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Abstract of the Thesis

A deconvolution method for switching current
histograms as a fast diagnosis tool

by

Dirk Bluhm

Master of Arts
in
Physics
Stony Brook University
2008

Modern physics likes to probe quantum behavior on a macroscopic
scale. An example for such a device is the rf-SQUID, also consid-
ered as a qubit for quantum computing. The rf-SQUID consists of
a superconducting loop, interrupted by an insulating barrier. This
barrier is known as Josephson junction and allows for some tun-
neling current. By biasing the rf-SQUID with half a flux quantum,
the potential energy of the qubit forms a double well potential that
can be treated like the harmonic oscillator with small corrections.
For temperatures between 1.3 K and 530 mK, we measured thermal
escape rates from one potential well to the other in dependence of
the qubit bias flux, using this as an indicator for sample quality.
Together with the fast diagnosis setup that allowed for careful mea-
surements and a new method of deconvoluting switching current
histograms, a fast turn-around process for sample quality charac-
terization has been established.
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Chapter 1

Introduction and Background

1.1 Introduction

After Heike Kamerlingh Onnes was the first to liquefy Helium in 1908, he
opened the wide field of low temperature physics that gives basic insights for
our understanding of matter. Using his ability to achieve low temperatures,
he discovered (1911) the abrupt disappearance of resistance in a sample of
mercury and stated [4]:

“Mercury has passed into a new state, which on account of its ex-
traordinary electrical properties may be called the superconductive
state.”

After lossless conductivity had been found, Meissner and Ochsenfeld [5] found
that superconductors are also perfect diamagnets (1933). Magnetic fields do
hardly penetrate superconductors, and a field in an originally normal sample
is expelled when the temperature falls down through T, the so called critical
temperature, where a normal conductor turns superconducting. The London
equations [6] yield that a magnetic field is exponentially screened from the
interior of a superconductor with penetration depth A. This implies that
both high temperature and high magnetic fields can destroy superconductivity.
Empiric studies show that the critical field is approximated by a parabolic law:

H(T) ~ H(0)[1 — (T/T.)"] (1.1)

After the first description of its basic electrodynamic properties by London
and London 1935, superconductivity was later explained by Ginzburg and Lan-
dau 1950 (GL-theory, macrocopic effects) and Bardeen, Cooper and Schrieffer
1957 (BCS-theory) [7], who proposed Cooper pairs were responsible for super-
conductivity. The founders of the latter theory were awarded a Nobel Prize in



1972, as was Ginzburg in 2003. Landau was awarded a Nobel Prize in 1962, for
“for his pioneering theories for condensed matter, especially liquid helium” [8].
This section intends to give a short overview on superconductivity, following
the very comprehensive book of Tinkham [9], and then provides some closer
view on the superconducting quantum interference devices (SQUIDs) based on
Josephson junctions used in this research, namely the rf- and the de-SQUID.

1.2 Bardeen-Cooper-Schrieffer and Ginzburg-
Landau theories

The development of the BCS theory was driven by two major observations
that had to be explained: First, the Meissner-Ochsenfeld-effect, and second,
the observation that the critical temperature of the metal is depending on its
isotopic mass (7T - VM = const.). Furthermore, it had to explain the second
order phase transition at the critical temperature occuring in the electron gas.
There was also evidence for an energy gap for single-particle like excitation,
e.g. the electronic specific heat varying as exp(Ty/T) near T=0 K.

The relation between critical temperature and mass suggests that phonons are
involved in the mechanism that leads to superconductivity. The first electron
causes (since it has negative charge) a small deformation in the crystal lattice
as it moves along. This deformation acts like a funnel for a second electron
with opposite spin, it moves than in the region with higher positive charge
density. This process is only possible if the energies of the system are small,
e.g. thermal oscillations do not need to be taken into account and the current
density is low enough.

The two electrons form so called “Cooper pairs” with total spin s = 0. As a
pair they no longer act as fermions but rather they obey Bose-statistics. Thus,
the Pauli principle no longer applies and they can be in the same quantum
state. Not only that is energetically more favorable, it also results in a Bose-
Einstein-wavefunction through the whole superconductor. The formation of
the Cooper pairs causes an energy gap to appear around the Fermi energy,
bigger than the energy transmitted to an electron by colliding with a lattice
atom. Therefore, there are no scattering states and local interactions with
impurities can not influence this wavefunction, thus currents do not experience
resistance.

Based on the theory of phase transitions and thermodynamics, Ginzburg and
Landau derived some macroscopic properties of superconductors. As a result of
their theory they introduced two characteristic lengths: The coherence length &



as a measure of the size of thermodynamic fluctuations in the superconducting
phase, and the penetration depth A\ that describes the depth to which an
external field can penetrate the superconductor. Unlike the two lengths, their
ratio kK = \/¢ is independent from temperature and can be used to characterize
the superconductor.

1.3 Superconducting devices

1.3.1 The Josephson junction

Two superconducting electrodes, separated by an insulating material, form
a so-called Josephson junction. In 1962, Josephson predicted [10] that a zero
voltage supercurrent should flow between the electrodes, depending on A¢, the
phase difference between the phases of the Ginzburg-Landau-wavefunctions in
the electrodes. This is called dc-Josephson effect:

I, = I. sin(Ag) (1.2)

1. is called the critical current and it is the maximal current the junction
can support while staying in the superconductive state. Applying a constant
voltage V' across the junction causes the phase difference to evolve as

d(Ap) 26V
d  h

(1.3)

This is the ac-Josephson effect. These two predictions were part of the work
leading the Nobel Prize Committee to award Josephson half of the 1973’s No-
bel Prize [8] “for his theoretical predictions of the properties of a supercurrent
through a tunnel barrier, in particular those phenomena which are generally
known as the Josephson effects”.

The Josephson effect has been confirmed in many different experimental cir-
cumstances in which two superconductors are coupled by a weak link that
allows Cooper pairs to tunnel through. Recent research results extend the
effect to the more general case of a weak link between two macroscopic wave-
functions, including to the observation of both ac and dc Josephson effect in
a Bose-Einstein-condensate [11].

Unfortunately, the phase difference A¢ is not a gauge-invariant quantity, thus
the current Iy cannot be determined in general. By introducing a gauge-
invariant phase difference =,

v=Ap— (2m/ D) /A - ds (1.4)
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Figure 1.1: Sketch of the model for the physical Josephson junction: Ideal
junction with critical current I., capacity C' and resistance R in parallel.

the problem can be cured. The integration is from one electrode of the weak
link to the other. This allows to express the supercurrent in an ideal Josepson
junction in terms of v, using Eq. 1.2 and replacing A¢:

I, = 1. sin(7) (1.5)

This also allows the inclusion of magnetic field effects on the junction.

The RCSJ model

The resistively and capacitively shunted junction (RCSJ) model [9] pro-
vides a more complete description of the case of finite voltage across the junc-
tion. Its sketch is shown in Fig. 1.1. In this model, the physical Josephson
junction is modeled by an ideal one with critical current 1. (see Eq. 1.5),
shunted by a resistance R and a capacitance C. The resistance R takes ac-
count for the dissipation in the finite voltage regime, but does not effect the
lossless dc regime. The capacitance C' builds the geometric shunting capaci-
tance between the two electrodes (not to ground!). The time dependence of the
phase v can be obtained by equating the bias current I to the total junction
current from the three parallel channels:

I =14sin(y)+V/R+CdV/dt (1.6)

The switch in notation from I.. to I is anticipating that the observable critical
current /. might be less than the fluctuation-free intrinsic critical current /. of
the RCSJ model. Later, and that is closely related to the experiment, thermal
fluctuations will be treated.

