclusions to be sound.
It is our hope that this work stimulates additional interest in this promising
new field.
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Appendix A

Alternative Perspectives on
Brown-Rho Scaling

Since 1991 when Brown-Rho scaling was originally introduced, new insights
into the justification and implementation of the theory have been developed.
In this appendix we first summarize the Hidden Local Symmetry theory that
aims to describe hadronic physics up to the chiral phase transition. Dropping
vector meson masses arise naturally within the framework of HLS, which is
now considered to be the formal basis for Brown-Rho scaling. Following this
discussion we consider different ways to implement BRS in studies of nuclear
structure. We distinguish between the chiral Fermi liquid approach used by
other authors and the microscopic approach we have developed in previous
chapters.

A.1 Hidden local symmetry

In addressing how light-quark vector mesons behave in hot and/or dense mat-
ter using effective field theories, there are three essential requirements: (1) the
vector mesons have to be explicit degrees of freedom, (2) although the vector
mesons are much heavier than the 7 in free space, one should be able to treat
systematically and consistently vector mesons whose masses decrease toward
m, at some temperature 7" and density n, and (3) the effective theory should
be matched to QCD at some large scale in order to make the connection to
the fundamental theory. The only effective theory that incorporates all of
these three ingredients is the hidden local symmetry theory of Harada and
Yamawaki (HLS) [39]. The first point is obvious and taken into account by
everyone addressing the problem. Point (2) is made feasible by introducing
the vector mesons as local gauge fields. Without exploiting local gauge invari-
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ance, it is difficult to handle vanishing vector meson masses. The last point
is required so that the gauged chiral Lagrangian flows to QCD as the scale
is raised. Otherwise, the gauge theory can wind up giving results that have
nothing to do with QCD when the temperature reaches the critical value. All
of these points are clearly stated and demonstrated in the Harada-Yamawaki
(HY) work. We note that most of the phenomenological chiral Lagrangians
used by other workers lack the requirements (2) and (3).

The HLS is an effective field theory based on the gauge equivalence of the
SU(Nyf),® SU(N¢)r/SU(N¢)y nonlinear sigma model and the corresponding
linear theory with [SU(N¢) ® SU(N¢)r]giobal @ [SU(N¢)v |iocal Symmetry. The
gauge fields generated by the local SU(Ny)y symmetry are identified with the
p meson and its flavor partners, which acquire a mass through the sponta-
neous breaking of the hidden local symmetry via the Higgs mechanism. Since
the theory is based on the nonlinear chiral Lagrangian, which is known to be
nonrenormalizable in more than two dimensions, the HLS theory breaks down
and needs to be matched to the fundamental renormalizable theory QCD at
the appropriate scale A, ~ 4w f; ~ 1.1 GeV. This is accomplished via Wilso-
nian matching of the two-point correlation functions in HLS to those given
by the operator product expansion (OPE) in QCD. The important aspect of
the Harada-Yamawaki approach is the inclusion of quadratic divergences (in
addition to the usual logarithmic divergences) in the loop corrections to the
two-point functions. When the HLS correlation functions are matched to the
OPE, the bare parameters at the given scale in the HLS Lagrangian can be
determined uniquely.

For definiteness, we consider 2-flavor HLS theory with the U(2) gauge fields
V., = (py,w,). HY’s HLS Lagrangian at the chiral order O(p?) in the chiral
limit has three parameters, the gauge coupling ¢ and the two decay constants
F,. and F, that figure in the chiral field U with coordinates in the coset space
G/H (to which G X Hj,eq is gauge equivalent)?!

2im

U=cer =£lép (A1)

fL,R _ eia/Fae$iﬂ'/F7r ’ [71' — WaTa/Z’ o= O’aTa/Q] : (AQ)

where 7 denote the Nambu-Goldstone (NG) bosons associated with the spon-
taneous breaking of GG chiral symmetry and ¢ denote the NG bosons associated
with the spontaneous breaking of the local Hj,.,; symmetry. At the next chiral
order, there are many terms that we don’t need to write down here. They are

!The gauge symmetry defined in this way is a hidden symmetry but it can be more
properly considered as an “emergent gauge symmetry” as described in [162].
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taken into account in [39].

As shown in [39], HY’s HLS Lagrangian is amenable to a systematic chiral
perturbation theory with the vector meson mass considered on the same foot-
ing as the pion mass in the chiral counting. One-loop renormalization-group
analysis reveals a variety of fixed points, including a fixed line in the parame-
ters (g, Fir, F;). Matching to QCD at a given matching point Ay, in terms of
the vector and axial vector current correlators and requiring that the vector
correlator equal the axial correlator when the quark condensate vanishes, i.e.
(Ggq) — 0, picks one particular fixed point called the “vector manifestation
(VM)” fixed point?

