

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Feature-Driven Illustrative Visualization and Graphics

A Dissertation Presented

by

Lujin Wang

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2007

Copyright by
Lujin Wang

2007

Stony Brook University

The Graduate School

Lujin Wang

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Klaus Mueller – Dissertation Advisor
Associate Professor, Department of Computer Science

Arie Kaufman – Chairperson of Defense
Distinguished Professor and Chairman, Department of Computer Science

Xianfeng Gu – Committee Member
Assistant Professor, Department of Computer Science

Holly Rushmeier – External Committee Member
Professor, Department of Computer Science, Yale University

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Feature-Driven Illustrative Visualization and Graphics

by

Lujin Wang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2007

We present several feature-driven illustrative visualization and graphics techniques to en-
hance the representation of the features of interest in volume datasets. While the magni-
tude and resolution of real-life datasets keep increasing dramatically, there is a limit on the
screen pixel density the human eye can resolve, and a bound onthe information a human
brain can visually process at any given time. Therefore, we devise techniques to facilitate
the perception of the visual information.

First, we propose a GPU-based focus+context framework thatuses various standard
and advanced magnification lens rendering techniques to magnify the features of interest,
while compressing the remaining volume regions without clipping them away completely.
Our technique allows the user to interactively manage the available screen area, dedicating
more area to the more resolution-important features. A generalization of this concept is
multiperspective rendering, which is also studied in our framework to show the spatial
relationships of features.

Second, when features are simply magnified, there will always be a limit on the avail-
able level of detail and the resolution of the data. To address these shortcomings, we
present a technique to extend regular zooms to semantic zooms. Our technique generates
the missing detail from any available and plausible high-resolution datasets, using con-
strained texture synthesis. We demonstrate our approach byways of a medical application
– the visualization of a human liver – but its principles readily apply to any scenario, as
long as data at all resolutions are available.

The third topic is related to surface texture mapping and synthesis, where we present
two methods that preserve both scale and angle. By using global conformal parameteriza-
tion, the 3D surface texture synthesis problem can be converted to a 2D image synthesis
problem. Our multi-scale synthesis method maintains a moreuniform area scaling factor.
By employing a conformal factor-driven mass-spring relaxation on global parameteriza-
tion, our second method helps preserve orthogonality and size in texture mapping.

This thesis also seeks to break new grounds in embedding concepts from human per-
ception, cognition, and visual processing into visualization design. We present a rule based

iii

color design system to provide better control for task-driven or feature-driven visualization
tasks. Our system not only assists in the selection of propercolors, it also helps to avoid
poor color mixing in semi-transparent rendering and the apparent change in brightness in
color harmonization. Then, inspired by our work on volume rendering and color design,
we propose a general multi-layer multi-volume rendering framework. Finally, we inves-
tigate the influence and settings of various volume rendering parameters by conducting a
user study with 750 participants, assessing the results viaconjoint analysis, a promising
paradigm to conduct user studies in visualization developed by close collaborators.

iv

To My Husband, Yongzhi Chen,

My Father, Mingsen Wang, and My Mother, Yan Li

with My Love!

Contents

List of Tables ix

List of Figures x

Acknowledgments xvii

Publications xviii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions .2
1.3 Outline .4

2 Background 5
2.1 Volume Visualization .5

2.1.1 Volume Rendering .5
2.1.2 GPU-Accelerated Volume Rendering7

2.2 Illustrative Visualization 7
2.2.1 Focus+Context Visualization .. 8
2.2.2 Cut-Away Views and Deformations8
2.2.3 Lenses and Distortions .9
2.2.4 Illustration-Inspired Volume Visualization 9

2.3 Texture Synthesis .10
2.3.1 Approaches .11
2.3.2 Applications and Extensions .12

3 Magic Volume Lens 13
3.1 Volumetric Lenses .13

3.1.1 Magnifier .13
3.1.2 Feature-Based Lens .17
3.1.3 Sampling-Rate-Based Lens .19
3.1.4 Angular Lens .22

3.2 Hardware Acceleration .23

vi

3.3 Results .24
3.4 Discussion .26

4 Semantic Zoom Using Texture Synthesis 29
4.1 Introduction .29
4.2 The Virtual Microscope – A 2D Viewer 33

4.2.1 Preprocessing .33
4.2.2 Constrained Texture Synthesis 35
4.2.3 Smooth Semantic Zooms .40
4.2.4 Results .42

4.3 Extension to 3D .42
4.4 Discussion .43

5 Uniform Texture Synthesis 45
5.1 Introduction .45
5.2 Related Work .47
5.3 Global Conformal Parameterization 48
5.4 Uniform Texture Synthesis .. 50

5.4.1 Estimation of Conformal Factor51
5.4.2 Multi-Scale Synthesis Algorithm 52
5.4.3 Results .54

5.5 Quasi-Isometric Texture Mapping 54
5.5.1 Mass-Spring Model .55
5.5.2 Results .57

5.6 Discussion .58

6 Multiperspective Visualization 60
6.1 Introduction .60
6.2 Sphere-Based Multi-View Approach 61
6.3 Results .63
6.4 Discussion .63

7 Conjoint Analysis to Measure the Perceived Quality 65
7.1 Introduction .65
7.2 Volume Rendering Scenario .67
7.3 Choice Based Conjoint Analysis .. . 68
7.4 Overview of the Framework .69
7.5 Results .69
7.6 Discussion .72

8 Color Design for Visualization 73
8.1 Introduction .73
8.2 Related Work .74

vii

8.3 System Design Goals and Overview .. 75
8.4 The Computational Design Expert System 77

8.4.1 Encoded Principles and Guidelines 77
8.4.2 Framework Theory .79
8.4.3 Implementation Details: 2D System 86
8.4.4 Implementation Details: 3D System 88

8.5 Applications .89
8.5.1 2D Visualization .89
8.5.2 Lightness-preserving Color Harmonization and ColorShifting . . . 91
8.5.3 Volume Rendering .94
8.5.4 Color Mixing in Semitransparent Rendering 94
8.5.5 Feature Highlighting .99

8.6 Discussion .99

9 Multi-Layer Multi-Volume Rendering 103
9.1 Introduction .103
9.2 Overview of Our Framework .103
9.3 Multi-Volume Ray Casting Algorithm 104
9.4 Results .106
9.5 Discussion .108

10 Conclusion 109

Bibliography 111

viii

List of Tables

3.1 GPU performance for different volume datasets. 25
7.1 Rank order of the parameters used in our four studies. Therank order is

derived from estimated variances (shown in brackets). 70
8.1 Relationship between s, v, lightness, and vividness forgiven hue in HSV

color space, whereC is a constant except0, ↑ means value increase, and
↓ means value decrease. .82

8.2 Parameters of startree visualization tasks 91

ix

List of Figures

1.1 Our feature-driven illustration techniques. 2
3.1 Magnifier illustration. .14
3.2 Magnifier volume renderings with (a) No lens, (b) Circular lens, (c)

Square lens, (d) Arbitrary-shaped lens. 15
3.3 Transition region and its rendering effect. 16
3.4 Magnifier volume renderings for the bone feature in a segmented frog

dataset. (a) and (b) Renderings without and with magnification under
circular lens. .16

3.5 Feature-based lens illustration. 18
3.6 Distance computation on the transition region of the feature-based lens.

(a) Distance field on the transition region, (b) Searching circle for each
pixel outside the feature-projected region is used for local computation. . 18

3.7 Feature-based lens volume renderings for a segmented human brain
color volume dataset. (a) Without specifying any feature ofinterest, (b)
With a feature of interest, which is not magnified and appearstoo small
to be seen clearly. From (c) to (d) the magnification factor increases. . . . 19

3.8 Sampling-rate-based lens illustration. 20
3.9 Comparing volume renderings with (a) No lens, (b) Magnifier, (c)

Sampling-rate-based lenses with cubic sampling function (maximal sam-
pling rate/normal sampling rate = 3), (d) An arbitrary sampling function
(shown in Figure3.10). .21

3.10 Another sampling rate function. 21
3.11 Angular lens. (a) Angular fisheye lens with 180 degrees illustration, (b)

180 degrees view of a bonsai with an angular fisheye lens. 22
3.12 Virtual tour of the colon. (a) Perspective view with angle 120 degrees,

(b) 180 degrees view with an angular fisheye lens. 23
3.13 Magnification results. (a) and (b) DVR renderings without and with

magnifier, (c) and (d) DVR with gradient magnitude modulation ren-
derings without and with magnifier. .25

3.14 Feature magnification results with magnification factor increasing from
(a) to (d). .26

x

3.15 Feature-based lens results. From (a) to (b) Frog heart is magnified. Frog
is rendered with two level volume rendering method: bone andeye retia
are rendered with MIP, all other features are rendered with DVR, with
different transfer function for each feature. 26

3.16 Magic volume lens results. (a) Magnifying inside features in an
arbitrary-shaped area on an engine, (b) Applying sampling-rate-based
lens on a foot, (c) Enlarging area of interest on an aneurism,(d) Magni-
fying the duodenum of a segmented frog dataset. 27

3.17 Lens-distorted lattice. (a), (b) and (c) Three rendering options. 27
4.1 Semantic zooming based on texture synthesis. 30
4.2 Illustration of the semantic zooming capabilities facilitated by the vir-

tual microscope, using a human liver as an example: (a) MRI image of
a liver, where the white square is the user-specified region of interest,
(b)-(s) A typical image sequence during a semantic zoom, in which (k)
is the synthesized histology level image, and (s) is the synthesized cell
level image, (c)-(e) Magnified MRI level images, (l)-(p) Magnified his-
tology level images, (f)-(k) Images obtained by blending magnified MRI
and minified histology level images, (o)-(s) Images obtained by blending
magnified histology and minified cell level images. 32

4.3 System Overview. .33
4.4 Image data and pieces of colorized sample images. (a) MRIliver im-

age, (b) Colorized image, (c) Low-scale histology image, (d) High-scale
histology image, (e) Colorized image. (Images (c) and (d) courtesy of
http://www.bu.edu/histology). .. 34

4.5 Some tag images for the liver example. (a) MRI image, (b) Histology-
level image, (c) Cell level image. .35

4.6 Mismatched levels. The histology level image (b) does not match the
specified region of the MRI level image (a), and the cell levelimage (c)
does not match the specified region of (b) either. 36

4.7 Our pixel-based synthesis methods. Pixel synthesis based on distance
field: (a) Sample image and its distance field, (b) Reference distance
fields and corresponding synthesis results. Pixel synthesis based on dis-
tance field and gradient field: (c) Sample image and its distance and
gradient fields, (d) Synthesis process and result. 38

4.8 Our pixel-based synthesis results. Sample thick skin histology image (a)
and its distance field (b), reference distance fields (c) and the result of
synthesizing a thick skin histology image (d). 38

4.9 Vein periphery synthesis based on distance fields. (a) Generated from the
segmented sample image, (b) Generated from magnified MRI image, (c)
Texture detail. .39

4.10 Smooth boundary problem caused by tag image magnification. (a) Den-
tate boundary, (b) Smooth boundary. .40

4.11 Image transition process. .. . 41

xi

4.12 Volume data and colorized volume. (a) Visible man’s volume, (b) Col-
orized volume, (c) Segmented liver, (d) An example of the sample his-
tology level volume and its translucent result (e). 43

4.13 Illustration of semantic zooming into volume data. (a)First level for
part of the liver, (e) Histology level of (a), (b)-(d) Volumes obtained by
blending the magnified first level volume and minified histology level
volume. .43

4.14 Synthesized volume with sub-details. 44
5.1 Process of Global Conformal Parameterization. The input surface is rep-

resented as a triangle mesh (a). The holomorphic 1-form basis is com-
puted, (b-1) and (b-2) are the 2 base 1-forms [46]. By linear combining
the basis, different holomorphic 1-forms can be constructed as shown
in (c-1) and (c-2), then the optimal 1-form with most uniform1-form is
selected (c-2) [60]. The red and blue curves are the horizontal and ver-
tical trajectories. Horizontal trajectories intersect atthe zero point, the
center of (c-2). The mesh is then segmented along the horizontal trajec-
tory through the zero point as shown in (d), each segment is conformally
parameterized to a planar rectangle illustrated in (e). Thetrajectories are
mapped to the iso-parametric curves.47

5.2 Global conformal parameterization. 49
5.3 Nonuniform texture on a surface. It is generated by global conformal

parameterization, uniform texture synthesis on 2D geometry images and
texture mapping. .50

5.4 Conformal geometry images (a) and (b), and corresponding inverse con-
formal factor fields (c) and (d). .51

5.5 Multi-scale sample textures. From (a) to (d), scales of sample textures
increase gradually. .52

5.6 Boundary problem. (a) Corresponding boundaries on a segment and its
conformal geometry image; (b) Corresponding boundaries ontwo geom-
etry images.q is the zero point. .53

5.7 Consistent boundary synthesis, by adding margins and copying bound-
ary texture patches.q is the zero point.54

5.8 Multi-scale texture synthesis results. (a) and (e) Uniform texture synthe-
sized on geometry images without considering area stretching factor, (b)
and (f) Nonuniform texture by mapping (a) and (e) onto 3D surfaces, (c)
and (g) Nonuniform texture synthesis considering area stretching factor,
(d) and (h) Uniform texture by mapping (c) and (g) onto 3D surfaces. . . 55

xii

5.9 More texture synthesis results. (a) and (e) Uniform texture synthesized
on geometry images without considering area stretching factor, (b) and
(f) Nonuniform texture by mapping (a) and (e) onto 3D surfaces, (c) and
(g) Nonuniform texture synthesis considering area stretching factor, (d)
and (h) Uniform texture by mapping (c) and (g) onto 3D surfaces, (i)
and (k) Nonuniform textures on 3D surfaces, texture features inside the
handles are smaller than those outside, (j) and (l) Uniform textures on
3D surfaces. High resolution images as well as videos can be obtained
at http://www.cs.sunysb.edu/∼lujin/paper/pg05/.56

5.10 Mesh changed on mass-spring model. (a) Mesh on one geometry image,
(b) Modified mesh with mass-spring relaxation, (c) Conformal texture
mapping based on global parameterization, (d) More uniformtexture
mapping using our quasi-isometric parameterization. 57

5.11 Texture mapping results. (a) and (b) Image on the surface, (c) and (d)
Video on the surface, in which (a) and (c) are based on conformal global
parameterization, (b) and (d) are based on improved parameterization
using mass-spring method. .58

6.1 “High and Low” by M. C. Escher. .60
6.2 Illustration of our sphere-based multi-view approach.(a) All viewpoints

located on the surface of sphere, which is concentric to the bounding
sphere of the volume data, (b) Image plane. 62

6.3 Our multiperspective renderings considering visibility. (a), (b) and (c)
Renderings with three viewpoints, (d), (e) and (f) Multiperspective ren-
derings. .62

6.4 Our multiperspective renderings with focus feature protected. (a) and (b)
Direct volume rendering from two viewpoints, (c) and (d) Multiperspec-
tive renderings. .63

7.1 Renderings with different parameter settings. 68
7.2 Best and worst renderings for our four conjoint studies.(a) and (b) Best

ten renderings (ranking decreasing from left to right) for ENGINE and
FOOT respectively, (c) and (d) Worst ten renderings (ranking increasing
from left to right). Top row of (a)-(d) is for DETAIL, bottom row of
(a)-(d) is for AESTHETICS. .71

8.1 Color spaces utilized in our system. 80
8.2 Color pairs with lightness matches performed using different conversion

methods. .82
8.3 Illustration of equi-lightness and equi-vividness curves in HSV color

space. (a) An equi-lightness curve, (b) An equi-vividness curve. 83
8.4 Examples of equi-lightness curves in HSV color space. (a) Hue slice

with h = 0, (b) Hue slice withh = 180. 83
8.5 Examples of equi-vividness curves in HSV color space. (a) Hue slice

with h = 0, (b) Hue slice withh = 180. 83

xiii

8.6 Examples of controlling the lightness. Two vivid colorswith the same
vividness but different lightness values are shown in the middle. Colors
are recomputed with the desired lightness, which can be minimal, max-
imal, average, or halfway to the average, of the lightness values of the
two original colors. .86

8.7 Illustration of the lightness selection. The class in red with the highest
importance has higher vividness, and the class in cyan with less impor-
tance has lower vividness.Lmost is the lightness selected for the class in
red. With theLighter option,Lless is the lightness for the class in cyan,
andLleast is the lightness for classes with the least importance. 87

8.8 Color designs for startree visualization. The parameters of tasks are
listed in Table8.2, including the number of classes, and for each class,
the importance factor specified by the user, while the hue is generated
by the system based on the user’s choice. The tree nodes with higher
importance are highlighted in the coloring results. 90

8.9 Startree examples. (a) All vivid colors compete to catchthe eye, (b) All
colors with similar lightness, no feature is emphasized well in both (a)
and (b). .91

8.10 Color designs for Transmission Electron Microscopy image. Different
features are highlighted in images. (a) Original grey-level image, (f) Col-
ors with equal lightness, no feature is emphasized, features are labelled
asA,B,C,D for reference, (b)-(e) Features highlighted have the lowest
lightness comparing to other features (Lighter option), (g)-(j) Features
highlighted have the highest lightness (Darker option), (b) and (g)A
is emphasized, (c) and (h)B is emphasized, (d) and (i)C is empha-
sized, (e) and (j)A is emphasized, a rather small region colored with
high vividness to produce the pop-out effect despite its small size. 92

8.11 Lightness preserved color harmonization. (a) Cut and paste part1, (b)
Cut and paste part2, which will be color harmonized to part1,(c) Color
harmonization by Cohen’s method[24], (d) Lightness preserved color
harmonization, (e) and (f) Color distribution on the hue wheel of the
original image (a) and (b), (g) and (h) Color distribution after harmo-
nization. .93

8.12 Lightness preserved color harmonization. (a) Color distribution on the
hue wheel of the original image (b), (c) Color harmonizationby Cohen’s
method[24], (d) Lightness preserved color harmonization, the brightness
contrast and feature details of the original image are kept,(e) Color dis-
tribution after harmonization. .93

8.13 Lightness preserved color shifting. (a) Color distribution on the hue
wheel of the original image (b) [50], (c) Color shifting with only hue
shifted, (d) Color shifting while preserving the lightness, (e) Color dis-
tribution after shifting. .94

xiv

8.14 Color designs for volume visualization. (a) Kidney of the frog is high-
lighted with vivid orange, (b) Heart is highlighted with vivid red, (c)
Bone is assigned blue hue and emphasized, (d) Object labels traced by
ray casting. .95

8.15 Two color mixing examples. (a) and (c) Red and green are mixed with
red in front or green in front, (b) and (d) Red and cyan are mixed with
red in front or cyan in front. .96

8.16 Ordering preserved color mixing example. Red and cyan are mixed with
red in front. .96

8.17 Three color mixing examples. (a) Object labels, (b)A andB are as-
signed opposite hues: yellow and blue,c is red, the overlapping region
of B andC gives false color, which can be observed from hue wheel as
well, (c) The saturation ofC is reduced, but its lightness is kept, and the
false color is reduced. .97

8.18 Local solution to reduce false color. (a) Object labels, A is in front of
B, (b) False color generates when mixing red and blue, (c) False color is
reduced by our local solution. .97

8.19 Color mixing on Body data for different view points. (a)and (c) Cyan
and yellow are mixed, (b) and (d) Blue and yellow are mixed, (a) and
(b) show back view of the body, (c) and (d) show front view of the body.
Corresponding hue wheels are below each rendering. 98

8.20 Color mixing on Engine Data. (a) Similar hues are chosen, (b) Opposite
hues are chosen, (c) and (d) Zoom-in views of (a) and (b). 99

8.21 Reveal the color of inside object by decreasing the saturation of outside
objects. (a)-(c) The green hue of the bone shows gradually, (d)-(f) The
yellow hue of the middle sphere shows, and the green hue of most inside
sphere shows, (g)-(i) The yellow hue shows when blue becomesless
saturated. .100

8.22 Color scales. (a) Hue slice withh = 20, (b) Hue slice withh = 200, A
is equi-lightness curve andB is equi-vividness curve, (c) and (d) Equi-
lightness color scales, (e) and (f) Equi-vividness color scales.101

8.23 Features are highlighted one by one. (a) All features are rendered in
neutral colors, no feature is highlighted, (b)-(d) The outside feature is
highlighted by increasing the vividness of its color gradually, while pre-
serving the lightness, (e) The vividness of the outside feature decreases,
(f)-(h) The inside feature is highlighted gradually, (i)-(j) The vividness
of the inside feature decreases. .101

9.1 2D illustrations of volume transformations. (a) Volumes without any
transformation, (b) Volumes transform in object space, (c)and (d) Trans-
formations taken in image space for volumeA andb respectively.105

9.2 Multi-volume renderings. (a) and (b) Foot moves into Engine, (c) More
opaque transfer function setting is applied for Engine. 107

xv

9.3 Volume exploration example. The original volume is visualized along
with the edited volume showing its highest frequency details.107

xvi

Acknowledgments

First of all, I would like to thank my parents, my husband and my brother for their
invaluable love and support for me in my life.

I want to express my deep gratitude to my advisor, Professor Klaus Mueller, for his
years of guidance, support and encouragement. He helped me set and achieve the higher
research goals which makes this thesis possible.

I would like to thank Professors Arie Kaufman, Xianfeng Gu, Michael Ashikhmin,
Dimitris Samaras, Hong Qin and Joachim Giesen, for helpful collaborations and valuable
discussions over the years. Special thanks to Professor Holly Rushmeier for being my
external committee member.

I want to thank all the current and past Visualization Lab members. Thank Bin Zhang
for the technical supports, thank Ye Zhao, Feng Qiu and Miao Jin for joint work, thank
Neophytou Neophytos, Fang Xu, Xin Guan, Shengying Li, Aili Li, Wei Hong, Jianning
Wang, Haitao Zhang, Zhe Fan, Satprem Pamudurthy, Eunju Nam and Supriya Garg for
their help and friendship. The life at Stony Brook has been a great experience for me.

This work has been supported by NSF career grant ACI-0093157.

Publications

1. Lujin Wang, Klaus Mueller.Generating Sub-Resolution Detail in Images and Vol-
umes Using Constrained Texture Synthesis. In Proceedings of IEEE Visualization
’04, Austin, Texas, 75-82, 2004.

2. Lujin Wang, Ye Zhao, Klaus Mueller, Arie Kaufman.The Magic Volume Lens: An
Interactive Focus+Context Technique for Volume Rendering. In Proceedings of
IEEE Visualization ’05, Minneapolis, Minnesota, 367-374, 2005.

3. Lujin Wang, Xianfeng Gu, Klaus Mueller, Shing-Tung Yau.Uniform Texture Syn-
thesis and Texture Mapping Using Global Parameterization. The Visual Com-
puter (Special issue of Pacific Graphics ’05), 21:8-10, 801-810, 2005.

4. Ye Zhao, Lujin Wang, Feng Qiu, Arie Kaufman and Klaus Mueller. Melting and
Flowing in Multiphase Environment . Computers & Graphics (the Special Issue on
Natural Phenomena), 30, 519-528, 2006.

5. Joachim Giesen, Klaus Mueller, Eva Schuberth, Lujin Wang, Peter Zolliker.Con-
joint Analysis to Measure the Perceived Quality in Volume Rendering. To ap-
pear in IEEE Transaction on Visualization and Computer Graphics (Visualization
’07), 2007.

6. Lujin Wang, Klaus Mueller.Color Design for Visualization. In submission, 2007.

xviii

1

Chapter 1

Introduction

1.1 Motivation

Recent years have seen a dramatic growth in our ability to compute, acquire, and as-
semble datasets of increasingly large magnitudes and resolutions. Great advances have also
been made in screen technology, bringing high-resolution displays to the desktop at afford-
able prices, as well as offering sophisticated CAVE environments. The one device that has
consistently resisted participation in this spiral of growth is the human eye and the cortical
visual processing abilities. In fact, there is a natural limit on the screen pixel density, as a
function of distance, which the human eye can resolve, and there is also a natural falloff of
retinal receptor density towards the foveal periphery. Finally, there is also a bound on the
information the human brain can visually process at any given time, but this is probably an
ability that can be trained the most. In view of these naturallimitations, which are bound to
stay, we must devise ways to make the best use of the availableretinal surface and cerebral
potential, in light of the growing amount of visual information ready to be presented.

Many illustrative visualization techniques have been proposed to exploit the perception
of the human visual system and provide effective visual abstractions to make the visualiza-
tion clearly understandable [132]. Such techniques are inspired by traditional technical and
medical illustrations. Visual emphasis and abstraction have been used for expressive pre-
sentation from prehistoric paintings to nowadays scientific and medical illustrations. Many
of the expressive techniques used in art are adopted in computer graphics, and are denoted
as illustrative or non-photorealistic rendering. Different stroke techniques, or brush prop-
erties express a particular level of abstraction. Feature emphasis or feature suppression is
achieved by combining different abstraction levels in illustrative rendering.

Most of such visualization techniques focus on improving the traditional volume ren-
dering style based on non-photorealistic rendering or lighting methods, or exploiting smart
visibility in visualization. To effectively convey the most important visual information,
however, there are many more aspects and approaches in graphics and other related fields
worth considering and exploring.

In this thesis, we present several new feature-driven illustrative visualization and graph-
ics techniques (see Figure1.1), which are derived from different points of view, including

1. INTRODUCTION 2

Part I: Detail
 Part II: Perception

 Extensions

Features (Image / Surface / Volume)

Volume

Lens

Semantic

Zoom

Uniform

Texture

Synthesis

Conjoint

Analysis

Color

Design

Multi-

Perspective

Visualization

Multi-Layer

Multi-Volume

Rendering

 Magnify, Enhance, Illustrate, Manipulate
 Emphasize, Make Legible

Figure 1.1: Our feature-driven illustration techniques.

detail management and perception. All of the techniques proposed here have the same goal,
that is, to enhance and better visualize the features of interest in the datasets.

1.2 Contributions

Our major contributions to scientific visualization and graphics research include various
feature-driven illustration techniques to enhance the representation of features or details of
importance, and new insights and techniques to facilitate better perception of the presented
visual information. Our techniques mainly fall into two groups: detail, and perception
related techniques. The former includes novel techniques to magnify features of interest
in volume datasets by focus+context volume rendering, employing texture synthesis tech-
niques in visualization to generate multi-resolution details for semantic zooming in images
and volumes, and creating uniform texture features on the surface based on global con-
formal parameterization. The latter includes measuring the perceived quality of volume
rendering by conjoint analysis, and assigning colors to distinguish or highlight features.
Furthermore, we study the feasibility of multiperspectivevolume rendering for simultane-
ously showing features, and we propose a multi-layer framework for multi-volume visual-
ization. In summary, our contributions include:

• We have proposed an interactive focus+context volume rendering framework that
uses various standard and advanced magnification lens rendering techniques to mag-
nify the features of interest in a volume dataset, while compressing the remaining
volume regions without clipping them away completely. Someof these lenses can
be interactively configured by the user to specify the desired magnification patterns,

1. INTRODUCTION 3

while others are feature-adaptive. Our technique allows the user to interactively man-
age the available screen area, dedicating more area to the more resolution-important
features.

• We have presented a method that generates the missing detailfrom any available and
plausible high-resolution datasets, using constrained texture synthesis. The detail
generation process is guided by the underlying image or volume data, and is designed
to fill in plausible detail in accordance with the coarse structure and properties of the
zoomed-in neighborhood. Regular zooms become “semantic zooms”, where each
level of detail stems from a data source attuned to that resolution. We demonstrate
our approach by a medical application, the visualization ofa human liver, but its
principles readily apply to any scenario, as long as data at all resolutions are available.

• For surface texture synthesis, we have presented two methods for simultaneous scale
and angle preservation, based on global conformal parameterization. By using the
conformal parameterization, the 3D surface texture synthesis problem can be con-
verted to a 2D image synthesis problem, which is more intuitive, easier, and concep-
tually simpler. While the conformality of the parameterization naturally preserves
the angles of the texture, we provide a multi-scale technique to also maintain a more
uniform area scaling factor. Another contribution is to apply a mass-spring method
to achieve quasi-isometric parameterization which simultaneously preserves orthog-
onality and size in texture mapping. Our algorithms are simple, efficient and auto-
matic, and they are theoretically sound and universal to general surfaces as well.

• We have extended our volume lens framework to involve multiperspective volume
rendering. Our approach generates a single image combines what can be seen from
more than one viewpoints. Although distortions are unavoidable and maybe too
much sometime, multiperspective rendering gives a clue of the spatial relationship
of features.

• We have been part of a collaboration that demonstrated that conjoint analysis can be
a useful and efficient tool to gauge influences of a rich set of rendering parameters
on human perception in visualization tasks. Our role in thisproject was the creation
of a large collection of images, suitable for the comparative testing strategy of con-
joint analysis and a subsequent statistically valid analysis of the user study results.
The framework was demonstrated by a study that measured the perceived quality in
volume rendering within the context of large parameter spaces. When generating the
pool of 5500 images used in the study, we took great care to reduce the effects of
competing adverse parameters, such as image size and occlusion, without reducing
the effects of the relevant tested parameters, such as colorschemes and rendering
mode and precision.

