

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Flow Simulation and Visualization on GPU
Clusters

A Dissertation Presented
by

Zhe Fan

to
The Graduate School

in Partial Fulfillment of the
Requirements

for the Degree of
Doctor of Philosophy

in
Computer Science

Stony Brook University

August 2008

Copyright by
Zhe Fan

2008

Stony Brook University
The Graduate School

Zhe Fan

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy, hereby recommend

acceptance of this dissertation.

Arie Kaufman, Dissertation Advisor
Distinguished Professor, Computer Science Department

Klaus Mueller, Chairperson of Defense
Associate Professor, Computer Science Department

David Xianfeng Gu
Assistant Professor, Computer Science Department

Bengt-Olaf Schneider
PhD, NVIDIA Corporation

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Flow Simulation and Visualization on GPU Clusters

by
Zhe Fan

Doctor of Philosophy
in

Computer Science
Stony Brook University

2008

In recent years, the performance of graphics processing units (GPUs) has been in-
creasing dramatically. Modern GPUs have surpassed CPUs in raw computational
power by an order of magnitude. Because of the explicit data parallelism in the
graphics pipeline, the GPU can efficiently use hundreds of thread processors to
process data in parallel. Moreover, the GPU is becoming more and more flexible
and programmable. As a result, accelerating general-purpose computation on the
GPU (GPGPU) has become an active area of research.

This dissertation presents efficient ways to use GPUs and GPU clusters for
GPGPU in general and flow simulation and visualization in visual applications
in particular. We focus on a GPU-friendly method, called the Lattice Boltzmann
Model (LBM), a mesoscopic method that applies linear and local operations at
discrete lattice sites. We describe an optimized LBM implementation on a sin-
gle GPU and its applications in real-time modeling of natural phenomena, such
as fire, smoke, wind, and heat shimmering. We also present a novel GPU-based
adapted unstructured LBM algorithm for simulating flow on arbitrary 3D triangu-
lar surfaces. We further extend the LBM implementation from a single GPU to a
GPU cluster and describe how to efficiently manage the communication among the
multiple GPUs. We also present an application of the GPU cluster simulation in ur-
ban dispersion modeling. We further present an LBM implementation of irregular-
shaped simulation domain on a GPU cluster and its application for thermal fluid
dynamics in a pressurized water reactor of a nuclear power plant. Finally, Zippy, a

iii

general framework for GPU cluster programming, is presented. Zippy abstracts the
GPU cluster architecture with two characteristics important to high performance—
two-level parallelism hierarchy and non-uniform memory access (NUMA)—and
hides other architecture details. It simplifies the programming of a GPU cluster
while maintaining high performance. We also present three example applications
developed using Zippy and show how simulation and visualization modules can be
seamlessly integrated on a GPU cluster.

iv

This dissertation is dedicated to my wife Lei.

Contents

List of Tables . x

List of Figures . xi

Acknowledgements . xvii

Vita, Publications, and Field of Study . xix

1 Introduction . 1
1.1 Motivation . 1
1.2 Contributions . 4

2 Background . 7
2.1 GPU . 7

2.1.1 Programmable Graphics Pipeline 7
2.1.2 GPGPU . 9
2.1.3 Multi-Core Processors . 11

2.2 Physics-Based Visual Simulation of Fluids 13
2.2.1 Navier-Stokes Solvers . 13
2.2.2 Particle-Based Methods 14
2.2.3 Lattice Boltzmann Method 15

3 LBM on GPU . 20
3.1 GPU-Based LBM Implementation 20

3.1.1 Algorithm Overview . 20
3.1.2 Packing . 23

vi

3.1.3 Flat Volume . 24
3.1.4 Streaming . 24

3.2 GPU-based Boundary Handling 25
3.2.1 GPU-based Voxelization 26
3.2.2 Periodic Boundary . 28
3.2.3 Outflow Boundary . 30
3.2.4 Complex Boundary . 30

3.3 Visualization . 32
3.4 Performance . 33
3.5 Results . 35

4 Adapted Unstructured LBM on GPU 40
4.1 Unstructured LBM . 41
4.2 Out Method: Unstructured LBM on Curved Surfaces 43

4.2.1 Define Velocity Vectors for Mesh Points 45
4.2.2 Flatten the 1-Ring Neighborhoods 45
4.2.3 Rotate and Align the Velocity Vectors 46

4.3 Enhancements to Our Method . 48
4.3.1 Boundary Conditions . 48
4.3.2 Body Forces . 49
4.3.3 Vorticity Confinement on Unstructured Grid 49
4.3.4 Multi-Component Fluids 50

4.4 GPU Implementation . 51
4.4.1 Preprocessing . 51
4.4.2 Algorithm Overview . 51
4.4.3 Data Packing . 52

4.5 Results . 52

5 LBM on GPU Cluster . 56
5.1 The GPU Cluster . 56
5.2 The LBM Implementation . 57

5.2.1 Domain Partitioning . 57
5.2.2 Optimization of Inter-GPU Communication 59
5.2.3 Performance of LBM on the GPU Cluster 61

vii

5.3 Application: Dispersion Simulation in New York City 65

6 LBM of Irregular-Shaped Simulation Domain on GPU Cluster 69
6.1 Background . 70
6.2 Modeling of Thermal Fluid Dynamics 73

6.2.1 Multi-Relaxation-Time LBM 73
6.2.2 Hybrid Thermal Lattice Boltzmann Method 74

6.3 Simulation . 75
6.3.1 Configuration . 75
6.3.2 Cell Classification and Packing 77
6.3.3 GPU Cluster Implementation 78

6.4 Visualization . 81
6.4.1 3D Volume Rendering . 81
6.4.2 Thermal Layers Rendering 84
6.4.3 Panorama Rendering . 85
6.4.4 Statistical Analysis . 88

7 Zippy: A General Framework for GPU Clusters 90
7.1 Background . 91
7.2 Zippy Overview . 93
7.3 Zippy Framework . 95

7.3.1 Data Structures . 96
7.3.2 Coarse Level Parallelism 97
7.3.3 Fine Level Parallelism . 99
7.3.4 Debugging Tool . 100

7.4 Implementation . 100
7.4.1 Data Storage . 101
7.4.2 Data Movement . 102
7.4.3 Local Computation . 103

7.5 Example Applications . 104
7.5.1 Sort-Last Volume Rendering 104
7.5.2 Marching Cubes . 105
7.5.3 LBM Flow Simulation and Visualization 108

viii

8 Conclusions . 112
8.1 Summary . 112
8.2 Future Work . 113

8.2.1 Short-Term Future Work 113
8.2.2 Long-Term Future Work 114

Bibliography . 116

ix

List of Tables

2.1 GPUs and other multi-core processors. (Thermal Design Power
(TDP) in the last column is the maximum amount of thermal power
that the processors need to dissipate when running applications.) . . 12

3.1 Packed LBM variables of the D3Q19 model 23

4.1 Performance comparison of the adapted unstructured LBM on the
CPU and GPU. 55

5.1 Per step execution time (in ms) for CPU and GPU clusters and the
GPU cluster / CPU cluster speedup factor. (Each node computes an
803 sub-domain of the lattice.) . 62

5.2 The GPU cluster performance and the efficiency with respect to the
number of nodes. 64

6.1 Average computation time (in ms) of a single LBM step tested on
12 cluster nodes with and without GPU acceleration. 80

6.2 Performance of our visualization methods, tested on a GeForce
8800 GTX. (The image size is 5122. The step size of ray-casting is
one grid unit.) . 88

7.1 Theoretical bandwidth and latency in a GPU cluster, which demon-
strates a NUMA characteristic. 94

x

List of Figures

1.1 A comparison of the growth of the computational power of
GPUs (green) and CPUs (blue). (The figure is adapted from Fig-
ure 1–2 of NVIDIA CUDA programming guide [114].) 2

1.2 The main contributions of this dissertation and their interdependen-
cies. (The arrows show the interdependencies.) 5

2.1 A simplified illustration of the graphics pipeline. 8
2.2 The LBM lattice cells: (a) a D2Q9 lattice cell, and (b) a D3Q19

lattice cell. (Each velocity vector ei is associated with a particle
distribution fi.) . 16

2.3 Curved boundary condition for the LBM (adapted from [104]). . . . 17
2.4 Our implementation of the curved boundary condition in two ex-

amples: (a) flow passing four objects, and (b) flow passing a porous
object. 18

3.1 Division of the D2Q9 model, according to its velocity directions. . . 21
3.2 Division of the D3Q19 model. Every four direction volumes are

packed into one stack of 2D textures. (This figure only shows one
of the five stacks of 2D textures.) 22

3.3 Flow chart of the LBM computation on the GPU. (Red boxes are
the textures, while blue round boxes are operations.) 22

3.4 Propagation of distribution texture Tex1, which is packed with
f(1,1,0), f(−1,−1,0), f(1,−1,0), and f(−1,1,0). 25

3.5 Depth peeling for GPU-based voxelization. (Red color presents the
layer to be stripped away.) . 27

xi

3.6 Periodic boundary condition example. In this 2D channel flow, the
periodic boundary condition is applied to the left-most and right-
most lattice points. (For example, the three particle distributions of
lattice point a propagate to lattice points b, c, and d, respectively.) . 29

3.7 Outflow boundary condition example. In this 2D channel flow, the
outflow boundary condition is applied to all top-most and bottom-
most lattice points. (For example, the particle distributions of lat-
tice point b are obtained by copying the particle distributions from
lattice point a and vertically flipping the particle distributions.) . . . 30

3.8 Speed (in milliseconds per step) of a D2Q9 LBM simulation. 34
3.9 Speedup of the LBM on the GPU vs. the software version for the

D2Q9 model. 34
3.10 Speed (in seconds per step) of a D3Q19 LBM simulation. 35
3.11 Speedup of the LBM on the GPU vs. the software version for the

D3Q19 model. 35
3.12 Speed (in seconds per step) of a D3Q19 LBM simulation. (Unlike

that in Figure 3.10, this software version splits large lattices into
multiple 643 sub-lattices in order to reduce the cache-miss rate.) . . 36

3.13 Speedup of the LBM on the GPU vs. the software version for the
D3Q19 model. (Unlike that in Figure 3.11, this software version
splits large lattices into multiple 643 sub-lattices in order to reduce
the cache-miss rate.) . 36

3.14 2D LBM simulations on the GPU: (a) a (red) disk in the flow, (b)
two (red) bars and a (red) disk in the flow, and (c) flow in a river. . . 37

3.15 3D LBM simulations on the GPU with (a) a static vase, (b) a mov-
ing box, and (c) and (d) a jellyfish that swims from right to left. . . 38

3.16 Visual simulations of natural phenomena using the GPU-based
LBM: (a) blowing of a bubble, (b) fire, (c) smoke around a ball,
and (d) heat shimmering. 39

4.1 The 2D unstructured LBM grid. Every grid point has nine symmet-
rical velocity vectors (including the zero velocity), each associated
with a particle distribution function. 42

xii

4.2 The geometrical layout of the 1-ring neighborhood around a grid
point P. Points Pk are the neighboring points of P. (The green
regions stand for the finite-volumes which are defined around P.) . . 42

4.3 The 1-ring neighborhood of P is flattened to its tangent plane Λ.
Ghost point Gk is on behalf of neighboring point Pk. The velocity
vectors (dark blue) at Pk are transformed into vectors (pink) that lie
in Λ. 44

4.4 Vector alignment is needed, because the velocity vectors of the
ghost points have different orientations from those of the point P’s
velocity vectors. 46

4.5 The illustration of vector alignment. (a) the velocity vectors e′i of
a ghost point are rotated and aligned with the velocity vectors ei of
point P. (Θ is the rotation angle. The particle distribution functions
are shown as ellipses. The original particle distributions are denoted
as f ′i .) (b) The new particle distributions fi are recomputed for the
rotated velocity vectors. They preserve the fluid density ρ and the
fluid velocity~u. 47

4.6 The unstructured LBM data are stored in four groups of textures. . 53
4.7 Flow motion due to gravity on (a) the dog model and (b) the two-

hole torus model. 53
4.8 Flow motion due to gravity on the dog surface, with static boundaries. 54
4.9 Flow motion caused by the animated boundary objects on the sphere. 54
4.10 Immiscible two-component fluids, colored in blue and pink: (a) a

turbulent mixture of two components on the sphere, (b) a peaceful
inosculation on the skull. 55

5.1 The Stony Brook Visual Computing Cluster. 57
5.2 The LBM lattice is decomposed into sub-domains and each sub-

domain is processed by one GPU. (The arrows show the communi-
cation among GPUs.) . 58

5.3 The optimized communication schedule and pattern of the parallel
LBM simulation. (Different colors indicate the different steps in
the schedule.) . 60

xiii

5.4 The network communication time measured in ms. (The area under
the blue line represents the part of network communication time
that was overlapped with computation. The shadow area represents
the remainder.) . 63

5.5 Speedup factor of the GPU cluster compared with the CPU cluster. . 63
5.6 Efficiency of the GPU cluster with respect to the number of nodes. . 64
5.7 The simulation area (enclosed by the blue contour) on the Manhat-

tan map. 66
5.8 A snapshot of the simulation of air flow in the Times Square area of

New York City at time step 1000, visualized by streamlines. (Sim-
ulation lattice size is 480 × 400 × 80. Only a portion of the simu-
lation volume is shown in this image.) 67

5.9 Smoke dispersion simulated in the Times Square Area of New York
City. (a)-(c) are snapshots during navigation at different time steps.
(d)-(f) are bird-eye views (in which the wind is blowing from right
to left). 68

6.1 Typical layout of a combustion engineering PWR [91] 71
6.2 General arrangement of a typical combustion engineering PWR re-

actor vessel and internals [91] . 72
6.3 The geometric model of the vessel created for the simulation. 76
6.4 Because of the irregular shape of the reactor vessel, only 5.8% of

cells are useful if we straightforwardly use a rectangular region as
the simulation domain. 77

6.5 Decomposition of a simulation space into cuboidal sub-domains. . . 78
6.6 The data structures stored on the GPUs: (a) textures packing the

flow properties, and (b) textures packing the indices of neighboring
cells. 79

6.7 The simulation of cold water injected into the reactor vessel ren-
dered using 3D volume rendering. (Time t in seconds is the simu-
lation time.) . 82

6.8 The simulation of cold water injected into the reactor vessel on a
vertical 2D slice in the middle of the vessel. 83

xiv

6.9 The rendering of five thermal layers: (a) an overview, (b) a close
view showing the thermal layers developed in the cold leg, and (c)
a close view showing the cold water layer penetrates the warm and
hot water layers. 86

6.10 Panorama rendering (a) with composing and (b) without composit-
ing. (The user can drag the mouse over the panorama view and see
the temperature values of interesting position in a separate view.) . . 87

6.11 Illustration of panorama ray-casting. (This figure shows a horizon-
tal cutting plane that intersects with the downcomer.) 87

6.12 In (a) and (b), the colors represent the minimum temperature over
the simulation time, with volume rendering and surface rendering,
respectively. In (c) and (d), the colors represent the maximum tem-
perature gradient over the simulation time. 89

6.13 (a) Four points (shown in the blue rectangle) in the cold leg defined
by the user. (b) The plots of the temperature history at these points. . 89

7.1 Data movement of the copy operations. 98
7.2 The debugging window of Zippy. 101
7.3 Snapshots from the sort-last volume rendering of the 1875×512×

512 visible human CT data. 105
7.4 The performance of the sort-last volume rendering on our GPU

cluster. (Each GPU renders a 5123 subvolume. Note that the prob-
lem size scales up when more GPUs are used.) 106

7.5 The performance (measured in billions of voxels rendered per sec-
ond) is plotted as a function of the number of GPUs. 106

7.6 Directly generating outputs in a densely packed form for stream
amplification. 107

7.7 The Marching Cubes isosurfaces of (a) the engine dataset, and (b)
the lobster dataset. 108

7.8 The performance of the Marching Cubes isosurface extraction on
our GPU cluster for the 1283 engine data and the 256× 254× 57
lobster data. (The image size is 8002. Isovalue 106 was used in all
tests.) . 109

xv

7.9 A sequence of snapshots of the LBM flow simulation. The vorticity
magnitude is volume rendered to show the turbulence. 110

7.10 Performance comparison between our previous and new implemen-
tations on the same GPU cluster. (Each GPU manages an 1003

sub-grid and the problem size scales up when the number of GPUs
increases.) . 111

7.11 Percentages of time spent on different tasks. 111

xvi

Acknowledgements

I would like to express my gratitude to Distinguished Professor Arie Kaufman
for being a great advisor, who has firmly guided me through my PhD years. With his
expertise in graphics and visualization and enthusiasm and aspiration for research,
Arie has taught me not only knowledge but also career principles. He has made
me learn to conquer tasks little by little, to bear a big picture in mind, and to be
self-disciplined. Arie has been always attentive to my interests and needs. He has
given me the freedom to explore my areas of interest, as well as invaluable support
and advice. At times when I was uncertain, Arie’s encouragement and suggestions
were crucial for me to refocus and finally reach the goal. For many things of this
kind I cannot thank Arie enough.

I want to thank the committee members, Professor Klaus Mueller, Professor
David Xianfeng Gu, and Doctor Bengt-Olaf Schneider. Klaus has participated in
discussions of most part of the work described in this dissertation and has given
me many excellent suggestions. He also taught me the first course in visualization
that fascinated me. David guided me through an interesting project of using GPUs
for real-time ray tracing. His deep understanding of mathematics and geometry has
made the discussion with him always inspiring and enjoyable. I thank Dr. Schneider
for his detailed comments on my dissertation and for that he spent lots of time out
of his busy schedule to serve as the committee member.

I thank Dr. Suzanne (Suzi) Yoakum-Stover. I was very lucky to work with
her, a person with a strong background in Physics. She has been both a mentor
and friend in my junior PhD years. I think she would be smiling if she sees my
dissertation. Also, many thanks go to the coauthors, Wei Li, Xiaoming Wei, Ye
Zhao, Feng Qiu, Shengying Li, Fang Xu, and Kaloian Petkov, and the colleagues,
Huamin Qu, Nan Zhang, Susan Frank, Wei Hong, Haitao Zhang, Jianning Wang,

Lujin Wang, and Joseph Marino. In particular, Feng has contributed a tremendous
amount of time to our discussions. I also thank Bin Zhang for managing our cluster.
He took so much trouble to help me and made my research easier. I thank Stella
Mannino for her excellent administration work.

Finally, I want to acknowledge my wife, my parents, and my in-laws for their
support and for always being there to share my happiness and stress.

Vita, Publications and Field of Study

Education

• Stony Brook University
Ph.D., CS, 2001 - August 2008 (expected)
M.S. received in 2004

• Institute of Software
Chinese Academy of Sciences
M.S., CS, 1998 - 2001

• The Special Class of the Gifted Young,
University of Science and Technology of China
B.E., CS, 1993 - 1998

Field of Study

• Flow Simulation and Visualization on GPUs and GPU Clusters

• Physics-Based Modeling of Natural Phenomena

• Networked graphics

• Visualization

• Real-Time Rendering

Experience

• Research Assistant, Jun. 2002 – current
Visualization Lab, Stony Brook University

xix

• Intern, Jun. 2007 – Aug. 2007
Siemens Corporation Research

• Teaching Assistant, Sep. 2001 – May 2002
Computer Science Department, Stony Brook University

• Intern, Nov. 1999 – Apr. 2000
IBM China

• Intern, Aug. 1997 – Jul. 1998
Lotus Beijing Software Development Center

Honors

• Outstanding Teaching Assistant, Stony Brook University, 2001-2002

• University Fellowship, Stony Brook University, 2001

• Outstanding Master Thesis, Institute of Software at Chinese Academy of
Science, 2001

• Outstanding Graduate, Anhui Province, China, 1998

• Outstanding Graduate, University of Science and Technology of China,
1998

• University Fellowship, University of Science and Technology of China,
1993-1997

Publications

1. Z. Fan, Y. Kuo, Y. Zhao, F. Qiu, and A. Kaufman. Visual simulation of ther-
mal fluid dynamics in a pressurized water reactor. Submitted, 2008.

2. K. Petkov, F. Qiu, Z. Fan, A. Kaufman, and K. Mueller. Efficient flow simu-
lation with LBM on face-centered cubic lattices. In preparation, 2008.

3. Z. Fan, F. Qiu, and A. Kaufman. Zippy: A framework for computation and
visualization on a GPU cluster. Computer Graphics Forum (Eurographics),
27(2):341-350, 2008.

xx

4. Z. Fan, C. Vetter, C. Guetter, D. Yu, R. Westermann, A. Kaufman, and
C. Xu, Optimized GPU implementation of learning-based non-rigid multi-
modal registration. SPIE Medical Imaging, no. 6914-107, 2008.

5. F. Qiu, F. Xu, Z. Fan, N. Neophytos, A. Kaufman, and K. Mueller, Lattice-
based volumetric global illumination. IEEE Transactions on Visualization
and Computer Graphics, 13(6): 1576–1583, 2007.

6. Y. Zhao, F. Qiu, Z. Fan, and A. Kaufman. Flow simulation with locally-
refined LBM. ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 181–188, 2007.

7. Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y. Kuo, A. E. Kaufman, and K. Mueller.
Visual simulation of heat shimmering and mirage. IEEE Transactions on
Visualization and Computer Graphics, 13(1):179– 189, 2007.

8. S. Li, Z. Fan, X. Yin, K. Mueller, A. Kaufman, X. Gu, Real-time reflection
using ray tracing with geometry field, Eurographics Short Papers, pages 29–
32, 2006.

9. Z. Fan, Y. Zhao, A. Kaufman, and Y. He. Adapted unstructured LBM for flow
simulation on curved surfaces. ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 245–254, 2005.

10. W. Li, Z. Fan, X. Wei, and A. Kaufman. Flow simulation with complex
boundaries, Chapter 47, pages 747–764. in Matt Pharr (ed.), GPU Gems
2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation, Addison-Wesley, 2005.

11. F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. Yoakum-Stover, A.
Kaufman, and K. Mueller. Dispersion simulation and visualization for urban
security. IEEE Visualization, pages 553–560, 2004.

12. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high
performance computing. ACM/IEEE Supercomputing Conference, 12 pages
in CD, 2004.

13. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for scientific
computing and large-scale simulation. ACM Workshop on General-Purpose
Computing on Graphics Processors, pages C–32, 2004.

14. Z. Fan, W. Li, X. Wei, and A. Kaufman. GPU-based voxelization and its ap-
plication in flow modeling. ACM Workshop on General-Purpose Computing

xxi

on Graphics Processors, pages C–7, 2004.

15. X. Wei, Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A. Kaufman.
Lattice-based flow field modeling. IEEE Transactions on Visualization and
Computer Graphics, 10(6):719–729, 2004.

16. Z. Fan, M. Oliveira, C. Ma, and A. Kaufman, Sketch-based interface for col-
laborative design, Eurographics Workshop on Sketch-Based Interfaces and
Modeling, pages 143–150, 2004.

17. Y. Zhao, X.Wei, Z. Fan, A. Kaufman, and H. Qin. Voxels on fire. IEEE
Visualization, pages 271–278, 2003.

18. Z. Fan, C. Ma, and M. Oliveira, A sketch-based collaborative design system,
Brazilian Symposium on Computer Graphics and Image Processing, pages
125–131, 2003.

19. X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and A. Kaufman. Blow-
ing in the wind. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 75–85, 2003.

[29, 30]

xxii

Chapter 1

Introduction

1.1 Motivation

The graphics processing units (GPUs) are the processors equipped on com-
modity 3D graphics cards for accelerating raster-based rendering. Nowadays, com-
puter games and virtual environments require complicated 3D meshes with huge
amount of graphics data to be rendered at real-time speed (no less than 15 frames
per second). This has been beyond the power of any software rendering. The GPU
is the hardware accelerator specially designed to fulfill this task.

Figure 1.1 shows a comparison of the growth of the computational power of
GPUs and CPUs from 2003 to 2008. During this period, the GPU computational
power has increased 73 times. On average, it has doubled every 11 months. In
comparison, the CPU computational power (doubled every 20 months on average
in Figure 1.1) has increased 10 times. The computational power of today’s GPUs
has surpassed that of CPUs by an order of magnitude. The high GPU computa-
tional power and its fast growth are made possible by the explicit data parallelism
in raster-based rendering. Contiguous data elements, such as vertices, fragments,
and geometry primitives, are subject to the same operations in parallel. These oper-
ations are relatively simple and usually have only a small number of branches. Data
elements are processed independent of each other: the results computed for one
element are not needed by other elements in the same rendering pass. It is there-
fore relatively easy to predict the memory access and to achieve efficient memory

1

2

NVIDIA GPU

Intel CPU

2003 2004 2005 2006 2007 2008

100

200

300

400

500

Peak GFLOP/s

Jan Jun Apr Jun Nov Mar Nov

NV30
NV35 NV40

G70

G71

G80

G92

0

600

700

800

900

1000

3.0 GHz
Core2 Duo

May Jun

GT200

 GT200 = GeForce GTX 280
 G92 = GeForce 9800 GTX
 G80 = GeForce 8800 GTX

 NV35 = GeForce FX 5950 Ultra
 NV30 = GeForce FX 5800

 G71 = GeForce 7900 GTX
 G70 = GeForce 7800 GTX
 NV40 = GeForce 6800 Ultra

3.2 GHz
Quad Core Xeon

Figure 1.1: A comparison of the growth of the computational power of GPUs (green) and
CPUs (blue). (The figure is adapted from Figure 1–2 of NVIDIA CUDA programming
guide [114].)

pre-fetching. In addition, the independence eliminates the possibility of read-write
hazards.

Because of the data parallelism in raster-based rendering, GPUs can devote
a much larger portion of transistors to computation and a much smaller portion to
control flow and cache than CPUs [114]. Thus, a modern GPU has smaller and
simpler cores than the CPU cores, but it has many more cores than the CPU. For
example, an NVIDIA GeForce GTX 280 has 240 thread processors that collectively

3

deliver a theoretical peak performance of 933 GFLOPS.
To match its high computational power, the GPU is coupled with a very fast

on-board texture memory, whose bandwidth is an order of magnitude higher than
a PC system memory. For example, a GeForce GTX 280 has a 142 GB/second
bandwidth texture memory. Furthermore, the GPU exploits a stream processing
model. The data stream through the computation kernels. It is possible to hide the
latency of memory access with calculations.

The GPU is also becoming more and more flexible and programmable. High-
level shading languages, such as GLSL [123], Cg [97], and HLSL [131], have been
incorporated into the graphics pipeline. These languages allow the graphics devel-
opers to design customized vertex, geometry, and fragment shaders to replace the
previously fixed transformation and lighting calculations. At the same time, the
booming market for computer games drives high volume sales of graphics cards,
which keeps GPU prices low compared to other specialty hardware accelerators.

Because of the computational power and programmability of modern GPUs,
the research of general-purpose computation using GPUs (GPGPU) [4, 115] has
become an active area of research. Researchers have implemented a wide range of
applications on the GPU for acceleration. Examples include physics-based simu-
lation, linear algebra operations, fast Fourier transform, image/volume processing
and reconstruction, registration, volume rendering, flow visualization, database op-
erations, etc. While there have been many GPGPU examples on the single GPU,
in this dissertation, we present efficient methods to use GPU clusters for simulation
and visualization in visual applications.

