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The segmented polynomial regression model is a special type of polynomial models in 

that it typically consists of piecewise polynomial sub models. Little research has been 

done on the optimal designs for segmented polynomial models, particularly for models 

with heteroscedastic variances. The primary objective of this paper is presenting the up-

to-date findings in the optimal design theory for segmented polynomial models and their 

applications. It is shown that under certain conditions, D-optimal designs for the entire 

segmented polynomial models are associated with the individual D-optimal designs for 

the piecewise polynomial sub models. The relation between the overall D-optimal 

designs and individual D-optimal designs is established subsequently. In addition, we 

show that in some cases the locally D-optimal designs for a class of segmented 

polynomial models with nonlinear parameterization are the same as the D-optimal 

designs for another class of segmented polynomial models with linear parameterization. 

Secondarily, we present the construction of a unique optimal-design website, on which 

various web-based optimal design software are incorporated. The ideas and technologies 

on the implementation are also covered in details in this paper. 
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Introduction 
 
 
 
 
 
 

Experimenting is one of the scientific approaches we learn about the world. 

Because experiments cannot avoid random errors, statistical methods are crucial for the 

design and analysis of experiments. Often interests are to fit mathematical models in 

experiments, and the fitted models can then be used for prediction.  It is well known that 

the variances of estimated model parameters and predictions using the estimated model 

depend on the experimental design, and thus can be minimized by a well-designed 

experiment. 

This paper primarily addresses some aspects of optimal experimental design 

theory, particularly for segmented polynomial regression models. The focus of this paper 

is the establishment of two new theorems in optimal design theory, specifically for 

segmented polynomial models. For the benefits of the optimal experimental design 

community, we also present the implementation of a web based optimal design platform 

incorporating various optimal design computer programs. 

This paper is organized in five chapters. The first chapter opens with a review of 

the general model based optimal designs theory. This chapter covers the fundamental 

concepts including Fisher information, optimality criteria, optimality equivalence 

theorem, and so on. Optimization is a very important component in optimal design theory, 

so we dedicate Chapter 2 to this topic. Although some optimal designs may be found 

analytically, in most of applications, numerical optimization methods have to be used.  

 1



Chapter 2 introduces some numerical optimization methods. In addition we also 

embedded some discussion on adapting these numerical methods to accommodate more 

complicated optimization problems. Chapter 3 is the focus of this paper. In Chapter 3 a 

thorough discussion on the optimal designs for segmented polynomial regression models 

is given. The segmented polynomial regression model typically consists of polynomial 

sub models defined on independent sub intervals with join points (also called transition 

points). The motivation of this study is the hypothesis that there is some relationship 

between optimal designs for the sub polynomial models and the optimal design for the 

entire segmented polynomial model. It is shown that, in some cases, optimal designs for 

the entire segmented polynomial model can be derived from the optimal designs for the 

regular sub polynomial models on their sub intervals. Two relevant new theorems are 

established in this chapter and applications for agriculture studies are also given. Chapter 

4 shows how we construct a unique optimal design platform – the website www.optimal–

design.org. The website hosts a variety of optimal design computer programs, which can 

be invoked remotely. This type of functional website is new to the optimal experimental 

design community and is able to draw some attentions. This paper is closing with 

discussions on future research topics from optimal experimental design theories to 

optimal design software development in Chapter 5. 

 It is my sincere hope that this paper will be resourceful and is a piece of 

contribution to the optimal design theory. Your interest in exploring this paper in more 

details is appreciated. 
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1 Optimal Experimental Design Fundamentals 
 
 
 
 
 
 

1.1 Model-Based Optimal Experimental Designs 
 

The fundamental assumption in the optimal design theory is that the statistical 

model relating the response factor to the explanatory factor is known. For example, the 

experimenter should know at least the structure of the model, such as a one dimensional 

polynomial regression model or a logistic regression model, and so on. To the extent that 

the assumption on the underlying regression model is wrong, the resulting optimal design 

can have less value. In optimal designs for non-linear models, the experimenter should 

also have some knowledge about the model parameters.  

Because the knowledge about the underlying regression model is fundamental, 

some use the term model-based to emphasize this fundamental assumption .In practice, 

prior to planning an optimal design, a pilot study is usually necessary to acquire 

information about the regression model to be further explored. What an optimal design 

can do is to help the experimenter to establish the regression model more precisely.  

Following this concept, on www.optimal-design.org, we classified optimal 

designs by the type of models that the optimal design programs work for.  For linear 

models, we have optimal design programs for polynomial regression models.  For 

nonlinear models, we have optimal design programs for Quantal-dose response models, a 

class of kinetics models, exponential models and Fourier regression models. 
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1.2 Continuous and Exact Designs 
 

Continuous designs are represented by the measure ξ over χ. If the design has 

trials at distinct points in χ, we write n









=
n

n

www
xxx

...

...

21

21ξ ,    (1.1) 

here the first line gives the values of the design variable at the design points and the 

second line  denotes the associated design weights ( ). 

Continuous design is also called normalized design in some texts. 

iw 1 and 10
1

=≤≤ ∑ =

n

i ii ww

In practice, all designs are exact. The number of trials in an experiment must be 

an integer N, and the number of trials at any design point must be an integer as well. An 

exact design can be written as  









=
NrNrNr

xxx

n

n

/...//
...

21

21ξ ,   (1.2) 

where  denotes the integer number of trials at  andir ix Nrn

i i =∑ =1
. 

If N is not very large, a good exact design can frequently be found by integer 

approximation to the optimum continuous measure ξ*. Often, for simple models with p 

parameters, there will be p design points with equal weight 1/p. So that the exact design 

with N=p trials is optimum. Such a possible such rounding scheme can be found in 

Pukelsheim (1993, Section 12.4). If the design weights are not rational, it will not be 

possible to find an exact design that is identical with the continuous optimum design.  

The mathematical problem of finding the optimum design is simplified by 

considering only the continuous design, thus ignoring the constraint that the number of 
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trials at any design point must be an integer. So, for simplicity, we mean optimal 

continuous design when saying optimal design throughout this dissertation. 

 

1.3 Design Objectives and Optimal Criteria 

1.3.1 Aims of a good experiment 
 

There are several criteria in the choice of an experimental design.  For the 

moment, of the many criteria, we are interested in deriving an optimal design for 

estimating the underlying regression model. That is, the specific aim of the experiments 

is to estimate the model parameters with “high precision”. 

Here “high precision” means that the estimated model parameters must have 

minimum variance and covariance. That is,  

)ˆ(θCov  or ( )θξ ,1−M  with respect to the design ξ is minimized, 

where ( )θξ ,M  is the Fisher Information Matrix and its inverse is proportional to the 

covariance matrix of the parameter estimates . In Chapter 3, we will derive this matrix 

for segmented polynomial regression explicitly.  

θ̂

But the question is, since the variance covariance of  is a matrix, how would we 

minimize a matrix?  In general, there is no such thing as minimizing a matrix. However, 

we can minimize a real valued function of

θ̂

( )θξ ,M  to make matrices comparable.  We 

now can introduce a few popular optimal design criteria, which all are functions 

of ( )θξ ,M . 
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1.3.2 Optimal Design Criteria 
 

Kiefer (1959) introduced the alphabetical design criteria. Here we introduce those 

types of optimal designs mentioned on www.optimal-design.org web site, namely D-, C-, 

E- and  optimal designs. −Ψk

The most important design criterion in application is D-optimality, in which the 

generalized variance, or its logarithm –log |M (ξ,θ)|, is minimized. The D-optimality 

reflects the ellipsoidal confidence regions for the parameters of the model. A D-optimal 

design minimizes the content of this confidence region and so minimizes the volume of 

the ellipsoid. See A. C. Atkinson and A. N. Donev. (1992). 

The Ds-optimal design is appropriate when the interest is in estimating a subset of 

the parameters precisely. Formal definition and an example for Ds-optimal designs will 

be provided in Chapter 5, where we discuss this type of optimal designs for segmented 

polynomial models. 

If the interest of experiments is to estimate a function of the model parameters c(θ) 

with minimum variance, the design criterion to be minimized is thus 

)(),())(())ˆ(var( 1 θθξθθ cMcc T ∇∇∝ − , 

where )(θc∇  is the gradient of c(θ). This is called C-Optimal design, which is typically 

used, for example, to estimate one or more percentiles of a dose-response. See Zhu et al. 

(2001) and Baek et al. (2006).   

In E-optimality, the variance of the least well-estimated contrast  is 

minimized subject to That is E-optimality minimizes

βTa

).1=aaT /1max( iλ , where iλ s are 
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the eigenvalues of the information matrix. E-optimal design is less common than D- or C- 

optimal design. Examples are on the website, and a good reference is Dette et al. (2003). 

Kiefer (1975) introduced −Ψk Optimality, which is a generalization of the above 

optimality,  

kp

i

k
ik p

/1

1

1)( 







= ∑

=

−− λξψ , where ∞<≤ k0  

When limiting operations are properly defined, −Ψ0  and −Ψ∞ are D-optimal and E-

optimal respectively. 

1.4 Bayesian Approach and Frequentist Approach 
 

An issue relating to the construction of optimal design for nonlinear models is that 

the information matrix ( )ξθ ,M  usually depends on the unknown parameters θ  of that 

model.  One approach, which is called the frequentist approach, is to adopt a best guess 

for the parameters and to construct optimal designs for that guess, termed ‘locally 

optimal’ (Chernoff, H 1953). An alternative is to adopt a Bayesian approach to design by 

optimizing the average of a function of the information matrix over a prior distribution 

placed on the unknown parameters.  

For example, the Bayesian D-Optimal design minimizes: 

( ) ( )( ) ( ) ( ) θθθξθξξφ
θθ dgMMED ∫ −− == ,log,log 11 . 

The Bayesian C-Optimal design minimizes: 

( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) θθθθξθθθξθξφ
θθ dgcMccMcE TT

c ∫ ∇∇=∇∇= −− ,, 11 , 

 7



where g(θ) denotes the prior probability density, which can be constructed from previous 

studies. The Bayesian approach is more robust to misspecified prior estimates of 

unknown parameters. However, it requires more complicated and intensive computation 

upon the design criteria.  

Minimax optimal design is another approach to optimal design problems for 

nonlinear models. Essentially, the minimax optimal design seeks to minimize the 

maximum loss in some sense. For example, the variance of an estimated function of 

parameters in a nonlinear model depends on the parameters. A minimax optimal design 

can be constructed to minimize the largest possible variance over all plausible values of 

the unknown parameters. In Chapter 3, the minimax method will be introduced for the 

optimal designs for segmented models when the join points are unknown. 

 

1.5 Multiple-Objective Optimal Design and Design Constraints 
 

An experiment may often have several, competing objectives, which cannot be 

easily, characterized by only one of the standard optimality criteria (Zhu and Wong 1998). 

