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Abstract of the Dissertation

Evolution of the One-Quadrupole Phonon
Mixed-Symmetry State in the A = 140 Mass

Region

by

Tan Ahn

Doctor of Philosophy

in

Physics

Stony Brook University

2008

Collective excitations are a common phenomena in atomic nuclei.
These excitations arise from the coherent movement of many par-
ticles in the nucleus. A special class of collective excitations, called
mixed-symmetry states, which are defined in the Interacting Bo-
son Model-2, have been found in atomic nuclei and are interpreted
geometrically as an out of phase motion of protons and neutrons.
Together with collective excitations in which the protons and neu-
trons move in phase, these states can be used as building blocks
for a general description of collective phenomena in nuclei. Mixed-
symmetry states are also sensitive to the strength of the resid-
ual proton-neutron quadrupole interaction in the valence shell and
thus their properties are important in constraining the strength
of this interaction. A number of one-quadrupole phonon mixed-
symmetry (2+

1,ms) states have been found in vibrational nuclei in
the A = 140 mass region. To better understand the evolution
of mixed-symmetry states in this mass region, experiments were
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done to identify the 2+
1,ms state in the nuclides 134Xe and 136Ce

using the techique of Coulomb excitation in inverse kinematics.
Together with standard techiques in gamma-ray spectroscopy, ab-
solute electromagnetic transition strengths were measured and the
2+

1,ms states in these nuclides were identified. The evolution of the
energy of the 2+

1,ms state in the N = 80 isotones shows in increase
in the proton-neutron interaction in the valence shell. The en-
ergy of these states were fitted by performing an Interacting Boson
Model-2 calculation, which shows that the evolution in energy can
be modelled with an appropriate set of terms in the IBM-2 Hamil-
tonian. The 2+

1,ms states in the N = 78 isotones show a similar
behavior to the corresponding states in the N = 80 isotones and
show that the mixed-symmetry states are sensitive to the residual
proton-neutron interaction in this mass region.
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Chapter 1

Introduction

1.1 Brief History of Nuclear Physics

Nuclear physics has been an active field of research since the discovery of
the nucleus. Ernest Rutherford found that most of all matter was concen-
trated in a very small core at the center of the atom in 1911 [1]. Perhaps the
next great milestone was the discovery of the neutron by the associate and
doctoral student of Rutherford, James Chadwick in 1932 [2]. It is noteworthy
that by this time special relativity, quantum mechanics, and the relativistic
formulation of quantum mechanics were already developed. The existence of
the positron was postulated by P. A. M. Dirac in his relativistic formulation
of quantum mechanics in 1928 [3, 4] and it was subsequently discovered in
1932 by Carl Anderson [5], the same year the neutron was discovered. I would
thus list the finding of the neutron as a relatively modern discovery. The pro-
ton and neutron have since been used as the fundamental building blocks in
describing the nature of the atomic nucleus to this day.

A number of models have been developed to describe the large array of
phenomena and properties displayed by atomic nuclei. The liquid drop model,
first proposed by George Gamow in 1928 [6], viewed the nucleus as drop of
liquid whose constituent particles were held together by surface tension. This
model was able to describe some bulk properties of nuclei. Using the ideas of
the liquid drop model, von Weizäcker developed a semi-empiral mass formula
[7] to predict nuclear masses. A large breakthrough in nuclear theory came in
1949 when Maria Goeppert-Mayer [8] and independently J. Jensen, O. Haxel,
and H. Suess [9] were able to explain the magic numbers in nuclei, where nuclei
would exhibit an increased stability, by including a spin-orbit interaction term
in a Hamiltonian that considered all nucleons tp be orbiting essentially freely
in an average field created by all the other nucleons. The magic numbers
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correspond to closed shells in nuclei analogous to the filling of electron shells
in atoms. Excited states were found that correspond to the excitation of a
nucleon into an orbit of a higher lying shell as predicted by the model. The
shell model, as this model is called, has been one of the most fundamental ways
to describe atomic nuclei. It has since been used extensively in the analysis of
experimental data.

Apart from the single-particle excitations found in nuclei, another type
of excitation, collective excitation, was soon explained. In 1950, Rainwater
observed that spherical nuclei could easily be deformed [10]. This lead the
way in the 1950’s for more ground breaking work done by Aage Bohr and
Ben Mottelsohn [11, 12] and also H. L. Hill and J. A. Wheeler [13]when they
presented models for collective motion in nuclei. These models used shapes
to parameterize the nucleus and used their dynamics to derive the collective
phenomena that was observed. Since the discoveries of single-particle and col-
lective motion, these have been the two ways in which excitations in nuclei
have been classified. The interplay between single-particle and collective de-
grees of freedom has long been and continues to be an active field of study.
One example is perhaps a variation of the shell model, which was proposed
by S. G. Nilsson in 1955 [14] where he considered the average potential of the
shell model to be deformed. This lead to the idea of changing shell structure
with deformation.

In 1975, the Interacting Boson Model, the model that was used in this
present work, was proposed by F. Iachello and A. Arima [15] where interacting
bosons are used to describe collective excitations in nuclei. From the symmetry
properties of the model’s boson operators, three types of idealized nuclei were
found whose properties can be calculated analytically. These three limits of
nuclei can be used as benchmarks with which to classify different nuclei. It
was found that different regions of the nuclear chart exhibit properties that
are similar to one of these idealized limits.

The above account of nuclear physics is very brief and highlights only a
few of the main accomplishments in nuclear physics in the twentieth century.
Although brief, it can be seen that there is not one single comprehensive theory
in nuclear physics, but several models taylored to describe specific phenomena.
A quote taken from the book of Eisenbud and Wigner [16] published in 1958
describes the state of nuclear theory in the following way,

It is easy to appreciate the reasons for the present formless-
ness of nuclear theory. Internucleon forces are not yet completely
known and it is clear that they have a complex character. Even
the consequences of a simple interaction are difficult to obtain for
a system containing a large but finite number of particles. A good
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deal of effort has been expended, therefore, in the search for sim-
ple models in terms of which the broad regularities satisfied by
nuclei could be understood. This search has led to a number of
interesting but only partially successful models; these have proved
very fruitful for the stimulation of experimental research, and for
the development of further ideas on nuclear structure. One can
hope that future investigations will clarify the limitations of these
models and provide an understanding of the validity of different
models for different groups of phenomena.

Although written in 1958, the ideas set forth in this quote still serve as an apt
description of present day research in nuclear physics. It is with the ideas of
better understanding the “broad regularities satisfied by nuclei” and “under-
standing the validity of different models for different groups of phenomena”
the topic of this present work is introduced. One of the broad regularities in
nuclei that will be investigated is the existence of a certain class of collective
excitations called mixed-symmetry states defined within the Interacting Boson
Model. The data obtained from the experimental investigations of these states
will help elucidate the extent of the validity of the Interacting Boson Model.

1.2 Scientific Motivation

A certain class of collective states arise in the proton-neutron version of
the Interacting Boson Model called mixed-symmetry states [17], which can be
thought of as states in which the protons and neutrons oscillate out of phase
with respect to one another. This mode of excitation should be sensitive to
the proton-neutron interaction in the valence shell because of its isovector
character. Seeing how these states evolve as a function of proton and neutron
number can give insight into the strength of the proton-neutron interaction
for a given mass region.

The proton-neutron interaction in the valence shell of nuclei has been at-
tributed as being responsible for the formation of collectivity in nuclei [18, 19].
There have been fits made for the strength of this interaction using phenomeno-
logical models for a number of nuclei, especially in the A = 140 mass region
[20, 21], but data are still sparse.

The first experimentally observed mixed-symmetry state was in 156Gd by
Bohle et al. [22] using the method of electron scattering to measure M1 tran-
sition strengths. These were 1+ states in deformed nuclei and came to be
known as the scissors mode as the geometrical interpretation was a vibration
of the protons and neutrons that resembles the opening and closing of a pair
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of scissors. Reviews on the study of the scissors mode can be found in Refs.
[23, 24]. The first experimentally proposed mixed-symmetry state in a vi-
brational nucleus was by Hamilton in 1984 [25] based on a measurement of
multipole mixing ratios. Since then mixed-symmetry states have been found
in several regions of the nuclear chart, notably in the A = 90 and A = 140
mass regions. A comprehensive review of presently known mixed-symmetry
states in vibrational nuclei identified by the measurement of absolute transition
strengths is given in Ref. [26].

Vibrational Mixed-Symmetry States in the A = 140 Mass Region

Though many mixed-symmetry states have been identified in the past two
decades, data on mixed symmetry states is still scarce due to the difficulty
in measuring absolute transition strengths for the decay of short-lived nuclear
states. A number of one-phonon 2+ mixed-symmetry states have been found in
the A = 140 mass region [25, 27–33]. This present work focuses on extending
the data on mixed-symmetry states in this mass region by identifying mixed-
symmetry states in 134Xe and 136Ce by measuring absolute transition strengths
using the method of Coulomb excitation in inverse kinematics. Fig. 1.1 shows
some of the nuclides in which mixed-symmetry states have been identified.
First, it is important to positively identify mixed-symmetry states in the nuclei
of interest if they exist. This will show the regions mixed-symmetry states exist
and thus the regions where the description of nuclear states by the mixed-
symmetry state description are valid. Second, if mixed-symmetry states are
identified in these nuclides, one can study the systematics of these states with
varying proton number along isotonic chains, namely for the N = 78 and
N = 80 isotones. Studying the evolution of the properties of the mixed-
symmetry states is an important step in constraining the parameters of the
Interacting Boson Model, including the proton-neutron interaction.

Outline

Finally, a brief outline of the remainder of this work will be given. In Chap-
ter 2, some background on the Interacting Boson Model and mixed-symmetry
states will be presented. The theory of Coulomb excitation, the method used
for measuring transition strengths in the nuclei of interest, will be presented
in Chapter 3. The details of the Coulomb excitation experiment, the methods
of data analysis, and experimental results are given in Chapter 4. The evolu-
tion of the one-quadrupole phonon mixed-symmetry state in the N = 80 and
N = 78 isotones based on the results is discussed in Chapter 5.
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Figure 1.1: Nuclides in the A = 140 mass region are shown. The green
boxes indicate nuclides where mixed-symmetry states have been identified.
The pink boxes indicate the nuclides studied in this present work. The magenta
box indicates the nuclide where a mixed-symmetry state has been tentatively
identified. The Z = 50 and N = 82 shell closures are indicated by lines.
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Chapter 2

The Interacting Boson Model

and Mixed-Symmetry States

The Interacting Boson Model (IBM) is a model for describing collective
excitations in atomic nuclei. It has been introduced by Iachello and Arima in
1975 [15] and has been used to model a wide variety of nuclear properties and
phenomena. One of the advantages of the model is its use of the symmetries
of the boson operators introduced in the model, which allows for analytic
expressions of the states and expectation values for three different ideal limits
of nuclei. In this chapter a brief introduction and some background to the
model will be presented. Most of the presentation of this chapter follows the
book of Iachello and Arima [34].

2.1 Interacting Boson Model-1

In this section, the Interacting Boson Model-1 (IBM-1) will be introduced.
Although the IBM-1 is not used explicitly in the analysis or direct interpreta-
tion of the present work, it is helpful to use it to formulate the basic ideas and
expressions in the IBM and then extend it to the Interacting Boson Model-2
(IBM-2). In the IBM-1, the number of bosons is given by the number of pairs
of protons and pairs of neutrons outside of closed shells. No distinction is
made between proton type and neutron type bosons.

2.1.1 Boson Creation and Annihilation Operators

The basic foundation of the Interacting Boson Model is that collective
excitations can be described with bosons. These bosons can be of two types,
s and d having and angular momentum of either L = 0 or L = 2 units of
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~, respectively. Both bosons have positive parity. The number of bosons is
determined by the number of nucleon pairs or hole pairs that are outside of a
closed shell. The reason for this comes from the interpretation of the bosons
as correlated nucleon pairs. The total number of bosons N in the IBM is a
conserved quantity. In the IBM-1, the nucleon or hole pairs must be the same
type of nucleon, meaning pairs consisting of a proton and neutron are not
included. The IBM-1 is applicable only to even-even nuclei.

The nuclear states are represented in the framework of second quantization.
The boson creation operators are given by s† and d†µ and the boson annihilation
operators by s and dµ, where µ = −2,−1, 0, 1, 2. They satisfy the following
commutation relations:

[s, s] = [s†, s†] = 0,

[s, dµ] = [s†, d] = [s, d†] = [s†, d†] = 0, (2.1)

[dµ, dµ′ ] = [d†µ, d
†
µ′ ] = 0,

[dµ, dµ′ ] = δµµ′ .