(g",a%) = (0,1) (A3)

where a = (F,/F,)?. The important finding in this HLS theory is that a
hadronic system in heat bath is driven to this fixed point when tempera-
ture approaches the chiral restoration temperature 7, (and also when density
reaches its critical density n.)?. Note that the parametric pion decay constant
F; does not figure in (A.3). This is because it does not possess anything spe-
cial at any temperature. However at the pion on-shell, it is canceled at 7. by
thermal loop corrections so that the physical pion decay constant f? vanishes
at the critical point as required by QCD. We now discuss these points in more
detail.

The tree level contributions to the two-point functions of the background

fields A, (axial vector field), V, (vector field), and V,, (HLS gauge boson field)

2This fixed point was established at one loop order but it is not difficult to convince
oneself that this fixed point is unaffected by higher-order graphs. There are several ways to
see this. The simplest is the following. Although higher-loop calculations are not available,
it has been proven by Harada, Kugo and Yamawaki [163] that the tree-order low-energy
theorems remain rigorously valid to all orders. In particular the dimension-2 operators in
the effective action remain the same to all orders. This means that the crucial relation in
HLS, i.e., m2 = af2g?, holds to all orders. The mass, therefore, goes to zero as g goes to
zero. Now the matching condition at the matching scale A says that g = 0 when (gq) =0
and since g = 0 is a fixed point of the RGE for g at any order (higher loops bring in higher
powers in ¢ in the beta function), it will flow to zero at the point where the condensate
vanishes. One can also see that a = 1 + O(g*") near (gq) = 0 where n is the number of
loops, so near T, the correction to 1 is small and at T,., a = 1. Therefore we have the VM
fixed point intact.

3Here and in what follows, unless stated otherwise, statements made for temperature
will apply equally to density.

111



are given by

Hgize)u’/(p) = Fg,bareguy + 22’27bare(gw/p2 - pﬂp’/>
Hg;ee)ul/(p) = Fcibareguy + 2217bare(gm/p2 - pupl/)

ree 4 v 1 v v
Hgf/ )z (p) = Fibaregﬂ + 2_(gu p2 _pup ) (A.4)

bare
Loop contributions introduce divergences that are renormalized by the bare
parameters in Eq. (A.4). In particular, one can show that the divergent parts
of the one-loop corrections are given by

v N
@y = —g" 4(4—7];)2[2(2—11)/\2+3a292F73 InA?]
Nt a
—(g"p* = p'p") (47:)25 InA?, (A.5)
Ky pv Nf 2\ A2 2 172 2
va;(p”div = —g W[(l—i—a JA® + 3ag”F- InA7]
Ny a®> —4a+5
(P2 o HyV f 1A2 A
(g"p 1?19)(47T)2 54 nA®, (A.6)
ny v Nf 2\ A2 2 12 2
ey = —g W[(l—l-a YJA” + 3ag”F- InA7]
Ny 87 —a?
(V2 _ oy f 1A2 A
(g"p pp)2(4ﬂ)2 5 (A7)

where A is the cut-off. In the following discussion we will be interested in the
renormalization of the three bare parameters F pare, Fi bare; and gpare, Which
is accomplished by requiring the following to be finite

Fowe ~ )2 [2(2 — a)A? + 3a®g*F? InA?] = (finite) (A.8)

N
F2 e — 4(47J;>2 (1 4+ a®)A? + 3ag>F2 InA?] = (finite) (A.9)

1 Nf 87 — CL2
ggare 2(47T)2 12
With p traded for A in the manner described in [39], Egs. (A.8)-(A.10) yield

InA? = (finite). (A.10)

112



LN p LGN p / A
/ N e / N e | \
/
A\ /\/\/\[/ AVAVAN ) W\b/ \ y P
a by a — ~ -

A“ A A“ h ~ < / A, /\/\/\K/\/\/\/
o« Aa T
p(f; g AH “’41/

(a) b) (c)

—

Figure A.1: One loop corrections to the axial vector-axial vector correlation
function.

the renormalization group equations for F}., F,, and g defined at the scale u:

dF? N
w o 2(4;)2 [3a*¢*F? +2(2 — a)p?] (A.11)
dF? N
de —Nf 87 — CL2 4
Defining a = F?/F?, we obtain the RGE
da —N
it (4752 (a —1)[3a(a + 1)g? + (a® + 1)12). (A.14)

From egs. (A.13) and (A.14) we see that the RG fixed points are g = 0 and
a = 1. At these points, the longitudinal components of the p join the pions.
This is why they are called the vector manifestation (VM) fixed points. Since
MZ(A) = g>(A)FZ(A)a(A), where F, is the parametric parameter, substan-
tially larger than the on-shell f., M, — 0 at the fixed point. Let us now
consider the RG equation for F, at the VM fixed point. There are three
one-loop diagrams that contribute divergences to the axial vector two-point
function shown in Fig. A.1. The divergent parts of these three diagrams are
given by
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uv v aMP2 2
(a) Hj_[\(p)ldiv = —g" Ny In A

