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Abstract of the Dissertation

Feature-Driven lllustrative Visualization and Graphics
by
Lujin Wang

Doctor of Philosophy

in
Computer Science
Stony Brook University
2007

We present several feature-driven illustrative visuailtmaand graphics techniques to en-
hance the representation of the features of interest imweldatasets. While the magni-
tude and resolution of real-life datasets keep increasiagdtically, there is a limit on the
screen pixel density the human eye can resolve, and a boutiteonformation a human
brain can visually process at any given time. Therefore, @esg techniques to facilitate
the perception of the visual information.

First, we propose a GPU-based focus+context frameworkuses various standard
and advanced magnification lens rendering techniques toifyae features of interest,
while compressing the remaining volume regions withouytphg them away completely.
Our technique allows the user to interactively manage thédahle screen area, dedicating
more area to the more resolution-important features. A igdimation of this concept is
multiperspective rendering, which is also studied in oanfework to show the spatial
relationships of features.

Second, when features are simply magnified, there will adaA@g/a limit on the avail-
able level of detail and the resolution of the data. To addthsse shortcomings, we
present a technique to extend regular zooms to semanticszoOnmr technique generates
the missing detail from any available and plausible higéehation datasets, using con-
strained texture synthesis. We demonstrate our approaatapy of a medical application
— the visualization of a human liver — but its principles riadpply to any scenario, as
long as data at all resolutions are available.

The third topic is related to surface texture mapping andh®asis, where we present
two methods that preserve both scale and angle. By usingigtolbformal parameteriza-
tion, the 3D surface texture synthesis problem can be ctetvéo a 2D image synthesis
problem. Our multi-scale synthesis method maintains a maoiferm area scaling factor.
By employing a conformal factor-driven mass-spring retexaon global parameteriza-
tion, our second method helps preserve orthogonality am@isitexture mapping.

This thesis also seeks to break new grounds in embeddingptsfrom human per-
ception, cognition, and visual processing into visuaiaatlesign. We present a rule based



color design system to provide better control for task-lmior feature-driven visualization
tasks. Our system not only assists in the selection of proglers, it also helps to avoid

poor color mixing in semi-transparent rendering and theaggmt change in brightness in
color harmonization. Then, inspired by our work on volumedering and color design,
we propose a general multi-layer multi-volume renderiramfework. Finally, we inves-

tigate the influence and settings of various volume rendguarameters by conducting a
user study with 750 participants, assessing the resultsongint analysis, a promising
paradigm to conduct user studies in visualization develdyyeclose collaborators.
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Chapter 1

Introduction

1.1 Motivation

Recent years have seen a dramatic growth in our ability topcwen acquire, and as-
semble datasets of increasingly large magnitudes andutest. Great advances have also
been made in screen technology, bringing high-resolutisplays to the desktop at afford-
able prices, as well as offering sophisticated CAVE enviments. The one device that has
consistently resisted participation in this spiral of gtiowe the human eye and the cortical
visual processing abilities. In fact, there is a naturaitliom the screen pixel density, as a
function of distance, which the human eye can resolve, ametis also a natural falloff of
retinal receptor density towards the foveal peripheryalnthere is also a bound on the
information the human brain can visually process at anyrgiwae, but this is probably an
ability that can be trained the most. In view of these natiuratations, which are bound to
stay, we must devise ways to make the best use of the avaiktbial surface and cerebral
potential, in light of the growing amount of visual infornt ready to be presented.

Many illustrative visualization techniques have been pesal to exploit the perception
of the human visual system and provide effective visualrabsbns to make the visualiza-
tion clearly understandabl&32. Such techniques are inspired by traditional technicdl an
medical illustrations. Visual emphasis and abstractioreti@een used for expressive pre-
sentation from prehistoric paintings to nowadays sciendifid medical illustrations. Many
of the expressive techniques used in art are adopted in demgnaphics, and are denoted
as illustrative or non-photorealistic rendering. Diffetstroke techniques, or brush prop-
erties express a particular level of abstraction. Featmghasis or feature suppression is
achieved by combining different abstraction levels insthative rendering.

Most of such visualization techniques focus on improving tfaditional volume ren-
dering style based on non-photorealistic rendering otilngfmethods, or exploiting smart
visibility in visualization. To effectively convey the mbsnportant visual information,
however, there are many more aspects and approaches inagrapd other related fields
worth considering and exploring.

In this thesis, we present several new feature-driverntititise visualization and graph-
ics techniques (see Figutel), which are derived from different points of view, inclugdin



1. INTRODUCTION 2

‘ Features (Image / Surface / Volume) ‘
A A

[ Magnify, Enhance, lllustrate, Manipulate ][Emphasize, Make Legible j

[ [
I R h !
| |
1 Volume Semantic Uniform H Conjoint Color |
| Lens Zoom Texture 1| Analysis Design ‘
| Synthesis i} y g i
| |
| I I
I h !
! Part I: Detail }} Part Il: Perception j
| Multi- Multi-Layer |
} Perspective Multi-Volume !
l Visualization Rendering . !
{ Extensions )

Figure 1.1: Our feature-driven illustration techniques.

detail management and perception. All of the techniqueggeed here have the same goal,
that is, to enhance and better visualize the features akisiten the datasets.

1.2 Contributions

Our major contributions to scientific visualization andgres research include various
feature-driven illustration techniques to enhance theasgntation of features or details of
importance, and new insights and techniques to facilitateebperception of the presented
visual information. Our techniques mainly fall into two ggs: detail, and perception
related techniques. The former includes novel techniqoesagnify features of interest
in volume datasets by focus+context volume rendering, eyimd texture synthesis tech-
niques in visualization to generate multi-resolution detfar semantic zooming in images
and volumes, and creating uniform texture features on thiasai based on global con-
formal parameterization. The latter includes measurimggérceived quality of volume
rendering by conjoint analysis, and assigning colors ttirgjgsish or highlight features.
Furthermore, we study the feasibility of multiperspectreéume rendering for simultane-
ously showing features, and we propose a multi-layer fraonkedor multi-volume visual-
ization. In summary, our contributions include:

e We have proposed an interactive focus+context volume ramgléramework that
uses various standard and advanced magnification lensriegdiechniques to mag-
nify the features of interest in a volume dataset, while casging the remaining
volume regions without clipping them away completely. Sarhéhese lenses can
be interactively configured by the user to specify the ddsinagnification patterns,
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while others are feature-adaptive. Our technique allowsier to interactively man-
age the available screen area, dedicating more area to tteeresmlution-important
features.

¢ We have presented a method that generates the missingfoatadny available and
plausible high-resolution datasets, using constraingtlite synthesis. The detail
generation process is guided by the underlying image omveldata, and is designed
to fill in plausible detail in accordance with the coarse dinte and properties of the
zoomed-in neighborhood. Regular zooms become “semantimgy where each
level of detail stems from a data source attuned to thatuésal We demonstrate
our approach by a medical application, the visualizatiora dfuman liver, but its
principles readily apply to any scenario, as long as dath@smlutions are available.

e For surface texture synthesis, we have presented two metbodimultaneous scale
and angle preservation, based on global conformal paraizegien. By using the
conformal parameterization, the 3D surface texture swmghgroblem can be con-
verted to a 2D image synthesis problem, which is more ineligasier, and concep-
tually simpler. While the conformality of the parametetiaa naturally preserves
the angles of the texture, we provide a multi-scale techetqualso maintain a more
uniform area scaling factor. Another contribution is to lgg mass-spring method
to achieve quasi-isometric parameterization which siamdbusly preserves orthog-
onality and size in texture mapping. Our algorithms are smgfficient and auto-
matic, and they are theoretically sound and universal tegisurfaces as well.

e We have extended our volume lens framework to involve meitpective volume
rendering. Our approach generates a single image combimatscan be seen from
more than one viewpoints. Although distortions are unaablie and maybe too
much sometime, multiperspective rendering gives a cludefspatial relationship
of features.

e We have been part of a collaboration that demonstrated tmgoiot analysis can be
a useful and efficient tool to gauge influences of a rich seenflering parameters
on human perception in visualization tasks. Our role in pinggect was the creation
of a large collection of images, suitable for the compaeatesting strategy of con-
joint analysis and a subsequent statistically valid anslgEthe user study results.
The framework was demonstrated by a study that measurecktheiyed quality in
volume rendering within the context of large parameter epa@hen generating the
pool of 5500 images used in the study, we took great care taceethe effects of
competing adverse parameters, such as image size andionchyghout reducing
the effects of the relevant tested parameters, such as sch@mes and rendering
mode and precision.

e We have proposed a system which captures the rules explaitd implicitly for-
mulated in various classic color design books into a coltacsi®n framework, pro-
viding appropriate colorizations based on user prefegniceportance functions,
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and scene composition. Since our approach incorporatesiggsrinciples of vision
psychology, such as preattention, emotion, and aesthéttzn provide better con-
trol for task-driven or feature-driven visualization taskOur rule based system not
only assists in the selection of proper colors, it also hed@s/oid poor color mixing
in semi-transparent rendering and the apparent changeghtibess in some color
harmonization scenarios.

e We have proposed a preliminary multi-layer multi-volumedering framework.
Employing a Photoshop like multi-layer style, and incogiorg GPU-accelerated
ray casting rendering, our framework can provide users aigieneral and efficient
tool to explore multiple volume datasets.

1.3 Outline

The overall organization of the thesis is as follows. Chaptgives a brief overview
of the related techniques, including volume visualizatithustrative visualization, and
example-based texture synthesis. We present our magimeolens, an interactive fo-
cus+context volume rendering technique, in Chapte&Zhapte# follows with our seman-
tic zoom technique, where multi-resolution details in thages and volumes are generated
using constrained texture synthesis. In Chaptewe describe how to generate uniform
textures on the surface by texture synthesis and texturgimgpsing global conformal
parameterization. We study the multiperspective volunsealization in Chapte8. We
demonstrate the conjoint analysis framework by a studyrttegtsures the perceived quality
in volume rendering in Chaptét. Chapter8 presents our work on color design for visu-
alization. Chapte® describes our multi-layer visualization framework and timublume
rendering algorithm. Finally, we draw conclusions in Cleag0.



Chapter 2

Background

Feature is defined as a prominent or distinctive aspectjtgual characteristic. A
feature can be specified according to a function value,afdatation, local properties, or,
in the multi-variate case as a product of function value fachemodality. How to show
features faithfully and emphasize features of interestiefitly is an important and not
trivial task in visualization and graphics.

This chapter starts with the typical volume visualizatiggp@aches in Sectiof.1,
because most of our work deals with the volumetric datadetnwe give an overview of
the state-of-art illustrative visualization techniquesSiection2.2 Since texture synthesis
is one of the primary techniques we propose to help generateeahance features for
visualization, we will discuss the most related texturetBgais techniques in Secti@3.

2.1 Volume Visualization

The central role of visualization is to provide the user vaithisual representation of the
underlying non-visual data. The goal is to convey propsiiethe data in an effective and
efficient way. A 3D scientific or medical dataset can be regmésd either by iso-surfaces
or by direct volume rendering. Iso-surface extraction atgms, such as Marching Cubes,
extract polygonal surfaces from the dataset with specifeatsidy values. These polygonal
surfaces, typically triangle meshes, can then be rendareddh typical surface rendering
techniques or tools in computer graphics. Volume rendent@duced by Drebin et al.
[30] is the process of creating a 2D image directly from 3D voltnmealata without gen-
erating the intermediate geometric primitive represémat hence it is often called direct
volume renderingg3]. Our work is mostly related to direct volume rendering.

2.1.1 Volume Rendering

Volume rendering contains image-order, object-order, @muhain-based techniques.
Image-order volume rendering algorithms use a backwargmgscheme where rays are
cast from each pixel in the image plane through the voluma datl the grids at discrete
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locations along their paths are sampled via interpolataetermine the final pixel value.
Object-order techniques use a forward mapping scheme viherolume is decomposed
into a set of basis elements or basis functions which areichaklly projected to the screen
and assembled into an image. In a domain-based techniqeedtial volume data is first
transformed into an alternative domain, such as compnesgequency, or wavelet, and
then a projection is generated directly from that dom&ij.[The major volume rendering
algorithms include ray casting (image-order algorithi®2, [83], splatting (object-order

algorithm) [L41, 96, 161], shear-warp (a hybrid technique)q).

X-ray rendering, maximum intensity projection (MIP) andl feolume rendering are
three basic rendering modes. In ray casting algorithmsetimeodes differ in how the
samples taken along a ray are combined. In X-ray, the inkatgeb samples are simply
summed, giving rise to a typical image obtained in projectiiagnostic imaging, while
in MIP, only the interpolated sample with the largest vasivritten to the pixel. In full
volume rendering, also called direct volume rendering (DMRe interpolated samples are
further processed to simulate the light transport withirolumetric medium according to
one of many possible models. Either back-to-front compugit

Cdst - (]- - asrc)cdst + asrccsrca (21)

or front-to-back compositing:

Cdst - Cdst + (]- - adst)asrccsrca (22)
Qgst = Oggt T (]- - adst)asrcv (23)
(2.4)

can be used, whelg,,; anda,,; are the composite color and opacity,.. anda,. are the
color and opacity for the intensity value of the current skt jplata point, and usually spec-
ified by a transfer function, which is a useful feature clasaiion technique. A transfer
function refers to a function that maps the data values tyréc optical properties (in-
cluding R, G, B and Alpha channels). The classical trangfection is a one-dimensional
function dealing with scalar data, and has been extendedte dimensions (e.g. the first,
second-order derivatives).

The rendering effects are different for these four rendermodes, and a rendering
algorithm that merges the different modes into a hybrid ienggneration model has been
proposed$1]. The full volume rendering mode is most widely used singardvides the
greatest degree of freedom and better rendering results.

In basic splatting, each object point is first assigned araid opacity using the shad-
ing equation and the transfer functions. Then, each pospletted into the screen’s color
and opacity buffers and the result is composited with thegmmeimage. There are three
types of splatting: composite-onl{41], axis-aligned sheet-buffered41]] (to reduce the
color bleeding), and image-aligned sheet-buffered sptaf96] (to reduce the popping
artifacts).

Volume rendering techniques are very powerful tools toesent real world 3D data.
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Beside earlier works mentioned above, there have been sp mes@arches try to improve
of the image quality in different ways, or accelerate thedeximg both by software or
hardware techniques over the years.

2.1.2 GPU-Accelerated Volume Rendering

With the extended programmability of the graphics processinit (GPU) that has
recently become available, combined with the increasefbpeance of PC CPUs, much
tasks in computer graphics can be done interactively onopatscomputers, including
volume rendering.

GPU-accelerated volume rendering techniques starts \litarzi 3D texture mapping
[15, 109 50], which properly shifted and composited a set of axis althskces. Pre-
integrated volume renderin@®] was introduced to cope with under-sampling artifacts.
Acceleration techniques, such as early ray terminationeampoty space skippind@g|, and
hierarchical acceleration structure®] were also introduced.

When the render-to-texture capabilities emerged and tteenediate results can be
stored onto textures, ray casting on GPU becomes feasiblegér and Westermanidg]
implemented a ray caster on the GPU. Weiskopf et BL([ extended this framework to
non-linear ray tracing. Both methods explicitly enforcéé program flow by rendering
control polygons for every major step of the ray casting atgm, using textures to hold
the intermediate computation results. The repeated stepsadvancing the rays, inter-
polation of samples in the 3D data texture, shading, conipgsiRays that have become
opaque could be eliminated (terminated) between stepsraptyespace could be culled.
The addition of loop and branch capabilities into the GPUgpanming set has enabled
the more natural and free-flowing pipeline execution modslus single-pass ray-casting
[118. Leung et al. ¥9] further accelerated ray casting by using the PARC (Polygon
Assisted Ray Casting) algorithm to ensure that all rays atented to the limits of the
volume’s outermost surface.

Splatting was accelerated on the GPU using early-z cullt@d[ A hardware-
accelerated adaptive EWA (elliptical weighted averagdume splatting algorithm has
also been propose@().

2.2 lllustrative Visualization

An lllustration is a visualization such as a drawing, paigtiphotograph or other work
of art that stresses subject more than form. The aim of astiiition is to elucidate or
decorate a story, poem or piece of textual information (fagh newspaper article), tradi-
tionally by providing a visual representation of somethilegcribed in the text (Defined by
Wikipedia [142).

lllustration has always been an important visual commui@gnamedium among hu-
mans. Technical, medical and biological illustrationsénagcommodated several types of
rendering styles, including the line art technique (ped-auk technique), the photorealistic
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drawing style, and a combination of a real photograph areldih. Many approaches, like
stippling, hatching, or charcoal shading, allow one to usidad the front shape of features
by simulating shading. Expressive illustration techn&jsech as section views, cut-away
views, ghosted views, or exploded views and zooming distosteffectively uncover most
important information by changing the level of visual abstion or modifying the spatial
arrangement of features. A detailed description of theohysof illustration and modern
illustration techniques can be found in Viola’s thedi8]].

2.2.1 Focus+Context Visualization

Visualization tasks frequently emphasize a particulatuiesas opposed to the remain-
ing context information. In medical visualization for expla features interesting for the
diagnosis are shown together with features in their closi@ity. Such visualization strate-
gies are often denoted as focus+context visualizationrevioeus refers to the most inter-
esting feature and context is the surrounding or less retemformation to provide spatial
or other referential relationships. In order to concestrabstly on the focus information,
the context often has to be represented in a sparse way tésindd take too much of the
image space.

Many techniques have been developed in this area. Zhou €134 devised focus-
region based volume rendering for volume feature enhaneenvelume data inside and
outside the focus region are rendered in different styled the distance to the focal point
is further included to control the optical properties of wole features in the context re-
gion [158. Gaze-directed volume rendering4] takes the observer’s viewing focus into
account to increase the rendering performance. The volataset is rendered at different
resolutions, with the focal region represented at full hetson and the other parts at a lower
resolution.

Importance-driven volume rendering33 is a view-dependent model for automatic
focus+context volume visualization. The object imporamcadded as a new dimension
to the traditional volume rendering pipeline in order to naixe the visual information.
This technique removes or suppresses less important gartcene to reveal more impor-
tant underlying information. The illustrative contexteperving volume rendering model
[12, 11] uses a function of shading intensity, gradient magnitdasgance to the eye point,
and previously accumulated opacity to selectively redheeopacity in less important data
regions. The method keeps easy and intuitive user conttbbwi missing context infor-
mation.

2.2.2 Cut-Away Views and Deformations

The visibility of prominent features can be achieved bysiltative visualization tech-
niques such as cut-away views or ghosted views. A diffenerarsway to provide infor-
mation on the data is using exploded views or other types foirahation.

Cut-Away viewing, also known as volume cuttirdf, is another way to display volu-
metric objects. Various cut-away techniques can be actiiautomatically 28], and many
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improvements have been made. Tory et 4127 provided a framework, called ExoVis,
for simultaneously viewing detail and context in volumettiata sets. It allows users to
view multiple slices of a volume at arbitrary orientatioakyng with multiple subvolumes
rendered in different styles. All slices and subvolumesautside or surrounding a 3D
overview of the dataset.

Instead of disposing cut-away volume parts, Kurzi@f] [presented a method to de-
form the shape of volume models and reveal the inside featutbout any modifications
to the original model. The method operates in the renderlmg@, thus providing the
illusion that he modified the model. It equals to changingdagctions, however, the im-
plementation is not straightforward since the textureedasardware acceleration method
is utilized. McGulffin et al. 93] used deformations for browsing volumetric data. Volume
splitting technique44] is intended for displaying multiple enclosed iso-surfaegthin the
volumetric data. Each iso-surface, except the innermost @nsplit into two parts and
moved apart.

2.2.3 Lenses and Distortions

Lenses in the real world can be quite complicatéd.[ However, simple lenses and
magnifications are still very useful and have been thorgugtudied for text, image and
information visualizationsg0, 64, 65. Bier et al. [B] introduced Toolglass and Magic
Lenses as a see-through interface to modify the visual agpea of application objects,
enhance data of interest or suppress distracting infoomatiewpoint-dependent distor-
tion of 3D data, se€lfg, 19| for example, highlights regions of interest by dedicatingre
space to them.

On the other hand, relatively little work has been done orsdsnn the domain of
volume visualization. Cignoni et al2]] provided the Magicsphere metaphor to visualize
3D data with a MultiRes filter. Wei et al.1B9 applied fisheye views to magnify particle
track volume data using nonlinear magnification functions.

LaMar et al. [f7] integrated a 3D magnification lens with a hardware-textased
volume renderer. Zooming is accomplished by modifying uextcoordinates, and the
2D perspective correct textures technique is extended tm3idder to obtain the correct
texture coordinates for the lens border. Multiple segmentshe border are needed to
generate more natural circular lenses. Cohen and Bra2lflenfiagnified volume data by
generating a new volume using inverse distortion functibiasvever, this method is slow
and is memory-intensive. Further research is clearly nmdesign better lenses and find
efficient implementations for volume data.

2.2.4 lllustration-Inspired Volume Visualization

Non-Photorealistic and illustration-inspired renderstgles have been applied to ef-
fectively visualize the scientific and medical volume datas Treavett et al. 128 used
pen-and-ink styles in combination with direct volume remmatg or surface shaded dis-
play. The sparse pen-and-ink representation is appliedter sso-surfaces while an inner
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iso-surface is represented using surface shading. Volemaering is further enhanced
by non-photorealistic techniques, such as silhouett&d]] Lu et al. [90] proposed the
stippling rendering of the scientific data. lllustratiarspired techniques also benefit the
visualization and understanding of the flow volurd@]], and the motion of the flowd1].

2.3 Texture Synthesis

Textures can be random, stochastic, structure or anythibgtween. Although there
has been much sophisticated research on texture analgs@gnition, and synthesis in
computer vision, no real satisfactory solution has beeneseld so far, due to the great
varieties of textures. Here, we only focus on the most imgurimage texture synthesis
approaches which have appeared in the graphics area, aold arei relatively simple and
easy to use.

Texture synthesis algorithms take sample images as inpusyamhesize new images
with similar textures. These algorithms can be roughly sifeesd into three categories:
statistical, pixel-based and patch-based texture syisthdest approaches, especially sta-
tistical and pixel-based approaches, are based on Markoddra Field (MRF) models.
Also, most pixel- or patch-based approaches need a distartiéc to measure the per-
ceptual difference between two pixels or two image patchemce we will first discuss
MRFs and the typical distance metric used in texture symghd@$ien we list some impor-
tant image texture synthesis approaches, and describekapglications and extensions
of image texture synthesis technique.

Markov Random Field Markov Random Field (MRF) models (or in a different mathe-
matical form, Gibbs Sampling) have been widely used in trexsynthesis, image restora-
tion, and region segmentation. Since MRFs have been provea & good approximation
for a broad range of textures, the texture synthesis algustbased on MRF8§, 137] are
general and some of them produce good results. A drawbacksit MRF sampling is
that it is computationally expensive.