For now, Eq. 1.6 can be rewritten by eliminating V' in favor of v using Eq.
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Figure 1.2: Tilted washboard potential of the physical Josephson junction
according to the RCSJ model. The ratio of the currents 7'/I.o was chosen to
be 0.9. The fictitious particle oscillates in one potential well with the plasma
frequency w,, but can switch to other wells by thermal activation or quantum
tunneling.

1.3, and a second order differential equation is derived.
1 .
=—+ Odr + sin(y) (1.7)

In this equation, a dimensionless time variable 7 has been introduced, 7 = w)t
with the so-called plasma frequency

2el, 2
wp = ( hCO) (1.8)

The “quality factor” @) is defined as

Eq. 1.7 is similar to the equation of motion for a particle of mass (h/2¢)?C
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Figure 1.3: Sketch of the de-SQUID. Two Josephson junctions in parallel are
connected by superconducting electrodes

moving along the 7 axis in an effective potential

U(y) = —Eycos(y) — (Rl /2e)y (1.10)

Here, E/; is the Josephson coupling energy. The potential is shown in Fig. 1.2.
For I > Iy, there are no stable equilibrium points.

1.3.2 The dc-SQUID

Superconducting Quantum Interference Devices (or SQUIDs) are based on
superconducting loops containing Josephson junctions. The current in the
SQUID is dependent on the flux through it which makes SQUIDs widely used
as precise magnetometers in a variety of applications. Two Josephson junctions
connected by superconducting electrodes form a so-called de-SQUID (See Fig
1.3). In this subsection, the effect of an applied magnetic field on the Josephson
junctions is worked out. We have seen that the gauge-invariant phase across
each junction depends on the magnetic vector potential A which is not gauge-
invariant. It makes sense to give the results only in terms of the flux ® through
the area enclosed by the superconducting loop, since it is a gauge-invariant
quantity. By integrating around the loop to determine the flux, the following
expression for the phases is derived:

M — 72 = 21D /Py (mod 2m) (1.11)

As long as @ is no integer multiple of ®(, the maximum supercurrent through
the junctions must be less than the sum of the two single junctions, 1, <
Io1 4 Ie2. Assuming the junctions to be similar, I.g; = I.o2 = I, and using
the flux ¢ in units relative to &y = 2.07- 1071 Wb, ¢ = ®/®;, the maximum
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Figure 1.4: Maximal current of the de-SQUID in dependence of relative flux
¢ = O/ through the junction.

supercurrent is given by
I, = 21 |cos(md)] (1.12)

A plot of this relation is given in Fig. 1.4. This flux-dependence of the
maximal current is the basis of using a de-SQUID to measure small variations
of the magnetic flux quantum ®; (down to 5- 107! Gs within a few days of
averaged measurements [12]).

A model of the de-SQUID dynamics [1] consists of two ideal Josephson
junction in parallel with capacitances C' and connected by two inductances
Ly and Ly in series. A sketch of this model is shown in Fig. 1.5. Although
this is not used for the later treatment, we allow for some asymmetry in our
analysis of the de-SQUID: The loop is modeled using two inductances Ly, Ly in
series (total inductance L), with an asymmetry in these inductances given by
n = (Ly — Ly)/L. The asymmetry parameter for the critical current is . The
junctions have critical currents Io(1 — «) and Iy(1 + «), and the circulating
current is J = (I — I1)/2. Since the escape rate from one potential well
is expected to depend only on the potential-barrier height and normal-mode
frequencies, no source of damping or noise is inserted.

The equations of motion of the de-SQUID are then similar to the equations of
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Figure 1.5: Model of the de-SQUID ([1]): Two ideal junctions (asymmetric
critical current Iy(1 £ «) with capacitances C' in parallel coupled by a super-
conducting ring with asymmetric inductances L, and Ls. Noise or damping
sources have not been incorporated.

motion of a particle of mass C' moving in a potential U:

¢dc
2

1
46

The loop is biased by the normalized current i, in units of 2I; and the ex-
ternal flux ¢, in units of a flux quantum ®,/27. The junction’s energy is
E; = 214%/2m and [ is defined as § = 2w L1o/®Pg. A plot of the potential
(assuming no asymmetry, n = 0, @ = 0) is provided in chapter 3 (Fig. 3.5).
The mean slope along the ¢ direction is proportional to the bias current I.
The curvature in the ¢g4. direction is due the inductive coupling between the
junctions depending on 1/(43). The potential-barrier height between adjacent
wells is determined both by the flux bias ¢, and the normalized bias current
1p. As i, decreases, the barrier height decreases as well.

U(¢7 ¢dc) =

(660" — 26— cos( % os(8) — osin(@)sin(duc) — L° (1.13)

1.3.3 The rf-SQUID

As a simpler system, the rf-SQUID had been studied before the dc-SQUID.
The rf-SQUID consists of a Josephson junction shorted by a superconducting
loop. It is a system with only one quantum variable, given by the phase across
the junction. Analogous to the scheme for the physical junction in Fig. 1.1,
the rf-SQUID is modeled by adding an inductance representing the inductance
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Figure 1.6: Sketch of the rf-SQUID. The Josephson junction is modeled ac-
cording to the RCSJ model, and the inductance of the superconducting loop
is added.

of the superconducting loop [13]. This scheme is shown in Fig. 1.6. In quasi-
static approximation (low operation frequency), an applied flux changes the
phase according to

v =21® /Py (mod 27) (1.14)

which is essentially the same as Eq. 1.11.

The circulating current is Iy = I. sin(27®/®,), and the screened flux ¢ in the
loop must satisfy ®, = & + LI [9].

Analogous to the de-SQUID, a fictitious particle of kinetic energy %Cgb can be
considered moving in a potential given by the difference between the loop’s
magnetic energy and the Josephson junction’s coupling energy.

U, 02) = Uolig (o — )’ — Bucos(s)] (1.15)

Here, Uy = ®3/47°L and (31, = 2rLI./®y. The variables ¢ and ¢, are ® and
®, in units of ®y/27w. The two local energy minima in this potential with
respect to ¢ can only be obtained numerically:

dU (¢, pa)

_ B |
e =0 = Omin = Ou 27r3m(27r¢mm) (1.16)

This type of equation requires some kind of fixpoint approximation to give a
solution. The two potential wells represent different fluxoid states of the rf-
SQUID and correspond to currents circulating in opposite directions around
the loop. For the current samples, these currents are about 3 pA.



1.3.4 The rf-SQUID as a qubit

In our group, the dynamics of rf-SQUIDs have been studied regarding their
application as a qubit (quantum bit). For a better control of the experimental
properties, it is very convenient to be able to adjust the barrier height of
the potential independently of ®,. In the rf-SQUID, the barrier height is
determined by the critical current of the Josephson junction and does not
allow manipulation. However, by replacing the single junction by a very small
de-SQUID with inductance [, it is possible to influence the potential barrier
as well. Applying flux to the small dc-loop will suppress the critical current,
and therefore the barrier height will change. This addition will make the
potential two-dimensional (depending on ¢ and ¢, ), but under some conditions
(B << 1 and L >> [), the potential can be treated as one-dimensional with
small corrections [14, 15]. In Eq. 1.15, 1, has to be replaced by

Br(Pzde) = Bro cos(TPadc) (1.17)

where ¢,4. represents the external flux applied to the small dc-loop in units of
(I>[).
Without going too far into detail, the energy levels and wavefunctions can
be calculated from the Hamiltonian, allowing for approximating the potential
with the harmonic oscillator. D. Bennett [2] gives a detailed derivation since
this method has been extensively used in his data analysis. For our purposes
of fast diagnostics, no such careful analysis is necessary. It comes into play
when a sample is considered good enough to be extensively studied, which is
not part of this thesis.
For a quick overview, the Hamiltonian reads as ([16, 17])

Q2

with capacitance C' and charge () on the junction, the latter being a quantum
conjugate variable to the phase across the junction and therefore to the flux
through the loop ¢. Following the physical picture of the energy oscillating
between the inductance of the loop and the capacitance of the junction, and
using the conjugation relation, the Hamiltonian can be rewritten similar to
the harmonic oscillator plus a cosine term:

H=——— + —mw’z? — E cos [2n(z + )] (1.19)

10
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Figure 1.7: The potential of an rf-SQUID at 3 = 1.32 and ¢, = 0.507 showing
localized energy levels and the corresponding value of mean flux (green x),
taken as is from [2].