Suppose there are m objectives in the study and each of them is represented by a convex 

criterion iφ , i=1… m. Two approaches have been suggested for constructing a multiple-

objective optimal design. One approach is to create a new objective function based on a 

weighted average of several design criteria and has been termed either a compound or a 

weighted design problem (Lauter 1976; Cook and Nachtsheim 1982 ;). The compound 

optimal design is the design which minimizes the convex combination , 

where each 

( )∑ =

m

i ii1
ξφλ

[ 1,0∈i ]λ  is user-selected weight and∑ =
=

m

i i1
1λ . An alternative approach is 
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to optimize one primary design criterion, subject to the constraints of the other design 

criteria. 

Compound optimal designs are easier to generate. Cook and Wong (1994) 

considered linear models with two objectives and established that every constrained 

optimal design is a compound optimal design and vice versa. Clyde and Chaloner (1996) 

extended this equivalence result to non-linear models with two or more objectives when 

Bayesian optimal designs are sought. This result enables us to find the constrained 

optimal design from the more easily computed compound optimal designs. 

A good multiple-objective optimal design example relating to the above theory 

can be found on www.optimal-design.org for binary dose response models. A discussion 

on whether a compound design from piecewise polynomial is appropriate for segmented 

polynomial model is given in Chapter 5.  

1.6 Design Evaluation 
 

Once an optimal design is proposed, it is important to confirm that this design is 

really optimal. For some numerically derived optimal designs, there may be numeric 

errors. Each run of numerical optimization algorithm could possibly produce a slightly 

different solution. So, we need a method to compare “optimal designs”, as well as 

compare a user specified design with the optimal design.  

1.6.1 The General Equivalence Theory  
 

The General Equivalence Theorem (Kiefer 1961) provides three different but 

equivalent conditions to verify the optimality condition of an optimal design. In 
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continuous designs, we consider minimization of the general measure of the asymptotic 

variance functionφ  of the estimates. Under very mild assumptions, the most important of 

which are the compactness of χ and the convexity and differentiability ofφ , designs that 

minimizeφ  also satisfy a second criterion. 

The General Equivalence Theorem can be viewed as an application of the result 

that the derivatives are zero at a minimum of a function. However, the function depends 

on the measure ξ in the information matrix M (ξ). Let the measure ξ  put unit mass at the 

point x and let the measure ξ ′  be given by 

ξαξαξ +−=′ )1( ,     (1.3) 

Then, 

)()()1()( ξαξαξ MMM +−=′ .    (1.4) 

Accordingly, the derivative of φ  in the direction ξ  is 

{ } ( ){ }[ ]ξφξαξαφ
α

ξϕ
α

MMMx −+−=
+→

)()()1(1lim),(
0

. (1.5) 

 

The General Equivalence Theorem then stats the equivalence of the following three 

conditions on the optimal design : *ξ

(1) The design  minimizes *ξ { })(ξφ M ; 

(2) The minimum of  ;0),( * ≥ξϕ x

(3) The derivative achieve its minimum at the points of the design ),( *ξϕ x
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The Equivalence Theorem provides methods for the construction and checking 

conditions of optimum designs. The second and the third condition are often used to 

check the optimality of a design that satisfies the first condition. 

An application of the equivalence theorem to polynomial regression models will 

be given in Chapter 3 when we discuss D-optimal designs for segmented polynomial 

regression models. A nice application of the theorem to logistic regression models can be 

find in Haines et al. (2003), where Bayesian D-optimal designs for Logistic regression 

models were discussed. The Bayesian D-optimal is to 

minimize { } ( )( )θξξφ θ ,log)( 1−= MEM

),(

. By direct calculation, the directional derivative 

function ξϕ x { })(of ξφ M  is   

),(),(),( 1 θθξξϕ θ xmtrMEpx −−= , 

where m(x, θ) is the information matrix at x and p=dim(θ). If is the optimal design, 

then according to the condition (2) and (3) of the theorem, 

*ξ

0),( * ≥ξϕ x  Or  pxmtrME ≤− ),(),( *1 θθξθ

The equality sign establishes when x are the design points.  

If the underlying regression model is very complicated, the information matrix or 

design criterion can be complicated. Thus, it may be very difficult to derive the direction 

derivative in a closed form. In that case, simulation of experiments, as an alternative, can 

be used to check the optimality conditions of a resulting design. 

 

1.6.2 Simulation of Experiments 
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In many applications, such as optimal designs for nonlinear mixed effects models, 

the optimality criteria are very complicated functions, which are very difficult to compute 

for directional derivatives. Therefore, simulation technique may be a practical alternative 

approach in the evaluation of the performance of optimal designs.  

The principle idea of the simulation approaches is, we simulate experiments based 

on various designs including the optimal design, and analyze simulated data and compare 

the regression results. Depending on the objectives of the experiments, comparisons can 

be made on the interested parameters. For example, comparisons on the standard errors of 

the parameter estimates usually are made for comparing a D-optimal design with an 

arbitrary design. Simulation techniques are widely used in optimal designs for industrial 

applications, such as pharmacokinetic and pharmacodynamic studies.  

1.6.3 Design Efficiency 
 

Denote the optimal design as , and suppose an arbitrary design is ξ. Then the D-

efficiency of the arbitrary design is defined as  

*ξ

p

eff M
MD

/1

* |)(|
|)(|









=
ξ
ξ , where p is the number of model parameters. 

Bayesian D-efficiency (Clyde and Chaloner 1996) is defined as  

( ) ( ) ( )( ) pDDD /exp * ξφξφξε −=  

For a Bayesian C-Optimal design, the design efficiency is defined as the ratio of 

asymptotic variances of the estimated function of model parameters 

)(
)( *

ξφ
ξφ

ε
C

C
C = . 
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Design efficiency can be used to compare user specified design to the optimal 

design. Theoretically, design efficiency should be between 0 and 1, since the values of 

asymptotic variances are positive and these values are supposed to be smaller at optimal 

designs than at any other designs. 
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2 Numerical Optimization  
 
 
 
 
 
 

2.1 Overview 
 

Optimal experimental design is a two-part problem. The first part is regression 

analyses based on the assumptions of the underlying regression model.  This part gives 

the asymptotic variance of the estimates from a design. The second part is optimizing a 

design criterion function with respect to the design variables. It would be nice if we could 

optimize a function analytically. Indeed, for some optimal designs, analytical 

optimization solutions do exist. A nice example can be found in Biedermann et al. (2006), 

in which they find optimization solutions via geometric approaches for optimal designs 

for logistic regression models. However, in many cases, it is extremely difficult to find 

optimal designs analytically. Thus, we introduce the role of numerical optimizations in 

this chapter.  

Numerical optimization algorithms have been evolving rapidly.  With the 

development of advanced computer hardware and software, more and more efficient 

numerical optimization algorithms are developed. These numerical optimization 

algorithms can be roughly classified into two categories, deterministic algorithms and 

stochastic algorithms. As their names suggest, the two types of optimization algorithms 

are differ in that if the algorithm has perfect information or not to determine the search 
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direction at every step. A deterministic algorithm converges to the same solution with the 

same initial information, while a stochastic algorithm doesn’t. 

Optimization algorithms, such as the sequential quadratic programming, 

Newton’s methods and the Nelder-Mead method are deterministic, while simulated 

annealing, random search and modified exchange algorithms fall into stochastic category. 

Due to space limit, we introduce some of the numerical optimization algorithms we feel 

very useful in the context of optimal experimental design. We also adapt these algorithms 

to deliver better performance. 

2.2 Sequential Quadratic Programming 
 

Optimization problems in optimal designs context are usually nonlinear 

constrained optimization problems. A primary optimal criterion function is to be 

optimized subject to some constrained functions. The primary criterion function is 

nonlinear, and the constrained functions can be linear or nonlinear.  

In constrained optimization, the general approach is to transform the problem into 

an easier sub problem that can then be solved and used as the basis of an iterative process. 

A common feature of a large class of early methods is the translation of the constrained 

problem to a basic unconstrained problem by using a penalty function for constraints that 

are near or beyond the constraint boundary. In this way the constrained problem is solved 

using a sequence of parameterized unconstrained optimizations, with the limit of the 

sequence converging to the constrained problem.  

These methods are now considered relatively inefficient and have been replaced 

by methods that have focused on the solution of the Kuhn-Tucker (KT) equations. The 
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KT equations are necessary conditions for optimality for a constrained optimization 

problem. If the problem is a so-called convex programming problem, that is,  and 

 are convex functions, then the KT equations are both necessary and 

sufficient for a global solution point. The Kuhn-Tucker equations can be stated as 

)(xf

mixGi ⋅⋅⋅= ,2,1),(

( ) 0)( *

1

** =∇⋅+∇ ∑
=

xGxf i

m

i
iλ  

( ) 0** =⋅ xGiiλ  i m,...,1=  

0* ≥iλ  i mme ,...,1+=  

The solution of the KT equations forms the basis to many nonlinear programming 

algorithms. These algorithms attempt to compute the Lagrange multipliers directly. 

Constrained quasi-Newton methods guarantee super linear convergence by accumulating 

second order information regarding the KT equations using a quasi-Newton updating 

procedure. These methods are commonly referred to as Sequential Quadratic 

Programming (SQP), in which a Quadratic Programming (QP) sub problem is solved at 

each major-iteration. For more details, users are referred to Fletcher (1987). 

SQP method represents the state of the art in nonlinear programming methods. It 

has been proved that it outperforms every other tested method in terms of efficiency, 

accuracy, and percentage of successful solutions, over a large variety of test problems. 

However, the biggest disadvantage of the Sequential Quadratic Programming method is 

that it sometimes converges to a local minimum instead of a global minimum when the 

objective function is not a unimodal function. The algorithm requires an initial point to 

start, and its performance is sensitive to the initial point.  This convergence property may 

be improved by integrating SQP with a grid search method to be discussed below. 
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The grid search algorithm is a straightforward method that may be applicable in 

any case. The principle idea is partitioning the optimization domain into a grid, and 

evaluating the objective function at each cell of the grid. Literally, the grid search method 

can guarantee an optimal solution as long as computing cost is not a problem. It can be 

very inefficient in some circumstances. For example, if the objective function has a cubic 

design space, then to evaluate 10 possible values on each direction, 103 function 

evaluations are required. As more variables are involved, the number of function 

evaluations increases exponentially.  

Since at each major-iteration in SQP, the Quasi-Newton algorithm for finding the 

solution to the quadratic sub problem requires a good starting point, the overall 

optimization performance is very dependent on these starting points. Therefore, it is very 

critical to find a good starting point at each major-iteration. It is helpful to use a grid 

search method to locate a starting point at each major-iteration in SQP. Thus we propose 

to use the combination of SQP and the grid search method. It is a tradeoff between 

accuracy and efficiency. The combined optimization method outperformed SQP or grid 

search alone in some studies [See Wu and Tensfeldt (2006)]. 