Spherical Tensors

Since nuclear states studied in the laboratory almost always have a definite
angular momentum, which results from the Hamiltonian being rotationally
invariant, it is useful to use spherical tensors. These tensors transform as
irreducible representations of the rotation group. Details about the properties
of spherical tensors can be found in Appendix 1A of Ref. [35]. The boson
creation operators transform as a spherical tensors while the spherical tensor
for the annihilation operator needs to be defined as

b̃l,m = (−)l+mbl,−m. (2.2)

Two spherical tensors operators can be coupled as

T (l)
m = [T (l1) × T (l2)](l)m (2.3)

to form a new spherical tensor operator, where the product is defined as

[T (l1) × T (l2)](l)m =
∑

m1,m2

〈l1m1l2m2 | lm〉T (l1)
m1

T (l2)
m2

, (2.4)

where the symbol 〈l1m1l2m2 | lm〉 represents the Clebsch-Gordan coefficients.
For example, to form a state with two bosons one would express it as

[b†l,m × b†l′,m′ ]
(L)
M |0〉 , (2.5)
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where L and M are the angular momentum and magnetic quantum number of
the state, respectively, whose values are restricted by the angular momentum
addition rules.

A special case of the product of two tensor operators is the scalar product
and the shorthand notation

U (l) · V (l) = (−)l(2l + 1)
1

2 [U (l) × V (l)]
(0)
0 , (2.6)

will be used.

2.1.2 Operators and Basis States

Operators in the IBM are constructed from the creation and annihilation
operators. Since the total number of bosons is conserved, all the terms in an
operator have the same number of creation and annihilation operators with
the exception of pair transfer operators.

Hamiltonian Operator

The Hamiltonian operator is given by the expression

H = E0 +
∑

α,β

ǫαβb
†
αbβ +

∑

α,β,δ,γ

1

2
uαβγδb

†
αb

†
βbδbγ + ... (2.7)

The fact there there are finite two-body and higher terms present shows that
an interaction exists between bosons in a state and gives the Interacting Boson
Model its name. A better way to express the Hamiltonian is to use spherical
tensors coupled to definite angular momentum as

H = E0 +
∑

l

ǫlb
†
l · b̃l +

∑

L,l,l′,l′′,l′′′

[[b†l × b†l′ ]
(L) × [b̃l′′ × b̃l′′′ ]

(L)]
(0)
0 + ... (2.8)

One can then see that the Hamiltonian is invariant under rotations.
Another useful way to express the Hamiltonian that is used in many prac-

tical applications of the IBM-1 is by using the multipole expansion

H = E ′
0 + ǫdn̂d + a0P̂

† · P̂ + a1L̂ · L̂+ a2Q̂ · Q̂+ a3Û · Û + a4V̂ · V̂ , (2.9)
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where the multipole operators are given by

n̂d = d† · d̃
P̂ =

1

2
d̃ · d̃− 1

2
s̃ · s̃

L̂ = 10
1

2 [d† × d̃](1) (2.10)

Q̂ = [d† × s̃+ s† × d̃](2) −
√

7

2
[d† × d̃](2)

Û = [d† × d̃](3)

V̂ = [d† × d̃](4).

With such a Hamiltonian, one is able to see more easily what the effect each
multipole degree of freedom has on the nuclear states and determine which
ones are the most important for a given set of nuclei.

Basis states

Once the IBM-1 Hamiltonian is chosen, a basis of states needs to be chosen
to find the corresponding energy eigenvalues and eigenstates. A basis may be
constructed from states created by applying the boson creation operators to
the vacuum state. This basis is represented as

B : b†αb
†
β... |0〉 . (2.11)

To have states with definite angular momentum, the appropriate tensor prod-
uct of boson creation operators can be used to give the set

B : [b†α × b†β × ...](l)m |0〉 . (2.12)

It turns out that the angular momentum and magnetic quantum numbers are
not sufficient to label all the states of a basis. Additional quantum numbers
are needed to uniquely label the states. These additional quantum numbers
can be found from the representations of a Lie algebra and its subalgebras that
are formed from the bilinear products of creation and annihilation operators.

Lie Algebras and Their Representations

The bilinear product of creation and annihilation operator b†αbβ are the
elements of the unitary Lie algebra in six dimensions u(6). There are 36 such
pairs of operators and they are called the generators of the algebra. One may
also take the tensor product of creation and annihilation operators to form

9



the same Lie algebra u(6) and in the IBM, these products will be used as the
generators of the algebra.

The Lie algebra u(6) can be decomposed into a chain of subalgebras. If
an appropriate chain of algebras can be found, the representations of each of
these algebras can be used to label states with appropriate quantum numbers.
This is because the states can be chosen that transform as the representations
of each algebra. For applications to nuclei the chain of algebras must contain
the subalgebra so(3) since it is needed for states to have as a representation
of the rotation group. In other words, so(3) is required for states to have a
good angular momentum quantum number. Three and only three chains of
subalgebras have been found that contain the subalgebra so(3). One of these
chains is

u(6)
︸︷︷︸

N

⊃ u(5)
︸︷︷︸

nd

⊃ so(5)
︸ ︷︷ ︸

v,ñ∆

⊃ so(3)
︸ ︷︷ ︸

L

⊃ so(2)
︸ ︷︷ ︸

M

, (2.13)

where under each algebra, the corresponding quantum number is given. Note
that there are two quantum numbers given for the algebra so(5). This is due
to an ambiguity from reducing so(5) to so(3) and an additonal quantum num-
ber is needed to uniquely specify the remaining representations. The quantum
numbers L and M correspond to the angular momentum and magnetic quan-
tum numbers.

Now basis states can be uniquely specified by using the quantum numbers
that arise from one of the chains of algebras. For example, a basis built from
the chain shown in Eq. (2.13) would be

B : [s†nsd†nd ]v,ñ∆,L,M |0〉 , (2.14)

where ns is the number of s bosons. The total boson number is N = ns + nd

and since this number is conserved, it reduces the number of independent
parameters by one.

Transition Operators

Once the eigenstates of a Hamiltonian are found, expectation values for
transition operators can be calculated. The general form for the electromag-
netic transition operator is given by

T (L) = t
(0)
0 δL0 +

∑

α,β

t
(L)
αβ b

†
αbβ + . . . , (2.15)

where L is the multipole of the transition. Since all of the boson operators
have positive parity, the all the transition operators also have positive par-
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ity. States of nuclei have definite angular momentum and it is useful to use
the spherical tensors coupled to definite angular momentum to construct the
transition operators. The transition operators then become

T (L)
µ = t

(0)
0 δL0 +

∑

ll′

t
(L)
ll′ [b†l × b̃l′ ]

(L)
µ + ... (2.16)

In terms of the multipole operators given in Eq. (2.10), the transition operators
up to L = 4 can be written as

T (E0) = α0 + β0n̂d,

T (M1) = β1L̂,

T (E2) = β1Q̂+ β′
1Q̂

′, (2.17)

T (M3) = β3Û ,

T (E4) = β4V̂ ,

where α0 and βL are parameters and Q̂′ is given by

Q̂′ = [d† × d†](2). (2.18)

Eq. (2.17) is a useful and intuitive form for the transition operators and they
will be extended to include the different boson types in the Interacting Boson
Model-2.

2.2 Interacting Boson Model-2

In the Interacting Boson Model-2 (IBM-2), the model is extended by differ-
entiating between proton type bosons and neutron type bosons [17, 36]. Each
are interpreted as a correlated pair of valence protons and neutrons, respec-
tively. Each boson operator now has an additional label denoting whether it is
a proton or neutron boson. They follow the following commutation relations:

[bρ,l,m, b
†
ρ′,l′,m′ ] = δρρ′δll′δmm′ ,

[bρ,l,m, bρ′,l′,m′ ] = 0, (2.19)

[b†ρ,l,m, b
†
ρ′,l′,m′ ] = 0,

where bρ,l,m and b†ρ,l,m are the boson annihilation and creation operators, re-
spectively, and ρ is the proton or neutron label, l is the angular momentum
quantum number of the boson, and m is the magnetic quantum number of the
boson.
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IBM-2 Hamiltonian

The IBM-2 Hamiltonian can be written as a sum of three terms,

H = Hπ +Hν + Vπν . (2.20)

Using coupled spherical tensors, the terms Hπ and Hν are given by

Hρ = Eρ
0 +

∑

l

ǫρl b
†
ρl · b̃ρl +

∑

L,l,l′,l′′,l′′′

1

2
uρL

ll′l′′l′′′ [[b
†
ρl×b

†
ρl′ ]

(L)× [b̃ρl′′× b̃ρl′′′ ]
(L)]

(0)
0 + . . . ,

(2.21)
which has exactly the same form as Eq. (2.8), the only difference being the
use of only either proton or neutron bosons operators. The difference between
the IBM-1 and IBM-2 Hamiltonians is due to the presence of the third term
Vπν in Eq. (2.20), which is given by

Vπν =
∑

αβγδ

wαβγδb
†
παbπβb

†
νγbνδ + . . . (2.22)

This term contains two-body terms that have both proton and neutron creation
and annihilation operators, but in a way that conserves the number of protons
and neutrons. This is a requirement for the Hamiltonian since the bosons
are interpreted as nucleon pairs and the number of each nucleon must be a
constant. The expression for Vπν with coupled spherical tensors is

Vπν =
∑

L,l,l′,l′′,l′′′

wL
l,l′,l′′,l′′′ [[b

†
πl × b̃πl′ ]

(L) × [b†νl′′ × b̃νl′′′ ]
(L)]

(0)
0 + . . . , (2.23)

which is obtained in the standard way using the tensor product.
The IBM-2 Hamiltonian can also be expressed using a multipole expansion.

The terms Hπ and Hν takes the same form as the multipole expanded IBM-
1 Hamiltonian given by Eq. (2.9) with the boson operators being labelled
appropriately for either proton or neutron operators. The multipole operators
are also given by Eq. (2.10) with the appropriate proton and neutron boson
operator labels. For example, the quadrupole operator is given by

Q̂ρ = [d†ρ × s̃ρ + s†ρ × d̃ρ]
(2) −

√
7

2
[d†ρ × d̃ρ]

(2). (2.24)
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Along with the additional quadrupole terms

Q̂′
ρ = [d†ρ × d̃ρ]

(2) (2.25)

Q̂′′
ρ = i[d†ρ × s̃ρ − s† × d̃ρ]

(2), (2.26)

the multipole expansion of Vπν is given as

Vπν = c0n̂dπ
· n̂dν

+ c1L̂π · L̂ν

+c2Q̂π · Q̂ν + c′2Q̂π · Q̂′
ν + c′′2Q̂

′
π · Q̂ν + c′′′2 Q̂

′
π · Q̂′

ν + civ2 Q̂
′′
π · Q̂′′

ν (2.27)

+c3Ûπ · Ûν + c4V̂π · V̂ν .

The term Vπν is important because it quantifies the interaction between proton
and neutron degrees of freedom.

IBM-2 Basis states

As it was mentioned in Section 2.1.2, basis states can be found by choosing
states that transform as the representations of the chain of algebras that can be
derived from the u(6) algebra formed by the bilinear pair of boson creation and
annihilation operators. In the IBM-2, the bilinear pairs of proton and neutron
creation and annihilation operators respectively form the algebras uπ(6) and
uν(6). There are several ways decompose and combine the two algebras into a
chain of subalgebras and each way will determine the basis. As in the IBM-1,
the requirement for the chain is the inclusion of the soπ+ν(3) algebra as it is
related to a good total angular momentum quantum number. The algebra
soπ+ν(3) is created from the sum of generators of the algebras soπ(3) and
soν(3).

As an example, one may take the two chains of algebras for protons and
neutron,

uπ(6) ⊃ uπ(5) ⊃ soπ(5) ⊃ soπ(3) ⊃ soπ(2)

uν(6) ⊃ uν(5) ⊃ soν(5) ⊃ soν(3) ⊃ soν(2). (2.28)

These two chains can be combined at any point up except at soπ+ν(2) since
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the combined algebra soπ+ν(3) is needed. One of the possibilities is

uπ(6)
︸ ︷︷ ︸

Nπ

⊃ uπ(5)
︸ ︷︷ ︸

ndπ

⊃ soπ(5)
︸ ︷︷ ︸

vπ ,nπ∆

⊃ soπ(3)
︸ ︷︷ ︸

Lπ

ց

soπ+ν(3)
︸ ︷︷ ︸

L

⊃ soπ+ν(2)
︸ ︷︷ ︸

M

, (2.29)

uν(6)
︸ ︷︷ ︸

Nν

⊃ uν(5)
︸ ︷︷ ︸

ndν

⊃ soν(5)
︸ ︷︷ ︸

vν ,nν∆

⊃ soν(3)
︸ ︷︷ ︸

Lν

ր

where the quantum numbers are labelled beneath the corresponding algebra.
This is the basis that is used in the IBM-2 program NPBOS.

Another set of bases can be obtained if one combines the algebras at a
different point such as

uπ(6) ց

uπ+ν(6) ⊃ uπ+ν(5) ⊃ soπ+ν(5) ⊃ soπ+ν(3) ⊃ soπ+ν(2), (2.30)

uν(6) ր

where we have again used the chains in Eq. (2.28). In general there are three
chains that can be combined at uπ+ν(6) to give three different bases. In these
chains, the proton and neutron bosons exhibit a symmetry and this is the
subject of the following section.