In this equation, m = C®2 w? = 1/LC, v = ¢ — ¢, and 79 = ¢,. The
cosine term can be expressed in terms of raising and lowering operators, and
the resulting Hamiltonian is used to construct a matrix in the eigenstate basis
of the harmonic oscillator. For numerical calculations of the first few levels,
70 x 70 is a sufficient matrix size. In [2], matrix sizes up to 200 x 200 have
been used.

To give some idea about the energy levels, Fig. 1.7 shows the potential at
¢, = 0.507 and for B = 1.32, and the corresponding values of mean flux.
Levels below the barrier are in either one of the wells, but not aligned. Deep
in the wells, the level are similar to the harmonic oscillator levels, but as the
anharmonic term becomes more influential, the level spacing gets smaller.

1.4 Qubit design

A quantum two level system can form a so called quantum bit (qubit).
Unlike a classical bit, quantum bit states include all superposition states of
the classical bit states |0) and |1). The state of a qubit can be written as

|U) = a|0) + B[1), (1.20)

11



holding o? + 3% = 1 for the complex coefficients o and 3. The measurement
of the qubit returns |0) or |1), with probabilities a? and (3%, respectively. The
impossibility of measuring the state of the qubit with a single measurement
is the key idea for all algorithms used in quantum computation. Suggested
algorithms take advantage of the fast growing number of parameters (2%)
for N entangled qubits. This makes quantum systems hard to simulate on
conventional computers. But for quantum computing algorithms, entangled
computation paths with enhancement of the correct path via quantum in-
terference allow to outperform conventional computers; and are expected to
solve several problems that are today considered unsolvable such as to break
the current RSA! encryption standard.

After the introduction of the main devices used in this work in the preceding
sections, a few design goals and properties are to mention. Furthermore, a
qubit for quantum computation has to hold the five DiVincenzo-criteria (DC)

[18]:

1. Qubits have to be well defined, and the physical system has to be scal-
able.

2. There has to be the possibility to initialize the qubit in a certain state,
at least |000000...7).

3. The system’s decoherence time has to be sufficiently long (on a time
scale given by the gate time).

4. A universal set of quantum gates has to exist.
5. The capability of measuring each specific qubit separately

The qubit chip fabricated in this group with Nb/AlO,/Nb junctions using Nb
trilayer technologies allows for large-scale super-conducting circuit applications
[19, 20] and gives also advantages since Nb junctions are more robust than Al
junctions, unless the latter are stored under vacuum. Each choice of material
and process will influence the quality of the samples, changing coherence times
[2] or, as used as an indicator for sample quality in this research, the peak-
to-valley ratio obtained in the escape rate measurent (See 4.2). [2] also gives
a detailed overview over the fabrication process for the samples used in this
thesis.

A scheme and a photograph of the qubit chip is shown in Fig. 1.8. The

'RSA is a encryption method relying on the impossibility to perform the prime factor-
ization for a large number in sufficiently short time.
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Figure 1.8: a) Schematic and b) photograph of rf SQUID qubit and the
readout magnetometer. (from [2])

X

qubit loop is a square with side length 150 gm and a 5 pm wide trace. The
dce-SQUID loop containing the junctions is 5 pm x5 pm big. The inductances
of the two loops have been calculated by D. Bennett [2] with the 3D-MLSI
software package [21] to be L ~ 215 pH and | ~ 10 pH. The rf-SQUID loop is
in the center and includes the de-SQUID loop with the two junctions on the left
side. The rf-SQUID is biased by the ¢, flux bias coil on the right side, and the
potential barrier height for the de-SQUID is changed by the ¢.4. flux bias coil.
Above, the readout devices are shown. The magnetometer flux coil allows to
couple the magnetometer bias flux ¢ to the de-SQUID magnetometer, and the
magnetometer itself is biased by the current I,. The coupling of both ¢, and
¢zde can be compensated by adjusting the magnetometer bias ¢, accordingly,
since the ¢, bias coil is designed not to couple to the qubit. The magnetometer
is also designed in a way that the current bias I, does not couple to the qubit
to first order. Therefore fluctuations in I, and the whole readout process do
not influence the qubit state. The mutual inductance between the qubit and
the magnetometer has been measured to be 5 pH (design value 4.3 pH).

This design fulfills the DiVincenzo-criteria. The system is easily scalable, and
each qubit can be manipulated and read out independently as shown. It is also
possible to set each single qubit into one of his orthogonal states by tilting the
potential. Applying flux in ¢, can force the system into one of the potential
wells. The issue of sufficiently long coherence times has been studied [2].
Work is also currently in progress to probe different materials and processes
in the fabrication. The work of this thesis helps to improve coherence times
by allowing for fast sample diagnosis.

13



Chapter 2

Experimental Setup

The cryogenic setup for the experiments has been used for many years,
thus the techniques used within this research are well known. The dilution
refrigerator was suggested in the 1950’s and built in the 60’s, and evaporative
cooling mechanism have been known for longer. These years also saw a surge
of activity in the understanding of superconducting devices, as has been men-
tioned in the introduction chapter. For most of the time since then, this group
has contributed to the continuous improvement of devices based on Josephson
junctions.

2.1 Achieving low temperatures

Since the experiments related to this research are relying on superconduct-
ing devices, the experiment has to be performed at very low temperatures,
usually below 1 K. The boiling point of liquid helium (mostly *He) is at 4.2
K (at normal pressure). As well known from thermodynamics, evaporative
cooling can allow for lower temperatures than those achieved at atmospheric
pressure. By pumping on “He, the temperature can drop to 1.2 K. By substi-
tuting the *He by its lighter isotope 3He, even lower temperatures (down to
300 mK) can be achieved. The serious issue in reaching these temperatures is
to keep the heat load as small as possible, both by assuring a good thermal
insulation to the warmer parts of the system and by reducing the heat dissi-
pation by the experiment as much as possible. This leads to the concept of
the 3He-cryostat.

Our 3He-cryostat is used to measure the behavior of superconducting de-

vices fabricated in this group at temperatures between 300 mK and 1.2 K.
Since it does not circle the 3He, it can only be run for a certain time, typically
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Figure 2.1: Schematic (left) and photograph (right) of the *He cryostat. Two
gold plated copper strips provided thermal contact between the *He pot and
the top and bottom of the sample cell.
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between 6-10 hours, depending on the heat load.

Fig. 2.1 shows a schematic of the apparatus. The cryostat is immersed in
liquid “He. The 1 K pot is filled with liquid *He which is constantly being
pumped on. Its temperature goes typically down to 1.2 K. The 1 K pot is
replenished through a small impedance that connects it with the surrounding
bath. *He can be liquefied by flowing through the 1 K pot. The liquid *He
is then collected in a 3He pot. Since *He is very expensive, it is stored in an
absorber and released when required. For this purpose, there is a heater that
heats the absorber and releases the *He. When it comes in thermal contact
with the 1 K pot, it is liquefied and drips down into the *He pot. At this
stage a sorb pump is activated to pump on the *He pot and to achieve the
instrument’s base temperature.