2.3 Nelder-Mead Method 
 

The Nelder-Mead (1965) method (also called the downhill simplex method) is 

another commonly used nonlinear optimization algorithm. The method approximately 

finds a locally optimal solution to a problem with N variables when the objective function 

varies smoothly.  
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The method uses the concept of a simplex, a shape with N+1 vertex in N 

dimensions (that is a line segment on a line, a triangle on a plane, a tetrahedron in three-

dimensional space and so on). The method works in an iterative manner. At each step, 

Nelder-Mead generates a new set of vertices (a simplex) and evaluates the objective 

function at the vertices arranged as a simplex. The algorithm then chooses to replace the 

vertex that yields the worst function value with a new vertex generated by reflection 

through the centroid of the rest of vertices. A new simplex is formed and the algorithm 

progresses. In this manner, the algorithm generates a sequence of simplex, for which the 

function values at the vertices get smaller and smaller. The size of the simplex reduced 

and the coordinates of the optimum are found. 

At each step, the reflection method works with some rules. If the new vertex 

generated is better than the current best vertex, then the algorithm expands the simplex 

and reflects further; if the new vertex is just a good one, the algorithm reflects again; if 

the new vertex is the worst vertex, the algorithm compresses the simplex and reflect 

closer. Like many other multi-dimensional optimization algorithms, Nelder-Mead 

sometimes converges to local minima. But with some standard approaches, such as 

restarting itself with a new simplex, the algorithm may escape from some local minima. 

Nelder-Mead method does not include handling constraints. However a general 

technique is to add penalty functions to the objective functions, as mentioned in the 

previous section. A penalty function is a small fraction of violation of a constraint. Thus, 

while minimizing the objective function, the algorithm therefore also minimizes the 

constraint violation. 
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2.4 The Random Search Method 
 

SQP and The Nelder-Mead method are considered as deterministic optimization 

algorithms, meaning they are guaranteed to converge to the same local/global minima if 

they start from the same initial points. Unlike the SQP and Nelder-Mead method, the 

random search method, as its name suggests, converges to different local minima at each 

run. 

Random search is perhaps the simplest method of stochastic optimization and can 

be quite effective in many problems. The random search method has a number of 

advantages relative to most of other search methods. These include relative ease of 

coding in software, the need only to obtain measurements (versus gradients or other 

auxiliary information), reasonable computational effort, and applicability to almost any 

non-trivial loss functions, and a strong theoretical foundation.  

The basic random search method can be implemented in two ways. One is batch 

mode, and the other is recursive.  In batch mode, a number of points in design space are 

randomly generated at once, and those points yielding the lowest value of the objective 

function are taken as the estimated optimum. The recursive random search algorithm is 

described below.  

� Step 0 (Initialization) Choose initial values of the design ξ, say ξ0, either randomly or 

deterministically. (If random, usually a uniform distribution on ξ is used). Calculate 

the objective function ( )ξφ . Set ( ) ( ) 0
*

0 , ξξξφξφ ==min . 

� Step 1 Generate a new independent valueξ ′ , according to the chosen probability 

distribution. If ( ) ( )ξφξφ min<′ , set ( ) ( ) ξξξφ ′=′= *,min ξφ . Otherwise, go to Step 2. 
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� Step 2 Stop if the maximum number of function evaluations has been reached or the 

user is otherwise satisfied with the current estimate for the minimum via appropriate 

stopping criteria. Otherwise return to Step 1. 

The above algorithm converges almost surely to optimal solutions under very 

general conditions. [See Spall (2003), pp. 40-41].  To evaluate the algorithm, it is also 

interesting to examine the rate of convergence. The convergence rate shows how close 

 is likely to be the optimal solution for a given cost of search. While random search is 

a reasonable algorithm when the design space is low dimensional, it can be very slow for 

even moderately dimensioned design spaces. [See Spall (2003), pp. 42-43]. This is a 

direct consequence of the exponential increase in the size of the search space as the 

dimension increases.  

*ξ

In addition, objective functions are usually subject to some constraints in 

experimental design settings. Thus, the generated samples from the design space must 

also satisfy these constraints. Generally, constraints are implemented as penalty functions 

imposed on the primary objective function, and those penalty functions can be 

incorporated in Step 1 on a case-by-case basis.   

2.5 Performance Comparisons of Optimization Methods 
 

In optimal design context, the complexities of the objective functions to be 

optimized vary from case to case, depending on the underlying regression models. 

Generally, the more variables an objective function has the more complex the 

optimization problem will be. In Bayesian optimal designs, computing the Bayesian 

integral also complicates the optimization problem.  
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To evaluate the performance of an optimization algorithm, we usually look at two 

aspects of an optimization algorithm. One is the convergence of the algorithm, in other 

words, if the algorithm is able to converge to the optimal solutions. The other is the 

convergence rate, which means how fast the algorithm converges to the optimal solution. 

We utilized the optimization algorithms discussed in the previous sections in a 

few different optimal design applications. Here we give a brief comparison on these 

algorithms based on what we found in our studies. The comparison is not meant to be 

general. 

In the application of optimal designs for dual-objective c-optimal designs for 

logistic regression models, we evaluated the random search method (RS), the Nelder-

mead (NM) method and the sequential quadratic programming (SQP) method.  For some 

input data sets, the convergence performance was SQP>RS>NM, while for some other 

input data, RS outperformed SQP. However, SQP always had higher convergence rate 

than RS and NM. SQP was also very dependent on its starting points, which is why it is 

sometimes less efficient than RS. If using SQP combining with the grid search method, 

the convergence performance can be improved; however, the convergence rate will be 

decreased. Of all three optimization algorithms, convergence rates were acceptable and 

thus were not an important factor in the context of optimal experimental designs. 

While it appears NM didn’t perform as well as SQP or RS in optimal designs for 

logistic regression models, it outperformed RS and SQP in the applications for segmented 

polynomial models. The optimization problems were partially simplified because the 

weights on the support points were determined to be equal, and thus optimization on the 

weights was not necessary. NM algorithm works very well for the examples in chapter 3. 

 21



In summary, although the numerical optimization plays a very important role in 

the context of optimal experimental designs, it should be noticed that the performance of 

numerical optimization varies from case to case. More importantly, optimal designs 

found by numerical methods are usually not necessarily theoretical optimum. So a good 

practice should be using multiple numerical optimization algorithms for the same 

application, and using the best one of the numerical optimum as the result.  
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3 Optimal Designs for Segmented Polynomial Models 
 
 
 
 
 
 

Optimal design methods are model oriented. The underlying regression model 

determines the way we derive optimal designs. In this chapter, we concentrate on the 

aspects of optimal designs for heteroscedastic segmented polynomial regression models.      

The segmented polynomial model is a special class of polynomial models. If the join 

points are known, it is linear. Otherwise, it is nonlinear. Fitting segmented polynomial 

has been discussed. Extensive literature search yields only a few papers regarding 

optimal designs for segmented polynomial models or similar regression models, such as 

spline functions. Park (1978) discussed D-optimal designs for fitting segmented 

polynomial regression models, assuming the errors are identically normal distributed with 

constant variances. Other discussions mainly focus on the spline function, which is a 

special segmented polynomial function. [See, e.g. Dette et al. (2006)]. 

In this chapter, we consider segmented regression models with heteroscedastic 

variance, which is a more general assumption on the random errors. We now continue our 

discussion with the explicit construction of D-optimal designs for heteroscedastic 

segmented polynomial regression models. 

3.1 Model Definition 
 

The one variable polynomial function )(xη is defined as  

 

 23



n
n xxxx θθθθη ++++= ...)( 2

210  

 
In some regression analysis, a desirable choice of a regression model is 

iii exy += )(η      (3.1) 

where 
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))(,0(~ 12

ii xNe −λσ , 
 

in which )(xλ  is called the efficiency function of an experiment by Fedorov (1972). Thus 

(3.1) defines a heteroscedastic segmented polynomial regression model. When 1)( ≡xλ , 

the regression model is the case with homoscedastic variances. iα  are called join points, 

also called free knots or transition points. 

The function )(xη  has desirable properties as an approximating function, where 

the piecewise sub models are polynomials and )(xη  is continuous in x over the entire 

interval [a, b] are imposed. If the order of each piecewise polynomial in (3.1) has the 

same degree m (i.e., ri ,...,2,1,mqi == ), and )(xη is a continuous function with m-1 

continuous derivatives over the entire interval [a, b], then )(xη  is called a spline function 

of degree m. 

3.2 Reparameterization 
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It can be shown that the segmented polynomial in (3.1) can be represented as a 

simple linear combination of the functions below [See e.g. Gallant and Fuller (1973)]:  

 

)(),...,(),(,,...,,,1 10
2

iqii
q axTaxTaxTxxx −−−    (3.2) 

 
where 
 

0)( =− ij axT                   if ,iax ≤  

                 =       if  j
iax )( − ,iax >

        for .1,...,2,1 −= ri  and { }riqq i ,...,2,1:max ==  
 

The functions (3.2) form a basis for the segmented polynomial model. In addition, 

the function )(xη  in (3.1) can be written as a single equation (Fuller 1969): 
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Moreover, it has been shown that, in equation (3.2), the continuity condition at the 

join points will delete T  term; the first derivative condition on the entire interval 

will deleteT ; similarly for the second order derivative condition, and so forth 

[See Fuller (1969) and Rice (1969)]. 

)(0 iax −

)(1 iax −

      If the join points are known, )(xη  is linear in  

),,,,,,,( 102212011110 21 rrqrrqq
T θθθθθθθθθθ LLLL= . 

We can define . So that the regression model in (3.1) is ),()( θη xxf T ∇=

)()()|( xfxxyE Tθη ==  and Var   (3.4) )()|( 12 xxy −= λσ
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If the join points are unknown, )(xη  is nonlinear in the parameters, 

and , where . Taylor expansion of ),,()( αθη xxf T ∇= ),,( 121 −rααα L=Tα )(xη  yields a 

linearization that is similar to the regression function in (3.4).  

3.3 Optimal Designs When Join Points Are Known 
 
 

When the join points iα  are known, the regression function in the model (3.4) is 

linear in the unknown parameters θ.  If the join points are unknown and must be 

estimated from data, the regression function becomes nonlinear in the join points iα . We 

will explore methods including locally D-optimal designs and minimax optimal designs 

later this chapter, for optimal designs for segment models with unknown join points. 

Based on the regression model assumption defined in (3.4), we can find the best linear 

unbiased estimate of θ and the associated variance and covariance matrix of the estimate 

using the following theorem. 