The property of a MRF is that: a variahlé, at sites on a latticeS = {s = (i,7) : 0 <
i,7 < M} may have its value set to any value, but the probability &f;, = =, depends
upon the values, at sites neighboring. The neighboring sites are defined as those sites
r € Ny C S, whereN, represents the neighborhood<«fA local conditional probability
density function (LCPDF) defined over these neighboringssit € N, determines the
probability of X, = z,. Therefore the MRF is defined by the LCPDIOJ]:

P(Xs =x4| X, = x,,r # 5) = P(xg|z,,m € Ng) s € S. (2.5)

This means the probability distribution of color/integsialues for a pixel given the
color/intensity values of its spatial neighborhood is ipeledent of the rest of the image.
The neighborhood of a pixel can be modeled as a square windovna that pixel. Most
MREF synthesis approaches are based on finding similar neigbbds.
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Distance Metric Most pixel- or patch-based approaches use/theorm to measure the
distance between two neighborhoods of textures. For thghbherhoods of two pixels,
the basic distance metric usually is the sum of squaredrdiffaes (SSD) as the following
equation:

dSSD = Z Z(le (Zvj) - N2k (ivj))27 (26)
i,j=1 k=1

whereN;, N, are two neighborhoods, is the neighborhood sizé;, j) represents the pixel
location in the neighborhood, ards the number of the channel, e.g. 1 channel (intensity)
for a gray texture and 3 channels (red, green, blue) for ar ¢ekdure image. If we say
two neighborhoods match, theigs, should be the minimum or below a user specified
threshold.

Measuring the neighborhood distance for each pixel or peachbe time consuming.
There are some algorithms that try to speed up the compntgté. The above equation
can be expanded as follows:

dssp =Y > (NE(i,5) + N3 (i, ) = 2N1, (i, 5)Na (i, 5)). (2.7)

ij=1 k=1

Using summed area tables (SARH], the computation of the first two terms can be accel-
erated, while the third correlation term can be calculated aonvolution and be speeded
up by Fast Fourier Transform (FFT) techniqués, [42].

Actually, the L, norm is a poor measure for perceptual similarity, hence timenmum
dssp does not yield the most similar appearance. However, mgsbaphes still use it
due to its simplicity and the fact that no perfect perceptoatric has been found. Some
methods try to improve the basig s, by using weighted/ssp [35], or using other color
spaces such as YIQ and only the luminance channel Y to redheceamputational cost
[53 3]

2.3.1 Approaches

Statistical Texture Synthesis Statistical texture synthesis approaches first analyze the
input texture using certain statistic measures and thethegize the output according to
the analysis results. The main advantages of statistiaysis are that they provide a
better understanding of the perceptual process, providdtarbmodel generalization and
generate good results for stochastic textures. Howewey,¢hn not synthesize as large a
variety of textures as other techniques and are relativatypdicated and computationally
slow.

Pixel-Based Texture Synthesis Pixel-based synthesis algorithms synthesize textures
pixel by pixel by finding a matching neighborhood, which makkem rather flexible
and easy to extend and apply to different areas. The repegsenalgorithms include:
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Efros/Leung’s non-parametric sampling algorith®d]] Wei/Levoy’s multiresolution syn-
thesis algorithm 137], which performs exhaustive search and accelerates baséc®
structured vector quantization (TSVQ). Ashikhnman'’s cemésynthesisZ] and Tong’s k-
coherent synthesid 9 algorithms reduce the search space significantly. Theithesis
process is faster, but only suits particular types of teeduvell. Hertzmann’s Image Analo-
gies algorithm $3] combines L37] and [2], uses PCA, and approximates nearest neighbor
search (ANN) to accelerate the search process, offeringriresults. Zelinka and Garland
[157] synthesize textures in real-time using a Jump Map, aftalatively slow analysis
process. However, many pixel-based approaches sufferifrage blurring and garbage
growing.

Patch-Based Texture Synthesis Patch-based synthesis algorithms tile matched patches
together, tend to be faster and more stable, and do not dudf@erblurring and garbage
growing. Although they are less flexible since they genetaxéures by copying whole
patches from the input, and hardly provide any perceptualimation of the input tex-
ture, they are quite efficient and generate good synthesidtse The two major issues in
patch-based approaches are how to choose the approprieteapa how to eliminate the
boundary artifacts. Xu’s chaos mosalelf, Efros/Freeman’s image quiltin@4], Liang’s
[87], Kwatra’s Graphcut T4] and Cohen’s Wang tiles2[3] algorithms all belong to this
category. Hybrid method®§] lay out patches and use pixel-based algorithm to hide the
seams.

Our work is mostly related to pixel-based and patch-basddre synthesis techniques.

2.3.2 Applications and Extensions

The digital image processing area benefits from image texdynthesis techniques,
which have been applied to address many image processibgprs, such as texture trans-
fer [34, 53, 2], artistic style simulation§3, 3], super-resolutiond3, 39], image restoration,
and specific image editing, with sometimes impressive tesul

Image texture synthesis techniques also have some exeitegsions, such as syn-
thesizing surface texturd 29, 136, temporal texturesl14, 137, 74], reflectance texture
[125, volumetric or solid textures136 57|, varied and mixed textures and enhancing
vector fields with textures.
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Chapter 3

Magic Volume Lens

The size and resolution of volume datasets in science anicmedre increasing at
a rate much greater than the resolution of the screens usaevidhem. This limits the
amount of data that can be viewed simultaneously, poténtedding to a loss of overall
context of the data when the user views or zooms into a p#ati@rea of interest. We
propose a focus+context framework that uses various staradal advanced magnifica-
tion lens rendering technigues to magnify the features tef@st, while compressing the
remaining volume regions without clipping them away cortglie

Interactive operability is the prime key to a successful es@erience and his/her ex-
ploration and immersion in the data, and the GPU has prowahedttractive platform to
achieve these goals. Our work embraces this technologyotoda a novel focus+context
tool that unifies and extends a variety of existing methodthis area. Our techniques
are primarily designed for volumetric objects, which hageeaived the least amount of at-
tention so far. Our framework provides a free-form voluneetens function that can be
feature-adaptive or user-configurable for a high-quaétyti-aliased, and interactive dis-
play with smooth transitions from high- to low-resolutioreas. It is somewhat related
to the importance-driven visualization system by Violale{ 833, but our method allows
users not only to highlight and expose an object, but alsotelimearly magnify the object
for closer inspection in its spatial and semantic context.

3.1 Volumetric Lenses

In this section we describe several volumetric lenses whrehbased on geometric
optics and conform to sampling theory.

3.1.1 Magnifier

The magnification lens, called magnifier in this thesis, isdoon the magnification
model in optical physics. It provides users a method forelimspection of regions of
interest in volumetric objects. FiguB1lillustrates the principle of a magnifier. The blue
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line segment represents a magnifier lens positioned on thgdamlane by the usei.C

is the center point of the lens arfdis the virtual focal point. When orthogonal incident
rays hit the image plane, in the region of the magnifier, therray directions are modified
and go through the focal poit. Therefore, a ray cone is formed between the lens and
F. The objects within this cone are rendered in a larger areda@image plane than their
original size, while the other objects retain their origisiae. Consequently, the objects in
the region of interest are magnified.

Ray direction

Object

Image plane

Figure 3.1: Magnifier illustration.

In the basic scenario described above, objects locatecekettihe orthogonal rays and
the focused rays will not be visible on the image plane. Taises a loss of spatial context
for the observed objects and has to be compensated for biakpeatments. Our solution
is to add a transition region close to the border of the rayagnere the directions of rays
are gradually changed from the focused direction to theogdhal direction. In Figure
3.1, the transition region is represented by the red line setgr@nthe image plane with a
width (b, Ir is the radius of the lens, and the magnification region ofehs Is shown as the
blue line segment. For a ray starting from a pditin the transition region, the direction
is computed according to the distance fréinto LC' as follows:
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(d)

Figure 3.2: Magnifier volume renderings with (a) No lens, @dcular lens, (c) Square

lens, (d) Arbitrary-shaped lens.

|Pp — F| _ |PI—LC'|—(Z7“—lb)7 (3.1)
Ir b
P — LC
Pr = F+——— |Pr—F 3.2
ray_dir = Pr— Pj. (3.3)

where Pr is the point at which this ray passes through the virtual fenas plane, which
is parallel to the image plane and includes the focal pbint

As a result of the transition region approach, while the cisjeside the center region
of the lens are magnified, the objects in the transition regi@ compressed. Therefore,
continuous observation of the objects is achieved and mfecetdata loss is introduced.

Based on this method, we are able to design magnifiers wittadmirary shape. Re-
sults obtained by using magnifiers in volume rendering acevshin Figure3.2 Figure
3.2a is the original volume rendering result with no magnified &igure3.2b-d are the
results obtained by using circular magnifier, square maggraind arbitrary-shaped magni-
fier, respectively. Figur8.3 shows the transition regions, magnification regions ofehre
magnifiers, and the rendering effects on enlarged portibRgare 3.2b-d.

The magnification factor can be changed by modifying thelfpont position. Moving
virtual focal point/’ towards the image plane achieves a higher magnificationrfactd
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Magpnification

Transition .
ansitio region

region

Figure 3.3: Transition region and its rendering effect.

vice versa. The GPU acceleration makes it possible for usersoose this interactively.
At the same time, the users can also change the size of theiffeggior example, the
radius of a circular lens, and the size of the transitionmedo generate the desired results.
Our volumetric lenses are based on ray casting and it candiy eatected whether
a ray pass the feature, therefore the magnifier can be datitzenlarge only features of
interest in the observed volumetric object. The magnificathethod is straightforwardly
applied to the segmented volumetric datasets. The ray roatidh method does not inter-
fere with the composition of the voxels with different projpes because of their segmen-
tation. Figure3.4 shows the results of applying the magnifier to show the boatifes of
a segmented frog dataset.

(b)

Figure 3.4: Magnifier volume renderings for the bone featni@ segmented frog dataset.
(a) and (b) Renderings without and with magnification undieutar lens.
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Since in the transition region, the ray sampling rate istiredly low, aliasing could
occur. Although this is not always noticeable in practiagj-aliasing techniques can be
applied to generate better results. A solution is to useraeltiexture mip-mapping to
adaptively choose the appropriate resolution of the voldata for rendering. A lower res-
olution volume is chosen for regions sampled at a lower materder to eliminate aliasing.
One can determine the required mip-map level by calculdtiegnagnification factom f
for point Px,
mf: |PR_PRI|<l_b_

|F'— LC| “lr

wherePg; is the orthogonal projection d?; on the image plane. This factor will determine
the mip-map level that needs to be used.

)+ 1. (3.4)

3.1.2 Feature-Based Lens

Feature-driven volume visualization provides users allggting and exposition of the
portions of interest in volume objects. This facilitatesaaturate and differentiated un-
derstanding of the important features. Besides the toaditifixed-shaped lens used to
magnify segmented datasets, our free-form magnifier camiptoged to also achieve a
feature-sensitive and feature-centric object enlargéméEine difference is that the shape
of the magnifier is defined dynamically by the shape of theufest (represented by the
segmentation information) in the dataset, within an aabjytview port. This is illustrated
in Figure3.5. Whether an incident ray changes direction depends on setdition of the
feature and the current view port. Thus the direction of e@aghhas to be determined dy-
namically. Transition regions are also used here to rekarspace context of the features.

For each ray orthogonally incident upon the image planenéwedirection is computed
as follows. Assuming all rays have changed directions tddabal pointF’,

o if aray passes through the feature, then its new directipoiisting to 7.

e if the ray does not pass through the feature but is insideréimsition region on the
image plane, the distanck(see Figure8.5) from its entry point to the boundary of
the feature-projected area is calculated. This distancsesl to compute the new
direction as in Equation3.1-3.3.

e otherwise, the ray continues along its original direction.

On the image plane, the distance from a pixel to the boundaiyedeature-projected
area has to be calculated for some rays. This requires kdgelef the position of such
an area on the image plane in each different view port. Thezeh two pass computation
has to be used, where the first pass defines the feature4ejemion and the second
pass computes the distance from a pixel to this region. m@iffedistance computation
methods can be used during the second pass. To facilitat@Rhkacceleration for this
algorithm, it has to be implemented based on local opersitidrere each pixel only utilizes
the knowledge of its neighborhood. Our implementation isige a searching circle for
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Figure 3.5: Feature-based lens illustration.

(@) (b)

Figure 3.6: Distance computation on the transition regidh@feature-based lens. (a) Dis-
tance field on the transition region, (b) Searching circlegfach pixel outside the feature-
projected region is used for local computation.

each pixel with the transition region width as its maximal radius (see FiguBeb for an
illustration). Inside this circle, we compute a neighbattis a feature projected point and
has the smallest distance to the pixel. This smallest disteused as the distance value
for this pixel. This method is implemented directly as a fmemt program on GPU (see
Section3.2).

Our lens can be combined with any feature-based ray castinghe rendering method,
for example, the two level volume rendering technigbg] for segmented volume data.
Figure3.7shows some rendering results for a color volume datasetichva user selected
feature is magnified and the other objects near that featereampressed. Figui@7a
shows the skin of the brain. FiguB7b shows an interior structure of the brain, without
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© (d)

Figure 3.7: Feature-based lens volume renderings for aeseigich human brain color vol-
ume dataset. (a) Without specifying any feature of intei@tWith a feature of interest,
which is not magnified and appears too small to be seen cldadyn (c) to (d) the magni-
fication factor increases.

rendering other features which occlude this structure)entie magnified structures are
shown in Figure3.7c and3.7d.

3.1.3 Sampling-Rate-Based Lens

We introduced two magnification lenses that modify the chstgs using geometric
optics. They are implemented directly by changing ray dioes from different areas
of the image plane. The distribution of the areas can be desimed or feature-based.
In this section, we define a lens from another point of view.e Tays casted towards
the observed object may have varying densities in diffepamtions of the object. This
results in a varying sampling rate for the object. Therefoinégs special lens is called
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sampling-rate-based lend/arious sampling functions could be adopted to define wario
volumetric lenses and to achieve different volume rendgnésults. we can use these lenses
in conjunction with the mip-map volumes discussed in Secid..1

Sampling rate

Maximal A
sampling
rate
| 1 Distance
| I tolLC
1 1
Normal / U U
sampling : :
rate : >
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Image 4 /7 v\ \
N ‘ ‘ ‘ ‘ ‘

Figure 3.8: Sampling-rate-based lens illustration.

We illustrate the idea of this lens in 1D in FigueB, where a sampling rate function
is shown at the top and the corresponding rays are shown abth@m. In the sampling
rate function/r is the lens radius, the vertical axis is the sampling ratethadorizontal
axis represents the distance to the lens center. The saymptclose to the lens center is
the highest. It then decreases and becomes even smallghthariginal normal sampling
rate towards the boundary of the lens. At the bottom of Fi@u8ewe can see that the rays
shot to the object are dense in the center region of the lahberome coarser towards the
boundary. Note that the distribution of pixels on the imageen is uniform and that the
original orthogonal rays are also distributed uniformlg. distribute the rays according to
the sampling rate function, the start point of a ray is notrfiits original starting pixel but
depends on its distance to the lens center and the samplenglitaus, we need to compute
the correct start point for each ray. As usual, the transitegion approach is applied to
this lens. Here, the magnification region plus transiti@ioe must be exactly equal to the
lens region, which means the distance from the cutting geihere sampling rate returns
to normal) to the lens center must be equal to the radius oetie/r. Definesr as the
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Figure 3.9: Comparing volume renderings with (a) No len} Mignifier, (c) Sampling-
rate-based lenses with cubic sampling function (maximadiag rate/normal sampling
rate = 3), (d) An arbitrary sampling function (shown in Fig@r10).
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Figure 3.10: Another sampling rate function.

sampling rate andd as the sampling distance function. Hesejs inversely proportional
to the distance between sampling rays. We first precompubefficgentC satisfying the
integral equations:

/lr C-sd(s)ds = lr, (3.5)
0
sd(s) = —. (3.6)

Then for each ray, the distance between its real start point and the lens ceatebe
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calculated using Equatidh7, which is the discrete form of the distance integral.

distance(j) = Z C - sd(i). (3.7)

1=0

Figure 3.9 shows the results with the sampling-rate-based lensespaamg it with
the results obtained with no lens and with the magnifier. Des bf the foot are rendered
with different magnification effects. The difference betnd-igure3.% and3.9c is mainly
caused by the different magnification factor distributionshe lenses. For the magnifier,
the factors for points, which project into the magnificatregion and locate on the same
plane parallel to the image plane, are the same. Therefoje;ts with the same depth are
magnified uniformly. However, for the lens with cubic samglifunction, the factor is the
highest on the lens center and decreases gradually towss¢sns boundary. Objects with
projections closer to the lens center are magnified withdrnghmagnification factors. Along
any ray, the factor remains the same for different depthes.

3.1.4 Angular Lens

A common widely used lens is the fisheye lef6][ and our GPU accelerated general
volumetric lens framework supports this type of lens as wé&he fisheye lens is a spe-
cially designed lens which achieves wider viewing angld® adriginal fisheye lenses were
photometric lenses designed to take photos of the entiteT$igre are two main idealized

A
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\
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Figure 3.11: Angular lens. (a) Angular fisheye lens with 18@rées illustration, (b) 180
degrees view of a bonsai with an angular fisheye lens.
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fisheye projections, the hemispherical and the angulanfisivehich are common in com-
puter graphics renderind.]. The hemispherical fisheye is less used due to the distortio
introduced. An angular fisheye projection can be used foleangp to 360 degrees and is
defined such that the distance from the pikeb the center of the image is proportional to
the anglex of the viewing direction (see Figufe1la). The ray direction corresponding to
any pixel on the image can be calculated by a special tramsfimm pixel coordinates to
3D polar coordinateslf0]. Figure3.11b shows an image of a 180 degrees view on a bonsai
with an angular lens.

Our framework is based on a ray casting volume renderingnseh& his allows us to
walk into the interior of the object to see the augmentedm@uwendering results. By using
an angular lens, larger view port angles can be achieved ané abjects can be accom-
modated in the final image. This is helpful in many interiotwoe rendering scenarios.
A good example is virtual colonoscopy4. When navigating inside the colon, more ar-
eas can be viewed to achieve a more efficient observationrd=3gl2shows the result of
viewing a colon from a point on the centerline of the colonn@aring this with a normal
perspective view with 120 degrees, more information canliiaioed when using a 180
degrees angular lens.

Figure 3.12: Virtual tour of the colon. (a) Perspective vigith angle 120 degrees, (b) 180
degrees view with an angular fisheye lens.

3.2 Hardware Acceleration

To achieve interactive focus+context volume rendering,haee implemented all of
our volumetric lenses on contemporary graphic hardwareceSour volume lenses are
designed based on changes in ray direction or ray sampliegitas straightforward to
implement, as well as extend, them using a ray casting approa

In GPU-accelerated ray casting volume rendering,[front faces and back faces of
the volume bounding box are drawn using OpenGL in two fragmesses to get the start



3. MAGIC VOLUME LENS 24

and end points for all the rays. However, this approach cab@&ased for our volumetric

lens. Because ray directions are not always orthogonalrsppetive, we have to calculate
the start and end points of each ray for the various lensighgas described earlier. Hence,
we implemented our own ray casting rendering algorithms Vs effects on the GPU.

At first, we calculate the ray directions using the apprdprians rules. Then, the inter-
section points of each ray with the bounding box of the voluim®bject are computed.

Finally, a ray traversal algorithm is implemented for a gigtep size, with the volume data
(density, gradient or color) stored in 3D textures. All ta@dgorithms are translated into
Cg fragment programs. The current GPUs (e.g., NVIDIA GeE®&00) have the required
features, such as loop, early termination and branchesnméalpossible to implement our

ray traversal method efficiently.

For our magnifier and angular lenses, we use fragment pragaarfollows:

Pass 1Raycasting The whole ray casting process includes the following thtepss

Step 1 RayDirectionCalculate the ray direction for each fragment based on the
view port and lens parameters. Also the information aboidthwr a ray goes
through the lens or hits the feature of interest, or the distdo the lens center
can be obtained to achieve different rendering effects.

Step 2 RayTfrontback Compute the intersections of each ray with the volume
bounding box, and store the distances from the front and baeksection
points to the ray start point, denotedtasont andt_back which will be used
along with the ray direction and view port parameters to @etfire intersection
points in the next step.

Step 3 CastingRay Cast the ray into the volume and composite the color based on
the volume data and transfer function. Different tradiéibmolume rendering
modes can be easily added into this step.

Pass 2 Rendering Output the rendering results to the frame buffer.

For the feature-based lens, in Pass 1, one more step caflpd StRayLensBorderis
added before Step 2, to calculate the distance field for tigettansition region and change
the ray directions based on the distance.

For sampling-rate-based lenses, ray directions are nbéasged, but the real ray start
points need to be computed. We also use the above fragmegriapms, but the first step
is changed to Step*: RayStartPointswhich computes the ray start points used in later
computation.

3.3 Results

We have implemented our methods on a Pentium Xeon 2.4GHz GRRWGB mem-
ory and an NVIDIA GeForce 6800 Ultra GPU with 256 MB memory.Teble3.1, we re-
port the data size and the performance of our method with G&dlerated computation.
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Table 3.1: GPU performance for different volume datasets.

Volume lens method Simple ray casting

Data Data size Rendering speed (ms)Frames/second Rendering speed (ms)Frames/secongl
lobster | 128 x 128 x 128 70 14.2 61 16.4
engine | 256 x 256 x 110 95 10.5 74 13.6
bonsai | 256 x 256 x 128 110 9 95 10.5
foot 154 x 263 x 222 97 10.3 90 11.1
aneurism| 256 x 256 x 256 186 5.4 158 6.3
frog 502 x 472 x 138 308 3.3 258 3.9

(d)

Figure 3.13: Magnification results. (a) and (b) DVR rendgsinvithout and with mag-
nifier, (c) and (d) DVR with gradient magnitude modulationderings without and with
magnifier.

For comparison, we also include the performance of a singyleasting volume renderer
(utilizing the front faces and back faces) with the same data on the same GPU. All
the performances are tested with2 x 512 images and with a 1.0 step size. Note that
our method has not been optimized for the GPU, therefore , ongare it with the simple
ray casting implementation, which is also unoptimized. @uolume lens methods only
slightly increase the rendering time comparing to the garay casting method. In the fu-
ture, we will implement the standard optimization meth@lsh as empty space skipping
to improve the performance. For example, the speed for mewlata can be dramatically
accelerated with space skipping.