2.2.1 Full and Mixed Proton Neutron Symmetry

In the IBM-1, the total boson state has to be symmetric under the inter-
change of any two bosons of the state. A convenient way to represent the
permutation symmetry of an object is to use the Young diagram, whose de-
scription can be found in Appendix 1C of Ref. [35]. Completely symmetric
states are represented by a Young diagram which has boxes aligned only hor-
izontally, whereas completely anti-symmetric states are represented by boxes
aligned vertically. States with that are neither completely symmetric nor anti-
symmetric have mixed symmetry and are represented by Young diagrams that
have neither completely horizontally nor completely vertically aligned boxes.
The completely symmetric boson states in the IBM-1 are represented by the
diagram

N
︷ ︸︸ ︷

· · · , (2.31)

or represented by [N ], called the partition, where N is the total number of
bosons in a state. In general the number λn of the partition [λ1, λ2, . . . , λn]
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represents the number of boxes in the n-th row of the corresponding Young
diagram.

In the IBM-2, one can take the direct product of the algebras uπ(6)⊗uν(6)
to form the algebra for the whole system. Using the representations of each
algebra, the Kronecker product can be taken to form the representation of the
combined algebra. This new representation can be decomposed into a direct
sum of a symmetric and mixed-symmetry representations as given by

[Nπ] ⊗ [Nν ] =
P
⊕

k=0
[Nπ +Nν − k, k], (2.32)

where

P =

{

Nπ for Nπ ≤ Nν

Nν for Nν ≤ Nπ.
(2.33)

The term in the direct sum with k = 0 corresponds to the fully-symmetric
representation and the remaining terms correspond to the mixed-symmetry
representations. The Young diagrams for the mixed-symmetry representations
each have exactly two rows. It is from the product in Eq. (2.32) that mixed-
symmetry representations arise from two representations that are completely
symmetric. The resulting representations can be used as the basis states for
the two particle system.

A simple example will be shown to illustrate the representations obtained
from Eq. (2.32). For Nπ = Nν = 1, the product of the representations are

[1] ⊗ [1] = [2] ⊕ [1, 1], (2.34)

which can be represented by Young diagrams as

⊗ = ⊕ . (2.35)

In this case of only one proton boson and one neutron boson, the Kronecker
product of the representations results in a completely symmetric state and
completely anti-symmetric state. In general, for Nρ > 1 for one type of boson
and Nρ′ ≥ 1 for the other type will result in states with mixed-symmetry.

F spin

The use of the partitions and Young diagrams above to quantify the sym-
metry of the boson operators is general and applicable to any system with
permutation symmetry. This is useful because many analogies can be made
to systems that exhibit or approximately exhibit the same type of symme-
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try. One example is the concept of isospin, sometimes called isobaric spin,
where protons and neutrons are considered the same particle that can be in
two different states. This symmetry between proton and neutron is rooted
in the charge independence of the nucleon-nucleon interaction along with the
fact that the electromagnetic interaction is small in magnitude compared to
it. The reason that this approximate symmetry is so useful is that it exhibits
exactly the same symmetry as a spin 1

2
particle and therefore all the of the

tools used in angular momentum algebra can be used to derive results based
on the approximate symmetry between proton and neutron. The concept of
F spin [17] extends the concept of isospin to the proton and neutron bosons
of the IBM-2. The value of F spin for a proton boson and neutron boson is
given by

b†π |0〉 =

{

F = 1
2

Fz = +1
2

(2.36)

b†ν |0〉 =

{

F = 1
2

Fz = −1
2
.

(2.37)

The total F spin of a state is given by

F =
Nπ +Nν − k

2
, (2.38)

where k is the index used to characterize the representations in Eq. (2.32) and
the total F spin projection Fz is given by

Fz =
Nπ −Nν

2
. (2.39)

The nuclear basis states can be labelled with F and Fz for a given total boson
number N to specify the type of proton-neutron symmetry it has. Though the
proton-neutron symmetry of the bosons in the IBM-2 can be represented with
partitions and Young diagrams as was shown, the familiarity of many with
angular momentum algebra makes F spin a useful and intuitive concept.

To fully specify the basis states resulting from the uπ(6)×uν(6) ⊃ uπ+ν(6)
algebra chain, also called the F -spin basis, the quantum numbers that result
from the remaining chain of subalgebras are needed. As was noted earlier, there
are three possibile chains, namely the ones containing the uπ+ν(5), suπ+ν(3),
and soπ+ν(6) algebras. A detailed derivation of such quantum numbers are
outlined in Chapter 5 of the book of Iachello and Arima [34]. Once all the
quantum numbers are specified, one has a complete basis with which to work

16



[2] [1,1]

2+

2+

0+

2+

1+

4+0+

3+

[s†π × s†ν ]
(0) |0〉

1√
2
[d†π × s†ν + d†ν × s†π](2) |0〉

[d†π × d†ν ]
(0),(2),(4) |0〉

1√
2
[d†π × s†ν − d†ν × s†π](2) |0〉

[d†π × d†ν ]
(1),(3) |0〉

F = 1 F = 0

Figure 2.1: Example of IBM-2 states in u(5) limit. Building blocks of collective
excitations.

with.
Here only an example will be given for basis states of the chain of algebras

containing uπ+ν(5), often called simply the u(5) limit to illustrate the concept
of F spin. Shown in Fig. 2.1 is a set of nuclear states in the u(5) limit for a
nucleus with Nπ = 1 and Nν = 1. The states are labelled by the appropriate
s and d boson operators. The states on the left correspond to the fully-
symmetric states and the states on the right correspond to mixed-symmetry
states. It can be seen that the pairwise exchange of proton and neutron labels
produce the same state for the fully-symmetric states and the same state with
a factor −1 for the mixed-symmetry states. The reason the exchange of proton
and neutron labels are limited to pairwise exchange is because the individual
proton and neutron numbers need to be conserved.

Geometric Interpretation

In the IBM-1, geometrical shapes can be assigned to the algebras of the
three possible chains, which correspond directly to the description of nuclear

17



Figure 2.2: Geometric interpretation of mixed-symmetry states are shown.
The figure represents a snapshot of the nucleus in time where the red indi-
cates the proton fluid and the blue represents the neutron fluid. Part (a)
represents the out of phase vibration for spherical nuclei and (b) represents
the vibration of protons and neutrons with respect to each other for prolate
or oblate deformed nuclei.

shapes by Bohr and Mottlesohn’s shape variables [11, 12]. In the IBM-2,
the mixed-symmetry states correspond to a quadrupole vibration where the
protons and neutrons oscillate out of phase as shown in part (a) of Fig. 2.2.
For deformed nuclei, the protons and neutrons oscillate with respect to one
another as the nucleus as a whole rotates as shown in part (b) of Fig. 2.2.
Because of this type of motion, the mixed-symmetry states for deformed nuclei
are also known as the scissors mode.

2.2.2 Signature of Mixed-Symmetry States

Mixed-symmetry states can be identified by their unique signature, namely
a collective M1 decay to a fully-symmtric state. M1 transitions are forbidden
between fully-symmetric states and between mixed-symmetry states in the
F -spin basis.

IBM-2 Transition Operators

T (L) = T (L)
π + T (L)

ν (2.40)
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T (L)
ρµ = t

(0)
ρ0 δL0 +

∑

ll′

t
(L)
ρll′ [b

†
ρl × b̃ρl′ ]

(L)
µ + ... (2.41)

In the IBM-2, multipole transition operators have the form that is an ex-
tension of the IBM-1 operators. The magnetic transition operators are given
by

T (M1) =

√

3

4π
(gπL̂π + gνL̂ν) (2.42)

T (M3) =

√

7

4π
(mπÛπ +mνÛν), (2.43)

where the coefficients in front of the multipole operators are the effective proton
and neutron boson moments, respectively. The electric transition operators
are given by

T (E2) = eπQ̂
χ
π + eνQ̂

χ
ν , (2.44)

T (E4) = tπV̂π + tνV̂ν , (2.45)

where
Q̂χ

ρ = [d†ρ × s̃ρ + s†ρ × d̃ρ]
(2) + χρ[d

†
ρ × d̃ρ]

(2). (2.46)

The coefficients in front of the multipole operators are the proton and neutron
boson effective charges respectively. For our experiment, only M1 and E2
transitions will be significant.

Decay of the 2+
1,ms State

In the limit of uπ+ν(5), the Hamiltonian is diagonal in the uπ+ν(5) F -
spin basis and the transition matrix elements connecting the states can be
calculated analytically. We are especially interested in the decay of the one-
phonon 2+

1,ms mixed-symmetry state. The M1 transition matrix element is
given by

〈
2+

1

∥
∥T (M1)

∥
∥ 2+

1,ms

〉
=

√

3

4π

√

30NπNν

N2
(gπ − gν) (2.47)

and the E2 transition matrix elements are given by

〈
0+

1

∥
∥T (E2)

∥
∥ 2+

1,ms

〉
=

√

2NπNν

N
(eν − eπ) (2.48)

〈
2+

1

∥
∥T (E2)

∥
∥ 2+

1,ms

〉
=

√

5NπNν

N2
(eνχν − eπχπ). (2.49)
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1+ 3+

F = 1 F = 0

Figure 2.3: Figure showing the signatureM1 decays of mixed-symmetry states.

For boson g factors of gπ ≈ 1µN and gν ≈ 0, the M1 transition matrix element
is finite for the 2+

1,ms state. As it was mentioned earlier, M1 transitions are
forbidden between fully-symmetric states and also between mixed-symmetry
states. Since, no other M1 transitions are allowed except for the one con-
necting a mixed-symmetry state to a fully-symmetric state, it is used as the
unique signature of a mixed-symmetry state. The E2 transition between the
2+

1,ms and the 0+
1 ground state is small assumming eπ ≈ eν , whereas E2 transi-

tions are large between fully-symmetric states and between mixed-symmetry
states. The decay of the states in the uπ+ν(5) limit is illustrated in Fig. 2.3.

A rough estimate for the M1 transition strength for the decay of the one-
phonon 2+

1,ms state can be obtained by taking the boson g factors to be gπ ≈ 1

and gν ≈ 0. Using Eq. (2.42), one obtains
〈
2+

1

∥
∥T (M1)

∥
∥ 2+

1,ms

〉
≈ 1 µN , which

usually results in short lifetime for the 2+
1,ms state, making it difficult to measure

the transition strength. One way is through the use of Coulomb excitation,
the theory of which will be discussed in the next chapter.
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Chapter 3

Coulomb Excitation

Coulomb excitation is the process by which a nucleus is excited via the
interaction of the Coulomb field with another charged particle. Though the
process of exciting nuclear from inelastic scattering due to the electromagnetic
interaction was first proposed in the 1920’s and 1930’s, it was in the early
1950’s that Coulomb excitation started to be studied and used extensively1.
Since then, the theory of Coulomb excitation has been well developed and its
exposition can be found in several books and review articles [37–40]. Coulomb
excitation is well suited for studying nuclear states because the process pro-
ceeds via the electromagnetic interaction, which is very well understood, as
opposed to the nucleon-nucleon interaction, which is not known as well. It also
populates collective nuclear states relatively strongly, which makes Coulomb
excitation a well suited tool for studying collective excitations.

The Coulomb excitation cross sections are directly related to the transi-
tion matrix elements for electromagnetic decay and thus the transition matrix
elements can be measured from the measurment of Coulomb excitation cross
sections. Most of these matrix elements are for electric as opposed to magnetic
decay as the probability for magnetic excitation is relatively small. The theory
of Coulomb excitation also allows one to calculate the angular distribution of γ
rays emitted from a Coulomb excited state. By measuring the angular distri-
bution γ rays, the multipole mixing ratio of transitions of mixed multipolarity
can be measured. Both electric transition matrix elements and multipole mix-
ing ratios are needed to measure absolute M1 transition strengths, which are
needed for the identification of mixed-symmetry states.

In the following chapter, some of the of the theory of Coulomb excitation
will be presented that is relevant for our experiments. The results will be
used later in Chapter 4 when programs are used to calculate Coulomb excita-

1See Chapter 1 of Biedenharn and Brussaard [37] for a brief historical account
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θ
b

Figure 3.1: The scattering of the projectile off the target is shown. Classically
for elastic scattering, the path of the projectile is a hyperbola where θ is the
scattering angle and b is the impact parameter.

tion cross sections and angular distribution coefficients. Most of the material
presented in this chapter and further details can be found in Refs. [39, 41, 42].

3.1 Semi-Classical Theory

The semi-classical theory of Coulomb excitation has been extensively de-
veloped. The projectile is considered to move in a classical trajectory, deflected
by the Coulomb force due to the electric field of the target. This trajectory,
shown in Fig. 3.1, is the well known hyperbola for the elastic scattering of
charged particles. The use of a semi-classical theory is justified when the dis-
tance of closest approach of the target and projectile nuclei is significantly
larger than their de Broglie wavelengths. This ratio of the distance of closest
approach to the wavelength of the nuclei is represented by the dimensionless
quantity η, sometimes called the Sommerfield parameter. It is defined as

η = 2π
a

λ
=
Z1Z2e

2

~v
, (3.1)

where a is half the distance of closest approach, λ is the de Broglie wavelength
of the nucleus of interest, Z1 is the atomic number of the projectile, Z2 is the
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atomic number of the target, and v is the (velocity of the projectile). All of the
quantities are expressed in cgs units. The half the distance of closest approach
is given by

a =
Z1Z2e

2

M0v2
, (3.2)

where Z1, Z2, are the charges of the projectile nucleus and target nucleus,
respectively, e is the charge of the electron, M0 is the reduced mass, and v
is the initial velocity of the projectile. The condition for using the classical
approximation is η ≫ 1.