By extending GPGPU to GPU clusters, we are able to achieve further accel-
eration of applications and support an increase in the problem size. Due to the
high performance/cost ratio and the fast performance growth of GPUs, we believe
GPU clusters are promising for future high performance computing (HPC). Major
GPU vendors have started to target the HPC market. NVIDIA has announced the
Tesla S870, a 1U rack-mount server with 4 GPUs that are dedicated to computation.
AMD has announced the FireStream 9170 which supports double-precision float-
ing point computation. The increasing attention of the major GPU vendors to HPC
will only make GPU clusters even more promising. GPU clusters will facilitate
the online visualization: because the simulation results reside on the GPU texture

4

memories, the results can be directly visualized with the GPUs, which will enable
immediate visual feedbacks in simulations.

We use the visual simulation of flows as our primary application and our focus
is on the lattice Boltzmann method (LBM) [136]. The LBM is a relatively young
computational fluid dynamics (CFD) method. Unlike the traditional macroscopic
CFD methods that solve the Navier-Stokes differential equations, the LBM models
the dynamics of fluid particle distribution functions at a mesoscopic level, a more
fundamental level. The LBM is attractive to us for several reasons. First, it is
easy to handle the complex-shaped, static or moving boundaries in the simulation.
Second, it is also easy to model the interactions of multi-component and multi-
phase fluids. These two features make the LBM attractive to graphics applications,
where interactions are usually important. Most importantly, the LBM applies a set
of local rules to discrete lattice sites. This computation is explicitly data parallel,
hence can greatly take advantage of the GPU acceleration.

1.2 Contributions

Figure 1.2 shows the main contributions of this dissertation and their interde-
pendencies. These contributions are described in five chapters. In Chapter 3, we
begin with the elementary task: an LBM implementation on a single GPU. Directly
mapping the computation from the CPU to the GPU does not necessarily achieve
acceleration. Therefore, we present various optimization techniques to help the
GPU implementation gain substantial speedups over the CPU implementation. In
Chapter 4, we extend our method of regular simulation domain to an adapted un-
structured LBM algorithm for flow simulation on 3D triangular surfaces of arbitrary
topology and present how this irregular simulation domain is handled on the GPU.
In Chapter 5, we extend the LBM implementation to a GPU cluster. On the GPU
cluster architecture, the network bandwidth and latency and the overheads for trans-
ferring data between GPU texture memories and system memories tend to be the
bottlenecks. We present efficient methods to manage the communication among the
multiple GPUs. In Chapter 6, we go further to present an LBM implementation of
an irregular-shaped simulation domain on the GPU cluster. The method is applied
to the visual simulation of thermal fluid dynamics in a pressurized water reactor of

5

Domain Complexity

S
ca

la
b

ili
ty

Regular simulation domainRegular simulation domain Irregular simulation domainIrregular simulation domain

S
in

g
le

 G
P

U

S
in

g
le

 G
P

U

G
P

U
 C

lu
st

er

G
P

U
 C

lu
st

er

Chap. 3 Chap. 4

Chap. 5 Chap. 6

Zippy Framework
Chap. 7

Figure 1.2: The main contributions of this dissertation and their interdependencies. (The
arrows show the interdependencies.)

a nuclear power plant. Motivated by the previous implementations, in Chapter 7,
we study the programming model of the GPU cluster. Currently, there has not been
any mature programming toolkit for GPU clusters. Programming a GPU cluster
is low-level and difficult. The complexity of programming also makes the perfor-
mance optimization difficult. We present Zippy, a general framework to simplify
the programming of general-purpose computation and visualization applications on
GPU clusters.

The following list describes these contributions in more details.

LBM on GPU: We have developed an optimized LBM implementation with com-
plex boundary conditions on a GPU [87]. We have developed a depth-peeling
based voxelization algorithm [28,87] for on-the-fly boundary generation. We

6

have also used this implementation to model natural phenomena, such as
blowing of bubble and feather in the wind [150,151], fire [164], smoke [163],
and heat shimmering and mirage [162].

Adapted Unstructured LBM on GPU: We have developed a novel adapted un-
structured LBM algorithm on the GPU, which can effectively model fluid
dynamics on 3D curved surfaces of arbitrary topology [35].

LBM on GPU Cluster: We have proposed to use GPU clusters for high perfor-
mance computing and have implemented the LBM on a 32-node GPU cluster
as an example application [32, 33]. To the best of our knowledge, we are
the first to develop a scalable GPU cluster for high performance scientific
computing and large-scale simulation. We have used our GPU cluster LBM
implementation for modeling of contaminant dispersion in urban environ-
ments [121].

LBM of Irregular-Shaped Simulation Domain on GPU Cluster: We have de-
veloped a visual simulation system [27] on a GPU cluster for modeling ther-
mal fluid dynamics inside a pressurized water reactor of a nuclear power
plant. We classify the irregular-shaped simulation domain into nonempty and
empty cells and apply a packing technique to organize the nonempty cells
for efficient computation and storage. To our knowledge, this is the first sys-
tem that combines 3D simulation and visualization for analyzing pressurized
thermal shock risk in a pressurized water reactor.

A General Framework for GPU Clusters: We have developed Zippy [31], a gen-
eral framework for programming parallel visualization, graphics, and compu-
tation modules on GPU clusters. We have proposed a Global Array (GA) +
Stream processing programming model. It exposes two characteristics impor-
tant to high performance—non-uniform memory access (NUMA) and two-
level parallelism hierarchy—and hides other architecture details. This model
combines the best features of shared-memory and message passing. We have
developed three example applications using Zippy: sort-last volume render-
ing, Marching Cubes isosurface extraction and rendering, and LBM flow sim-
ulation with online visualization.

Chapter 2

Background

2.1 GPU

2.1.1 Programmable Graphics Pipeline

The raster-based rendering on graphics hardware involves a sequence of pro-
cessing stages that run in parallel and in a fixed order, known as the graphics
pipeline (see Figure 2.1). The first stage of the pipeline is the vertex processing.
The input to this stage is the 3D polygonal mesh. The 3D world coordinates of each
vertex of the mesh are transformed to a 2D screen position. Lighting and texture
coordinates associated with each vertex are also evaluated. In the second stage, ras-
terization, the transformed vertices are grouped into rendering primitives, such as
triangles. Each primitive is scan-converted, generating a set of fragments in screen
space. Each fragment stores the state information needed to update a pixel. In the
third stage, called the fragment processing, the texture coordinates of each fragment
are used to fetch colors of the appropriate texels (texture pixels) from one or more
textures. Mathematical operations may also be performed to determine the ultimate
color for the fragment. Finally, various raster operations (e.g., depth test, stencil
test, and alpha blending) are conducted to determine whether and how the fragment
is used to update a pixel in the frame buffer.

Early graphics cards for commodity PCs were fixed-function hardware. In
1999, NVIDIA firstly introduced the term GPU with its GeForce 256. In addition
to the vertex processing capability, T&L (Transform and Lighting), the GeForce

7

8

3D mesh

Triangles in screen space

Texture
filtering

Vertex
processing

Fragment
processing

Fragments

Rasterization

Fragments
with colorsRaster

Operations

Figure 2.1: A simplified illustration of the graphics pipeline.

256 provides register combiners that allow the developers to configure the func-
tionality of the graphics hardware. In 2000, Microsoft released DirectX 8.0, which
allows developers to program vertex shaders and fragment shaders. The shader
is a set of instructions that specifies the customized rendering effects. The intro-
duction of shaders started the history of programmable graphics pipeline. Since
then, shader specification has evolved from the early restrictive Shader Mode 1.x
to today’s much more flexible Shader Model 4.0. High level shading languages,
GLSL [123], Cg [97], and HLSL [131], have been available to GPU programmers.
Further, a new stage, geometry shader, has been added into the graphics pipeline. It
provides a new functionality of dynamically generating graphics primitives on the
GPU. The readers are referred to Krüger [76] for a history of the programmable
graphics pipeline.

To process large graphics data sets at real-time speed, modern GPUs are data
driven and emphasize data parallelism. For instance, NVIDIA GeForce 7900 GTX
has 8 vertex processors and 24 fragment processors that compute concurrently.

9

These processors support 4-dimensional vectors (representing the xyzw homoge-
neous coordinates or the RGBA color channels) and a 4-component vector floating
point SIMD instruction set for computation. NVIDIA GeForce 8800 GTX and
GeForce 9800 GTX employ a unified shader model. They have 128 scalar proces-
sors that are dynamically allocated to vertex, geometry, and fragment processing.
NVIDIA GeForce GTX 280 released this year has 240 scalar processors.

2.1.2 GPGPU

This section briefly surveys the research in GPGPU. The interested readers
are referred to Owens et al. [115] and the GPU Gems books [112, 118] for further
surveys. A description of the early GPGPU history and additional information can
be found on the GPGPU website [4].

Physics-based visual simulations have been developed on the GPU. Harris et
al. [56] have implemented the coupled map lattice (CML), a discrete-time discrete-
space method, on the GPU. Researchers have further proposed several GPU-based
sparse-matrix solvers for partial differential equations (PDE) and have used them to
solve the Navier Stokes equations in fluid dynamics simulations. Krüger and West-
ermann [79] have implemented a framework for linear algebra operators and a con-
jugate gradient solver. Boltz et al. [8] and Goodnight et al. [47] have implemented
multigrid solvers. Harris et al. [55] have developed the Jacobi and Gauss-Seidel
solvers and have simulated and rendered clouds in real-time. Krüger and Wester-
mann [80] have implemented a method that combines physics-based 2D simulation
with non-physics based 3D simulation. Crane et al. [18] have implemented a real-
time smoke simulation that is based on MacCormack Advection Scheme [125]. In
addition to these Navier-Stokes solvers, Kolb et al. [75] and Harada et al. [54] have
implemented particle-based fluid simulations on the GPU.

Li et al. [89] in our group were the first to implement the LBM simulation on
the GPU. This GPU implementation has used the restrictive register combiners of
early GPUs and has been limited to fixed-point computations. We extend it to the
programmable GPUs and to the GPU clusters.

Flow visualization has benefited from GPU acceleration. Heidrich et al. [57]

10

have used the pixel texture to compute the line integral convolution (LIC) for visual-
izing vector fields. Jobard et al. [69] have implemented the 2D Lagrangian-Eulerian
advection using textures. Weiskopf et al. [152, 153] have extended Jobard et al.’s
method to 3D flows by using offset and dependent textures. Van Wijk [146] has de-
veloped an image based flow visualization (IBFV) algorithm on the GPU. Krüger
et al. [77] have proposed a particle system on the GPU for 3D flow visualization.

Cabral et al. [11] have used the texture hardware on SGI graphics worksta-
tions for slice-based volume rendering. Westermann and Ertl [154] have used the
OpenGL alpha test to skip empty space in volume rendering. Engel et al. [23]
have proposed pre-integrated volume rendering algorithm on the GPU, which can
achieve high quality images for even low resolution volume data. Krüger and West-
ermann [78] have proposed a ray-casting method that uses early-Z test to skip oc-
cluded voxels in ray-level. Li et al. [88] have proposed sub-volume level empty-
space skipping and voxel-level occlusion culling and clipping algorithms. Hong et
al. [60] have proposed a hybrid volumetric ray-casting method that uses both the
CPU and GPU. Neophytou et al. [110] have proposed a volume splatting rendering
algorithm with elliptical radial basis functions (RBFs) on the GPU. More infor-
mation of the GPU-accelerated volume rendering can be found in Engel et al.’s
book [22].

Trendall and Stewart [142] have employed the GPU to accelerate the calcula-
tion of refractive caustics. Carr et al. [14] and Purcell et al. [119] have implemented
ray-tracing on the GPU. Carr et al. [15] have proposed a GPU-based ray-tracing
algorithm using the Geometry Images [51]. Li et al. [86] have proposed a ray-
tracing algorithm using geometry field, a 4D lookup table. Horn et al. [63] have
proposed the k-D tree implementation on the GPU for ray-tracing. Qiu et al. [120]
have presented a lattice-based volumetric global illumination algorithm. Zhou et
al. [165] have proposed a compensated ray marching algorithm for real-time smoke
rendering.

Many other important applications have been developed on the GPU, such as
computed tomographic (CT) volume reconstruction [107, 157], volume segmenta-
tion [84], volume registration [34], Voronoi diagram computation [58], image pro-
cessing [124], collision detection [49], dense matrix multiplication [68], database
operations [48], and so on. In addition, Sengupta et al. [127] have proposed a scan

11

algorithm on the GPU, which allows the computation to generate a variable-sized
output for each input data element. Fatahalian et al. [38] have shown that the lack
of high bandwidth access to cache data may impair the GPU performance in some
applications. Fang and Mueller [158] have discussed that using the build-in hard-
wired graphics pipeline components, such as bilinear interpolation in rasterizer, can
achieve superior performance than merely using the GPU as a multi-core processor.
Göddeke et al. [46] have presented a way to emulate double precision arithmetics
with single precision operations on the GPU. Because the emulation increases the
operation count more than 10 times, they have further used mixed double and single
precision operations for finite element method (FEM) computation.

Programming languages, such as Brook [9], Sh [102], PeakStream, and Rapid-
Mind, have been proposed for GPGPU programming. They abstract the GPU as a
stream coprocessor. NVIDIA CUDA [114] is a new development environment that
gains significant attention in the recent years. Using CUDA, the user does not deal
with the low-level details of the graphics pipeline and textures anymore. Instead,
the user uses the C language and can conveniently access a linear memory on the
GPU. CUDA also exposes to the user several new hardware features for perfor-
mance optimization, such as hardware-supported scatter and Parallel Data Cache.

2.1.3 Multi-Core Processors

Processor parallelism is becoming more ubiquitous. Multi-core architectures
are populating HPC systems. Beside the GPU, there have been the multi-core CPU,
Cell BE, and ClearSpeed, which are described below and compared in Table 2.1.

Intel and AMD have both released 4-core CPUs. Many-core CPUs (with 8
or more cores) may appear in 2009. The CPU cores are more complex than the
GPU cores. Compared with the GPUs, the CPUs are more flexible and can support
a wider range of applications. Especially, some programs that require extremely
complicated control flows, such as an operating system and a word processor, have
to rely on the CPUs. On the other hand, current GPUs have many more cores than
the CPUs and devote a larger percentage of transistors to floating point operations.
Therefore, the GPUs provide higher compute parallelism and deliver better perfor-
mance than the CPUs for certain applications. The LBM computation is an example

12

Table 2.1: GPUs and other multi-core processors. (Thermal Design Power (TDP) in the
last column is the maximum amount of thermal power that the processors need to dissipate
when running applications.)

Number of Clock Theoretic GFLOPS TDP
Cores (GHz) 32-bit 64-bit (Watt)

GeForce
GTX 280

240 1.3 933 117 236

GeForce
9800 GTX

128 1.7 653 N/A 156

Quad Core
Xeon

4 3.2 102 51 150

Cell BE 8+1 3.2 205 14.6 110

ClearSpeed
Advance e710

192 0.25 96 96 25

of this kind, as its computational kernels are local and linear. As both CPUs and
GPUs have their advantages and disadvantages, we believe that a hybrid CPU+GPU
approach will be promising for future research. Whether the CPU and GPU will be
loosely coupled or tightly coupled is arguable and unclear yet.

Cell Broadband Engine Architecture (Cell BE) is a microprocessor jointly de-
veloped by Sony, Toshiba, and IBM (STI). It has been used in Sony’s PlayStation 3
and IBM’s blade servers. The Cell BE is a hybrid multi-processor chip. It currently
has one power processing element (PPE) and eight synergistic processing elements
(SPEs). The PPE and SPEs are linked together by an internal element interconnect
bus (EIB), whose bandwith is 204.8 GB/s. The SPEs are designed for vectorized
floating point code execution and handle most of the computation workload. The
PPE acts as the controller for the SPEs. The current theoretic peak performance of
Cell BE (in 32-bit single precision) is between those of the CPU and the GPU.

ClearSpeed Advance e710 has 192 processing elements running at only 250
MHz. One of its advantages is the low power consumption and heat generation.
The thermal design power (TDP) of the ClearSpeed Advance e710 is only 25 Watt,
significantly lower than the TDP of other processors. Another advantage is that it
delivers high 64-bit floating point computational power. However, compared with

13

commodity GPU, CPU, and Cell BE, ClearSpeed currently has a lower volume of
sales and a higher cost.

2.2 Physics-Based Visual Simulation of Fluids

2.2.1 Navier-Stokes Solvers

Physics-based modeling is the key to achieving realistic simulations of fluids,
such as gas and liquids, and fluid driven natural phenomena, such as smoke, fire,
and clouds. The fundamental equations for modeling fluid dynamics are the Navier-
Stokes equations:

∇ ·u = 0 (2.1)
∂u
∂t

= −(u ·∇)u− 1
ρ

∇p+ν∇2u+ f (2.2)

where u is the velocity field, p is the pressure, ν is the kinematic viscosity, ρ is
the density, and f is the external force. The first equation conserves mass and the
second equation conserves momentum. These two equations are supplemented with
boundary conditions.

In computer graphics, finite difference is the most frequently used method for
solving the Navier-Stokes equations. The spatial domain is discretized into small
cells to form a volume grid, either regular or irregular. Finite difference operators
are evaluated on the grid points. Foster and Metaxas [42, 43] have presented an
explicit scheme for solving the 3D Navier-Stokes equations. They have simulated
liquid and smoke with realistic swirling motions. A main problem with the explicit
solver is that the simulation is unstable when large time steps are used. To address
this, Stam [132] has devised an unconditionally stable method, called Stable Fluids.
The method is based on the semi-Lagrangian advection and an implicit scheme. The
implicit scheme uses a sparse matrix solver, such as conjugate gradient or Jacobi,
to solve a set of simultaneous finite difference equations. The disadvantage of the
Stable Fluids, however, is that the semi-Lagrangian advection has large numerical
dissipation and diffusion. Fedkiw et al. [39] have extended this implicit scheme by
introducing vortex confinement and high-order interpolation. The former adds to the

14

simulation plausible small scale rolling features and the latter increases the advec-
tion accuracy. Combining Navier-Stokes solvers and the level-set based free surface
tracking, researchers have developed realistic visual simulations of liquids [24, 41]
and fire [111]. Two new advection schemes, the Back and Forth Error Compensa-
tion and Correction (BFECC) [71] and the MacCormack method [125], have been
proposed to reduce the advection dissipation and diffusion. Both schemes use er-
ror estimation to correct the computed data, but MacCormack uses fewer passes of
computation than BFECC.

Carlson et al. [13] have developed a two-way coupling method to simulate
the interaction between fluids and rigid solid objects. Guendelman et al. [52] have
presented a coupling method to simulate the interaction between fluids and thin
objects. Hong and Kim [59] have used a multi-phase fluids method to model dis-
continuous fluids. Losasso et al. [93] have modeled the interactions of multiple
liquids. Losasso et al. [92] have extended a Navier-Stokes solver from regular grids
to octree structures. Irving et al. [67] have presented a method that combines 2D
and 3D simulations to efficiently model large bodies of waters. Kim et al. [70] have
proposed a volume control method to preserve the volumes in the liquid/gas inter-
action and have used it to simulate bubbles. Unstructured tetrahedra meshes have
also been used in visual simulations [40, 74].

2.2.2 Particle-Based Methods

Early graphics methods for modeling fluids were procedural particle sys-
tems [122,134]. Recently, a physics-based particle method, Smooth Particle Hydro-
dynamics (SPH) [106], has been proposed. Mueller et al. [108] have used the SPH
in interactive simulation of liquids. Adams et al. [5] have presented an adaptive
sampled particles method for performance optimization. Park and Kim [116] have
proposed to use vortex particles to simulate turbulent flows. Yuksel et al. [161] have
introduced wave particles for fast and stable simulation of surface waves. Cleary et
al. [17] have presented a particle based method for animation of bubbles in fluids.

In particle-based methods, the flow quantities are defined on the discrete parti-
cles and can be evaluated anywhere in the simulation domain by using a smoothed
kernel function. Compared with traditional Navier-Stokes solvers (Section 2.2.1),

15

which are macroscopic and grid-based, the particle method is microscopic and grid-
less. It has several advantages. First, the advection is implemented by moving the
particles along the velocity field. This Lagrangian advection is not only simpler but
also more accurate. Second, it is easier to handle the microscopic interactions, such
as the solid/fluid interactions and the interactions of multiple fluids [109]. A weak-
ness is that particles are less organized than a grid. The lack of topology informa-
tion makes the reconstruction of liquid/gas surfaces challenging. Selle et al. [126]
have presented a hybrid method to combine the best features of particle-based and
grid-based methods.

2.2.3 Lattice Boltzmann Method

The LBM [155] is a mesoscopic method. The Boltzmann equation describes
how particle distributions move and collide with each other. The particle distribu-
tion is not a discrete particle. Instead, it is a probability of the presence of a particle
with a given velocity at a given position. Therefore, it is represented by a float-
ing point number. The LBM discretizes the Boltzmann equation on a lattice. The
lattice is similar to a grid except that it discretizes not only the domain space but
also the angular (directional) space. Each lattice site has a set of links pointing to
the directions of neighboring sites. The particle distributions move along the lattice
links and collide at the lattice sites. The aggregated motion yields a second-order
accurate solution to the Navier-Stokes equations.

Figure 2.2(a) shows a 2-dimensional 9-velocity lattice model, called D2Q9.
The 9 velocity vectors include the zero velocity vector, ~e0, and 8 velocity vec-
tors pointing to neighboring lattice sites, ~e1 through ~e8. Associated with each
~ei,(i = 0,1, ..,8) is a scalar value, the particle distribution function fi. Similarly,
Figure 2.2(b) shows a 3-dimensional 19-velocity lattice model, D3Q19. The green
point at the center represents the zero velocity. The blue arrows represent velocity
vectors pointing to nearest neighbors and the red arrows represent velocity vectors
pointing to second-nearest neighbors.

The macroscopic fluid density ρ and fluid velocity~u are given by

ρ(~r, t) =
∑

i

fi(~r, t), ~u(~r, t) =
1

ρ(~r, t)

∑

i

fi(~r, t)~ei, (2.3)

16

fi

ei

(a)

fi

ei
(b)

Figure 2.2: The LBM lattice cells: (a) a D2Q9 lattice cell, and (b) a D3Q19 lattice cell.
(Each velocity vector ei is associated with a particle distribution fi.)

where~r is the position of the lattice cell and t is the simulation time-step. The LBM
explicitly evolves in a two-step process of collision and ballistic streaming,

Collision fi(~r, t+) = fi(~r, t)− 1
τ (fi(~r, t)− f eq

i (~r, t)), (2.4)

Streaming fi(~r +~ei, t +1) = fi(~r, t+), (2.5)

where the constant τ represents the relaxation time1 determined by the kinematic
viscosity ν of the fluid (τ = 3ν+ 1

2), the notation fi(~r, t+) denotes the post-collision
particle distribution function, and f eq

i represents the local equilibrium particle dis-
tribution function which is given by

f eq
i (ρ,~u) = ρ(Aq +Bq(~ei ·~u)+Cq(~ei ·~u)2 +Dq(~u ·~u)). (2.6)

Here, Aq through Dq are constant coefficients specific to the chosen lattice or sub-
lattice. The local and linear rules yield the Navier-Stokes equation for an incom-
pressible fluid with second-order accuracy in both time and space.

1In this dissertation, unless otherwise specified, fluid properties are described in lattice units. In
other words, we focus on dimensionless numbers rather than actual values of physical properties.
The interested readers are referred to Wei et al. [149] for rules of converting numbers from lattice
units to physical units.

17

`

xf

xff

xb

`

xw

ei

Figure 2.3: Curved boundary condition for the LBM (adapted from [104]).

Mei et al. [104] have developed a curved boundary condition for the LBM. As
indicated in Figure 2.3, the particle distribution for a node, x f , in the fluid adjacent
to the boundary, is streamed from its neighbors. Thus, a fictitious particle distribu-
tion, fi(xb, t), is defined on the node xb which lies just inside the object boundary.
The fraction of the link that is intersected by the boundary in the fluid region is
denoted by ∆ = |x f −xw|/|x f −xb|. The post-collision value fi(xb, t+) is given by:

fi(xb, t+) = (1−χ) fi(x f , t)+χ f ∗i (xb)+6Aqρei ·uw (2.7)

where,

f ∗i (xb) = ρ(Aq +Bqei ·ub f +Cq(ei ·u f)2−Dq(u f)2) (2.8)

and for ∆≥ 1/2,

ub f = (1− 3
2∆

)u f +
3

2∆
uw and χ =

2∆−1
τ+1/2

(2.9)

while for ∆ < 1/2,

ub f = u f f and χ =
2∆−1
τ−2

. (2.10)

Note that ub f represents the virtual speed of the boundary node xb in terms of the
fluid velocity, u f at node x f , u f f at node x f f , and the boundary velocity, uw at xw.

18

Thus, we see that the rule (which has second order accuracy and good stability)
accounts for both arbitrarily shaped and moving boundaries. Figure 2.4 shows two
snapshots of our simulation with curved boundaries.

(a) (b)

Figure 2.4: Our implementation of the curved boundary condition in two examples: (a)
flow passing four objects, and (b) flow passing a porous object.

The LBM was introduced to the graphics community by Wei et al. [148, 149,
151] in our group for modeling the fire, smoke, and wind. Zhao et al. [162] have
used a Hybrid Thermal LBM (HTLBM) [81] for the visual simulations of heat
shimmering and mirage. Zhao et al. [163] have used the multi-resolution LBM for
the adaptive resolution smoke simulation. Thürey and Ruede [141] have simulated
free surface fluids with the LBM. Chu and Tai [16] have used the 2D LBM to
simulate ink dispersion in absorbent paper. Zhu et al. [166] have introduced a two-
fluid lattice Boltzmann method for simulating mixtures of miscible fluids.

Compared with the grid-based Navier-Stokes solvers, the LBM has several
advantages. The advection in the LBM is linear and therefore has less numerical
diffusion and dissipation. The handling of complex shaped boundaries is also eas-
ier. The discretization of the angular space allows complex shaped boundaries to
be accurately represented by the locations of the intersections of boundary surfaces
with lattice links. As a mesoscopic method, the LBM can also easily handle the
solid/fluid interactions and the interplays of multi-component fluids or multi-phase
fluids. All the computation operations are local and linear. The explicit paral-
lelism of the LBM makes it suitable for GPU and GPU cluster implementations.

19

In contrast, the Navier-Stokes solvers require the sparse matrix solvers, which are
less parallelizable and often become the bottleneck. Compared with the particle-
based methods, the LBM organizes the data in a regular lattice and hence preserves
the advantages of the grid-based methods. A disadvantage of the LBM is that it
is unstable when modeling highly turbulent flows. A multi-relaxation-time LBM
(MRTLBM) [20] increases the stability but has not completely solved the problem.