• We have proposed a system which captures the rules explicitly and implicitly for-
mulated in various classic color design books into a color selection framework, pro-
viding appropriate colorizations based on user preferences, importance functions,

1. INTRODUCTION 4

and scene composition. Since our approach incorporates various principles of vision
psychology, such as preattention, emotion, and aesthetics, it can provide better con-
trol for task-driven or feature-driven visualization tasks. Our rule based system not
only assists in the selection of proper colors, it also helpsto avoid poor color mixing
in semi-transparent rendering and the apparent change in brightness in some color
harmonization scenarios.

• We have proposed a preliminary multi-layer multi-volume rendering framework.
Employing a Photoshop like multi-layer style, and incorporating GPU-accelerated
ray casting rendering, our framework can provide users witha general and efficient
tool to explore multiple volume datasets.

1.3 Outline

The overall organization of the thesis is as follows. Chapter 2 gives a brief overview
of the related techniques, including volume visualization, illustrative visualization, and
example-based texture synthesis. We present our magic volume lens, an interactive fo-
cus+context volume rendering technique, in Chapter3. Chapter4 follows with our seman-
tic zoom technique, where multi-resolution details in the images and volumes are generated
using constrained texture synthesis. In Chapter5, we describe how to generate uniform
textures on the surface by texture synthesis and texture mapping using global conformal
parameterization. We study the multiperspective volume visualization in Chapter6. We
demonstrate the conjoint analysis framework by a study thatmeasures the perceived quality
in volume rendering in Chapter7. Chapter8 presents our work on color design for visu-
alization. Chapter9 describes our multi-layer visualization framework and multi-volume
rendering algorithm. Finally, we draw conclusions in Chapter10.

5

Chapter 2

Background

Feature is defined as a prominent or distinctive aspect, quality, or characteristic. A
feature can be specified according to a function value, spatial location, local properties, or,
in the multi-variate case as a product of function value for each modality. How to show
features faithfully and emphasize features of interest efficiently is an important and not
trivial task in visualization and graphics.

This chapter starts with the typical volume visualization approaches in Section2.1,
because most of our work deals with the volumetric dataset. Then we give an overview of
the state-of-art illustrative visualization techniques in Section2.2. Since texture synthesis
is one of the primary techniques we propose to help generate and enhance features for
visualization, we will discuss the most related texture synthesis techniques in Section2.3.

2.1 Volume Visualization

The central role of visualization is to provide the user witha visual representation of the
underlying non-visual data. The goal is to convey properties of the data in an effective and
efficient way. A 3D scientific or medical dataset can be represented either by iso-surfaces
or by direct volume rendering. Iso-surface extraction algorithms, such as Marching Cubes,
extract polygonal surfaces from the dataset with specified density values. These polygonal
surfaces, typically triangle meshes, can then be rendered through typical surface rendering
techniques or tools in computer graphics. Volume renderingintroduced by Drebin et al.
[30] is the process of creating a 2D image directly from 3D volumetric data without gen-
erating the intermediate geometric primitive representations, hence it is often called direct
volume rendering [63]. Our work is mostly related to direct volume rendering.

2.1.1 Volume Rendering

Volume rendering contains image-order, object-order, anddomain-based techniques.
Image-order volume rendering algorithms use a backward mapping scheme where rays are
cast from each pixel in the image plane through the volume data and the grids at discrete

2. BACKGROUND 6

locations along their paths are sampled via interpolation to determine the final pixel value.
Object-order techniques use a forward mapping scheme wherethe volume is decomposed
into a set of basis elements or basis functions which are individually projected to the screen
and assembled into an image. In a domain-based technique thespatial volume data is first
transformed into an alternative domain, such as compression, frequency, or wavelet, and
then a projection is generated directly from that domain [91]. The major volume rendering
algorithms include ray casting (image-order algorithm) [82, 83], splatting (object-order
algorithm) [141, 96, 161], shear-warp (a hybrid technique) [75].

X-ray rendering, maximum intensity projection (MIP) and full volume rendering are
three basic rendering modes. In ray casting algorithms, these modes differ in how the
samples taken along a ray are combined. In X-ray, the interpolated samples are simply
summed, giving rise to a typical image obtained in projective diagnostic imaging, while
in MIP, only the interpolated sample with the largest value is written to the pixel. In full
volume rendering, also called direct volume rendering (DVR), the interpolated samples are
further processed to simulate the light transport within a volumetric medium according to
one of many possible models. Either back-to-front compositing:

Cdst = (1 − αsrc)Cdst + αsrcCsrc, (2.1)

or front-to-back compositing:

Cdst = Cdst + (1 − αdst)αsrcCsrc, (2.2)

αdst = αdst + (1 − αdst)αsrc, (2.3)

(2.4)

can be used, whereCdst andαdst are the composite color and opacity,Csrc andαsrc are the
color and opacity for the intensity value of the current sampled data point, and usually spec-
ified by a transfer function, which is a useful feature classification technique. A transfer
function refers to a function that maps the data values directly to optical properties (in-
cluding R, G, B and Alpha channels). The classical transfer function is a one-dimensional
function dealing with scalar data, and has been extended to more dimensions (e.g. the first,
second-order derivatives).

The rendering effects are different for these four rendering modes, and a rendering
algorithm that merges the different modes into a hybrid image generation model has been
proposed [51]. The full volume rendering mode is most widely used since itprovides the
greatest degree of freedom and better rendering results.

In basic splatting, each object point is first assigned a color and opacity using the shad-
ing equation and the transfer functions. Then, each point issplatted into the screen’s color
and opacity buffers and the result is composited with the present image. There are three
types of splatting: composite-only [141], axis-aligned sheet-buffered [141] (to reduce the
color bleeding), and image-aligned sheet-buffered splatting [96] (to reduce the popping
artifacts).

Volume rendering techniques are very powerful tools to represent real world 3D data.

2. BACKGROUND 7

Beside earlier works mentioned above, there have been so many researches try to improve
of the image quality in different ways, or accelerate the rendering both by software or
hardware techniques over the years.

2.1.2 GPU-Accelerated Volume Rendering

With the extended programmability of the graphics processing unit (GPU) that has
recently become available, combined with the increased performance of PC CPUs, much
tasks in computer graphics can be done interactively on personal computers, including
volume rendering.

GPU-accelerated volume rendering techniques starts with 2D and 3D texture mapping
[15, 109, 50], which properly shifted and composited a set of axis aligned slices. Pre-
integrated volume rendering [36] was introduced to cope with under-sampling artifacts.
Acceleration techniques, such as early ray termination andempty space skipping [86], and
hierarchical acceleration structures [49] were also introduced.

When the render-to-texture capabilities emerged and the intermediate results can be
stored onto textures, ray casting on GPU becomes feasible. Krueger and Westermann [72]
implemented a ray caster on the GPU. Weiskopf et al. [140] extended this framework to
non-linear ray tracing. Both methods explicitly enforced the program flow by rendering
control polygons for every major step of the ray casting algorithm, using textures to hold
the intermediate computation results. The repeated steps are: advancing the rays, inter-
polation of samples in the 3D data texture, shading, compositing. Rays that have become
opaque could be eliminated (terminated) between steps and empty space could be culled.
The addition of loop and branch capabilities into the GPU programming set has enabled
the more natural and free-flowing pipeline execution mode used in single-pass ray-casting
[118]. Leung et al. [79] further accelerated ray casting by using the PARC (Polygon
Assisted Ray Casting) algorithm to ensure that all rays are bounded to the limits of the
volume’s outermost surface.

Splatting was accelerated on the GPU using early-z culling [100]. A hardware-
accelerated adaptive EWA (elliptical weighted average) volume splatting algorithm has
also been proposed [20].

2.2 Illustrative Visualization

An Illustration is a visualization such as a drawing, painting, photograph or other work
of art that stresses subject more than form. The aim of an illustration is to elucidate or
decorate a story, poem or piece of textual information (suchas a newspaper article), tradi-
tionally by providing a visual representation of somethingdescribed in the text (Defined by
Wikipedia [142]).

Illustration has always been an important visual communication medium among hu-
mans. Technical, medical and biological illustrations have accommodated several types of
rendering styles, including the line art technique (pen-and-ink technique), the photorealistic

2. BACKGROUND 8

drawing style, and a combination of a real photograph and line art. Many approaches, like
stippling, hatching, or charcoal shading, allow one to understand the front shape of features
by simulating shading. Expressive illustration techniques such as section views, cut-away
views, ghosted views, or exploded views and zooming distortions effectively uncover most
important information by changing the level of visual abstraction or modifying the spatial
arrangement of features. A detailed description of the history of illustration and modern
illustration techniques can be found in Viola’s thesis [131].

2.2.1 Focus+Context Visualization

Visualization tasks frequently emphasize a particular feature as opposed to the remain-
ing context information. In medical visualization for example features interesting for the
diagnosis are shown together with features in their close vicinity. Such visualization strate-
gies are often denoted as focus+context visualization, where focus refers to the most inter-
esting feature and context is the surrounding or less relevant information to provide spatial
or other referential relationships. In order to concentrate mostly on the focus information,
the context often has to be represented in a sparse way that does not take too much of the
image space.

Many techniques have been developed in this area. Zhou et al.[159] devised focus-
region based volume rendering for volume feature enhancement. Volume data inside and
outside the focus region are rendered in different styles, and the distance to the focal point
is further included to control the optical properties of volume features in the context re-
gion [158]. Gaze-directed volume rendering [84] takes the observer’s viewing focus into
account to increase the rendering performance. The volume dataset is rendered at different
resolutions, with the focal region represented at full resolution and the other parts at a lower
resolution.

Importance-driven volume rendering [133] is a view-dependent model for automatic
focus+context volume visualization. The object importance is added as a new dimension
to the traditional volume rendering pipeline in order to maximize the visual information.
This technique removes or suppresses less important parts of a scene to reveal more impor-
tant underlying information. The illustrative context-preserving volume rendering model
[12, 11] uses a function of shading intensity, gradient magnitude,distance to the eye point,
and previously accumulated opacity to selectively reduce the opacity in less important data
regions. The method keeps easy and intuitive user control without missing context infor-
mation.

2.2.2 Cut-Away Views and Deformations

The visibility of prominent features can be achieved by illustrative visualization tech-
niques such as cut-away views or ghosted views. A different smart way to provide infor-
mation on the data is using exploded views or other types of deformation.

Cut-Away viewing, also known as volume cutting [105], is another way to display volu-
metric objects. Various cut-away techniques can be achieved automatically [28], and many

2. BACKGROUND 9

improvements have been made. Tory et al. [127] provided a framework, called ExoVis,
for simultaneously viewing detail and context in volumetric data sets. It allows users to
view multiple slices of a volume at arbitrary orientations,along with multiple subvolumes
rendered in different styles. All slices and subvolumes areoutside or surrounding a 3D
overview of the dataset.

Instead of disposing cut-away volume parts, Kurzion [73] presented a method to de-
form the shape of volume models and reveal the inside features without any modifications
to the original model. The method operates in the rendering phase, thus providing the
illusion that he modified the model. It equals to changing raydirections, however, the im-
plementation is not straightforward since the texture-based hardware acceleration method
is utilized. McGuffin et al. [93] used deformations for browsing volumetric data. Volume
splitting technique [44] is intended for displaying multiple enclosed iso-surfaces within the
volumetric data. Each iso-surface, except the innermost one, is split into two parts and
moved apart.

2.2.3 Lenses and Distortions

Lenses in the real world can be quite complicated [70]. However, simple lenses and
magnifications are still very useful and have been thoroughly studied for text, image and
information visualizations [80, 64, 65]. Bier et al. [8] introduced Toolglass and Magic
Lenses as a see-through interface to modify the visual appearance of application objects,
enhance data of interest or suppress distracting information. Viewpoint-dependent distor-
tion of 3D data, see [18, 19] for example, highlights regions of interest by dedicatingmore
space to them.

On the other hand, relatively little work has been done on lenses in the domain of
volume visualization. Cignoni et al. [21] provided the Magicsphere metaphor to visualize
3D data with a MultiRes filter. Wei et al. [139] applied fisheye views to magnify particle
track volume data using nonlinear magnification functions.

LaMar et al. [77] integrated a 3D magnification lens with a hardware-texturebased
volume renderer. Zooming is accomplished by modifying texture coordinates, and the
2D perspective correct textures technique is extended to 3Din order to obtain the correct
texture coordinates for the lens border. Multiple segmentson the border are needed to
generate more natural circular lenses. Cohen and Brodlie [22] magnified volume data by
generating a new volume using inverse distortion functions, however, this method is slow
and is memory-intensive. Further research is clearly needed to design better lenses and find
efficient implementations for volume data.

2.2.4 Illustration-Inspired Volume Visualization

Non-Photorealistic and illustration-inspired renderingstyles have been applied to ef-
fectively visualize the scientific and medical volume datasets. Treavett et al. [128] used
pen-and-ink styles in combination with direct volume rendering or surface shaded dis-
play. The sparse pen-and-ink representation is applied to outer iso-surfaces while an inner

2. BACKGROUND 10

iso-surface is represented using surface shading. Volume rendering is further enhanced
by non-photorealistic techniques, such as silhouettes [111]. Lu et al. [90] proposed the
stippling rendering of the scientific data. Illustration-inspired techniques also benefit the
visualization and understanding of the flow volume [121], and the motion of the flow [61].

2.3 Texture Synthesis

Textures can be random, stochastic, structure or anything in between. Although there
has been much sophisticated research on texture analysis, recognition, and synthesis in
computer vision, no real satisfactory solution has been achieved so far, due to the great
varieties of textures. Here, we only focus on the most important image texture synthesis
approaches which have appeared in the graphics area, and which are relatively simple and
easy to use.

Texture synthesis algorithms take sample images as input and synthesize new images
with similar textures. These algorithms can be roughly classified into three categories:
statistical, pixel-based and patch-based texture synthesis. Most approaches, especially sta-
tistical and pixel-based approaches, are based on Markov Random Field (MRF) models.
Also, most pixel- or patch-based approaches need a distancemetric to measure the per-
ceptual difference between two pixels or two image patches.Hence we will first discuss
MRFs and the typical distance metric used in texture synthesis. Then we list some impor-
tant image texture synthesis approaches, and describe several applications and extensions
of image texture synthesis technique.

Markov Random Field Markov Random Field (MRF) models (or in a different mathe-
matical form, Gibbs Sampling) have been widely used in texture synthesis, image restora-
tion, and region segmentation. Since MRFs have been proven to be a good approximation
for a broad range of textures, the texture synthesis algorithms based on MRFs [35, 137] are
general and some of them produce good results. A drawback of basic MRF sampling is
that it is computationally expensive.

The property of a MRF is that: a variableXs at sites on a latticeS = {s = (i, j) : 0 ≤
i, j < M} may have its valuexs set to any value, but the probability ofXs = xs depends
upon the valuesxr at sites neighborings. The neighboring sites are defined as those sites
r ∈ Ns ⊂ S, whereNs represents the neighborhood ofs. A local conditional probability
density function (LCPDF) defined over these neighboring sites r ∈ Ns determines the
probability ofXs = xs. Therefore the MRF is defined by the LCPDF [103]:

P (Xs = xs|Xr = xr, r 6= s) = P (xs|xr, r ∈ Ns) s ∈ S. (2.5)

This means the probability distribution of color/intensity values for a pixel given the
color/intensity values of its spatial neighborhood is independent of the rest of the image.
The neighborhood of a pixel can be modeled as a square window around that pixel. Most
MRF synthesis approaches are based on finding similar neighborhoods.

2. BACKGROUND 11

Distance Metric Most pixel- or patch-based approaches use theL2 norm to measure the
distance between two neighborhoods of textures. For the neighborhoods of two pixels,
the basic distance metric usually is the sum of squared differences (SSD) as the following
equation:

dSSD =

n∑
i,j=1

c∑
k=1

(N1k
(i, j) − N2k

(i, j))2, (2.6)

whereN1, N2 are two neighborhoods,n is the neighborhood size,(i, j) represents the pixel
location in the neighborhood, andc is the number of the channel, e.g. 1 channel (intensity)
for a gray texture and 3 channels (red, green, blue) for a color texture image. If we say
two neighborhoods match, theirdSSD should be the minimum or below a user specified
threshold.

Measuring the neighborhood distance for each pixel or patchcan be time consuming.
There are some algorithms that try to speed up the computation [74]. The above equation
can be expanded as follows:

dSSD =
n∑

i,j=1

c∑
k=1

(N2
1k

(i, j) + N2
2k

(i, j) − 2N1k
(i, j)N2k

(i, j)). (2.7)

Using summed area tables (SAT) [25], the computation of the first two terms can be accel-
erated, while the third correlation term can be calculated as a convolution and be speeded
up by Fast Fourier Transform (FFT) techniques [66, 42].

Actually, theL2 norm is a poor measure for perceptual similarity, hence the minimum
dSSD does not yield the most similar appearance. However, most approaches still use it
due to its simplicity and the fact that no perfect perceptualmetric has been found. Some
methods try to improve the basicdSSD by using weighteddSSD [35], or using other color
spaces such as YIQ and only the luminance channel Y to reduce the computational cost
[53, 3].

2.3.1 Approaches

Statistical Texture Synthesis Statistical texture synthesis approaches first analyze the
input texture using certain statistic measures and then synthesize the output according to
the analysis results. The main advantages of statistical analysis are that they provide a
better understanding of the perceptual process, provide a better model generalization and
generate good results for stochastic textures. However, they can not synthesize as large a
variety of textures as other techniques and are relatively complicated and computationally
slow.

Pixel-Based Texture Synthesis Pixel-based synthesis algorithms synthesize textures
pixel by pixel by finding a matching neighborhood, which makes them rather flexible
and easy to extend and apply to different areas. The representative algorithms include:

2. BACKGROUND 12

Efros/Leung’s non-parametric sampling algorithm [35], Wei/Levoy’s multiresolution syn-
thesis algorithm [137], which performs exhaustive search and accelerates based on tree
structured vector quantization (TSVQ). Ashikhman’s coherent synthesis [2] and Tong’s k-
coherent synthesis [125] algorithms reduce the search space significantly. Their synthesis
process is faster, but only suits particular types of textures well. Hertzmann’s Image Analo-
gies algorithm [53] combines [137] and [2], uses PCA, and approximates nearest neighbor
search (ANN) to accelerate the search process, offering better results. Zelinka and Garland
[157] synthesize textures in real-time using a Jump Map, after a relatively slow analysis
process. However, many pixel-based approaches suffer fromimage blurring and garbage
growing.

Patch-Based Texture Synthesis Patch-based synthesis algorithms tile matched patches
together, tend to be faster and more stable, and do not sufferfrom blurring and garbage
growing. Although they are less flexible since they generatetextures by copying whole
patches from the input, and hardly provide any perceptual information of the input tex-
ture, they are quite efficient and generate good synthesis results. The two major issues in
patch-based approaches are how to choose the appropriate patch and how to eliminate the
boundary artifacts. Xu’s chaos mosaic [148], Efros/Freeman’s image quilting [34], Liang’s
[87], Kwatra’s Graphcut [74] and Cohen’s Wang tiles [23] algorithms all belong to this
category. Hybrid methods [99] lay out patches and use pixel-based algorithm to hide the
seams.

Our work is mostly related to pixel-based and patch-based texture synthesis techniques.

2.3.2 Applications and Extensions

The digital image processing area benefits from image texture synthesis techniques,
which have been applied to address many image processing problems, such as texture trans-
fer [34, 53, 2], artistic style simulation [53, 3], super-resolution [53, 39], image restoration,
and specific image editing, with sometimes impressive results.

Image texture synthesis techniques also have some excitingextensions, such as syn-
thesizing surface texture [129, 136], temporal textures [114, 137, 74], reflectance texture
[125], volumetric or solid textures [136, 57], varied and mixed textures and enhancing
vector fields with textures.

13

Chapter 3

Magic Volume Lens

The size and resolution of volume datasets in science and medicine are increasing at
a rate much greater than the resolution of the screens used toview them. This limits the
amount of data that can be viewed simultaneously, potentially leading to a loss of overall
context of the data when the user views or zooms into a particular area of interest. We
propose a focus+context framework that uses various standard and advanced magnifica-
tion lens rendering techniques to magnify the features of interest, while compressing the
remaining volume regions without clipping them away completely.

Interactive operability is the prime key to a successful user experience and his/her ex-
ploration and immersion in the data, and the GPU has providedan attractive platform to
achieve these goals. Our work embraces this technology to provide a novel focus+context
tool that unifies and extends a variety of existing methods inthis area. Our techniques
are primarily designed for volumetric objects, which have received the least amount of at-
tention so far. Our framework provides a free-form volumetric lens function that can be
feature-adaptive or user-configurable for a high-quality,anti-aliased, and interactive dis-
play with smooth transitions from high- to low-resolution areas. It is somewhat related
to the importance-driven visualization system by Viola et al. [133], but our method allows
users not only to highlight and expose an object, but also to non-linearly magnify the object
for closer inspection in its spatial and semantic context.

3.1 Volumetric Lenses

In this section we describe several volumetric lenses whichare based on geometric
optics and conform to sampling theory.

3.1.1 Magnifier

The magnification lens, called magnifier in this thesis, is based on the magnification
model in optical physics. It provides users a method for close inspection of regions of
interest in volumetric objects. Figure3.1 illustrates the principle of a magnifier. The blue

3. MAGIC VOLUME LENS 14

line segment represents a magnifier lens positioned on the image plane by the user.LC
is the center point of the lens andF is the virtual focal point. When orthogonal incident
rays hit the image plane, in the region of the magnifier, then the ray directions are modified
and go through the focal pointF . Therefore, a ray cone is formed between the lens and
F . The objects within this cone are rendered in a larger area onthe image plane than their
original size, while the other objects retain their original size. Consequently, the objects in
the region of interest are magnified.

Image plane

Ray direction

F

Object

lr

lb

LC

P
I

P
F

P
R

Figure 3.1: Magnifier illustration.

In the basic scenario described above, objects located between the orthogonal rays and
the focused rays will not be visible on the image plane. This causes a loss of spatial context
for the observed objects and has to be compensated for by special treatments. Our solution
is to add a transition region close to the border of the ray cone where the directions of rays
are gradually changed from the focused direction to the orthogonal direction. In Figure
3.1, the transition region is represented by the red line segments on the image plane with a
width lb, lr is the radius of the lens, and the magnification region of the lens is shown as the
blue line segment. For a ray starting from a pointPI in the transition region, the direction
is computed according to the distance fromPI to LC as follows:

3. MAGIC VOLUME LENS 15

(a) (b)

(c) (d)

Figure 3.2: Magnifier volume renderings with (a) No lens, (b)Circular lens, (c) Square
lens, (d) Arbitrary-shaped lens.

|PF − F |
lr

=
|PI − LC| − (lr − lb)

lb
, (3.1)

PF = F +
PI − LC

|PI − LC| · |PF − F |, (3.2)

ray dir = PF − PI . (3.3)

wherePF is the point at which this ray passes through the virtual lensfocus plane, which
is parallel to the image plane and includes the focal pointF .

As a result of the transition region approach, while the objects inside the center region
of the lens are magnified, the objects in the transition region are compressed. Therefore,
continuous observation of the objects is achieved and no artificial data loss is introduced.

Based on this method, we are able to design magnifiers with anyarbitrary shape. Re-
sults obtained by using magnifiers in volume rendering are shown in Figure3.2. Figure
3.2a is the original volume rendering result with no magnifier and Figure3.2b-d are the
results obtained by using circular magnifier, square magnifier and arbitrary-shaped magni-
fier, respectively. Figure3.3 shows the transition regions, magnification regions of three
magnifiers, and the rendering effects on enlarged portions of Figure3.2b-d.

The magnification factor can be changed by modifying the focal point position. Moving
virtual focal pointF towards the image plane achieves a higher magnification factor and

3. MAGIC VOLUME LENS 16

Transition

region

LC
 LC
 LC

Magnification

region

Figure 3.3: Transition region and its rendering effect.

vice versa. The GPU acceleration makes it possible for usersto choose this interactively.
At the same time, the users can also change the size of the magnifier, for example, the
radius of a circular lens, and the size of the transition region to generate the desired results.

Our volumetric lenses are based on ray casting and it can be easily detected whether
a ray pass the feature, therefore the magnifier can be utilized to enlarge only features of
interest in the observed volumetric object. The magnification method is straightforwardly
applied to the segmented volumetric datasets. The ray modification method does not inter-
fere with the composition of the voxels with different properties because of their segmen-
tation. Figure3.4shows the results of applying the magnifier to show the bone features of
a segmented frog dataset.

(a) (b)

Figure 3.4: Magnifier volume renderings for the bone featurein a segmented frog dataset.
(a) and (b) Renderings without and with magnification under circular lens.

3. MAGIC VOLUME LENS 17

Since in the transition region, the ray sampling rate is relatively low, aliasing could
occur. Although this is not always noticeable in practice, anti-aliasing techniques can be
applied to generate better results. A solution is to use volume texture mip-mapping to
adaptively choose the appropriate resolution of the volumedata for rendering. A lower res-
olution volume is chosen for regions sampled at a lower rate,in order to eliminate aliasing.
One can determine the required mip-map level by calculatingthe magnification factormf
for pointPR,

mf =
|PR − PRI |
|F − LC| (

lb

lr
− 1) + 1. (3.4)

wherePRI is the orthogonal projection ofPR on the image plane. This factor will determine
the mip-map level that needs to be used.

3.1.2 Feature-Based Lens

Feature-driven volume visualization provides users a highlighting and exposition of the
portions of interest in volume objects. This facilitates anaccurate and differentiated un-
derstanding of the important features. Besides the traditional fixed-shaped lens used to
magnify segmented datasets, our free-form magnifier can be employed to also achieve a
feature-sensitive and feature-centric object enlargement. The difference is that the shape
of the magnifier is defined dynamically by the shape of the features (represented by the
segmentation information) in the dataset, within an arbitrary view port. This is illustrated
in Figure3.5. Whether an incident ray changes direction depends on the distribution of the
feature and the current view port. Thus the direction of eachray has to be determined dy-
namically. Transition regions are also used here to retain the space context of the features.

For each ray orthogonally incident upon the image plane, thenew direction is computed
as follows. Assuming all rays have changed directions to thefocal pointF ,

• if a ray passes through the feature, then its new direction ispointing toF .

• if the ray does not pass through the feature but is inside the transition region on the
image plane, the distanced (see Figure3.5) from its entry point to the boundary of
the feature-projected area is calculated. This distance isused to compute the new
direction as in Equations3.1-3.3.

• otherwise, the ray continues along its original direction.

On the image plane, the distance from a pixel to the boundary of the feature-projected
area has to be calculated for some rays. This requires knowledge of the position of such
an area on the image plane in each different view port. Therefore, a two pass computation
has to be used, where the first pass defines the feature-projected region and the second
pass computes the distance from a pixel to this region. Different distance computation
methods can be used during the second pass. To facilitate theGPU acceleration for this
algorithm, it has to be implemented based on local operations where each pixel only utilizes
the knowledge of its neighborhood. Our implementation is touse a searching circle for

3. MAGIC VOLUME LENS 18

Image plane

Ray direction

F

Feature

lb

d

Figure 3.5: Feature-based lens illustration.

(a) (b)

Figure 3.6: Distance computation on the transition region of the feature-based lens. (a) Dis-
tance field on the transition region, (b) Searching circle for each pixel outside the feature-
projected region is used for local computation.

each pixel with the transition region widthlb as its maximal radius (see Figure3.6 for an
illustration). Inside this circle, we compute a neighbor that is a feature projected point and
has the smallest distance to the pixel. This smallest distance is used as the distance value
for this pixel. This method is implemented directly as a fragment program on GPU (see
Section3.2).

Our lens can be combined with any feature-based ray casting volume rendering method,
for example, the two level volume rendering technique [51] for segmented volume data.
Figure3.7shows some rendering results for a color volume dataset, in which a user selected
feature is magnified and the other objects near that feature are compressed. Figure3.7a
shows the skin of the brain. Figure3.7b shows an interior structure of the brain, without

3. MAGIC VOLUME LENS 19

(a) (b)

(c) (d)

Figure 3.7: Feature-based lens volume renderings for a segmented human brain color vol-
ume dataset. (a) Without specifying any feature of interest, (b) With a feature of interest,
which is not magnified and appears too small to be seen clearly. From (c) to (d) the magni-
fication factor increases.

rendering other features which occlude this structure, while the magnified structures are
shown in Figure3.7c and3.7d.

3.1.3 Sampling-Rate-Based Lens

We introduced two magnification lenses that modify the casted rays using geometric
optics. They are implemented directly by changing ray directions from different areas
of the image plane. The distribution of the areas can be user-defined or feature-based.
In this section, we define a lens from another point of view. The rays casted towards
the observed object may have varying densities in differentportions of the object. This
results in a varying sampling rate for the object. Therefore, this special lens is called

3. MAGIC VOLUME LENS 20

sampling-rate-based lens. Various sampling functions could be adopted to define various
volumetric lenses and to achieve different volume rendering results. we can use these lenses
in conjunction with the mip-map volumes discussed in Section 3.1.1.

Normal

sampling

rate

Maximal

sampling

rate

Sampling rate

Image

plane

Rays

Distance

to LC

lr

Figure 3.8: Sampling-rate-based lens illustration.