Another important parameter in Coulomb excitation is the adiabacity pa-
rameter ξ, which is defined as

ξ =
a

~v
∆E, (3.3)

where ∆E is the excitation energy of the excited nuclear state. The param-
eter ξ gives the ratio between the nuclear state’s oscillation period and the
collision time. The collision time must be smaller than the nuclear period in
order to substantially excite the state. As the value of ξ becomes large, the
collision process becomes adiabatic and the probability to excite the state falls
dramatically. In the other limit where ξ → 0, the excitation process can be
analyzed using the so called sudden approximation.

Coupled Differential Equations

When the cross section for exciting a state is small compared to the elastic
scattering cross section, first-order time-dependent pertubation theory can be
used to calculate Coulomb excitation amplitudes where the perturbing poten-
tial is the changing electromagnetic field as the projectile and target nuclei
pass each other. This approach is not sufficient to describe the situation when
there are multiple excitations. For this situation, finding the excitation ampli-
tudes from the solutions of the coupled set of differential equations governing
the excitation process is needed. Outlined below is the theory that is the
basis for the coupled-channel programs that are used in the analysis of the
experimental data.

The excitation process is described by the time-dependent Schrödinger
equation,

i~
∂

∂t
|ψ〉 = (H0 +HE(t)) |ψ〉 , (3.4)

where |ψ〉 is the time-dependent state, H0 is the free nucleus Hamiltonian, and
HE(t) is the time-dependent Hamiltonian that arises from the changing elec-
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tromagnetic field. To transform the Schrödinger equation to a set of coupled
differential equations, the state vector |φ〉 is introduced as

|ψ〉 = ei−H0t/~ |φ〉 . (3.5)

This state vector is independent of time before and after the collision and
satisfies

i~
∂

∂t
|φ〉 = eiH0t/~HE(t)e−iH0t/~ |φ〉 . (3.6)

Using the eigenstates |n〉 of H0

H0 |n〉 = En |n〉 , (3.7)

we define the time-dependent amplitude

an(t) = 〈n |φ〉 = 〈n |ψ〉 eiEnt/~. (3.8)

Multiplying Eq. (3.9) by 〈n| and using the closure relation
∑

m |m〉 〈m| = 1
results in the coupled differential equation

ȧn(t) =
∑

m

〈n |HE(t) |m〉 ei(En−Em)t/~am(t). (3.9)

Here HE(t) is given by

HE(t) =
∑

λ,µ

4πZ1e

2λ+ 1
r−λ−1
p (t)Yλµ[θ(t), φ(t)]M∗(Eλ, µ), (3.10)

where rp is distance of the particle from the origin, Yλµ[θ(t), φ(t)] are the
spherical harmonics and M(Eλ, µ) is the electric multipole operatror given by

M(Eλ, µ) =

∫

rλ ρ(r)Yλµ(θ, φ) d3r (3.11)

where ρ(r) is the nuclear charge density. It is through 〈n |HE(t) |m〉 the
transition matrix elements enter the differential equations.

The initial conditions that have to be satisfied by the differential equations
are

an(−∞) = δ0n, (3.12)

where δ0n is the Kronecker delta. This means the nucleus is in the ground
state before the collision. The amplitude of excitation to a state is given by
the value an = an(∞). Implicit is the assumption that the excitation process
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and subsequent radiative decay are sufficiently separated in time. For decays
such as particle emission that have very short lifetimes, this assumption may
not be valid and the effect of the decay on the excitation process has to be
taken into account.

The amplitudes for the states n can be found by numerically integrating
Eq. (3.9). This method is used to calculate Coulomb excitation cross sections
by several commonly used programs including CLX [43, 44], the program used
for the analysis of our data. Directly integrating Eq. (3.9) has the advantage
of being completely general in two ways. First, it does not need to make use of
a specific nuclear model such as the vibrational or rotational model. Second,
it also includes the effects of multistep excitations, which are not included in
a first-order perturbation treatment.

3.1.1 Coulomb Excitation Cross Sections

Once the amplitudes for Coulomb excitation are obtained, whether it is
from first-order perturbation theory or the integration of the coupled differen-
tial equations mentioned in the previous section, they can be used to calculate
the Coulomb excitation cross section. The probability for excitation is given
by

Pn =
1

2J1 + 1

∑

M1,Mn

|aInMn
(M1)|2, (3.13)

where aInMn
(M1) is the amplitude for excitation to state n with angular mo-

mentum and magnetic quantum numbers In and Mn, respectively, and M1 is
the magnetic quantum number of the intial state. The total probability must
be equal to unity,

∑

n

Pn = 1. (3.14)

The Rutherford cross section, which gives the diffential cross section for
elastic scattering, is

(
dσ

dΩ

)

Ruth

=
a2

4 sin4
(

θ
2

) , (3.15)

where a is half the distance of closest approach as given by Eq. (3.2). The
differential cross section for Coulomb excitation is given by the product of the
excitation probability Pn and the Rutherford cross section as given by

dσn

dΩ
= Pn

(
dσ

dΩ

)

Ruth

= Pn
a2

4 sin4
(

θ
2

) . (3.16)

The total cross section for excitation to state n is obtained by simply integrat-
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ing over the whole solid angle,

σn =
a2

4

∫

S

Pn(θ)
dΩ

sin4( θ
2
)

= a2π

∫ π

0

Pn(θ)
cos( θ

2
)

sin3( θ
2
)
dθ. (3.17)

Symmeterization of Cross Sections

One of the deficiencies of the semi-classical treatment of the scattering
process is the point along the path of the projectile at which the excitation of
the nucleus takes place is unknown and this necessarily perturbs the orbit of
the projectile. In order to compensate for this effect, one can use symmetrized
parameters for the cross sections, which is roughly an averaging between initial
and final parameters of the orbits. The symmeterized adiabacity parameter is
given by

ξs =
Z1Z2e

2

~

(
1
vf

− 1
vi

) , (3.18)

where vi and vf are the initial and final velocities, respectively. The sym-
metrized value for half the distance of closest approach is given by

as =
Z1Z2e

2

M0vfvi

. (3.19)

The expressions given in Eqs. (3.18) and (3.19) are used for one-step Coulomb
excitation, but use of the expressions for multiple Coulomb excitation will in
general violate the conservation of probability given in Eq. (3.14). A slightly
different method is used to symmeterize the parameters that are used in the
program of Winther and De Boer and CLX. The details of the method can be
found in Ref. [41].

Inverse Kinematics

In our description of Coulomb excitation up to this point, a frame of ref-
erence has not been specified. A convenient frame of reference to use is the
center of mass frame. The relation between the scattering angle in the center
of mass frame θCM and the scattering angle measured in the laboratory frame
θlab is give by

sin (θCM(n) − θlab)

sin θlab

=
A1

A2

[

1 +
A1 + A2

A2

E(n)

ǫp

]− 1

2

, (3.20)
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Figure 3.2: A plot showing the relation between the angles of the scattered
projectile and target in the center of mass and lab frames.

where E(n) is the excitation energy of the state n and ǫp is the energy of the
projectile.

For scattering of light projectiles on heavy targets at moderate energies,
the center of mass is approximately at the center of the target nucleus. For
such a situation the measured scattering angle in the lab is approximately
the same as the center of mass scattering angle as in Rutherford’s scattering
experiment of α particles on gold nuclei. The scattering angles observed in the
lab for the reverse situation of a heavy projectile scattering off of a light target
can be very different from the center of mass scattering angles. This situation
is called inverse kinematics. One of the consequences of inverse kinematics is
the heavy projectile and the target nuclei cannot scatter at a backwards angle
in the lab.

A plot showing the relationship between the lab and center of mass scat-
tering angles of the elastic scattering of 134Xe nuclei and 12C nuclei is shown
in Fig. 3.2. It can be seen that the maximum deflection of the 134Xe nuclei
is approximately 5◦ in the lab frame. This was used to our advantage in our
experiment as the energy of the Doppler shifted γ rays could be corrected as-
suming the 134Xe nuclei were undeflected and travelling in a definite direction,
which is a good approximation for small scattering angles. Another advantage
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of inverse kinematics may be the fact that the light 12C nuclei also scatter only
in the forward direction in the lab. This may allow for higher particle detection
efficiency when using only one particle detector in the forward direction.

3.1.2 Angular Distribution of γ rays

For radiative decay, the intensity of the radiation as a function of direction
is not isotropic in general. In this section, expressions for the angular distribu-
tion of γ rays that result from the decay of nuclear states excited by Coulomb
excitation will be presented.

The expression for the angular distribution is given by

dW (i)(n→ f)

dΩγ

=
1√
4π

∑

k=0,2,4
−k≤m≤k

A
(i)
km Fk(If , In)Ykm(θ(i)

γ , φ(i)
γ ), (3.21)

where Ykm(θ
(i)
γ , φ

(i)
γ ) are spherical harmonics and

Fk(If , In) =

∑

λ′ λ′′ ∆(λ′)∆(λ′′)Fk(λ
′, λ′′, If , In)

∑

λ ∆2(λ)
, (3.22)

where Fk(λ, λ
′, If , In) are the geometrical factors and are tabulated in a num-

ber of references [45–47]. The Fk(λ, λ
′, If , In) coefficients only depend on In

and if the initial and final spins of the states, respectively, and on λ′ = λ+ 1
and λ, the next to leading order and leading order multipolarity of the tran-
sition γ ray, respectively. The terms ∆(λ) is related to the intensity of the
radiation of multipolarity λ given by

∆(λ)(n→ f) =

[
8π(λ+ 1)

λ[(2λ+ 1)!!]2
1

~

(ω

c

)2λ+1
] 1

2

(2If + 1)−
1

2 〈If ‖M(Eλ) ‖ In〉 ,
(3.23)

where ω is the frequency of the radiation and 〈If ‖M(Eλ) ‖ In〉 is the reduced
transition matrix element. This is relation to the different conventions for the
multipole mixing ratio δ can be found in Appendix A.2. The value A

(i)
km found

in Eq. (3.21) is given by

A
(i)
km ≈ α

(i)
km, (3.24)

when the level of interest is populated primarily through Coulomb excitation
as opposed to decay from higher-lying states. The label (i) represents reference

frame in which α
(i)
km is calculated. In order to write down further expressions

for α
(i)
k m a reference frame must be chosen. The reference frame for (i) = (0),
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Figure 3.3: The reference frame for (i) = (0) is shown. The Z axis bisects the
asymptotes of the hyperbolic path of the projectile as shown. The Y and Z
axes define the plane that contains the path of the projectile.

following the numbering convention of Ref. [41], is shown in Fig. 3.3 where
the Z axis bisects the asymptotes of the hyperbolic path of the projectile as
shown and the Y and Z axes define the plane of the projectile’s path. In this
reference frame, α

(0)
km is given by

α
(0)
km = (2In+1)

1
2

(2I1+1)

∑

Mn,M ′

n

Mn=M ′

n+m

(−1)In+Mn

(
In In k

−Mn M ′
n m

)

(3.25)

×∑

M1
a∗InM ′

n
(M1)aInM ′

n
(M1),

where

(
In In k

−Mn M ′
n m

)

is a Wigner 3-j symbol, aIn,Mn
(M1) is the amplitude

calculated for the excitation from the ground state with angular momentum
and magnetic quantum numbers I1 and M1, respectively. The values for α

(i)
km

for other reference frames can be found by using the expression

α
(i)
km(n) =

∑

−k≤m′≤k

Dk
m′m(α, β, γ)α

(0)
km′(n), (3.26)

where Dk
m′m(α, β, γ) is the rotation matrix for the Euler angles α, β, and γ.
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Figure 3.4: The reference frame for (i) = (3) is shown. The Z axis is parallel
to the initial direction of the projectile and the X and Z axes define the plane
of the projectile’s path.

For the analysis of our data, the reference frame (i) = (3) will be used,
continuing to follow the numbering convention of Ref. [41]. The reference
frame is shown in Fig. 3.4 where the Z axis is defined to be parallel to the
initial direction of the incoming projectile and the X and Z axes define the
plane that contains the path of the projectile. Integrating over the azimutal
scattering angle φ, the angular distribution of γ rays in this reference frame is
given by

dW
(3)
ring(n→ f)

dΩγ

=
1

4π

∑

k=0,2,4

α
(3)
k0 Fk(If , In) (2k + 1)

1

2 Pk(cos θγ), (3.27)

where Pk(cos θγ) are the k-th order Legendre polynomials. This will be the
primary expression that will be used in the analysis of measured angular dis-
tributions.
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Chapter 4

Experiment and Data Analysis

4.1 Experiment

The Coulomb excitation experiment was performed at the ATLAS facility
in Argonne National Laboratory located in Argonne, IL. The facility hosts
a superconducting linear accelerator ATLAS, which uses niobium resonators
cooled down to liquid helium temperatures. It is able to accelerate a large
array of isotopes to energies of 7-17 MeV/u. The two types of ion sources are
available for the accelerator, an ECR source which feeds a linac injector and
a sputter source which is injected with a Tandem Van de Graaff accelerator.