Chapter 3

LBM on GPU

In this chapter, we present a GPU implementation of the LBM flow simulation.
In the LBM, the computation of each lattice site at every time step depends solely
on the properties of the site itself and the neighboring sites at the previous time
step. The computation is local, linear, and explicitly parallel. Although mapping
the computation to GPU programs is straightforward, to achieve high performance
is a demanding task. We present various algorithm-level and machine-level op-
timization techniques to help the GPU implementation gain substantial speedups
over the CPU implementation.

The boundaries in the flow have to be voxelized to discrete lattice sites. For
moving and deforming boundaries, this voxelization ought to be repeated at every
time step. We propose a fast voxelization algorithm on the GPU and use it to model
the interactions between fluids and animated objects.

3.1 GPU-Based LBM Implementation

3.1.1 Algorithm Overview

To compute the LBM equations on the GPU, we divide the LBM lattice and
group the particle distributions fi into arrays according to their velocity vectors.
All the particle distributions of the same velocity vector are grouped into the same
array, while keeping the neighboring relationship of the original model. For a 2D
model, we store the arrays as 2D textures. Figure 3.1 shows the division of a 2D

20

21

model D2Q9 according to its velocity directions.

= + + + +

+ + + +

Figure 3.1: Division of the D2Q9 model, according to its velocity directions.

The division of a 3D model is similar. Each of the 19 velocity distributions
fi in D3Q19 LBM, is represented in a volume. As shown in Figure 3.2, we pack
every four volumes into one stack of 2D textures (note that a fragment or a texel
has 4 color components). Thus, the 19 distribution values are packed into 5 stacks
of textures.

All the other variables, the density ρ, the velocity u, and the equilibrium distri-
butions f eq

i are stored similarly in 2D textures. We then render quads mapped with
those textures, and use fragment programs to compute the LBM equations.

Figure 3.3 shows the dataflow of the LBM computation on the GPU, where
the textures storing lattice properties are represented by the red boxes, while the
operations are represented by the blue round boxes. The textures of the particle
distributions are the inputs. Density and velocity textures are then dynamically
generated from the distribution textures. Next, the equilibrium distribution textures
are obtained from the densities and the velocities. According to the collision and
the streaming equations, new distributions are computed from the input distribu-
tions and the equilibrium distributions. Finally, we apply the boundary and outflow
conditions and update the distribution textures. The updated distribution textures
are then used as inputs for the next simulation step.

The LBM equations are translated to the operations of the fragment pipeline.
With the GPUs becoming more and more programmable, a straightforward trans-
lation following Figure 3.3 is not difficult. However, there are usually multiple
choices in mapping each equation, and different combinations of the mapping usu-
ally result in dramatic difference in performance. In the following sections, we

22

…...

D3Q19 LBM

+X Direction Volume

-X Direction Volume

+Y Direction Volume

-Y Direction Volume

A Stack of 2D Textures
(1 of 5)

…...

Figure 3.2: Division of the D3Q19 model. Every four direction volumes are packed into
one stack of 2D textures. (This figure only shows one of the five stacks of 2D textures.)

distribution

density

velocity

equilibrium
distribution

new
distribution

Streaming

new
distribution 2

boundary &
outflow

conditions

Updating Collision

Figure 3.3: Flow chart of the LBM computation on the GPU. (Red boxes are the textures,
while blue round boxes are operations.)

describe various optimization strategies that have been applied to our GPU-based
LBM.

23

3.1.2 Packing

During the simulation, textures are updated dynamically at every step by copy-
ing from or binding to the frame buffer (or the pixel buffer). In the graphics hard-
ware, it is most efficient to use RGBA textures. Each RGBA texel has four channels,
hence can store up to four scalars or a vector with up to four components.

The first optimization we propose is packing different variables into the same
texel. For example, we pack four fis from different directions into a single RGBA
texel. In addition, we attempt to pack together those variables that are involved in
the same LBM equations, in order to reduce the number of textures to be activated
and the number of texture fetches. This also improves the data locality, as well as
the cache coherence of the textures.

Table 3.1: Packed LBM variables of the D3Q19 model

Texture R G B A
uρ vx vy vz ρ

Tex0 f(1, 0, 0) f(−1, 0, 0) f(0, 1, 0) f(0,−1, 0)
Tex1 f(1, 1, 0) f(−1,−1, 0) f(1,−1, 0) f(−1, 1, 0)
Tex2 f(1, 0, 1) f(−1, 0,−1) f(1, 0,−1) f(−1, 0, 1)
Tex3 f(0, 1, 1) f(0,−1,−1) f(0, 1,−1) f(0,−1, 1)
Tex4 f(0, 0, 1) f(0, 0,−1) f(0, 0, 0) unused

Table 3.1 lists the contents of the textures packed with the variables of the
D3Q19 model, including densities, velocities and particle distributions. In texture
uρ, vx, vy, and vz are the three components of the velocity stored in the RGB chan-
nels, while the density ρ is stored in the alpha channel. The rows in Table 3.1
for textures Tex0 through Tex4 show the packing patterns of both the particle dis-
tributions fi and the equilibrium distributions f eq

i . f(x,y,z) is the distribution in the
direction of (x,y,z). Note that we pack distributions of the opposite directions in
pairs into the same texture. There are two reasons for that. First, when handling
complex or moving boundaries, neighboring distributions at opposite directions are
needed to evaluate the effects on the same boundary link. Second, when program-
ming the fragment pipeline, we typically need to pass the corresponding velocity

24

vector ei as an argument of the fragment program. When opposite distributions are
always neighbors, just two, instead of four, eis are needed, while the other two are
easily inferred.

3.1.3 Flat Volume

Instead of using a stack of 2D textures to represent a volume, we actually
stitch the slices to create a larger 2D texture, that can be considered as a “flat”
volume. Similar approaches have been reported in the literature [55, 89]. One
advantage of the flat volume is the reduced number of texture switching. It also
reduces the number of proxy quads. Specifically, a W ×H×D volume is stored as
a (W ∗d1)× (H ∗d2) texture, where D = d1∗d2. We choose d1 to be a factor of D
that is the closest to

√
D.

More importantly, using the flat volume is also critical in two stages of our
algorithms, particle advection (Section 3.3) and voxelization and boundary nodes
generation (Section 3.2.1). Without a flat representation, these two will not work.
The conversion from the volume coordinates (x,y,z) to the coordinates (u,v) of the
flattened texture is as follows:

u = (z%d1)∗W + x

v = f loor(z/d1)∗H + y (3.1)

where W and H are dimensions of each slice in the volume, and every set of d1
slices is tiled in a row along the X direction in the flat volume.

3.1.4 Streaming

According to Equation 2.5, each particle distribution having non-zero veloc-
ity propagates to a neighboring lattice point at every time step. On current GPUs,
the texture fetching unit can obtain a texel at arbitrary position indicated by tex-
ture coordinates fully controlled by the fragment program. If a distribution f is
propagated along vector e, we simply fetch from the distribution texture at the po-
sition of current lattice position minus e. Since the four channels are packed with
four distributions with different velocity vectors, four fetches are needed for each
fragment.

25

Figure 3.4 shows as an example the propagation of distribution texture Tex1,
which is packed with f(1,1,0), f(−1,−1,0), f(1,−1,0), and f(−1,1,0). The fragment pro-
gram fetches texels by adding the negative values of the velocity directions to the
texture coordinates and extracting the proper color component. For example, the
blue channel in texture Tex1 is f(1,−1,0). After propagation, the value of the blue
channel will come from a texel at relative position (−1,1,0) to the fragment posi-
tion. This is equivalent to translating distribution f(1,−1,0) in the direction of (1,-1,0)
by 1.

Input texture Output texture

X

Y

Fetch from neighboring
sites

Write to current
site

R G B A

R G B A

Figure 3.4: Propagation of distribution texture Tex1, which is packed with f(1,1,0),
f(−1,−1,0), f(1,−1,0), and f(−1,1,0).

To propagate using the flat volume, for each channel, we can add the 3D po-
sition of the fragment with the negative of the corresponding ei, then convert it to
the texture coordinate of the flat volume according to Equation 3.1 before fetching.
However, this requires Equation 3.1 be executed four times per fragment. One op-
timization we apply is to push the coordinates conversion to the vertex level, since
for each channel inside a slice, the velocity vectors are the same. We can either
assign each vertex of the proxy quad with four texture coordinates containing the
converted values, or generate the texture coordinates with a vertex program.

3.2 GPU-based Boundary Handling

To handle complex boundary, we need to compute the intersections of the
boundary surface with all the LBM lattice links. For a static obstacle, the intersec-
tions can be pre-computed. Whereas for either a moving or deformable boundary,

26

the intersection positions change dynamically. The boundary description can be
either continuous, such as a polygonal mesh or a higher-order surface, or discrete,
such as a volume. No matter what form a boundary is originated from, the handling
of the boundary conditions requires discrete boundary nodes aligned with the LBM
Lattices. Even if a boundary is already in a volumetric representation, it has to be
revoxelized whenever it moves or deforms.

One solution is to compute the intersection and voxelization on the CPU, and
then transfer the computed volumetric boundary information from the main mem-
ory to the graphics memory. Unfortunately, both the computation and the data
transfer are too time-consuming for interactive applications. Naturally, we want to
accelerate the volumetric boundary generation on the GPU as well.

In the following sections, we first propose a general-purpose GPU-based vox-
elization algorithm that converts an arbitrary model to a Cartesian grid volume.
Then, we discuss the handling of three different boundary conditions, while focus-
ing on arbitrary complex boundaries that can move and deform. The generation of
the boundary nodes of arbitrary boundaries is performed by extending our general-
purpose GPU-based voxelization.

3.2.1 GPU-based Voxelization

An intuitive voxelization approach is the slicing method, which sets the near
and far clip planes, so that for each rendering pass, only the geometries falling into
the slab between the two clip planes are rendered [36]. This creates one slice of the
resulting volume. Then, the clip planes are shifted to generate subsequent slices.
Obviously, for this slicing method, the number of rendering passes is the same as
the number of the slices in the volume. In most cases, the boundaries are sparse in
a volume, in other words, only a small percentage of voxels are intersected by the
boundary surfaces. There is no need to voxelize the “empty” space that corresponds
to non-boundary voxels.

Our GPU-based voxelization avoids the slicing. Instead, we adapt the idea
of depth peeling [26] used for order-independent transparency, in which the depth
layers in the scene are stripped away with successive passes (see Figure 3.5). In
the first rendering pass, the scene is rendered normally, and the layer of the nearest

27

fragments, or equivalently, voxels are obtained. From the second rendering pass,
each fragment is compared with a depth texture copied from the depth buffer of
the previous pass. A fragment reaches the frame buffer only if its depth value is
greater than that of the corresponding pixel in the depth texture, while the ordinary
depth test is still enabled. Therefore, the second pass generates the second nearest
layer, and so on. The process continues until no fragment is further away than
the corresponding pixel in the depth texture, which is best determined with the
occlusion query extension that returns the pixel count written to the frame buffer.
The number of rendering passes of the depth peeling algorithm is the number of
layers plus one, which typically is significantly smaller than the number of slices.

Peeling
Direction

Layer 1

Layer 2

Layer 3

Layer 4

Figure 3.5: Depth peeling for GPU-based voxelization. (Red color presents the layer to be
stripped away.)

When rendering order-independent transparent objects, all the layer images are
blended in depth order. In contrast, in voxelization, we want the layers to be sepa-
rated, which is similar to a layered depth image [129]. Assume that the maximum
size along any of the major axes of the object being voxelized is D, we allocate a
pixel buffer with width and height of maximum number of layers times D and num-
ber of attributes times D, respectively. Then, between different rendering passes,
we translate the viewport, so that the layer images do not overlap, but be tiled as
tight as possible. The pixels of those images are the attributes of the correspond-
ing voxels. The first attribute has to be the 3D positions, while we may need other
attributes depending on the application. As shown in the following pseudo-code,
the peeling process is applied three times. Each time the image plane is orthogonal
to one of the major axes. That is, we perform the peeling from three orthogonal

28

views to avoid missing voxels. As a result, some of the voxels may be rendered
more than once. However, the replication does not affect the final results. The im-
age containing the voxel attributes are then copied to a vertex array whose memory
is allocated inside the video memory using extensions, such as Nvidia’s PDR and
VAR. Note that different type of voxel attributes are copied to different locations
inside the vertex array.

1: for each view direction in X, Y, Z do
2: layer = 0
3: while HasMoreLayer() do
4: for each attribute do
5: SetViewportOrigin(attrib id*D, layer*D)
6: RenderScene()
7: end for
8: if HasMoreLayer() then
9: UpdateDepthTexture()

10: end if
11: layer=layer+1
12: end while
13: end for

The vertex array is essentially an array of voxel positions plus other attributes,
that can generate all the boundary voxels for further processing. We may want to
convert the vertex array to a flat volume by simply rendering each vertex as a point
of size 1. All the vertices of the array pass through a vertex program that translates
each voxel properly according to its z value using equations similar to Equation 3.1.
The frame buffers for the depth peeling are initialized with some large numbers. If a
pixel is not covered by any boundary voxels, then the corresponding vertex created
from the pixel falls far away from the view frustum, and is clipped.

3.2.2 Periodic Boundary

In practice, the periodic boundary is actually computed during the propagation.
A 2D example is shown in Figure 3.6 and the 3D case is similar. If a periodic
boundary face is orthogonal to the X or Y axis, we call it in-slice periodic boundary

29

Channel flow

Before boundary condition

a

Channel flow

After boundary condition

b
c

d

Figure 3.6: Periodic boundary condition example. In this 2D channel flow, the periodic
boundary condition is applied to the left-most and right-most lattice points. (For example,
the three particle distributions of lattice point a propagate to lattice points b, c, and d,
respectively.)

face, since a distribution on the face is copied to the opposite side of the lattice but
stays inside the same XY slice. For in-slice periodic boundary, we simply apply
a modulo operation to the texture coordinates by the width or the height of each
slice. Whereas for periodic boundary face perpendicular to the Z axis, which we
call out-slice periodic boundary, we need to copy distribution textures of one slice
to another.

A naive implementation of the in-slice periodic boundary condition is to ap-
ply the modulo operation of the texture coordinates of all the distribution texels.
However, this can be very slow. For instance, in Nvidia’s fragment program, the
modulo is simulated by floating point division. Therefore, one optimization we use
first propagates without the periodic boundary condition. Then, we draw stripes of
single-texel width that only cover the boundary but with the modulo operation. In
this way, the cost for computing is negligible, since the periodic boundary nodes
only account for a small percentage of the lattice.

30

Channel flow

Before boundary condition

a

Channel flow

After boundary condition

b

Figure 3.7: Outflow boundary condition example. In this 2D channel flow, the outflow
boundary condition is applied to all top-most and bottom-most lattice points. (For example,
the particle distributions of lattice point b are obtained by copying the particle distributions
from lattice point a and vertically flipping the particle distributions.)

3.2.3 Outflow Boundary

Similar to periodic boundary, an outflow boundary condition is applied by
drawing single-texel-wide stripes. According to Mei et al. [103], nodes at an out-
flow boundary get their distributions from distributions of internal nodes but with a
velocity direction flipped around one of the major axes (see a 2D example in Fig-
ure 3.7). Note that when packing the distributions, we guarantee that f(i, j,k) and
f(−i, j,k) of the same node are in the same texture, as well as the pairs f(i, j,k) and
f(i,− j,k), f(i, j,k) and f(i, j,−k). These can be easily verified from Table 3.1. Therefore,
each boundary distribution texture copies from only one distribution texture. To flip
the distributions around the major axes, we utilize the swizzle operator to rearrange
the order of the color elements.

3.2.4 Complex Boundary

To handle a complex boundary, we adopt Mei et al.’s method [104] (see Fig-
ure 2.4 in Section 2.2.3). The boundary does not necessarily lie on the lattice nodes,
and can deform during the simulation. Each boundary link is specified by two nodes
x f , xb, the fraction of the link that is in fluid ∆, and the moving speed of the wall uw.

31

We actually deem the regions isolated by the boundary surface as separate fluids.
Hence, for each boundary link, the boundary condition affects two distributions,
one on each side of the boundary. Besides, the two distributions are in the opposite
directions, but co-linear with the link. We refer to them as boundary distributions.

To generate the boundary information, we first create a voxelization of the
boundaries using the method described in Section 3.2.1. Besides the position of the
voxels, we also need the wall velocity uw, as well as the coefficients of polygon
plane equations which will be used to compute ∆. That is, we need three attributes
in total. To preserve accuracy, we treat these attributes as texture coordinates when
rendering the vertex array in the next step.

In practice, we don’t explicitly generate the flat volume of the boundary vox-
els, but combine the generation with the computation of the boundary conditions,
by rendering the boundary vertex array directly into the pbuffer containing the prop-
agated new distributions, and applying the fragment program for complex boundary
conditions. Note that in most cases, for each boundary link, only one node is cov-
ered by a voxel from the generated voxel array. However, we need each boundary
node to receive a fragment so that the boundary distributions are updated. There-
fore, for each packed distribution texture, we render the voxel array three times. In
the first pass, they are rendered normally, covering those voxels in the generated
voxel array. In the second pass, we first set the color mask, so that only the R and
G channels can be modified. Then, we apply a translation to all the voxels using a
vertex program. The translated offset is computed according to the following rule:

• ei: if f lag1 ∗ f lag2 > 0

• −ei: if f lag1 ∗ f lag2 < 0

• 0: if f lag1 ∗ f lag2 = 0

where f lag1 = (posx, posy, posz,1)•(A,B,C,D), f lag2 = (A,B,C)•ei, and • repre-
sents a dot product. (posx, posy, posz) is the 3D position of the voxel without trans-
lation. The boundary surface inside the voxel is defined by Ax + By +Cz + D = 0,
where (A, B, C) is a normalized plane normal pointing from the solid region to the
liquid region. ei is the velocity vector associated with the distribution in the red
channel. The third pass is similar to the second pass, except that this time the B
and A channels are modified, and ei is the velocity vector corresponding to the blue

32

channel distribution.
In this way, all the boundary nodes are covered by the voxels. We then compute

∆ at the beginning of the boundary condition fragment program with the following
equations:

∆′ = f lag1/ f lag2, ∆ = 1−∆′ (3.2)

The meanings of f lag1 and f lag2 are the same as before. Note that each chan-
nel computes its f lag1, f lag2, and ∆ independent of its own ei. A distribution is
a boundary distribution if only, for the corresponding color channel, 1 ≥ ∆′ ≥ 0.
If it is not a boundary distribution, the fragment program prevents modifying the
corresponding color channel by assigning it the old value.

3.3 Visualization

To visualize the simulation, we inject particles into the flow field. The posi-
tions of the particles are stored in a texture, and are updated by the current velocity
field at every time step. The updating is through a fragment program as well. Sim-
ilar to the generation of boundary voxels, the updated particle positions are then
copied to a vertex array residing in the graphics memory for rendering. The whole
simulation and rendering cycle is inside the GPU, hence there is no need to transfer
large chunks of data between the main memory and the graphics memory. To better
display the flow field, particles are arranged into a regular grid before injection and
are colored according to the position where they enter the flow field, as shown in
Figure 3.15. Due to the requirement of the vertex array, the total number of particles
are constant during the simulation. We use a fragment program to recycle particles
that flow out of the border of the field or stay in a zero-velocity-region, and place
them back at the inlet. If two particles coincide at exactly the same location at
the same time, they will never separate during the advection. Visually, we will see
fewer and fewer particles. To avoid this, we add a random offset to each particle
when placing it at the inlet.

In the 2D LBM, there is only one velocity slice, while in the 3D LBM, the
velocities form a volume. The advection fragment program fetches the velocity
indicated by the current position of the particles. Therefore, the fragment program

33

needs to access either a 3D texture or a 2D texture storing the flat volume. We
indeed chose the flat volume storage, which is much faster. Please note that if the
velocity is stored as a stack of 2D textures, the advection would be very difficult, if
not impossible.

3.4 Performance

We have experimented with our GPU-based LBM implemented using OpenGL
and Cg on an Nvidia GeForce FX 5900 Ultra. The graphics board has 256MB
425MHz DDR SDRAM and its core speed is 400MHz. The host computer is a
Pentium IV 2.53Ghz with 1GB PC800 RDRAM. All the results related to the GPU
are based on 32-bit single precision computation of the fragment pipeline. For
comparison, we have also implemented a software version of the LBM simulation
using single precision floating point, and measured its performance on the same
machine.

Figure 3.8 shows the time in milliseconds per step of the LBM D2Q9 model
as a function of the lattice size, running on both the CPU and the GPU. Note that
both the X and Y axes are in logarithmic scale. Figure 3.9 compares the two from
a different perspective by showing the speedup factor. The times include both sim-
ulation and visualization. Note that there is no need to transfer the velocity field
or the particle positions between the main memory and the graphics memory. The
time spent on advecting and rendering the particles is negligible with respect to the
simulation.

For lattice size equals to or greater than 1282, the simulation on the GPU is
about 6 times faster than that on the CPU. The GPU is less effective in accelera-
tion for smaller lattice sizes due to the overhead inside the GPU pipeline, such as
switching textures and switching GL context that are independent of the lattice size.
As the lattice size increases, the percentage of the overhead among the total time
decreases, hence we see better speedups. For large lattice sizes, the overhead is neg-
ligible and the simulation times of both the GPU-based LBM and the CPU-based
LBM tend to be proportional to the lattice size. Therefore, the speedup factor stays
relatively constant.

Figures 3.10 and 3.11 show similar graphs to Figures 3.8 and 3.9, but for the

34

2.66

10.00

39.69

157.97

3.10

15.70

59.40

243.70

979.70

0.78
0.31

0.94

0.1

1.0

10.0

100.0

1000.0

10000.0

1 2 3 4 5 6

Number of Cells

M
ill

is
ec

o
n

d
s

P
er

 S
te

p

CPU
GPU

322 642 1282 2562 5122 10242

Figure 3.8: Speed (in milliseconds per step) of a D2Q9 LBM simulation.

3.02
3.97

5.90 5.94 6.14 6.20

0

5

10

1 2 3 4 5 6

Number of Cells

S
p

ee
d

u
p

 o
f

G
P

U
 o

ve
r

C
P

U

Speedup

 322 642 1282 2562 5122 10242

Figure 3.9: Speedup of the LBM on the GPU vs. the software version for the D2Q9 model.

D3Q19 LBM model. Compared with D2Q9, each lattice site requires more com-
putation and more data access operations. Hence, even higher speedup factors have
been achieved with the GPU acceleration. The speedup factor varies between 8 and
9 for most of the lattice sizes. When the lattice size approaches 1283, the speedup
is as high as 15.

The step in the GPU timing curve—as well as in the GPU versus CPU
speedup—is good evidence showing their different cache behavior. When the lat-
tice size gets bigger and surpasses a certain threshold, cache misses significantly
slow down the CPU version. Due to the mostly sequential access patterns of the
LBM algorithm and the GPU’s optimization for sequential access, the cache-miss
rate on the GPU is relatively independent of the lattice size, and we do not see such

35

0.01
0.02

0.04
0.07

0.15
0.28

0.16
0.32

0.62
1.32

4.21

0.55
0.08

8.39

0.01

0.10

1.00

10.00

1 2 3 4 5 6 7

Number of Cells

S
ec

o
n

d
s

P
er

 S
te

p

CPU
GPU

 323 643 1283

Figure 3.10: Speed (in seconds per step) of a D3Q19 LBM simulation.

6.05

8.63 8.57 8.33

9.11

14.89 15.26

0

5

10

15

20

1 2 3 4 5 6 7

Number of Cells

S
p

ee
d

u
p

 o
f

G
P

U
 o

ve
r

C
P

U

Speedup

 323 643 1283

Figure 3.11: Speedup of the LBM on the GPU vs. the software version for the D3Q19
model.

a computation time jump. In an experiment, we modified the software version to
reduce the cache-miss rate. The new software version splits large lattices into multi-
ple 643 sub-lattices. Figures 3.12 and 3.13 show a new comparison of computation
times and a new curve of the speedup factor.

3.5 Results

Figure 3.14 shows 2D flow fields based on the D2Q9 model simulation. In Fig-
ure 3.14(a) and Figure 3.14(b), we insert obstacles such as disks and bars (shown in

36

0.01
0.02

0.04
0.07

0.15
0.28

0.16
0.32

0.62

0.55
0.08

5.86

1.34
2.81

0.01

0.10

1.00

10.00

1 2 3 4 5 6 7

Number of Cells

S
ec

o
n

d
s

P
er

 S
te

p

CPU
GPU

 323 643 1283

Figure 3.12: Speed (in seconds per step) of a D3Q19 LBM simulation. (Unlike that in
Figure 3.10, this software version splits large lattices into multiple 643 sub-lattices in order
to reduce the cache-miss rate.)

6.05

8.63 8.57 8.33 9.23 9.92 10.65

0

5

10

15

20

1 2 3 4 5 6 7

Number of Cells

S
p

ee
d

u
p

 o
f

G
P

U
 o

ve
r

C
P

U

Speedup

 323 643 1283

Figure 3.13: Speedup of the LBM on the GPU vs. the software version for the D3Q19
model. (Unlike that in Figure 3.11, this software version splits large lattices into multiple
643 sub-lattices in order to reduce the cache-miss rate.)

red) into the simulations. The vortices are generated due to the obstacles. To visual-
ize the flow field, we inject a slice of colored particles and advect them according to
the velocity field of the flow. Figure 3.14(c) shows a simulation of a river. We have
used a binary bitmap to specify the shape of the river. The simulation is visualized
using the image-based flow visualization (IBFV) method [146] in real-time.

Our simulation can handle arbitrarily complex and dynamic boundary, which

37

(a) (b)

(c)

Figure 3.14: 2D LBM simulations on the GPU: (a) a (red) disk in the flow, (b) two (red)
bars and a (red) disk in the flow, and (c) flow in a river.

usually results in a complex flow field. Figure 3.15 shows 3D LBM simulation re-
sults. Colored particles, injected at one end through a slit and advected by the flow,
depict the flow field. All the computations—the simulation, the generation of the
boundaries, the advection, and the rendering of the particles—are executed on the
GPU in real time. Figure 3.15(a) shows the flow over a static vase. Figure 3.15(b)
shows the flow interacting with a moving box. Figure 3.15(c) and (d) show a jel-
lyfish swimming from right to left in the flow. The model and the rendering of the
jellyfish have been adapted from Nvidia’s sample code. The jellyfish deforms its
body, and so does the liquid-solid boundary.

We have used our GPU-based LBM implementation in several graphics appli-
cations, to model natural phenomena in real-time, such as bubbles and feather in the
wind [150, 151], fire [164], smoke [163], and heat shimmering and mirage [162].

38

(a) (b)

(c) (d)

Figure 3.15: 3D LBM simulations on the GPU with (a) a static vase, (b) a moving box, and
(c) and (d) a jellyfish that swims from right to left.

Figure 3.16 shows the snapshots of our simulations in these applications.