(47)?
(b) p)las = —g"Ny5 (;)2 [2A% = M? In A7)
—(g"p* = "p")N fﬁ In A*
O W@l = #N A

(A.15)

The nonlinear sigma model has only the 7 loop in Fig. A.1(c). Then from

(A.15) we see that

1-loo v v
" Dlaw = —¢" 7555

Renormalization is done by

[FIO(A)])” = Ny = (finite)

™

which gives

Integrating from p = 0 one finds
A2
F™(A)]? = [E(0)]* = N
[w()} [w()] f(47r)2

so the maximum scale that can be reached is

_4AnE(A)

V/Ny

A

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

For N = 2, Apax = 22 ~ 700 MeV after taking F™ ~ 90 MeV, which

is needed to satisfy the KFSR relation

M? = 2g3 F2.

(A.21)

But this A,.x is only the magnitude of the cutoff typically used in Nambu-
Jona-Lasinio models [164] and not large enough to accommodate the on-shell

mass of the p-meson.

Now at M? going up in scale, A* > M?2, F2(0) begins to scale more slowly.
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(Remember that F is the parametric pion decay constant, with a very different
behavior with A than the physical decay constant f;.) In order to understand
this we go to the relevant parts of the loop corrections in Figs. A.1(b) and
(c). (We need not consider Fig. A.1(a) or the logarithmically divergent part of
(b) because they are both proportional to M 3 which goes to zero at the fixed
point.)

v v a 2
y s @—1
(c) WiP)aw = g Ny ( 4W)2A2 (A.22)

If we are in HLS, a = 2 at A = m, because KFSR m? = afZg; and f, ~
90 MeV. The relevant part of Hfgif”(pﬂdiv, aN;A?/2(47)?, takes over with
increasing scale from the (a — 1)N;A?/2(47)? of Hfﬂf”(pﬂdiv as a goes to its
fixed point @ = 1 with increasing A. This has the effect of increasing the
maximum A of Eq. (A.20) to

2
Amae = 47 | N ) (A.23)

Thus, for Ny = 2 which we are interested in, we are back to Ayax = 4TF(A).
Now the usual chiral symmetry breaking scale is 47 f, ~ 1 GeV, where f, is
the physical pion decay constant. From Table 13 in [39] we note that F,(A)
for A = 1—1.2 GeV is about 50% larger than the physical f; ~ 90 MeV. Thus,
the Wilsonian matching is easily carried out at T, where A will be 4x f.

We thus see that the Nambu-Jona-Lasinio theory, which deals with con-
stituent quarks, and where A can be brought up to 47 F\™ (A)/ /Ny, can be
extended by introducing the p-meson in the vector manifestation of Harada
and Yamawaki to a matching scale of 47 F,(A) for two flavors. In fact, the
scaling of the chiral symmetry breaking near the maximum value is run by
the Higgs-type Fig. A.1(b), where the scalar particle, the would-be Goldstone
boson, is in fact “eaten” by the p-meson to give it its mass. The Harada-
Yamawaki theory is, therefore, consistent, in that one needs to introduce the
p-meson into it in order to accommodate the p-meson.

The HLS Lagrangian matched to QCD defines a bare Lagrangian defined
at the scale u = Ay, with the bare parameters intrinsically dependent on the
background, e.g. temperature, tagged to the QCD condensates (gq), (wa)
etc. which “slide” with temperature. We call this “IBD” for intrinsic back-
ground dependence. Given the bare Lagrangian with IBD, the theory is well
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defined, so in principle, quantum calculations for physical quantities can be
done systematically by RGE and thermal (or dense) loop corrections. Now
because of the fixed point (A.3), the parametric vector mass which runs with
the scale p and the background as

M3, T) = g* (11, T)F2(11, T) = alp, T)g* (1, T) F2 (1, T) (A.24)
goes to zero when (Gq) (or T — T,) goes zero, i.e.,
M (, T) ~ g*(1, T) o< (gq)* — 0. (A.25)

This means that in-medium “on-shell”, not only the parametric mass M, but
also the physical (pole) mass m, goes to zero as T' — T,
my o g*(m,, T) o (qg)* — 0. (A.26)

This relation provides a justification for Brown-Rho scaling as we explain
below.