As a ray casting based augmentation for volume renderingya@umetric lenses can
be combined with many volume rendering modes, for examptecidvolume rendering
(DVR), MIP and DVR with no shading, DVR with gradient magm&modulation, XRay
and the two level volume rendering method for segmented déta show results with
different rendering methods in FiguBel3 More magnification results are shown in Figure
3.14 Figure3.15 and Figure3.16

Our lenses can be used to interactively choose and maggifyngor features of inter-
est to see small details more clearly while the context regganains. The size and shape of
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the lenses, and the magnification factor also can be changgddtively, which allows the
user to adjust the lenses for desired results. Demo videbshiow the interactive volume
lens renderings can be obtained at http://www.cs.sunysb.4ujin/paper/vis05.

Figure 3.14: Feature magnification results with magnifacafactor increasing from (a) to

(d).

Figure 3.15: Feature-based lens results. From (a) to (lp) Feart is magnified. Frog is
rendered with two level volume rendering method: bone ar&retia are rendered with
MIP, all other features are rendered with DVR, with differéransfer function for each
feature.

3.4 Discussion

We have described a universal and general volumetric lansgwork that has applica-
tions in many domains. It allows users to apply any well kndamses, such as a fisheye
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Figure 3.16: Magic volume lens results. (a) Magnifying desfeatures in an arbitrary-
shaped area on an engine, (b) Applying sampling-rate-dasscn a foot, (c) Enlarging
area of interest on an aneurism, (d) Magnifying the duodeoiamsegmented frog dataset.
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Figure 3.17: Lens-distorted lattice. (a), (b) and (c) Thex®lering options.

lens in the context of volumetric distortion, as well as dadree-style and feature-adaptive
lenses for arbitrary magnified focus+context viewing. Fareple, coupled with a GPU-
based interactive segmentation algorithm it can be usectmify the segmentation result
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at great detail and aid in its refinement. The support for-ftgée lenses, created with
our lens design interface, can help illustrators to designere helpful and informative
visualizations of volumetric objects, emphasizing an teaby shaped region of interest
without losing the context of its surround. Finally, the GRtteleration of our magic vol-
ume lens allows all of these to be done at interactive spéestgring both creative design
and exploration. It also proofs helpful to users to provideoption for superimposing
a lens-distorted lattice on top of the lens area, to aid inagsessment of the non-linear
magnification effects (see Figugel?).

We would like to extend this free-style zooming capabiditie multi-resolution data and
to semantic zooms, where the data appearing under magioificadmes from a different
data source, or even texture synthesis.
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Chapter 4

Semantic Zoom Using Texture Synthesis

4.1 Introduction

When viewing an image (note, a volume can be considered a 3Darfor the discus-
sion here) the amount of detail that can be visually explssddndamentally bounded by
the image resolution. Magnification will not extend the amitanf visible detail, it will only
spread it out in space such that it can be better discernedebgliserver. Magnification
typically entails some blurring, depending on the qualitylee magnification filter used
[144). However, it should be obvious that even with the best fijpeire magnification can
not add detail where it has not been sampled before. Thesefooming into an image or
volume at high magnification factors tends to create a rdibeng, non-informative, and
non-satisfying viewing experience.

The amount of available detail may be constrained by: (inecacal limits bounding
the size and therefore the detail of the image, and/or (@hriecal limits inherent in the
image acquisition process. As an example for the lattercalpenses generally are only
able to provide focus within a certain range of scale, whilaging technologies, such as
MRI and CT, impose physical limits on the amount of detailtban resolve. Should detail
on other scales be desired, alternative lenses or imagitigoe® such as optical, confocal,
and electron microscopy are required.

In computer graphics, texture mapping has long been a mdthadhich interesting
detail can be added. However, texture placement is usuaitied by geometry, and not
by semantic constraints imposed by the image to be enrichedure mapping may also
cause repetitive tiling artifacts. Texture synthesis hasenpromise in this respect. For
example, Freeman et al39] established a database of coarse-fine resolution mappings
that they used to add fine detail to magnified images of natoehes. This fine detail,
however, was on the same order of scale as the base imagenlgndagnifications at the
same semantic level of scale were possible.

In this thesis, we propose to extend the notion of imageelidetail enhancement
to multiple levels of scales. However, we would like to avt@ditional image pyramids
where multi-scale detail stems from the repeated smootbirg single high resolution
image. Thisis because requiring such an image would viola¢eor both of the constraints
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mentioned above. Instead, we introduce the notion of saoadiytconstrained multi-scale
texture synthesis to facilitate zooms at a virtually inBnitumber of scales, as long as
the corresponding texture data are available (see Figuje Here, the term “semantic
zooming” means that the multi-scale detail is not deriveanfrone image to the other via
simple filtering, but via different sampling processes tliteethe respective level of scale.
An everyday example of semantic zoomir] is electronic maps, where each level of
zoom is an excerpt of a different map, such as country, stdig, neighborhood, etc.,
bearing a very different style and type of detalil.

Output image

level 3

Synthesize
new detail

Zoom in

level 2

Synthesize
new detail

level 1

Region of Interest

Figure 4.1: Semantic zooming based on texture synthesis.

In contrast to the aforementioned maps, our applicatios doestore complete images
at every level. One of our main design goals is to generatsdimantic detail at a minimum
of memory cost, thus providing a solution that will scale w&herefore, our system will
not yield an accurate multi-scale “map”, rather, it will @eate something that looks like
an accurate multi-scale map, however, one in which largéedeatures and its small-scale
detail smoothly blend into one another.

For example, one of the possible domain applications of gstesn is the “virtual mi-
croscope”, where users start at a low-resolution MRI or Cagmof some biological tissue
and then slowly zoom in anywhere they desire to reveal thenyidg cell structure, and
finally the interior of the individual cells themselves. $iprocess is illustrated in Figure
4.2, for a human liver. Other possible applications include timelsolution viewers for
terrains, the universe, a sheet of metal, or any other dothainoffers multiple levels of
semantically constrained data, under the assumptiontieaetdata can be obtained. The
fact that the different levels are obtained via synthes raot via filtering of a common
source imposes certain restrictions on the use of our tquakni For example, our med-
ical viewer would not be suitable for diagnosis of a disedsenl. However, it could be
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employed in a surgical simulation trainer, an electroniasator medical students, or a sci-
entific illustration tool. Note that in these applicatioresarios the data at the different
levels of scale do not have to be acquired from the same spetifect, or in this case,
person. This is especially advantageous since some of giethresolution acquisition
methods may be destructive. Similar restrictions and apftins can also be envisioned
for other application domains.

For our 2D application, we combine pixel-based synthek33][ image quilting B4],
and our pattern-based synthesis. For 3D applicationsgadstf image quilting, we use
Graphcuts T4], since it is efficient and easy to implement in 3D. Our applos funda-
mentally different from that of Nealen and Alex@9 who use pixel-based re-synthesis
to eliminate remaining errors in the overlap regions of pdiased synthesis. In contrast,
we apply different types of synthesis methods to syntheatifeerent regions and features
in an image. Further, our pattern-based synthesis is mtatnstrained and differs from
the algorithms based on pattern placement in the surfateréesynthesis domain, such as
pattern-based texturing revisitetl[l], and texture particle2p).

In our application, we make frequent useaainstrained texture synthesiwhere the
patch selection and texture generation is made dependestroe underlying constraints.
This technique has been utilized in image processing, ssiginage restoratiorlp9 and
texture transferd, 3, 34, 53]. Another example is the texture-by-numbers technidp} [
which is able to perform synthesis from images in which theéue distribution is not
stationary but is based on the labelling of the componenttes of images. These la-
bel images, representing the segmentation informatiomafes, are created beforehand,
possibly by the user. Some automatic color or texture setatien methods are used for
guiding the texture synthesis process 59,[31]. Our constrained texture synthesis fol-
lows a similar idea, but here only the segmentation of thegdamages can be performed
in advance. The features or patterns in the synthesizedeisnbgve to be detected and
labelled automatically when they are needed during zooees $ectiort.2.2for further
detail). To enable proper semantic relationships acroemzevels, component textures
should be placed carefully, following certain constraintduding color, intensity, distance
fields, location, and features/patterns of the image.

In contrast to Freeman’s super-resolution algoritl39j {vhich generates enlarged im-
ages on the same semantic level than the base image, oucapliperforms enlarge-
ment/zooming 104 that spans several semantic levels. Our main contribstawa:

e Semantic zoomingses texture synthesis to extend image-guided detail eehsnt
to multiple levels of scales.

e Constrained texture synthedacilitates smooth semantic evolution and detailing of
features across zoom levels.

e Feature-guided texture synthesisnsiders the properties of features or patterns in
the image at a certain semantic level and chooses imageénguifiixel-based, or
pattern-based texture synthesis methods in accordanbethvdtregion’s synthesis
requirements.
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Figure 4.2: lllustration of the semantic zooming capailetitfacilitated by the virtual mi-
croscope, using a human liver as an example: (a) MRI imageligég where the white
square is the user-specified region of interest, (b)-(s)pAcht image sequence during a
semantic zoom, in which (k) is the synthesized histologglémage, and (s) is the syn-
thesized cell level image, (c)-(e) Magnified MRI level imag@)-(p) Magnified histology
level images, (f)-(k) Images obtained by blending magnifRl and minified histology
level images, (0)-(s) Images obtained by blending magnfiistblogy and minified cell
level images.
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4.2 The Virtual Microscope — A 2D Viewer

We first discuss the 2D application, which acts like a micopgcwith a wide range of
magnification. Then, in the next Section, we will discusseitgension to 3D. A system
overview is shown in Figurd.3. First the underlying multi-resolution image data are
collected and preprocessed to build a set of sample imagesn the sample images are
analyzed to choose the appropriate texture synthesis aqipegs and constrained rules for
each pair of adjacent levels. All these are stored in a snagdllchse, which will be used
during the semantic zoom operation.

_ Preprocessing
Collection Analyze
of Images
I
. Yy / v
£ | Sample Synthesis
2 | Images Approaches
qQ and Rules
Present Synthesize Synthesized
Image ’ detail and »| Image
blend levels
Level i Level i+1

Semantic Zoom
Figure 4.3: System Overview.

At the beginning, the user views the image at the coarsestutes (Figure4.2a).
Once the user specifies a region of interest in this image aothg in, this part of the
image is gradually magnified. When the image magnificatiachies a certain scale, the
image detail of the next level is generated through semalhticonstrained texture syn-
thesis based on the currently magnified image region. Ftangs, when the user zooms
into the image from the MRI level to the histology level, thestem needs to synthesize
the corresponding histology level image. The same is the ftaghe cell level. Blending
of two consecutive levels enable the system to go smootbiy fsmall-scale features to
high-scale features. Thus, there are three main tasks isystiem: data preprocessing,
constrained texture synthesis, and level blending. WemnvaW describe each of them in
detail.

4.2.1 Preprocessing

We first need to collect data corresponding to the variousl$eand perform some
amount of preprocessing on them. Figdrd shows the sample images used in the liver
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(d) =

Figure 4.4: Image data and pieces of colorized sample ima@@dMRI liver image, (b)
Colorized image, (c) Low-scale histology image, (d) Higlale histology image, (e) Col-
orized image. (Images (c) and (d) courtesy of http://wwvedu/histology).

example: an MRI image, a low-scale histology image, andgelacale histology image.

These three levels will be referred to as MRI level, histgltayel, and cell level, respec-

tively. However, it is easy to increase the number of level®ag as the corresponding tex-
ture data are available. Once the images have been collibetddllowing pre-processing

steps have to be performed.

Colorization Typically, the images that are collected have differenblIn order to re-
duce the distinct discontinuities arising from mismatchbeldrs during zooms, we need to
match the colors across levels. The color correction cambéyelone by image processing
methods or tools, such as Adobe Photoshop. The colorizegesshown in Figurd.4are
the sample images that will be used to guide the synthegisdat Since we use the color
of the low-scale histology image for transfer, this imagguiees no change.

Segmentation The sample images need to be segmented into prominentdeaiupat-
terns, based on color, shape, or pre-knowledge. In ourcpéati example, for the MRI
image, we segment out the liver region as well as the porialamd the artery elements.
The segmentation can mostly be done via image processirgpasefi2] or tools. The seg-
mentation results, which will later help us to match textyethesis methods with different
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features or patterns, are stored in tag images (see Hgbre

portal vein

° . o
o “ o. o o
(a) (b) (©

Figure 4.5: Some tag images for the liver example. (a) MRIgejgb) Histology-level
image, (c) Cell level image.

The data preprocessing is the only part in our system whighmneguire some manual
work to refine the image processing results, but it needstoridg done once. After that, no
manual work is required. The colorized sample images anddiresponding tag images
are then stored in a database.

4.2.2 Constrained Texture Synthesis

Synthesis Approaches

As mentioned before, a variety of texture synthesis appresacould be applied to
generate the image detail for semantically different levEbr each pair of adjacent levels,
which texture synthesis approaches should be used depetids exture features, and the
region in which the texture will grow.

o If the texture is isotropic, semi-structured, or structir@nd grows in a large region,
image quilting or other patch-based algorithms producébeuality results than
pixel-based methods. The primary parameters in imagemgiihclude patch size
and overlapping region size. Both mainly depend on the pmentistructures of the
texture and should be decided before synthesis.

¢ If the texture has layers and/or grows within a small irregiyl shaped region, then
a modified pixel-based approach forms a convenient way tofiadddetail in the
magnified images. We give the details of our algorithm laterhe parameters in a
pixel-based synthesis algorithrhd7] include the shape and size of the pixel neigh-
borhood, as well as the number of levels if a multi-resolutaitgorithm is applied.

¢ If the texture is composed of atomic patterns which shoulgreserved during syn-
thesis, our pattern-based synthesis is employed to synétbe patterns, while other
pixel-based or patch-based approaches can be appliedtteesyze the background
color.
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Why do we needonstrainedexture synthesis? We need it to ensure that the generated
textures on one level are semantically consistent withekel lbefore. Since we use level
blending to facilitate intermediate zooms, this is obvigwery important. Standard texture
synthesis algorithms only use the present layer informatiche generation process, and
Figured4.6demonstrates the poor blending that will occur if we perfeeriure synthesis on
the histology level without constraining it to the loweatz MRI level. Similar problems
arise for the cell level and the lower-scale histology levélus, textures of the high-scale
image should always be synthesized to match the featurdsedbiv-scale image under
specific constraints. For this reason, the system alwaygutes a tag image of the current
result image to facilitate the matching process. This isaehat similar to the label-
constraints used irbB] and [2], but in our application the constraint tags are not spetifie
by the user but generated automatically, using image psotgsechniques.

Figure 4.6: Mismatched levels. The histology level imagedes not match the specified
region of the MRI level image (a), and the cell level imaged@gs not match the specified
region of (b) either.

In our system, three texture synthesis methods are combingghthesize the image.
We mainly discuss the algorithm modifications which needeidgrm constrained synthe-
Sis.

Constrained Image Quilting

Image quilting is used to generate the background texturéhiohistology level and
the cell level image, but other patch-based synthesis rdstlsoich as Graphcuts, may also
work. In the histology level, background is defined as eveng except the vessels and
their surrounding layer. In the cell level, background ifirtedd as everything except the
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cells, the vessels and their surrounding layer. We alsd prieel-based synthesis methods
to generate the background as well, but neither the singt@uton nor the multiresolution
(with TSVQ acceleration or PCA and ANN acceleration) altfori seemed to work well
for the textures used here, mainly because the feature® itextture tended to come out
blurred.

Our constrained quilting algorithm differs from typicalitjung in the following two
ways. First, not all patches in the segmented sample imagédeaised for synthesis.
For example, at the histology level, the textures arouncptivéal vein and the artery are
different from the background texture (see Figdrdc). Hence, the patches falling into
those regions should not be used to generate the backgrextude. Second, both patch
placement and selection are constrained to satisfy thehmatgiirement. Especially at the
cell level, in order to match the histology level featuré® ¢uilting process is constrained
by the color/intensity of the magnified histology level ineagAn example for this are
the white areas, callesinusoids which appear on both synthesized levels and should be
matched. Thus, when selecting a candidate patch for the léarel, the location, shape,
and distribution of its sinusoids must match that of the egponding second-level area.
This is not a limitation since our sample database is diversrigh, and we have never
encountered a case where no fit could be found. Considermgxture structure size, the
quilt patch size is chosen to B8 x 40 pixels, and the overlapping width is 6-8 pixels.

A further constraint for background texture synthesis dmjeat boundaries, both inte-
rior and exterior. The tag images play an important role implying to these boundary
constraints, and this will be discussed at the end of thissec

Constrained Pixel-Based Synthesis

Smaller structures constrained to tight and curved boueslare better generated using
pixel-based synthesis methods, since patch-based metmi#ison a scale too large to
adhere well to the object’s geometry. In our application,use this type of approach to
generate the small textures in the surrounding layer artlimgbortal veins. However, at
the same time it is desirable to transfer the global chanattes of the sample texture to
the outputimage as well. For example, texture feature$, assmooth muscle cells in our
application, which are closer to the object boundary in ti@@e should also be placed
closer to the boundary in the output image. We can achiesdihconstraining the texture
generation process by a measure imposed by the object ggondistance fields, which
we use here to (i) constrain the texture generation andgfip to find the outside boundaries
for magnified veins to guide the synthesis process. We wdl filustrate our pixel-based
algorithm for the general case (see Figdré and then discuss how it is applied within a
specific example (see Figuded).

We calculate the distance field using a distance transfoadmanmalize it to a range
of [0,1]. The distance field is shown in Figudera as a grey image, in which pixel value
maps to distance. If the given sample texture has a layengebagnce (Figurd.7a), then
the synthesis process must depend on these distance vafterscalculating the distance
fields for both sample and result image, we use the standardlste order to synthesize
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Figure 4.7: Our pixel-based synthesis methods. Pixel ggmhbased on distance field:
(a) Sample image and its distance field, (b) Reference distelds and corresponding
synthesis results. Pixel synthesis based on distance feldyadient field: (c) Sample
image and its distance and gradient fields, (d) Synthestsepsoand result.
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Figure 4.8: Our pixel-based synthesis results. Sampl& gk histology image (a) and
its distance field (b), reference distance fields (c) andehelt of synthesizing a thick skin
histology image (d).

e
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the pixels. There, for each pixel in the result image, thectmed pixel must be chosen
from the set of pixels that (i) observe the usual texturelsysis metrics]37] and (ii) have
a similar distance field value.

If the input image is part of a layered texture, or if we wantaduce the sample image
size to speed-up the synthesis, our pixel-based synthesimohwill not only depend on the
distance value, but also on the texture direction, whiclaiswdated from the distance field
and represented by a gradient field (see Figure). The pixel synthesis order depends on
the distance values, and, based on the gradient, rotateiigkirorhoods are compared to
find the best match.

In our bio-tissue example, we pre-compute the normalizethdce field around the
portal vein based on the tag image of the sample histologl levage (see Figuré.9a).
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— calculate vein periphery
/ via distance transform

(a) = (b

Figure 4.9: Vein periphery synthesis based on distancesfie(d) Generated from the
segmented sample image, (b) Generated from magnified MRJjan{a) Texture detail.

When synthesizing the histology level image, we computerdlai distance field around

the vein of the magnified MRI image to find the boundary of thewructures (Figure

4.%). The detail in the vein periphery is then synthesized thasethe distance and gradi-
ent values.

Pattern-Based Synthesis

Our pattern-based algorithm is designed to preserve paketomic structures, i.e.,
structures that cannot be cut, such as cells. Pixel-baspdtoh-based synthesis methods
cannot generally guarantee that features remain uncutdistonted, since they have no
knowledge about which part of the texture constitutes a latbmic pattern. We require
an algorithm that will ensure that atomic structures remiaiact and, at the same time,
satisfy the match requirements.

We can achieve this by identifying the location of the atostitictures on the low-
resolution level and replace them by high-resolution wersiin the magnified level. If
these structures have fuzzy boundaries that blend withahlkgvound, it is useful to keep
these as well. They can then later help to integrate the fesiinto the background in a
coherent way.

The first step involves identifying the atomic features. Ur bver tissue example,
these atomic features are represented by the cells in theeeel sample image (Figure
4.4e) and are segmented as patterns (Figuse). When synthesizing the cell level image,
the algorithm first detects all possible cells (dark pointshe magnified histology level
image based on the image intensity, and records this latatformation. We detect the
dark points using two thresholds. Then location-consé@ipattern placement proceeds,
and the cell patterns are chosen randomly to increase tragigarof the result. A similar
method can also be used for magnifying the cells in the lagarrad the portal veins.

As we have mentioned above, the tag image, which corresgortle current zoomed
image, is important to comply with the match requirement.éxample, the vessels (portal
veins and arteries) represent interior objects which ghbel preserved as they are and
properly scaled under zoom. However, scaling the tag imaggeepts a problem. When
the image is magnified, the corresponding tag image shostdka enlarged at the same
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Figure 4.10: Smooth boundary problem caused by tag imagaifigion. (a) Dentate
boundary, (b) Smooth boundary.

rate. Without any specific process, the boundary of the gathtag image will have a
binarized effect (Figurd.1(). To prevent this, we use a smooth interpolator for the tag
values, and then choose an intermediate value as the thdeshdecide the boundary.
Using this procedure, the magnified image will still have @eth boundary (Figuré.1().
Another possible solution is to represent the boundary pireescurve. If the segmentation
information is stored using a spline curve, the enlargeislurve can be calculated based
on several control points while the image is magnified. Is thay, the boundary can be
very accurate.

4.2.3 Smooth Semantic Zooms

When zooming into a specific region of the image, our systemiioes two processes:
(i) magnification of the current level image, and (ii) mindton of the synthesized next
high-scale level image. This achieves any level of magniGoadrom only a few images
with different semantic detail.

The system has a number of parameters, some are set by tfedsssame are decided
by the available data. The first such parameter is the sizeeobtitput imageM x M,
which specifies the screen size of the microscope. A secorainader is the maximum
zoom scaleZ,,,., for each level, which is determined by the resolution of thiesequent,
more fine-scale level. This factor determines the amountasfdard magnification that
needs to be performed using the current level data beforesaavantic detail can be filled
in by synthesizing from next-level data. Obviously, the enlmvels are available, the less
blur will be encountered when zooming in. Since for real agdti confocal, or electron
microscopes the maximal zoom scale can be from thousandslions our application
accelerates the zooming activity by dramatically reduciyg,.. When the present level
data is magnified af,,..., the resolution has been reached at which the next highel lev
data can be synthesized to provide the missing detail.

Also, at the beginning, the user specifies a zoom focal pgjnwvhich determines the
center of the region of interegt. This regionR has a sizéV x N and is calculated by the
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Figure 4.11: Image transition process.

system, such thav = M/Z,,... R marks the image region that will be replaced by the
next higher level detail when the zoom scaleéeaches”,,,.. (in our example, this region
is shown as the white square in Fig4r2a).