39

(a) (b)

(c) (d)

Figure 3.16: Visual simulations of natural phenomena using the GPU-based LBM: (a)
blowing of a bubble, (b) fire, (c) smoke around a ball, and (d) heat shimmering.

Chapter 4

Adapted Unstructured LBM on GPU

Flow motion on curved surfaces of arbitrary topology is an interesting visual
effect. An infinitely thin flow that purely lives on a curved surface would only
exist in an imaginary world. However, its visual simulation can create interesting
special effects on the 3D surface models and is desirable for computer graphics
applications. Furthermore, shallow (thin) fluid flows are actually often seen in the
real-world, such as the swirling pattern on soap bubbles, the atmosphere on the
earth, and the lava drifting from the peak of the mountain. Reducing their visual
simulations from 3D flows to surface flows will simplify the model and make the
computation affordable. On the other hand, modeling flows on arbitrary curved
surfaces is also a challenging problem, and most previous flow models only solve
the flows in 2D planar space or 3D space.

Stam [133] has first proposed a method based on Stable Fluids to simulate
fluid flows on curved surfaces. However, this method requires the global surface
parameterization that may cause visible distortions in the flow. Although he has
further proposed a technique to alleviate the distortions, the distortions are still ap-
parent. Shi and Yu [130] have presented a method that performs the inviscid and
incompressible flow simulation directly on surfaces. Their method avoids the global
parameterization and directly applies the advection and the pressure solver on tri-
angular surface meshes. However, a sparse linear system derived from the Possion
equation for pressure still needs to be solved globally. Note that both methods start
from a macroscopic point of view and globally solve the Navier Stokes equations.

40

41

In this chapter, we introduce a novel and effective way to model such dynam-
ics. We propose a technique that adapts a recently emerged computational fluid dy-
namics (CFD) model, unstructured lattice Boltzmann model (Unstructured LBM),
from the 2D unstructured meshes to the 3D surface meshes. Unlike the previous
methods, our method is based on the mesoscopic kinetic equations for discrete par-
ticle distribution functions. No matter how complicated the surface shape and topol-
ogy are, all computations on the surface mesh only involve the information within
local neighborhoods. This model has the following advantages: (i) simplicity and
explicit parallelism in computation, which make the method well suited to GPU
acceleration; (ii) great capability in handling complex interactions, such as the in-
teractions between flow and boundaries and the interactions of multiple-component
fluids; (iii) no need for global surface parameterization that may cause strong dis-
tortions; and (iv) capability of being applied to meshes with arbitrary connectivity.

4.1 Unstructured LBM

An unstructured grid is an array of points with their connectivity relationship
explicitly stated. Unlike the structured grid, its points have no particular logical or-
der. This allows for more geometrical flexibility. For example, in computer graph-
ics, the triangular mesh has become a dominant method for the representation of 3D
surfaces. In modern CFD techniques, the unstructured grid is often used in finite-
element or finite-volume computations. These computations have also appeared in
visual simulations, such as the modeling of muscle dynamics [139].

The LBM on the unstructured grid was first proposed by Peng et al. [117]. By
importing finite-volume techniques within the LBM framework, their model applies
to meshes without requiring any special kind of connectivity. Later, Ubertini et
al. [143, 144] have improved the 2D unstructured LBM and further incorporated a
set of boundary conditions. Because our further development is based on Ubertini
et al.’s 2D method, we briefly review their model below.

Figure 4.1 shows a 2D triangular LBM grid. Every grid point has nine velocity
vectors, each of which is associated with a particle distribution function. Figure 4.2
shows a closer view of the geometrical 1-ring neighborhood around a grid point
P. The neighboring points of P on the grid are denoted as Pk, k = 1,2, ..,K. The

42

green regions in Figure 4.2 are a set of finite-volumes defined around P. (In 2D, the
finite-volumes are polygons.) They are denoted as Ωk, k = 1,2, ..,K. Each Ωk is
the union of two triangles Ω−

k = [P,Ek,Ok] and Ω+
k = [P,Ok,Ek+1], where Ok is the

center of the triangle [P,Pk,Pk+1] and Ek, Ek+1 are the midpoints of the edges PPk,
PPk+1, respectively.

Figure 4.1: The 2D unstructured LBM grid. Every grid point has nine symmetrical velocity
vectors (including the zero velocity), each associated with a particle distribution function.

Figure 4.2: The geometrical layout of the 1-ring neighborhood around a grid point P.
Points Pk are the neighboring points of P. (The green regions stand for the finite-volumes
which are defined around P.)

For the unstructured grid, the Boltzmann equation is written as the following
finite-difference equation:

fi(P, t +dt) = fi(P, t)+dt
K∑

k=1

(Φik−Ξik), (4.1)

43

where Φik and Ξik denote the streaming and collisional fluxes of the ith particle
distribution function fi coming from the kth finite-volume Ωk. Applying the lin-
ear interpolation rules, the calculation of streaming fluxes is straightforward. The
contribution of collisions arises from the integration of the linear interpolated value
of the collision term (fi− f eq

i)/τ over each finite-volume Ωk. The resulting finite-
volume equation takes the following general form:

fi(P, t +dt) = fi(P, t)+dt
K∑

k=0

Sik fi(Pk, t)

−dt
τ

K∑

k=0

Cik[fi(Pk, t)− f eq
i (Pk, t)], (4.2)

where index k = 0 denotes the pivotal point P itself. The detailed expressions of the
streaming and collision matrices Sik and Cik = Ckδik (δik = 1, if i = k; and δik = 0 if
i 6= k) are obtained by

Si0 = 0, Sik =~ei · ~Nk/VP, k = 1,2, ..,K, (4.3)

and
C0 = 1/3, Ck =

Vk−1 +Vk

3VP
, k = 1,2, ..,K. (4.4)

In the above, Vk is the area of Ωk, while VP is the area of Ω =
⋃

k Ωk. ~Nk is defined
as

~Nk =
[

5
12

(~A+
k−1 +~A−k)+

2
12

(~A−k−1 +~A+
k)

]
, k = 1,2, ..,K, (4.5)

where ~A∓k are the vectors normal to the lines EkOk, OkEk+1, with magnitude equal
to the length of these lines. Similarly, ~A∓k−1 associate with lines Ek−1Ok−1 and
Ok−1Ek, respectively.

4.2 Out Method: Unstructured LBM on Curved Sur-
faces

In this section, we present the basic algorithm of our model. This model is
devised by adapting Ubertini et al.’s unstructured LBM from 2D meshes to manifold

44

surface meshes. To successfully realize this adaptation, the following problems had
to be solved: (1) for each mesh point, we need to define its nine velocity vectors;
and (2) in order to apply Equation 4.2 in the computation, for each mesh point P,
we need to locally flatten P’s 1-ring neighborhood.

To solve the first problem, for each mesh point, we firstly define the local
frame 〈~s,~t〉, in its tangent space, then define the nine velocity vectors based on this
local frame. Note that for most surface meshes (specifically close meshes whose
genus is not one), it’s impossible to define on them the local frames that are globally
continuous. This means that there are unavoidable differences in the orientations
of velocity vectors between neighboring mesh points. Fortunately, in Section 4.2.3
we introduce a technique to rotate and align velocity vectors and recompute the
corresponding particle distribution functions. With this technique, there is no need
for local frames to be globally continuous.

For the second problem, we flatten the 1-ring neighborhoods to the tangent
planes in pre-processing. We use the ghost points, Gk, on behalf of the neighboring
points Pk (see Figure 4.3). In the simulation, for each time step we first update the
states of all ghost points based on corresponding neighboring points, and then for
each mesh point we execute the streaming and collision computation with informa-
tion from ghost points, a procedure similar to that in 2D unstructured LBM. Section
4.2.1 through Section 4.2.3 give more details.

Figure 4.3: The 1-ring neighborhood of P is flattened to its tangent plane Λ. Ghost point Gk
is on behalf of neighboring point Pk. The velocity vectors (dark blue) at Pk are transformed
into vectors (pink) that lie in Λ.

45

4.2.1 Define Velocity Vectors for Mesh Points

To define the nine velocity vectors for each mesh point P, we first define the
local frame 〈~s,~t〉, where ~s and~t are two orthogonal unit vectors defining the local
tangent space at P. Any definition of local frames can be used for our model and
we choose the following simple method. Assuming~n is the normal vector at mesh
point P, we let

~s′ =

{
~n×~x , i f |~n ·~x| ≤

√
2

2
~n×~y , otherwise,

(4.6)

~s =~s′/|~s′| and~t =~n×~s. In the above,~x,~y, and~z are three mutually orthogonal unit
vectors, “×” denotes the vector cross product, and “·” denotes the vector dot prod-
uct. It can be seen that in above definition the local frame is uniquely determined
by~n.

Similarly to the D2Q9 model described in Section 2.2.3, for each mesh point,
we define its velocity vectors ~ei as follows in the 3D world space:

~ei =

0 , i = 0
cos(θi)~s+ sin(θi)~t , i = 1, ..,4√

2 cos(θi)~s+
√

2 sin(θi)~t , i = 5, ..,9,

(4.7)

where

θi =

{
(i−1) π/2 , i = 1, ..,4
π/4+(i−5) π/2 , i = 5, ..,9.

(4.8)

4.2.2 Flatten the 1-Ring Neighborhoods

In flattening (see Figure 4.3), the positions of the ghost points Gk are computed
as follows. First, we find such neighboring point P1 that the angle between the edge
PP1 and tangent plane Λ is the smallest. Second, we project edge PP1 onto Λ and
scale the length of the projected edge to |PP1|. The resulting edge is PG1 and hence
the position of G1 is determined. Third, similar to [82], the positions of other ghost
points are calculated in a way that all the edge lengthes are exactly preserved and
the angles between two consecutive edges are preserved up to a common factor. We

46

denote the transformation matrix as M′
k which rotates PPk to PGk around point P

with the vector
−→
PPk×−−→PGk to be the rotation axis.

We also apply the transformation M′
k to the velocity vectors at each neigh-

boring point Pk. After this transformation, the velocity vectors may not lie in P’s
tangent plane. Therefore, we apply an additional rotation M′′

k to transform them
into P’s tangent plane. In the following description, ~nk

′ denotes M′
k~nk, where ~nk is

the normal vector at neighboring point Pk. M′′
k rotates the vector ~nk

′ into ~n around
point Gk with the vector ~nk

′×~n to be the rotation axis. Assuming the surface is
smooth and the mesh resolution is high enough, the transformation M′′

k M′
k should

cause no or only negligible distortions. The resulting vectors are defined as Gk’s
velocity vectors (see Figure 4.3).

4.2.3 Rotate and Align the Velocity Vectors

The local LBM computation can not yet be directly applied as on the 2D un-
structured grid, because the velocity vectors of the ghost points have different ori-
entations from those of point P’s velocity vectors (see Figure 4.4).

Figure 4.4: Vector alignment is needed, because the velocity vectors of the ghost points
have different orientations from those of the point P’s velocity vectors.

Our solution to this is to rotate the velocity vectors of the ghost points and align
them with P’s velocity vectors. Accordingly, the particle distribution functions need
to be recomputed in order to preserve the flow properties, such as the fluid density ρ
and the fluid velocity~u (see Figure 4.5). For a given ghost point Gk, we denote the

47

rotation angle as Θ, which is in the range of [0,2π]. We denote the original velocity
vectors and their associated particle distributions as e′i and f ′i respectively. The
target velocity vectors and the corresponding new particle distribution functions are
denoted as ei and fi respectively.

Figure 4.5: The illustration of vector alignment. (a) the velocity vectors e′i of a ghost point
are rotated and aligned with the velocity vectors ei of point P. (Θ is the rotation angle. The
particle distribution functions are shown as ellipses. The original particle distributions are
denoted as f ′i .) (b) The new particle distributions fi are recomputed for the rotated velocity
vectors. They preserve the fluid density ρ and the fluid velocity~u.

The following equations preserve the fluid density and the fluid velocity:
∑

i

fi = ρ =
∑

i

f ′i , (4.9)

∑

i

fi~ei = ~u =
∑

i

f ′i~e′i, (4.10)

They can be further supplemented with equations for preserving the energy, the
stress tensor, and other flow properties. However, they are enough for our visual
simulation and we have chosen the following way to satisfy them.

Without loss of generality, let’s assume the rotation angle Θ is in the range of
[0,π/2], meaning that e1 is between e′1 and e′2. We let f0 equal f ′0. The values f1, ..,
f4 are computed based on f ′1, .., f ′4. In this computation, we first let

f̄ = (f ′1 + f ′2 + f ′3 + f ′4)/4.

48

Then we subtract f̄ from each f ′i (i = 1, ..,4) and get

λ′i = f ′i − f̄ , i = 1, ..,4.

After that, we project the vectors λ′ie′i and λ′i+1e′i+1 on the direction of ei. The
resulting vector length is

λi = λ′icos(Θ)+λ′i+1sin(Θ), i = 1, ..,4.

Finally, we add f̄ back and get

fi = f̄ +λi, i = 1, ..,4.

It is easy to prove that
∑4

i=1 fi =
∑4

i=1 f ′i = 4 f̄ and
∑4

i=1 fiei =
∑4

i=1 f ′i e′i. Sim-
ilarly, we compute the values f5, .., f8 based on f ′5, .., f ′8. Thus Equation 4.9 and
4.10 are satisfied.

4.3 Enhancements to Our Method

In this section, we introduce other elements that enhance our flow model over
curved surfaces. They are boundary conditions, body forces, vorticity confinement
on the unstructured grid, and multi-component fluids. Because these computations
also only involve local operations and can be executed in flattened 1-ring neighbor-
hoods, adapting them from previous 2D LBM models to our model is straightfor-
ward. From this part on, unless otherwise specially stated, all values and operations
are presented in the tangent spaces 〈~s,~t〉 at mesh points.

4.3.1 Boundary Conditions

Ubertini et al. [143] have introduced three ways to handle static and mov-
ing boundary conditions in the 2D unstructured LBM. They are, listed in order
of increasing implementation difficulty as well as physical accuracy: equilibrium
method, mirror method, and covolume method. We have implemented the first
method, which takes to set the particle distribution functions fi as the equilibrium
particle distribution functions f eq

i for every boundary point. These f eq
i are calcu-

lated using Equation 2.6, in which~u is set as the boundary velocity.

49

4.3.2 Body Forces

Body forces can be user applied force, gravity, vorticity confinement force,
and etc. For each mesh point P, if the force vector is not in its tangent plane, we
need to project it onto the tangent plane. We denote the resulting vector as ~F . Then,
this force affects the local particle distribution functions as follows, according to
the previous work of LBM [10].

fi ←− fi +
(2τ−1)

2τ
B~F · ei, (4.11)

where B is the constant which has appeared in Equation 2.6.

4.3.3 Vorticity Confinement on Unstructured Grid

The vorticity confinement force adds small scale rolling features that are usu-
ally absent on coarse grid simulations. Fedkiw et al. [39] have firstly introduced
to computer graphics the vorticity confinement method on the regular grid for the
visual simulation of smoke.

Recently, a vorticity confinement formulation for the unstructured grid has
been derived using dimensional analysis by Löhner et al. [90]. We have incorpo-
rated this force into our model. The vorticity confinement force Fvc is expressed
as a function of the local vorticity-based Reynolds-number Reω,h, the local element
size h, the vorticity ω, and the gradient of the absolute value of the voriticity.

Fvc = g(Reω,h)cυρh2∇|ω|×ω, (4.12)

g(Reω,h) = max

[
0,min

[
1,

Reω,h−Re0
ω,h

Re1
ω,h−Re0

ω,h

]]
, (4.13)

Reω,h =
ρ|ω|h2

ν
, (4.14)

ω = ∇×~u, (4.15)

where cυ is a constant regardless of the grid, and Re0
w,h and Re1

w,h are two parameters
defining the effective range of Rew,h. Note that calculations of Equation 4.12 and
Equation 4.15 involve the finite difference operations ∇ and ∇× respectively. The
method to calculate these finite difference operations on the unstructured grid is
introduced in the Appendix.

50

4.3.4 Multi-Component Fluids

The interaction of multiple-component fluids is a specially interesting and
complex phenomenon, which has not been adequately addressed in computer
graphics. In computational physics, there is a large literature for using the LBM
to model this phenomenon, by taking the advantages of LBM in handling micro-
scopic interactions. The fluids can be either immiscible or miscible. In our work,
we focus on the immiscible two-component fluid, in which the interface between
two fluids is always maintained. Adapting miscible fluids models into our model
should be feasible as well.

Our method is based on the classic 2D LBM model for immiscible binary
fluids [53]. Red and blue particle distribution functions f r

i and f b
i are introduced to

represent two different components of the fluid. From them, the density and velocity
of the two fluids can be computed by Equation 2.3. The total (or the color-blind)
particle distribution function is defined as fi = f r

i + f b
i . The collision is applied on

fi as usual. After this, a special two-step two-component collision rule maintains
the interfaces that separate the different components.

The first step is to add a perturbation to the particle distribution near the inter-
face which creates the correct surface-tension dynamics. The interface is located by
computing the local color gradient ~g, which is perpendicular to the interface. The
perturbation to each color-blind particle distribution is given by:

f̂i = fi +A|~g|cos2(θi−θg), (4.16)

where θi is the angle of velocity vector ei and θg is the angle of the local color
gradient~g. This operation redistributes mass near the interface, depletes mass along
lattice links parallel to the interface and adds mass to the links perpendicular to the
interface, while the total mass and momentum are conserved.

The second step is to recolor the mass after perturbation in order to separate
the two different components and maintain a clear interface. This is achieved by
solving a maximization problem :

W (f̂ r
i , f̂ b

i) = max

[
(
∑

i

(f̂ r
i − f̂ b

i)~ei) ·~g
]

. (4.17)

To conserve the total red mass and blue mass,
∑

i f̂ r
i must equal to the total amount

51

of red mass before collision. To conserve the mass in each lattice direction, f̂ r
i +

f̂ b
i = f̂i should be satisfied.

After the above collisions, the streaming is applied on f̂ r
i and f̂ b

i , and then the
color-blind particle distribution is recomputed for the next time step.

4.4 GPU Implementation

4.4.1 Preprocessing

In preprocessing, we first scale up/down the mesh size, making the average
edge length to be one. The reason for doing this is to make uniform parameters re-
gardless of the original mesh dimension. Then the following values at every mesh
point are calculated: the local frame, the positions of ghost points and their rota-
tion angles Θ (mentioned in Section 4.2.3), and the coefficients Sik and Cik used in
Equation 4.2.

4.4.2 Algorithm Overview

The computational procedure of the flow simulation is listed as fol-
lows:

1: Initialize the values~u, ρ, f eq
i , and fi for all mesh points

2: while the simulation is not terminated do
3: Update fi for all ghost points (Section 4.2.3)
4: Compute~u, ρ and f eq

i for all ghost points
5: Apply streaming and collision (Equation 4.2) for all mesh points
6: Compute and apply body forces for all mesh points
7: Apply boundary condition for all boundary points
8: Compute~u, ρ and f eq

i for all mesh points
9: end while

This procedure is only for the single-component fluid. It can be just slightly modi-
fied as described in Section 4.3.4 to simulate the immiscible two-component fluid.

52

4.4.3 Data Packing

All steps in the algorithm (Section 4.4.2) are local and explicitly parallel. The
major challenge, however, is that we need to pack the unstructured mesh in 2D
textures. Because the connectivity of the unstructured mesh does not change over
time, we use textures that store indices to express the connectivity of the unstruc-
tured mesh. Note that lines 3 and 4 in the algorithm are applied to all ghost points
and lines 4, 6, and 8 are applied to all mesh points. Therefore, we store mesh points
and ghost points in separate textures.

Figure 4.6 shows our data packing method. Group (a) stores the lattice data
of all mesh points. Group (d) stores the lattice data of all ghost points. Note that
the ghost points of each mesh point are stored contiguously in Group (d). For every
mesh point, Group (b) stores the index of the first ghost point located in its flattened
1-ring neighborhood. For every ghost point, Group (c) store the index of the mesh
point which the ghost point is on behalf of. The indices stored in group (b) allow
the computation of every mesh point to access the data of the ghost points that are
in its flattened 1-ring neighborhood. Likewise, the indices stored in group (c) allow
the computation of every ghost point to access the data of the mesh point that the
ghost point is on behalf of. The rest part of the implementation is similar to the
GPU implementation of D2Q9.

Line 7 of the algorithm is a computation on all boundary points. The set of
boundary points is a subset of the mesh points. We store the positions of all bound-
ary points in a Vertexbuffer Object (VBO). In each simulation time step, we enable
the boundary condition calculation fragment program and render the VBO as points
into the textures of group (a). By doing so, the lattice data of the boundary points
are updated accordingly.

4.5 Results

We list here the results of several examples simulated with our model. Fig-
ure 4.7(a) and Figure 4.7(b) show the flows over a dog surface and a two-hole torus
surface respectively. We periodically deposit a material on the surfaces. Because
the density of this material is larger than that of the fluid, gravity force drives the

53

(a) LBM data of
the mesh points

(d) LBM data of
the ghost points

(b) Indices of
the ghost points

(c) Indices of
the mesh points

Figure 4.6: The unstructured LBM data are stored in four groups of textures.

(a) (b)

Figure 4.7: Flow motion due to gravity on (a) the dog model and (b) the two-hole torus
model.

fluid to move, which causes the advection of the material. This advection is mod-
eled by applying the semi-Lagrangian backtracing scheme with the flow velocity
field in the flattened neighborhoods. Note that in some region, the fluid moves in
the opposite direction of gravity due to incompressibility.

54

Figure 4.8: Flow motion due to gravity on the dog surface, with static boundaries.

Figure 4.9: Flow motion caused by the animated boundary objects on the sphere.

Figure 4.8 and Figure 4.9 show interactions of the flow over surfaces with
boundary objects. In Figure 4.8, static boundaries over the dog model are the text
shape SCA 2005 and the star shape. Figure 4.9 shows animated boundaries, the
white objects moving inside and activating the flow on the sphere. We visualize the
velocity field using the existing image-based flow visualization method for curved
surfaces [147].

Figure 4.10(a) and Figure 4.10(b) shows the immiscible two-component fluids
over surfaces. For the simulation of Figure 4.10(a), at the beginning, the left part
of the sphere are full of blue fluid while the right part full of pink fluid. The blue
fluid is denser than the pink one. Gravity causes a turbulent flow motion, resulting
very complex interfaces between two parts. For the simulation of Figure 4.10(b),
the blue and pink fluids have the same density. Two parts continuously inosculate

55

(a) (b)

Figure 4.10: Immiscible two-component fluids, colored in blue and pink: (a) a turbulent
mixture of two components on the sphere, (b) a peaceful inosculation on the skull.

with each other, resulting in interesting dynamics.
Table 4.1 compares the performance of our GPU implementation and our soft-

ware implementation. The performance has been measured on a PC with Intel Xeon
2.40GHz and NVIDIA Quadro FX 4500 GPU. The tested simulations are single-
component fluid simulation. The GPU implementation has been about 6.5–10 times
faster than the software implementation.

Table 4.1: Performance comparison of the adapted unstructured LBM on the CPU and
GPU.

Surface Vertices Faces FPS on CPU FPS on GPU Speedup
Sphere 4,098 8,192 15.0 97.0 6.5

Dog 37,502 75,000 1.7 16.3 9.6
Two-Hole Torus 49,998 100,000 1.3 12.6 9.7

Chapter 5

LBM on GPU Cluster

Because of the attractive FLOPS/dollar ratio and the rapid evolution of GPUs,
we believe that a GPU cluster is promising for data-intensive scientific computing
and can substantially outperform a CPU cluster at the equivalent cost. In this chap-
ter, we present our GPU cluster built in 2004 and describe our LBM implementation
on this cluster. We also discuss an application of airborne contaminants dispersion
simulation in the Times Square area of New York City. Using 30 GPU nodes, our
simulation can compute a 480x400x80 LBM in 0.31 second/step, a speed which is
4.6 times faster than that of our CPU cluster implementation. Although there have
been some efforts to exploit the parallelism of a graphics PC cluster for interactive
graphics tasks [50, 65, 66], to the best of our knowledge, we are the first to develop
a scalable GPU cluster for high performance scientific computing and large-scale
simulation.

5.1 The GPU Cluster

Figure 5.1 shows our cluster, called the Stony Brook Visual Computing Clus-
ter. The first version was built in 2004 for two main purposes: as a GPU cluster for
graphics and computation and as a visualization cluster for rendering large volume
data sets. It has 32 computation nodes connected by a Gigabit Ethernet switch.
Each node is an HP PC equipped with two Pentium Xeon 2.4GHz processors and
2.5GB memory. Each node has a GPU, the GeForce FX 5800 Ultra with 128MB

56

57

memory, used for GPU cluster computation.

Figure 5.1: The Stony Brook Visual Computing Cluster.

Each node can boot under Windows XP or Linux. We use MPI for data transfer
across the network during execution. Each port of the network switch has 1 Gigabit
bandwidth. Besides network transfer, data transfer includes upstreaming data from
GPU to PC memory and downstreaming data from PC memory to GPU for the
next computation. This communication occurs over an AGP 8x bus, which has an
asymmetric bandwidth (2.1GB/sec peak for downstream and 133MB/sec peak for
upstream). We only use the fragment processing stage of the GeForce FX 5800
Ultra for computing, which features a theoretical peak of 16 Gflops, while the dual-
processor Pentium Xeon 2.4GHz reaches approximately 10 Gflops. The theoretical
peak performance of this cluster is (16+10)×32 = 832 Gflops.

5.2 The LBM Implementation

5.2.1 Domain Partitioning

To implement the LBM on the GPU cluster, we decompose the LBM lattice
space into sub-domains, each of which is a 3D block processed by one GPU. The

58

computation hence is expressed in two-levels of parallelism. At the coarse level,
multiple GPUs communicate and synchronize with each other. For each node, the
velocity distributions at the border sites need to stream to adjacent nodes at every
computation step. At the fine level, each GPU executes the LBM computation
kernels in SIMD fashion on the lattice sites of its sub-domain. Our single GPU
implementation (see Chapter 3) has been reused for the fine level parallelism. In
Figure 5.2, the arrows show the communication among the GPUs. Black arrows
indicate velocity distributions that stream axially to nearest neighbor nodes while
blue arrows indicate velocity distributions that stream diagonally to second-nearest
neighbor nodes.

Figure 5.2: The LBM lattice is decomposed into sub-domains and each sub-domain is
processed by one GPU. (The arrows show the communication among GPUs.)

In every simulation step, velocity distributions at border sites of the sub-
domain may need to stream to adjacent nodes. This kind of streaming involves three
steps: (1) Distributions are read out from the GPU; (2) They are transferred through
the network to appropriate neighboring nodes; (3) They are then written to the GPU
in the neighboring nodes. For ease of discussion, we divide these across-network
streaming operations into two categories: streaming axially to nearest neighbors
(represented by black arrows in Figure 5.2) and streaming diagonally to second-
nearest neighbors (represented by blue arrows). Note that although Figure 5.2 only
demonstrates 9 sub-domains arranged in 2 dimensions, our implementation is scal-
able and functions in a similar fashion for sub-domains arranged in 3 dimensions.