The Coulomb excitation experiment with 134Xe and 136Ce beams was AT-
LAS experiment 1085 and Gammasphere experiment GSFMA170. The first
isotope to be measured was 134Xe. A beam of 134Xe was accelerated to an en-
ergy of 435 MeV, which corresponds to 86% of the Coulomb barrier, onto a 1.0
mg/cm2 natural carbon target. The intensity of the beam was approximately
1 pnA and the duration of the measurement was 38 hours. Similarly a beam
of 136Ce was accelerated to an energy of 475 MeV, also corresponding to 86%
of the Coulomb barrier, with a beam intensity of 1 pnA onto the same natural
carbon target. The duration of the 136Ce measurement was similar to that of
134Xe.

The reason for choosing carbon as a target is two-fold. First, the first
excited state of 12C, which has a 98.9% natural abundance, is at 4.4 MeV and
therefore the probability of exciting this state with respect to the nuclei of
interest is small. Even if it was excited, the emitted γ ray is at a high enough
energy that it should not interfere with the energy region of interest, namely
500 keV to 2.5 MeV. The much less abundant 13C also has a first excited state
at a high excitation energy of 3.1 MeV. Due to this and its low abundance
of 1.1%, it was assumed that there was not much of a contribution of 13C in
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Figure 4.1: The a drawing of the Gammasphere array is shown. It consists of
110 HPGe detectors arranged spherically. The faces of the detectors form a
122-element polyhedron consisting of 110 hexagons and 12 pentagons. (Figure
from Ref. [50])

the spectra. Second, carbon was used due to its relatively low atomic number
Z = 6 to prevent a large cross section for multistep Coulomb excitation since
the focus of the experiment was to study low-spin collective states.

Gammasphere

The Gammasphere array is an array of 110 high-purity Ge (HPGe) detec-
tors with Compton supression shields. Details for the array can be found in
Refs. [48, 49]. A drawing showing the geometry of Gammasphere is shown
in Fig. 4.1. It can be seen that the detectors are arranged symmetrically in
roughly a sphere with the faces of the detector forming a 122-element poly-
hedron. The polyhedron consists of 110 hexagons, which are occupied by the
detectors and 12 pentagons, which are openings in the polyhedron for target
chamber mounts and auxilary detectors. A schematic diagram for the Gam-
masphere detectors is shown in Fig. 4.2. All of the detectors cover 46% of the
total solid angle. Each of the detectors have an efficiency of 82% at 1.33 MeV
with respect to the NaI standard and the entire array has a total photopeak
effiency of 9.4%. The γ rays from the target are collimated with Hevimet, a
dense metal alloy, which also shields the BGO elements of the BGO shield.
The γ rays that are Compton scattered into the BGO shields are detected and
the signal is used as a veto to supress Ge signals that do not contain the full
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Figure 4.2: A schematic diagram of Gammasphere HPGe detectors. It consists
of a HPGe crystal, BGO anti-Compton elements, photomultipliers for the
BGO elements, Hevimet collimaters, detector electronics, and a liquid nitrogen
dewar, which stores liquid nitrogen for cooling the HPGe crystal. (Figure from
Ref. [50])
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Figure 4.3: Two energy spectra are shown for data obtained from a 60Co source
with and without Compton supression. (Figure from Ref. [50])

γ-ray energy. A unique element of the Gammasphere detectors is the BGO
backplug, which can be seen in the figure. This BGO element used for Comp-
ton supression is especially useful in that the Compton scattering cross section
is large at angles close to 0◦ and 180◦. Two spectra illustrating the effect of
Compton supression is shown in Fig. 4.3 for data obtained from a 60Co source.
The Compton unsupressed spectrum shows the large Compton background
that comes from γ rays that deposit only a portion of their full energy in the
Ge crystal. The Compton supressed spectrum shows a much lower Compton
background that results from vetoing Compton scattered γ rays detected in
one fo the BGO elements.

Spectra and Level Schemes

An energy spectrum for 134Xe obtained from the sum of all detectors is
shown in Fig. 4.4.

The spectrum was corrected for the Doppler shift due to the moving ion
and background subtracted. These methods will be discussed in more detail
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Figure 4.6: Level scheme for the observed transitions and corresponging levels
in 134Xe.

in the following sections. A level scheme for 134Xe and 136Ce showing the
observed transitions and their corresponding levels is shown in Figs. 4.6 and
4.7, respectively.

4.2 Data Analysis

The experimental data were stored in a format called list mode, where data
for each event were recorded and individually stored on magnetic tape or hard
disk. All data were sorted offline to produce the final spectra and matrices.
The events in our experiment were defined as the detection of one or more
γ rays not Compton supressed in any of the detectors. A total of 8.4 × 108

events were recorded for 134Xe experiment and 7.8 × 108 events for the 136Ce
experiment. The Multi Instance Data Acquisition System (MIDAS) program
using the MTSort language was used to sort the raw data into spectra and
matrices.

4.2.1 Efficiency Calibration

An efficiency calibration was done using 152Eu and 56Co sources mounted
at the position of the beam spot. The use of both sources provided γ rays
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with energies covering the energy range of interest, from 300 keV to 2.6 MeV.
A figure showing the relative efficiency measured for the set of Gammasphere
detectors at an angle θ = 90◦. is shown in Fig. 4.8. A precise efficiency cal-
ibration was crucial in measuring the relative cross sections of states excited
in Coulomb excitation and angular distributions. The magnitude of how pre-
cisely the relative efficiency could be measured was limited by the statistics
accumulated for each γ ray peak and the precision to which the relative ef-
ficiencies of the γ rays were known. Both of these uncertainties were on the
order of 1%. This means that all measured intensities were limited in precision
by roughly this amount.

4.2.2 Doppler Correction

For each experiment, a 1.2 mg/cm2 natural carbon target was used. The
thickness of the target was not sufficient to stop any ions traversing through
it and all ions recoiled into vacuum. The velocity of the ions was on the order
of 6-7% the speed of light. This resulted in a Doppler shift of observed γ rays.
The relativistic Doppler formula is given by

E(θ) = E0
(1 + β cos θ)

√

1 − β2
, (4.1)

38



0 500 1000 1500 2000 2500 3000
energy (keV)

5

10

15

re
la

tiv
e 

ef
fic

ie
nc

y

Figure 4.8: The measured relative efficiency and the fitted efficiency curve for
the set of Gammasphere detectors at 90◦.
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where E0 is the Doppler unshifted energy, θ is the angle of the detector with
respect to the beam axis, and β = v

c
. Assuming that the heavy ions travel in

a straight line down the beam axis, which is reasonable approximation for a
heavy projectile and light target, the observed γ-ray energy was corrected to
the Doppler unshifted energy E0.

Using Gammasphere’s Segmented Detectors

The increase in the width of a doppler shifted peak due to the finite angular
size of a γ-ray detector is called Doppler broadening. The magnitude of this
broadening is obtained by differentiating Eq. (4.1) with respect to θ obtaining

dE = E0
β sin θ

√

1 − β2
dθ. (4.2)

It can be seen that this effect is maximum for detectors located at 90◦ with
respect to the velocity of the recoiling nucleus emitting the γ ray. A number of
Gammasphere detectors have a two-fold segmentation of the outer electrode
and information from this segmentation can be used to increase the angular
granularity of the array by allowing one to know which part of the detector
the γ ray was detected. A figure illustrating the use of segmentation is shown
in Fig. 4.9. Most of the segmented detectors are located at and around 90◦

where the broadening is largest.
A γ ray interacting at different points in the detector will exhibit different

Doppler shifts. This can be seen in Fig. 4.10, where three different peaks are
shown corresponding to a γ ray being detected in the three different regions
of the detector called left, center, and right. In the present work, a three-fold
partition of the detector was used. It can be seen that the energy of each
peak is Doppler shifted according to whether the location of the portion of the
detector corresponding to left and right were at a smaller or larger angle with
respect to the beam axis. In this case, left corresponded to a larger angle θ
while right corresponded to a smaller angle θ.

A Gammasphere detector covers an angle of 7.4◦. For a 1 MeV γ ray and
β = 0.07, the Doppler broadening is 9.0 keV. If the uncertainty in the angle
is reduced by a factor of two, the Doppler broadening is reduced to 4.5 keV.
It can be seen in Fig. 4.10 that the resolution of a peak is still larger than
what can be accounted for from Doppler broadening alone. The uncertainty
in the velocity of the beam ∆β and the intrinsic detector resolution ∆Edet also
contribute to the width of a peak. The relative width of a peak is given by
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summing the contributions in quadrature as

(
∆E

E

)2

=

(
β sin θ

1 − β cos θ

)2

(∆θ)2 +

( −β + cos θ

(1 − β2)(1 − β cos θ)

)2

(∆β)2

+

(
∆Edet

E

)2

, (4.3)

where ∆E is the total width of a peak, E is the energy of the γ ray, and ∆θ
is the uncertainty in the γ ray detection angle due to the finite solid angle of
a detector and the spread in angle due to the scattering of the projectile [51].
With these additional terms, the total width of the peak should be accounted
for.

4.2.3 Room Background Subtraction

In the experiment, the γ rays coming from the natural room background
were contaminants in the energy spectra. Because peak areas need to be
measured as accurately as possible for the measurement of cross sections and
angular distributions, any method to filter out or subtract these contaminants
is desirable. A portion of the time-energy matrix for the 134Xe measurement
is shown in Fig. 4.11. Time runs from right to left on the x-axis of the plot.
The features corresponding to peaks originating from Coulomb excitation and
room background can be seen. Whereas the Coulomb excitation lines happen
at roughly one point in time, corresponding to when the beam bunch of ions
hits the target, the room background lines are uniform in time. Because
the room background is constant, one can subtract the contribution of the
room background by setting gates on different parts of the time spectrum.
A typical time spectrum and the relevant gates are shown in Fig. 4.12. The
spectrum resulting from the background gates can be subtracted from the
spectrum resulting from the beam gate in order to subtract the background.
In order to do this, the spectrum obtained from the background gate has to be
properly normalized. This can be done by taking the ratios of the width of the
beam gate Wbeam and background gates Wback =

∑

iW
i
back. The background

subtracted spectrum is then obtained by

Nsub(Ei) = Nbeam(Ei) −
Wbeam

Wback

Nback(Ei). (4.4)

The results of the background subtraction for a Doppler uncorrected spectrum
is shown in Fig. 4.13. Part (a) of the figure shows the 1461-keV line from the
decay of the naturally occuring 40K. It can be seen in Part (b) the line is
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Figure 4.11: Part of the time-energy matrix is shown. The peaks corresponding
to room background and Coulomb excitation can be seen.
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Figure 4.12: Illustration of time spectrum and the beam and background gates
set on it.

completely subtracted. In Part (c) of the spectrum, two background lines can
be seen. The higher energy line comes from the decay of Th. Part (d) shows
the Th line is subtracted while the other background line is hardly reduced.
This means that the latter background line is correlated in time with the
beam and cannot be subtracted using time gates. This is one possible source
of systematic error in the measured peak areas.

4.2.4 Measuring Angular Distributions of γ Rays

Angular distributions of γ rays were measured using Gammasphere. The
detectors were grouped into sets of detectors that were at the same polar angle
θ from the beam axis. There were a total of 16 different sets, also known as
rings, for our experiment, which allowed for measurements of intensities at
maximally 16 different angles.

Relativistic Effects

The beam velocities of the ions in the experiment were on the order of
7% the speed of light. These velocities were sufficient to produce observable
relativistic effects that change the angle of propagation of a γ ray. This results
in a change in the angle and solid angle of a detector when viewed from the
projectile nucleus’ frame of reference. These effects had to be accounted for

44



0

250

500

750

1000

co
un

ts

0

50

100

150

2500 2600
energy (keV)

0

50

100

150

1400 1500
energy (keV)

0

250

500

750

1000

co
un

ts

(a) (c)

(b) (d)

Figure 4.13: A parts of a Doppler-uncorrected energy spectrum are shown
with and without subtraction using time gates. Part (a) shows the 1461-keV
peak from the decay of naturally occuring 40K. Part (b) shows it subtracted.
Part (c) shows two background lines, one of which is the peak coming from the
decay of Th. Part (d) shows the Th line subtracted while the other remains.
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in order to measure proper angular distributions. The expression relating the
angle of a detector in the lab θlab and the angle of a detector in the nuclear
frame of reference θnuc is given by

cos θnuc =
cos θlab

1 − β cos θlab

, (4.5)

where β = v
c

[52]. The maximum change in the angle occurs at θlab = π
2

and
with the change becoming smaller as one goes to either 0◦ or 180◦, where there
is no change in angle between the lab and nuclear reference frames. This can
easily be derived by differentiating the expression for θlab and seeing that the
expression is proportional to sin θlab.

For velocites of β = 0.07 as in our experiment, the largest change in angle
is about 3 degrees. This does not dramatically influence our angular distribu-
tions, but is an observable effect that can be accounted for. One of the effects
is that there is a finite Doppler shift for detectors that are located at 90◦ in
the laboratory frame.

