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Abstract of the Dissertation

Task Mapping on Supercomputers with
Cellular Networks

by

Yongzhi Chen

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2008

This thesis focuses on techniques of task mapping for solving problems

on parallel computers with hundreds of thousands of processors on cellular

networks. Task mapping is a serious intellectual challenge and a practical

tool for unleashing the potential power of supercomputers. It is challenging

because of both the astronomical searching space and the high dependence

on the exact nature of the applications and the computers. In this thesis,

we propose two general static mapping models to optimize the assignment of

tasks on heterogeneous, distributed-memory, ultra-scalable computers. In our

models, the underlying application problems can be appropriately decomposed

to subtasks with known computational load and known inter-task communi-
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cational demands. We also know, or can conveniently measure, the computing

systems’ specifications such as individual processor speed and inter-processor

communication cost. Our models abstract an application as a demand matrix

and a parallel computer as a load matrix and a supply matrix with which we

construct our models as minimizing the objective function value for completing

the application on the given computer.

We have tested several applications on Blue Gene/L supercomputer with

3D mesh and torus networks. For a 2D wave equation, the mappings generated

by our models reduced communication by 51% for 3D-mesh and 31% for 3D-

torus over the default MPI rank order mapping. For SMG2000 application,

our mapping can reduce communication and total time by 16% and 5% over

the default MPI rank order mapping, respectively. For NPB MG, we improve

the communication time and benchmark result by 53% and 13%, respectively.

For NPB CG, we improve the communication time and benchmark result by

43% and 22%, respectively. We believe that our models are useful for task

assignment for broad applications on a family of supercomputers with cellular

networks.
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Chapter 1

Introduction

1.1 Motivation

With the development of parallel computers, people with high expecta-

tions in shorter execution time for their applications on their computers often

find such expectation unfulfillable due to two key reasons: First, the complex-

ity of parallel algorithms and the associated software developments that never

arise in sequential algorithms, such as synchronization, deadlock avoidance,

load balancing, mapping, and communication, etc, is a serious obstacle. Sec-

ond, the diversity of performance characteristics and programming interfaces

that exists in the different parallel computers makes code portability nearly

impossible [58]. These two challenges unique to parallel computing necessitate

the creations of tools such as parallel compilers that may help decomposition,

mapping and scheduling [57].

The mapping problem is known to be NP-Complete [14, 42, 55] and yet

it becomes crucial for parallel computing as the systems become larger and

more complicated:
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First, previous research has demonstrated the sensitive dependance of

the performance on the assignment of mapping the subtasks to the processors

of new generation of supercomputers for some applications. A good mapping

can reduces the average running time by efficient utilization of the network

resource [33].

Second, the cost difference between a good and a poor mapping in a

supercomputer increases with the number of processors [34].

Third, for an ultra-scalable supercomputer system, the searching space

for an efficient mapping becomes astronomical.

Fourth, task mapping is highly dependent on both the nature of the

underlying application and the properties of the machine. Re-mapping must

be considered when a new application or a new machine is involved.

Fifth, the modern supercomputers may offer a mapping interface to sup-

port users to re-map jobs at run-time, allowing a convenient modification to

generate a significant improvement.

1.2 Contributions

Our major contributions to static mapping research include mapping

models and new insights to map reasonably arbitrary application problems

onto parallel computers for achieve competitive improvement of system per-

formance. Our models are designed to abstract an application as a demand

matrix and the computer network as a supply matrix with the objective func-

tion value as minimum completion time. By adopting the MPI latency to con-

struct the supply matrix and utilizing the proper profiling tool, our mapping
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models provide a productive tool for unleashing the potential of supercomput-

ers. We verify our models by benchmarking a series of scientific applications.

In summary, the main contributions in the research are:

• Two general mapping models are introduced. The schemes for mapping

tasks of an arbitrary application onto a given network topology to reduce

the execution time are proposed.

• A mapping suite is provided. Associated with the proper profiling tool,

our models offer an efficient and productive mapping facility.

• Our models on scientific applications and multiple benchmarks are ver-

ified. Tests of 2D Wave equation, SMG2000, NPB MG and CG show

that our models can improve performance significantly.

• Both theoretical and practical systems are analyzed. The exact model

mappings for some cases and corresponding detailed timing analysis are

given.

1.3 Thesis organization

In this thesis, practical static models are proposed and simulated anneal-

ing is adopted to solve the mapping problem in heterogeneous, distributed-

memory parallel computers such as Blue Gene with cellular networks. The sta-

tic mapping problem and its related work are reviewed in Chapter 2. In Chap-

ter 3, a brief introduction of available parallel computers is given. Chapter

4 presents the models and demonstrates their theoretical superiority. Several

3



realistic applications are presented and discussed in Chapter 5. The analyses

of the experimental timing results are given in Chapter 6. Finally, conclusions

and future work are described in Chapter 7.
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Chapter 2

Static Mapping Problem

2.1 Mapping Problem

The mapping problem has not had a commonly accepted definition in

the literature on parallel computing [62]. Some define it as the procedure

of mapping each one of the interacting tasks to individual processors of the

parallel computer system so as to minimize the total execution time [15, 16],

while others claim that the mapping problem includes both task assignment

and scheduling. In this thesis, we adopt Tabli’s definition as briefly illustrated

below [28].

The application and the parallel computer are represented as static graphs

GA and GP , respectively. GA = (VA, EA) is a graph where VA represents

tasks and EA means communication requests among them with weights being

the communication loads. GP = (VP , EP ) is a graph where VP represents

processors and EP means the links among processors with weights being the

per unit communication cost.

A mapping problem can then be defined as finding a mapping: VA → VP

5



to minimize the objective function value that associates with each mapping.

In static mapping, the interaction pattern and execution time for each

task on each processor are static and known prior to the execution and thus

the tasks could be represented by a static task graph. There are two different

types of graphs: task precedence graph (TPG) and task interaction graph

(TIG). TPG is a directed graph in which directed edges describe execution

dependencies while interaction patterns are represented by undirected edges in

TIG. In TIG, tasks can be executed independently and simultaneously [16, 45].

This kind of independent set of tasks is also called a meta-task [41, 74]. In this

thesis, we consider only the TIG cases for task assignment.

2.2 Related Work

Task mapping has been studied by many groups for a long time and

many approaches are developed under different assumptions on applications

and architectures [34]. We try to classify all these related research based on

two aspects: models and techniques adopted in the models.

The model aspect concerns the criterion, the objective function and con-

straints. It reflects the assumptions regarding platform and decomposition

strategy. The objective function can be the total execution time, or only

the computational time or only the communication time. The decomposition

strategy describes how the application is decomposed into subtasks. The most

important assumption of a platform is its heterogeneity of computation and

communication. The technique aspect considers the best approach for search-

ing for optimal or near-optimal solutions. Solutions of the models are based

6



on two types of algorithms, exact and heuristic.

2.2.1 Mapping Models

The field of static mapping can be divided into two categories. The

communication costs are independent of the processors’ locations in the first

category, i.e., processor links are homogeneous. This type of model may in-

clude both computation and communication costs in their cost functions by

an appropriate formulation. However, the communication costs in the second

category are highly dependent on the location of the communicating proces-

sors, which are common in many ultra-scalable systems. This type of model

usually involves minimization of the communication costs only.

We will introduce and discuss the most important static models illus-

trated as Fig. 2.1.

Figure 2.1: Static Mapping Models
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Stone’s 1977 Model

Stone’s model [44] is formulated to find an optimal assignment of program

modules onto a two-processor distributed computer system to minimize the

cost of intermodule reference and running which can be represented as follows:

min
Π∈Γ

∑
t∈T

r[t, Π(t)] +
∑

(t,t′)∈EA,Π(t)6=Π(t′)

c(t, t′)

where Γ is the set of possible task mappings; Π is a mapping from tasks

to processors; r[t, Π(t)] denotes the time required to compute task t on the

processor Π(t) and c(t, t′) denotes the time associated with module t calling t′

if they are mapped to different processors.

Stone assumes no parallelism in the system and the running times of a

module on different processors are different (from very small value such as 2 to

∞) due to different FPU and memory situations. Stone’s model considers only

the case where computation and communication occur sequentially although

it is easily overlooked [62].

Stone shows that the well-known maximum flow (Ford-Fulkerson) algo-

rithm can be used to solve this model with n = 2. When n = 2, processors P1

and P2 are added into the original interconnection graph as the unique source

node (S1) and the unique sink node (S2), respectively. For each node other

than these two, an edge is added from that node to S1 and S2. The weight of

the edge to S1 carried the cost of executing the corresponding module on P2

and vice versa.

Stone proves that the weight of a cut set of this modified graph is equal

8



to the cost of the corresponding assignment. He also extends it to 3- and

n-processors cases without a complete efficient solution. Fernández-Baca [22]

shows that it is NP-complete in general. In [62], Norman also discussed the

important extension to this model by adding an explicit parallel processing

constraints [17].

Bokhari’s 1981 model

Stone’s model is not directly applicable when computation and commu-

nication are not incurred sequentially. As an alternative, Bokhari considers a

model that maps n tasks to n processors to find the minimum communication

cost independent of computation costs which can be represented as follows

[15]:

min
∑

x∈Vp,y∈Vp

Gp(x, y) ·Ga(fm(x), fm(y))

In this model, the problem modules and the parallel computers are repre-

sented by two undirected graphs denoted by Gp = 〈Vp, Ep〉 and Ga = 〈Va, Ea〉.
Bokhari adopts cardinality, the number of module edges falling on processor

edges, as the criterion. Therefore Ga(fm(x), fm(y)) = 1 only if the processors

onto which x and y are mapped are directly connected. In [15], Bokhari pro-

poses mapping a series of structured problems of 9 to 49 modules onto the

finite element machine (FEM) of sizes 4 × 4 to 7 × 7, in which each proces-

sor is directly connected to its 8 neighbors. He uses a pairwise interchange

algorithm with probabilistic jumps to solve the above problems and get good

results. Bokhari also points out that this model can be transformed to a graph

9



isomorphism problem, a bandwidth reduction problem for sparse matrices, or

a quadratic assignment problem under proper conditions. Bokhari’s model is

used in the analysis of algorithms for SIMD architectures and is extended to

consider contention in the processor network [62, 77]. This model is indeed

very close to the graph isomorphism problem since the weights of both Gp and

Ga are all equal to 1. That means it can not reflect the amount differences

among intermodule communications and inter processor links. Therefore, it is

inaccurate for many systems.

Billionnet’s 1992 model

Stone’s model assumes sequential execution and Bokhari’s model consid-

ers only communication overheads. Many research efforts have extended these

two models to integrate computation and communication costs into one model

[62].

In [10], Billionnet considers the task assignment problem in the heteroge-

neous multiple processors system. The problem is formulated as the following

0-1 programming problem:

min
n∑

t=1

m∑
p=1

qtpxtp +
∑

t,t′∈T,t<t′

m∑
p=1

ctt′xtpx̄t′p

Subject to:





m∑
p=1

xtp = 1 (t = 1, . . . , n)

xtp ∈ 0, 1 (t = 1, . . . , n; p = 1, . . . , m)

where ctt′ is the communication cost between tasks t and t′; qtp is the execution

cost when task t is assigned to processor p and xtp is a Boolean variable equal

10



to 1 if task t is assigned to processor p and 0 otherwise [10]. The branch-and-

bound algorithm is proved helpful when problem is small in size. As shown in

[10], it produces good results for small numbers of heterogeneous processors.

The largest size in that paper is mapping 53 tasks to 20 processors with 229

communication requests and the instances in that paper are all theoretical

rather than experimental.

Taibi’s 1993 model

In Taibi’s model [28], the integrating computation and communication

costs are represented by a weighted sum:

min
Π∈Γ

(
1

N

N∑

k=1

L2
k − L2

)
+ w ·

∑
i,j∈Vp

cijdΠ(i),Π(j)

where

L =

M∑
i=1

ei

N
and Lk =

M∑

i=1,Π(i)=k

ei

N is the number of processors; M is the number of tasks; ei represents the

computation cost of task ti; dΠ(i),Π(j) represents the hop distance between the

processor Π(i) and Π(j); w is the weight of the contribution of the commu-

nication cost relative to the computational load balance across the system.

Different computer architectures have different computation and communica-

tion costs, resulting in distinct optimal balancing between computation and

communication [56]. A suitable value for w can be estimated by characteristics

of the parallel architectures or empirical experiments.