59

5.2.2 Optimization of Inter-GPU Communication

The primary challenge in implementing the LBM on the GPU cluster is to
minimize the communication cost — the time taken for network communication
and for transferring data between the GPU and the PC memory. Overlapping net-
work communication time with the computation time is feasible, since the CPU
and the network card are all standing idle while the GPU is computing. However,
because each GPU can compute its sub-domain quickly, optimizing network perfor-
mance to keep communication time from becoming the bottleneck is still necessary.
Intuitively one might want to minimize the size of transferred data. One way to do
this is to make the shape of each sub-domain as close as possible to a cube, since
for block shapes the cube has the smallest ratio between boundary surface area and
volume. Another idea that we have not yet studied is to employ lossless compres-
sion of transferred data by exploiting space coherence or data coherence between
computation steps. We have found, however, that other issues actually dominate the
communication performance.

The communication switching time has a significant impact on network per-
formance. We performed experiments on the GPU cluster using MPI and repli-
cated these experiments using communication code that we developed using TCP/IP
sockets. The results were the same: (1) During the time when a node is sending
data to another node, if a third node tries to send data to either of those nodes,
the interruption will break the smooth data transfer and may dramatically reduce
the performance; (2) Assuming the total communication data size is the same, a
simulation in which each node transfers data to more neighbors has a considerably
larger communication time than a simulation in which each node transfers to fewer
neighbors.

To address these issues, we have designed communication schedules [138] that
reduce the likelihood of interruptions. We have also further simplified the commu-
nication pattern of the parallel LBM simulation. In our design, the communication
is scheduled in multiple steps and in each step certain pairs of nodes exchange data.
This schedule and pattern are illustrated in Figure 5.3 for 16 nodes arranged in 2
dimensions. The same procedure works for configurations with more nodes and for
3D arrangement as well. The different colors represent the different steps. In the
first step, all nodes in the (2i)th columns exchange data with their neighbors to the

60

left. In the second step, these nodes exchange data with neighbors to the right. In
the third and fourth steps, nodes in the (2i)th rows exchange data with their neigh-
bors above and below, respectively. Note that LBM computation requires that nodes
need to exchange data with their second-nearest neighbors too. There are as many
as 4 second-nearest neighbors in 2D arrangements and up to 12 in 3D D3Q19 ar-
rangements. To keep the communication pattern from becoming too complicated,
and to avoid additional overhead associated with more steps, we do not allow direct
data exchange diagonally between second-nearest neighbors. Instead, we transfer
those data indirectly in a two-step process. For example, as shown in Figure 5.3,
data that node B wants to send to node E will first be sent to node A in step 1, then
be sent by node A to node E in step 3. If the sub-domain in a GPU node is a lattice
of size N3, the size of the data that it sends to a nearest neighbor is 5N2, while the
data it sends to a second-nearest neighbor has size of only N. Using the indirect
pattern increases the packet size between nearest neighbors only by c

5N (c is 1 or
2 for 2D arrangement and 1-4 for 3D arrangement). Since the communication pat-
tern is also greatly simplified, particularly for 3D node arrangements, the network
performance is greatly improved.

Step 1

Step 2

Step 3

Step 4

A C D

F G H

I J K L

M N O P

B

E

Figure 5.3: The optimized communication schedule and pattern of the parallel LBM simu-
lation. (Different colors indicate the different steps in the schedule.)

We also found that for simulations with a small number of nodes (less than 16),
synchronizing the nodes by calling MPI barrier() at each scheduled step improves
the network performance. However, if more than 16 nodes are used, the overhead

61

of the synchronization overwhelms the performance gained from the synchronized
schedule.

The data transfer speed from GPU to CPU represents another bandwidth lim-
itation. The velocity distributions that stream out of the sub-domain are stored in
different texels and different channels in multiple textures. We have designed frag-
ment programs which run in every time step to gather together into a texture all these
data. Then they are read from the GPU in a single read operation (e.g., OpenGL
function glGetTexImage()). In so doing, we minimize the overhead of initializing
the read operations.

5.2.3 Performance of LBM on the GPU Cluster

In addition to the GPU cluster implementation, we have implemented the par-
allel LBM on the same cluster using the CPUs. The time and work taken to develop
and optimize these two implementations were similar (about 3 man-months each).
Note that although each node has two CPUs, for the purpose of a fair comparison,
we used only one thread (hence one CPU) per node for computation.

In Table 5.1, we report the simulation execution time per step (averaged over
500 steps) in milliseconds on both the CPU cluster and the GPU cluster with 1, 2,
4, 8, 16, 20, 24, 28, 30 and 32 nodes. Each node evaluates an 803 sub-domain and
the sub-domains are arranged in 2 dimensions. The timing for the CPU cluster sim-
ulation (shown in column 2 of table 5.1) includes only computation time because
the network communication time was overlapped with the computation by using a
second thread for network communication. The timing for the GPU cluster simu-
lation (shown in column 6) includes: computation time, GPU and CPU communi-
cation time, and non-overlapping (non-O) network communication time. Network
communication time (plotted as a function of the number of nodes in Figure 5.4)
was partially overlapped with the computation because we let each GPU compute
collision operation on inner cells of its sub-domain (which takes roughly 120 ms)
simultaneously with network communication. If the network communication time
exceeds 120 ms, the remainder will be non-overlapping and affect the simulation
time. In column 5 we show this remainder cost along with a total network commu-
nication time in parenthesis.

62

Table 5.1: Per step execution time (in ms) for CPU and GPU clusters and the GPU cluster
/ CPU cluster speedup factor. (Each node computes an 803 sub-domain of the lattice.)

CPU GPU cluster
Network: SpeedupNodes cluster Computation AGP

non-O (Total)
Total

1 1420 214 - - 214 6.64
2 1424 216 13 0 (38) 229 6.22
4 1430 224 42 0 (47) 266 5.38
8 1429 222 50 0 (68) 272 5.25
12 1431 230 50 0 (80) 280 5.11
16 1433 235 50 0 (85) 285 5.03
20 1436 237 50 0 (87) 287 5.00
24 1437 238 50 0 (90) 288 4.99
28 1439 237 50 11 (131) 298 4.83
30 1440 237 50 25 (145) 312 4.62
32 1440 237 49 31 (151) 317 4.54

The GPU cluster / CPU cluster speedup factor is plotted as a function of the
number of nodes in Figure 5.5. When only a single node is used, the speedup factor
is 6.64. This value projects the theoretical maximum GPU cluster / CPU clus-
ter speedup factor which could be reached if all communication bottlenecks were
eliminated by better optimized network and larger GPU/CPU bandwidth. When
the number of nodes is below 28, the network communication will be totally over-
lapped with the computation. Accordingly the growth of the number of nodes only
marginally increases the execution time due to the GPU/CPU communication and
the curve flattens approximately at 5. When the number of nodes increase to 28 or
above, the network can’t be totally overlapped, resulting in a drop in the curve.

To quantify the scalability of the GPU cluster, Table 5.2 shows the computed
efficiency of the GPU cluster as a function of the number of nodes. The efficiency
values are also plotted in Figure 5.6.

Our simulation computes 640× 320× 80 = 15.6M LBM cells in 0.317 sec-
ond/step using 32 GPU nodes, resulting in 49.2M cells/second. This performance
is comparable with supercomputers [99–101]. In the work of Martys et al. [99],

63

0

40

80

120

160

0 4 8 12 16 20 24 28 32

Number of Nodes

N
et

w
or

k
C

om
m

un
ic

at
io

n

T
im

e

Non-
overlapping

Overlapping

Figure 5.4: The network communication time measured in ms. (The area under the blue
line represents the part of network communication time that was overlapped with computa-
tion. The shadow area represents the remainder.)

0

1

2

3

4

5

6

7

0 4 8 12 16 20 24 28 32

Number of Nodes

S
pe

ed
up

 F
ac

to
r:

 G
P

U

C
lu

st
er

 /
C

P
U

 C
lu

st
er

Figure 5.5: Speedup factor of the GPU cluster compared with the CPU cluster.

128×128×256 = 4M LBM cells were computed in about 5 seconds/step on IBM
SP2 using 16 processors, which corresponds to 0.8M cells/second. In 2002, Mas-
saioli and Amati [100] reported the optimized D3Q19 BGK LBM running on 16
IBM SP Nodes (16-way Nighthawk II nodes, Power3@375MHz) with 16GB shared
memory using OpenMP. They computed 128×128×256 = 4M LBM cells in 0.26

64

Table 5.2: The GPU cluster performance and the efficiency with respect to the number of
nodes.

Number Number of cells
of Nodes computed per second

Speedup Efficiency

1 2.3M – –
2 4.3M 1.87 93.5%
4 7.3M 3.17 79.3%
8 14.4M 6.26 78.3%

12 20.9M 9.09 75.8%
16 27.4M 11.91 74.4%
20 34.0M 14.78 73.9%
24 40.7M 17.70 73.8%
28 45.9M 19.96 71.3%
30 47.0M 20.43 68.1%
32 49.2M 21.39 66.8%

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20 24 28 32

Number of Nodes

E
ffi

ci
en

cy
 o

f G
P

U
 C

lu
st

er

Figure 5.6: Efficiency of the GPU cluster with respect to the number of nodes.

second/step, which is 15.4M cells/second. They were able to further increase this
performance to 20.0M cells/second using more sophisticated optimization tech-
niques, such as (1) “fuse” the streaming and collision steps to reduce the memory
accesses; (2) keep distributions “at rest” in memory and implement the streaming by

65

the indexes translation; (3) bundle the distributions in a way that relieves the Seg-
ment Lookaside Buffer (SLB) and Translation Lookaside Buffer (TLB) activities
during address translation. In 2004, by using the above sophisticated optimization
techniques and further taking advantage of vector codes, they achieved the perfor-
mance of 108.1M cells/second on 32 processors with Power4 IBM [101]. Still, the
GPU cluster is competitive with supercomputers at a substantially lower price.

In the above discussion, we have chosen to fix the size of each sub-domain as
to maximize the performance of each GPU node. This means, using more nodes
we can obtain more cycles to compute larger lattices within a similar time frame.
However, another performance criterion for a cluster is to keep the problem size
fixed, but increase the number of nodes to achieve a faster speed. However, we
have found that in doing so, the sub-domains become smaller, resulting in a low
computation/communication ratio. As a consequence, the network performance
becomes the bottleneck. We thus may need a faster network in order to better
exploit the computational power of the GPUs. We have tested this performance
criterion with a 160×160×80 lattice and started with 4 nodes. When the number
of nodes increases from 4 to 16, the GPU cluster / CPU cluster speedup factor drops
from 5.3 to 2.4. When more nodes are used, the GPU cluster and the CPU cluster
gradually converge to achieve comparable performance.

5.3 Application: Dispersion Simulation in New York
City

The LBM can easily accommodate complex-shaped boundaries of the urban
environments characterized by sky-scrapers and deep urban canyons. As an exam-
ple application, we have simulated airborne contaminant dispersion in the Times
Square area of New York City. As shown in Figure 5.7, the simulation area extends
North from 38th Street to 59th Street, and East from the 8th Avenue to Park Av-
enue. It covers an area of about 1.66 km × 1.13 km, consisting of 91 blocks and
roughly 850 buildings. For large scale simulations of this kind, the combined com-
putational speed of the GPU cluster and the linear nature of the LBM model create
a powerful tool that can meet the requirements of both speed and accuracy. Beyond

66

enhancing our understanding of the fluid dynamics processes governing dispersion,
the simulation will support the prediction of airborne contaminant propagation so
that emergency responders can more effectively engage their resources in response
to urban accidents or attacks.

Figure 5.7: The simulation area (enclosed by the blue contour) on the Manhattan map.

The geometric model of the Times Square area that we use is a 3D polygonal
mesh that has considerable details and accuracy (see Figure 5.8). It covers an area
of about 1.66 km ×1.13 km, consisting of 91 blocks and roughly 850 buildings.
We model the flow using the D3Q19 BGK LBM with a 480×400×80 lattice. This
simulation is executed on 30 nodes of the GPU cluster (each node computes an 803

sub-domain). The urban model is rotated to align it with the LBM domain axes.
It occupies a lattice area of 440× 300 on the ground. As a result, the simulation
resolution is about 3.8 meters / lattice spacing. We simulate a northeasterly wind
with a velocity boundary condition on the right side of the LBM domain. The
LBM flow model runs at 0.31 second/step on the GPU cluster. After 1000 steps of
LBM computation, the pollution tracer particles begin to propagate along the LBM
lattice links according to transition probabilities obtained from the LBM velocity
distributions [94].

Figure 5.8 shows the velocity field visualized with streamlines at time step
1000. Red points indicate streamline origins. The blue color streamlines indicates
that the direction of velocity is approximately horizontal, while the white color
indicates a vertical component in the velocity as the flow passes over the buildings.
Figure 5.9 shows snapshots of a smoke dispersion simulation in the Times Square
Area of New York City.

67

Figure 5.8: A snapshot of the simulation of air flow in the Times Square area of New York
City at time step 1000, visualized by streamlines. (Simulation lattice size is 480 × 400 ×
80. Only a portion of the simulation volume is shown in this image.)

68

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Smoke dispersion simulated in the Times Square Area of New York City. (a)-
(c) are snapshots during navigation at different time steps. (d)-(f) are bird-eye views (in
which the wind is blowing from right to left).

Chapter 6

LBM of Irregular-Shaped Simulation
Domain on GPU Cluster

In this chapter, we present a simulation and visualization system for a critical
application—analysis of the thermal fluid dynamics inside a pressurized water re-
actor (PWR) of a nuclear power plant when cold water is injected into the reactor
vessel. We have worked closely with the PWR scientific engineers and have devel-
oped this visual simulation system. We employ a hybrid thermal lattice Boltzmann
method (HTLBM) [81] for modeling the thermal fluid dynamics. The simulation
demonstrates the formation of cold-water plumes in the reactor vessel. A set of in-
teractive visualization tools, such as side-view slices, 3D volume rendering, thermal
layers rendering, and panorama rendering, are provided to collectively visualize the
structure and dynamics of the temperature field in the vessel.

In Chapter 5, we have presented an LBM implementation with a rectangular
simulation domain on a GPU cluster. The simulation presented in this chapter is
new and challenging in that we simulate the thermal fluid dynamics in the special
geometry of an irregular-shaped PWR. If we straightforwardly use a rectangular
simulation domain which contains the PWR geometry, only 5.8% of the lattice cells
are useful. Hence, for efficient computation and memory consumption, we propose
an LBM implementation of irregular-shaped simulation domain on the GPU clus-
ter which packs only the nonempty LBM cells in GPU texture memories. To our
knowledge, this is the first system that combines 3D simulation and visualization
for analyzing pressurized thermal shock (PTS) risk in a pressurized water reactor.

69

70

This is also the first system that uses the LBM in PTS analysis with fast GPU cluster
computation.

6.1 Background

The assessment of PTS risk in reactor vessels has been of great interest to the
designers and constructors of pressurized water reactors in nuclear power plants.
The purpose of the PTS investigations [25] is to assess whether the brittle fracture
of the reactor vessel is credible during various off-normal or transient events. One
of the concerns recently raised is the possibility of reactor vessel failure due to the
formation of cold water plumes when cooling the reactor system at an excessive
rate during these events.

In previous work, the U.S. Nuclear Regulatory Commission (NRC) has under-
taken studies to investigate the performance of the reactor vessel during off-normal
or transient events. Li and Modarres [85] have discussed in details the history of
PTS studies. However, most of the studies are based on experiments rather than
numerical simulations. The PTS investigation required the analysis of a large num-
ber of transient events to determine the thermal hydraulic conditions in the reactor
vessel over a period of time. This thermal-hydraulic analysis has been performed
in 2D with the RELAP5 computer code. Various reviewers of the PTS analysis
have raised the issue of the possibility of cold water plume formation in the reac-
tor vessel downcomer and the potential impact on vessel performance. Because of
this possibility, it is necessary to further use 3D simulation to study whether the
fluid circulation and mixing is sufficient to dissipate cold water plumes that may
be formed. Martin and Bellet [98] have analyzed the qualification of finite element
based and finite difference based CFD software for 3D simulation of the physical
phenomena during PTS. In these PTS studies, the simulation results are visualized
with the temperature history plots for several key positions and the surface color
maps. With these elementary visualization tools, it is difficult for the designers and
analysts to infer the structure and dynamics of the temperature field.

Unlike the previous work, our simulation uses the HTLBM which models the
fluid at a mesoscopic level and hence have the following advantages. The bound-
ary condition for the complex PWR vessel geometry can be easily handled. The

71

Figure 6.1: Typical layout of a combustion engineering PWR [91]

computation operations are local and linear, hence can be fully parallelized on the
GPU and the GPU cluster. Moreover, our system provides a set of interactive 3D
visualization tools to help understanding the thermal fluid dynamics and analyzing
the structure and dynamics of the temperature field.

Figure 6.1 presents the general arrangement of a PWR with a combustion en-
gineering plant design. The normal flow path is from the reactor vessel through the
hot legs, the primary side of the steam generators, and back to the vessel through the
reactor coolant pumps and cold legs. Plant designs from other PWR vendors dif-
fer in the number of steam generator loops and the steam generator design among
other details. Figure 6.2 shows the internal structure of a typical reactor vessel.
The downcomer is the annular narrow region between the core support barrel and
the reactor vessel wall. The nozzle labeled “30 inch ID Inlet Nozzle” is the cold
leg inlet and the nozzle labeled “42 inch ID Outlet Nozzle” is the hot leg connec-
tion. The region of interest for this analysis is the cold leg piping and reactor vessel
downcomer.

One class of transients that is of interest to PTS risk analysis is the small-
break loss of coolant accidents (SBLOCA). The LBM analysis focuses on a 5.08
cm (2.0 in) diameter pipe break in the surge line that connects to the hot leg (see

72

Figure 6.2: General arrangement of a typical combustion engineering PWR reactor vessel
and internals [91]

Figure 6.1). When the break occurs, the reactor coolant system (RCS) pressure
decreases rapidly from the normal operating value of 15.5 MPa (2250 psia) at first,
and then more slowly as water-to-steam flashing occurs within the RCS.

The RCS depressurization leads to initiation of flow from the injection systems
typically at a temperature of 305 K (90◦F), which are designed to maintain water
inventory in the reactor system during a LOCA. The decreasing RCS pressure ul-
timately results in the operator turning off the reactor coolant pump in each cold
leg to prevent pump failure. With no pumped flow in the system, a transition from
forced to natural circulation behavior occurs for a short time. This natural circu-
lation flow keeps the primary system fluid well mixed (i.e., no cold plumes form
in the downcomer). However, continued loss of RCS fluid inventory stops coolant
loop natural circulation flow through both loops. The loss of natural circulation
flow is referred to as “loop flow stagnation” and is a significant point of interest in
the PTS analysis because afterward the influence of the cold injection water on the
downcomer is the greatest. During the loop flow stagnation period, the fluid flow
velocity around the loop, and particularly in the cold leg, becomes practically zero.
The only mass flow through the cold leg during loop flow stagnation is that from

73

the high pressure injection (HPI) system and this flow is from the injection nozzle
downstream of the pumps (see Figure 6.1) towards the downcomer. The tempera-
ture of the fluid in the reactor system at this time is 464 K (375◦F) at a pressure of
4.34 MPa (630 psia).

The potential for plumes exists because cold water (305 K (90◦F)) injected into
the cold leg due to HPI operation will flow down the cold leg piping into the hot
downcomer towards the lower plenum. Depending on the amount of mixing that
occurs in the cold leg and downcomer, thermal stratification may occur in the cold
leg providing a potential for the formation of thermal plumes in the downcomer. If
thermal plumes exist in the downcomer, a larger thermal gradient through the vessel
wall (relative to the average downcomer fluid temperature) may result affecting
vessel performance. The LBM analysis focuses on determining whether cold water
plumes form in the reactor vessel when the loop flow is stagnant.

6.2 Modeling of Thermal Fluid Dynamics

6.2.1 Multi-Relaxation-Time LBM

In Section 2.2.3, we have presented the basic LBM model. This LBM is
called called single-relaxation-time LBM (SRTLBM). In Equation 2.4, only one
parameter, τ, is used to control the collision of particle distribution functions. The
SRTLBM is prone to unstable numerical computation when used for highly turbu-
lent fluids or incorporated with temperatures or body forces. Therefore, we use a
new version of the LBM, multiple-relaxation-time LBM (MRTLBM) [20]. It differs
from the SRTLBM in that a new collision operator replaces the single-relaxation-
time collision in Equation 2.4. The new collision operates in the space of hydro-
dynamic moments representing density, momentum, energy, etc. These moments,
denoted as mi, are mapped from the particle distributions as

|m〉= M| f 〉, (6.1)

where | f 〉 = (f0, f1, ..., fn)T , |m〉 = (m0,m1, ...,mn)T and n is the number of lattice
links of a node to its neighbors. For the D3Q13 lattice, each of the 13 moments
has a physical meaning: m0 is the mass density; m1,2,3 are the components of the

74

momentum vector; m4 is the energy; and the other higher order moments are com-
ponents of the stress tensor and other high order tensors. Although the values of
the distributions and the moments vary over the lattice sites, M is simply a con-
stant matrix for a given lattice structure. Mathematically, the MRTLBM collision
is described as:

| f (~r, t+)〉= | f (~r, t)〉−M−1S[|m(~r, t)〉− |meq(~r, t)〉], (6.2)

where S is a diagonal matrix. Its diagonal elements {si|i = 0,1, ...,n} are the re-
laxation rates [20]. It has been proven that the MRTLBM increases the numerical
stability [81]. Body forces and heat effects can be easily added to the moments
mi, because the moments have explicit physical meanings, such as momentum and
energy.

6.2.2 Hybrid Thermal Lattice Boltzmann Method

Based on the MRTLBM, Lallemand and Luo [81] have developed the HTLBM
for coupling thermal effects to the LBM. The temperature evolution is governed by
a diffusion-advection equation:

∂tT +~u ·∇T = κ∆T, (6.3)

where κ is the thermal diffusivity of the material and u is the velocity. This equation
is solved by finite-difference operators, where the x, y, and z components of the
gradient ∇T and the Laplacian operator 4T are computed by the finite difference
operators [20].

The temperature is coupled to the LBM in order to model the interaction be-
tween the heat and the fluid dynamics. The moment m4 represents the energy,
therefore, the temperature can be added to the LBM when computing the equilib-
rium meq

4 :
meq

4 = n1ρ+n2ρ2(~u ·~u)+n3T, (6.4)

where the parameters, n1 to n3, are constants and physically defined by the lin-
ear analysis. After coupling T to meq

4 , the method could model the thermal fluid
dynamics.

75

Because the LBM lattice not only discretizes the simulation domain space but
also subdivides the angular space, the complex surface of the irregular-shaped ves-
sel can be effectively captured by the intersection points of the lattice links with the
surface. Boundary conditions are the simple local rules applied after the streaming
step. Such boundary conditions are treated with a bounce back rule. In this case,
the outgoing particle distribution re-enters the grid at the same node, but associated
with the opposite velocity. The rule is to copy the mirror image of the packet distri-
butions of the nodes that are located on the fluid side of the boundary to those on the
solid side. In the PTS analysis, the plume behavior is affected by the temperature
of the vessel wall. We include in the simulation the heat transfer from the wall to
the fluid. Initially, the vessel wall and the fluid are at the same temperature. As cold
water is injected, heat exchange occurs between the wall and the fluid.

Typical LBM computation achieves second-order accuracy for solving Navier-
Stokes equations [136]. The thermal LBM method we used has been applied and
validated to simulate turbulent convective flows in 2D and 3D cases [145]. Val-
idation studies [145] have been presented and compared to benchmark data for
laminar and turbulent natural convection in a cavity. Results obtained for both the
2D and 3D case agree very well with existing benchmark data. The deviation from
benchmark data is within 0.8%. They also show that the scheme yields quadratic
convergence rate in space.

6.3 Simulation

6.3.1 Configuration

Figure 6.3 shows a 3D polygonal model created according to the specification
of the vessel downcomer. The model is created with Maya Complete 6.0. It includes
the downcomer, cold legs, and HPI injection pipes. We have carefully constructed
this model based on the layout of the reactor vessel (Figure 6.1). The cold water is
injected from the HPI injection pipes and flows through the cold legs into the lower
plenum.

Using the LBM as a fluid solver, one has to determine the LBM configuration

76

HPI Pipes

Cold Legs

Downcomer

Figure 6.3: The geometric model of the vessel created for the simulation.

of grid size, time step, characteristic speed and size, etc., observing the configu-
ration rules [150]. The following configuration is used in our simulation. We set
the grid spacing (spacing between two neighbor lattice sites) δx .= 0.02m, and each
simulation step δt .= 0.01s. The spacing and time step size determine the global
lattice dimensions of the entire simulation domain at 800×600×480.

The flow speed of the HPI injection is computed by the given flow rate, which
is 35.0lb/s = 15.876kg/s. The radius R of the HPI injection pipe is R = 0.27m
and the density of the water is ρ .= 1× 103kg/m3. The flow rate of the water can
be computed as ρπR2U ; therefore, the flow speed of the HPI injection is computed
as U = 0.28m/s. In the LBM simulation, the flow speed of the HPI injection is
U = 0.14 in LBM units, which is computed from δx and δt. The viscosity is set as
ν = 4× 10−3 in LBM units, therefore, the Reynolds number (which is the ratio of
inertial forces to viscous forces) in the cold leg is approximately Re .= 1400.

For the thermal effects, the thermal diffusivity is computed as κ = 4.05×10−3

in LBM units from the value of viscosity ν because the Prandtl number, a dimen-
sionless number approximating the ratio of momentum viscosity and thermal dif-
fusivity, Pr .= 1.0. The initial fluid domain temperature is 190.56 ◦C and the cold
water temperature is 31 ◦C. We use 0.1 in LBM units to represent initial fluid tem-
perature, and the cold water temperature is set as 1.63× 10−2 in the simulation,

77

which keeps the simulation stable and the effective Rayleigh number (a dimension-
less number associated with the heat transfer within the fluid) in the cold leg is
approximately Ra .= 4.8×104.

6.3.2 Cell Classification and Packing

Figure 6.4 illustrates the inner geometry of the PWR, where the fluid flows
inside the irregular-shaped vessel. Obviously, the empty cells waste much memory
space and computation time in a rectangular simulation domain, since there is no
discrepancy in treating the empty cells and the interior cells in the computation.
Based on this observation, we propose a new LBM implementation with cell clas-
sification and packing. In this application, only 5.8% of cells are are stored and
computed. Hence, it significantly improves the simulation performance in terms of
storage and computation time.

Figure 6.4: Because of the irregular shape of the reactor vessel, only 5.8% of cells are
useful if we straightforwardly use a rectangular region as the simulation domain.

We classify the fluid and empty cells in a preprocessing stage. First, we mark
the cells close to the vessel mesh as the border cells by an intersection test of the
mesh and simulation cells. Second, starting from a given interior cell (the seed), a
region-growing algorithm is implemented by a depth-first search to identify all the
interior cells. The interior and border cells are then compactly stored in the memory
for simulation. An indexing table is constructed to translate between the cell index
in the memory and its position in the simulation domain.

