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Abstract of the Dissertation 

Development of a Wireless Health Monitoring System with an 

Efficient Power Management Scheme based on Localized 

Time-Varying Data Analyses 
by 

He Zhao 
Doctor of Philosophy 

in 

Biomedical Engineering 

Stony Brook University 

2008 

This work involves development of an integrated health monitoring system based on 
wireless sensor motes for continuous wireless monitoring of vital signs for large populations.  
The system incorporates efficient power management schemes based on localized data analysis, 
and will be useful in a variety of settings such as nursing homes, emergency rooms, military 
fields, and individual health monitoring.  Remote monitoring of patients via wireless sensor 
systems has the potential to change the way health care is delivered.  However, until now very 
few cost-effective wireless remote monitoring systems have been developed and put into use.  
One of the key challenges in making wireless monitoring ubiquitous in health care is efficiently 
managing the limited energy in individual sensor nodes.  To this end, the current work utilizes 
smart sampling and sufficient processing at the sensor so that minimal data is transmitted.  Our 
technique is based on the development of appropriate hardware and software implementations.  It 
has the added benefit of significantly reducing the amount of data that needs to be analyzed at the 
central server, which further facilitates faster real-time alerts. Finally, our localized data analysis 
scheme also results in minimal usage of available radio transmission bandwidth, which allows for 
robust wireless transmission of many other vital signs’ data from multiple patients in close 
vicinity.  In this context of wireless health monitoring, this work has the following four specific 
aims.  The first specific aim involves design and development of integrated scalable wireless 
motes containing an electrocardiograph, pulse oximeter sensor and other various sensors.  The 
goal is to determine if these additional physiological parameters lead to better on-demand 
sampling rate strategies, better fault tolerance, and more accurate medical decision alerts.  The 
second specific aim is to design and develop an on-demand variable sampling data transmission 
scheme. The sampling rate strategy will be based on localized real-time data analysis using a 
microprocessor attached to a mote combined with the subject's a priori medical data and the 
published risk factors.  The third specific aim is to design wireless networking protocols for 
transmitting data from a large number of monitored subjects in the same physical space.  The 
fourth specific aim involves development of new algorithms to facilitate more accurate medical 
decision alerts.   



iv 

TABLE OF CONTENTS 

List of Figures ................................................................................................................... vi 

Abbreviations ................................................................................................................... ix 

Introduction and Background ......................................................................................... 1 

Part 1 Algorithm Development ........................................................................................ 5 
CHAPTER 1  ARMA MODEL IDENTIFICATION USING MULTIPLE BASIS FUNCTIONS  ............ 5 

1.1 Introduction ................................................................................................................... 5 
1.2 Using Multiple Basis Functions for ARMA Model Identification ............................... 6 
1.3 Applying the Method to Simulated Data ...................................................................... 8 
1.4 Applying the Method to Renal Blood Pressure Data .................................................. 10 
1.5 Summary ..................................................................................................................... 11 

CHAPTER 2  DEVELOPMENT OF A NEW METHOD TO ESTIMATE COHERENCE FUNCTION  .. 12 
2.1 Introduction ................................................................................................................. 12 
2.2 The Development of a Parametric Method to Estimate Coherence Function ............. 13 
2.3 The Application of the Method to Computer Simulations .......................................... 18 

2.3.1 Results of an ARMA model with noise and nonlinearity ............................................... 18 
2.3.2 Comparing the new method to RLS and STFT method .................................................. 21 
2.3.3 Time-Frequency resolution comparison ......................................................................... 22 

2.4 Application of the method to renal system data .......................................................... 23 
2.5 Summary ..................................................................................................................... 26 

CHAPTER 3  DEVELOPMENT OF TIME-VARYING CAUSAL COHERENCE FUNCTIONS  .......... 27 
3.1 Introduction ................................................................................................................. 27 
3.2 Mathematic Derivation of the TVCCF ....................................................................... 28 

3.2.1 Mathematic model .......................................................................................................... 28 
3.2.2 Derivation of the theoretical bounds of TVCF ................................................................ 29 

3.3 Simulation Examples and Results ............................................................................... 32 
3.3.1 Simulation of a linear causal system ............................................................................... 32 
3.3.2 Simulation model based on the Poincaré oscillator......................................................... 32 
3.3.3 Generation of time-varying surrogate data...................................................................... 33 

3.4 Application to Renal Blood Pressure and Blood Flow Data ....................................... 37 
3.4.1.  Animal model................................................................................................................ 37 
3.4.2.  Results ........................................................................................................................... 38 

3.5 Summary ..................................................................................................................... 39 
CHAPTER 4  DEVELOPMENT OF TIME-VARYING SURROGATE DATA METHOD ................... 41 

4.1 Introduction ................................................................................................................. 41 
4.2 Method to Generate Time-varying Surrogate Data ..................................................... 41 

4.2.1 Nonparametric method .................................................................................................... 41 
4.2.2 Parametric: AR model based ........................................................................................... 42 

4.3 Applying TVSD to Simulation Examples and Physiology Data ................................ 42 
4.3.1 Determine the threshold for nonlinearity detection ......................................................... 42 
4.3.2 Determine the threshold for time-varying coherence functions ...................................... 44 

4.4 Summary ..................................................................................................................... 48 



v 

Part 2 Instrumentation ................................................................................................... 50 
CHAPTER 5  WIRELESS MULTIPLE SUBJECT-PARAMETER MONITORING  ........................... 50 

5.1 Introduction ................................................................................................................. 50 
5.2 System Design ............................................................................................................ 50 

5.2.1 System overview ............................................................................................................. 50 
5.2.2 The Hardware Gear ......................................................................................................... 51 
5.2.3 Communication protocols ............................................................................................... 52 
5.2.4 Development platform and programming tools .............................................................. 56 

5.3 Summary ..................................................................................................................... 58 
CHAPTER 6  SYSTEM IMPLEMENTATION AND PERFORMANCE ASSESSMENT ...................... 60 

6.1 Introduction ................................................................................................................. 60 
6.2 Software Development at the Wireless Transmitter End ............................................ 60 

6.2.1 Data collection module ................................................................................................... 61 
6.2.2 C/D TP parser ................................................................................................................. 65 
6.2.3 Data packing and sending ............................................................................................... 67 

6.3 Software Development at the Receiver End ............................................................... 68 
6.3.1 Relay command/data upwards and downwards .............................................................. 69 
6.3.2 Coordinating medium access .......................................................................................... 70 

6.4 Monitor Software ........................................................................................................ 73 
6.4.1 Overview of the monitor software functions................................................................... 73 
6.4.2 Buffering technique for real-time signal display ............................................................. 76 
6.4.3 Importing Matlab program into the monitor software ..................................................... 77 

6.5 Performance Assessment ............................................................................................ 80 
6.5.1 Power consumption ......................................................................................................... 80 
6.5.2 Signal validation ............................................................................................................. 82 

6.6 Summary ..................................................................................................................... 84 
CHAPTER 7  ON-BOARD LOCALIZED DIGITAL SIGNAL PROCESSING ................................... 86 

7.1 Introduction ................................................................................................................. 86 
7.2 The Additional Microprocessor and Software Development Tools ........................... 86 

7.2.1 The additional microcontroller – MSP430F449 .............................................................. 86 
7.2.2 MSP430 IAR Embedded Workbench® IDE .................................................................. 88 
7.2.3 The programming language: Embedded C++ ................................................................. 90 

7.3 Software Development................................................................................................ 90 
7.3.1 Low-level implementation: Hardware Abstraction ......................................................... 91 
7.3.2 High-level implementation: The System Software Components .................................... 97 

7.4 Embedding Real-Time DSP Algorithms into the Microcontroller ........................... 104 
7.4.1 Embedding real-time R-wave detection algorithm ....................................................... 105 
7.4.2 Embedding real-time Fast Fourier Transform (FFT) .................................................... 108 
7.4.3 Code optimization ......................................................................................................... 112 
7.4.4 Timing aspect of the embedded algorithms .................................................................. 116 

7.5 Summary ................................................................................................................... 120 
CHAPTER 8  FUTURE DEVELOPMENT ................................................................................ 122 

Bibliography .................................................................................................................. 125 

Appendix ........................................................................................................................ 132 
I.  TVOPS ALGORITHM ..................................................................................... 132 
II.  SP-DSP CLASSES REFERENCES ..................................................................... 135 
III.  THE 128-POINT INTEGER FFT CODE .............................................................. 147 

 
 



vi 

LIST OF FIGURES

Fig.1-1.  Comparison of simulation example with two sets of basis functions (11 Legendre 
polynomials and 16 Walsh functions) with those with one set of basis functions (20 
Legendre polynomials and 20 Walsh functions) for TV parameters estimation: (a) actual 
(solid lines) and estimated (dotted lines) model parameters with two sets of basis 
functions, (b) estimated model parameters with 20 Legendre polynomials, (c) estimated 
model parameters with 20 Walsh functions. .................................................................... 9 

Fig. 1-2.  Time-frequency spectral characteristics of the simulated signal.  (a) True Spectrum, (b) 
Legendre and Walsh, (c) Legendre, (d) Walsh, (e) RLS, (f) STFT, (g) smoothed pseudo 
Wigner-Ville and (h) Born-Jordan TF spectrum. ............................................................ 10 

Fig. 1-3.  One-step-ahead prediction of the normalized renal arterial pressure (RAP) using the 
TVOPS.  Top panel: RAP (solid line) and tracked RAP by the TVOPS (dashed line); 
middle panel: a segment of the top panel tracing where solid and dashed lines 
represent the RAP and tracked RAP by the TVOPS, respectively; bottom panel: 
prediction error of the TVOPS. ....................................................................................... 11 

Fig. 2-1.  Block diagram of two procedures involved in calculation of time-varying coherence 
function. .......................................................................................................................... 14 

Fig. 2-2.  Poles crossing over the unit circle introduces high values in the estimated coherence 
function.  (a) Magnitude of poles of the estimated transfer functions, and (b) Estimated 
time-varying coherence function. ................................................................................... 17 

Fig. 2-4.  TVCF via the STFT: (a) linear system, no noise, (b) linear system with additive 0 dB 
noise, (c) nonlinear system, no noise, and (d) linear system followed by nonlinear 
system, no noise. ............................................................................................................ 21 

Fig. 2-5.  TVCF via the RLS: (a) linear system, no noise, (b) linear system with additive 0 dB 
noise, (c) nonlinear system, no noise, and (d) linear system followed by nonlinear 
system, no noise. ............................................................................................................ 22 

Fig. 2-6.  Comparison of TVOPS and the STFT for a complex linear chirp signal.  (a) Result of 
TVOPS; and (b) Result of STFT. .................................................................................... 23 

Fig. 2-7.  Representative blood pressure and blood flow data.  Top panel: blood pressure data; 
and bottom panel: blood flow data. ................................................................................ 24 

Fig. 2-8.  (a) ~ (d): TVCFs on renal blood flow and pressure data obtained from 4 rats.  Top right 
panels show a portion of the TV coherence values of the left panels from 0.03 to 0.05 
Hz.  Bottom-right panels represent time-invariant coherence values. ........................... 25 

Fig. 3-1.  Block diagram of a causal system with feedforward and feedback paths.  The coupling 
strengths are determined by the two coefficients 12c  and 21c . ...................................... 32 

Fig. 3-2.  Block diagram of the 2-subsystem Poincaré Oscillator. ................................................. 33 

Fig. 3-3.  TVCCF analysis of an ARMA system.  (a) time-varying spectra of the two subsystems 
( )1y n  and ( )2y n , (b) true TVCF values, (c) estimated TVCF values, and (d) estimated 

TVCF of the surrogate data.  For all figures, the left panels represent the traditional 
coherence values, while the middle and right panels represent the feedforward and 
feedback causal coherence values, respectively. .......................................................... 34 



vii 

Fig. 3-4.  Time-dependent coupling strength between the two subsystems. The upper panel is the 
coupling strength from the 1st subsystem to the 2nd; the lower panel is the time-
dependent coupling strength from the 2nd  subsystem to the 1st . .................................. 36 

Fig. 3-5.  (a): traditional TVCF (left panel); feedforward (middle panel) and feedback (right panel) 
causal TVCF; (b) surrogate coherence values corresponding to those shown in the 
panel (a) ......................................................................................................................... 36 

Fig. 3-6.  Time-invariant traditional and causal coherence functions (solid lines). Left panel 
represents time-invariant traditional coherence function; middle panel and right panels 
represent time-invariant feedforward and feedback causal coherence values.  Dotted 
lines represent time-invariant surrogate coherence values. .......................................... 37 

Fig. 3-7.  (a) Traditional TVCF (left panel), feedforward (middle panel) and feedback (right panel) 
causal TVCF values; (b) surrogate data TVCF values corresponding to those shown in 
the top panels. ................................................................................................................ 37 

Fig. 3-8.  (a) Representative time series of BP (top) and BF (bottom) during control; (b) traditional 
TVCF (left), and causal TVCF during control; (c) surrogate data TVCF values 
corresponding to those in row (b); (d) representative time series of BP (top) and BF 
(bottom) after NO blockade and Lasix infusion; (e) traditional TVCF and causal TVCF 
after NO blockade and Lasix infusion; (f) surrogate data TVCF values corresponding to 
those in row (e).  For all panels, the left panels represent the traditional coherence 
values, while the middle and right panels represent the feedforward and feedback 
causal coherence values, respectively. .......................................................................... 38 

Fig. 4-1.  Nonparametric and parametric thresholds to detect time-varying nonlinearity:  (a) time-
varying nonlinearity strength. Nonlinearity only presents in the second half of the signal; 
and (b) surrogate thresholds to detect significance of nonlinearity: dashed line is the 
threshold obtained by nonparametric surrogate; dotted line is the threshold obtained by 
parametric surrogate; and solid line is the prediction difference of the original signal. .. 43 

Fig. 4-2.  Detect time-varying nonlinearity in heart rate data using time-varying surrogate data.  
Top panel: the heart rate time series, and bottom panel: the PED time series of the 
heart rate data (black line); and the threshold obtained by nonparametric method (red 
line). ................................................................................................................................ 44 

Fig. 4-3.  The structure diagram of a closed-loop system. ............................................................. 45 

Fig. 4-4.  Estimated causal coherence functions: (a) estimated TVCCFs of the simulation data, 
and (b) estimated statistical threshold coherence values based on the STFT surrogate 
data. ................................................................................................................................ 46 

Fig. 4-5.  Application of the proposed method to BP and HR data. (a) the heart rate data (left 
panel) and blood pressure data (right panel) (b) causal coherence functions from BP to 
HR (left), and from HR to BP (right);  (c) threshold values based on 100 realizations of 
the STFT surrogate data; and (d) threshold of parametric TVSD. ................................. 48 

Fig. 5-1.  System architecture of the Star Network Topology ........................................................ 51 

Fig. 5-2.  Tmote Sky Wireless Transmission Module .................................................................... 52 

Fig. 5-3.  Network layers and corresponding protocols ................................................................. 53 

Fig. 5-4.  Structure of a C/D TP message with data field. (a) Frame structure of C/D TP message; 
(b) Bit assignments of the IDENTIFIER filed. ................................................................. 54 

Fig. 5-5.  To Make the Matlab program usable in the monitor software ........................................ 58 

Fig. 6-1.  ECG Module developed by our lab ................................................................................. 61 

Fig. 6-2.  Voltage Divider................................................................................................................ 62 

Fig. 6-3.  MP506 circuit and probe: (a) the main circuit board; and (b) the OxiMAX probe ........... 64 



viii 

Fig. 6-4.  SHIP message structure ................................................................................................. 64 

Fig. 6-5.  Structure of a typical Active Message ............................................................................ 65 

Fig. 6-6.  Structure of a linked list .................................................................................................. 71 

Fig. 6-7.  The channel setup interface of the monitor software...................................................... 74 

Fig. 6-8.  GTS Setup Interface ....................................................................................................... 74 

Fig. 6-9.  Monitor software.  (a) main display interface; (b) displayed ECG signal of a single mote; 
and (c) displayed PSD and time-frequency spectrum of the heart rate series; shown 
together are frequency statistics of the PSD, instantaneous heart rate and SpO2 reading.
 ........................................................................................................................................ 75 

Fig. 6-10.  Display Setup dialog ..................................................................................................... 76 

Fig. 6-11.  Pulsatile data arrival and display delay.  (a) Data arrival amount vs. data arrival 
timetable;  (b) Display time delay vs. display timetable.................................................. 77 

Fig. 6-12.  Battery life span for sampling rates of 150 (blue lines), 200 (red lines) and 500 Hz 
(black lines). (a) Transmission of unprocessed ECG signal (dashed lines) vs. 
transmission of 4 locally derived parameters (VLF, LF, HF, and LF/HF) over 2 minutes 
of RR interval recordings (solid lines). (b) Transmission of the 4 derived parameters 
once every 1 hour (dashed lines) and once every 3 hours (solid lines). ........................ 81 

Fig. 6-13.  ECG waveform comparison between the ECG signal recorded by the HP ECG 
machine (black line) and the ECG signal recorded by our system (red line). ................ 82 

Fig. 7-1.  The MSP-FET430UIF Debugger .................................................................................... 89 

Fig. 7-2.  The MSP-TSPZ100 Target Socket Module .................................................................... 90 

Fig. 7-3.  Potential conversion collision when multiple analog inputs are sampled. ...................... 95 

Fig. 7-4.  The UART hardware wiring between the Tmote Sky  and the additional MSP430F449 95 

Fig. 7-5.  Linear buffer and Circular buffer ..................................................................................... 98 

Fig. 7-6.  Real-time R-wave detection. (a) low-pass filtered ECG signal. Shadow area covers the 
R-peak; (b) first derivative signal. Shadow area is the 0-region; and (c) the 
instantaneous variance. Shadow area is determined by the threshold. ....................... 106 

Fig. 7-7.  Finite State Machine of the real-time R-wave detection algorithm ............................... 107 

Fig. 7-8.  Digitization of a sine wave.  Left panel: continuous values ranging from -1 to 1; Right 
panel: Sine wave digitized by 256 layers. .................................................................... 110 

Fig. 7-9.  Numerical accuracy of integer FFT.  At each digitization bit, 1000 tests were performed.  
The PSD of each test data was calculated in double precision and integer precision.  
The maximum error between these two PSDs was taken as the error for that particular 
test.  The standard deviation was calculated based on the 1000 tests.  As shown in the 
figure, when digitization bit is increased from 12 bit to 15 bit, both the absolute error 
value and the standard deviation of the error are significantly lower than fewer bits. . 112 

Fig. 7-10.  Execution time of the embedded R-wave detection algorithm (8 MHz CPU clock) ... 118 

Fig. 7-11.  Changes of the system task queue contents during the execution of FFT ................ 120 

 
 
 



ix 

ABBREVIATIONS 

ABP Arterial Blood Pressure  
AD Analog-Digital 
ADC Analog-Digital Convertor 
AF Atrial Fibrillation 
AIC Akaike Information Criterion 
AM Active Message 
ANS Autonomic Nervous System 
API Application Programming Interface 
AR Autoregressive 
ARMA Autoregressive Moving Average 
BF Blood Flow 
BJ Born-Jordan Distribution 
BP Blood Pressure 
BPS Bit Per Second 
CCA Clear Channel Assessment 
C/D TP Command/Data Transport Protocol 
CF Coherence Function 
CHIP Compatible Host Interface Protocol
CPU Central Processing Unit 
CSW Channel Selection Word 
DFT Discrete Fourier Transform 
DLL Dynamic Linked Library 
DMA Direct Memory Access 
DPSS Discrete Prolate Spheroidal 

Sequence 
DSP Digital Signal Processing 
ECG Electrocardiograph 
FFT Fast Fourier Transform 
FIFO First In First Out 
FPS Frame Per Second 
FSM Finite State Machine 
GND Ground 
GPRS General Packet Radio Service 
GTS Guaranteed Time Slot 

GWN Gaussian White Noise 
HF High Frequency 
HR Heart Rate 
HRV Heart Rate Variability 
ICU Intensive Care Unit 
IDE Integrated Development 

Environment 
IRSDT Iteratively Refined Surrogate Data 

Technique 
IV Instantaneous Variance 
LAN Local Area Network 
KB Kilobyte 
LF Low Frequency 
LMS Least Mean Square 
LR-WPAN Low-Rate Wireless Personal Area 

Network 
MA Moving Average 
MAC Medium Access Control 
MDL Minimum Description Length 
MSE Mean Square Error 
ODT On-command Data Transmission 
OEM Original Equipment Manufacturer 
OOP Object-Oriented Programming 
OPS Optimal Parameter Search 
OS Operation System 
PAN Personal Area Network 
PC Personal Computer 
PDA Personal Digital Assistant 
PDM Principle Dynamic Mode 
PED Prediction Error Difference 
PHY Physical Layer 
PPG Photoplethysmography 
PPP Peer-to-Peer Protocol 
PSD Power Spectrum Density 



x 

RAM Random Access Memory 
RAP Renal Arterial Pressure 
RLS Recursive Least Square 
RMSSD Root Mean Square of the Successive 

Difference of R-R intervals 
ROM Read-Only Memory 
RTOS Real-Time Operation System 
SD Surrogate Data 
SDNN Standard Deviation of Normal-to-

Normal R-R intervals 
SHIP Standard Host Interface Protocol 
SNR Signal Noise Ratio 
SNT Star Network Topology 
SoC System on Chip 
SPI Serial Peripheral Interface 
SpO2 Saturation of Peripheral Oxygen 
SP-DSP Software Platform of DSP 
SPWV Smoothed Pseudo Wigner Ville 
STFT Short-Time Fourier Transform 
TDMA Time-Division Multiple Access 
TF Time-Frequency 
TFD Time-Frequency Distribution 
TGF Tubuloglomerular Feedback 
TIV Time Invariant 
TV Time-Varying 
TVCCF Time-Varying Causal Coherence 

Function 
TVCF Time-Varying Coherence Functions 
TVOPS Time-Varying Optimal Parameter 

Search  
TVSD Time-Varying Surrogate Data 
TVTF Time-Varying Transfer Functions 
UART Universal Asynchronous Receive / 

Transmit 
USART Universal Synchronous / 

Asynchronous Receive / Transmit 
USB Universal Serial Bus 
VAR Vector Autoregressive 
WiFi Wireless Fidelity 
WMSPM Wireless Multiple Subject-

Parameter Monitoring 

WPAN Wireless Personal Area Network 

 
 



1 

INTRODUCTION AND BACKGROUND 

Growth in the elderly population of the United States continues to place increasing 
demands on heath care services.  Telemedicine is growing in popularity, both among patients and 
at health insurance companies.  Patients appreciate remaining independent within their 
communities.  Medical insurers are supportive, as it reduces the incidence of costly admittance to 
hospitals.  In-home health monitoring is rapidly emerging as a cost-effective mode of health care 
delivery for an elderly baby boomer population [1, 2].  Typically, in-home monitoring systems 
collect a variety of vital signs such as heart rate, blood pressure, oxygen saturation, body weight 
and temperature.  These raw data are usually sent via phone lines to a central monitoring unit 
where a health professional reviews the information and responds appropriately.  Currently, there 
is no cost-effective wireless in-home monitoring system, and thus, most monitoring companies 
rely on phone lines to transmit data, thus, the goal of constant monitoring is not completely 
accomplished.  Furthermore, monitoring is mostly based on parameters other than the 
electrocardiograph (ECG) signal, since it requires a much greater sampling rate than parameters 
such as the respiration, blood pressure (BP), and pulse oximeter signal, to name a few. 

There has been an increasing demand in the field of care industry that vital signals need 
to be continuously recorded for those patients with chronic conditions such as cardiovascular 
disease.  The recorded signals can be further analyzed to provide more detailed information about 
the patient.  It has valuable benefit for the physician to track the status of patients and to response 
quickly should any changes occur in the patient’s condition.  For example, according to America 
Heart Association, coronary heart disease is America’s No. 2 killer, and stroke is the No. 3 and a 
leading cause of serious disability [3].  However most heart attacks start slowly, with mild pain or 
discomfort that is mostly ignored by those people who are affected.  The only way to save these 
people is to respond to these mild symptoms before it is too late.  This situation brings up the 
demand of monitoring the vital signals continuously, conveniently, and most importantly, be cost 
effective so that it can be widely deployed.  

Varieties of remote monitoring systems have been developed to meet this demand.  A 
typical example of remote monitoring system is a home care device, such as an electronic blood 
pressure or glucose meter.  These devices use either radio to transmit the measured data to a 
nearby monitor for further analysis and transmission, or store the measured data into a local 
storage media (such as a flash card) so that it can be downloaded by the physicians after 
measurement.  The ambulatory ECG Holter, used since 1960s, is such kind of a device, providing 
a reliable measurement of patient’s ECG signal. 

Some commercially developed health monitoring systems are discussed below. 

LifeSync Wireless ECG System.  This system consists of three components: 1) Monitor 
Transceiver; 2) Patient Transceiver; and 3) LeadWear Disposable Cable replacement system [4].  
It uses Bluetooth wireless protocol to collect and transmit patient ECG and respiration data to the 
hospital existing ECG monitors.  LifeSync System eliminates the lead wires and trunk cables 
between patients and beside, as well as eliminates the need to detach and reattach lead wires 
when transporting patients, and also facilitates patient mobility and ambulation.  The system uses 
a rechargeable 3.6 volt lithium-ion battery.  The battery lasts about 24 hours running on patient 
transceiver.  The effective radio range of this system is around 10 meters [5].  
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ViTelCare Home Health Monitoring.  The ViTelCare™ monitoring system is a 
comprehensive home-based disease management tool for a broad range of diagnostic groups 
including:  Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes Mellitus, 
Hypertension, Major Depressive Disorder and Wound Care Assessment.  The patient uses an 
integrated medical device to take health measurements, such as: weight, BP and Saturation of 
Peripheral Oxygen (SpO2).  They then answer some health assessment questions that are specific 
to their diagnosis.  After completion, the monitoring session results are sent to the central 
repository to update the database.  Once the clinician logs onto the database, the updated 
monitoring results are brought in front of him so that he is able to follow-up with a revised 
treatment plan with the patient [6].  

Card Guard PMP4 System.  Card Guard’s new PMP4 Wireless Healthcare System 
provides the tools required for screening, monitoring, and managing of General Consumer Health, 
Disease Management and Fitness.  It includes portable and wireless based medical monitors such 
as: 1) SelfCheck ECG 1/12-lead ECG monitor; 2) Spiro Pro Spirometer; 3) Oxy Pro Pulse 
Oximeter; SelfCheck BP; 4) BP Pro Blood Pressure; 5) BP Pro Plus Blood Pressure; 6) 
SelfCheck Gluco Blood Glucose Meter; and 7) A feature rich PMP4 Web-Based Medical Center.  
The PMP4 Wireless Healthcare System uses the most up-to-date communication technologies 
(Bluetooth, Wireless Fidelity (WiFi), Internet, GPRS) to enable the PMP4 Medical monitors to 
measure and transmit medical data to handheld devices, which can then upload to the dedicated 
PMP4 Web-Based Medical Center.  The PMP4 Web-Based Medical Center provides secure, 
private data protection, a user friendly interface and access by physicians and patients using an 
Internet browser.  It enables patients, physicians and health care providers an enhanced medical 
management and care with the benefit of paperless transactions [7].   

Given the fact that aforementioned systems have been developed, they have their own 
limitations.  For example, the LifeSync System lacks data analysis feature.  It simply provides 
recorded raw data instead of analyzed results that are more important for both diagnosis purpose 
and preservation of limited system resources (memory, bandwidth and battery power etc.).  The 
ViTel Care and Card Guard PMP4 systems have some data process functions, but they lack 
mobility and the processed results cannot be reviewed in a real-time fashion.   

At present, a fully integrated portable low-cost wireless system that incorporates many 
essential physiological variables (e.g., ECG, respiration, BP and pulse oximeter) with efficient 
power management scheme does not exist.  For example, most emergency medical centers as well 
as nursing homes still rely on individual devices that are all attached to patients via direct wires to 
collect data.  A handful of emergency medical centers do employ wireless ECG monitors, but 
these are rife with technical problems such as having too many artifacts in the collected data (the 
signal-to-noise ratio is low), a limited range of transmission of data, and medical decision alerts 
that are prone to false alarms.  Even at these hospitals, fully integrated wireless systems do not 
exist, due to both the high cost of deployment and immature technology.   

Recent advances in wireless technologies have made some inroads in the aforementioned 
problems associated with a fully integrated wireless system becoming a reality.  For example, 
Becker et al. demonstrated wireless transmission of a few vital physiological parameters using a 
Bluetooth protocol for a Personal Digital Assistant (PDA) device [8].  In other works, a cell 
phone has been used to transmit biomedical signals [1, 9, 10].  More recently, Rasid and 
Woodward have developed a Bluetooth telemedicine processor for a multichannel biomedical 
signal transmission via mobile cellular networks [10].  Specifically, their system utilizes the 
newly-developed cellular protocol known as General Packet Radio Service (GPRS), which has 
much higher data transmission rates than the global system for mobile communications.  In 
another study, Hung et al. utilized a wireless application protocol for telemetry application of 
biomedical signals [9].  However, because this system uses an analog wireless transmission 



3 

module, the data are more sensitive to noise contamination.  The common feature among all of 
the aforementioned systems is that they are all limited to data collection from a single or at most a 
few subjects.  

To this end, a portable, battery-powered, low-cost wireless system that is capable of 
transmitting simultaneous multiple parameters from many subjects with smart sampling and 
transmission scheme is brought forward in this work.  The developed wearable device, with 
wireless biosensors connected to self organizing wireless sensor network, will allow physicians to 
continuously monitor vital signs while the wearer performs normal activities, helping physicians 
to capture not only snapshots of patient’s vital signals but also long-term trends and patterns that 
provide invaluable information about patient’s ongoing condition.  In contrast to the above 
systems, the system developed in this work features in: 1) low-cost; 2) low-power consumption; 3) 
real-time data processing and analysis; 4) on-command variable sampling rate; and 5) smart 
decision-making.  

The device developed in this work is powered by 2 AA batteries to provide good mobility.  
Thus it is critical important to use the limited battery power smartly and efficiently so that the 
device can be used for long-term recording.  In this work, we developed an On-command Data 
Transmission (ODT) scheme to facilitate an efficient power management by performing localized 
real-time Digital Signal Processing (DSP) at the device end.  Since majority of the power is 
consumed on the wireless transmission, it will save significant power only if critical physiology 
parameters are transmitted instead of the raw data.  For example, our experimental tests have 
shown that transmitting one lead raw ECG signal at 200Hz sampling rate, the wireless 
transmission module consumes approximately 25 mA current.  If we incorporate R-wave 
detection algorithm on-board and calculate the power spectrum of heart rate every 5 minutes, the 
average power consumption of the transmission module is approximately only 4 mA.  Another 
great advantage of on-board data processing is that it also saves a lot of bandwidth, which greatly 
increases the capacity of the system.  In the aforementioned test, the difference of the 
transmission load is significant: 

raw data transmission:  2 byte/point × 200 points/sec = 400 bytes/sec 

after data processing:  2 byte/parameter × 1 parameter/5 min < 0.007 bytes/sec 

The calculation shows that bandwidth usage is dramatically curtailed by transmitting only 
critical parameters.  

Although, processed data provides critical markers indicating the patient’s condition, it is 
not rare that raw data is needed by the care giver to further assess the patient’s status.  The system 
developed in this work has a unique feature to facilitate the easy access to patient’s unprocessed 
raw data.  An on-command smart sampling rate scheme has been developed for this system.  At 
the monitoring center, if any abnormities are detected in the processed parameter either by the 
health carer or by the software, an alert is generated and a command is sent to the remote device 
to resume the continuous transmission of the raw data.   

Since processed parameters are used as vital conditions markers, it becomes 
fundamentally important to determine how accurate and reliable the processed parameters can be 
to avoid false alarms.  This brings the demand of more sophisticated data processing and analysis 
algorithms.  The first part of this work is to develop advanced data analysis algorithms to extract 
useful information from raw physiology data.  At the device end, these algorithms generate vital 
condition makers (a few processed parameters) that are transmitted when the subject is in normal 
conditions.  At the monitor software end, these algorithms are applied to raw signal to provide the 
care giver more diagnosis information and generate appropriate alerts.  The processed results are 
also associated with a decision-making module at the monitor software end.  The decision-



4 

making module is an expert system that guards those critical vital parameters and generates 
certain alarms, if abnormality is detected, in terms of its knowledge database and historical record 
of the patient.   

The developed system can be easily modified depending on the scenario it is going to be 
used.  It is very easy to tailor the system to fit different applications with a few hardware and 
software changes.   
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PART 1 ALGORITHM DEVELOPMENT 

Chapter 1 ARMA Model Identification using Multiple Basis Functions 1 

1.1 Introduction 

In this chapter, a previous developed algorithm that expands the time-varying parameters 
onto a single set of basis functions has been extended to multiple sets of basis functions.  This 
feature allows the capability to capture many different dynamics that may be inherent in the 
system.  A single set of basis functions that has its own unique characteristics can best capture 
dynamics of the system that have similar features.  Therefore, for systems that have multiple 
dynamics, the use of a single set of basis functions may not be adequate.  Computer simulation 
examples do indeed show the benefit of using multiple sets of basis functions over the single set 
of basis functions for cases with many switching dynamics.  Moreover, the proposed method 
remains accurate even under significant noise contamination.  Application of the proposed 
approach to blood pressure data likewise indicate better tracking capability of the two sets of 
basis function than the recursive least squares or a single set of basis functions. 

In the past years, a novel algorithm for estimating time-varying (TV) autoregressive (AR) 
moving average models (MA), from which time-varying impulse response and transfer functions 
can be determined [11, 12].  The algorithm, termed, the time-varying optimal parameter search 
(TVOPS) is based on an expansion of time-varying parameters onto a set of orthogonal basis 
functions [11, 12].  This manipulation leads to two significant benefits: 1) TV parameters become 
time-invariant, which makes the underlying estimation task analytically tractable, and 2) a 
considerable reduction in the number of parameters needed to track each TV coefficient can be 
obtained.  The choice of appropriate basis functions is predicated on a priori knowledge of the 
dynamics of the system, but in most cases, this information is not available.  Some recent works 
have provided approaches to finding the best basis selection using either entropy-based 
algorithms [13] or wavelet packets [14, 15].  All of the aforementioned basis functions are 
designed for a particular form of dynamics, therefore, a choice of one particular basis function 
may not be appropriate, but multitudes of different basis functions may be necessary to capture 
multiple time-varying dynamics.  Especially in biological systems, there are multitudes of varying 
dynamics rather than one primary dynamic, therefore, a choice of one particular basis function 
may not suffice.  Having a multitude of different basis functions may alleviate the importance of 
choosing a single most appropriate basis function, but the problem is then among the initially 
chosen sets of basis functions, how to determine automatically which form of the basis functions 
best captures the dynamics at that time segment.  This is of paramount importance for systems 
that may undergo multiple switching dynamics that are different from one state to another. 

The subject of this chapter is to present a method which resolves this problem.  The new 
method employs the previously-developed TVOPS for identification of TV autoregressive or 

                                                 
1  This work was supported by the National Institute of Health, R01 HL69629.  Relevant work has been published on IEEE 
Transaction on Biomedical Engineering, Vol. 52, No. 5, pp 956-960, May, 2005. 
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autoregressive moving average (ARMA) models [11], whereby instead of one set of basis 
functions, two or more sets of basis functions with different properties are used to track varying 
parameters.  Multiple sets of basis functions can be used to fit various forms of model parameters.  
The task of determining appropriate basis functions for particular dynamics among the initially-
chosen sets of basis functions is performed by the TVOPS algorithm.  For the detail of TVOPS 
algorithm, the reader is referred to Appendix I.   

The advantages of the proposed method are that first, even without a priori knowledge of 
the characteristics of the nonstationary system, the criticality of choosing suitable basis functions 
is minimized. Second, the expansion of TV parameters onto multiple sets of basis functions is 
more accurate than projecting them onto only a single set of basis functions.   

1.2 Using Multiple Basis Functions for ARMA Model Identification 

The input-output relationship of a TV-ARMA process is described by the following 
equation: 

( ) ( ) ( ) ( ) ( ) ( )
1 0

, ,
QP

i j

y n a i n y n i b j n x n j e n
= =

= − + − +∑ ∑                 (1-1) 

where ( ),a i n and ( ),b j n are the time-varying AR and MA parameters to be determined, 
respectively, and are functions of time.  Indices P and Q are the maximum model orders of AR 
and MA models, respectively, and are chosen by the user. We assume that the maximum model 
orders are time invariant.  The term ( )e n is the prediction error.  The proposed method is to 
expand the TV parameters ( ),a i n and ( ),b j n onto multiple sets of basis functions instead of 

expanding them onto only a single set of basis functions ( ) ( )l nπ  for 1,2, ,l L= … , such that the 
following expressions hold: 
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where ( ) ( ),l i kα and ( ) ( ),l i kβ represent the expansion parameters, lV is the maximum number of 

basis sequences, ( ) ( ) , 1,2, ,
l

l
l lk n k Vπ = …  represents one set of basis functions when 1l = and 

multiple sets of basis functions for 1l > .  Substituting Eq. (1-2) into Eq. (1-1), we obtain the 
following: 
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To eliminate possible linear dependence (lack of uniqueness) among different sets of 
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basis functions, we explicitly orthogonalize these different sets of basis functions using the Gram-
Schmidt orthogonalization procedure.  Thus, all of the vectors within each set of basis functions, 
as well as vectors of different sets of basis functions, are all orthogonalized.  This mutual 
orthogonality ensures that all of the vectors are linearly independent, which ensures obtaining a 
unique solution.  One drawback to the orthogonalization of different sets of basis functions is that 
the inherent properties of the basis functions change.  For example, the resultant Walsh functions 
orthogonalized to the Legendre no longer retains their inherent square wave characteristics; they 
are a composite of square and sinusoidal-like waveforms.  

Once proper basis functions have been chosen, we define new variables such that:  
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

l l

l l

l l
k k

l l
k k

y n i n y n i

x n j n x n j

π

π

− = −

− = −
                                   (1-4) 

Substituting Eq. (1-4) into Eq. (1-3) results in the following expression: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 0 0 0
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l l
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Eq. (1-5) shows that the TV-ARMA model can now be considered a time invariant (TIV) 
ARMA model, since ( ) ( ),l i kα and ( ) ( ),l i kβ  are not functions of time.   

The next step of the algorithm uses the optimal parameter search (OPS) method, which 
selects only the linearly-independent vectors from the pool of candidate vectors.  This step should 
not be confused with the previous step of using the Gram-Schmidt orthogonalization procedure to 
ensure a unique solution among different sets of basis functions.  Linear independent vectors are 
determined by selecting, for example ( )1y n −  as the first candidate vector.  If the next candidate 
vector is ( )x n , then this vector and the first candidate vector ( )1y n −  are then used to determine 
the linear independence (e.g., use ( )1y n −  to fit ( )x n  using the least squares method and 
calculate the error between ( )x n  and the estimated vector).  Because signals are contaminated by 
noise we preset threshold value so that if the error value is larger than the preset threshold, then 
the vector ( )x n , for example can be selected as an independent candidate vector.  The preset 
threshold is set to 0.0001 for all simulation examples and for application of the method to 
experimental data, as provided in 1.3 and 1.4.  Assuming that ( )1y n − and ( )x n are the 
determined independent vectors and the next candidate vector is ( )2y n − , then we use 
both ( )1y n − and ( )x n to fit ( )2y n − using the least squares.  Calculate the error between ( )2y n −  
and already determined independent vectors to determine if the vector ( )2y n − should be 
included as a candidate vector as described above.  This procedure is continued until all the 
linearly independent vectors are selected to form a new candidate vector. 

The final step of the algorithm involves calculation of the coefficients using the least 
squares and retaining only those coefficients that are considered to be significant.  One approach 
that can be adopted to determine the significance of model terms is provided in [16].  Further 
details of this final step as well as the procedure of the OPS can be found in [16]. 

To determine the proper number of basis functions, a modified version of the Akaike 
Information Criterion (AIC) can be used.  The modified AIC for multiple sets of basis functions 
for the AR process: 
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where N is the length of the data, 2σ is the prediction error, p is the number of significant model 
terms (not to be confused with the maximum model order), ik denotes the number of basis 
functions in the l sets of basis functions.   

1.3 Applying the Method to Simulated Data  

Monte Carlo simulations of 100 realizations were performed.  Thus, all plots and tables 
represent mean values. 

To illustrate the advantage of using two sets of basis functions over a single set of basis 
functions, we consider a TV-AR(2) model that has the following form:   

( ) ( ) ( ) ( ) ( ) ( )1, 1 2, 2y n a n y n a n y n e n= − + − +                   (1-7) 

where ( )e n is zero-mean Gaussian white noise with a variance of 0.25.  TV parameters have the 
following expression: 

( ) ( ) ( )1, 2cos 2 , 2, 1

1, ,600
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                              (1-8) 
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f n

n N N nπ

=⎧⎪= ⎨ ⎡ ⎤− − − =⎪ ⎣ ⎦⎩

…

…
          (1-9) 

We have purposely selected a sharp transition at 333n = because this point does not 
match a transition point of any Walsh function, so as not to bias our simulation results using 
Walsh functions.  We purposely select an incorrect AR model order of 6 despite the fact that the 
correct AR model order is 2.  The OPS correctly determined that there are only two significant 
model terms ( )1y n − and ( )2y n − among the pool of 6 candidate terms ( ) ( )1 , , 6y n y n⎡ ⎤− −⎣ ⎦… .  
With the correctly chosen model order of two, determination of the proper number of basis 
functions was calculated using Eq. (1-6) for the single set and multiple sets of basis functions.  
Fig. 1-1(a), (b) and (c) show the performance of the parameter estimation using 11 Legendre 
polynomials and 16 Walsh functions, 20 Legendre polynomials, and 20 Walsh functions, 
respectively.  The method based on two sets of basis functions appears to outperform those with a 
single set of basis functions.  When using only the Legendre polynomials (Fig. 1-1(b)), because 
they have a sinusoidal waveform, the estimated waveform has a predominately sinusoidal shape.  
The Walsh functions alone, shown in Fig. 1-1(c), are dominated by the waveform that is square-
shaped.  The result with two sets of basis functions is impressive because it is able to track three 
distinct waveforms: a constant value, an abrupt change, and the sinusoidal waveform.  Table 1-1 
statistically confirms that the two sets of basis functions yield smaller mean square error (MSE) 
values than either a single set of basis functions or the recursive least square (RLS).   
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Table 1-1  The MSE values of the simulation example (clean signal).  The Kruskal-Wallis one way analysis 
of variance on ranks was performed (α=0.05).  There are significant differences (p<0.001).  Student-
Newman-Keuls test was performed (α=0.05) where Legendre & Walsh≠ Legendre≠ Walsh≠ RLS. 