 

Theorem 3.1 if  

)()|( xfxyE Tθ=  and Var     )()|( 12 xxy −= λσ

, then the best unbiased linear estimate for θ will be  

YM 1ˆ −=θ       (3.5) 
where 

∑
=

=
n

i

T
iii xfxfxM

1
)()()(λ     (3.6) 

 

∑
=

=
n

i
iii xfyxY

1
)()(λ      (3.7) 

The variance of the estimate  is equal to  θ̂
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1)ˆ( −= MD θ      (3.8) 

Proof:   

 I) we show (3.5) is an unbiased estimate first: 

)()()ˆ( 11 YEMYMEE −− ==θ     (3.9) 

θ

θλ

λλ

M

xfxfx

yExfxxfyxEYE

i
T

n

i
ii

i

n

i
ii

n

i
iii

=

=

=







=

∑

∑∑

=

==

                                          

)()()(                                              

)()()()()()(

1

11

  (3.10) 

 Setting (3.10) into (3.9), we have: 

θθθ == − MME 1)ˆ( ,  so that the estimate  is unbiased. θ̂

II) We now prove that the estimate is the best among all unbiased estimates in that  

is the smallest. We consider an arbitrary linear unbiased estimate  

)ˆ(θD

Ty=θ~      (3.11) 

Since θ~  is unbiased,  

θθ == )()~( TyEE     (3.12) 

θθ =′== FTyTETyE )()( ,    (3.13) 

where 

 ( ))(),...,(),( 21 nxfxfxfF = .    (3.14) 

From (3.13), it follows that, 

IFT =′ ,    (3.15) 

where I is the identity matrix. Also, 

TyTDD ′= )()~(θ ,    (3.16) 
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where    .  (3.17) 
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, )(yD=Σ′Σ . 

Thus, equations (3.15) and (3.16) can be rewritten as  

I=′φϕ      (3.19) 

and 

ϕϕθ ′=)~(D .     (3.20) 

It can be verified that 

( ){ }( ){ } ( ){ } ( ){ }TT
D φφφϕφφφϕφφφφφφϕϕθ 1111)~( −−−− ′−′−+′′≡′= . (3.21) 

Each term on the right-hand side of (3.21) is a matrix of the type , of which the 

diagonal elements are nonnegative. Thus, 

TAA

)~(θD  will have a smallest value if  

φφφϕ 1)( −′= .     (3.22) 

That is,   [ ] )()( 111 yFDFyFDT −−− ′=  

Thus     [ ] θθ ˆ)()(~ 1111 ==′== −−−− YMyyFDFyFDTy ,  
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where M and Y are defined by Equations (3.6) and (3.7) respectively. This concludes that 

 defined by Equation (3.8) is the best-unbiased linear estimate. θ̂

      The fundamental idea in the proof of Theorem 3.1 is identical to that in Fedorov 

(1972) p25-26, in which the author proves a similar theorem with slightly different 

assumptions on the underlying regression model.  

The matrix M defined by equation (3.6) is called Fisher information matrix.  If M 

is not singular, its inverse, equation (3.8), is the variance and covariance matrix of . The 

matrices M or 

θ̂

1−M  form the basis of most of the optimal design criteria, i.e., the D-

optimal criterion is a function of the Fisher information matrix M. 

Equation (1.1) defines a continuous design to simplify the problem of finding 

optimal designs. We calculate the explicit form of the information matrix M with a 

continuous design. Suppose there are N total subjects of the design ξ, it follows that 

∑
=

=
n

i

T
iiii xfxfxwNM

1
)()()(λ . 

For simplicity, we omit N in the formula since it is just a constant, and is irrelevant to our 

discussion. So we denote, 

∑
=

=
n

i

T
iiii xfxfxwM

1
)()()()( λξ  .         (3.23) 

The most popular design criterion in applications, is that of D-optimality, which 

minimizes,  

     
)(log 1 ξ−M       (3.24) 

Or equivalently maximizes )(ξM . 
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where ξ  stands for a continuous design. We denote as the optimal design that satisfies 

the optimal criterion. We apply the General Equivalence Theorem to derive a secondary 

equivalent optimality condition. 

*ξ

Using the definition in (3.24), the D-optimal criterion function is 

)(log)}({ 1 ξξφ −= MM . According to the condition (1) of the General Equivalence 

theory, the optimal design  minimizes *ξ φ .  Using the definitions (1.3), (1.4) and (1.5), 

the directional derivative at design  in the direction of *ξ ξ  is calculated as follows: 
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In (3.25), m is the rank of )(ξM  and is also the number of unknown parameters in the 

regression model or can be viewed as the dimension of f(x), and the design ξ  consists of 

one support point x with unit mass on it. We then obtain 

)()()()(
)()()()(),(

*1

*1*

xfMxfxm
xfxfxTrMmx

T

T

ξλ

λξξϕ
−

−

−=

−=
    (3.26) 

Equation (3.26) gives the explicit form of , which is a polynomial function 

in the variable x.  should be equal to zero at the design points and be greater than 

zero at all other points on the design interval according to the condition (2) and the 

),( *ξϕ x

),( *ξϕ x
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condition (3) of the General Equivalence Theorem. We will use this equation to check 

these conditions for the D-optimal designs in following examples. 

By Theorem 3.1 and equation (3.23), it is not difficult to have the D-optimal 

criterion function specified for numerical optimization procedures. However, it is always 

desirable to derive some properties from the criterion function that may lead to analytical 

solutions to the optimal designs. In fact, the following corollaries show that the 

determinant of the information matrix does have some interesting properties that can 

facilitate the derivation of D-optimal designs analytically.  

 

Corollary 3.1 The number of support points, n must be greater or equal to m, the number 

of unknown parameters or the dimension of . )(xf
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where F is defined in (3.14). F is an m by n matrix. By Cauchy-Binet formula, it is easy 

to see that n must be greater or equal to m. Otherwise, )(ξM  will be zero. 

 

Corollary 3.2 When n=m (the number of support points equals to the number of 

parameters), the determinant of the information matrix (3.23) is given by: 
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Proof: Using equation (3.27) and by Cauchy –Binet formula, the result follows. 
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Corollary 3.3 Subject to the restriction ,  is maximized 

when . It follows that 

1
1

=∑
=

n

i
iw ∏
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i
iw
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nwww k /1...21 ==== )(ξM  is maximized when the same 

number of observations is taken at each of the design points when n=m. 

 

3.3.1 The regression function )(xη  is continuous at the known join points 
 

If the regression function )(xη  is continuous and there are no other restrictions at 

the join points, )(xη  can be written in the following form 
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There are rqqqm ++++= ..1 21  unknown parameters given the join points are known. 

 

Condition 3.1 Denote )()()()(),( *1* xfMxfxmx T ξλγξψ −−−= , where γ is a small 

number. ),( *ξψ x  has no more than 12 1 +q ], 1 roots on [ αa

);1,,2,1 br r

, and has no more than 

roots on (

iq2  

](, 1ii i =−=+ ααα L . 

 

Corollary 3.4 If Condition 3.1 is satisfied, then the D-optimal design for the regression 

model (3.4) with regression function (3.28) has exactly rqqqm ++++= ..1 21 support 

points with equal weights 
m
1 on each support point. 

 

Proof:  By the General Equivalence Theory, at the D-optimal design points, it follows 

that 
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0)()()()( **1** =− − xfMxfxm T ξλ , 

and at all other points,  

0)()()()( *1 >− − xfMxfxm T ξλ . 

If there are more than m support points on the entire interval, then there exists at least one 

interval that has more than 1 1q+  support points for [ ], 1αa  or has more than  support 

points for (

iq

)1](, 1 ≥+ iii αα . As a consequence, )*,( ξψ x  would have more than 112 +q  

roots on [ ], 1αa  or have more than  roots oniq2 )1≥](1+ ii,( i αα . Both cases would yield a 

contradiction to Condition 3.1. 

Moreover, if Condition 3.1 is satisfied, same argument would yield that the D-

optimal design consists of 1  support points on [1q+ ], 1αa  and  support points 

on (

iq

)1](, 1 ≥+ iii αα . 

 

Condition 3.2 The D-optimal design for a polynomial model of degree  on[iq ],1 ii αα − , 

),,,2,1( 0 bari r === ααL  has exactly 1+iq  support points and two of them are 1−iα  

and iα .  

Note Condition 3.2 is more restrict than Condition 3.1. Indeed it implies that the 

function ),( *ξψ x  has exactly  roots on[iq2 ],1 ii αα − , and two roots are 1−iα  and iα . 

Condition 3.2 also implies that if it is satisfied, the support points of the D-optimal design 

on the entire interval include all join points, and the scheme of the support point locations 

is: 
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Theorem 3.2 Consider the segmented polynomial regression model (3.4) with regression 

function )(xη  is (3.28). If Condition 3.2 is satisfied, there exists a unique D-optimal 

design  with exactly  support points with equal weights . 

Moreover, the supports points are the same set of support points of the individual D-

optimal designs for the polynomial sub models on the corresponding sub intervals. 
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Proof:  If Condition 3.2 is satisfied, Condition 3.1 is satisfied automatically, then by 

Corollary 3.4, the D-optimal design has exactly support points with equal 

weight on each support point. This implies: 
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where is an upper triangle matrix, and  is a  classical 

Vandermonde matrix and  



















=

rF

F
F

F

000
00

0 2

1

LO

LL

LLL

1F 11 qq ×

( ) ( ) ( )

( ) ( ) ( )

),3,2(

11211

2
1

2
12

2
11

11211

ri

xx

xx
xx

F

iii q
ii

q
ii

q
ii

iiiiii

iiiiii

i L

L

MMM

L

L

=



















−−−

−−−
−−−

=

−−−

−−−

−−−

αααα

αααα
αααα

. 

 

Notice that in equation (3.29), the determinant of the information matrix can be 

maximized by maximizing each multiplication component on the right hand side 

separately. The first multiplication component is proportional to the determinant of the 

information matrix for a polynomial regression model of degree , and it is maximized 1q
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at the support points of the D-optimal design on[ ], 1αa .   For all other components, it 

follows 
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When Condition 3.2 is satisfied, the determinant of the information matrix for the 

individual polynomial regression of degree  on the interval [iq ],1 ii αα −  is given by 
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Comparing the equation (3.30) and (3.31), it is easy to see that (3.30) is maximized at the 

same points at which the equation (3.31) is maximized. Consequently, the support points 

of the D-optimal design for the entire segmented polynomial model are the same set of 

support points of the individual D-optimal designs for individual polynomial models on 

corresponding sub intervals. The theorem is proved. 

 

Remarks. Note that Condition 3.2 is very general. It is dependent on the function )(xλ  

as well as the design interval. For instance, it is known that the D-optimal design for a 

polynomial model of degree q with homoscedastic variance ( 1)( ≡xλ ) has exactly q+1 

support points and two of them are on the boundaries of the design interval. So Condition 

3.2 is always satisfied when 1)( ≡xλ .  However, for any other 1)( ≠xλ , the condition is 

also dependent on the design interval.  
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We now give examples to illustrate the application of Theorem 3.2.  For 

homoscedastic segmented polynomial models, the following theorem along with 

Theorem 3.2 shows that the D-optimal designs can be obtained analytically. 