2.1.1 Heating issues

The He3 fridge had previously been used for an experiment to study
low-frequency noise in Josephson junctions [22]. This experiment required
a smaller sample cell which could be directly attached to the sample stage in
order to maximize its cooling performance. With respect to the previous ex-
periment the sample cell used by us is more complex and heavier, therefore we
choose to not have direct thermal contact between the *He pot and the sample
cell as originally designed, since this might put too much mechanical stress on
the 3He line and the pot, which might then cause them to break. Therefore,
using four posts, the sample cell has attached to the vacuum flange instead of
the sample stage. A thermal connection has then been created between the
sample stage and the cell using gold plated copper strips.

To reduce the heat load on the *He pot and the sample stage, some modifica-
tions have been made:

Rods had to be introduced to hold the sample can in place. To bring the
thermal conductivity to a minimum, and still assure enough stability, graphite

post were chosen. The heat transfer () reads as [23]

O =12 /W( d\ \(T), (2.1)

L Jos

since the four posts are anchored at 4.2 K (vacuum flange) and 0.3 K (*He
pot). A(T) is the temperature-dependent thermal conductivity of the solid.
Since the heat transfer is proportional to the area of the post, we chose tubes
rather than rods. To prevent heat flow through the wires down from room
temperature, the wires are thermally anchored at each stage. The filters for
the current lines are glued to brass thermal anchor posts that are screwed
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Figure 2.2: Schematic of the readout: Hysteretic de-SQUID magnetometer
(left) and magnetometer flux bias coil (right).

into the flange of the outer vacuum can. The wiring stage between the 1 K
pot and the sample cell has been replaced, using superconducting wires rather
than resistive wires. These are bad thermal conductors and do not cause any
resistive heating.

After these improvements had taken place, a base temperature of 430 mK was
achieved.

2.2 Switching current measurement

The state of the qubit can be sensed by measuring the switching current of
the on-chip hysteric de-SQUID magnetometer. The switching current is a func-
tion of flux through the SQUID loop. Since the qubit is inductively coupled
to the magnetometer, a change in flux corresponds to a change in switching
current. By using the optimal bias for the magnetometer, low back action can
be achieved (no inductive coupling to first order) which allows one to read out
the qubit flux state before induced fluctuations can destroy quantum coherence
[2]. Fig. 2.2 shows the readout mechanism, consisting of the magnetometer
and the ¢y coil. The magnetometer is designed with junctions asymmetric in
size and therefore in critical current to shift the minimal magnetometer back
action point closer to the switching current of the magnetometer.

The magnetometer bias current is ramped from 0 to some value higher
than the switching current I,,. At the switching current I, the voltage goes
from zero to some finite value.

With the fast diagnosis setup, a LabView program running a NI-DAQ
card was used. The DAQ card was used to send the qubit flux bias ¢, pulses
and to give the ¢,4. level in two of the analog output channels. The trigger
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channel was used to trigger the magnetometer current ramp which is sent
by a Stanford Research Systems DS 345 function generator. By having all
signals coming from the same device, perfect synchronization could be assured.
The readout for the switching current of the magnetometer is done by the
analog input channel of the DAQ card. Constant ¢, voltage is applied from an
isolated voltage source. The magnetometer bias current is sent from a Stanford
Research Systems DS 345 function generator. It goes through an isolation
amplifier and a bias box, which consists of sensing and biasing resistors. The
biasing resistor is meant to limit the current being applied, and the current is
monitored over the sensing resistor. When the trigger box, a voltage threshold
detector, reads a voltage higher than the threshold, it sends out a trigger pulse
to the DAQ which reads the switching current.

2.2.1 The LabVIEW data acquisition program

The measurement process is controlled by a LabVIEW! program. Fig. 2.3

shows its central part. Depending upon the requirements of the specific mea-
surements, this central part may be surrounded by other loops to step one or
multiple biases. The configuration here is used to obtain switching current
distributions for escape rate measurements, stepping the level of the trapezoid
¢, pulse (see also Fig. 2.8 for the waveforms in the escape rate measurement).
The individually adjustable waveform parameters are send to a sub-VI? that
initializes the NI-DAQ card with the defined waveform parameters. The mea-
surement sub-VI is inside a while loop that repeats the measurement as often as
required for a certain ¢, value, controlling the waveforms as described above.
The 2-level measurement stack provides an adjustable time delay after each
measurement allowing the qubit to relax. The measured switching currents
are stored in an array that is processed for analysis in the case of the escape
rate measurement (using the deconvolution part of the program described in
Sec. 3.4) and saved otherwise. The end-DAQ-VI closes the channels, so that
the new waveforms can be loaded.
The initial measurements in the next section use the same scheme, but instead
of having a trapezoid pulse that is stepped, the general offset is changed.
Hence, only the initialization sub-VI is slightly different in this case. The
surrounding loop averages then over all switching events for one bias value.

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench),
from National Instruments, is a development environment for a visual programming language
named G.

2LabVIEW programs are called virtual instruments (VI), hence Vs used as subprograms
are called sub-VlIs.
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2.3 Initial measurements and calibration

For the measurements described later this chapter, like escape rate mea-
surements, a careful calibration from current to flux is necessary. Furthermore,
these measurements are used to assure complete functionality of the coils used
for each particular measurement. They are also used to obtain information
about some parameters of the qubit chip. The initial measurements usually
include

e Measurement of the magnetometer switching current as a function of
flux bias ¢, (¢, calibration)

e Measurement of the hysteresis loop to determine the ¢, calibration (¢q4c
fixed)

e Measurement of the hysteresis loop size as a function of ¢, 4. to determine
Oro and to calibrate ¢4,

2.3.1 Magnetometer switching current as a function of
flux bias

A measurement of the magnetometer switching current as a function of
flux bias ¢ is usually the first initial measurement, and it is referred to as
a “transfer function” measurement. The positions of the maximums give a
value for the current corresponding to one flux quantum in ¢y, since the pe-
riod of the transfer function is exactly one flux quantum. Fig. 2.4 shows such
a measurement. For the linear portion of this function, the switching current
of the magnetometer is proportional to the flux through the de SQUID loop
of the magnetometer and therefore to the flux change in the qubit. The mea-
surement is also required to decide upon where to “park” the magnetometer,
e. g. choosing an offset value for ¢, which should be positioned in the linear
part of the transfer function. As the slopes on the two sides of the maximum
differ?, it is preferred to choose a ¢, value on the steeper side of the transfer
function, since this increases the separation of the magnetometer switching
distributions corresponding to different fluxoid states. The chosen ¢, value
should also assure low back action between magnetometer and qubit.

3This effect becomes stronger as the temperature decreases; even showing a discontinuity
in the minimum for very low temperatures.
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Figure 2.4: The measured mean switching current of the magnetometer at
600 mK as function of flux applied from ¢,

2.3.2 Measuring flux in the qubit

For all the measurements, it is required to know the quantum state in
which the qubit is. The flux is the mascroscopic observable that corresponds
to the quantum mechanical state. The total flux in the loop of the rf-SQUID
reads as [24]

¢ = ¢, — Br sin(¢) (2:2)