Another effect, which is much more significant for our analysis is the change
in the apparent solid angle of detectors, which results from the change in
propagation angle of the emitted photon. This result can be derived from the
Eq. 4.5. The relation for the solid and in the lab frame dΩlab and in the nuclear
frame dΩnuc is given by

dΩnuc =
1 + β cos θnuc

1 − β2
dΩlab. (4.6)

The maximum for the change in solid angle occurs at 0◦ and 180◦ and for
velocities β = 0.07 the change in solid angle at 0◦ is 13%.

Measuring Multipole Mixing Ratios

The measurement of the angular distribution of γ rays allows one to mea-
sure the multipole mixing ratios for mixed transitions, which is needed to
deduce M1 transition strengths. The decay of a 2+ state in a vibrational nu-
cleus is shown in Fig. 4.14. The 2+ state can decay either through a pure E2
transition to the ground state or a mixed E2/M1 transition to a lower-lying
2+ state. For the one-quadrupole phonon 2+

1,ms mixed-symmetry state, we are
interested in measuring the E2/M1 multipole mixing ratio of decays to the 2+

1

state.
An excited 2+ state is primarily populated by Coulomb excitation. The

excitation process aligns the state meaning there is a non-uniform population
of various M states. The alignment of the states is quantified by the so called
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Figure 4.14: The decay of a 2+ excited state.

statistical tensors ρk(I) [53], which are related to the relative population of M
states PM(I) by

ρk(I) = (2I + 1)
1

2

∑

M

(−1)I−M 〈I M I −M | k 0〉PM(I), (4.7)

where 〈I M I −M | k 0〉 is a Clebsch-Gordon coefficient. This non-uniform
population of the M states is what gives rise to the observed anisotropic dis-
tribution of radiation. The statistical tensors are equal to the terms α

(i)
km

defined in Eqs. 3.25 and 3.26 apart from a constant.
First the angular distribution of the decay to the ground state is measured

to obtain the values for the statistical tensors. The measured angular distri-
bution for the 2+

2 → 2+
1 decay in 134Xe is shown in Fig. 4.15. The data were

fitted with the function

W (θ) =
∑

k=0,2,4

Ck Pk(cos θ), (4.8)

which is a parameterized version of Eq. (3.27) where Ck are parameters and
Pk(cos θ) are the k-th order Legendre polynomials. The function was fitted
using a χ2 minimization procedure. The parameters Ck are related to the
statistical tensors by

Ak = ρk(I)C
′
k(λ, λ

′, If , In, δ), (4.9)
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Figure 4.15: The measured and fitted angular distribution function W (θ) for
the 1614-keV transition in 134Xe.

where

C ′
k(λ, λ

′, If , In, δ) =
Fk(λ, λ, If , In) + δFk(λ, λ

′, If , In) + δ2Fk(λ
′, λ′, If , In)

1 + δ2
.

(4.10)
The terms Fk(λ, λ

′, If , In) are the F coefficients mentioned in Sec. 3.1.2 and
the multipole mixing ratio δ is defined as

δ = q

√
3

10

〈If ‖M(E2) ‖ In〉
〈If ‖M(M1) ‖ In〉

, (4.11)

where the reduced transition matrix elements contain the multipole operators
defined in Eq. 3.11 and

M(Mλ, µ) =
−1

c(λ+ 1)

∫

j(r) · (r ×∇)rλYλµ(θ, φ)d3r. (4.12)

The term C ′
k is equivalent to the term F (If , In) defined in Eq. 3.22, the only

difference being written in terms of δ or ∆(λ). The relation of δ and ∆(λ)
with the multipole operators as well as the various conventions used for δ can
be found in Appendix A.
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Jπ
i ρ2 ρ4

2+
1 −0.20(7) 0.0(24)

2+
2 −0.48(5) 0.1(4)

2+
3 −0.512∗ 0.069∗

2+
4 −0.538∗ 0.085∗

Table 4.1: Table of ρn coefficients for 2+ states in 134Xe. The values marked
with an * were calculated from first-order perturbation theory for a beam
energy of 435 MeV.

The values of ρk(I) from the fitted values of Ck can be found using Eqs.
(4.9) and (4.10). The calculated values of the statistical tensors of the 2+

states of 134Xe are tabulated in Table 4.1. The statistical tensors for the
2+

3 and 2+
4 states were not calculated from the measurement of the angular

distribution coefficients as were the values for the 2+
1 and 2+

2 states. The
reason is because the relevant peaks had background contamination, which
could not be subtracted from the spectrum. The statistical tensors were for
these states were calculated from Coulomb excitation amplitudes calculated
from first-order perturbation theory. It was assumed that second and higher
order effects such as multiple step Coulomb excitation to these states would be
small due to the relatively high excitation energy of the states and also a lack of
strong E2 transitions connecting it with the 2+

1 state. The relative population
of M states calculated from the statistical tensors listed in Table 4.1 is shown
in Fig. 4.16. It can be seen that the alignment of higher-lying states is higher
than the 2+

1 state. This may be due to a deorientation from hyperfine fields as
the ions leave the target and recoil into vacuum. The relatively short lifetimes
of the higher-lying states may have prevented a large attentuation from this
effect.

After the statistical tensors for the states of interest are known, δ of the
mixed transition to the 2+

1 state can be found by performing a fit of the
angular distribution using δ as a parameter. Using Eqs. (4.9) and (4.10),
the angular distribution function given in Eq. (4.8) can be parameterized by
δ and C0. The angular distribution for the 2+

2 → 2+
1 is shown in Fig. 4.17.

The results for δ for the mixed transitions in 134Xe are tabulated in Table 4.2.
For the 2+ → 0+

1 transitions in 136Ce, the low intensity of these transitions
along with background contamination resulted in not being able to make any
clean measurements of δ. For later analysis, the multipole mixing ratios were
taken from Ref. [54] where they were measured in an γγ angular correlation
measurement.
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Figure 4.16: The relative population of M states of 2+ states of 134Xe is shown.
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Figure 4.17: The measured and fitted angular distribution function W (θ) for
the 767-keV transition in 134Xe.
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4.2.5 Transition Matrix Elements from Coulomb Exci-

tation Cross Sections

From the observed transition intensities, one is able to calculate the rela-
tive population for each of the observed states and thus the relative Coulomb
excitation cross section. This is done by adding and subtracting the γ-ray
intensities according to the known level schemes, given in Figs. 4.6, 4.7, to
account for the population of a state from a γ transition from a higher-lying
state. The observed intensity of each transition is tabulated in Tables 4.2 and
4.3 for 134Xe and 136Ce, respectively. The intensities were normalized to the
respective 2+

1 → 0+
1 transitions.

Two different Coulomb excitation programs, CLX and GOSIA, were used
to determine the transition matrix elements. Each of the programs and how
they were used will be described, especially the CLX program due to its ex-
tensive use in the analysis.

CLX

One of the programs used was CLX [43, 44], which is a modified version
of the multiple Coulomb excitation program developed by Winther and de
Boer [41]. The main difference between the CLX program and the Winther
and de Boer program is the Winther de Boer program can calculate cross
sections for E2 excitations for up to 10 nuclear levels. The modified CLX
can calculate cross sections for up to 50 states and for E1, E2, E3, E4, and
M1 transitions. Otherwise, CLX uses the same algorithms for calculating the
Coulomb excitation amplitudes as in the program of Winther and de Boer.
This procedure will briefly be outlined below.

The program of Winther and de Boer calculates the Coulomb excitation
amplitudes by integrating the set of coupled differential equations as given by
Eq. 3.9, which is explained in detail in Ref. [41].

Starting with the coupled differential equations for the Coulomb excitation
amplitudes given in Eq. 3.9, the equations can be transformed by the change
of variables

t = a
v
(ǫ sinhw + w), (4.13)

rp(t) = a(ǫ coshw + 1), (4.14)
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Figure 4.18: A 2+ state decaying to the 2+
1 state and 0+

1 ground state. The
matrix elements for the transitions, the quadrupole moments of the states
Q0 are input parameters of the program. The branching ratio and multipole
mixing ratio δ put constraints on the value of the matrix elements.

where ǫ = 1
sin θ

2

. The differential equations then become

dan(w)

dw
=

4πZ1e

i~v

∑

λµm

Yλµ(θ, φ)exp[iξnm(ǫ sinhw + w)]

aλ(ǫ coshw + 1)λ(2λ+ 1)
〈m |M(Eλ, µ) |n〉 am(w).

(4.15)
Further simplications can be made by defining several new variables and using
symmetry relations, but the integration performed by the program is basically
Eq. (4.15) over the variable w. For the integration of Eq. (4.15), a fourth-order
Runge-Kutta method is used to find the initial values that are input into an
Adams-Moulton predictor-corrector method. An adaptive stepsize is used to
ensure that the accuracy defined by the user is maintained.

Shown in Fig. 4.18 is again the decay of a 2+ state to the 2+
1 and 0+

1

ground state. The transition matrix elements corresponding to the shown
transitions are input parameters in the program. The electric quadrupole
moments are the diagonal matrix elements of the E2 operator and they are
also input parameters in the program. The modification of cross sections due
to the quadrupole moment of a state is a second-order effect. Due to this
and the fact that the quadrupole moment for vibrational nuclei are not large,
a value of Q0 = 0 for all states were assumed. The E2 transitions are the
dominant mode of excitation in vibrational nuclei and thus the M1 transition
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matrix element does not contribute much to the total cross section. It is
for this reason the multipole mixing ratio δ is important for constraining the
M1 matrix element. The branching ratios, which are either known or easily
measured for almost all states of interest place another important contraint
on the matrix elements.

A set of matrix elements was to input a set of matrix elements in the
program and the corresponding cross sections were calculated. Then these
cross sections were compared with the experimental ones and then changed
accordingly to reproduce the experimental cross sections using the measured
or known branching ratios and multipole mixing ratios were used to constrain
the ratio of matrix elements. The starting values for the matrix elements
were calculated from the ratio of cross sections calculated from first-order
perturbation theory as found in Ref. [38]. The values of these matrix elements
were found to be close to the ones calculated from the CLX program, although
slightly they were slightly overestimated.

One of the unknown parameters in the calculation was determining the
relative phase of the matrix elements. The RPT phase convention [39] is used
in the program, which gives real values for the matrix elements, but the value
can either be positive or negative. Use of different phases corresponding to the
positive or negative value of the matrix elements can modify the cross sections
due to interference effects. Strictly speaking, in this way the values of the
matrix elements are not uniquely determined by the experimentally observed
cross sections. Despite this, the interference effects are second-order effects
and the extent to which they affect the values of the matrix elements in our
experiment is small.

Integrating over Energy Loss in Target

Charged ions moving through a medium are slowed down due to the inter-
action with charges in the material. In our experiments there is an approx-
miately 20% loss of energy of the ion as it travels throught the target. The
Coulomb excitation cross sections are very sensitive to the energy of the in-
coming projectile and in order to take this into account, the cross section needs
to be averaged over the distance traveled through the target. It turns out in
our case that the loss of energy as a function of distance through the target
is very well approximated by linear function. This means that it is sufficient
to find the average cross section over the range from the initial to final beam
energies. The average total cross section is

(σn)av =

∫ Ef

Ei
σn(E) dE

Ef − Ei

, (4.16)
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where Ei and Ef are the initial and final beam energies, respectively. This
calculated average cross section is used in comparing the results of the input
matrix elements with the experimentally observed cross sections.

GOSIA

The second Coulomb excitation program used wass GOSIA [55], a program
developed by T. Czosnyka, D. Cline and C. Y. Wu at Rochester University.
This program allows one to calculate Coulomb excitation cross sections by
integrating the coupled differential equations for the Coulomb excitiation am-
plitudes, just as in the CLX program, but it differs in that it also allows one to
fit for the transition matrix elements for a given set of measured cross sections
and other known spectroscopic data using a minimization procedure. It is also
able to take most corrections into account, which are needed to correctly relate
the observed γ-ray yields to the transition matrix elements. These corrections
include correcting for the change in solid angle and angle due to relativistic
effects, accounting for energy loss of ion in the target, and calculation of cross
sections from γ-ray yields.

The details of the minimization procedure are given in Ref. [56]. It was
found that the transition matrix elements calculated from CLX and GOSIA
were consistent within the estimated errors. The GOSIA calculations gave
values that were consistently smaller by a small amount than the CLX calcu-
lations. The GOSIA calculations were used as consistency check for the CLX
calculations. Though GOSIA has the advantage of searching for both positive
and negative phases for matrix elements and a method of estimating statistical
uncertainties, the GOSIA calculations could not be as thoroughly checked as
the CLX calculations and the statistical uncertainties could not be calculated
due to lack of experience with the program.

Measured Transition Strengths

In this section the transition strengths obtained from the Coulomb exci-
tation analysis will be presented. The reduced transition strength is defined
as

B(πλ;n→ m) =
1

2In + 1
| 〈m ‖M(πλ) ‖n〉 |2, (4.17)

The collectiveness of a transition can be estimated by the single-particle esti-
mate or Weisskopf unit. For electric transitions, it is defined as

BW (Eλ) =
(1.2)2λ

4π

(
3

λ

)2

A
2λ
3 e2(fm)2λ, (4.18)
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Figure 4.19: The measured transition strengths in 134Xe. The values plotted
for the transitions from the 2+

3 and 2+
4 states are the transition strengths that

correspond to the smaller of two possible δ values.

where A is the mass number. For a vibrational nucleus, or nucleus in the u(5)
limit, the collective E2 transitions expected are the ones shown in Fig. 2.3.
The collective M1 transition of a 2+

1,ms mixed-symmtry state is expected to
have a transition strength of approximately 0.2 µ2

N , which comes from taking
the boson g-factors as gπ ≈ 1 and gν ≈ 0.