A.2 Brown-Rho scaling updated

Presently available lattice and experimental data allow us to write a refined
and more precise Brown-Rho scaling that should supersede the old version
of 1991. The updated relation comes about since whereas HLS/VM makes
an extremely simple description of hot/dense matter very near the VM fixed
point, the situation is a lot more complex away from the fixed point as pointed
out in [165, 166]. Near the VM fixed point, everything is controlled by the
gauge coupling which is proportional to the quark condensate. Thus the mass
of the vector meson goes like

(A.27)

~N T N T~

where M, and m, are, respectively, the parametric and pole masses. In order
to see where this scaling sets in, we resort to lattice information which is
available in temperature. The useful information comes from the unquenched
lattice data of Miller [167] on the gluon condensate in heat bath, which we
show in Fig. A.2. As explained in [168] (where previous references are given),
we can approximately separate the gluon condensate into two components

(GP)r = (G2 + (G (4.28)
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Figure A.2: The lines show the gluon condensates for SU(3) (solid) and the
ideal gluon gas (broken) in comparison with that of the light dynamical quarks
denoted by the open circles and the heavier ones with filled squares. The error
bars are included when significant.
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where the subscript “soft” and “hard” denote the scale of the condensate. It
has been suggested [168] that the “hard” component that remains condensed
as one goes up across the critical temperature T, be associated with an explicit
breaking of scale invariance caused by the trace anomaly of QCD and the “soft”
component that starts melting at 7" ~ 120 MeV be linked to a spontaneous
breaking of scale invariance. It has been postulated that the soft component
is associated with what generates hadron masses and hence the spontaneous
breaking of chiral symmetry. Now from this lattice result, we obtain the
following simplified picture: The gauge coupling g remains constant from 7" =
0 to T ~ 120 MeV and then drops steeply, going to zero at T, ~ 200 MeV.
For the reason that will be clarified below, we call the temperature at which
the soft glue starts melting “flash temperature” T4,

The situation with density is much less clear since there is neither lattice
nor experiment to guide us. However we can make a parallel argument based on
our understanding of nuclear physics. As in temperature, we assume that the
soft glue is associated with the behavior of the dynamical mass as a function of
density. Up to nuclear matter density ng, the gauge coupling is known to stay
more or less constant. It is possible that it stays constant to a larger density,
so we assume the density above which the g starts dropping (proportionally to
the quark condensate), to be the “flash density” nfiqsn > no. Where precisely
this happens is not known, but a reasonable guess is that

Nflash ~ 2Ng. (A.29)

Now in both temperature and density, the parameter a remains constant
(= 2 in nature) up to the flash point and from then drops to 1 as the VM point
is reached. As noted, it is suggestive from the consideration of skyrmion-half-
skyrmion transition [169] that a drops to 1 much faster in dense matter than
in hot matter. This observation was used in arriving at the strong suppression
of dilepton production in dense/hot matter. As for the mass scaling, the
prediction is

M* f*

Yo SN < Nyyashs A.30
M, fr Jlash ( )
M; my gt (qq)*

v P N> Ny A.31
M, my, g (qq) flash (4-31)

where N = T or n. Below the flash point, particularly in the case of density,
due to thermal/dense loop corrections, the pole mass scales in a complicated
way as explained in [165, 166], so it cannot be simply related to the parameters
of the Lagrangian. This is why (A.30) does not involve pole mass. Beyond
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the flash point, the scaling becomes simpler and more predictive vis-a-vis with
chiral symmetry property, as indicated in (A.31). Equations (A.30) and (A.31)
are the modernized version of Brown-Rho scaling backed by HLS/VM theory.
The strong-coupling lattice calculation at the leading order in 1/¢? gives for
n. > n > 0 in dense matter [170]

My o omy f7
M, my  fr

(A.32)

It remains to be seen whether 1/¢? and 1/d (where d is the number of dimen-
sions (= 2)) corrections lead this result to the form (A.31).

It should be stressed that while the scaling (A.31) gets a support from
HLS/VM theory, (A.30) is yet to be established. Furthermore the numerical
values for Ny,e, — in particular that in density — quoted above are no more
than a guess and yet to be determined in the theory.

By parametric scaling we refer to the scaling of the parameters Fj, etc.
which enter into the chiral Lagrangian. One must then take this Lagrangian
and calculate thermal or dense loops, which will somewhat change the medium
dependence. A point which is generally unappreciated in the heavy-ion theory
community is that in a heat bath even at low temperatures the (second) loop
corrections are mandatory for consistency with the symmetry of QCD. In fact,
in the combination of parametric and loop terms, the pole mass of the vector
meson increases proportional to 7% near zero temperature with no 7?2 term
present as required by the low-energy theorem [171]. As the temperature of
chiral restoration 7T} gr is approached, both the bare mass term and the loop
corrections go to zero as (gq) — 0. In this case the pole mass does directly
reflect on chiral structure as does Brown-Rho scaling. Only in the vicinity of
T, does BR scaling manifest itself transparently in the pole mass of the vector
meson in a heat bath.