The last parameter that our system maintains is the viewpértwhich is centered
at F' and has a siz& x V. It varies withZ, such that” = M/Z. At any givenZ, the
system will capture the image inside th@”, and then magnify and fit it into the output
image. At startup, the image is not magnified, ilé= M andZ = 1, and is shown as the
output image directly (Figuré.2b). When the image is gradually magnified by the u&er,
increases, while th& P decreases. Once théP has reache®, synthesized image data
due to the next higher-level detail should be made available

It is desirable to avoid a sudden change of the display, wieranage generated from
the next higher level of resolution suddenly pops in. We agash a graceful transi-
tion by blending the images of two consecutive levels overescange of zooms, properly
weighted by a zoom-related weighting function. In additiae prefer to do this without
having to view blurred features of the present level. We adneaxe both of these require-
ments by specifying a transition poihtwith a zoom scal€’;, whereZ; < Z,,.., at which
we compute the image for the next level, minify it, and blendgith the magnified present
level. This early computation of the high-resolution imagewever, requires the computa-
tion of extra data at boundaries, later culled with furtreming until theZ = Z7,,... More
specifically, suppose that the synthesized image hasSsiz&, thenS = M X Z,,4./Z;.
The advantage of having a larger image available is thatawal more panning activity
within the next semantic level.

The smooth image transition process over a range of congeaatoms is illustrated
in Figure4.11 After the transition point, the magnified present imagemnufied synthe-
sized image are smoothly blended by gradually changing Wheights inversely, i.e., the
magnified image will fade out while the synthesized imagéfade in.
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4.2.4 Results

In this section we report on our specific application — théuakmicroscope viewing a
liver datasets at three levels of semantic scales. The sampbes and corresponding tag
images stored in our database have been shown in FHigdi(b,c,e) and Figurd.5. A few
frames of the resulting image sequence during a semantio zme shown in Figurd.2
When the user specifies a region-of-interest in the MRI indgeliver and zooms in, then
this part of the MRI level image is gradually magnified andniied with the synthesized
histology level image. If the user further zooms in from th&tdlogy level, the histology
level image is magnified and eventually blends with the sgsitted cell level image. This
resembles the functionality obtained with a real microsgophen slowly examining an
interesting part of a liver. Besides zooming, the user cam pn to inspect nearby regions.

In our algorithm, once the sample images are chosen, thettirsgnthesize a certain
level image mainly depends on the output image gizand the magnification scalg of
the transition point. When/ is fixed, the time spent on synthesis and the blending process
can be adjusted b¥,. For example, suppose the output image size is fixeddonx 400
and the maximal scalg,,,, = 4. If the specified scal&; of the transition point i, then
the synthesized image has a sizeso x 800. With the current implementation, it will
take several minutes to generate the result imagg, i increased t@8, the corresponding
synthesized image becom&s x 533, which reduces the time spent on synthesis. However,
the blending effect is also reduced, which means the syizdgaext-level image will pop
in more abruptly.

4.3 Extensionto 3D

The idea extends well to volumetric data. In order to gereesab-resolution detail for
volume data, we extend image quilting to volume quilting] also apply a 3D pixel-based
synthesis algorithm. In volume quilting, we apply the grapits algorithm 154, 155 to
find the best seam surface between two neighboring blocksgad of using the shortest
path algorithm, which is applied in image quilting but nosg#o be extended to 3O74].

From the Visible Man’s cryosection data, we reconstruchedvblume and segmented
out the liver. Similar to the 2D case, the volume data is atdorized to match the histology
data. The sample histology volume is built based on the featin the 2D image and
certain 3D growth rules. We could also apply Wei’s solid tegtsynthesis method 36| to
generate a sample volume, however, it is difficult to get & lojgality solid texture. Figure
4.12shows the volume data required by the synthesis procedure.

In the 3D extension of our viewer, the user specifies a voluegen-of-interest (Figure
4.13), and this volume region is cut out from the original volueme rendered. During 3D
zooms, the volume region is magnified and smoothly blendédtive minified synthesized
higher level volume. The observed volume size changes glmooems, in contrast to the
fixed-size output images in the 2D system. Some volumetn@as¢ic zooms are shown in
Figure4.13 For the histology level, as in 2D, the textures around the &ee synthesized
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(b) (d) (€)

Figure 4.12: Volume data and colorized volume. (a) Visibenra volume, (b) Colorized
volume, (c) Segmented liver, (d) An example of the sampl®lagy level volume and its
translucent result (e).

by a pixel-based algorithm, while other textures are coeaie volume quilting. Figure
4.14shows volume with cut and translucent rendering results.tidnslucent volumes are
rendered using the OpenQVis software (http://openquscgdorge.net/). An advantage of
volume synthesis over traditional surface synthesis isadhly the former can illustrate the
translucent effect of internal structures.

4.4 Discussion

We have described a new constrained multi-scale texturtasgis method to facilitate
semantic zooms. Pixel-based, image quilting, and patiased synthesis methods were
unified to generate high-detail images under certain camss. Our demo application, a
virtual microscope, demonstrated that quite interestimgjuseful image sequences can be
generated using our framework.

(a) (b) (d)
Figure 4.13: lllustration of semantic zooming into volunaal (a) First level for part of
the liver, (e) Histology level of (a), (b)-(d) Volumes obtad by blending the magnified

first level volume and minified histology level volume.
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Figure 4.14: Synthesized volume with sub-details.

Comparing ours with the Volumetric Illustration work prased by Owada et al102,
both employ texture synthesis techniques to illustratevitiametric details. They syn-
thesize textures on the cross-section surface mesh terétaghe internal texture of 3D
models. We, however, directly generate volumetric texdwreéh high-resolution details.
Inspired by our work, Lu and Ebert proposed example-baskanillustration technique
also with impressive result89).

In future work, our algorithm could be improved in terms o€akacy and speed. For
the former, more sophisticated segmentation and contnaiay yield more refined small
detail. We would also like to explore better interpolatioethods for the oriented tex-
ture synthesis to overcome some of the remaining visudber$i. Finally, optimization
and GPU acceleration of our algorithm will provide more ratgive capabilities, i.e., for
generating the detail on demand when zooming into an imagelome.
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Chapter 5

Uniform Texture Synthesis

5.1 Introduction

Texture mapping is a technique that is used to map 2D imadestihglanar and curved
surfaces in order to enhance their visual effect. Texturgh®sis has similar goals, but
instead of using the explicit tiling approach of texture piag, it aims to generate the
surface decor from a relatively small texture sample. Baijpreaches are useful in their
own right. Texture mapping is the technique to use when tla¢ ig@an exact preservation
of the detail in the provided texture sample, but it tendsuttes from repetition and tiling
artifacts, as well as seams, and it also requires overhea@xture storage. The detail
generated in texture synthesis, on the other hand, is notaat match, but only similar to
the provided texture sample. It, however, is seamless andeetitive. Texture synthesis
replaces the memory overhead of texture mapping with coatipuial overhead incurred
by the synthesis process. Both methods have similar demardamns of avoiding local
and global distortion, which, as we will show, can be achielvg preserving the texture
sample local angles and global scale during the mappingeosyththesis process, using a
conformal parametrization approach.

Global conformal parameterizatiowas introduced in46]. It guarantees that the
shapes embodied in the textures are preserved on the swafati is global, which means
there are no seams or cracks. Furthermore, the paramétarizan segment the surface
into patches, where each patch is mapped to a planar reetaingis is valuable for real
applications. The existence of the global conformal patanmtion is equivalent to the
fact that all oriented surfaces are Riemann surfa6gks [Therefore, global conformal pa-
rameterization discovers more profound geometric straston surfaces. For example, it
induces the so-called affine structure, which is the founddor generalizing splines with
planar domains to be defined on surfacgy.[It applies the concept of a differential form
from Riemann surface theorg?], which can be interpreted as a pair of smooth vector
fields orthogonal to each other.

The intrinsic difficulties for texture synthesis are duewm tmain aspects. The first
originates from the local geometric properties of the ssgfal he texture image is defined
on a flat planar region, and once it is mapped to the curve@siregion, there must be
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distortion, which is challenging to mediate. The secondaigsed by topology. Since the
surface and plane are topologically different, there islob@ one-to-one smooth mapping
between them. Thus the existence of seams and singulasitisgvoidable, as well as it
is challenging to remove these seams and minimize the nuaftsgngular points. While
texture synthesis applied directly on surfaces (see Sebtl)) can do a reasonably good
job, it requires a surface flow analysis which can be comfdttalt is more intuitive to
do texture synthesis on a 2D plane, where the sample itsalbs defined. Conformal
parameterization offers a convenient way to do this.

For texture mapping, while the angle is already preservetyilse conformal mapping,
arelated application is to also seek the preservation ¢é $oatexture mapping. Although
it is mathematically impossible to make the parameteoragireserve both the angle and
the area, we can try to describe a convenient paradigm witbhathe two can be traded
off.

Compared to traditional methods, our texture synthesisotdbased on global confor-
mal parameterization has the following advantages:

e Global structure. Traditional texture synthesis methods are unable to predex-
tures with strong global structures, because they gen#ratéextures locally and
extend to cover the surface without coherent global consiota. In practice, it
is highly desirable to generate textures with global strreg. Since our method is
based on global parameterization, it is easy to synthefobally structured textures.

e Purely 2D operationTraditional methods need to march on the 3D surfaces, and the
data structure and the operations for this are complicdtedur method, all opera-
tions are entirely performed in the 2D parameter domain¢lvig much simpler and
more efficient.

Further advantages of our conformal parameterization oggthoth for texture map-
ping and synthesis, are:

e Angle preservationConformal parameterization preserves the angles fromuhe s
face to the parameter plane. Therefore, the local mappomg the texture to the
surface is just a scaling without angular distortion. Thetlsgsis method then needs
to only focus on the scaling factor, without having to pagation to angle changes.

e Regularity. Global conformal parameterization induces a canonical twaaegment
the surface, such that each segment is conformally paramestdy a rectangle (Fig-
ure5.1). The regular pattern of this global parameterization Iipfuéto simplify the
algorithms.

¢ Rigor. Global conformal parameterization is based on solid gepowteories, and
based on the parameterization, the distortion of textunesuofaces can be quantita-
tively measured. This makes it convenient for quality colntr
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Original Mesh Holomorphic 1-form Basis Optimal Holomorphic 1-form Segmentanqn along Conformal
critical trajectory Geometry Image

Figure 5.1: Process of Global Conformal Parameterizatibhe input surface is repre-
sented as a triangle mesh (a). The holomorphic 1-form basiemputed, (b-1) and (b-2)
are the 2 base 1-formdf6|. By linear combining the basis, different holomorphicdrrhs
can be constructed as shown in (c-1) and (c-2), then the apfifform with most uniform
1-form is selected (c-2)6[0]. The red and blue curves are the horizontal and vertical tra
jectories. Horizontal trajectories intersect at the zevimgy the center of (c-2). The mesh
is then segmented along the horizontal trajectory throbghzero point as shown in (d),
each segment is conformally parameterized to a planarngletallustrated in (e). The
trajectories are mapped to the iso-parametric curves.

5.2 Related Work

Before presenting our new method, we shall discuss relatel i two areas: surface
texture synthesis and conformal parameterization.

Surface texture synthesis Surface texture synthesis extends the 2D texture synthesis
methods to synthesize texture directly on the surfaceydicf pixel-based method$38,
129, 150, 125 and pattern mapping methodsdl, 107, 117, 29]. With these methods,
the discontinuities and cracks almost disappear, whiledib®rtion problem is greatly
reduced.

Another way to put textures on the surface is a texture mgppased on parameteriza-
tion. But texture periodicity is obvious and often spoile thsual quality of the results.

Traditional surface texture synthesis methods are gdpgratformed on the 3D sur-
faces to be decorated. In contrast, we propose a novel methiotl synthesizes the texture
in the 2D parameter space, which is easier, more intuitiveé canceptually simpler. By us-
ing global conformal parameterization, the synthesizetlites will not suffer from angular
distortion. But we also have to deal with area stretchindpf@mms during the mapping. We
will achieve this by using variable-size textures with llomantrol. While most texture syn-
thesis methods generate textures with uniform size festtegtures with variant feature
size are generated i126, 74]. Their methods synthesize textures variant with respect t
certain directions, and local control changes slightly pared to our technique.

Conformal parameterization Several recent advances in surface parameteriza@@jn [
have been based on solving a discrete Laplace syst@n32]. Lévy et al. B5] describe
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a technique for finding conformal mappings by least squaresmzation of conformal
energy and Desbrun et al. 2[/] formulate a theoretically equivalent method of discrete
conformal parameterization. Sheffer et all1§ give an angle-based flattening method
for conformal parameterization. Gu and Yaié] considered construction of a global con-
formal structure for a manifold of arbitrary topology by find a basis for holomorphic
differential forms. Gortler and Gotsman proposed one foomsneshes in43] and ap-
plied for surface parameterization. Degerner et 26] provided user control to trade off
between angle and area preservation.

Lai et al. [76] synthesized geometric textures based on geometry images. synthe-
sized geometric textures will have more distortions thars doecause we use an improved
global conformal parameterization with segmentation.

5.3 Global Conformal Parameterization

We assume that the reader is familiar with the basics of cexguhalysis and differen-
tial geometry. A detailed explanation for these conceptsbEafound in 62].

SupposéV/ is a surface with handles, either open or closedjl@dbal conformal para-
meterizatioris amapp : M — R?, such that each poipton M is mapped to a point on the
planar parameter domait(p) = (u(p),v(p)). Furthermore¢ is angle preservingthis is
equivalent to the following fact: suppose we arbitrarilgwrtwo intersecting curvesg, v,
on M, the intersection angle s, then their images(v,) and¢(v-) are planar curves, the
intersection angle is alse. Mathematically, the conformality of the parameterizatie
formulated in the following way: the first fundamental forrh /@ under conformal para-
meterization(u, v) is represented as

ds® = \*(u,v)(du® + dv?), (5.1)

where\ is called theconformal factor it indicates the area ratio between the arealon
and that on the plane.

In practice, it is more convenient to compute the gradietddief ¢, namely(Vu, Vo).
If ¢ is conformal, then they satisfy the following criteria:

Vu(p) = n(p) x Vu(p),

wheren(p) is the normal at the point, also
V xVu=V xVv=0,

because the gradient fields are curl-free. Formally, a gaweotor fields satisfying the
above conditions is &4olomorphic 1-form There is an infinite number of this kind of
vector fields, they form ag dimensional real linear space, whers the number of handles
(genus) ofM. The method of computing holomorphic 1-form basis has begoduced in
[46].
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The concept of holomorphic 1-form and the computationateduire are demonstrated
in Figure5.1 For simplicity, we only illustrate a naive example: a plaB&hole square. In
practice, the pipeline works for all 3D surfaces with adoyrtopologies. The red curves are
the integration curve¥« and called horizontal trajectories, the blue curves aréntiegra-
tion curves ofVv and are called vertical trajectories. These trajectonesie preimages of
the iso-u and iso-v curves. Figusel(c-1) and (c-2) show different holomorphic 1-forms,
(b-1) and (b-2) are the bases for the linear space of all hotphc 1-forms.

From the infinite set of holomorphic 1-forms, we need to pic& best one for our
texture synthesis. We choose the one with the most unifomfiocmal factor using the
method introduced ing0], as shown in Figur&.1(c-2).

The global behavior of the trajectories are very complidatérom Figure5.1, it is
obvious that the vertical and horizontal trajectories athagonal everywhere and two
horizontal trajectories do not intersect each other in gené here are special points on
M, where two horizontal trajectories intersect (two velfticajectories also intersect). It
can be proven that, at those points, the conformal facterzeno, therefore, such kind of
points are calleaero pointsof the holomorphic 1-form. In general, for a genuslosed
surface, there argg — 2 zero points. In Figur®.1(c-2), the intersection points of the red
curves is the zero point. The trajectories through zerotpaire calledtritical trajectories

A trajectory can be a finite circle, a finite curve segment teating at the boundaries,
or an infinite spiral dense on the surface. If the horizonittal trajectories are finite, then
the whole family of horizontal trajectories are finite du¢1@Q. In practice, for simplicity,
we choose a holomorphic 1-form with finite horizontal trapees.

The critical horizontal trajectories segment the surf&ténto several connected com-
ponents, each component is either a topological disk or @lagjcal cylinder and can be
parameterized by to a planar rectangle. Figuf1(d) illustrates this fact, the critical
horizontal trajectory segments the surface ihjmatches, and each is conformally mapped
to a rectangle. The horizontal trajectories are mappedeadastitv curves (red), while the
vertical trajectories are mapped to the iso-u curves (blue)

In practice, it is convenient to synthesize the texturesh@sé rectangular parameter
domains. Therefore, in our algorithm, we locate the zeratfost by finding a vertex with
minimal conformal factor, then trace the horizontal tr&peg to segment the surface.

Figure 5.2: Global conformal parameterization.
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Figure5.2illustrates a global conformal parameterization of thenfted bunny sur-
face. The bunny surface hadoundaries, two are at the tips of ears, one is at the bottom,
therefore, it is topologically equivalent to the 2-holeldis Figure5.1 The double covered
surface is of genu®. A zero point is between the roots of the two ears. The hot&dra-
jectories through it are illustrated as yellow curves. Thwlg surface is partitioned intb
topological disks, each segment is color-encoded. Figu@) and (b) demonstrates that
each segment can be conformally mapped to a rectangle otethe. p

Textures can be easily synthesized on those rectanglesigiré&or convenience, in
the following discussion, we call each surface componettt it8 conformal parameters a
conformal geometry image

5.4 Uniform Texture Synthesis

Global conformal parameterization on a 3D surface (seer€i§L2) induces confor-
mal geometry images (see Figusela)(b)), which allow textures to be easily mapped to
the surface without angular distortion. Unfortunately #rea stretching of textures is un-
avoidable, as is shown in Figute3 Ideally, we want to preserve both the angle and the
area of the texture on the surface, that is, we want to fincb@metricparameterization.
Although in theory this is definitely impossible, in pragtjove are able to improve the
texture synthesis method to make it as isometric as possible

Figure 5.3: Nonuniform texture on a surface. It is generatedlobal conformal parame-
terization, uniform texture synthesis on 2D geometry insegyed texture mapping.

We propose a multi-scale texture synthesis method to genaraform textures on
the surface. This method synthesizes nonuniform textunea 8D geometry image by
considering the area stretching factor (the inverse of tifarmal factor in Equatiob.1)
in order to obtain the uniform 3D textures. The estimatiothefarea stretching factor on
the conformal geometry images will be introduced first, drghtthe details of our multi-
scale synthesis algorithm will be described.
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Figure 5.4: Conformal geometry images (a) and (b), and spaeding inverse conformal
factor fields (c) and (d).

-

5.4.1 Estimation of Conformal Factor

The conformal factor indicates the amount of area stretchiom the 3D surface to
the 2D parameter domain. Our goal is to calculate the invesaéormal factor field on the
geometry image. The inverse conformal factorjandr = § where) is the conformal
factor in Equatiorb.1 If the area shrinks from the 3D mesh to the 2D planes smaller
thanl, otherwise is larger thanl. This field will be used to choose the appropriate scale
level of the sample texture when we synthesize textures aaioegegions of the geometry
image.

First, we normalize the parameters of each conformal geyrnimeage. Then we choose
the maximal siz&” for each dimension of the synthesized textures. The sizZeeobtitput
texture is simply the product @f and the normalized parameter for each geometry image.
The size of the output texture affects the speed and thetgoéthe synthesis, and also the
texture feature size on the surface. For all results showa aee seC' to be1024.

By using Equatiorb.1, the values of on the vertices are easily calculated directly from
the geometry image with the original mesh connectivity. Thalues of the other texels
are then interpolated using a Gaussian radial basis fun(f#8F). The calculated inverse
conformal factor fields of two geometry images are illugtdain Figure5.4(c)(d). Here,
whenever the color changes from dark green to bright gredriaally to greenish white,
the inverse conformal factor value increases gradually.
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5.4.2 Multi-Scale Synthesis Algorithm

Most texture synthesis methods synthesize textures withowith quite simple size
variations of texture feature426, 74]. In contrast, we use the conformal factor to control
the local scale of the texture. Therefore, the output texisirstill similar to the sample
texture, but with different feature sizes in different ags.

Our multi-scale synthesis algorithm is based on the patded texture synthesis
method. Although pixel-based synthesis methods or hybethods should also work,
better quality can be obtained using patch-based methadlding to our experiments. We
put equal sized texture patches in the order of image qgil84], and use the graph cut al-
gorithm [74] to hide the seams of neighboring patches. The patch sizeisen according
to texture features depending on the input texture, we use 30 pixels as patch width for
the results in this chapter. In the synthesis process, weseha patch, not just from a single
sample texture, but from multiple scale levels of the sartgtture. First, we calculate the
average value of the inverse conformal factor in the regmrered by a patch; Then we
decide an appropriate scale level based on this average. iatam the sample texture of
that scale level, we find the best matched patch to fit the beighg patches and put it on
the output texture.

Multi-scale Sample Textures

In order to preserve memory and improve speed, we storea@rcadmber of discrete
scale levels of sample textures (see Figbui®. We call the enlarged sample texture the
high-scale sample texturand the minified texture tHew-scale sample textur&or better
quality, the scale between neighboring levels is not a paW. The parameters in our
algorithm include the highest scale, the lowest scale, hadlésired levels, which can be
specified by the user and affect the size and the quality aliththesized textures. Different
scale level textures are then generated by cubic intefpolat

. ,. - (b) > & (C : d)

Figure 5.5: Multi-scale sample textures. From (a) to (dJes of sample textures increase
gradually.

For regions with higher inverse conformal factors, higtesel sample textures should
be chosen, because the texture mapping will shrink therex&imilarly, for regions with
lower inverse conformal factors, lower level textures stidae selected, because texture
mapping will enlarge the texture.

The lowest level needs to be determined with caution, bectiessampling rate is re-
duced when the texture is minified. Depending on the feaineedd the texture, important
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features may be lost irrecoverably if the sampling rate tsbedow a certain level. We
place our original sample texture close to the lowest lewéwer the risk associated with
downsampling. In contrast, high scale level texture doeésuffer from this problem, and
can be used safely.

Preserving Boundary Consistency

Since the surface is segmented and mapped to more than omeefggomage, the
boundary consistency problem needs to be addressed tar¥flilen mapping a segment
(see Figuré.1(d)) to its conformal geometry image, boundaries on the segare mapped
to boundaries on the geometry image, respectively. Fifu@) shows the mapping of a
segment (segment 1) to its geometry image (geometry imageigyire5.6(b) shows the
boundary correspondences of this geometry image to angdmmetry image (geometry
image 2), due to an adjoining segment. Corresponding baoympdats are neighbors in 3D
space, and therefore must have consistent textures.