We illustrate the idea of this lens in 1D in Figure3.8, where a sampling rate function
is shown at the top and the corresponding rays are shown at thebottom. In the sampling
rate function,lr is the lens radius, the vertical axis is the sampling rate andthe horizontal
axis represents the distance to the lens center. The sampling rate close to the lens center is
the highest. It then decreases and becomes even smaller thanthe original normal sampling
rate towards the boundary of the lens. At the bottom of Figure3.8, we can see that the rays
shot to the object are dense in the center region of the lens and become coarser towards the
boundary. Note that the distribution of pixels on the image screen is uniform and that the
original orthogonal rays are also distributed uniformly. To distribute the rays according to
the sampling rate function, the start point of a ray is not from its original starting pixel but
depends on its distance to the lens center and the sampling rate. Thus, we need to compute
the correct start point for each ray. As usual, the transition region approach is applied to
this lens. Here, the magnification region plus transition region must be exactly equal to the
lens region, which means the distance from the cutting point(where sampling rate returns
to normal) to the lens center must be equal to the radius of thelens,lr. Definesr as the

3. MAGIC VOLUME LENS 21

(a) (b) (c) (d)

Figure 3.9: Comparing volume renderings with (a) No lens, (b) Magnifier, (c) Sampling-
rate-based lenses with cubic sampling function (maximal sampling rate/normal sampling
rate = 3), (d) An arbitrary sampling function (shown in Figure3.10).

Normal

sampling

rate

Maximal

sampling

rate

Sampling rate

Disance

to LC

Minimal

sampling rate

lr

Figure 3.10: Another sampling rate function.

sampling rate andsd as the sampling distance function. Here,sr is inversely proportional
to the distance between sampling rays. We first precompute a coefficientC satisfying the
integral equations:

∫ lr

0

C · sd(s)ds = lr, (3.5)

sd(s) =
1

sr
. (3.6)

Then for each rayj, the distance between its real start point and the lens center can be

3. MAGIC VOLUME LENS 22

calculated using Equation3.7, which is the discrete form of the distance integral.

distance(j) =

steps∑
i=0

C · sd(i). (3.7)

Figure 3.9 shows the results with the sampling-rate-based lenses, comparing it with
the results obtained with no lens and with the magnifier. The toes of the foot are rendered
with different magnification effects. The difference between Figure3.9b and3.9c is mainly
caused by the different magnification factor distributionson the lenses. For the magnifier,
the factors for points, which project into the magnificationregion and locate on the same
plane parallel to the image plane, are the same. Therefore, objects with the same depth are
magnified uniformly. However, for the lens with cubic sampling function, the factor is the
highest on the lens center and decreases gradually towards the lens boundary. Objects with
projections closer to the lens center are magnified with higher magnification factors. Along
any ray, the factor remains the same for different depthes.

3.1.4 Angular Lens

A common widely used lens is the fisheye lens [10], and our GPU accelerated general
volumetric lens framework supports this type of lens as well. The fisheye lens is a spe-
cially designed lens which achieves wider viewing angles. The original fisheye lenses were
photometric lenses designed to take photos of the entire sky. There are two main idealized

Eye

Image plane

Ray

direction

P

a

(a) (b)

Figure 3.11: Angular lens. (a) Angular fisheye lens with 180 degrees illustration, (b) 180
degrees view of a bonsai with an angular fisheye lens.

3. MAGIC VOLUME LENS 23

fisheye projections, the hemispherical and the angular fisheye, which are common in com-
puter graphics rendering [10]. The hemispherical fisheye is less used due to the distortion
introduced. An angular fisheye projection can be used for angles up to 360 degrees and is
defined such that the distance from the pixelP to the center of the image is proportional to
the angleα of the viewing direction (see Figure3.11a). The ray direction corresponding to
any pixel on the image can be calculated by a special transform from pixel coordinates to
3D polar coordinates [10]. Figure3.11b shows an image of a 180 degrees view on a bonsai
with an angular lens.

Our framework is based on a ray casting volume rendering scheme. This allows us to
walk into the interior of the object to see the augmented volume rendering results. By using
an angular lens, larger view port angles can be achieved and more objects can be accom-
modated in the final image. This is helpful in many interior volume rendering scenarios.
A good example is virtual colonoscopy [54]. When navigating inside the colon, more ar-
eas can be viewed to achieve a more efficient observation. Figure3.12shows the result of
viewing a colon from a point on the centerline of the colon. Comparing this with a normal
perspective view with 120 degrees, more information can be obtained when using a 180
degrees angular lens.

(a) (b)

Figure 3.12: Virtual tour of the colon. (a) Perspective viewwith angle 120 degrees, (b) 180
degrees view with an angular fisheye lens.

3.2 Hardware Acceleration

To achieve interactive focus+context volume rendering, wehave implemented all of
our volumetric lenses on contemporary graphic hardware. Since our volume lenses are
designed based on changes in ray direction or ray sampling rate, it is straightforward to
implement, as well as extend, them using a ray casting approach.

In GPU-accelerated ray casting volume rendering [72], front faces and back faces of
the volume bounding box are drawn using OpenGL in two fragment passes to get the start

3. MAGIC VOLUME LENS 24

and end points for all the rays. However, this approach can not be used for our volumetric
lens. Because ray directions are not always orthogonal or perspective, we have to calculate
the start and end points of each ray for the various lens algorithms described earlier. Hence,
we implemented our own ray casting rendering algorithms with lens effects on the GPU.
At first, we calculate the ray directions using the appropriate lens rules. Then, the inter-
section points of each ray with the bounding box of the volumetric object are computed.
Finally, a ray traversal algorithm is implemented for a given step size, with the volume data
(density, gradient or color) stored in 3D textures. All these algorithms are translated into
Cg fragment programs. The current GPUs (e.g., NVIDIA GeForce 6800) have the required
features, such as loop, early termination and branches, making it possible to implement our
ray traversal method efficiently.

For our magnifier and angular lenses, we use fragment programs as follows:

Pass 1Raycasting The whole ray casting process includes the following three steps:

Step 1 RayDirectionCalculate the ray direction for each fragment based on the
view port and lens parameters. Also the information about whether a ray goes
through the lens or hits the feature of interest, or the distance to the lens center
can be obtained to achieve different rendering effects.

Step 2 RayTfrontback Compute the intersections of each ray with the volume
bounding box, and store the distances from the front and backintersection
points to the ray start point, denoted ast front andt back, which will be used
along with the ray direction and view port parameters to define the intersection
points in the next step.

Step 3 CastingRay Cast the ray into the volume and composite the color based on
the volume data and transfer function. Different traditional volume rendering
modes can be easily added into this step.

Pass 2Rendering Output the rendering results to the frame buffer.

For the feature-based lens, in Pass 1, one more step called Step 1.5:RayLensBorder, is
added before Step 2, to calculate the distance field for the lens transition region and change
the ray directions based on the distance.

For sampling-rate-based lenses, ray directions are never changed, but the real ray start
points need to be computed. We also use the above fragment programs, but the first step
is changed to Step1∗: RayStartPoints, which computes the ray start points used in later
computation.

3.3 Results

We have implemented our methods on a Pentium Xeon 2.4GHz CPU with 2.5GB mem-
ory and an NVIDIA GeForce 6800 Ultra GPU with 256MB memory. InTable3.1, we re-
port the data size and the performance of our method with GPU-accelerated computation.

3. MAGIC VOLUME LENS 25

Table 3.1: GPU performance for different volume datasets.

Volume lens method Simple ray casting
Data Data size Rendering speed (ms)Frames/second Rendering speed (ms)Frames/second

lobster 128 × 128 × 128 70 14.2 61 16.4
engine 256 × 256 × 110 95 10.5 74 13.6
bonsai 256 × 256 × 128 110 9 95 10.5
foot 154 × 263 × 222 97 10.3 90 11.1

aneurism 256 × 256 × 256 186 5.4 158 6.3
frog 502 × 472 × 138 308 3.3 258 3.9

(a) (b) (c) (d)

Figure 3.13: Magnification results. (a) and (b) DVR renderings without and with mag-
nifier, (c) and (d) DVR with gradient magnitude modulation renderings without and with
magnifier.

For comparison, we also include the performance of a simple ray casting volume renderer
(utilizing the front faces and back faces) with the same datasets on the same GPU. All
the performances are tested with512 × 512 images and with a 1.0 step size. Note that
our method has not been optimized for the GPU, therefore, we compare it with the simple
ray casting implementation, which is also unoptimized. Ourvolume lens methods only
slightly increase the rendering time comparing to the general ray casting method. In the fu-
ture, we will implement the standard optimization methods,such as empty space skipping
to improve the performance. For example, the speed for aneurism data can be dramatically
accelerated with space skipping.

As a ray casting based augmentation for volume rendering, our volumetric lenses can
be combined with many volume rendering modes, for example, direct volume rendering
(DVR), MIP and DVR with no shading, DVR with gradient magnitude modulation, XRay
and the two level volume rendering method for segmented data. We show results with
different rendering methods in Figure3.13. More magnification results are shown in Figure
3.14, Figure3.15, and Figure3.16.

Our lenses can be used to interactively choose and magnify regions or features of inter-
est to see small details more clearly while the context region remains. The size and shape of

3. MAGIC VOLUME LENS 26

the lenses, and the magnification factor also can be changed interactively, which allows the
user to adjust the lenses for desired results. Demo videos that show the interactive volume
lens renderings can be obtained at http://www.cs.sunysb.edu/∼lujin/paper/vis05.

(a) (b) (c) (d)

Figure 3.14: Feature magnification results with magnification factor increasing from (a) to
(d).

(a) (b)

Figure 3.15: Feature-based lens results. From (a) to (b) Frog heart is magnified. Frog is
rendered with two level volume rendering method: bone and eye retia are rendered with
MIP, all other features are rendered with DVR, with different transfer function for each
feature.

3.4 Discussion

We have described a universal and general volumetric lens framework that has applica-
tions in many domains. It allows users to apply any well knownlenses, such as a fisheye

3. MAGIC VOLUME LENS 27

(a) (b)

(c) (d)

Figure 3.16: Magic volume lens results. (a) Magnifying inside features in an arbitrary-
shaped area on an engine, (b) Applying sampling-rate-basedlens on a foot, (c) Enlarging
area of interest on an aneurism, (d) Magnifying the duodenumof a segmented frog dataset.

(a) (b) (c)

Figure 3.17: Lens-distorted lattice. (a), (b) and (c) Threerendering options.

lens in the context of volumetric distortion, as well as design free-style and feature-adaptive
lenses for arbitrary magnified focus+context viewing. For example, coupled with a GPU-
based interactive segmentation algorithm it can be used to magnify the segmentation result

3. MAGIC VOLUME LENS 28

at great detail and aid in its refinement. The support for free-style lenses, created with
our lens design interface, can help illustrators to designed more helpful and informative
visualizations of volumetric objects, emphasizing an arbitrary shaped region of interest
without losing the context of its surround. Finally, the GPUacceleration of our magic vol-
ume lens allows all of these to be done at interactive speeds,fostering both creative design
and exploration. It also proofs helpful to users to provide an option for superimposing
a lens-distorted lattice on top of the lens area, to aid in theassessment of the non-linear
magnification effects (see Figure3.17).

We would like to extend this free-style zooming capabilities to multi-resolution data and
to semantic zooms, where the data appearing under magnification comes from a different
data source, or even texture synthesis.

29

Chapter 4

Semantic Zoom Using Texture Synthesis

4.1 Introduction

When viewing an image (note, a volume can be considered a 3D image for the discus-
sion here) the amount of detail that can be visually exploredis fundamentally bounded by
the image resolution. Magnification will not extend the amount of visible detail, it will only
spread it out in space such that it can be better discerned by the observer. Magnification
typically entails some blurring, depending on the quality of the magnification filter used
[144]. However, it should be obvious that even with the best filter, pure magnification can
not add detail where it has not been sampled before. Therefore, zooming into an image or
volume at high magnification factors tends to create a ratherboring, non-informative, and
non-satisfying viewing experience.

The amount of available detail may be constrained by: (i) economical limits bounding
the size and therefore the detail of the image, and/or (ii) technical limits inherent in the
image acquisition process. As an example for the latter, optical lenses generally are only
able to provide focus within a certain range of scale, while imaging technologies, such as
MRI and CT, impose physical limits on the amount of detail they can resolve. Should detail
on other scales be desired, alternative lenses or imaging methods, such as optical, confocal,
and electron microscopy are required.

In computer graphics, texture mapping has long been a methodby which interesting
detail can be added. However, texture placement is usually guided by geometry, and not
by semantic constraints imposed by the image to be enriched.Texture mapping may also
cause repetitive tiling artifacts. Texture synthesis has more promise in this respect. For
example, Freeman et al. [39] established a database of coarse-fine resolution mappings
that they used to add fine detail to magnified images of naturalscenes. This fine detail,
however, was on the same order of scale as the base image, and only magnifications at the
same semantic level of scale were possible.

In this thesis, we propose to extend the notion of image-guided detail enhancement
to multiple levels of scales. However, we would like to avoidtraditional image pyramids
where multi-scale detail stems from the repeated smoothingof a single high resolution
image. This is because requiring such an image would violateone or both of the constraints

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 30

mentioned above. Instead, we introduce the notion of semantically constrained multi-scale
texture synthesis to facilitate zooms at a virtually infinite number of scales, as long as
the corresponding texture data are available (see Figure4.1). Here, the term “semantic
zooming” means that the multi-scale detail is not derived from one image to the other via
simple filtering, but via different sampling processes tuned to the respective level of scale.
An everyday example of semantic zooming [40] is electronic maps, where each level of
zoom is an excerpt of a different map, such as country, state,city, neighborhood, etc.,
bearing a very different style and type of detail.

Figure 4.1: Semantic zooming based on texture synthesis.

In contrast to the aforementioned maps, our application does not store complete images
at every level. One of our main design goals is to generate thesemantic detail at a minimum
of memory cost, thus providing a solution that will scale well. Therefore, our system will
not yield an accurate multi-scale “map”, rather, it will generate something that looks like
an accurate multi-scale map, however, one in which large-scale features and its small-scale
detail smoothly blend into one another.

For example, one of the possible domain applications of our system is the “virtual mi-
croscope”, where users start at a low-resolution MRI or CT image of some biological tissue
and then slowly zoom in anywhere they desire to reveal the underlying cell structure, and
finally the interior of the individual cells themselves. This process is illustrated in Figure
4.2, for a human liver. Other possible applications include multi-resolution viewers for
terrains, the universe, a sheet of metal, or any other domainthat offers multiple levels of
semantically constrained data, under the assumption that these data can be obtained. The
fact that the different levels are obtained via synthesis and not via filtering of a common
source imposes certain restrictions on the use of our technique. For example, our med-
ical viewer would not be suitable for diagnosis of a diseasedliver. However, it could be

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 31

employed in a surgical simulation trainer, an electronic atlas for medical students, or a sci-
entific illustration tool. Note that in these application scenarios the data at the different
levels of scale do not have to be acquired from the same specific object, or in this case,
person. This is especially advantageous since some of the higher resolution acquisition
methods may be destructive. Similar restrictions and applications can also be envisioned
for other application domains.

For our 2D application, we combine pixel-based synthesis [137], image quilting [34],
and our pattern-based synthesis. For 3D applications, instead of image quilting, we use
Graphcuts [74], since it is efficient and easy to implement in 3D. Our approach is funda-
mentally different from that of Nealen and Alexa [99] who use pixel-based re-synthesis
to eliminate remaining errors in the overlap regions of patch-based synthesis. In contrast,
we apply different types of synthesis methods to synthesizedifferent regions and features
in an image. Further, our pattern-based synthesis is location constrained and differs from
the algorithms based on pattern placement in the surface texture synthesis domain, such as
pattern-based texturing revisited [101], and texture particles [29].

In our application, we make frequent use ofconstrained texture synthesis, where the
patch selection and texture generation is made dependent onsome underlying constraints.
This technique has been utilized in image processing, such as image restoration [149] and
texture transfer [2, 3, 34, 53]. Another example is the texture-by-numbers technique [53],
which is able to perform synthesis from images in which the texture distribution is not
stationary but is based on the labelling of the component textures of images. These la-
bel images, representing the segmentation information of images, are created beforehand,
possibly by the user. Some automatic color or texture segmentation methods are used for
guiding the texture synthesis process in [59, 31]. Our constrained texture synthesis fol-
lows a similar idea, but here only the segmentation of the sample images can be performed
in advance. The features or patterns in the synthesized images have to be detected and
labelled automatically when they are needed during zooms (see Section4.2.2for further
detail). To enable proper semantic relationships across zoom levels, component textures
should be placed carefully, following certain constraintsincluding color, intensity, distance
fields, location, and features/patterns of the image.

In contrast to Freeman’s super-resolution algorithm [39] which generates enlarged im-
ages on the same semantic level than the base image, our application performs enlarge-
ment/zooming [104] that spans several semantic levels. Our main contributions are:

• Semantic zoominguses texture synthesis to extend image-guided detail enhancement
to multiple levels of scales.

• Constrained texture synthesisfacilitates smooth semantic evolution and detailing of
features across zoom levels.

• Feature-guided texture synthesisconsiders the properties of features or patterns in
the image at a certain semantic level and chooses image quilting, pixel-based, or
pattern-based texture synthesis methods in accordance with the region’s synthesis
requirements.

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 32

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 4.2: Illustration of the semantic zooming capabilities facilitated by the virtual mi-
croscope, using a human liver as an example: (a) MRI image of aliver, where the white
square is the user-specified region of interest, (b)-(s) A typical image sequence during a
semantic zoom, in which (k) is the synthesized histology level image, and (s) is the syn-
thesized cell level image, (c)-(e) Magnified MRI level images, (l)-(p) Magnified histology
level images, (f)-(k) Images obtained by blending magnifiedMRI and minified histology
level images, (o)-(s) Images obtained by blending magnifiedhistology and minified cell
level images.

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 33

4.2 The Virtual Microscope – A 2D Viewer

We first discuss the 2D application, which acts like a microscope with a wide range of
magnification. Then, in the next Section, we will discuss itsextension to 3D. A system
overview is shown in Figure4.3. First the underlying multi-resolution image data are
collected and preprocessed to build a set of sample images. Then the sample images are
analyzed to choose the appropriate texture synthesis approaches and constrained rules for
each pair of adjacent levels. All these are stored in a small database, which will be used
during the semantic zoom operation.

Figure 4.3: System Overview.

At the beginning, the user views the image at the coarsest resolution (Figure4.2a).
Once the user specifies a region of interest in this image and zooms in, this part of the
image is gradually magnified. When the image magnification reaches a certain scale, the
image detail of the next level is generated through semantically constrained texture syn-
thesis based on the currently magnified image region. For instance, when the user zooms
into the image from the MRI level to the histology level, the system needs to synthesize
the corresponding histology level image. The same is the case for the cell level. Blending
of two consecutive levels enable the system to go smoothly from small-scale features to
high-scale features. Thus, there are three main tasks in oursystem: data preprocessing,
constrained texture synthesis, and level blending. We willnow describe each of them in
detail.

4.2.1 Preprocessing

We first need to collect data corresponding to the various levels and perform some
amount of preprocessing on them. Figure4.4 shows the sample images used in the liver

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 34

(a) (b)

(c)

(d) (e)

Figure 4.4: Image data and pieces of colorized sample images. (a) MRI liver image, (b)
Colorized image, (c) Low-scale histology image, (d) High-scale histology image, (e) Col-
orized image. (Images (c) and (d) courtesy of http://www.bu.edu/histology).

example: an MRI image, a low-scale histology image, and a large-scale histology image.
These three levels will be referred to as MRI level, histology level, and cell level, respec-
tively. However, it is easy to increase the number of levels as long as the corresponding tex-
ture data are available. Once the images have been collectedthe following pre-processing
steps have to be performed.

Colorization Typically, the images that are collected have different colors. In order to re-
duce the distinct discontinuities arising from mismatchedcolors during zooms, we need to
match the colors across levels. The color correction can be easily done by image processing
methods or tools, such as Adobe Photoshop. The colorized images shown in Figure4.4are
the sample images that will be used to guide the synthesis later on. Since we use the color
of the low-scale histology image for transfer, this image requires no change.

Segmentation The sample images need to be segmented into prominent features or pat-
terns, based on color, shape, or pre-knowledge. In our particular example, for the MRI
image, we segment out the liver region as well as the portal vein and the artery elements.
The segmentation can mostly be done via image processing methods [42] or tools. The seg-
mentation results, which will later help us to match texturesynthesis methods with different

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 35

features or patterns, are stored in tag images (see Figure4.5).

portal vein

artery

(a) (b) (c)

Figure 4.5: Some tag images for the liver example. (a) MRI image, (b) Histology-level
image, (c) Cell level image.

The data preprocessing is the only part in our system which may require some manual
work to refine the image processing results, but it needs onlyto be done once. After that, no
manual work is required. The colorized sample images and thecorresponding tag images
are then stored in a database.

4.2.2 Constrained Texture Synthesis

Synthesis Approaches

As mentioned before, a variety of texture synthesis approaches could be applied to
generate the image detail for semantically different levels. For each pair of adjacent levels,
which texture synthesis approaches should be used depends on the texture features, and the
region in which the texture will grow.

• If the texture is isotropic, semi-structured, or structured, and grows in a large region,
image quilting or other patch-based algorithms produce better quality results than
pixel-based methods. The primary parameters in image quilting include patch size
and overlapping region size. Both mainly depend on the prominent structures of the
texture and should be decided before synthesis.

• If the texture has layers and/or grows within a small irregularly shaped region, then
a modified pixel-based approach forms a convenient way to addfine detail in the
magnified images. We give the details of our algorithm later on. The parameters in a
pixel-based synthesis algorithm [137] include the shape and size of the pixel neigh-
borhood, as well as the number of levels if a multi-resolution algorithm is applied.

• If the texture is composed of atomic patterns which should bepreserved during syn-
thesis, our pattern-based synthesis is employed to synthesize the patterns, while other
pixel-based or patch-based approaches can be applied to synthesize the background
color.

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 36

Why do we needconstrainedtexture synthesis? We need it to ensure that the generated
textures on one level are semantically consistent with the level before. Since we use level
blending to facilitate intermediate zooms, this is obviously very important. Standard texture
synthesis algorithms only use the present layer information in the generation process, and
Figure4.6demonstrates the poor blending that will occur if we performtexture synthesis on
the histology level without constraining it to the lower-scale MRI level. Similar problems
arise for the cell level and the lower-scale histology level. Thus, textures of the high-scale
image should always be synthesized to match the features of the low-scale image under
specific constraints. For this reason, the system always computes a tag image of the current
result image to facilitate the matching process. This is somewhat similar to the label-
constraints used in [53] and [2], but in our application the constraint tags are not specified
by the user but generated automatically, using image processing techniques.

Figure 4.6: Mismatched levels. The histology level image (b) does not match the specified
region of the MRI level image (a), and the cell level image (c)does not match the specified
region of (b) either.

In our system, three texture synthesis methods are combinedto synthesize the image.
We mainly discuss the algorithm modifications which need to perform constrained synthe-
sis.

Constrained Image Quilting

Image quilting is used to generate the background texture for the histology level and
the cell level image, but other patch-based synthesis methods, such as Graphcuts, may also
work. In the histology level, background is defined as everything except the vessels and
their surrounding layer. In the cell level, background is defined as everything except the

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 37

cells, the vessels and their surrounding layer. We also tried pixel-based synthesis methods
to generate the background as well, but neither the single resolution nor the multiresolution
(with TSVQ acceleration or PCA and ANN acceleration) algorithm seemed to work well
for the textures used here, mainly because the features in the texture tended to come out
blurred.

Our constrained quilting algorithm differs from typical quilting in the following two
ways. First, not all patches in the segmented sample image can be used for synthesis.
For example, at the histology level, the textures around theportal vein and the artery are
different from the background texture (see Figure4.4c). Hence, the patches falling into
those regions should not be used to generate the background texture. Second, both patch
placement and selection are constrained to satisfy the match requirement. Especially at the
cell level, in order to match the histology level features, the quilting process is constrained
by the color/intensity of the magnified histology level image. An example for this are
the white areas, calledsinusoids, which appear on both synthesized levels and should be
matched. Thus, when selecting a candidate patch for the third level, the location, shape,
and distribution of its sinusoids must match that of the corresponding second-level area.
This is not a limitation since our sample database is diverseenough, and we have never
encountered a case where no fit could be found. Considering the texture structure size, the
quilt patch size is chosen to be40 × 40 pixels, and the overlapping width is 6-8 pixels.

A further constraint for background texture synthesis are object boundaries, both inte-
rior and exterior. The tag images play an important role in complying to these boundary
constraints, and this will be discussed at the end of this section.

Constrained Pixel-Based Synthesis

Smaller structures constrained to tight and curved boundaries are better generated using
pixel-based synthesis methods, since patch-based methodswork on a scale too large to
adhere well to the object’s geometry. In our application, weuse this type of approach to
generate the small textures in the surrounding layer aroundthe portal veins. However, at
the same time it is desirable to transfer the global characteristics of the sample texture to
the output image as well. For example, texture features, such as smooth muscle cells in our
application, which are closer to the object boundary in the sample should also be placed
closer to the boundary in the output image. We can achieve this by constraining the texture
generation process by a measure imposed by the object geometry – distance fields, which
we use here to (i) constrain the texture generation and (ii) help to find the outside boundaries
for magnified veins to guide the synthesis process. We will first illustrate our pixel-based
algorithm for the general case (see Figure4.7) and then discuss how it is applied within a
specific example (see Figure4.8).

We calculate the distance field using a distance transform and normalize it to a range
of [0,1]. The distance field is shown in Figure4.7a as a grey image, in which pixel value
maps to distance. If the given sample texture has a layered appearance (Figure4.7a), then
the synthesis process must depend on these distance values.After calculating the distance
fields for both sample and result image, we use the standard scan-line order to synthesize

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 38

Figure 4.7: Our pixel-based synthesis methods. Pixel synthesis based on distance field:
(a) Sample image and its distance field, (b) Reference distance fields and corresponding
synthesis results. Pixel synthesis based on distance field and gradient field: (c) Sample
image and its distance and gradient fields, (d) Synthesis process and result.

(a) (b) (c) (d)

Figure 4.8: Our pixel-based synthesis results. Sample thick skin histology image (a) and
its distance field (b), reference distance fields (c) and the result of synthesizing a thick skin
histology image (d).

the pixels. There, for each pixel in the result image, the matched pixel must be chosen
from the set of pixels that (i) observe the usual texture synthesis metrics [137] and (ii) have
a similar distance field value.

If the input image is part of a layered texture, or if we want toreduce the sample image
size to speed-up the synthesis, our pixel-based synthesis method will not only depend on the
distance value, but also on the texture direction, which is calculated from the distance field
and represented by a gradient field (see Figure4.7c). The pixel synthesis order depends on
the distance values, and, based on the gradient, rotated L-neighborhoods are compared to
find the best match.

In our bio-tissue example, we pre-compute the normalized distance field around the
portal vein based on the tag image of the sample histology level image (see Figure4.9a).

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 39

Figure 4.9: Vein periphery synthesis based on distance fields. (a) Generated from the
segmented sample image, (b) Generated from magnified MRI image, (c) Texture detail.

When synthesizing the histology level image, we compute a similar distance field around
the vein of the magnified MRI image to find the boundary of the vein structures (Figure
4.9b). The detail in the vein periphery is then synthesized based on the distance and gradi-
ent values.

Pattern-Based Synthesis

Our pattern-based algorithm is designed to preserve potential atomic structures, i.e.,
structures that cannot be cut, such as cells. Pixel-based orpatch-based synthesis methods
cannot generally guarantee that features remain uncut or undistorted, since they have no
knowledge about which part of the texture constitutes a whole atomic pattern. We require
an algorithm that will ensure that atomic structures remainintact and, at the same time,
satisfy the match requirements.

We can achieve this by identifying the location of the atomicstructures on the low-
resolution level and replace them by high-resolution versions in the magnified level. If
these structures have fuzzy boundaries that blend with the background, it is useful to keep
these as well. They can then later help to integrate the features into the background in a
coherent way.

The first step involves identifying the atomic features. In our liver tissue example,
these atomic features are represented by the cells in the cell level sample image (Figure
4.4e) and are segmented as patterns (Figure4.5c). When synthesizing the cell level image,
the algorithm first detects all possible cells (dark points)of the magnified histology level
image based on the image intensity, and records this location information. We detect the
dark points using two thresholds. Then location-constrained pattern placement proceeds,
and the cell patterns are chosen randomly to increase the variation of the result. A similar
method can also be used for magnifying the cells in the layer around the portal veins.

As we have mentioned above, the tag image, which correspondsto the current zoomed
image, is important to comply with the match requirement. For example, the vessels (portal
veins and arteries) represent interior objects which should be preserved as they are and
properly scaled under zoom. However, scaling the tag image presents a problem. When
the image is magnified, the corresponding tag image should also be enlarged at the same

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 40

(a) (b)

Figure 4.10: Smooth boundary problem caused by tag image magnification. (a) Dentate
boundary, (b) Smooth boundary.

rate. Without any specific process, the boundary of the enlarged tag image will have a
binarized effect (Figure4.10a). To prevent this, we use a smooth interpolator for the tag
values, and then choose an intermediate value as the threshold to decide the boundary.
Using this procedure, the magnified image will still have a smooth boundary (Figure4.10b).
Another possible solution is to represent the boundary as a spline curve. If the segmentation
information is stored using a spline curve, the enlarged spline curve can be calculated based
on several control points while the image is magnified. In this way, the boundary can be
very accurate.