Approach RLS Legendre & Walsh Legendre Walsh 
MSE 1.73±0.07 0.87±0.88 1.40±1.32 1.75±1.72 

 

To further challenge the method, we add Gaussian white noise to the system output of Eq. 
(1-7) so that the signal-to-noise ratio is 20 dB.  We compare the proposed approach to the 
recursive least squares (RLS) in addition to single sets of basis functions.  As in the previous 
example, we initially set the maximum AR model order to be 6.  Despite the added noise, the 
algorithm correctly determines the model order to be two.  Therefore, we assume the correct 
model order of 2 for all methods.   

As in the previous example without noise contamination, Table 1-2 statistically confirms 
better performance with two sets of basis functions than either the RLS or a single set of basis 
functions.  In this example, especially the use of Legendre basis functions alone has resulted in a 
significantly large MSE value.  
Table 1-2  The MSE values of the simulation example (SNR = 20db).  The Kruskal-Wallis one way analysis 
of variance on ranks was performed (α=0.05).  There are significant differences (p<0.001).  Student-
Newman-Keuls test was performed (α=0.05) where Legendre & Walsh≠ Legendre≠ Walsh≠ RLS  

Approach RLS Legendre & Walsh Legendre Walsh 
MSE 6.82±6.48 5.61±5.29 18.09±16.79 8.78±8.22 

Fig. 1-2 shows comparison of time-frequency spectra among various methods for the 
simulation example.  We compare multiple sets of basis functions (Fig. 1-2(b)) to solely Legendre 
functions (Fig. 1-2(c)), solely Walsh functions (Fig. 1-2(d)), RLS (Fig. 1-2(e)), and to three other 
time-frequency spectral methods: short-time Fourier transform (STFT) (Fig. 1-2(f)), smoothed 
pseudo Wigner Ville (SPWV) (Fig. 1-2g) and Born-Jordan (BJ) distribution (Fig. 1-2(h)).  The 
method proposed is able to provide the correct time-frequency spectrum, and it does so with 
higher resolution in both time and frequency domains than any of the other methods compared.   

(a) (b) (c) 
Fig.1-1.  Comparison of simulation example with two sets of basis functions (11 Legendre polynomials and 
16 Walsh functions) with those with one set of basis functions (20 Legendre polynomials and 20 Walsh
functions) for TV parameters estimation: (a) actual (solid lines) and estimated (dotted lines) model
parameters with two sets of basis functions, (b) estimated model parameters with 20 Legendre polynomials,
(c) estimated model parameters with 20 Walsh functions.   
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1.4 Applying the Method to Renal Blood Pressure Data 

A previous work has shown that a more direct and comprehensive approach to eliciting 
dynamic responses of the autoregulatory mechanisms is to induce a rapid step changes in renal 
arterial pressure (top panel of Fig. 1-3) [17].  This has been reported to invoke dynamic responses 
all involved autoregulatory mechanisms.  Most studies have mainly relied on inducing either 
spontaneous or random renal arterial pressure (RAP) to elicit autoregulatory responses [18].  Thus, 
the RAP (normalized blood pressure) tracing shown in the top panel of Fig. 1-3 provides a good 
example of how the TVOPS employing multiple sets of basis functions can be applied to track a 
time-varying signal that consists of both slow and fast time-varying dynamics.  The TVOPS 
determined 5 parameters from the initial AR model order of 10.  Overlaid on top of the RAP 
(solid line) is the tracking of the RAP by the TVOPS (with 8 Legendre and 4 Walsh basis 
functions), shown in dashed line of the top panel of Fig. 1-3.  The middle panel of Fig. 1-3 shows 
a segment (600 to 800 seconds) of the top panel tracings (indicated by two dashed vertical lines) 
while the bottom panel shows the residual error (MSE = 0.016) of the TVOPS algorithm.  These 
plots indicate that the TVOPS employing both Legendre and Walsh functions is well suited to 
track both the slow and fast transients of the RAP signal.  The MSE for the RLS is 0.014 and this 
is based on 10,000 parameters (5 parameters at each time point for 2000 data points), versus 
0.016 for the TVOPS using 60 parameters (5 parameters times 12 (total number of basis functions 
used) = 60).  If we reduced the number of parameters from 5 to 4 for the RLS (8000 parameters), 
then the MSE increases to 0.042.  Thus, the TVOPS performs better when one factors in the 
significantly fewer parameters it uses compared to the RLS. 

  
(a) (b) (c) (d) 

  
(e) (f) (g) (h) 

Fig. 1-2.  Time-frequency spectral characteristics of the simulated signal.  (a) True Spectrum, (b) Legendre 
and Walsh, (c) Legendre, (d) Walsh, (e) RLS, (f) STFT, (g) smoothed pseudo Wigner-Ville and (h) Born-
Jordan TF spectrum.   
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Fig. 1-3.  One-step-ahead prediction of the normalized renal arterial pressure (RAP) using the TVOPS.
Top panel: RAP (solid line) and tracked RAP by the TVOPS (dashed line); middle panel: a segment of the
top panel tracing where solid and dashed lines represent the RAP and tracked RAP by the TVOPS,
respectively; bottom panel: prediction error of the TVOPS.   

1.5 Summary 

A new method has been presented based on using multiple sets of basis functions to 
account for a multitude of varying dynamics, which can be especially prevalent in the dynamics 
of physiological systems.  We have previously developed a robust algorithm based on a single set 
of basis functions that has been shown to be more accurate than the recursive least square method 
[19].  However, as shown in the present paper, a single set of basis functions cannot account for 
multiple dynamics.  While we have primarily demonstrated simulation examples using two sets of 
basis functions, the proposed approach suggests that for a practical application where there are 
many unique dynamics present, the method can handle and should incorporate many different sets 
of basis functions.  While the result is not shown, the TVOPS is a reliable method for determining 
the correct model order even when the data length is as short as 200 points [16].  One drawback 
with the method is that the computational load is far greater (~ 100%) than when using the RLS.   
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Chapter 2 Development of a New Method to Estimate Coherence 
Function 1 

2.1 Introduction 

In this chapter, a new method to estimate reliable time-varying coherence functions 
(TVCF) for causal systems has been introduced.  The technique is based on our previously 
developed method to estimate time-varying transfer functions (TVTF), known as the time-varying 
optimal parameter search algorithm [12].  The TVCF is estimated by the multiplication of two 
TVTFs.  The two TVTFs are obtained using signal x as the input and signal y as the output to 
produce the first TVTF, and signal y as the input and signal x as the output to produce the second 
TVTF.  Demonstration of the feasibility and efficacy of the proposed approach is provided with 
both simulation examples and application to renal blood flow and pressure data.  The proposed 
approach provides higher time-frequency resolution TVCF than afforded by the short time 
Fourier transform based TVCF.   

Applications of the time-frequency distribution (TFD) have had a tremendous impact in 
understanding dynamic processes of various physiological systems.  Physiological systems are 
inherently time varying, thus, immediate acceptance of the TFD-based methods by the biomedical 
and biological communities was readily expected.  Recently, new methods were introduced to 
compute time-varying transfer functions (TVTF) that have the potential to further advance the 
understanding of the dynamic processes underlying physiological systems [11, 12].  The 
characterization of physiological systems with the TVTF is important because the admittance 
gain between input and output signals is correctly characterized to be transient, and not stationary, 
as is assumed with the time-invariant transfer function.   

In this chapter, we utilize a parametric (model based, e.g, autoregressive moving average 
model) TVTF to estimate the TV coherence function (TVCF).  Currently, the estimation of the 
TVCF is mainly based on the use of the short-time Fourier transform (STFT) where the ratios 
between the magnitudes of the TV cross spectrum and the TV auto spectra of the two signals are 
calculated.  Two disadvantages of the STFT are the assumption that time segments are stationary 
and the limited time-frequency resolution, which preclude the STFT being the method of choice 
in obtaining accurate and high resolution TVCF.  Furthermore, the STFT suffers from high 
variance.  Consequently, the likelihood of obtaining statistical significance of the coherence value 
is diminished.  Recent separate works by Xu et al. [20], and Lovette and Ropella [21] have 
alleviated the high variance problem of the STFT by introducing multiple window time-frequency 
(TF) analysis.  However, the inherent problem of limited resolution with the STFT was not 
improved by this approach, but in fact the variance reduction scheme had the undesired effect of 
further reducing the TF resolution.   

As in the time-invariant case, high-resolution TF spectra, TVTF, and TVCF can be 
obtained via parametric approaches.  Arnold et al. [22] have developed a parametric TV spectrum 
and TVCF by means of Kalman filtering.  In their work, a parametric TV cross spectrum was 
obtained by reformulating an ARMA process into a vector AR model, from which the vector TV 
autospectrum between two signals were obtained.  The accuracy of any time-invariant and TV 
parametric approaches greatly hinges on the proper choice of the model order.  In the work by 
Arnold et al. [22], determination of a model order was not discussed.  

                                                 
1  Relevant work has been published on Annals of Biomedical Engineering, Vol. 33, No. 11, pp 1582-1594, 2005. 
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An accurate approach for estimating the TVCF is greatly needed, because even today 
many investigators still resort to time-invariant coherence function analysis [23-25].  The 
coherence function is important because it provides information as to how two signals are phase-
coupled or “coherent” with each other.  For most physiological systems, it is expected that the 
coherence between two signals is not the same throughout the time duration of a data set.  Thus, 
the TVCF is expected to reveal more accurate insights into the time-varying nature of the 
coupling between two signals.  In this work, we propose a different parametric method to 
estimate TVCF than the approach proposed by Arnold et al. [22].  Our approach is based on the 
algorithm termed time-varying optimal parameter search (TVOPS), which we have recently 
developed for estimating TVTF [11, 12].  The TVOPS has been shown to be effective in selecting 
only the significant time-varying model terms, and is more accurate than the two most well-
established model order criteria: the Akaike Information criterion (AIC) and the minimum 
description length (MDL) [16].   

The proposed approach is presented in 2.2.  Illustrative simulation examples as well as 
the application of the proposed method to experimental data are presented in 2.3 to demonstrate 
the feasibility and efficacy of the proposed approach.  

2.2 The Development of a Parametric Method to Estimate Coherence Function 

In this section, we demonstrate that the TVCF can be obtained by using the TVTF 
relationships.  To demonstrate the use of the TVTF in obtaining the TVCF, we first define the 
TVCF via the nonparametric time-frequency spectra: 
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where ( ),xyS t f and ( ),yxS t f  represent the time-frequency cross spectrum, and ( ),xxS t f  and 

( ),yyS t f  denote the autospectra of the two signals x and y , respectively.  The above expression 
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output.  We note that for a linear time-varying system with x and y as the input and output signals, 
respectively, the following TVTF in terms of time-frequency spectra can be obtained: 
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where ( ),x yH t f→  denotes the TVTF from the input x to the output y signals.  Similarly, if we 
reversed the input and output relationship such that the variables y and x represent input and 
output signals, respectively, as Fig. 2-1 depicts, then the following TVTF can be obtained: 

( ) ( )
( )

,
,

,
yx

y x
yy

S t f
H t f

S t f→ =                                                 (2-3) 
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The desired relationship of Eq. (2-1) can be obtained by multiplying the two TVTF 
relationships of Eqs. (2-2) and (2-3), which yields: 

( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

( )

2

2 2

4

, ,

, , , ,
, , , ,

, ,

, , , ,

,

x y y x

xy yx xy yx

xx yy xx yy

xy yx

xx yy yy xx

H t f H t f

S t f S t f S t f S t f
S t f S t f S t f S t f

S t f S t f

S t f S t f S t f S t f

t fγ

→ →

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

                           (2-4) 

Thus, time-varying magnitude squared coherence, ( ) 2
,t fγ  is then obtained by 

multiplying the two transfer functions, ( ) ( ), ,x y y xH t f H t f→ → , together.   

 
Fig. 2-1.  Block diagram of two procedures involved in calculation of time-varying coherence function.   

Given the relationship of Eq. (2-4), we can obtain a high resolution TVCF via the 
parametric TVTF.  Specifically, each of the two transfer functions in Eq. (2-4) can be obtained 
using autoregressive moving average (ARMA) models: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

2 2

1 0

1 0

, ,

, ,

P Q

i j

P Q

i j

y n a n i y n i b n j x n j

x n n i x n i n j y n jα β

= =

= =

= − − + −

= − − + −

∑ ∑

∑ ∑
                            (2-5) 

where the top expression in Eq. (2-5) represents ( )y n and ( )x n as the output and input, 
respectively, and the reverse for the bottom expression of Eq. (2-5).  Our definition of the ARMA 
model refers to two measured signals of ( )y n  and ( )x n .  Given the ARMA models of Eq. (2-5), 
the two transfer functions of Eq. (2-4) can be obtained by the following: 
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                              (2-6) 

By using the TVOPS approach, we are able to obtain an accurate and high resolution 
TVTF of Eq. (2-6) [11, 12].   

In the two references [11, 12], it was demonstrated that more accurate estimate of the 
TVTF can be obtained than of the STFT, including an example concerning TV amplitude 
modulated signals.  Furthermore, because the method proposed does not utilize segmentation of 
the data records, as is the case with the STFT, neither time nor frequency resolutions are 
compromised.  Note that for the proposed approach, the TVTF, and consequently the TVCF, are 
obtained for every time point and are based on a few parameters chosen by the TVOPS from the 
initially-selected model orders 1P , 1Q , 2P and 2Q in Eq. (2-6).  Therefore, while the STFT assumes 
that each segment of data is stationary, the proposed method is based on modeling TV 
characteristics at each time point.  The temporal resolution of the TVTF, however, is limited by 
the number and choice of basis functions.  For short data records, the use of the STFT is 
especially challenging, but the method proposed remains accurate even for short data records; it 
has been shown that the method remains accurate for data lengths as short as 500 points.  It 
should be noted, however, that the approach we propose requires the input signal to be spectrally 
rich to estimate parameters of the parametric transfer functions. 

An abbreviated version of the algorithm for estimating TVTF via the TVOPS is outlined 
in the Appendix I.  For full details of the TVOPS algorithm, the reader is referred to [11, 12].   

In the proceeding section, we show that theoretical values of TVCF are bounded in the 
interval of zero to one.  To illustrate, consider two signals modeled by the following equations: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

ˆ

ˆ
x y

y x

y n h n x n e n

x n h n y n e n

→

→

= ∗ +

= ∗ +
                                        (2-7) 

Here, ( )1e n and ( )2e n are prediction error terms that are uncorrelated to ( )y n  and ( )x n , 
respectively, and*denotes the convolution operator.  Taking the Fourier transform on both sides 
of Eq. (2-7) yields:  

1 1

2 2

2 2 2

2 2 2

ˆ ˆ

ˆ ˆ

yy x y xx e x y xx e

xx y x yy e y x yy e

S H S S H S

S H S S H S

σ

σ

→ →

→ →

= + = +

= + = +
                                          (2-8) 

Note that: 

ˆ

ˆ
xy x y xx

yx y x yy

S H S

S H S

→

→

=

=
                                                         (2-9) 
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Substituting the expressions in Eq. (2-8) and Eq. (2-9) into Eq. (2-1): 
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=
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+ + +      (2-10) 

For simplicity, the time and frequency arguments have been omitted in Eq. (2-10). 

As Eq. (2-10) indicates, the value of ( ) 4
,t fγ is bounded by 1.  Note that when signal-to-

noise ratios 1SNR and 2SNR approach ∞ , ( ) 4
,t fγ tends to 1, and when 1SNR  and 2SNR  

approach zero, ( ) 4
,t fγ tends to zero. 

As shown above, theoretically ( ) 4
,t fγ is bounded by 1.  However, when the estimated 

transfer functions have poles lying on the unit circle, the value of ( ) 4
,t fγ may be greater than 

one.  Note that because the system is time-varying, the poles are also naturally time-varying. 
When a pole is initially stable but becomes unstable (or vice versa), it will cross the unit circle 
periphery, as it moves from interior to exterior or vice versa.  If this occurs, the magnitude of the 
transfer function becomes infinite.  As a consequence, ( ) 4

,t fγ will have a value greater than one.  
Under this circumstance, the coherence relationship between two signals is undefined because the 
system undergoes a transition from stable to unstable or vice versa.   

Stability only places restriction on the poles and not the zeros.  For the inverse system 
(one with system function ( )1 H z ), the poles become zeros and vice versa, thus, for the minimum 
phase system where both poles and zeros are inside the unit circle, the maximum TVCF values 
will be no larger than a unit value.  Thus, in the event where the estimated transfer functions do 
not satisfy a minimum phase system, the TVCF will also have values greater than one.  

Fig. 2-2(a) shows an example of the time course of poles, which drift from instability into 
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stability and the resultant coherence function estimate is provided in Fig. 2-2(b).  During the first 
390 seconds, the magnitudes of the three poles have values outside the unit circle and 
consequently, coherence values are greater than one during this time period, as shown in the 
bottom panel of Fig. 2-2(b).  As the poles cross over from the unstable to stable condition (at the 
instant poles cross the unit circle), even higher coherence values at two distinct frequencies are 
observed at time points centered around 400 seconds.   

(a) (b) 
Fig. 2-2.  Poles crossing over the unit circle introduces high values in the estimated coherence function.  (a) 
Magnitude of poles of the estimated transfer functions, and (b) Estimated time-varying coherence function.  

It should be noted that, in certain circumstances, the method might yield greater than unit 
coherence values beyond the frequency band of interest.  This situation may arise because signal 
dynamics are missing in these frequency bands, which can lead to erroneous coherence values.  
However, this is trivial and can be effectively ignored since the coherence values are not in the 
frequency range of interest.   

Simulation examples are used to demonstrate both the feasibility and efficacy of the 
proposed method for obtaining the TVCF.  In particular, the expected decrease of TV coherence 
values with noise and nonlinearity are demonstrated with 100 Monte Carlo realizations.  The 
plots shown in Figs. 2-3(middle panel) ~2-5 are results of one single realization, while the 
averaged results are reported in Table 2-1.  With the use of the previously-developed TVOPS 
algorithm to compute the TVTF, three parameters that need to be preset are the number of 
Legendre functions, the model order and the threshold value.  Based on these three preset 
parameters, TVOPS determines only those model orders that are deemed to be significant among 
initial candidate model terms.  Details regarding this procedure are provided in Appendix I. as 
well as in references [11, 12].  For both simulation examples and application of the method to the 
experimental data, we used the Legendre basis functions based on our a priori knowledge that 
underlying dynamics do not change abruptly.  For fast-changing dynamics, more appropriate 
basis functions to use would be the Walsh functions.  The threshold value is used for the linear 
independent candidate term search, as this value is dependent on the signal-to-noise ratio as well 
as on whether the signal is colored or white.  Since a priori knowledge of the aforementioned 
conditions is unknown, we normally set the threshold value to 0.0001 and 0.001 for clean and 
noise-corrupted signals, respectively.  Thus, for simulation examples and experimental data 
analyses to follow, we set the number of Legendre functions to 5 and the threshold value to 
0.0001 for a noiseless simulation example and 0.001 for those cases (including experimental data) 
that are contaminated by noise.   

To determine the proper number of basis functions, we have modified the Akaike 
Information criterion to: 

2log 2[ 1]AIC N p kσ= + ⋅ +                                               (2-11) 

where N  is the data length, 2σ is the prediction error, p is the number of significant terms (not to 
be confused with the maximum model order), k denotes the number of basis functions.  The 
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minimum value of the AIC is used as the criterion for determining the proper number of basis 
functions among the initially-chosenV sets of basis functions.   
Table 2-1  Mean and standard deviations of coherence function.  No statistically significant differences were 
observed between the three methods under the conditions reported in columns 2 (linear, noise free) and 5 
(before the onset of nonlinearity). Student-Newman-Keuls test was performed; * denotes p < 0.05.   

 
Linear 0db noise Nonlinear Linear-nonlinear 

t = 1 to 512 t = 513 to 1024 
TVOPS 1.00 ± 0.01 0.44 ± 0.04 0.32 ± 0.01* 0.97 ± 0.03 0.14 ± 0.01* 
STFT 0.99 ± 0.02 0.62 ± 0.07* 0.59 ± 0.05* 0.98 ± 0.07 0.60 ± 0.06* 
RLS 0.99 ± 0.01 0.43 ± 0.02 0.36 ± 0.03* 0.97 ± 0.01 0.39 ± 0.03* 

2.3 The Application of the Method to Computer Simulations 

2.3.1 Results of an ARMA model with noise and nonlinearity 
For the first simulation example, the following TV expression ( 1024N = ) was generated 

with a sampling rate of 1 Hz: 

( ) ( ) ( ) ( ) ( ) ( )1 21 2y n a n y n a n y n x n= − + − +                             (2-12) 

with 

( ) ( )
( ) ( )

1

2

0.3sin 2 / 0.2

0.09sin 2 / 0.15

a n n N

a n n N

π

π

= +

= +
                                       (2-13) 

where x  and y  are the input and output signals, respectively.  TVOPS was employed to estimate 
the transfer functions (both x yH → and y xH → ) with an initial model order of ARMA(6, 6) from 
which only 4 (out of 13) and 3 (out of 13) significant model terms were selected by the TVOPS 
for the estimation of x yH →  and y xH → , respectively.  For the above expression, because it is 
linear, TV, and without noise corruption, we expect the TVCF to be of unit value for all times, as 
shown in the left panel of Fig. 2-3(a).  Indeed, the TVCF values, shown in the middle (based on a 
single realization) and right (averaged over 100 realizations) panels of Fig. 2-3(a), have near unit 
values across all times and frequencies (see Table 2-1).  For all plots in Fig. 2-3, the left, middle 
and right panels represent, in order, the theoretical values, a single realization estimated via the 
TVOPS, and the averaged estimates from applying the TVOPS to multiple realizations.  The 
middle and right panels of Fig. 2-3(b) show the decrease of coherence values across all times and 
frequencies, as expected, when Eq. (2-12) is contaminated with 0 dB Gaussian White noise 
(GWN) that is time invariantly added to the output of Eq. (2-12).  There is a good agreement with 
the estimated TVCF values and the theoretical value (0.44) shown in the left panel of Fig. 2-3(b).  
To further demonstrate another scenario of decrease in TVCF values, the following nonlinear 
expression was generated: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 21 2y n a n y n a n y n x n x n= − + − + +               (2-14) 

The initial model order was set to ARMA(6,6) (for both x yH →  and y xH → ) from which a total of 
4 and 6 significant model terms were selected for the estimation of x yH →  and y xH → , 
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respectively. The linear terms in Eq. (2-14) are the same as shown in Eq. (2-12).  Note in Fig. 2-
3(c) the significantly lower coherence values than in the linear case, for all times and frequencies, 
due to the overall TV nonlinearity of the system response of Eq. (2-14).  The estimated TVCF 
values shown in the middle and right panels correspond well to the theoretically expected TVCF 
value (0.33) shown in the left panel of Fig. 2-3(c). 

The next simulation example considers the time course of a noiseless TV linear and 
nonlinear system as described by Eqs. (2-12 ~ 2-13) and (2-14).  The linear dynamic (Eq. (2-12 ~ 
2-13)) occurs from 0 to 512 seconds and the nonlinear dynamic (Eq. (2-14)) occurs thereafter. 
The initial model order was set to ARMA(6,6) (for both x yH → and y xH → ) from which 6 
significant parameters were selected for both x yH → and y xH → .  The results of the TVCF for this 
combination of TV linear and nonlinear systems are shown in the middle and right panels of Fig. 
2-3(d).  Correctly shown in the middle and right panels of Fig. 2-3(d), high coherence values are 
observed from 0 to 512 seconds followed by low coherence values thereafter.  Thus, the proposed 
approach, due to its high-resolution capability, is able to show transition from high coherence to 
low coherence values.  Note that the TVCF obtained using a technique such as the short time 
Fourier transform (STFT) would have difficulty in pinpointing this transition from high to low 
coherence values due to its requirement of segmenting the data record.  For example, if the 
segmentation did not occur exactly at the time point 512 seconds, then the STFT would not be 
able to show this clear transition from high to low coherence values.   

For the middle and right panels of Fig. 2-3(d), the TVCF values for the nonlinear period 
are lower than the theoretical value, shown in the left panel in Fig. 2-3(d).  This lower coherence 
value is due to greater prediction error for the nonlinear portion of the signal.  Greater prediction 
error results because we restrict the estimated parameters to be linear and are limited to the 6 
most significant parameters for the entire signal, thus, the linear portion of the signal will be 
better captured than the nonlinear portion, which consequently results in lower coherence values 
for the nonlinear portion of the signal.  In Fig. 2-3(c), TVCF values via the TVOPS are very close 
to the theoretical value, since all the selected parameters were solely devoted to fitting nonlinear 
data.  The RLS estimated TVCF values, shown in Fig. 2-3(d), are closer to the theoretical value 
because RLS uses far more parameters than does the TVOPS.  For example, the RLS uses 6 
parameters at each time instant, resulting in a total of 6144 parameters, whereas the TVOPS uses 
only 72 parameters for the entire data.   

To further demonstrate the efficacy of the proposed method, we applied the method to 
surrogate data, which was generated from the input and output of Eqs. (2-12) ~ (2-13) and (2-14) 
(a linear and nonlinear system).  The initial model order was set to ARMA(6,6) (for 
both x yH → and y xH → ) from which 4 significant parameters were selected for both x yH →  and 

y xH → .  Surrogate data technique destroys any linear and nonlinear correlations that may exist 
between the input and output data. Therefore we would expect low coherence values across all 
times.  This is exactly what Fig. 2-3(e) shows.   
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(a) 

(b) 

(c) 

(d) 

Fig. 2-3.  The left panels are the theoretical TVCF values; the middle 
are the TVCFs via TVOPS based on a single realization; and the right
panels are the averaged TVCFs via TVOPS based on 100
realizations.  a) linear system, b) linear system with additive 0 dB 
noise, c) nonlinear system, d) linear system followed by nonlinear 
system, e) surrogate data of combined linear and nonlinear systems
shown in (d). 

(e) 
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Figs. 2-4(a) ~ (d) show comparative results based on the STFT for the same simulations 
as described above with the proposed method.  As compared to Figs. 2-3(a) ~ (d), the STFT has a 
very low resolution both in time and frequency domains.  This is an unavoidable and well-
documented limitation of the STFT.  While these particular simulation examples involve 1024 
data points, had there been an even smaller number of data points, the utility of the STFT would 
be questionable.  Another deficiency that is apparent is the relatively high coherence values even 
when the signal is contaminated with noise as well as when the system is nonlinear.  The third 
row of Table 2-1 provides mean TVCF values via the STFT for all four cases considered.  As 
compared to the second row of Table 2-1, coherence values are significantly higher with the two 
aforementioned cases, which should have resulted in low coherence values.   

We have also compared the proposed approach to the multiple windows using Slepian 
sequences approach [20].  The results are slightly better than with the STFT, but a similar 
resolution limitation as with the STFT remains with the multiple windows using Slepian 
sequences method.   

(a) (b) 

(c) (d) 
Fig. 2-4.  TVCF via the STFT: (a) linear system, no noise, (b) linear system with additive 0 dB noise, (c) 
nonlinear system, no noise, and (d) linear system followed by nonlinear system, no noise.   

2.3.2 Comparing the new method to RLS and STFT method 
In order to compare the performance of our method with the Recursive Least Squares 

approach (RLS), we show the corresponding results of the RLS in Figs. 2-5(a) ~ (d).  The fourth 
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row of Table 2-1 shows the mean coherence values for Figs. 2-5(a) ~ (d).  The model order for 
the RLS was based on the minimum description length followed by the coefficient estimates 
using the RLS, and the subsequent calculation of the TVTF and TVCF using Eq. (2-6) and Eq. (2-
4), respectively.  As the figures show, RLS also gives consistently better time-frequency 
resolution than the STFT while providing similar time-frequency resolution to the proposed 
method.  It is interesting to note that the RLS has an edge effect similar to a high amplitude 
oscillation at the very low (~0 Hz) and high frequencies (~ 0.5 Hz), and they occur only when the 
system is nonlinear (Fig. 2-5(c) and (d)).  The estimated parameters are unstable during the 
nonlinear case (not shown). The recursive nature of the RLS, which may lead to over-
parameterization and unstable model parameters in nonlinear systems, can be the source of the 
high amplitude oscillations seen in Figs. 2-5(c) and (d).   

(a) (b) 

(c) (d) 
Fig. 2-5.  TVCF via the RLS: (a) linear system, no noise, (b) linear system with additive 0 dB noise, (c) 
nonlinear system, no noise, and (d) linear system followed by nonlinear system, no noise.   

2.3.3 Time-Frequency resolution comparison 
The following simulation example explores time and frequency resolution of the TVCF 

using comparison between the proposed method and the STFT.  The simulation is based on a 
linear complex frequency modulation signal.  For this case, we consider coherences between real 
and complex portions of the signal.  A GWN signal was added to the real portion of the signal 
and another GWN signal, independent from the first, was added to the complex portion of the 
signal.  In both cases, the resultant signal-to-noise ratio was equal to 20 dB.  It is expected that 
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high coherences should be observed only during linear increasing frequencies and time.  Fig. 2-
6(a) and (b) are the result of the proposed method and the STFT, respectively.  It is apparent that 
only the proposed method is able to correctly discriminate high coherence values only during the 
linearly-increasing frequencies and time.  Due to the limited time-frequency resolution of the 
STFT, it is not as accurate as the proposed method in delineating high coherence values appearing 
only at frequencies that are linearly increasing with time. 

(a) (b) 
Fig. 2-6.  Comparison of TVOPS and the STFT for a complex linear chirp signal.  (a) Result of TVOPS; and 
(b) Result of STFT.   

2.4 Application of the method to renal system data 

The proposed method is applied to study the nonstationary features of the renal 
autoregulatory mechanisms and how these features might be different between time-invariant and 
TV correlation functions for normotensive rats.  Renal autoregulation is the process in which 
fluctuations in renal blood flow caused by fluctuations in blood pressure are minimized.  The 
myogenic mechanism and tubuloglomerular feedback (TGF) are the two mechanisms known to 
be responsible for renal autoregulation.  The myogenic mechanism and TGF are shown to 
oscillate in the frequency range of 0.1 ~ 0.2 Hz and 0.03 ~ 0.05 Hz, respectively [26-28].   

To estimate the TVCF of the renal autoregulatory system, the renal blood flow data were 
recorded under broadband forced arterial blood pressure fluctuations. The detailed experimental 
data collection procedures can be found in reference [28].   

Data analysis is based on 4 recordings from normotensive rats.  Each of the experimental 
data records used for analysis was 256 seconds long, with a sampling rate of one sample per 
second, after digital low-pass filtering to avoid aliasing.  Each data record, containing 256 data 
points, was subjected to second-degree polynomial trend removal (which included demeaning) 
and was normalized to unit variance.  Representative time series of the blood pressure (top panel) 
and blood flow (bottom panel) are shown in Fig. 2-7.   
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The estimated TVCFs for the 4 normotensive rats are shown in the left panels of Fig. 2-8.  
The top right panels of Fig. 2-8 show a portion of the TV coherence values of the left panels from 
0.03 to 0.05 Hz.  These curves represent the frequency range where the TGF mechanism is 
known to operate and is shown for the readers’ convenience.  The bottom-most curves represent 
0.03 Hz and the top-most curves represent 0.05 Hz.  The bottom right panels represent the time-
invariant coherence functions, shown for convenient comparison to the TVCFs.   

Fig. 2-7.  Representative blood pressure and blood flow data.  Top panel: blood pressure data; and bottom 
panel: blood flow data.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 2-8.  (a) ~ (d): TVCFs on renal blood flow and pressure data obtained from 4 rats.  Top right panels 
show a portion of the TV coherence values of the left panels from 0.03 to 0.05 Hz.  Bottom-right panels 
represent time-invariant coherence values. 
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For the myogenic mechanism (0.1-0.2 Hz), high coherence values are observed for all 
times for all four rats.  Time invariant coherence functions also show high coherence values for 
all four rats at the myogenic mechanism’s frequency range.  The TGF, however, shows lower 
coherence values that are more time-dependent than those of the myogenic mechanism.  The low 
coherence values for the TGF with the TVCF estimate are in agreement with the time-invariant 
coherence function estimates as well as previous other data analyses [26-28].  Two of the four 
plots, in the region of TGF show time dependence, as the coherence values fluctuate above or 
lower than the value of 0.5 (plots a and c).  Note that this type of observation is lost with the time-
invariant coherence functions.  The observation of low coherence values for the TGF mechanism 
(plots (a), (c) and (d)) is expected, as previous reports have amply demonstrated nonlinear 
characteristics of the TGF mechanism [29, 30].  Furthermore, fluctuations of TVCF values seen 
in Fig.  2-8(a) and (c) are all greater than the time constant of TGF (~ 33 sec).  The new insight 
gained from our data analysis is that nonlinearity does not occur for all times (at certain time 
points, TV coherence values are greater 0.5), but rather at certain time points.  The physiological 
implication of the increase or decrease of coherence values for the renal blood pressure and flow 
data is that at certain time points, there is either a high or low degree of coherence between two 
sets of data (at certain frequency ranges), respectively.  It is expected that coherence values 
fluctuate over time since renal autoregulation is a dynamic process whereby the myogenic and 
TGF mechanisms work in concert to maintain steady renal blood flow while blood pressure varies 
over a wide pressure range.  For a complete understanding of the physiological basis of 
nonstationary and nonlinear characteristics of the TGF mechanism, we will require further data 
analyses on more experimental data, which is currently ongoing in our laboratory.   

2.5 Summary  

TVCF based on variants of the STFT are simple to calculate.  However, high resolution 
and meaningful estimates of the TVCF have been unattainable.  A simple and yet high-resolution 
TVCF technique has been introduced and is based on our previously developed TVTF estimate.  
Specifically, the method is based on multiplication of transfer function estimates.  The accuracy 
of the TVCF, thus, depends on the precise estimation of the TVTF.  Both simulation examples 
and application to renal data have shown that in most cases, the proposed method is reliable and 
yields coherence values within the bounds of 0 and 1.  However, we have shown that with the 
proposed approach, in certain cases, TVCF values can be greater than 1.  This scenario occurs 
when the poles are either on the unit circle periphery or as they undergo transition from stable to 
unstable poles (or vice versa), in which case these poles will lie on the unit circle for an 
instantaneous moment of time.  Poles on the unit circle will result in coherence values greater 
than 1.  In certain biological data, the aforementioned scenario may occur.  For example, signals 
that bifurcate from stable to unstable dynamics or bifurcation from deterministic to stochastic 
systems may all result in larger than unit coherence values.  Note that noise and nonlinearity are 
two contributors to low coherence values, sudden spikes in the data, which can be due to transient 
noise glitches, will result in low coherence values since the linear TVTF is not suited to capture 
nonlinear characteristics of sudden spikes.   

Furthermore, it needs to be stressed that the accuracy of the proposed approach depends 
on the level of broadband characteristics of both the input and output signals; better estimates are 
obtained with broadband signals than with narrow band signals.  With time-invariant coherence 
function analysis, low coherence values are usually attributed to noise, nonlinearity or 
nonstationarity.  However, with a technique capable of estimating reasonably accurate TVCF, the 
possible cause of the low coherence values due to nonstationarity, at least, can be eliminated. 
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Chapter 3 Development of Time-varying Causal Coherence Functions 1 

3.1 Introduction 

The coherence function (CF) is a general tool used to investigate the correlation 
relationship between two signals in the frequency domain. The CF is a technique that can also be 
used to determine the appropriateness of performing linear analyses on given data.  The 
biological community has readily applied the CF to many diverse sets of experimental data, 
recognizing the useful information it provides.  For example, it was found that one of the two 
mechanisms responsible for renal blood flow autoregulation, tubuloglomerular feedback (TGF), 
shows low coherence at 0.02 ~ 0.05 Hz [31-34].  This indicates that linear modeling of renal 
autoregulation is not adequate. 

The CF, however, is most useful when applied to open-loop systems.  A work by Möller 
et al. uses least mean squares (LMS) to estimate traditional time-varying coherence functions 
based on a multivariate autoregressive moving average model of event-related potentials[35]. 
Recently, a new algorithm based on multiplication of time-varying transfer functions was used to 
estimate the traditional time-varying coherence function (TVCF) [36]. To avoid the slow 
convergence of the LMS algorithm, this recently developed algorithm uses basis functions to 
obtain time-varying coefficients, and has been shown to provide accurate results. 

Porta et al. have recently developed a method for estimating a causal time-invariant CF, 
and with its application to cardiovascular data, they have demonstrated that the use of the  
traditional CF on a causal system may provide an incomplete description of the system [37].  The 
novelty of Porta’s method resides in its ability to detect the causal correlation relationship 
between two signals.  For example, it can quantify how many of the fluctuations in arterial blood 
pressure are correlated to heart rate, and vice versa.  An additional contribution of this work is the 
use of the vector autoregressive (VAR) model, as the power spectrum approach to calculating the 
causal CF cannot be used for causal systems.   

While the contributions by Porta et al. are significant, their theoretical derivation of the 
causal CF using the VAR model is incomplete.  Specifically, it is unclear whether the VAR-based 
approach also provides coherence values that are bounded between 0 and 1.  Furthermore, the full 
utility of the method is not realized since the method is based on assuming time-invariance.   

This chapter describes the development of a model-based approach to estimating both 
feedforward and feedback paths of causal time-varying coherence functions (TVCF).  Theoretical 
derivations of the coherence bounds of the causal TVCF using the proposed approach are also 
provided.  Both theoretical derivations and simulation results revealed interesting observations, 
and they were corroborated using experimental renal blood pressure and flow data.  Specifically, 
both theoretical derivations and experimental data showed that in certain cases, the calculation of 
the traditional TVCF was inappropriate when the system under investigation was a causal system.  
Moreover, the use of the causal TVCF not only provides quantitative assessment of the coupling 
between the two signals, but it also provides valuable insights into the composition of the 
physical structure of the renal autoregulatory system. 

                                                 
1  This work was supported in part by a grant from NIH HL69629.  Relevant work has been published on IEEE Transaction On 
Biomedical Engineering, Vol. 54, Issue 12, pp 214-2150, 2007 
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3.2 Mathematic Derivation of the TVCCF 

In this section, the mathematic model of the TVCCF is developed.  Based on this 
mathematic model, the theoretical bounds of the TVCCF are obtained by mathematic derivations.  
The analysis has shown that the TVCCF is bounded by 0 and 1.  Thus, the validity of the 
proposed method is justified.   

3.2.1 Mathematic model 
A bivariate causal system can be modeled as a VAR process:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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where ( )1e n and ( )2e n are uncorrelated white noise.  The unknown model coefficients, 

11 12 21, ,a a a and 22a , are all time-varying since they are functions of time and need to be estimated.  
Rewriting (1) in a vector form, we obtain:  

( ) ( ) ( ) ( ),n n k n n⊗x = A x + e                                           (3-2) 

where the symbol ⊗  in Eq.(3-2) denotes the convolution operator: 
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The unknown model coefficients can be obtained by using a recursive least squares 
adaptive filter algorithm [35], or by using a basis function approach [12].  Note that Porta et al. 
[37] have used a variant of the least squares approach to obtain unknown time-invariant model 
coefficients.   

Similar to the derivation of the time-invariant coherence function [37], it can be shown 
that the traditional TVCF is defined by the ratio between time-varying cross-spectrum and time-
varying autospectra: 

( )
( )

( ) ( )

2
122

11 22

,
,

, ,
s n f

n f
s n f s n f

γ =                                         (3-3) 

with time-varying autospectra ( ( )11 ,s n f and ( )22 ,s n f ) and cross-spectrum ( ( )12 ,s n f ) defined 
in terms of time-varying AR filters: 
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where ( ) ( ) ( ) ( ) ( )11 22 12 21, 1 , 1 , , ,n z A n z A n z A n z A n z⎡ ⎤ ⎡ ⎤Δ = − − −⎣ ⎦ ⎣ ⎦ , and 2
1σ and 2

2σ are the variances 

of ( )1e n and ( )2e n , respectively at each time instant n.   

Similarly, the causal TVCF is calculated by setting either ( )12 ,A n z (feedforward) 
or ( )21 ,A n z (feedback) to zero [37]:   
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Thus, with the causal TVCF we obtain both feedforward and feedback TVCF, whereas 
for the traditional TVCF, we obtain only one TVCF value.  Derivations of theoretical bounds for 
both the traditional and the causal TVCF values are presented in the proceeding section.   

3.2.2 Derivation of the theoretical bounds of TVCF 
To derive theoretical bounds for both the traditional and the causal TVCF, we define 

time-varying transfer functions between the two signals:  
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For simplicity, the time and frequency arguments have been omitted in the following 
derivations.  It can be shown that with proper substitutions the causal TVCF can be defined as: 
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We define the following: 
2 22 2

1 1 21 2 2 12 1 20, 0, HH A H A c H Hα σ β σ= ≥ = ≥ =                            (3-8) 

The last numerator term in the last line of (3-7) can be simplified by: 
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Substituting. Eq. (3-8) and Eq. (3-9) into (3-7) yields:  
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Given the following:  

( )2 2 2 2 2 22 2 1 2H Hreal c cα β αβ α β αβ α β αβ+ + × ≤ + + × = + +              (3-11) 
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and substituting. Eq. (3-11) and Eq. (3-12) into Eq. (3-10) yields:  
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Thus, the traditional TVCF value is bounded by 1.  Eqs. (3-11) to (3-13) suggest that the 
traditional TVCF is high if Hc is very close to 1,α β� , or β α� . 

The causal TVCF from signal ( )1x n  to signal ( )2x n  is calculated by:  
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where *
11 2 21 11a A Aσ σ⎡ ⎤⎡ ⎤= −⎣ ⎦ ⎣ ⎦ .  Similarly, the causal TVCF from signal ( )2x n to signal ( )1x n  

is described by:  
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where 22 1 12 21b A Aσ σ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ .  Note that:  
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As a consequence, the following corollary holds:  
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In Eq. (3-17), when both a  and b  are equal to 1, the traditional TVCF equals one, while 
the causal TVCF (feedforward and feedback) can have values of only 0.5.  In other words, what 
Eq. (3-17) indicates is that a high traditional coherence value between two signals is not 
necessarily reflective of a strongly coupled causal system, whereas a low causal coherence 
function does reflect a weakly coupled causal system.  An example illustrating this scenario is 
presented in Fig. 3-7.  See details in 3.3 and 3.4.   

The above derived bounds for the TVCF are predicated on the premise that the transfer 
functions noted in Eqs. (3-6) and (3-7) are stable, in which case the bounds of the TVCF follow 
from those of the time-invariant coherence function [37].  The above derived TVCF bounds also 
establish a formal extension to the case of unstable transfer function estimates.  We have shown 
in our previous work that when the estimated transfer functions have poles lying on or outside the 
unit circle, the coherence values can be greater than one [36].  Under this circumstance, the 
coherence relationship between two signals is undefined. 