Evaluation of ¢/ f. with Egs. (1.25) & (1.26) gives a 20% drop in this
quantity by nuclear matter density ng. This agrees with the value extracted
at tree order from pionic atoms [172]. The same decrease is implied by Brown-
Rho scaling for m7. However, the dense loop enters also here and, although
small, will increase the mass a few MeV. Thus, the decrease of ~ 15% in my
by nuclear matter density seems reasonable.

Harada and Yamawaki find that m} scales linearly with (gq) as m} —
0 at the fixed point of chiral symmetry restoration. In fact, although the
comparison with lattice results on the entropy is relatively crude in Koch and
Brown [46], it is seen that with temperature the scaling of the masses may
begin less rapidly than the scaling with (Gg)*, but that it quickly becomes as
rapid. Brown and Rho [173] found that up to nuclear matter density ng, g did
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not scale, but slightly above ng the ratio g*/ my was roughly constant. The
ratio is constant going toward the fixed point of Harada and Yamawaki. Thus
we believe that the decrease of m} as \/ (G@q)* goes only up to n ~ ny and that
it then scales linearly with (gg)*. If it decreases ~ 20% in going from n = 0
to ng, it will then increase ~ 2v/2 in going from ng to 2ng, and my will go to
zero at n ~ 4ng, the scalar density at chiral restoration. From this estimate
we believe

nysr ~ 4ng. (A.33)

Given the Walecka mean field theory [174] and the study of the density and
temperature dependence of a system of constituent quarks in the Nambu-Jona-
Lasinio theory [175], Brown-Rho scaling appeared quite natural, at least the
scaling with density, even a long time before its acceptance (it is not universally
accepted even now, although it has come to life rather quickly after each of its
many reported deaths).

The Walecka theory showed that the nucleon effective mass decreased with
density. Perhaps most convincing of the arguments in its favor was that the
spin-orbit term, which depends on (m%)~2 was increased enough to fit ex-
periment. The usual nonrelativistic theories were typically a factor of 2 too
low in spin-orbit interaction at that time. What could be more natural than
as a nucleon dissolves into its constituents, the masses mg, of the constituent
quarks decreases at the same rate as the nucleon mass my in Walecka theory?
In fact, this is what happens in the Harada-Yamawaki theory, although it does
not contain nucleons (the effect of fermions was studied in [176] by introduc-
ing constituent quarks). Once the density is high enough so that constituent
quarks become the relevant variables, we should go over to a quark description,
as described above and as Bernard et al. [175] did. Then the constituent quark
mass will change with increasing density, going to zero the way the constituent
quark went over to a current quark as the temperature increased from 7' = 125
MeV to 175 MeV (7.(unquenched)). Since at zero density nucleons are the
relevant variables, it will take some time in adding nucleons in positive energy
states before these cancel enough of the condensate of nucleons in negative
energy states so that they can go over into loosely bound constituent quarks.
In fact, with a cutoff of A = 700 MeV, close to what we use, Bernard et al.
[175] found that in the chiral limit the quark mass went to zero at 2nq.

A.2.1 Landau Fermi-liquid fixed point and Brown-Rho
scaling

The meaning of Brown-Rho scaling has often been misinterpreted in the liter-
ature for processes probing densities in the vicinity of nuclear matter density,
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most recently in connection with the NA60 dilepton data. We wish to clarify
the situation by emphasizing the intricacy involved in what the scaling relation
represents in the strong interactions that take place in many-nucleon systems.
This aspect has been discussed in several previous publications by two of the
authors (GEB and MR), but it is perhaps not superfluous to do so once more in
view of certain recent developments. What we would like to discuss here is the
connection between the Brown-Rho scaling factor ®(n) (to be defined below)
and the Landau parameter F; which figures in quasiparticle interactions in
Fermi liquid theory of nuclear matter. This discussion illustrates clearly that
Brown-Rho scaling cannot simply be taken to be only the mass scaling as a
function of density and/or temperature as is often done in the field. What this
illustrates is that the ®, related in an intricate way to a quasiparticle interac-
tion parameter in Landau Fermi-liquid theory of nuclear matter, incorporates
not just the “intrinsic density dependence” (IDD in short) associated with
Wilsonian matching to QCD, a crucial element of HLS/VM, but also some of
what is conventionally considered as many-body interactions near the Fermi
surface associated with the Fermi liquid fixed point. It clearly shows that it
is dangerous to naively or blindly apply Brown-Rho scaling to such heavy-ion
processes as low-mass dileptons where the density probed is not much higher
than nuclear matter density, as was done by several workers in QM2005.

