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Abstract of the Dissertation 
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One of the most common types of studies that occur is the comparison of 

responses between a control group and treatment group.  Typically, it is assumed that 

each group is homogeneous.  However, when dealing with count data the phenomenon of 

overdispersion often occurs.  This phenomenon may be due to heterogeneity that exists 

within the group.  In such cases, a mixture of distributions is often used to account for 

such heterogeneity. 

We developed a likelihood ratio test for comparing two groups assuming a two-

component Poisson mixture exists within each group.  We conducted a power study for 

the family of alternatives with a one parameter difference from the null hypothesis.  For 

each model considered, we compared the power for the Likelihood Ratio Test to the 

Welch-Satterthwaite t-test, Wilcoxon Test, and Adjusted Wilcoxon Test.   
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The power study was done using a user-friendly software that we developed 

which simulated our data.  The software obtains the maximum likelihood estimates of the 

parameters under the null hypothesis, such that the control and treatment groups each 

follow a two-component Poisson mixture with equal mixing proportions and component 

means.  As well, it can compute the MLE’s for the two groups differing in either mixing 

proportions or exactly one component mean.  In addition to simulating data, our program 

has the capability to input actual data and run similar studies.   

We compared the power of the Likelihood Ratio Test using the asymptotic 95
th

 

percentile critical value of the chi-squared distribution with one degree of freedom and 

the 95
th

 percentile asymptotic critical value of the standard normal distribution for the 

other three tests for sample sizes of 100 and 250 per group.  As well, we investigated the 

empirical null distribution for the LRT.  We conducted a similar power study for sample 

sizes of 100 per group using the 95
th

 percentile empirical value.  Generally speaking, the 

LRT was found to be significantly more powerful than the other tests considered. 

We applied our testing procedure for comparing two groups of two-component 

Poisson mixtures for two sets of count data that were provided.  One data set that we 

studied consisted of the number of fibromas which existed on patients suffering from the 

disease tuberous sclerosis.  The other data set that we applied our procedure to consisted 

of the number of deviant verbalizations from a study on schizophrenia. 
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Chapter 1 
 

Introduction and Literature Review 
 

 

 

 

 

 

1.1 Introduction 
 

 

 

 

When conducting a study, one common assumption is that the population under 

consideration is homogeneous.  Under this assumption, one may try and use a single 

density function to model the population.  However, sometimes using a single probability 

distribution function may in fact lead to incorrect results. This may be due to the fact that 

the population is heterogeneous.  One common attempt to overcome this problem is to 

use a mixture of distributions, such as Poisson distributions, to reflect such heterogeneity.  

By using a finite mixture to model heterogeneity amongst a population, it is possible to 

increase the power and precision of a test.       

In general, a finite mixture model has the form: 

    ( ) ( )
1

; ;   
k

j j j

j

f Y X g Yπ θ
=

= ⋅∑     (1.1) 

where  ( );
j j

g Y θ  are called the component densities, the 
j

π  for 1, ,j k= …  are called the 

mixing proportions, such that 
1

1
k

j

j

π
=

=∑ . 
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Finite mixture models have been used in a variety of fields such as biology, 

medicine, and finance to model heterogeneity.   Some common examples of 

heterogeneity that may exist within a population may be due to gender, age, genetics, or 

presence of a disease.   

 The following literature review concentrates on the history of mixtures, 

specifically past studies involving mixtures of Poisson distributions and recent 

advancements in regression analysis incorporating mixtures.  A review of estimation 

techniques for the parameters of a mixture and hypothesis tests incorporating mixtures.  

As well, a comparison of the tests considered in our power study is given. 
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1.2 Literature Review 

 

 

 

 

1.2.1 General Background on Mixture Models 
 

 

 

 

The study of mixtures models is over a century old.   One of the first major 

contributions to the study of mixtures models was conducted by Karl Pearson in 1894.  

He fitted a mixture of two univariate normal distributions with unequal component means 

and variances.   A majority of the study of mixture models has dealt with normal 

distributions.   McLachlan and Basford (1988) concentrated on modeling mixtures of 

normal distributions for a variety of fields.  An extensive review on mixture models are 

included in the books written by Everitt and Hand (1981), Titterington et al. (1985) and 

McLachlan and Peel (2000).  Mixtures of discrete distributions, such as the Poisson and 

binomial distribution, have been studied by various researchers such as Blischke (1965) 

and Schilling (1947).   