In 3.3, a bivariate causal process as detailed below was used to examine the efficacy of 
the proposed method.  In addition, application of the method to renal blood pressure and flow 
data is provided.  The time-varying optimal parameter search (TVOPS) was employed to identify 
the time-varying model coefficients[12, 38].  For the TVOPS, the following parameters have to 
be known a priori: (1) the number of basis functions to be used, (2) the initial model orders, and 
(3) the threshold number to be used to reduce linear redundancy among the observation vectors.   
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3.3 Simulation Examples and Results 

3.3.1 Simulation of a linear causal system 
Fig. 3-1 illustrates the structure of a linear causal system represented by the following 

expression: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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2 12 1 2

2

1

y n c n y n e n

y n c n y n e n

⎧ = − − +⎪
⎨

= − +⎪⎩
                                 (3-18) 

where ( )1e n and ( )2e n are independent Gaussian white noise with unit variance.  For convenience 
of notation, the 1st subsystem, ( )1y n , is defined as the “feedforward” and the 2nd 
subsystem, ( )2y n , as the “feedback” system.  Linear interactions between the feedforward and 
feedback systems are generated by the time-varying coupling coefficient terms ( )21c n and ( )12c n , 
as shown in Eq.(3-18).  The coupling strength coefficient, ( )21c n , representing information flow 
from ( )2y n to ( )1y n decreases from 1.8 to 0 while the coupling strength coefficient, ( )12c n , 
representing information flow from ( )1y n to ( )2y n , increases from 0 to 1.8.   

 
Fig. 3-1.  Block diagram of a causal system with feedforward and feedback paths.  The coupling strengths 
are determined by the two coefficients 12c  and 21c .   

3.3.2 Simulation model based on the Poincaré oscillator 
Fig. 3-2 depicts the structure of the 2-subsystem Poincaré oscillator.  For convenience of 

notation, the 1st subsystem is defined as the “Feedforward” and the 2nd subsystem as the 
“Feedback” systems.  Linear interaction between the feedforward and feedback systems are 

introduced by the coupling terms ( )1 1
,

T
x yg g and ( )2 2

,
T

x yg g , shown in Fig. 3-2.  If these two 
coupling terms are missing, then there is no interaction and the two subsystems will oscillate at 

their own characteristic frequencies 1ω and 2ω .  The interaction term ( )1 1
,

T
x yg g introduces 

frequency 2ω into the feedforward, and vice versa for the feedback subsystem with ( )2 2
,

T
x yg g .  A 

high causal coherence value is expected from the feedback to feedforward at frequency 2ω  if the 
coupling coefficient 2 1η → value is greater than 0.1.  Likewise from the feedforward to feedback if 
the value of 1 2η → is greater than 0.1.  Theoretically, in the noise-free case and provided that the 
coupling coefficients are greater than 0.1, the causal coherence value should have a value of 1 
since the frequency 2ω in the feedforward subsystem resonated from the feedback subsystem, and 
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vice versa for the feedback subsystem.  The aforesaid remains true even for the nonlinear 
Poincaré oscillator at the frequencies of 1ω and 2ω as the strength of the coupling is the dominant 
factor.  However, all frequencies other than 1ω and 2ω will have low coherence values since the 
system is nonlinear. 

 
Fig. 3-2.  Block diagram of the 2-subsystem Poincaré Oscillator. 

3.3.3 Generation of time-varying surrogate data 
Our approach to generating time-varying surrogate data is similar in concept to the short 

time Fourier transform (STFT) for nonstationary signals, as opposed to the power spectral density 
for time-invariant systems.  Details regarding the implementation of this algorithm are described 
in Chapter 4.  Thus, it will be just briefly summarized here.  Our technique, similar to the STFT, 
is to segment data and compute surrogate time series for each of the segmented time series.  
Within each segment, the signal is assumed to be stationary.  The length of the segment depends 
on the trade-off between time and frequency resolution as well as the validity of the stationarity 
assumption within the chosen segment length.  For example, for highly time-varying systems, 
small segment lengths are necessary, but a consequence is decreased frequency resolution, and 
vice versa.  

Based on the stationarity assumption within the chosen segment length, we can then use 
any of the many known time-invariant surrogate data techniques [39, 40], which can be applied to 
test the statistical significance of the time-invariant coherence function estimates [37].  We chose 
the iteratively refined surrogate data technique (IRSDT) [39].  The IRSDT will destroy any 
nonlinearity in the signal, and has been shown to be more accurate than the amplitude adjusted 
Fourier transform technique [40] because it iteratively corrects for deviations in the spectrum as 
well as maintaining the correct distribution of the signal.   

The threshold value for time-varying surrogate data was based on the mean plus two 
standard deviations over the 20 TVCCF values obtained from the surrogate data set.  Any time-
varying coherence value (both causal and traditional) greater than the threshold value for each 
frequency represents 95% statistical confidence that it did not occur by some random occurrence.  
For further details and results of the time-variant surrogate data, the reader is referred to Chapter 
4.   

For the simulation examples, 512 data points of the causal systems (linear and nonlinear), 
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as described in the 3.3.1 and 3.3.2 were generated.  For the first simulation example, linearly 
increasing and decreasing coupling strength were examined.  Given this scenario, the TVCCF 
values should gradually increase from ( )1y n to ( )2y n and vice versa for ( )1y n to ( )2y n .  The 
time-varying spectra for the two subsystems ( )1y n and ( )2y n are shown in the left and right 
panels of Fig. 3-3(a), respectively.  Both systems have time-varying dynamics at 0.2 and 0.5 Hz 
since the magnitudes of these frequencies wax and wane with time as expected due to increasing 
and decreasing coupling coefficients.  The theoretical and estimated time-varying traditional and 
causal coherence function values are provided in Figs. 3-3(b) ~ (c), respectively.  For both the 
estimated traditional coherence function and causal coherence function, we used the TVOPS 
algorithm based on two Legendre basis functions to determine the ( )c n parameters in Eq. (3-18), 
and the threshold value was set to 0.0001.  The Walsh functions are appropriate for modeling 
signals with fast transients and burst-like dynamics, while Legendre polynomials are better suited 
for smoothly changing dynamics [12].  The initial model order was chosen as ARMA (6, 6) from 
which the TVOPS algorithm selected only a single most significant model term (not model order).  
The estimated traditional coherence function and causal coherence function values are identical to 
theoretical values.  Note, however, that the traditional coherence function approach (left panels of 
Figs. 3-3(b) and (c)) is inappropriate, as the expected increasing or decreasing coherence values 
with time are entirely missing.  Furthermore, the low coherence values in most frequencies except 
0.2 Hz and 0.5 Hz, observed in the traditional coherence plot, can mistakenly be attributed to 
either a low signal-to-noise ratio or nonlinearity.  Thus, this simple example illustrates an 
important point, that is, estimation of traditional coherence functions on a causal system is 
inappropriate and can lead to misinterpretation of the results.   

Time-varying surrogate data results as detailed in the Methods section are provided in Fig. 
3-3(d).  Note the proportional waxing and waning of surrogate coherence values with either 
increasing or decreasing coupling strength values, especially at 0.2 Hz and 0.5 Hz.  This is 
expected since the surrogate data technique used maintains the fidelity of the spectrum.  The 
TVCCF values (2nd row, middle and right panels) at time points greater than 200 seconds are all 
considered to be significant as they are greater than the threshold values.  Likewise, this is also 
true for the traditional time-varying coherence values at frequencies of 0.2 Hz and 0.5 Hz.   

For the second simulation examples, 512 data points of the Poincaré oscillator, shown in 

(a) (b) 

(c) (d) 
Fig. 3-3.  TVCCF analysis of an ARMA system.  (a) time-varying spectra of the two subsystems ( )1y n  and

( )2y n , (b) true TVCF values, (c) estimated TVCF values, and (d) estimated TVCF of the surrogate data. 
For all figures, the left panels represent the traditional coherence values, while the middle and right panels
represent the feedforward and feedback causal coherence values, respectively.   
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Eq.(3-19), were generated: 
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where the subscript i denotes the index of subsystems; ix and iy are state variables of the ith 
subsystem; iω is the characteristic frequency of the ith subsystem; iα and ia are constants; 
and

ixg and
iyg are the coupling terms. For example, η in Eq. (3-20) quantifies the strength of 

coupling.  The state variables 1x  and 2x  were used for data analysis.  The sampling rate was 1 Hz.  
Note that the Poincaré oscillator is a nonlinear process and generates self-autonomous oscillations 
without a driving noise.  A 10 dB additive Gaussian white noise was added after signals from Eq. 
(3-19) were generated and this noise should not be confused with the driving noise as denoted in 
Eq. (3-1).  
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                                             (3-20) 

For this simulation example, both iα and ia for the two subsystems were set to 1.  Time-
dependent coupling occurs between the two subsystems as shown in Fig. 3-4.  The characteristic 
frequencies ( 1ω  and 2ω ) of the 1st and 2nd subsystems were set to 0.3 2π×  Hz and 0.167 2π×  Hz, 
respectively.  As shown in Fig. 3-4, the coupling strength is time varying for both subsystems.   
As a result, high causal coherence values from the 1st subsystem to the 2nd should be observed in 
the time period from 1 to 256 seconds, followed by low coherence values from 257 to 512 
seconds.  The opposite scenario exists from the 2nd subsystem to the 1st, where low and high 
causal coherence values occur from 1 to 256 seconds and from 257 to 512 seconds, respectively.  
We used the TVOPS algorithm based on two Walsh basis functions for the entire 512 data point 
sample period to determine the ( ),a t k parameters in Eq. (3-1), and the threshold value was set to 
0.0001.  While the jump in coupling coefficients coincides with a transition point of Walsh 
functions in this example, we have previously shown that the performance of Walsh functions 
does not degrade even if their transition points do not match [41]. The initial model order was 
chosen as ARMA (6,6) from which the TVOPS algorithm selected only the eight most significant 
model terms (not model order) for both feedforward and feedback directions.   
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Fig. 3-4.  Time-dependent coupling strength between the two subsystems. The upper panel is the coupling
strength from the 1st subsystem to the 2nd; the lower panel is the time-dependent coupling strength from 
the 2nd  subsystem to the 1st . 

Based on the above specification of the Poincaré oscillator, the estimated traditional and 
the causal TVCF values are shown in Fig. 3-5(a).  Fig. 3-5(b) shows the corresponding time-
varying surrogate data.  These time-varying causal coherence functions and the traditional 
coherence function were calculated using Eq. (3-3) ~ (3-4).  As expected, unit coherence values at 
0.3 Hz occur from the 1st subsystem to the 2nd subsystem only at the first half of the data segment 
(1 to 256 seconds).  Similarly, unit coherence values at 0.167 Hz occur from the 2nd subsystem to 
the 1st from 257 to 512 seconds.  In this example, the traditional TVCF values are essentially the 
composite of the two causal TVCF values.  These estimated coherence values are all significant 
as they are greater than the threshold coherence values generated from time-varying surrogate 
data.  Small coherence values observed during the first 256 points for the traditional and the 
feedforward path of the causal coherence functions are insignificant as they are less than the 
surrogate’s threshold values. 

(a) (b) 
Fig. 3-5.  (a): traditional TVCF (left panel); feedforward (middle panel) and feedback (right panel) causal
TVCF; (b) surrogate coherence values corresponding to those shown in the panel (a). 

To make a comparison to the time-varying causal coherence function, time-invariant 
traditional and causal coherence functions are calculated for the data generated using. Eq. (3-18) 
~ (3-19).  Results of the time-invariant traditional coherence function are shown in the left panel 
of Fig. 3-6, and the middle and right panels of Fig. 3-6 show causal coherence functions.  
Compared to the results of the top panels of Fig. 3-5, where the maximum coherence values are 
all unit values, these time-invariant traditional and causal coherence function values have smaller 
than unit coherence values.  This is due to the averaging effect of time-invariant coherence 
methods.  If the value of 0.5 were chosen as the threshold to determine the significance of 
coherence values, one would erroneously conclude that a significant causal coherence 
relationship only exists from the 1st subsystem to the 2nd, and not also from the 2nd to the 1st 
subsystem.  The time-invariant surrogate threshold values are provided as dotted lines in Fig. 3-6.  
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Similar to the arbitrary threshold of 0.5, the surrogate threshold also indicates the insignificance 
of the coherence value at 0.167 Hz for both the traditional coherence function and the 
feedforward causal coherence function. 

 
Fig. 3-6.  Time-invariant traditional and causal coherence functions (solid lines). Left panel represents time-
invariant traditional coherence function; middle panel and right panels represent time-invariant feedforward 
and feedback causal coherence values.  Dotted lines represent time-invariant surrogate coherence values.  

The last simulation is also based on the Poincaré oscillator as described by. Eq. (3-18) ~ 
(3-19).  However, instead of the two distinct characteristic frequencies as provided in the first 
example, the two subsystems’ characteristic frequencies are both set to 0.3 Hz. The 
parameters a andα for both subsystems was chosen to be 1 and 0.5, respectively.  Coupling 
occurs for both directions with strength of 0.1, for all time points.  Note that this coupling 
strength of 0.1 is less than the previous example where we set the value to be 0.2.  This decrease 
in coupling strength should result in lower than unit coherence values.  The results are shown in 
Fig. 3-7.  Parameters related to the calculation of the TVOPS were set the same as in the previous 
example.  The traditional TVCF values (top left panel) show unit values for all times at the 
frequency 0.3 Hz.  However, the two causal TVCF estimates show relatively weak values for all 
times (top middle and right panels).  This is in agreement with the condition described in (A12), 
and also due to the fact that we used the smaller coupling strength value of 0.1.  The bottom 
panels of Fig. 3-7 show time-varying surrogate threshold values corresponding to those in the top 
panels of Fig. 3-7.  These surrogate threshold values are lower than those shown in the top panels; 
therefore, the top panel values are all significant.   

(a) (b) 
Fig. 3-7.  (a) Traditional TVCF (left panel), feedforward (middle panel) and feedback (right panel) causal 
TVCF values; (b) surrogate data TVCF values corresponding to those shown in the top panels.   

3.4 Application to Renal Blood Pressure and Blood Flow Data 

3.4.1.  Animal model 
Renal arterial blood pressure (ABP) and volumetric blood flow (BF) were recorded from 

5 normotensive Wistar rats weighing 210-300 g.  The surgical preparation and BP forcing 
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procedures were as described previously [42].  Data (BP and BF) were filtered at 20 Hz and 
digitized at 100 Hz.  The signals were processed with a digital low-pass filter to exclude any 
frequency components beyond 0.5 Hz, followed by a trend removal procedure to remove the 
mean and linear trends.  The signals were down-sampled to 1 Hz and normalized to unit variance.  
Data were acquired under three experimental conditions: during control with autoregulation intact; 
during intravenous infusion of the diuretic furosemide (Lasix, 10 mg/kg/min) to inhibit TGF [43]; 
and during continued Lasix infusion after injection of L-nitro arginine methyl ester (L-NAME, 10 
mg/kg) to inhibit synthesis of nitric oxide and augment myogenic activity [42].  

3.4.2.  Results 
The frequency responses of the two renal autoregulatory mechanisms are 0.1-0.3 Hz for 

the myogenic and 0.02-0.05 Hz for TGF [31-34].  Recently, it has been suggested that a third 
mechanism operating below 0.02 Hz is also responsible for autoregulation, although the 
contribution of the third mechanism to the total renal autoregulation capacity is minimal [44].  Fig. 
3-8(a) shows typical renal ABP (top panel) and BF (bottom panel) recordings without any 
pharmacological intervention.   

(a) (d) 

(b) (e) 

(c) (f) 
Fig. 3-8.  (a) Representative time series of BP (top) and BF (bottom) during control; (b) traditional TVCF
(left), and causal TVCF during control; (c) surrogate data TVCF values corresponding to those in row (b); (d)
representative time series of BP (top) and BF (bottom) after NO blockade and Lasix infusion; (e) traditional
TVCF and causal TVCF after NO blockade and Lasix infusion; (f) surrogate data TVCF values
corresponding to those in row (e).  For all panels, the left panels represent the traditional coherence values, 
while the middle and right panels represent the feedforward and feedback causal coherence values,
respectively.   

For the analysis involving both the TVCCF and traditional TVCF methods, 5 Legendre 
functions were used.  The initial model order was set to ARMA (8,8) and the threshold value was 
set to 0.00001; the TVOPS selected 3 significant model terms from the selected model order for 
both feedforward and feedback paths.  The traditional TVCF values (left panel of Fig. 3-8(b)) are 
essentially close to unity for all frequencies.  For the two causal TVCF values, however, far lower 
values are observed, as shown in the middle and right panels of Fig. 3-8(b).  Surrogate threshold 
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value counterparts to Fig. 3-8(b) are shown in Fig. 3-8(c).  These threshold values are all lower 
than those shown in Fig. 3-8(b), suggesting the statistical significance of the experimentally-
obtained coherence values for both traditional and causal coherence functions.  Representative 
ABP and BF tracings, the resultant CF, and surrogate data CF estimates based on the application 
of pharmacological blockades (NO and Lasix) are shown in Figs. 3-8(d) ~ (f), respectively.  
Similar to the control case, the traditional CF values are near unity for all frequencies, as shown 
in the left panel of Fig. 3-8 (e).  The middle and right panels of Fig. 3-8 (e) show feedforward and 
feedback causal TVCF values, respectively.  Note that ABP is the input and BF is the output, and 
vice versa for the feedback system.  Note the relatively low TVCF values in the frequency range 
(0.02 ~ 0.5Hz) associated with TGF in these two causal TVCF estimates, and high coherence 
values only in the feedforward (middle panel) TVCF estimate.  In addition, these values are all 
significantly higher than the surrogates’ threshold values.  This result suggests that the 
feedforward and feedback paths of a causal system can be represented by the myogenic and TGF 
mechanisms, respectively.  The use of the traditional TVCF is inappropriate for causal systems 
since we obtain similar high coherence values for all frequencies for two conditions that are 
completely different.  Slow deviations of these coherence values over time reflect that the system 
is slowly time-varying and that our method is especially appropriate for such systems.  Because 
the data presented are slowly time-varying, the use of the time-invariant causal coherence 
functions is likely to provide similar results as does the TVCCF. 

The group average results based on five animals are shown in Table 3-1.  We observe 
statistical differences ( 0.05p < ) between the baseline and pharmacological perturbation 
conditions for both traditional and causal TVCF values for frequencies associated with the 
myogenic and TGF mechanisms.  Interestingly, while both the traditional and causal TVCF 
values decrease from the baseline to pharmacological perturbation for frequencies associated with 
TGF, the myogenic-associated traditional and causal coherence values significantly decrease and 
increase, respectively.  We believe the increase in causal TVCF values associated with the 
myogenic mechanism with the administration of Lasix after NO blockade is the expected event, 
since Lasix is essentially a TGF blocker, and the effect of NO blockade is to enhance the 
reactivity of both mechanisms.  Therefore, the present results imply that the feedforward and 
feedback paths are primarily dominated by the myogenic and TGF mechanisms, respectively.   
Table 3-1  TV Coherence Group Average.  *Significant difference with p < 0.05; Student-Newman Keuls.  

GROUP (N = 5) 
TRADITIONAL 
COHERENCE CAUSAL COHERENCE 

TGF MYO TGF (Feedback) MYO (Feedforward)
Baseline 1.00±0.01 1.00±0.01 0.49±0.01 0.50±0.02 

Lasix after NO Blockade 0.80±0.10* 0.98±0.01* 0.22±0.10* 0.87±0.09* 

3.5 Summary 

The coherence function provides correlation information between two signals in the 
frequency domain.  A traditional nonparametric approach to calculating the coherence function is 
based on the calculation of the ratio between the cross-spectrum and the auto-spectrum between 
two signals.  Calculation of auto-spectra and cross-spectra involves segmentation of the signals, 
which results in a tradeoff between time and frequency resolutions, and also in variance of the 
spectral estimates.  For example, more segmentation produces less variance of the spectral 
estimates but this action results in less frequency resolution.  This aforementioned tradeoff 
problem becomes compounded for time-varying coherence functions.  Furthermore, one of the 
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major limitations of the calculation of coherence functions based on power spectra, either time-
varying or time-invariant, is the inability to calculate causal coherence functions. 

One way to calculate both traditional and causal coherence functions is to use a 
parametric approach.  For example, a vector AR-based method has been developed to calculate 
both traditional and causal time-invariant causal coherence function [37].  This method assumes a 
causal model in which system identification procedures are used to estimate the model 
coefficients, and subsequently the coherence function values.  It was unclear whether the 
parametric approach also leads to coherence values that are bounded between 0 and 1.  Our 
theoretical derivations of both time-invariant and time-varying coherence functions show that 
indeed coherence values are bounded between 0 and 1 for both traditional and causal coherence 
functions.   

In our work, we extend a time-invariant vector AR model to calculate both traditional and 
causal TVCF.  Biological systems are time-varying, and on a time scale of seconds to minutes, 
these systems may undergo slow and subtle transitions from one dynamic to another.  Thus, the 
time-invariant CF may not be able to delineate subtle changes in CF values because it essentially 
provides time averaged CF values which can mask subtle changes.  The ability to track subtle 
changes in CF values may have an important prognostic value, as they can be correlated to the 
progression of diseases.  It should be noted that the method developed is most applicable to 
causal systems, and should be applied if there is a priori knowledge that the system under 
investigation is a causal system.  Otherwise, the causal TVCF values may provide erroneous 
results.   

As demonstrated with renal data in this chapter, the proper use of the causal coherence 
functions can reveal plausible functional structures of systems, as postulated for the renal 
autoregulatory mechanisms.  The implication of feedforward and feedback paths being 
represented by the myogenic and TGF mechanisms, respectively, is currently under investigation 
in our laboratory using many more diverse datasets, as well as a block-structured model 
incorporating these feedforward and feedback paths of a causal system.  
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Chapter 4 Development of Time-varying Surrogate Data Method 

4.1 Introduction 

Theiler developed a time-invariant surrogate data technique for statistical evaluation of  
the presence of nonlinear dynamics in time series [40] .  Improved surrogate data techniques have 
followed thereafter [45] and have found applications in many different disciplines [45, 46].  In 
addition to the nonparametric method based on Fourier transform that Theiler had developed, 
parametric method based on autoregressive model was also developed as an alternative way to 
generate surrogate data [39, 47].  

While these time-invariant surrogate data techniques were originally developed to 
determine the presence of nonlinearity, they have also been applied to evaluating the statistical 
significance of linear time-invariant coherence functions [48, 49].  With recent advances in the 
development of time-varying coherence techniques [36, 50], the need for a time-varying surrogate 
data (TVSD) technique is apparent.  Surrogate data techniques are designed to destroy any 
coupling present in the signal, and because they are designed to generate multiple realizations of 
the non-coupled data, the statistical significance of the coherence can be evaluated.  Without 
surrogate data, quantification of the strength of coherence is arbitrary as any values higher than 
0.5 are considered to be an indication of highly coherent signals.  Thus, this arbitrary demarcation 
is most appropriate for highly coherent signals and incorrectly ignores any coherent values that 
are less than 0.5.  Time-invariant surrogate data techniques remove this bias toward only the 
highly coherent signals, and were found to be sensitive even for weakly coupled signals [51].  
However, they are inappropriate for time-varying data as they provide time averaged statistical 
significance values.  Thus, in a case where coherence values wax and wane with time, and 
waning of the coherence values is more prevalent, the time-invariant surrogate data technique is 
most likely to result in the incorrect interpretation that there is no coherence for all time points.  
However, with the TVSD technique, the statistical significance of the time-dependent changes in 
the observed coherence values at a particular frequency can be evaluated.  It should be noted that 
the TVSD method is also applicable to time-varying bispectrum analysis as it can be used to 
determine the statistical significance of the nonlinearly coherence values.   

Since the traditional time-invariant surrogate techniques have been successfully applied 
to the detection of nonlinearity and determination of threshold for coherence functions, it is 
intuitive to extend both the parametric and nonparametric methods to time-varying cases to 
generate threshold that is applicable to time-varying systems to determine the significance of 
nonlinearity and coherence.   

In this chapter, we have extended the parametric and nonparametric methods to generate 
TVSD.  The extended methods have been tested both on simulation examples and physiological 
data for nonlinearity detection and causal coherence analysis.   

4.2 Method to Generate Time-varying Surrogate Data 

4.2.1 Nonparametric method 
The nonparametric approach to generating time-varying surrogate data is more similar in 
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concept to the Short-Time Fourier Transform (STFT) for nonstationary signals than it is to the 
power spectral density for time-invariant systems.  Our technique, similar to the STFT, is to 
segment the data and compute surrogate time series for each of the segmented time series.  
Within each segment, the signal is assumed to be stationary.  The length of the segment depends 
on the trade-off between time and frequency resolution as well as the validity of the stationarity 
assumption within the chosen segment.  For example, for highly time-varying systems, small 
segments are necessary, but the consequence is decreased frequency resolution, and vice versa.  

Based on the stationarity assumption within the chosen segment length, we can then use 
any of the many known time-invariant surrogate data techniques.  We chose the iteratively 
refined surrogate data technique (IRSDT) [51].  The IRSDT will destroy any nonlinearity in the 
signal, and has been shown to be more accurate than the amplitude adjusted Fourier transform 
technique because it iteratively corrects for deviations in the spectrum as well as maintains the 
correct distribution of the signal in time domain [51].   

4.2.2 Parametric: AR model based 
The first step involves fitting an AR model to the time series.  The model coefficients can 

be estimated by many published system identification methods such as recursive lease square 
(RLS) or optimum parameters search (OPS) [16] and its time-varying version (TVOPS).  The 
spectrum of the time series is represented by the estimated model coefficients as AR model 
assumes the prediction error to be white.  The second step involves generation of surrogate data 
realizations by regressing the AR coefficients with white noise.  This procedure yields a nearly 
identical spectrum to that of the original time series but is uncorrelated with the original time 
series.  The assumption of the parametric method is that the residue error of the AR model is 
stationary.  That is, it has constant variance over time.  When the parametric method is employed 
to investigate the coherence values between too signals, two separate AR models will be used to 
the signals the time-frequency spectrum estimation.  Two independent white noises will be fed to 
the AR models to generate the surrogate pair.   

4.3 Applying TVSD to Simulation Examples and Physiology Data  

4.3.1 Determine the threshold for nonlinearity detection 
To quantify the nonlinearity in a system, we employed the prediction error difference 

(PED) as the statistic index of nonlinearity.  In order to calculate PED, the signal under 
investigation is modeled by a separate linear and nonlinear AR model, respectively.  TVOPS 
algorithm was employed to estimate the time-varying model coefficients.  For the detail of 
TVOPS algorithm, the reader is referred to Appendix I.  The number of selected model terms was 
kept the same for linear and nonlinear AR models since more model terms commonly tend to 
yield lower prediction error.  By keeping this consistence, the introduction of bias in PED values 
due to over- or under-fitting is avoided.  The PED is defined as how much improvement can be 
achieved by fitting the data with nonlinear AR instead of linear AR:  

100%L N

y

v vPED
v
−

= ×                                                   (4-1) 
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For time-varying case, ,L Nv v and yv are the instantaneous variance (IV) series of linear 
AR prediction error, nonlinear AR prediction error and the signal.  Thus, the PED is a function of 
time.  The IV is calculated by using a windowing technique based on the same philosophy of 
STFT.  To calculate the IV, a moving window is centered at each point of the prediction error 
series.  The prediction error within this window is assumed stationary.  The IV value at each 
temporal point is estimated as the variance of the prediction error within that window.  Suppose 
the window width is 2 1M + , the IV value at time n  is calculated by:  

( ) ( ) ( ) ( ) ( ) ( )( )var , 1 , , , 1 , ,Iv n e n M e n M e n e n e n M= − − + + +… …                (4-2) 

The first simulation demonstrates the efficacy of TVSD generated by nonparametric 
method for the detection of time-varying nonlinearity.   

Consider the following simulation example:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )20.6 1 0.6 2 1 3 2y n y n y n c n y n y n y n e n⎡ ⎤= − − − − − − + − +⎣ ⎦      (4-3) 

The model is driven by noise ( )e n  with the variance of 0.01.  The coefficient ( )c n has 
the on-off feature as shown in Fig. 4-1(a), introducing time-varying nonlinearity into signal y .  
The signal was modeled by linear and nonlinear time-varying AR model respectively.  Two 
Walsh functions were used to capture the on-off feature of coefficient ( )c n .  Among the 10 initial 
model terms, TVOPS picked out 4 significant model terms.  For the calculation of the IV series, 
we chose the window width one quarter of the series length, which is 250 points (the length of the 
signal is 1000).  The threshold was obtained based on 100 realizations of surrogate data.  The 
threshold was chosen as the critical value representing 95% confident level.  As shown in Fig. 4-
1(b), the threshold shows that the nonlinearity is insignificant from time 0 ~ 450 since the PED of 
the signal is lower than the threshold.  The nonlinearity became significant afterwards because the 
PED values of the signal are much higher than the threshold.  Compared to Fig. 4-1(a), which 
shows the true onset of nonlinearity is at time 500, the TVSD detected the occurrence of 
nonlinearity at time 450.  Notice that the window width is 250 and the window is centered at each 
temporal point, so at time 450, the window covers points from time 326 to 575.  So in this 
simulation example, the nonparametric TVSD only needs 75 ( 575 500 75− = ) points to detection 
the nonlinearity, which accounts for 30% ( 75 250 100% 30%× = ) of the window length.   

 
(a) (b) 

Fig. 4-1.  Nonparametric and parametric thresholds to detect time-varying nonlinearity:  (a) time-varying 
nonlinearity strength. Nonlinearity only presents in the second half of the signal; and (b) surrogate thresholds 
to detect significance of nonlinearity: dashed line is the threshold obtained by nonparametric surrogate;
dotted line is the threshold obtained by parametric surrogate; and solid line is the prediction difference of the
original signal. 
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The nonparametric TVSD was also applied to heart rate time series to detect nonlinearity 
due to posture change.  The ECG signal was recorded in supine and upright position from a 
healthy subject.  An R-peak detection algorithm was then applied to the ECG signal to extract 
heart rate time series.  The extracted heart rate is shown in the top panel of Fig. 4-2.  According to 
cardiovascular physiology, in supine position, parasympathetic auto nerves are more active and 

dominant.  Since parasympathetic 
possesses nonlinearity characteristic, hear 
rate series should exhibit more nonlinearity 
in supine position.  While in upright 
position, sympathetic gets elevated.  As a 
consequence, heart rate data becomes more 
linear and the nonlinearity may vanish due 
to the posture change.  In the heart rate 
series shown in the top panel of Fig. 4-2, 
the first half of the data (from time 1~512) 
was recorded in supine position, followed 
by the heart rate data in the upright position 
(from time 513 ~ 1024).  In modeling the 
heart rate data by linear and nonlinear AR 
model, 4 model terms were chosen by 
TVOPS for both models.  2 Walsh basis 
functions were used to capture the posture 

change.  The PED series of heart rate data is shown in the bottom panel of Fig. 4-2 as black line.  
The threshold obtained by the nonparametric TVSD is shown as red line in Fig. 4-2.  It is clearly 
shown that in the supine position (time 1~512), significant nonlinearity persistently presents since 
the PED values of the heart rate are greater than the threshold thoroughly.  After time 527, the 
PED values of heart rate dropped abruptly and stayed below the threshold, which indicates the 
hear rate series is highly linearly after time 527.  This is a consistent agreement with the fact hear 
rate is more linear in upright position due to the reduced parasympathetic and elevated 
sympathetic activities.   

In the case of nonlinearity detection, it may be inappropriate to use parametric method to 
generate TVSD because parametric TVSD uses a linear AR model to estimate the time-frequency 
spectrum of the original signal.  However, some nonlinearity can not be modeled by linear AR no 
matter how many model terms are chosen.  For example, Henon map is a nonlinear system and it 
can not be modeled by linear AR.  The parametric TVSD can be used to determine the threshold 
of coherence functions, as shown in the proceeding section.   

4.3.2 Determine the threshold for time-varying coherence functions 
Traditional surrogate data has been used to determine the significant threshold of 

coherence analysis [49].  However, all these applications are based on time invariant assumption.  
With the extension of coherence functions to time-varying case [36, 50], corresponding time-
varying surrogate data technique is demanded to determine the threshold for nonstationary signals.  
In this simulation, we will demonstrate how the developed time-varying surrogate data can be 
efficiently used in determining the significant level of causal coherence functions in a closed-loop 
time-varying system.  For the detail of TVCCF analysis, the reader is referred to Chapter 3.   

The closed-loop system structure is illustrated in Fig. 4-3.  The system is driven by two 
independent white noise ( )1e n and ( )2e n .  The ( )1

xA z−  and ( )1
yA z−  are the autoregressive 

Fig. 4-2.  Detect time-varying nonlinearity in heart rate
data using time-varying surrogate data.  Top panel: the 
heart rate time series, and bottom panel: the PED time
series of the heart rate data (black line); and the 
threshold obtained by nonparametric method (red line). 
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polynomial of signal x  and y , respectively, where 1z−  is the one step time delay operator.  

( )1
xyC z−  and ( )1

yxC z−  are the coupling terms from x to y and from y to x, respectively.  Given 
this notation, the transfer functions from x to y and y to x can be expressed as:   

( ) ( )
( )
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                                               (4-4) 

To simulate the time-varying features, the coefficients of the polynomials in Eq. (4-4) 
were designed as functions of time.  In this simulation example, 512 seconds of x  and y  were 
recorded.  Within this period, the system experienced a transition at time 256 seconds.  From 
0~255 seconds, the system polynomials were chosen as:   

( )
( )
( )
( )

1 1 2 3 4 5

1 1 2 3 4 5
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   (4-5) 

With this set of parameters, the transfer function from x to y, as defined in Eq. (4-4), is a 
low pass filter with the cut off frequency of 0.15 Hz; while the transfer function from y  to x  is a 
high-pass filter and the cutoff frequency is 0.35 Hz.  In the duration from 256 ~ 512 seconds, all 
the coefficients in Eq.(4-5) reversed their signs producing a system with high-pass filtering 
characteristic from x  to y  and low-pass filtering from y  to x .  With this varying characteristic 
both in time and frequency domains, the time-varying causal coherence function (TVCCF) from 
x  to y  should have high values only in low frequency band (0~0.15 Hz) from time 0~255 
seconds; and high values only in high frequency band (0.35 ~ 0.5 Hz) from time 256 ~ 512 
seconds.  The TVCCF from y  to x  should have the opposite pattern.   

Results of this simulation are 
shown in Fig. 4-4.  The left panel of Fig. 
4-4(a) is the TVCCF from signal x  to y .  
As designed, the transfer function from x 
to y in the duration 0~255 seconds is a 
low-pass filter with cutoff frequency 0.15 
Hz.  Thus, the causal coherence function 
from x  to y  within this time frame 
should only have high values only in the 
low frequency band of 0~0.15 Hz.  This 
can be clearly seen from the left panel of 
Fig. 4-4(a), where high coherence values 
(around 0.75) are observed in the time 
frame 0 ~ 255 seconds and frequency 
band 0 ~ 0.15 Hz only.  To test if the high 

 
Fig. 4-3.  The structure diagram of a closed-loop system.  
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values are significant or not, the TVCCF is compared against the thresholds obtained by 
nonparametric and parametric surrogates, shown in the up-right panel in Fig. 4-4(a).  To make the 
comparison more clarified, we only show a single representative of the TVCCF and 
corresponding thresholds for either part of the signal (the first part: 0 ~ 255 seconds; and second 
part: 256 ~ 512 seconds) since the values of either part does not change within that particular time 
duration.  Notice that the TVCCF values are higher than both the parametric and nonparametric 
thresholds in the frequency 0 ~ 0.15 Hz and lower than the thresholds otherwise.  This indicates 
the high coherence values within this frequency range are significant and signal x  is causally 
correlated with signal y  only within this frequency range.  This is a consistent agreement with 
the design of the simulation.  After time 255 seconds, the transfer function from x  to y  switched 
to a high-pass filter with the cutoff frequency of 0.35 Hz.  Again, the TVCCF is compared against 
the thresholds and the comparison is shown in the bottom-right panel in Fig. 4-4(a).  Both of the 
two thresholds are below the TVCCF values in the high frequency band (0.35~0.5 Hz) and above 
the TVCCF values otherwise.  This once again validated that the TVCCF values were significant 
high only in the high frequency, as expected.  Shown in Fig. 4-4(b) is the TVCCF from y  to x .  
Similar results can be seen from the plot and the explanation is analogous.  The difference is that 
the TVCCF is high in high frequency and low in low frequency from time 0 ~ 255 seconds; while 
it is high in low frequency and low in high frequency from time 256 ~ 512 seconds.   

(a) 

(b) 

Fig. 4-4.  Estimated causal coherence functions: (a) estimated TVCCFs of the simulation data, and (b) 
estimated statistical threshold coherence values based on the STFT surrogate data. 

The TVSD technique was also tested on previously collected blood pressure (BP) and 
heart rate (HR) data [52].  Details regarding data collection and data preprocessing procedures are 
described in our previous study [52].  Data plotted in Fig. 4-5(a) represent BP and HR data during 
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the control state followed by the application of atropine, which blocks the parasympathetic 
nervous activities.  The application of atropine occurs at 256 seconds in all panels of Fig. 4-5.  
The left and right panels of Fig. 4-5(b) show TVCCF representing BP to HR and HR to BP, 
respectively.  The notation “BP to HR” and similar shall mean the first variable (BP) is the input 
signal of the system and the second variable (HR) is the output signal.  In the left panel, 
representing the coherence relationship from BP to HR, during the control state (time less than 
256 seconds), we note statistically high coherence values especially at the low frequency (LF: 
0.04 to 0.15 Hz) and high frequency (HF: 0.2 to 0.4 Hz) bands.  The LF is known to contain 
dynamics pertaining to both sympathetic and parasympathetic nervous activities whereas the HF 
band is attributed to the dynamics of the parasympathetic nervous system [53].  With the 
application of atropine (> 256 seconds), we note insignificant coherence at all frequencies as 
confirmed by the TVSD coherence values shown in the left panels of Fig. 4-5(c) and (d).  This is 
the expected result, since the parasympathetic activities which reside in both LF and HF bands 
have been blocked with atropine.  The right panel of Fig. 4-5(b) shows the relationship from HR 
to BP, which is the baroreceptor activity.  With application of atropine, the expected result is an 
increase in HR which in turn activates the baroreceptors to decrease the HR.  The baroreceptors 
excite parasympathetic activity to decrease HR, but since the parasympathetic nervous system is 
blocked, the only recourse is to decrease sympathetic nervous activity.  Thus, this increased 
baroreceptor activity required to lower sympathetic activity should only be reflected in the LF 
region.  This is exactly what we observe in the LF region of the right panel in Fig. 4-5(b); the 
coherence values in the LF band are greater as compared to the control state and are higher than 
the TVSD coherence values, as shown in the right panel of Fig. 4-5(c) and (d).   

As expected, we do not see any changes in the coherence values in the HF region from 
the control state to the application of atropine in the right panel of Fig. 4-5(b).  Insignificant 
coherence values in the HF band in these two states are confirmed by the TVSD coherence values 
shown in the right panels of Fig. 4-5(c) and (d).  Plots in Fig. 4-5(e) represent time-invariant SD 
results.  Note that with this approach, the expected insignificant coherence in the HF region is 
also confirmed since time-invariant SD coherence and the TVSD coherence values are similar.  
This example illustrates the additional insight as well as the correct physiological interpretation 
that can be obtained with TVSD as well as time-varying coherence function estimates.   
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(a)

(b)

(c)

(d)

Fig. 4-5.  Application of the proposed method to BP and HR data. (a) the heart rate data (left panel) and 
blood pressure data (right panel) (b) causal coherence functions from BP to HR (left), and from HR to BP
(right);  (c) threshold values based on 100 realizations of the STFT surrogate data; and (d) threshold of
parametric TVSD. 

4.4 Summary 

With recent new development in time-varying coherence analysis [36, 50], as well as the 
development of other time-varying data analysis method such as time-varying nonlinearity 
detection, time-varying surrogate data techniques to properly take into account the statistical 
significance of TVCF values and time-varying nonlinearity presence are certainly needed.  
Towards this goal, the nonparametric and parametric TVSD techniques have been extended time-
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varying case.  The nonparametric method is based on STFT with the assumption that the signal is 
stationary within each segment.  Thus the time-invariant surrogate data can be generated each 
segment.  Stitching each piece of the time-invariant surrogate data will give an approximation of 
the TVSD.  The parametric method uses a time-varying AR model to fit the signal, and the 
surrogate is generated by feeding the estimated AR model with an independent white noise.  The 
parametric method has the assumption that the time-frequency spectrum of the signal can be 
represented by the estimate time-varying AR coefficients.   

Simulation results have demonstrated the efficacy and applicability of the proposed 
parametric and nonparametric method to nonlinearity detection and evaluation of significance of 
coherence functions.  For the nonlinearity detection, the simulation showed that the 
nonparametric TVSD correctly detected the onset of significant nonlinearity.  Appling the TVSD 
to HR data revealed that nonlinearity significantly presented in supine position while the 
nonlinearity vanished due the posture change from supine to upright.  This is a consistent finding 
with other literatures since the nonlinear Autonomic Nervous System (ANS) activity, 
parasympathetic, is more active in supine position; while the linear ANS activity, sympathetic, is 
more dominant in upright position [54-57].   

In the TVCCF analysis, both parametric and nonparametric TVSD provided thresholds to 
correctly determine the significance of causal correlation, as confirmed by the simulation.  
Application in the HR and BP data before and after atropine administration showed that in control 
state, the causal coherence function from BP to HR has high values both in low-frequency and 
high-frequency.  This is due to the fact that parasympathetic presents in both LF and HF.  After 
the atropine injection, which blocks the parasympathetic, this causal correlation is eliminated and 
the causal coherence values from BP to HR are insignificant in both frequency bands.  For the 
causal coherence function from HR to BP, which reflects the baroreceptor activities, the high 
values are observed in low frequency band after atropine injection.  This is an agreement with the 
fact that parasympathetic is blocked, so the correlation relationship from HR to BP is elevated in 
sympathetic frequency band. 
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PART 2 INSTRUMENTATION 

Chapter 5 Wireless Multiple Subject-Parameter Monitoring 1 

5.1 Introduction 

Recent advances in wireless technology have brought us closer to fully integrated 
wireless vital parameters monitoring systems becoming a reality.  For example, Becker et al. 
demonstrated wireless transmission of a few vital physiological parameters using a Bluetooth 
protocol for a Personal Digital Assistant (PDA) device [8].  In other works, a cell phone has been 
used to transmit biomedical signals [1, 9, 10].  More recently, Rasid and Woodward have 
developed a Bluetooth telemedicine processor for multichannel biomedical signal transmission 
via mobile cellular networks [10].  Specifically, their system utilizes the cellular protocol known 
as general packet radio service (GPRS), which has much higher data transmission rates than the 
global system (GS protocol) for mobile communications.  In another study, Hung et al. utilized a 
wireless application protocol for telemetry application of biomedical signals [9].  However, 
because this system uses an analog wireless transmission module, the data are more sensitive to 
noise contamination.  The common feature among all of the aforementioned systems is that they 
are all limited to data collection from a single or at most a few subjects.   