.
—
{1

[l
TN

a4 _ _______ La a3 q
\ /‘l " "

Geometry Geometry Geometry
image 1 image 2 image 1

(a) (b)
Figure 5.6: Boundary problem. (a) Corresponding boundamea segment and its confor-

mal geometry image; (b) Corresponding boundaries on twangéy imagesyq is the zero
point.

Segment 1

Our solution to synthesize textures consistently acrossdresponding boundaries is
as follows. First, we add margins to geometry images whiacle lleoundary parts corre-
sponding to other boundary parts, as shown in Figue Here, P1 to P4 are margins
we added. During synthesis, after texturesiinof geometry image 1 is synthesized, the
textures are copied to filP1 of geometry image 2. Then, when synthesizing textures on
geometry image 2, for patches overlapped with margins, ttemed patch will be chosen
with additional constraints, treating the overlappedgasg already synthesized pixels.

Therefore, the patch-based synthesis algorithm is sfightidified to cope with dif-
ferent patch-overlapping situations, which solves thendlauny problem. This way, our
patch-based synthesis algorithm can easily generatedi&aldextures, which is quite use-
ful in texture mapping as well.



5. UNIFORM TEXTURE SYNTHESIS 54

P1 P2 P1
<\ Yy X Al>

/ /
P3 P4

Geometry image 2 Geometry image 1

Figure 5.7: Consistent boundary synthesis, by adding msigmnd copying boundary tex-
ture patchesy is the zero point.

5.4.3 Results

Our texture synthesis results are demonstrated in Fig@&.9. When we synthesize
uniform textures on geometry images without considerimgatretching, the texture fea-
ture sizes on different regions on the surface are highlyuraform. In contrast, by using
our multi-scale synthesis method, textures on the surfexqute uniform.

5.5 Quasi-Isometric Texture Mapping

The multi-scale texture synthesis method just presentedifies the textures directly
to improve the uniformity of the synthesized texture on tindace. In contrast, the method
for texture mapping, introduced in this section, revisesgghrameters instead.

In theory, it is impossible to make the parameterizatiors@ree both the angle and
the area. In that case, the parameterization would be aretsgnwith a surface of zero
Gaussian curvature (that is, a flat surface). But what we caoraplish is to make the
parameterization on the interior of one component as isaen&s possible and in return
sacrifice some of the angle structure along the boundariesapMy a mass-spring method
to achieve thigjuasi-isometrigparameterization, which is close to the desired isometric
one.

Figure5.10illustrates the basic idea. The original conformal geoyngtrage has a
highly non-uniform density, whereas preserving the angfeer the process, the mesh (b)
with quasi-isometric parameters has more uniform dersitythe boundaries are distorted.
Hence, the boundary consistency is sacrificed. On the otrat,lthe stretch-minimizing
method of Yoshizawa et al.15]] fixes the boundary vertices and therefore can keep the
boundary rectangular, but the anisotropic texture sthetcis considerably higher.
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Figure 5.8: Multi-scale texture synthesis results. (a) @)dJniform texture synthesized
on geometry images without considering area stretchingpfa¢b) and (f) Nonuniform
texture by mapping (a) and (e) onto 3D surfaces, (c) and (guNiborm texture synthesis
considering area stretching factor, (d) and (h) Uniformuexby mapping (c) and (g) onto
3D surfaces.

5.5.1 Mass-Spring Model

The mass-spring model is carried out on the conformal gegnietages using the
original mesh connectivity. The mass-spring system is rhedl@s follows: each vertex is
treated like a node and each edge as a spring. The motionradddls is confined to the 2D
parameter plane.

We denote the parameterization of the conformal geometagerasy : U — R?,
whereU is the conformal geometry image. Then, the mass-springigeal can be for-
mulated a®¢(v) = eF(v), wheree is a constant carefully chosen to ensure no flipping of
triangles. In practices is inversely proportional to the maximum magnitude of theséo
field. Here F is theexternal forceand calculated as

F(v) = 3 n(u)n(e) (6(v) - o(u)).n(w) = LI =IOl g 5
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(k) 0

Figure 5.9: More texture synthesis results. (a) and (e) dJmftexture synthesized on
geometry images without considering area stretching fagipand (f) Nonuniform texture
by mapping (a) and (e) onto 3D surfaces, (c) and (g) Nonumifiexture synthesis consid-
ering area stretching factor, (d) and (h) Uniform texturentgpping (c) and (g) onto 3D
surfaces, (i) and (k) Nonuniform textures on 3D surfacedute features inside the handles
are smaller than those outside, (j) and (I) Uniform textae8D surfaces. High resolution
images as well as videos can be obtained at http://wwwirgstedutlujin/paper/pg05/.
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Figure 5.10: Mesh changed on mass-spring model. (a) Mesmergeometry image,
(b) Modified mesh with mass-spring relaxation, (c) Confdrteature mapping based on
global parameterization, (d) More uniform texture mappilsgig our quasi-isometric pa-
rameterization.

whereu runs through all neighboring vertices of vertex: is the valence of vertex, and
r(v) is the 3D position of vertex.

In Equation5.2, n*(v) is a discrete approximation of the conformal factowatintu-
itively, the external force is proportional to the confotrfector, and expands the regions
with high conformal factors. The nodes on the parameter domgh higher density will
be expanded gradually and make the distribution more unifdinat is, the process will
improve the parameterization to be closer to an isometry.

In our implementation, we use the mass-spring model codarfotrary nodes in33].
Figure5.10demonstrates the improvement of the parameterizatiomusin mass-spring
algorithm. The improved parameters are used for texturepmgp Figure5.10c) is the
texture mapping result based on global conformal paramaten, while Figures.10d)
is the result after conformal parameterization and massgpelaxation, upon which the
squares on the checkerboard become more isometric.

5.5.2 Results

Figure5.11 compares the results obtained with and without our quasné&tric para-
meterization method, for the task of mapping 2D textures @@ models. Figur®.11(a)
shows the outcome of an image-to-surface mapping via stdmgtzbal conformal parame-
terization, while Figureés.11(b) shows the result obtained when applying the mass-spring
model to the conformal map first. We observe that the unifyrmii the parameterization
is greatly improved. And video can also be mapped to or switbd on the surface with
considerably better quality. One frame of our video (M3tox the surface is shown in
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(d)

Figure 5.11: Texture mapping results. (a) and (b) Image ersthface, (c) and (d) Video
on the surface, in which (a) and (c) are based on conform&ladlparameterization, (b)
and (d) are based on improved parameterization using npasgrsnethod.

Figure5.11(c) and (d). We should note that while the mass-spring réilaxarocess is
relatively slow (about 1 hour for the bunny model), it onlyeds to be done once for each
model, and after that the improved parameterization resal be reused for various image
and video mappings. The extra cost for storage is minimal.

5.6 Discussion

In this chapter, we have presented novel methods to accsimgistortion-minimized
texture synthesis and texture mapping on 3D surfaces. kFgrwle have augmented the
conformal mapping approach, which preserves angulartiygelith a process that controls
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the distortion of scale. For texture synthesis on 3D sugfaitallows the synthesis process
to be done intuitively in 2D space and, afforded by the canfdrmapping, achieves global
control over the mapping result. The synthesis result iallp@ngle-torsion free, while
globally it is continuous. Further, we also devised a methaskd on a mass-spring model
which offers a good tradeoff for angular distortion and gigeservation in texture mapping.
Both methods are conveniently implemented using conformebping, are simple and
efficient, and are universal for arbitrary surfaces.

While we currently do not provide explicit controls to batenangular and size dis-
tortions, we plan to incorporate those in future work, udimg updated conformal factor
fields.
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Chapter 6

Multiperspective Visualization

6.1 Introduction

A perspective rendering represents the spatial relatipasti objects in a scene as they
would appear from a single viewpoint. Recently perceptiongiples have been applied
to help find optimal viewpoints for volume datase®s 123. Each rendering result cor-
responds to one viewpoint. Finding the minimal set of optimewpoints, and putting
the result images side by side, the user can see all the iamiddatures and get a good
overview of the data.

Figure 6.1: “High and Low” by M. C. Escher.

Multiperspective rendering is a powerful mechanism to ydifferent views into one
image, while keeping the context between them alive. Meatspective rendering has been
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employed both by artists, such as MC Escl#f]|,[ as well as in mainstream computer
graphics 10§. M. C. Escher’s work, shown in Figur@1, is a stunning multiperspective
example. Multiperspective camera models have been intextiand employed in computer
vision [160, 47], 3D surface and 2D image graphi@&8[ 41, 1, 130, and in Cel animation
[147]. Yu and McMillan [152 showed that multiperspective images can be characterized
as continuous manifolds in ray space under an appropriatengerization. They used
general linear cameras (GLC)43, which describe all 2D linear subspaces of rays, as
primitives for constructing multiperspective images. Iuer to generate good results,
users have to select and lay out image fragments from diff€&&Cs on the image plane,
and perform transformations, including translation, iscaland rotation.

Despite the incongruity of view, effective multiperspgetimages are still able to pre-
serve spatial coherence. Inspired by the previous worle@ally Escher’s work, we pro-
pose to extend our warping lens to a multiperspective lengiden the view of the data
and provide the spatial relationship of features for the.udere we present our prelimi-
nary multiperspective visualization approach and showesasults. Our long term goal is
to incorporate it into an entropy-maximizing view selentioamework, to construct even
more comprehensive views on the data in the gallery. Iijtiale will couple this capabil-
ity with the feature or view specification to have users takea onore designing role. Later
on, however, we aim to derive a set of rules for view optimaato construct more com-
prehensive views automatically. Lastly, in all of these pvaased endeavors, Tufte’s rule
of “scaling with honesty” will be enforced by superimposengrid, which will indicate the
amount of local distortion of the volume, upon request.

6.2 Sphere-Based Multi-View Approach

In our volume rendering framework, the user can interaljtivetate and observe the
volume around the center of the volume data. Our first try ietohe user chose two or
three viewpoints of interest during his/her exploring & ttata, then our approach automat-
ically generates the image combining these views, withioeituser’s further interactions,
such as a manipulations on the image fragmetg][

Figure 6.2 illustrates the basic idea of our sphere-based multi-viepr@ach. When
viewpoints are only allowed to locate on the surface of a spBewhich is concentric to
the volume bounding sphere, the user can specify two viavwpasuch ay P1 andV P2,
shown in Figures.2a. Our method warps the volume by computing the ray diredton
each pixel on the image plane based on spKefeérst, the pixels P1 and P2) correspond-
ing to the centers of viewpoint$/(P1 andV P2) are located on the image plane based on
the relative positions of the two viewpoints, and their ug aight vectors. For any pixel
P within the range of the first viewpoirit P1, our approach maps the pixelto a point
S P on sphereS based on the coordinates Bfand P1 on the image plane. Then the ray
direction simply goes througR and the data centér. Therefore, as shown in Figuée2b,
ray directions for all pixels located in Pixel set 1 or Pixel & can be computed easily. No
rays pass through the pixels in Pixel set 4. For pixels inlRiee3, which is the overlapping
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Figure 6.2: Illustration of our sphere-based multi-vieywrgach. (a) All viewpoints located
on the surface of sphere, which is concentric to the bounsiigre of the volume data,
(b) Image plane.
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Figure 6.3: Our multiperspective renderings considerisility. (a), (b) and (c) Render-
ings with three viewpoints, (d), (e) and (f) Multiperspegetrenderings.

region affected by both viewpoints, interpolation is apglto determine the corresponding
points on the spherg. Finally, for each pixel, there is one ray passing throubbrefore,
the rendering can be done efficiently on the GPU.
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6.3 Results

Based on the sphere-based multi-view approach we discasese, we can also con-
sider the visibility of each viewpoint to avoid renderingji@ns with too much distortions.
Figure 6.3 shows our multiperspective renderings of a box with texduwensidering the
visibility. Figure 6.3a-c are three renderings from different viewpoints. The bse to
study three views to find the correspondences of featureslar o get the spatial relation-
ships of features. Figui@ 3d just shows how we warp the box from one viewpoint. Figure
6.3e,f are the multiperspective renderings for two and these/points. Although there is
much distortion, the spatial coherence is maintained.

We can also keep the feature or focus of interest undistoaied only warp the sur-
rounding data. Contextis then shown in a distorted way. feéi§ 4 shows results generated
by this method.

Figure 6.4: Our multiperspective renderings with focusdeaprotected. (a) and (b) Direct
volume rendering from two viewpoints, (c) and (d) Multipeestive renderings.

6.4 Discussion

The primary concern with our multiperspective renderingsvhether the approach
causes too much distortion to be useful for visualizatioom@aring our task with Escher’s
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work, we find one fundamental difference. His work and marebsuccessful multiper-
spective researches in graphics try to see objects outf@rdxample, the user looks at
some buildings from the street on which the user walks. Heweve observe the data from
outside towards the inside, and move around the data, whiobduces more distortions.
Furthermore, Escher dealt with buildings, which have gtriline features, such as walls
and ceilings. These special features help to separateptewtiews easily and efficiently.
But in volume datasets, such features are hard to find and dalways exist. Another
problem that appears in volume visualization is that duectdusion the same feature can
be shown differently for multiple views, especially in setr@ansparent renderings, which
cause difficulties to represent them correctly in the finadgen All these make it a quite
difficult task to design a good multiperspective techniqurevblume visualization.
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Chapter 7

Conjoint Analysis to Measure the Perceived
Quality

7.1 Introduction

The main purpose of visualization is to produce images thatvaisers to gain more
insight into the illustrated data. This is a complex isswegahding on many factors of the
visualization system, starting from human-computer axt@on, to rendering speed, to ren-
dering style and algorithm, and finally human perception@wghition. With the exception
of the last component all of these factors have been designbdmans and many diverse
technologies have emerged, and are still emerging, overdhes. But in the end, human
perception is the ultimate judge that determines which e§¢hare the most effective. A
popular focus of the field of visualization is the modelingl@ptimization via engineering
and mathematics tools and frameworks, and often the degegiggneer him/herself judges
the success of the method. Here, the easiest parameterasomeare rendering speed and
memory consumption and others, which are all engineerirmgtties. However, in light
of the importance of the last element in the chain, the hunbaewer, a more recent focus
has become to also conduct adequate user studies to melasigectess of a proposed
method. This practice is already common place in the fieldiofidin-computer interaction,
and to a more limited extent also in information visuali@atibut less so in scientific and
medical visualization. In essence, user studies are ale@ysidered burdensome since in
many cases there are a large number of parameters and latgiarélternatives, requiring
many trials, that is, human subjects and experiments, tyo®statistically significant re-
sults. This has been a major obstacle in assessing a mesluodsss in terms of the human
perceptive and cognitive system.

The pressing question is: can we make this task easier mdunting a more methodi-
cal and organized approach. For this it pays to look at otké&tdj especially those driven
by heavy monetary investments. One then finds that useestptiy a major and dominant
role in product marketing, where it is important to tune taeous parameters of a product
before it is being launched to market or to determine its¢auat all. Clearly, these studies
must be conducted as thoroughly as possible, in order torma&ithe outcome, but they
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also must be conducted as efficiently as possible in ordeirionmize the time, burden put
on the participants in the study and samples needed to exiplervast parameter space in
a statistically significant manner. A technique called oartjanalysis 48] is the answer to
all of these design goals, and our goal is to make this teciengagcessible to visualization
researchers and their specific domain setting. Visuatinatsearchers are faced with the
task that a large number of algorithms need to be comparediettr, the number of al-
gorithms is too large for a single user to compare/rank athem in reasonable time and
with reasonable accuracy. Fortunately, in many visuabimatreas, such as volume visu-
alization, the algorithms are not strictly arbitrary butsimame extent related; that is, they
are all different incarnations of one parameterized atboriand are obtained by fixing
the parameter values. A comparison of the algorithms thadsléo a ranking of the al-
gorithms/parameter settings. This is essentially the ganolglem that market researchers
face when eliciting consumers’ preferences on substitatalg that can be described in
terms of attributes and attribute levels. Conjoint analyas introduced above, is a well
established family of questionnaire based techniquesic¢t ebnsumer’s preferences. It
frees the evaluator from the daunting burden of presentiagftfects of all attribute levels
to all users for evaluation but nevertheless allows stediby significant results.

This is a joint work with Joachim Giesen (Max Plank InstugtuSaarbruecken, Ger-
many). His research concentrates on developing a conjoadysis technique as an ex-
tension of Thurstone’s method of comparative judgmé@d]. Like most techniques it is
based on some assumptions (model), but it has the advaiaigalltassumptions can be
tested. The model assumptions allow us to derive robustmete estimates from sparse
data, i.e., every user needs to ‘explore’ only a small foactif the large parameter space.
We use this conjoint analysis technique to measure theigettquality in volume render-
ing.

We demonstrate our conjoint analysis technique in fouteelatudies that fit two im-
portant visualization purposes: visual aesthetics anddngeyance of detail. In this pur-
suit, we can gain further insights. For example, we deteerttie relative importance of the
algorithm’s parameters and their levels. This is importaftrmation if one has to tradeoff
perceived quality against other objectives like time ordilee. Conjoint analysis allows us
to quantify these tradeoffs. We can also study the effecesgef gender, culture, or color
deficiencies on users’ preferences.

Our analysis framework is timely in light of the various ratefforts to optimize view-
points P, 58, 123, transfer functions§9], sampling intervals145, 6], high-level appear-
ance descriptorslfly, illustrative rendering parameter$l], perceived salience[/], and
others. All of these use mostly mathematical, engineeting also sometimes aesthetics
and perception-motivated arguments to devise their msth@dntrolled user studies need
to eventually decide which strategy is most effective ahehvent for the human observer,
especially in conjunctive terms. Furthermore, these useliess can also be helpful to fine
tune the parameters of these methods, which may also bertdslomain dependent.

In the following sections we first describe a typical mulirameter volume rendering
scenario, in which we generate all the volume rendering® choice based analysis ap-
proach is then introduced, and the overview of our framewsngresented. Finally we
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show some insightful results, which can be valued as indisdbr the analytical power of
our framework that provides a guideline on how to conductamalyze a conjoint study in
the context of visualization algorithms evaluation/congzn.

7.2 \Volume Rendering Scenario

As mentioned our goal was to measure the perceived qualigyvadualization algo-
rithm for different parameter settings. We have chosenadively standard volume visual-
ization scenario to demonstrate our user study framewarko&r study we used two data
sets. The first data set FOOT is meant to cover the medicaicagiph domain, whereas
the second data set ENGINE covers the engineering appinsatirea. The ENGINE data
size is256 x 256 x 256, and the FOOT data size 154 x 263 x 222. Using GPU-accelerated
ray casting rendering, the visualization of the volume datacan be described in terms of
the following parameters:

COLORMAP This parameter has three levels which correspond to diffe@or maps
that are applied for transfer function design. For all tfanfunctions, the alpha channel
has been set to always reveal most of the object’s strugtaresder to suppress ‘occlusion’
to act as an independent variable.

RENDERING This parameter describes the applied rendering mode arfiVbdsvels:

DVR (Direct Volume Rendering), DVRNS (Direct Volume Reniggr with No Shading,
just compositing), DVRGM (Direct Volume Rendering with @rant Modulation to high-
light surfaces), XRAY (Colored X-Ray) and MIP (Colored Manam Intensity Projection).

VIEWPOINT This parameter has six levels for the ENGINE and five leveistlie
FOOT data set. It describes the viewpoint under which themes sees the object. Differ-
ent viewpoints are chosen in such a way that most structuees\ways kept visible, again
to prevent ‘occlusion’ from playing a significant role in tsteidy.

RESOLUTION This parameter describes the screen resolution used fderieg. We
render at the resolution of the data set and twice that. Nweih the end the image
size was alway$12 x 512 (the image rendered at reduced resolution, that is, at lum
resolution, was scaled up with bilinear filtering).

STEP SIZE This parameter is the ray traversal increment (measureakel gize), which
has three levels, 0.2, 0.5 and 1.0.

BACKGROUND This parameter describes the color of the background anfiviedsv-
els: BLACK, WHITE, DARK GREEN, DARK BLUE and YELLOW.
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Figure 7.1: Renderings with different parameter settings.

Finally combining these parameters results in the 2700 BNE3mages (renderings)
and in the 2250 FOOT images. Figutd shows some FOOT images.

7.3 Choice Based Conjoint Analysis

A class of items has a conjoint structure if it can be desdriipethe Cartesian product
A x ... x A, of attribute sets4;. The elements of the attribute sets are called attribute
levels. An itemu is then represented by avecter, . . ., a,) with a; € A;, i.e., by fixing the
attribute levels. Conjoint analysis is a family of techreguor eliciting from a population
of people their ranking (on some scale) of the elementsint ... x A, i.e., on the items.
Conjoint analysis techniques can be distinguished by tvat ifrdependent) parameters:
firstly the elicitation procedure, i.e., the way preferedata are obtained from respondents,
and secondly the way the elicited data are processed in tordlarive a representation of
individual or aggregated preference information (tydicah form of a value or utility
function).

In recent years choice based conjoint analysis has becoenaalst popular conjoint
analysis technique. It got its name from the method empldgectlicitation, namely,
preferences are elicited in a sequence of choice tasks. hoiaectask a small number of
items (typically between two and four) is presented to asedpnt who has to state which
one out of these she/he prefers most. Choice tasks are poputaarket research since
they resemble real buying situations and thus tend to peaVid most reliable information.

There are many different ways to analyze the data obtaired everal respondents
and several choice tasks each, but any analysis method slafsealeon which the items
are compared. A scale assigns to each item a number. In noajoalysis there are es-
sentially two types of scales used: ordinal scalesthe numbers assigned to the items
are their ranks in a linear order. Note that the nominal ckfiee between ranks has no
meaning. Orinterval scalesan item is preferred over another if it gets assigned a larger
number. Differences of the assigned numbers have a meaniimgesval scales, but these
scales have noatural zero Note that translating all scale values on an interval skate
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no effect.

Another difference in analysis methods is whether they dediscale for each respon-
dent, or just a scale for a population of respondents (agégdgcale). Our analysis method
defines an interval scale for a population of respondents.

7.4 Overview of the Framework

We use choice based conjoint analysis as our elicitatiooguhare, where each choice
task was a paired comparison between two renderings, @velen two parameter settings.
Note that the cognitive burden increases with the numbeteais from which to choose.
Higher cognitive burden should result in poorer data gualiie decided to use choice
tasks with the least cognitive burden, namely paired coispas.

Perceived quality itself can be measured along differeetctions. We made this more
explicit by asking two different questions: Which image dauylike best? and Which
image shows more detail? We will later refer to the first goesas AESTHETICS and
the second as DETAIL. Note that the second question is maefgpthan the first, which
is fairly general. Each combination of data set and quessiaonsidered as a different
study, i.e., we conducted the four different conjoint sesd[ENGINE, AESTHETICS],
[ENGINE, DETAIL], [FOOT, AESTHETICS] and [FOOT, DETAIL].