When dealing with count data, the Poisson distribution is a natural choice of a 

probability distribution.  However, one common problem that is exhibited when using a 

single Poisson distribution to model such data is overdispersion.  Overdispersion is a 

violation of the mean-variance relationship for the Poisson distribution, where the 

variance is greater than the mean.  Occasionally, underdispersion occurs where the 

sample variance is less than the mean (Faddy, 1994).  A finite mixture of Poisson 

distributions is commonly used to model the heterogeneity that may be the reason for the 

apparent overdispersion.   
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1.2.2 Zero Inflated Poisson (ZIP ) and Poisson Mixture Regression Models 

 

 

 

 

Poisson Regression Models have widely been used to model count data 

(McCullagh and Nelder, 1989).  However for overdispersed count data, the use of finite 

mixture Poisson regression models has been used to model heterogeneity (Wang et al 

1996).  They stated that if the dispersion is ignored, a single Poisson regression model 

may lead to seriously biased estimates of the parameters which would lead to incorrect 

inferences (Wang et al., 1996). 

Applications of mixture Poisson Regression models have been done by Wang et 

al (1996), who applied a mixture Poisson regression model to analyze daily epileptic 

seizure frequency.   Xiang et al. (2005) developed influence diagnostics for a two-

component Poisson mixture regression model.  They claimed to be able to identify a 

cluster of observations that may be causing overdispersion in the model.  Therefore, 

using such a mixture would result in valid conclusions about the population.  Xiang et al. 

(2005) applied their method to two count data sets exhibiting overdispersion arising from 

public health.   

One of the more recent interests of investigation of Poisson mixture models has been 

the Zero-Inflated Poisson (ZIP).  This can be viewed as a special case of the two-

component mixture model, where the first component mean is zero.  A mixture such as 

this occurs when dealing with count data that exhibits an excess amount of zero counts.  

Meng (1997) reviewed the history of analyzing count data with excess zeros.  Cohen 

(1963) and Johnson and Kotz (1969) studied ZIP models without covariates.  Lambert 

(1992) introduced a ZIP regression model, which deals with zero inflated data with 
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covariates.  Zero inflated Poisson models have as well been considered by Heilbron 

(1989), Gupta et al. (1996), Bohning (1998), Bohning et al. (1999), Li et al. (1999), 

Mullahy (1997),  Fong and Yip (1993), Johnson et al. (1992), Campbell et al. (1991), and 

Xie et al. (2001).  

 

 

1.2.3 Methods to Estimate Parameters in Mixture 

 

 

 

 

In order to estimate the parameters for a mixture, it must first be verified that the 

mixture is identifiable.   Identifiable means that it must be uniquely characterized so that 

two distinct sets of parameters cannot yield the same mixed distribution.  Teicher (1960) 

proved that the class of finite mixtures of Poisson distributions is identifiable. 

There are various methods that exist to estimate the parameters in a mixture model.  A 

few of the main techniques used have been method of moments, minimum distance, and 

maximum likelihood estimation.  The use of high speed computers in recent years has 

concentrated research on the method of maximum likelihood.  Titterington (1996) 

commented that estimation has been a main topic of interest since there are no explicit 

formulas for the maximum likelihood estimates. 

One of the oldest estimation techniques is the method of moments.  Pearson (1894) 

estimated the parameters of the two-component normal mixture using this method.  Rider 

(1961; 1962) used moment estimation for mixtures of Poisson distributions.  Cohen 

(1965) estimated a two-component Poisson mixture using the first two sample moments 

and a third equation based on the frequency in the zero cell.  He also estimated a two-
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component Poisson mixture missing zero-cell frequencies using factorial moments.  John 

(1970) derived the moment estimators and asymptotic distributions for 2-component 

Poisson mixtures.  Moment estimates of binomial and Poisson distributions have been 

studied also by Pearson  (1915)  , Muench ( 1936, 1938 ), Arley and Buch   (1950 ),  

Rider ( 1962 ),  Blischke (1962, 1964)   and Cohen  (1963 ). 