The transition strengths measured in 134Xe and 136Ce are given in Tables
4.2 and 4.3, respectively. The transition strengths for electric transition are
given in Weisskopf units and the magnetic transitions in µ2

N . Due to the
uncertainty due to the two possible values of δ calculated for the 2+

3 → 2+
1 and

2+
4 → 2+

1 transitions in 134Xe, one set of transition strengths were calculated
for each δ value. The transition strengths for 134Xe and 136Ce are plotted in
Figs. 4.19 and 4.20, respectively.

4.2.6 Coincidence Analysis

A total of 2.6 × 106 and 2.9 × 106 events with multiplicity two or higher
were recorded for 134Xe and 136Ce, respectively. These events were sorted into
symmetric 4096 × 4096 Eγ-Eγ matrices. A two-dimensional view the Eγ-Eγ

matrix is shown in Fig. 4.21. By gating on observed transitions, one can verify
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Elevel Jπ Eγ Jπ
final Iγ A2/A0 A4/A0 δ B(E2) B(M1)

(keV) (keV) (W.u.) (µ2
N)

847 2+
1 847 0+

1 1.00(1) 0.119(7) -0.006(9) 15.3(11)a

1614 2+
2 767 2+

1 4.70(5) × 10−3 -0.262(8) -0.014(11) -1.5(2) 18(2) 0.020(5)
1614 0+

1 4.93(8) × 10−3 0.284(11) -0.059(15) 0.65(7)
1731 4+

1 884 2+
1 1.79(2) × 10−3 11.6(8)a

1920 3+
1 1073 2+

1 3.55(5) × 10−4 0.16(2)a

1947 2+
3 1100 2+

1 3.44(4) × 10−3 0.265(7) 0.009(10) 0.08(2) 0.43(4)c 0.22(3)c

1.86(9) 57(5)e 0.068(5)e

1947 0+
1 5.15(9) × 10−4 0.306b -0.074b 0.57(6)c

2263 2+
4 1415 2+

1 7.3(1) × 10−4 0.326(18) 0.067(24) 0.14(2) 0.02(1)d 0.020(15)d

1.6(1) 2.2(4)f 0.012(1)f

2263 0+
1 6.3(1) × 10−4 0.322b -0.091b 0.30(9)d

2867 (4)+ 921 2+
3 2.5(3) × 10−4

2020 2+
1 5.9(9) × 10−4

Table 4.2: A compilation of the measured quantities in 134Xe.

aValue from Ref. [57]
bCalculated values
cCalculated using value of δ = 0.08(2).
dCalculated using value of δ = 0.14(2).
eCalculated using value of δ = 1.86(9).
fCalculated using value of δ = 1.6(1).
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Elevel Jπ τ Eγ Jπ
final Iγ A2/A0 A4/A0 δ B(E2) B(M1)

(keV) (ps) (keV) (W.u.) (µ2
N)

552 2+
1 9.8(10)a 552 0+

1 1.00(4) 39(4)a

1092 2+
2 5.7(6) 540 2+

1 6.6(4) × 10−3 -4.7(7)b 53(8) 0.002(1)
1092 0+

1 2.35(6) × 10−3 0.58(8)
1314 4+

1 9.5(28)a 762 2+
1 5.5(1) × 10−3 8.0(22)a

2067 2+
3 0.27(1) 1515 2+

1 6.1(2) × 10−4 0.39(1) -0.02(2) 0.46(8) 0.69(4) 0.022(2)
2067 0+

1 7.9(2) × 10−4 0.30(1) -0.10(2) 1.1(7)
2155 2+

4 0.06(1) 1603 2+
1 5.0(2) × 10−4 -0.41(8)b 3.8(3) 0.17(3)

2155 0+
1 4.3(6) × 10−5 0.52(3)

Table 4.3: A compilation of the measured quantities in 136Ce.

aValue from Ref. [58]
bValue from Ref. [54]
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Figure 4.20: The measured transition strengths in 136Ce.

the low-energy level scheme for the nuclei of interest and also look for γ-ray
transitions that are weak and do not appear in the singles spectrum. An
example of a gated spectrum on the 920-keV transition in 134Xe is shown in
Fig. 4.22. The γ-ray transitions in coincidence with the 920-keV transition
can clearly be seen.

Evidence for two new γ-ray transitions in 134Xe were found. A 921-keV
transition was found to be in coincidence with the 847-keV and 1100-keV
transitions. The proposition that the 921-keV transition connects the 2867-
keV state with the 1947-keV state as placed in the level scheme in Fig. 4.6
is supported by the fact that it is consistent with all observed gated spectra.
The second new transition observed is the 1254-keV transition connecting the
2867 keV state with the 1614-keV state. It is very close in energy with the
1269-keV transition and both peaks overlap in the observed singles spectrum
as can be seen in Fig. 4.4, but it can be seen from the peak width that it
is an energy doublet. By gating on the 767-keV or 1614-keV transition, the
1254-keV peak can be clearly isolated in the gated spectrum. It should be
noted that the other transitions from the 2867-keV state were not observed in
our experiment, thus the transition intensities from the 2867-keV state in our
experiment are not consistent with the adopted values of the branching ratios
as given in Ref. [57].
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Figure 4.21: A two-dimensional view of the symmetric Eγ-Eγ matrix of 134Xe.
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Figure 4.22: A gate on the 921-keV transition in 134Xe.

From the analysis of the matrix of 136Ce, one previously unknown γ ray
with a measured energy of 1430 keV was found in coincidence with the 552-
keV 2+

1 → 0+
1 transition. The placement of this γ ray in the level scheme, if it

belongs to 136Ce, is currently unknown.
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Chapter 5

Evolution of Mixed-Symmetry

States

5.1 N = 80 Isotones

5.1.1 Identification of the 2+
1,ms State in 134Xe

The M1 transitions strengths for 134Xe are given in Table 4.2. There
are two values, each corresponding to the large or small measured value of
δ. The larger M1 transition of B(M1; 2+

3 → 2+
1 ) = 0.22(3) corresponding

to δ = 0.08(2) is favored due to the fact that the other possible value of the
B(M1) results in a B(E2; 2+

3 → 2+
1 ) = 60 W.u., which is much larger than can

be accounted for from any standard description of collective nuclei. Taking the
values of the larger M1 transitions for the 2+

3 → 2+
1 and 2+

4 → 2+
1 transitions

as can be seen in Fig. 4.19, we find the 2+
3 state is the dominant fragment

of the 2+
1,ms mixed-symmetry state. The uncertainty of the B(M1; 2+

4 → 2+
1 )

value does not affect our conclusion as both possible values are small compared
to the B(M1; 2+

3 → 2+
1 ).

5.1.2 Phenomenological fit

The 2+
1,ms has been identified in two other N = 80 isotones, namely 136Ba

[27] and 138Ce [28]. A plot of the energies of the 2+
1,ms state along with the

energies of the 2+
1 state is shown in Fig. 5.1. It can be seen that the energy of

the 2+
1,ms state increases with increasing proton number while the energy of the

2+
1 state decreases with proton number. A simple two-state model was used

to reproduce these trends to try to understand the behavior of the splitting in
energy between these states.
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Figure 5.1: A phemonological fit for the energy of the 2+
1,ms state in the N = 80

isotones

The two-state model is described in Heyde and Sau [20] and uses a proton
and neutron 2+ state as the two basis states,

∣
∣2+

π

〉
=

(
1
0

)

(5.1)

∣
∣2+

ν

〉
=

(
0
1

)

. (5.2)

The Hamiltonian of the system is

H =

(
ǫπ Vπν

Vπν ǫν

)

, (5.3)

where ǫπ and ǫν are the energies of the proton and neutron states, respectively,
and Vπν is the interaction between the states. Diagonalizing this Hamiltonian,
an eigenstate that is symmetric and anti-symmetric are obtained. The energies
of these eigenstates are

Es,a =
ǫπ + ǫν

2
∓ 1

2

√

ǫπ − ǫν
2

− 4Vπν , (5.4)

with the minus sign giving the energies of the symmetric states and the plus
sign giving the energy of the anti-symmetric states. It can be seen in Fig. 5.1
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that the difference in energy between the 2+
1 state and the 2+

1,ms state is not
constant, but increases. From Heyde and Sau, the interaction is attributed
to the proton-neutron quadrupole interaction, which roughly increases as the
square root of the product of the number of proton and neutron bosons. We
parametrize this interaction as

Vπν(Nπ) = C
√

NπNν , (5.5)

where Nπ and Nν are the number proton and neutron bosons, respectively. It
can also be seen that the splitting of the experimental energies is not symmet-
ric; the energies of the 2+

1,ms states seem to increase in energy more quickly
than the energies of the 2+

1 states decrease. This can seen from the average
energy Eav, shown in Fig. 5.1 as the purple line, which increases in energy. In
order to reproduce the observed energies, it was assumed that the energies of
the proton states increase linearly with proton boson number as a first-order
approximation given by

ǫπ(Nπ) = a+ b(Nπ − 1). (5.6)

The fact that the energy of the proton state increases in energy with proton
boson number is supported by the fact that the 2+

1 state of the N = 82
isotones increase in energy approximately linearly, shown in Fig. 5.1 as yellow
diamonds. Since N = 82 is the neutron shell closure, it is assumed that first
excited 2+ state is due mostly to a proton excitation. The form of Eq. (5.6) is
chosen such that the parameter a is the energy of one proton boson, i.e. for
Nπ = 1. We fix this parameter to the energy of the 2+

1 state in the N = 82
isotone 134Te. Likewise, we fix the energy of the neutron state to the energy
of the 2+

1 state in the Z = 50 nucleus 130Sn. The 2+
1 state in this nucleus is

assumed to arise mainly from the one neutron hole. Thus the values of the
fixed parameters are

a = E(134Te; 2+
1 ) = 1279 keV (5.7)

ǫν = E(130Sn; 2+
1 ) = 1221 keV. (5.8)

Eq. (5.6) was fit simultaneously to the energies of the 2+
1 and 2+

1,ms states of
the N = 80 isotones using the parameter values given in Eq. (5.7) and (5.8).
The results of the fit for the energies of the 2+

1 and 2+
1,ms are shown as black

curves in Fig. 5.1. The energy of the proton state ǫπ(Nπ) is shown as the red
curve and the energy of the neutron state ǫν , which remains constant for the
isotones, is shown as the green curve. The values of the fitted parameters are
b = 0.081 MeV and C = 0.341 MeV.
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It can be seen that the fitted energies describe the trends of the isotones
quite well showing that this simple parameterization of the 2+

1 and 2+
1,ms states

as a pair of symmetric and anti-symmetric states which come from a basic
proton and neutron excitation gives a good qualitative description of the data.
Though we can see the increase in the strength of the proton-neutron inter-
action, this simple model suffers from a deficiency, which is it only takes into
account the excitation energies of the states without accounting for the extra
binding energy gained from the increasing proton-neutron interaction. In the
next section, the fit using the IBM-2 will be presented, which is a more real-
istic model that accounts for the binding energies resulting from the changing
interactions.

5.1.3 IBM-2 Calculation

The IBM-2 calculation was performed to reproduce the experimentally ob-
served energies of 2+ states in the N = 80 isotones using the program NPBOS
[59]. NPBOS numerically diagonalizes an IBM-2 Hamiltonian using the so
called spherical basis, which results from the chain of algebras given in Eq.
(2.27). The Hamiltonian used for calculating the eigenstates is

H = E0 + ǫπn̂dπ
+ ǫνn̂dν

+ κQ̂χ
π · Q̂χ

ν + λM̂πν , (5.9)

also known as the Talmi Hamiltonian. The multipole operators in the Hamil-
tonian are defined in Eq. (2.10) and (2.46) and

M̂πν = [s†ν ×d†π−s†π×d†ν ](2) · [s̃ν × d̃π− s̃π× d̃ν ]
(2)−2

∑

k=1,3

[d†ν ×d†π](k) · [d̃ν × d̃π](k).

(5.10)
also called the Majorana operator. The term containing the proton-neutron
quadrupole-quadrupole term Q̂χ

π ·Q̂χ
ν is an attractive interaction and is respon-

sible for splitting the 2+
1 and 2+

1,ms states in energy. The Majorana operator

M̂πν primarily affects states of mixed-symmetry, increasing their energy.
The parameters in the Hamiltonian were varied by hand until a satisfactory

reproduction of the experimental energies was obtained. A sufficient splitting
in the energies of the 2+

1 state and the 2+
1,ms could not be achieved with the

proton-neutron quadrupole term alone, hence the inclusion of the Majorana
interaction. The energies for the first three 2+ states were calculated and the
calculated values are shown in Fig. 5.2. The values of the parameters used in
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Figure 5.2: Shown are the energies of 2+ states in the N = 80 isotones along
with the calculated energy levels using the IBM-2 program NPBOS.

the fit were

ǫπ = 0.8 MeV,

ǫν = 1.2 MeV, (5.11)

κ = 0.12 MeV,

λ = 0.4 MeV.