To overcome this limitation, we are developing a system which we term wireless multiple 
subject-parameter monitoring (WMSPM).  This system is based on a low cost commercially-
available wireless transmission mote known as Tmote Sky.  It also features ultra-low power 
consumption, a relatively long range of radio transmission (50 m indoor and 125 m outdoor) [58], 
and great mobility due to its small size.  Another salient feature of this system is that a single 
mote receiver supports data collection from multiple patients of multiple physiological 
parameters, making it suitable for scenarios as diverse as battlefields, emergency rooms, and 
nursing homes.   

5.2 System Design 

5.2.1 System overview 
The WMSPM system is constructed based on the Wireless Personal Area Network 

(WPAN) protocol as specified by the IEEE 802.15.4 standard [59]. The WMSPM system consists 
of three parts: transmitter and receiver, which are both comprised of motes, and a display terminal, 
as shown in Fig.  5-1.  A transmitter mote includes a wireless transmission circuit (Tmote Sky) 
which can be connected to analog or digital based physiologic parameter acquisition modules 

                                                 
1  Relevant work was published on the Proceedings of IEEE-EMBS 2006 Conference, Vol. 1, pp. 5896-5899. September 1-4, 2006, 
New York 
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such as an ECG and pulse oximeter sensor.  A receiver mote is also based on the Tmote Sky 
wireless circuit, but it is programmed to receive data from many individual transmitter motes.  
Furthermore, a receiver mote’s function is to transfer the data to the display terminal as well as to 
receive commands from the display terminal and pass them on to the appropriate motes. The 
display terminal can be a personal computer, PDA, or a packaged mote with an incorporated 
digital signal processor with a liquid crystal display.   

Communication between the transmitter and receiver mote was based on the star network 
topology (SNT), as shown in Fig.  5-1.  Simply, the SNT involves data transmission from 
individual motes to the receiver mote only when the consent command is given by the receiver 
mote.  Specifically, the receiver mote queues each available mote sequentially at a given time 
interval.  During each queue, the receiver mote sends a command to a particular transmitter mote 
to send data.  Once the command is received from the receiver mote, the transmitter mote needs 
to send the requested data before the Guaranteed Time Slot (GTS) expires.  The duration of the 
GTS can be programmed depending on how many subjects are monitored simultaneously.  It 
varies from 65 milliseconds to 200 milliseconds.  When the transmission of data is completed, the 
mote becomes inactive and yields the radio channel to other available motes for subsequent data 
transfer.  This data transfer scheme precludes transmitter motes from sending data at the same 
time.  Therefore, competition between radio channels race is avoided.  The SNT communication 
scheme reduces channel congestion and minimizes data loss.   

 
Fig. 5-1.  System architecture of the Star Network Topology 

5.2.2 The Hardware Gear 
Tmote Sky is a wireless transmitter/receiver circuit originally developed by UC Berkeley.  

Its main components are comprised of a wireless dual-purpose transmitter and receiver and a 
microcontroller, together with other supporting peripheral components.  Tmote Sky’s radio 
module is the Chipcon single-chip wireless transceiver – CC2420.  The CC2420 is a single-chip 
IEEE wireless personal area network (PAN) standard 802.15.4 compliant (commonly referred to 
as Zigbee) wireless transceiver designed for low-power and low-voltage wireless applications 
[60].  It operates in the 2.4 GHz ISM band that is license-free in the USA as well as in most of the 
world, and provides a 250 kbps effective data rate.  The CC2420 provides hardware support for 
packet handling, data buffering, burst transmissions, data encryption, data authentication, clear 
channel assessment (CCA), and packet timing information.  These features reduce the load on the 
host controller and allow CC2420 to interface to low-cost microcontrollers [60].  The CC2420 
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has link quality indication as well as programmable transmit power control.  These features make 
it possible to adjust the radio transmit power according to wireless link quality. This adaptive 
transmission power adjustment allows us to reduce power consumption. In our experiments we 
found it capable of transmitting data over a 30-50m range in indoor office/lab environments.  

On the Tmote Sky printed circuit 
board, the CC2420 is controlled by a 
low power consumption microcontroller, 
the MSP430F1611, which was 
developed by Texas Instruments.  It 
provides 10 KB of RAM and 48 KB of 
flash memory for persistent storage and 
uses a 16-bit RISC CPU and 16-bit 
registers.  The processor’s clock speed is 
8 MHz, which is fast enough for real-
time implementation data collection and 

transmission.  The MSP430 family also features extremely low active and sleep current 
consumption that permits long battery life.  The digitally controlled oscillator allows wake-up 
from low-power modes to active mode in less than 6µs, which further provides more flexibility in 
power management.  Another salient feature of the MSP430 is the integrated 8 channel 12-bit 
analog-to-digital converter (ADC) [60] allowing up to 8 analog biosensors to be connected.  The 
8 channel can be programmed at different sampling rates without interfering with each other.  

Furthermore, the MSP430 can be programmed to sample the analog signals at varying 
sampling rates and has the capacity to store a small amount of data.  These temporary stored data 
can be sent to a receiver mote when the MSP430 receives a command to transmit the data.  The 
time delay between transmissions of data is dependent on how many motes are queued in the 
receiver and what the sampling rate for each mote is.  In our system, this delay is less than 2 
seconds when 10 motes are simultaneously active.  Finally, the MSP430 can be programmed to 
transfer data to the CC2420 or a USB port using two universal synchronous/asynchronous 
receiver/transmitters (USART) ports designated as: USART0 and USART1.  In the Tmote Sky 
mote, USART1 is used to control the USB port and USART0 is used to control the CC2420 for 
wireless transmission.  In our system, the CC2420 was programmed to be periodically turned on 
and off according to the commands sent by the receiver mote.  This allows USART0 to be 
available most of the time to communicate with the additional digital signal processing module, 
which will be discussed in detail in Chapter 7 of this dissertation.   

5.2.3 Communication protocols 
A communication protocol is a set of standards that specify the rules for data 

representation, signaling, authentication and error detection that are basic requirement in the 
general communication field.  Communication protocols provide the necessary specification for 
the data to be correctly received and interpreted.  In our system, several communication protocols 
have to be implemented and combined together to make the system work properly.  These 
protocols are critical because they standardize all the network components, from hardware 
specifications to software implementation.  These protocols are also used to control the medium 
access to avoid channel racing problems during the wireless transmission.  Fig. 5-3 depicts how 
these protocols are responsible for different network mediums or layers.  We have developed a 
protocol for the communication in the application layer, termed Command/Data Transport 
Protocol (C/D TP).  The other four communication protocols in Fig. 5-3 are standardized.  In the 

Fig. 5-2.  Tmote Sky Wireless Transmission Module 
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proceeding paragraphs details regarding each of the five communication protocols shown in Fig. 
5-3 will be described. 

 
Fig. 5-3.  Network layers and corresponding protocols 

IEEE 802.15.4 Standard 

Tmote Sky is compliant with the IEEE 802.15.4 wireless standard.  This standard 
encompasses the MAC and Physical Layer (PHY) specifications for the Low-Rate Wireless 
Personal Area Networks (LR-WPANs).  The CC2420 of the Tmote Sky fully supports the PHY 
requirement but has only limited support for the MAC layer.  Consequently, the application 
software we have developed implements the MAC layer. 

Universal Asynchronous Receive/Transmit (UART) 

In the current version of our system, the display terminal (personal computer) and the 
receiver mote are connected via a USB port.  The USB driver maps the USB port to a virtual 
serial communication port (COM port) so that data can be exchanged between a computer and the 
receiver mote via the standard UART link. To establish correct UART communications, the 
following three parameters need to be specified: the baud rate, byte size and stop bit.  We 
configured the baud rate to be 262,144 bps, which is the highest value supported by Tmote Sky.  
The byte size and stop bit were configured to be 8 bits/byte and 1 bit without parity check, 
respectively.  

The Peer-to-Peer Protocol (PPP) 

The PPP is employed in TinyOS to provide generic data transfer.  In our system, the PPP 
is implemented between the serial communications from the receiver to the computer. The PPP 
link, which is implemented by TinyOS for wireless communication, was combined by the C/D TP 
protocol that we have developed to gain more organized medium access control as well as more 
reliable and efficient wireless transmission.  Unlike a general wireless PAN, in which the data 
transmission from each device is random and unorganized, the transmission time to send and 
receive data from each mote in our system is pre-determined.  This feature offers much more 
flexibility and greater control of data transmission by simplifying the MAC strategy.  The star 
network topology architecture and the hardware design of the mote can physically establish a 
point-to-point link between a mote and the receiver when each mote is controlled by C/D TP. 

Active Message (AM) protocol 

Active Message (AM) protocol, which is the standardized component of TinyOS, was 



 

54 

adapted to our system to implement the transport layer functions.  We modified the usage of AM 
to incorporate C/D TP since AM is not specific enough to describe the interaction behavior 
between the receiver and transmitters.  With this modification, not only the data collected from 
different sensors can be transmitted to the computer, but also those decisions or commands issued 
by the result of data analyses can be delivered to each mote. This feature allows a person to 
program each mote online, tailoring the performance of each mote to the patients’ medical 
histories.  

Command/Data Transmission Protocol (C/D TP) 

The C/D TP was specifically developed for our system.  While it is designed for the 
application-layer protocol, it can also be used in the MAC layer.  The C/D TP consists of 
REQUEST-RESPONSE in transmitting commands/data.  A REQUEST C/D TP message requires 
a mandatory RESPONSE from the targeted recipient to ensure a successful communication link 
between the transmitter and receiver motes.  A C/D TP REQUEST is typically a COMMAND that 
is issued to the target mote.  The target mote must take some actions according to the REQUEST.  
For example, if the receiver wants to get some data from a certain mote, it sends a 
REQUEST_GET_WODATA message (see Table 5-2) to the intended mote.  Once the target mote 
receives this REQUEST message, it knows that it should send the data back to the receiver 
immediately if the data are available.  The RESPONSE message to a certain REQUEST command 
provides dual functions.  First, the RESPONSE message functions as an acknowledgement of the 
receival of the REQUEST message.  Thus, the sender of the REQUEST message knows in this 
way that the REQUEST message has been successfully received by the intended recipient.  
Second, the RESPONSE message returns the execution result of the REQUEST command.  
Instead of just returning a simple result like either “success” or “fail”, the RESPONSE message 
returns critical data back to the sender.  For example, the RESPONSE message to the 
REQUEST_GET_WODATA command contains the actual physiological data.   

The structure of a typical C/D TP message with an arbitrary data field is provided in Fig. 
5-4(a).  The last two bytes in a C/D TP message represent the Channel Selection Word (CSW).  
As shown in Table 5-1, specific bits are assigned to different channels, which can represent 
different physiological parameters to be collected.  In the current system, C/D TP supports up to 
15 channels.  However, given the presence of a “reserved bit” (bit 15) in CSW, it can be easily 
extended to more than 30 channels, if necessary.  C/D TP also provides the capability to obtain 
variable sampling rates for different physiologic parameters. 

(a) 

 

(b)

 
Fig. 5-4.  Structure of a C/D TP message with data field. (a) Frame structure of C/D TP message; (b) Bit
assignments of the IDENTIFIER filed.   
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The identifier shown in Fig. 5-4(a) is further detailed in Fig. 5-4(b).  As shown in Fig. 5-
4(b), bit0 indicates if the message contains a data field; bit1 distinguishes the REQUEST message 
from the RESPONSE message; bit2 to bit5 define the operation of the message; and bit6 and bit7 
are not used but are available for future use, if necessary.  Based on the above bit assignments, 
the identifier space is divided into the following four subspaces:  

REQUEST with data field: 4×n + 3 
REQUEST without data field: 4×n + 2 
RESPONSE with data field: 4×n + 1 
RESPONSE without data field: 4×n 

(n = 0, 1, 2, …, 15) 

 
Table 5-1  Channel Select Word (CSW) in C/D TP 

BIT CHANNEL BIT CHANNEL 
0  Not mapped 8  Not mapped 
1  ECG  9  Not mapped 
2  SpO2 10  Not mapped 
3  BP  11  Not mapped 
4  Respiration 12  Not mapped 
5  Glucose 13  Not mapped 
6  Temperature 14  Not mapped 
7  Not mapped 15  Reserved 

In the current version of C/D TP protocol, some COMMANDs and RESPONSEs have been 
defined.  These COMMANDs and RESPONSEs involve the request of retrieving data from each 
individual mote, registering and configuring a mote, and changing sampling rate etc.  The defined 
COMMANDs and RESPONSEs are shown in Table 5-2.   
Table 5-2  Defined C/D TP Commands 

ID COMMAND DESCRIPTION 
0x02 REQUEST_REG_WODATA  Request to register a mote, no data field in the message 
0x03 REQUEST_REG_WIDATA  Request to register the motes listed in the data field  
0x06 REQUEST_DER_WODATA  Request to de-register the mote, no data filed in the message 
0x07 REQUEST_DER_WIDATA  Request de-register the mote listed in the data field  
0x0A REQUEST_GET_WODATA  Request the mote to send data, no data field 
0x0E REQUEST_SCH_WODATA  Request to select signal channels, no data field 
0x0F REQUEST_SCH_WIDATA  Request to select signal channels, with data field 
0x0B REQUEST_CHG_SPRATE  Request to change sampling rate 
0x17 REQUEST_GET_WIDATA  Request the mote to send data, with data field 
0x1B REQUEST_CHG_TIMEINT  Request to change the GTS interval 
0x00 RESPONSE_GET_WODATA  Response to request of sending data, no data field 
0x01 RESPONSE_GET_WIDATA  Response to request of sending data, with data field 
0x04 RESPONSE_REG_WODATA  Response to request of mote registration, no data field 
0x05 RESPONSE_REG_WIDATA  Response to request of mote registration, with data field 
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0x08 RESPONSE_DER_WODATA  Response to request of de-registration, no data field 
0x09 RESPONSE_DER_WIDATA  Response to request of de-registration, with data field 
0x0C RESPONSE_SCH_WODATA  Response to request of selecting signal channels, no data field 
0x0D RESPONSE_SCH_WIDATA  Response to request of selecting signal channels, with data field 
0x10 RESPONSE_CHG_SPRATE  Response to request of changing sampling rate, no data field 
0x14 RESPONSE_CHG_TIMEINT  Response to request of changing GTS interval, no data field 

5.2.4 Development platform and programming tools 
The software used for SNT-based communication between the transmitter and receiver 

motes was developed by nesC language, which was designed to support the operating system 
known as TinyOS.  TinyOS is an open-source operating system designed for wireless embedded 
sensor networks that have very limited resources [61].  It features a component-based architecture 
and an event-driven execution model.  nesC is an extension of the C language, designed to 
embody the structuring concepts and execution model of TinyOS [62].  Specific details 
concerning communication protocols using TinyOS are described in the proceeding paragraphs.   

TinyOS and nesC  

One of the advantages of using Tmote Sky as the wireless transmission module is that it 
supports TinyOS.  TinyOS is a small open-source operating system designed for wireless 
embedded sensor networks that have very limited resources [63].  It features a component-based 
architecture and event-driven execution model.  This architecture and execution model makes the 
development tasks much easier and more systematic.  In TinyOS, the operation system (OS) 
services are decomposed into separate components, allowing unused services to be excluded from 
the application.  These system components are reusable.  An application simply connects all the 
components that it needs by using a wiring specification; while the wiring specification is 
independent of component implementations.  This solution provides much flexibility of 
programming when the code size is maintained as small as possible. TinyOS has two concurrency 
models: tasks and events.  Tasks are a deferred computation mechanism.  They run to completion 
and do not preempt each other.  While on the contrary, events can preempt the execution of a task 
or even another event although they also run to completion.  TinyOS execution is ultimately 
driven by events representing hardware interrupts.  Events concurrency model is critically 
important in this real-time monitoring system.  Many sources may generate a hardware interrupt, 
demanding a right-away response and processing.  For example, an AD conversion, timer 
expiration, and a reception of command message etc.  

To implement TinyOS, a new programming language, nesC, has been developed [63].  
nesC’s contribution is to support the special needs in the domain of embedded systems.  It 
incorporates the flexible event-driven concurrency model and component-oriented application 
design.  By putting restrictions on the programming model, nesC’s compiler is able to perform 
whole-program analyses, including data-race detection.  Early data race detection is very 
important in embedded real-time system, because most embedded systems are more prone to data 
race problem than other programs due to the fact that embedded systems have to respond to many 
external events and interrupts.  To make it worse, it is extremely difficult to locate the data race 
problem at run-time because data race problems often occur irregularly.  An embedded program 
may be able to run for a long time without any problems but can crash mysteriously due to an 
occurrence of data race.  The feature of data-race detection at compiling time provided by nesC 
greatly enhances the reliability of the application code and shortens the development of the 
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embedded system.  The whole-program analysis also perform optimizations at compiling time, 
simplifies application development, reduces code size, and eliminates many sources of potential 
bugs [63].  To take advantage of the available features of TinyOS, nesC is chosen as the 
development programming language at the transmitter and receiver ends in our system.  nesC is a 
C-like language.  Its compiler is composed of a “translator” and a general C complier.  The 
translator translates the nesC source files into C files and the general C complier (like gcc) is 
employed to do the actual compiling work and generate the objective files.  The data race 
detection is performed by the translator before the nesC code is translated.   

Matlab, Microsoft Visual C++ and Borland Delphi 

The monitor software was developed mainly by using Borland Delphi.  Compared to 
Microsoft Visual C++ or other software development tools, Delphi is more suitable for the 
development of a software for which friendly user interface is of most importance.  Taking into 
the consideration that most users of this system are health care givers and they do not have solid 
computer background, providing a friendly and easy-to-use interface in the monitor software is of 
much concern.  Using Delphi can accelerate the development of such kind software because 
Delphi has provided many components that can be used by a developer. Besides, there are many 
third-party components available to enhance the performance of the software regarding display, 
data collection, and interactive functions etc.  For example, the monitor software uses a well 
know serial communication component, Spcom, to read the data from the receiver through USB 
port.  The use of these components saves a lot time and we can focus our attention on the 
improvement of the system’s performance.  

The algorithms we have developed are written in Matlab language.  To incorporate these 
algorithms in the monitor software, either translates them into Objective Pascal (the programming 
language of Delphi) or somehow use the Matlab sources code directly.  Luckily, Matlab has its 
own complier that translates Matlab M-files into C files.  To facilitate the use of these Matlab-
generated c source files, Matlab also provides the developer a standard math library, called 
Matlab C Math Library.  This library is a collection of many build-in functions and c header files 
and source files defining data types, structures and functions etc.  The advantage of using Matlab 
to implement those algorithms is significant.  As we all know, Matlab was invented specifically 
for scientific computation.  It has been optimized to provide a fast and accurate computation tool 
for scientists.  Especially, it has a lot of built-in functions and tool boxes that can be used.  Thus 
we can focus on the development of the algorithms themselves instead of being distracted by the 
details of programming.  Although Matlab is an ideal tool for algorithm development and the 
source code can be compiled to C files, these C files cannot be used directly in Delphi.  In this 
dissertation, Microsoft Visual C++ will be used to develop an “adaptor” project to fill the gap 
between the C files and Delphi.  The “adaptor” project uses Dynamic Link Library (DLL) 
technique by which the C files will be compiled to generate a general DLL file that is loadable in 
Delphi.  The DLL file exports a collection of functions, each of which performs a specific data 
analysis as they are developed in Matlab.  The sequence of utilizing Matlab to develop data 
analysis algorithms and make them accessible by the monitor software is depicted in Fig.5-5.  
The detail of converting a Matlab program into a Delphi usable module is later discussed in 6.4.3 
of this dissertation.   

In general, these tools are needed in the development of the system: 

TinyOS, nesC:  They are used to develop the software residing in each transmitter mote 
and the receiver mote.  The program written in TinyOS and nesC are responsible for data 
acquisition, medium access control, and data transmission etc.  

Matlab:  It is used to develop and implement all the sophisticated data analysis and 
algorithms to generate critical vital parameters at the monitor software end.   
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Microsoft Visual C++:  Integrates and compiles the c files generated by Matlab into DLL 
file so that the monitor software can directly call the functions perform data analysis.   

Borland Delphi:  It is used to develop the interface of the monitor software.  The monitor 
software reads data from the receiver via the USB interface or gets data from the server via 
Internet (discussed in detail in 6.3), displays the data to the user graphically.  The monitor 
software also performs sophisticated data analyses by calling routines developed in Matlab.  The 
monitor software also provides the tool to remotely configure the motes and issue commands to 
the motes.  

Fig. 5-5.  To Make the Matlab program usable in the monitor software 

5.3 Summary 

The Tmote Sky is a general wireless transmission hardware platform that is compliant to 
IEEE 802.15.4 standard.  The Tmote Sky circuit integrates the wireless transmission chip, 
CC2420, together with the ultra low-power consumption microcontroller MSP4301611.  The 
Tmote Sky runs on TinyOS to provide a convenient hardware and software platform wireless 
transmission applications.  We utilized SNT network architecture as the networking model of our 
system because a single receiver is designed to support multiple transmitters so that the cost of 
the system is reduced.  The medium access is controlled and coordinated by the receiver.  For any 
particular transmitter, it can send data only when a consent command is provided by the receiver.  
In addition to the implementation of standard protocols, we developed an application level 
protocol, termed C/D TP, to meet the specific requirements of our system.  The C/D TP features a 
REQUEST/RESPONSE model, which results in better medium access control.   

To expedite the development of our system, multiple programming tools are used in 
different part of the system.  For sophisticated digital signal processing algorithms, the code was 
written in Matlab because Matlab is a very convenient tool for algorithm development.  
Algorithms developed by others are all written in Matlab.  To translate the Matlab code into a 
module usable by the monitor software, Microsoft Visual C++ is employed to build DLL files 
based on the Matlab program.  The exported DLL files are then loaded by the monitor software 
for data analysis.  The monitor software is developed using Borland Delphi.   

The embedded program residing in the transmitter and receiver are developed with 
TinyOS and nesC.  TinyOS is an embedded operating system designed specifically for wireless 
mesh network.  It utilizes a component-based and event-driven architecture.  With a lot of system 
components available, the application development has been simplified by wiring these 
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components through standard interfaces.  The source codes of these system components are also 
open to the public.  The developer can modify the codes at will.  To support features of TinyOS, 
nesC was invented.  An application written in nesC typically consists of a configuration file and 
several module implementation files.  The nesC complier translates nesC into C language file and 
then uses other C compliers (such as gcc) to generate objective files and then link these objective 
files to an executable binary file.  
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Chapter 6 System Implementation and Performance Assessment 

6.1 Introduction 

The system implementation is mainly about the software development at each individual 
transmitter, the receiver, and the monitor software in the monitoring center.  The software 
development is conducted under the guidelines of the design as described in Chapter 5.  For the 
development of the software at the transmitter, receiver, or the monitor software, different 
programming tools are used as discussed in Chapter 5.   

At the transmitter, the functionality of the software mainly includes the digitizing analog 
signal from a analog signals (e.g. ECG); retrieving digital output from a module such as the SpO2 
circuit (MP506); understanding the commands issued by the receiver as well as packing and 
sending data to the receiver.  The software at the transmitter end has three modules: Data 
collection module, C/D TP Parser, and Data Packing and Sending module.   

The software residing in the receiver is of critical importance.  All the transmitters are 
coordinated by the receiver.  The software in the receiver not only relays data to the monitoring 
center and delivers commands to each transmitter but also facilitates the medium access control 
of the entire system.  The receiver is responsible for authorization of the access to the radio 
medium for each particular mote in a particular time period.   

The monitor software is developed for the monitoring center.  The monitor software 
should be able to receive the data passed by the receiver and display the data in a real-time 
fashion.  The monitor software is also equipped with real-time digital signal processing 
algorithms.  These algorithms perform real-time data analysis to reveal more diagnostic-relevant 
information to facilitate medical alerts in a real-time manner.   

The comprised system is also tested for its capacity and reliability.  The test showed that 
a single receiver can coordinate 10 independent transmitter motes at a single physical frequency 
with each mote continuously sending the ECG data at 200 Hz sampling rate.  If only a few 
processed parameters are sent instead of the raw ECG data, then the maximum number of the 
motes supported by a single receiver can be as high as 100 transmitter motes.   

6.2 Software Development at the Wireless Transmitter End 

The software residing in the transmitter has the following functional modules: 

1. Data Collection Module 

The system is built based on the ODT (On-command Data Transmission) scheme.  When 
requested by the monitoring center, the transmitter sends raw data wirelessly instead of a few 
processed parameters.  So, the transmitter mote should have the ability to directly access the 
output of an analog module, for example, the ECG circuit; digitize it and send it out.  The 
software in the transmitter should implement such a module to achieve this goal.  When sending 
raw data as needed, the module should be invoked.  Analog data is not the only data format that 
the transmitter deals with.  Some bio-sensor has digital output, for example the SpO2 module we 
used in our system has the output of SpO2 reading in a digital format.  The SpO2 reading is sent 
out by the MP506 via its on-board UART port.  The communication protocol is specifically 
defined for the MP506.  Thus, the transmitter software should also contain such a module to 
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correctly retrieve SpO2 reading from MP506.   

2. C/D TP Parser 

At the application layer, we developed the C/D TP to facilitate the implementation of 
ODT scheme.  The software in the transmitter should be able to understand the meaning of the 
received C/D TP message issued by the receiver mote.  The transmitter mote is supposed to 
respond to the C/D TP message properly.  A C/D TP parser is required to interpret the C/D TP 
message so that the recipient will take proper actions as specified by the command in the message.   

3. Data Packing and Sending Module 

The data and command sent by the transmitter (and receiver) is packed in a certain format 
according to the protocols discussed in Chapter 5 so that the message can be correctly interpreted 
and understood.  The transmitter program implements a function module to pack data and 
commands in terms of the protocols.  The data packing module can be considered as a 
functionally reversed procedure of the parser.   

6.2.1 Data collection module 
A primary function of the software at the transmitter end is to collect data from multiple 

bio-sensors.  According to the property of the output data, the bio-sensors can be categorized into 
analog sensors and digital sensors.  Collecting data from different types of sensors need quite 
different approaches.  For analog signals, the sensor should be connected to the transmitter’s AD 
convertor.  The software residing in the transmitter controls the sampling rate and digitization 
precision of the analog signal.  For digital signals, a transmitter retrieves the data through a digital 
input/output port, typically a USART port, by complying with a certain communication protocol.    

1. Analog bio-sensor – ECG Module 

The ECG module developed by our lab is a two-channel circuit.  The circuit board for 
ECG data collection is shown in Fig. 6-1.  One of the salient features of the ECG circuit is the 

low power consumption of the circuit, as it is 
powered by the direct current of 3 volts (2 AA-size 
batteries).  We utilize two power circuits, however, 
to increase the DC power from 3 to 5 volts.  A 
MAX1706 chip is used to convert 3 volts to 5 volts 
and a MAX635 chip is used to provide negative 5 
volts power source for the ECG circuit.  The 
primary reason for the use of these power circuits is 
to stabilize the power source.   

Other features of the ECG circuit are amplifiers, filtering circuits, and a driven right leg 
circuit.  There are two differential amplifiers in cascade to increase the gains 100 and 10 folds, 
respectively.  Filtering circuits are comprised of a notch filter (to remove 60 Hz noise interference) 
and a low-pass filter with a cut-off frequency of 100 Hz.  The driven right leg circuit was 
designed to further reduce instrumentation noise interference.   

 
Fig. 6-1.  ECG Module developed by our lab 
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In our system, the output of the ECG circuit has a range from 
0 volt to 1 volt.  The Tmote Sky AD input range is limited by the 
reference voltage, which is 1.5v and 2.v and is software selectable.  
So, it is safe to directly wire the ECG analog output to the Tmote 
Sky’s ADC input pin since the ECG voltage is below the reference 
voltage.  If any additional analog circuit will be added to the system 
in the future that has output voltage higher than the reference voltage, 
a voltage divider should be used to bring down the voltage.  A simple 
voltage divider is constructed by two resistors in series, as shown in 
Fig. 6-2.  The transfer function of the divider is:  

2

1 2
o i

RV V
R R

=
+

i         (6-1) 

By choosing appropriate 1R and 2R values, the input voltage iV can be 
rescaled down to a safe level within the limit of the ADC reference voltage.   

An important issue regarding the analog signal collection is to control the sampling rate.  
In our system, we utilized a “Timer” to control the sampling rate.  On hardware, the timer is a 
built-in circuit in the MSP430 microcontroller.  TinyOS has abstracted the hardware Timer and 
offered a software component providing the Timer interface:  

interface Timer { 
command result_t start(char type, uint32_t interval); 
command result_t stop() 
event result_t fired(); 

} 

The event result_t fired() is the subroutine that is automatically called when the timer 
expires.  This subroutine should be implemented by the application’s program to take care of the 
expiration of the Timer.  We can take advantage of the automatic call of this subroutine to sample 
the analog signal.  Thus, controlling the expiration of the timer interval is equivalent to control 
the sampling rate.   

The MSP430’s built-in AD converter also has been abstracted by TinyOS.  The AD 
converter can be accessed through the interface provided by TinyOS:  

interface ADC { 
async command result_t getData(); 
async command result_t getContinuousData(); 
async event result_t dataReady(uint16_t data);  

} 

The AD conversion is completed in two steps.  First, the async command 
result_t getData() is called to trigger the conversion.  It typically takes a short time 
(measured in “clock” cycles, around several microseconds or more, depending on the 
configuration of the AD convertor) for the converted data to be stable.  Once the converted data is 
ready, the subroutine async event result_t dataReady(uint16_t data) is 
automatically called.  The application program should implement customized code in this routine 
to read the data out of the AD converter’s register, and perform further processing, if needed.   

By utilizing the Timer and ADC components in TinyOS, it is very convenient to 
construct the code to sample an analog signal at the desired sampling rate.   

First, determine the timer interval in terms of the desired sampling rate.  Suppose the 

 
Fig. 6-2.  Voltage Divider 



 

63 

timer interval is T , measured in milliseconds, the sampling rate is S , measured in Hertz, then the 
following relationship hold:  

1000T
S

=              (6-2) 

The Timer is invoked by calling: Timer.start(TIMER_REPEAT, T) in TinyOS, where T  
is a value written into the timer’s register and, it must be an integer.  Due to this requirement, 
there may be a round-off error in Eq. (6-2) for some arbitrary sampling rates.  Besides, TinyOS 
1.x divides one second into 1024 nominal milliseconds for hardware optimization reasons.  This 
also causes the actual sampling rate to be slightly off the desired one.  This small difference may 
not affect the sampled data too much, but it can cause a problem when the monitor software 
displays the data in real-time fashion.  This problem is further discussed in 6.4.2, and a solution is 
provided.   

The built-in AD converter on MSP430F1611 has 12-bit precision.  This precision is high 
enough to preserve all morphologies of an ECG waveform.   

2. Digital bio-sensor – Pulse Oximeter 

There are a few pulse-oximeter OEM (Original Equipment Manufacturer) modules 
commercially available.  The Nellcor Oximetry MP506 is one of them.  The MP506 uses a simple 
and flexible method of implementing non-invasive pulse oximeter.  It is based on two physical 
principles: 1) the light absorbance of oxygenated hemoglobin is different from that of reduced 
hemoglobin, at the oximeter’s two wavelengths, which include red and near infrared light; and 2) 
the absorbance of both wavelengths has a pulsatile component, which is due to the fluctuations in 
the volume of arterial blood between the source and the detector [64].  The two wavelengths 
employed in the MP506 are 660 nm for the red light and 890 nm for the infrared light, 
respectively.  The MP506 is designed to interface with OxiMAX Sensors to provide the following 
patient data: 1) oxygen saturation (SpO2); 2) pulse rate; 3) pulse waveform and pulse amplitude 
modulation (blip); 4) motion indicator*; 5) sensor disconnected indicator; 6) sensor off patient 
indicator*; 7) in sensor trend*; 8) sensor adjust*; and  9) sat-seconds alarm management*. (“*” 
indicates that this feature is available only in a certain operation mode.).  The MP506 is capable 
of communicating with a host system via serial communication link.  To facilitate a reliable 
communication, two protocols have been developed:  Compatible Host Interface Protocol (CHIP), 
and Standard Host Interface Protocol (SHIP) by the company.  The MP506 is compatible to both 
of these 2 protocols via a configuration switch selection.  The data transmission rate is also 
optional, varying from 2,400 bps to 19,200 bps.  

The MP506 printed circuit board is approximately 3.5 in. (89 mm) long, 2 in. (50 mm) 
wide, and 0.55 in. (14 mm) high.  Its size is comparative to a credit card [65].  The small size 
provides great mobility.  A sample of MP506 and the OxiMAX probe are shown in Fig.6-3(a) and 
(b), respectively. 

Unlike the ECG module, which has an analog output, the MP506 module provides 
digitized output and the SpO2 data should be read out through a serial communication link with 
the specified protocols (CHIP or SHIP) [65].  The pulse oximeter module is wired to the serial 
port on Tmote Sky.  The Tmote Sky is programmed to periodically query the MP506 module to get 
SpO2 readings.  The query time interval determines the sampling rate of SpO2, which can be 
easily preset or changed by the software.  
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(a)

 

(b)

 
Fig. 6-3.  MP506 circuit and probe: (a) the main circuit board; and (b) the OxiMAX probe 

To understand the messages from the MP506, the Tmote Sky must be able to decode the 
message encoded by the MP506 communication protocol.  In our system, we used the SHIP 
protocol supported by MP506.  According to the MP506 technical document, the SHIP message 
has the frame structure shown in Fig. 6-4 [66].  All SHIP messages start with the hexadecimal 
value of 0x55 and end with ETX (hexadecimal value of 0x03).  The data field is further 
consisted of the message KEY, message LEN, and the message VALUE, as shown in Fig. 6-4.   

The most common way to implement a protocol is to utilize a Finite State Machine (FSM) 
[67, 68].  An FSM is a system behavior model.  The model consists of finite system states, 
transitions between two states, and actions at the entry or exit of a state.  The conditions leading 
to the state transition are also specified in the model.  An FSM is best illustrated by a state 
diagram.  In the diagram each state is represented by a circle tagged with the state name.  The 
transition between two states is denoted by a straight line with an arrow to indicate the direction 
of the transition.  The conditions triggering the transition are labeled on the line.  In the 
implementation of communication protocol using FSM, the transition condition is simply the 

 
Fig. 6-4.  SHIP message structure 
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receival of each valid byte.   

The FSM method has been used multiple times in the work of this thesis.  Besides the 
implementation of SHIP protocol, it also has been used in the R-wave detection algorithm (see 
7.4.1) and sending C/D TP message by the additional microcontroller (see 7.3.2) etc.  The usage 
of FSM can be seen not only in the embedded software, but also in the monitor software.   

6.2.2 C/D TP parser 
The communication between each transmitter and the receiver is mediated by a bunch of 

protocols, as described in 5.2.3.  These communication protocols deal with different layers of the 
communication.  At the communication layer, we developed the C/D TP protocol specifically for 
our system.  In order to understand the commands issued by the receiver, the transmitter needs a 
specific software module to interpret the C/D TP messages so that the transmitter can take 
appropriate actions as response to the received command.  The C/D TP Parser is such a software 
module to interpret the messages issued by the receiver mote.  According to the protocols 
described in 5.2.3, a typical message exchanged between the receiver and the transmitter has the 
structure shown in Fig. 6-5.   

 
Fig. 6-5.  Structure of a typical Active Message 

The starting point of the C/D TP Parser is the arrival of a valid Active Message.  As 
shown in Fig. 6-5, a valid Active Message starts with 0x7E 0x42 and ends with 0x7E.  The 
reception of a valid AM message is handled by TinyOS.  The receive component in TinyOS 
provides a receive interface defined as:  

includes AM; 
interface ReceiveMsg 
{ 

event TOS_MsgPtr receive(TOS_MsgPtr m); 
} 

When a valid Active Message is received, the receive component automatically trigger the event 
of ReceivieMsg.receive().  Notice that as shown in Fig. 6-5, the C/D TP message is 
embedded inside the data field of an Active Message, it is intuitive to implement the C/D TP 
parser in the custom subroutine automatically called when the ReceivieMsg.receive() 
event is generated.  Since the integrity of the Active Message is guaranteed by the TinyOS system 
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component, the C/D TP parser starts with the assumption that the received Active Message does 
not have any corrupted data.  With this guarantee, the flow of the C/D TP parser is simplified: 
first, the data field of the received Active Message is stripped out.  Second, the first byte of the 
data field, which is the ID of the C/D TP message as shown in 5-4, is tested to see if the C/D TP 
message is a REQUEST or RESPONSE message, then the execution flow is branched by using the 
switch statement according to the C/D TP message ID:  

if(_IS_REQUEST(tCDTPMsgRev.nId)){ 
switch(tCDTPMsgRev.nId) { 

case REQUEST_GET_WODATA: 
…… 
break; 

case REQUEST_GET_WIDATA: 
…… 
break; 

case REQUEST_SCH_WODATA: 
…… 
break; 

case REQUEST_SCH_WIDATA: 
…… 
break; 

case REQUEST_CHG_SPRATE: 
…… 
break; 

…… 
} 

} else { 
switch(tCDTPMsgRev.nId) { 

case RESPONSE_AVA_WODATA: 
…… 
break; 

case RESPONSE_REG_WODATA: 
…… 
break; 

case RESPONSE_REG_WIDATA: 
…… 
break; 

case RESPONSE_DER_WODATA: 
…… 
break; 

case RESPONSE_DER_WIDATA: 
…… 
break; 

…… 
} 

}; 

Finally, the Channel Selection Word (CSW) is checked to find out which channel is affected by 
the received C/D TP message.  For example, if the received message has a CSW of 0x02, it 
means the command is applicable to ECG channel only (see 5.2.3 for the definition of each bit in 
CSW).   

There is a trick in the use of the switch statement.  At the transmitter end, the most 
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frequently received C/D TP message is the REQUEST_GET_WODATA message because the 
receiver keeps sending this message to the transmitter to assign a GTS for that transmitter mote so 
that it is authorized to access the radio frequency for data transmission.  Thus, it is mostly likely 
that the received C/D TP message has the message ID of REQUEST_GET_WODATA.  Obviously, 
it is more efficient to first test the C/D TP message ID against value REQUEST_GET_WODATA, 
as shown in the above code.  The REQUEST_GET_WODATA is put at the first branching position 
of the switch statement.  So in most cases, the rest comparisons between the C/D TP message 
ID and the other values do not need to be executed.   

The C/D TP parser is not only implemented at the transmitter end, but also implemented 
at the receiver and in the monitor software (see 6.4).  There is a slight difference among these 
implementations due to the functionality of the parser at different ends.  Especially in the monitor 
software, there is no such system component as ReceivieMsg.receive() provided by 
TinyOS that guarantees the receival of a valid Active Message.  As stated above, the starting point 
of the C/D TP Parser is the receival of a valid Active Message.  So, the monitor software has to 
locate and identify a valid Active Message in the received byte flow by itself before the C/D TP 
Parser is bought into the front.  In the development of the monitor software, the C/D TP Parser is 
embedded in a lower level subroutine that locates a valid Active Messages from the received byte 
flow.  Combining the C/D TP Parser with the lower level subroutine brings some programming 
convenience and avoids some overhead.   

From this C/D TP Parser example, we find that it is of much development convenience to 
modularize the general system functions.  The transmitter and receiver have benefited from the 
support of TinyOS.  The implementation of C/D TP Parser is much easier in the receiver and 
transmitter software than in the monitor software because the arrival of a valid Active Message is 
guaranteed by the TinyOS system modules.  In the next step of this project, an additional 
microprocessor is added into the system to enhance the signal processing capability.  The similar 
modularization principle is followed in the development of a software platform for embedding 
digital signal processing algorithms into an additional microcontroller, as discussed in Chapter 7.  
The software platform implements system functions in some stand-alone modules by providing 
encapsulated software components.  Embedding DSP algorithms starts from these abstracted 
system components without being concerned of the low-level functionality.  By this means, it is 
much convenient and efficient to embed more DSP algorithms into the system.  Besides, 
modularization development method is also less error-prone.   

6.2.3 Data packing and sending 
The collected raw data or processed parameters should be sent to the monitoring center in 

a certain format.  The data packing and sending module prepare the data according to the 
structure shown in Fig. 6-5 so that it can be correctly illustrated by the monitoring software.  The 
packing is the reverse of the parsing procedure.   

As the paring procedure starts from the “outer” of the message by stripping off the header 
and tail control information of the message, the packing initiates from the “inner” of the message.  
The data is first embedded in a C/D TP message by adding the C/D TP header and tail 
information.  Then, the C/D TP message is inserted into the “data” field of an Active Message.  
The header and tail portion of the Active Message are added in accordance to the definition of the 
Active Message shown in Fig. 6-5.  Messages generated in this way are standardized, so they can 
be correctly received and interpreted by the recipient.   

One point should be clarified is that when an Active Message is being sent out over the 
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radio, the underlying hardware circuit will add more control sequence at the head and tail of the 
pay load [69].  These control sequence is important at the physical layer, but they will be 
automatically removed when the bit flow is received and verified by the recipient hardware.  For 
the detail of the control sequence, the reader is referred to [69].   

Packing messages is easy to carry out, but sending the messages is little complicated.  As 
specified by the IEEE 802.15.4 standard, the maximum length of a message is limited by 128 
bytes [69].  The Active Message header and tail themselves occupy 15 bytes as Fig. 6-5 shows.  
This overhead puts an efficiency issue on the transmission of data.  Suppose the length of the 
Active Message is n  bytes, then the pay load length is 15n − .  So the pay load efficiency of such 
a message is:  

15 100%neff
n
−

= ×  

If a single sampled value (2-byte) is transmitted by the message, the total length of the message is 
17 bytes.  Thus the eff  is less than 12% ( ( )17 15 17 100% 11.8%− × ≈ ).  This means by average, 
for 100 transmitted bytes only 12 bytes are the actual sampled data while the others are just 
message control information facilitating the transmission.  This is very inefficient since majority 
of the bandwidth is used to transmit the control information instead of payload.  Obviously, large 
n  will also increase the efficiency.  However, the total length of the Active Message is limited by 
128 bytes, so the efficiency also has an upper limit, which is:  

lim
128 15 100% 88%

128
eff −

= × ≈  

Since the radio transmission is closely related to the power consumption of the system, it is not 
trivial to increase the transmission efficiency.  In the future development of the system, it is of 
consideration to erase the Active Message protocol with the replacement of a mature C/D TP 
protocol so that higher efficiency can be reached.   