4.2.3 Smooth Semantic Zooms

When zooming into a specific region of the image, our system combines two processes:
(i) magnification of the current level image, and (ii) minification of the synthesized next
high-scale level image. This achieves any level of magnification from only a few images
with different semantic detail.

The system has a number of parameters, some are set by the userand some are decided
by the available data. The first such parameter is the size of the output image,M × M ,
which specifies the screen size of the microscope. A second parameter is the maximum
zoom scaleZmax for each level, which is determined by the resolution of the subsequent,
more fine-scale level. This factor determines the amount of standard magnification that
needs to be performed using the current level data before newsemantic detail can be filled
in by synthesizing from next-level data. Obviously, the more levels are available, the less
blur will be encountered when zooming in. Since for real optical, confocal, or electron
microscopes the maximal zoom scale can be from thousands to millions, our application
accelerates the zooming activity by dramatically reducingZmax. When the present level
data is magnified atZmax, the resolution has been reached at which the next higher level
data can be synthesized to provide the missing detail.

Also, at the beginning, the user specifies a zoom focal pointF , which determines the
center of the region of interestR. This regionR has a sizeN × N and is calculated by the

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 41

Figure 4.11: Image transition process.

system, such thatN = M/Zmax. R marks the image region that will be replaced by the
next higher level detail when the zoom scaleZ reachesZmax (in our example, this region
is shown as the white square in Figure4.2a).

The last parameter that our system maintains is the view portV P which is centered
at F and has a sizeV × V . It varies withZ, such thatV = M/Z. At any givenZ, the
system will capture the image inside theV P , and then magnify and fit it into the output
image. At startup, the image is not magnified, i.e.,V = M andZ = 1, and is shown as the
output image directly (Figure4.2b). When the image is gradually magnified by the user,Z
increases, while theV P decreases. Once theV P has reachedR, synthesized image data
due to the next higher-level detail should be made available.

It is desirable to avoid a sudden change of the display, wherethe image generated from
the next higher level of resolution suddenly pops in. We accomplish a graceful transi-
tion by blending the images of two consecutive levels over some range of zooms, properly
weighted by a zoom-related weighting function. In addition, we prefer to do this without
having to view blurred features of the present level. We can achieve both of these require-
ments by specifying a transition pointt with a zoom scaleZt, whereZt < Zmax, at which
we compute the image for the next level, minify it, and blend it with the magnified present
level. This early computation of the high-resolution image, however, requires the computa-
tion of extra data at boundaries, later culled with further zooming until theZ = Zmax. More
specifically, suppose that the synthesized image has sizeS × S, thenS = M × Zmax/Zt.
The advantage of having a larger image available is that it allows more panning activity
within the next semantic level.

The smooth image transition process over a range of consecutive zooms is illustrated
in Figure4.11. After the transition point, the magnified present image andminified synthe-
sized image are smoothly blended by gradually changing their weights inversely, i.e., the
magnified image will fade out while the synthesized image will fade in.

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 42

4.2.4 Results

In this section we report on our specific application – the virtual microscope viewing a
liver datasets at three levels of semantic scales. The sample images and corresponding tag
images stored in our database have been shown in Figure4.4(b,c,e) and Figure4.5. A few
frames of the resulting image sequence during a semantic zoom are shown in Figure4.2.
When the user specifies a region-of-interest in the MRI imageof a liver and zooms in, then
this part of the MRI level image is gradually magnified and blended with the synthesized
histology level image. If the user further zooms in from the histology level, the histology
level image is magnified and eventually blends with the synthesized cell level image. This
resembles the functionality obtained with a real microscope, when slowly examining an
interesting part of a liver. Besides zooming, the user can also pan to inspect nearby regions.

In our algorithm, once the sample images are chosen, the timeto synthesize a certain
level image mainly depends on the output image sizeM and the magnification scaleZt of
the transition point. WhenM is fixed, the time spent on synthesis and the blending process
can be adjusted byZt. For example, suppose the output image size is fixed on400 × 400
and the maximal scaleZmax = 4. If the specified scaleZt of the transition point is2, then
the synthesized image has a size of800 × 800. With the current implementation, it will
take several minutes to generate the result image. IfZt is increased to3, the corresponding
synthesized image becomes533×533, which reduces the time spent on synthesis. However,
the blending effect is also reduced, which means the synthesized next-level image will pop
in more abruptly.

4.3 Extension to 3D

The idea extends well to volumetric data. In order to generate sub-resolution detail for
volume data, we extend image quilting to volume quilting, and also apply a 3D pixel-based
synthesis algorithm. In volume quilting, we apply the graphcuts algorithm [154, 155] to
find the best seam surface between two neighboring blocks, instead of using the shortest
path algorithm, which is applied in image quilting but not easy to be extended to 3D [74].

From the Visible Man’s cryosection data, we reconstructed the volume and segmented
out the liver. Similar to the 2D case, the volume data is also colorized to match the histology
data. The sample histology volume is built based on the features in the 2D image and
certain 3D growth rules. We could also apply Wei’s solid texture synthesis method [136] to
generate a sample volume, however, it is difficult to get a high quality solid texture. Figure
4.12shows the volume data required by the synthesis procedure.

In the 3D extension of our viewer, the user specifies a volume-region-of-interest (Figure
4.13a), and this volume region is cut out from the original volumeand rendered. During 3D
zooms, the volume region is magnified and smoothly blended with the minified synthesized
higher level volume. The observed volume size changes during zooms, in contrast to the
fixed-size output images in the 2D system. Some volumetric semantic zooms are shown in
Figure4.13. For the histology level, as in 2D, the textures around the vein are synthesized

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 43

(a) (b) (c) (d) (e)

Figure 4.12: Volume data and colorized volume. (a) Visible man’s volume, (b) Colorized
volume, (c) Segmented liver, (d) An example of the sample histology level volume and its
translucent result (e).

by a pixel-based algorithm, while other textures are created by volume quilting. Figure
4.14shows volume with cut and translucent rendering results. The translucent volumes are
rendered using the OpenQVis software (http://openqvis.sourceforge.net/). An advantage of
volume synthesis over traditional surface synthesis is that only the former can illustrate the
translucent effect of internal structures.

4.4 Discussion

We have described a new constrained multi-scale texture synthesis method to facilitate
semantic zooms. Pixel-based, image quilting, and pattern-based synthesis methods were
unified to generate high-detail images under certain constraints. Our demo application, a
virtual microscope, demonstrated that quite interesting and useful image sequences can be
generated using our framework.

(a) (b) (c) (d) (e)

Figure 4.13: Illustration of semantic zooming into volume data. (a) First level for part of
the liver, (e) Histology level of (a), (b)-(d) Volumes obtained by blending the magnified
first level volume and minified histology level volume.

4. SEMANTIC ZOOM USING TEXTURE SYNTHESIS 44

Figure 4.14: Synthesized volume with sub-details.

Comparing ours with the Volumetric Illustration work presented by Owada et al. [102],
both employ texture synthesis techniques to illustrate thevolumetric details. They syn-
thesize textures on the cross-section surface mesh to illustrate the internal texture of 3D
models. We, however, directly generate volumetric textures with high-resolution details.
Inspired by our work, Lu and Ebert proposed example-based volume illustration technique
also with impressive results [89].

In future work, our algorithm could be improved in terms of accuracy and speed. For
the former, more sophisticated segmentation and constraints may yield more refined small
detail. We would also like to explore better interpolation methods for the oriented tex-
ture synthesis to overcome some of the remaining visual artifacts. Finally, optimization
and GPU acceleration of our algorithm will provide more interactive capabilities, i.e., for
generating the detail on demand when zooming into an image orvolume.

45

Chapter 5

Uniform Texture Synthesis

5.1 Introduction

Texture mapping is a technique that is used to map 2D images toboth planar and curved
surfaces in order to enhance their visual effect. Texture synthesis has similar goals, but
instead of using the explicit tiling approach of texture mapping, it aims to generate the
surface decor from a relatively small texture sample. Both approaches are useful in their
own right. Texture mapping is the technique to use when the goal is an exact preservation
of the detail in the provided texture sample, but it tends to suffer from repetition and tiling
artifacts, as well as seams, and it also requires overhead for texture storage. The detail
generated in texture synthesis, on the other hand, is not an exact match, but only similar to
the provided texture sample. It, however, is seamless and non-repetitive. Texture synthesis
replaces the memory overhead of texture mapping with computational overhead incurred
by the synthesis process. Both methods have similar demandsin terms of avoiding local
and global distortion, which, as we will show, can be achieved by preserving the texture
sample local angles and global scale during the mapping or the synthesis process, using a
conformal parametrization approach.

Global conformal parameterizationwas introduced in [46]. It guarantees that the
shapes embodied in the textures are preserved on the surface, and it is global, which means
there are no seams or cracks. Furthermore, the parameterization can segment the surface
into patches, where each patch is mapped to a planar rectangle. This is valuable for real
applications. The existence of the global conformal parameterization is equivalent to the
fact that all oriented surfaces are Riemann surfaces [62]. Therefore, global conformal pa-
rameterization discovers more profound geometric structures on surfaces. For example, it
induces the so-called affine structure, which is the foundation for generalizing splines with
planar domains to be defined on surfaces [45]. It applies the concept of a differential form
from Riemann surface theory [62], which can be interpreted as a pair of smooth vector
fields orthogonal to each other.

The intrinsic difficulties for texture synthesis are due to two main aspects. The first
originates from the local geometric properties of the surface. The texture image is defined
on a flat planar region, and once it is mapped to the curved surface region, there must be

5. UNIFORM TEXTURE SYNTHESIS 46

distortion, which is challenging to mediate. The second is caused by topology. Since the
surface and plane are topologically different, there is no global one-to-one smooth mapping
between them. Thus the existence of seams and singularitiesis unavoidable, as well as it
is challenging to remove these seams and minimize the numberof singular points. While
texture synthesis applied directly on surfaces (see Section 5.2) can do a reasonably good
job, it requires a surface flow analysis which can be complicated. It is more intuitive to
do texture synthesis on a 2D plane, where the sample itself isalso defined. Conformal
parameterization offers a convenient way to do this.

For texture mapping, while the angle is already preserved using the conformal mapping,
a related application is to also seek the preservation of scale for texture mapping. Although
it is mathematically impossible to make the parameterization preserve both the angle and
the area, we can try to describe a convenient paradigm with which the two can be traded
off.

Compared to traditional methods, our texture synthesis method based on global confor-
mal parameterization has the following advantages:

• Global structure.Traditional texture synthesis methods are unable to produce tex-
tures with strong global structures, because they generatethe textures locally and
extend to cover the surface without coherent global consideration. In practice, it
is highly desirable to generate textures with global structures. Since our method is
based on global parameterization, it is easy to synthesize globally structured textures.

• Purely 2D operation.Traditional methods need to march on the 3D surfaces, and the
data structure and the operations for this are complicated.In our method, all opera-
tions are entirely performed in the 2D parameter domain, which is much simpler and
more efficient.

Further advantages of our conformal parameterization method, both for texture map-
ping and synthesis, are:

• Angle preservation.Conformal parameterization preserves the angles from the sur-
face to the parameter plane. Therefore, the local mapping from the texture to the
surface is just a scaling without angular distortion. The synthesis method then needs
to only focus on the scaling factor, without having to pay attention to angle changes.

• Regularity.Global conformal parameterization induces a canonical wayto segment
the surface, such that each segment is conformally parameterized by a rectangle (Fig-
ure5.1). The regular pattern of this global parameterization is helpful to simplify the
algorithms.

• Rigor. Global conformal parameterization is based on solid geometric theories, and
based on the parameterization, the distortion of textures on surfaces can be quantita-
tively measured. This makes it convenient for quality control.

5. UNIFORM TEXTURE SYNTHESIS 47

(a) (b-1) (b-2) (c-1) (c-2) (d) (e)

 Holomorphic 1-form Basis
 Optimal Holomorphic 1-form
 Original Mesh

Segmentation along

 critical trajectory

Conformal

Geometry Image

Figure 5.1: Process of Global Conformal Parameterization.The input surface is repre-
sented as a triangle mesh (a). The holomorphic 1-form basis is computed, (b-1) and (b-2)
are the 2 base 1-forms [46]. By linear combining the basis, different holomorphic 1-forms
can be constructed as shown in (c-1) and (c-2), then the optimal 1-form with most uniform
1-form is selected (c-2) [60]. The red and blue curves are the horizontal and vertical tra-
jectories. Horizontal trajectories intersect at the zero point, the center of (c-2). The mesh
is then segmented along the horizontal trajectory through the zero point as shown in (d),
each segment is conformally parameterized to a planar rectangle illustrated in (e). The
trajectories are mapped to the iso-parametric curves.

5.2 Related Work

Before presenting our new method, we shall discuss related work in two areas: surface
texture synthesis and conformal parameterization.

Surface texture synthesis Surface texture synthesis extends the 2D texture synthesis
methods to synthesize texture directly on the surface, including pixel-based methods [138,
129, 150, 125] and pattern mapping methods [101, 107, 117, 29]. With these methods,
the discontinuities and cracks almost disappear, while thedistortion problem is greatly
reduced.

Another way to put textures on the surface is a texture mapping based on parameteriza-
tion. But texture periodicity is obvious and often spoils the visual quality of the results.

Traditional surface texture synthesis methods are generally performed on the 3D sur-
faces to be decorated. In contrast, we propose a novel methodwhich synthesizes the texture
in the 2D parameter space, which is easier, more intuitive, and conceptually simpler. By us-
ing global conformal parameterization, the synthesized textures will not suffer from angular
distortion. But we also have to deal with area stretching problems during the mapping. We
will achieve this by using variable-size textures with local control. While most texture syn-
thesis methods generate textures with uniform size features, textures with variant feature
size are generated in [126, 74]. Their methods synthesize textures variant with respect to
certain directions, and local control changes slightly compared to our technique.

Conformal parameterization Several recent advances in surface parameterization [38]
have been based on solving a discrete Laplace system [106, 32]. Lévy et al. [85] describe

5. UNIFORM TEXTURE SYNTHESIS 48

a technique for finding conformal mappings by least squares minimization of conformal
energy, and Desbrun et al. [27] formulate a theoretically equivalent method of discrete
conformal parameterization. Sheffer et al. [116] give an angle-based flattening method
for conformal parameterization. Gu and Yau [46] considered construction of a global con-
formal structure for a manifold of arbitrary topology by finding a basis for holomorphic
differential forms. Gortler and Gotsman proposed one formson meshes in [43] and ap-
plied for surface parameterization. Degerner et al. [26] provided user control to trade off
between angle and area preservation.

Lai et al. [76] synthesized geometric textures based on geometry images.Their synthe-
sized geometric textures will have more distortions than ours, because we use an improved
global conformal parameterization with segmentation.

5.3 Global Conformal Parameterization

We assume that the reader is familiar with the basics of complex analysis and differen-
tial geometry. A detailed explanation for these concepts can be found in [62].

SupposeM is a surface with handles, either open or closed. Aglobal conformal para-
meterizationis a mapφ : M → R2, such that each pointp onM is mapped to a point on the
planar parameter domainφ(p) = (u(p), v(p)). Furthermore,φ is angle preserving, this is
equivalent to the following fact: suppose we arbitrarily draw two intersecting curvesγ1, γ2

onM , the intersection angle isα, then their imagesφ(γ1) andφ(γ2) are planar curves, the
intersection angle is alsoα. Mathematically, the conformality of the parameterization is
formulated in the following way: the first fundamental form of M under conformal para-
meterization(u, v) is represented as

ds2 = λ2(u, v)(du2 + dv2), (5.1)

whereλ is called theconformal factor, it indicates the area ratio between the area onM
and that on the plane.

In practice, it is more convenient to compute the gradient fields ofφ, namely(∇u,∇v).
If φ is conformal, then they satisfy the following criteria:

∇v(p) = n(p) ×∇u(p),

wheren(p) is the normal at the pointp, also

∇×∇u = ∇×∇v = 0,

because the gradient fields are curl-free. Formally, a pair of vector fields satisfying the
above conditions is aholomorphic 1-form. There is an infinite number of this kind of
vector fields, they form a2g dimensional real linear space, whereg is the number of handles
(genus) ofM . The method of computing holomorphic 1-form basis has been introduced in
[46].

5. UNIFORM TEXTURE SYNTHESIS 49

The concept of holomorphic 1-form and the computational procedure are demonstrated
in Figure5.1. For simplicity, we only illustrate a naive example: a planar 2-hole square. In
practice, the pipeline works for all 3D surfaces with arbitrary topologies. The red curves are
the integration curves∇u and called horizontal trajectories, the blue curves are theintegra-
tion curves of∇v and are called vertical trajectories. These trajectories are the preimages of
the iso-u and iso-v curves. Figure5.1(c-1) and (c-2) show different holomorphic 1-forms,
(b-1) and (b-2) are the bases for the linear space of all holomorphic 1-forms.

From the infinite set of holomorphic 1-forms, we need to pick the best one for our
texture synthesis. We choose the one with the most uniform conformal factor using the
method introduced in [60], as shown in Figure5.1(c-2).

The global behavior of the trajectories are very complicated. From Figure5.1, it is
obvious that the vertical and horizontal trajectories are orthogonal everywhere and two
horizontal trajectories do not intersect each other in general. There are special points on
M , where two horizontal trajectories intersect (two vertical trajectories also intersect). It
can be proven that, at those points, the conformal factors are zero, therefore, such kind of
points are calledzero pointsof the holomorphic 1-form. In general, for a genusg closed
surface, there are2g − 2 zero points. In Figure5.1(c-2), the intersection points of the red
curves is the zero point. The trajectories through zero points are calledcritical trajectories.

A trajectory can be a finite circle, a finite curve segment terminating at the boundaries,
or an infinite spiral dense on the surface. If the horizontal critical trajectories are finite, then
the whole family of horizontal trajectories are finite due to[120]. In practice, for simplicity,
we choose a holomorphic 1-form with finite horizontal trajectories.

The critical horizontal trajectories segment the surfaceM into several connected com-
ponents, each component is either a topological disk or a topological cylinder and can be
parameterized byφ to a planar rectangle. Figure5.1(d) illustrates this fact, the critical
horizontal trajectory segments the surface into2 patches, and each is conformally mapped
to a rectangle. The horizontal trajectories are mapped to the iso-v curves (red), while the
vertical trajectories are mapped to the iso-u curves (blue).

In practice, it is convenient to synthesize the textures on these rectangular parameter
domains. Therefore, in our algorithm, we locate the zero point first by finding a vertex with
minimal conformal factor, then trace the horizontal trajectory to segment the surface.

Figure 5.2: Global conformal parameterization.

5. UNIFORM TEXTURE SYNTHESIS 50

Figure5.2 illustrates a global conformal parameterization of the Stanford bunny sur-
face. The bunny surface has3 boundaries, two are at the tips of ears, one is at the bottom,
therefore, it is topologically equivalent to the 2-hole disk in Figure5.1. The double covered
surface is of genus2. A zero point is between the roots of the two ears. The horizontal tra-
jectories through it are illustrated as yellow curves. The whole surface is partitioned into2
topological disks, each segment is color-encoded. Figure5.4(a) and (b) demonstrates that
each segment can be conformally mapped to a rectangle on the plane.

Textures can be easily synthesized on those rectangles directly. For convenience, in
the following discussion, we call each surface component with its conformal parameters a
conformal geometry image.

5.4 Uniform Texture Synthesis

Global conformal parameterization on a 3D surface (see Figure 5.2) induces confor-
mal geometry images (see Figure5.4(a)(b)), which allow textures to be easily mapped to
the surface without angular distortion. Unfortunately, the area stretching of textures is un-
avoidable, as is shown in Figure5.3. Ideally, we want to preserve both the angle and the
area of the texture on the surface, that is, we want to find anisometricparameterization.
Although in theory this is definitely impossible, in practice, we are able to improve the
texture synthesis method to make it as isometric as possible.

Figure 5.3: Nonuniform texture on a surface. It is generatedby global conformal parame-
terization, uniform texture synthesis on 2D geometry images and texture mapping.

We propose a multi-scale texture synthesis method to generate uniform textures on
the surface. This method synthesizes nonuniform textures on a 2D geometry image by
considering the area stretching factor (the inverse of the conformal factor in Equation5.1)
in order to obtain the uniform 3D textures. The estimation ofthe area stretching factor on
the conformal geometry images will be introduced first, and then the details of our multi-
scale synthesis algorithm will be described.

5. UNIFORM TEXTURE SYNTHESIS 51

The value of

inverse conformal

factor increases

(a) (b) (c) (d)

Figure 5.4: Conformal geometry images (a) and (b), and corresponding inverse conformal
factor fields (c) and (d).

5.4.1 Estimation of Conformal Factor

The conformal factor indicates the amount of area stretching from the 3D surface to
the 2D parameter domain. Our goal is to calculate the inverseconformal factor field on the
geometry image. The inverse conformal factor isτ , andτ = 1

λ
, whereλ is the conformal

factor in Equation5.1. If the area shrinks from the 3D mesh to the 2D plane,τ is smaller
than1, otherwise,τ is larger than1. This field will be used to choose the appropriate scale
level of the sample texture when we synthesize textures on certain regions of the geometry
image.

First, we normalize the parameters of each conformal geometry image. Then we choose
the maximal sizeC for each dimension of the synthesized textures. The size of the output
texture is simply the product ofC and the normalized parameter for each geometry image.
The size of the output texture affects the speed and the quality of the synthesis, and also the
texture feature size on the surface. For all results shown here, we setC to be1024.

By using Equation5.1, the values ofτ on the vertices are easily calculated directly from
the geometry image with the original mesh connectivity. Theτ values of the other texels
are then interpolated using a Gaussian radial basis function (RBF). The calculated inverse
conformal factor fields of two geometry images are illustrated in Figure5.4(c)(d). Here,
whenever the color changes from dark green to bright green and finally to greenish white,
the inverse conformal factor value increases gradually.

5. UNIFORM TEXTURE SYNTHESIS 52

5.4.2 Multi-Scale Synthesis Algorithm

Most texture synthesis methods synthesize textures without or with quite simple size
variations of texture features [126, 74]. In contrast, we use the conformal factor to control
the local scale of the texture. Therefore, the output texture is still similar to the sample
texture, but with different feature sizes in different regions.

Our multi-scale synthesis algorithm is based on the patch-based texture synthesis
method. Although pixel-based synthesis methods or hybrid methods should also work,
better quality can be obtained using patch-based method according to our experiments. We
put equal sized texture patches in the order of image quilting [34], and use the graph cut al-
gorithm [74] to hide the seams of neighboring patches. The patch size is chosen according
to texture features depending on the input texture, we use 30to 50 pixels as patch width for
the results in this chapter. In the synthesis process, we choose a patch, not just from a single
sample texture, but from multiple scale levels of the sampletexture. First, we calculate the
average value of the inverse conformal factor in the region covered by a patch; Then we
decide an appropriate scale level based on this average value. From the sample texture of
that scale level, we find the best matched patch to fit the neighboring patches and put it on
the output texture.

Multi-scale Sample Textures

In order to preserve memory and improve speed, we store a certain number of discrete
scale levels of sample textures (see Figure5.5). We call the enlarged sample texture the
high-scale sample texture, and the minified texture thelow-scale sample texture. For better
quality, the scale between neighboring levels is not a powerof 2. The parameters in our
algorithm include the highest scale, the lowest scale, and the desired levels, which can be
specified by the user and affect the size and the quality of thesynthesized textures. Different
scale level textures are then generated by cubic interpolation.

(a) (b) (c) (d)

Figure 5.5: Multi-scale sample textures. From (a) to (d), scales of sample textures increase
gradually.

For regions with higher inverse conformal factors, higher level sample textures should
be chosen, because the texture mapping will shrink the texture. Similarly, for regions with
lower inverse conformal factors, lower level textures should be selected, because texture
mapping will enlarge the texture.

The lowest level needs to be determined with caution, because the sampling rate is re-
duced when the texture is minified. Depending on the feature size of the texture, important

5. UNIFORM TEXTURE SYNTHESIS 53

features may be lost irrecoverably if the sampling rate is set below a certain level. We
place our original sample texture close to the lowest level to lower the risk associated with
downsampling. In contrast, high scale level texture does not suffer from this problem, and
can be used safely.

Preserving Boundary Consistency

Since the surface is segmented and mapped to more than one geometry image, the
boundary consistency problem needs to be addressed carefully. When mapping a segment
(see Figure5.1(d)) to its conformal geometry image, boundaries on the segment are mapped
to boundaries on the geometry image, respectively. Figure5.6(a) shows the mapping of a
segment (segment 1) to its geometry image (geometry image 1). Figure5.6(b) shows the
boundary correspondences of this geometry image to anothergeometry image (geometry
image 2), due to an adjoining segment. Corresponding boundary parts are neighbors in 3D
space, and therefore must have consistent textures.

Geometry

image 1

q

Geometry

image 1

Geometry

image 2

q

Segment 1

q
 q
q

(a) (b)

Figure 5.6: Boundary problem. (a) Corresponding boundaries on a segment and its confor-
mal geometry image; (b) Corresponding boundaries on two geometry images.q is the zero
point.

Our solution to synthesize textures consistently across the corresponding boundaries is
as follows. First, we add margins to geometry images which have boundary parts corre-
sponding to other boundary parts, as shown in Figure5.7. Here,P1 to P4 are margins
we added. During synthesis, after textures onP1 of geometry image 1 is synthesized, the
textures are copied to fillP1 of geometry image 2. Then, when synthesizing textures on
geometry image 2, for patches overlapped with margins, the matched patch will be chosen
with additional constraints, treating the overlapped parts as already synthesized pixels.

Therefore, the patch-based synthesis algorithm is slightly modified to cope with dif-
ferent patch-overlapping situations, which solves the boundary problem. This way, our
patch-based synthesis algorithm can easily generate periodical textures, which is quite use-
ful in texture mapping as well.

5. UNIFORM TEXTURE SYNTHESIS 54

Geometry image 1
Geometry image 2

P1
 P1
P2

P3
 P4

q
 q
 q
q

Figure 5.7: Consistent boundary synthesis, by adding margins and copying boundary tex-
ture patches.q is the zero point.

5.4.3 Results

Our texture synthesis results are demonstrated in Figure5.8, 5.9. When we synthesize
uniform textures on geometry images without considering area stretching, the texture fea-
ture sizes on different regions on the surface are highly non-uniform. In contrast, by using
our multi-scale synthesis method, textures on the surface are quite uniform.

5.5 Quasi-Isometric Texture Mapping

The multi-scale texture synthesis method just presented modifies the textures directly
to improve the uniformity of the synthesized texture on the surface. In contrast, the method
for texture mapping, introduced in this section, revises the parameters instead.

In theory, it is impossible to make the parameterization preserve both the angle and
the area. In that case, the parameterization would be an isometry, with a surface of zero
Gaussian curvature (that is, a flat surface). But what we can accomplish is to make the
parameterization on the interior of one component as isometric as possible and in return
sacrifice some of the angle structure along the boundaries. We apply a mass-spring method
to achieve thisquasi-isometricparameterization, which is close to the desired isometric
one.

Figure5.10 illustrates the basic idea. The original conformal geometry image has a
highly non-uniform density, whereas preserving the angle.After the process, the mesh (b)
with quasi-isometric parameters has more uniform density,but the boundaries are distorted.
Hence, the boundary consistency is sacrificed. On the other hand, the stretch-minimizing
method of Yoshizawa et al. [151] fixes the boundary vertices and therefore can keep the
boundary rectangular, but the anisotropic texture stretching is considerably higher.

5. UNIFORM TEXTURE SYNTHESIS 55

(a) (b) (e) (f)

(c) (d) (g) (h)

Figure 5.8: Multi-scale texture synthesis results. (a) and(e) Uniform texture synthesized
on geometry images without considering area stretching factor, (b) and (f) Nonuniform
texture by mapping (a) and (e) onto 3D surfaces, (c) and (g) Nonuniform texture synthesis
considering area stretching factor, (d) and (h) Uniform texture by mapping (c) and (g) onto
3D surfaces.

5.5.1 Mass-Spring Model

The mass-spring model is carried out on the conformal geometry images using the
original mesh connectivity. The mass-spring system is modelled as follows: each vertex is
treated like a node and each edge as a spring. The motion of allnodes is confined to the 2D
parameter plane.

We denote the parameterization of the conformal geometry image asφ : U → R2,
whereU is the conformal geometry image. Then, the mass-spring evolution can be for-
mulated asδφ(v) = ǫF(v), whereǫ is a constant carefully chosen to ensure no flipping of
triangles. In practice,ǫ is inversely proportional to the maximum magnitude of the force
field. Here,F is theexternal force, and calculated as

F(v) =
∑

u

η(u)η(v)(φ(v)− φ(u)), η(v) =
1

n

|r(u) − r(v)|
|φ(u) − φ(v)| (5.2)

5. UNIFORM TEXTURE SYNTHESIS 56

(a) (b) (e) (f)

(c) (d) (g) (h)

(i) (j) (k) (l)

Figure 5.9: More texture synthesis results. (a) and (e) Uniform texture synthesized on
geometry images without considering area stretching factor, (b) and (f) Nonuniform texture
by mapping (a) and (e) onto 3D surfaces, (c) and (g) Nonuniform texture synthesis consid-
ering area stretching factor, (d) and (h) Uniform texture bymapping (c) and (g) onto 3D
surfaces, (i) and (k) Nonuniform textures on 3D surfaces, texture features inside the handles
are smaller than those outside, (j) and (l) Uniform textureson 3D surfaces. High resolution
images as well as videos can be obtained at http://www.cs.sunysb.edu/∼lujin/paper/pg05/.