Three general purpose heuristic algorithms, hill-climbing, simulated an-
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nealing and genetic algorithms, are adopted and evaluated by three bench-

marks. A massively parallel genetic algorithm (PGA) is also used to solve

such problems and is found to achieve near-linear speed-up [28]. A compar-

ative study of the algorithms is carried out. Taibi claims the hill-climbing

give the worst quality solutions but it is fastest. The PGA can give compa-

rable quality solutions as simulated annealing with comparable search time as

hill-climbing.

Heiss’ 1996 model

Since both the communication pattern of the problem and the intercon-

nection structure of the parallel computers can be represented by undirected

graphs, the mapping problem can be regarded as a graph mapping or graph

embedding problem [47]. Heiss and Dormanns formulate the mapping problem

as to find a mapping, T → P :

min CC =
∑

(i,j)∈ET

α(i, j) · d(π(i), π(j))

where α(i, j) is the amount of data needed to be exchanged and d(π(i), π(j))

represents the length of shortest path between i and j. When a graph embed-

ding problem between a task interaction graph (TIG) and processor connection

graph (PCG) is considered, it is likely that adjacent TIG nodes will be assigned

to adjacent PCG nodes resulting in minimum communication costs [47]. Heiss

and Dormanns introduce the Kohonen’s algorithm [46] to realize this kind of

topology-conserving mapping.
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Braun’s 1999 model

Heterogeneous computing (HC) is an efficient technique to solve compu-

tationally intensive problems that has several types of embedded parallelism

[9]. The problem of mapping large and diverse groups of tasks onto the ma-

chines of an HC had been researched by Siegel et al. The mapping problem is

formulated as follows [79]:

min max ct(i, j) = mat(j) + ETC(i, j)

where max ct(i, j) is the completion time and known as makespan [63]; mat(j)

is the earliest time a machine j can complete the execution of all the tasks

that had been assigned to it and ETC(i, j) represents the estimated execu-

tion time for task i on machine j. The elements of ETC are varied in an

attempt to represent task heterogeneity and machine heterogeneity. In total

11 heuristics, opportunistic load balancing (OLB), user-directed assignment

(UDA), fast greedy, min-min, max-min, greedy, genetic algorithm (GA), sim-

ulated annealing (SA), genetic simulated annealing (GSA), Tabu search, and

A* are examined and compared regarding performance in both solution time

and solution quality.

The min-min algorithm is a simple heuristic and can be adopted if the

execution time has high priority. It begins with the set of all unmapped tasks.

Then the set of minimum completion times is found and the task with the

overall minimum completion time is selected and assigned to the corresponding

machine. Intuitively, it attempts to map as many tasks as possible to their

first choice of machine. If more time is available for finding better mapping,
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a more complex heuristic such as GA and SA should be considered [79]. In

[79], Braun et al. show that if GA can introduce a good starting mapping

from other approach, for example, a min-min solution, as a seed, it can get

better mapping than SA for allocating heterogeneous tasks to heterogeneous

computing environment. Experimental results indicate, as a combination of

GA and SA, in all cases of allocating heterogeneous tasks to heterogeneous

computing environment, GSA always obtains a result between GA and SA.

For the systems in [79], Tabu requirs the same time as GA but get worse

result than GA. Depending on the situations, Braun et al. suggest to adopt

the min-min if the execution time is very limited and use GA and A* to find

better mapping if more execution time is available.

QAP model

Under the conditions minimizing only the inter-task communication, n

being equal to m and assuming that the communication cost is highly depen-

dent on the location of sender and receiver processors, the mapping problem

reduces to a quadratic assignment problem (QAP). The QAP is stated as

follows [69]:

min
p∈IIN

n∑
i=1

n∑
j=1

fijdp(i)p(j) +
n∑

i=1

cip(i)

where IIN is the set of permutations of N ; fij represents the flow of material

from facility i to facility j and dp(i)p(j) is the distance from site p(i) to site p(j).

Therefore, the cost of simultaneously assigning facility i and j to site p(i) and

p(j), respectively is fijdp(i)p(j). Pardalos et al. claim that there are three ex-
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act algorithms, dynamic programming, cutting plane and branch-and-bound,

available when the problem size is small. They also introduced five types

of heuristic algorithms, construction method, limited enumeration method,

improvement method (Tabu search), simulated annealing and genetic algo-

rithm and show that greedy randomized adaptive search procedures (GRASP)

works well in computing optimal solutions when it is incorporated within a

branch-and-bound algorithm [69]. Most exact solution methods for the QAP

adopt a branch-and-bound algorithm. It is well known that a crucial factor

in the performance of branch-and-bound algorithm for the QAP is the choice

of lower-bounding method. Exact solution methods are often implemented on

high-performance computers because of the extreme difficulty of the QAP. In

[55], Linderoth et al. extended the power of branch-and-bound algorithm for

solving QAP in two ways. The algorithm introduced a new lower-bounding

technique quadratic programming bound (QPB) and is implemented on a large

geographically distributed resources known as a computational grid. They be-

lieve that the potential of algorithm advances for the QAP can be realized by

utilizing the power from computational grids.

IBM’s 2005 model

Recently, a model is developed by Bhanot et al. to minimize only inter-

task communication [34]. They neglect the actual computing cost when placing

tasks on processors linked by mesh or torus by the following model:

min F =
∑
i,j

C(i, j)H(i, j)
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where C(i, j) is communication data from domain i to j and H(i, j) represents

the smallest number of hops on Blue Gene/L (BG/L) torus between processors

allocated domains i and j. A simulated annealing technique is used to map

n tasks to n processors on the supercomputer for minimizing the communica-

tion time. Two tests for applications SAGE and UMT2000 on Blue Gene/L

are reported in [34]. The method is applied up to 2048 processors and the

communication efficiency is improved by 45% for a 512-node case [34]. The

highlight of this model is that of mapping real large applications to a real

massive supercomputer beyond theoretical exercise.

Yu’s graph embedding model

As Heiss and Dormanns did before [47], Yu et al. treated the static

mapping problem as a graph embedding problem since an embedding of a

guest graph G = (VG, EG) into a host graph H = (VH , EH) is one-to-one

mapping from VG to VH [48]. The quality of the embedding is measured by

dilation and expansion in their research. The graph embedding problem is

NP-hard requiring utilizing heuristics for its solution. They use a series of

embedding and folding technologies such as pipe and ring folding, and paper

folding to construct their topological mapping library. By evaluating their

library against the NPB benchmarks, the mappings generated by their library

can reduce the communication costs significantly and drastically improve the

scalability [48].

Fixed mapping strategy for Blue Gene Supercomputer

Smith and Bode compare a series of predefined mappings with the default
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MPI rank mapping [13]. The mapping set consists of Gray-code mappings with

different aspect ratios and permutations of X, Y and Z coordinates. Results

are presented for three NPB benchmarks: BT, CG and MG and such results

showed that in special cases, the Y ZX and ZY X mappings may improve the

performance by about 15% over the default XY Z mapping.

Stone’s and Bokhari’s models are fundamental and good starting points

in the field. Billionnet’s, Talbi’s, and Braun’s models attempt to include both

computation and communication costs but they assume that communication

costs are independent of locations of processors. This assumption is appreci-

ate for Beowulf Clusters but is inadequate for parallel computers with more

complex network topologies [34]. Heiss’ model, QAP model, IBM’s model and

Yu’s model can handle these complex cases but they lack an efficient way to

integrate the computation and communication costs into one model. IBM’s

model, Yu’s model and fixed mapping strategy are tested by executing popular

benchmarks on Blue Gene/L.

2.2.2 Mapping Algorithms

Our goal is to solve the mapping problem for ultra-scalable supercom-

puter systems with thousands of processors. Optimization techniques often

fail for problems of this size due to the exponentially growing computational

effort. Several heuristic techniques have been developed for searching in large

solution spaces, such as simulated annealing (SA), genetic algorithm (GA),

evolution strategies (ES), genetic simulated annealing (GSA) and Tabu search
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(TS). The most important techniques for the mapping problem can be illus-

trated in Fig. 2.2.

Figure 2.2: Techniques for the mapping problem [28, 59]

Simulated Annealing (SA)

SA is an optimization method that repeatedly attempts to improve a

given configuration by making random changes. It works for large size prob-

lems due to its deep and useful connection to statistical mechanics and such

connection suggests the validity of the method in handling thermodynamical

problems for finding the optimal values of an objective function with many

independent variables [73, 76]. The SA technique has been widely applied to

many combinatorial optimization problems although it has serious drawbacks:

slow and inherently sequential [23], making efficient parallelization a major

challenge [23, 25].

A successful SA implementation must address three key issues: a cooling

schedule, an objective function and a movement in a neighborhood structure

[61]. The basic SA algorithm is illustrated in Fig. 2.3. In each iteration, the
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INITIALIZE(i0, T0, L0);
k := 0;
i := i0;
While (stopping criteria not met) do
Begin

For i := 1 to Lk do
Begin

GENERATE( j from si);
if f(j) ≤ f(i) then i = j;
else
if exp((f(i)− f(j))/Tk) > random[0, 1)
then i = j;

End;
k := k + 1;
CALCULATE(Lk);
CALCULATE(Tk);

End;

Figure 2.3: SA Procedure [73]

temperature for kth step Tk, is evaluated according to a cooling schedule. There

are at least two types of cooling schedule: predetermined and adaptive. The

former is fixed before the calculation and is not influenced by the progress.

For instance, a linear schedule Tk = T0 − αk and an exponential schedule

Tk = T0β
k are such predetermined schedules and have been used widely [86].

In the formulas, k is the step count; T0 is the initial temperature; α and β are

constant factors. Another fixed schedule example is the logarithmic cooling

scheme,

Tk =
c

log(k + d)

where d is usually set to one and c is no more than the largest energy barrier in

the problem. This schedule is theoretically important but impractical due to

the extremely slow temperature decrease [75]. In contrast, an analogous adap-
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tive optimal schedule based on constant thermodynamic speed vs is adopted

in the finite-time thermodynamic optimization [12].

Defining a proper objective function is central to SA implementation.

For most combinatorial optimization problems, the objective function is of-

ten calculated in conjunction with the selection of candidate solutions. Once

an objective function is clearly defined, a reasonable neighborhood structure

often results from the problems. These structures must allow SA to explore

all solutions and the performance of SA depends on the quality of the neigh-

borhood structure. Many researchers attempt to improve its performance by

modifying the neighborhood size [61].

The theory behind evolutionary algorithms is the Darwinian theory of

evolution in which the survival of the fittest is generally accepted. Evolutionary

algorithm is a general term that consists of genetic algorithms and evolution

strategies [59].

Genetic Algorithm (GA)

The genetic algorithm is a stochastic search technique and proposed by

Holland in 1975 [52]. The basic GA algorithm is shown in Fig. 2.4.

The proportionate selection scheme is often used to create population,

where the ratio of the fitness value of a string of a current population over the

average fitness value represents the expected number of its offspring. Crossover

comes after selection. Pairs of strings from the population are randomly picked

up to be subjected to crossover. The portions of the two strings beyond a

crossover point are exchanged to form two new strings whenever this point is
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initial population generation
evaluation
While (stopping criteria not met) do
Begin

selection
crossover
mutation
evaluation

End;

Figure 2.4: GA Procedure [64]

chosen. The algorithm invokes crossover only if a randomly generated number

in the range zero to one is greater than a parameter, the crossover rate pc.

Strings are subjected to mutation after crossover. Mutation of a bit means

flipping it, changing a zero to one or vice versa. Another parameter, the

mutation rate pm, gives the probability that a bit will be flipped. Mutation is

specially useful to restore lost genetic material when all strings in a population

converged to zero at a given position but the optimal solution has a one at

that position or vice versa [64].

Unlike SA, GA is inherently parallel. Cantú-Paz classifies parallel ge-

netic algorithms into four categories: global master-slave parallelization, fine-

grained algorithms, multiple-deme and hierarchical parallel [27].

Evolution Strategies (ES)

It is proved that evolution strategies can be used to solve many types of

optimization problems [11, 38, 87]. The basic ES algorithm is shown in Fig.

2.5.