The TinyOS has a system component that provides the send interface as:  
includes AM; 
interface BareSendMsg 
{ 

command result_t send(TOS_MsgPtr msg); 
event result_t sendDone(TOS_MsgPtr msg, result_t 
success); 

} 

Direct call of BareSendMsg.send() initiates the sending of an Active Message.  The 
hardware and TinyOS take care of the detail of the sending protocol.  When the complete Active 
Message is sent out successfully, the application program is automatically informed by the event 
BareSendMsg.sendDone().  The application program must respond to this event, as 
required by TinyOS.   

6.3 Software Development at the Receiver End   

The receiver plays a critical role in the system because all the command/data exchanged 
between each individual mote and the monitoring center is first passed to the receiver.  So, one of 
the receiver’s major functions is to behavior like a “bridge”.  This “bridge” relays data/command 
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to its specific destinations.  For the data flow of “downwards” (from the monitoring center to 
each mote), the message is passed to the receiver via USB connection first and then delivered to 
its destination through a wireless radio.  For the data flow “upwards” (from each mote to the 
monitoring center), the data is transmitted via a radio frequency first and then relayed to the 
monitoring center through a USB.   

Another major function of the receiver is to control the medium access.  In our system, a 
single receiver is designed to support multiple motes.  It is of critical importance to coordinate 
these motes to send data in an organized way since all the motes are working on the same radio 
frequency, such that the transmission collision is minimized.  A random medium access scheme 
results in an unacceptable collision rate in such a narrow bandwidth.  We have tested such that 
without the coordination of the receiver; even two motes cannot send reliable data with the 
collision rate lower than an acceptable level.  The software in the receiver facilitates the 
implementation of MAC, as mentioned in 5.2.1, by providing such coordination function.   

The receiver also has a similar C/D TP parser as described in 6.2.2.  Again, the parser is 
used to understand the command the receiver obtains so that a correct action are carried out by 
the receiver.   

6.3.1 Relay command/data upwards and downwards 
The receiver software has two different communication interfaces to deal with: USB and 

wireless radio.  At hardware configuration aspect, the USB controller chip is connected to 
MSP430’s USART1 port.  Thus, sending or retrieving data from USB port is equivalent to the 
same procedure of a general USART port.  In Tmote Sky, the USART1 port is configured in 
UART mode.  Thus, UART communication protocol parameters have to be set up before the 
USART1 port can work properly, which involves baud rate, stop bit, odd/even check bit, and 
character bit.  The TinyOS supports some commonly used baud rates: 9,600 bps, 19,200 bps, 
38,400 bps, 115,200 bps and 262,144 bps.  Based on the consideration that the bandwidth of the 
wireless radio channel is 250,000 bps, we chose 262,144 bps as the UART baud rate because this 
is the only baud rate that is higher than the wireless bandwidth.  If choose a baud rate lower than 
this, the receiver may not be able to relay all the data it receives from the wireless radio to the 
monitor software.  For other UART configuration values, we chose the following TinyOS default 
setting: 1 stop bit, no check bit, and 8-bit character.   

TinyOS has already abstracted the communication through USART port by providing a 
system component.  The system component exports a convenient interface HPLUART to facilitate 
the realization of UART communication in the application program.  The HPLUART interface is 
defined as:  

interface HPLUART { 
async command result_t init(); 
async command result_t stop(); 
async command result_t put(uint8_t data); 
async event result_t get(uint8_t data); 
async event result_t putDone(); 

} 

Calling of HPLUART.put() sends a single byte to the UART port; when a valid byte is 
received by the UART port, an event of HPLUART.get() is generated.  To process the received 
data, the application code should be put in the body HPLUART.get().  In the receiver program, 
the UART port is used to communicate with the monitor software, so a C/D TP Parser is 
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implemented in the HPLUART.get() body.  As discussed earlier, the C/D TP Parser is 
implemented using an FSM.   

6.3.2 Coordinating medium access 
One of the most important functions of the receiver software is to control the medium 

access.  The transmission medium of the radio frequency is the open air, thus any transmitter 
mote is able to access this medium freely.  The access to the medium must be controlled to avoid 
transmission mishap.   

The receiver software facilitates the medium access control by providing a Time-Division 
Multiple Access (TDMA) scheme.  In our system, the transmitter has to be registered by the 
receiver before it can access the radio medium.  The receiver issues consent command only to the 
registered motes authorizing the access to the medium for that particular mote in a particular time 
period, called Guaranteed Time Slot (GTS).  So, the radio frequency is time-divided.  In any GTS, 
there is only one active transmitter sending the data via the radio frequency.  By controlling the 
medium access in this organized way, the collision from other transmitters in the system is 
eliminated.  This strategy not only minimizes the traffic congestion, but also uses the bandwidth 
very efficiently.  As a consequence, more transmitters can share the same frequency channel.  In 
our system, 10 transmitters are able to send ECG data sampled at 200 Hz on a single frequency 
channel due to the TDMA scheme.   

To realize the TDMA scheme in the system, certain support from hardware and software 
are needed.  On the hardware end, the wireless transmission chip, CC2420, has a built-in circuit 
that supports hardware addressing features.  Each CC2420 can be assigned a hardware address, 
which is stored in the RAM address from 0x168 to 0x16B.  When the hardware receives a 
certain bit flow that complies with the IEEE 802.15.4 standard, the address information in the bit 
flow is compared to the value stored in the above RAM position by the hardware (not by 
software).  The comparison is automatically performed by the digital logic circuit residing in the 
chip CC2420.  Thus, for the Tmote Sky board, no assistance from the microcontroller is needed 
for the address recognition.  This feature certainly saves the microcontroller time and simplifies 
the programming of Tmote Sky.  The transmitter and receiver software takes advantage of this 
feature to implement the TDMA scheme.  The commands sent by the receiver contain the 
destination address.  Although the radio signal is received by all of the transmitters, only the 
particular mote specified by the address information in the message will accept the command 
message and pass it to the microcontroller for further processing.   

The hardware address recognition feature can be turned on and off by the software. 
TinyOS has a radio control component, CC2420ControlM, which provides interface to 
manipulate the configuration of CC2420.  Besides enabling or disabling the hardware address 
decoding, the interface also provides functions to tune the radio power or to select different radio 
channel.  The CC2420ControlM component provides the CC2420Control interface as:  

interface CC2420Control{ 
command result_t TunePreset(uint8_t channel);  
command result_t TuneManual(uint16_t freq); 
command uint8_t GetPreset(); 
command uint16_t GetFrequency(); 
async command result_t VREFOn(); 
async command result_t VREFOff(); 
async command result_t OscillatorOn(); 
async command result_t OscillatorOff(); 
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async command result_t TxMode(); 
async command result_t TxModeOnCCA(); 
async command result_t RxMode(); 
command result_t SetRFPower(uint8_t power);  
command uint8_t  GetRFPower(); 
async command result_t enableAutoAck(); 
async command result_t disableAutoAck(); 
async command result_t enableAddrDecode(); 
async command result_t disableAddrDecode(); 
command result_t setShortAddress(uint16_t addr); 

} 

A call of CC2420Control.enableAddrDecode() will enable the hardware 
address recognition function.  Calling of CC2420Control.SetTFPower() will set the radio 
radiation power.  This feature can be used for power control.  If the transmitter is close to the 
receiver, it is possible to reduce the radio radiation power so that more battery power can be 
saved while the receiver still has very good signal reception.   

As mentioned in the above paragraph, all the transmitters must be registered with the 
receiver so that the receiver has the knowledge of which transmitters are currently active.  This 
information is mandatory for the receiver to implement TDMA scheme in order to avoid channel 
race.  To achieve this goal, a linear data structure termed as linked list is used in the receiver 
software to maintain the registration of the transmitters.  A linked list is one of the fundamental 
data structures in computer science.  It consists of a sequence of nodes with each node containing 
a data field and a pointer field [70, 71].  The data field is the actual data for that node while the 
pointer field is the pointer pointing to the next logical node.  The benefit of a linked list over a 
common array is that the logical order of the nodes in a linked list can be different from the 
physical storage order.  This feature offers a linked list much flexibility of efficiently deleting or 
inserting a node at any position in the linked list.  The structure of a linked list is illustrated in Fig. 
6-6.  A linked list is referenced by a single pointer pointing to the first node in the list.  This 
pointer is named by convention as “head” pointer.  Since each node in the list has the address 
information of where the next node is stored, giving the value of the head pointer guarantees the 
accessibility of all the nodes in the list.  The most common operations on a linked list are 
traversal, insertion and deletion.  Standard implementations have been developed for these 
operations in computer science.  Thus, it is of much convenience to manipulate the linked list.   

 
Fig. 6-6.  Structure of a linked list 

In our system, a single receiver is designed to support multiple motes.  It is very possible 
that the number of simultaneously active motes may vary due to some reasons.  For example, 
when a receiver is receiving data from 5 active motes, the monitoring center needs to add 2 more 
motes because 2 more patients are admitted.  This involves the insertion of 2 motes into the 
receiver’s registration list.  On the other hand, the monitoring center may need to delete 3 motes 
from the receiver’s registration list because 3 patients have been discharged from the system.  
This random insertion and deletion operation on a list is best implemented by a linked list data 
structure.  In the receiver software, such a linked list is used to maintain the registered motes.  
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The linked list is initialized by the monitor software.  At the start of the monitor software, the user 
is asked to select which motes are going to be monitored.  Besides, the configuration information 
for each particular mote is also specified by the user.  The configuration information includes 
what signal for that mote is going to be monitored, and what the sampling rate for the signal etc.  
This information is passed by the monitor software to the receiver so that the receiver can register 
the selected motes with the specified configuration.  Further details of the monitoring software 
are provided in 6.4.   

The data field of a node in the registration linked list is defined as a C structure 
containing the identification number of a mote and the Channel Selection Word (CSW, see 5.2.3) 
for a particular mote:  

typedef struct TMote 
{ 

uint16_t id; 
uint16_t csw; 

} TMote; 

The id field in the TMote structure is the hardware address of the mote.  Having this 
information, the receiver can send a command to a particular mote.  The csw field indicates what 
signal should be sent by a particular mote.  When a receiver completes the generation of the 
registration list, the program begins to send a consent command to each mote in the list starting 
from a mote pointed by the head pointer.  Consequent motes are sequentially polled by using 
standard linked list traversal method.  When the tail of the list is reached, the program restarts the 
polling procedure from the head pointer again.  If any motes need to be added into the list, the 
monitor software sends a command to the receiver specifying the ID and CSW of the new mote.  
The receiver program inserts the new mote into the list by performing a standard linked list 
insertion procedure without discontinuing the polling process.  Similarly, if any motes are desired 
to be removed from the list, the user can send a command through the monitor software to the 
receiver.  The receiver deletes the motes from the list by using a standard linked list deletion 
operation.   

In summary, the TDMA medium access control strategy is achieved by the support of the 
hardware and the development of the software.  The user first selects and configures the motes 
that need to be monitored through the monitor software.  The monitor software passes this 
information to the receiver.  The receiver generates a linked list based on the information to 
manage the active motes.  When a command is sent out to a particular mote, the hardware address 
is contained in the message.  Although the radio signal can be received by any motes, due to the 
hardware address recognition feature only the particular mote having the same address as the 
message will pass the message to the microcontroller for further processing.  So, if a C/D TP 
command REQUEST_GET_WODATA (request the target mote to send back data during the 
following GTS, see 5.2.3) is sent out by the receiver, only the mote that has the same address 
contained in the message will sent the data back to the receiver.  The command message is 
silently ignored by other motes.  In common condition, the receiver iteratively sends the 
REQUEST_GET_WODATA command to the registered motes in the linked list one by one, with 
the time interval of GTS duration.  It is important to note that it is both the hardware address 
recognition feature and the REQUEST/RESPONSE mode of the C/D TP design that make the 
TDMA mechanism possible.   
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6.4 Monitor Software 

The monitor software is developed for the monitoring center.  Currently, the monitor 
software is developed based on the use of a personal computer (PC).  Due to powerful processing 
capability of PCs, the monitor software provides a variety of functions.  The basic function of the 
monitor software is to display the received signal in a real-time manner.  The monitor software 
also features more sophisticated real-time digital signal processing analyses.  Since the monitor 
software is mostly used by the health providers, it has been designed to incorporate user-friendly 
computer interface so that interactions between the user and the motes is simplified.   

6.4.1 Overview of the monitor software functions 
The current version of the monitor software has some basic functionality.  The monitor 

software has a channel selection and configuration interface that allows the user to select which 
mote is going to be monitored and what signal on each mote should be monitored.  By choosing 
the “File New…” menu, the setup interface pops out, as shown in Fig. 6-7.  The user not only 
can configure each mote, but also can choose the source of the data.  Currently, the monitor 
software not only can retrieve the data from a receiver that is physically attached to the USB of 
the computer, but it can also get data from another computer running the same monitor software 
through the internet.  The monitor software can also be configured as a “data server” that sends 
data out through the internet upon the user’s choice.  In the configuration interface shown in Fig. 
6-7, the “Data In” option specifies the source of data; and the “Data Out” option determines 
if the data server in the monitor software should be on or off.  The “Channel 
Configuration” part of the setup interface gives the detail information of the each mote.  
Unchecking of a mote will exclude that mote from being monitored.  For each mote, different 
signal can be monitored simultaneously as the user can select only the interested signals 
separately for each mote on the setup interface.  Currently, the system supports 10 motes for a 
single receiver, and for each individual mote the simultaneous monitoring of ECG signal and 
SpO2 readings is supported.   

If the “Data In” option is chosen “From Serial Port”, when the new recording 
is started by choosing “File Start All” the monitor software will automatically detect if a 
receiver mote is attached to the USB port.  If the detection is successful, the monitor software will 
send the mote configuration information (see Chapter 6.3) to the receiver so that a registration 
procedure can be started.  After a successful registration procedure, the receiver automatically 
starts its GTS timer and sends request messages to the motes on a continuous basis to coordinate 
data transmission.  During this time, the monitor software queries the USB port to examine if any 
data has arrived, and if so, the monitor software decodes the received byte flow according to the 
protocols described in 5.2.3.  The data are then continuously displayed in the computer screen.  
At the same time, the received data is also saved on the hard disk.   
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Fig. 6-7.  The channel setup interface of the monitor software 

The expiration of the GTS timer inside the receiver is also reconfigurable.  The monitor 
software has been designed to allow the user to specify the duration of a GTS as shown in Fig. 6-

8.  The default GTS value is 200 milliseconds which allows 
support 10 motes.  In general, a larger GTS value 
introduces a longer display delay but it allows inclusion of 
more motes.  We found that 200 milliseconds is long 
enough to support 10 motes and the display delay is around 
2~3 seconds.  Once a new GTS value is specified, the 
monitor software sends a C/D TP message to the receiver to 
change the GTS timer interval.  The receiver returns a 
response message back to the monitor software when the 
attempt of changing GTS timer interval is completed.  The 

response message indicates the result of the attempt, either success or fail.  Thus, the 
REQUEST/RESPONSE rule of the C/D TP protocol is compliant (see 5.2.3).   

The monitor software also features real-time digital signal processing capabilities.  The 
received ECG signal is first low-pass filtered by a built-in filter.  R-wave detection is performed 
on the filtered signal and instantaneous heart rate is calculated according to the R-R interval.  The 
monitor software consists of real-time analysis of both time-invariant and time-varying spectra of 
the detected RR interval data.  By using the technique described in 6.4.3, the heart rate series is 
de-trended and its PSD is calculated based on the Welch periodogram method [72].  The monitor 
software also provides the estimates of the power contained in the low frequency (LF) and high 
frequency (HF) ranges as well as the power ratio between LF and HF ranges.  Besides the 
instantaneous PSD analysis, the monitor software also features time-frequency spectrum analysis.  
The time-frequency spectrum is calculated based on the use of short-time Fourier transform with 
the segment size set to 128.  It is updated every second.   

Fig. 6-8.  GTS Setup Interface 
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Fig. 6-9 shows the display interface of the monitor software.  Fig. 6-9(a) shows the main 
interface of the monitor software.  Please note that our system is able to monitor 10 motes with a 
single receiver although only 5 display windows are shown in Fig. 6-9(a).  The number of 
monitored motes is configurable as Fig. 6-7 shows.  The number of display windows is 
automatically adjusted by the software according to how many motes are selected.  Fig. 6-9(b) 
shows a window displaying a monitored ECG signal from a particular mote.  Fig. 6-9(c) shows 

(a) 

(b) 

(c) 

Fig. 6-9.  Monitor software.  (a) main display interface; (b) displayed ECG signal of a single mote; and (c) 
displayed PSD and time-frequency spectrum of the heart rate series; shown together are frequency statistics
of the PSD, instantaneous heart rate and SpO2 reading.   
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the window that displays the PSD and the time-frequency spectrum.  Also shown are the 
calculated heart rate, SpO2 values and statistics derived from the PSD.   

The display properties are also 
configurable.  Fig. 6-10 shows the dialog for 
a display setup.  The user can change the 
background and foreground colors, together 
with the line width of the signal and frame 
border.  Particularly, a user can choose 
between the raw signal and low-pass filtered 
signal to be shown in the signal display 
window.   

A fundamental function of the 
monitor software is to display the signal in a 
real-time fashion.  Display buffering 
technique was used to achieve a smooth, 
and jutter-free real-time display of the 
signal.  This is fully discussed in 6.4.2.  

Another important function of the monitor software is to perform real-time digital signal 
processing analyses.  To take advantage of newly developed algorithms written in Matlab, special 
programming technique has been employed in our system to facilitate the adaption of these 
algorithms into the monitor software.  This technique is presented in 6.4.3.   

6.4.2 Buffering technique for real-time signal display 
The data received by a computer is in a “pulse” fashion instead of continuous one, as Fig. 

6-11(a) illustrates.  This is due to the nature of the system that the receiver sends the consent 
command message to a particular mote at the beginning of each GTS.  Only after the successful 
receival of the consent message can this mote be authorized to use the radio channel to send its 
data.  From this particular mote’s point of view, the radio channel is not always “open” for 
communication, but only open at a particular moment.  Thus, the data transmitted from this mote 
is not continuous.  A consequence of this is that a direct display of the transmitted data in the 
monitor software will make the signal look pulsatile.  A solution to combat this problem was to 
have the signal delayed so that it is synchronized with the receiver.  In particular, in order to 
display the signal smoothly and naturally, the buffering technique was employed in the monitor 
software.  The received data are written into a display buffer on their arrival at the monitor 
software.  The display subroutine in the monitor software reads a certain amount of data from the 
buffer and displays only this amount of data on the screen.  The display subroutine is called 
periodically at a preset time interval.  This time interval determines the update rate of the 
displayed signal; often known as Frame Per Second (FPS).  To achieve a continuous display of 
the signal, a minimum value of 10 FPS is required.  In the monitor software, we set the FPS as 
12.5.  Assuming the sampling rate of the signal is 200 Hz, the number of data points that should 
be read out from the buffer and displayed on the screen is calculated as: 200 12.5 16÷ = .  The 
display subroutine maintains the position of the read-pointer of the buffer so that it knows 
the location from where the data should be read and displayed.  The buffering technique separates 
the data that are to be displayed from the data that are received from a mote.  So, this cheme 
restricts the pulsation-like appearance of the received data within the display buffer.  The success 
of this solution relies on the synchronization and precision of the frame update timer residing in 
the monitor software and the timer set up in the transmitter mote for AD conversion.  The TinyOS 

Fig. 6-10.  Display Setup dialog 
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1.x provides multiple timer components with different timing precisions, among which the best 
possible precision is 1 microsecond.  It should be noted that TinyOS divides 1 second into 1024 
“nominal” milliseconds.  Therefore, 1 millisecond is wrapped to 1.024.  Thus, in the calculation 
of how many data points should be displayed, this wrapping must be taken into account.  The 
tests have shown that without this proper calibration, the data in the display buffer will continue 
to increase, which will result in further delays of the displayed signal.  To fix this timing 
mismatch, the proper calibration should be carried.  Since 1 real millisecond is wrapped into 
1.024 nominal millisecond, 5 nominal milliseconds accounts for 5/1.024 actual milliseconds.  So, 
the nominal 200 Hz sampling rate is actually 1024/5 = 204.8 Hz.  As a consequence, 
204.8 12.5 16.384÷ = points should be displayed every time the monitor software updates the 
signal display.  The data length in the display buffer reflects the display delay of the received 
signal.  Since the data is read from a buffer, the length of the data in the buffer will exhibit a 
pulsatile pattern.  Fig. 6-11(b) shows the pattern of display delay due to the pulsatile changes.  
The shown result is based 6 motes and 65 milliseconds GTS.   

(a) (b) 
Fig. 6-11.  Pulsatile data arrival and display delay.  (a) Data arrival amount vs. data arrival timetable;  (b) 
Display time delay vs. display timetable 

6.4.3 Importing Matlab program into the monitor software 
Our laboratory has developed many digital signal processing algorithms that are 

applicable to analyzing physiological data.  For example, the coherence analysis [36, 50], the 
Principle Dynamic Mode (PDM) analysis [57], and atrial fibrillation (AF) detection etc [73, 74].  
However, these algorithms were original developed in Matlab for convenience.  Although it is 
possible to convert the Matlab code into C code or Pascal code by manually rewriting the 
algorithms, it is also time-consuming.  Fortunately, with the help of several tools the algorithms 
written in Matlab can be automatically converted into a Dynamic Link Library (DLL) which can 
then be accessed by the monitor software.  The advantage of this development approach is 
obvious.  First, the development of the algorithms and the interface is separate and can be carried 
out in parallel.  Second, the development of the display interface and the algorithms is made as 
different modules.  Modification of each module does not affect the other.  And finally, the 
algorithms are encapsulated in the DLL files, thus the algorithms are kept confidential.   

The monitor software is developed using Delphi with the aid of Objective Pascal 
programming language.  However, the Matlab does not provide the support for Objective Pascal.  
Fortunately, Matlab provides a full support for C/C++ language.  Our solution is to first convert 
the Matlab code into a C code; then modify the C code and compile the C code to generate DLL 
files.  As well known, DLL files are language independent and they can be loaded almost by any 
high-level programming languages including Objective Pascal.   

The Matlab complier provides an automatic way to convert M-files into C or C++ files.  
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This eliminates the time-consuming and error-prone manual translation process.  These following 
features are offered by the delicate Matlab complier [75]:  

• Distribute C and C++ applications easily and freely to colleagues 
• Include MATLAB math and graphics in end-user applications 
• Generate, rotate, zoom, and scroll MATLAB 2-D and 3-D plot types 
• Incorporate MATLAB GUI controls into your application 
• Display lighting and shading on 3-D surfaces 
• Compile toolbox M-files for inclusion in your stand-alone applications 
• Protect proprietary algorithms to prevent users from modifying source code 
• Compile, edit, and run your application from within Visual Studio 

The complier can be invoked by typing “mcc” in the Matlab command window.  The 
typical usage of the complier is: 

mcc [-options] fun [fun2 ...] [mexfile1 ...] [mlibfile1 ...] 

For the detail usage of the complier, please be referred to the Matlab Complier manual 
[76].   

The C code generated by the Matlab compiler uses a specific data type defined by Matlab, 
which is mxArray.  The function arguments in the generated C code are passed to the functions.  
So, we directly compile the generated C code to export DLL files; the host program that uses the 
DLL must be able to provide the mxArray data type.  Unfortunately, Objective Pascal does not 
have this kind of data type; Matlab does not provide a support for Objective Pascal as it does for 
C.  Thus, it is not feasible to directly compile the generated C code to export DLL files.  To solve 
this problem, we developed an “adaptor” project in C++ to seal the usage of mxArray type 
inside the DLL only by providing external interfaces that take regular type of arguments.   

To explain how to convert an M-file into C code and make the appropriate modification, 
let’s take a look at an example.  Suppose in Matlab, a file named myPSD.m is written to calculate 
the PSD of a time series using the Matlab built-in FFT routine.  The function myPSD is defined 
M-file as:  

function Pxx = myPsd(x, overlap) 

It takes two arguments: the first argument x is the time series; and the second argument 
overlap indicates how much overlap between two consecutive windows when calculating the 
PSD.  The return value is the PSD, which is a function of frequency.  By using the mcc compiler 
command, a myPsd.c file is generated according to the myPsds.m file.  In the myPsd.c file, 
there are several defined functions that are different from its original M-file in which only a 
single function myPsd() is defined.  Among these generated C functions, the one actually doing 
the PSD calculation is the mlfMypsd() function:  

mxArray * mlfMypsd(mxArray * x, mxArray * noverlap) { 
…… 

} 

Notice that all the arguments type has been changed to mxArray!  If this function were directly 
compiled to generate DLL file, the monitor software would not be able to correctly pass the data 
to this routine nor could the monitor software get correct result from this routine because the 
monitor software does not have mxArray data type.   

The “adaptor” project provides an alternative interface as a replacement of the routine 
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mflMypsd().  First, in the header file of the project, the following statement was added:  

extern "C" _declspec(dllexport) void _cdecl  
matPSD(double *x, int len, int* m, double* psd); 

This statement tells the C compiler that in the exported DLL file, there is a function 
named matPSD().  It takes four arguments as specified by the argument list.  x is a regular 
pointer pointing to a double array.  It is the time series that needs to be analyzed.  len is a regular 
integer argument specifying the length of x.  m is a returned integer value storing the length of the 
resultant PSD; and psd is another double pointer indicating where the resultant PSD is stored.  In 
the source file of the “adaptor”, the definition of the matPSD() function converts the regular 
data type in the argument list into mxArray data type and calls mlfMypsd() to perform the 
actual calculation of PSD:  

extern "C" _declspec(dllexport) void _cdecl matPSD(double* 
x, int len, int* m, double* psd){ 

mxArray* s = NULL; 
mxArray* p = NULL; 
double* ptmp = NULL; 
InitializeModule_mypsd(); 
mlfAssign(&s, mlfDoubleMatrix(len, 1, x, NULL)); 
mlfAssign(&p, mlfMypsd(s, mlfScalar(0))); 
ptmp = mxGetPr(p); 
*m = mxGetM(p); 
memcpy(psd, ptmp, sizeof(double)*(*m)); 
TerminateModule_mypsd(); 
mxDestroyArray(s); 
mxDestroyArray(p); 

} 

The library function mlfAssign() provided by Matlab converts an argument of 
regular double type into mxArray type  In the second call of mlfAssign() shown above, the 
mlfMypsd() is called to calculate the PSD.  To convert an mxArray argument into regular 
double type, the C standard system routine memcpy() is used.  Now we can see in the above 
code that the DLL provides the matPSD() interface taking regular type of arguments but using 
Matlab generated function mlfMypsd() to calculate the PSD.  From the host program point of 
view (which is the monitor software in our system), the function mlfPsd() is invisible but it 
can be used by the host program through the interface of matPSD().  The following example 
code extracted from the monitor software shows how to use the DLL to calculate the PSD of a 
time series:  

type TPSD = procedure(p: pointer; l: integer; m: 
pointer; res: pointer); cdecl; 
FuncPSD: TPSD; 
Module: THandle; 
FuncAddress: TFarProc; 
…… 
Module := LoadLibrary('Adaptor.dll'); 
FuncAddress := GetProcAddress(Module, 'matPSD'); 
FuncPSD := TPSD(FuncAddress); 
…… 
FuncPSD(HR, NFFT, @PSD_len, HRPSD); 
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The type statement defines a new data type which is a procedure with four 
arguments.  Notice that the definition of this new type is consistent with the declaration of the 
matPSD() function in the header file of the “adaptor” project.  This consistency must be 
absolutely guaranteed; otherwise the result will be catastrophic.  The variable FuncPSD is 
declared as the TPSD type, that is, a procedure with four arguments.  Before the FuncPSD 
can be called to do the PSD analysis, it must be initialized first.  The initialization of FuncPSD is 
to “link” FuncPSD to the actual executable code segment inside the DLL file.  Be aware that 
there may be many functions embedded in the DLL file, so the FuncPSD must be directed to the 
specific one (matPSD()) by some means.  This is achieved by calling the standard Windows 
Application Programming Interface (API) function GetProcAddress().  Once the FuncPSD 
is successfully initialized, it can be called like a regular function, as demonstrated by the example 
code.   

With the assistance of the “adaptor” project, importing a Matlab program into the monitor 
software is made as a template.  First, use the Matlab compiler mcc to convert M-file into C file.  
Then declare the external interface by taking regular type of arguments in the header file of the 
adaptor project.  Finally, in the definition of the declared external interface, make the conversion 
between regular data type and mxArray type by calling mlfAssign() function and call the 
mlf* function to do the actual processing.  The DLL file generated in this way can be loaded by 
the host program just like a regular DLL.    

6.5 Performance Assessment 

Preliminary tests have been administrated on the current version of the system.  The tests 
involve the battery life experiments and the validation of the collected signal.  The battery 
experiment is to investigate the power consumption of the system in the scenarios of transmitting 
raw data versus transmitting a few processed parameters under different sampling rates.  The 
signal validation experiment compares the ECG signal recorded by our system against the signal 
obtained by a commercially available ECG machine.  The comparison not only involves 
comparing the ECG waveform, but also involves the comparisons of extracted parameters from 
the ECG signals.   

6.5.1 Power consumption 
Power consumption is a critical issue in any battery-powered system.  In our system, 

majority of the power is consumed by the wireless transmission.  For example, the Tmote Sky 
consumes very little power when wireless transmission is not active.  In this mode, the power 
consumption is only 1.8 mA; while when the wireless radio is active, the power consumption 
increases to 21.8 mA in receiving mode and 19.5 mA in transmitting mode [77].  To use the 
battery power more economically, we developed the ODT (On-command Data Transmission) 
smart sampling rate data transmission scheme combined with localized data processing.  By 
transmitting only a few processed parameters instead of raw data, battery power can be 
dramatically preserved, as shown in the following battery lifetime experiments.   

The device is powered by 2 AA batteries.  The ECG signal is sampled at 150, 200, and 
500 Hz, respectively.  For each sampling rate, the battery life of sending the raw data and sending 
only processed parameters every second is compared.  Based on this information, the battery life 
of sending the processed parameters very 1 and 3 hours is also compared.   
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Fig.6-12(a) shows the comparison of battery lifetimes for three different scenarios: (1) 
transmission of unprocessed ECG data at 150Hz, 200Hz and 500 Hz; (2) continuous transmission 
of 4 derived parameters computed over two minutes of R-R interval recordings; (3) transmission 
of the derived parameters every 1 or 3 hours.  Please note in Fig. 6-12, different lines indicate the 
result of transmitting raw data (dashed line) or processed parameters (solid line); and different 
colors of the line indicate varying sampling rates (blue: 150 Hz, red: 200 Hz, and black: 500Hz).  
As shown in Fig.6-12(a), the first scenario results in a battery lifespan of about 28 to 30 hours, 
while the second scenario results in a lifespan of 50 to 55 hours.  The third scenario of 
transmitting the derived parameters (still over 2 minutes of R-R interval recordings) once every 1 
or 3 hours is depicted in Fig. 6-12(b).  We see that if we send derived parameters once in an hour, 
then the battery lifespan is around 65 days.  The battery lifespan can be further extended to more 
than several months if the derived parameters are sent every 3 hours.  We predicted the third 
scenario by turning the mote and the associated ECG circuit off during the silent period based on 
analysis over initial data.  The device is turned on every 1 or 3 hours, when it starts to record and 
process the data for a short amount of time.  For continuous monitoring of subjects in nursing 
homes or individual homes, updating low and high frequency spectral power values every 1-3 
hours is sufficient, as these values are not likely to change much within this time frame.  For all 
these three scenarios, the difference in power consumption with different sampling rates is 
primarily due to difference in R-wave peak detection processing load.  In these experiments, we 
have assumed battery power supply cutoff at 2 volts, which is the minimum needed for a reliable 
collection and transmission of ECG data.   

(a) 

(b) 
Fig. 6-12.  Battery life span for sampling rates of 150 (blue lines), 200 (red lines) and 500 Hz (black lines).
(a) Transmission of unprocessed ECG signal (dashed lines) vs. transmission of 4 locally derived parameters 
(VLF, LF, HF, and LF/HF) over 2 minutes of RR interval recordings (solid lines). (b) Transmission of the 4
derived parameters once every 1 hour (dashed lines) and once every 3 hours (solid lines). 
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6.5.2 Signal validation 
To validate the fidelity of ECG signal obtained by our system, we used a commercially 

available ECG monitoring machine, Hewlett Packard 78354A, as a reference device.  The 
comparison involved not only the raw ECG signal, but also the extracted R-R interval time series.  
The most important temporal and frequency parameters for heart rate variability analysis are also 
compared.  Such parameters are LF/HF ratio, the standard deviation of normal-to-normal R-R 
intervals (SDNN), and the root-mean square of the successive difference of R-R intervals 
(RMSSD).   

The experiment was conducted on a healthy subject in the supine position.  10 trials of 5-
minute ECG signal were recorded both by the HP 78354A and our device at sampling rate of 200 
Hz.  In this section, only the results of a single subject are shown.  Although, the results of a 
single subject do not have statistic significance, it still provides some basic information about the 
validity of the system.  Since the system is still under development, more experiments and 
comparison will need to be conducted to verify the performance of the system.   

The ECG waveform comparison is performed visually.  Fig. 6-13 shows the comparison 
of two representative ECG waveforms.  As shown, the two ECG waveforms are similar to each 
other.  The most clinically important waves, P-wave, QRS complex, and T-wave are well 
preserved in both ECG waveforms.  Inspection of the total 10 trials reveals consistent similar 
morphology of the ECG waveforms.   

Fig. 6-13.  ECG waveform comparison between the ECG signal recorded by the HP ECG machine (black
line) and the ECG signal recorded by our system (red line).   

In addition to the ECG waveform, some statistics of the R-R interval are of much more 
clinical interests and they can be used to generate medical alerts [78-81].  Thus it is very 
important to test the system if the fidelity of these parameters is also preserved.  In this section, 
we compared the three most important parameters pertaining to heart rate variability analysis.   

The first parameter we compared is the ratio between the low-frequency power and the 
high-frequency power, termed as LF/HF.  The low frequency is defines as the range of 0.04 ~ 
0.15 Hz and high frequency is 0.15 Hz ~ 0.4 Hz [53].  The ratio between the powers of these two 
frequency bands reflects activities of the Autonomic Nervous System (ANS).  Specifically, it 
indicates the balance between the sympathetic and parasympathetic regulatory on the 
cardiovascular system since the low frequency is dominated by sympathetic activities and high 
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frequency is dominated by parasympathetic activities [82-84]1.  For example, in the supine 
position parasympathetic regulation is elevated while sympathetic is suppressed when compared 
to the upright position.  Thus, the LF/HF ratio has smaller value in supine position than in upright 
position [53, 57].  By examining the ratio between low- and high-frequency powers, an 
approximation of the ANS balance can be obtained.  Table 6-1 shows the comparison of LF/HF 
ratio based on the R-R interval obtained from our ECG signal and that from the HP ECG machine.  
It is shown that for all 10 trials, the LF/HF ratios obtained from two systems are similar.  The 
forth column of the table shows that the absolute difference between the ratios is less than 0.013, 
which is only approximately 1.5% of the actual value.  Note that the fifth column of the table 
shows that majority of the difference between the two systems in terms of a percentage is less 
than 1%, indicating that the ratios obtained from these two ECG signals are very similar to each 
other.  Student-t test (p < 0.05) also shows that there is no difference between the ratios in the 
second and third column of the table.  This suggests our system provides nearly identical results 
as the HP ECG machine when the LF/HF ratio parameter is used.   
Table 6-1  Comparison of the LF/HF ratio between the R-R interval obtained by HP ECG machine and the 
R-R interval obtained by our system.   

Segment HP ECG Signal Our ECG Signal Difference Difference Percentage 

1 0.5584 0.5539 -0.0045 -0.8073 % 
2 0.3422 0.3429 0.0007 0.2001 % 
3 0.7164 0.7121 -0.0042 -0.5888 % 
4 0.8704 0.8629 -0.0075 -0.8646 % 
5 1.3195 1.3295 0.0100 0.7613 % 
6 0.9465 0.9560 0.0095 1.0036 % 
7 1.0477 1.0423 -0.0054 -0.5174 % 
8 0.8186 0.8310 0.0124 1.5113 % 
9 0.8555 0.8492 -0.0063 -0.7373 % 
10 0.8274 0.8200 -0.0075 -0.9053 % 

The second parameter we compared is the SDNN parameter.  SDNN is the standard 
deviation of normal-to-normal R-R interval, measured in millisecond (ms).  SDNN reflects all the 
cyclic components responsible for variability.  SDNN is mostly used in the analysis of long-term 
ECG recording such as the 24h ECG monitoring.  We compared the SDNN values between the 
two devices, and the result is shown in Table 6-2.  Similar to the LF/HF ratio values, the SDNN 
values obtained from the two devices are similar.  The difference between them is less than 0.3 
ms for all 10 trials, as shown in the forth column of Table 6-2.  The difference between the 
SDNN values is even smaller than 0.2%, suggesting that not only the absolute difference is small, 
but the relative difference is also very small.  Statistic test (Student-t test, p < 0.05) shows that 
there is no difference between the two devices.   

                                                 
1  Some research also shows that it may be not accurate to assume sympathetic is in the LF and parasympathetic is in the HF.  There 
might be overlap and interaction between these two regulation mechanisms.  See reference [85-90].   
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Table 6-2  Comparison of the SDNN parameter (ms) between the R-R interval obtained by HP ECG 
machine and the R-R interval obtained by our system.   

Segment HP ECG Signal Our ECG Signal Difference Difference Percentage 

1 97.0522 97.2347 0.1825 0.1880 % 
2 120.2294 120.2996 0.0702 0.0584 % 
3 131.7386 131.9486 0.2101 0.1595 % 
4 115.6353 115.7055 0.0701 0.0606 % 
5 128.8386 128.6324 -0.2062 -0.1600 % 
6 143.2694 143.0579 -0.2114 -0.1476 % 
7 140.2753 140.5557 0.2805 0.2000 % 
8 127.2618 127.0382 -0.2236 -0.1757 % 
9 148.6754 148.6815 0.0062 0.0041 % 
10 167.2009 167.2729 0.0720 0.0431 % 

The last parameter we compared is the RMSSD of the R-R interval.  RMSSD measures 
the square root of the mean squared differences of successive normal-to-normal R-R intervals.  It 
estimates short-term components of HRV and has important clinical significance [53].  Table 6-3 
shows the comparison result of the RMSSD from the two devices.  Again, the forth column of the 
table shows the absolute difference between the RMSSD values are very small for each trial as 
evidenced by the fact that the maximum absolute difference is less than 0.6.  The difference 
percentage shown in the fifth column also manifests very small values.  Student-t test has also 
confirmed that the RMSSD values are not different between the two devices.   
Table 6-3  Comparison of the RMSSD parameter (ms) between the R-R interval obtained by HP ECG 
machine and the R-R interval obtained by our system.   

Segment HP ECG Signal Our ECG Signal Difference Difference Percentage 

1 104.8550 105.3625 0.5075 0.4840 % 
2 133.7174 134.0500 0.3326 0.2487 % 
3 143.9766 144.4746 0.4980 0.3459 % 
4 106.1838 106.4178 0.2340 0.2204 % 
5 138.9509 138.6123 -0.3386 -0.2437 % 
6 153.4519 152.8703 -0.5817 -0.3791 % 
7 146.1559 146.7493 0.5935 0.4061 % 
8 132.8272 132.4808 -0.3464 -0.2608 % 
9 119.8913 120.0129 0.1216 0.1015 % 
10 133.3119 133.4834 0.1714 0.1286 % 

The above preliminary signal validation tests suggest that our system not only can 
preserve the fidelity of the ECG waveform, but also can faithfully provide accurate results on 
those clinical important parameters extracted from the ECG signal.   

6.6 Summary 

Various software tools have been developed for accurate transmission and receival of 
data.  In addition, data display software has been also developed. Specifically, for transmitting 
data, we had to overcome issues related to A/D conversion, sampling rate, and data packing and 
temporary storage of data.  For the proper receivable of data among many different motes, we 
used the TDMA scheme which enabled us to collect ECG data from 10 different motes 
simultaneously at a sampling rate of 200 Hz.  Finally, a data display monitoring software was 
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developed where the objective was to display the signal in a real-time manner.  In addition, we 
developed and incorporated into the display software, several signal processing algorithms that 
can be used as potential diagnostic parameters.  We have also examined and devised an approach 
to save battery life, and performed experiments to verify that our devised plan of processing the 
data at the mote significantly curtails the battery usage.  While in certain cases, it is necessary to 
transmit the raw data, but in most cases, it may suffice to transmit only the important processed 
physiological parameters which in turn significantly save battery life.  Finally, we performed 
experiments to examine the fidelity of the collected ECG signal using our device.  This was done 
by comparing our device against a commercially available device.  It was found that both devices 
provided nearly identical results in terms of both unprocessed and processed data. 
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Chapter 7 On-board Localized Digital Signal Processing 

7.1 Introduction 

According to our preliminary tests, the single microcontroller residing in the Tmote Sky 
cannot perform more sophisticated data analysis because the microcontroller has to run TinyOS to 
support the wireless transmission.  In order to implement more sophisticated digital signal 
processing at the device end, an additional microprocessor is certainly needed.  Incorporating one 
more microcontroller will surely increase power consumption.  However, this amount of 
additional power consumption is trivial compared to the power saved by transmitting only a few 
physiologically relevant processed parameters.  With two microcontroller configuration, the 
microcontroller on the Tmote Sky is mainly responsible for the medium access control, data 
collection, and wireless transmission; while the other microcontroller is solely devoted to real-
time signal processing.   

The main purpose of integrating another additional microcontroller is to preserve battery 
power by sending only a few processed parameters.  It is important to coordinate the two 
microcontrollers so that they can work properly and efficiently.  In our system, we developed a 
wireless transmission module and DSP module separately as two independent subsystems.  Each 
subsystem has its own clock source.  With this design, the two microcontrollers can be put in 
“awake” or “sleep” mode without affecting each other.  The two subsystems are physically 
connected via a UART port by hardware and they coordinate via the software residing at either 
end.   