 

Theorem 3.3 (Fedorov 1972) if , where 

, and 

( ) 2

1
)|( , )|( σθ

α
αα == ∑

=

xyVarxfxyE
m

;11- ),...2,1()( 1 mxxf == − αα
α ≤≤ x

1−= mpi

)(xPm

 Then the D-optimal design is unique and is 

concentrated at m points with equal weights . Moreover, the points are the roots 

of the polynomial , where is the m)(1 xm−′)1( 2 Px− th Legendre polynomial; 

Remarks. Theorem 3.3 states the design problem on the restricted interval [-1, 1]; 

however, it is also applicable on any other bounded intervals. For an arbitrary bounded 

interval, the support points can be obtained by a simple linear transformation from the 

support points on [-1, 1].  

 

Example 3.1 Consider a segmented regression model with a single join point α, 

)1,1(−∈α  and 

)()()()|( 323222121
2

121110 αθαθαθθθθ −+−+−+++= xTxTxTxxxYE

)()|( 12 xxyVar −= λσ 1)(

,

, where =xλ  . The problem is to find the D-optimal design on 

the interval[ .  ]1,1−

 

Analytical Solution: 

The segmented regression model consist of two piecewise polynomial models of 

degree 2 and of degree 3 on intervals [-1, α] and [α, 1] respectively. So first we find the 
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D-optimal design for each polynomial model separately. Once we have the two 

individual D-optimal designs, we can then derive the D-optimal design for the segmented 

model on the entire design interval by Theorem 3.2.  

Based on the assumptions in this example, it is easy to determine the locations of 

the support points. By Theorem 3.3, the support points for polynomial model of degree m 

on the interval [-1, 1] are the roots of the equation:  

0)()1( 1
2 =′− − xPx m ,    (3.32) 

where is the m)(xPm
th Legendre polynomial. The Legendre polynomial can be 

constructed using the three term recurrence relations 

21 )1()12( −− −−−= mmm PmxPmmP  

with  and .  It is easy to solve the equation (3.32) for the support points. 

Since the support points are defined on interval [-1, 1], a simple linear transform on these 

support points have to be applied in order to get the support points for the same model 

defined on any arbitrary intervals, say [a, b]. The linear transform is: 

10 =P xP =0

)(
)1(1
)1(' abxax −

−−
−−

+=  

Moreover, it is not difficult to find the close-form roots of a Legendre polynomial 

equation using MATHEMATICA. We list the D-optimal design support points for 

polynomials of degree m, (m=1, 2, 3), in Table 3.1. 

Now, getting back to the problem, the segmented polynomial consists of a 

polynomial of degree 2 and a polynomial of degree 3. Using the results in Table 3.1 and 

Theorem 3.2, we find that the 6 support points of the D-optimal design for the model with 

the join point α on (-1, 1) are given by 
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Table 3.1 Analytical support points of the D-optimal design for a homogeneous 
polynomial regression model of degree m on the interval [a, b] 

Degree m D-optimal support points x* 

1 ),( ba  

2 ),
2

,( bbaa +  

3 ),
52

)15)((,
52

)15)((,( babaabaa +−
+

−−
+  

 

Numeric Solution: 

On the other hand, we calculated the D-optimal designs numerically and list the 

results (rounded in four decimal places) in Table 3.2. 

 

Table 3.2 Support points of the D-optimal design for the model in Example 3.1 by 
numerical methods 

Join Point 
α 

Support points of 
D-optimal design ξ* )(

)(
*

*

A

N

M

M

ξ

ξ
 

-0.4 (-1, -0.7000, -0.4, -0.0131, 0.6129, 1) 1 
-0.2 (-1, -0.5993, -0.2, 0.1313, 0.6683, 1) 1 
0.0 (-1, -0.5, 0, 0.2763, 0.7236, 1) 1 
0.2 (-1, -0.3999, 0.2, 0.4212, 0.7790, 1) 1 
0.4 (-0.9818, -0.3071, 0.4, 0.5609, 0.8314, 0.9998) 1 

 

Note that  and  are the D-optimal designs given by numerical solutions and 

analytical solutions respectively.  The ratios in the last column indicate that the design 

 and the design  are equivalent. If we further compare the support points in Table 

3.2 with the support points calculated using (3.33) – the analytical solutions, one by one 

*
Nξ

*
Aξ

*
Aξ

*
Nξ
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for each join point α, we can see that the analytical method and the numerical method 

yield identical results. 

Example 3.1 shows that the D-optimal design for a homoscedastic segmented 

polynomial model can be obtained analytically from individual D-optimal designs for the 

individual polynomial models on the corresponding subintervals. 

 

Example 3.2 Consider a quadratic-quadratic segmented polynomial regression model 

with heteroscedastic variance: 

)()()()|( 222121
2

121110 αθαθθθθη −+−+++== xTxTxxxxyE  

)exp(/)|( 2 xxyVar −= σ , 11 ≤≤− x . 

 

I) First, we find the D-optimal designs for both individual quadratic polynomials. Table 

3.3 listed the D-optimal designs for both individual models with selected join points. The 

checking condition plots of the functions in (3.26) verify that all D-optimal designs listed 

in Table 3.3 are optimal.  Moreover, the support points of both individual D-optimal 

designs include their boundaries. This implies that Condition 3.2 is satisfied.  

Consequently, by Theorem 3.2, we know that the support points of the overall D-optimal 

design must be the same support points of the two individual D-optimal designs. 

 

Table 3.3 Support points of the individual D-optimal designs for the models in Example 
3.2 

Join Point α 
   Support points of  

D-optimal design  *
1ξ

 Support points of  
D-optimal design  *

2ξ
-0.6 (-1, -0.81, -0.6) (-0.6, -0.0459, 1) 
-0.4 (-1, -0.7244, -0.4) (-0.4, -0.1810, 1) 
-0.2 (-1, -0.6396, -0.2) (-0.2, -0.3119, 1) 
0.0 (-1, -0.5616, 0) (0,0.4384, 1) 
0.2 (-1, -0.4881, 0.2) (0.2,0.5604, 1) 
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Table 3.3 (Continued) 
0.4 (-1, -0.4190, 0.4) (0.4,0.6776, 1) 
0.5 (-1, -0.3860, 0.5) (0.5,0.7344, 1) 
0.6 (-1, -0.3541, 0.6) (0.6,0.79, 1) 

 

 

 

Figure 3.1. Checking condition plots verify the optimality of the D-optimal designs in 
Table 3.3. 

 
 

II). Next consider the segmented polynomial as a single one piece, and find the D-

optimal design directly over the entire interval. Table 3.4 listed the support points of the 

D-optimal design found numerically, and the checking condition plots in Figure 3.2 show 

the designs are D-optimal. 
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Table 3.4 Support points of the D-optimal design for the entire segmented model in 
Example 3.2 

Join Point α Support points of D-optimal design  *ξ ( )*ξM  

-0.6 (-1, -0.81, -0.6, 0.046, 1) 0.0009 

-0.4 (-1, -0.7224, -0.4, 0.181, 1) 0.0033 
-0.2 (-1, -0.6396, -0.2, 0.3119,1) 0.0049 
0.0 (-1, -0.5616, 0, 0.4384, 1) 0.0042 
0.2 (-1, -0.4881, 0.2, 0.5604, 1) 0.0022 
0.4 (-1, -0.4207, 0.4, 0.6770, 1) 0.0007 
0.5 (-1, -0.3860, 0.5, 0.7344, 1) 0.0003 
0.6 (-1, -0.3537, 0.6, 0.7900, 1) 0.0000 

 
  

 
Figure 3.2. Checking condition plots verify the optimality of the D-optimal designs in 

Table 3.4. 

 41



 

III). After rounding off, it is easy to see that the support points of the two individual D-

optimal designs in Table 3.3 for each join point α are identical to those in the 

corresponding overall D-optimal design in Table 3.4.  This finding is agreed with 

Theorem 3.2. 

3.3.2 The function )(xη  is differentiable at the known join points  
 

If the regression function )(xη is also differentiable at the known join points, the 

D-optimal designs for the segmented models can be found numerically. For example, if 

)(xη  is continuous and once differentiable at all join points, the regression )(xη has the 

following form,  

∑∑∑
=

−
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−++−+=
rq
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i xTxTxx

2
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2
12
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1 )(...)()(

21

αθαθθη    (3.34) 

There are )1(..1 21 −−++++= rqqqk r  unknown parameters. The following example 

shows efficient D-optimal designs for segmented polynomial models of this type can be 

found numerically. However, a relation between the overall D-optimal and the individual 

D-optimal designs was not demonstrated. 

 

Example 3.3 Consider a quadratic-quadratic segmented regression 

model , ))()( 222
2

121110 αθθθθη −+++= xTxxx exp()( xx −=λ , 11 ≤≤− x . The D-

optimal designs found for a series of α, are tabulated in Table 3.5. 

 
Table 3.5 Support points of the D-optimal design for the model in Example 3.3 

Join Point α Support points of D-optimal design ξ* ( )*ξM  

-0.6 (-1, -0.7194, -0.0141, 1) 0.0590 
-0.4 (-1, -0.6299, 0.0811,1) 0.1341 
-0.2 (-1, -0.5572, 0.1778,1) 0.1843 
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Table 3.5 (Continued) 
0.0 (-1, -0.4953, 0.2804, 1) 0.1815 
0.2 (-1, -0.4402, 0.3920, 1) 0.1327 
0.4 (-1, -0.3890, 0.5158, 1) 0.0685 
0.5 (-1, -0.3641, 0.5833, 1) 0.0412 
0.6 (-1, -0.3394, 0.6553, 1) 0.0207 

 
 
Again, the D-optimality of these designs was checked by the General Equivalence 

Theorem as shown in the plots in Figure 3.3. 

 

 

 
Figure 3.3. Checking condition plots verify the optimality of the D-optimal designs in 

Table 3.5. 
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In this example, the segmented polynomial model also consists of two individual 

quadratic polynomial models on the subintervals. As we can see in Table 3.5, for each 

known join point α, the support points of the D-optimal design consists of 4 support 

points, and these support points are different from those of corresponding individual D-

optimal designs on the subintervals as listed in Table 3.4. 

3.4 Optimal Designs When Join Points Have to Be Estimated 
 

When the join points in a segmented polynomial model are unknown and have to 

be estimated from the data, the model becomes nonlinear in the join points α. The 

methods for fitting a segmented polynomial with join points have to be estimated has 

been discussed, for example see Gallant et al. (1973). The fundamental idea behind fitting 

nonlinear models is to linearise the model using Taylor series with respect to the 

unknown parameters and then to proceed iteratively using linear least squares. The 

estimates obtained in this way are referred to as quasi-least square estimates in some 

sense. It has been shown that the quasi-least squares estimates are consistent estimates of 

the model parameters. So essentially, the optimal design approaches for segment 

polynomial models with unknown join points are similar to those for segmented 

polynomial models with known join points, except that their information matrices are 

slight different. 

The information matrix for a nonlinear model usually has the unknown model 

parameter in it. Consequently, the optimal design criterion is a function of both the design 

and the unknown model parameters. One simple approach is plugging the best guess on 

the unknown parameters in the criterion function, which is termed as “locally” optimal 
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designs. If a prior joint distribution on the unknown parameters can be established, the 

Bayesian approach is a more robust approach. When there are multiple unknown 

parameters in the regression model, a concrete joint prior distribution is usually difficult 

to be established. Often, ranges of possible values of the unknown parameters are easier 

to be obtained than joint distributions. In that case, the minimax optimal design is 

appropriate. 