The initial population is randomly generated and uniformly distributed

throughout the search space. Each generation is evaluated by computing the
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k := 0
randomly generate population P (k)
evaluate P (k)
While (stopping criteria not met) do
Begin

k := k + 1
T := P (k − 1)
use µ parents to create λ children
T := T ∪ λ children
P (k) := µ fittest from T
evaluate P (k)

End;

Figure 2.5: ES Procedure [38]

fitness of its structure. New generation are produced by copying the old gen-

eration of size µ to an intermediated population then using them as parents

to produce λ children by crossover or mutation with probability pc and pm,

respectively. The µ fittest structures become the new generation [38].

In spite of its origin from the GA, ES has important differences. Se-

lection process for ES is deterministic while that of GA is stochastic. Good

solutions will always survive to the next generation in ES while reproduction

may eliminate good solutions in GA [38].

Genetic Simulated Annealing (GSA)

The genetic simulated annealing algorithm is a combination of GA and

SA techniques [40, 72, 79]. In general, GSA follows procedures similar to GA.

In the selection process, GSA accepts a new chromosome if the new fitness

value is less than the sum of the old fitness value and the current temperature.

As the system temperature decreases, it becomes more and more difficult to

accept a poorer solution.
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Tabu Search (TS)

The basic idea behind the Tabu search is to keep track of the regions

of the solution space which have already been searched to avoid repeating a

search near these areas [30, 49, 79]. It is implemented by making a new random

mapping different from each mapping in the Tabu list by at least half.

Besides the above strategies, there are also other approaches for solv-

ing the mapping problems. In [80], a new approach is proposed to solve the

problem of workload partitioning and assignment for very large distributed

real-time systems, in which software components are hierarchically organized

and hardware components potentially spanned several shared and dedicated

links. An optimal solution is presented in [26] that allocates communicating

periodic tasks to heterogeneous nodes in a distributed real-time system. A spe-

cial case is studied in [60]. A new assignment policy is introduced to improve

performance by unbalancing loads. Some work has been limited to handle

special communication patterns. For example, an algorithm is developed to

solve mapping problems having a rectilinear topology [24]. Graph partition-

ing techniques has been used in the load balancing and clustering tasks to

processors [53]. It has also been used for task clustering and mapping on eight

node hypercube [29]. Mean Field Annealing (MFA) is originally proposed for

solving travelling salesperson problem and believed a similar strategy as SA.

It is compared to SA in [16]. When it is applied to a randomly generated

TIG model with 400 tasks, 4298 communication requests and 32 processors

in hypercube and mesh topologies, MFA can obtain the results a little worse

than the ones from SA but with less execution time.

23



In the above cases, the problem of finding a static mapping from uniform

tasks of realistic parallel applications to thousands of processors of an ultra-

scalable system where communication costs are location dependent to mini-

mize the total execution time has not been carefully addressed so far. Most

of these cases are limited to the improvement of the communication time. It

is an interesting but unclear issue that to what extent such improvement in

communication can bring to reduce the overall execution time. These issues

are addressed in this thesis.
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Chapter 3

Parallel Computing Systems

To achieve an optimal mapping from n domains to m processors, we need

to consider each system component: processors, memory systems, networks

and the relationships between these components.

First let us review the classical taxonomy [31], which characterizes com-

puter architectures by the number of distinct instruction stream issued at a

time and the number of data streams they operate on [21]:

• SISD (single instruction - single data) - sequential computers.

• MISD (multiple instruction - single data) - no real implementation [83].

• MIMD (multiple instruction - multiple data) - composing of multiple

conventional processors.

• SIMD (single instruction - multiple data) - performing operations in

parallel

Currently, most high-performance computers adopt MIMD model and are
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built from off-the-shelf components except, mostly, with special networks. It

has a better compatibility with the common workstations with a lower price.

3.1 Memory systems for parallel computers

The memory aspect leads to two popular classes of parallel computers:

shared-memory and distributed-memory.

3.1.1 Shared-memory systems

In shared-memory systems, the memory modules are connected to the

processors by a bus, a multistage interconnection network, a crossbar or similar

memory sharing systems that links any processor to any memory module; each

processor can access equally fast any memory location. The programmer can

directly use conventional memory access instructions to access data without

the otherwise explicit calls for communication with other processors.

Shared memory multiprocessors provide convenient support of parallel

programming and throughput on workloads. They are found across a wide

range of scale, from a few to hundreds of processors. Such architecture where

two or more identical processors are connected to a single shared memory is

usually called a symmetric multiprocessor (SMP) [21]. Many common multi-

processor systems adopt an SMP architecture. Since SMP systems allow any

processor to work on any task no matter where the data for the task are located

in memory, they can easily distribute tasks between processors to balance the

workload efficiently. Obviously, the different assignments will lead to the same
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communication costs in this type of system.

3.1.2 Distributed-memory systems

In these systems, each processor has its own local memory while the other

processors can access the data in the local memory through the communica-

tion network. In practice, each node has a memory management unit directly

connected to the communication network. It is obvious that the programming

for these computers is more difficult than for a single-processor computer or

for the shared memory computers because message passing through the com-

munication network has to be explicitly programmed. The explicit message

passing libraries such as Message Passing Interface (MPI) and Parallel Virtual

Machine (PVM) are often used to alleviate such difficulties.

3.2 Beowulf computers

Named after the pioneer Beowulf project at NASA [81], a Beowulf cluster

consists of several personal computers connected through a switch network, re-

sulting in commercial, off-the-shelf components a cost-effective solution for su-

percomputing. Typical Beowulf systems communicate with a private intranet.

Unfortunately, the inter-processor communication on a Beowulf system is in-

adequate for many applications. RPC (Remote Procedure Call), sockets and

TCP/IP are used for communication and typically have slow throughput and

high message latency. The communication among computers is handled by

message passing libraries, such as PVM and MPI. Both Seawulf Cluster [6]
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and Galaxy system [85] are examples of Beowulf Clusters on the Stony Brook

campus.

3.3 Distributed SMP

The IBM pSeries 655 is a 4-processor or 8-processor symmetric multi-

processing server. The basic computing component of the pSeries system is

the Power4 chip. A single chip contains two independent processors, each hav-

ing its own 32 KB L1 data cache. A 1.5 MB L2 cache is shared by the two

processors. A 32MB L3 cache is located between each processor chip and main

memory and operates at one-third of the chip frequency.

Multiple pSeries 655 servers can be configured in distributed clusters, to

providing higher performance, ideal for computationally-intensive and data-

intensive workloads in science, engineering, business intelligence and data

warehousing [43]. Up to four Power4 chips can be joined to form a 8-way

multi-chip module (MCM) of as many as eight processors (Fig. 3.1). An

8-way MCM contains a total of 6 MB of L2 cache and 128MB of L3 cache [43].

A distributed SMP system available for Stony Brook University gradu-

ate students is the IBM’s SUR machine, IBM pSeries 655 cluster, awarded to

Stony Brook University in 2005 through IBM’s SUR (Shared University Re-

search) Program. It consists of four modules and is linked to form a 32-way

system. The intra-node connection is bus-based while the inter-node connec-

tion is switch-based, provided by the High Performance Switch (HPS) network,

allowing such high-performance message passing fabric. Each point-to-point

connection between nodes is comprised of two channels (full duplex) that can
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Figure 3.1: 8-way MCM [43]

carry data in opposite directions simultaneously [1]. The communication dis-

tance between any pair of processors on the same node is of equal, low-latency,

high-bandwidth. Higher latency is found when processors on different nodes

communicate because of the switch involved.

3.4 Ultra-scalable mesh or torus network systems

Both QCDOC and Blue Gene/L are examples of ultra-scalable supercom-

puter systems in which the communication costs are dependent on subtask

placements.
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3.4.1 QCDOC

QCDOC is a massively parallel and highly scalable computer using the

system-on-a-chip technology (Fig. 3.2). The QCDOC processing component

consists of a single ASIC (application specific integrated circuit) and a stan-

dard DDR (double data rate) RAM module. Larger machines can be built by

connecting many of the smaller processing components [67, 68].

Figure 3.2: 2D version of the network connections in QCDOC [68]

The QCDOC ASIC contains a PowerPC 440 running at 500MHz , a

1Gflop 64-bit floating point unit (FPU), a 4MB of embedded DRAM and

aggregate bandwidth of 12 Gbit/s in 12 independent directions [67, 68].

The network topology is set up as a 6D torus; three dimensions are closed

on a motherboard while the other three are open to off board communication.

Communication between nodes is managed by the SCU (serial communication
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unit) in the ASIC. QCDOC has implemented its own operating system called

QOS to handle nearest neighbor communication calls, and global operations.

3.4.2 Blue Gene/L

The Blue Gene/L Supercomputer (BG/L) is a massively parallel com-

puter with five communication networks. Among them a nearest neighbor

network, with the topology of a 3D torus, and a global tree are the two net-

works for run-time data sharing. In normal usage, the torus is the primary

network and is used both for point-to-point and for many global or collec-

tive communications. The tree is used for collective communications such as

MPI Reduce [54, 82].

Computation nodes on BG/L are logically arranged into a 3D lattice and

the torus communications network provides physical links only between nearest

neighbors in that lattice. Each node has six torus links connecting to its six

nearest neighbors in the ±x, ±y, ±z directions with only one-hop distiance

between any nearest neighbors (Fig. 3.3). All communications between nodes

must therefore be routed to the available physical connections and the cost of

communications between nodes varies depending on locations of the nodes.
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Figure 3.3: Blue Gene/L network (Left: Topology of a 3D torus; Right: Basic
Architecture of the torus router [82])

There are two compute modes, the co-processor mode (CO) and the vir-

tual node mode (VN) in the BG/L system. In the CO mode, the secondary

CPU in the node works as an offload coprocessor for processing the I/O of the

main CPU, while in the VN mode, both CPUs are used and the main memory

is split between them [65]. All experiments conducted for this thesis are in the

CO mode.

All data in this thesis are collected from the Blue Gene/L systems at

Argonne and Brookhaven National Laboratories. A series of pre-defined par-

titions, 32-node (4×4×2), 64-node (8×4×2), 128-node (8×4×4), 256-node

(8 × 4 × 8), 512-node (8 × 8 × 8), and 1024-node (8 × 8 × 16) are utilized to

test the models at different sizes and structures of application. The partitions

with fewer than 512 nodes are connected as 3D-meshes while 512-node and

1024-node are 3D-torus partitions.

We select the BG/L system as the testing platform because it meets all
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our major requirements: It is used worldwide and large partitions are readily

available. It supports MPI [32, 33] and offers an MPI re-map interface [35].
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Chapter 4

Mapping Models

In this section, we discuss the objective function with assumptions on the

applications and computer platforms. We also verify models by a theoretical

example of the hyperbolic equation.

4.1 Assumptions and notations

In our models, we consider more realistic and general cases compared to

many appearing in literature. We assume the application has already been ap-

propriately decomposed as n subtasks and the computing load of each subtask

equal. The inter-subtask communication requirements are described by the

demand matrix Dn×n whose entry D(t, t′) is the required data transfer from

subtask t to subtask t′.

We suppose the parallel computer is heterogeneous, i.e., the computing

speeds of processors different and the communication time cost between two

processors depends on the exact pair. These heterogeneous properties are de-

scribed by two matrices Ln×m and Sm×m, where n is the number of subtasks
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and m is the number of processors. The computation cost is expressed as a

load matrix Ln×m whose entry L(t, p) is the computation cost of the subtask

t when t is executed on the processor p. The communication cost is expressed

as a supply matrix Sm×m whose entry S(p, p′) is the cost for communica-

tion between processors p and p′. These costs depend on processor locations,

available buffer, network congestion, and other conditions. These matrices

are assumed achievable from the characteristics or by standard testing, or by

simple analysis.

4.2 Basic model

With assumptions and definitions stated earlier, we can formulate the

mapping problem in the following way.

Let {t1, t2, . . . , tn} be the set of subtasks of the problem and {p1, p2, . . . , pm}
be the set of heterogeneous processors of the parallel computers to which the

subtasks are assigned. In general, n ≥ m.