Joachim Giesen et al. conducted the user study at an exhilaitid elicited data from
786 visitors. Then the data analysis method is applied tméedn interval scale for a
population of respondents from their choices in paired canspns. First scale values
for all levels of a single attribute are estimated. To thigl emy paired comparison is
interpreted as a comparison of just the two levels of thergaribute that are present
in this comparison, ignoring differences in the levels dfadher attributes. This method
is then applied to all attributes to obtain scale values fothair levels. And a rescaling
method is proposed to make the scale values for levels ardift attributes comparable.
Finally, the scale value of an algorithm, i.e., completeapagter set, is just the sum of the
scale values of the parameter values. Please refer to ojaibanalysis paper for details
on user studies and the data analysis method.

7.5 Results

From our four visualization case studies, we obtain somightisil results, including
relative importance of parameters, most preferred lewlpendency on the respondent,
dependency on the data set, dependency on the questionaeardgter interdependence.
Here we will discuss the first two in details. Readers aremenended to read our conjoint
analysis paper for more results.

Relative importance of parameters The standard deviation for an attribute can be in-
terpreted as the relative importance of this attribute. un setting the attributes are the
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Table 7.1: Rank order of the parameters used in our fouresudihe rank order is derived
from estimated variances (shown in brackets).

| AESTHETICS | DETAIL

FOOT 1. | RENDERING-STEPSIZE (0.31] RENDERING-STEPSIZE (0.52)
2. | COLORMAP-BACKGROUND  (0.3) | COLORMAP-BACKGROUND  (0.35)
3. | VIEWPOINT (0.14) | VIEWPOINT (0.12)
4. | RESOLUTION (0.05) | RESOLUTION (0.08)

ENGINE 1. | RENDERING-STEPSIZE (0.56) RENDERING-STEPSIZE ©.77)
2. | BACKGROUND (0.19) | RESOLUTION (0.09)
3. | RESOLUTION (0.12) | VIEWPOINT (0.08)
4. | VIEWPOINT (0.09) | BACKGROUND (0.05)
5. | COLORMAP (0.05) | COLORMAP (0.01)

parameters of the visualization algorithm. Using the ested standard deviation we get
the rank ordering of the parameters as shown in TalleFrom these results it is safe to
conclude that overall the rendering mode (combined pamRENDERING-STEPSIZE)
is the most important parameter. The importance of thisrpater is relatively higher for
the DETAIL than for the AESTHETICS question. A second impottparameter is the
color scheme used (or the background), although this findimgt as pronounced. The
viewpoint is somewhat important (mostly for the FOOT), wtiihe resolution is somewhat
important for the ENGINE. The other parameters are relbtiveimportant, at least at the
levels we have measured.

Most preferred levels The results of Table®.1as well as Figur&.2reveal a good deal
of useful information. We observe that the algorithms XRAXIavIP are not considered
useful by our respondents (but note that these were nomtexperers C doctors can see
a lot more in those renderings). The DVRGM algorithm perfergslightly) better than
DVR, which performs better than DVRNS. This ranking showat tthe more structure
enhancement, the better.

There is also a clear preference for achromatic backgrouddsy blue is also found
to be somewhat useful, possibly because blue is a monoacegdin due in that colors very
far away shift to the blue spectrum, or because of the backgrshade of blue and the
object. Highly saturated backgrounds are generally dgidlikinterestingly, there are also
differences between the two achromatic backgrounds: & Hdackground is considered
more aesthetic, whereas white seems to show detail betier.isTparticularly true for the
ENGINE which is overall a more complex data set. It is mostlifkalso an object that is
less familiar to the respondents. Therefore they requireerdetail; higher resolution is
also more important (than for the less complex FOOT).

For the ENGINE, the color map applied does not seem to madtaruch, but for the
DETAIL question, the FOOT (bone) is strongly preferred tosken in a color resembling
that of bright bone (skin grey). This indicates that for abjaspection, viewers like to see
objects in colors that are most natural and at the same tilghatkkvhen such a color is
generally agreed on), but for objects less defined in thaeethe color choice is a matter



7. CONJOINT ANALYSIS TO MEASURE THE PERCEIVED QUALITY 71

o f omom § € ( o=

(d)

Figure 7.2: Best and worst renderings for our four conjototies. (a) and (b) Best ten
renderings (ranking decreasing from left to right) for EN&land FOOT respectively, (c)
and (d) Worst ten renderings (ranking increasing from leftight). Top row of (a)-(d) is
for DETAIL, bottom row of (a)-(d) is for AESTHETICS.

of taste (as is the case for the ENGINE), as long as they agbttand define contrast well.
In the AESTHETICS category viewers still preferred a ndtaddor (for the FOOT), but
the brightness condition was no longer so important (by definof the task criterion).

An interesting observation can also be made with respetigteiewpoint. A common
feature is that viewers prefer to see objects at obliquessngthich generally gives objects
a more three dimensional appearance and also reveals nadueste (such views are also
used for product advertisements). But the engine was inrgepeeferred to be situated
as standing on a surface — the views where the engine wagsdaatan arbitrary angle
(and appeared as it were flying towards the viewer) were tatedOn the other hand, the
foot was acceptable at most orientations. We believe tlafflfing’ engine was deemed
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unrealistic, and perhaps even dangerous and thereforgealapy, while a foot is seen
commonly at general orientation in real life (just not as adjo

7.6 Discussion

We took first steps to demonstrate that conjoint analysisbeaa useful and efficient
tool to gauge influences of a rich set of rendering parametesiman perception in visu-
alization tasks. We believe that the data analysis teclertioat we have developed here can
even be used to analyze data gathered in the first phase dittheh-in-the-loop’ method
of House, Bair and Warebp]. Note that our analysis method only needs paired compar-
isons between renderings that even can be obtained fromunesasnt of how well a test
person performs a task on different renderings.

We have tested the framework within a familiar visualizatenvironment, a parame-
terized volume renderer, where we have taken great cardtcedhe effects of competing
adverse parameters, such as image size and occlusionutvigthucing the effects of the
relevant tested parameters, such as color schemes andingngiecision and algorithm.
In this process we verified a few known results, such as teetedif rendering fidelity, but
we also teased out some lesser known but important resuitts s preferred object orien-
tations, color schemes, and the relationship of step sideemdering modality. Another
interesting finding is that our conjoint analysis method betp to resolve tradeoff deci-
sions. In particular for the DVRGM algorithm it is not necagsto go down to step size
0.2, step size 0.5 even gives perceptually better resultat i§, it is often not worthwhile
to spend the extra computing time required by smaller steg (§ime-quality tradeoff). A
second tradeoff concerns perceived quality and file sizé;iwils to a large extent deter-
mined by the resolution. Our methods allow us to quantifg tradeoff, i.e., to answer the
guestion of how much quality gets sacrificed when the file @esolution) decreases.

In the future we will conduct more user studies and apply eamework on other
visualization tasks. In next chapter, We will discuss aapfierception related work: color
design for visualization. Conjoint analysis technique realp to test the efficiency of color
designs, or find user preferences on color schemas for ceitaialization tasks.

Our vision is to create a (web based) user study analysie thatt can be used by
researchers to conduct and analyze multi-parameter us#est Conjoint analysis should
be an integral component of such a suite.
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Chapter 8

Color Design for Visualization

8.1 Introduction

Recent years have seen multifarious efforts to better iategand exploit properties
of human visual perception and cognition into visualizatitesign. Illustrative rendering
techniques have been developed that render the sceneatediflevels of abstractions
or in different rendering styles, ranging from sparse strbksed depictions to full-scale
volume rendering 11, 13, 14, 127. In these approaches, the levels of abstractions are
most often controlled by a task- or object-dependent ingpae parametedB4]. Another
perception-motivated strategy is to guide viewer attentiiosalient feature$[/]. However,
it is interesting to note that color has never played a majte in these efforts. There is
no system so far that incorporates rules from color desigecty into the visualization
engine. One system that exists, the PRAVDA system by Rogawid co-workers][13 5]
was more purposed for the display of continuous scalar datatmnsfer functions, and
not for the segmented data commonly used in illustrativealigation.

In our work, a transfer function is considered a general rnmappf a numerical para-
meter value into a visual parameter value. The bulk of workansfer function design in
volume visualization has mainly concentrated on the spatifin of the A (opacity) por-
tion of the transfer function, in order to capture shapescmdours of iso-surfaces at great
fidelity. On the other hand, the RGB portion of the transfection has in most cases been
guided by personal preferences of the system’s user or agergndom assignments.

While color design has received less attention in the vizatdbn community, despite
the existence of two books on the topi3p 119, professional designers and artists are
quite cognizant of rules that guide the design of color pesetnot only from an aesthetic
point of view but also from an attention-guiding, salieneorHere, the notion of color
harmony is only one of these fundamental design rules, whashbeen more motivated by
aesthetic arguments and has found recent application cotih@uter graphics literature for
those considerations. On the other hand, visualizatioatismly concerned with providing
a pleasing image — visualization also has a mission, th&b iselp the user to gain quick
and accurate insight into the visualized data. Good visesihetics makes this task an
enjoyable one and therefore reduces stress, while expddite perceptional rules can often
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aid the salient cognition process.

Our work is motivated by rules established in the classiorcdesign literature. The
framework described captures these rules into a knowlédged system which then pro-
vides appropriate colorizations based on user preferempsrtance functions, and scene
composition. The scope of the system is both volume andnmdtion visualization. It is
important to note that we only consider the effects of cadmg not those of illustrative
style and the combination of these. We believe that a decwypf these visualization pa-
rameters is necessary to develop a rudimentary framewdnkhvean then later be applied
in the context of stylistically more advanced systems.

Section8.2briefly presents the highlights of previous work relevaritio, and Section
8.3 gives a system overview. In Secti@», we summarize our design in form of expert
system rules and describe design details. Se&ibshows all applications and results of
our system.

8.2 Related Work

In visualization, image and volume datasets typically camierm of 2D and 3D arrays
of scalar densities, which are mostly obtained via simafegior scanning (CT, MRI, etc).
Due to the human visual system’s excellent sensitivity rat@ns in brightness, grayscale
displays are already quite adequate to perceive the inhegations of densities, at leastin
a local sense. At the same time, the illumination contrasteated in shading can provide
excellent shape cues in 3D displays. However, the rangeegflgvels distinguishable by
humans is limited to only about 10Q10, and distinguishing different objects or features
can be quite difficult with grayscale alone. In addition,lsgcayscale displays often also
lack aesthetic appeal, which may lead to a reduction of esteas well as recall in the
human observer — after all, the world around us is in colorpMiag the densities to color
can help overcome these problems, and it also can be useghiight density contrasts,
guiding the viewer to these areas.

In scanned and simulated datasets the scalar densitiebyusag to certain material
properties, and it is desirable to preserve these vargt@snintensity modulations and,
apart from highlighting, only use color for better objedfelientiation and labeling. Here,
the number of colors that can be used for this purpose hassbhedied by Healeyd2], who
optimized the separation of label colors in CIE LUV space tath conducted user studies
on target identification capabilities. He found that usedsodiite well when the number of
colors was 5 or less, while greater numbers (7 to 9 were stugiesed difficulties. These
deficiencies are also partially rooted in the limitation®ioan working memory.

Also limiting the maximal numbers of colors is the phenonrenbsimultaneous con-
trast which changes the appearance of a color based oniitgiadr[L35. It widens the
required “safety margin” of a given color and limits the nwenlof these. This problem
is in some way related to the color mixing effects that caruo@hen two or more semi-
transparent surfaces overlap, but these compositingteften be much more severe as
they can result in radically different colors, which can lmhbdisturbing and distracting
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at the same time, especially if this color has already besgrved for another object. Our
system provides a solution for this.

In essence, even across cultures, colors have been cldgsite3 classes (in addition
to white, black, and grey): the basic opponent color paidsared green, blue and yellow,
as well as purple, pink, orange, and browi. [But revealing quantitative properties by
color is difficult, because no learned ranking of these coéiists, and for this reason, the
popular rainbow colormap is considered a poor chold®[113 5]. The work by B] has
shown that the human visual system can only differentiaggfbulow-frequency variations,
while high frequency variations, such as fine detail, are B=solved by luminance. This
in some sense generalizes the dedicated use of color aslallal¢her work, 112 also
demonstrated that colormaps should preserve a monotomgpingain luminance. In this
vein, some researchers suggesi@t [hat the best mapping results from a straight line
through a perceptional color space such as CIE LAB. Note dHaif these approaches
involve all three perceptional components of color: huéursdéion, and brightness. Our
system also makes use of all three color components, but iora imtuitive yet free-form
fashion, where users can only pick the most intuitive congmorthe hue, and the system
optimizes the other two.

Finally, color can also be used as a means to focus attedfiontjich is known agpop-
out. This can be in addition to other cues, such as shape, sizgrmand blur f1]. Pop-
out exploits pre-attentive cognition, which translategwwluntary awareness of a feature
within a ms-time interval. In this context, an important fimglis that pre-attentiveness is
strongly related to the vividness of a color patch, as wellsasize and the degree at which
it differs from the vividness of the surrounding colof&]. This visual pop-out parameter
is attractive since it does not require extra colors (thahiges) to be chosen to generate
attention effects, avoiding an overloading of human tangetking capabilities.

8.3 System Design Goals and Overview

We have already mentioned the role of color as a means toaser@esthetics in a dis-
play, and in fact, this topic has been studied for a long tin&e arts and design literature.
There, anumber of landmark texts on color design have bdeishad b6, 146, and these
texts provide a wealth of information with great insight amian perception of color and
the aesthetic aspects of it. Much information is also als&lan the books by Stond 19
and Ware 135. One popular design aspect is color harmony. Color harnmemyfairly
old concept, already expressed by Goethe and other greiduat@poch, and a quantitative
representation was described by Moon and Spe®&r This representation was based on
the Munsell color-order systerT], which consists of three perceptional coordinates: hue,
value (lightness/brightness), and chroma (colorfulndssgearch of an intuitive 2D repre-
sentation for visual designers, Itten then arranged theadiic colors into a color wheel,
which reduced (flattened) this color space to mostly vanegin hue. Later, MatsudQ2]
employed Itten’s wheel, in conjunction with extensive gsyphysical studies, to intro-
duce a set of 80 harmonic colors schemes. These were thedbaksesrecent automated
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image color harmonization system by Cohen et2d].

In fact, it was this automated system that inspired our w@kt color harmonization
is only one aspect of aesthetic design. There are many mie®that govern good visual
color design and these are very relevant to visualizatidrni¢chvincludes information vi-
sualization as well. Many of the parameters determiningdgasual design are directly
measurable, both in the underlying data and in a generaggdng configuration, and can
therefore be captured into an automated color design systene it should be noted that
such a rule-based system needs to have a much strongeii@alayt computational com-
ponent than interactive color palette tod®l|[ which require much more user interaction.
In fact, for these tools the support for creative interattics desirable since they are meant
for graphics designers who demand such freedom in producilyga few sheets of artwork
a day. On the other hand, while our optimizing system can ladswfit that community,
it is predominantly targeted for interactive image gerierabr rendering engines, where
many images are produced and only little time is availableveak the color composition
of each. It also captures at least some of the knowledge sktkgperienced graphics
designers, for everyone to use.

Another design goal addresses the need of visualizatiomittieghe observer to the
most important features of the data. A recent paper in thgdrceis that of §7] who
employed an emphasis function based on the center-surnm@ctianism of the human
visual system to enhance the visual saliency of featuresiitapt within the visualization
task. Thus, an automated color design framework must ngtinnbrporate color design
knowledge, but it must also be parameterizable by featupitance. While color is not
the only way to encode the visual field, show similarity anffiedénce relationships, and
direct viewer attention, it is generally the best and fastes

Finally, as mentioned before, such a system will embraceangtinterplay of the
three perceptional color parameters, that is, hue, chrantprightness, and therefore an
associated color harmonization method must also supdast tHiese. However, in order
to achieve this, a suitable extension to Itten’s hue-baséut evheel needs to be devised,
which in turn also requires an extension to the automatear ¢c@rmonization algorithm
by Cohen et al. Since the concept of a color wheel is convéemied intuitive — which
was most likely the reason it was invented for — this extemsimould be formulated as a
post-process to rectify any imbalances of chroma and breg®t during the harmonization
process. This is most suitably executed in a perceptiorat space, such as CIE LAB or
Munsell.

Our system supports all of these goals, and similar to thentgcemerging illustrative
rendering engines it takes a feature-based approach. §latiataset is first decomposed
into its semantic constituents, using available segmientar grouping information. Then
the user applies a color palette to assign hues, and thersggtiemizes chroma and bright-
ness, taking into account the programmed visual desigs inleonjunction with impor-
tance parameters and computed scene parameters, suctues $eze, density ranges, and
interactions. Thus, our system differs greatly from theugieb-breaking rule-based system
of [5], which was more focused on scalar data with a continuous fi@vor.
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8.4 The Computational Design Expert System

Color vision can be studied with two rather different goalsmind: aperture color
andsurface colorf156. Aperture color takes a more physics-based, wavelengémied
approach to color vision, conducting experiments in vergtiled laboratory settings.
Test subjects compare small patches of color, embeddedack backgrounds and under
exclusion of all other effects, such as lighting and surthog scene. These types of exper-
iments can explain the fundamental color matching propexi the human visual system
very well. However, they are less suitable to explain thect# and interaction of colors
within a more general, less controlled scope, as embodiegddyworld viewing condi-
tions. Studies that operate in these settings explore fectsof surface color, which is
more complex, varied, and medium constrained than apectlog. As a distinguishing
example may serve the situation where one visits a pairg,stomed with a carpet swatch,
seeking to select a matching wall color by ways of a set oflanhgtsized store-provided
paint swatches. In many cases the anticipated interplagggydifferent from the actual
one, once the wall has been painted. This can be due to vagigohh conditions, but also
be due to the different actual proportionate sizes of thenaitched color surfaces, and the
effects of other colored items in the environment — the thvépace in this example.

A number of papers have appeared in the field of visualizgtiah have studied the
effects of color, but they did so more from an aperture colspective 112 68]. These
efforts have produced valuable insights for transfer fiamctiesign in scientific visualiza-
tion and the rules postulated there are in frequent use tddeyfocus of these efforts was
to ensure good delimitation (contrast) of fine features imtiomous data fields. We share
the goal of these earlier works, but we add the more holispeets of surface color science
to this rule set. This allows the incorporation of variouspiples of vision psychology,
such as pre-attention, emotion, and even aesthetics, ar twdetter control the specific
visualization task at hand.

In cognitive science, color is a psychological experienbat(is, we can also imagine
it) of three orthogonal components: quality (the hue), dgizxarithe lightness, which is
perceived brightness), and purity (the chroma or saturatido conceive our automated
color design system, we can take advantage of a well edtedlisody of knowledge in
color design and perceptional science. This alleviatesus the task of having to conduct
extensive user studies of our own. In the following, we afieto give a snapshot of the
relevant (to us) portions of this knowledge base, which wessguently fashion into a
set of specific rules used in our system, and then exploit forenadvanced and novel
manipulations. These rules are in addition to other coscgyth as simultaneous contrast
and color harmony.

8.4.1 Encoded Principles and Guidelines

In the following we enumerate a set of guidelines followihg tdesign goals defined
above.
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Mood and emotions:

G1:. Warm colors (red, orange, yellow) excite our emotions arabgrur attention. Cold
colors (green to violet) produce the feeling of opennessiistdnce. They have exactly the
opposite effect of warm colors. Warm hues will tend to overeothe cool ones. Yellow-
green and red-violet are borderline warm colors.

G2: Vivid colors (bright, saturated colors) stand out, brirggi@ttention to a particular
feature — the pop-out effect. However, combining two or maved colors is perceived as
unpleasant and overwhelming. Vivid colors should be usadsgly or between dull back-
ground tones. Finally, large areas should not be made hggtlyrated. People generally
find large saturated areas tiring and annoying.

Sensation of depth and separation of foreground/backgtoun

G3: Color can affect perception of 3D space. Due to chromaticraben, cold-colored
areas are perceived as being more distant than warm-cajae=di This helps foreground-
background separation, which works best when the foregiaoior is bright and highly
saturated, while the background is desaturated. Blue $ $egtable for representing high
frequency detail since it has the fewest number of conesaridirea. Warm colors on a
cold background are effective to enhance foreground-backg separation.

Acuity and detail perception:

G4: The achromatic visual subsystem has about 5-times betteahacuity than the chro-
matic subsystem. Therefore, fine detail, high frequencidssaape is better conveyed with
brightness contrast.

Discrimination:

G5: Color discrimination is much poorer when the samples ararsépd without sharing
a border — the greater the separation the worse the disaiimim

G6: Colors will be more discriminable if they differ simultanesdy in hue, saturation and
brightness.

G7: The low end brightness steps should be very small while tgb &Bhd needs larger
steps (Weber’s Law). On the other hand, the number of justeele difference steps
(IND’s) in the hue spectrum is about 150, but discriminatiarnes across the spectrum.
G8: Discrimination is poorer for small objects. Hue, satunatamd brightness discrimina-
tion all decrease.

Hue contrast:

G9: Complementary hues lie on the opposite side of the color ivfiéey have the highest
chromatic contrast and when mixed they may cancel each otliegenerating a neutral
grey. Examples are red-cyan and blue-yellow, which are bpgionent colors.

Relationship of hue with saturation and brightness:

G10: Some hues appear inherently more saturated than othedieStndicate that there
are only 10 saturation steps around yellow with the numbedggilly rising as wavelength
increases or decreases. Therefore, viewers will find sniifdrences in saturation for
blue, violet and red highly discriminable, while small éifénces in yellow saturation will
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be hard to detect. Green and orange are in the middle. Thistesigights fall in the yellow
range, while blues, violets and reds are least bright.

Labeling and semantics:

G11: There are 11 basic color distinctions that fall into thregssks: i) achromatic (3):
black, gray, white, ii) primary colors (4): red, green, hlyellow, and iii) secondary colors
(4): brown, orange, purple, pink. These distinctions afmels are valid across cultures.
One should choose the maximal number of color labels under 6-

G12: Increasing the brightness of an item for highlighting drattention to it without
changing its hue, and therefore, without losing perceghfarmation about its semantic
class. Brightness and saturation variation can help inndjgishing objects of the same
semantic class.

Linking and guiding:

G13: Objects of similar hue form a common group, while objectsi@iecent hue belong
to different groupings. If the different hues are completagncolors, then the viewer
will infer opposition. Color can be used to organize the Bigpnto perceptual chunks,
viewed pre-attentively. The color layout indicates thattpaf the image form distinct
areas, and if the same color appears in different parts afitage, these areas appear linked
together, suggesting that they have something in commonth®nother hand, variations
in a basic color can convey variations in the class data. |&iroolors suggest a similarity
relationship and different colors suggest a differencati@hship between objects and areas
of the screen. Similar colors are adjacent on the color whd@le complementary colors
are on opposite sides of the color wheel.