The use of minimum-distance method has also been applied to mixtures by several 

researchers.  Titterington et al. (1985) as well as McLachlan and Peel (2000) have 

reviewed several minimum distance methods for mixture models.  One distance that has 

received much attention has been the Hellinger distance.  Woodward et al. (1995) and 

Cutler and Cordero-Brana (1996) applied the Hellinger distance to two-component 

normal mixtures.    Simpson (1987) applied this method to count data and showed it 

worked well with data that contained outliers.  Lindsay (1994) compared the MHD 

method to ML method.   It was shown that typically the maximum likelihood method 

worked better for well-specified models compared to the MHD. 

Karlis and Xekalaki (1998) compared the Hellinger distance method to maximum 

likelihood method specifically for Poisson mixtures.   They found that if the model was 

well specified and sample size was large that the two methods were comparable.   

However given outliers in a data set, the MHD method resulted in better estimates 

compared to the ML method, similar to the results of Simpson (1987).   

The most common technique of fitting mixture models is the maximum likelihood 

method.  Rao (1948) is attributed to being one of the first researchers to use this method.  

He estimated the parameters of a two-component mixture of univariate normal 

distributions with equal variances by applying Fisher’s scoring method.  Various 
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researchers such as Baker (1940), Mendenhall and Hader (1958), Day (1969) and Wolfe 

(1965, 1967, 1970) considered this method as well.  However, due to computational 

reasons this method was not very feasible in the past.  As computers became more 

advance, MLE method was considered for a variety of mixture distributions.    

Karlis and Xekalaki (2003a) compared the method of moments to the maximum 

likelihood method for finite mixtures of Poisson distributions.  It was found that the ML 

method is favorable compared to the method of moments method for finite Poisson 

mixtures in terms of both small sample size and asymptotic efficiency.  The method of 

moment estimates are not always attainable and if so, the parameter estimates have a 

higher variance compared to the MLE’s.  They also proposed a modification of the 

method of moment technique, called the zero frequency method, where the third moment 

equation is replaced by the zero frequency equation.  They found that the zero frequency 

method was more efficient for distributions with low means compared to the method of 

moments.  This method worked well when there was an excess count of zeros, which is 

common in mixtures of Poisson distributions.  They felt it was a possible alternative 

method to the maximum likelihood method for small values of means.  As well, Tan and 

Chang (1972) showed that the maximum likelihood estimation method was superior to 

that of method of moments for normal mixtures.   

The crucial paper that stimulated interest in modeling heterogeneous data by 

maximum likelihood was written by Dempster, Laird, and Rubin (1977) regarding the 

EM algorithm, since mixtures can be considered an incomplete data problem.  However, 

the idea of the EM algorithm was thought of far before 1977.  Newcomb (1886) 

suggested using an iterative approach to compute the MLE of the common mean of a 
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mixture in known proportions of a finite number of univariate normal populations with 

common variances.  And, Hasselbad (1969) used an iterative method to find the 

maximum likelihood estimates for finite Poisson mixtures.  Redner and Walker (1984) 

provided a history of the various methods, concentrating on the maximum likelihood 

estimation method along with the EM algorithm. 

There are various concerns when applying the EM Algorithm.   One of the concerns 

with the EM algorithm is the choice of starting values.  A review of the literature on 

choice of starting values is given in Chapter   2.   Another main criticism of the EM 

algorithm is the slow convergence rate.  Hasselbad (1969) fit a mixture of two Poisson’s 

using the EM algorithm with the initial values for the mixing proportion and component 

means set to the moment estimates.  The EM algorithm took over 1000 iterations to 

converge.  However, the maximum likelihood Poisson mixture fit the data very well.  As 

well, Everitt and Hand (1981) reported on the convergence rate for a sample of 200 

observations drawn from a four-component Poisson Mixture.  For one set of starting 

values, the EM algorithm took 192 iterations.  However for another set of initial values, 

the EM algorithm took 365 iterations to converge.   

There have been many attempts made at speeding up the convergence rate of the EM 

algorithm.  The Incremental EM (IEM), Sparse EM (SPEM) and Lazy EM are some 

examples of modifications of the EM algorithm to speed up of the convergence rate 

(McLachlan and Peel, 2000).   Karlis and Xekalaki (1999b) showed that for the one-

parameter exponential family one of the estimating equations for the MLE is the first 

moment equation.  Using this result, it was suggested that the speed of convergence for 

the EM algorithm can be improved due to a reduction in computational time.    The result 
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was applied to two-component mixtures of normal distributions and Poisson distributions 

and a significant improvement in convergence rates was found. 