Let Xtp be the decision Boolean variable that is defined as:

xtp =





1, if subtask t is assigned to processor p

0, otherwise

Let Ytt′pp′ be the decision Boolean variable that is defined as:

ytt′pp′ =





1, if subtask t and t′ are assigned to processor p and p′ respectively

0, otherwise

We adopt the total execution time, the sum of the computation and com-

munication time as the criterion and formulate a 0-1 programming problem

as:
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min

{
n∑

t=1

m∑
p=1

L(t, p) · xtp +
n∑

t=1

n∑

t′=1

D(t, t′) ·
(

m∑
p=1

m∑

p′=1

S(p, p′) · ytt′pp′

)}

(4.1)

Subject to:





m∑
p=1

xtp = 1 (t = 1, . . . , n)

n∑
t=1

xtp ≥ 1 (p = 1, . . . , m)

n∑
t=1

xtp ≤
⌈

Ap

AT
× n

⌉
(p = 1, ..., m)

xtp + xt′p′ ≤ 1 + ytt′pp′ (t, t′ = 1, . . . , n, t < t′; p, p′ = 1, . . . , m)

The first term of the objective function represents the global computation

cost and the second represents the inter-subtask communication cost. The

assignment constraints require each subtask to be assigned to one and only one

processor. To fully utilize the computing resource, each processor is assigned at

least one subtask and no more than the ratio its ability to the total computing

abilities. The term Ap denotes the computing ability of the pth processor

and AT represents the total computing abilities of the given processor set.

We set both low and upper bounds of computing load for each processor for

achieving system load balance. We also introduce the Boolean variables xtp

and ytt′pp′ and relative constraints to formulate this problem to an Integer

Linear Programming (ILP) problem.

The rationale of this model is that the minimal execution time depends

on uniform load of the processors and the inter-processor communication min-

imization. Although the criterion is not the more desirable total execution

time, it is still a useful metric because we believe the mapping that mini-

mizes the value of the criterion minimizes the value of the actual time. This
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observation has been demonstrated in a similar case by the results [34] from

experiments on BG/L system.

This model can be easily implemented with the convenience of obtaining

the demand matrix by a known pattern or profiling, but it lacks the sophistica-

tion in considering communication overlap, network congestion, and collision,

resulting in misleading mappings for subtle cases.

4.3 Enhanced model

An enhanced model is proposed as:

min

{
n∑

t=1

m∑
p=1

L(t, p) · xtp +
k∑

i=1

(DiS)max

}
(4.2)

Subject to:





m∑
p=1

xtp = 1 (t = 1, . . . , n)

n∑
t=1

xtp ≥ 1 (p = 1, . . . , m)

n∑
t=1

xtp ≤
⌈

Ap

AT
× n

⌉
(p = 1, ..., m)

where k ≤ n2 is the total number of the communication batch. The term

(DiS)max represents the maximum value of the ith batch communication. With

more detailed communication information, the objective function only focuses

on minimizing the sum of the dominant terms in each batch. With this added

consideration of communication overlapping, we can model a more realistic

communication scenario for more accurate mapping, although the overlapping

information is difficult to obtain for many cases.

The basic and enhanced models are verified by a series of applications
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and benchmarks in Chapter 5. When the information of the communication

overlapping is known, such as 2D wave equation, both models are utilized and

verified. For general applications and benchmarks, such as SMG2000, NPB

MG and NPB CG, only the basic model is used to generate mappings.

Given a real application on an ultra-scalable system whose processor

count may exceed 1000, ILP solvers cannot solve the problem due to the

memory limitation. Heuristic techniques are often becoming the practical tool

for searching for near-optimal solutions [59]. Simulated Annealing (SA) is a

good choice and it is indeed adopted in our study.

The corresponding key issues are described as follows. An exponential

cooling schedule is adopted. Both basic model and enhanced model are utilized

to evaluate the objective function values for 2D wave equation application

while only basic model is used to evaluate the objective function values for

SMG2000, NPB MG and NPB CG. In most cases, two types of exchanges,

single-exchange and axis-exchange, are adopted to generate the neighborhood

structure in each iteration. In single-exchange case, a subtask is randomly

picked up, then it will be switched with another subtask which is located

in proper distance along X, or Y , or Z dimension of BG/L machine where

distance depends on a parameter which is based on the machine topology

size. In axis-exchange case, a subtask is randomly selected, then the entire

row or column which this subtask belongs to will be switched with the near

row or column along X, or Y , or Z dimension. The dimension, direction and

the mixture ratios of adopting above two types of new state generation are

controlled by a series of parameters.
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The implementation above models can be illustrated in Fig. 4.1.

Figure 4.1: Static mapping model tool implementation

4.4 Latency and supply matrix

Our models introduce the latency matrix to quantify the communication

cost instead of the hop matrix used in earlier models [34, 78] to reduce the

inaccuracy of the hop measure.

The actual measured communication time for sending a 0 byte message

from all 1024 nodes to all other nodes form a matrix as shown in Fig. 4.2.

Obviously, the diagonal elements are 0 because there is no cost for self com-

munication and the matrix is symmetrical.
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Figure 4.2: MPI latency(µs) of a 0 Byte packet on a 8× 8× 16 BG/L system

Linear regression analysis of the latency with respect to the hop, illus-

trated in Fig. 4.3, shows there are many outliers (red dots) and these outliers

may mislead the optimization if hops instead of latency or other more accurate

measures are adopted to measure the communication cost. Most of them result

from the torus in Z-dimension of the BG/L system (Fig. 4.4). For each hop

number, there are many different values of latency, corresponding to different

cases, such as relative locations. The hop measure fails to distinguish these

multiple subtle states that the latency measure can.
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In [13], Brian and Brett report that the timing results for NAS parallel

benchmark gathered from the permutations of the X, Y and Z coordinates of

BG/L system showed that Y ZX and ZY X mapping result in higher perfor-

mance than the default XY Z mapping. Their observation suggests that the

hop measures along different dimensions are not equivalent.

4.5 A theoretical example

One example is to find an efficient mapping of 18× 12 subtasks resulting

from a 2D hyperbolic equation (Fig. 4.5) onto a 3× 3× 3 lattice (Fig. 4.6).

Figure 4.5: Left: Subtasks of a 2D hyperbolic equation; Right: Communication
pattern for the 2D hyperbolic equation

For comparison, we consider the following four starting mappings: a ran-
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Figure 4.6: A grid from a 3D torus system

dom assignment, the Bar assignment, the Block Column assignment and the

Block Row assignment. The subtask marked with a number means that sub-

task is assigned to that processor. The Bar assignment is often adopted as

default, while the Block Column and Block Row assignment usually appear

to be good assignments. Applying the SA algorithm to our basic model, the

above mappings evolve in the way illustrated in Fig. 4.8 and the best mapping

generated by our models is illustrated in Fig. 4.9.
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(a) (b)

(c) (d)

Figure 4.7: (a) Bar Assignment (MBar), (b) Block Column Assignment (MBC),
(c) Block Row Assignment (MBR), (d) Random Assignment (MR).
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Chapter 5

Applications

In this section, we continue to verify our models by executing four realistic

applications on BG/L system.

5.1 2D hyperbolic partial-differential equations

We consider the numerical solution to the 2D wave equation, an example

of a 2D hyperbolic partial-differential equation. The wave equation is given

by the differential equation

∂2u

∂t2
(x, y, t) = α2

(
∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t)

)
, 0 < x < lx, 0 < y < ly, t > 0,

(5.1)

with periodic boundary conditions and initial conditions

u(x, y, 0) = sin(2πx) sin(2πy), 0 ≤ x ≤ lx, 0 ≤ y ≤ ly

and
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∂u

∂t
(x, y, 0) = 0, 0 ≤ x ≤ lx, 0 ≤ y ≤ ly, t > 0,

where α, lx and ly are constants. To set up the difference equation, select a

integer m > 0 and time-step size n > 0. With hx = lx/m and hy = ly/m, the

mesh points (xi,yj,tk) are

xi = ihx ∀i = 0, 1, . . . , m,

yj = jhy ∀j = 0, 1, . . . , m,

and

tk = kn ∀k = 0, 1, . . . .

The difference equation is obtained by using the centered-difference for

the second order derivatives given by

∂2u

∂t2
(xi, yj , tk) =

u(xi, yj , tk+1)− 2u(xi, yj , tk) + u(xi, yj , tk−1)
n2

− n2

12
∂4u

∂t4
(xi, yj , µk)

where

µk ∈ (tk−1, tk+1),

∂2u

∂x2
(xi, yj , tk) =

u(xi+1, yj , tk)− 2u(xi, yj , tk) + u(xi−1, yj , tk)
h2

x

− h2
x

12
∂4u

∂x4
(ξi, yj , tk)

where

ξi ∈ (xi−1, xi+1),
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and

∂2u

∂y2
(xi, yj , tk) =

u(xi, yj+1, tk)− 2u(xi, yj , tk) + u(xi, yj−1, tk)
h2

y

− h2
y

12
∂4u

∂y4
(xi, ηj , tk)

where

ηj ∈ (yj−1, yj+1).

Substituting these into Equation 5.1 gives

u(xi, yj , tk+1)− 2u(xi, yj , tk) + u(xi, yj , tk−1)
n2

−α2[
u(xi+1, yj , tk)− 2u(xi, yj , tk) + u(xi−1, yj , tk)

h2
x

+
u(xi, yj+1, tk)− 2u(xi, yj , tk) + u(xi, yj−1, tk)

h2
y

]

=
1
12

[n2 ∂4u

∂t4
(xi, yj , µk)− α2 ∂4u

∂x4
(ξi, yj , tk)− α2 ∂4u

∂y4
(xi, ηj , tk)].

Neglecting the truncation error,

τi,j,k =
1
12

[n2 ∂4u

∂t4
(xi, yj , µk)− α2 ∂4u

∂x4
(ξi, yj , tk)− α2 ∂4u

∂y4
(xi, ηj , tk)]

and letting n = ∆t, hx = ∆x, hy = ∆y, and u(xi, yj, tk) = wk
i,j, leads to the

difference equation

wk+1
i,j − 2wk

i,j + wk−1
i,j

∆t2
− α2[

wk
i+1,j − 2wk

i,j + wk
i−1,j

∆x2
+

wk
i,j+1 − 2wk

i,j + wk
i,j−1

∆y2
] = 0.

By multiplying ∆t2, we obtain
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wk+1
i,j − 2wk

i,j + wk−1
i,j = ∆t2α2[

wk
i+1,j − 2wk

i,j + wk
i−1,j

∆x2
+

wk
i,j+1 − 2wk

i,j + wk
i,j−1

∆y2
].

After removing two terms to the right hand side, we obtain

wk+1
i,j = 2(1−∆t2α2

∆x2
−∆t2α2

∆y2
)wk

i,j+
∆t2α2

∆x2
wk

i+1,j+
∆t2α2

∆x2
wk

i−1,j+
∆t2α2

∆y2
wk

i,j+1+
∆t2α2

∆y2
wk

i,j−1−wk−1
i,j .

Letting ∆t2α2

∆x2 = λ2
x and ∆t2α2

∆y2 = λ2
y, we get the equation 5.2

wk+1
i,j = 2(1− λ2

x − λ2
y)wk

i,j + λ2
x(wk

i+1,j + wk
i−1,j) + λ2

y(wk
i,j+1 + wk

i,j−1)− wk−1
i,j . (5.2)

Equation 5.2 implies that to evaluate the (k+1)st time step value requires

five values from the kth and one (k−1)th time steps (Fig. 5.1). Its communica-

tion relationship is illustrated in Fig. 5.2. The application is decomposed into

NX×NY subtasks for assigning to NX×NY processors. Each subtask commu-

nicates only with its four (±X and ±Y direction) nearest neighbors and the

boundary cases is handled by the periodic boundary conditions (PBC). One

example communication pattern for NX = 32 and NY = 4 is illustrated in Fig.

5.3. Each cross represents a communication request from the sender to the

receiver.
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Figure 5.1: Using finite-difference method to solve 2D hyperbolic partial-dif-
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Figure 5.3: The communication pattern of 2D wave equation decomposed as
32× 4 subtasks

5.1.1 BG/L re-map interface and mapping strategy

When an application is implemented in MPI and executed on a given

parallel computer, there are many choices implementing this mapping.

A built-in mapping strategy in the parallel program assigns subtasks with

properly assigned task ID to the MPI processes. Usually, the MPI rank and

the physical processor assignment depends on the MPI implement on the ma-

chine. The ultimate mapping from subtasks to processors follows: Task ID →
MPI ID → Processor ID. After fixing one of the two steps, we can achieve the

model mapping by changing the other relationship.