A Minimax approach is to search the optimal design by minimizing the maximum 

of an asymptotic loss function, where the maximum is taken over all plausible locations 

of the unknown parameters. Formally, the Minimax D-optimal criterion is defined as: 

),(max 1 αξ
αξ

−MMin , 

where α is the vector of unknowns parameters, taking over all possible values. 

Bayesian optimal designs and minimax optimal designs are robust comparing to 

the locally optimal designs. However, they have to be found numerically most of the time. 

The following discussion in this section is solely on the locally D-optimal designs for 

segmented polynomial models with unknown join points, for which we may find the 

locally D-optimal designs analytically in some cases. 

3.4.1 )(xη  is continuous and exactly once differentiable at all join points 
 

If the regression function )(xη  is continuous and has exactly one derivative at all 

join points, it has the form as in (3.34). With the join points have to be estimated, )(xη  is 

a nonlinear function in the following parameters: 

),,,,,,,,,,,,( 321222322111110 21 rrqrrrqq
T θθθααθθθαθθθθ LLLL −=  

Then,  
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It is easy to see that in (3.35) can be transformed to the following form )(xf
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where )(θU is an upper triangle matrix and its non-trivial elements are the unknown 

model parameters. The right hand side of the equation,  is the same vector of 

functions for the model with regression function (3.28) for join points are known cases 

)(xg

 

Theorem 3.4 For segmented polynomial model with regression function (3.34), if 

Condition 3.1 is satisfied, or in other word, the locally D-optimal design has exactly 

support points, then the locally D-optimal design is the same as the D-

optimal design for the segmented polynomial model with regression function (3.28) 

assuming the join points are the same in both cases. 

∑+= iqm 1

 

Proof: when Condition 3.1 is satisfied, by corollary 3.2, the determinant of the 

information matrix for both models has the same form 
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where is the design matrix for the model with regression function (3.28) when join 

point are known. It is clear that the locally D-optimal criterion for the model with 

regression function (3.34) is proportional to the D-optimal criterion function for the 

model with regression function (3.28), thus, the locally D-optimal design for (3.34) must 

be the same as the D-optimal design for (3.28) if both models have the same set of join 

points. 

F ′

In addition, it is also conceivable that there exists a one-one relationship between 

locally D-optimal designs for segmented polynomial models with unknown join points 

and D-optimal designs for segmented polynomial models with known join points under 

certain conditions. 

Dette et al. (2006) has shown explicit locally D-optimal designs for 

homoscedastic spline functions with exactly one continuous derivative at the knots (join 

points). It is easy to derive the same result from Theorem 3.2, Theorem 3.3, and Theorem 

3.4 for 1)( ≡xλ . 

3.5 Applications in Agriculture Studies 
 

In this section, we present the optimal designs for segmented polynomial models 

in an agriculture study. Shuai et al. (2003) fitted segmented regression models for 

reflecting soil Manganese (Mn) changes under different soil pH conditions. In their paper, 

a three-segment linear-linear-linear model and a two-segment linear-quadratic model 

were established, and both were statistically good fit for the data. The fitted linear-linear-

linear polynomial model was: 









≥
≤≤+−

≤+−
=

9823.5004349.0
9823.51281.56265.01040.0

1281.57470.25175.0
)(

pH
pHpH

pHpH
pHMnE   (3.37) 

And the fitted linear-quadratic model was: 





≥+−
≤+−

=
1000.59372.29286.00735.0
1000.56886.25050.0

)( 2 pHpHpH
pHpH

pHMnE   (3.38) 
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The error term was assumed to be of a constant in both models.  We checked the data for 

constant variance. The assumption was found valid. That is 1)( =pHλ  in the variance 

function in the definition (3.4). 

If further investigation on Manganese changes to pH values is of interest, e.g. to 

confirm the above established models or to precisely estimate the model, a well-designed 

experiment is highly desirable. Suppose we are planning for the next study, a few issues 

should be taken into account: 1) which model we will design for? 2) Is (are) the join 

point(s) to be estimated from the data? 3) What if the experimenter prefers one model to 

the other? We respond to each of these questions with the discussions that follow. 

3.5.1 The join points are known 
 

If there is no need to estimate the join points from the data, the D-optimal designs 

for both models can be easily obtained. The regression functions are continuous on the 

entire interval – [4.7, 6.3], they are not differentiable at the join points, and they are 

homoscedastic.  By Theorem 3.2 and Theorem 3.3, we obtain the D-optimal designs as 

follows: 









=

4/14/14/14/1
3.69823.51281.57.4*

37.3Dξ  for model 3.37, 









=

4/14/14/14/1
3.67.51.57.4*

38.3Dξ  for model 3.38. 

A characteristic in the D-optimal designs is that the boundary points and the join 

points are included in the support points. Also, as a comparator, we should mention here 

that the original design  used in the paper was: 0ξ
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







=

9/19/19/19/19/19/19/19/19/1
3.61.69.57.55.53.51.59.47.40ξ . 

This is obviously an empirical design and is not optimal. The efficiencies of  to  

and  were 

0ξ 37.3
*

Dξ

38.3
*

Dξ

479.0
|)(|

|)(|
4/1

37.3
*

37.3

0
37.3 =









DM
M

ξ
ξ

 and 502.0
|)(|

|)(|
4/1

2.5.3
*

2.5.3

0
2.5.3 =









DM
M

ξ
ξ

 respectively. 

3.5.2 The join points have to be estimated from the data 
 

In the original paper, the join points along with the model parameters were 

estimated from the data using a non-linear regression method. In order to use the optimal 

design methods developed earlier, we need to convert the regression functions (3.37) and 

(3.38) to be of the following simpler forms: 

3.67.4)()()( 21311210 ≤≤−+−++= pHpHTpHTpHpHMnE αθαθθθ         (3.39) 

3.67.4)()()( 12311210 ≤≤−+−++= pHpHTpHTpHpHMnE αθαθθθ          (3.40) 

If the join points have to be estimated, the models are non-linear in the parameters: 

( )213210 ,,,,, ααθθθθ  

The gradient of the regression functions (3.39) and (3.40) with respect to the unknown 

parameters by direct partial differentiations are given below: 

( )++ −−−−= 23211211 )()(1)( IpHTIpHTpHpHf T θαθα  (3.41) 

(( )113121211 2)()(1)( αθαθα −−−−−= + pHTpHTIpHTpHpHf T )     (3.42) 

where  and  




≥
<

=+
1

1
1 1

0
α
α

pH
pH

I




≥
<

=+
2

2
2 1

0
α
α

pH
pH

I
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Notice that (3.41) and (3.42) have unknown parameters, thus the optimal criterion 

functions would have these unknown parameters as well.  As an appropriate prior joint 

distribution or a range of possible values of the unknown parameters cannot be derived 

from the original paper, we consider locally D-optimal designs here. It is easy to show 

that the best guesses for the unknown parameters in (3.39) and in (3.40) are 
















=
=
=
=
=
−=

9823.5
1281.5
1040.0
4135.0
7470.2

5175.0

2

1

3

2

1

0

α
α
θ
θ
θ
θ

 and , respectively. 














=
=
=
−=

=

1.5
0735.0
3261.0
5050.0

6886.2

1

3

2

1

0

α
θ
θ
θ
θ

The locally D-optimal design for the model with regression function (3.39) is 

calculated numerically below: 









=

6/16/16/16/16/16/1
2981.69823.59771.51001.51.57006.4

39.3
*
Dξ  

Interestingly, the above design implies the join points are hot spots if those join points are 

to be estimated from the data. Comparing the empirical design to , the design 

efficiency is 

*
39.3Dξ

6/1

39.3
*

0

|)(|
|)(|









=
D

eff M
MD
ξ
ξ =0.865. 

Likewise, the locally D-optimal design found numerically for the model with 

regression function (3.40) is: 









=

5/15/15/15/15/1
2997.67242.51104.51.57.4*

40.3Dξ . 
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Coincidentally, when comparing  and , we found they were equally efficient. In 

figure 3.4, we plot the dispersion of the predicted response variable Mn along with the 

support points of  and  

*
40.3Dξ

0ξ

0ξ *
40.3Dξ

 

 

Figure 3.4. Checking condition plots verifies the optimality of the locally D-optimal 
design for the linear-quadratic polynomial model. 

 
On Figure 3.4, the support points of  are the stars in red, and the support 

points of  are stars in green.  has more points than , which means  is still 

a better design than  although they are equally efficient. Indeed, covers , 

however, additional support points don’t increase design efficiency in this case. 

*
40.3Dξ

0ξ 0ξ *
40.3Dξ

*
40.3Dξ

*
40.3Dξ

0ξ 0ξ

3.5.3 Robust D-optimal designs and Multiple-objective D-optimal designs 
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In the end of the original paper, the authors concluded that based on the goodness 

of fit tests both models fit the data well. Although they prefer one model to the other from 

realistic perspectives, challenges do arise in planning of efficient experiments, such as on 

which model should the optimal design be based? On the other hand, the authors also 

modeled the relationships between pH values and other soil nutrient parameters, such as 

the amount of Calcium and Protactinium. This also induced a multiple-objective optimal 

design problem, e.g., if the experimenter wants an optimal design for modeling all the 

relationships together. 

The optimal design methods we have been talking about are model based. The 

fundamental assumption is that the regression model is known when designing 

experiments. If the underlying model is misspecified, the resulting optimal designs can be 

completely meaningless. As we can see that the locally D-optimal designs  and 

 are totally different, and they don’t even have the same number of support points. 

On the other hand, the problem comes from the multiple-objective optimal design is 

essentially similar to the model misspecification problem. In light of these similar 

problems, here we introduce a model robust optimal design approach as follows. 

*
39.3Dξ

*
40.3Dξ

The robust optimal design criterion function is straightforward. Denote 1φ  as the 

D-optimal design criterion function for the linear-linear-linear polynomial model, and 2φ  

as the D-optimal design criterion function for the quadratic-quadratic model. Let 

( 10 ≤≤ )γγ  reflect the experimenter’s preference or confidence about the linear-linear-

linear polynomial model. For example, if the experimenter believes both models are 

equally important, he may set 2/1=γ . If the experimenter has no interest in the 

quadratic-quadratic model, he can set 1=γ . Thus, for seeking a design that allows good 
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estimates of all the parameters in both models, it is natural we propose the following 

optimality criterion: 

( ) ( ) ( )ξφγξγφξφ 21 )1( −+=      (3.43) 

The fundamental idea underlying this criterion has been introduced in several 

papers, for different but essentially similar problems, such as, optimal robust designs, 

multiple-objective optimal designs. For example, readers who want more details are 

referred to Zhu et al. (1998) and Dette (1992). 