78

6.3.3 GPU Cluster Implementation

Even with the cell classification, the computational resource consumption is
still too extensive for a single CPU or GPU. We further accelerate our simulation by
performing the computation on a GPU cluster. This cluster has 32 nodes connected
by a Gigabit Ethernet. Each node has an NVIDIA Quadro FX 4500 GPU, dual Intel
Xeon 3.6GHz CPUs, and a PCI-Express bus.

The simulation domain is divided into sub-domains and distributed to multiple
nodes. Figure 6.5 shows the decomposition of the model. The LBM simulation
on each sub-domain is computed simultaneously with proper synchronization. The
communication between them is implemented on their interfaces. Therefore, we
have also marked those cells on the boundary of each sub-domain as interface cells
during the cell classification.

Figure 6.5: Decomposition of a simulation space into cuboidal sub-domains.

GPU data structures are generated in preprocessing. The non-empty cells of
each sub-domain is packed into the 2D textures on a GPU. Some textures are used
to store the flow properties, such as density, velocity, particle density functions, and
temperature. An example of such a texture is shown in Figure 6.6(a). The region
of the texture is divided into sub-regions that store interior cells, border cells, and
ghost cells, respectively. An interior cell is inside the sub-domain assigned to the
GPU and all of its neighboring cells are also inside this sub-domain. A border
cell is inside the sub-domain while some of its neighboring cells belong to another

79

GPU. When a cell is located in another GPU but some of its neighboring cells
belong to the sub-domain of the GPU, we use a ghost cell to represent it. During
the simulation, the ghost cells are used to store data received from other GPUs, so
that the computation only needs to access the local GPU data.

Interior Cells

Border Cells
Border Cells
Ghost Cells
Ghost Cells

Interior Cells

Border Cells
Ghost Cells

Interior Cells

Border Cells
Ghost Cells

Data
Transfers

(a) Flow Properties (b) Indices to Neighboring Cells

GPU 0

GPU 1

GPU 2

Indices

Figure 6.6: The data structures stored on the GPUs: (a) textures packing the flow proper-
ties, and (b) textures packing the indices of neighboring cells.

Because of the irregular shape of the simulation domain, the connection infor-
mation among cells need to be stored in index textures (as shown in Figure 6.6(b)).
Each texel stores the indices of neighboring cells for a given cell. However, storing
this information for ghost cells is unnecessary because their flow properties do not
have to be locally computed.

To initiate the simulation, multiple processes are launched in the cluster, each
running on a cluster node and controlling a local GPU. In each process, every sim-
ulation step includes the following sub-steps: collision operation, communication
with other processes, streaming operation, boundary conditions, and computation
of the temperature field. The communication sub-step brings the data from remote

80

GPUs to the local GPU and the other sub-steps compute on the data locally.
During the communication sub-step, each process reads out from the GPU

the flow properties of border cells and sends the data to the neighboring processes
(see the data transfer in Figure 6.6). After receiving the data, each process writes
the data to the GPU in order to update the flow properties of the ghost cells. In
the communication process, the MPI functions MPI Send and MPI Recv are used
to send or receive data on the network. To read the data out from the GPU, the
corresponding texture is bound to an OpenGL FrameBuffer Object (FBO) and the
function glReadPixels is used. Similarly, glWritePixels is used to write the data to
the GPU.

The computation sub-steps are implemented with the GPU fragment programs.
In operations, the textures of the source data are bound to texture units, while the
destination texture to store results becomes renderable by being bound to an FBO.
The algorithms specified in the fragment programs are executed on the flow prop-
erties in SIMD fashion. In some computation sub-steps, such as the streaming
operation, the fragment program needs to access the flow properties of neighboring
cells. The address is calculated based on the indices of the neighboring cells stored
in the index textures.

Table 6.1 reports the simulation performance on our cluster with and without
GPU acceleration. On 12 CPU nodes, the simulation of resolution 800×600×480
takes 8.8 seconds in each simulation step. The GPU cluster implementation using
the same number of nodes runs at 2.8 seconds per simulation step. About a three-
time speedup has been achieved.

Table 6.1: Average computation time (in ms) of a single LBM step tested on 12 cluster
nodes with and without GPU acceleration.

Resolution CPU Cluster GPU Cluster Speedup
800×600×480 8759 2810 3.1
600×450×360 3927 1297 3.0
400×300×240 1150 405 2.8

81

6.4 Visualization

6.4.1 3D Volume Rendering

The basic tool of our visualization system is a GPU-based 3D volume render-
ing program, which allows the user to interact with the volumetric temperature field
in real-time. We employ a high quality rendering algorithm, the pre-integrated vol-
ume rendering [23]. The transfer function used in the volume rendering is based on
the HSV color model. We store the transfer function in a 1D texture for translating
temperature to color and opacity. Based on the user intuition, the lowest tempera-
ture is assigned a blue hue (4

3π) and the highest temperature is assigned a red hue
(0) in default. Because the user is more interested in the distribution of low temper-
ature water, the opacity is inversely proportional to the temperature. The user can
change the transfer function by assigning the colors to temperatures freely in the
HSV color space. Currently, the HSV color model is used because the scientists in
nuclear reactor safety analysis are familiar with it. It is straightforward to change
from HSV to a CIE Lab color model which is more intuitive to human perception.

We store the temperature field at each simulation time step to disks. After
the simulation, these data are combined together from multiple cluster nodes, and
a single GPU is used to visualize the data. For efficient storage, the floating point
temperature is converted to unsigned byte data through scaling and biasing. To ef-
ficiently visualize the data in the irregular-shaped simulation domain, we use mul-
tiple 3D textures to store multiple blocks of data. The sizes and positions of the
blocks have been shown in Figure 6.5. Each block represents the data copied from
one cluster node. As described in Section 6.3.3, the simulation results are orga-
nized in an unstructured way using indirect addressing. Thus, in preprocessing of
the visualization, we reorganize the simulation results and fill the data into the 3D
blocks. During the visualization, the GPU renders the multiple blocks one by one
and composites the rendering results into the final image.

Figure 6.7 shows a sequence of snapshots of the cold water plume evolution.
The cold water is injected from the HPIs into the four cold legs. The cold water then
flows down to the downcomer of the vessel. Due to the interaction between the cold
water and the existing hot water, the four plumes appear and affect the temperature
of the vessel wall. Finally, the four cold water plumes flow to the bottom plenum of

82

(a) t=22s (b) t=34s

(c) t=58s (d) t=82s

Figure 6.7: The simulation of cold water injected into the reactor vessel rendered using 3D
volume rendering. (Time t in seconds is the simulation time.)

the vessel. They start to merge and induce more turbulent flows inside the bottom
plenum.

The analysts often want to examine the temperature distribution at some spe-
cific positions for precise analysis. Our program also provides a slicing option that
can show the temperature distribution on any arbitrary plane with user defined po-
sition and orientation in the whole modeling space. Figure 6.8 shows a sequence of
snapshots of a particular vertical 2D slice cutting in the middle of the vessel.

83

(a) t=22s (b) t=34s

(c) t=58s (d) t=82s

Figure 6.8: The simulation of cold water injected into the reactor vessel on a vertical 2D
slice in the middle of the vessel.

84

6.4.2 Thermal Layers Rendering

Volume rendering gives a good overview of the entire temperature field and
shows the interesting turbulent flow. However, due to occlusion and composition, it
does not clearly depict the internal structure and dynamics of the temperature field,
especially the shape and dynamics of the cold water plumes. Scientists usually have
in mind an intuitive understanding of the major structure of the temperature field.
We have found that the structure is similar to the concept of iso-surfaces in the
visualization community. Hence we use iso-surface volume rendering to visualize
the structure of the temperature field, called the thermal layers. Our goal is to
render multiple translucent iso-surfaces in real-time so that the user can interact
with the temperature field and arbitrarily add, remove, and change the temperature
iso-values.

One method is to explicitly extract the iso-surfaces and then use a view-
independent translucent surface rendering algorithm, such as depth peeling [26],
to display the iso-surfaces. However, the performance of both iso-surface extrac-
tion and translucent surface rendering greatly depend on the number and complexity
of the iso-surfaces. For example, currently, the fastest Marching Cubes iso-surface
extraction implementation on the GPU [21] can extract a single iso-surface from a
volume of 16M voxels at a speed of 4 FPS to 16 FPS (depending on the percent-
age of cells intersected by the iso-surface). Our simulation domain contains 13M
nonempty voxels. Supposing we want to show ten thermal layers simultaneously,
the iso-surface extraction will be performance at approximately 0.5 FPS to 2 FPS,
which does not meet our requirement of real-time speed. Note that the rendering
of such complex multiple translucent surfaces is also time consuming and will de-
crease the frame rate.

We instead employ the iso-surface volume rendering algorithm based on the
pre-integrated rendering algorithm [23]. Our implementation of pre-integrated vol-
ume rendering is reused here and only the transfer function is redesigned based on
the selected iso-values. For each iso-value, a “

⋂
” shape is defined in the transfer

function. The user can easily add, remove, and change the iso-values. The transfer
function and the pre-integration table are updated accordingly. The advantage of
this method is that the rendering performance is totally independent of the number
and complexity of the thermal layers. As shown in the third row of Table 6.2, our

85

rendering method achieves 17 FPS speed on the GPU. Figure 6.9(a) shows our ren-
dering results of five thermal layers. Compared with the 3D volume rendering in
Figure 6.7, it shows less turbulence but more clearly depicts the main structure of
the temperature field and the cold water plumes. Figure 6.9(b) and Figure 6.9(c)
show two close views of the key locations, where the temperature field matches
the prediction of scientists [98]. Figure 6.9(b) shows the development of thermal
layers in the cold leg, where hot layer is on the top and cold layer is at the bottom.
Figure 6.9(c) shows that when the water flows into the downcomer, the cold water
layer penetrates the warm and hot water layers and touch towards the inner wall of
the downcomer (core barrel) as opposed to the reactor vessel wall.

6.4.3 Panorama Rendering

Although the 3D views present the entire temperature field to the user, some
of the information is lost due to occlusion and compositing. In this particular ap-
plication, an important part to be analyzed is the small toroidal region between the
inner and outer boundary of the downcomer, which is only a small part of the en-
tire simulation domain. A possible solution is to employ an empty space skipping
technique, but it is a complex algorithm and does not solve the occlusion problem.
Instead, we propose a GPU-based panorama ray-casting algorithm which param-
eterizes the toroidal downcomer and maps it to a rectangle space. The algorithm
efficiently displays the temperature distribution in the downcomer in a single im-
age, so that the scientists can view the global distribution without occlusion and
can easily find key positions for further investigation. Figure 6.10(a) demonstrates
a panorama volume rendering result image. Figure 6.10(b) shows the tempera-
ture distribution on the surface of the vessel downcomer without compositing. The
panoramic view also results in an intuitive user interface: it allows the scientists to
drag the mouse over the view and see in a separate view the digital values of the
temperature at interesting positions (see Figure 6.10(b)).

Figure 6.11 illustrates the algorithm. The rays are cast from the centerline of
the vessel and they are perpendicular to the centerline. We construct a cylindrical
coordinate system (r,θ,y) where θ is the angle between the ray and the x axis. The
y axis is the centerline of the vessel. Given a point (u,v) in parameter space, its

86

(a) (b)

(c)

Figure 6.9: The rendering of five thermal layers: (a) an overview, (b) a close view showing
the thermal layers developed in the cold leg, and (c) a close view showing the cold water
layer penetrates the warm and hot water layers.

87

(a) (b)

Figure 6.10: Panorama rendering (a) with composing and (b) without compositing. (The
user can drag the mouse over the panorama view and see the temperature values of interest-
ing position in a separate view.)

x

z ray

O

Downcomer

Figure 6.11: Illustration of panorama ray-casting. (This figure shows a horizontal cutting
plane that intersects with the downcomer.)

corresponding ray segment starts from (r0,2πu,v) and ends at (r1,2πu,v), where r0

and r1 are the radii of inner and outer cylinder, respectively. In practice, a rectangle
is drawn to the screen with proper texture coordinates ([0..1]× [0..1]). The fragment
program first calculates the ray direction and the origin for each fragment. Then,
a single-pass ray casting method is used to calculate the accumulated color and
transparency on each ray. The radii r0 and r1 are used for empty space skipping
and ray termination. Because only a small portion of voxels are processed, the
panorama rendering achieves a speed as high as 129 FPS on a GeForce 8800 GTX
(shown in Table 6.2).

88

Table 6.2: Performance of our visualization methods, tested on a GeForce 8800 GTX. (The
image size is 5122. The step size of ray-casting is one grid unit.)

Frames per second
3D volume rendering 17
Slice view rendering 880

Thermal layers rendering 17
Panorama rendering 129

6.4.4 Statistical Analysis

For a complete PWR safety analysis, our thermal fluid dynamics simulation re-
sults will be converted to inputs of a structural simulation for further examination of
the vessel performance. In our current system, we provide statistical analysis tools
to help the analysts identify the key regions before the structural simulation. Intu-
itively, the regions of the lowest temperature and/or highest temperature gradient are
of most interest. Hence, we record the minimum temperature and maximum gradi-
ent magnitude for each lattice cell during the simulation. The volumes of minimum
temperature and maximum temperature gradient magnitude are then downloaded to
a GPU for visualization. The GPU renders the PWR geometry with the color map
based on the data sampled from the 3D textures that store the minimum tempera-
ture and maximum temperature gradient. Figure 6.12(a) and Figure 6.12(b) show
the volume rendering and polygonal rendering images of the minimum temperature
over the simulation time. Figure 6.12(c) and Figure 6.12(d) show the maximum
temperature gradient magnitude.

For positions of special interest to the scientists, the system can output ac-
curate temperature readings for further analysis. Figure 6.13(a) shows four points
specified by the user inside the cold leg. For these points, the temperature history
is plotted in Figure 6.13(b). The figure shows that in the cold leg the upper points
have higher temperature than the lower points. This phenomenon agrees with our
thermal layer rendering result shown in Figure 6.9(b).

89

(a) (b) (c) (d)

Figure 6.12: In (a) and (b), the colors represent the minimum temperature over the simu-
lation time, with volume rendering and surface rendering, respectively. In (c) and (d), the
colors represent the maximum temperature gradient over the simulation time.

Points

1
2
3
4

(a)

0

20

40

60

80

100

120

140

160

180

200

0 5
10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Time t

T
em

p
er

at
u

re

Point 1

Point 2

Point 3

Point 4

(b)

Figure 6.13: (a) Four points (shown in the blue rectangle) in the cold leg defined by the
user. (b) The plots of the temperature history at these points.

Chapter 7

Zippy: A General Framework for
GPU Clusters

Recently, major GPU vendors have started to target the HPC market. For ex-
ample, NVIDIA has announced the Tesla S1070 [2], a 1U rack-mount server with 4
GPUs dedicated to computation. Both NVIDIA Tesla S1070 and AMD FireStream
9170 [1] support double-precision floating point computation. At the same time, as
researchers have accelerated a wide range of general-purpose applications on the
GPU, the need arises for using the GPU cluster to achieve further acceleration and
to support an increase in the problem size. From the point of view of hardware and
application, using GPU clusters for general-purpose computation and visualization
is becoming more and more attractive.

From the software point of view, however, programming GPU clusters is dif-
ficult, low-level, and error-prone. The complexity of programming also makes per-
formance optimization difficult. In this chapter, we introduce the Zippy framework
to simplify the GPU cluster programming. Zippy abstracts the GPU cluster with a
two-level parallelism hierarchy and a non-uniform memory access (NUMA) model.
Zippy preserves the advantages of both message passing and shared-memory mod-
els. It employs global arrays (GA) to simplify the communication, synchronization,
and collaboration among multiple GPUs. Moreover, it exposes data locality to the
programmer for optimal performance and scalability. We present three example
applications developed with Zippy: sort-last volume rendering, Marching Cubes

90

91

isosurface extraction and rendering, and the LBM flow simulation with online vi-
sualization. They demonstrate that Zippy can ease the development and integration
of parallel visualization, graphics, and computation modules on a GPU cluster.

7.1 Background

Researchers have explored GPU clusters for several specific applications. Be-
sides our LBM flow simulation [32], GPU clusters have been used for volume
compression and rendering [135], occlusion culling [50, 156], biological sequence
search [62], surface flow visualization [6], N-body simulation, finite element com-
putation [45], and data clustering [137]. In these implementations, the GPUs are
programmed using the stream computing model [9, 102] and the communication
among the cluster nodes are programmed using the Message Passing Interface
(MPI). With MPI, the programmer can explicitly control the data locality and com-
munication, hence application performance can be understood and optimized. How-
ever, the programming is tedious. MPI, sometimes referred to as “the assembly
language of parallel computing,” is low-level and error prone. For example, for ev-
ery data transfer, the programmer needs to explicitly specify which processor sends
and which receives the data. Some algorithms are complex to express in this way.
Moreover, because MPI only deals with system memories of cluster nodes rather
than GPU memories, integrating MPI and GPU computation is very inconvenient
for the programmer.

Moerschell and Owens [105] have implemented a distributed shared-memory
(DSM) abstraction for multi-GPU environments. This method virtualizes the dis-
tributed texture memories as a shared-memory and allows computation kernels to
directly read and write remote data, hence simplifies the programming. However,
currently it has only been implemented on a dual-GPU PC and the dual-GPU pro-
gram has not outperformed the single-GPU program. An important contribution of
their work is identifying the bottlenecks of the DSM and discussing possible solu-
tions. One major bottleneck is the high latency overheads associated with main-
taining the data consistency. Due to current GPU hardware and driver limitations,
each program using the DSM must be separated into multiple passes that read data
from or write data to GPUs. A page-based method is used to maintain the data

92

consistency; when a computation accesses a part of a remote page, the whole page
will be transferred. Choosing a proper page size is important to reduce the perfor-
mance loss caused by unneeded data transfers. Also, the DSM hides data locality
and communication. A side effect is that it is unclear to the programmer how the
application performance is affected by the data access patterns or how to improve
the patterns.

Zippy combines the best features of the MPI+stream computing method and
the DSM method. It abstracts a GPU cluster with two characteristics critical to
high performance, the non-uniform memory accessing (NUMA) and the two-level
parallelism hierarchy, and hides other details from the programmer. A GPU cluster
is a NUMA environment: the bandwidth of remote GPU memory access is sev-
eral orders of magnitude lower than local GPU memory access while the latency
is several orders of magnitude higher. Therefore, Zippy allows the programmer to
manage data locality and communication. Convenient coarse-grained communica-
tion operations are used to bring remote data to local GPU memory and kernels
only operate on the local data. In other words, Zippy provides the programmer a
clear view of two levels of parallelism, coarse-grained parallelism among all GPUs
and fine-grained parallelism within each GPU, instead of mixing them.

To present the NUMA and the two-level parallelism hierarchy to the program-
mer, we adapt the Global Arrays (GA) programming model [113] to the GPU clus-
ter and combine it with the stream computing model. Compared with the MPI-
based method, our method has two advantages: (1) its high level data structures and
API encapsulate the low-level communication details using global spaces and sim-
plify the programming; (2) as the n-dimensional array is the common data structure
for both GA and stream computing, they are seamlessly integrated into one frame-
work. Compared with the DSM, our method also provides a virtual shared memory
space but is simpler to implement. Moreover, it exposes data locality and com-
munication to the programmer. The programmer has precise control of when and
which data region is transferred, which is unavailable in the DSM. Therefore, better
performance and scalability can be obtained.

93

Previous software systems [7, 66] for graphics clusters are specialized for par-
allel rendering and mainly handle the transfer of image data and graphics com-
mands. With the programmability of modern GPUs, Zippy provides a general pro-
gramming interface that blurs the boundaries between graphics, visualization, and
computation, and to expressly support the graphics and visualization community
with its tasks on GPU clusters. We demonstrate three example applications de-
veloped using Zippy: (1) sort-last volume rendering, a traditional parallel graphics
application; (2) Marching Cubes isosurface extraction and rendering, a more com-
plex graphics algorithm that benefits from our general programming interface; and
(3) lattice Boltzmann model flow simulation and online visualization, an integration
of general-purpose computation and visualization.

There are other related research directions. Fatahalian et al. [37] have pro-
posed the Sequoia programming language and implemented it on a Cell worksta-
tion and a PC cluster. Unlike Sequoia that focuses on memory hierarchies and
abstracts programs as trees of memory modules to address vertical communication,
Zippy focuses on the two-level parallelism hierarchy and uses a regular GA data
structure to simplify horizontal communication. However, both explicitly expose
data locality and communication and encourage block data movement. Yamagiwa
and Sousa [160] have proposed the Caravela system for programming GPU-based
GRID environments, where the resources are loosely coupled and the primary goal
is to efficiently manage a large amount of heterogeneous resources. In a GPU clus-
ter, however, the resources are tightly coupled and the primary goal is to achieve
the best possible application performance. Manzke et al. [96] are developing a
hardware interconnection in a GPU cluster.

7.2 Zippy Overview

General-purpose computation on a GPU cluster often involves a two-layer
communication among GPUs. If a GPU needs data from the memory of another
GPU, the data on the source node is uploaded from the GPU memory to the system
memory, transferred through the network, then downloaded to the GPU memory on
the destination node. The two-layer communication would aggravate the difficulty
of programming with MPI. However, to provide a virtually shared space to ease

94

the communication among multiple GPUs, we believe it is important to make the
NUMA and the two-level parallelism hierarchy explicit to programmers.

Table 7.1 lists the theoretical bandwidth and latency of the GPU memory, PCI-
Express bus, and the network. The actual data transfer performances are consider-
ably lower. The last two rows show the theoretical bandwidth and latency for a GPU
to access data in the memory of a remote GPU. Compared with the GPU memory,
the bandwidth is 2-3 orders of magnitude lower and the latency is 2-4 orders of
magnitude higher. In fact, due to hardware limitations, a GPU cannot transfer data
through the PCI-Express bus when it is computing, which leads to much higher
latency. Because of this NUMA nature, Zippy differentiates between the shared
space and local space and exposes data locality to the programmer for optimal per-
formance. To alleviate the effects of the high remote GPU memory access latency,
the shared-space should be accessed only with coarse-grained operations such as
block copy. Also, the stream computing kernels should only operate on the local
space, so that the computation does not wait long for an expensive communication.

Table 7.1: Theoretical bandwidth and latency in a GPU cluster, which demonstrates a
NUMA characteristic.

Bandwidth Latency
GPU memory 100 GB/sec 0.05 µsec
PCI-Express 4 GB/sec 0.5 µsec
Infiniband 2.5 GB/sec 1 µsec

GigaE 0.1 GB/sec 50 µsec
Remote GPU memory
on Infiniband cluster

2.5 GB/sec 2 µsec

Remote GPU memory
on GigaE cluster

0.1 GB/sec 51 µsec

Because of the large performance difference between transferring data among
GPUs and within a GPU, Zippy abstracts the GPU cluster with the two-level paral-
lelism hierarchy. Unlike the MPI+stream computing method, in Zippy the two lev-
els are tightly coupled and seamlessly integrated. Unlike the DSM, in which inter-
GPU communication can be implicitly triggered by GPU computation, in Zippy the
boundary between two levels are clear to the programmer and the communication
operations are explicitly initiated.

95

At the coarse level, multiple GPUs collaborate with each other. We employ
the GA model [113] for programming this coarse-grained parallelism. GA has been
developed in the parallel computing community and has been employed in appli-
cations, such as matrix multiplication, computational chemistry and physics, and
electronic structure. It employs a global array data structure and a set of shared-
memory style functions for convenient data transfers in the global array space. In
addition, GA acknowledges the NUMA characteristics of distributed-memory ar-
chitectures. It exposes data locality and the management of communication to the
programmer. The programmer can make sure that only the needed data are trans-
ferred. The original GA toolkit was proposed for PC clusters and supercomputers.
To adapt the GA model to a GPU cluster for programming the two-level parallelism
hierarchy, we have implemented a new object-oriented library that encapsulates the
details of the GPU computation and the two-layer communication.

At the fine level, existing GPGPU toolkits based on stream computing, such
as Cg [97], GLSL [123], HLSL [131], Brook [9], Sh [102], NVIDIA CUDA [114],
and RapidMind [3], have provided efficient ways to program computation kernels
executed on a single GPU. In order to use them to program general-purpose compu-
tation on multi-GPU platforms, the programmer needs to manually create threads,
handle each GPUs, and explicitly take care of inter-GPU data transfer. (Especially,
in the GPU cluster, the programmer needs to take care of the network transfer us-
ing MPI.) Zippy presents a method of extending these stream computing toolkits
to multi-GPU environments. Zippy programming model seamlessly integrates the
fine-grained parallelism with coarse-grained parallelism because arrays are the fun-
damental data structures in GA and arrays are also natural for expressing stream
computing.

7.3 Zippy Framework

The Zippy programmer writes the C++ program using the library classes and
functions of Zippy. Multiple processes that execute the program are launched in the
cluster. Each process with a unique ID runs on a cluster node. It controls a local
GPU and collaborates with other processes. There is no centralized resource in the
cluster.

96

// 3D global array , size 8 x 6 x 6
ZDimension oDimGA(3, 8, 6, 6);
// Each element is a 32−bit float
ZGlobalArrayType oType(oDimGA, 1, FLOAT32);
// Divide axis X into three parts , size 3, 2, and 3.
int anSizes [3] = { 3, 2, 3 };
oType. SetSplit (0, 3, anSizes);
// Divide both axes Y and Z evenly into two parts .
oType. SetSplit (1, 2, NULL);
oType. SetSplit (2, 2, NULL);

// Use global−array type to create global arrays
ZGlobalArray∗ GA0 = zCreateGlobalArray(‘‘GA0’’, oType);
ZGlobalArray∗ GA1 = zCreateGlobalArray(‘‘GA1’’, oType);

Listing 7.1: An example of creating global arrays.

7.3.1 Data Structures

The basic data structures are n-dimensional arrays, including local arrays and
global arrays. The data of a local array reside in the texture memory of the local
GPU. The data of a global array are distributed to the texture memories of multiple
GPUs in the cluster. A global array is partitioned into rectangular regions, called
chunks, each owned by one GPU. The global array provides a global space for
easy data movement among GPUs. In addition, the local chunk of a global array
implicitly defines a local array. The programmer may use a Zippy library function
to obtain the pointer of this local array, so that the local chunk can be accessed in
the same way as other explicitly created local arrays.

Listing 7.1 shows an example of specifying a partition pattern and creating
global arrays. The function of creating a global array (zCreateGlobalArray) is a
collective operation, which means it is called by all processes. Each process allo-
cates its local chunk in its GPU memory and stores a copy of the partition pattern
information in its system memory. Zippy provides functions for the program to
query the data locality information at run time, such as which GPUs hold a partic-
ular region of a global array, which region a GPU owns, and the translation of a
region between global space and local space.