7.2 The Additional Microprocessor and Software Development Tools 

7.2.1 The additional microcontroller – MSP430F449 
As discussed in the previous section of this dissertation, the localized on-board signal 

processing solution can dramatically save both battery power and the signal bandwidth.  With 
ever increasing novel advances in the semiconductor industry, high performance DSP chips with 
low-cost and ultra-low power consumption can be purchased off-the-shelf for the purpose of 
portable devices development.  The MSP430F449 is one of such a chip.  It belongs to the TI’s 
MSP430x44x product family.   

The TI MSP430x44x mixed signal microcontroller family consists of several devices.  
Each device features different set of peripherals tailored to different applications.  The 
architecture of the devices is combined with five low-power modes, making them especially 
suited for battery-powered applications.  The MSP430F449 main features include [91]:   

• Low Supply-Voltage Range 1.8V ~ 3.6 V 
• Five Power Saving Modes 
• Wake-Up from Standby Mode in less than 6 microsecond 
• Main Clock Frequency up to 8M 
• 12-Bit A/D Converter with internal reference voltage 
• 16-Bit Timer_B with three or seven capture/compare-with-shadow registers 
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• 16-Bit Timer_A with three capture/compare registers 
• Two serial communication Interface (USART)  
• Serial Onboard Programming 
• 60KB+256B Flash Memory, 2KB RAM 
• Built-in Hardware Multiplier 
• These features make the MSP430F449 much suitable for our system. 
• Low Supply-Voltage Range 1.8V ~ 3.6 V 

The low supply-voltage range makes it easy to use only two normal AA batteries to 
power the microcontroller.  The wide range of supply-voltage grantees that the microcontroller 
will still function properly even when the batteries are nearly depleted.   

Five Power Saving Modes 

This feature allows the microcontroller to be put into a sleep mode, or to shutdown only 
selected parts of its peripheral circuits to conserve power.  In a total sleep mode, the 
microcontroller only consumes 0.1uA; in a standby mode, it consumes 1.1 uA current, while in an 
active mode, the power consumption is 280uA.   

Wake-Up From a Standby Mode in less than 6 microsecond 

In our system, when the additional microcontroller is off-duty, it is either shutdown or put 
into a sleep mode to save battery power.  Thus, it is very critical to put the microcontroller back 
online when new data appear or a new command is issued to the microcontroller.  The 
MSP430F449 can be activated from a sleep mode inless than 6 microseconds.  This feature 
ensures that the microcontroller can quickly respond to an event or a command.   

12-Bit A/D Converter with internal reference voltage 

The MSP430F449 has a built-in A/D converter core.  The core is connected to 8 external 
analogy input pins via a multiplexer.  Thus, this AD converter supports up to 8 external analog 
inputs.  The A/D module has separate configure and data storage registers for each analog input.  
So, this facilitates configuration of the A/D converter to sample each channel on a different 
sampling rate and store the sampled data temporarily without corrupting each other.  The 
conversion accuracy is as high as 12-bit.  Accompanying the AD converter is two reference 
voltages, which are provided by the on-chip voltage regulator.  The reference voltage is also 
software reconfigurable for each analog input.  The on-chip voltage regulator provides 1.5V and 
2.5V reference voltages.   

16-Bit Timer_A (Timer_B) 

The on-chip timers are used to control the sampling rate in our system.  The Timer_A and 
Timer_B are 16-bit timer/counter with several capture/compare registers.  The clock source of the 
timer is software configurable.  Together with the 16-bit counting register, the timer can be 
configured to generate a wide range of time interval interrupts with a scalable precision.   

Two serial communication Interface (USART) 

The two USART interfaces on the MSP430F449 device are designed to function 
independently and each is configurable.  Either of them can be separately configured in UART 
model or the SPI mode.  In our system, both of the two USART are configured to the UART 
mode.  One of them is used to communicate with a pulse oximeter module, MP506, which also 
has a standard UART interface.  The other UART is connected to the microcontroller’s UART 
port on the wireless transmission module.  The wireless transmission module issues commands or 
obtains processed results from the additional microcontroller through this UART connection.   
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Built-in Hardware Multiplier 

The built-in hardware multiplier is very important feature of the MSP430F449.  We 
integrated the MSP430F449 into our system as a co-processor, which is to perform real-time 
digital signal processing of the data.  The real-time DSP analyses imposes heavy demand on the 
microcontroller’s processing capability.  For the implementation of DSP algorithms, the 
multiplication operation is inevitable.  For example, to perform an N-point FFT, at least 

22 logN N  multiplications are needed.  Multiplication and division are two of the most time-
consuming operations.  For a single addition or subtraction operation, the time can be as short as 
one to several CPU clock cycles.  However, for either multiplication or division operation, it can 
take as much as several hundreds of clock cycles.  The hardware multiplier is specially designed 
circuit for performing multiplication operation.  It has its own registers.  The multiplication is 
performed by the hardware circuit when such an operation command is triggered.  With the 
support of the hardware multiplier, the multiplication operation can be carried out almost as fast 
as addition operation.   

7.2.2 MSP430 IAR Embedded Workbench® IDE 
The IAR Embedded Workbench® IDE is a very powerful Integrated Development 

Environment (IDE) provided by IAR Company.  This programming platform allows the user to 
develop and manage complete embedded application projects.  This IDE allows seamless 
integration of all necessary tools for the embedded programming tasks such as the following [92]:  

• The highly optimizing MSP430 IAR C/C++ Compiler 
• The MSP430 IAR Assembler 
• The versatile IAR XLINK Linker 
• The IAR XAR Library Builder and the IAR XLIB Librarian 
• A powerful editor 
• A project manager 
• A command line build utility 
• IAR C-SPY debugger, a state-of-the-art high-level language debugger 

The IAR Embedded Workbench® targets a large number of microprocessors and 
microcontrollers.  The IAR Embedded Workbench® is designed with the concept of “Different 
Architecture, One Solution”.  It provides an easy-to-learn and highly efficient development 
environment with maximum code inheritance capabilities.   

The highly optimizing MSP430 IAR C/C++ Compiler 

This MSP430 IAR C/C++ Compiler is designed to take advantage of the MSP430 
specific features, as well as to provide a state-of-the-art compiler that can handle either C or C++ 
programming language.  Two features of this complier are very important for our system.  First, 
generic and MSP430-specific optimization techniques offered by this compiler can produce a 
very efficient machine code.  Not only the code size is reduced but the execution of the code is 
also accelerated.  The microcontroller we chose for our system has limited memory (60 KB ROM 
and 2 KB RAM) and a relatively slow CPU clock frequency (up to 8M), thus, both the code size 
and execution time are critical.  Another feature offered by this complier is that the object code it 
generates can be linked together with assembler routines.  It is a must to write some software 
routines in the assembler language.  For example, the start-up code and exit code must be written 
assembler language because they deal with the lowest level hardware initialization and 
finalization.  For efficiency purpose, some mathematic operation may also be written in the 
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assembler language.  By taking advantage of this feature, the developer has the flexibility to 
choose either the assembler language for certain portion of the project while C/C++ language for 
remaining portion of the project.   

The IAR XAR Library Builder and the IAR XLIB Librarian 

A library is a single file that contains a number of relocatable modules.  Each of these 
modules can be loaded independently from other modules as it is needed.  The IAR XAR Library 
Builder allows the developer to build and publish customized library so that a common software 
code can be shared by others.  With this feature, we can package some of the commonly used 
routines in our system, for example, signal filtering or ECG R-wave detection algorithm, into a 
library after these programs have been thoroughly tested.  In this way, the library can be shared 
by other developers, and yet it can be isolated from other modules.  This is very important in 
keeping the consistency of the code and will expedite the development of the project.  The IAR 
XLIB Librarian enables the developer to manipulate the library object files produced by the IAR.  
With the help of IAR XLIB Librarian, the user can combine other modules into a library file, 
remove or replace the modules, and change the modules between program and different library 
types.   

IAR C-SPY debugger, a state-of-the-art high-level language debugger 

Debugging process is essential in most task of computer programming.  While debugging 
is especially challenging for the embedded 
systems because they do not have convenient 
input/output devices that the programmer can 
rely on.  For these reasons, the development 
of the embedded systems follows the host-
target cross-development mode.  The host is 
typically a personal computer that has a 
programming/debugging Integrated 
Development Environment (IDE), such as 
the IAR Embedded Workbench® IDE.  The 
program is written, complied and linked in 
the IDE at the host end.  The target is the 
embedded system board.  Specifically, it 

refers to the microcontroller together with some other peripheral devices.  The host and target are 
connected by a special device often called “programmer”.  Fig. 7-1 shows the FET 
programmer/debugger.  The prototype development of the system is based on the MSP-TSPZ100 
Target Socket Module, as shown in Fig. 7-2.  The cross-debugging is achieved with the support 
of the programmer and corresponding software, the IAR C-SPY debugger, which works together 
with the FET programmer for cross-debugging.  There is an emulator driver inside the IAR IDE 
to drive the FET programmer so that the IAR IDE can access the memory and registers of the 
target microcontroller when the program is being executed on the target.  The developer can set 
breakpoints at the host end, modify the contents of the memory and registers; and inspect the 
hardware status.   

The IAR C-SPY Debugger also has a driver for the software simulator residing in the 
host computer.  The simulator can simulate part of the behavior and run-time environment of the 
target device.  By debugging the code on the simulator at the host end, the user does not need to 
write the program to the target device every time.  This is useful when the program being 
debugged has little relevance to the hardware.  For example, in our system signal processing 
algorithms can be debugged on the simulator at the host end.  However, the simulator can only 
partially simulate the target behavior.  For example, it cannot simulate the hardware interrupt.  

Fig. 7-1.  The MSP-FET430UIF Debugger 
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For this type of program, it has to be debugged directly on the target device.  In our system, this 
type of program includes the sampling rate control, AD conversion and UART communication 
etc.   

 
Fig. 7-2.  The MSP-TSPZ100 Target Socket Module 

7.2.3 The programming language: Embedded C++ 
C++ is a general-purpose programming language that has both high-level and low-level 

capabilities.  So it is sometimes regarded as a “mid-level” language.  C++ has many unique 
features that C does not have.  C++ is an object-oriented programming (OOP) language.  It allows 
the programmer to create classes, which is similar in concept to the structure in C language, but it 
contains more advanced features.  With the introduction of classes in C++, more features are 
created in C++ such as the function overloading, operator overloading, class inheritance, 
polymorphism and templates [93, 94].  With the aid of these features, C++ provides safer data 
protection.  Due to the optimization of many C++ compilers, the overhead of introducing these 
additional features has been minimized.  In addition, C++ program is as efficient as its C 
counterpart.   

7.3 Software Development 

Embedding the DSP algorithms into a microcontroller needs a supporting software 
platform that is able to sample the analog signal and manage the embedded DSP algorithms.  The 
supporting software platform has similar functions as a real-time operation system (RTOS).  
Although there are some RTOSs available for free such as the freeRTOS and velOSity RTOS [95, 
96], they are developed as a general purpose RTOS and they typically require several KB RAM 
to run.  For example, the velOSity RTOS requires at least 3 KB RAM memory [96].  The 
microcontroller we chose, MSP430F449, has only 2 KB RAM.  So, it is not possible to run a 
general purpose RTOS using our microcontroller.  Besides, a general purpose RTOS has many 
additional features that are not needed in our system.  These features will introduce more 
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unnecessary system overhead in our system as they consume additional power and the system’s 
processing capability.  Based on these considerations, instead of adopting an available RTOS, we 
developed a RTOS-like software platform, termed as Software Platform for Digital Signal 
Processing (SP-DSP), which is specifically tailored to our system.   

The principles of SP-DSP development are to keep the system as simple (with the 
restriction of providing required functions), as specific (to take the advantage of the specific 
hardware features), and portable as possible (to minimize the re-programming when a hardware 
upgrade is desired in the future).  In keeping these features, the SP-DSP is developed at two 
separated levels: low-level and high-level, as discussed in detail in 7.3.1 and 7.3.2, respectively.   

7.3.1 Low-level implementation: Hardware Abstraction 
The low-level programming is essential for any embedded application development.  The 

purpose of the low-level programming is to isolate the high-level application algorithms from the 
particular hardware platform so that the high-level code is independent of the hardware.  In future, 
if a upgrade of the hardware is needed, only the low-level code should be changed.  While the 
code implementing DSP algorithms at high-level can be directly adopted with minor 
modifications.   

The low-level implementation is essentially to develop drivers for the hardware.  The 
driver abstracts hardware by providing software components with interfaces.  The interfaces are 
called by the high-level code to invoke the functionality provided by the hardware module.  
Although the detailed implementation of a certain hardware function needs to be modified if the 
hardware is upgraded, the calling semantics in the high-level code remains the same.   

A hardware component is controlled by its own registers.  To abstract the hardware 
component involves the configuration of those registers according to the requirements of an 
application.  It is also desired by the high-level program that the hardware may be reconfigured at 
run-time, so the low-level driver program needs to provide some interfaces to access those 
registers.   

In the current version of SP-DSP, the following hardware modules have been abstracted: 
Timer, A/D Converter and UART Port.   

The Timer  

MSP430F449 has two independent timer circuits: Timer_A3 and Timer_B7.  They are 
both 16-bit timer/counter with multiple capture/compare registers.  For example, Timer_A3 has 
three such registers and Timer_B7 has seven.  Each register can be considered as a stand-alone 
hardware timer.  Thus, all together, MSP430F449 can provide 10 independent hardware timers, 
among which each can be individually started, stopped, or configured into different modes.  The 
Timer_A3 and Timer_B7 share the following common features:  

• Asynchronous 16-bit timer/counter with four operating modes 
• Selectable and configurable clock source 
• Three or seven configurable capture/compare registers 
• Interrupt vector register for fast decoding of all Timer’s interrupts 

The abstraction of the timers involves initialization, configuration, and interrupt handling.  
In current SP-DSP, the timers are restricted to be initialized only once at run-time.  The 
initialization occurs when the program is started.  However, the timers can be reconfigured at run-
time to specify a new timer expiration interval.  This hardware-related operation is invisible from 
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the high-level programming aspect.  The timer hardware modules are abstracted as a Timer class 
in the SP-DSP:  

class Timer { 
private:  
public:  

void Start(const int* val); 
void Stop(); 
void SetCallback(void (*p) ()); 

} 

To discriminate the abstracted timer class from the actually hardware timer, I will refer 
the abstracted timer as “software timer” hereafter.  The high-level program can define up to 10 
software timers corresponding to the 10 hardware timer registers.  Each software timer is 
internally linked to a distinguished hardware timer by the low-level driver program.  From the 
high-level program point of view, the 10 software timers are exactly identical, and no knowledge 
about the hardware is required to use these software timers.  The following example code shows 
how to use the abstracted software timer:  

{ 
Timer t1; 
t1.SetCallback(&foo); 
t1.Start(5); 

} 

The statement Timer t1 defines a software timer t1.  t1 is automatically linked to an 
available hardware timer by the driver program when it is defined.  t1.SetCallback(&foo) 
specifies that every time t1 expires, the routine foo() is automatically called.  t1.Start(5) 
is the actual code to start the timer.  This statement specifies that timer t1 expires every 5 
milliseconds.  The high-level program implements the foo() routine in response to the timer 
expiration, for example, to trigger an AD conversion.  The semantics of the above call of the 
software timer will remain the same even the hardware and its driver is upgraded.   

The AD Converter 

The ADC12 module built-in the MSP430F449 supports fast, 12-bit analog-to-digital 
conversions.  The conversion-and-control buffer allows up to 16 independent ADC samples to be 
converted and stored without any CPU intervention.  Selected ADC12 core features include:  

• Greater than 200 ksps maximum conversion rate 
• Conversion initiation by software 
• Software selectable on-chip reference voltage generation (1.5 V or 2.5 V) 
• Eight individual configurable external input channels 
• Four selectable conversion modes 
• Interrupt vector register for fast decoding of 18 ADC interrupts 

The ADC reading is dependent on the reference voltages.  The relationship between the 
reference voltages and the AD reading is given by:  
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The inV is the analog input.  RV +  and RV − are reference voltage levels.  They are both 
software programmable.  In most applications, the RV − is grounded, and RV + is connected to the 
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internal reference voltage.   

The abstracted ADC class has the following interfaces (only public interfaces are listed):  

class ADC { 
private:  
public: 

static void Initialize(); 
bool Start(); 
unsigned char Get(); 
void SetCallback(void (*p)()); 
bool SelectCH(const unsigned char& ch); 
static bool EnableCore(); 
static bool DisableCore(); 
static void SelectRef1_5v(); 
static void SelectRef2_5v(); 

} 

Like the timer circuit, the ADC12 core must be correctly initialized so that it can work 
properly.  The high-level program invokes the initialization by calling ADC.Initialize() in 
the abstracted interface.  In this process, the AD conversion clock source is specified.  The 
reference voltage is also selected during initialization.  In the current SP-DSP, the internal 1.5 
volt is selected as the reference voltage.  The reference voltage for AD conversion is of critical 
importance.  A tiny ripple of the reference voltage can result in significant noise in the AD 
conversion results.  The internal reference voltage is provided by an on-chip voltage regulator, 
which persistently stabilizes the voltage at a constant level.  Thus, choosing the internal reference 
voltage reduces noise in the final AD readings.  In addition, the sample and conversion timing is 
also configured in initialization process.  An AD conversion can either be automatically started 
by Timer_A/Timer_B via internal hardware connections, or can be initiated by setting the 
ADC12SC bit in the control register by a software instruction.  In the current SP-DSP, the 
Timer_A and Timer_B are used as the underlying hardware support for the software timers, so we 
chose the software triggering method to initiate an AD conversion.   

The interrupt generation and handling mechanism of the AD converter is little 
complicated.  The ADC12 core supports up to 8 external input channels.  But these channels 
share a single interrupt vector.  In another word, no matter which channel finishes the completion 
of an AD conversion and generates an interrupt, the same program segment, called Interrupt 
Service Routine (ISR), is executed.  So, the 8 external analog inputs are undistinguishable in 
terms of interrupt vector because they all trigger the execution of the same ISR.  However, the 
ADC12 core has an ADC12IV register, which is used to store the index of the analog channel that 
generates the current interrupt.  In the ISR for the AD interrupt, the ADC12IV register is accessed 
by the driver code to identify which channel generated the current interrupt so that the execution 
is branched for each channel.  This process has been encapsulated in the abstracted ADC class.  
By using the public interface ADC.SetCallback(void (*p)()), the high-level program 
can specify a distinguished interrupt handler pointed by *p for each ADC channel; as if each 
ADC channel had its own interrupt vector and ISR.  The benefit of this is to make the high-level 
programming independent from the hardware architecture.  If the hardware is replaced by a new 
different chip, the high-level code using ADC class does not need to be changed.   

The typical usage of the abstracted ADC class is like the following:  

{ 
ADC ecgADC 
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ecgADC.SetCallback(&ecgADC_foo); 
ecgADC.SelectCH(ADC_A0); 
 
/*  in timer expiration ISR  */ 
{ 

ecgADC.Start(); 
} 
 
/*  the ecgADC ISR  */ 
void ecgADC_foo() { 

int ecgvalue = ecgADC.Get(); 
} 

} 

It is not necessary to explicitly call the ADC::Initialize() to initialize the 
hardware.  Call to this routine is automatically made at the time when the first ADC object is 
defined.  The call of ADC::SelectCH() binds a defined ADC object to an external analog 
input.  For example, in the above code, the call ecgADC.SelectCH(ADC_A0) selects the A0 
pin as the analog input of ADC object ecgADC.  An AD conversion is initiated by calling 
ecgADC.Start() as shown in the example code.  The ADC12 core needs a short time period 
to complete a single conversion.  Once a conversion is completed, the ADC12 core generates an 
interrupt.  The interrupt causes the automatic call to the ecgADC_foo() routine in the above 
example code.  The conversion result is stored in one of the ADC registers.  To read out the data, 
a call to ADC::Get() must be made, as demonstrated in the above ecgADC_foo() routine.   

Due to the fact that the ADC12 core needs a short time to complete a conversion, there is 
a potential collision problem for multiple channel conversions.  Although the ADC module 
supports 8 external analog inputs, there is only a single ADC12 core in the module performing 
the actual conversion.  The ADC12 core is connected to the 8 external analog input through a 
multiplexer directed by the control register.  The software selects different input channel by 
specifying the CSTARTADDx bits in the control register.  This may cause a collision problem as 
shown in Fig. 7-3.  Suppose the ADC12 core is performing the conversion on input A0, a request 
of sampling input A1 is imposed by another piece of code, say, the expiration of the sampling 
timer that controls the sampling rate of A1.  If the CSTARTADDx bits are changed immediately to 
connect the ADC12 core to input A1, the conversion on A0 will be interrupted, resulting in a 
corrupted data.  So, a mechanism must be developed to arbitrate the race of the ADC12 and solve 
the collision problem.  A reasonable solution is to hold the request of sampling A1 for a short 
time, giving the ADC12 core enough time to finish the current conversion on A0.  In the current 
SP-DSP, a queuing technique was employed to solve this collision problem.   

A “queue” is a line-up of a series of similar elements.  It has the “first in, first out” (FIFO) 
priority setting.  The element firstly pushed into the queue is popped out first to be processed.  
Such a conversion request queue is maintained by the ADC driver program to avoid conversion 
collision.  The call of ADC::Start() causes the conversion request being pushed into the 
queue instead of immediate change of the CSTARTADDx bits.  The underlying ADC driver polls 
the queue every time a conversion is completed to check if there are any pending requests 
unprocessed.  If so, the request is popped out and the ADC12 core is switched to the specified 
analog input and a new conversion is started.  Again, the potential collision is handled by the low-
level ADC driver.  From the high-level programming point of view, it is safe to assume that the 
call of ADC::Start() initiates a new conversion immediately and all the external analog 
inputs are independent from each other.   
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Fig. 7-3.  Potential conversion collision when multiple analog inputs are sampled. 

The queue technique is also used in the design of the system core to manage data 
analyses tasks.  This is discussed in 7.3.2 and 7.4.4.   

USART Port 

The physical connection between the additional MSP430F449 and the Tmote Sky is 
established through the USART circuit.  The USART circuit at both sides can be either 
configured in UART mode or in Serial Peripheral Interface (SPI) mode.  In current version of SP-
DSP, we utilized the USART in UART mode.  In the future, if higher data transmission rate 
between the additional MSP430F449 and the Tmote Sky is desired, it is possible to configure the 
USART port in SPI mode since SPI is much faster.  For example, if the system clock is 8 MHz, 
the SPI can reach a transmission rate as high as 4 Mbps; while UART cannot afford this high rate 
otherwise it will suffer from unbearable error rate.  In TinyOS 1.x, the maximum UART baud rate 
is 262,144 bps, which is only one fifteenth of the maximum SPI speed.  However, using SPI 
mode will slightly increase the power consumption and slightly increase software overhead.   

The communication protocol between the Tmote Sky and the additional MSP430F449 is 
C/D TP.  Unlike the communication between the wireless receiver and transmitter, where the 
Active Message protocol has been introduced to facilitate a reliable peer-to-peer transmission, the 
Tmote Sky and the additional MSP430F449 have already been “peer-to-peer” connected by 
hardware.  Thus there is no need to incorporate AM protocol here.   

The wire connection between the Tmote Sky and the additional MSP430F449 through 
UART port is illustrated in Fig. 7-4.  Only three wires are needed as shown in Fig. 7-4: Rx 
(Receival), Tx (Transmission) and GND (Ground).  The wiring has the “cross” pattern.  That is, 
the Tx terminal of one end should be wired to the Rx terminal of the other end, and vice versa.   

Fig. 7-4.  The UART hardware wiring between the Tmote Sky  and the additional MSP430F449 
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The abstracted USART interface is the class UART in SP-DSP.  It provides the following 
public interfaces that are used by the high-level program:  

class UART { 
private:  
public:  

bool Bind(const unsigned char& p)  
void SetBaudrate(const int& br); 
void SetRxCallback(void (*p)())  
void Send(const unsigned char& txbyte)  
void SendCDTP(const CDTPMsg& msg)  
unsigned char Receive()  
void SetTxCallback(void (*p)())  
void EnableRx()  
void EnableTx()  
void DisableRx()  
void DisableTx()  

} 

Like other hardware components, the USART also has a bunch of registers to be 
configured and manipulated to make it work properly.  Most of the configuration occurs in the 
initialization process and is encapsulated in the low-level UART driver program.   

In the initialization process, the UART clock source is selected by specifying the SSELx 
bits in the USART transmit control register.  Selecting an accurate clock source is of crucial 
importance for UART communication because the baud rate generator relies heavily on the clock 
to generate an accurate baud rate.  Mismatched baud rates between two UART talkers can lead to 
a complete failure of the UART communication.  In current version of SP-DSP, we chose the 
external 8 MHz crystal as the UART clock source because it is more accurate and reliable than 
the internal crystal oscillator.  In order to configure the baud rate generator to get a desired baud 
rate, appropriate values should be written to the baud rate control register and the modulation 
control register.  Determining the values for these register is a dynamic and complicate process.  
Some microcontroller manufacturer provides the developer a look-up table to determine the these 
values.  There are also some online programs available to calculate this value.  For the detail of 
how to determine the modulation register value, the reader is referred to [97].  In our system, the 
value is calculated by the online program [98].   

The typical usage of the abstracted UART class starts with the definition of a UART object 
followed by the call to UART::Bind(), which connects the UART object to an actual USART 
hardware module.  In the MSP430F449, there are two USART modules.  Thus, up to two UART 
objects can be defined in the high-level program.  After successfully binding the defined UART 
object to the USART port, consequent call of UART::SetBaudrate() specifies the baud rate 
of the USART port.  The argument passed to this interface is the desired baud rate, measured in 
bit per second (bps).  The baud rate cannot be an arbitrary value.  In the current SP-DSP version, 
only the TinyOS compatible baud rates are supported and they are: 9,600 bps, 19,200 bps, 38,400 
bps, and 262,144 bps.   

Except the baud rate, which can be alternated by the high-level program at run-time, 
other UART parameters are specified and fixed in the underlying initialization code.  These 
parameters include stop bit, parity check bit and character format.  Currently, these parameters 
are initialized as 1 stop bit, no parity check and 8-bit character.   

The ISRs for the UART receive and transmission are encapsulated in 
UART::SetRxCallback() and UART::SetTxCallback(), respectively.  Call of these 
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interfaces specifies the user customized routines that are automatically executed when a valid 
byte of data is received or transmitted.  The UART::Send() function takes a byte value and 
sends it out through the USART port.  If the USART circuit is not busy, the value is written into 
the transmit buffer register and sent out at once.  The counter-part of the UART::Send() is the 
UART::Receive().  If a valid byte data is received by the USART hardware, the received 
data is stored in the receive buffer register and an interrupt is generated (if the receival interrupt is 
enabled).  Calling of the UART::Receive() retrieves the data from the receive buffer register.  
The high-level program must make this call in the ISR (specified by the call of 
UART::SetRxCallback()) to read out the received data so that the overflow of the USART 
port is avoided.   

In order to expedite the high-level programming, the abstracted UART class also provides 
an auxiliary interface to send a C/D TP message over a UART connection.  A call to 
UART::SendCDTP() initiates the transmission of a C/D TP message through the UART 
connection at the preset baud rate.  The C/D TP message is specified by the function argument of 
this interface.  For the high-level program, there is no need to specify the ISR if a C/D TP 
message is sent.  The interrupt service is carried out by the underlying driver code.  The 
UART::SendCDTP() is implemented by a Finite State Machine.  So, a simple call of 
UART::SendCDTP() reliably sends out the C/D TP message.   

7.3.2 High-level implementation: The System Software Components 
The high-level implementation of the SP-DSP is designed to be independent from the 

low-level implementation.  The high-level implementation is logically isolated from its low-level 
counterpart so that any changes in the low-level driver code do not affect the high-level system 
software components.  By this design, once the system components remain stable and unchanged 
no matter what modifications are going to be made on the low-level driver due to hardware 
upgrade.  It is possible, however, to expand the functionality of the software system compoenents 
by adding more features in the future.   

In this section, the available functions of the current system components are discussed.  
The data structure and programming techniques to implement these functions are also discussed.   

The system components provide some implemented classes for the convenience of high-
level programming.  The basic framework for the execution of multiple DSP tasks is also defined 
and implemented.  The currently available system components are: Buffer, IntBuffer, 
DBuffer, Queue, Task, CDTPMsg, and FFT.   

Buffer 

Buffering is a technique that has been widely used in computer programming.  It is so 
fundamental that not even a simple piece of code can be written and executed without it.  The 
basic idea of buffering is to temporally store whatever data in a small piece of memory so that the 
data can be processed shortly after.  The “processing” here is not limited to a specific kind of 
mathematic processing.  It can be any manipulations performed on the data; e.g. to display the 
data; to send the data over UART; or to filter the data.  The buffering technique plays a more 
important role in real time systems because real time systems are more prone to event interruption.  
When the execution flow is toggled between the tasks and events, buffering is certain needed to 
protect data.  Besides, real time systems have deadlines for every task.  This increases the 
complexity of real time systems and the possibility of data race.  Buffering technique is one of the 
solutions of the data race problem.   



 

98 

The buffering technique has been utilized in the monitor software for smooth and jutter-
free display of ECG signal as described in 6.4.2.  In general, buffer can be cataloged into two 
types: linear buffer and circular buffer (also called ring buffer).  In linear buffer, the elements are 
logically sequenced according to their physical positions.  The index pointer linearly increases or 
decreases, as shown in Fig. 7-5(a).  The Start pointer indicates the first element in the buffer.  
Both the logical and physical positions of the Start pointer are fixed at the creation of the 
buffer.  The End pointer points to the last element in the buffer and its value is logically not less 
than the Start pointer.  The only scenario that these two pointers have the same value is when 
the buffer is created and no data has been written into it, yet.  Since the End pointer can only 
either linearly increases or decreases, there is a potential overflow if the End pointer goes out the 
physical scope of the buffer.  So, every time a new data is written to or read out of the linear 
buffer, boundary check should be carried out to make sure the operation is legal.   

The linear buffer is used thoroughly in the SP-DSP.  For example, it is used for data 
packing and message synthesis.   

The circular buffer is conceptually different from its linear counterpart.  Although the 
data is stored in linear memory as it is in the linear buffer, the way to access the data in a circular 
buffer is different from that of the linear buffer.  As shown in Fig. 7-5(b), the End pointer 

increases circularly.  When it reaches the end 
boundary of the buffer memory, the End 
pointer is rolled back to the beginning 
address of the buffer memory.  But logically 
the buffer is not overflowed in this case.  The 
rolling back is treated as a seamlessly legal 
operation of “buffer-grow”.  From the user’s 
point of view, the End pointer could always 
keep increase and was never bounded by a 
physical memory address.  So, there is no 
physical overflow of the circular buffer.  
However, there is a logical overflow of the 
circular buffer.  The End pointer is logically 
bounded by the Start pointer.  If the End 
pointer hits the Start pointer after an 
increase, the circular buffer is logically said 
“overflow”.  In another word, if the End 
pointer and Start pointer point to the same 
element, the circular buffer overflows 
because the new data will overwrite the old 
data pointed by the Start pointer.  This 
causes a problem for the circular buffer.  At 
the creation of the buffer, or at the reset of 
the Start and End pointers, before any 
data is written to the buffer, both of the 
pointers point to the same position in the 

circular buffer.  Obviously, the buffer is not overflowed in this case even the two pointers point to 
the same position.  So, how do we differentiae this creation/reset scenario from an overflow?  
Multiple solutions have been proposed.  First, we can maintain a counter variable for the circular 
buffer, which counts how many data has been written to the buffer.  At reset of the two pointers, 
the counter is set zero since no data in the buffer at all; while in the overflow case, the counter 
should have a non-zero value.  By checking the value of the counter variable, we can tell if the 

(a) Linear buffer 

(b) Circular buffer 
Fig. 7-5.  Linear buffer and Circular buffer 
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buffer is overflowed or not.  Another solution is to keep at lease on free space in the circular 
buffer.  At reset, the two pointers do not point to the same element, but to two adjacent ones.  
Thus, the only scenario for the two pointers to point to the same position is the overflow 
condition.  The Start pointer of a circular buffer is typically an indicator a “read” operation.  
This operation fetches the stored data out of the buffer for processing or transmission.  On the 
other hand, the End pointer is often denoted as a “write” operation.  The new data is written to 
the “end” position by some data collecting subroutine.  For example, at the transmitter end in our 
system, such data collection module is the ISR of the AD converter (see 7.3.1).  In the monitor 
software, two circular buffers are used: one is for receiving data from the receiver via a USB port 
and the other is used to buffer the ECG data for real-time display.  Circular buffer is very 
important in a real-time data collection system since there is no way to know a prior how many 
data will be collected.  Using linear buffer in such systems will eventually encounter the “out of 
memory” problem and crash the system.   

The SP-DSP provides a Buffer class that can be used either as linear buffer or circular 
buffer.  The interfaces it provides are:  

class Buffer { 
private: …… 
public:  

unsigned short Read(unsigned char *p, const 
unsigned short& n); 
unsigned short Write(unsigned char *p, const 
unsigned short& n); 
unsigned short CopyTo(Buffer& destbuf); 
unsigned short CopyFrom(Buffer& srcbuf); 
unsigned short Size() const; 
bool SetSize(const unsigned short& sz)  
void SetPos(const unsigned short& pos) 
bool ReadByte(unsigned char& b); 
bool WriteByte(const unsigned char& b); 
const unsigned short& WritePos() const;  
const unsigned short& WritePos(const unsigned 
short& pos);  
const unsigned short& ReadPos() const;  
const unsigned short& ReadPos(const unsigned 
short& pos);  

} 

As shown by the code, the Buffer class manipulates the data byte by byte.  This is 
especially useful to implement the transmission protocols since all these protocols are defined on 
a byte basis (see 5.2.3).   

IntBuffer 

The class IntBuffer is designed the same way as the Buffer class.  It also can be 
used as linear and circular buffer.  The difference is the data type they are designed for.  The 
IntBuffer class deals with integer data; while the Buffer class works on byte data.  The 
actual size of an integer is hardware dependent.  For MSP430F449, an integer occupies 2 bytes 
memory.  The benefit of using IntBuffer class instead of Buffer is that the read and write 
operation is faster when an integer number is pushed in or popped out of the buffer.  In our 
system, the AD convertor has 12-bit precision.  This requires an integer (16-bit) type of buffer to 
store the result.  If the Buffer class were used, the program had to write the high byte and low 
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byte of the sampled data separately using two writing cycles.  When the data is read out of the 
buffer, it puts more obstacles in the process.  First, the low byte is read out followed by reading 
out the high byte.  Then, the two bytes need to be stitched together to get the original value.  This 
process not only involves two reading cycles, but also introduces the overhead of stitching two 
bytes together.  Since the MSP430F449 is a 16-bit microcontroller, it can read/write a 16-bit data 
in a single instruction cycle.  The class IntBuffer takes advantage of this fact and expedites 
the operation of integer numbers.   

DBuffer 

DBuffer stands for Double Buffer.  The DBuffer class is designed as:  

class DBuffer { 
Buffer *pbuf[2]; 
unsigned char indexw, indexr; 
unsigned short size; 

 
public: 

void Swap(); 
bool ReadByte(unsigned char& b); 
bool WriteByte(const unsigned& b); 
Buffer* ReadBuffer(); 
Buffer* WriteBuffer(); 

} 
 

As shown from the code, the DBuffer class has a 2-element Buffer array.  One of 
them is assigned as a “read-only” buffer and the other one is “write-only” buffer.  The double 
buffer design separates the read and write operation to avoid data race condition in a real time 
system.  For example, in our system, the sampling module collects the data from analog input 
periodically.  Once a certain amount of data is collected, or a command requiring data 
transmission is received, the sending module packs the data and sends them out.  During this 
process, the sampling procedure should be still working normally to avoid loss of data.  In this 
case, it is possible that the packing and sending process may be preempted by the sampling 
module when the reading of data is in progress.  If a single buffer were used to temporary store 
the collected data, both the sending module and the sampling module would try to access the 
same buffer.  This asynchronous access to the same resource is the origin of data race problem.  
The preempted process needs the data remain untouched until it is resumed to execute from being 
preempted; while the preempting processing has the potential to alternate the data without letting 
the preempted process be aware of this.  If the resource is somehow changed by the preempting 
process, the preempted process, when resumed, has a wrong assumption of integrity of the 
resource.  This often causes a strange and unpredictable system behavior at run-time and it is very 
difficult to locate such kind of error.  The double buffer technique is used here to avoid the data 
race problem introduced by asynchronous read/write operation.  The sampling module is 
restricted to access the “write-only” buffer; while the sending module can only access the “read-
only” buffer.  In this way, even if the sending process is preempted by the sampling process, there 
is not data race because the two processes work on different buffers.  The class members 
indexw and indexr are indices indicating which buffer is the read-only buffer and which is 
the write-only buffer.  The two pointers are mutex to each other.  At any given time, the 
relationship between these two pointers is: indexw + indexr = 1.  The read-only and 
write-only buffers are not fixed to a particular one, but are swapped from time to time.  The swap 
occurs when the write-only buffer is full.  This is accomplished by an atomic (cannot be 
preempted by any process) call of DBuffer::Swap().  During the process of swap, the values 
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of the indexw and indexr indices are exchanged.  The provided public interfaces 
DBuffer::ReadByte() and DBuffer::WriteByte() reads one data from the read-only 
buffer and writes one data to the write-only buffer, respectively.  While the 
DBuffer::ReadBuffer() and DBuffer::WriteBuffer() return a memory pointer to 
the read-only and write-only buffer, respectively.   
Queue 

Queue is another widely used data structure in computer sciences.  It is a linear collection 
of many similar elements.  The elements in a queue are sequenced in the First-In-First-Out order 
when they are added into the queue.  The operations on a queue involve adding a new element 
only at the rear position of the queue and removing an old element only from the head position of 
the queue.  By this configuration, the queue data structure naturally has a fixed linear priority 
setting.  The element at the head position, which is also the element that has been staying in the 
queue for the longest time, has the highest priority.  The priority linearly decreases from the head 
of the queue to the tail.  Those typical operations on a queue like to add an element at rear 
terminal; to remove an element from the head; and to delete an arbitrary element etc, are provided 
by the public interfaces of the Queue class:   

class Queue { 
private:  
public:  

bool Initialize(const unsigned char& sz) 
unsigned char Size(); 
unsigned char Head(); 
unsigned char Tail(); 
bool Push (void *p); 
void* Pop(); 
void Delete(void *p) 
unsigned char& Count(); 

} 

The Queue::Initialize() interface is called when a queue object is created.  This 
procedure sets the maximum size of the queue.  It determines how many elements can be store in 
the queue.  The Queue::Push() operation adds a new element to the rear position and 
Queue::Pop() remove the head element of the queue.  The removed element is served by 
other module or subject to some processing depending on what the queue is created for.  The 
Queue::Count() interface allows other module to inquire how many elements are currently 
in the queue.   

The queue has been used in the AD convertor driver code to avoid the potential problem 
of conversion collision (see 7.3.1).  It is also used in the main loop of SP-DSP to coordinate the 
execution of multiple tasks as discussed later in this chapter.   

Task 

The SP-DSP uses the “task + event” concurrence model as many real time operating 
systems do.  A task is the basic execution unit in the main loop.  Tasks follow the “run to 
completion” pattern.  A task cannot be preempted by another task, but can be preempted by any 
interrupts.  The class Task is an abstracted code execution model.  The data analyses algorithms 
embedded in the SP-DSP should be encapsulated in and executed as tasks.  The design of the 
Task class is more complicated than any other classes.  The type of the routine executed as a 
task varies a lot depending on the application.  It can be a global regular function or a sealed 
member function of different classes.  To accommodate this, we utilized the template feature 
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supported by the Extended Embedded C++ to design the Task class.  The template feature 
provides the flexibility to seamlessly deal with many different types of classes.  By designing the 
Task class in this way, executing different types of routines can be initiated by calling the same 
standard interfaces of the Task class.  The polymorphism feature of C++ guarantees the proper 
routine is executed.  Designing the Task class in this way requires the routine to be a member 
function of a certain class.  If a global function needs to be executed as a task, it should be 
encapsulated in a dummy class as a member function.  The declaration of the Task class is as the 
following:  

class BasicTask { 
public: 

virtual void Execute() = 0; 
virtual ~BasicTask() {}; 

}; 
 
template <class T>  
class Task:public BasicTask { 

unsigned char state; 
T *pT; 
void (T::*pFunc)(); 

public: 
Task(); 
Task(void (T::*pf)()); 
Task(const Task& tk); 
~Task(); 
void Set(T *p); 
void Set(T t); 
void Set(T *p, void(T::*pf)()); 
void Set(T t, void(T::*p)()); 
void Execute(); 
void State(const unsigned char& st); 
const unsigned char& State(); 

}; 

The Task class is inherited from the BasicTask class.  The execution of a certain 
routine is started by calling BasicTask::Execute().  The BasicTask::Execute() is 
declared as a pure virtual function to mandatorily require the inherited Task class to overload it.  
This prevents the mistaken call of BasicTask::Execute() before it is instantiated.  Making 
the BasicTask::Execute() virtual takes the advantage of the C++ polymorphism feature so 
that the calling semantics of any task is identical but the actual execution of the task is 
automatically differentiated by the C++ compiler within the scope of Task class.  The call of the 
BasicTask::Execute() is implicitly and automatically directed to the call of the actual 
routine pointed by the function pointer Task::pT.  The overloaded member function 
Task::Set() sets the value of the function pointer Task::pT to specify the actual routine of 
the task.   

When the SP-DSP is started, a task queue is created.  In the main loop, a piece of code 
continuously polls the task queue to see if any unexecuted tasks remaining in the queue.  If so, the 
task at the queue head position is popped out and executed; if not, the program simple continues 
to the next start of the loop and polls the task queue again.  The following code is a simplified 
version of the main loop, showing how the task queue is polled and a task is executed:  
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Queue TaskQ; 
BasicTask *pCurrentTask = 0;  
 
while(1) { 

if(TaskQ.Count()) { 
if(pCurrentTask = (BasicTask*)TaskQ.Pop()){ 

pCurrentTask->Execute(); 
} 

} 

The task queue is polled by the statement if(TaskQ.Count()).  If the return value is 
zero, the while(1) is executed and the if(TaskQ.Count()) is executed again.  If the 
return value is not zero, it indicates there are some unexecuted tasks in the queue.  So the task that 
has the highest priority is popped out at the call of pCurrentTask = (BasicTask*) 
TaskQ.Pop(), and is executed right away at the call of pCurrentTask->Execute().   