5. UNIFORM TEXTURE SYNTHESIS 57

(a) (b) (c) (d)

Figure 5.10: Mesh changed on mass-spring model. (a) Mesh on one geometry image,
(b) Modified mesh with mass-spring relaxation, (c) Conformal texture mapping based on
global parameterization, (d) More uniform texture mappingusing our quasi-isometric pa-
rameterization.

whereu runs through all neighboring vertices of vertexv, n is the valence of vertexv, and
r(v) is the 3D position of vertexv.

In Equation5.2, η2(v) is a discrete approximation of the conformal factor atv. Intu-
itively, the external force is proportional to the conformal factor, and expands the regions
with high conformal factors. The nodes on the parameter domain with higher density will
be expanded gradually and make the distribution more uniform, that is, the process will
improve the parameterization to be closer to an isometry.

In our implementation, we use the mass-spring model code forarbitrary nodes in [33].
Figure5.10demonstrates the improvement of the parameterization using our mass-spring
algorithm. The improved parameters are used for texture mapping. Figure5.10(c) is the
texture mapping result based on global conformal parameterization, while Figure5.10(d)
is the result after conformal parameterization and mass-spring relaxation, upon which the
squares on the checkerboard become more isometric.

5.5.2 Results

Figure5.11compares the results obtained with and without our quasi-isometric para-
meterization method, for the task of mapping 2D textures onto 3D models. Figure5.11(a)
shows the outcome of an image-to-surface mapping via standard global conformal parame-
terization, while Figure5.11(b) shows the result obtained when applying the mass-spring
model to the conformal map first. We observe that the uniformity of the parameterization
is greatly improved. And video can also be mapped to or synthesized on the surface with
considerably better quality. One frame of our video (Matrix) on the surface is shown in

5. UNIFORM TEXTURE SYNTHESIS 58

(a) (b)

(c) (d)

Figure 5.11: Texture mapping results. (a) and (b) Image on the surface, (c) and (d) Video
on the surface, in which (a) and (c) are based on conformal global parameterization, (b)
and (d) are based on improved parameterization using mass-spring method.

Figure5.11(c) and (d). We should note that while the mass-spring relaxation process is
relatively slow (about 1 hour for the bunny model), it only needs to be done once for each
model, and after that the improved parameterization results can be reused for various image
and video mappings. The extra cost for storage is minimal.

5.6 Discussion

In this chapter, we have presented novel methods to accomplish distortion-minimized
texture synthesis and texture mapping on 3D surfaces. For this, we have augmented the
conformal mapping approach, which preserves angular fidelity, with a process that controls

5. UNIFORM TEXTURE SYNTHESIS 59

the distortion of scale. For texture synthesis on 3D surfaces, it allows the synthesis process
to be done intuitively in 2D space and, afforded by the conformal mapping, achieves global
control over the mapping result. The synthesis result is locally angle-torsion free, while
globally it is continuous. Further, we also devised a methodbased on a mass-spring model
which offers a good tradeoff for angular distortion and sizepreservation in texture mapping.
Both methods are conveniently implemented using conformalmapping, are simple and
efficient, and are universal for arbitrary surfaces.

While we currently do not provide explicit controls to balance angular and size dis-
tortions, we plan to incorporate those in future work, usingthe updated conformal factor
fields.

60

Chapter 6

Multiperspective Visualization

6.1 Introduction

A perspective rendering represents the spatial relationships of objects in a scene as they
would appear from a single viewpoint. Recently perception principles have been applied
to help find optimal viewpoints for volume datasets [9, 123]. Each rendering result cor-
responds to one viewpoint. Finding the minimal set of optimal viewpoints, and putting
the result images side by side, the user can see all the important features and get a good
overview of the data.

Figure 6.1: “High and Low” by M. C. Escher.

Multiperspective rendering is a powerful mechanism to unify different views into one
image, while keeping the context between them alive. Multiperspective rendering has been

6. MULTIPERSPECTIVE VISUALIZATION 61

employed both by artists, such as MC Escher [37], as well as in mainstream computer
graphics [108]. M. C. Escher’s work, shown in Figure6.1, is a stunning multiperspective
example. Multiperspective camera models have been introduced and employed in computer
vision [160, 47], 3D surface and 2D image graphics [88, 41, 1, 130], and in Cel animation
[147]. Yu and McMillan [152] showed that multiperspective images can be characterized
as continuous manifolds in ray space under an appropriate parameterization. They used
general linear cameras (GLC) [153], which describe all 2D linear subspaces of rays, as
primitives for constructing multiperspective images. In order to generate good results,
users have to select and lay out image fragments from different GLCs on the image plane,
and perform transformations, including translation, scaling, and rotation.

Despite the incongruity of view, effective multiperspective images are still able to pre-
serve spatial coherence. Inspired by the previous work, especially Escher’s work, we pro-
pose to extend our warping lens to a multiperspective lens towiden the view of the data
and provide the spatial relationship of features for the user. Here we present our prelimi-
nary multiperspective visualization approach and show some results. Our long term goal is
to incorporate it into an entropy-maximizing view selection framework, to construct even
more comprehensive views on the data in the gallery. Initially, we will couple this capabil-
ity with the feature or view specification to have users take on a more designing role. Later
on, however, we aim to derive a set of rules for view optimization to construct more com-
prehensive views automatically. Lastly, in all of these warp-based endeavors, Tufte’s rule
of “scaling with honesty” will be enforced by superimposinga grid, which will indicate the
amount of local distortion of the volume, upon request.

6.2 Sphere-Based Multi-View Approach

In our volume rendering framework, the user can interactively rotate and observe the
volume around the center of the volume data. Our first try is tolet the user chose two or
three viewpoints of interest during his/her exploring of the data, then our approach automat-
ically generates the image combining these views, without the user’s further interactions,
such as a manipulations on the image fragments [152].

Figure6.2 illustrates the basic idea of our sphere-based multi-view approach. When
viewpoints are only allowed to locate on the surface of a sphere S, which is concentric to
the volume bounding sphere, the user can specify two viewpoints, such asV P1 andV P2,
shown in Figure6.2a. Our method warps the volume by computing the ray directionfor
each pixel on the image plane based on sphereS. First, the pixels (P1 andP2) correspond-
ing to the centers of viewpoints (V P1 andV P2) are located on the image plane based on
the relative positions of the two viewpoints, and their up and right vectors. For any pixel
P within the range of the first viewpointV P1, our approach maps the pixelP to a point
SP on sphereS based on the coordinates ofP andP1 on the image plane. Then the ray
direction simply goes throughP and the data centerO. Therefore, as shown in Figure6.2b,
ray directions for all pixels located in Pixel set 1 or Pixel set 2 can be computed easily. No
rays pass through the pixels in Pixel set 4. For pixels in Pixel set 3, which is the overlapping

6. MULTIPERSPECTIVE VISUALIZATION 62

VP1

VP2

O

P1

P2

Pixel set 1

Pixel set 2

Pixel

set 3

Pixel set 4

(a) (b)

Figure 6.2: Illustration of our sphere-based multi-view approach. (a) All viewpoints located
on the surface of sphere, which is concentric to the boundingsphere of the volume data,
(b) Image plane.

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Our multiperspective renderings considering visibility. (a), (b) and (c) Render-
ings with three viewpoints, (d), (e) and (f) Multiperspective renderings.

region affected by both viewpoints, interpolation is applied to determine the corresponding
points on the sphereS. Finally, for each pixel, there is one ray passing through, therefore,
the rendering can be done efficiently on the GPU.

6. MULTIPERSPECTIVE VISUALIZATION 63

6.3 Results

Based on the sphere-based multi-view approach we discussedabove, we can also con-
sider the visibility of each viewpoint to avoid rendering regions with too much distortions.
Figure6.3 shows our multiperspective renderings of a box with textures considering the
visibility. Figure 6.3a-c are three renderings from different viewpoints. The user has to
study three views to find the correspondences of features in order to get the spatial relation-
ships of features. Figure6.3d just shows how we warp the box from one viewpoint. Figure
6.3e,f are the multiperspective renderings for two and there viewpoints. Although there is
much distortion, the spatial coherence is maintained.

We can also keep the feature or focus of interest undistorted, and only warp the sur-
rounding data. Context is then shown in a distorted way. Figure6.4shows results generated
by this method.

(a) (b)

(c) (d)

Figure 6.4: Our multiperspective renderings with focus feature protected. (a) and (b) Direct
volume rendering from two viewpoints, (c) and (d) Multiperspective renderings.

6.4 Discussion

The primary concern with our multiperspective renderings is whether the approach
causes too much distortion to be useful for visualization. Comparing our task with Escher’s

6. MULTIPERSPECTIVE VISUALIZATION 64

work, we find one fundamental difference. His work and many other successful multiper-
spective researches in graphics try to see objects outward,for example, the user looks at
some buildings from the street on which the user walks. However, we observe the data from
outside towards the inside, and move around the data, which introduces more distortions.
Furthermore, Escher dealt with buildings, which have straight line features, such as walls
and ceilings. These special features help to separate multiple views easily and efficiently.
But in volume datasets, such features are hard to find and do not always exist. Another
problem that appears in volume visualization is that due to occlusion the same feature can
be shown differently for multiple views, especially in semi-transparent renderings, which
cause difficulties to represent them correctly in the final image. All these make it a quite
difficult task to design a good multiperspective technique for volume visualization.

65

Chapter 7

Conjoint Analysis to Measure the Perceived
Quality

7.1 Introduction

The main purpose of visualization is to produce images that allow users to gain more
insight into the illustrated data. This is a complex issue, depending on many factors of the
visualization system, starting from human-computer interaction, to rendering speed, to ren-
dering style and algorithm, and finally human perception andcognition. With the exception
of the last component all of these factors have been designedby humans and many diverse
technologies have emerged, and are still emerging, over theyears. But in the end, human
perception is the ultimate judge that determines which of these are the most effective. A
popular focus of the field of visualization is the modeling and optimization via engineering
and mathematics tools and frameworks, and often the designer/engineer him/herself judges
the success of the method. Here, the easiest parameters to measure are rendering speed and
memory consumption and others, which are all engineering quantities. However, in light
of the importance of the last element in the chain, the human observer, a more recent focus
has become to also conduct adequate user studies to measure the success of a proposed
method. This practice is already common place in the field of human-computer interaction,
and to a more limited extent also in information visualization, but less so in scientific and
medical visualization. In essence, user studies are alwaysconsidered burdensome since in
many cases there are a large number of parameters and algorithmic alternatives, requiring
many trials, that is, human subjects and experiments, to produce statistically significant re-
sults. This has been a major obstacle in assessing a method’ssuccess in terms of the human
perceptive and cognitive system.

The pressing question is: can we make this task easier by introducing a more methodi-
cal and organized approach. For this it pays to look at other fields, especially those driven
by heavy monetary investments. One then finds that user studies play a major and dominant
role in product marketing, where it is important to tune the various parameters of a product
before it is being launched to market or to determine its launch at all. Clearly, these studies
must be conducted as thoroughly as possible, in order to maximize the outcome, but they

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 66

also must be conducted as efficiently as possible in order to minimize the time, burden put
on the participants in the study and samples needed to explore the vast parameter space in
a statistically significant manner. A technique called conjoint analysis [48] is the answer to
all of these design goals, and our goal is to make this technique accessible to visualization
researchers and their specific domain setting. Visualization researchers are faced with the
task that a large number of algorithms need to be compared. However, the number of al-
gorithms is too large for a single user to compare/rank all ofthem in reasonable time and
with reasonable accuracy. Fortunately, in many visualization areas, such as volume visu-
alization, the algorithms are not strictly arbitrary but tosome extent related; that is, they
are all different incarnations of one parameterized algorithm and are obtained by fixing
the parameter values. A comparison of the algorithms then leads to a ranking of the al-
gorithms/parameter settings. This is essentially the sameproblem that market researchers
face when eliciting consumers’ preferences on substitute goods that can be described in
terms of attributes and attribute levels. Conjoint analysis, as introduced above, is a well
established family of questionnaire based techniques to elicit consumer’s preferences. It
frees the evaluator from the daunting burden of presenting the effects of all attribute levels
to all users for evaluation but nevertheless allows statistically significant results.

This is a joint work with Joachim Giesen (Max Plank Instutitute, Saarbruecken, Ger-
many). His research concentrates on developing a conjoint analysis technique as an ex-
tension of Thurstone’s method of comparative judgment [124]. Like most techniques it is
based on some assumptions (model), but it has the advantage that all assumptions can be
tested. The model assumptions allow us to derive robust preference estimates from sparse
data, i.e., every user needs to ‘explore’ only a small fraction of the large parameter space.
We use this conjoint analysis technique to measure the perceived quality in volume render-
ing.

We demonstrate our conjoint analysis technique in four related studies that fit two im-
portant visualization purposes: visual aesthetics and theconveyance of detail. In this pur-
suit, we can gain further insights. For example, we determine the relative importance of the
algorithm’s parameters and their levels. This is importantinformation if one has to tradeoff
perceived quality against other objectives like time or filesize. Conjoint analysis allows us
to quantify these tradeoffs. We can also study the effects ofage, gender, culture, or color
deficiencies on users’ preferences.

Our analysis framework is timely in light of the various recent efforts to optimize view-
points [9, 58, 123], transfer functions [69], sampling intervals [145, 6], high-level appear-
ance descriptors [115], illustrative rendering parameters [11], perceived salience [67], and
others. All of these use mostly mathematical, engineering,but also sometimes aesthetics
and perception-motivated arguments to devise their methods. Controlled user studies need
to eventually decide which strategy is most effective and relevant for the human observer,
especially in conjunctive terms. Furthermore, these user studies can also be helpful to fine
tune the parameters of these methods, which may also be task and domain dependent.

In the following sections we first describe a typical multi-parameter volume rendering
scenario, in which we generate all the volume renderings. The choice based analysis ap-
proach is then introduced, and the overview of our frameworkis presented. Finally we

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 67

show some insightful results, which can be valued as indicators for the analytical power of
our framework that provides a guideline on how to conduct andanalyze a conjoint study in
the context of visualization algorithms evaluation/comparison.

7.2 Volume Rendering Scenario

As mentioned our goal was to measure the perceived quality ofa visualization algo-
rithm for different parameter settings. We have chosen a relatively standard volume visual-
ization scenario to demonstrate our user study framework. For our study we used two data
sets. The first data set FOOT is meant to cover the medical application domain, whereas
the second data set ENGINE covers the engineering applications area. The ENGINE data
size is256×256×256, and the FOOT data size is154×263×222. Using GPU-accelerated
ray casting rendering, the visualization of the volume dataset can be described in terms of
the following parameters:

COLORMAP This parameter has three levels which correspond to different color maps
that are applied for transfer function design. For all transfer functions, the alpha channel
has been set to always reveal most of the object’s structures, in order to suppress ‘occlusion’
to act as an independent variable.

RENDERING This parameter describes the applied rendering mode and hasfive levels:
DVR (Direct Volume Rendering), DVRNS (Direct Volume Rendering with No Shading,
just compositing), DVRGM (Direct Volume Rendering with Gradient Modulation to high-
light surfaces), XRAY (Colored X-Ray) and MIP (Colored Maximum Intensity Projection).

VIEWPOINT This parameter has six levels for the ENGINE and five levels for the
FOOT data set. It describes the viewpoint under which the observer sees the object. Differ-
ent viewpoints are chosen in such a way that most structures are always kept visible, again
to prevent ‘occlusion’ from playing a significant role in thestudy.

RESOLUTION This parameter describes the screen resolution used for rendering. We
render at the resolution of the data set and twice that. Note that in the end the image
size was always512 × 512 (the image rendered at reduced resolution, that is, at volume
resolution, was scaled up with bilinear filtering).

STEP SIZE This parameter is the ray traversal increment (measured in voxel size), which
has three levels, 0.2, 0.5 and 1.0.

BACKGROUND This parameter describes the color of the background and hasfive lev-
els: BLACK, WHITE, DARK GREEN, DARK BLUE and YELLOW.

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 68

Figure 7.1: Renderings with different parameter settings.

Finally combining these parameters results in the 2700 ENGINE images (renderings)
and in the 2250 FOOT images. Figure7.1shows some FOOT images.

7.3 Choice Based Conjoint Analysis

A class of items has a conjoint structure if it can be described by the Cartesian product
A1 × . . . × An of attribute setsAi. The elements of the attribute sets are called attribute
levels. An itema is then represented by a vector(a1, . . . , an) with ai ∈ Ai, i.e., by fixing the
attribute levels. Conjoint analysis is a family of techniques for eliciting from a population
of people their ranking (on some scale) of the elements inA1 × . . .×An, i.e., on the items.
Conjoint analysis techniques can be distinguished by two (not independent) parameters:
firstly the elicitation procedure, i.e., the way preferencedata are obtained from respondents,
and secondly the way the elicited data are processed in orderto derive a representation of
individual or aggregated preference information (typically in form of a value or utility
function).

In recent years choice based conjoint analysis has become the most popular conjoint
analysis technique. It got its name from the method employedfor elicitation, namely,
preferences are elicited in a sequence of choice tasks. In a choice task a small number of
items (typically between two and four) is presented to a respondent who has to state which
one out of these she/he prefers most. Choice tasks are popular in market research since
they resemble real buying situations and thus tend to provide the most reliable information.

There are many different ways to analyze the data obtained from several respondents
and several choice tasks each, but any analysis method defines ascaleon which the items
are compared. A scale assigns to each item a number. In conjoint analysis there are es-
sentially two types of scales used: onordinal scalesthe numbers assigned to the items
are their ranks in a linear order. Note that the nominal difference between ranks has no
meaning. Oninterval scalesan item is preferred over another if it gets assigned a larger
number. Differences of the assigned numbers have a meaning on interval scales, but these
scales have nonatural zero. Note that translating all scale values on an interval scalehas

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 69

no effect.
Another difference in analysis methods is whether they define a scale for each respon-

dent, or just a scale for a population of respondents (aggregated scale). Our analysis method
defines an interval scale for a population of respondents.

7.4 Overview of the Framework

We use choice based conjoint analysis as our elicitation procedure, where each choice
task was a paired comparison between two renderings, i.e., between two parameter settings.
Note that the cognitive burden increases with the number of items from which to choose.
Higher cognitive burden should result in poorer data quality. We decided to use choice
tasks with the least cognitive burden, namely paired comparisons.

Perceived quality itself can be measured along different directions. We made this more
explicit by asking two different questions: Which image do you like best? and Which
image shows more detail? We will later refer to the first question as AESTHETICS and
the second as DETAIL. Note that the second question is more specific than the first, which
is fairly general. Each combination of data set and questionis considered as a different
study, i.e., we conducted the four different conjoint studies [ENGINE, AESTHETICS],
[ENGINE, DETAIL], [FOOT, AESTHETICS] and [FOOT, DETAIL].

Joachim Giesen et al. conducted the user study at an exhibition and elicited data from
786 visitors. Then the data analysis method is applied to define an interval scale for a
population of respondents from their choices in paired comparisons. First scale values
for all levels of a single attribute are estimated. To this end any paired comparison is
interpreted as a comparison of just the two levels of the given attribute that are present
in this comparison, ignoring differences in the levels of all other attributes. This method
is then applied to all attributes to obtain scale values for all their levels. And a rescaling
method is proposed to make the scale values for levels of different attributes comparable.
Finally, the scale value of an algorithm, i.e., complete parameter set, is just the sum of the
scale values of the parameter values. Please refer to our conjoint analysis paper for details
on user studies and the data analysis method.

7.5 Results

From our four visualization case studies, we obtain some insightful results, including
relative importance of parameters, most preferred levels,dependency on the respondent,
dependency on the data set, dependency on the question, and parameter interdependence.
Here we will discuss the first two in details. Readers are recommended to read our conjoint
analysis paper for more results.

Relative importance of parameters The standard deviation for an attribute can be in-
terpreted as the relative importance of this attribute. In our setting the attributes are the

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 70

Table 7.1: Rank order of the parameters used in our four studies. The rank order is derived
from estimated variances (shown in brackets).

AESTHETICS DETAIL

FOOT 1. RENDERING-STEPSIZE (0.31) RENDERING-STEPSIZE (0.52)
2. COLORMAP-BACKGROUND (0.3) COLORMAP-BACKGROUND (0.35)
3. VIEWPOINT (0.14) VIEWPOINT (0.12)
4. RESOLUTION (0.05) RESOLUTION (0.08)

ENGINE 1. RENDERING-STEPSIZE (0.56) RENDERING-STEPSIZE (0.77)
2. BACKGROUND (0.19) RESOLUTION (0.09)
3. RESOLUTION (0.12) VIEWPOINT (0.08)
4. VIEWPOINT (0.09) BACKGROUND (0.05)
5. COLORMAP (0.05) COLORMAP (0.01)

parameters of the visualization algorithm. Using the estimated standard deviation we get
the rank ordering of the parameters as shown in Table7.1. From these results it is safe to
conclude that overall the rendering mode (combined parameter RENDERING-STEPSIZE)
is the most important parameter. The importance of this parameter is relatively higher for
the DETAIL than for the AESTHETICS question. A second important parameter is the
color scheme used (or the background), although this findingis not as pronounced. The
viewpoint is somewhat important (mostly for the FOOT), while the resolution is somewhat
important for the ENGINE. The other parameters are relatively unimportant, at least at the
levels we have measured.

Most preferred levels The results of Tables7.1as well as Figure7.2 reveal a good deal
of useful information. We observe that the algorithms XRAY and MIP are not considered
useful by our respondents (but note that these were non-expert viewers C doctors can see
a lot more in those renderings). The DVRGM algorithm performs (slightly) better than
DVR, which performs better than DVRNS. This ranking shows that the more structure
enhancement, the better.

There is also a clear preference for achromatic backgrounds. Only blue is also found
to be somewhat useful, possibly because blue is a monocular depth cue in that colors very
far away shift to the blue spectrum, or because of the background shade of blue and the
object. Highly saturated backgrounds are generally disliked. Interestingly, there are also
differences between the two achromatic backgrounds: a black background is considered
more aesthetic, whereas white seems to show detail better. This is particularly true for the
ENGINE which is overall a more complex data set. It is most likely also an object that is
less familiar to the respondents. Therefore they require more detail; higher resolution is
also more important (than for the less complex FOOT).

For the ENGINE, the color map applied does not seem to matter as much, but for the
DETAIL question, the FOOT (bone) is strongly preferred to beseen in a color resembling
that of bright bone (skin grey). This indicates that for object inspection, viewers like to see
objects in colors that are most natural and at the same time bright (when such a color is
generally agreed on), but for objects less defined in that respect the color choice is a matter

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 71

(a)

(b)

(c)

(d)

Figure 7.2: Best and worst renderings for our four conjoint studies. (a) and (b) Best ten
renderings (ranking decreasing from left to right) for ENGINE and FOOT respectively, (c)
and (d) Worst ten renderings (ranking increasing from left to right). Top row of (a)-(d) is
for DETAIL, bottom row of (a)-(d) is for AESTHETICS.

of taste (as is the case for the ENGINE), as long as they are bright and define contrast well.
In the AESTHETICS category viewers still preferred a natural color (for the FOOT), but
the brightness condition was no longer so important (by definition of the task criterion).

An interesting observation can also be made with respect to the viewpoint. A common
feature is that viewers prefer to see objects at oblique angles, which generally gives objects
a more three dimensional appearance and also reveals more features (such views are also
used for product advertisements). But the engine was in general preferred to be situated
as standing on a surface – the views where the engine was rotated at an arbitrary angle
(and appeared as it were flying towards the viewer) were ratedlow. On the other hand, the
foot was acceptable at most orientations. We believe that the ‘flying’ engine was deemed

7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 72

unrealistic, and perhaps even dangerous and therefore unappealing, while a foot is seen
commonly at general orientation in real life (just not as a bone).

7.6 Discussion

We took first steps to demonstrate that conjoint analysis canbe a useful and efficient
tool to gauge influences of a rich set of rendering parameterson human perception in visu-
alization tasks. We believe that the data analysis technique that we have developed here can
even be used to analyze data gathered in the first phase of the ‘human-in-the-loop’ method
of House, Bair and Ware [55]. Note that our analysis method only needs paired compar-
isons between renderings that even can be obtained from measurement of how well a test
person performs a task on different renderings.

We have tested the framework within a familiar visualization environment, a parame-
terized volume renderer, where we have taken great care to reduce the effects of competing
adverse parameters, such as image size and occlusion, without reducing the effects of the
relevant tested parameters, such as color schemes and rendering precision and algorithm.
In this process we verified a few known results, such as the effect of rendering fidelity, but
we also teased out some lesser known but important results, such as preferred object orien-
tations, color schemes, and the relationship of step size and rendering modality. Another
interesting finding is that our conjoint analysis method canhelp to resolve tradeoff deci-
sions. In particular for the DVRGM algorithm it is not necessary to go down to step size
0.2, step size 0.5 even gives perceptually better results. That is, it is often not worthwhile
to spend the extra computing time required by smaller step size (time-quality tradeoff). A
second tradeoff concerns perceived quality and file size, which is to a large extent deter-
mined by the resolution. Our methods allow us to quantify this tradeoff, i.e., to answer the
question of how much quality gets sacrificed when the file size(resolution) decreases.

In the future we will conduct more user studies and apply our framework on other
visualization tasks. In next chapter, We will discuss another perception related work: color
design for visualization. Conjoint analysis technique mayhelp to test the efficiency of color
designs, or find user preferences on color schemas for certain visualization tasks.

Our vision is to create a (web based) user study analysis suite that can be used by
researchers to conduct and analyze multi-parameter user studies. Conjoint analysis should
be an integral component of such a suite.

73

Chapter 8

Color Design for Visualization

8.1 Introduction

Recent years have seen multifarious efforts to better integrate and exploit properties
of human visual perception and cognition into visualization design. Illustrative rendering
techniques have been developed that render the scene at different levels of abstractions
or in different rendering styles, ranging from sparse stroke-based depictions to full-scale
volume rendering [11, 13, 14, 122]. In these approaches, the levels of abstractions are
most often controlled by a task- or object-dependent importance parameter [134]. Another
perception-motivated strategy is to guide viewer attention to salient features [67]. However,
it is interesting to note that color has never played a major role in these efforts. There is
no system so far that incorporates rules from color design directly into the visualization
engine. One system that exists, the PRAVDA system by Rogowitz and co-workers [113, 5]
was more purposed for the display of continuous scalar data with transfer functions, and
not for the segmented data commonly used in illustrative visualization.

In our work, a transfer function is considered a general mapping of a numerical para-
meter value into a visual parameter value. The bulk of work intransfer function design in
volume visualization has mainly concentrated on the specification of the A (opacity) por-
tion of the transfer function, in order to capture shapes andcontours of iso-surfaces at great
fidelity. On the other hand, the RGB portion of the transfer function has in most cases been
guided by personal preferences of the system’s user or even just random assignments.

While color design has received less attention in the visualization community, despite
the existence of two books on the topic [135, 119], professional designers and artists are
quite cognizant of rules that guide the design of color palettes, not only from an aesthetic
point of view but also from an attention-guiding, salient one. Here, the notion of color
harmony is only one of these fundamental design rules, whichhas been more motivated by
aesthetic arguments and has found recent application in thecomputer graphics literature for
those considerations. On the other hand, visualization is not only concerned with providing
a pleasing image – visualization also has a mission, that is,to help the user to gain quick
and accurate insight into the visualized data. Good visual aesthetics makes this task an
enjoyable one and therefore reduces stress, while exploiting the perceptional rules can often

8. COLOR DESIGN FOR VISUALIZATION 74

aid the salient cognition process.
Our work is motivated by rules established in the classic color design literature. The

framework described captures these rules into a knowledge-based system which then pro-
vides appropriate colorizations based on user preferences, importance functions, and scene
composition. The scope of the system is both volume and information visualization. It is
important to note that we only consider the effects of color,and not those of illustrative
style and the combination of these. We believe that a decoupling of these visualization pa-
rameters is necessary to develop a rudimentary framework, which can then later be applied
in the context of stylistically more advanced systems.

Section8.2briefly presents the highlights of previous work relevant toour, and Section
8.3 gives a system overview. In Section8.4, we summarize our design in form of expert
system rules and describe design details. Section8.5shows all applications and results of
our system.

8.2 Related Work

In visualization, image and volume datasets typically comein form of 2D and 3D arrays
of scalar densities, which are mostly obtained via simulations or scanning (CT, MRI, etc).
Due to the human visual system’s excellent sensitivity to variations in brightness, grayscale
displays are already quite adequate to perceive the inherent variations of densities, at least in
a local sense. At the same time, the illumination contrasts generated in shading can provide
excellent shape cues in 3D displays. However, the range of grey levels distinguishable by
humans is limited to only about 100 [110], and distinguishing different objects or features
can be quite difficult with grayscale alone. In addition, such grayscale displays often also
lack aesthetic appeal, which may lead to a reduction of interest as well as recall in the
human observer – after all, the world around us is in color. Mapping the densities to color
can help overcome these problems, and it also can be used to highlight density contrasts,
guiding the viewer to these areas.