97

7.3.2 Coarse Level Parallelism

Zippy provides a set of shared-memory style functions to easily move data.
The data can be copied within a global array, from a global array to another, from
a global array to a local array, and vice versa. The programmer only needs to
specify the source and destination regions in the array space and does not need to
be concerned about which GPUs send or receive the data. The low-level details are
encapsulated in the Zippy implementation. Moreover, because the data locality is
exposed to the programmer, he/she can assess the cost of communication and use it
to optimize the performance.

Data movement can be carried out by collective blocking functions, collec-
tive non-blocking functions, and one-sided functions. The collective blocking/non-
blocking functions should be called by all processes in order to get correct results. A
collective blocking function call will not return until the process completes its task
locally. For any uninvolved process the function call returns immediately. A collec-
tive non-blocking function only reads out appropriate data from the GPU if needed,
starts the network transfers, and then returns. A wait function must be called later
to wait until the network transfers are finished and to write the received data to the
GPU. The programmer can insert local computation before the wait function call, so
that the network transfers can be overlapped with the computation. The one-sided
functions only need to be called by one process. In other processes, the responses
are automatically provided by Zippy, and the implementation is transparent to the
programmer.

Four collective functions are provided: copy, composite, ghost cell update, and
chunk re-arrangement. The copy function moves a region of data from one global
array to another. The source and destination arrays can be the same or different,
and the regions can be disjoint or overlapping. Listing 7.2 shows an example and
the procedure is illustrated in Figure 7.1. The composite function is similar to copy,
except that it has an extra input parameter which is a pointer of a predefined or
user-written computation kernel specifying how the source data are combined with
the destination data.

The ghost cell support is for computations on regular grids that sample the
neighboring grid points, such as physical simulations, and volume and image pro-
cessing. When defining a global array type, the thickness of the ghost cell layer in

98

// 3D Region: e .g ., [0, 4) x [0, 2) x [0, 3)
ZRegion oRegion0(oDimGA, 0, 4, 0, 2, 0, 3);
ZRegion oRegion1(oDimGA, 4, 8, 2, 4, 0, 3);
ZRegion oRegion2(oDimGA, 2,6, 4, 6, 2, 5);
zCopy(GA0, oRegion0, GA1, oRegion1);
zCopy(GA0, oRegion0, GA0, oRegion2);

Listing 7.2: An example of copy operations.

each dimension and either direction can be specified. With a layer of ghost cells,
each stored chunk is slightly larger than the actual portion of data assigned to the
process. In the ghost cell update function, each process reads out its boundary data
from the GPU, sends the data to the neighbors, receives data from the neighbors,
and updates the ghost cells with the received data. The chunk re-arrangement func-
tion actually involves no data movement. Instead, the program simply modifies
the mapping between process IDs and chunk IDs, so that virtually all the chunks
managed by different GPUs are re-arranged in the global array space.

Region 0

Region 1

Region 2

GA0 GA1

Figure 7.1: Data movement of the copy operations.

Two one-sided functions are provided. The get function moves a region of data
from a global array to a local array and the put function moves data reversely. One-
sided functions are called by one process. Compared with the collective functions,
this kind of remote memory access is more convenient when the communication
pattern is determined at run time. Zippy synchronization primitives include barrier
and fence functions. Barrier synchronizes all the processes. Fence is used to execute
and complete one-sided operations.

The data consistency model of Zippy is easy to understand. If a program only

99

ZKernel∗ pKernel = zFindOrLoadCgFP(‘‘Add.cg’’);
pKernel−>Enable();
pKernel−>SetParameter1f(‘‘AdditionalNum’’, 0.5);
zSetSourceArray(0, pArray1); // the first source array
zSetSourceArray(1, pArray2); // the second source array
zSetSourceRegion(0, pRegion1); // the first source region
zComputeTo(pRegion0, pArray0); // Compute and write results to destination
pKernel−>Disable();

Listing 7.3: An example of executing a kernel on local arrays.

uses local computation and collective data movement functions, the program behav-
ior is deterministic and no additional synchronization is needed. To maintain data
consistency, one just needs to understand what is locally completed by each func-
tion call. The collective blocking function completes the whole task locally. The
collective non-blocking function completes the read of data from the GPU. The
wait function completes the remaining tasks. All these operations are ordered in the
program. Because Zippy uses a collective fence function call to execute and com-
plete the queued one-sided operations, the order between any one-sided operation
and other operations is also deterministic. The only indeterminable order is among
multiple one-sided operations issued by different processes in the same fence. They
can be executed in arbitrary order. If they conflict with each other, for example, put
to overlapping regions, the programmer should use multiple fence function calls to
separate them.

7.3.3 Fine Level Parallelism

On the GPU, the kernels operate on local arrays in SIMD fashion. The pro-
grammer specifies the computation kernel, source arrays, source regions, destina-
tion arrays, and a destination region. Listing 7.3 shows an example of adding the
data elements in Region1 of Array1 and Region1 of Array2 plus a value of 0.5 and
writing the results to Region0 of Array0.

The programmer writes kernels with existing toolkits (e.g., Cg, GLSL). In
Listing 7.3, because the mapping between the source regions and the destination
region is simple, Zippy computes the texture coordinates that can be directly used

100

in the kernel to access the source data. In more complicated cases, the kernel may
access arbitrary source data elements with the n-dimensional coordinates in the
local array. Zippy provides address translation functions. The programmer needs
to pass the packing information of the source local arrays to the kernel, and in the
kernel, call the address translation to compute the texture coordinates.

7.3.4 Debugging Tool

Debugging has been difficult in GPU cluster programming. Zippy provides
a debugging tool that manages all arrays and allows the programmer to select any
array to view the data in a region. The debugging tool dynamically updates the data
display at run time. It also allows to read the n-dimensional coordinates as well as
the digital value of the mouse-picked data element. To use this tool, a debugging
barrier operation needs to be added into the program. In the program, one pro-
cess ID needs to be set as the control process. When the program is launched with
debugging enabled, other processes are executed in the usual way. The control pro-
cess, however, creates a debugging window (Figure 7.2), allowing to interactively
forward the steps of the module, select an array, and view the data. The window
contains 4 panels. In the top left panel, array data are displayed as a series of slices.
When the programmer moves mouse cursor here, the corresponding coordinates
and value are displayed in the bottom left panel. The programmer can click on the
top right panel and use keyboard to forward the computation steps. The bottom
right panel lists all arrays, from which the programmer can select one to view. For
a local array, the data located in the GPU can be directly displayed. For a global
array, data in the region of interest are brought to local with a get function called
by the debugging barrier operation and then displayed. The example in Figure 7.2
shows the debugging of Marching Cubes isosurface extraction of a chair data.

7.4 Implementation

Zippy is implemented as a C++ library based on OpenGL, Cg and GLSL, and
the Message Passing Interface (MPI). To run the program, the programmer needs
to copy his/her executable program and related data files to all cluster nodes. A

101

Figure 7.2: The debugging window of Zippy.

simple script file can fulfill this task. Then multiple processes that execute the
same program are launched in the cluster through an MPI launcher command. The
process ID is simply set to be the MPI rank.

7.4.1 Data Storage

Currently, Zippy supports 1D-7D arrays. Data of a local array are usually
stored in a 2D texture, unless the programmer indicates to use a 3D texture. We
apply a method similar to existing GPGPU toolkits [9,83] to map an n-dimensional
local array to a 2D texture. For any n > 2, assuming that we know how to map
the (n−1)-dimensional array to a 2D patch, the n-dimensional array can be viewed
as m arrays and mapped as m1×m2 patches, where m is the resolution in the n-th
dimension, m1 = ceil(sqrt(m)) and m2 = ceil(m/m1). By default, the i-th chunk

102

of a global array is stored in the texture memory of the GPU controlled by the i-th
process. The local chunk defines a local array, hence is stored in the same way
as an explicitly created local array. Every process stores in its system memory a
copy of the partition pattern information of the global array, and this information is
managed by Zippy.

7.4.2 Data Movement

Because every process has the data locality information of the global arrays,
when calling a collective blocking function, every process has a global view of how
data will be transferred in the cluster. Each process executes the following tasks.
If either the source or destination region overlaps the region of the local chunk,
the source and destination regions are decomposed into sub-regions based on data
locality. Each pair of source and destination sub-regions represents a point-to-point
data transfer in the cluster. If both sub-regions in a pair reside in the same GPU, the
involved process copies the source data to a temporary Pixel Buffer Object managed
by Zippy, so that the data can be later copied to the destination without going off
the GPU.

The other pairs represent network data transfers. For each of these pairs, the
source process binds the texture to a Framebuffer Object (FBO) and uses glRead-
Pixels to read out the data from the GPU. All these pairs are sorted as follows.
A graph G = (V,E) is defined where V is the set of process IDs and (i, j) ∈ E if
and only if there is a data transfer between processes i and j. We find a maximum
matching [44] M in G. All edges in M are removed from G and their corresponding
pairs are appended to a list L. This procedure is repeated until E is empty. Each
process selects from L only the pairs involving itself and executes the network trans-
fers. The senders call the MPI Send function and the receivers call the MPI Recv
function. Because all processes sort the pairs in L in the same way, deadlock will
not happen. The senders and receivers reply on MPI Send and MPI Recv to be pair-
wise synchronized and there is no need for global synchronization. The above pair
sorting also tends to allow maximal number of concurrent point-to-point data trans-
fers. After receiving the data from the network, each receiver binds the appropriate

103

texture to an FBO and uses glDrawPixels to write the data. For the composite func-
tion, however, the destination and source data are copied to temporary local arrays
and combined into the destination.

The implementation of a collective non-blocking operation is similar. The
function call reads out data from the GPU if necessary, starts network transfers
with the non-blocking MPI Isend and MPI Irecv, and returns. The wait function
uses MPI Wait to wait for the network transfers to finish, and writes the received
data to the GPU, if necessary.

For a one-sided function, only the process requesting the data access needs
to explicitly call the function. In other processes, the service provided by Zippy
has to take control somewhere. For simplicity, we implemented a method similar
to Thakur et al.’s [140] fence implementation for the MPICH2. When a get/put
function is called, the program does nothing but locally queuing up the command of
this operation. The queued operations are executed when a collective fence function
is called. In the fence function, all processes send queued requests to others and
execute services for others. With the optimization proposed by Thakur et al., barrier
synchronization can be avoided.

7.4.3 Local Computation

The local computation interface has two layers: the upper provides the high-
level abstraction while the lower encapsulates the GPU programming. Although
in the latter only Cg and GLSL are supported now, incorporating other toolkits is
feasible. In a computation, the shader program of the kernel is bound to fragment
processors and textures of source arrays are bound to texture units. The textures of
the destination arrays are attached to an FBO. The n-dimensional destination region
is decomposed into a series of 2D slices, each representing a rectangle region to be
rendered.

As mentioned in Section 7.3.3, two methods are available for a kernel to ac-
cess the source data elements. In the first method, Zippy automatically translates
the local array address to the texture coordinates. For each slice in the destination
region, the positions of the corresponding slices of the source regions are computed
on the CPU. With hardware interpolation, the texture coordinates of the source data

104

elements are computed and can be directly used in the kernel. This is convenient
for computation with fixed data access patterns. In the second method, a set of opti-
mized Cg and GLSL functions are provided for translating arbitrary n-dimensional
coordinates to texture coordinates in the kernel. The packing information of the
source arrays is a parameter of these functions. The programmer needs to call a
Zippy function to pass this parameter to the kernel. This method is desired when
arbitrary data access is needed, as in raycasting.

7.5 Example Applications

Three example applications have been implemented with Zippy and tested on
a Gigabit Ethernet cluster. Each cluster node has an NVIDIA Quadro 4500 GPU,
dual Intel Xeon 3.6GHz CPUs, and a PCI-Express bus.

7.5.1 Sort-Last Volume Rendering

For the sort-last volume rendering, two global arrays are defined. One is a 3D
global array, representing the volume data. The other is a 2D global array that treats
all partial images as a whole large image. The rendering of a local volume chunk
into a partial image is a local computation of 3D texture based volume rendering.
Then, the partial images are composited for the final image with the binary-swap
algorithm [95]. At each step, partial images are transferred between pairs of GPUs.
Using Zippy, the image compositing algorithm can be easily specified in the global
space. First, based on the order of the distances between subvolumes and the view
point, all partial images are virtually re-arranged using the chunk re-arrangement
function. Then, the binary-swap is implemented with the composite and copy func-
tions. The programmer only specifies the source and destination regions without
concerning about how the GPU, system memory, and network are involved.

Figure 7.3 shows snapshots of the rendering of a 1875× 512× 512 visible
human CT data. With 8 GPUs, this data was rendered at 11 FPS. The user can
interactively change the transfer function and explore the volume.

In our scalability experiment, each GPU renders a 5123 subvolume, the image
size is 10242, and the sampling step size is 1. The performance is reported in

105

Figure 7.3: Snapshots from the sort-last volume rendering of the 1875×512×512 visible
human CT data.

Figure 7.4. With 16 GPUs, a 2GB volume can be rendered at 8 FPS, which gives
a 16 GVox/sec overall performance. In Figure 7.5, the performance is plotted as
a function of the number of GPUs . In another experiment, we disabled the local
rendering and only tested the performance of the parallel image compositing, which
is mainly determined by the communication cost. The image compositing achieves
16 FPS. Our performance is comparable with the fastest previous implementations.
Houston [64] has implemented a system using Chromium. His implementation also
exploited the GPUs for image compositing. On a 16-node Gigabit Ethernet GPU
cluster, the overall performance was 8 GVox/sec and the image compositing was
executed at 17 FPS.

7.5.2 Marching Cubes

Marching Cubes (MC) used to be difficult to implement on GPUs because
each cube can generate 0 to 5 triangles and previous GPU shading programs did
not support variable size outputs. Researchers [72, 73] have used the alternative
method, Marching Tetrahedra, for GPU-based isosurface extraction. Now, the new
DirectX 10 compatible GPUs support variable size outputs in the geometry shader.
With this capability, Crassin [19] has implemented Marching Cubes on an NVIDIA
GeForce 8800 GTS.

We have used another method to implement MC, which does not require the
DirectX 10 compatible GPUs. The idea is to simulate variable size outputs using the
GPU-based prefix-sum algorithms [61, 128]. Horn [61] has implemented the first

106

0

4

8

12

16

20

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16

Billions of Voxels

F
ra

m
es

 p
er

 s
ec

on
d

1 20

2 GPUs

1 GPU

4 GPUs
8 GPUs 16 GPUs

Figure 7.4: The performance of the sort-last volume rendering on our GPU cluster. (Each
GPU renders a 5123 subvolume. Note that the problem size scales up when more GPUs are
used.)

0

5

10

15

20

1 2 4 8 16

Number of GPUs

B
ill

io
n

s
o

f
vo

xe
ls

 p
er

se

co
n

d

Figure 7.5: The performance (measured in billions of voxels rendered per second) is plotted
as a function of the number of GPUs.

prefix-sum algorithm on the GPU. Based on it, he has efficiently simulated stream
compaction, in which each input generates 0 or 1 output. Sengupta et al. [127,128]
have proposed a faster work-efficient GPU implementation of prefix-sum. Adopting
Sengupta et al.’s prefix-sum method and modifying Horn’s simulation of variable
size outputs, we efficiently simulate stream amplification for MC, in which each

107

input generates a variable number of outputs.
Our idea is to directly generate the outputs in a densely packed array. The pro-

cedure is illustrated in Figure 7.6. Given an input array {Ii} of size n, we compute
the numbers of outputs and store them in array {Mi}. Then, the prefix-sum of {Mi}
is computed to array {Pi}. By the definition of prefix-sum, Pi =

∑
0≤l<i Ml . The

array {Pi} gives two pieces of information: (1) the total number of outputs, denoted
as N, equals (Pn−1 + Mn−1); and (2) the outputs of Ii will start at position Pi and
end at position (Pi +Mi−1) in the densely packed output array. By enabling a frag-
ment program and drawing lines, array {(i, j)k} is computed. Each element of this
array indicates that the corresponding output is the (j +1)th output of Ii. With this
information, the final outputs can be computed. The last two arrays in Figure 7.6
are virtually of size N. Their physical size, L, is no less than N. L is initially esti-
mated and dynamically updated as needed. The update of L causes the reallocation
of storage, but simple rules can make this reallocation happen infrequently. For
example, if N > L, L = 2×N; if N < L/10, L = max(N,4096).

0 3 0 4 2 0

0 0 3 3 7 9

{Ii}: inputs

{Mi}: numbers of outputs

{Pi}: prefix-sum of {Mi}

{(i,j)k}: indices

{Ok}: outputs

1,0 1,1 1,2 3,0 3,1 3,2 3,3 4,0 4,1

0 1 2 3 4 5i:

a b c d e f

b0 b1 b2 d0 d1 d2 d3 e0 e1

Figure 7.6: Directly generating outputs in a densely packed form for stream amplification.

With Zippy, the MC algorithm is easily translated to the kernels that operate
on the local arrays. We have implemented a stream amplification function that
encapsulates the above computation of array {(i, j)k} from array {Mi}. The local
MC computation hence is fulfilled in three steps: (1) compute {Mi}, the number
of triangles generated in each voxel; (2) call the stream amplification function to
obtain array {(i, j)k}; and (3) compute the output array of triangles based on array
{(i, j)k}. The output array is then copied to a Vertex Buffer Object and directly
rendered with OpenGL. The volume is also rendered together with the isosurface.

108

We have tested our program on a separate machine that has an NVIDIA GeForce
8800 GTS and have compared the performance with Crassin’s. For a 643 volume,
Crassin’s optimized implementation achieved 44 to 77 FPS and ours achieved 92 to
240 FPS for various isovalues.

To parallelize the MC is simple. A global array is defined for the whole vol-
ume. Each process independently computes the local isosurface in local arrays and
renders the local data. The parallel image compositing module in Section 7.5.1 is
reused here to get the final image. The system allows the user to change the isovalue
and view the result in real-time. Figure 7.7 shows snapshots of a 1283 engine CT
data and a 256× 254× 57 lobster CT data. The original image size is 8002. The
performance on our GPU cluster is reported in Figure 7.8. For the pure MC compu-
tation, there is no communication cost. However, the frame rate is not proportional
to the number of GPUs because subproblems become smaller as more GPUs are
used and our MC implementation is less efficient for smaller volumes.

(a) (b)

Figure 7.7: The Marching Cubes isosurfaces of (a) the engine dataset, and (b) the lobster
dataset.

7.5.3 LBM Flow Simulation and Visualization

Using Zippy, we have implemented a new LBM program. The entire sim-
ulation is defined in the global space. Each GPU operates on its local chunk.

109

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GPUs

F
ra

m
es

 p
er

 S
ec

on
d

Engine, without rendering Lobster, without rendering
Engine, with rendering Lobster, with rendering

Figure 7.8: The performance of the Marching Cubes isosurface extraction on our GPU
cluster for the 1283 engine data and the 256× 254× 57 lobster data. (The image size is
8002. Isovalue 106 was used in all tests.)

With Zippy ghost cell support, a layer of ghost cells are defined around each lo-
cal chunk. The communication is simply accomplished by non-blocking ghost cell
update function calls. Based on a single-GPU version, which contains 750 lines
of C++ code and 550 lines of Cg code, only 100 lines of C++ code are added
to define the global arrays and update the ghost cells for the GPU cluster imple-
mentation. The dynamic simulation results on the GPUs can be directly visualized
without going off the GPUs. Since the simulation and visualization modules are
both developed using Zippy, the simulation module allows the rendering module
to directly access its data. Figure 7.9 shows a snapshot of a simulation of grid
size 400× 200× 200. For an image size of 8002, the overall speed is about 4.5
FPS on 16 GPUs. Compared with our previous MPI-based implementation on the
same GPU cluster, the new implementation achieves better performance as shown
in Figure 7.10.

In Figure 7.11, we divide the execution time of each example application into
three parts: overhead time spent on barriers and Zippy logic, time waiting for data
transfers through PCI-Express bus and the network, and time spent on local GPU
computation. In the sort-last volume rendering and the LBM computation, the per-
centage of time spent on overhead operations is small. Both the percentages of time
spent on overhead operations and time waiting for remote data increase slowly as

110

(a) (b)

(c) (d)

Figure 7.9: A sequence of snapshots of the LBM flow simulation. The vorticity magnitude
is volume rendered to show the turbulence.

the number of GPUs increases. This shows good scalability as the computational
power of GPUs can still be efficiently used when the number of GPUs increases.
In both applications, each GPU solves a relatively large subproblem and the total
problem size is proportional to the number of GPUs. In the MC isosurface extrac-
tion and rendering (benchmarked with lobster data), however, we have fixed the
total problem size. Accordingly, the percentages of time spent on overhead opera-
tions and time waiting for remote data increase faster. In the GPU cluster, the time
waiting for remote data transfers is the main bottleneck to the performance. Using a
higher bandwidth network, such as Infiniband, will improve the performance. Our
best implementation is the LBM computation. It shows the lowest percentage of
waiting time, because we have used the non-blocking ghost cell update function
to partially overlap the network communication with the computation. For other
applications, this overlap is feasible for future implementation.

111

0

1

2

3
4

5

6

7

8

1 2 3 4 5 6 7 8 9 10111213141516
Millions of grid points

S
te

ps
 p

er
 s

ec
on

d

Previous implementation (MPI), without rendering
New implementation (Zippy), without rendering
New implementation (Zippy), with rendering

1 GPU

2 GPUs

4 GPUs
8 GPUs

16 GPUs

Figure 7.10: Performance comparison between our previous and new implementations on
the same GPU cluster. (Each GPU manages an 1003 sub-grid and the problem size scales
up when the number of GPUs increases.)

0%

20%

40%

60%

80%

100%

2 4 8 16 2 4 8 16 2 4 8 16

P
er

ce
nt

ag
e

of
 e

xe
cu

tio
n

tim
e

Overhead (barrier sync + runtime logic)
Waiting for remote data
GPU computation

Number of
GPUs Volume

rendering
Marching Cubes
with rendering

LBM flow
computation

Figure 7.11: Percentages of time spent on different tasks.

Chapter 8

Conclusions

8.1 Summary

This dissertation has presented efficient ways to use GPUs and GPU clusters
for the LBM flow simulation and visualization. The LBM is a discrete simulation
method based on mescoscopic kinetic dynamics of particle distribution functions.
A set of operations are applied to the lattice sites. These operations are local and
linear, which makes the LBM friendly to the GPU and GPU cluster computation.

We have presented an optimized LBM implementation with complex boundary
conditions on a single GPU and its applications in real-time amorphous phenom-
ena modeling (Chapter 3). We have introduced a novel adapted unstructured LBM
algorithm on the GPU that can effectively model fluid dynamics on 3D curved sur-
faces of arbitrary topology (Chapter 4). We have further described a method of
implementing the LBM simulation on a GPU cluster (Chapter 5). This work has
been further extended to an irregular-shaped simulation domain, which represents
the reactor vessel of a nuclear power plant (Chapter 6). Finally, we have introduced
Zippy, a general framework for programming parallel computation, visualization,
and graphics modules on GPU clusters (Chapter 7).

Our methods have been applied to a wide range of interactive or real-time vi-
sual simulations, such as fire, smoke, wind, heat shimmering, airborne dispersion in
a complex urban environment, thermal fluid dynamics in a pressurized water reac-
tor of a nuclear power plant, and imaginary flows on 3D surfaces. The combination

112

113

of the high computational power of the GPU and GPU cluster and the linear nature
of the LBM has created a powerful tool for visual simulation applications.

GPU clusters have several limitations. Because GPUs are less flexible than
CPUs, not all applications can be implemented on or accelerated with GPU clus-
ters. Also, most current GPUs do not support double precision floating point. Some
scientific applications, however, require this high precision. For example, some
CFD applications that use adaptive mesh refinement (AMR) to resolve the boundary
layer usually need double precision to handle the fine mesh spacing. Fortunately,
the LBM accurately captures the complex boundaries with the lattice links, hence
the double precision is not crucial to the LBM. Density and heat generation are
the other issues of GPUs, but we have seen improvements in recent years. A good
example is the NVIDIA Tesla S870 1U rack-mount server. Nevertheless, because
of the high performance/cost ratio and the fast performance growth of the GPU,
we may see more and more general-purpose computation applications to be imple-
mented on GPU clusters and to drive improvements of the GPU cluster hardware
and software.

8.2 Future Work

8.2.1 Short-Term Future Work

We would like to explore three directions in the short-term future. The first
direction is to increase the scalability of our GPU cluster implementations. A GPU
cluster is a bandwidth-starve architecture. Our experiments have shown that net-
work communication is the major bottleneck. We plan to use higher bandwidth
and lower latency network, such as Infiniband, in our GPU cluster. With NVIDIA
Tesla technology, multiple GPUs can be put in each node. The communication
costs within nodes are lower than network communication costs. Therefore, de-
signing and programming the GPU cluster as a three-level parallelism architecture
will further increase the scalability in terms of the number of GPUs. Furthermore,
we plan to implement GPU-based compression/decompression algorithms to re-
duce the data transfer. As computation is inexpensive on the GPUs, we can trade
computation for communication performance by using compression/decompression

114

algorithms.
We also want to address a limitation of the LBM: it is unstable when mod-

eling highly turbulent flows. A possible solution is to employ an implicit scheme
LBM [12]. The implicit scheme LBM may be unconditionally stable and allow us
to use a large time step. This method will increase the simulation speed and benefit
the real-time applications. Another solution is to use the very large eddy simulation
(VLES) method in the LBM. Exa Cooperation has used this method for its aero-
dynamics simulation [159]. Compared with the implicit scheme LBM, the VLES
method may provide better accuracy.

We plan to extend Zippy with global irregular data structures so that more ap-
plications will be supported. For example, each GPU owns a portion of a global
irregular data structure and uses well-defined coarse-grained communication func-
tions to bring data from the global data structure to the local GPU memory. Also, as
NVIDIA CUDA has become a popular programming toolkit on the GPU, we plan
to build the local GPU interface of Zippy upon CUDA. As described in Chapter 7,
our design of the local GPU interface is flexible; thus building Zippy upon CUDA is
feasible. By doing so, Zippy will allow local computation to access a linear mem-
ory space that is much larger and much more flexible than the OpenGL textures.
The programmer will write kernels more easily in the C language than in shading
languages. The new GPU features, such as scatter and Parallel Data Cache, will
be available to the programmer for performance optimization. Moreover, global
irregular data structures would be much simpler to implement.

8.2.2 Long-Term Future Work

We plan to study other applications on the GPU cluster. Two interesting ap-
plications are the linear algebra computation and the real-time ray-tracing. The
former is essential to scientific computation and the latter is one of the most impor-
tant problems in computer graphics. Both are challenging because their data access
patterns are more irregular than the LBM.

Hybrid clusters will be a trend for future high performance computing. For
example, each node will have multiple multi-core CPUs and multiple GPUs. The
GPUs and CPUs could work together, each executing the part of computation task

115

that it does best. Currently, our GPU cluster implementations use the CPUs only
for communication and GPU management. The CPU computational power has not
been fully exploited. A possible solution is to combine the vertical communication
of Sequoia [37] and the horizontal communication of Zippy, which would help the
programmer to exploit multiple memory levels on the cluster, including GPU mem-
ories, system memories, and disks. Specifically, the global arrays can be defined at
any level so that the computational power of both CPUs and GPUs can be exploited.