Most of the time, the optimal design  that minimizes (3.43) has to be found 

numerically. Theoretically, using one of the optimization methods we have mentioned 

before, it is not difficult to find the best robust designs or the best multiple-objective 

designs that a numerical approach can find. Since there is no analytical derivative to 

demonstrate, we would not list the results here. 

*ξ
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4 Implementation of Web-Based Optimal Design Software 
 
 
 
 
 
 

In this chapter, we discuss the implementation of our web-based optimal design 

computer programs. In fact the web-based optimal design computer programs are 

integrated on this website - www.optimal-design.org. We will cover how the entire 

system was designed and how optimal design programs were integrated on the website.    

The original idea of construction such a website comes from an unpublished 

research plan. This project was funded by NIHGMS. In this chapter we are intended to 

document the implementation details so that this documentation may serve as a handbook 

for future developers.  

In order to present optimal design method and results in computer software, we 

may have two options. One is a stand-alone application. The other is the so-called web 

based interactive application. In recent years, the World Wide Web has become an 

increasingly important tool to share information and knowledge in various fields. It can 

provide an excellent environment for deploying statistical tools because of its easy 

accessibility. One major advantage by deploying web based statistical programs is that 

statistical design and analysis can be performed anywhere an Internet connection is 

available. These features along with many others makes it is very attractive to us to set up 

a web server and share our work and present our findings on it. 

Nevertheless, there is no question that such a web site could be set up using 

different strategies and technologies. However, due to space limitations, I would only 
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discuss our design and approaches. I will not make arguments, whether why one 

technology is preferred to another. 

4.1 System Overview 
 

The web-based optimal design computer software system uses client-server 

architecture. Input data are supplied to the optimal design programs on the server side via 

a user-friendly interface on the web pages. Users input data on web pages, and then the 

data is packaged into HTTP format and sent to the Internet Information Server (IIS) at the 

server side, When IIS receives input data, it then transfer the data to the Web Application 

for further processing.  The Web Application runs on IIS platform and its interface to the 

user are the web pages.  The Web Application preprocesses a user’s input and establishes 

a connection between the IIS and the Matlab Web Server.  Once the connection is 

established, a user’s input is then sent to the Matlab Web Server, where the user’s input 

will be transferred to the right Optimal Design Program for final processing. The results, 

which typically are optimal designs along with checking condition plots, are then sent 

back to the user’s interfaces on the web page in a reverse manner. Since a picture worth a 

thousand words, the following diagram may illustrate the data flow discussed above 

better. 
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Figure 4.1. System architecture and data flow illustration. 
 

4.2 Technologies and Development Tools 
 

There are five components in Figure 4.1. However, software programming is 

needed for only two of them, the Web application and the Optimal Design Programs. The 

other three components are commercial available software, which can be set up by an 

experienced system administrator. 

Web browsers usually come with any personal computer systems nowadays. The 

Internet Information Server comes with Microsoft Windows® operating system, and the 

Matlab Web Server is available from MathWorks. Installation and configuration for these 

systems have to be done by specific specialists. Interestingly, MathWorks has 

discontinued supporting its Matlab Web Server product. Instead, the product has been 

replaced with Matlab® Distributed Computing Engine. For more details regarding these 

products as well as their installation and configuration procedures, the user may refer to 
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Microsoft TechNet Technical References on IIS and MathWorks Distributed Computing 

Engine System Administrator’s Guide. 

For Internet users, the interfaces to the optimal design software are the web pages 

on which users input their requests and get results in HTML format. The Web 

Application interacts with the Matlab Server exchanging input and output since optimal 

designs are actually calculated by the Optimal Design Programs.  The Web Application is 

developed using Microsoft ASP.NET platform and C Sharp programming language.  

Microsoft ASP.NET is a technology for creating dynamic web applications. ASP.NET 

pages (Web Forms) are compiled, providing better performance than with scripting 

languages. When building these pages, one can use ASP.NET server controls to create 

common UI (User Interface) elements and program them for common tasks. These 

controls allow one to build rapidly a Web Form out of reusable built-in or custom 

components, simplifying the coding of a page. ASP.NET provides a programming model 

and infrastructure to make creating scalable, secure and stable applications faster, and 

easier than with previous web technologies. The best development tool is Visual 

Studio .NET®. Its excellent integrated development environment makes developers’ lives 

much easier. 

The Optimal Design Programs are written in MATLAB®. These programs can be 

considered as a computing engine. All optimal design requests are processed by this 

engine. MATLAB® is a high-performance language for technical computing. It integrates 

computation, visualization, and programming in an easy-to-use environment where 

problems and solutions are expressed in familiar mathematical notation. The Optimal 

Design Software consists of a class of individual Matlab programs. These individual 
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programs are Model-based optimal design programs. That means each individual optimal 

design program is just computing optimal designs for a specific class of statistical models. 

These programs can be developed by anyone who specializes in optimal design and 

Matlab programming. With slight modifications, these programs can be transferred to be 

deployed on the web server, and they become web-based programs. 

4.3 Some Technical Details  
 

In this section, we explain some key issues in the implementation. Such as: 1) 

how do we create user’s interfaces or web pages? 2) How do we pack user’s input to 

Matlab server and optimal design programs for computation? 3) How dose the system 

output resulting optimal designs on user’s interfaces or web pages?  These issues will be 

addressed in the following discussions. 

4.3.1 Creating User’s Interfaces 
 

The user’s interface is a set of web pages. When a user visits the website, the 

website automatically delivers web pages to the web browser on the user’s computer in 

HTML (Hyper Text Markup Language) format.  These HTML web pages are interpreted 

by the web browser and are displayed in the web browser as texts and pictures as well as 

many other kinds of elements called web controls.  

Once, when advanced tools were not available, web developers had to be very 

familiar with the HTML language. Now, there are many tools that allow developers to 

design and create web pages quickly. One such tool is the Visual Studio.Net from 

Microsoft. Visual Studio.Net has most of commonly used web controls built in its web 

form toolbox.  

 58



Through Figure 4.2, we can get some conception of how to create and design web 

pages with Visual Studio.Net. On the left of the figure, the items in the toolbox are the 

web controls. The window in the middle is the designing area. So basically, one drags 

web controls that are needed from the toolbox and drops them in the designing window. 

For each web control, one can then set its properties, such as font, text size, color, and 

position. By this way – dragging and dropping, one can develop web pages quickly. 

With Visual Studio.NET, one does not need to know much about HTML. 

However, Visual Studio.Net does offer another option for advanced web developers. That 

is, one could switch to HTML view of the web design. By doing that, one can see the 

automatically generated HTML code by Visual Stuio.Net as per the web design. This 

allows advanced users do some finer tune-ups on their web designs by editing the HTML 

code. 
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Figure 4.2. Designing a web page using the Visual Studio.NET Integrated Development 
Environment. 

4.3.2 Data Communication between Servers 
 

Another key technology to be discussed is how we fulfill the data communication 

between the Internet information server and the Matlab web server. In fact, the data 

communication happens between the web applications and the optimal design programs. 

In our case, the web application takes control of all communication processes.  

The web application is a set of C sharp programs running behind the web pages. It 

takes user’s input on the web pages, and then sends the input to optimal design programs 

for computation. There are a couple of techniques that can be used to accomplish this task. 

One way is to use Remote Procedure Call (RPC); the other one is to use Hyper Text 
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Transfer Protocol (HTTP). The former requires more programming. The later is 

straightforward and efficient. We choose HTTP as it eases implantation tasks. 

Table 4.1 is the C Sharp code we used. This piece of code is the most important 

component in the web application. Based on the ASP.Net framework infrastructure, C 

Sharp programming is object-orient programming. The ASP.Net framework provides a 

number of fundamental Classes. The key component in this code is an ASP.Net built-in 

Class – HttpWebRequest, which has everything one need to facilitate an Internet HTTP 

communication between two applications or servers.  It is not difficult to understand the 

code, as the C Sharp programming language is close to human language and is self 

explained. 

 
Table 4.1 C Sharp Data Communication Code 
 
System.Text.ASCIIEncoding encoding=new System.Text.ASCIIEncoding(); 
 
// preparing data to be transferred 
 
string postData="mlmfile=D_Optimal"; 
 
postData+="&tbxN="+this.tbxN.Text.ToString(); 
 
postData+="&tbxalpha_l="+this.tbxalpha_l.Text.ToString(); 
postData+="&tbxalpha_u="+this.tbxalpha_u.Text.ToString(); 
 
postData+="&tbxbeta_l="+this.tbxbeta_l.Text.ToString(); 
postData+="&tbxbeta_u="+this.tbxbeta_u.Text.ToString(); 
 
postData+="&tbxlb="+this.tbxlb.Text.ToString(); 
postData+="&tbxub="+this.tbxub.Text.ToString(); 
 
postData+="&tbxWeightlb="+this.tbxWeightlb.Text.ToString(); 
 
//encoding data 
 
byte[]  data = encoding.GetBytes(postData); 
 
//preparing a HTTP request 
 
//server address, communication type, econding format 
 
System.Net.HttpWebRequest  myreq=(System.Net.HttpWebRequest)  
 System.Net.HttpWebRequest.Create("http://www.optimal-design.org/optimal/polynomial/matweb.exe"); 
________________________________________________________________________ 
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Table 4.1 (Continued)     
________________________________________________________________________ 

myreq.Method="POST"; 
myreq.ContentType="application/x-www-form-urlencoded"; 
myreq.ContentLength=data.Length; 
 
//initializing a sending request 
System.IO.Stream stream=myreq.GetRequestStream(); 
 
//sending data 
stream.Write(data,0,data.Length); 
 
//closing this session 
stream.Close(); 
 
string result; 
 
//receiving results 
System.Net.HttpWebResponse httpWebResponse = (System.Net.HttpWebResponse)myreq.GetResponse(); 
 
using (System.IO.StreamReader streamReader = new 
System.IO.StreamReader(httpWebResponse.GetResponseStream())) 
{ 
 result = streamReader.ReadToEnd(); 
 streamReader.Close(); 
} 
 
//finding results from the returning stream. 
this.FindValues(result); 
________________________________________________________________________ 

4.3.3 Web based Matlab Programming  
 

The Matlab optimal design programs compute optimal designs. Matlab is a 

powerful scientific computing tool. Many computationally intensive tasks are suited to 

Matlab as a tool. Unlike traditional programming languages, such as C, C++, and 

FORTRAN, Matlab has a unique feature that problems and solutions are expressed in 

familiar mathematical notation, which makes programming for technical computing 

problems easier and faster than with other traditional programming tools.   

Regarding statistical computing, there are several competitive software packages 

available, such as SAS® system and Insightful S-plus®. Both are commercially available. 

Additionally R, which is the origin of S-Plus, is widely used in academia. Some software 
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tools are even more specialized. For example, Design-Expert® is a tool dedicated to 

finding general experiment designs. While all these software tools may be versatile and 

powerful, they lack the programming flexibility needed for our purpose because the 

model-oriented optimal designs vary in computing from one model to another. 