CDTPMsg 

To facilitate the successive software development at the application level, the CDTPMsg 
class was designed.  The CDTPMsg class integrates all the elements of a C/D TP message and 
provides public interfaces to manipulate these elements such as setting the C/D TP command ID 
of a message; configuring the CSW field of a C/D TP message, and modifying the data field of 
the C/D TP message.  The declaration of the CDTPMsg class is:  

class CDTPMsg{ 
unsigned char  nId; 
Buffer* pData; 
unsigned short wCSW; 
public: 

CDTPMsg(): pData(0), nId(0), wCSW(0) {}; 
CDTPMsg(Buffer& buf):pData(0), nId(0), wCSW(0); 
~CDTPMsg() {}; 
CDTPMsg& operator=(const CDTPMsg& src); 
unsigned char CDTP_ID(const unsigned char& id); 
unsigned char CDTP_ID() const unsigned short 
CDTP_CSW(const unsigned short& csw); 
unsigned short CDTP_CSW(); 
const unsigned char Length(); 
bool SetSize(const unsigned short& sz); 
bool ReadByte(unsigned char& b) const; 
bool WriteByte(const unsigned& b); 
unsigned short WritePos() const; 
unsigned short WritePos(const unsigned& pos); 
unsigned short ReadPos() const; 
unsigned short ReadPos(const unsigned& pos); 
Buffer* SetBuffer(Buffer& buf); 
Buffer* SetBuffer(Buffer* pbuf); 

} 

The detail functionality of the interfaces is described in Appendix II.   
FFT 
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FFT is a very common tool in digital signal processing field.  In our system, many 
algorithms have FFT involved.  For example, the calculation of the power spectrum density of the 
heart rate series; the estimation of coherence function between tow signals; and the extraction of 
respiratory rate from photoplethysmography (PPG).  Based on the consideration that the real-time 
FFT may be performed on different signals for frequency related analysis, it is of great 
convenience to encapsulate the FFT algorithm in a class so that the common code can be shared 
by multiple FFT analyses instances.  Besides, the task mechanism in SP-DSP also requires that a 
routine to be posted as a task must be a member function of a certain class as described in the 
above section.  The declaration of the FFT class is quite straightforward:  

#define NFFT  128 
 
class FFT { 

private: 
short Re[NFFT]; 
short Im[NFFT]; 
void DoFFT(); 

 
public: 

void SetValue(short* data, int n); 
Task<FFT> *FFTTask()  

}; 

The FFT class has two private member data Re[NFFT] and Im[NFFT].  They are used 
to store the real and imaginary portion of the FFT result, respectively.  They are both initialized to 
zeros when an FFT instance is created.  The public member function FFT::SetValue() 
copies the signal data to FFT::Re[NFFT] before the call of FFT::DoFFT(), which starts the 
calculation of FFT.  Since the FFT::DoFFT() is declared as a private member function, the call 
of FFT::DoFFT() must be made inside the FFT class.  The FFT class provides a public 
member function, FFT::Task<FFT> *FFTTask(), to export a task object.  This task object 
can be pushed into the task queue and popped out to execute when it moves to the head position 
of the queue.  This implementation connects the specific execution of FFT, FFT::DoFFT(), to 
standardized call of an abstracted task: BasicTask::Execute().  At this point, the FFT, like 
many other digital signal processing algorithms, has the uniform calling semantics: 
BasicTask::Execute().  Making the calling semantics uniform for every DSP algorithm is 
mandatory to facilitate the usage of the task queue mechanism.   

The actual code calculating FFT is implemented in FFT::DoFFT().  In embedded 
systems, implementation of FFT algorithm is quite different from the implementation of FFT on 
other hardware platform like PCs.  This difference is discussed in detail in 7.4.2 and the actual 
code is listed in Appendix III.   

7.4 Embedding Real-Time DSP Algorithms into the Microcontroller  

To embed DSP algorithms into the microcontroller is the primary objective of the 
development of SP-DSP.  As shown in the introduction and 6.5.1, transmitting only a few 
processed parameters significantly saves power and bandwidth.  Currently, the system has only 
one channel ECG signal, so the following discussion of signal processing is mainly based on 
ECG signal.  The real-time ECG processing includes low-passing filtering and R-wave detection.  
However, the principles of embedding DSP algorithms into the microprocessor are similar for any 
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other DSP algorithms.  These principles involve the considerations of execution time, calculation 
precision, and efficient memory usage.  In this section, the embedded R-wave detection algorithm 
and FFT are discussed to show how to embed a DSP algorithm into the microcontroller.   

7.4.1 Embedding real-time R-wave detection algorithm 
Since most of the algorithms (e.g. the algorithms developed in the first part of this 

dissertation, as well as other algorithms, like Principle Dynamic Mode (PDM) analysis [57]) deal 
with the heart rate (HR) series, the basic processing on raw ECG data is to extract R-R interval.  
Thus, R-wave detection is one of the basic embedded DSP algorithms in our system.  Although, 
many R-wave detection algorithms have been proposed [99-104], we have implemented a real-
time R-wave detection algorithm similar to the most popular one that was developed by Pan etc. 
in 1985 [105].  The preprocessing is similar to that of the algorithm in reference [105], but our 
algorithm looks into the instantaneous variance of the derivative signal; unlike the algorithm in 
reference [105] , which just uses the square of the derivative signal.  By taking the square of the 
mean out, our method preserves the same effective dynamic range as the method in reference 
[105] but has a smaller absolute value range.  This is very important to prevent the results from 
overflow since the algorithm will be implemented on a 16-bit hardware platform.  Using double 
precision or long integer type will certainly provide larger absolute value range, but this will also 
significantly increase the consumption of memory, power, and calculation time.  The R-wave 
detection algorithm is a point-based algorithm, which means it is executed every time a new data 
is sampled, its effectiveness is as important as its correctness.  We have optimized the R-wave 
detection algorithm to increase its effectiveness without sacrificing its performance.  For the 
optimization in detail, please see 7.4.3.  After being optimized, the typical execution time of the 
R-wave detection algorithm is less than 0.1 milliseconds and the longest execution time is less 
than 0.32 milliseconds (see 7.4.4 for detail).  

The idea of the R-wave detection algorithm is based on the fact that R-wave exhibits high 
frequency characteristic and has a local maximum value, together with a large local slope.  So, 
theoretically the first derivative of the ECG signal should have 0 values at the point 
corresponding to R-peak.  Instead of detecting R-peak directly as being done in reference [105], 
we first detect those nearby regions surrounding 0 values on the first derivative signal as a rough 
estimation of the location of R-peaks.  This step is archived by comparing the instantaneous 
variance of the derivative signal to an adaptive threshold.  Typically, this step will restrict the 
position of the R-peak within a range of around 3 ~ 7 points.  The R-peak position is then refined 
by finding the local extreme value of the ECG signal among these points.  The algorithm is 
roughly depicted in Fig. 7-6.  The shadow area is the 0-region determined by the threshold of the 
instantaneous variance.   
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Fig. 7-6.  Real-time R-wave detection. (a) low-pass filtered ECG signal. Shadow area covers the R-peak; (b) 
first derivative signal. Shadow area is the 0-region; and (c) the instantaneous variance. Shadow area is
determined by the threshold.   

The first step of processing ECG signal is low-pass filtering to eliminate the high 
frequency noise.  We adopted the low-pass filter proposed in reference [105] into our system, but 
with the modification of canceling out the 1z =  zero and pole to ensure the low-pass filter has 
minimum phase.  The cancelation facilitates the optimization of the code, as discussed in 7.4.3 
later.  Besides, the original implementation of the low-pass filter has a 12-point delay as specified 
in reference [105]; while our version of the filter only has 6-point delay.  The modified low-pass 
filter is given by the following equation:  

( ) ( ) ( ) [ ]
10

0

,    1,2,3,4,5,6,5,4,3,2,1
i

y n h i x n i h
=

= − =∑                          (7-1) 

The cutoff frequency of the filter is 11 Hz and the gain is 36.  Shown in Fig. 7-6(a) is the 
filtered ECG signal.  

To calculate the first derivative, a simple 2-point difference is used to approximate the 
differential:   

( ) ( ) ( )1y n y n y nΔ = − −                                                     (7-2) 

Fig. 7-6(b) is the first derivative signal calculated from the filtered ECG signal.  As 
shown in the figure, the derivative signal changes abruptly from a maximum positive value to a 
minimum negative value, intercepting time axis (0 values) at the position of R-peak.  This feature 
can be quantified and detected by calculating the local variance of the derivative signal within a 
moving window (abrupt change from a maximum value to a minimum value is best evidenced by 
a huge local variance of that short segment).  The optimal window width is determined by the 
sampling rate.  In our system, the sampling rate is 200 Hz, and we found that a window width of 
7 is capable to catch the abrupt increase of the instantaneous variance, as shown in Fig. 7-6(c).   

In the embedded R-wave detection algorithm, there two thresholds involved: threshold 
sTH to detect the R-peak and threshold nTH to detect the presence of a valid signal.  The 

threshold nTH  reflects the energy level of the system noise.  Only the energy of the signal is 
greater than the noise energy, a valid signal is assumed.  The value of nTH  is fixed after the 
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system is calibrated.  Threshold sTH , however, is adaptive in the detection process.  Once a valid 
signal is detected, the algorithm uses 2 ~ 3 seconds of the signal to initialize sTH .  The threshold 
is updated every time an R-peak is detected to follow the signal amplitude variation, which may 
be due to respiration or body movements.   

The R-wave detection procedure can be implemented by a Finite State Machine (FSM).  
The state diagram of the R-wave detection FSM is depicted in Fig. 7-7.   

Fig. 7-7.  Finite State Machine of the real-time R-wave detection algorithm 

The meaning of the states and the transition conditions are illustrated briefly in the 
following.   

STATE_NO_SIGNAL:  The energy of the signal is lower than the threshold nTH  
indicating these is no valid ECG signal on the analog input.  This is the initial state of the R-wave 
detection FSM.  Every time the system is started or reset, the FSM is put on this state.  This state 
will also be entered from any other states if the energy of the signal on the analog input pin is 
persistently lower than the noise threshold nTH  for a preset time (3 seconds).   

STATE_SIG_DETECTED:  This state is a temporary state.  When the energy of the 
signal is higher than the noise threshold, the FSM is switched to this state.  The FSM stays on this 
state for 2 ~ 3 seconds.  During this time, the FSM assumes the signal on the analog input is a 
valid ECG signal and it uses the first 2 ~ 3-seconds ECG signal to initialize the adaptive threshold 
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sTH .  After the initialization of the threshold, the current instantaneous variance is compared to 
the threshold.  Depending on the comparison result, the FSM either enters the STATE_IDLE 
state (less than the threshold sTH ), or the STATE_PRERWAVE state (greater than the threshold 

sTH ).   

STATE_IDLE:  This state denotes the period with presence of a valid ECG signal but not 
including the QRS complex duration.  During this period, the instantaneous variance is not only 
less than the threshold sTH , but also less than the noise threshold nTH .  Obviously, this state 
should be distinguished from the STATE_NO_SIGNAL although the instantaneous variance is 
less than the noise threshold nTH , and it is referred as STATE_IDLE.    

STATE_PRERWAVE:  With the presence of a valid ECG signal, if the instantaneous 
variance is greater than the threshold sTH , the FSM is switched to this state.  Within the 
shadowed period shown in Fig. 7-6(c), the instantaneous variance is persistently greater than the 
threshold sTH .  Thus, the FSM remains on the STATE_PRERWAVE state during this period.  
Falling below the threshold triggers the exit of this state.  Before the FSM leaving this state, the 
algorithm searches back in the shadowed duration to locate the exact position of the R-peak.  
After that, the FSM is switched to STATE_RWAVE_DETECTED state.   

STATE_RWAVE_DETECTED:  This state is also a transition state.  In this state, the 
algorithm updates the threshold by taking into account the instantaneous variance value of the 
detected R-peak.  The new threshold is set as half of the averaged value over the past five R-
peaks.  The FSM exits the STATE_RWAVE_DETECTED state after updating the threshold and 
typically enters the STATE_IDLE state.  These three states: STATE_IDLE, STATE_PRERWAVE, 
and STATE_RWAVE_DETECTED form a typical detection cycle of the R-wave detection 
algorithm.   

7.4.2 Embedding real-time Fast Fourier Transform (FFT) 
Surprisingly, the general idea of FFT was first discovered by the famous German 

mathematician and scientist Gauss around year 1805 but he did not ever publish it.  The FFT was 
later rediscovered by Cooley and Tukey in their independent research in 1965.  When Cooley and 
Tukey published their break-though paper in 1965 [106], the fast way to calculate Discrete 
Fourier Transform (DFT) was suddenly made world-widely aware.  Tremendous calculation time 
has been saved by using FFT, which kicked away the obstacle preventing DFT being applied to 
many fields as seen today.   

The general idea of FFT is to recursively break down a DFT of any composite size 
1 2N N N= into many smaller DFTs of sizes 1N and 2N .  Specifically, the most known use of this 

idea is to factorize the transformation into two pieces of 2N in each stage.  The factorization can 
be repeated until each of the small segments has a length of 2-point, 4-point, or 8-point etc.  This 
factorization method is often referred as “butterfly algorithm”.  Depending on the segment size, 
the corresponding FFT algorithm is called radix-2, radix-4, or radix-8 FFT.  The factorization 
reduces the number of multiplications from the order of ( )2O N  down to the order of ( )O N .  

Despite the slight difference of calculation time among different radix-x FFT, the butterfly 
algorithm generally has an approximate linear calculation complexity of ( )2logO N N .  The 
detail of butterfly FFT algorithm can be found almost in any digital signal processing books.   
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Implementation of FFT in an embedded system is worth of careful investigation.  
Different ways to implement it can lead to significant different performance regarding the 
execution time, the needed storage memory and calculation accuracy.  In this section, how the 
FFT was implemented in our system is discussed.  Since our system is designed for low-power 
consumption, real-time digital signal processing with limited system resources (2K RAM) and 
vital parameters monitoring, implementing FFT in such systems imposes specific requirements 
regarding execution time, memory usage, and numerical accuracy.   

Most of the calculation time of FFT algorithm is spent on multiplications.  Although, the 
microprocessor, MSP430F449, does have a hardware multiplier, the hardware multiplier is 
designed for integer multiplication.  It still takes long time for the hardware multiplier to perform 
double type multiplication.  Besides, more memory is also needed to hold a double value.  For 
example, in MSP430F449, 2-byte is used to store an integer, but 4 bytes or more are used to store 
a double value.  If the FFT is implemented based on double type, both the execution time and 
memory storage will be greatly increased and it will not be affordable for our system.  A better 
choice is to implement the FFT based on integer type by taking advantage of the 
microcontroller’s hardware multiplier.   

The idea of implementing FFT based on integer type is to digitize the values of data and 
the FFT basis functions ( )cos ,sint tω ω .  As well known, the range of either cos tω  or sin tω  is 

[ ]1,1− .  To hold any value within this range, a float-point type is certainly needed.  Digitization 
of this range involves dividing this range into many much smaller ranges (called “layers” 
hereafter), and the value is represented by the index of the layer which the value falls into.  As an 
example, a sine wave before and after digitization is shown in Fig. 7-8.  Left panel of Fig. 7-8 is 
the original continues sine wave, and the right panel is the digitized sine wave.  The range of 
[ ]1,1−  is divided into 256 layers in this example.  The index of each layer is defined as an integer 
within [ ]127,127− .  By this definition, the conversion between the real double value and the 
corresponding integer index value is given by:  

( )127

127
integer double

double integer

V round V

V V

⎧ = ×⎪
⎨

=⎪⎩
        (7-3) 

where integerV  is the integer index value and doubleV  is the real double value.  Notice that an 

arbitrary double value in the range of [ ]1,1−  has been digitized to an integer value in the range of 

[ ]127,127− , as represented by each dot in the right panel of Fig. 7-8.  To hold an integer value 
within this range, an 8-bit (1 byte) memory unit is sufficient.  By this conversion, the double 
multiplication in FFT has been reduced to integer multiplication.  This reduction saves both 
calculation time and storage memory.  We can also take advantage of the hardware multiplier on 
MSP430F449, to further expedite the calculation.    

Digitizing the float-point values of a sine wave into integer values certainly saves time 
and memory, but it causes the numerical accuracy problem.  When a float-point value is 
converted into an integer value, its precision is reduced to one over the full scale of the integer 
range.  In the above example, the precision is limited by 1 127  after digitization.  This precision 
loss cannot be taken back by converting the integer value back to double. So, to increase the 
precision and reduce the round-off error, more digitization layers, thus larger integer scale, is 
desired.  For example, if 10-bit is used to digitize a float-point value, a precision of 1 511can be 
archived, at the price of 2-byte storage for each integer value and a little bit longer calculation 
time.  Choosing how many bits should be used to digitize a float-point value depends on the 
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specification of the system.  More bits, higher precision but larger memory requirement and 
longer calculation time; less bits, faster execution and smaller memory storage, but worse 
accuracy.   

Fig. 7-8.  Digitization of a sine wave.  Left panel: continuous values ranging from -1 to 1; Right panel: Sine 
wave digitized by 256 layers.   

To find out how many bits should be used in our system, a series of tests have been run 
based on different digitization bits.  However, before presenting the results of the tests, we should 
take a look at the application of FFT in our system in order to make the tests results justified.   

In our system, the primary usage of FFT is to perform the spectrum analysis on R-R 
interval series.  The sampling rate of ECG in our system is set as 200 Hz.  Thus the finest time 
resolution of R-R interval is 5 milliseconds ( 1000 ms 200 5 ms= ).  The real R-R interval 
measured in millisecond has the following relationship with the number of sampling points 
between two consecutive R-R peaks:  

R-R R-R points5 millisecondsT N= ×       (7-4) 

where R-RT  is the R-R interval measured in milliseconds; while R-R pointsN  is the number of 
sampling points of the corresponding R-R interval.   

Since “5” is a constant and it does not change the result of FFT except rescaling the 
magnitude, it is unnecessary to carry this constant when doing FFT.  So, the FFT can be actually 
performed on R-R pointsN  series, the number of sampling points between two consecutive R-R 
peaks.  What’s more, a closer observation of series R-R pointsN  reveals that its value varies only 
within a certain range.  If we assume the heart rate we are measuring is within the range of 
[ ]41,270 , the corresponding range of R-R pointsN  is [ ]300,45 .  A value within this range needs two 
bytes to hold it since one byte can only hold a value up to 255.  But we notice that there is a 
baseline in the R-R pointsN  range.  The true dynamic range of the R-R pointsN  series is actually only 
255 ( 300 45 255− = ), which is the range a single byte can hold.  So, we can preset a mean value 
for the R-R pointsN  series, and only store the offset to this mean value instead of directly store the 
original R-R pointsN  values.  For example, let’s choose a preset mean value of 173.  If the R-wave 
detection algorithm finds the current R-R interval is 300 sampling points, we don’t store the 
number 300 but store the number 300 173 127− = .  Similarly, if the detected R-R interval is 45 
sampling points, we store the number 45 173 128− = −  instead of 45.  By this means, the range of 
the values that we should store is [ ]127, 128− , corresponding to the true heart rate of [ ]41,270 .  
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The range of [ ]127, 128−  is exactly the range of a signed 8-bit integer.  Thus, one single byte (8 
bit) is sufficient to hold the equivalent R-R interval series in contrast to use 2-byte to store a value 
in range [ ]300,45 .  Performing FFT on such series does not lose any information including the 
DC component.  The DC component is just split into two parts, one is the preset mean and the 
other is the mean of the offset series.  By this manipulation, the memory consumption has been 
reduced to half of that it seems to be needed.  As a consequence, less byte are needed to store the 
temporary results of the FFT as well.  This further saves more memory.  Besides that, this 
manipulation also expedites the execution of the FFT because microprocessor takes less time to 
do mathematical calculations on shorter data type.   

Through the above analysis, we concluded that given the assumption of 200 Hz sampling 
rate and [ ]41,270 heart rate range, doing FFT on R-R interval is equivalent to doing FFT on a 
time series taking any possible integer values in the range of [ ]127, 128− .  The tests for choosing 
appropriate digitization bit were performed on these preconditions.  In a single test, an integer 
time series was generated by randomly taking 128 values in the range [ ]127, 128− .  The values 
were taken according to uniform distribution.  The PSD of the test data was calculated based on 
normal double precision FFT and digitized integer FFT separately.  Surely, there would be slight 
difference between these two PSDs because FFT with integer precision is just an approximation 
of FFT with double precision, and the error may be different at each frequency bin as well.  We 
took the maximum absolute error between the two PSDs as the “PSD Error” for that particular 
test data.  By doing this, we exaggerated the error by considering “the largest possible error” 
introduced by the digitization.  The absolute PSD Error value was then normalized by the total 
energy of the PSD and is reported as a percentage.  Formula expression of the PSD Error is given 
by:  

( ) ( )
( )( )
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max PSD PSD
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sum PSD

f f
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= ×               (7-5) 

For each digitization bit, the test was repeated 1000 times.  The mean and standard 
deviation of the PSD Error were calculated, as reported in Fig. 7-9.  It’s clear to see that when 
only 8-bit is used, the mean PSD Error can be as high as 0.28%.  And the standard deviation is 
also high compared to other digitization bits.  When more bits are used, the mean value of the 
PSD Error consistently decreases as expected.  So does the standard deviation.  However, when 
the bit is increased to 12, both the mean value and standard deviation are almost the same as those 
of bit 13 to bit 15.  Since more bits introduce longer computation time without gaining much 
improvement in accuracy, we chose 12 bit to digitize the float-point value of cos tω  and sin tω .  
The precision is of 1 4095  at 12-bit digitization.  With this precision, the mean PSD Error is only 
0.01% and the standard deviation is only 0.005%, as shown in Fig. 7-9.   

Using integer FFT as a replacement of float-point FFT can be considered as part of the 
optimization process.  Other more general optimization techniques to speed up the calculation are 
discussed in 7.4.3.  The calculation time of FFT is discussed in 7.4.4, where a general method to 
measure the execution time of any subroutine is also demonstrated.   
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Fig. 7-9.  Numerical accuracy of integer FFT.  At each digitization bit, 1000 tests were performed.  The PSD 
of each test data was calculated in double precision and integer precision.  The maximum error between 
these two PSDs was taken as the error for that particular test.  The standard deviation was calculated based 
on the 1000 tests.  As shown in the figure, when digitization bit is increased from 12 bit to 15 bit, both the 
absolute error value and the standard deviation of the error are significantly lower than fewer bits.   

7.4.3 Code optimization 
In the development of embedded systems, it is very important to optimize program code 

to enhance the performance of the system.  Embedded systems have very limited resources such 
as small memory and weak processing ability.  Code optimization techniques are developed to 
either reduce the code size so that more memory can be saved, or to simplify the complexity of 
the program to shorten the execution time.  However, it is often contradictory to both reduce 
memory usage and speed up execution.  Typically, larger code size corresponds to shorter 
execution time and vice versa.   

The optimization can take place in different phases of the program development.  The 
most direct and simplest way is to take advantage of the complier optimization feature.  
Nowadays, almost all compliers provide a certain level of code optimization.  The complier 
optimization can be carried out with respect to size or time upon configuration.  For example, the 
IAR Embedded Workbench® IDE provides three optimization levels: low, medium and high.  
Although, complier optimization is very easy to carry out, a developer should never fully rely on 
the complier optimization.  Not only the complier optimization has limited impact on the 
improvement of the performance, but sometimes it is also not safe.  Erroneous results may be 
generated by the complier optimization.  For example, considering the following code segment:  

{ 
int state; 
…… 
state = 1; 
Led.Off(); 
if(state == 1)  

Led.On(); 
} 
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If the code is optimized by a complier, the complier most likely will skip the comparison 
of variable state to value 1, as specified by the statement if(state == 1).  When the 
complier analyzes the code, it detects the fact that between the statement state = 1 and 
if(state == 1), there is no other instruction to change the value of the variable state.  
Thus, the complier concludes that variable state is always one when the statement if(state 
== 1) is reached.  So, there is no need to actually execute this comparison since the result of the 
comparison is always “true”.  By skipping the actual comparison, the complier will probably 
generate the following “optimized” code to replace the original one:  

{ 
int state; 
…… 
state = 1; 
Led.Off(); 
Led.On(); 

} 

However, in an embedded real-time system, it is very possible that the value of variable 
state is alternated by other interrupt service routine during the call of Led.Off().  The 
state value may not be 1 before the call of Led.On().  Under such circumstance, the original 
code correctly skips the call of Led.On() by faithfully comparing the state value to 1; while 
the optimized code falsely makes a call of Led.On() since it has the wrong assumption that the 
value of state remains as 1 and skips the comparison for optimization purpose.  This certainly 
gives a wrong indication of the state value.  When this happens, the optimized code does not 
have identical behavior as its original version.  The system will behave unexpectedly if it has 
such kind problems.  For this particular example we do have a fix.  That is, to declare state as 
volatile int state.  The keyword volatile actually tells the compiler not to do any 
optimization on this variable.  By this means, however, we have avoided the problem, but paid 
the price of no optimization.  

The above problem and other similar ones caused by compiler optimization can only be 
detected at run-time.  And, to make things worse, it is very hard at run-time to even recognize 
what exactly the problem is, not to say to locate the problem.  The only clue we have is that the 
system behaves weirdly after optimization.  It often takes a long time and a frustrating procedure 
to finally locate this kind of bugs.  To save our lives, it is wiser to put the optimization under the 
control of our own hands.   

The better way to optimize the code is in the development phase of the program.  
Especially in a real-time digital signal processing system, tremendous mathematical operations 
are involved and the computation time is critical.  By carefully analyze the algorithms, alternative 
implementation can be used to achieve the same mathematical results but with very high 
efficiency.   

The following paragraphs describe some guidelines of optimizing code in the 
development phase.  As examples, the applications of the optimization techniques in our system 
are also discussed to show the efficiency of these techniques.   

Reform the algorithm in recursive format 

Many digital signal processing algorithms have the nature of recursiveness.  Rewriting 
the expression of the DSP algorithm in its equivalent recursive format often brings surprising 
reduction of the computation complexity.  Recursiveness is also one of the natures of a real-time 
system because in real-time system, new data comes into the system in a one-by-one fashion.  
Recursive implementation of the DSP algorithms not only reduces the computation complexity, 
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but also processes the new data right upon its arrival – the system does not need to stay in idle 
state for a long time waiting for a bunch of data.  The recursive processing strategy actually 
distributes the computation load evenly according to time.   

In the embedded R-wave detection algorithm discussed in 7.4.1, the first step is to low-
pass filter the raw ECG signal.  Given the description of the low-pass filter by Eq. 7-1, the direct 
way to implement it is to perform the following mathematic operation:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

10 9 2 8 3 7 4 6 5

5 6 4 5 3 4 2 3 1 2

y n x n x n x n x n x n

x n x n x n x n x n x n

= − + − × + − × + − × + − ×

+ − × + − × + − × + − × + − × +
   (7-6) 

where ( ) , 0......10x n i i− =  is the raw ECG signal and ( )y n is the low-pass filtered signal.  In this 
implementation, nine multiplications and ten additions need to be carried out as Eq. 7-6 shows.  
But there is a much conciser way to implement it.  If we look at the previous value of the filtered 
signal ( )1y n − , we notice that:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 11 10 2 9 3 8 4 7 5

6 6 5 5 4 4 3 3 2 2 1

y n x n x n x n x n x n

x n x n x n x n x n x n

− = − + − × + − × + − × + − ×

+ − × + − × + − × + − × + − × + −
     (7-7) 

Subtracting ( )1y n − from ( )y n  yields:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 11 10 9 8 7 6

5 4 3 2 1

y n y n x n x n x n x n x n x n

x n x n x n x n x n x n

− − = − − − − − − − − − − − −

+ − + − + − + − + − +
   (7-8) 

Let:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

11 10 9 8 7 6

5 4 3 2 1
s

a

S n x n x n x n x n x n x n

S n x n x n x n x n x n x n

⎧ = − + − + − + − + − + −⎪
⎨

= − + − + − + − + − +⎪⎩
     (7-9) 

Then:  

( ) ( ) ( ) ( )1 a sy n y n S n S n= − + −                                    (7-10) 

The value of ( )y n can be recursively calculated by Eq. (7-10) based on previous value ( )1y n − .  
Notice that no multiplication operation is involved in Eq.(7-9) and Eq. (7-10), thus the calculation 
is certainly speeded up.   

The right term in Eq. (7-10) can be further made recursive.  Notice that both ( )aS n  and 

( )sS n  are the summations of six consecutive retro data points, the ( )aS n  and ( )sS n  themselves 
can be updated in a recursive way:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 10 9 8 7 6 5

5 11

1 4 3 2 1 1

1 1 5

s

s

a

a

S n x n x n x n x n x n x n

S n x n x n

S n x n x n x n x n x n x n

S n x n x n

⎧ + = − + − + − + − + − + −
⎪

= + − − −⎪
⎨

+ = − + − + − + − + + +⎪
⎪ = + + + − −⎩

       (7-11) 

Initially, all the values of ( )y n , ( )sS n and ( )aS n  are set to 0.  As new data comes in one by one, 
these values are recursively updated by Eqs. (7-11) and (7-10).  Comparing Eqs. (7-11) and (7-10) 
to Eq. (7-6), we find that the original nine multiplications and ten additions have been taken over 
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by only three additions and three subtractions.  Not surprisingly, the complexity of the low-pass 
filtering has been greatly reduced and large amount of computation time has been saved.   

A similar reforming was also manipulated on the calculation of the instantaneous 
variance in the R-wave detection algorithm.  The recursive method further reduces the 
computation complexity and speeds up the processing.   

Avoid multiplication and division 

The key point of optimizing the digital signal processing algorithms is to avoid 
multiplications and divisions as possible as it can be.  No matter whether the microprocessor has 
hardware multiplier or not, it always takes longer time to do multiplications than additions or 
subtractions.  A division operation even takes longer time than a multiplication.  So it is best to 
avoid the multiplication and division by using alternative mathematical operations.  The above 
example is a very good demonstration of replacing multiplications with additions or subtractions.   

Another way is to replace multiplications and divisions with bit manipulations.  
Multiplication can be replaced by left bit-shift if one of the multiplier is the power of 2.  In 
general, shifting an integer one bit left is equivalent to multiplying the number by 2.  However, 
bit shifting is not a general alternative of multiplication.  It can be done only when at least one of 
the multipliers is the power of 2.   

Division takes longer calculation time than any other mathematic operations.  And it is 
also the hardest operation to avoid.  The only possible substitution to division is right-bit-shift.  
Shifting an integer one bit right is equivalent to divide the number by 2.  However, this operation 
is further restricted that the divisor must be the power of 2.  In addition to this, the right-bit-shift 
operation also introduces round-off error.  Shifting one bit right always truncates the result to the 
nearest integer towards 0 for a positive integer.  For example, shifting one bit right of number 5 
(0101b) yields 2 (0010b).  This round-off error should be compensated to obtain more accurate 
results.  Otherwise, this error will accumulate in a recursive calculation.  If that happens, the 
result will be totally wrong even just after several steps of recursion.  In 7.4.2, we concluded that 
to save memory space and expedite the FFT analysis, we digitized the float-point values of 
cos tω  and sin tω  with 12-bit precision.  Thus, in each stage of the butterfly algorithm, the results 
are amplified by 4096 times (since value “1” is mapped to 124096 2= ).  After the multiplications 
are done, the results have to be rescaled back by dividing 4096.  Otherwise, the magnitude would 
be accumulatively amplified by 4096 times at every stage of the butterfly algorithm.  The results 
will be ridiculously large and will be certainly out of the range of any integer type.  For example, 
in a 128-point FFT, there are 7 ( 2log 128 7= ) stages of the butterfly algorithm.  Thus, the result 

magnitude will be amplified ( )712 842 2=  times without rescaling!  The division of 4096 for 
rescaling purpose can be accomplished via a right-shifting the results by 12 bit, but the above 
round-off error must be somehow compensated.  In our system, we added a compensation term to 
those positive values before doing the right-shifting.  The compensation term is the half scale of 
the full digitization range, which is 2048 ( 4096 2 2048÷ = ) for 12-bit digitization.  See the 
complete code of the FFT listed in Appendix III.  The PSD Error shown in 7.4.2 has already 
included the round-off error compensation.   

Trade time with memory 

If the system’s responsiveness is of critical, as it is in most real-time system, it is wise to 
sacrifice a little memory space to store some predetermined values instead of calculate these 
values repeatedly at run-time.  A good example is the FFT algorithm.  Once the length of the FFT 
is chosen, the values of the basis functions ( )cos ,sint tω ω  are determined at each sampling 
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time.  It is quite unnecessary to calculate the values of the triangle functions over and over again 
every time a FFT is performed because it takes much calculation time.  Since these values are 
pre-determined, the typical way is to calculate these values based on the FFT length in the 
initialization phase of the system when the system is started.  The values are then stored as a 
look-up table in the memory.  Thus, the values can be retrieved by a very fast memory access 
instruction.  Building up the look-up table in this way not only saves a lot of computation time, 
but also has a certain level of flexibility.  If the FFT length is changed due to some reason at run 
time, the program can recalculate the values and update the table entries.  This update is needed 
only once every time the FFT length is changed.  The gain of this method is the fast access to the 
triangle function values and the flexibility of changing these values at run-time, but the price paid 
is some amount of RAM memory.  Since the values are calculated at run-time (not at compile 
time), they have to be stored in RAM memory instead of ROM memory.  But RAM memory is 
typically more expensive than ROM and is more limited than ROM in embedded systems.  For 
example, if the FFT length is 128 and each value of cos tω  and sin tω  is stored in 2 bytes, then 
totally 512 bytes are needed to store this look-up table.  This is sometimes intolerable.  In the 
MSP430F449, the RAM is limited by 2048 bytes.  It’s probably not a good idea to store the 512-
byte look-up table in such a crowded RAM.   

There is another alternative way, though.  The on-chip RAM is quite limited but the on-
chip ROM is often plentiful because ROM is much cheaper than RAM.  ROM is used to store the 
executable code and other constants that cannot be modified at run-time.  The alternative way is 
to move the look-up table from RAM to ROM.  To do this, the look-up table should be built in 
the source code at compile time instead of at run-time (see the FFT source code in Appendix III.).  
In the source code, the table is declared as constants.  When the complier generates the executable 
code, the table is automatically put in the ROM by the complier.  If desired, we can also specify 
at what exact memory address we want to put this table by informing the compiler with directive 
commands.   

In the implementation of FFT, three tables are needed: the cos tω table, the sin tω  table 
and the bit-reversal table, as shown in the FFT source code in Appendix III.  These three tables 
occupy 640 bytes in ROM, which is trivial compared to the total amount of the on-chip ROM (60 
KB).  The only drawback of this method is that the tables cannot be updated at run time.  If the 
FFT length needs to be changed, the tables have to be updated in the source code and reload to 
the microcontroller.   

Other general optimization methods 

There are also some other optimization techniques to make the program run fast and more 
reliable.  Such techniques include loop unrolling, using register variables, using global variables 
and function inlining etc [107].   

7.4.4 Timing aspect of the embedded algorithms 
In embedded system, the processing capability of the microprocessor is often limited.  

This limit arises from the fact that the microprocessor in embedded system often has much slower 
clock frequency than that of a personal computer.  Especially in real-time digital signal 
processing system, this limit can significantly affect the system design and implementation 
because many digital signal processing algorithms are so complicated that they occupy most of 
the processing capability of the microprocessor.  If the microprocessor is kept so busy running the 
DSP algorithms, the interrupt latency will be significantly increased and the event generating 
such interrupt may not be handled in time as it is expected.  In the worst case, the system crashes 
due to congested tasks and interrupts.  At this point, it is important to estimate the execution time 
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of each task so that the robustness of the system is assured.   

Benchmarking the execution time of a subroutine in an embedded system is a little 
challenging because the time is measured in a very small time scale like milliseconds or even 
microseconds.  Given the fact that there is no direct method neither on hardware nor on software 
to measure such a short time period, an indirect approach was used to achieve this goal.   

The method used in this dissertation is to utilize the Input/Output (I/O) port of the 
microcontroller as the indirect indicator of the execution time of a task.  The I/O port of the 
microcontroller can be set at logic high level or logic low level by the software.  The output of the 
I/O port responds to the software instruction very fast.  The typical responding time is on the 
same order as the system clock.  For example, if the microprocessor is running at an 8 MHz 
clock, the I/O port responding time is less than 1 microsecond.  The idea is that before a task is to 
be executed, use software instruction to set a certain I/O port to logic high level.  Since the task 
features in “run to completion” (see 7.3.2), the execution flow of the microcontroller is “blocked” 
during the execution of a certain task (ISRs, however, are not blocked from task.).  Thus, the I/O 
port stays at high level until it is explicitly changed by another software instruction that is 
imposed after the task.  At the completion of the task, the software instruction pulls the I/O port 
down to logic low level.  Thus, the logic high time duration on this I/O port is corresponding to 
the execution time of the task.  By measuring the time duration of logic high on the port, a good 
estimation of the task execution time can be obtained.  The following example code can help to 
understand the usage of this method: 

#define     _EXEC_TIMER1_HIGH()     P1OUT |= BIT6 
#define     _EXEC_TIMER1_LOW()      P1OUT ^= ~BIT6 
 
{ 

_EXEC_TIMER1_HIGH(); 
pCurrentTask->Execute(); 
_EXEC_TIMER1_LOW(); 

} 

The instruction P1OUT |= BIT6 sets the pin 6 (pin #81 on MSP430F449) of the P1 
I/O port to high and the instruction P1OUT ^= ~BIT6 sets the same pin to low.  As shown 
above, the code that needs to be measured must be embraced by _EXEC_TIMER1_HIGH() and 
_EXEC_TIMER1_LOW().  According to the example code, the duration of high level on pin 
#81 of the microcontroller is the execution time of task pCurrentTask.   

A typical waveform on the I/O port pin is a periodical square wave.  In order to measure 
the duration of high level in the square waveform, we recorded the waveform with a very high 
sampling rate.  In this dissertation, the PowerLab/4SP provided by ADInstruments Company was 
used to record the square waveform.  The PowerLab/4SP provides a sampling rate up to 100k Hz.  
At this sampling rate, the time resolution is 10 microseconds (0.01 milliseconds).  Since all the 
digital signal processing algorithms in our system have the execution time on the order of 
milliseconds, this time resolution is high enough to get a good estimate of the execution time.   

Execution time of the embedded R-wave detection algorithm 

The real-time R-wave detection algorithm is a point-by-point algorithm.  Every time a 
new data is sampled, the algorithm should take the data and go through the detection procedure 
described in 7.4.1.  If the sampling rate of the ECG signal is 200 Hz, the R-wave detection 
algorithm is executed repeatedly 200 times in a second.  This is equivalent to a time interval of 5 
milliseconds between two consecutive executions of the R-wave detection algorithm.  If the R-
wave detection algorithm were unable to complete a single execution in less than 5 milliseconds, 
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the system would crash down.  Depending on the data that the algorithm is working on and the 
current state of the algorithm state machine, the execution time of the R-wave detection algorithm 
also varies.  As discussed in 7.4.1, once a valid ECG signal is detected, the FSM of the R-wave 
detection algorithm goes through a typical cycle periodically in these three states: STATE_IDLE, 
STATE_PRERWAVE, and STATE_RWAVE_DETECTED.  Thus, it is not coincident that the 
execution time of the R-wave detection algorithm falls into three distinguished ranges, as shown 
in Fig. 7-10.  In Fig. 7-10, roughly 12000 times of execution of the detection algorithm are 
shown.  Each dot in the figure represents the completion time of one single execution.  The time 
shown here is based on 8 MHz CPU clock.   

Fig. 7-10.  Execution time of the embedded R-wave detection algorithm (8 MHz CPU clock) 

The first range is from 0.09 milliseconds to 0.1 milliseconds.  This execution time 
corresponds to the STATE_IDLE state.  The execution time in this state accounts for the time of 
low-pass filtering process, calculation of the derivative signal and variance of the derivative 
signal in a preset window.  Due to the recursive and other optimization techniques discussed in 
7.4.3, this preprocessing stage is made very short and fast.  The preprocessing is performed every 
time a new data is sampled no matter what state the FSM is.  Thus, this execution time of the 
preprocessing stage is the minimal time needed by the R-wave detection algorithm.  After the 
preprocessing, a simple comparison between the calculated variance and the threshold is 
performed.  If the variance is less than the threshold, the detection subroutine exits and the FSM 
remains in STATE_IDLE state.  If not, the FSM will shits to a new state.  The state transition 
from STATE_IDLE to STATE_PRERWAVE contributes to the second time range shown in Fig. 
7-10, which is from 0.21 to 0.22 milliseconds.  This state transition needs additional operation 
besides the low-pass filtering and calculation of the variance.  So, the execution time is a little 
longer.  The third range in Fig. 7-10 denotes the possible longest execution time, which occurs 
when an R-peak is detected.  When an R-peak is detected, the R-R interval between the current 
peak and the previous one is calculated and stored in a buffer.  Besides, the adaptive threshold is 
also updated and the FSM is switched to STATE_RWAVE_DETECTED state.  These additional 
operations further increase the execution time.  It is roughly 0.31 to 0.32 milliseconds, as shown 
in Fig. 7-10.  From the above analysis we can conclude that in the detection of each individual R-
peak, only one point needs a processing time in the 2nd range and another point needs a 
processing time in the 3rd range because the longer time occurs only at the state transition while 
the state transition occurs only at a single particular point.  Majority of the processing time is less 
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than 0.1 milliseconds.  Besides, among the three time ranges, even the longest one (0.3 
milliseconds) is far less than the sampling interval (5 milliseconds).  Thus there is a lot of margin 
of the processing time available for other DSP algorithms.   

Execution time of embedded FFT 

The same technique was used to measure the execution time of the embedded FFT 
algorithm.  In the current version of SP-DSP, the FFT length is fixed at 128 points.  Thus, the 
execution time referred here is specific for 128-point FFT.  Since the FFT complexity is 
approximate proportional to its length, the calculation time can be estimated for other length of 
FFT, if desired.  Besides, as described in 7.4.2, the FFT is implemented with 12-bit accuracy and 
is carried out based on fix-point type.  The FFT code also has been optimized by the techniques 
described in 7.4.3.   

The system is under normal running conditions when the test is performed.  This means 
other system functions are also open and active.  These system functions include the ECG 
acquisition subroutine sampling the ECG signal at 200 Hz sampling rate.  The R-wave detection 
task is also active and is posted every 5 milliseconds.  The FFT task is executed every one second.  
One minute continuous running of the system is recorded and analyzed.  So, totally 60 times of 
the FFT execution are recorded.  The averaged time over the 60 executions is 27 milliseconds, 
and the standard deviation is very small.  It is even smaller than the time resolution (10 
microseconds) of the measuring method, indicating the FFT is completed within a very consistent 
time frame.   