In the BG/L system, by using the command:
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cqsub -t 〈time〉 -n 〈nodecount〉 -e BGLMPI MAPPING=explicit mapping file 〈exe〉

a user can determine the mapping between MPI ID and Processor ID [35], so

the model can generate an explicit mapping file to realize an assignment. This

method has the advantage of not requiring modification of the original program

for achieving performance benefit.

5.1.2 Subtasks in 2D-Mesh to machine in 3D-Mesh

Suppose that a 2D Wave equation, is evenly decomposed to NX×NY

subtasks and executed on a XSize×YSize computing grids. Tables 5.1, 5.2, 5.3,

and 5.4 show the point-to-point communication time of running 1000 iterations

of the wave equation on 16-, 32-, 64- and 128-node BG/L system, respectively.

The last column shows the communication efficiency gain over the default rank

order mapping. We adopt the formula

tMPI − tModel

tMPI

to calculate the improvement in this thesis. The basic or enhanced models

are used to evaluate the cost of each mapping, the cost value in each mapping

column is the corresponding normalized value which is evaluated under the

condition that the communication demand is one.
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Dimensions Mappings (Unit:ms) Gain (%)

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=23.27) (Cost=12.80) (Cost=8.39)

(8,2) (600,600) 152 142 133 6

(8,2) (800,800) 159 153 142 7

(8,2) (1600,800) 177 163 152 7

(8,2) (4800,800) 292 267 254 5

Table 5.1: Communication timing results for running 1000 iterations 2D wave
equation on a 4× 4× 1 BG/L mesh

Dimensions Mappings (Unit:ms) Gain (%)

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=53.87) (Cost=26.24) (Cost=15.96)

(8,4) (176,176) 36 26 26 0

(8,4) (336,336) 57 33 31 6

(8,4) (1000,1000) 167 141 130 8

(8,4) (2000,2000) 285 253 231 9

(8,4) (2400,2400) 297 264 237 10

Table 5.2: Communication timing results for running 1000 iterations 2D wave
equation on a 4× 4× 2 BG/L mesh
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Dimensions Mappings (Unit:ms) Gain (%)

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=148.24) (Cost=43.06) (Cost=34.44)

(8,8) (600,600) 98 58 58 0

(8,8) (1000,1000) 129 66 65 2

(8,8) (1600,1600) 160 69 68 1

(8,8) (2400,2400) 376 242 239 1

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=150.23) (Cost=76.86) (Cost=31.16)

(16,4) (1200,300) 103 71 55 23

(16,4) (2000,500) 136 88 63 28

(16,4) (3200,800) 170 102 66 35

(16,4) (4800,1200) 378 306 237 23

Table 5.3: Communication timing results for running 1000 iterations 2D wave
equation on a 8× 4× 2 BG/L mesh

Dimensions Mappings (Unit:ms) Gain (%)

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=357.22) (Cost=111.17) (Cost=71.30)

(16,8) (800,800) 79 36 33 8

(16,8) (1600,1600) 130 47 40 15

(16,8) (2000,2000) 230 142 128 10

(16,8) (2400,2400) 236 145 128 12

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=319.40) (Cost=155.12) (Cost=63.41)

(32,4) (1600,400) 77 53 31 42

(32,4) (3200,800) 126 80 39 51

(32,4) (4800,1200) 230 203 129 36

Table 5.4: Communication timing results for running 1000 iterations 2D wave
equation on a 8× 4× 4 BG/L mesh
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The model mapping (Fig. 5.4) that assigns 32× 4 subtasks to 8× 4× 4

partitions improves point-to-point communication by up to 51%. The four

columns are distinguished by colors. The subtasks in the same column are

assigned to the processors marked with a dotted straight line of the same

color while the dotted arc shows the continuation of the assignment.

Z=3

Z=2

Z=1

Z=0

32x4 8x4x4

Figure 5.4: Mapping 32× 4 subtasks onto 8× 4× 4 mesh

5.1.3 Subtasks in 2D-Mesh to machine in 3D-Torus

Tables 5.5 and 5.6 show the point-to-point communication timing results

of running 1000 iterations of the 2D wave equation on 512- and 1024-node

BG/L torus network.
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Dimensions Mappings (Unit:ms) Gain (%)

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=1654.29) (Cost=540.55) (Cost=199.52)

(16,32) (1600,1600) 94 37 34 8

(16,32) (1600,3200) 113 45 40 11

(16,32) (2400,4800) 156 54 49 9

Table 5.5: Communication time iterations for running 1000 iterations 2D wave
equation on a 8× 8× 8 BG/L torus

Dimensions Mappings (Unit:ms) Gain (%)

(NX ,NY ) (XSize,YSize) Random MPI Rank Model

(Cost=3880.33) (Cost=570.69) (Cost=333.53)

(64,16) (6400,1600) 130 44 34 23

(64,16) (6400,3200) 182 58 40 31

(64,16) (5120,3840) 182 58 40 31

(64,16) (3200,6400) 277 172 135 22

Table 5.6: Communication time results for running 1000 iterations 2D wave
equation on a 8× 8× 16 BG/L torus

The model mapping (Fig. 5.5) that assigns 64×16 subtasks to 8×8×16

partition improves point-to-point communication by up to 31%. Different

columns are distinguished by colors. The subtasks in the same column are

mapped to the processors marked dotted straight line of the same color while

the colored arcs represent the torus connection along the Y axis and the black

arcs represent the torus connection along the Z axis.
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Figure 5.5: Mapping 64× 16 subtasks onto 8× 8× 16 torus

5.2 SMG2000

The SMG2000 benchmark is an important component in the Lawrence

Livermoore National Laboratory (LLNL) Purple benchmark package for scien-

tific applications. More specially, SMG2000 is a parallel semicoarsening multi-

grid solver for the linear systems arising from finite difference, finite volume,

or finite element discretizations of the diffusion equation,

−∇ · (D∇u) + σu = f (5.3)
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on logically rectangular grids [70]. The code solves both 2D and 3D problems

with discretization stencils of up to 9-point in 2D and up to 27-point in 3D.

This solver can serve as a key component for achieving scalability in radiation

diffusion simulations.

Multigrid methods are a class of techniques for computing fast, iterative

solutions of linear systems in linear time and space. These methods improve

the convergence rate of classic iterative methods by using a hierarchy of grids

at different resolutions. Coarser levels of the grid hierarchy are effective for

quickly eliminating low frequency components of solution error. As a result,

the total computational work required by a multigrid method to achieve a

prescribed level of accuracy is proportional to the grid size.

In the SMG2000 benchmark, the solver is based on Eq.(5.3) which fo-

cussed on the scalablility for a three dimensional semicoarsening multigrid

solver on a distributed-memory computer. In the best case, the efficiency

E(N,P ) =
T (N, 1)

T (PN, P )

should be equal to 1, where T (N, P ) represents the time to solve a linear

system with N unknowns on a computer using P processors.

SMG2000 is written in ISO-C with MPI. Parallelism is achieved by data

decomposition. The driver provided with SMG2000 achieves this decomposi-

tion by simply subdividing the grid into logical PX×PY×PZ chunks of equal

size. SMG2000 is a highly synchronous code. The communication and com-

putation patterns exhibit the surface-to-volume relationship common to many
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parallel scientific codes. Hence, parallel efficiency is largely determined by the

size of PX×PY×PZ, and the speed of communications and computations on

the machine. SMG2000 is also memory-access bound, doing only about 1-2

computations per memory access, so memory-access speeds will also have a

large impact on performance.

For SMG2000, the communication patterns depends on both machine size

and problem size, i.e., the mapping model needs to recalculate if the problem

size changes. For example, when PX=PY =PZ=4, Figs. 5.6 and 5.8 illustrate

the communication patterns for NX=NY =NZ=10 and NX=100, NY =100,

NZ=80, respectively. Figs. 5.7 and 5.9 illustrate the corresponding sending

bytes for each case. Based on our models, the re-mapping is needed when the

demand matrix changes.
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Figure 5.6: The communication pattern of SMG2000 when PX=PY=PZ=4
and NX=NY=NZ=10
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Figure 5.7: The MPI data transfer of SMG2000 when PX=PY=PZ=4 and
NX=NY=NZ=10
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Figure 5.8: The communication pattern of SMG2000 when PX=PY=PZ=4,
and NX=100,NY=100,NZ=80
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Figure 5.9: The MPI Sending (Bytes) of SMG2000 when PX=PY=PZ=4, and
NX=100,NY=100,NZ=80

Tables 5.7, 5.8, and 5.9 show timing results of running SMG2000 bench-

mark on 64-, 128- and 256-node BG/L system, respectively. They are all

instances that map 3D-mesh communication pattern onto 3D-mesh parallel

computers. Without the information of the communication overlapping, only

the basic model is used to evaluate cost for each mapping. The timing results in

the “SMG Solve” column come from the SMG2000 standard output file which

indicate the overall time that the adopted solver needs to solve the given prob-

lem (default in 2 digit decimal), while the timing results in the “Comm.” and

“Total” columns collected by the MPI profiling tool, MPI Trace, represent the

total communication time and total elapsed time in a MPI view (default in 3

digit decimal), respectively. The timing results from the “Comm.” and “Total”

columns are used to evaluate the improvement for each and cross check the

standard output in the “SMG solve” column. The corresponding performance
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improvements are showed in Tables 5.10, 5.11 and 5.12, respectively.

Dimensions Rank Mapping Model Mapping

(PX,PY,PZ) (NX,NY,NZ) SMG Solve Comm. Total SMG Solve Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

(4,4,4) (10,10,10) 1.05 1.620 2.343 1.05 1.578 2.302

(4,4,4) (40,40,40) 10.05 6.924 14.605 9.79 6.515 14.195

(4,4,4) (80,80,80) 52.72 20.069 66.604 50.94 17.905 64.427

(4,4,4) (100,100,80) 77.25 24.803 95.789 74.71 21.677 92.659

Table 5.7: Timing results for running SMG2000 on a 8× 4× 2 BG/L mesh

Dimensions Rank Mapping Model Mapping

(PX,PY,PZ) (NX,NY,NZ) SMG Solve Comm. Total SMG Solve Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

(4,8,4) (10,10,10) 1.21 2.102 2.928 1.21 2.053 2.879

(4,8,4) (40,40,40) 10.63 8.065 16.015 10.34 7.610 15.561

(4,8,4) (80,80,80) 54.23 22.367 69.468 52.14 19.829 66.941

(4,8,4) (100,100,80) 79.57 27.924 99.581 76.24 23.984 95.644

(4,8,4) (100,80,100) 81.17 28.342 101.675 77.20 23.698 97.033

Table 5.8: Timing results for running SMG2000 on a 8× 4× 4 BG/L mesh

Dimensions Rank Mapping Model Mapping

(PX,PY,PZ) (NX,NY,NZ) SMG Solve Comm. Total SMG Solve Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

(4,8,8) (10,10,10) 1.23 2.614 3.461 1.22 2.557 3.403

(4,8,8) (40,40,40) 11.13 9.706 17.734 10.86 9.246 17.277

(4,8,8) (80,80,80) 62.92 27.282 79.883 60.62 24.528 77.134

(4,8,8) (80,100,100) 94.34 34.088 116.778 91.08 30.235 112.936

Table 5.9: Timing results for running SMG2000 on a 8× 4× 8 BG/L mesh
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Dimensions Efficiency Improvement(%)

(PX,PY,PZ) (NX,NY,NZ) SMG Solve Communication Total

(4,4,4) (10,10,10) 0 2.59 1.75

(4,4,4) (40,40,40) 2.59 5.91 2.81

(4,4,4) (80,80,80) 3.38 10.78 3.27

(4,4,4) (100,100,80) 3.29 12.60 3.27

Table 5.10: The improvement over default layout of SMG2000 on a 8× 4× 2
BG/L mesh

Dimensions Efficiency Improvement(%)

(PX,PY,PZ) (NX,NY,NZ) SMG Solve Communication Total

(4,8,4) (10,10,10) 0 2.33 1.67

(4,8,4) (40,40,40) 2.73 5.64 2.83

(4,8,4) (80,80,80) 3.85 11.35 3.64

(4,8,4) (100,100,80) 4.18 14.11 3.95

(4,8,4) (100,80,100) 4.89 16.39 4.57

Table 5.11: The improvement over default layout of SMG2000 on a 8× 4× 4
BG/L mesh

Dimensions Efficiency Improvement(%)

(PX,PY,PZ) (NX,NY,NZ) SMG Solve Communication Total

(4,8,8) (10,10,10) 0.81 2.18 1.68

(4,8,8) (40,40,40) 2.43 4.74 2.58

(4,8,8) (80,80,80) 3.66 10.09 3.44

(4,8,8) (80,100,100) 3.46 11.30 3.29

Table 5.12: The improvement over default layout of SMG2000 on a 8× 4× 8
BG/L mesh

From Tables 5.10, 5.11 and 5.12, we observe that our mapping models

achieve the SMG Solve benchmark gain, the total time, and communication

time by up to 5%, 5%, and 16%, respectively.
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5.3 NPB Benchmarks

Administration Advanced Supercomputing (NAS) division of NASA Ames

Research Center focuses on computational fluid dynamics and related aero-

science disciplines. To measure objectively the performance of highly parallel

computers and compare them with that of conventional supercomputers, NAS

developed the first version NAS Parallel Benchmarks (NPB1.0) in 1991. The

NPB consist of five parallel kernels and three simulated application bench-

marks that are based on Fortran 77 and the MPI. Those benchmarks are

derived from computational fluid dynamics codes and widely accepted as a

standard indicator of supercomputer performance [20].