Mathematica® may be a better choice because of its symbolic calculations. However, it 

runs in an interactive mode. It may be considered as an advanced scientific calculator, but 

it is not a software development tool.   

It turns out Matlab is the best choice. Complete discussions about Matlab 

programming can be found in Matlab product documentation. Here, we only discuss 

important issues in our implementation with Matlab. That is, how to make a Matlab 

program web-based and enable it to interact with a web application? 

A stand-alone Matlab program or application runs independently, within or 

without Matlab integrated development environment. Input and output are usually made 

through the underlying operating system. A significant difference in our implementation 

is that the input and output of the Matlab Web Server are controlled by the web 

application. The process of creating a web based Matlab program involves the creation of 

three files: 

1. An input HTML file, which is a web page. It is not difficult to do this using Microsoft 

Visual Studio.Net as we showed this previously. 

2. An output HTML file, saving and displaying the results. In out implementation, this 

document stores the results only, and the results are actually displayed in the input 

HTML file.  

3. Matlab M-file(s), which is the body carrying the entire optimal design computation. 
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The entire process is controlled by C Sharp programs behind an input HTML web 

page. The following code in Table 4.2 shows the Matlab code that illustrates what 

changes needs to be made from a stand-alone Matlab program accordingly. Note this is 

not a complete executable program, but it emphasizes the differences. 

 
Table 4.2 Matlab code showing web based programming 
 
function retstr=D_Optimal(instruct, outfile) 
 
% STEP 1 
% Initialize the return string. 
retstr = char(''); 
 
% STEP 2 
% Set working directory. 
% The variables INSTRUCT.MLDIR and INSTRUCT.MLID are provided automatically to all MATLAB Web 
% Server applications that use the matweb program. 
cd(instruct.mldir); 
 
% STEP 3 
% Get the HTML form input variables 
global alpha_l alpha_u  alpha_width  
global beta_l  beta_u   beta_width 
 
alpha_l = str2double(instruct.tbxalpha_l); 
alpha_u = str2double(instruct.tbxalpha_u); 
 
% STEP 4 
% Perform your MATLAB computations, graphics file creations, 
% etc., here: 
 
% Calling Random Search Method 
 
global Niter 
Niter=1000; 
random_search; 
x_w=x_p; 
 
% STEP 5 
% Put variables that you want to put into your HTML output document in an output structure. You create  
% an HTML output document from OUTPUT_TEMPLATE.HTML. 
modelplot; 
outstruct.ModelImg=ModelGraphFileName; 
 
designpoints_D = num2str(x_w(1),'%.3f'); 
for i=2:N 
    designpoints_D=strcat(designpoints_D,';',' ',num2str(x_w(i),'%.3f')); 
end 
outstruct.xi = designpoints_D; 
 
% STEP 6 
% Call the function HTMLREP with the output structure you just 
% created and the filename you created from OUTPUT_TEMPLATE.HTML. 
________________________________________________________________________ 
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Table 4.2 (Continued) 
________________________________________________________________________ 

% Replace <OUTPUT_TEMPLATE.HTML> with the name of the HTML output 
% file you created using OUTPUT_TEMPLATE.HTML. 
% This call fills the string RETSTR to return and optionally 
% writes the output as a file if a valid filename is given as the 
% second argument to the present function. 
 
 
templatefile = which('logisticoutput.aspx'); 
if (nargin == 1) 
   retstr = htmlrep(outstruct, templatefile); 
elseif (nargin == 2) 
   retstr = htmlrep(outstruct, templatefile, 'debug.html'); 
end 
________________________________________________________________________ 

There are basically five STEPS in this program, and there is a brief description for each 

step. For more details, the users are referred to the Matlab Web Server user‘s manual.  

Matlab has appealing graphic capability as well. At step 5 in the Table 4.2, 

“modelplot” is calling another Matlab program for plotting a graph. The generated graph 

is stored on the server with its physical address in ModelGraphFileName. This physical 

address is then sent back in the output HTML file, and is linked on the output page to 

display the graph. The following Matlab code in Table 4.3 shows how to plot the mean 

functions of a set of logistic regressions. 

Table 4.3 Matlab code for plotting graphs 
 
% modleplot.m 
N_plotsamples=50; 
Xx=lower_bound:((upper_bound-lower_bound)/N_plotsamples):upper_bound; 
handle=round(rand(1)*100); 
 
%  STEP 1:  create a new figure by calling function figure 
f=figure(handle); 
clf  
 
% STEP 2:  call plot function to plot graph elements on the figure  
cols=length(Xx); 
PIx=zeros(1,cols); 
for k=1:cols 
    PIx(k)=1/(1+exp(-(Xx(k)-alpha_l)/beta_l));                
end; 
 
plot(Xx,PIx,'c'); 
________________________________________________________________________ 
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Table 4.3 (Continued) 
________________________________________________________________________ 

hold on 
 
for k=1:cols 
    PIx(k)=1/(1+exp(-(Xx(k)-(alpha_l+alpha_u)/2)/((beta_l+beta_u)/2) ));                
end; 
plot(Xx,PIx,'g'); 
hold on 
 
for k=1:cols 
    PIx(k)=1/(1+exp(-(Xx(k)-alpha_u)/beta_u));                
end; 
plot(Xx,PIx,'b'); 
hold on 
 
PIxPIx=0:0.1:1;  
for i=1:length(x_w)/2 
   XxXx=ones(1,length(PIxPIx))*x_w(i); 
   plot(XxXx,PIxPIx,'r'); 
   plot(XxXx,0,'r^'); 
end; 
 
% STEP 3: add legned on the graph 
%----------------------------------------- 
legendstr1=strcat('alpha=',num2str(alpha_l,'%.2f'),',','beta=',num2str(beta_l,'%.2f')); 
legendstr2=strcat('alpha=',num2str((alpha_l+alpha_u)/2,'%.2f'),',','beta=',num2str((beta_l+beta_u)/2,'%.2f')); 
legendstr3=strcat('alpha=',num2str(alpha_u,'%.2f'),',','beta=',num2str(beta_u,'%.2f')); 
legend(legendstr1,legendstr2,legendstr3,'optimal design points'); 
 
%STEP 4:  add axis labels and figure title 
%------------------------------------------------- 
xlabel('dose x'); 
ylabel('P(x)'); 
title('Mean function of the postulated Logit model and optimal design points'); 
 
% STEP 5: wrtie the graph to a file.  
% This file is to be used on the output webpage to disply the graph 
%----------------------------------------------------------------------------- 
 
wsprintjpeg(f,ModelGraphFileName); 
close(handle); 

______________________________________________________ 
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5 Discussion and Future Work 
 
 
 
 
 
 

5.1 Unequal Interests in Individual Segments 
 

In the previous discussions, we assumed every segment is of equal interest. 

However, it is nature to bring up such a question that what if the experimenter is more 

interested in estimating one segment than another? In other words, how does the D-

optimal design reflect experimenters’ unequal interests in individual segments?  In fact, 

the real question is how do we formulate the problem? 

Suppose we have a segmented polynomial model with two segments, and we are 

more interested in estimating the left segment than the right assuming the join point is 

known. It is handy to define a variable )10( ≤≤ γγ  to reflect the degree of interest in the 

left segment.  

From the experimenter’s perspective, he/she could estimate the two segments 

from the data separately since the two segments are independent, so that from experiment 

designers’ perspective we could provide two independent D-optimal designs, one for 

each segment. To reflect the unequal interests, we can allocate the number of 

observations for each design according to the value of γ . By doing this, we can assure 

that the two individual designs are D-optimal and are reflecting experiments interest 

adequately. For example, if the sample size is N that is given, then the rounded quantity 
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of γN will be the number of observations taken on the left interval, rounded )1( γ−N  will 

be the number of observations taken on the right interval. 

ξ

1ξ

On the other hand, the two-piece segmented polynomial model can be estimated 

in one regression. If this would be case, then the design obtained by combining the two 

individual D-optimal designs is not necessarily a D-optimal design. However, we may 

start to formulate the original question using optimal exact designs. In practice, all 

designs must be exact. For a two-piece segmented polynomial, we define an exact as  
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where )(ξφ  is the D-optimal criterion function defined using an exact design.  can be 

split to two non-overlapping designs, say 1ξ  and 2ξ , thus this two designs can be 

evaluated for optimality separately. Of course, ξ  is D-optimal doesn’t mean  and 

2ξ are automatically D-optimal. 

 These are some preliminary thoughts in response to the emerged question. 

Finding an exact optimal design generally is difficult and seems to be done by computer 

programs, thus we leave it for future studies if it is of importance. 

5.2 Future Development of Optimal Design Software 
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The result of our current development on optimal design software is the optimal 

design web site – www.optimal-design.org . The website is a great accomplishment of the 

entire team. It is the first web-based optimal design platform. Authorized Internet user 

can run optimal design applications remotely on the website. To my knowledge, only this 

website can really achieve that remote run capability. It is also a unique website that 

integrated various optimal design programs for various models by its single entry point 

and consistent user’s interfaces. It is also an excellent presentation of the collaboration 

among researchers in optimal design community. 

The website is still under construction, and it is continuously being improved. The 

website is good for now, but looking into the future, it may be outdated if encountered the 

following scenarios: 

� Scenario I: When practitioners run optimal design applications on the website, they 

anticipate real-time responses from the server. This kind of expectation is particularly 

difficult to fulfill due to resource constraints. First, the Internet connection may break 

during the calculations. Second, some optimal design problems are very complicated, 

and may require more intensive computing. Furthermore, if several practitioners run 

their applications concurrently, the server could easily be overloaded. 

� Scenario II: Practitioners should be offered to save their input and download optimal 

design results in a standard format. For example practitioners would like to manage 

their application histories like the way they do online transactions.  

To meet these increasing needs, we need to adjust the system design or to plan for future 

development on the exist system. In either case, we propose the following solutions:    
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� Proposal I: we may deploy a cluster of computers. On each of these computers, we 

may deploy a copy of the optimal design programs. Ideally, when several concurrent 

requests are received, they will be distributed uniformly to these individual computers. 

To implement this solution, we need to develop a job distribution mechanism within 

the web application and need sufficient resources. 

� Proposal II:  We may develop stand-alone optimal design software. The stand-alone 

software should be just like other commercial available software. It can be installed 

on any personal computers.  It should include at least two important features. One is a 

graphic user’s interface, which should be well organized to guide practitioners 

perform optimal designs. The other one is a regression model library. The model 

library should include all of the regression models that are currently supported on the 

website. 

� Proposal III: This solution is in light of the Scenario II. We may create an account 

for each practitioner on the website. Practitioners are required to register and sign in 

to the website. When a practitioner runs applications on the website, any details of 

his/her transactions are saved in his/her account. Another benefit is that practitioners 

could check back the status at a later time when their jobs cannot be completed 

instantly. Of course, this solution requires a database, as there are massive 

transactional data to be stored and be retrieved frequently. 
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