In scanned and simulated datasets the scalar densities usually map to certain material
properties, and it is desirable to preserve these variations as intensity modulations and,
apart from highlighting, only use color for better object differentiation and labeling. Here,
the number of colors that can be used for this purpose has beenstudied by Healey [52], who
optimized the separation of label colors in CIE LUV space andthen conducted user studies
on target identification capabilities. He found that users did quite well when the number of
colors was 5 or less, while greater numbers (7 to 9 were studied) posed difficulties. These
deficiencies are also partially rooted in the limitations ofhuman working memory.

Also limiting the maximal numbers of colors is the phenomenon of simultaneous con-
trast which changes the appearance of a color based on its surround [135]. It widens the
required “safety margin” of a given color and limits the number of these. This problem
is in some way related to the color mixing effects that can occur when two or more semi-
transparent surfaces overlap, but these compositing effects can be much more severe as
they can result in radically different colors, which can be both disturbing and distracting

8. COLOR DESIGN FOR VISUALIZATION 75

at the same time, especially if this color has already been reserved for another object. Our
system provides a solution for this.

In essence, even across cultures, colors have been classified into 8 classes (in addition
to white, black, and grey): the basic opponent color pairs red and green, blue and yellow,
as well as purple, pink, orange, and brown [7]. But revealing quantitative properties by
color is difficult, because no learned ranking of these colors exists, and for this reason, the
popular rainbow colormap is considered a poor choice [119, 113, 5]. The work by [5] has
shown that the human visual system can only differentiate hue for low-frequency variations,
while high frequency variations, such as fine detail, are best resolved by luminance. This
in some sense generalizes the dedicated use of color as a label. In other work, [112] also
demonstrated that colormaps should preserve a monotonic mapping in luminance. In this
vein, some researchers suggested [81] that the best mapping results from a straight line
through a perceptional color space such as CIE LAB. Note thatall of these approaches
involve all three perceptional components of color: hue, saturation, and brightness. Our
system also makes use of all three color components, but in a more intuitive yet free-form
fashion, where users can only pick the most intuitive component, the hue, and the system
optimizes the other two.

Finally, color can also be used as a means to focus attention [4], which is known aspop-
out. This can be in addition to other cues, such as shape, size, motion, and blur [71]. Pop-
out exploits pre-attentive cognition, which translates toinvoluntary awareness of a feature
within a ms-time interval. In this context, an important finding is that pre-attentiveness is
strongly related to the vividness of a color patch, as well asits size and the degree at which
it differs from the vividness of the surrounding colors [17]. This visual pop-out parameter
is attractive since it does not require extra colors (that is, hues) to be chosen to generate
attention effects, avoiding an overloading of human targettracking capabilities.

8.3 System Design Goals and Overview

We have already mentioned the role of color as a means to increase aesthetics in a dis-
play, and in fact, this topic has been studied for a long time in the arts and design literature.
There, a number of landmark texts on color design have been published [56, 146], and these
texts provide a wealth of information with great insight on human perception of color and
the aesthetic aspects of it. Much information is also available in the books by Stone [119]
and Ware [135]. One popular design aspect is color harmony. Color harmonyis a fairly
old concept, already expressed by Goethe and other greats ofthat epoch, and a quantitative
representation was described by Moon and Spencer [95]. This representation was based on
the Munsell color-order system [97], which consists of three perceptional coordinates: hue,
value (lightness/brightness), and chroma (colorfulness). In search of an intuitive 2D repre-
sentation for visual designers, Itten then arranged the harmonic colors into a color wheel,
which reduced (flattened) this color space to mostly variations in hue. Later, Matsuda [92]
employed Itten’s wheel, in conjunction with extensive psycho-physical studies, to intro-
duce a set of 80 harmonic colors schemes. These were the basisof the recent automated

8. COLOR DESIGN FOR VISUALIZATION 76

image color harmonization system by Cohen et al. [24].
In fact, it was this automated system that inspired our work.But color harmonization

is only one aspect of aesthetic design. There are many more rules that govern good visual
color design and these are very relevant to visualization, which includes information vi-
sualization as well. Many of the parameters determining good visual design are directly
measurable, both in the underlying data and in a generated viewing configuration, and can
therefore be captured into an automated color design system. Here it should be noted that
such a rule-based system needs to have a much stronger analytical and computational com-
ponent than interactive color palette tools [94] which require much more user interaction.
In fact, for these tools the support for creative interactions is desirable since they are meant
for graphics designers who demand such freedom in producingonly a few sheets of artwork
a day. On the other hand, while our optimizing system can alsobenefit that community,
it is predominantly targeted for interactive image generation or rendering engines, where
many images are produced and only little time is available totweak the color composition
of each. It also captures at least some of the knowledge of these experienced graphics
designers, for everyone to use.

Another design goal addresses the need of visualization to guide the observer to the
most important features of the data. A recent paper in that regard is that of [67] who
employed an emphasis function based on the center-surroundmechanism of the human
visual system to enhance the visual saliency of features important within the visualization
task. Thus, an automated color design framework must not only incorporate color design
knowledge, but it must also be parameterizable by feature importance. While color is not
the only way to encode the visual field, show similarity and difference relationships, and
direct viewer attention, it is generally the best and fastest.

Finally, as mentioned before, such a system will embrace a strong interplay of the
three perceptional color parameters, that is, hue, chroma,and brightness, and therefore an
associated color harmonization method must also support all of these. However, in order
to achieve this, a suitable extension to Itten’s hue-based color wheel needs to be devised,
which in turn also requires an extension to the automated color harmonization algorithm
by Cohen et al. Since the concept of a color wheel is convenient and intuitive – which
was most likely the reason it was invented for – this extension should be formulated as a
post-process to rectify any imbalances of chroma and brightness during the harmonization
process. This is most suitably executed in a perceptional color space, such as CIE LAB or
Munsell.

Our system supports all of these goals, and similar to the recently emerging illustrative
rendering engines it takes a feature-based approach. That is, a dataset is first decomposed
into its semantic constituents, using available segmentation or grouping information. Then
the user applies a color palette to assign hues, and the system optimizes chroma and bright-
ness, taking into account the programmed visual design rules in conjunction with impor-
tance parameters and computed scene parameters, such as feature size, density ranges, and
interactions. Thus, our system differs greatly from the ground-breaking rule-based system
of [5], which was more focused on scalar data with a continuous field flavor.

8. COLOR DESIGN FOR VISUALIZATION 77

8.4 The Computational Design Expert System

Color vision can be studied with two rather different goals in mind: aperture color
andsurface color[156]. Aperture color takes a more physics-based, wavelength-oriented
approach to color vision, conducting experiments in very controlled laboratory settings.
Test subjects compare small patches of color, embedded on black backgrounds and under
exclusion of all other effects, such as lighting and surrounding scene. These types of exper-
iments can explain the fundamental color matching properties of the human visual system
very well. However, they are less suitable to explain the effects and interaction of colors
within a more general, less controlled scope, as embodied byreal-world viewing condi-
tions. Studies that operate in these settings explore the aspects of surface color, which is
more complex, varied, and medium constrained than aperturecolor. As a distinguishing
example may serve the situation where one visits a paint store, armed with a carpet swatch,
seeking to select a matching wall color by ways of a set of similarly-sized store-provided
paint swatches. In many cases the anticipated interplay is vastly different from the actual
one, once the wall has been painted. This can be due to varied lighting conditions, but also
be due to the different actual proportionate sizes of the twomatched color surfaces, and the
effects of other colored items in the environment – the living space in this example.

A number of papers have appeared in the field of visualizationthat have studied the
effects of color, but they did so more from an aperture color perspective [112, 68]. These
efforts have produced valuable insights for transfer function design in scientific visualiza-
tion and the rules postulated there are in frequent use today. The focus of these efforts was
to ensure good delimitation (contrast) of fine features in continuous data fields. We share
the goal of these earlier works, but we add the more holistic aspects of surface color science
to this rule set. This allows the incorporation of various principles of vision psychology,
such as pre-attention, emotion, and even aesthetics, in order to better control the specific
visualization task at hand.

In cognitive science, color is a psychological experience (that is, we can also imagine
it) of three orthogonal components: quality (the hue), quantity (the lightness, which is
perceived brightness), and purity (the chroma or saturation). To conceive our automated
color design system, we can take advantage of a well established body of knowledge in
color design and perceptional science. This alleviates us from the task of having to conduct
extensive user studies of our own. In the following, we attempt to give a snapshot of the
relevant (to us) portions of this knowledge base, which we subsequently fashion into a
set of specific rules used in our system, and then exploit for more advanced and novel
manipulations. These rules are in addition to other concepts such as simultaneous contrast
and color harmony.

8.4.1 Encoded Principles and Guidelines

In the following we enumerate a set of guidelines following the design goals defined
above.

8. COLOR DESIGN FOR VISUALIZATION 78

Mood and emotions:

G1: Warm colors (red, orange, yellow) excite our emotions and grab our attention. Cold
colors (green to violet) produce the feeling of openness anddistance. They have exactly the
opposite effect of warm colors. Warm hues will tend to overpower the cool ones. Yellow-
green and red-violet are borderline warm colors.
G2: Vivid colors (bright, saturated colors) stand out, bringing attention to a particular
feature – the pop-out effect. However, combining two or morevivid colors is perceived as
unpleasant and overwhelming. Vivid colors should be used sparingly or between dull back-
ground tones. Finally, large areas should not be made highlysaturated. People generally
find large saturated areas tiring and annoying.

Sensation of depth and separation of foreground/background:

G3: Color can affect perception of 3D space. Due to chromatic aberration, cold-colored
areas are perceived as being more distant than warm-coloredones. This helps foreground-
background separation, which works best when the foreground color is bright and highly
saturated, while the background is desaturated. Blue is least suitable for representing high
frequency detail since it has the fewest number of cones in the fovea. Warm colors on a
cold background are effective to enhance foreground-background separation.

Acuity and detail perception:

G4: The achromatic visual subsystem has about 5-times better visual acuity than the chro-
matic subsystem. Therefore, fine detail, high frequencies and shape is better conveyed with
brightness contrast.

Discrimination:

G5: Color discrimination is much poorer when the samples are separated without sharing
a border – the greater the separation the worse the discrimination.
G6: Colors will be more discriminable if they differ simultaneously in hue, saturation and
brightness.
G7: The low end brightness steps should be very small while the high end needs larger
steps (Weber’s Law). On the other hand, the number of just noticeable difference steps
(JND’s) in the hue spectrum is about 150, but discriminationvaries across the spectrum.
G8: Discrimination is poorer for small objects. Hue, saturation and brightness discrimina-
tion all decrease.

Hue contrast:

G9: Complementary hues lie on the opposite side of the color wheel. They have the highest
chromatic contrast and when mixed they may cancel each otherout, generating a neutral
grey. Examples are red-cyan and blue-yellow, which are bothopponent colors.

Relationship of hue with saturation and brightness:

G10: Some hues appear inherently more saturated than others. Studies indicate that there
are only 10 saturation steps around yellow with the number gradually rising as wavelength
increases or decreases. Therefore, viewers will find small differences in saturation for
blue, violet and red highly discriminable, while small differences in yellow saturation will

8. COLOR DESIGN FOR VISUALIZATION 79

be hard to detect. Green and orange are in the middle. The brightest lights fall in the yellow
range, while blues, violets and reds are least bright.

Labeling and semantics:

G11: There are 11 basic color distinctions that fall into three classes: i) achromatic (3):
black, gray, white, ii) primary colors (4): red, green, blue, yellow, and iii) secondary colors
(4): brown, orange, purple, pink. These distinctions and labels are valid across cultures.
One should choose the maximal number of color labels under 6-7.
G12: Increasing the brightness of an item for highlighting drawsattention to it without
changing its hue, and therefore, without losing perceptualinformation about its semantic
class. Brightness and saturation variation can help in distinguishing objects of the same
semantic class.

Linking and guiding:

G13: Objects of similar hue form a common group, while objects of different hue belong
to different groupings. If the different hues are complementary colors, then the viewer
will infer opposition. Color can be used to organize the display into perceptual chunks,
viewed pre-attentively. The color layout indicates that parts of the image form distinct
areas, and if the same color appears in different parts of theimage, these areas appear linked
together, suggesting that they have something in common. Onthe other hand, variations
in a basic color can convey variations in the class data. Similar colors suggest a similarity
relationship and different colors suggest a difference relationship between objects and areas
of the screen. Similar colors are adjacent on the color wheel, while complementary colors
are on opposite sides of the color wheel.

Recall and interest:

G14: A final motivation is that an aesthetic visualization will beremembered more and
looked at more carefully.

We can assign these guidelines into the specific rules implemented by our system. All
steps will be discussed in detail later in Section8.4.3.
R1: Hue Selection (G1, G5, G6, G11, G12, G13, G14), and Background Selection (G3) –
presented to the user in Step 1;
R2: Vividness Selection (G2, G6, G14) – decided by the system in Step 2;
R3: Lightness Selection (G4, G6, G7, G10, G14) – optimized by thesystem in Step 3;
R4: Mixing Rule (G9) – chosen by the system in Step 1.

8.4.2 Framework Theory

Here we show how to capture these rules into an actual color design framework for
visualization tasks. As mentioned above, our system is designed to work for the visualiza-
tion of 2D entities as well as for 3D visualizations with opaque or semi-transparent object
surfaces (where a prior segmentation is assumed). For the 3Dapplications, the visual color
design can be either optimized for a specific view or globallyfor all views. We begin by

8. COLOR DESIGN FOR VISUALIZATION 80

first clarifying some important basic concepts that form thefoundations of our system, as-
sisted by Figure8.1. We then describe our extensions of these basic concepts to enable our
framework.

Figure 8.1: Color spaces utilized in our system.

Basic Concepts

Color: Color has three components: Hue, Brightness, and Saturation. A color in RGB
color space has its ownr, g, andb values. On the other hand, a color in HSV space also
has three components,h, s, andv. All three values together determine a color, that is, any
value by itself is not a color. For any color space, a color corresponds to a point.

Color spaces: The color spaces utilized in our system are shown in Figure8.1. Hue is
chosen from the hue wheel of the HSV color space. The CIE LAB (Lab) color space
embedded in our system is essential for computing the luminance and chroma due to its
perceptual uniform characteristic (more on this below). The color transfer between HSV
and Lab color spaces will be assisted by the standard RGB (sRGB) color space and the
CIE XYZ color space. Ther, g, b values in sRGB color space are finally transmitted to the
monitor for display.

Hue categories:As mentioned before, the hue wheel of the HSV color space is popular and
widely used in computer graphics as well as in color design for its convenience. We also
employ it in our system to assist users in choosing the hue. Besides the neutral color, we
roughly separate hue into 8 color categories, which includeRed, Orange, Yellow, Green,
Cyan, Blue, Purple, and Magenta. We define similar hues as either in the same category or
adjacent on the hue wheel.

Lightness: Luminance, or lightness, is the perceived brightness. In our system, in order
to calculate the lightness of a HSV color, the color is first transferred to sRGB space, then
to CIE XYZ space, and finally to Lab space, where the componentL is the lightness. The
value range ofL is [0, 100], with 0 for black, and 100 for white.

8. COLOR DESIGN FOR VISUALIZATION 81

Formally,

(h, s, v) ⇒ (L, a, b), (8.1)

lightness(h,s,v) = L, (8.2)

where “⇒” denotes transformation.

Vividness: We define the vividness of a color as itsrelative purity (or chroma). The ab-
solute chroma of a color can be computed in Lab color space using Equation8.3.

chroma(h,s,v) =
√

a ∗ a + b ∗ b. (8.3)

For a given hue, the higher the chroma value, the more vivid the color appears. In HSV
color space, the color(h, 1, 1) is the most vivid color for a given hueh. It has the maximum
chroma for this hue. Then the vividness of a color, that is, its relative chroma, is defined as
follows:

vividness(h,s,v) = chroma(h,s,v)/chroma(h,1,1). (8.4)

Although the maximum chroma values for different hues are quite different, the value
range for vividness is always [0,1].

Enabling Extensions

As mentioned before, similar to popular color design utilities our system also employs
the HSV space as a convenient and intuitive design medium forcolor specification. How-
ever, in our framework the user only picks the hue of a scene component, while the expert
design system determines vividnessV and lightnessL, taking into account the present vi-
sualization goals and constraints and the overall scene composition. From the resulting (h,
V , L) triple, the system then computes the remaining HSV componentss andv needed for
actual display. This (h,s,v) triple is then converted to sRGB space and fed to the monitor.

In our framework,L (and alsoV) plays a crucial role and requires accurate control.
In fact, there are a number of linear equations which are in frequent and popular use to
determine the lightness of a given (r,g,b) triple. Equation8.5 below gives the lightness
derived from the YIQ color space, and Equations8.6-8.7 immediately following provide
the lightness derived from CIE XYZ color space.

YY IQ = 0.299r + 0.587g + 0.114b, (8.5)

and,

Y = r ∗ YR + g ∗ YG + b ∗ YB, (8.6)

Y = 0.2126r + 0.7152g + 0.0722b, (8.7)

8. COLOR DESIGN FOR VISUALIZATION 82

where constantsYR, YG, andYB are the lightness values for the R,G,B primary colors. Note
that for a different white point, the lightness equation will change (the lightness equation
of a sRGB monitor with a white point of D65 is used in our examples).

To assess the results obtained with these equations we have employed a pair-wise com-
parison test in which we have sought to match the lightness oftwo swatches of different
h using the above conversion equations. The left and center panel of Figure8.2show two
examples each for the above equations. In each such pair we have attempted to match the
lightness of the right swatch image to that of the left via a search procedure. We observe
that while the popular linear lightness equations work wellfor light colors (top row) they
provide poor results for darker colors (bottom row) where the match always comes out too
dark (that is, the two swatches have the same lightness according to the conversion for-
mulas, but this is not perceived as such – on our D65 monitor).In contrast, matching the
lightness using the (non-linear) Lab space relationships gives consistently better matches
for both bright and dark colors. These experiments indicatethat these widely used equa-
tions are in fact only sub-accurate for darker colors, whilethe Lab space is quite accurate
throughout. Thus we find that the Lab space is most appropriate for our application, al-
though the transform is non-linear.

YIQ CIE-XYZ CIE Lab

Figure 8.2: Color pairs with lightness matches performed using different conversion meth-
ods.

Table 8.1: Relationship between s, v, lightness, and vividness for given hue in HSV color
space, whereC is a constant except0, ↑ means value increase, and↓ means value decrease.

s v Lightness Vividness
0 ↑ ↑ 0
0 ↓ ↓ 0
C ↑ ↑ ↑
C ↓ ↓ ↓

↓ / ↑ 0 0 0
↑ C ↓ ↑
↓ C ↑ ↓

8. COLOR DESIGN FOR VISUALIZATION 83

(a) (b)

Figure 8.3: Illustration of equi-lightness and equi-vividness curves in HSV color space. (a)
An equi-lightness curve, (b) An equi-vividness curve.

(a) (b)

Figure 8.4: Examples of equi-lightness curves in HSV color space. (a) Hue slice with
h = 0, (b) Hue slice withh = 180.

(a) (b)

Figure 8.5: Examples of equi-vividness curves in HSV color space. (a) Hue slice with
h = 0, (b) Hue slice withh = 180.

8. COLOR DESIGN FOR VISUALIZATION 84

There are various non-linear relationships when transforming an (h,s,v) triple to Lab-
spaceL andV , and back. The conversion to (r,g,b) is only piecewise linear, and the con-
version to Lab space is strictly non-linear. Thus, the colors of equi-lightness (and equi-
vividness) in HSV space will likely reside on non-linear trajectories. Table8.1 shows the
relationships betweens, v andL andV . For a given hueh in HSV space, ifs is constant,
the L monotonically increases or decreases withv, and if v is constant, theL reversely
monotonically changes withs. Based on these monotonic relationships, fixings, we can
computev from h andL, and vice versa. By movings from 0 to 1 we can then find all col-
ors with the givenh andL. Figure8.3a shows the equi-lightness curve, which is comprised
of all the colors fromA to B that have the sameL on this hue slice.

These monotonic relationships enable efficient binary search procedures to be devised
for the mapping, alleviating the need for more complex optimization methods, such as gra-
dient descent. We have designed two binary search-based (BSB) algorithms to efficiently
compute the color from a given hueh and lightnessL, when eithers or v is known. Here
we show the BSB algorithm that computesv from a specifiedh, L, ands. The algorithm
for computings from a specifiedh, L, andv is similar. Using our BSB algorithms, for any
hue, we can easily find the colors with the desiredL.

// BSB algorithm of computingv fromh, L, ands
S0: initializevmin, vmax;
S1: (h, s, vmin) ⇒ (Lmin, a, b);

(h, s, vmax) ⇒ (Lmax, a, b);
if (L equalsLmin) returnvmin;
if (L equalsLmax) returnvmax;
if (L > Lmax){

either decreases, go to S1; //sacrifices to getL
or returnvmax; // Lmax is the closest lightness we

// can get for given parameters
}

S2: while (L > Lmin andL < Lmax){
vmid = (vmin + vmax)/2;
(h, s, vmid) ⇒ (Lmid, a, b);
if (L equalsLmid) returnvmid;
if (Lmid > L){

vmax = vmid;
Lmax = Lmid;

}else{
vmin = vmid;
Lmin = Lmid;

}
}

8. COLOR DESIGN FOR VISUALIZATION 85

Likewise forV , for a given hueh, there are many color points which have the sameV .
Again, due to the monotonic relationships betweens, v, andV shown in Table8.1, we can
design efficient BSB algorithms to compute the color from a givenh andV , when either
s or v is known. In Figure8.3b, all colors with the sameV on this hue slice make up the
equi-vividness curve, which is also the equi-chroma curve.

Figure8.4shows examples of equi-lightness curves on two different hue slices. Some
curves have been labeled with their lightness value. From the bottom curve to the top curve,
the lightness increases gradually. For different hues, thelightness values of the most vivid
colors (the top-most outside points on the hue slices) are quite different. Vivid cyan has a
much higher lightness than vivid red. Figure8.5 gives examples of equi-vividness curves
on the given hue slices. Some curves are labeled with their chroma values. Note that the
chroma interval between adjacent curves is the same. From the right-most curve to the left-
most curve, the vividness decreases from 1 to 0. We can see that the absolute chroma varies
substantially for the different hues. Cyan has considerably fewer distinguishable saturation
steps than red. In fact, this hue-dependent resolution in perceived saturation was the subject
of guideline G10.

We now describe our algorithm that computess andv values from a givenh, L, andV .
We see that on the equi-lightness curve in Figure8.3a, the vividness increases monotoni-
cally fromA to B. Also on the equi-vividness curve in Figure8.3b, the lightness increases
from C to D. The intersection point of this two curves then yields a color with the desired
L andV . Due to the monotonic relationships, we have designed a bi-BSB algorithm to
computes, v from a desiredL andV . In this procedure, we first use our BSB algorithm
to locate pointsA with s = 0, B with s = 1, and middle pointM , whoses is the average
of those ofA andB, and then compare the vividnessVA, VB, andVM with V to deter-
mine which half curve need to be searched further, finally finding the intersection point.
Due to the efficiency of binary search, our algorithm is quitefast and enables interactive
manipulations.

However, not any two equi-lightness curves and equi-vividness curves will intersect.
Therefore in some cases it is impossible to get a color with both the desired lightness and
the desired vividness. To compensate, we have to either sacrifice lightness or vividness.
Figure8.6 gives a series of swatch-pair examples where the goal is to reach a matched
lightness, such that no swatch is over-emphasized. In Figure8.6(center), two colorsCcyan

andCred have the same vividnessV =1, but the lightnessLCcyan
is much higher thanLCred

,
leading to an over-emphasis of the cyan swatch. To cope, we have three choices to achieve
equal lightness for the two swatches, relaxing the goal of matching vividness: setting both
to the (i) minimum, (ii) the maximum, or (iii) the average lightness of the two. The results
are shown in the left, right, and bottom swatches in Figure8.6, respectively. We observe
that either one (min, max) or both swatches (avg) need to reduce their vividness, which may
be problematic in generating the desired pop-out effect. While this cannot be avoided since
it is caused by an inherent property of the color spectrum, wecan produce a reasonable
trade-off, where we move the lightness values of both of the two colors halfway towards
their average, that is, the middle point between the old value and the average value. The
visual effect of this compromise is shown in the top-most swatch pair of Figure8.6. This

8. COLOR DESIGN FOR VISUALIZATION 86

Halfway Avg

Min Max

Avg

Figure 8.6: Examples of controlling the lightness. Two vivid colors with the same vividness
but different lightness values are shown in the middle. Colors are recomputed with the
desired lightness, which can be minimal, maximal, average,or halfway to the average, of
the lightness values of the two original colors.

solution in fact seems to equalize the vividness and the lightness of the two swatches the
best, although neitherL norV are really equal.

From these examples, we can see that in order to obtain the desired lightness the vivid-
ness of the color may have to be sacrificed, or vice versa. Since the lightness is more
comparable, and the lightness contrast is crucial to help distinguish features and provide
harmonic colorings, in our work, we prefer to keep the lightness in most cases.

8.4.3 Implementation Details: 2D System

In this section we discuss the system details relevant for 2Dvisualizations, while the
following section will then extend these to 3D visualization applications. All steps outlined
below make use of the design principles and guidelines enumerated in8.4.1.

Step 0: PreprocessingIn order to assign colors to 2D data with discontinuous intensities
or separated features, the data should be available in segmented form. In our system, the
smallest unit is defined asObject. Several objects with the same properties can belong to
oneClass. Each object has attributes, such as its area, and a class hasan importance value.
A class computes its total area from its member objects. The system also collects infor-
mation between objects, including distance and adjacency.Next the user, or the system’s
host application, specifies importance factors for all classes, which may be interactively
changed at any time. Currently, our system supports three importance levels: most (3), less
(2), and least (1) important, but this can be extended easily.

Step 1: Hue selectionStarting from the most important class, for each class, the hue
wheel is activated with the proper hue categories from whichusers may select the classes
hue. The system suggests hues of warm colors for the most important classes and hues

8. COLOR DESIGN FOR VISUALIZATION 87

of cool or neutral colors for the least important classes, but users are free to make other
choices. The exact hue will then be assigned for each class based on the associated class
information. Here, all objects in one class will be assignedthe same main color (h, s, v), but
the color finally used can vary to some extent based on the intensity or other properties of
the objects (see later Figure8.10). In order to generate color-harmonic visualizations, our
system will not allow users to choose hues falling into all hue categories. To facilitate this
choice, harmonic color templates [24] can be applied to provide guidelines on harmonic
hue selections.

Step 2: Vividness selectionNext, the vividness of each class is computed based on a
classes importance and its area. Our system provides suggested vividness values for dif-
ferent importance levels, for example, a vividness of 1 for the highest importance, 0.7 for
less, and 0.3 for the least. The relative area (the ratio of area vs. whole area) is then used
to adjust the vividness in order to avoid a large area to receive a very high vividness, and a
global weighting parameter can be tuned to account for the real image size. Therefore, im-
portant classes will be colored with a higher vividness, andfor the same importance level,
a class with smaller area will be colored with a higher vividness, while a class with larger
area will receive a color with lower vividness.

Step 3: Lightness selectionAppropriate lightness contrast is very important to help dis-
criminate different features and provide harmonic colorings. Figure8.7illustrates how our
system determines the feature lightness levels, given the assigned vividness values. First,
for each most important class, our system computes the lightness according to its hue and
vividness. This yields a lightness range[Lmmin, Lmmax] for all most important classes. De-
sign rules G6 and G12 in Section8.4.1imply that lightness difference (contrast) will help

L
mmin
 L
mmax

L
least
L
less
L
most

L
high

L
low

0
 100

Figure 8.7: Illustration of the lightness selection. The class in red with the highest impor-
tance has higher vividness, and the class in cyan with less importance has lower vividness.
Lmost is the lightness selected for the class in red. With theLighter option, Lless is the
lightness for the class in cyan, andLleast is the lightness for classes with the least impor-
tance.

8. COLOR DESIGN FOR VISUALIZATION 88

in discriminating features. Thus, in order to highlight theclasses of interest, other classes
will be assigned a lightness either all smaller (darker) than this range, or all higher (lighter).
Although this can be decided automatically by an optimization algorithm, our system pro-
vides two options to the user:Darkeror Lighter, which allows more control over the overall
lightness of the visualization. The system also provides the following user-adjustable pa-
rameters: the lowest lightnessLlow, the highest lightnessLhigh, and the highestv for the
most important objects,vhigh. When the user choosesDarker, the lightness of the lesser or
the least important classes will fall into the range[Llow, Lmmin]. In contrast, for theLighter
option, the range will be[Lmmax, Lhigh]. We have chosen to provide equal lightness inter-
vals between adjacent importance levels to provide good lightness contrast. Herevhigh is a
parameter, with the default value 1, which us used to boundLmmax. The system provides a
more vivid color whenvhigh equals 1, and a more darker vivid color whenvhigh decreases.
This parameter is most useful in theLighter option. A similar parameter,vlow, can be used
to boundLmmin in theDarker option.