In NPB1.0, only “class A” and “class B” sizes are defined. The larger

sizes such as “class C” and “class D” are introduced in the later versions to

suit the new generation of supercomputers.

NPB contains several features. The benchmarks must be compiled for

a specific grid size and number of processors. The timing results are valid

only when the execution configurations are identical to those specified at the

compile time. Self-verification is contained in the code to determine if each

run has completed with the correct results. If possible, the code runs for one

time step and then reinitializes before timing begins. The purpose of this

extra iteration is to eliminate startup costs associated with demand paging

and cache loading by making sure that all code and data has been touched.

One important measure, Mop/s, millions of operations per second, indicates

the sysetem performance. The estimate of Mop/s rates is based on actual

operation counts without compiler optimizations [20].
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5.3.1 NPB MG

Multigrid (MG) is a simplified multigrid kernel for solving a 3D Poisson

PDE. It is one kernel of the NPB. The communication pattern when MG is

executed on 256 processors is illustrated in Fig. 5.10. This code requires a

power-of-two number of processors. The partitioning of the grid onto proces-

sors occurs such that the grid is successively halved, starting from the Z di-

mension, then Y and then X dimension, and repeating this process until all

processors are assigned [20]. The class A MG problem is briefly defined as

follows [19]:

Equation

Four iterations of the V-cycle multigrid algorithm are used to obtain an

approximate solution u to the discrete Poisson problem

∇2u = v (5.4)

on a 256× 256× 256 grid with periodic boundary conditions.

Algorithm

Set v = 0 except at the 20 points where v = ±1. These 20 points are

determined as the locations of the ten largest and ten smallest pseudorandom

numbers.

Begin the iterative solution with u = 0. Each of the four iterations

consists of the following two steps, in which k = 8 = log2256:
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r = v − Au (evaluated residual)

u = u + Mkr (apply correction)

Here Mk denotes the V-cycle multigrid operator.

Timing

clocking starts after the initializing u and v, but before evaluating the

residual for the first time. It is stopped after evaluating the norm of the final

residual, but before displaying or printing values.
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Figure 5.10: The communication pattern of MG on 256 Processors (Class D)

Tables 5.13, 5.14, and 5.15 show timing results of running NPB MG

benchmark on 64-, 128- and 256-node BG/L system, respectively. They are

all instances that map 3D-mesh communication pattern onto 3D-mesh parallel

computers. Without the information of the communication overlapping, only
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the basic model is used to evaluate cost for each mapping. The results in

the “MOps/P” column and “Time” come from the NPB MG standard output

file which indicate system performance (default in 2 digit decimal), while the

timing results in the “Comm.” and “Total” columns collected by MPI Trace,

represent the total MPI communication time and total elapsed time (default

in 3 digit decimal). The corresponding performance improvements are showed

in Tables 5.16, 5.17 and 5.18, respectively.

Problem Size Rank Mapping Model Mapping

NX×NY×NZ (Class) MOps/P Time Comm. Total MOps/P Time Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 168.63 0.36 0.096 0.530 181.64 0.33 0.061 0.495

256× 256× 256(B) 179.31 1.70 0.359 1.865 193.23 1.57 0.226 1.733

512× 512× 512(C) 216.80 11.22 1.255 12.375 225.70 10.78 0.771 11.891

1024× 1024× 1024(D) 237.88 204.54 11.234 213.117 242.93 200.28 6.810 208.700

Table 5.13: Timing results for running NPB MG benchmark on a 8 × 4 × 2
BG/L mesh

Problem Size Rank Mapping Model Mapping

NX×NY×NZ(Class) MOps/P Time Comm. Total MOps/P Time Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 150.87 0.20 0.073 0.295 165.05 0.18 0.048 0.270

256× 256× 256(B) 160.22 0.95 0.271 1.043 175.38 0.87 0.182 0.953

512× 512× 512(C) 203.45 5.98 0.891 6.585 214.28 5.68 0.558 6.253

1024× 1024× 1024(D) 230.86 105.38 7.802 109.760 236.73 102.76 5.066 107.029

Table 5.14: Timing results for running NPB MG benchmark on a 8 × 4 × 4
BG/L mesh
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Problem Size Rank Mapping Model Mapping

NX×NY×NZ(Class) MOps/PTimeComm. Total MOps/PTimeComm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 125.17 0.12 0.054 0.177 141.73 0.11 0.034 0.157

256× 256× 256(B) 132.29 0.57 0.201 0.630 149.13 0.51 0.131 0.559

512× 512× 512(C) 180.63 3.37 0.641 3.693 196.72 3.09 0.345 3.396

1024× 1024× 1024(D) 223.99 54.30 5.476 56.532 236.16 51.51 2.581 53.633

Table 5.15: Timing results for running NPB MG benchmark on a 8 × 4 × 8
BG/L mesh

Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 7.72 8.33 36.46 6.60

256× 256× 256 (B) 7.76 7.65 37.05 7.08

512× 512× 512 (C) 4.11 3.92 38.57 3.91

1024× 1024× 1024 (D) 2.11 2.08 39.38 2.07

Table 5.16: The improvement over default layout of NPB MG on a 8× 4× 2
BG/L mesh

Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 9.40 10.00 34.25 8.47

256× 256× 256 (B) 9.46 8.42 32.84 8.63

512× 512× 512 (C) 5.32 5.02 37.37 5.04

1024× 1024× 1024 (D) 2.54 2.49 35.07 2.49

Table 5.17: The improvement over default layout of NPB MG on a 8× 4× 4
BG/L mesh

In [13], the best improvement when MG benchmark is tested on 128

processors is 5.83%. With the same measure, we boost it to 9.4% here (Tables

5.14 and 5.17), almost doubling the improvement of the previous work.
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Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 13.23 8.33 37.04 11.30

256× 256× 256 (B) 12.73 10.53 34.83 11.27

512× 512× 512 (C) 8.91 8.31 46.18 8.04

1024× 1024× 1024 (D) 5.43 5.14 52.87 5.13

Table 5.18: The improvement over default layout of NPB MG on a 8× 4× 8
BG/L mesh

In summary, when NPB MG benchmark is executed on 3D-mesh BG/L

with up to 256 processors, our models improve the performance by up to 13%

and reduce the total time and communication time by up to 11% and 53%,

respectively.

5.3.2 NPB CG

Conjugate gradient (CG) is another kernel of the NPB, that finds an

estimate of the largest eigenvalue of a symmetric positive-definite sparse matrix

by the conjugate gradient method [19]. Fig. 5.11 illustrates the communication

pattern when CG is executed on 256 processors.
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Figure 5.11: The communication pattern of CG on 256 Processors (Class D)

Tables 5.19, 5.20, 5.21 and 5.22 show timing results of running NPB CG

benchmark on 64-, 128-, 256-, and 512-node BG/L system, respectively. The

first three cases map 3D-mesh communication pattern onto 3D-mesh parallel

computer while the last maps 3D-mesh pattern onto 3D-torus system. Without

the information of the communication overlapping, only the basic model is

used to evaluate cost for each mapping. The results in the “MOps/P” column

and “Time” come from the NPB CG standard output file summarizing the

system performance (default in 2 digit decimal), while the timing results in

the “Comm.” and “Total” columns collected by MPI Trace, represent the total

MPI communication time and total elapsed time (default in 3 digit decimal).

The corresponding performance improvements are tabulated in Tables 5.23,

5.24, 5.25, and 5.26, respectively.
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Problem Size Rank Mapping Model Mapping

NX×NY×NZ(Class) MOps/P Time Comm. Total MOps/P Time Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 25.65 0.91 0.546 1.141 31.31 0.75 0.373 0.965

256× 256× 256(B) 23.71 36.06 11.613 38.059 26.66 32.07 7.558 34.011

512× 512× 512(C) 22.50 99.55 23.017 104.421 24.95 89.78 13.122 94.520

1024× 1024× 1024(D) 22.61 2517.51308.0382586.478 23.62 2410.22199.7412478.184

Table 5.19: Timing results for running NPB CG benchmark on a 8 × 4 × 2
BG/L mesh

Problem Size Rank Mapping Model Mapping

NX×NY×NZ(Class) MOps/P Time Comm. Total MOps/P Time Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 24.72 0.47 0.301 0.666 26.13 0.45 0.276 0.640

256× 256× 256(B) 25.85 16.54 6.102 18.224 28.43 15.03 4.578 16.701

512× 512× 512(C) 24.69 45.35 12.473 49.370 26.51 42.25 9.468 46.221

1024× 1024× 1024(D) 22.63 1257.45163.8941311.463 23.43 1214.70120.7121268.251

Table 5.20: Timing results for running NPB CG benchmark on a 8 × 4 × 4
BG/L mesh

Problem Size Rank Mapping Model Mapping

NX×NY×NZ(Class) MOps/P Time Comm. Total MOps/P Time Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 15.02 0.39 0.287 0.575 16.94 0.35 0.240 0.528

256× 256× 256(B) 17.79 12.01 6.072 13.628 19.53 10.94 4.988 12.544

512× 512× 512(C) 18.89 29.64 12.050 33.397 20.63 27.15 9.522 30.871

1024× 1024× 1024(D) 19.63 725.05167.374772.556 20.62 690.25132.203737.388

Table 5.21: Timing results for running NPB CG benchmark on a 8 × 4 × 8
BG/L mesh
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Problem Size Rank Mapping Model Mapping

NX×NY×NZ(Class) MOps/P Time Comm. Total MOps/P Time Comm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 11.88 0.25 0.191 0.420 12.44 0.23 0.178 0.409

256× 256× 256(B) 17.67 6.05 3.446 7.566 19.92 5.37 2.792 6.874

512× 512× 512(C) 19.43 14.41 6.582 17.913 21.51 13.02 5.176 16.507

1024× 1024× 1024(D) 19.42 366.38 85.308 409.349 20.49 347.28 66.035 390.060

Table 5.22: Timing results for running NPB CG benchmark on a 8 × 8 × 8
BG/L mesh

Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 22.07 17.58 31.68 15.43

256× 256× 256 (B) 12.44 11.06 34.92 10.64

512× 512× 512 (C) 10.89 9.81 42.99 9.48

1024× 1024× 1024 (D) 4.47 4.26 35.16 4.19

Table 5.23: The improvement over default layout of NPB CG on a 8 × 4 × 2
BG/L mesh

Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 5.70 4.26 8.31 3.90

256× 256× 256 (B) 9.98 9.13 24.98 8.36

512× 512× 512 (C) 7.37 6.84 24.09 6.38

1024× 1024× 1024 (D) 3.54 3.40 26.35 3.29

Table 5.24: The improvement over default layout of NPB CG on a 8 × 4 × 4
BG/L mesh
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Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 12.78 10.26 16.38 8.17

256× 256× 256 (B) 9.78 8.91 17.85 7.95

512× 512× 512 (C) 9.21 8.40 20.98 7.56

1024× 1024× 1024 (D) 5.04 4.80 21.01 4.55

Table 5.25: The improvement over default layout of NPB CG on a 8 × 4 × 8
BG/L mesh

Problem Size Efficiency Improvement(%)

NX×NY×NZ(Class) MOps/P Time Communication Total

256× 256× 256 (A) 4.71 8.00 6.81 2.62

256× 256× 256 (B) 12.73 11.24 18.98 9.15

512× 512× 512 (C) 10.71 9.65 21.36 7.85

1024× 1024× 1024 (D) 5.51 5.21 22.59 4.71

Table 5.26: The improvement over default layout of NPB CG on a 8 × 8 × 8
BG/L mesh

In summary, when NPB CG benchmark is executed on 3D mesh and torus

BG/L up to 512 processors, our models improve the system performance by

up to 22% and reduce the total time and communication time by up to 15%

and 43%, respectively.
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Chapter 6

Performance Analysis and Tools

We provide analysis of the performance of our models on several bench-

marks with BG/L system.