Recall and interest:
G14: A final motivation is that an aesthetic visualization will membered more and
looked at more carefully.

We can assign these guidelines into the specific rules ingaésa by our system. All
steps will be discussed in detail later in Sect®aA.3

R1: Hue Selection (G1, G5, G6, G11, G12, G13, G14), and Backgt@stection (G3) —
presented to the user in Step 1;

R2: Vividness Selection (G2, G6, G14) — decided by the systentap 3;
R3: Lightness Selection (G4, G6, G7, G10, G14) — optimized bysystem in Step 3;
R4: Mixing Rule (G9) — chosen by the system in Step 1.

8.4.2 Framework Theory

Here we show how to capture these rules into an actual cokigldramework for
visualization tasks. As mentioned above, our system igdesito work for the visualiza-
tion of 2D entities as well as for 3D visualizations with opagr semi-transparent object
surfaces (where a prior segmentation is assumed). For tlagpIxations, the visual color
design can be either optimized for a specific view or globtyall views. We begin by
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first clarifying some important basic concepts that formfthendations of our system, as-
sisted by Figur®.1 We then describe our extensions of these basic conceptsibdesour
framework.

HSYV color space
Gu=>h | s | v
SRGB color space
=> Monitor
r ‘ g ‘ b
CIE XYZ color space
x|y |z
Lab color space
*Luminance
L ‘ a ‘ b -Chroma

Figure 8.1: Color spaces utilized in our system.

Basic Concepts

Color: Color has three components: Hue, Brightness, and Satarafiocolor in RGB
color space has its owr ¢, andb values. On the other hand, a color in HSV space also
has three components, s, andv. All three values together determine a color, that is, any
value by itself is not a color. For any color space, a coloregponds to a point.

Color spaces: The color spaces utilized in our system are shown in Figuite Hue is
chosen from the hue wheel of the HSV color space. The CIE LA&bjLcolor space
embedded in our system is essential for computing the lummand chroma due to its
perceptual uniform characteristic (more on this below)e €blor transfer between HSV
and Lab color spaces will be assisted by the standard RGBE¥RGor space and the
CIE XYZ color space. The, g, b values in SRGB color space are finally transmitted to the
monitor for display.

Hue categories:As mentioned before, the hue wheel of the HSV color spacegslpoand
widely used in computer graphics as well as in color desigritéoconvenience. We also
employ it in our system to assist users in choosing the husidBs the neutral color, we
roughly separate hue into 8 color categories, which incikdd, Orange, Yellow, Green,
Cyan, Blue, Purple, and Magenta. We define similar hues lasreit the same category or
adjacent on the hue wheel.

Lightness: Luminance, or lightness, is the perceived brightness. Insgatem, in order
to calculate the lightness of a HSV color, the color is firahsferred to SRGB space, then
to CIE XYZ space, and finally to Lab space, where the compohesthe lightness. The
value range of. is [0, 100}, with O for black, and 100 for white.
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Formally,

(h,s,v) = (L,a,b), (8.1)
lightnessg sy = L, (8.2)

where ‘=" denotes transformation.

Vividness: We define the vividness of a color as rdative purity (or chroma). The ab-
solute chroma of a color can be computed in Lab color spacg EsjuatiorB.3.

chromag, sy = Vaxa+bxb. (8.3)

For a given hue, the higher the chroma value, the more viadthor appears. In HSV
color space, the coldr, 1, 1) is the most vivid color for a given hue It has the maximum
chroma for this hue. Then the vividness of a color, that sstetative chroma, is defined as
follows:

Vividnesssyy = chromag, s /chromag ). (8.4)

Although the maximum chroma values for different hues atigeqiifferent, the value
range for vividness is always [0,1].

Enabling Extensions

As mentioned before, similar to popular color design ugititour system also employs
the HSV space as a convenient and intuitive design mediurmdior specification. How-
ever, in our framework the user only picks the hue of a scengonent, while the expert
design system determines vividnéssand lightnesd., taking into account the present vi-
sualization goals and constraints and the overall scen@asition. From the resulting:(

V, L) triple, the system then computes the remaining HSV compisseandv needed for
actual display. This/{(,s,v) triple is then converted to SRGB space and fed to the monitor

In our framework,L (and alsol”) plays a crucial role and requires accurate control.
In fact, there are a number of linear equations which aregguent and popular use to
determine the lightness of a givend,b) triple. Equation8.5 below gives the lightness
derived from the YIQ color space, and Equati@6-8.7 immediately following provide
the lightness derived from CIE XYZ color space.

Yvig = 0.299r + 0.587g + 0.1140, (8.5)

and,

Y = r*xYp+gxYs+bxYpg, (8.6)
Y = 0.2126r + 0.7152¢ + 0.07220, (8.7)
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where constantsy, Y, andYy are the lightness values for the R,G,B primary colors. Note
that for a different white point, the lightness equationlwilange (the lightness equation
of a SRGB monitor with a white point of D65 is used in our exaespl

To assess the results obtained with these equations we imgpleyed a pair-wise com-
parison test in which we have sought to match the lightneswofswatches of different
h using the above conversion equations. The left and centexl p& Figure8.2 show two
examples each for the above equations. In each such pairweeattempted to match the
lightness of the right swatch image to that of the left via arsle procedure. We observe
that while the popular linear lightness equations work valllight colors (top row) they
provide poor results for darker colors (bottom row) whereratch always comes out too
dark (that is, the two swatches have the same lightnessdingato the conversion for-
mulas, but this is not perceived as such — on our D65 monitoryontrast, matching the
lightness using the (non-linear) Lab space relationshiypssgeonsistently better matches
for both bright and dark colors. These experiments inditizd these widely used equa-
tions are in fact only sub-accurate for darker colors, wtiikeLab space is quite accurate
throughout. Thus we find that the Lab space is most apprepioatour application, al-
though the transform is non-linear.

YIQ CIE-XYZ CIE Lab

Figure 8.2: Color pairs with lightness matches performedgudifferent conversion meth-
ods.

Table 8.1: Relationship between s, v, lightness, and vasdrfor given hue in HSV color
space, wher€’ is a constant except T means value increase, ahtheans value decrease.

s | v || Lightness|| Vividness

0 |7 1 0

0 |/ ! 0

¢ 11 T T

¢ 11l | |
17710 0 0

T ¢ | T

| 1C T |
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Aflh,s,v,) C (h,s,.v,)
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Figure 8.3: lllustration of equi-lightness and equi-viveds curves in HSV color space. (a)
An equi-lightness curve, (b) An equi-vividness curve.

100 80 ) 60 100
0
e i 0 .
/ ﬁ
3
(@) (b)

Figure 8.4: Examples of equi-lightness curves in HSV cofmce. (a) Hue slice with
h =0, (b) Hue slice withh, = 180.

(b)

Figure 8.5: Examples of equi-vividness curves in HSV colmeice. (a) Hue slice with
h = 0, (b) Hue slice withh = 180.
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There are various non-linear relationships when transfayran (.,s,v) triple to Lab-
spacel andV, and back. The conversion tg,{,b) is only piecewise linear, and the con-
version to Lab space is strictly non-linear. Thus, the lfrequi-lightness (and equi-
vividness) in HSV space will likely reside on non-linearé@ories. Tableé.1shows the
relationships betweesy v and L andV'. For a given hué in HSV space, ifs is constant,
the L monotonically increases or decreases wittand if v is constant, thd. reversely
monotonically changes with. Based on these monotonic relationships, fixingve can
computev from h and L, and vice versa. By movingfrom 0 to 1 we can then find all col-
ors with the giverh and L. Figure8.3a shows the equi-lightness curve, which is comprised
of all the colors fromA to B that have the samk on this hue slice.

These monotonic relationships enable efficient binaryckeprocedures to be devised
for the mapping, alleviating the need for more complex oation methods, such as gra-
dient descent. We have designed two binary search-basd®) @gorithms to efficiently
compute the color from a given hikeand lightnesd., when either or v is known. Here
we show the BSB algorithm that computefrom a specifiech, L, ands. The algorithm
for computings from a specifiech, L, andv is similar. Using our BSB algorithms, for any
hue, we can easily find the colors with the desifed

// BSB algorithm of computingfromh, L, ands
S0: initializev,in, Vmaz:
S1:  (h, S, Vmin) = (Lmin, a,b);
(h, 8, Vmaz) = (Lmaz, a,0);
if (L equalsL,,;,) returnv,,;,;
if (L equalSLye,)  returnu,,q,;
if (L > L)
either decrease go to S1; /kacrifices to getL
or returnu,,.; ! L. IS the closest lightness we
/] can get for given parameters

S2:  while L > L, andL < L)
Umid = (Vmin + Umaz)/2;
(h, s, Vmia) = (Limia, @, b);
if (L equalsL,,;q)  returnu,,;q;
if (Linia > L){

Umaz = Umid;

Lmam = Lmzdu
telse

Umin = Umids

Lmin = Lmid;

}
}
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Likewise forV/, for a given hueh, there are many color points which have the same
Again, due to the monotonic relationships betwegen, andV” shown in Table8.1, we can
design efficient BSB algorithms to compute the color fromaegi. and V', when either
s or v is known. In Figure8.3p, all colors with the sam& on this hue slice make up the
equi-vividness curve, which is also the equi-chroma curve.

Figure8.4 shows examples of equi-lightness curves on two differertdiices. Some
curves have been labeled with their lightness value. Frembdittom curve to the top curve,
the lightness increases gradually. For different hueslighéness values of the most vivid
colors (the top-most outside points on the hue slices) aite different. Vivid cyan has a
much higher lightness than vivid red. FigBe& gives examples of equi-vividness curves
on the given hue slices. Some curves are labeled with theantd values. Note that the
chroma interval between adjacent curves is the same. Frengtfit-most curve to the left-
most curve, the vividness decreases from 1 to 0. We can sg@éabsolute chroma varies
substantially for the different hues. Cyan has considgrigber distinguishable saturation
steps than red. In fact, this hue-dependent resolutionrcepeed saturation was the subject
of guideline G10.

We now describe our algorithm that computesndv values from a given, L, andV'.
We see that on the equi-lightness curve in Figu®a, the vividness increases monotoni-
cally from A to B. Also on the equi-vividness curve in Figued, the lightness increases
from C to D. The intersection point of this two curves then yields a celih the desired
L andV. Due to the monotonic relationships, we have designed aS-Blgorithm to
computes, v from a desired. andV'. In this procedure, we first use our BSB algorithm
to locate pointsA with s = 0, B with s = 1, and middle point\/, whoses is the average
of those of A and B, and then compare the vividnegs, V3, and V), with V' to deter-
mine which half curve need to be searched further, finallyifigdhe intersection point.
Due to the efficiency of binary search, our algorithm is qtgigt and enables interactive
manipulations.

However, not any two equi-lightness curves and equi-vieggncurves will intersect.
Therefore in some cases it is impossible to get a color with bte desired lightness and
the desired vividness. To compensate, we have to eithefisadightness or vividness.
Figure 8.6 gives a series of swatch-pair examples where the goal isaichra matched
lightness, such that no swatch is over-emphasized. In &Bjér(center), two colorg’.,,,
andC,.q have the same vividne$5=1, but the lightnes&,,,, is much higher thai., _,
leading to an over-emphasis of the cyan swatch. To cope, weetheee choices to achieve
equal lightness for the two swatches, relaxing the goal dtmiag vividness: setting both
to the (i) minimum, (ii) the maximum, or (iii) the averagelhimess of the two. The results
are shown in the left, right, and bottom swatches in Fidli6 respectively. We observe
that either one (min, max) or both swatches (avg) need taceetheir vividness, which may
be problematic in generating the desired pop-out effectil&¥his cannot be avoided since
it is caused by an inherent property of the color spectrumgcareproduce a reasonable
trade-off, where we move the lightness values of both of W dolors halfway towards
their average, that is, the middle point between the oldevald the average value. The
visual effect of this compromise is shown in the top-mosttstvgair of FigureB.6. This
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Halfway Avg

Min I

Avg
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Figure 8.6: Examples of controlling the lightness. Two digolors with the same vividness
but different lightness values are shown in the middle. @olre recomputed with the
desired lightness, which can be minimal, maximal, averag@alfway to the average, of
the lightness values of the two original colors.

solution in fact seems to equalize the vividness and therlegs of the two swatches the
best, although neithdr nor V' are really equal.

From these examples, we can see that in order to obtain tirediéghtness the vivid-
ness of the color may have to be sacrificed, or vice versa. eSime lightness is more
comparable, and the lightness contrast is crucial to helpngdjuish features and provide
harmonic colorings, in our work, we prefer to keep the liglssin most cases.

8.4.3 Implementation Details: 2D System

In this section we discuss the system details relevant fovigDalizations, while the
following section will then extend these to 3D visualizatepplications. All steps outlined
below make use of the design principles and guidelines eratewin8.4.1

Step 0: Preprocessingn order to assign colors to 2D data with discontinuous isitézs

or separated features, the data should be available in segdh®rm. In our system, the
smallest unit is defined a@bject Several objects with the same properties can belong to
oneClass Each object has attributes, such as its area, and a claas Iraportance value.

A class computes its total area from its member objects. Ykt also collects infor-
mation between objects, including distance and adjacedeyt the user, or the system’s
host application, specifies importance factors for all sgs which may be interactively
changed at any time. Currently, our system supports thrperitance levels: most (3), less
(2), and least (1) important, but this can be extended easily

Step 1: Hue selectionStarting from the most important class, for each class, thee h
wheel is activated with the proper hue categories from whssrs may select the classes
hue. The system suggests hues of warm colors for the mosttampalasses and hues
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of cool or neutral colors for the least important classes,users are free to make other
choices. The exact hue will then be assigned for each classilan the associated class
information. Here, all objects in one class will be assigtiedsame main colok( s, v), but

the color finally used can vary to some extent based on thesiyeor other properties of
the objects (see later Figu8el0. In order to generate color-harmonic visualizations, our
system will not allow users to choose hues falling into ak lsategories. To facilitate this
choice, harmonic color template24 can be applied to provide guidelines on harmonic
hue selections.

Step 2: Vividness selectiorNext, the vividness of each class is computed based on a
classes importance and its area. Our system provides gadgesgidness values for dif-
ferent importance levels, for example, a vividness of 1 fer highest importance, 0.7 for
less, and 0.3 for the least. The relative area (the ratioed @s. whole area) is then used
to adjust the vividness in order to avoid a large area to veaeiery high vividness, and a
global weighting parameter can be tuned to account for thiimeage size. Therefore, im-
portant classes will be colored with a higher vividness, famdhe same importance level,

a class with smaller area will be colored with a higher viads, while a class with larger
area will receive a color with lower vividness.

Step 3: Lightness selectiorAppropriate lightness contrast is very important to hekp di
criminate different features and provide harmonic colgsinFigureB.7 illustrates how our

system determines the feature lightness levels, giveng$igrzed vividness values. First,
for each most important class, our system computes thenkgistaccording to its hue and
vividness. This yields a lightness rande,,,..in, Lmma.] for all most important classes. De-
sign rules G6 and G12 in Secti@&¥#.1imply that lightness difference (contrast) will help

L most L less L least
1 f } + f + + f 1
0 100
low mein meax I‘high

Figure 8.7: lllustration of the lightness selection. Thasslin red with the highest impor-
tance has higher vividness, and the class in cyan with lggsriiaince has lower vividness.
L5 1S the lightness selected for the class in red. Withlitghter option, L, is the
lightness for the class in cyan, ag,,; is the lightness for classes with the least impor-
tance.
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in discriminating features. Thus, in order to highlight ttiasses of interest, other classes
will be assigned a lightness either all smaller (darker tiigs range, or all higher (lighter).
Although this can be decided automatically by an optimaatlgorithm, our system pro-
vides two options to the useDarker or Lighter, which allows more control over the overall
lightness of the visualization. The system also providesftifiowing user-adjustable pa-
rameters: the lowest lightnegs,,,, the highest lightness,,,;, and the highest for the
most important objectsy,;,,. When the user choos&arker, the lightness of the lesser or
the least important classes will fall into the ran@e,.,, L,....»]- In contrast, for théighter
option, the range will D@L, ..., L1ign]. We have chosen to provide equal lightness inter-
vals between adjacent importance levels to provide goddii@ss contrast. Herg,,, is a
parameter, with the default value 1, which us used to bdungd... The system provides a
more vivid color wheny,;,, equals 1, and a more darker vivid color whep,, decreases.
This parameter is most useful in thgghter option. A similar parametery,,,, can be used
to boundL,,,,.;,, in the Darker option.

Step 4: Color computation Once the hue, lightness, and vividness have been selected,
our binary search-based algorithms are then used to cortipusssociatesd andv. Since
the lightness and vividness may not be preserved at the sara¢dee SectioB.4.2), our
strategy is to rather preserve the lightness while adjgstirihe nearest possible vividness,
which guarantees the desired lightness contrast.

Applications of this color design system just describedpaesented in Sectiod.5.

8.4.4 Implementation Details: 3D System

Basic Extensions

In order to extend our system to volume visualization, we eiéimer use the 2D pro-
jection area for a specific view optimization or use the 30ae@f the object for a global
optimization. For a specific view, we first draw the objectasegmented volume dataset
into the texture buffer to obtain their label and depth indation. Then for each object,
we apply our 2D algorithm to calculate the suggested colbickvrepresents their main
color for the transfer function setting. After rendering thtolume we evaluate the color
histogram of the image to gauge whether there is enoughasiriietween objects. If not
we change the color setting accordingly, to arrive at be&sult gradually.

The Layer-based 3D Scene Decomposition Framework

For volume visualization applications in which the objelstve been or can be seg-
mented, we designed a layer-based framework. This alloars ws freely turn objects on
or off and enhance them, in ways similar to the layer styledole Photoshop. The color
assignment will change when the object selections are agdathe importance of each
object can be interactively changed as well, to enhancaresbf interest.

The color mixing rule for semitransparent rendering ca &ls applied in our sys-
tem. In the following section, we will discuss this aspecfurther detail, and also show
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examples and more applications.

8.5 Applications

All of the results in this chapter have been generated for @ @Bnitor, with the white
point set to D65. In this respect we would like to caution tbader when examining the
images presented in the next sections. The perceivedeffexy be slightly or moderately
different than on our monitor.

8.5.1 2D Visualization

We first illustrate our color design results by ways of a Sta€lvisualization, shown
in Figure8.8. The corresponding parameters are listed in T8eFor the following, the
reader may examine an image first before reading on. Elseotbga follows now. In
Figure8.8a, D is emphasized; in Figurg.8o, A is emphasized; in Figurg.8&, A has the
highest importance, anél has higher importance than others; in Fig8r&l, bothA and £
are the most important; in FiguB8e, B is emphasized; in Figurg.&, C' is emphasized;
in Figure8.8g, F is emphasized; in Figur@.8h, F is the most important, ang is slightly
less important; in Figur8.8, C' and D have the highest importance. The visualizations
demonstrate our system’s ability to successfully balaheeotverall scene vividness and
lightness. For example, in Figur&s8b, c, d the lightness of the unimportant nodes (for
example, the green class B nodes) increases as the impoaiite red nodes (class E)
rises (this widens thé,,,....., pushing the remaining intervals up towartdls,.). Figures
8.8y, h demonstrate the use af;,;, to control the lightness for the most important nodes
(here class E), which is set higher in Figure 8h.

Finally, we also present, in Figu&9, two colorings which do not use these rules and
fail to successfully emphasize any feature, either by ugingnany vivid colors, or by not
using a sufficient lightness contrast.

Varying the color of an object according to its intensity dher property variations
is also a frequently encountered visualization need anctolar optimization algorithm
supports this as well. To demonstrate, we applied our casiglh system to pseudo-color
a Transmission Electron Microscopy image, and the resutpeesented in Figurg.10
Note that the original grey-level intensity variation ieperved in the colorizations, and
different features are highlighted in each image. Our sygisoduces visualizations with
high color harmony, and avoids the generation of inharmmsalts with too much or too
little contrast. This sequence of images also demonsttiatesse of the [ighter option)
and (Darker option), which allows the user to select the overall liglsghef the image.

We applied our color design system to pseudo-color a Trassam Electron Mi-
croscopy images, and the result is presented in Fi§ur@ Note that the original grey-
level intensity variation is preserved in the colorized g@aand different features are high-
lighted in each image. Our system yields color visualizatiath high harmony, and avoids
a generation of inharmonic results with too much or too |lesgrast.
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Figure 8.8: Color designs for startree visualization. Theameters of tasks are listed
in Table 8.2, including the number of classes, and for each class, theriaupce factor
specified by the user, while the hue is generated by the sysésed on the user’s choice.
The tree nodes with higher importance are highlighted irctilering results.
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Table 8.2: Parameters of startree visualization tasks

Class Hue Importance
A 240 1 3 3 3 1 1 1 1 1
B 120 1 1 1 1 3 1 1 2 1
C 30 1 1 1 1 1 3 1 1 3
D 300 3 1 1 1 1 1 1 1 3
E 0 1 1 2 3 1 1 3 3 1
Option D L L L D D L L L
Figure No. 88 | 88 | 88 | 88 | 88| 88 | 88 | 88 | 88
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Figure 8.9: Startree examples. (a) All vivid colors competeatch the eye, (b) All colors
with similar lightness, no feature is emphasized well ir@i) and (b).

8.5.2 Lightness-preserving Color Harmonization and ColorShifting

Color harmonization is an easy and efficient way to improeehtirmony of an image
by shifting colors to an appropriate harmonic color sche2#§ [However, since only the
hue is changed, if the shifting angle is not small, the ligsgwill change. This is unde-
sirable as it may reduce contrast. We have therefore extiethe@eoriginal color harmony
algorithm to preserve the lightness and contrast as mucbssipe. To achieve this, we
first calculate the lightness and vividness of the color teeghifting. After the hue shifts,
we assign the same lightness and vividness to the new huehandaalculate from these
the news, v values. As mentioned at the end of Sect®4.2 it may not be possible to
preserve the lightness and vividness at the same time. $® tteses our algorithm will
seek to preserve the lightness while using the nearestngsil Although the hue contrast
may change slightly, the lightness contrast important liertisual resolve of fine object
detail can be maintained.