Step 4: Color computation Once the hue, lightness, and vividness have been selected,
our binary search-based algorithms are then used to computethe associateds andv. Since
the lightness and vividness may not be preserved at the same time (see Section8.4.2), our
strategy is to rather preserve the lightness while adjusting to the nearest possible vividness,
which guarantees the desired lightness contrast.

Applications of this color design system just described arepresented in Section8.5.

8.4.4 Implementation Details: 3D System

Basic Extensions

In order to extend our system to volume visualization, we caneither use the 2D pro-
jection area for a specific view optimization or use the 3D region of the object for a global
optimization. For a specific view, we first draw the objects ofa segmented volume dataset
into the texture buffer to obtain their label and depth information. Then for each object,
we apply our 2D algorithm to calculate the suggested color, which represents their main
color for the transfer function setting. After rendering the volume we evaluate the color
histogram of the image to gauge whether there is enough contrast between objects. If not
we change the color setting accordingly, to arrive at betterresult gradually.

The Layer-based 3D Scene Decomposition Framework

For volume visualization applications in which the objectshave been or can be seg-
mented, we designed a layer-based framework. This allows users to freely turn objects on
or off and enhance them, in ways similar to the layer style in Adobe Photoshop. The color
assignment will change when the object selections are updated. The importance of each
object can be interactively changed as well, to enhance features of interest.

The color mixing rule for semitransparent rendering can also be applied in our sys-
tem. In the following section, we will discuss this aspect infurther detail, and also show

8. COLOR DESIGN FOR VISUALIZATION 89

examples and more applications.

8.5 Applications

All of the results in this chapter have been generated for a CRT monitor, with the white
point set to D65. In this respect we would like to caution the reader when examining the
images presented in the next sections. The perceived effects may be slightly or moderately
different than on our monitor.

8.5.1 2D Visualization

We first illustrate our color design results by ways of a StarTree visualization, shown
in Figure8.8. The corresponding parameters are listed in Table8.2. For the following, the
reader may examine an image first before reading on. Else the solution follows now. In
Figure8.8a, D is emphasized; in Figure8.8b, A is emphasized; in Figure8.8c, A has the
highest importance, andE has higher importance than others; in Figure8.8d, bothA andE
are the most important; in Figure8.8e,B is emphasized; in Figure8.8f, C is emphasized;
in Figure8.8g, E is emphasized; in Figure8.8h, E is the most important, andB is slightly
less important; in Figure8.8i, C andD have the highest importance. The visualizations
demonstrate our system’s ability to successfully balance the overall scene vividness and
lightness. For example, in Figures8.8b, c, d the lightness of the unimportant nodes (for
example, the green class B nodes) increases as the importance of the red nodes (class E)
rises (this widens theLmmax, pushing the remaining intervals up towardsLmax). Figures
8.8g, h demonstrate the use ofvhigh to control the lightness for the most important nodes
(here class E), which is set higher in Figure 8h.

Finally, we also present, in Figure8.9, two colorings which do not use these rules and
fail to successfully emphasize any feature, either by usingtoo many vivid colors, or by not
using a sufficient lightness contrast.

Varying the color of an object according to its intensity or other property variations
is also a frequently encountered visualization need and ourcolor optimization algorithm
supports this as well. To demonstrate, we applied our color design system to pseudo-color
a Transmission Electron Microscopy image, and the results are presented in Figure8.10.
Note that the original grey-level intensity variation is preserved in the colorizations, and
different features are highlighted in each image. Our system produces visualizations with
high color harmony, and avoids the generation of inharmonicresults with too much or too
little contrast. This sequence of images also demonstratesthe use of the (Lighter option)
and (Darker option), which allows the user to select the overall lightness of the image.

We applied our color design system to pseudo-color a Transmission Electron Mi-
croscopy images, and the result is presented in Figure8.10. Note that the original grey-
level intensity variation is preserved in the colorized image, and different features are high-
lighted in each image. Our system yields color visualization with high harmony, and avoids
a generation of inharmonic results with too much or too less contrast.

8. COLOR DESIGN FOR VISUALIZATION 90

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.8: Color designs for startree visualization. The parameters of tasks are listed
in Table8.2, including the number of classes, and for each class, the importance factor
specified by the user, while the hue is generated by the systembased on the user’s choice.
The tree nodes with higher importance are highlighted in thecoloring results.

8. COLOR DESIGN FOR VISUALIZATION 91

Table 8.2: Parameters of startree visualization tasks

Class Hue Importance
A 240 1 3 3 3 1 1 1 1 1
B 120 1 1 1 1 3 1 1 2 1
C 30 1 1 1 1 1 3 1 1 3
D 300 3 1 1 1 1 1 1 1 3
E 0 1 1 2 3 1 1 3 3 1

Option D L L L D D L L L

Figure No. 8.8a 8.8b 8.8c 8.8d 8.8e 8.8f 8.8g 8.8h 8.8i

(a) (b)

Figure 8.9: Startree examples. (a) All vivid colors competeto catch the eye, (b) All colors
with similar lightness, no feature is emphasized well in both (a) and (b).

8.5.2 Lightness-preserving Color Harmonization and ColorShifting

Color harmonization is an easy and efficient way to improve the harmony of an image
by shifting colors to an appropriate harmonic color scheme [24]. However, since only the
hue is changed, if the shifting angle is not small, the lightness will change. This is unde-
sirable as it may reduce contrast. We have therefore extended the original color harmony
algorithm to preserve the lightness and contrast as much as possible. To achieve this, we
first calculate the lightness and vividness of the color before shifting. After the hue shifts,
we assign the same lightness and vividness to the new hue, andthen calculate from these
the news, v values. As mentioned at the end of Section8.4.2, it may not be possible to
preserve the lightness and vividness at the same time. In these cases our algorithm will
seek to preserve the lightness while using the nearest vividness. Although the hue contrast
may change slightly, the lightness contrast important for the visual resolve of fine object
detail can be maintained.

Figure8.11and Figure8.12compare our lightness and contrast-preserving color har-
monization algorithm with the original color harmonization algorithm. In both figures, the
(b)-panels hold the original images, subjected to harmonization / hue-shifting. The cor-
responding hue wheels are also provided. We observe that ourmethod keeps the contrast

8. COLOR DESIGN FOR VISUALIZATION 92

(a) (b) (c) (d)

(f) (g) (h) (i)

(e) (j)

Figure 8.10: Color designs for Transmission Electron Microscopy image. Different fea-
tures are highlighted in images. (a) Original grey-level image, (f) Colors with equal light-
ness, no feature is emphasized, features are labelled asA,B,C,D for reference, (b)-(e)
Features highlighted have the lowest lightness comparing to other features (Lighter op-
tion), (g)-(j) Features highlighted have the highest lightness (Darker option), (b) and (g)
A is emphasized, (c) and (h)B is emphasized, (d) and (i)C is emphasized, (e) and (j)A
is emphasized, a rather small region colored with high vividness to produce the pop-out
effect despite its small size.

8. COLOR DESIGN FOR VISUALIZATION 93

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 8.11: Lightness preserved color harmonization. (a)Cut and paste part1, (b) Cut and
paste part2, which will be color harmonized to part1, (c) Color harmonization by Cohen’s
method[24], (d) Lightness preserved color harmonization, (e) and (f)Color distribution
on the hue wheel of the original image (a) and (b), (g) and (h) Color distribution after
harmonization.

(a) (b) (c) (d) (e)

Figure 8.12: Lightness preserved color harmonization. (a)Color distribution on the hue
wheel of the original image (b), (c) Color harmonization by Cohen’s method[24], (d) Light-
ness preserved color harmonization, the brightness contrast and feature details of the orig-
inal image are kept, (e) Color distribution after harmonization.

and details better. For example, in Figure8.11c, resulting from application of the original
method, the left-most person’s silhouette now almost blends into the background. On the
other hand, in Figure8.11d, generated with our method, it stands out like in the original
image. Further, the contrast between the third person and the background is also better pre-
served. Figure8.13shows the lightness-preserving color shifting result. In Figure8.13b,
generated with the original method, some colors around the neck become too dark, which

8. COLOR DESIGN FOR VISUALIZATION 94

(a) (b) (c) (d) (e)

Figure 8.13: Lightness preserved color shifting. (a) Colordistribution on the hue wheel
of the original image (b) [50], (c) Color shifting with only hue shifted, (d) Color shifting
while preserving the lightness, (e) Color distribution after shifting.

renders the details unclear, while colors around the nose become too bright, which draws
more attention to the user. Also, some details that had been bright before the shifting are
now hidden. On the other hand, Figure8.13c presents the result obtained with our method.
We observe that our method preserves the lightness and contrast better in most regions.
However, we also note that in some regions the overall contrast is not shown as well as in
the original visualization, which is unavoidably due to thehue contrast change.

8.5.3 Volume Rendering

Color design examples for volume visualization are shown inFigure8.14. Features of
interest in the volume data are highlighted by more vivid colors.

8.5.4 Color Mixing in Semitransparent Rendering

In semitransparent rendering, good color designs aim to avoid false color, i.e., the intro-
duction of new hues due to color mixing, and they also seek to preserve the ordering of the
objects. In the following we study a variety of scenarios involving color mixing and pro-
pose appropriate measures using our color design frameworkto achieve these objectives.

Two Overlapping Objects

If there are two translucent objects overlapping, our visualization system will suggest
users to choose opposite hues, which will not introduce new hues.

Suppose the colors of the two overlapping objects areC1 in front andC2 in the back,
and their opacities areα1 andα2. Then, using the front-to-back color composition, the
mixed colorC is:

C = C1α1 + C2α2(1 − α1). (8.8)

8. COLOR DESIGN FOR VISUALIZATION 95

(a) (b)

(c) (d)

Figure 8.14: Color designs for volume visualization. (a) Kidney of the frog is highlighted
with vivid orange, (b) Heart is highlighted with vivid red, (c) Bone is assigned blue hue
and emphasized, (d) Object labels traced by ray casting.

We define the weights for two colors asW1 = α1, andW2 = α2(1 − α1). The mixed
color C will have higher lightness than eitherC1W1, or C2W2. If the opacity values for
two objects are the same, the front color contributes more than the back color. Therefore,
if two opposite hues are chosen, the mixed color will most likely have a hint of the one in
front.

Figure8.15shows two color mixing examples. The opacity is 0.4 for all objects. Aided
by the hue wheels, we observe that new hues between red and green are generated in Figure
8.15a and8.15c (an orange tone in the former and a yellowish tone in the latter). On the
other hand, as shown in Figure8.15b and8.15d, when two opposite hues are mixed, there
are no false colors generated, and the mixed color can be either neutral or with a hint of the
original hues, which will help prevent the color mislabeling problem.

From Figure8.15, we note that the ordering of objects can not be visually preserved all
the time. In all of the renderings, the top right square is physically always in front of the
bottom left square. Figure8.15c and8.15d show the correct ordering without any doubt,

8. COLOR DESIGN FOR VISUALIZATION 96

(a) (b)

(c) (d)

Figure 8.15: Two color mixing examples. (a) and (c) Red and green are mixed with red
in front or green in front, (b) and (d) Red and cyan are mixed with red in front or cyan in
front.

Figure 8.16: Ordering preserved color mixing example. Red and cyan are mixed with red
in front.

however,8.15a and8.15b are less convincing. Based on our experience, we find that unsat-
urated colors will not preserve the ordering very well. We also find that darker colors give
a feeling of distance, while lighter colors appear closer toobservers. Therefore, a vivid
color with high lightness is suggested for the front object.However, the relationship be-
tween colors and perceived orderings bring complications.For example, if the user already
assigned red in front of cyan, either increasing the lightness of red, which will reduce its
saturation, or decreasing the lightness of cyan, which makes it look more transparent, will
not help provide the correct ordering. Only increasing the opacity (weight) of red will yield
the right ordering, as shown in Figure8.16, where the opacities of red and cyan are 0.6 and
0.4 respectively.

8. COLOR DESIGN FOR VISUALIZATION 97

(a) (b) (c)

Figure 8.17: Three color mixing examples. (a) Object labels, (b) A andB are assigned
opposite hues: yellow and blue,c is red, the overlapping region ofB andC gives false
color, which can be observed from hue wheel as well, (c) The saturation ofC is reduced,
but its lightness is kept, and the false color is reduced.

(a) (b) (c)

Figure 8.18: Local solution to reduce false color. (a) Object labels,A is in front of B, (b)
False color generates when mixing red and blue, (c) False color is reduced by our local
solution.

More than Two Overlapping Objects

Whenever more than two translucent objects overlap, false colors will always be gen-
erated after color mixing. To minimize these adverse effects, we suggest assigning two
opposite hues for the two important objects, and more neutral colors for the lesser impor-
tant object. But to be safe, we should avoid using any hue which can be generated by
mixing two hues already chosen. Figure8.17shows a three color mixing example. By re-
ducing the vividness (saturation) ofC while keeping its lightness, we can reduce the false
color.

Local Solution for Partial Overlap

Sometimes other constraints dictate the choice of certain colors, preventing the selec-
tion of opposite hues for partially overlapping objects. Toprovide a solution even in these
cases, we devised a local solution to reduce the false color in the overlap regions. Our
scheme is demonstrated in Figure8.18. It works by reducing the saturation of the color in

8. COLOR DESIGN FOR VISUALIZATION 98

(a) (b) (c) (d)

Figure 8.19: Color mixing on Body data for different view points. (a) and (c) Cyan and
yellow are mixed, (b) and (d) Blue and yellow are mixed, (a) and (b) show back view of the
body, (c) and (d) show front view of the body. Corresponding hue wheels are below each
rendering.

the rear object only in the overlap regionA∩B, while keeping its lightness. After the color
mixing, this region clearly has more hint of the front-object color, and the correct ordering
is also visually preserved. Our local solution is very general – it can also be used to reduce
the false-color effect in areas in which more than two objects overlap.

Semi-transparent Volume Renderings

Figure8.19shows the color mixing that occurs for semi-transparent volume renderings
from different view points. When cyan and yellow are mixed, some green hues will be
generated. In contrast, a blue and yellow opposite-color combination will keep the original
hues. Furthermore, Figure8.20indicates that the features in overlapping regions are also
clearer if two opposite hues are chosen.

We also devised a method to reveal interior colors. With two or even more features
embedded, the color of an inside feature may be occluded or changed. As we have seen
if two hues with at least one hue category between the two on the hue wheel are chosen,
new hues will be generated. However, if two opposite hues areapplied, the color of the
mixed region will be neutral. If the interior object is the most important object, our system
decreases the saturation of the outside features’ color to reveal the interior object’s real
color, without having to change the alpha channel of the transfer function. As shown in
Figure8.21, the color of the inside feature is disclosed increasingly more as the color of
the outside feature becomes less saturated. In all three cases, the center setting represents
a good compromise, still keeping some of the outside object’s hue, while allowing the
interior object’s hue to show through with minimal color distortion.

8. COLOR DESIGN FOR VISUALIZATION 99

(a) (b) (c) (d)

Figure 8.20: Color mixing on Engine Data. (a) Similar hues are chosen, (b) Opposite hues
are chosen, (c) and (d) Zoom-in views of (a) and (b).

8.5.5 Feature Highlighting

From the equi-lightness curvesA and the equi-vividness curvesB on the hue slices,
shown in Figure8.22a and8.22b, we can design color scales. Figure8.22c and8.22d show
the equi-lightness color scales derived from curvesA, with only the vividness changing,
while Figure8.22e and8.22f show the equi-vividness color scales derived from curvesb,
with only the lightness changing gradually.

Based on these equi-lightness color scales, we design a scheme to highlight the features
in the volume data one by one, shown in Figure8.23. All features are always visible since
the lightness is not changed, but one feature is highlightedby a more vivid color each time,
drawing the observer’s attention.

8.6 Discussion

In this research we have attempted to create an expert systemthat first captures a set of
prominent guidelines from visual color design, then joins these with insights from human
visual perception, and finally encodes this body of knowledge into a set of rules that can
optimize the assignment of colors in 2D and 3D visualizationtasks. Our system is meant
to help researchers and practitioners to achieve more aesthetic color designs with ease. It
seeks to eliminate the trial and error process that comes with picking the “right” colors
from a set of millions. We strived to create an interface where users can select the mood of
a visualization by picking from a set of suggested color palettes, with the system then per-
forming the more tedious task of ensuring that it “looks good”, assigning the lightness and
saturation appropriate for the given task and goals. It turned out that these rules were ap-
plicable to also resolve a variety of existing problems in graphics and visualization, such as
the color mixing artifacts when compositing semi-transparent surfaces and the brightness
deviations in color harmonization. We also altered non-hueattributes to reveal the inte-
rior features in volume rendering, while preserving the visual appearance in compositing
orderings.

8. COLOR DESIGN FOR VISUALIZATION 100

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.21: Reveal the color of inside object by decreasingthe saturation of outside ob-
jects. (a)-(c) The green hue of the bone shows gradually, (d)-(f) The yellow hue of the
middle sphere shows, and the green hue of most inside sphere shows, (g)-(i) The yellow
hue shows when blue becomes less saturated.

8. COLOR DESIGN FOR VISUALIZATION 101

(a) (b)

(c) (d)

(e) (f)

Figure 8.22: Color scales. (a) Hue slice withh = 20, (b) Hue slice withh = 200, A is
equi-lightness curve andB is equi-vividness curve, (c) and (d) Equi-lightness color scales,
(e) and (f) Equi-vividness color scales.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8.23: Features are highlighted one by one. (a) All features are rendered in neutral
colors, no feature is highlighted, (b)-(d) The outside feature is highlighted by increasing
the vividness of its color gradually, while preserving the lightness, (e) The vividness of
the outside feature decreases, (f)-(h) The inside feature is highlighted gradually, (i)-(j) The
vividness of the inside feature decreases.

In future work, we would like to also incorporate and test these rules for color blindness,
time-varying effects, and to provide better support for different display platforms by a

8. COLOR DESIGN FOR VISUALIZATION 102

prior calibration step. An interesting variation would also be to use disharmonious colors
for highlighting and pop-out. Finally, more formal user studies are also on our research
agenda. While we have tested most of our system components with members of our lab
and other affiliates, and received affirmative feedback, we plan to launch a larger study with
a broader population group. Using these results we would then like to devise mechanisms
that can personalize the color design for a specific user or application, using techniques
from machine learning.

103

Chapter 9

Multi-Layer Multi-Volume Rendering

9.1 Introduction

A volume dataset can be interactively visualized with our GPU-accelerated ray casting
volume rendering framework. It would be great to give users the flexibility to explore
multiple volumes at the same time, which can show the intersections, help the comparison
between different datasets, and provide insightful and interesting visualization results. We
propose a multi-layer multi-volume rendering framework, inspired by the successful multi-
layer user interface of the image editing tool Adobe Photoshop.

Methods for combining multiple volume data sets have been investigated in the context
of multi-modal data. Cai and Sakas [16] discussed different methods for data intermix-
ing in volume rendering, assuming volumes have the same sizeand position. Wilson et al.
[143] proposed a parallel algorithm for multi-volume visualization on a PC cluster. Leu and
Chen [78] presented a two-level hierarchy for modeling scenes of multiple non-intersecting
volumetric objects. However, the display of intersecting semi-transparent objects can be a
powerful visualization technique. The approach by Nadeau [98] can deal with intersecting
volumes, but the complete scene description has to be re-sampled by voxelization when-
ever a volume is transformed. Grimm et al. [44] presented a method to efficiently visualize
multiple intersecting volumetric objects, which uses multi-volume processing only for in-
tersections, but efficient brick-wise volume traversal scheme for non-intersection regions.
Bruckner and Gröller [13] proposed VolumeShop, an interactive hardware-accelerated ap-
plication for direct volume illustration, which combines artistic visual styles and expressive
visualization techniques, and allows multiple intersecting volumetric objects to be rendered
directly, without requiring costly resampling. Similar toBruckner’s work, our method is
based on GPU acceleration and does not require resampling, however, we bring more gen-
eral concepts and interface design ideas, which are our maincontributions.

9.2 Overview of Our Framework

Our multi-volume rendering framework is designed to have the following attributes:

9. MULTI-LAYER MULTI-VOLUME RENDERING 104

• Multi-layer: Multiple volumes can be loaded into the systemon multiple layers. Each
layer has its corresponding volume, and also has its own attributes, including transfer
function setting, rendering style, and transformation, which includes 3D translation,
rotation, and scaling. Deformation are supported now, but can be incorporated into
the framework.

• Layer On/Off: Each layer can be turn on or off, its volume willbe considered or not
during renderings.

• Layer Operations: Users choose an active layer, operations, such as transformation,
changing color/alpha, changing the rendering style, and volume filtering, only work
on the volume shown on this layer. The volume on the active layer will be separately
shown in a small preview window.

• Layer Copy/Delete: Each layer can be duplicated, or deleted. Duplicated layer will
refer to the source volume, and only new attributes for this layer will be created and
copied from the source layer. When a layer is deleted, if its volume is not referred by
other layers, this volume will unloaded (deleted) from the system.

Whenever the system setting changed, multiple volumes willbe rendered by our multi-
volume ray casting algorithm, discussed in the next section.

9.3 Multi-Volume Ray Casting Algorithm

There are two ways to render multiple volumes. When multiplevolume datasets are
transformed in object space, we can either transform each volume, resample the volumes
to get a whole new dataset and then render this dataset, or we can reversely transform the
image plane for each volume, and combine the rendering process for image planes. The
first alternative is time consuming due to the voxelization process whenever any volume is
transformed, added, deleted, or edited. We chose the latterapproach of rendering multiple
volumes, since it only changes viewport related attributes, volume datasets remain intact,
and the rendering process is still simple and straightforward.

Our multi-volume ray casting algorithm has the following steps:

Step 1: Transform the image plane for each volume;

Step 2: Determine the ordering of volumes, and the volume intersection information;

Step 3: Raycast the intersected volumes and non-intersecting volumes, and composite the
final result.

Aided by Figure9.1, we now discuss these steps in detail. Figure9.1a shows the 2D
illustration of the bounding boxes of volumeA and volumeB, and the image planeS.
After A is rotated and translated toA′, andB is rotated, scaled, and translated toB′, the
transformed volumes can be rendered on the image planeS (see Figure9.1b). Reversely,

9. MULTI-LAYER MULTI-VOLUME RENDERING 105

(a) (b)

(c) (d)

Figure 9.1: 2D illustrations of volume transformations. (a) Volumes without any transfor-
mation, (b) Volumes transform in object space, (c) and (d) Transformations taken in image
space for volumeA andb respectively.

our algorithm transforms the image plane. Imagining there is one image plane for each
volume, our algorithm first rotates the view point (the center of the image plane), and then
translate the image plane oppositely. Therefore, as shown in Figure9.1c and9.1d, the
image planes forA and scaledB (B′′) are transformed toSA andSB respectively. This
first step of our algorithm computes all view port parameterswhich will be referred in later
steps.

The second step is to determine the volume intersection information and the ordering
of volumes. As shown in Figure9.1b, for a pixel on the final image, one ray is shot from
the image plane, and this ray intersects with bothA andB. In our algorithm, a ray is shot
from a pixel on the image planeSA (or SB), see Figure9.1c and9.1d, we compute the
intersections of this ray and the bounding box of volumeA (or B′′), and store the distances
from the front and back intersection points to the ray start point ast front andt back. For all

9. MULTI-LAYER MULTI-VOLUME RENDERING 106

pixels, we obtain the distance maps for each volume. From alldistance maps, the ordering
and volume intersection information can be detected. Note,in order to get the correct
distances, in our algorithm, the bounding box of the scaled volume instead of the original
volume is used to calculate the intersections. This is the reason why we have not considered
the scale transformation in the first step. The bounding box of the scaled volume can be
computed as follows:

VBoundingBox = (VBoundingBox − VCenter) ∗ VScale + VCenter, (9.1)

whereVBoundingBox has the volume’s minimal and maximal values ofx, y, andz coordi-
nates.VCenter is the central point of the bounding box of unscaled volume.VScale is the
volume’s scale value.

For non-intersecting volume, the Cg fragment program for single volume rendering
can be applied, and the final color can be correctly composed for several volumes based
on their ordering. For intersected volumes, we design fragment programs for different
cases. For example, for two different volumes intersection, two volume datasets along
with their view port parameters, scale values, and distancemaps are fed into the fragment
program. During ray casting, for each sample point on the ray, we know whether it is in the
intersection and non-intersection region from distance values t front and t back of two
volumes. Therefore, in non-intersection regions, only thecolor getting from one volume is
composited. In intersection regions, different methods can be applied to composite colors
getting from two volumes. The distance is calculated based on the scaled bounding box,
but the volume dataset is unscaled. Therefore, for any sampling point, such asp shown in
Figure9.1d, its coordinates should be scaled back to the original ones:

p = (p − VCenter)/VScale + VCenter., (9.2)

For the duplicated volumes, we only need to feed one volume dataset into the fragment
program as well as the parameters for all views. Furthermore, the fragment program for
more than two volume intersection is similar. Our algorithmworks through these steps
to provide correct volume intersection and composition results. For our GPU-accelerated
rendering, the memory on the graphics card limits the amountof volume datasets which
can be fed into the fragment program at one time. We have not doany special optimizations
to improve the performance, which can be our future work.

9.4 Results

From the above mentioned three steps of our algorithm, multi-volume visualization re-
sults can be generated. Figure9.2 shows multi-volume renderings with different settings.
Volumes can be transformed to get interesting postures. Forthe color composition of sam-
pling points in intersection regions, we use averaged color(each color is assigned 0.5 as
the weight). The intersections between Foot and Engine can be seen in9.2a and9.2b, with
semi-transparent transfer function settings. With our framework, users can also explore

9. MULTI-LAYER MULTI-VOLUME RENDERING 107

(a) (b)

(c)

Figure 9.2: Multi-volume renderings. (a) and (b) Foot movesinto Engine, (c) More opaque
transfer function setting is applied for Engine.

Figure 9.3: Volume exploration example. The original volume is visualized along with the
edited volume showing its highest frequency details.

9. MULTI-LAYER MULTI-VOLUME RENDERING 108

volumes in different ways. Figure9.3shows an example that users can visualize the orig-
inal volume and filtered volume together, which is a easy way to compare the differences.
Here multi-resolution details of the volume, i.e. a pyramidof high frequency volumes and
a low frequency volume at the lowest level, are generated using low-passing filtering. The
volume with the highest frequency details are rendered along with the original volume.

9.5 Discussion

We propose a multi-layer style multi-volume rendering framework, and present our
multi-volume rendering algorithm. Our framework brings more general concepts than
Bruckner’s VolumeShop, and provides useful ideas in terms of the user interface. It is a
general 3D rendering and editing tool for volumes, but it is still in the preliminary stage.
There are many opportunities for improving the performance, and incorporating more help-
ful concepts and ideas into the framework. We propose to alsoprovide more choices on
composition methods to explore more insightful visualizations.

109

Chapter 10

Conclusion

In this thesis, we present several novel feature-driven illustrative visualization and
graphics techniques to enhance the features of interest in the dataset. Instead of focus-
ing on studying one illustrative technique, we try to explore multiple good concepts or
techniques that could be helpful to the illustrative visualization and graphics.

Our techniques aim to improve the perceived quality of features of interest either from
detail or perception points of view. Detail related techniques include magnifying features
of interest in a smart way, generating multi-resolution details with different semantic mean-
ings from available examples, and uniforming the size of features. Perception based tech-
niques include measuring the perceived quality of volume rendering using the conjoint
analysis based framework, and assigning features colors for visualization tasks through our
rule based color design system. We also work on illustratingdifferent views in one im-
age, and propose a multi-volume rendering framework. We believe our work will benefit
the visualization and graphics research, and draw more attentions to some aspects which
are helpful for illustrative visualization, but have not been touched or thoroughly studied
before. The primary highlights of this thesis are:

• An universal and general volumetric lens framework that hasapplications in many
domains has been presented. It allows users to apply any wellknown lenses, such as
a fisheye lens in the context of volumetric distortion, as well as design free-style and
feature-adaptive lenses for arbitrary magnified focus+context viewing. Incorporating
the GPU-accelerated ray casting, we can interactively exploit features of interest in
a more efficient way. We give a solution to the limited screen problem. A multiper-
spective rendering problem is also studied in our framework.

• A new constrained multi-scale texture synthesis method is proposed to facilitate se-
mantic zooms. Our 2D viewing application, a virtual microscope, demonstrated that
quite interesting and useful image sequences can be generated using our framework.
And our technique is extend to 3D volumetric viewing. We present a possible solu-
tion to the limited zoom or limited data resolution problem.

• A simple texture synthesis algorithm for surfaces with arbitrary topology using global
conformal parameterization is proposed. We also present analgorithm based on the

10. CONCLUSION 110

global parameterization to simultaneously preserve angleand scale in texture map-
ping. We show that a conformal-factor driven mass-spring method offers a conve-
nient way to trade off these two metrics. Our algorithms are simple, efficient and
theoretically sound.

• A rule based color design system is proposed. The rules, which guide the color de-
sign from both aesthetic and attention-guiding, salient point of views, and have been
established in various classic color design books, are captured into a color selection
framework, providing appropriate colorizations based on user preferences, impor-
tance functions, and scene composition of the visualization tasks.