The parameter E0 was not used as it represents the total binding energy apart
from the interactions contained in the Hamiltonian. It can be seen that the
trends in the first, second, and third 2+ states are well reproduced with these
values. The colored lines connecting the calculated points in Fig. 5.2 repre-
sent the grouping of the states depending on whether it is of predominantly
fully-symmetric or mixed-symmetry character. The calculation predicts that
in 132Te, the second excited fully-symmetric 2+

2,fs state and one-phonon 2+
1,ms

mixed-symmetry state have reversed their order in energy. The asterisks in-
dicate the tentative 2+ states in 132Te, which may correspond to the 2+

2,fs and

2+
1,ms state.

There were two aspects of the chosen values of the parameters that were
needed to reproduce the energies as shown in Fig. 5.2. First, is the inclusion of
both the proton-neutron quadrupole term and the Majorana operator. Second,
is the energy of the proton d boson ǫπ needed to be much lower in energy than
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Figure 5.3: The M1 transition strengths are shown for the 2+ → 2+
1 transition

in the N = 80 isotones.

the neutron d boson energy ǫν .

5.1.4 Evolution of Transition Strengths

The measured M1 transition strengths for the N = 80 isotones are plotted
in Fig. 5.3. The unfilled bars represent upper limits for the M1 transition
strength. For the isotones 134Xe and 136Ba, the M1 transition strength is
concentrated in the decay of one state, whereas for 138Ce it is split over two
closely-lying 2+ states and is decreased in magnitude. It is suggested by Rain-
ovski et al. [28] that this is due to the filling of the proton πg9/2 subshell.
Microscopic calculations using the quasiparticle phonon model also suggests
that the splitting and decrease in magnitude may be from the effects of the
πg9/2 subshell [60].
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5.2 N = 78 Isotones

5.2.1 Identification of the 2+
1,ms State in 136Ce

From the measured M1 transition strength distribution as given in Table
4.3, the 2+

3 and 2+
4 states are the dominant fragments of the 2+

1,ms state. The
energies of the known 2+

1,ms states along with the energies of the 2+
1 states in

the N = 78 isotones are shown in Fig. 5.4. It should be noted that the 2+
1,ms

state in 132Xe is only tentatively assigned. It also seems that the splitting in
energy between the 2+

1 fully-symmetric states and the 2+
1,ms state increases as

a function of proton number. The energy of the 2+
1,ms state appears to increase

more slowly with proton number then the ones found in the N = 80 isotones.

5.2.2 Evolution of the 2+
1,ms State

The M1 transition strengths measured in the N = 78 isotones is plotted
in Fig. 5.5. Again, the measurement for 132Xe is tentative. The total M1
strengths appear to be smaller for the N = 78 isotones when compared to
their corresponding isotopes in N = 80. The 2+

1,ms state is also fragmented
in both 134Ba and 136Ce while the tentative M1 strengths for 132Xe indicates
that it is not fragmented.
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Chapter 6

Summary

The purpose of this study was to identify and study the properties of MSS’s
in the A = 140 region. An inverse-kinematics Coulomb excitation experiment
was performed to measure absolute transition strengths in 134Xe and 136Ce.
One-phonon 2+

1,ms states have been identified in 134Xe and 136Ce from measured
absolute E2 and M1 transition strengths. By looking at the evolution of the
2+

1,ms state in the N = 80 isotones, it was found that the energy of the 2+
1,ms

state increases due in part to the proton-neutron interaction. The strength of
the proton-neutron interaction has been estimated using two different models
resulting in two different values. A model independent way to quantify the
strength of the proton-neutron interaction from the properties of the 2+

1,ms is
still needed. The data for the 2+

1,ms in the N = 78 isotones seems to indicate
a similar behavior to the ones in the N = 80 isotones. The confirmation of
the 2+

1,ms state in 132Xe as well as the identification of the state in neighboring
nuclei is needed to further constrain model parameters.

6.1 Outlook

The 2+
1,ms states found so far in the A = 140 mass region give us an in-

teresting glimpse into the behavior of mixed-symmetry states. The extent
of the existence of these states and also their purity would test the limits of
the validity of describing them as states of mixed proton-neutron symmetry.
Efforts are continuing in the search of mixed-symmetry states in this mass
region. In June 2006, the same Coulomb excitation experiment was performed
at Argonne National Laboratory (ANL) for the rest of the stable Xe isotopes
to measure absolute transition strengths. This will allow one to study the 2+

1,ms

along an isotopic chain as one goes farther from the N = 82 shell closure to
more collective nuclei at mid-shell. A similar Coulomb excitition experiment
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is scheduled to be performed for Sm isotopes where the experiment will probe
the deformed region of the nuclear chart for mixed-symmetry states.

Perhaps the measurements that would be the closest to the experiment
in our work is ones for the nuclides 130Te and 132Te as shown in Fig. 6.1.
Measurements in these nuclides would fill the gap that is present for the nu-
clide between the ones studied and both the Z = 50 and N = 82 shell closures.
This may be especially difficult for 132Te as it is not stable. To date, there
has not been any mixed-symmetry states identified in an unstable nuclide.
Coulomb excitation experiments are not limited to stable beams. The same
type of experiment can be performed using radioactive beams since the pro-
jectile is the nuclide of interest. Also allowing the beam to recoil into vacuum
would prevent the buildup of radioactivity in the target, which may cause
considerable background radiation. Currently, the feasibility of the such an
experiment is limited by the availability of high intensity beams as radioactive
beam species are much harder to produce. With the plans of high intensity
radioactive beam facilities to be available in the near future, such experiment
may soon become feasible, which would greatly open the opportunity to iden-
tify and study mixed-symmetry states and their evolution in which the Te
isotopes are a small example.
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Appendix A

Multipole Operators and

Mixing Ratios

In this appendix, some expressions describing emission of electromagnetic
radiation as well as some of the different defintions of the multipole mixing ratio
used in the literature will be presented. Detailed discussions of γ radiation can
be found for example in Refs. [35] and [52]. The much of the discussion on
multipole moments follows that of Chap. 3C-2 of the former.

A.1 Gamma Emission

Electromagnetic waves are described by the well known Maxwell’s equa-
tions. The creation and annihilation of radiation can be attributed to the
magnetic vector potential A(r). Photons can exist in two polarization states,
which is related to the two possible helicities of the photon, i.e. whether the
photon’s spin is projected parallel or anti-parallel to its propagation direction.
Another possible way to decribe the two polarizations is through the photon’s
parity. For a photon with momentum q and angular momentum quantum
numbers λµ, its parity can take values π = ±1, each of which corresponds to a
linear combination of states with a helicity of h = ±1. Photons characterized
by π and λ can be classified as either electric (Eλ) or magnetic (Mλ) multipole
quanta. The parity the of the photons is given by

π =

{

(−1)λ for Eλ with κ = λ± 1

(−1)λ+1 for Mλ with κ = λ
(A.1)

where κ is the orbital angular momentum of the photon.
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The two polarization states of a photon can be described using the gauge

∇ · A = 0 (A.2)

from which the multipole operators for electric and magnetic transitions can
be defined as

M(Eλ, µ) =
−i(2λ+ 1)!!

cqλ+1

∫

j(r) · ∇ × (r ×∇)(jλ(qr)Yλµ(r̂))dτ,(A.3)

M(Mλ, µ) =
−(2λ+ 1)!!

cqλ(λ+ 1)

∫

j(r) · (r ×∇)(jλ(qr)Yλµ(r̂))dτ. (A.4)

Long wavelength approximation

The spherical Bessel functions jλ(qr) can expanded as

jλ(qr) =
(qr)λ

(2λ+ 1)!!

(

1 − 1

2

(qr)2

2λ+ 3
+ . . .

)

. (A.5)

The wavelengths of γ radiation emitted from excited nuclear states are typi-
cally much longer than the radius of nucleus. For this condition of qr ≪ 1, it is
sufficient to take the first term of the expansion. This results in the following
forms for the multipole operators,

M(Eλ, µ) =

∫

ρ(r)rλYλµ(r̂)dτ, (A.6)

M(Mλ, µ) =
−1

c(λ+ 1)

∫

j(r) · (r ×∇)rλYλµ(r̂)dτ. (A.7)

Transition Strengths and Rates

The reduced transition strength is defined as

B(E(M)λ; I1 → I2) =
∑

µM2

|〈I2M2 |M(E(M)λ, µ) | I1M1〉|2

=
1

(2I1 + 1)
|〈I2 ‖M(E(M)λ) ‖ I1〉|2 , (A.8)

where 〈I2 ‖M(E(M)λ) ‖ I1〉 is the reduced matrix element. The transition
rate or intensity of the radiation of multipole L is given by

T (E(M)λ; I1 → I2) =
8π(λ+ 1)

λ[(2λ+ 1)!!]2
1

~
q2λ+1B(E(M)λ; I1 → I2). (A.9)
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This is related to the expression found in Eq. 3.23 by

T (E(M)λ; I1 → I2) = [∆(λ)(I1 → I2)]
2 . (A.10)

A.2 Multipole Mixing Ratios

Discussions on γγ angular correlations, angular distributions, and the defi-
nitions of multipole operators and their corresponding multipole mixing ratios
can be found in Refs. [35, 45, 47, 61–63]. Here only a few of the expressions
for the multipole mixing ratios often found in the literature will be given.

A commonly used definition of the multipole mixing ratio given by Krane
et al. [61, 63] is

δ =

〈

I2

∥
∥
∥ j(r) · A(π′)

λ′

∥
∥
∥ I1

〉

〈

I2

∥
∥
∥ j(r) · A(π)

λ

∥
∥
∥ I1

〉 , (A.11)

where j(r) is the nuclear current operator and the multipole fields are given
by

A
(M)
λµ (q, r) = iλ

L

[λ(λ+ 1)]
1

2

jλ(qr)Yλµ(r̂) (A.12)

and

A
(E)
λµ (q, r) =

iλ

q

∇ × L

[λ(λ+ 1)]
1

2

jλ(qr)Yλµ(r̂), (A.13)

using the natural units c = ~ = m = 1 and where L is the angular momentum
operator, jλ(qr) are the spherical Bessel functions, and Yλµ(r̂) are the spherical
harmonics. The reduced matrix elements are defined by the Wigner-Eckart
theorem as

〈

I2M2

∣
∣
∣ j(r) · A(π)∗

λµ

∣
∣
∣ I1M1

〉

= (−1)λ−µ+1
〈

I2M2

∣
∣
∣ j(r) · A(π)

λ−µ

∣
∣
∣ I1M1

〉

= (−1)λ−µ+1(−1)I2−M2

(
I2 λ I1

−M2 −µ M1

) 〈

I2

∥
∥
∥ j(r) · A(π)

λµ

∥
∥
∥ I1

〉

,(A.14)

where

(
I2 λ I1

−M2 −µ M1

)

is the Wigner 3-j symbol.

The relation between the reduced matrix elements given in Eq. (A.14) and
the ones found in the reduced transition strengths as in Eq. (A.8) is given by

〈

I2

∥
∥
∥ j(r) · A(E)

λ

∥
∥
∥ I1

〉

=
qλ

(2λ+ 1)!!

(
λ+ 1

λ

) 1

2 〈
I2

∥
∥ iλM(Eλ)

∥
∥ I1

〉
(A.15)
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for electric transitions and

〈

I2

∥
∥
∥ j(r) · A(M)

λ

∥
∥
∥ I1

〉

= − qλ

(2λ+ 1)!!

(
λ+ 1

λ

) 1

2 〈
I2

∥
∥ iλ−1M(Mλ)

∥
∥ I1

〉

(A.16)
for magnetic transitions. Using these relations, one obtains the expression for
the E2/M1 multipole mixing ratio defined previously in Eq. (4.11) as

δ = q

√
3

10

〈I2 ‖M(π′λ′) ‖ I1〉
〈I2 ‖M(πλ) ‖ I1〉

. (A.17)

The use of both the multipole operators defined by Eqs. (A.6) and (A.7), and
Eqs. (A.12) and (A.13) and their corresponding matrix elements in defining
the multipole mixing ratios can be a source of confusion when they are un-
knowingly interchanged.

Another definition of the multipole operators T (π)
λµ by Rose and Brink [62]

leads to reduced transition matrix elements related to the ones defined Eq.
(A.14) by

〈

I2

∥
∥
∥ j(r) · A(M)

λ

∥
∥
∥ I1

〉

= (−1)I1−I2+λ

[
2I1 + 1

2π(2λ+ 1)

] 1

2
〈

I1

∥
∥
∥ T (π)

λ

∥
∥
∥ I2

〉

. (A.18)

The seldom used definition of a multipole mixing ratio using the multipole
operators M(πλ) is given by

δ′ =
〈I2 ‖M(π′λ′) ‖ I1〉
〈I2 ‖M(πλ) ‖ I1〉

, (A.19)

with the matrix elements for electric transitions given in e(fm)λ and matrix
elements for magnetic transitions given in µN(fm)λ−1.
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