For (3;, = 2, which is close to the value determined from the measurement, the
total flux ¢ is plotted in Fig. 2.5 as a function of the external flux ¢, applied to
the qubit. For some values of the external flux, there are three possible values
for the total flux. The branch with the negative slope is unstable, but the
other two branches are both possible. Depending of the history of the qubit,
either one will be chosen. The jump to the other state occurs then roughly
at the point and in the direction the arrows indicate in the figure. This gives
hysteresis loops. Their size depends on 3 and therefore on the temperature
and ¢.q. as given in chapter 1, Eq. 1.17. A measurement of the mean switching
current I, (averaging typically over 20-40 counts per point, depending on the
required precision) in the magnetometer is shown in Fig. 2.6. It shows the
hysteresis loop as expected from the theoretical graph 2.5. The measured
average switching current is proportional to the flux in the qubit since the
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Figure 2.5: Qubit flux ® as a function of qubit bias flux ®, in units of @,
calculated using Eq. 2.2 and 8, = 2. Since the parts with negative slope are
unstable, hysteric flux loops occur roughly along the arrows.
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Figure 2.6: The measured mean switching current of the magnetometer
as function of qubit bias flux ¢,. The black line (20 averaged measure-
ments/point) has no initialization, for the red (green) line (40 av./pt.) ini-
tialization to the left (right) has taken place.
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Figure 2.7: From [2]: The measured width (black circles) of the hysteresis
loop of the qubit as a function of flux from the ¢,4. bias loop along with the
calculated width (red line) for Gpo = 2.29 and AU =54 K.

magnetometer was operated in the linear part of the transfer function. For
this measurement, the bias flux for the ¢,4. coil was kept constant. The flux
sent in the ¢, coil was used to initialize the qubit with a 1 ms pulse in one well,
and then the general offset level was stepped. The chosen qubit’s potential
well determines which branch of the hysteresis loop is being measured. For
the other branch, ¢, is pulsed the other way, e.g. the pulses are added with
the opposite sign to the general offset. For the case of no initialization (black
line), a superposition of the two states is obtained.

The distance between two loops corresponds to one flux quantum in ¢,. This
property is used to calibrate the current sent in the ¢, line.

As a next step, the same measurement is repeated for different ¢,4. biases.
Since 1, depends on ¢.q. (Eq. 1.17), this changes the size of the hysteresis
loop. A typical measurement is shown in Fig. 2.7 which is taken from [2]
without alterations. It allows one to calibrate the current in the ¢.q4. line,
since one period equals one flux quantum. The fit used for this data led to
Oro = 2.29. This value was obtained under the assumption that the timing of
the waveform does not change during the measurement of the different widths,
and that the fluxoid state of the qubit switches on average from the metastable
state to the other state at the same barrier height. The barrier height has been
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estimated to be AU =54 K.

Additionally, the measurements of the hysteresis loop can be used to obtain
information about the cross coupling between the flux bias coils. This cross
coupling has be compensated for by adjusting the magnetometer flux bias ¢,
accordingly.

2.4 Escape rate measurement

The measurement of escape rates from one potential well to the other brings
together all the ideas treated in this chapter so far. With all calibrations it is
now possible to measure the dynamics of the qubit. In the beginning of the
measurement, the qubit is in a metastable state in one well. This state is not
the ground state of the system, but the ground state within a given potential
well. Then the qubit flux bias ¢, is pulsed for a certain time t,, to allow the
state to hop over the barrier (thermal escape) or tunnel through it (quantum
regime), depending on the temperature of the experiment. If the state which
the system tunnels into relaxes fast enough to the ground state of the well,
than the system will remain in the new flux state which can then be read out.

The constant current in ¢.4. allows for adjusting the barrier height. As
described above, the ¢, level is set to a certain value (“parked magnetometer”).
The general level of the current applied on the qubit flux bias ¢, is chosen
to tilt the potential to a position where the qubit is in a superposition of
both states. Additionally, the initialization and the measurement pulse are
applied. First, the initialization pulse makes sure the qubit is in the metastable
state. The measurement pulse than tilts the potential such that there is a
possibility for thermal (or quantum, depending on the temperature) escape of
the quasiparticle in the other well. Fig. 2.8 shows a cartoon of the waveforms
used in this measurement, and from Fig. 2.9, the resulting change in the qubit
potential becomes obvious.

The theory of thermal escape from a potential well will be treated in the next
chapter, especially focusing on finding a way to analyze the data already in
the data acquisition program.
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Figure 2.8: Waveforms sent in the qubit flux bias ¢, and in the magnetometer
bias current I,. At the switching current I, the the magnetometer switches
from the zero-voltage state to a finite-voltage state above the threshold level,
triggering the DAQ to read the actual bias current value as switching current.
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Figure 2.9: Measured hysteresis loop and scheme of the sent waveform in
the ¢, bias. X-axis represents ¢,, the y-axis is switching current for the
loop (proportional to ¢) and time for the waveform (increasing in negative
direction). Cartoons of the potential at different points of applied flux have
been added.
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Chapter 3

Deconvoluting switching current
histograms

One of the main goals of the research related to this thesis has been to use

the knowledge about switching current histogram statistics to analyze data in
the high temperature regime (up to 1.3 K). Whereas the distinction between
the two fluxoid states in the lower temperature regime, where the distributions
are more separated, is just done by setting a threshold level, this method fails
for higher temperatures as the distributions are broader and begin to overlap.
By using the theory presented in this chapter to fit the data while running
the measurement, it provides a tool to carefully measure escape rates over a
wider range of temperatures. It also allows one to access a broader part of
the transition for the rate measurement at temperatures where the threshold
method starts to fail, as will be discussed in Sec. 4.5 in the next chapter.
The possibility to measure escape rates at temperatures between 1.3 K and
500 mK allows for a quick turnaround time in qubit sample diagnostic exper-
iments. Generally, for all experiments related to that thesis research, temper-
atures were higher than the cross-over temperature, however the presence of
quantum tunneling from an excited state can be observed.
The experiment explained in Sect. 2.4 gives as a result some distribution of
switching current values. A typical measurement is shown in Fig. 3.1. The
distribution is clearly not Gaussian since it is asymmetric. With the theory
presented in this chapter, it is possible to derive an analytical formula that
allows fast calculation of switching current distribution. The later derived
formula 3.11 is used in Fig. 3.2 to simulate switching current events. The
calculated events seem to be in good agreement with the experiment.
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Figure 3.1: The switching current for 8,000 switching events, measured in a
3He-cryostat at 530 mK.
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Figure 3.2: The calculated switching current for 8,000 switching events, simu-
lated with the model with the linearized exponent. The width and the mean
of the switching current distribution are arbitrary, but are chosen to be com-
parable to the measured data in Fig. 3.1.
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3.1 Escape rates for a single Josephson junc-
tion and the rf-SQUID

It is useful to begin our discussion with the theory of escape rates for a
Josephson junction (JJ). Under the conditions typical for our experiments, the
formula for escape rates for the 2D-dc-SQUID potential has a similar behav-
ior to that of a single Josephson junction. The theory of the noise-activated
escape from a potential well into another well has been widely studied. In
a seminal paper, H.A. Kramers [25] discussed the general case of Brownian
motion in a field of force. This work has been extended later for the case of
Josephson junctions by Kurkijarvi [26], Biittiker, Harris, Landauer [27] and
others [28, 29].

Kramers found that the thermal escape rate has the simple form of the Arrhe-
nius law: W au

I'= at%e_’“bT (3.1)

In this equation, w is the frequency of small oscillations at the bottom of the 1D
potential well, a; is a damping factor (less than unity), AU is the height of the
potential barrier, kg is the Boltzmann factor and 7" the absolute temperature.
For currents less than the critical current, the zero-voltage state is metastable
and there is some switching probability. The potential barrier height given by

3, 28]
(1)

3
44/2 I\?2 I.—1
%iUo(l——> ,l —<<1

1

3
I 1
— —cos* (—) , I < I,

AU = 2U, 7 7

(3.2)

where Uy = [(®q/2m. The potential can be considered to be cubic for
el << 1.