Chiral Fermi liquid field theory (CFLFT)

It was argued by Brown and Rho in [56] (where previous references are given)
that addressing nuclear matter from the point of view of effective field the-
ory involves “double decimation” in the renormalization-group sense. The
first involves going from a chiral scale or the matching scale Ay, with “bare
Larangian” to the Fermi surface scale Apg (which will be identified later with
Ajow—r). How this could be achieved was discussed in a general context by
Lynn some years ago [177] who made the conjecture that the Fermi surface
could arise from effective field theories as chiral liquid soliton. For the mo-
ment, we will simply assume that such a chiral liquid can be obtained. To
proceed from there, we exploit three observations (or, perhaps more appropri-
ately, conjectures). First we learn from the work of Shankar [178] that given
an effective Lagrangian built around the Fermi surface, decimating fluctua-
tions toward the Fermi surface leads to the “Fermi liquid fixed point” with the
quasiparticle mass m* and quasiparticle interactions F' being the fixed point
parameters. We next learn from Matsui’s argument [179] that Walecka mean
field theory is equivalent to Landau Fermi liquid theory. The third obser-
vation is that Walecka mean-field theory can be obtained in the mean field
of an effective chiral Lagrangian in which (vector and scalar) massive degrees
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of freedom are present, or equivalently, an effective chiral Lagrangian with
higher-dimension operators (such as four-Fermi operators) [180-182]. Friman
and Rho [117] combined the above three to write an effective chiral Lagrangian
endowed with Brown-Rho scaling that in mean field gives Landau Fermi-liquid
theory at the fixed point that is consistent with chiral symmetry. We call this
“chiral Fermi liquid field theory (CFLFT)” to distinguish it from the micro-
scopic theory we have been employing in previous chapters.

As reviewed in [56], there are two classes of effective Lagrangians that
should in principle yield the same results in the mean field. One is closely
related to a generalized HLS (GHLS) theory where a scalar and nucleons are
added to vector mesons. Restricted to symmetric nuclear matter, it has the
simple form

ﬁ[[ = ]\_f(i’yu(ﬁ“—i-ig:w“)—M*—l—h*U)N

1 1 m*2 m*2
—ZFiy—l-E(auU)z—l-Twa—TUJ2+"' (A34)

where the ellipsis denotes higher-dimension operators and the star refers to
“parametric density dependence” that emerges from a Wilsonian matching to
QCD of the type described by Harada and Yamawaki [39]. We have left out
(pseudo)Goldstone fields and isovector and strange vector meson fields which
do not contribute at mean field level. Note that contrary to its appearance,
(A.34) is actually consistent with chiral symmetry since here both the w and o
fields are chiral singlets. In fact, the o here has nothing to do with the chiral
fourth-component scalar field of the linear sigma model except perhaps near
the chiral phase transition density where “mended symmetry” may intervene;
it is a “dilaton” connected with the trace anomaly of QCD.

An alternative Lagrangian which is in a standard chiral symmetric form
involves only the pion and nucleon fields which may be considered as arising
when the heavy mesons — both scalar and vector mesons — are integrated out:

L = Nlin, (0" +iv" + giysat) — M*IN — X:CZ‘(ZVR-N)2 +--- (A.35)

where the ellipsis stands for higher dimension and/or higher derivative opera-
tors and the I';’s are Dirac and flavor matrices as well as derivatives consistent
with chiral symmetry. Here we reinstated the pionic vector and axial vector
fields v, and a, respectively, since the pion contributes (through exchange)
to the Landau parameters. We will go back and forth between the two La-
grangians in our discussion.
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Leaving out the details which can be found in [56, 119], we summarize
the essential features in what is obtained for nuclear matter. In calculating
nuclear matter properties with our effective action, the first thing to do is
to determine how the nucleon and meson masses scale near nuclear matter
saturation density. This cannot be gotten by theory, so we need empirical
information. This can be done by looking at the response of nuclear matter to
external fields, i.e., the photon. This was first done in [117, 183] using (A.35)
in which the isovector anomalous nuclear orbital gyromagnetic ratio d¢g; was
expressed in terms of Brown-Rho scaling plus contributions from the pion to
the Landau parameter F;*

4 1~
b1 = 071 —1— ZF7), (A.36)
9 2
where FT is the pionic contribution to the Landau parameter Fy — which is
precisely calculable for any density thanks to chiral symmetry — and

B(n) = M), (A.37)

which is referred to as the “Brown-Rho scaling factor.” Here the subscript
M stands for the mesons M = o, p,w. The isovector gyromagnetic ratio dg;
is measured experimentally. The most precise value comes from giant dipole
resonances in heavy nuclei [114]: dg; = 0.23 £ 0.03. With %F{T = —0.153 at
nuclear matter density ng, we get from (A.36),

®(ng) = 0.78, (A.38)
which is consistent with the value obtained in deeply bound pionic atoms [184]

fx(no)
fr

We should stress that this is a value appropriate for normal nuclear matter
density which should be reliable near the Fermi liquid fixed point. For de-
scribing nuclear matter properties, we need to know how it varies near nuclear
matter equilibrium density. A convenient parametrization is

~ 0.80. (A.39)

1
~ 1+yn/ng

o(n) (A.40)

4This relation is valid up to near nuclear matter density, that is, near the Fermi-liquid
fixed point and may not be extended to much higher densities.
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with y = 0.28.
The Landau effective mass of the quasiparticle at the fixed point is given
by

my(n)/my = (cb—l - %F{) B : (A.41)

which at the equilibrium density predicts
my(no)/my = 0.67. (A.42)

Note that the nucleon mass scales slightly faster than meson masses. This was
noted in [45] in terms of the scaling of g4 in medium.