In the future, we could continue improving and extending ourtechniques. The multi-
layer visualization framework is promising for efficientlyexploring multiple volumes. To
make it feasible, we will improve the algorithm and performance, and coupling more useful
operations and concepts into it. It would be great to embed the semantic zoom work into our
magic volume lens framework. Although now it is hard to make an interactive constrained
detail synthesis in our semantic zoom, it may be accomplished with the improvements of
texture synthesis techniques. Illustrating feature correspondences between renderings with
different viewpoints will benefit the visualization. Our multiperspective rendering does not
work as we expected for the volume dataset. Using illustration based method to show the
correspondences between features maybe a feasible solution. Applying conjoint analysis
method to evaluate the color design results will help us testify our color selection method,
and even discover new rules.

In illustrative visualization and graphics field, there arestill a lot of problems deserve
further study, and many potential improvements could be achieved. Incorporating more
principles of human perception in the research is a promising way.

Generally, our work on feature-driven illustrative visualization and graphics achieves
some encouraging results. In the future, there will always be new concepts or techniques
emerging or embed in the visualization to provides even better results.

111

Bibliography

[1] M. Agrawala, D. Zorin, and T. Munzner. Artistic multiprojection rendering. InProc.
of Eurographics Rendering Workshop ’00, 2000.

[2] M. Ashikhmin. Synthesizing natural textures. InProc. of ACM Symposium on In-
teractive 3D Graphics ’01, pages 217–226, 2001.

[3] M. Ashikhmin. Synthesizing natural textures.IEEE Computer Graphics and Appli-
cations, 23(4):38–43, 2003.

[4] B. Bauer, P. Jolicoeur, and W. Cowan. Distractor heterogeneity versus linear separa-
bility in visual search.Perception, 25:1281–1294, 1996.

[5] L. D. Bergman, B. E. Rogowitz, and L. A. Treinish. A rule-based tool for assisting
colormap selection. InProc. of IEEE Visualization ’95, pages 118–125, 1995.

[6] S. Bergner, T. Möller, D. Weiskopf, and D. J. Muraki. A spectral analysis of function
composition and its implications for sampling in direct volume visualization.IEEE
Trans. on Visualization and Computer Graphics, 12(5):2006, 1353–1360.

[7] B. Berlin and P. Kay.Basic Color Terms: Their Universality and Evolution. Univer-
sity of California Press, Berkeley, 1969.

[8] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and magic
lenses: The see-through interface.Computer Graphics, 27:73–80, 1993.

[9] U. D. Bordoloi and H.-W. Shen. View selection for volume rendering. InProc. of
IEEE Visualization ’05, pages 487–494, 2005.

[10] P. Bourke. Computer generated angular fisheye projections.
URL://astronomy.swin.edu.au/∼pbourke/projection/fisheye/, 2001.

[11] S. Bruckner, S. Grimm, A. Kanitsar, and M. Gröller. Illustrative context-preserving
exploration of volume data.IEEE Trans. on Visualization and Computer Graphics,
12(6):2006, 1559–1569.

BIBLIOGRAPHY 112

[12] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller. Illustrative context-
preserving volume rendering. InProc. of EuroVis 2005, pages 69–76, 2005.

[13] S. Bruckner and M. E. Gröller. Volumeshop: An interactive system for direct volume
illustration. InProc. of IEEE Visualization ’05, pages 671–678, 2005.

[14] S. Bruckner and M. E. Gröller. Style transfer functions for illustrative volume ren-
dering. Computer Graphics Forum (accepted for publication) (Eurographics ’07),
26(3), 2007.

[15] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware. InSymposium on Volume Visualiza-
tion ’94, pages 91–98, 1994.

[16] W. Cai and G. Sakas. Data intermixing and multi-volume rendering. Computer
Graphics Forum, 18(3):359–368, 1999.

[17] T. C. Callaghan. Interference and domination in texture segregation: Hue, geometric
form, and line orientation.Perception and Psychophysics, 46(4):299–311, 1989.

[18] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Distortion viewing
techniques for 3-dimensional data. InProc. of IEEE Symposium on Information
Visualization ’96, pages 46–53, 1996.

[19] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Extending distortion
viewing from 2D to 3D.IEEE Computer Graphics and Applications: Special Issue
on Information Visualization, 17(4):42–51, 1997.

[20] W. Chen, L. Ren, M. Zwicker, and H. Pfister. Hardware-accelerated adaptive EWA
volume splatting. InProc. of IEEE Visualization ’04, 2004.

[21] P. Cignoni, C. Montani, and R. Scopigno. Magicsphere: an insight tool for 3D data
visualization. Computer Graphics Forum (Proc. of Eurographics ’94), 13(3):317–
328, 1994.

[22] M. Cohen and K. Brodlie. Focus and context for volume visualization. InProc. of
Theory and Practice of Computer Graphics ’04, pages 32–39, 2004.

[23] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and texture
generation. InProc. of SIGGRAPH ’03, volume 22, pages 287–294, 2003.

[24] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu. Color harmonization.
ACM Trans. on Graphics (SIGGRAPH ’06), 25(3):624–630, 2006.

[25] F. C. Crow. Summed-area tables for texture mapping.Computer Graphics (Proc. of
SIGGRAPH ’84), 18(3):207–212, 1984.

BIBLIOGRAPHY 113

[26] P. Degener, M. J., and R. Klein. An adaptable surface parameterization method. In
Proc. of 12th International Meshing Roundtable, pages 201–213, 2003.

[27] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes.
In Proc. of Eurographics ’02, volume 12, pages 209–218, 2002.

[28] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive cutaway illustrations. InProc.
of Eurographics ’03, pages 523–532, 2003.

[29] J. M. Dischler, K. Maritaud, B. Lévy, and D. Ghazanfarpour. Texture particles.
Computer Graphics Forum, 21(3):401–410, 2002.

[30] R. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. InProc. of SIGGRAPH
’88, volume 22, pages 65–74, 1988.

[31] I. Drori, D. Cohen-or, and H. Yeshurun. Fragment-basedimage completion. InProc.
of SIGGRAPH ’03, pages 303–312, 2003.

[32] T. Duchamp, A. Certain, A. DeRose, and W. Stuetzle. Hierarchical computation of
PL harmonic embeddings. Technical report, University of Washington, July 1997.

[33] D. H. Eberly.Game Physics. Morgan Kaufmann, 2004.

[34] A. A. Efros and W. T. Freeman. Image quilting for texturesynthesis and transfer. In
Proc. of SIGGRAPH ’01, pages 341–346, 2001.

[35] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. InProc.
of International Conference on Computer Vision ’99, volume 2, pages 1033–1038,
1999.

[36] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume rendering using
hardware-accelerated pixel shading. InProc. of ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware ’01, pages 9–16, 2001.

[37] M. C. Escher.The Graphic Work. Evergreen, Germany, 1992.

[38] M. S. Floater and K. Horman. Surface parameterization:a tutorial and survey. In
Advances in Multiresolution in Geometric Modelling. Springer, 2004.

[39] W. T. Freeman, T. R. Jones, and E. Pasztor. Example-based super-resolution.IEEE
Computer Graphics and Applications, pages 56–65, 2002.

[40] G. W. Furnas and B. B. Bederson. Space-scale diagrams: understanding multiscale
interfaces. InProc. of CHI’95 Human Factors in Computing Systems, pages 234–
241, 1995.

[41] A. Glassner. Cubism and cameras: Freeform optics for computer graphics.Microsoft
Research MSR-TR-2000-05, 2000.

BIBLIOGRAPHY 114

[42] R. C. Gonzalez and R. E. Woods.Digital Image Processing. Addison-Wesley Pub
Co., Boston, MA, 1992.

[43] S. J. Gortler, C. Gotsman, and D. Thurston. One-forms onmeshes and applications
to 3d mesh parameterization. Technical Report CS TR-12-04,Harvard University,
2004.

[44] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Flexible direct multi-volume
rendering in interactive scenes. InProc. of Vision, Modeling, and Visualization ’04,
pages 379–386, 2004.

[45] X. Gu, Y. He, and H. Qin. Manifold splines. InProc. of ACM Symposium on Solid
and Physical Modeling ’05, 2005.

[46] X. Gu and S.-T. Yau. Global conformal surface parameterization. In Proc. Eu-
rographics/SIGGRAPH Symposium on Geometry Processing ’03, pages 127–137,
2003.

[47] R. Gupta and R. Hartley. Linear pushbroom cameras.IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, 19(9):963–975, 1997.

[48] A. Gustafsson, A. Herrmann, and F. Huber. Conjoint analysis as an instrument of
market research practice.Conjoint Measurement, Methods and Applications., pages
5–45, 2000.

[49] S. Guthe, M. Wand, J. Gonser, and W. Straβr. Interactive rendering of large volume
data sets. InProc. of IEEE Visualization ’02, pages 53–60, 2002.

[50] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level volume rendering of
segmented data sets on consumer graphics hardware. InProc. of IEEE Visualization
’03, pages 40–47, 2003.

[51] H. Hauser, L. Mroz, G.-I. Bischi, and E. Gröller. Two-level volume rendering-fusing
MIP and DVR. InProc. of IEEE Visualization ’00, pages 211–218, 2000.

[52] C. G. Healey. Choosing effective colours for data visualization. In Proc. of IEEE
Visualization ’96, pages 263–270, 1996.

[53] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin. Image analo-
gies. InProc. of SIGGRAPH ’01, pages 327–340, 2001.

[54] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual voyage: Interactive
navigation in the human colon. InProc. of SIGGRAPH ’97, pages 27–34, 1997.

[55] D. H. House, A. Bair, and C. Ware. An approach to the perceptual optimization
of complex visualizations.IEEE Trans. on Visualization and Computer Graphics,
12(4):2006, 509–521.

BIBLIOGRAPHY 115

[56] J. Itten.The Art of Color. Van Nostrand Reinhold Company, New York, 1961.

[57] R. Jagnow, J. Dorsey, and H. Rushmeier. Stereological techniques for solid textures.
ACM Trans. on Graphics (SIGGRAPH ’04), 23(3):329–335, 2004.

[58] G. Ji and H. Shen. Dynamic view selection for time-varying volumes.IEEE Trans.
on Visualization and Computer Graphics, 12(5):2006, 1109–1116.

[59] J. Jia and C.-K. Tang. Inference of segmented color and texture description by tensor
voting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(6):771–786,
2004.

[60] M. Jin, Y. Wang, S.-T. Yau, and X. Gu. Optimal global conformal surface parame-
terization. InProc. of IEEE Visualization ’04, pages 267–274, 2004.

[61] A. Joshi and P. Rheigans. Illustration-inspired techniques for visualizing time-
varying data. InProc. of IEEE Visualization ’05, pages 679–686, 2005.

[62] J. Jost.Compact Riemann Surfaces. Springer, 2000.

[63] A. Kaufman and K. Mueller. Volume visualization and volume graphics.
URL://www.cs.sunysb.edu/ mueller/teaching/cse332/volvisChapter.pdf, 2003.

[64] T. Keahey and E. Robertson. Techniques for non-linear magnification transforma-
tions. InProc. of IEEE Symposium on Information Visualization ’96, pages 38–45,
1996.

[65] T. Keahey and E. Robertson. Nonlinear magnification fields. In Proc. of IEEE
Symposium on Information Visualization ’97, pages 41–49, 1997.

[66] S. L. Kilthau, M. S. Drew, and T. Möller. Full search content independent block
matching based on the fast fourier transform. Inproc. of IEEE ICIP ’02, pages
669–672, 2002.

[67] Y. Kim and A. Varshney. Saliency-guided enhancement for volume visualization.
IEEE Trans. on Visualization and Computer Graphics, 12(5):925–932, 2006.

[68] G. L. Kindlmann, E. Reinhard, and S. Creem. Face-based luminance matching for
perceptual colormap generation. InProc. of IEEE Visualization ’02, pages 309–406,
2002.

[69] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, andE. Praun. Gaussian trans-
fer functions for multi-field volume visualization. InProc. of IEEE Visualization
’03, pages 497–504, 2003.

[70] C. Kolb, D. Mitchell, and P. Hanrahan. A realistic camera model for computer graph-
ics. In Proc. of the 22nd annual conference on Computer graphics andinteractive
techniques, pages 317–324, 1995.

BIBLIOGRAPHY 116

[71] R. Kosara, S. Miksch, and H. Hauser. Semantic depth of field. In Proc. of InfoVis
’01, pages 97–104, 2001.

[72] J. Krüger and R. Westermann. Acceleration techniquesfor GPU-based volume ren-
dering. InProc. of IEEE Visualization ’03, pages 287–292, 2003.

[73] Y. Kurzion. Visualization Enhancement by Embedding Local and Global Modeling
Operations in the Rendering Process. PhD thesis, The Ohio State University, 1998.

[74] V. Kwatra, A. Schöl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image
and video synthesis using graph cuts. InProc. of SIGGRAPH ’03, volume 22, pages
277–286, 2003.

[75] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. InProc. of SIGGRAPH ’94, pages 451–458, 1994.

[76] Y.-K. Lai, S.-M. Hu, X. Gu, and R. R. Martin. Geometric texture synthesis and
transfer via geometry images. InProc. of ACM Symposium on Solid and Physical
Modeling, 2005.

[77] E. LaMar, B. Hamann, and K. I. Joy. A magnification lens for interactive volume
visualization. InProc. of the Ninth Pacific Conference on Computer Graphics and
Applications, pages 223–232, 2001.

[78] A. Leu and M. Chen. Modelling and rendering graphics scenes composed of multiple
volumetric datasets.Computer Graphics Forum, 18(2):159–171, 1999.

[79] W. Leung, N. Neophytou, and K. Mueller. SIMD-aware ray casting. InVolume
Graphics Workshop ’06, pages 59–62, 2006.

[80] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented
presentation techniques.ACM Trans. on Computer-Human Interaction, 1(2):126–
160, 1994.

[81] H. Levkowitz and G. T. Herman. GLHS: A generalized lightness, hue, and satura-
tion color model.CVGIP: Graphical Model and Image Processing, 55(4):271–285,
1993.

[82] M. Levoy. Display of surfaces from volume data.IEEE Computer Graphics and
Application, 8(5):29–37, 1988.

[83] M. Levoy. Efficient ray tracing of volume data.ACM Trans. on Computer Graphics,
9(3):245–261, 1990.

[84] M. Levoy and R. Whitaker. Gaze-directed volume rendering. Computer Graphics
(Proc. of Symposium on Interactive 3D Graphics ’90), 24(2):217–223, 1990.

BIBLIOGRAPHY 117

[85] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. InProc. of SIGGRAPH ’02, volume 21, pages
362–371, 2002.

[86] W. Li, K. Mueller, and A. Kaufman. Empty space skipping and occlusion clipping
for texture-based volume rendering. InProc. of IEEE Visualization ’03, pages 317–
324, 2003.

[87] L. Liang, C. Liu, Y. Xu, B. Guo, and H.-Y. Shum. Real-timetexture synthesis by
patch-based sampling.ACM Trans. on Graphics, 20(3):127–150, 2001.

[88] H. Loffelmann and E. Groller. Ray tracing with extendedcameras.The Journal of
Visualization and Computer Animation, 7(4):211–227, 1996.

[89] A. Lu and D. Ebert. Example-based volume illustrations. In Proc. of IEEE Visual-
ization ’05, pages 655–662, 2005.

[90] A. Lu, C. Morris, J. Taylor, D. Ebert, C. Hansen, P. Rheingans, and M. Hartner.
Illustrative interactive stipple rendering.IEEE Trans. on Visualization and Computer
Graphics, 9(2):127–138, 2003.

[91] T. Malzbender and F. Kitson. A fourier technique for volume rendering.Focus on
Scientific Visualization, pages 305–316, 1991.

[92] Y. Matsuda.Color design (in Japanese). Asakura Shoten, 1995.

[93] M. J. McGuffin, L. Tancau, and R. Balakrishnan. Using deformations for browsing
volumetric data. InProc. of IEEE Visualization ’03, pages 401–408, 2003.

[94] B. J. Meier, A. M. Spalter, and D. B. Karelitz. Interactive color palette tools.IEEE
Computer Graphics and Applications, 24(3):64–72, 2004.

[95] P. Moon and D. E. Spencer. Geometrical formulation of classical color harmony.
Journal of the Optical Society of America, 34(1):46–60, 1944.

[96] K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet buffer-based splat-
ting. In Proc. of IEEE Visualization ’98, pages 239–245, 1998.

[97] A. H. Munsell.A Grammar of Colors. New York: Van Nostrand Reinhold Company,
1969.

[98] D. R. Nadeau. Volume scene graphs. InProc. of the IEEE symposium on Volume
visualization ’00, pages 49–56, 2000.

[99] A. Nealen and M. Alexa. Hybrid texture synthesis. InProc. of the 14th Eurographics
workshop on Rendering, pages 97–105, 2003.

BIBLIOGRAPHY 118

[100] N. Neophytou and K. Mueller. GPU accelerated image aligned splatting. InVolume
Graphics Workshop ’05, pages 197–205, 2005.

[101] F. Neyret and M.-P. Cani. Pattern-based texturing revisited. InProc. of SIGGRAPH
’99, pages 235–242, 1999.

[102] S. Owada, F. Nielsen, M. Okabe, and T. Igarashi. Volumetric illustration: Designing
3d models with internal textures. pages 322–328, 2004.

[103] R. Paget and I. D. Longstaff. Texture synthesis via a noncausal nonparametric multi-
scale markov random field.IEEE Trans. on Image Processing, 7(6):925–931, 1998.

[104] K. Perlin and D. Fox. Pad: an alternative approach to the computer interface. In
Proc. of SIGGRAPH ’93, pages 57–64, 1993.

[105] B. Pflesser, U. Tiede, and K. H. Höhne. Towards realistic visualization for surgery
rehearsal. InProc. of Computer Vision, Virtual Reality and Robotics in Medicine,
pages 487–491, 1995.

[106] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugate.
Experimental Mathematics, 2(1):15–36, 1993.

[107] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In Proc. of SIGGRAPH
’00, pages 465–470, 2000.

[108] P. Rademacher and G. Bishop. Multiple-center-of-projection images. InProc. of
SIGGRAPH ’98, pages 199–206, 1998.

[109] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume
rendering on standard pc graphics hardware using multi-textures and multi-stage
rasterization. InProc. of ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware ’00, pages 109–118, 2000.

[110] P. Rheingans. Task-based color scale design. InProc. of Applied Image and Pattern
Recognition ’99, pages 35–43, 1999.

[111] P. Rheingans and D. Ebert. Volume illustration: Nonphotorealistic rendering of
volume models.IEEE Trans. on Visualization and Computer Graphics, 7(3):253–
264, 2001.

[112] B. E. Rogowitz and A. D. Kalvin. The ”Which Blair Project”: a quick visual method
for evaluating perceptual color maps. InProc. of IEEE Visualization ’01, pages 183–
190, 2001.

[113] B. E. Rogowitz and L. Treinish. An architecute for rule-based visualization. InProc.
of IEEE Visualization ’93, pages 236–244, 1993.

BIBLIOGRAPHY 119

[114] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. Video textures. InProc. of
SIGGRAPH ’00, pages 489–498, 2000.

[115] P. Shanbhag, P. Rheingans, and M. desJardins. Temporal visualization of planning
polygons for efficient partitioning of geo-spatial data. InProc. of IEEE Symposium
on Information Visualization ’05, page 28, 2005.

[116] A. Sheffer and E. Sturler. Parameterization of faceted surfaces for meshing using
angle-based flattening.Engineering with Computers, 17(3):326–337, 2001.

[117] C. Soler, M. P. Cani, and A. Angelidis. Hierarchical pattern mapping. InProc. of
SIGGRAPH ’02, volume 21, pages 673–680, 2002.

[118] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. Simple and flexible volume render-
ing framework for graphics-hardware-based raycasting. InVolume Graphics Work-
shop ’05, pages 187–195, 2005.

[119] M. Stone.A Field Guide to Digital Color. A.K. Peters, Natick, MA, 2003.

[120] K. Strebel.Quadratic Differentials. Springer-Verlag, 1984.

[121] N. Svakhine, Y. Jang, D. Ebert, and K. Gaither. Illustration and photography inspired
visualization of flows and volumes. InProc. of IEEE Visualization ’05, pages 687–
694, 2005.

[122] N. A. Svakhine, D. S. Ebert, and D. Stredney. Illustration motifs for effective medical
volume illustration.IEEE Computer Graphics and Applications, 25(3):31–39, 2005.

[123] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-driven approach to
locating optimal viewpoints for volume visualization. InProc. of IEEE Visualization
’05, pages 495–502, 2005.

[124] L. L. Thurstone. A law of comparative judgement.Psychological Review, 34:1927,
273–286.

[125] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum. Synthesis of bidirec-
tional texture functions on arbitrary surfaces. InProc. of SIGGRAPH ’02, volume 21,
pages 665–672, 2002.

[126] L. Tonietto and M. Walter. Towards local control for image-based texture synthesis.
In Proc. of XV Brazilian Symposium on Computer Graphics and Image Processing,
pages 252–258, 2002.

[127] M. Tory and C. Swindells. Comparing ExoVis, orientation icon, and in-place 3D
visualization techniques. InProc. of Graphics Interface ’03, pages 57–64, 2003.

[128] S. Treavett and M. Chen. Pen-and-ink rendering in volume visualization. InProc.
of IEEE Visualization ’00, pages 203–210, 2000.

BIBLIOGRAPHY 120

[129] G. Turk. Texture synthesis on surfaces. InProc. of SIGGRAPH ’01, pages 347–354,
2001.

[130] S. Vallance and P. R. Calder. Multi-perspective images for visualisation. InVIP ’01:
Pan-Sydney Area Workshop on Visual Information Processing, pages 69–76, 2001.

[131] I. Viola. Importance-Driven Expressive Visualization. PhD thesis, Vienna University
of Technology, Austria, 2005.

[132] I. Viola, E. Gröler, K. Bühler, M. Hadwiger, B. Preim, D. Ebert, M. C. Sousa, and
D. Stredney. Illustrative visualization. IEEE Visualization ’05 tutorial, Minneapolis,
MN, 2005.

[133] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven volume rendering. In
Proc. of IEEE Visualization ’04, pages 139–145, 2004.

[134] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven feature enhancement
in volume visualization. IEEE Trans. on Visualization and Computer Graphics,
11(4):408–418, 2005.

[135] C. Ware.Information Visualization: Perception for Design. Morgan Kaufmann, San
Francisco, second edition, 2004.

[136] L.-Y. Wei. Texture synthesis by fixed neighborhood searching. PhD thesis, Stanford
University, 2001.

[137] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quanti-
zation. InProc. of SIGGRAPH ’00, pages 479–488, 2000.

[138] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. InProc.
of SIGGRAPH ’01, pages 355–360, 2001.

[139] X. Wei, A. E. Kaufman, and T. J. Hallman. Case study: visualization of particle
track data. InProc. of IEEE Visualization ’01, pages 465–468, 2001.

[140] D. Weiskopf, T. Schafhitzel, and T. Ertl. GPU-based nonlinear ray tracing.Computer
Graphics Forum, 23(3):625–634, 2004.

[141] L. Westover. Footprint evaluation for volume rendering. InProc. of SIGGRAPH ’90,
pages 367–376, 1990.

[142] Wikipedia. the free encyclopedia. http://wikipedia.org/, 2006.

[143] B. Wilson, E. B. Lum, and K.-L. Ma. Interactive multi-volume visualization. In
Proc. of the International Conference on Computational Science ’02, pages 102–
110, 2002.

BIBLIOGRAPHY 121

[144] G. Wolberg.Digital Image Warping. IEEE Computer Society Press, Los Alamitos,
CA, 1990.

[145] H.-C. Wong, H. Qu, U.-H. Wong, Z. Tang, and K. Mueller. Aperceptual framework
for comparisons of direct volume rendered images. InProc. of IEEE Pacific-Rim
Symposium on Image and Video Technology, 2006.

[146] W. Wong.Principles of Color Design. Wiley, 1996.

[147] D. Wood, A. Finkelstein, J. Hughes, C. Thayer, and D. Salesin. Multiperspective
panoramas for cel animation. InProc. of SIGGRAPH ’97, pages 243–250. ACM,
1997.

[148] Y. Q. Xu, B. Guo, and H.-Y. Shum. Chaos mosaic: fast and memory efficient texture
synthesis. Technical Report MSR-TR-2000-32, Microsoft Research, 2000.

[149] H. Yamauchi, J. Haber, and H.-P. Seidel. Image restoration using mutli-resolution
image synthesis and image inpainting. InProc. Computer Graphics International
’03, pages 120–125, 2003.

[150] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin. Texture and shape synthesis on
surfaces. InProc. of 12th Eurographics Workshop on Rendering ’01, pages 301–312,
2001.

[151] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A fast and simple stretch-minimizing
mesh parameterization. InProc. of Shape Modeling and Applications ’04, pages
200–208, 2004.

[152] J. Yu and L. McMillan. A framework for multiperspective rendering. Render-
ing Techniques ’04, Eurographics Symposium on Rendering (EGSR), pages 61–68,
2004.

[153] J. Yu and L. McMillan. General linear cameras. InProc. of the 8th European
Conference on Computer Vision (ECCV) ’04, pages 14–27, 2004.

[154] B. Yuri and V. Kolmogorov. An experimental comparisonof min-cut/max-flow al-
gorithms for energy minimization in vision. InThird International Workshop on
Energy Minimization Methods in Computer Vision and PatternRecognition, pages
359–374, 2001.

[155] B. Yuri, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. InInternational Conference on Computer Vision, pages 377–384, 1999.

[156] R. Zakia.Perception and Imaging. Focal Press, second edition, 2001.

[157] S. Zelinka and M. Garland. Towards real-time texture synthesis with the jump map.
In Proc. of the 13th Eurographics Workshop on Rendering Techniques ’02, pages
99–104, 2002.

BIBLIOGRAPHY 122

[158] J. Zhou, A. Döring, and K. D. Tönnies. Distance basedenhancement for focal region
based volume rendering. InProc. of Bildverarbeitung f̈ur die Medizin ’04, pages
199–203, 2004.

[159] J. Zhou, M. Hinz, and K. D. Tönnies. Focal region-guided feature-based volume
rendering. InProc. of1st International Symposium on 3D Data Processing Visual-
ization and Transmission, pages 87–90, 2002.

[160] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall. Mosaicing new views: The
crossed-slits projection.IEEE Trans. on PAMI, pages 741–754, 2003.

[161] M. Zwicker, H. Pfister, J. V. Baar, and M. Gross. EWA volume splatting. InProc. of
IEEE Visualization ’01, pages 29–36, 2001.

	 List of Tables
	 List of Figures
	 Acknowledgments
	 Publications
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Volume Visualization
	2.1.1 Volume Rendering
	2.1.2 GPU-Accelerated Volume Rendering

	2.2 Illustrative Visualization
	2.2.1 Focus+Context Visualization
	2.2.2 Cut-Away Views and Deformations
	2.2.3 Lenses and Distortions
	2.2.4 Illustration-Inspired Volume Visualization

	2.3 Texture Synthesis
	2.3.1 Approaches
	2.3.2 Applications and Extensions

	3 Magic Volume Lens
	3.1 Volumetric Lenses
	3.1.1 Magnifier
	3.1.2 Feature-Based Lens
	3.1.3 Sampling-Rate-Based Lens
	3.1.4 Angular Lens

	3.2 Hardware Acceleration
	3.3 Results
	3.4 Discussion

	4 Semantic Zoom Using Texture Synthesis
	4.1 Introduction
	4.2 The Virtual Microscope -- A 2D Viewer
	4.2.1 Preprocessing
	4.2.2 Constrained Texture Synthesis
	4.2.3 Smooth Semantic Zooms
	4.2.4 Results

	4.3 Extension to 3D
	4.4 Discussion

	5 Uniform Texture Synthesis
	5.1 Introduction
	5.2 Related Work
	5.3 Global Conformal Parameterization
	5.4 Uniform Texture Synthesis
	5.4.1 Estimation of Conformal Factor
	5.4.2 Multi-Scale Synthesis Algorithm
	5.4.3 Results

	5.5 Quasi-Isometric Texture Mapping
	5.5.1 Mass-Spring Model
	5.5.2 Results

	5.6 Discussion

	6 Multiperspective Visualization
	6.1 Introduction
	6.2 Sphere-Based Multi-View Approach
	6.3 Results
	6.4 Discussion

	7 Conjoint Analysis to Measure the Perceived Quality
	7.1 Introduction
	7.2 Volume Rendering Scenario
	7.3 Choice Based Conjoint Analysis
	7.4 Overview of the Framework
	7.5 Results
	7.6 Discussion

	8 Color Design for Visualization
	8.1 Introduction
	8.2 Related Work
	8.3 System Design Goals and Overview
	8.4 The Computational Design Expert System
	8.4.1 Encoded Principles and Guidelines
	8.4.2 Framework Theory
	8.4.3 Implementation Details: 2D System
	8.4.4 Implementation Details: 3D System

	8.5 Applications
	8.5.1 2D Visualization
	8.5.2 Lightness-preserving Color Harmonization and Color Shifting
	8.5.3 Volume Rendering
	8.5.4 Color Mixing in Semitransparent Rendering
	8.5.5 Feature Highlighting

	8.6 Discussion

	9 Multi-Layer Multi-Volume Rendering
	9.1 Introduction
	9.2 Overview of Our Framework
	9.3 Multi-Volume Ray Casting Algorithm
	9.4 Results
	9.5 Discussion

	10 Conclusion
	 Bibliography