" The fit in Fig. 3.3 shows that the experimental data agree with the model
used in the paper of Martinis et al. [3], which gives a first hint that, although
we measured the histogram as the switching of a de-SQUID, the theory for the
Josephson junction and related approximations might work for the de-SQUID
magnetometer as well. The switching probability shown in Fig. 3.3 is related
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Figure 3.3: A measured histogram, fitted with the model for the Josephson
junction [3]. When normalized, this curve represents a probability distribution

for our de-SQUID.

to the escape rate by the following relation:

d

PO=-g,

o
e A (3.
O S
This expression allows one to calculate P(I) in a closed form if T" is simple
enough, but is usually non-analytical and therefore not very useful for the
purpose of a real time fit in our data acquisition program. A first step to-
ward an analytic approximation for the switching distribution was done by
Kurkijarvi’s [26] studies of the rf-SQUID, looking at the distribution in the
external flux at which the ring admits a quantum of flux. He also considered
the barrier height AU proportional to (Agbx)%, whereas the equilibrium Gibb’s
energy is linear in A¢,.

A¢, is defined as A¢, = ¢ — ¢, Where ¢,. is the critical external flux
at which a flux quantum enters the ring in the absence of fluctuations, and
¢, is the external applied flux. This leads to the following equation for the
probability that a decay has not taken place:

3

W (u) = exp(—Xe %) (3.4)
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Here,

u = (Up/ksT)*A¢py
3A¢, 2™ \ Uy

W is related to the escape rate I' by

W(t) = exp <— / " s r(A@(s))) (3.6)

—0o0

and Eq. 3.4 follows after assuming the flux sweep to be linear in time and
carrying out the integral.

The influence of the time-scale setting part % depends on the dampening.
n is defined as n = 1/RC, R and C are as introduced in Sec. 1.3.3. The

barrier escape treatment is accurate as long as the sweep rate does not begin
2
to compete with the factor ;r—on (Still [26]). Under this conditions, Kurkijarvi

derived the following analytical form the distribution P(u) = dW (u)/du:

o

ol

dW (u)
—y ) (3.7)

Figure 3.4 shows the dependence of the shape of the distribution dW (u)/du
for different values of X. It is easy to see that for rising X the absolute value
of the maximum and the corresponding u,,,, rise, and the width is getting
smaller. It is worth mentioning here that the X-value influences width, po-
sition and amplitude of the histogram. This is important as we later intend
to find a better fitting function for the switching current histogram, such that
the different properties (width and mean) can be modulated by parameters
independent from each other.

P(u) = = ;X\/ﬂ exp(—u% — Xe™®

3.2 Escape rates for the dc-SQUID

A dc-SQUID magnetometer is the system of main interest for this work.
Although the theory of escape rates has many similarities with that of the
Josephson junction, the main difference is that the de-SQUID is a quantum

system with two macroscopic variables: d; and 5, the two phases across the
junctions in the de-SQUID. The dynamics of the de-SQUID can be treated as
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Figure 3.4: The distribution dW (u)/du for different values of X. From left to
right: X = 107,10, 104, 102, 10.

a fictitious particle of mass C' moving in a 2D potential [1, 30]. The potential
can be written as

0(6.0w) = B (~eos (% )eoste) =0+ 25) a9

The variables ¢ and ¢,4. replace the two phases across the junctions d; and ds.
¢ = (01 + 02)/2 is the average phase, and ¢4. = dy — 07 is the phase difference
across the de-SQUID. j = (¢g. — 2m¢y)/Pr is the normalized circulating cur-
rent, v = I /21y, and By = 2w L1/ Py, assuming no asymmetry in the junctions
and the loop (see Sec. 1.3.2).

Fig. 3.5 shows a 3D plot of the de-SQUID potential as a function of ¢
and ¢g.. In the ¢ direction, the potential (without flux bias) shows a sequence
of minima and saddle points. With ¢4. = 0, this is exactly the washboard
potential treated in the previous section. As |¢p4.| increases, the potential rises
sharply. Thus, a particle trapped in a potential well would escape over the
saddle point, e.g. near ¢4 = 0.

In the thermal regime for temperatures well above the crossover temperature,
the escape is similar to the one treated before. Kramer’s formula 3.1 still
holds, except that the oscillation frequency at the bottom of the well (wy,) is
rescaled by the ratio of the transverse oscillation frequencies in the well (wy,,)

33



Figure 3.5: The potential for the de-SQUID with zero flux bias (¢, = 0) and
Or = 0.3. The potential shows a sequence of saddle points and local minima
located at ¢4. = 0 in the ¢ direction and rises sharply in the ¢g4. direction as
|ae| increases.
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and at the saddle (wys). The escape rate then reads as

1 Wi AU
I'= — Wi wt a; exp (_kb_T> (39)

The minimum barrier height AU is reached at the saddle, T is the temper-
ature and a; is a damping dependent factor. Eq. 3.9 is equivalent to the
thermal activation rate of a 1-D system having the frequency of small oscilla-
tions renormalized by wy, /wis [30]. It is easy to show that the barrier height
for a magnetometer is proportional to the current in the same way it is for the
single Josephson junction: AU o (Af )% Thus, the mathematical treatment
stays the same for both.

3.3 The probability distribution in linear ap-
proximation

A closer study of the distribution 3.7 will yield that the precise form of
the distribution P(u) is often not relevant. Thus, effort has been taken to
find an analytic formula that allows one to get around the complicated and
time-consuming numerical calculations. This has been successfully achieved
for the rf-SQUID switching distribution [31, 32]:

If the exponent of the rate in Eq. 3.3 is slowly varying in the vicinity of some
AI, then the barrier height dependence on I can be assumed to be linear and
the rate can be approximated by

I'=Aexp(—B AI) (3.10)

In this equation, B = %% | and A = I' exp(B Al)|x7. Then, the regular
distribution function follows to be

Pu) = X -e7vXe (3.11)

where X = A/IB and u = B Al

X determines the maximum and, as we will see, the mean of the distri-
bution (tme: = In(X)) and w includes the scaling factor between switching
current and width of the distribution. In the more general, not normalized
case, an amplitude factor A is added.

The moments of this distribution have been calculated previously [31] and
have been found to be (where v is Euler’s constant and ((s) is Riemann’s Zeta
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Figure 3.6: Comparison between the fitting functions in linear approximation
for (from left to right) X = 10%,10° 10%,100,10. Width and amplitude are
independent from X. Amplitude A was set to 1.

function):

<u>=7v+In(X) =~ 0.557216 + In(X)
2
Oy =< (u— < u >)? >= % ~ 1.64493

< (u— < u>)*>=2-((3) ~ 240411
(3.12)

The moments 3.12 and the figure 3.6 show the independence of the shape of
the distribution from the variable u and the parameter X. X only determines
the position of the mean and the maximum of the distribution. The amplitude
only depends on the amplitude factor A. By factoring u in a scaling factor and
current I for a more convenient analysis of the data, we see that the width is
only determined by the value of the scaling factor.

Comparing the fits in 3.3 and 3.7, the first done using the theory for the
underdamped junction [3], the latter using the derived analytic expression in
Eq. 3.11, both seem to work equally well for our case. Thus, this formula was
found to hold also for the de-SQUID magnetometer and to give surprisingly
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Figure 3.7: A measured histogram, fitted with the analytical expression pre-
sented in 3.3. The fit is comparable to the one in Fig. 3.3

good results for fitting and analyzing high temperature data.

For the purpose of fitting a de-SQUID magnetometer switching current
histogram with the function mentioned above, the variable is bias current [
rather than flux. It is convenient to rewrite the probability distribution in
terms of the maxima and the widths of the fitting function. For this, we
substitute u with a linear function, using the current [ as a variable. I,
corresponds to the switching current at which the most switching events occur,
which is of course generally lower than the critical current I..