Bibliography

[1] AMD FireStream 9170.
http://ati.amd.com/technology/streamcomputing/product firestream 9170.html.

[2] NVIDIA Tesla S1070 computing system.
http://www.nvidia.com/object/tesla s1070.html.

[3] Rapidmind multi-core development platform.
http://www.rapidmind.net/.

[4] Website of general purpose computation on GPUs.
http://www.gpgpu.org.

[5] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively sampled particle
fluids. ACM Transactions on Graphics, 26(3):48, 2007.

[6] S. Bachthaler, M. Strengert, D. Weiskopf, and T. Ertl. Parallel texture-based
vector field visualization on curved surfaces using GPU cluster computers.
Eurographics Symposium on Parallel Graphics and Visualization, pages 75–
82, 2006.

[7] P. Bhaniramka, P. Robert, and S. Eilemann. OpenGL multipipe SDK: A
toolkit for scalable parallel rendering. IEEE Visualization, pages 119–126,
2005.

[8] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid. ACM Transactions on Graphics,
22(3):917–924, 2003.

116

117

[9] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan. Brook for GPUs: Stream computing on graphics hardware.
ACM Transcations on Graphics, 23(3):777–786, 2004.

[10] J. M. Buick and C. A. Greated. Gravity in a lattice Boltzmann model. Phys-
ical Review E, 61(5):5307–5320, 2000.

[11] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware. Symposium on
Volume Visualization, pages 91–98, 1994.

[12] N. Cao, S. Chen, S. Jin, and D. Martı́nez. Physical symmetry and lattice
symmetry in the lattice Boltzmann method. Physical Review E, 55(1):R21–
R24, 1997.

[13] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: Animating the interplay
between rigid bodies and fluid. ACM Transactions on Graphics, 23(3):377–
384, 2004.

[14] N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. ACM SIGGRAPH/Eu-
rographics Conference on Graphics Hardware, pages 37–46, 2002.

[15] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. Fast GPU ray tracing
of dynamic meshes using geometry images. Graphics Interface, pages 203–
209, 2006.

[16] N. S.-H. Chu and C. Tai. Moxi: Real-time ink dispersion in absorbent paper.
ACM Transactions on Graphics, 24(3):504–511, 2005.

[17] P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo. Bubbling and frothing
liquids. ACM Transactions on Graphics, 26(3):97, 2007.

[18] K. Crane, I. Llamas, and S. Tariq. Real-time simulation and rendering of 3D
fluids. In H. Nguyen, editor, GPU Gems 3, pages 633–676. Addison-Wesley,
2007.

[19] C. Crassin. OpenGL geometry shader marching cubes.
http://www.icare3d.org/content/view/50/9, 2007.

118

[20] D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S.
Luo. Multiple-relaxation-time lattice Boltzmann models in three dimen-
sions. Royal Society of London Philosophical Transactions Series A,
360(1792):437–451, 2002.

[21] C. Dyken, G. Ziegler, C. Theobalt, and H.-P. Seidel. Histopyramids in iso-
surface extraction. Technical report, Max Planck Inst. für Infor., 2007.

[22] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-salama, and D. Weiskopf.
Real-time Volume Graphics. A K Peters, 2006.

[23] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume render-
ing using hardware-accelerated pixel shading. ACM SIGGRAPH/Eurograph-
ics Workshop on Graphics Hardware, pages 9–16, 2001.

[24] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of com-
plex water surfaces. ACM Transactions on Graphics, 21(3):736–744, 2002.

[25] M. EricksonKirk, M. Junge, W. Arcieri, B. Bass, R. Beaton, D. Bessette,
T. Chang, T. Dickson, C. Fletcher, A. Kolaczkowski, S. Malik, T. Mintz,
C. Pugh, F. Simonen, N. Siu, D. Whitehead, P. Williams, R. Woods, and
S. Yin. Technical basis for revision of the pressurized thermal shock (PTS)
screening limit in the PTS rules (10 CFR 50.61). NUREG-1806, 1, 2006.

[26] C. Everitt. Interactive order-independent transparency. Technical Report,
NVIDIA Corporation, 2001.

[27] Z. Fan, Y. Kuo, Y. Zhao, F. Qiu, A. Kaufman, and B. Arcieri. Visual simu-
lation of thermal fluid dynamics in a pressurized water reactor. Submitted,
2008.

[28] Z. Fan, W. Li, X. Wei, and A. Kaufman. GPU-based voxelization and its ap-
plication in flow modeling. ACM Workshop on General-Purpose Computing
on Graphics Processors, pages C–7, 2004.

[29] Z. Fan, C. Ma, and M. Oliveira. A sketch-based collaborative design system.
Brazilian Symposium on Computer Graphics and Image Processing, pages
125–131, 2003.

119

[30] Z. Fan, M. Oliveira, C. Ma, and A. Kaufman. A sketch-based interface for
collaborative design. Eurographics Workshop on Sketch-Based Interfaces
and Modelling, pages 143–150, 2004.

[31] Z. Fan, F. Qiu, and A. Kaufman. Zippy: A framework for computation and
visualization on a GPU cluster. Computer Graphics Forum, 27(2):341–350,
2008.

[32] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high
performance computing. ACM/IEEE Supercomputing Conference, page 47,
2004.

[33] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for sci-
entific computing and large-scale simulation. ACM Workshop on General-
Purpose Computing on Graphics Processors, pages C–32, 2004.

[34] Z. Fan, C. Vetter, C. Guetter, D. Yu, R. Westermann, A. Kaufman, and C. Xu.
Optimized GPU implementation of learning-based non-rigid multi-modal
registration. SPIE Medical Imaging, number 6914-107, 2008.

[35] Z. Fan, Y. Zhao, A. Kaufman, and Y. He. Adapted unstructured LBM for flow
simulation on curved surfaces. ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 245–254, 2005.

[36] S. Fang and H. Chen. Hardware accelerated voxelization. Computers &
Graphics, 24(3):433–442, 2000.

[37] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem,
J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: Pro-
gramming the memory hierarchy. ACM/IEEE Supercomputing Conference,
page 4, 2006.

[38] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency
of GPU algorithms for matrix-matrix multiplication. ACM SIGGRAPH/Eu-
rographics Conference on Graphics Hardware, pages 133–137, 2004.

[39] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of smoke. ACM SIG-
GRAPH, pages 15–22, 2001.

120

[40] B. E. Feldman, J. F. O’Brien, and B. M. Klingner. Animating gases with
hybrid meshes. ACM Transactions on Graphics, 24(3):904–909, 2005.

[41] N. Foster and R. Fedkiw. Practical animation of liquids. ACM SIGGRAPH,
pages 23–30, 2001.

[42] N. Foster and D. Metaxas. Realistic animation of liquids. Graphical Models
and Image Processing, 58(5):471–483, 1996.

[43] N. Foster and D. Metaxas. Modeling the motion of hot, turbulent gas. ACM
SIGGRAPH, pages 181–188, 1997.

[44] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys, 18(1):23–38, 1986.

[45] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen,
M. Grajewski, and S. Turek. Exploring weak scalability for FEM calcula-
tions on a GPU-enhanced cluster. Parallel Computing, 33(10–11):685–699,
2007.

[46] D. Göddeke, R. Strzodka, and S. Turek. Accelerating double precision FEM
simulations with GPUs. Symposium of Simulation Technique, Frontiers in
Simulation:139–144, 2005.

[47] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A
multigrid solver for boundary value problems using programmable graphics
hardware. ACM SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, pages 102–111, 2003.

[48] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast
computation of database operations using graphics processors. ACM Inter-
national Conference on Management of Data, pages 215–226, 2004.

[49] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha. Cullide: Interac-
tive collision detection between complex models in large environments using
graphics hardware. ACM SIGGRAPH/Eurographics Conference on Graphics
Hardware, pages 25–32, 2003.

121

[50] N. K. Govindaraju, A. Sud, S.-E. Yoon, and D. Manocha. Interactive visibil-
ity culling in complex environments using occlusion-switches. ACM Sympo-
sium on Interactive 3D Graphics, pages 103–112, 2003.

[51] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM Transactions
on Graphics, 21(3):355–361, 2002.

[52] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. Coupling water and
smoke to thin deformable and rigid shells. ACM Transactions on Graphics,
24(3):973–981, 2005.

[53] A. Gunstensen, D. Rothman, S. Zaleski, and G. Zanetti. Lattice Boltzmann
model of immiscible fluids. Physical Review A, 43(8):4320–4327, 1991.

[54] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle hydrody-
namics on GPUs. Computer Graphics International, pages 63–70, 2007.

[55] M. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. Simulation of cloud
dynamics on graphics hardware. ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 92–101, 2003.

[56] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-based
visual simulation on graphics hardware. ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware, pages 109–118, 2002.

[57] W. Heidrich, R. Westermann, H. P. Seidel, and T. Ertl. Application of pixel
textures in visualization and realistic image synthesis. ACM Symposium on
Interactive 3D Graphics, pages 127–134, 1999.

[58] K. E. Hoff, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation
of generalized voronoi diagrams using graphics hardware. ACM SIGGRAPH,
pages 277–286, 1999.

[59] J. Hong and C. Kim. Discontinuous fluids. ACM Transactions on Graphics,
24(3):915–920, 2005.

122

[60] W. Hong, F. Qiu, S. Lakare, and A. Kaufman. Hybrid volumetric ray-casting.
ACM Workshop on General-Purpose Computing on Graphics Processors,
pages C–45, 2004.

[61] D. Horn. Stream reduction operations for GPGPU applications. In M. Pharr,
editor, GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, pages 573–589. Addison Wes-
ley, 2005.

[62] D. Horn, M. Houston, and P. Hanrahan. ClawHMMER: A streaming
HMMer-search implementation. ACM/IEEE Supercomputing Conference,
page 11, 2005.

[63] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-D tree
GPU raytracing. ACM Symposium on Interactive 3D Graphics and Games,
pages 167–174, 2007.

[64] M. Houston. Designing graphics clusters. Talk in Parallel Visualization
Workshop of IEEE Visualization, 2004.

[65] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: A scalable graphics system for clusters. ACM SIGGRAPH, pages
129–140, 2001.

[66] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
J. T. Klosowski. Chromium: A stream-processing framework for interactive
rendering on clusters. ACM Transactions on Graphics, 21(3):693–702, 2002.

[67] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient simulation
of large bodies of water by coupling two and three dimensional techniques.
ACM Transactions on Graphics, 25(3):805–811, 2006.

[68] C. Jiang and M. Snir. Automatic tuning matrix multiplication performance
on graphics hardware. International Conference on Parallel Architectures
and Compilation Techniques, pages 185–196, 2005.

123

[69] B. Jobard, G. Erlebacher, and M. Hussaini. Hardware-accelerated texture
advection for unsteady flow visualization. IEEE Visualization, pages 155–
162, 2000.

[70] B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. Simulation of bubbles
in foam with the volume control method. ACM Transactions on Graphics,
26(3):98, 2007.

[71] B. Kim, Y. Liu, I. Llamas, and J. Rossignac. FlowFixer: Using BFECC
for fluid simulation. Eurographics Workshop on Natural Phenomena, pages
51–56, 2005.

[72] P. Kipfer and R. Westermann. GPU construction and transparent rendering
of iso-surfaces. Vision, Modeling, and Visualization, pages 241–248, 2005.

[73] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated reconstruction of
polygonal isosurface representations on unstructured grids. Pacific Graphics,
pages 186–195, 2004.

[74] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien. Fluid an-
imation with dynamic meshes. ACM Transactions on Graphics, 25(3):820–
825, 2006.

[75] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and col-
lision detection for large particle systems. ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware, pages 123–131, 2004.

[76] J. Krüger. A GPU framework for interactive simulation and rendering of
fluid effects. PhD thesis, Technische Unversität München, 2006.

[77] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle system
for interactive visualization of 3D flows. IEEE Transactions on Visualization
and Computer Graphics, 11(6):744–756, 2005.

[78] J. Krüger and R. Westermann. Acceleration techniques for GPU-based vol-
ume rendering. IEEE Visualization, pages 287–292, 2003.

124

[79] J. Krüger and R. Westermann. Linear algebra operators for GPU implemen-
tation of numerical algorithms. ACM Transactions on Graphics, 22(3):908–
916, 2003.

[80] J. Krüger and R. Westermann. GPU simulation and rendering of volumetric
effects for computer games and virtual environments. Computer Graphics
Forum, 24(3), 2005.

[81] P. Lallemand and L.-S. Luo. Theory of the lattice Boltzmann method: Acous-
tic and thermal properties in two and three dimensions. Physical Review E,
68(3):036706, 2003.

[82] H. Lee, Y. Tong, and M. Desbrun. Geodesics-based one-to-one parameteri-
zation of 3D triangle meshes. IEEE Multimedia, 12(1):27–33, 2005.

[83] A. Lefohn, J. M. Kniss, R. Strzodka, S. Sengupta, and J. D. Owens. Glift:
Generic, efficient, random-access GPU data structures. ACM Transactions
on Graphics, 25(1):60–99, 2006.

[84] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. A stream-
ing narrow-band algorithm: Interactive deformation and visualization of
level sets. IEEE Transactions on Visualization and Computer Graphics,
10(40):422–433, 2004.

[85] F. Li and M. Modarres. Probabilistic modeling for fracture mechanic studies
of reactor vessels with characterization of uncertainties. Nuclear Engineer-
ing and Design, 235(1):1–19, 2005.

[86] S. Li, Z. Fan, X. Yin, K. Mueller, A. E. Kaufman, and X. Gu. Real-time
reflection using ray tracing with geometry field. Eurographics, pages 29–32,
2006.

[87] W. Li, Z. Fan, X. Wei, and A. Kaufman. Flow simulation with complex
boundaries. In M. Pharr, editor, GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation, pages
747–764. Addison-Wesley, 2005.

125

[88] W. Li, K. Mueller, and A. E. Kaufman. Empty space skipping and occlusion
clipping for texture-based volume rendering. IEEE Visualization, pages 317–
324, 2003.

[89] W. Li, X. Wei, and A. Kaufman. Implementing lattice Boltzmann computa-
tion on graphics hardware. The Visual Computer, 19(7-8):444–456, 2003.

[90] R. Löhner, C. Yang, and R. Roger. Tracking vortices over large distances
using vorticity confinement. Symposium on Naval Hydrodynamics, pages
950–962, 2003.

[91] P. Lobner, C. Donahoe, and C. Vavallin. Overview and comparison of
U.S. commercial nuclear power plants. Technical Report NUREG/CR-5640,
1990.

[92] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an
octree data structure. ACM Transactions on Graphics, 23(3):457–462, 2004.

[93] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple interacting liquids.
ACM Transactions on Graphics, 25(3):812–819, 2006.

[94] C. P. Lowe and S. Succi. Go-with-the-flow lattice Boltzmann methods for
tracer dynamics. In Lecture Notes in Physics, chapter 9, pages 267–288.
Springer-Verlag, 2002.

[95] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume
rendering using binary-swap image composition. IEEE Computer Graphics
and Applications, pages 59–68, 1994.

[96] M. Manzke, R. Brennan, K. O’Conor, J. Dingliana, and C. O’Sullivan. A
scalable and reconfigurable shared-memory graphics architecture. ACM SIG-
GRAPH Sketches, page 182, 2006.

[97] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A system for
programming graphics hardware in a C-like language. ACM Transactions on
Graphics, 22(3):896–907, 2003.

126

[98] A. Martin and S. Bellet. CFD-tools qualification for thermal-hydraulics
pressurized thermal shock analysis. Journal of Pressure Vessel Technology,
125(4):418–424, 2003.

[99] N. Martys, J. Hagedorn, D. Goujon, and J. Devaney. Large scale simulations
of single and multi-component flow in porous media. International Sympo-
sium on Optical Science, Engineering, and Instrumentation, pages 205–213,
1999.

[100] F. Massaioli and G. Amati. Optimization and scaling of an OpenMP LBM
code on IBM SP nodes. Scicomp Talk, 2002.

[101] F. Massaioli and G. Amati. Performance portability of a lattice Boltzmann
code. Scicomp Talk, 2004.

[102] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra.
ACM Transactions on Graphics, 23(3):787–795, 2004.

[103] R. Mei, L. S. Luo, and W. Shyy. An accurate curved boundary treat-
ment in the Lattice Boltzmann method. Journal of Computational Physics,
155(2):307–330, 1999.

[104] R. Mei, W. Shyy, D. Yu, and L. S. Luo. Lattice Boltzmann method for 3-D
flows with curved boundary. Journal of Computational Physics, 161(2):680–
699, 2000.

[105] A. Moerschell and J. D. Owens. Distributed texture memory in a multi-
GPU environment. ACM SIGGRAPH/Eurographics Symposium on Graphics
Hardware, pages 31–38, 2006.

[106] J. Monaghan. An introduction to SPH. Computer Physics Communications,
48:88–96, 1988.

[107] K. Mueller and R. Yagel. On the use of graphics hardware to accelerate
algebraic reconstruction methods. SPIE Medical Imaging, number 3659-62,
1999.

127

[108] M. Mueller, D. Charypar, and M. Gross. Particle-based fluid simulation
for interactive applications. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 154–159, 2003.

[109] M. Müller, B. Solenthaler, R. Keiser, and M. Gross. Particle-based fluid-
fluid interaction. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 237–244, 2005.

[110] N. Neophytou, K. Mueller, K. T. McDonnell, W. Hong, X. Guan, H. Qin,
and A. E. Kaufman. GPU-accelerated volume splatting with elliptical RBFs.
Eurographics/IEEE TCVG Symposium on Visualization, pages 13–20, 2006.

[111] D. Nguyen, R. Fedkiw, and H. Jensen. Physically based modeling and ani-
mation of fire. ACM Transactions on Graphics, 21(3):721–728, 2002.

[112] H. Nguyen. GPU Gems 3. Addison Wesley, 2007.

[113] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apra.
Advances, applications and performance of the Global Arrays shared mem-
ory programming toolkit. International Journal of High Performance Com-
puting Applications, 20(2):203–231, 2006.

[114] NVIDIA. Compute Unified Device Architecture Programming Guide, 2007.
Version 1.1, http://www.nvidia.com/object/cuda develop.html.

[115] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics hard-
ware. Computer Graphics Forum, 26(1):80–113, 2007.

[116] S. Park and M. J. Kim. Vortex fluid for gaseous phenomena. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 261–270,
2005.

[117] G. Peng, H. Xi, G. Duncan, and S. H. Chou. Lattice Boltzmann method on
irregular meshes. Physical Review E, 58(4):4124–4127, 1998.

128

[118] M. Pharr and R. Fernando. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-
Wesley Professional, 2005.

[119] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray tracing on pro-
grammable graphics hardware. ACM Transactions on Graphics, 21(3):703–
712, 2002.

[120] F. Qiu, F. Xu, Z. Fan, N. Neophytos, A. Kaufman, and K. Mueller. Lattice-
based volumetric global illumination. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1576–1583, 2007.

[121] F. Qiu, Y. Zhao, Z. Fan, X. Wei, H. Lorenz, J. Wang, S. Yoakum-Stover,
A. Kaufman, and K. Mueller. Dispersion simulation and visualization for
urban security. IEEE Visualization, pages 553–560, 2004.

[122] W. T. Reeves. Particle systems—A technique for modeling a class of fuzzy
objects. ACM Transactions on Graphics, 2(2):91–108, 1983.

[123] R. J. Rost. OpenGL Shading Language (2nd Edition). Addison-Wesley Pro-
fessional, 2006.

[124] M. Rumpf and R. Strzodka. Nonlinear diffusion in graphics hardware. Eu-
rographics/IEEE TCVG Symposium on Visualization, pages 75–84, 2001.

[125] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. An unconditionally
stable MacCormack method. Journal of Scientific Computing (in press).

[126] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke,
water and explosions. ACM Transactions on Graphics, 24(3):910–914, 2005.

[127] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for
GPU computing. ACM SIGGRAPH/Eurographics Symposium on Graphics
Hardware, pages 97–106, 2007.

[128] S. Sengupta, A. E. Lefohn, and J. D. Owens. A work-efficient step-efficient
prefix sum algorithm. Workshop on Edge Computing Using New Commodity
Architectures, pages D–26–27, 2006.

129

[129] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. ACM
SIGGRAPH, pages 231–242, 1998.

[130] L. Shi and Y. Yu. Inviscid and incompressible fluid simulation on triangle
meshes. Journal of Computer Animation and Virtual Worlds, 15(3-4):173–
181, 2004.

[131] S. St-Laurent. The Complete Effect and HLSL Guide. Paradoxal Press, 2005.

[132] J. Stam. Stable fluids. ACM SIGGRAPH, pages 121–128, 1999.

[133] J. Stam. Flows on surfaces of arbitrary topology. ACM Transactions On
Graphics, 22(3):724–731, 2003.

[134] D. Stora, P. O. Agliati, M. P. Cani, F. Neyret, and J. D. Gascuel. Animating
lava flows. Graphics Interface, pages 203–210, 1999.

[135] M. Strengert, M. Magallon, D. Weiskopf, S. Guthe, and T. Ertl. Hierarchical
visualization and compression of large volume datasets using GPU clusters.
Eurographics Symposium on Parallel Graphics and Visualization, pages 41–
48, 2004.

[136] S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Nu-
merical Mathematics and Scientific Computation. Oxford University Press,
2001.

[137] H. Takizawa and H. Kobayashi. Hierarchical parallel processing of large
scale data clustering on a PC cluster with GPU co-processing. Journal of
Supercomputing, 36(3):219–234, 2006.

[138] A. T. C. Tam and C.-L. Wang. Contention-aware communication schedule
for high-speed communication. Cluster Computing, 6(4), 2003.

[139] J. Teran, S. Blemker, V. N. T. Hing, and R. P. Fedkiw. Finite volume meth-
ods for the simulation of skeletal muscle. Eurographics/ACM SIGGRAPH
Symposium on Computer Animation, pages 68–74, 2003.

130

[140] R. Thakur, W. Gropp, and B. Toonen. Optimizing the synchronization op-
erations in message passing interface one-sided communication. Interna-
tional Journal of High Performance Computing Applications, 19(2):119–
128, 2005.

[141] N. Thürey and U. Ruede. Free surface lattice-Boltzmann fluid simulations
with and without level sets. Vision, Modeling, and Visualization, pages 199–
207, 2004.

[142] C. Trendall and A. J. Stewart. General calculations using graphics hardware
with applications to interactive caustics. Eurographics Workshop on Render-
ing Techniques, pages 287–298, 2000.

[143] S. Ubertini, G. Bella, and S. Succi. Lattice Boltzmann method on unstruc-
tured grids: Further developments. Physical Review E, 68(1):016701, 2003.

[144] S. Ubertini and S. Succi. Recent advances of lattice Boltzmann techniques on
unstructured grids. Progress in Computational Fluid Dynamics, 5(1/2):85–
96, 2005.

[145] C. van Treeck, E. Rank, M. Krafczyk, J. Tölke, and B. Nachtwey. Exten-
sion of a hybrid thermal LBE scheme for large-eddy simulations of turbulent
convective flows. Computers & Fluids, 35(8-9):863–871, 2006.

[146] J. J. van Wijk. Image based flow visualization. ACM Transactions on Graph-
ics, 21(3):745–754, 2002.

[147] J. J. van Wijk. Image based flow visualization for curved surfaces. IEEE
Visualization, pages 123–130, 2003.

[148] X. Wei, W. Li, K. Mueller, and A. Kaufman. Simulating fire with texture
splats. IEEE Visualization, pages 227–234, 2002.

[149] X. Wei, W. Li, K. Mueller, and A. E. Kaufman. The lattice-Boltzmann
method for simulating gaseous phenomena. IEEE Transactions on Visual-
ization and Computer Graphics, 10(3):164–176, 2004.

131

[150] X. Wei, Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-Stover, and A. Kaufman.
Lattice-based flow field modeling. IEEE Transactions on Visualization and
Computer Graphics, 10(6):719–729, 2004.

[151] X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and A. Kaufman. Blow-
ing in the wind. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 75–85, 2003.

[152] D. Weiskopf, M. Hope, and T. Ertl. Hardware-accelerated Lagrangian-
Eulerian texture advection for 2D flow visualization. Vision, Modeling, and
Visualization, pages 77–84, 2002.

[153] D. Weiskopf, M. Hopf, and T. Ertl. Hardware accelerated visualization of
time-varying 2D and 3D vector fields by texture advection via programmable
per-pixel operations. Vision, Modeling, and Visualization, pages 439–446,
2001.

[154] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume
rendering applications. ACM SIGGRAPH, pages 169–177, 1998.

[155] D. A. Wolf-Gladrow. Lattice Gas Cellular Automata and Lattice Boltzmann
Models: An Introduction. Springer-Verlag, 2000.

[156] H. Xiong, H. Peng, A. Qin, and J. Shi. Parallel occlusion culling on GPUs
cluster. ACM International Conference on Virtual Reality Continuum and its
Applications, pages 19–26, 2006.

[157] F. Xu and K. Mueller. Accelerating popular tomographic reconstruction al-
gorithms on commodity PC graphics hardware. IEEE Transactions on Nu-
clear Science, 52(3):654–663, 2005.

[158] F. Xu and K. Mueller. Real-time 3D computed tomography reconstruc-
tion using commodity graphics hardware. Physics in Medicine and Biology,
52:3405–3419, 2007.

[159] V. Yakhot, S. Orszag, S. Thangam, T. Gatski, and C. Speziale. Power-
FLOW3.2: Theory and benchmark results. Physics of Fluids A, pages 1510–
1520, 1992.

132

[160] S. Yamagiwa and L. Sousa. Caravela: A novel stream-based distributed
computing environment. IEEE Computer, 40(5):70–77, 2007.

[161] C. Yuksel, D. H. House, and J. Keyser. Wave particles. ACM Transactions
on Graphics, 26(3):148, 2007.

[162] Y. Zhao, Y. Han, Z. Fan, F. Qiu, Y. Kuo, A. E. Kaufman, and K. Mueller.
Visual simulation of heat shimmering and mirage. IEEE Transactions on
Visualization and Computer Graphics, 13(1):179–189, 2007.

[163] Y. Zhao, F. Qiu, Z. Fan, and A. Kaufman. Flow simulation with locally-
refined LBM. ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 181–188, 2007.

[164] Y. Zhao, X. Wei, Z. Fan, A. Kaufman, and H. Qin. Voxels on fire. IEEE
Visualization, pages 271–278, 2003.

[165] K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H.-Y. Shum. Real-time smoke
rendering using compensated ray marching. ACM Transactions on Graphics,
27(3), 2008.

[166] H. Zhu, X. Liu, Y. Liu, and E. Wu. Simulation of miscible binary mix-
tures based on lattice Boltzmann method. Computer Animation and Virtual
Worlds, 17(3–4):403–410, 2006.