6.1 MPI performance analysis tools

Many MPI performance analysis tools are available for collecting infor-

mation at run-time to help identify bottlenecks and improve the performance.

The two types of performance tools include profiling and tracing. The profil-

ing tools, such as mpiP [3] and MPI Trace [65], generate cumulative timing

results while tracing tools, such as Vampir [8], KOJAK [2], Paraver [4, 84]

and PAPI [5], can be used to collect and display a sequence of time-stamped

events [50, 51]. Some other tools like IBM HPCT [36, 37, 39] and TAU [7] may

perform both profiling and tracing.
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6.1.1 MPI profiling interface

MPI implements its profiling interface by offering two distinct libraries

of functions: a production library in which each function is optimized and a

profiling library in which each function has a built-in counter or timer. The

MPI Standards require each implementation to allow each MPI function to be

called by its usual name and modified name which is the corresponding usual

name preceded by a capital “P”. For example, a process can send the float

type data stored in x to process 0 with either

MPI Send(&x, 1, MPI FLOAT, 0, 0, MPI COMM WORLD)

or

PMPI Send(&x, 1, MPI FLOAT, 0, 0, MPI COMM WORLD)

which allows users to implement their own profiling with link to the execution

code [71].

For example, the MPI Trace wrappers use the MPI profiling interface in

the following form:

int MPI Send(...) {
start timing();

PMPI Send(...);

stop timing();

log the event();

}

6.1.2 MPI Trace tool

MPI Trace collects timing summary and prints out the individual pro-

filing file. It is installed on Argonne National Laboratory BG/L system and
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also integrated in the IBM HPCT package installed on BG/P system. Fig. 6.1

shows a typical profiling output for the MPI Rank 0. The file, mpi profile.0,

collects much useful information:

elapsed time from clock-cycles using freq = 700.0 MHz

-----------------------------------------------------------------

MPI Routine #calls avg. bytes time(sec)

-----------------------------------------------------------------

MPI_Comm_size 1 0.0 0.000

MPI_Comm_rank 1 0.0 0.000

MPI_Send 19988 29662.7 3.678

MPI_Irecv 19988 29662.7 0.017

MPI_Wait 19988 0.0 7.918

MPI_Barrier 1 0.0 0.000

MPI_Reduce 1 8.0 0.000

-----------------------------------------------------------------

total communication time = 11.613 seconds.

total elapsed time = 38.059 seconds.

top of the heap address = 23.008 MBytes.

-----------------------------------------------------------------

Message size distributions:

MPI_Send #calls avg. bytes time(sec)

11856 8.0 0.023

228 16.0 0.000

7904 75000.0 3.655

MPI_Irecv #calls avg. bytes time(sec)

11856 8.0 0.009

228 16.0 0.000

7904 75000.0 0.008

MPI_Reduce #calls avg. bytes time(sec)

1 8.0 0.000

-----------------------------------------------------------------

Communication summary for all tasks:

minimum communication time = 11.312 sec for task 9

median communication time = 12.175 sec for task 62

maximum communication time = 12.374 sec for task 58

taskid xcoord ycoord zcoord procid total_comm(sec) avg_hops

0 0 0 0 0 11.613 1.75

1 1 0 0 0 11.974 2.25

2 2 0 0 0 12.251 2.75

3 3 0 0 0 12.257 2.75

4 4 0 0 0 12.139 3.00

5 5 0 0 0 12.150 3.00

6 6 0 0 0 12.088 3.00

Figure 6.1: Segment of the mpi profile.0 for NPB CG (Class B) benchmark

It lists all MPI communication functions with the number of times that
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they are called and the corresponding cumulative time. This helps identify

the message passing method and the communication time distribution. It

reports both total communication time and total elapsed time. This helps

estimate the ratio of the communication time over the execution time and

make a reasonable improvement expectation. It also offers a rough analysis

data, average hops, for each MPI process. This help predict the performance

of the mapping.

The average hops is evaluated by [50]:

AverageHops =

∑
i

Hopsi ×Bytesi

∑
i

Bytesi

where the Hops between two processors p and q with physical coordinates

(xp, yp, zp) and (xq, yq, zq) is calculated by:

Hops(p, q) = |xp − yp|+ |yp − yq|+ |zp − zq|

measuring the average hop distance between two processors.

When the proper variable is set, the wrappers keep track of how many

bytes are sent to each task, and a matrix is written during MPI Finalize which

lists how many bytes are sent from each task to all other tasks. This matrix

is just the demand matrix in our models.

6.1.3 Computational overhead of the profiling tool

The previous timing results are collected by using the profiling tool,

MPI Trace, to gather the profiling data. Whenever a MPI function is in-
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voked, a light weight profiling code is executed, introducing small computa-

tional overhead to the timing results of both default MPI rank mappings and

model mappings. The overhead mainly depends on the total times of MPI

functions being called. In theory, this extra overhead decreases the improve-

ment a little. For NPB benchmarks, the total times is less than 100, 000 and

the corresponding overhead is ignorable. For SMG2000, the total times of the

MPI functions being called is about half million and the corresponding gain

change is about 0.1% and hence negligible. For example, when a SMG2000

with logical processor topology 4 × 8 × 4 and dimension (NX,NY,NZ) being

(100,80,100) is assigned onto 8×4×4 BG/L mesh, the overhead may decrease

the SMG Solve gain from 4.98% to 4.89% (see the last row in Table 5.11).

6.2 The validation of model metric

In Chapter 4, we discuss the objective functions in our models and the

metric is evaluated by these functions associated with the latency measure-

ment.

To validate the model metric, we study a series of mappings in a SA

process for NPB CG. Figs. 6.2 and 6.3 illustrated with the decreasing of

the model cost, the communication times decreases, and the system perfor-

mance increases. The model metric is valid that the mappings generated by

our models can significantly reduce the communication time and improve the

performance.
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Figure 6.2: Communication time change trend with the cost of mapping change
when NPB CG executed on 64processors (Class C)
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Figure 6.3: Performance change trend with the cost of mapping change when
NPB CG executed on 64processors (Class C)

6.3 Fluctuation tests

For the time and resource limit, each timing result in this thesis is from

one actual execution. All results from the default mapping and the model

mapping are collected with identical environment parameters, isolating the

mapping from other distractions.

To study the fluctuation on Blue Gene/L supercomputer, we repeat one

test for NPB MG (Class D) on 8×4×8 BG/L ten times, with the first five times

only associated with ANL R001 J203− 256 partition while the last five times
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associated with both partition R001 J203−256 and partition R001 J102−256

(Table 6.1).

Run Rank Mapping Model Mapping

MOps/PTimeComm. Total MOps/PTimeComm. Total

(Sec.) (Sec.) (Sec.) (Sec.) (Sec.) (Sec.)

1 223.89 54.33 5.501 56.557 236.18 51.50 2.576 53.627

2 223.86 54.34 5.510 56.565 236.20 51.50 2.571 53.625

3 223.98 54.31 5.476 56.532 236.13 51.51 2.585 53.637

4 224.04 54.29 5.466 56.522 236.22 51.49 2.565 53.618

5 223.95 54.31 5.488 56.544 236.19 51.50 2.571 53.625

6 224.02 54.30 5.467 56.522 236.22 51.49 2.565 53.619

7 223.95 54.31 5.484 56.541 236.21 51.49 2.566 53.620

8 223.99 54.30 5.485 56.543 236.25 51.49 2.560 53.613

9 224.03 54.30 5.467 56.523 236.14 51.51 2.582 53.635

10 223.96 54.31 5.481 56.537 236.10 51.52 2.591 53.645

Average 223.97 54.31 5.483 56.539 236.18 51.50 2.573 53.626

STD 0.06 0.01 0.01 0.01 0.05 0.01 0.01 0.01

Table 6.1: Timing results for multiple running NPB MG (Class D) on a 8×4×8
BG/L mesh

Comparing the average value of 10 runs with the one-time data (Table

5.15 last row), we find no difference. The small standard deviation (STD)

values are another proof. Thus, it is safe to use one-time data to represent the

average value by ignoring fluctuation.

6.4 Performance analysis of 2D wave equation

In this section, we want to answer the following two basic questions: (1)

if model can always result in mapping for higher performance than the default
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mapping and (2) how much improvement. By analyzing the experimental

results, we observed as follows:

First, in all experiments, our models always produce mappings requir-

ing shorter communication time than those from a random mapping or the

MPI rank order mapping. In many cases, the basic model also works because

the problem of the network congestion neglected in that model is considered,

implicitly.

Second, the amount of improvement of the model mapping over the de-

fault one depends on: the communication patterns, the network diameter, the

size of machine and the message being passed, etc. For example, many parti-

tions (from 64-node to 1024-node) with structure 8×Y×Z, when the applica-

tion is decomposed to NX×NY subtasks and NY =8, the 3D machine network

matched with the 2D application pattern precisely and thus rendered little

difference of the default mapping from model mapping (Table 5.3). For 512-

and 1024-node cases with reduced network diameter, smaller improvement is

observed.

Third, our model can always map 2D applications to 3D computer with

significant communication gain. For the case of assigning 32 × 4 subtasks

to a 8 × 4 × 4 BG/L mesh, Figs. 6.4 and 6.5 illustrate the point-to-point

communication details in each iteration associated with default mapping and

model mapping, where S R represents sending to the right; I S R represents

idling after sending to the right; R L represents receiving from the left, and so

on. We suppose the blocking message passing routines MPI Send and MPI Recv

are adopted to implement the data transfer between each subtask and its four

83



neighbors: right, left, top and bottom.

Figure 6.4: The trace of point-to-point communication of default mapping for
2D Wave Equation

Figure 6.5: The trace of point-to-point communication of model mapping for
2D Wave Equation
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It is obvious that data switching for each subtask with its right and left

neighbors is similar; all of sending, receiving and idling times are short, taking

about 22ms. However, for default mapping, subtasks cause many traffic jams

while transferring data to or from its top or bottom neighbor. Since the logical

top and bottom neighbors are no longer the physical neighbors, it takes 65ms

for these two steps in default mapping. However, the model mapping generates

a jam-free environment to all data transfer process, reducing the time to 25ms

for these two steps. The IBM routing technology can further explain such

improvement [18, 66].

If the point-to-point communication is implemented by other mode, for

example, nonblocking message passing routine or the mixed mode, the timing

results may vary a little. But the trend that the model mapping reduces the

traffic jams for higher performance remains.

When mapping 64×16 subtasks to a 8×8×16 torus, our models generate

excellent improvement. The 8×8×16 torus can be treated as 16 sheets (along

Z dimension) and each sheet consist of 8 × 8 2D-torus (in the X-Y plane).

In each such sheet, the assignment zigzags and winds off the 2D-torus to a

1D-torus, resulting in a precise mapping that matches exactly the 2D-torus

communication pattern.

6.5 Performance analysis of SMG2000

We further analyze the timing results in Tables 5.7, 5.8, 5.9, and sum-

marize the data in Table 6.2. The ∆SMG Solve column shows the bench-

mark timing difference between the model mapping and the default mapping.
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The column ∆Comm. represents the communication difference while the last

column shows the difference of the previous two columns, ∆∆=∆Comm.-

∆SMG Solve. From Table 6.2, we can draw the following conclusions. The

overall improvement results mainly from that of the communication. We also

observed the overlapping of computation and communication because the num-

bers in the column ∆∆ show the ∆comm. number is much bigger than the

∆SMG Solve. The communication improvement come mostly from the non-

blocking message passing functions: MPI Waitall (Fig. 6.6).