Figure8.11and FigureB8.12compare our lightness and contrast-preserving color har-
monization algorithm with the original color harmonizatialgorithm. In both figures, the
(b)-panels hold the original images, subjected to harnadima / hue-shifting. The cor-
responding hue wheels are also provided. We observe thahetlrod keeps the contrast
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Figure 8.10: Color designs for Transmission Electron Mscapy image. Different fea-
tures are highlighted in images. (a) Original grey-leveaga, (f) Colors with equal light-
ness, no feature is emphasized, features are labelle/ag”,D for reference, (b)-(e)
Features highlighted have the lowest lightness compadraher featuresi{ighter op-
tion), (g)-(j) Features highlighted have the highest liggss Darker option), (b) and (g)
A is emphasized, (c) and (I is emphasized, (d) and (@' is emphasized, (e) and ()

is emphasized, a rather small region colored with high wiggbs to produce the pop-out
effect despite its small size.
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Figure 8.11: Lightness preserved color harmonizationC(#)and paste partl, (b) Cut and
paste part2, which will be color harmonized to partl, (c)aCdlarmonization by Cohen’s
methodP4], (d) Lightness preserved color harmonization, (e) andC@)or distribution
on the hue wheel of the original image (a) and (b), (g) and (pCdistribution after
harmonization.

Figure 8.12: Lightness preserved color harmonization.C@pr distribution on the hue
wheel of the original image (b), (c) Color harmonization gh&n’s method}4], (d) Light-
ness preserved color harmonization, the brightness ciranal feature details of the orig-
inal image are kept, (e) Color distribution after harmotia

and details better. For example, in Fig@.1c, resulting from application of the original
method, the left-most person’s silhouette now almost ldantb the background. On the
other hand, in Figur®.11d, generated with our method, it stands out like in the odbin
image. Further, the contrast between the third person anatbkground is also better pre-
served. Figuré.13shows the lightness-preserving color shifting result. iguFe 8.1,

generated with the original method, some colors around ¢le& hecome too dark, which
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Figure 8.13: Lightness preserved color shifting. (a) Calistribution on the hue wheel
of the original image (b)90], (c) Color shifting with only hue shifted, (d) Color shifig
while preserving the lightness, (e) Color distributioreafhifting.

renders the details unclear, while colors around the noserbe too bright, which draws
more attention to the user. Also, some details that had beghtlibefore the shifting are
now hidden. On the other hand, Fig8d X presents the result obtained with our method.
We observe that our method preserves the lightness andasbbigtter in most regions.
However, we also note that in some regions the overall csniganot shown as well as in
the original visualization, which is unavoidably due to thes contrast change.

8.5.3 Volume Rendering

Color design examples for volume visualization are showlRigure8.14 Features of
interest in the volume data are highlighted by more vivicbesl

8.5.4 Color Mixing in Semitransparent Rendering

In semitransparent rendering, good color designs aim taldatse color, i.e., the intro-
duction of new hues due to color mixing, and they also seekedsguve the ordering of the
objects. In the following we study a variety of scenariosoiring color mixing and pro-
pose appropriate measures using our color design framewathieve these objectives.

Two Overlapping Objects

If there are two translucent objects overlapping, our Migadon system will suggest
users to choose opposite hues, which will not introduce nessh
Suppose the colors of the two overlapping objectsGarén front andCs in the back,
and their opacities are; anda,. Then, using the front-to-back color composition, the
mixed colorC'is:
C = Ciag + Cran(1 — ay). (8.8)
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Figure 8.14: Color designs for volume visualization. (ajlkey of the frog is highlighted
with vivid orange, (b) Heart is highlighted with vivid red;)(Bone is assigned blue hue
and emphasized, (d) Object labels traced by ray casting.

We define the weights for two colors &8, = a;, andWy, = (1 — «4). The mixed
color C' will have higher lightness than eithér 1/, or C5Ws. If the opacity values for
two objects are the same, the front color contributes mae the back color. Therefore,
if two opposite hues are chosen, the mixed color will mosliikhave a hint of the one in
front.

Figure8.15shows two color mixing examples. The opacity is 0.4 for ajeabs. Aided
by the hue wheels, we observe that new hues between red ardageegenerated in Figure
8.1% and8.1% (an orange tone in the former and a yellowish tone in theratOn the
other hand, as shown in Figuel and8.15d, when two opposite hues are mixed, there
are no false colors generated, and the mixed color can ber eigtutral or with a hint of the
original hues, which will help prevent the color mislabgliproblem.

From Figure8.15 we note that the ordering of objects can not be visuallygrresi all
the time. In all of the renderings, the top right square issitslly always in front of the
bottom left square. Figur®.15c and8.15d show the correct ordering without any doubt,
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Figure 8.15: Two color mixing examples. (a) and (c) Red areegrare mixed with red
in front or green in front, (b) and (d) Red and cyan are mixetthwed in front or cyan in
front.

Figure 8.16: Ordering preserved color mixing example. Retl@yan are mixed with red
in front.

however8.15 and3.1% are less convincing. Based on our experience, we find tisatun
urated colors will not preserve the ordering very well. Weodind that darker colors give

a feeling of distance, while lighter colors appear closeoliservers. Therefore, a vivid
color with high lightness is suggested for the front objddtwever, the relationship be-
tween colors and perceived orderings bring complicatios example, if the user already
assigned red in front of cyan, either increasing the ligksnaf red, which will reduce its
saturation, or decreasing the lightness of cyan, which si@akeok more transparent, will
not help provide the correct ordering. Only increasing thaaity (weight) of red will yield

the right ordering, as shown in FiguBel6 where the opacities of red and cyan are 0.6 and
0.4 respectively.
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Figure 8.17: Three color mixing examples. (a) Object lab@d$ A and B are assigned
opposite hues: yellow and blue,is red, the overlapping region @ andC' gives false
color, which can be observed from hue wheel as well, (c) Theaton ofC is reduced,
but its lightness is kept, and the false color is reduced.
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Figure 8.18: Local solution to reduce false color. (a) Objabels,A is in front of B, (b)
False color generates when mixing red and blue, (c) Fals® e®reduced by our local
solution.

More than Two Overlapping Objects

Whenever more than two translucent objects overlap, faikewill always be gen-
erated after color mixing. To minimize these adverse effeee suggest assigning two
opposite hues for the two important objects, and more niecatars for the lesser impor-
tant object. But to be safe, we should avoid using any huelwban be generated by
mixing two hues already chosen. Figl8d.7shows a three color mixing example. By re-
ducing the vividness (saturation) 6fwhile keeping its lightness, we can reduce the false
color.

Local Solution for Partial Overlap

Sometimes other constraints dictate the choice of cer@ors, preventing the selec-
tion of opposite hues for partially overlapping objects.pfovide a solution even in these
cases, we devised a local solution to reduce the false aoltre overlap regions. Our
scheme is demonstrated in Fig@d8 It works by reducing the saturation of the color in
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(a) (b) (©) (d)
Figure 8.19: Color mixing on Body data for different view pts. (a) and (c) Cyan and
yellow are mixed, (b) and (d) Blue and yellow are mixed, (a) é5) show back view of the

body, (c) and (d) show front view of the body. Corresponding wheels are below each
rendering.

the rear object only in the overlap regidm B, while keeping its lightness. After the color
mixing, this region clearly has more hint of the front-oltjeclor, and the correct ordering

is also visually preserved. Our local solution is very gaherit can also be used to reduce
the false-color effect in areas in which more than two olsjeserlap.

Semi-transparent Volume Renderings

Figure8.19shows the color mixing that occurs for semi-transparenima renderings
from different view points. When cyan and yellow are mixedme green hues will be
generated. In contrast, a blue and yellow opposite-coloxoation will keep the original
hues. Furthermore, FiguB20indicates that the features in overlapping regions are also
clearer if two opposite hues are chosen.

We also devised a method to reveal interior colors. With twewen more features
embedded, the color of an inside feature may be occludedanged. As we have seen
if two hues with at least one hue category between the two ermtie wheel are chosen,
new hues will be generated. However, if two opposite huesappdied, the color of the
mixed region will be neutral. If the interior object is the siaamportant object, our system
decreases the saturation of the outside features’ coloeveat the interior object’s real
color, without having to change the alpha channel of thesterfunction. As shown in
Figure8.21, the color of the inside feature is disclosed increasingbyeras the color of
the outside feature becomes less saturated. In all thres,dh® center setting represents
a good compromise, still keeping some of the outside olgjduie, while allowing the
interior object’s hue to show through with minimal colortdigion.
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Figure 8.20: Color mixing on Engine Data. (a) Similar hues@rosen, (b) Opposite hues
are chosen, (c) and (d) Zoom-in views of (a) and (b).

8.5.5 Feature Highlighting

From the equi-lightness curves and the equi-vividness curveds on the hue slices,
shown in Figure8.22a and8.22b, we can design color scales. Fig@&.@2Z and8.221 show
the equi-lightness color scales derived from curdesvith only the vividness changing,
while Figure8.22 and8.2X show the equi-vividness color scales derived from cutyes
with only the lightness changing gradually.

Based on these equi-lightness color scales, we design mmsdbéhighlight the features
in the volume data one by one, shown in Fig8r23 All features are always visible since
the lightness is not changed, but one feature is highlighyeimore vivid color each time,
drawing the observer’s attention.

8.6 Discussion

In this research we have attempted to create an expert syiséefirst captures a set of
prominent guidelines from visual color design, then joimssie with insights from human
visual perception, and finally encodes this body of knowéehgo a set of rules that can
optimize the assignment of colors in 2D and 3D visualizatawks. Our system is meant
to help researchers and practitioners to achieve moreestolor designs with ease. It
seeks to eliminate the trial and error process that comds pigking the “right” colors
from a set of millions. We strived to create an interface whesers can select the mood of
a visualization by picking from a set of suggested color fpade with the system then per-
forming the more tedious task of ensuring that it “looks goadsigning the lightness and
saturation appropriate for the given task and goals. ltedirout that these rules were ap-
plicable to also resolve a variety of existing problems iaydrics and visualization, such as
the color mixing artifacts when compositing semi-trangpaisurfaces and the brightness
deviations in color harmonization. We also altered non-aitkebutes to reveal the inte-
rior features in volume rendering, while preserving theuglsappearance in compositing
orderings.
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Figure 8.21: Reveal the color of inside object by decrea#egsaturation of outside ob-

jects. (a)-(c) The green hue of the bone shows graduallyfdjhe yellow hue of the

middle sphere shows, and the green hue of most inside sphewness(g)-(i) The yellow
hue shows when blue becomes less saturated.
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Figure 8.22: Color scales. (a) Hue slice with= 20, (b) Hue slice withh = 200, A is

equi-lightness curve ang is equi-vividness curve, (c) and (d) Equi-lightness cotalss,
(e) and (f) Equi-vividness color scales.

Figure 8.23: Features are highlighted one by one. (a) Atufes are rendered in neutral
colors, no feature is highlighted, (b)-(d) The outside deatis highlighted by increasing
the vividness of its color gradually, while preserving tightness, (e) The vividness of
the outside feature decreases, (f)-(h) The inside feasunghlighted gradually, (i)-(j) The

vividness of the inside feature decreases.

In future work, we would like to also incorporate and tessthrules for color blindness,
time-varying effects, and to provide better support fofedtdnt display platforms by a
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prior calibration step. An interesting variation wouldalse to use disharmonious colors
for highlighting and pop-out. Finally, more formal userdis are also on our research
agenda. While we have tested most of our system componetitsnveimbers of our lab
and other affiliates, and received affirmative feedback, kae f launch a larger study with
a broader population group. Using these results we would like to devise mechanisms
that can personalize the color design for a specific user plicapion, using techniques
from machine learning.
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Chapter 9

Multi-Layer Multi-Volume Rendering

9.1 Introduction

A volume dataset can be interactively visualized with outJc#celerated ray casting
volume rendering framework. It would be great to give uséss ftexibility to explore
multiple volumes at the same time, which can show the int¢ises, help the comparison
between different datasets, and provide insightful aner@sting visualization results. We
propose a multi-layer multi-volume rendering frameworigpired by the successful multi-
layer user interface of the image editing tool Adobe Phatpsh

Methods for combining multiple volume data sets have beessitigated in the context
of multi-modal data. Cai and Sakasq discussed different methods for data intermix-
ing in volume rendering, assuming volumes have the samesi@osition. Wilson et al.
[143 proposed a parallel algorithm for multi-volume visuatina on a PC cluster. Leu and
Chen [r8] presented a two-level hierarchy for modeling scenes ofipialnon-intersecting
volumetric objects. However, the display of intersectiegnstransparent objects can be a
powerful visualization technique. The approach by Nad@8&jidan deal with intersecting
volumes, but the complete scene description has to be rpledrhy voxelization when-
ever a volume is transformed. Grimm et &4 presented a method to efficiently visualize
multiple intersecting volumetric objects, which uses mwuiiume processing only for in-
tersections, but efficient brick-wise volume traversalesnk for non-intersection regions.
Bruckner and GrollerI3] proposed VolumeShop, an interactive hardware-accelérap-
plication for direct volume illustration, which combinesistic visual styles and expressive
visualization techniques, and allows multiple intersggtrolumetric objects to be rendered
directly, without requiring costly resampling. Similar Bsuckner’s work, our method is
based on GPU acceleration and does not require resamptingyvier, we bring more gen-
eral concepts and interface design ideas, which are our coainibutions.

9.2 Overview of Our Framework

Our multi-volume rendering framework is designed to haweefttlowing attributes:
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e Multi-layer: Multiple volumes can be loaded into the systemmultiple layers. Each
layer has its corresponding volume, and also has its owibatds, including transfer
function setting, rendering style, and transformationiclvhincludes 3D translation,
rotation, and scaling. Deformation are supported now, batlze incorporated into
the framework.

e Layer On/Off: Each layer can be turn on or off, its volume Wi considered or not
during renderings.

e Layer Operations: Users choose an active layer, operatoict as transformation,
changing color/alpha, changing the rendering style, ataiwe filtering, only work
on the volume shown on this layer. The volume on the activerlayil be separately
shown in a small preview window.

e Layer Copy/Delete: Each layer can be duplicated, or deldbegblicated layer will
refer to the source volume, and only new attributes for géyet will be created and
copied from the source layer. When a layer is deleted, ifatame is not referred by
other layers, this volume will unloaded (deleted) from tistem.

Whenever the system setting changed, multiple volumedweitendered by our multi-
volume ray casting algorithm, discussed in the next section

9.3 Multi-Volume Ray Casting Algorithm

There are two ways to render multiple volumes. When multjoleme datasets are
transformed in object space, we can either transform eakime resample the volumes
to get a whole new dataset and then render this dataset, caweeeersely transform the
image plane for each volume, and combine the rendering gsdoe image planes. The
first alternative is time consuming due to the voxelizatiomogess whenever any volume is
transformed, added, deleted, or edited. We chose the égipgpach of rendering multiple
volumes, since it only changes viewport related attribwtekime datasets remain intact,
and the rendering process is still simple and straightfaiwa

Our multi-volume ray casting algorithm has the followingss:

Step 1: Transform the image plane for each volume;
Step 2: Determine the ordering of volumes, and the volume intersedhformation;

Step 3: Raycast the intersected volumes and non-intersectingneguand composite the
final result.

Aided by Figure9.1, we now discuss these steps in detail. Figluka shows the 2D
illustration of the bounding boxes of volum& and volumeB, and the image plan§.
After A is rotated and translated #f, and B is rotated, scaled, and translated22g the
transformed volumes can be rendered on the image @#asee Figure.1b). Reversely,
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Figure 9.1: 2D illustrations of volume transformations) Yalumes without any transfor-
mation, (b) Volumes transform in object space, (c) and (dnh$formations taken in image
space for volumel andb respectively.

our algorithm transforms the image plane. Imagining therene image plane for each
volume, our algorithm first rotates the view point (the cewotehe image plane), and then
translate the image plane oppositely. Therefore, as shoviigure9.1c and9.1d, the
image planes forl and scaledB (B”) are transformed t&'4 and Sp respectively. This
first step of our algorithm computes all view port parametdngh will be referred in later
steps.

The second step is to determine the volume intersectiomnrgtion and the ordering
of volumes. As shown in Figur@.1b, for a pixel on the final image, one ray is shot from
the image plane, and this ray intersects with hétand B. In our algorithm, a ray is shot
from a pixel on the image plang, (or Sg), see Figured.1c and9.1d, we compute the
intersections of this ray and the bounding box of volusmngr B”), and store the distances
from the front and back intersection points to the ray stairtfoast_frontandt_back For all
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pixels, we obtain the distance maps for each volume. Froaigtthnce maps, the ordering
and volume intersection information can be detected. Nat@rder to get the correct
distances, in our algorithm, the bounding box of the scat#ddnae instead of the original
volume is used to calculate the intersections. This is tagsae why we have not considered
the scale transformation in the first step. The bounding Wake scaled volume can be
computed as follows:

VBoundingBo:p = (VBoundingBo:p - VCenteT) * VScale + VCentera (91)

whereVioundingso: Nas the volume’s minimal and maximal valuesiofy, andz coordi-
nates. Veonter 1S the central point of the bounding box of unscaled voluriig,,. is the
volume’s scale value.

For non-intersecting volume, the Cg fragment program foglsi volume rendering
can be applied, and the final color can be correctly compozedeveral volumes based
on their ordering. For intersected volumes, we design fexgnprograms for different
cases. For example, for two different volumes intersectiam volume datasets along
with their view port parameters, scale values, and distamges are fed into the fragment
program. During ray casting, for each sample point on thewayknow whether it is in the
intersection and non-intersection region from distandaest_front andt_back of two
volumes. Therefore, in non-intersection regions, onlydbler getting from one volume is
composited. In intersection regions, different methodshoaapplied to composite colors
getting from two volumes. The distance is calculated basethe scaled bounding box,
but the volume dataset is unscaled. Therefore, for any sagipbint, such ag shown in
Figure9.1d, its coordinates should be scaled back to the original:ones

b= (p - VCenter)/chale + VCenter-7 (92)

For the duplicated volumes, we only need to feed one volurtasdainto the fragment
program as well as the parameters for all views. Furtherptbeefragment program for
more than two volume intersection is similar. Our algoritiuorks through these steps
to provide correct volume intersection and compositionltes For our GPU-accelerated
rendering, the memory on the graphics card limits the amotimblume datasets which
can be fed into the fragment program at one time. We have nabgspecial optimizations
to improve the performance, which can be our future work.

9.4 Results

From the above mentioned three steps of our algorithm, maltime visualization re-
sults can be generated. Figl@2 shows multi-volume renderings with different settings.
Volumes can be transformed to get interesting posturesthiéarolor composition of sam-
pling points in intersection regions, we use averaged d@ach color is assigned 0.5 as
the weight). The intersections between Foot and Engine easén irf.2a and9.2o, with
semi-transparent transfer function settings. With oumievork, users can also explore
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Figure 9.2: Multi-volume renderings. (a) and (b) Foot mawés Engine, (¢) More opaque
transfer function setting is applied for Engine.

Figure 9.3: Volume exploration example. The original voluim visualized along with the
edited volume showing its highest frequency details.
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volumes in different ways. Figur@3shows an example that users can visualize the orig-
inal volume and filtered volume together, which is a easy wagompare the differences.
Here multi-resolution details of the volume, i.e. a pyrawidhigh frequency volumes and

a low frequency volume at the lowest level, are generatatgusiv-passing filtering. The
volume with the highest frequency details are renderedgalath the original volume.

9.5 Discussion

We propose a multi-layer style multi-volume rendering feavork, and present our
multi-volume rendering algorithm. Our framework brings m@eneral concepts than
Bruckner’'s VolumeShop, and provides useful ideas in terfrih@user interface. It is a
general 3D rendering and editing tool for volumes, but ittik is the preliminary stage.
There are many opportunities for improving the performaaoé incorporating more help-
ful concepts and ideas into the framework. We propose to@geide more choices on
composition methods to explore more insightful visualag.
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Chapter 10

Conclusion

In this thesis, we present several novel feature-drivarstiltive visualization and
graphics techniques to enhance the features of intereseidldataset. Instead of focus-
ing on studying one illustrative technique, we try to explonultiple good concepts or
techniques that could be helpful to the illustrative visation and graphics.

Our technigues aim to improve the perceived quality of fesgtwf interest either from
detail or perception points of view. Detail related techugg include magnifying features
of interest in a smart way, generating multi-resolutioradstwith different semantic mean-
ings from available examples, and uniforming the size ofuiess. Perception based tech-
niques include measuring the perceived quality of volummeleeing using the conjoint
analysis based framework, and assigning features colovssigalization tasks through our
rule based color design system. We also work on illustradiiffgrent views in one im-
age, and propose a multi-volume rendering framework. Welelour work will benefit
the visualization and graphics research, and draw morat@its to some aspects which
are helpful for illustrative visualization, but have notepetouched or thoroughly studied
before. The primary highlights of this thesis are:

e An universal and general volumetric lens framework that dygdications in many
domains has been presented. It allows users to apply ankm@Ain lenses, such as
a fisheye lens in the context of volumetric distortion, ad agldesign free-style and
feature-adaptive lenses for arbitrary magnified focustediviewing. Incorporating
the GPU-accelerated ray casting, we can interactivelyo#xfgatures of interest in
a more efficient way. We give a solution to the limited screesbfem. A multiper-
spective rendering problem is also studied in our framework

e A new constrained multi-scale texture synthesis methoddpgsed to facilitate se-
mantic zooms. Our 2D viewing application, a virtual microge, demonstrated that
quite interesting and useful image sequences can be gedersing our framework.
And our technigue is extend to 3D volumetric viewing. We présa possible solu-
tion to the limited zoom or limited data resolution problem.

e A simple texture synthesis algorithm for surfaces with @y topology using global
conformal parameterization is proposed. We also presealgamithm based on the
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global parameterization to simultaneously preserve aagtescale in texture map-
ping. We show that a conformal-factor driven mass-springhioe offers a conve-
nient way to trade off these two metrics. Our algorithms amgoke, efficient and

theoretically sound.

e A rule based color design system is proposed. The ruleshauae the color de-
sign from both aesthetic and attention-guiding, saliemtpaf views, and have been
established in various classic color design books, araioeghinto a color selection
framework, providing appropriate colorizations based eariyreferences, impor-
tance functions, and scene composition of the visualindtieks.

In the future, we could continue improving and extending teehniques. The multi-
layer visualization framework is promising for efficienttploring multiple volumes. To
make it feasible, we will improve the algorithm and perfono@, and coupling more useful
operations and concepts into it. It would be great to embedémantic zoom work into our
magic volume lens framework. Although now it is hard to makerderactive constrained
detail synthesis in our semantic zoom, it may be accomplistiéh the improvements of
texture synthesis techniques. lllustrating feature apoadences between renderings with
different viewpoints will benefit the visualization. Our ttiperspective rendering does not
work as we expected for the volume dataset. Using illustnabased method to show the
correspondences between features maybe a feasible soléaplying conjoint analysis
method to evaluate the color design results will help usfyestir color selection method,
and even discover new rules.

In illustrative visualization and graphics field, there atédl a lot of problems deserve
further study, and many potential improvements could beeaeld. Incorporating more
principles of human perception in the research is a promiaiy.

Generally, our work on feature-driven illustrative visaation and graphics achieves
some encouraging results. In the future, there will alwagsi&w concepts or techniques
emerging or embed in the visualization to provides everebegisults.
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