After getting the knowledge of the execution time of the embedded digital signal 
processing algorithms like the FFT, it is worth to revisit the task management mechanism 
discussed in 7.3.2.  In that section, we designed the DSP algorithms as tasks that are run by the 
microcontroller in a different mode from the execution of ISR.  These tasks are maintained in a 
system task queue.  If a DSP algorithm needs to be called in an ISR, the ISR pushes the request of 
running the DSP algorithm into to the task queue instead of calling the algorithm directly.  By this 
means, the execution time of ISR is kept very short.  Making ISRs as short as possible is a golden 
requirement for the development of real-time system.  It will be a disaster if an ISR takes too long 
time to complete.  Noticing the fact that the interrupts are prioritized, those ISRs with lower 
priorities are blocked from execution when a higher priority ISR is being run.  This will certainly 
increases the interrupt latency for those lower priority interrupts.  In many cases, the interrupt 
requests of those lower priority interrupts keep being generated even though the previous requests 
have not been served yet due to the long execution time of a higher priority ISR.  This causes 
unexpected behavior of the system and may also crash the system.   

Considering the FFT example, we now know the execution time of an FFT is about 27 
milliseconds.  Given the sampling rate of 200 Hz, there will be at least 5 times of the timer 
expiration that requests an AD conversion in this time duration.  The microcontroller is 
committed to response the requests in time by informing the AD converter to initiate the 
conversions.  However, if the FFT subroutine is executed from a call made in an ISR instead of 
from the task queue, the execution of the caller ISR is hanged up until the completion of the FFT 
after 27 milliseconds.  During the hang-up of the ISR, the requests of AD conversion are blocked 
because the interrupt of AD conversion request has lower priority than the ISR that invokes the 
FFT.  The microcontroller is kept busy on doing FFT but has no opportunity to inform the AD 
converter as it is supposed to.  As a consequence, the data in the execution of FFT has been lost.   

Instead of calling the FFT subroutine directly in the ISR, pushing the request of running 
FFT into the task queue is a fundamental solution to the aforementioned problem.  In the ISR, 
only several simple instructions are needed to push the request of running FFT into the task queue.  
After that, the ISR quickly returns, releasing the microcontroller to deal with any other priority 
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interrupts.  When the microcontroller has no interrupts to deal with, it keeps polling the task 
queue to check if there are unexecuted tasks remaining in the queue.  The task is popped out of 
the queue and executed when the microcontroller is free from dealing with interrupts.  Since tasks 
can be preempted by any interrupts, as described in 7.3.2, the microcontroller will not miss the 
requests of AD conversion during the execution of FFT task.   

Fig. 7-11 illustrates the execution flow when FFT is run as a task and how the contents of 
the system task queue change.  The execution flow starts with a single FFT task in the task queue.  
Since the microcontroller is free, the FFT task is fetched out and started to execute.  At sometime 
(5 ms), the timer expires to demand an AD conversion.  The microcontroller responses to the 
timer interrupt immediately by putting the FFT task on hold for a very short time.  The execution 
flow is branched to the timer’s ISR.  Recall that the R-wave detection algorithm should be 
applied to every sampled point.  Thus, when ISR gets a new sampled data, it pushes the call of R-
wave detection subroutine at the rear of the task queue, as shown in Fig. 7-11.  The pushing 
process is much faster than the R-wave detection subroutine itself, so the microcontroller will not 
be stuck in the ISR.  The execution flow then returns from the ISR to the main loop and resumes 
the FFT execution.  From the FFT task’s point of view, the execution of FFT is just paused for a 
very short time (the execution time of the ISR, typically several microseconds).  At time 10 ms, 
the timer expires again.  So the above steps are repeated.  Notice that the FFT task has not been 
completed yet, the previous call of R-wave detection subroutine is still in the task queue because 
a task (the R-wave detection task [1]) cannot exempt another task (the FFT task).  Thus pushing 
another call of the R-wave detection subroutine causes the task queue to grow.  Now, there are 
two unexecuted tasks in the queue.  Before the FFT task is completed, the task queue keeps 
growing since more and more calls of R-wave detection are pushed in, as shown in Fig. 7-11.  
Following the completion of the FFT, the firstly pushed-in R-wave detection task is popped out 
and executed; and so are the others consequently.  Notice that one single execution of the R-wave 
detection only takes less than 0.32 milliseconds; the microcontroller can finish all the R-wave 
detection tasks remaining in the queue within a very short time.   

Fig. 7-11.  Changes of the system task queue contents during the execution of FFT 

7.5 Summary 

The Tmote Sky has already incorporated an ultra-low power consumption microcontroller 
MSP430FG1161 on board.  But since the microcontroller has to run TinyOS to support the 
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wireless data transmission, there is no much margin of its processing ability available for more 
real-time DSP algorithms.  In order to enhance the on-board digital signal processing ability, an 
additional microcontroller with low-power consumption has been integrated into the system.  The 
additional MSP430F449 microcontroller belongs to the MSP430 family, which provides a series 
of microcontrollers with ultra-low power consumption so that they are especially suitable for 
battery-powered systems.   

Introducing an additional microcontroller also brings up a demand of supporting software 
for it.  To meet this demand, a software platform, SP-DSP, was developed specifically for the 
system.  The design of SP-DSP separates the hardware-related programming from those 
hardware-independent programming such as the DSP algorithms.  The hardware-related 
programming, noted as low-level implementation, is to write driver program for the hardware 
components residing in the additional microcontroller.  At this time, the drivers for the timer, AD 
converter, and USART port have been developed.  They are abstracted as three classes in the SP-
DSP.  The low-level implementation of the SP-DSP handles the hardware specifications, thus in 
the case hardware is upgraded, this part of code should be updated.  

The high-level implementation of SP-DSP employs the “task + event” concurrence model.  
The DSP algorithms are designed as “tasks” running in the background when the microcontroller 
is free.  The data collection subroutine is implemented as “events” so that the signal is sampled 
instantaneously without being deferred.  The tasks are managed by a task queue, which is polled 
all the time in the main loop.  The task at the head position of the queue will be popped out and 
executed if the microcontroller is free.  The tasks have the “run to completion” characteristic.  A 
task cannot be preempted by another task.  So, at any time, there is at most one task being run.  
The events, on the other hand, have the highest priority in the system.  They can preempt any 
tasks.  The events themselves are prioritized so that they also preempt each other.   

With the support of the developed SP-DSP, some DSP algorithms have been successfully 
embedded into the additional microcontroller.  To achieve fast real-time responses of the 
embedded DSP algorithms and preserve more battery power from computation, code optimization 
techniques have been applied to the embedding of these algorithms.  These optimization 
techniques include deriving recursive version of the algorithm; using fixed-point data type instead 
of float-point type; avoiding multiplications and divisions; and using look-up table instead of 
computing the constants at run-time.  The experiments have shown the optimized R-wave 
detection typically takes less than 0.1 ms to complete and the maximum execution time is no 
longer than 0.32 ms.  The execution time of the optimized 128-point FFT is around 27 
milliseconds and this value is very consistent every time FFT runs.   
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Chapter 8 Future Development  

As the aging of population is becoming a world-wide reality, health care delivered to the 
elder people has become a growing society problem as well as an industrial market.  The long 
term health monitoring is the first step of providing the elder people better health and medical 
service.  Driven by these specific needs, the development of vital parameters monitoring devices 
will follow these trends:  

1. More Portable.  

It is obvious that the more mobility the device is, the more people will like it and use it; 
so the more the device can benefit people and the society.  More mobility of the monitoring 
device is achievable only with the development of hardware and software.  To miniature the 
device, integrated circuit technique is playing an important role.  For the device developed in this 
work, the wireless transmission module (Tmote Sky) has a microcontroller (MSP430F1611) that 
controls another separate wireless transmission chip (CC2420).  It is now, however, possible to 
integrate the two chips into a single one.  Texas Instruments has just issued the new generation of 
System on Chip (SoC) solution for the wireless mesh network – CC2430 and CC2431.  The new 
CC2430 and CC2431 have remarkable feature and decent design to meet the specific 
requirements of long-term low-power consumption of wireless monitoring and data collection 
systems.  Inside the tiny 7 mm × 7 mm chip, the wireless transceiver, CC2420, has been 
integrated with another industrial-standard enhanced microcontroller 8051.  Together integrated 
are 32/64/128 KB flash memory, 8 KB RAM, and other peripheral hardware components such as 
timer, ADC, and DMA controller.  The CC2431 even also integrates a hardware Location Engine 
that computes the location of the node in the mesh network in real-time.  With so many 
components integrated and so powerful function it provides, the size of the new generation 
wireless device is kept incredible small.   

As a general solution of wireless mesh network, CC2430 and CC2431 are providing a 
successful SoC solution.  But for the development of health monitoring device, the step of 
seeking SoC solution should not stop here.  In future technology advances, the bio-sensors 
themselves can be integrated into a single chip as well, offering a true and complete SoC solution 
specifically for vital parameters monitoring.  Even further, the bio-sensors, the wireless 
transceiver and the microcontroller can be integrated into a single chip all together to further 
reduce the device size.  At the technique aspect, it will not be a problem to produce a low-cost, 
low-battery power, watch-sized device that provides multiple vital parameters monitoring and 
sophisticated real-time signal processing together with wireless data transmission.  The most 
concern is the maturity of the market.   

Most progress in putting a bio-sensor into a single chip has been achieved in miniaturing 
ECG sensor.  Quite a few of researches have been attemped and some products are now available 
[108-111] by following the concept of “ECG in an electrode” or “ECG on chip” [108].  The ECG 
sensor profile is being reduced to an incredible small size.  For example, the CHEFREN, 
provided by Aurelia Microelettronia, has a small size of 5.8 × 5.1 mm2 [110].  Another ECG chip 
being developed even has a much smaller size of 3.4 × 2.1 mm2 [108].  The small size of ECG 
sensor will significantly reduce the mechanical volume of the monitoring device.  Currently, 
miniaturing other bio-sensor is rarely reported.  In future development, it is possible to integrate 
more bio-sensors, such as blood pressure sensor, breath sensor, SpO2 sensor, and other 
physiology measurement sensors, into a single integrated circuit (IC) to provide multiple 
parameters monitoring simultaneously via a single chip.   

Miniaturing the bio-sensors not only reduces the size, but also greatly decreases the 
power consumption of the sensor.  For example, the integrated ECG sensor reported in [109] only 
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consumes 3 mA power; while the integrated ECG chip shown in [108] has a power consumption 
as low as 0.18 mA.  The low-power consumption is of critical importance for portable monitoring 
devices because these devices are powered by battery.  If the power consumption of the device 
can be reduced to a certain low level, the device can even be powered by button battery, which in 
turn further miniatures the device.   

2. More Real-time 

Majority of the current monitoring devices just record the data and save the data 
somewhere for off-line review.  For example, many portable monitoring devices record the data 
on a memory card.  The card has to be handed in to the doctor for review.  Other web-based 
implementation of such system stores the data in a database through some wireless connection 
like the GPRS.  The doctor can download and review the data from the database at a local 
computer.  In this case, the monitoring is still “off-line” and not real-time because when the data 
is being reviewed, the physiology state of the patient has already changed.  The real-time 
monitoring system collects the data from the patient and transmits the data to the monitoring 
center and gets the data reviewed in real-time no matter what the geometry distance between the 
patient and the monitoring center is.  The real-time monitoring has invaluable benefit and 
advantage.  It quickly reveals the current state of the patient.  This is critical for those patients that 
have such kind of disease requiring immediate medical care.  For example, most heart attack 
starts slowly with mild symptoms.  The patient undergoing heart attack is often unware of it, or 
not sure about what is happening.  To rescue the patient from the threatening of death, the first 60 
minutes .  The real-time monitoring system can detect this life-threatening situation and alert the 
medical carer to take proper action.  The real-time monitoring feature also expands the applicable 
scenarios of such kind of system.  For example, in battle fields, triaging certainly needs a real-
time monitoring system.   

In hospital environment, the physiology parameters monitoring tends to be part of the 
whole hospital network.  Some research have shown that it is possible to utilize the WiFi 
technique to establish a wireless monitoring system within the frame of the whole hospital Local 
Area Network (LAN) [112].  Embedding the real-time vital parameters monitoring into the 
hospital LAN can bring more advantages far beyond simple “monitoring”.  Since the bandwidth 
of the hospital LAN is much broader than other wireless connection such as Bluetooth, PAN, or 
GRPS, much more information is able to be transmitted over the network in addition to vital 
parameters.  Such auxiliary information can include video and audio.  For example, in the 
Intensive Care Unit (ICU), nurses are employed to frequently monitor the state of the patients.  In 
the case of emergency, the nurse needs to call the doctor for urgent medical care through a 
separate paging system.  It often takes some time for the doctor to be on the scene so that proper 
action can be conducted to stabilize the patient’s state.  This obviously may miss the most critical 
time to save the patient.  It is possible in future to integrate the paging system and the vital 
parameters monitoring system into the hospital LAN, together with an ICU video system that 
monitors the patient physical reaction.  By this solution, the call to the doctor is made 
instantaneously and as simple as push of a button.  Besides, not only the vital parameters can be 
delivered to the doctor’s hand-held device, but the live video of the ICU is made real-time 
accessible for the doctor.  The doctor then can direct the nurse in the ICU to take proper medical 
actions even before he/she arrives at the scene.   

In the case of telemedicine, such monitoring system can be part of the infrastructure of 
such system.  The telemedicine system is a large scale system that cannot be built based on a 
mono network structure [113].  In the short range of data transmission, wireless solution is much 
preferred because it provides great mobility.  As a consequence of such mobility, data 
transmission is guaranteed to be continuous even the patient is being transported among different 
hospital laboratories.   
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3. More Intelligent 

Instead of an easy real-time wireless monitoring system, more intelligent systems will be 
developed for variety of health care applications.  The intelligence of the system relies on the 
processing of the obtained vital signals.  Dedicatedly developed digital signal processing 
algorithms will contribute the most to the birth of intelligence in health monitoring systems.  
These algorithms are able to detect emergency event of the patient and alert the health carer or the 
people by the patient’s side.  The currently most successful example is probably the heart rate 
monitor with automatic arrhythmia detection.  These built-in algorithms at the device end can 
also extract more physiology parameter from a single signal so that extract sensors are eliminated 
from the system.  For example, it has been shown that respiratory rate can be extracted either 
from ECG signal [114, 115] or from the PPG signal [116-119].  By this means, the device does 
not need an extra respiratory sensor but still be able to provide respiratory rate.  This will further 
reduce the size of the device and preserve more battery power.  Development of sophisticated 
digital signal processing algorithms will also expedite the processing of the recorded data.  Such 
kind of device is intended to be used for long-term monitoring, thus the volume of the recorded 
data can be overwhelming.  Developed algorithms will automatically analyze the huge amount of 
data and identify suspicious abnormal events.  For example, developed digital signal processing 
algorithms are now able to automatically detect atrial fibrillation (AF) with pretty high accuracy 
[120-122].  Extraction of the health information embedded inside a single physiology signal even 
can further reveal valuable signs of multiple diseases.  Only with long-term monitoring and 
dedicated digital signal processing methods is this made possible.  For example, researches have 
shown that there is significant association between ANS and the development of diabetes.  With 
more clinical study in this field, the diabetes might be able to be prevented based on the 
prediction of the extracted indices from HRV data [123-126].  In future, with more biomedical 
signal processing algorithms are developed and tested on clinical trials, they can be integrated 
into the monitoring system to unfold health signs preventing diseases from development.   

With more biomedical signal processing algorithms embedded, the monitoring device 
will become smarter and smarter.  The function of the device will be far beyond monitoring.  It 
will be part of the diagnosis process with its given intelligence.  The device can compare the 
monitored data with its expert database and the patient’s medical history to evaluate the situation 
of the patient.  Based on the evaluation results, the device will be able to give its own medical 
justification of the patient and provide valuable information upon the request of the doctor as if it 
were a smart medical assistant.   
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APPENDIX 

I. TVOPS Algorithm 

The TV-ARMA process is represented by the following equation: 

( ) ( ) ( ) ( ) ( ) ( )
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where ( ),a i n and ( ),b j n  are the time-varying AR and MA coefficients to be determined, 
respectively, and are functions of time.  Indices P and Q are the maximum model orders of the AR 
and MA models, respectively.  Variables ( )y n and ( )x n represent output and input signals, 
respectively. We expand the TV coefficients ( ),a i n and ( ),b j n onto a set of basis functions ( )nπ : 
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where ( ),i kα  and ( ),j kβ represent the expansion parameters with V as the maximum number of 
basis sequences.  Substituting Eq. (A-2) into Eq. (A-1), we obtain the following: 
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The next step is to select proper basis functions so that TV coefficients can be estimated.  
We have experimented with three different types of basis functions: Legendre polynomial, 
discrete prolate spheroidal sequence (DPSS), and Walsh.  Our experience has shown that 
different basis functions show their own unique tractability and accuracy.  Legendre polynomial 
and DPSS basis functions perform well if the coefficients are smoothly changing with time, for 
example, sinusoidal.  Walsh functions, on the other hand, behave well for piece-wise stationary 
TV coefficients.   

Once proper basis functions, ( )nπ , have been chosen, we create new variables: 
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Substituting Eq. (A-4) into Eq. (A-3) results in the following expression: 
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Eq. (A-5) shows that the TV-ARMA model can now be considered to be a TIV-ARMA 
model since ( ),i kα and ( ),j kβ are not functions of time.  Thus, the task simplifies to solving for 
parameters ( ),i kα and ( ),j kβ , which can be more effectively estimated using the OPS algorithm 
[16]. 

The algorithm of the TVOPS follows the similar two-step procedure of OPS. There are 
two main differences, however. The first is that we arrange the pool of candidate vectors in the 
following matrix form: 

( ) ( ) ( ) ( ) ( ) ( )( )= 0 V 0 V 0 VM Y n -1 , ,Y n -1 ,X n , ,X n ,Y n - 2 , ,Y n - 2 ,… … … ……       (A-6) 
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Note that bold and unbold letters represent vectors (or matrices) and scalars, respectively. 
Among the pool of ( ) ( ) ( )1 1 1P V Q V× + + + × +  candidate vectors, linearly independent 
candidate vectors are selected to form a new linearly independent vector pool such that:  

( )1 2 SW = w ,w , ,w…  

where S is the number of linearly-independent candidate vectors. 

With the new candidate pool of linearly-independent vectors, least-squares analysis is 
performed: 

Y = WΘ + E                                                      (A-7) 

where T
1 2[ , , , ]Sθ θ θ=Θ " , Y is the signal vector and E is the prediction error vector. 

In Eq. (A-7), iθ is the coefficient estimate of the ARMA model. The objective is to 
minimize the equation error, E ,in the least-squares sense using the criterion function defined as 
follows: 

T( ) [ ] [ ]NJ =Θ Y - WΘ Y - WΘ                                       (A-8) 

The criterion function in Eq. (A-8) is quadratic inΘ , and can be minimized analytically 
with respect toΘ , yielding the following well-known equation:  

-1T Tˆ ⎡ ⎤⎣ ⎦Θ = W W W Y                                               (A-9) 

The next stage of the algorithm involves further pruning of insignificant linearly-
independent candidate vectors obtained from the first stage of the algorithm (Eqs. (A-4- A-6)).  
To determine which of the candidate vectors are significant, we calculate the following: 

2 T1            1 ~m m m mC m S
N
θ= =w w
�

                         (A-10) 

where S represents the number of linearly-independent candidate vectors and mθ
�

 represents the 
coefficient obtained from Eq. (A-9).  Note that the vector mw is calculated using Eq. (A-11): 
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Note that the operation of Eq. (A-10) involves the adding of all mC together for mw  with 
the same ( )y n i− or ( )x n i− but with different kπ .  A magnitude value of each mC , as estimated 
from Eq. (A-10), is then arranged in descending order.  We only retain mw  terms that 
significantly reduce the estimation residuals.  An approach that can be adopted to determine the 
significance of mC terms is to calculate ( )1m m mC C C+− and plot it as a function of m .  The 
significant term can be characterized by the first maximum value in the plot. This operation has 
the added benefit of also discarding insignificant basis sequences, kπ , at the same time.  The final 
procedure of the algorithm is to estimate ARMA model terms ( ),i kα and ( ),j kβ of Eq. (A-3) 
using the least-squares method and the calculation of TV coefficients ( ),a i n  and ( ),b j n  using 
Eq. (A-2).   
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II. SP-DSP Classes References  

class ADC { 
unsigned short indexMCTL; 
void (*pCB)(); 
unsigned short reading; 
static ADC* ADC_CH[ADC_MEMO]; 
static Queue ADCQ; 
static bool Initialized; 

public: 
ADC(); 
~ADC(); 
friend __interrupt void ADCISR(void); 
static void Initialize(); 
bool Start() 
unsigned short Get() 
void SetCallback(void (*p)())  
bool SelectCH(const unsigned char& ch)  
static bool EnableCore() 
static bool DisableCore() 
static void SelectRef1_5v() 
static void SelectRef2_5v() 

}; 

 

Class Member Description 
ADC::indexMCTL: Value of the AD converter control register.   

ADC::pCB: The address of the interrupt service routine of the AD converter.   
ADC::ADC_CH: Map of ADC channel to ADC memory register.   
ADC::Queue: AD conversion requests queue.   

ADC::Initialized: ADC initialization status.  Set to true after ADC is initialized.   
ADC::ADC(): ADC constructor.   

ADC::~ADC(): ADC destructor.   
friend Initialize(): Initialize ADC12 convertor core.   

ADC::Start(): Start an AD conversion.   
ADC::Get(): Get the AD conversion readings from the associated memory register.   

ADC::SetCallback(): Set the call back function when the AD reading is ready.   
ADC::SelectCH(): Select an AD channel.  Can be the analog input pins and internal 

channels.   
ADC::EnableCore(): Enable the ADC12 convertor core.   

ADC::Disable(): Disable the ADC12 convertor core.   
ADC::SelectRef1_5v(): Select the on-chip 1.5 v reference voltage.   
ADC::SelectRef2_5v(): Select the on-chip 2.5 v reference voltage.   
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class Buffer { 
unsigned char* data; 
unsigned short IndexR; 
unsigned short IndexW; 
unsigned short IndexP; 
unsigned short size; 
Buffer& operator=(const Buffer&); 

public: 
Buffer(); 
Buffer(const unsigned short& sz); 
~Buffer(); 
unsigned short Read(unsigned char *p, const 
unsigned short& n); 
unsigned short Write(unsigned char *p, const 
unsigned short& n); 
unsigned short CopyTo(Buffer& destbuf); 
unsigned short CopyFrom(Buffer& srcbuf); 
unsigned short Size() const; 
bool SetSize(const unsigned short& sz); 
unsigned char Peek() const;  
unsigned char* Data(); 
bool ReadByte(unsigned char& b);  
bool WriteByte(const unsigned char& b) 
const unsigned short& WritePos() const 
const unsigned short& WritePos(const unsigned 
short& pos);  
const unsigned short& ReadPos() const;  
const unsigned short& ReadPos(const unsigned 
short& pos); 

} 
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Class Member Description 
Buffer::data: Pointer to the memory of the data.   

Buffer::IndexR: Read-pointer of the buffer.   
Buffer::IndexW: Write-pointer of the buffer.   
Buffer::IndexP: Current operation position pointer of the buffer.   

Buffer::size: The size of the buffer.   
Buffer::operator=: Prevent “=” operation.   
Buffer::Buffer(): Constructor, overloaded.   

Buffer::~Buffer(): Destructor.   
Buffer::Read(): Read n bytes from the buffer and store in memory p.  IndexR is 

increased by n.  Return value is how many are actually read.   
Buffer::Write(): Write n bytes from the buffer from memory pointed by p.  IndexW is 

increased by n.  Return value is how many are actually written.   
Buffer::CopyTo(): Copy the entire buffer to another buffer.  Return value is how many are 

copied to.   
Buffer::CopyFrom(): Copy the data from another buffer.  Return value is how many are copied 

from.   
Buffer::Size(): Return the size of the buffer.   

Buffer::SetSize(): Set the size of the buffer.   
Buffer::Peek(): Return the value at the current position indicated by IndexP.   
Buffer::Data(): Return the pointer pointing to the data memory.   

Buffer::ReadByte(): Read a single byte at IndexR position.  IndexR is increased by 1.   
Buffer::WriteByte(): Write a single byte at the IndexW position.  IndexW is increased by 1.   
Buffer::WritePos(): Return the value of IndexW.  Overloaded version is to set the value of 

IndexW.   
Buffer::ReadPos(): Return the value of IndexR.  Overloaded version is to set the value of 

IndexR.   
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class CDTPMsg { 
unsigned char  nId; 
Buffer* pData; 
unsigned short wCSW;  

public: 
CDTPMsg(); 
~CDTPMsg(); 
CDTPMsg(Buffer& buf); 
CDTPMsg& operator=(const CDTPMsg& src);  
unsigned char CDTP_ID(const unsigned char& id);  
unsigned char CDTP_ID() const;  
unsigned short CDTP_CSW(const unsigned short& 
csw);  
unsigned short CDTP_CSW() const; 
unsigned char Length() const; 
bool SetSize(const unsigned short& sz); 
bool ReadByte(unsigned char& b) const;  
bool WriteByte(const unsigned& b); 
unsigned short WritePos() const; 
unsigned short WritePos(const unsigned short& 
pos); 
unsigned short ReadPos() const; 
unsigned short ReadPos(const unsigned short& pos)  
Buffer* SetBuffer(Buffer& buf) 
Buffer* GetBuffer(Buffer* pbuf) 

}; 
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Class Member Description 
CDTPMsg::nId: ID field of the C/D TP message.   

CDTPMsg::pData: Data field of the C/D TP message, stored in a Buffer.   
CDTPMsg::Wcsw: Channel Selection Word field of the C/D TP message.   

CDTPMsg::CDTPMsg(): Constructor.  Overloaded to create a C/D TP message from a Buffer.  
CDTPMsg::~CDTPMsg(): Destructor.   
CDTPMsg::operator=: Create a new C/D TP message from another C/D TP message.   
CDTPMsg::CDTP_ID(): Set the CDTPMsg::nId value.  Overloaded version is to inquire this 

value.   
CDTPMsg::CDTP_CSW(): Set the CTMsg::wCSW value.  Overloaded version is to inquire this 

value.   
CDTPMsg::Length(): Return the length of the C/D TP message.   

CDTPMsg::SetSize(): Set the buffer size of the CDTPMsg::pData.   
CDTPMsg::ReadByte(): Read a single byte form CDTPMsg::pData.   

CDTPMsg::WriteByte(): Write a single byte to CDTPMsg::pData.   
CDTPMsg::WritePos(): Return the write position of CDTPMsg::pData.  Overloaded version 

is to set the write position of CDTPMsg::pData.   
CDTPMsg::ReadPos(): Return the read position of CDTPMsg::pData.  Overloaded version is 

to set the read position of CDTPMsg::pData.   
CDTPMsg::SetBuffer(): Assign the CDTPMsg::pData to the source Buffer.   
CDTPMsg::GetBuffer(): Return the value CDTPMsg::pData as a pointer to Buffer.   
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class DBuffer { 
Buffer *pbuf[2]; 
unsigned char indexw, indexr; 
unsigned short size; 

public: 
DBuffer(); 
DBuffer(unsigned short sz); 
~DBuffer();  
void Swap();  
bool ReadByte(unsigned char& b);  
bool WriteByte(const unsigned& b);  
Buffer* ReadBuffer();  
Buffer* WriteBuffer();  

}; 

 

Class Member Description 
DBuffer::pbuf[2]: Pointers to two swappable Buffers.   
DBuffer::indexw: Index of the write-buffer.   
DBuffer::indexr: Index of the read-buffer.   

DBuffer::size: Size of the read- and write-buffer.   
DBuffer::DBuffer(): Constructor.  Overloaded version is to create a new DBuffer with 

the specified buffer size.   
DBuffer::~DBuffer(): Destructor.   

DBuffer::Swap(): Swap the two read- and write-buffer.   
DBuffer::ReadByte(): Read one byte from the read-buffer.   

DBuffer::WriteByte(): Write on byte to the write-buffer.   
DBuffer::ReadBuffer(): Return a Buffer pointer pointing to the read-buffer.   

DBuffer::WriteBuffer(): Return a Buffer pointer pointing to the write-buffer.   
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class FFT { 
short Re[NFFT]; 
short Im[NFFT]; 
short n; 
void DoFFT(); 

public: 
FFT();  
~FFT(); 
short Size();  
void Setvalue(short* p, const int n); 
Task<FFT> *FFTTask() 

} 

 

Class Member Description 
FFT::Re[]: Real part of the FFT result.   
FFT::Im[]: Imaginary part of the FFT result.   

FFT::n: FFT length.   
FFT::DoFFT(): The function that actually performs the FFT calculation.   

FFT::FFT(): Constructor.   
FFT::~FFT(): Destructor.   

FFT::SetValue(): Set the value of the FFT::Re[].  This function should be called to copy 
the data to the FFT object before the FFT::DoFFT() is executed.   

FFT::FFTTask(): Return a Task pointer representing the particular FFT object.  The 
returned pointer can be pushed into a Task queue.   
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class Queue { 
unsigned char size;  
unsigned char n;  
void **pList;  
unsigned char head, tail;  

public: 
Queue();  
Queue(const unsigned char sz);  
~Queue();  
bool Initialize(const unsigned char& sz);  
unsigned char Size();  
unsigned char Head();  
unsigned char Tail();  
bool Push (void *p);  
void* Pop(); 
void Delete(void *p);  
unsigned char& Count();  

}; 

 

Class Member Description 
Queue::size: Size of the queue.   

Queue::n: Number of elements in the queue.   
Queue::pList: Pointer pointing to the starting address of the memory that stores the 

pointers of the elements in the queue.   
Queue::head: The head position offset from Queue::pList.   
Queue::tail: The tail position offset from Queue::pList.   

Queue::Queue(): Constructor.  Overloaded version creates a new Queue with specified 
size.   

Queue::~Queue(): Destructor.   
Queue::Initialize(): Initialize the Queue with specified size.   

Queue::Size(): Return the value of Queue::size.   
Queue::Hea(): Return the value of Queue::head.   

Queue::Tail(): Return the value of Queue::tail.   
Queue::Push(): Push an element pointed by the augment pointer at the tail of the Queue. 
Queue::Pop(): Pop out the element at the head position of the Queue.  Return value is a 

pointer pointing to the popped element.   
Queue::Delete(): Delete an arbitrary element specified by the argument pointer from the 

Queue.  Deleting an element causes the elements after it move on 
position towards the head direction.   

Queue::Count(): Return how many elements are currently in the Queue.   
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class BasicTask { 
public: 

virtual void Execute() = 0; 
virtual ~BasicTask() {}; 

}; 
 
template <class T> 
class Task: public BasicTask { 

unsigned char state; 
T *pT; 
void (T::*pFunc)();  
public: 

Task()  
Task(void (T::*pf)())  
Task(const Task& tk)  
~Task() {}; 
void Set(T *p)  
void Set(T t)  
void Set(T *p, void(T::*pf)())  
void Set(T t, void(T::*p)())  
void Execute()  
void State(const unsigned char& st)  
const unsigned char& State()  

}; 

 

Class Member Description 
BasicTask::Execute(): Call this function to execute the task.  This is a pure virtual 

function.  So overloading from the derived class is mandatory.    
BasicTask::~BasicTask(): Virtual destructor.   

Task<T>::state: The state of the task.  Should be one of:  TASK_STATE_POSTED, 
TASK_STATE_PENDING, and TASK_STATE_IDLE.   

Task<T>::pT: Pointer to the object of T, for which the Task is created.   
Task<T>::pFunc: Function pointer pointing to a member function of T type.   

Task<T>::Task(): Constructor.  Overloaded versions are to create a Task from a 
specified member function pointer, or from another Task.   

Task<T>::Set(): Set the value of Task<T>::pT.  Overloaded versions take 
different types of arguments.   

Task::Execute(): Overloaded version of the virtual function in BasicTask.   
Task<T>::State(): Set the state of the task.  Overloaded version is to inquire the task 

state.   
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class Timer { 
int interval; 
__no_init unsigned short volatile *pCTLx, *pCCRx; 
void (*pCB) (); 
static bool TAInited; 
static bool TBInited; 
static Timer* TAInt[TIMERA_NO]; 
static Timer* TBInt[TIMERB_NO]; 

public: 
friend __interrupt void TimerAISR(void); 
friend __interrupt void TimerBISR(void); 
static void InitializeTA(); 
static void InitializeTB(); 
Timer(); 
~Timer(); 
void Start(const int& val);  
void Stop(); 
void SetCallback(void (*p) ());  

}; 

 

Class Member Description 
Timer::interval: The expiration time interval of the Timer object.   

Timer::pCTLx: Pointer to the address of the Control Register of the hardware timer.   
Timer::pCCRx: Pointer to the address of the Compare/Capture Register.   

Timer::pCB: Function pointer pointing to the call back function (ISR-like) in 
response to the Timer object expiration.   

Timer::TAInited: Indicate if Timer_A has been initialized.   
Timer::TBInited: Indicate if Timer_B has been initialized.   
Timer::TAInt[]: The map between the Timer_A registers and the created Timer objects. 
Timer::TBInt[]: The map between the Timer_B registers and the created Timer objects. 

friend TimerAISR(): Interrupt Service Routine of the Timer_A.   
friend TimerBISR(): Interrupt Service Routine of the Timer_B.   

Timer::InitializeTA(): Initialize Timer_A.  Timer::TAInited is set after completion.   
Timer::InitializeTB(): Initialize Timer_B.  Timer::TBInited is set after completion.   

Timer::Timer(): Constructor.   
Timer::~Timer(): Destructor.   
Timer::Start(): Start the Timer with specified time interval (in milliseconds).   
Timer::Stop(): Stop the Timer.   

Timer::SetCallBack(): Set the value of Timer::pCB.   
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class UART { 
static unsigned char port; 
static UART *pUART0, *pUART1; 
unsigned char port_id; 
void (*pRxCB) (); 
void (*pTxCB) (); 
unsigned char RxByte; 
volatile unsigned char *pTxBUF; 
unsigned char state; 
unsigned char ToSend; 
bool Escaped; 
const CDTPMsg* pSend; 
void SendCDTPMsg(); 

public: 
UART(); 
~UART(); 
friend __interrupt void UART0RxISR(void); 
friend __interrupt void UART0TxISR(void); 
friend __interrupt void UART1RxISR(void); 
friend __interrupt void UART1TxISR(void); 
friend void SendCDTPMsg();  
bool Bind(const unsigned char& p);  
void SetBaudrate(const int& br);  
void SetRxCallback(void (*p)());  
void Send(const unsigned char& txbyte);  
void SendCDTP(const CDTPMsg& msg);  
unsigned char Receive();  
void SetTxCallback(void (*p)()) 
void EnableRx();  
void EnableTx(); 
void DisableRx(); 
void DisableTx(); 

}; 
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Class Member Description 
UART::port: Indicate the occupancies of USART0 and USART1.  0x00: both 

USARTs are not bound; 0x01: USART0 is bound; 0x20: USART1 is 
bound; 0x03: both USARTs are bound.    

UART::pUART0: Pointer to the hardware address that is assigned to the first UART 
object.   

UART::pUART1: Pointer to the hardware address that is assigned to the second UART 
object.   

UART::pRxCB: Function pointer pointing to the callback function responding to the Rx
event of the UART object.   

UART::pTxCB: Function pointer pointing to the callback function responding to the Tx
even of the UART object.   

UART::RxByte: The byte that is received by the UART object.   
UART::pTxBUF: Pointer pointing to the receive buffer of the UART object.   
UART::state: The state of Finite State Machine sending a C/D TP message.   

UART::ToSend: The byte needs to be sent out.   
UART::Escaped: Indicate if the byte being sent is reserved byte of the Peer-to-Peer 

Protocol.  If yes, a 0x7e will be inserted into the outgoing byte 
stream.   

UART::pSend: The pointer pointing to the C/D TP message that needs to be sent.   
UART::SendCDTPMsg(): Sending out a C/D TP message in background using FSM.   

UART::UART: Constructor.   
UART::~UART(): Destructor.   

friend UART0RxISR(): ISR of the USART0’s Rx interrupt.   
friend UART0TxISR(): ISR of the USART0’s Tx interrupt.   
friend UART1RxISR(): ISR of the USART1’s Rx interrupt.   
friend UART1TxISR(): ISR of the USART1’s Tx interrupt.   

UART::Bind(): Bind the UART object to a particular USART hardware port.   
UART::SetBaudrate(): Set the baud rate of the UART object.   

UART::SetRxCallback(): Set the value of UART::pRxCB.   
UART::SetTxCallback(): Set the value of UART::pTxCB.   

UART::Send(): Send out one single byte through the UART.   
UART::SendCDTP(): Start the sending of a C/D TP message.   
UART::Receive(): Read the received byte from the receive buffer and return it.   

UART::EnableRx(): Enable the receiving function of the UART object.   
UART::EnableTx(): Enable the transmitting function of the UART object.    

UART::DisableRx(): Disable the receiving function of the UART object.   
UART::DisableTx(): Disable the transmitting function of the UART object.   
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III. The 128-point Integer FFT Code 

The FFT.h is listed here.  

/*   head file of FFT        */ 
/*  by He Zhao               */ 
/*  created on 9/29/2007     */ 
/* last modified: 10/29/2007 */ 
 

#ifndef FFT_H 
#define FFT_H 
#include "Task.h" 
 
#define NFFT  128 
 
class FFT { 

private: 
  short Re[NFFT];    // real part 
  short Im[NFFT];    // imaginary part 
  short n; 
 
public: 
  FFT(): n(NFFT) { 
      int i; 
      for(i=0; i<NFFT; i++) { 
          Re[i] = i; 
          Im[i] = 0; 
      } 
  }; 
 
  ~FFT() { 
    if(Re) delete []Re; 
    if(Im) delete []Im; 
  }; 
 
  short Size() { 
      return(n); 
  }; 
 
  void Setvalue() { 
      int i; 
      for(i=0; i<n; i++) { 
          Re[i] = i; 
          Im[i] = 0; 
      } 
  }; 
 
  void DoFFT(); 
 
  Task<FFT> *FFTTask() { 
    Task<FFT> *p = new Task<FFT>; 
    p->Set(this, &(FFT::DoFFT)); 
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    return(p); 
  } 

}; 
#endif  // FFT_H 
 

FFT.cpp file is listed as the following.   

 
/******************************************/ 
/* by He Zhao                             */ 
/* Created:  9/29/2007                    */ 
/* Last modified: 10/30/2007              */ 
/******************************************/ 
#include "FFT.h" 
// the following tables were built for 128-point FFT 
// change of FFT point needs to change these tables as well 
const unsigned char bit_rev[] = {0, 64, 32, 96, 16, 80, 48, 112, 
8, 72, 40, 104, 24, 88, 56, 120, 4, 68, 36, 100, 20, 84, 52, 116, 
12, 76, 44, 108, 28, 92, 60, 124, 2, 66, 34, 98, 18, 82, 50, 114, 
10, 74, 42, 106, 26, 90, 58, 122, 6, 70, 38, 102, 22, 86, 54, 
118, 14, 78, 46, 110, 30, 94, 62, 126, 1, 65, 33, 97, 17, 81, 49, 
113, 9, 73, 41, 105, 25, 89, 57, 121, 5, 69, 37, 101, 21, 85, 53, 
117, 13, 77, 45, 109, 29, 93, 61, 125, 3, 67, 35, 99, 19, 83, 51, 
115, 11, 75, 43, 107, 27, 91, 59, 123, 7, 71, 39, 103, 23, 87, 
55, 119, 15, 79, 47, 111, 31, 95, 63, 127 }; 
 
const short W_re[] = {4095, 0, 2896, -2896, 3784, -1567, 1567, -
3784, 4017, -799, 2276, -3406, 3406, -2276, 799, -4017, 4076, -
401, 2598, -3166, 3612, -1931, 1189, -3920, 3920, -1189, 1931, -
3612, 3166, -2598, 401, -4076, 4091, -201, 2751, -3035, 3703, -
1751, 1380, -3857, 3973, -995, 2106, -3513, 3290, -2440, 601, -
4052, 4052, -601, 2440, -3290, 3513, -2106, 995, -3973, 3857, -
1380, 1751, -3703, 3035, -2751, 201, -4091 }; 
 
const short W_im[] = {0, -4095, -2896, -2896, -1567, -3784, -
3784, -1567, -799, -4017, -3406, -2276, -2276, -3406, -4017, -
799, -401, -4076, -3166, -2598, -1931, -3612, -3920, -1189, -
1189, -3920, -3612, -1931, -2598, -3166, -4076,-401, -201, -4091, 
-3035, -2751, -1751, -3703, -3857, -1380, -995, -3973, -3513, -
2106, -2440, -3290, -4052, -601, -601, -4052, -3290, -2440, -
2106, -3513, -3973, -995, -1380, -3857, -3703, -1751, -2751, -
3035, -4091, -201 }; 
 
enum { 

FFT_DIGIT = 12,  // W_re and W_im accuracy 
FFT_HALFSCALE = 1 << (FFT_DIGIT - 1) 

}; 
 
void FFT::DoFFT(){ 

long retmp, imtmp, wretmp, wimtmp; 
short i, j, k, m, p, q, Sum_re, Sum_im; 
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for (m=n; m>=2; m=m>>1){ 
j = m >> 1; 
for (p=0,k=0; p<n; p+=m){ 

wretmp = W_re[k]; 
wimtmp = W_im[k]; 
for (q=p; q<p+j; q++){ 

retmp = wretmp*Re[q+j] - wimtmp*Im[q+j]; 
if(retmp > 0) 

retmp = (retmp + FFT_HALFSCALE)>>FFT_DIGIT; 
else 

retmp = retmp >> FFT_DIGIT; 
imtmp = wretmp*Im[q+j] + wimtmp*Re[q+j]; 
if(imtmp > 0) 

imtmp = (imtmp + FFT_HALFSCALE)>>FT_DIGIT; 
else 

imtmp = imtmp >> FFT_DIGIT; 
Sum_re = Re[q]; 
Sum_im = Im[q]; 
Re[q] = Sum_re + (short)retmp; 
Im[q] = Sum_im + (short)imtmp; 
Re[q+j] = Sum_re - (short)retmp; 
Im[q+j] = Sum_im - (short)imtmp; 

} 
++k; 

} 
} 
 
for (i=0; i<n; i++){ 

if (bit_rev[i] <= i) continue; 
Sum_re = Re[i]; 
Sum_im = Im[i]; 
Re[i]= Re[bit_rev[i]]; 
Im[i]= Im[bit_rev[i]]; 
Re[bit_rev[i]]= Sum_re; 
Im[bit_rev[i]]= Sum_im; 

} 
} 

 

 

 