We now look at other properties of nuclear matter with (A.34). Our con-
struction of chiral Fermi liquid theory instructs us to treat the Lagrangian in
mean field with the mass and coupling parameters subject to the Brown-Rho
scaling. With the standard free-space values for the w and p mesons and the
scalar meson mass m, ~ 700 MeV?®, the properties of nuclear matter come out
to be [118, 119]

B =16.1MeV, kp =258 MeV, K =259 MeV, m}/my =0.67 (A.43)

where B is the binding energy, kr the equilibrium Fermi momentum and K
the compression modulus. The values (A.43) should be compared with the
standard “empirical values” [185]

B = 16.0+£0.1 MeV, kp =256=+2 MeV, (A.44)
K = 250450 MeV, my/my = 0.61 £ 0.03.

The predicted results (A.43) are in a good agreement with empirical values.
Given the extreme simplicity of the theory, it is rather surprising.

We should remark that what makes the theory particularly sensible is that
it is thermodynamically consistent in the sense that both energy and momen-
tum are conserved [119, 186]. This is a nontrivial feat. In fact, it has been a
major difficulty for nuclear matter models based on Lagragians with density-
dependent parameters to preserve the energy-momentum conservation. In the
present theory, this is achieved by incorporating a chiral invariant form for the
density operator.

®Not to be confused with the Goldstone boson ¢ in HLS theory. Here it is a chiral singlet
effective field of scalar quantum number that figures in Walecka-type mean-field theory.
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Brown-Rho scaling and microscopic calculation of the Landau pa-
rameters

In the CFLFT description given above, we relied on three observations — the
validity of which are yet to be confirmed — on the connection between an
effective chiral action (or an effective chiral Lagrangian in mean field) and
Landau’s Fermi liquid fixed point theory, in particular with one of the fixed
point parameters mapped to Brown-Rho scaling at the corresponding density.
In previous chapters we have used a microscopic approach that combines the
two decimations subsumed in the CFLEFT approach [118]. Our approach starts
with phenomenological potentials fit to scattering data up to a momentum
Axyn ~ 2.1 fm~!. To understand this result, we can recast the argument in
terms of the HLS theory. There is no such potential built from HLS Lagrangian
in the literature. However we expect, based on the work of Bogner et al. [58],
the resulting driving potential Vj,,,_; to be qualitatively the same for the HLS
and phenomenological models for low-energy processes. This, we suggest, is
essentially the manifestation of the power of what is called “more effective
effective theory” explained in [56].

Let us imagine that we have a generalized hidden local symmetry (GHLS)
theory that contains a complete set of relevant degrees of freedom for nu-
clear matter, say, 7, p, w, a1, o, etc., matched to QCD at a matching scale
Ajps. There are no explicit baryon degrees of freedom in this theory. However
baryons must emerge as skyrmions. Since no description of nuclear dynamics
starting from a GHLS exists — and we see no reason why it cannot be done
— one can alternatively introduce baryon fields as matter fields and couple
them in a hidden local symmetric way. This is what one does in standard
chiral perturbation theory with global chiral symmetry with pions and nucle-
ons as the only explicit degrees of freedom. The “bare” Lagrangian obtained
by Wilsonian matching will carry such parameters as masses and coupling
constants endowed with an “intrinsic” background (temperature or density)
dependence. These are the quantities that track the properties of the quark
and gluon condensates in medium, and hence Brown-Rho scaling.

Given the “bare” Lagrangian so determined, one can then proceed in three
steps:

1. First one constructs NN potentials in chiral perturbation theory with the
vector mesons treated a la Harada and Yamawaki [39] — here hidden local
symmetry plays a crucial role even at zero density as emphasized in [39)].
The chiral perturbation procedure is as well formulated in HLS theory
as in the standard approach without the vector degrees of freedom.

2. Next one performs a (Wilsonian) renormalization-group decimation to
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the “low-k scale”® Apw_r ~ 2 fm™' ~ Ayn to obtain the Vipw_r. As
stated, we expect the result for V,,_; to be basically the same as that
obtained in [58, 74, 99] for the T-matrix for NN scattering for which
matter density is low. However it will differ in medium due to the in-
trinsic background dependence which is missing in [74, 99]. This step
will correctly implement the first decimation of [56] not only in free-space
but also in dense medium. The intrinsic dependence incorporated at this
stage is missing in all works found in the literature.