Substitute : wu=>0-1 and X = e"m**

where Umee = b Inas

u

P(u) g A . X . e_U—XTi*
P(]) — A . eb'lmaace—b~f—eb'1maz.e—bJ

P(I) =A- e_b(l_jmmc)_eib(]ilm‘”) (313)

Rewriting the fitting function like this, A is an independent parameter
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that determines the amplitude and b determines the width of the function.
It rescales the argument of the probability distribution. ¢ can be used as a
prefactor not differing much from 1 that allows to shift the maximum 7,,,,, if
necessary, making up for small errors in determining the maxima. Two ways
of obtaining the maxima have been used: The data acquisition program allows
to run a smoothing algorithm that can give a good estimate for the maxima,
or the maxima can be obtained by independent preceding measurements of
the distributions for each single fluxoid state. Including the parameter c as
described, the probability distribution reads as

e*b(I*C Imax)

P(I)= A- e tImetma)= (3.14)

The independence of the parameters from each other is the biggest ad-
vantage of this approximation compared to the Kurkijarvi theory since it in-
creases numerical stability. It allows one to provide the Levenberg-Marquardt-
algorithm [33] for the fit with better initial guesses.

As described previously, we are confronted in our measurements with par-
tially overlapping switching current distributions that correspond to different
flux states of the qubit. The fitting function for this double distribution (with
parameters B, d, f analogous to A, b, c¢) reads as

—b(I—clpaz,1) _ _ e~ U= fIpaz 2)
P(I) — A . efb(lfclmaw,l)fe )1 _'_ B .e d([ fI’"Lll(L',Q) € 2 (315)

Again in this formula, the factors ¢ and f are included in front of the

maximum currents I,,,,,, ¢ = 1,2, respectively. For most measurements, ¢ and
f were fixed (¢, f = 1) and the widths and maxima were previously obtained by
independent measurements of the switching current distributions for the two
states. This requires careful measurement of these parameters, using around
five times more counts than for the distributions during the sweep.
After using the deconvolution method, the probability of the system being
in a specific fluxoid state can be obtained by the ratio of the amplitudes
A/(A 4 B)(in the case of equal widths). Once this assumption no longer
holds, the ratio r is given by

A-b

-4 1
"T B AdtrAb (3.16)

c and f cannot influence the ratio since they only shift the distribution func-
tion along the current axis.

For a more careful analysis of the data, it is possible to allow widths (b and
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Figure 3.8: A scheme of the LabVIEW program, used to deconvolute switching
current histograms in order to measure escape rates.

d) and maxima (¢ and e) to change by a small number in order to make up
for statistical fluctuations. Unfortunately, this is restricted to the part of the
transition where the ratios of left and right well are about equal (0.2 < r <
0.8), since the width as a free parameter is very sensitive to noise for statistics
with a small number of counts.

3.4 A LabVIEW program using the analytical
linear approximation

The theory presented before is used in a LabVIEW program to have direct
data processing while measuring the current sample. The program consists of
two parts, the first acquiring the data by interacting with the measurement
electronics (2.2.1), the second one processing obtained raw data to give the
probability of the system to be in one fluxoid state our the other for a given ¢,
value. ¢, is swept along the edge of a hysteresis loop as shown in the flux-over-
applied-flux graph Fig. 2.5. The code for second part is shown schematically
in Fig. 3.8. Starting out from the raw switching distribution (like shown in
Fig. 3.1), the raw data is first binned according to the histogram parame-
ters provided by the user. These parameters include minimum and maximum
switching current for the histogram and the number of bins.

The maxima of this histogram are then obtained by running a smoothing al-
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gorithm using small adjacent averaging until the discrete approximation for
the first derivative has only three (in the case of two peaks) or one (in the case
of one peak) changes in sign. With the approximation for the first derivative,
the coordinate of the maximum is calculated. Especially if the maxima are
allowed to wiggle a bit (by ¢, f ~ 1), this provides sufficient accuracy. The
method can fail if background noise masks one of the maxima or if resonances
or noise strongly strengthen or weaken the appearance of switching events at
certain current values, thus resulting in a spike (positive or negative) in the
histogram.

The maxima are fed into the model constructing sub-VI, that mostly concate-
nates strings. It uses the formula from Eq. 3.15. A surrounding case structure
selects the parameters required for the specific situation (sometimes it is more
efficient to obtain values for some fitting parameters by preceding independent
measurements).

The Levenberg-Marquardt algorithm then finds the best least-square-fit for
the given parameters and the data. It converges quadratic locally, and as long
as the initial guesses are good and the data is non-pathological, this procedure
seems not to exhibit problems. Good initial guesses are relatively easy to pro-
vide, since at a fixed temperature the approximate width of the distribution
is usually known, and it is good enough to start with guessing a third of the
counts number for the amplitude. The time necessary to calculate the fitting
parameters is negligibly small compared to the timescale of the data acquisi-
tion.

Fig. 3.9 visualizes the procedure. The data is binned within the given current
limits (here 0.54 and 0.68 pA), and then a fit is obtained. Its parameters are
used to calculate the probability of the system to be in one of the two fluxoid
states, using Eq. 3.16.

Unfortunately, the given Levenberg-Marquardt fitting program does not allow
one to limit the parameter range. Thus, control loops have to be implemented
to validate the calculated fitting parameters and the resulting probability. The
two major errors occurring in this experiment have been negative amplitude
factors and extremely large widths, usually appearing in the case where one
distribution is almost on the level of the background noise. Then, to make
up for the noise (usually less than 5 counts/bin), the fitting algorithm can
choose the width of one distribution to be very large, then basically fitting the
background noise level. It also can happen that the amplitude is chosen to be
a small negative value, making up for a little fluctuation at the position where
the smaller distribution is expected to be. Both of these errors lead to wrong
ratios, even greater than 1 in the latter case. A complete control loop has not
been programmed since it seemed not necessary: We mostly worked with a
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Figure 3.9: The black squares show a typical histogram as obtained from a
switching distribution measurement. The black line is the fit given by the data
acquisition program, the green line shows the single fit for the right and the
red one for the left fluxoid state. The data has been acquired at 530 mK.

41



reduced number of parameters, having the width fixed and not allowing for
maximum wiggling. Then, in the case of appearing negative amplitudes, they
were automatically set to 0, which makes the ratio 0 or 1. These points are
then unusable for the escape rate calculation, but appear in a region where
escape rate calculation usually does not make sense anyway due to a very big
signal-to-noise-ratio.

An almost object-oriented LabVIEW program has been written to reanalyze
data in case of any unforeseen errors. It allows for manual changes in the
parameters and the choice of the fitting function (comparing to Gaussian fit).
It also provides a convolution tool to smoothen the data (a feature that is
usually not used for analysis). With this program, all errors can be manually
compensated.
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Chapter 4

Analysis and conclusion

4.1 Introduction

After presenting the theory of the qubit and the measurement, this chapter
intends to show some data obtained using the deconvolution method (Sec. 3.4).
Furthermore, it will give some comparison first between the measured samples
and then between the deconvolution method and the prior used threshold level
method. The remainder of this chapter will then conclude this work and gives
some outlook for future work.

4.2 Escape rate measurement data analysis

As explained in the preceding chapter, switching current distributions are
measured at various values of applied qubit flux bias ¢,. Single switching
events are measured 2000-4000 times, depending on the requirements of the
statistics. The data is then deconvoluted using the program explained in Sec.
3.4. The amplitudes and the widths of the distributions for each states allow
one to calculate the probability for the qubit state to be in one of the two wells
(Eq. 3.16).

4.2.1 Probabilities

As the data acquisition program sweeps ¢, along the transition (the edge
of the qubit hysteresis loop), the probability for the qubit of being in one of
the two fluxoid states is obtained for each ¢, value. A typical measurement is
shown in Fig. 4.1, using sample A. Since the qubit is initialized in the right
well, the probability for being in the left well is initially zero. As we step the
¢, level, the potential is tilted further so that there is a nonzero probability of
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Figure 4.1: Sample A: The probability for the qubit to be in one of its states
as a function of ¢, at 600 mK. The escape rates obtained from the same
measurement are shown in Fig. 4.2

tunneling to the left well. The measurement shows peaks that are caused by
an enhanced tunneling probability for well-aligned levels when levels in the left
well are in resonance with levels in the right well. These data can be converted
into escape rates as shown in the next subsection.