Problem Size Processor Topology ∆SMG Solve ∆Comm. ∆∆

NX ×NY ×NZ PX × PY × PZ (Sec.) (Sec.) (Sec.)

10× 10× 10 8× 4× 2 0 0.042 0.042

40× 40× 40 8× 4× 2 0.26 0.409 0.149

80× 80× 80 8× 4× 2 1.78 2.164 0.384

100× 100× 80 8× 4× 2 2.54 3.126 0.586

10× 10× 10 8× 4× 4 0 0.049 0.049

40× 40× 40 8× 4× 4 0.29 0.455 0.165

40× 40× 40 8× 4× 4 2.09 2.538 0.448

100× 100× 80 8× 4× 4 3.33 3.94 0.61

100× 80× 100 8× 4× 4 3.97 4.644 0.674

40× 40× 40 8× 4× 8 0.01 0.057 0.047

40× 40× 40 8× 4× 8 0.27 0.46 0.19

80× 80× 80 8× 4× 8 2.3 2.754 0.454

80× 100× 100 8× 4× 8 3.26 3.853 0.593

Table 6.2: Improvement analysis of model mapping over the default layout for
SMG2000
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--------------------------------------------- ---------------------------------------------

MPI Routine #calls avg. bytes time(sec) MPI Routine #calls avg. bytes time(sec)

--------------------------------------------- ---------------------------------------------

MPI_Comm_size 24658 0.0 0.005 MPI_Comm_size 24658 0.0 0.005

MPI_Comm_rank 28230 0.0 0.005 MPI_Comm_rank 28230 0.0 0.005

MPI_Isend 166784 1970.8 2.354 MPI_Isend 166784 1970.8 2.359

MPI_Irecv 166602 2006.1 0.264 MPI_Irecv 166602 2006.1 0.278

MPI_Waitall 180138 0.0 25.411 MPI_Waitall 180138 0.0 20.785

MPI_Barrier 1 0.0 0.000 MPI_Barrier 1 0.0 0.000

MPI_Allgather 1 4.0 0.000 MPI_Allgather 1 4.0 0.000

MPI_Allgatherv 1 28.0 0.000 MPI_Allgatherv 1 28.0 0.000

MPI_Allreduce 15 8.0 0.302 MPI_Allreduce 15 8.0 0.267

--------------------------------------------- ---------------------------------------------

total communication time = 28.342 seconds. total communication time = 23.698 seconds.

total elapsed time = 101.675 seconds. total elapsed time = 97.033 seconds.

top of the heap address = 480.488 MBytes. top of the heap address = 480.488 MBytes.

Figure 6.6: Profile segments for SMG2000 benchmark on 8×4×4 BG/L mesh
(Left: Default mapping; Right: Model Mapping)

6.6 Performance analysis of NPB Benchmarks

We analyze the NPB MG timing results in Tables 5.13, 5.14, 5.15, and

NPB CG timing results in Tables 5.19, 5.20, 5.21, 5.22, then summarize the

data in Tables 6.3 and 6.4, respectively.

The numbers in the column ∆∆ is very small, most of them being less

than 0.1 second, meaning the ∆Comm. number is slightly bigger than the

∆time. The improvement of the benchmark results mainly from the improve-

ment of the communication. The communication improvement comes mostly

from the functions: MPI Send and MPI Wait (Figs. 6.7 and 6.8).
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Problem Size (Class) Processor Topology ∆Time ∆Comm. ∆∆

PX × PY × PZ (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 8× 4× 2 0.03 0.035 0.005

256× 256× 256(B) 8× 4× 2 0.13 0.133 0.003

512× 512× 512(C) 8× 4× 2 0.44 0.484 0.044

1024× 1024× 1024(D) 8× 4× 2 4.26 4.424 0.164

256× 256× 256(A) 8× 4× 4 0.02 0.025 0.005

256× 256× 256(B) 8× 4× 4 0.08 0.089 0.009

512× 512× 512(C) 8× 4× 4 0.30 0.333 0.033

1024× 1024× 1024(D) 8× 4× 4 2.62 2.736 0.116

256× 256× 256(A) 8× 4× 8 0.01 0.018 0.008

256× 256× 256(B) 8× 4× 8 0.05 0.063 0.013

512× 512× 512(C) 8× 4× 8 0.22 0.237 0.017

1024× 1024× 1024(D) 8× 4× 8 1.99 2.077 0.087

Table 6.3: Improvement analysis of model mapping over the default layout for
NPB MG
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Problem Size (Class) Processor Topology ∆Time ∆Comm. ∆∆

PX × PY × PZ (Sec.) (Sec.) (Sec.)

256× 256× 256(A) 8× 4× 2 0.16 0.173 0.013

256× 256× 256(B) 8× 4× 2 3.99 4.055 0.065

512× 512× 512(C) 8× 4× 2 9.77 9.895 0.125

1024× 1024× 1024(D) 8× 4× 2 107.29 108.297 1.007

256× 256× 256(A) 8× 4× 4 0.02 0.025 0.005

256× 256× 256(B) 8× 4× 4 1.51 1.524 0.014

512× 512× 512(C) 8× 4× 4 3.10 3.005 -0.095

1024× 1024× 1024(D) 8× 4× 4 42.75 43.182 0.432

256× 256× 256(A) 8× 4× 8 0.04 0.047 0.007

256× 256× 256(B) 8× 4× 8 1.07 1.084 0.014

512× 512× 512(C) 8× 4× 8 2.49 2.528 0.038

1024× 1024× 1024(D) 8× 4× 8 34.80 35.171 0.371

256× 256× 256(A) 8× 8× 8 0.02 0.013 -0.007

256× 256× 256(B) 8× 8× 8 0.68 0.654 -0.026

512× 512× 512(C) 8× 8× 8 1.39 1.406 0.016

1024× 1024× 1024(D) 8× 8× 8 19.10 19.273 0.173

Table 6.4: Improvement analysis of model mapping over the default layout for
NPB CG

--------------------------------------------- ---------------------------------------------

MPI Routine #calls avg. bytes time(sec) MPI Routine #calls avg. bytes time(sec)

--------------------------------------------- ---------------------------------------------

MPI_Comm_size 1 0.0 0.000 MPI_Comm_size 1 0.0 0.000

MPI_Comm_rank 1 0.0 0.000 MPI_Comm_rank 1 0.0 0.000

MPI_Send 7368 37698.7 3.931 MPI_Send 7368 37698.7 2.026

MPI_Irecv 7674 1065024.0 0.013 MPI_Irecv 7674 1065024.0 0.009

MPI_Wait 7674 0.0 1.502 MPI_Wait 7674 0.0 0.545

MPI_Bcast 6 8.7 0.000 MPI_Bcast 6 8.7 0.000

MPI_Barrier 6 0.0 0.009 MPI_Barrier 6 0.0 0.000

MPI_Reduce 1 8.0 0.000 MPI_Reduce 1 8.0 0.000

MPI_Allreduce 88 11.6 0.022 MPI_Allreduce 88 11.6 0.001

-------------------------------------------- ---------------------------------------------

total communication time = 5.476 seconds. total communication time = 2.581 seconds.

total elapsed time = 56.532 seconds. total elapsed time = 53.633 seconds.

top of the heap address = 125.926 MBytes. top of the heap address = 125.926 MBytes.

Figure 6.7: Profile segments for NPB MG benchmark(Class D) on 8 × 4 × 8
BG/L mesh (Left: Default mapping; Right: Model Mapping)
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-------------------------------------------- ---------------------------------------------

MPI Routine #calls avg. bytes time(sec) MPI Routine #calls avg. bytes time(sec)

-------------------------------------------- ---------------------------------------------

MPI_Comm_size 1 0.0 0.000 MPI_Comm_size 1 0.0 0.000

MPI_Comm_rank 1 0.0 0.000 MPI_Comm_rank 1 0.0 0.000

MPI_Send 19988 59320.5 10.349 MPI_Send 19988 59320.5 6.559

MPI_Irecv 19988 59320.5 0.022 MPI_Irecv 19988 59320.5 0.019

MPI_Wait 19988 0.0 12.645 MPI_Wait 19988 0.0 6.543

MPI_Barrier 1 0.0 0.000 MPI_Barrier 1 0.0 0.000

MPI_Reduce 1 8.0 0.000 MPI_Reduce 1 8.0 0.000

-------------------------------------------- --------------------------------------------

total communication time = 23.017 seconds. total communication time = 13.122 seconds.

total elapsed time = 104.421 seconds. total elapsed time = 94.520 seconds.

top of the heap address = 39.551 MBytes. top of the heap address = 39.516 MBytes.

Figure 6.8: Profile segments for NPB CG benchmark(Class C) on 8 × 4 × 2
BG/L mesh (Left: Default mapping; Right: Model Mapping).

The corresponding performance improvements for NPB CG (Class A-D)

tested on 64-, 128-, 256-, and 512-node machine can be illustrated in Figs. 6.9

and 6.10, showing the extents of our models’ improvement of system perfor-

mance for different cases.

Figure 6.9: NPB CG performance improvements for 64- and 128- node
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Figure 6.10: NPB CG performance improvements for 256- and 512- node
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Chapter 7

Conclusions

In this chapter, we will summarize our research and discuss the next task

in the future.

7.1 Conclusions

Our work contributes to reduce the complexity of parallel programming

and to achieve high performance of ultra-scalable computer systems. In many

cases, we can expect a much higher performance and parallel efficiency from

model mapping than from the default MPI rank mapping. The method works

well in 2D hyperbolic equation system, finite element discretizations of the

diffusion equation and 3D Poisson PDE application.

Task mapping is sophisticated due to huge searching space and its intri-

cate dependence on both the applications and the platforms. To solve this

problem, we have proposed two general static mapping models to help opti-

mize the assignment of applications onto a large heterogeneous parallel com-

puter. The characteristics of the application and the computer are abstracted
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as proper matrixes. Every time a new application is introduced, we generate a

new demand matrix while a parallel computer network is quantified as a sup-

ply matrix. The supply matrix is measured by MPI latency matrix to avoid

inaccuracy of previous measurement such as hop or its variant. Solutions of

our models can achieve the near-optimal performance of the application on

the given platform efficiently.

Without an appropriate assignment, even an ultra-scalable supercom-

puter system such as Blue Gene/L with huge computing power will only real-

ize a small portion of its potential [33]. Our models are great effective tools

to avoid this kind of power waste. The models are verified by achieving near-

optimal values when assigning 2D and 3D communication patterns occurring

in solution of partial differential equations onto 3D mesh and torus BG/L

networks. The timing results from a series of benchmarks and scientific appli-

cations suggests convenient extendability of our models to actual applications

for achieve competitive improvement.

7.2 Future Work

We believe our models can be generalized as a general task assignment

optimization tool for producing good mappings from arbitrary problems to

parallel computers with reasonable complexities. Profiling tool will add the

functioning and power of our static models to enable them to be an efficient and

practical for wider selection of problems and more complex computer systems.

A natural next task would be to refine our models to incorporate the profiling

and tracing tools for additional values, especially on the field that generates

93



more efficient task assignment for the pre-exist MPI codes. Our final goal

is in the automatic parallelization, the parallel code generation starting from

a sequential program for scalability, a goal that has attracted but trapped

several generations of researchers .

To reduce the difference between the theoretical system and a real situa-

tion, we need to develop more accurate models to formulate the real computa-

tion and communication in a ultra-scalable supercomputer system. In general,

we can modify the objective function and assumptions appropriately to handle

the global collective communication and other factors.

Although many issues have been discussed, we are still left with many

promising fields to discover since there are so many aspects in task mapping

problem: the application, the objective function and the metric, the heuris-

tic algorithm, the problem size, the computer size, the computing mode, the

generating method and measurement of demand and supply matrixes, the uti-

lizing of the profiling tool and the tracing tool, etc. It is impossible to examine

every feasible combination in this thesis.

Further tests of our models on other realistic problems such as CPMD,

other important benchmarks and the applications, other compute mode such

as VN mode in BG/L system, and on larger sizes of processors and on more

available supercomputers, Blue Gene/P, Cray XT4, and SGI Altix supercom-

puters are very desirable extension of our work.
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[57] L. V. Kalé, B. Ramkumar, A. B. Sinha and A. Gursoy. The CHARM
Parallel Programming Language and System: Part I – Description of
Language Features. Parallel Programming Laboratory Technical Report
#95-02, 1994.
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