3. Finally one feeds the Vj,,,_ so determined into the Backman, Brown and
Niskanen nonlinear equation (their equation (5.3)) [105], which resulted
from the truncation of the Babu-Brown [66] equation in the sum over
Fermi Liquid parameters to [ = 0 and 1, and solves it by iteration.
(For a Green’s function formalism for Landau Fermi liquid theory, see
[108].) The Babu-Brown equation introduces the induced interaction
into dynamical calculations involving Fermi liquid theory and has its
own renormalization group treatment [74, 99] which has very successfully
been carried out for neutron matter.

These procedures will lead to the Landau parameters given as the sum of a
“driving term” and an “induced term.” Given the Landau quasiparticle in-
teractions so determined, the standard Fermi liquid arguments are then ap-
plied to computing the energy density, Landau effective mass, compression
modulus, etc. that describe nuclear matter. Now had the above three-step
procedure been followed with HLS, the theory would have Brown-Rho scaling
automatically incorporated. However since we take, for step 1, phenomeno-
logical potentials in which the intrinsic density dependence (IDD) required by
matching to QCD is missing, they need to implement the IDD by hand. They
find that without IDD, the known properties of nuclear matter compression
modulus, etc. cannot be reproduced correctly. To incorporate Brown-Rho
scaling into the potential we employ, e.g., the Bonn one-boson-exchange po-
tential, we introduce o-tadpole self-energy corrections to the masses of the
nucleons and exchanged bosons. Although this procedure may lack the consis-
tency achieved through Wilsonian matching, it should however be equivalent
to Brown-Rho scaling in its simplest form. With the Brown-Rho scaling suit-
ably implemented, our results come out to be quite satisfactory.

There are several observations one can make from this result. 1) One
can think of this as a confirmation of the soundness of the double decima-
tion procedure. 2) Both our microscopic approach and the effective theory
approach [118] — which complement each other — indicate the importance of

5Tn this scheme, this “low-k scale” corresponds to A g introduced above.

126



Brown-Rho scaling in the structure of nuclear matter. 3) There must be a
relation — most likely quite complicated — between ® and the microscopic po-
tential Vi, valid at nuclear matter density. We believe this relation to result
from the scale invariance in nuclear phenomena which results when pion ex-
change is unimportant in nuclear phenomena, as reviewed in Brown and Rho
[56]. There are very few places in nuclear spectra where the pion plays the
main role”. For instance, it does not play much of a role in the polarization
phenomena reviewed by Brown and Rho [56], so they come out to be in some
sense “scale invariant” for low densities. The pion is, of course, protected from
mass change by chiral invariance, and, therefore, does not participate in this
“scale invariance.” However, in the second-order tensor interaction which is
of primary importance for the saturation of nuclear matter, the = and p play
counterpoint; they enter incoherently, their coupling having opposite sign. The
dropping of the p-mass in Brown-Rho scaling therefore cuts down the tensor
interaction greatly, running up the compression modulus substantially. In the
usual calculations which do not employ the intrinsic (in-medium) dependence
of the masses on density, this effect is included empirically as a three-body in-
teraction. This seems to be the only place in nuclear spectra where Brown-Rho
scaling seems to be really needed explicitly in the nuclear many-body problem.
Nuclear physicists have, however, lived with a substantial spread in effective
masses — which cannot be measured directly in nuclear physics — for years,
so what we consider as an improvement in mj}; is not universally accepted.
This reflects again on an intricate interplay between Brown-Rho scaling and
many-body interactions.

As a final remark in this subsection, let us return to the implications of
the manifestation of chiral symmetry in dense (or hot) medium. It is clear
that the connection between Brown-Rho scaling and many-body interactions
is highly intricate, particularly near nuclear matter density, and needs to be
carefully assessed case by case. As we learned from HLS with the vector man-
ifestation fixed point, Brown-Rho scaling can serve as a clean-cut litmus for
chiral restoration — a matter of intense current interest in heavy ion physics —
only near the critical point. Only very close to the critical point is the scaling
factor @ directly locked to the chiral order parameter (Gq)*. Far away from
that point, particularly near normal nuclear matter density, the connection,
strongly infested with many-body interactions, can be tenuous at best. To the
extent that the dileptons in NA60 as well as in CERES, for instance, do not
selectively sample the state of matter near the chiral transition point, infor-

"One should, however, note that this is not the case in nuclear response functions, namely
in nuclear matrix elements of electroweak currents. It is known that in certain transition
matrix elements, such as in M1 transitions and axial charge transitions, soft-pions play an
extremely important role. This is referred to as “chiral filter mechanism [187].”
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mation on the order parameter cannot be extracted cleanly from the measured
spectral function.
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