In a typical sweep, about 40 points have been measured between two peaks
in order to get a sufficient resolution. In order to test the reproducibility of
the data, every measurement has been repeated twice, introducing an offset in
the ¢, values but keeping the step size the same. Furthermore, temperature
stability has been monitored throughout the whole measurement process.

4.2.2 Conversion from probability to escape rates
The measured probability P(¢,) can than be converted into escape rates

['(¢,) by

tm 1-P (¢m)
where t,, is the amount of time that the potential is being tilted to allow for
the qubit to escape into the other potential well. To determine the zero for the

P(6s) = — +1n (;) (4.1)
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Figure 4.2: Sample A: The escape rates for the qubit for the escape from
one fluxoid state to the other, measured on both sides of the loop (red tri-
angles/black squares) at 600 mK. The escape rates are calculated using the
measured probability as a function of qubit bias flux ¢,, shown in 4.1

applied flux bias ¢,, we have measured the escape rates on both edges of the
¢ — ¢, hysteresis loop. When the zero for the ¢, bias is carefully calibrated,
the escape rates for both sides coincide as can be seen in Fig. 4.2.

4.3 Temperature dependence of the thermal
escape rates

To get a better understanding of the strength of the new data acquisition
program, the same sample has been tested at 1.3 K, which is the base temper-
ature of the cryostat if the 3He is liquefied but not pumped. In this regime, the
distributions are broader and their overlap becomes very strong. The escape
rates calculated from this measurement are shown in Fig. 4.3. The peaks are
broader than at lower temperatures but are still visible, as the levels given by
the arrows indicate. The numerical ¢, values for the levels have been obtained
using a program capable to calculate the levels based on the known qubit pa-
rameters. Formerly, due to the lack of a strong analysis tool, thermal escape
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Figure 4.3: Sample A: Escape rates measured 1.3 K, using the deconvolution
tool. The arrows mark the peaks corresponding to the given levels. The inset
is a schematic of the potential, indicating the level terminology.
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Figure 4.4: Sample B: Escape rates measured at 600 mK. Peaks have been
calculated from the parameters and are marked with arrows.

rate data had only been obtained in a dilution refrigerator for temperatures
between 10 and 600 mK [2]. The analysis of this data used a different method,
called the threshold level method, that will be described and compared to the
deconvolution method in section 4.5.

4.4 Comparison between samples

As already explained, the deconvolution method is meant to be used for
sample comparison at temperature achievable with a *He-cryostat, allowing
for a faster diagnostic since a *He-cryostat requires less preparation time and
less liquid helium, than a dilution refrigerator. Therefore, after having proved
the efficiency of the analysis method on a well known sample (Sample A), we
have proceeded toward testing a newly fabricated sample (Sample B).
Unfortunately, sample B displayed a worse behavior than sample A, as shown
in Fig. 4.4. Fig 4.5 shows that also for sample B the fluxoid states are well
separated and the analysis of the switching distribution is within the capabil-
ity of the deconvolution method. Thus, the results must be due to the process
and material changes.

In recent years the problem of material optimization for better qubit perfor-
mance has become more and more important after the discovery by Martinis’
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Figure 4.5: Sample B: Switching current histogram measured at 600 mK, fitted
with the analytical expression derived in the last chapter. The agreement
with this approximation is not as good as in Fig. 3.7, which is due to sample
properties.

group [34, 35] of the presence of two level fluctuators (TLF) in the dielectrics
that tend to couple to the qubit with results that are detrimental to coherence
times.

In the effort to reduce the effect of TLF on our qubit work is in progress to-
ward optimizing the fabrication process. Our process is based on Nb/AlO,/Nb
trilayer technology and is described in references [36, 37].

The second sample showed in this thesis (sample B) differs from sample A in
having most of the qubit pattern in a Nb wiring layer (counter-electrode), as
opposite to having the qubit mostly patterned in the Nb/AlO,/Nb layer (base
electrode). This reduced the amount of AlO, dielectric in direct contact with
the qubit. Another difference between the two samples was in the choice of the
substrate. In general the resistivity of a silicon substrate should indicate the
level of defects. Sample A was fabricated on a silicon wafer with a resistivity
of 20 Qcm , while for sample B a silicon wafer with 15 k{2cm was chosen.
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Figure 4.6: Sample A: The threshold in use to distinguish the two states,
shown at three values for ¢,. Fach histogram measurement had a total of
4,000 counts. The escape rates obtained from the same measurement are

shown in Fig. 4.7

4.5 Comparison to a formerly used method in
data analyzing

For an easier analysis, we used the so called threshold method to distinguish
the two states. Fig. 4.6 shows how the threshold is set; the probability is then
simply defined as the number of counts below the threshold divided by the total
number of counts. This procedure is very effective as long as the distributions
are nicely separated, as it is the case for sufficiently low temperatures. As our
work is in the regime of higher temperatures, this is not always the case. For
sample A at 600 mK problems happen to arise as the probability comes close
to 0 or 1. This effect is caused by the long left tail of each distribution which
might mask some counts of the other fluxoid state.

Fig. 4.7 shows how the threshold method starts to fail as the distributions
get broader and overlap more. For the green plot on one side of the qubit
hysteresis loop, the values for the highest rates do not agree with the other
three, and the same is the case for the red on the other side of the loop in
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Figure 4.7: Escape rates, measured at 600 mK on both sides of the hysteresis
loop, analyzed with the deconvolution method (black dots and squares) and
the threshold method (red squares for the right edge of the hysteresis loop and
green squares for the left edge), plotted versus ¢,.

case of the lowest rates. Especially the slope in these parts does not agree any
longer, and the first/last peak is disguised.

These data clearly show the limits of the threshold method at temperature
higher than 600mK when the width of the switching distribution is more and
more broadened by thermal effects. As samples should be characterized in a
3He-cryostat, fast diagnosis requires both the capability to measure at higher
temperatures and also to measure distributions that overlap more than the
one shown. Especially in the latter case the long tail of the distribution makes
a threshold-based analysis impossible.

4.6 Conclusion

In this thesis, a deconvolution method for fast sample diagnosis has been
developed. It uses the peak-to-valley ratio in the thermal escape rate mea-
surement as an indicator to decide upon the quality of a sample. Although
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the theory has been originally developed for an rf-SQUID, it was found to be
suitable for the de-SQUID magnetometer as well. The deconvolution method
allows to observe quantum mechanical behavior with surprisingly good results
for data up to 1.3 K, which is an improvement as former measurements only
went up to 600 mK. Before, only classical properties of the qubit samples have
been tested at these temperatures, leaving the test of the quantum mechanical
properties to measurements in a dilution refrigerator. The capability of ob-
taining data in sufficient quality at higher temperatures gives a fast feedback
for the sample fabrication. Now, the quality of new samples can be determined
using a He-cryostat which is less liquid Helium consuming and requires less
time for the cool down and the warm up process.

For the measured sample B it can be clearly concluded that it has not been
an improvement. Although the changes explained in Sec. 4.4 were expected
to improve sample quality and decoherence times, this was not the case. One
possible cause for this might be that the qubit is stronger influenced by the
insulating dielectric S10Oy where two level fluctuators are present. This prop-
erty is highly sensitive to the fabrication process. Furthermore, the switch to
high resistivity silicon wafers seems not to improve sample quality (see com-
parative measurements shown in [2]), thus future samples might focus on using
low-resistivity substrates.
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