 

 

 

1.2.4 Hypothesis Tests Involving Mixture Models 

 

 

 

 

A majority of the research has been on tests for homogeneity, a single density 

function, versus heterogeneity, such as a two-component mixture model for a single 

sample.   The homogeneity case is a special version of the two-component mixture where 

the mixing proportion equals 0 or 1 or the means of the two components are equal.   

Titterington et al. (1985) considered the mixture of two Poisson’s for a data set consisting 

of the number of death notices for women aged 80 years and older from the Times 

newspaper for each day from 1910 to 1912.  The fit of a single Poisson distribution 

resulted is a very poor fit whereas a mixture modeled the data much better. 

One major area of study has been on the choice of the number of component density 

functions in the mixture model.  McLachlan and Peel (2000) devoted an entire chapter on 

different methods to assess the number of components in a mixture.  One such method of 

testing the number of components in a mixture model is using a Likelihood Ratio Test, 

where m components versus m+1 components are tested.  However, the use of the LRT 

has problems since the form of the null distribution is unknown.  It has been shown that 

the regularity conditions for the LRT do not hold true for mixture models (Self and 

Liang, 1987 McLachlan and Peel 2000).   
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Wolfe (1971) conducted one of the first simulation studies on such a Likelihood Ratio 

test for a mixture of normal distributions.  Simar (1976), Symons et al. (1983), Bohning 

et al, (1994), Leroux and Puterman (1992) have considered this problem for mixtures of 

Poisson distributions.  A majority of the literature has concentrated on testing a 

homogeneous Poisson distribution versus a two-component Poisson mixture, which is a 

special case of this type of LRT.    Chen and Chen (2001) studied the asymptotic 

behavior for the LRT for testing homogeneity versus a two-component mixture for 

normal, binomial and Poisson distributions. 

Karlis and Xekalaki (1999a) derived a procedure that determines the optimal number 

of components in a mixture of Poisson distributions.  They formulated a sequential 

method that adopts the LRT while using the bootstrapping approach for constructing the 

null distribution of the test statistic at each stage.  The method not only reveals the 

number of components in the mixture but as well a goodness of fit test.  They showed 

that when comparing a single Poisson versus a two-component mixture, the power of 

their test increases as the distance between the component means increase.  This result is 

similar for the case of normal mixtures as shown by Mendell et al. (1991).    In general 

when testing m components versus m+1 components, the power was shown to be low 

when the component means were close and one component has a small mixing 

probability.  The null distribution seemed to rely heavily on the number of components 

and sample size.  With regards to the asymptotic distribution of the test statistic, it 

appeared that the chi-squared with one degree of freedom did not hold, which is the 

standard choice for the LRT under these conditions.   
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 Karlis and Xekalaki (2000) described an alternative test to the LRT, called the 

Hellinger deviance test (HDT), for comparing a single Poisson versus a two-component 

mixture.  The HDT is based on the Hellinger distance.  In their study, they compared the 

power of HDT to the LRT.  They found that the HDT seldom resulted in lower power 

than the LRT for various two-component alternatives.  However, they did show for 

contaminated data sets that the HDT was more robust compared to the LRT.   

 

 

 

1.2.5 Two-Independent Group Comparison  

 

 

 

 

Another area of study that has received attention has been two group comparison 

involving mixtures. 

The general two-group mixture model is defined as:     

 

( ) ( )
1

; ;    for  1,2
k

xj xj xj

j

f Y X g Y xπ θ
=

= ⋅ =∑    (1.2) 

 

where x denotes the group, ( );
xj xj

g Y θ  is the density of the jth component in group x, xjθ  

denotes the parameters for xjg  and xjπ is the mixing proportion for the jth component in 

group X.   

Good (1979) considered a special case of the two-group mixture model involving 

normal distributions,  where the control group was homogeneous and a two-component 

mixture existed in the treatment group.  The mixture considered in the treatment group 
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consisted of a proportion of the sample having the same distribution as the control group 

and the remaining proportion having the same distribution but a shifted mean.  The 

hypotheses that Good (1979) considered were: 

  
( ) ( )

( ) ( ) ( ) ( )
2 1

1 2 1 1

:

: 1

o
H G X G X

H G X p G X p G X

=

= ⋅ − ∆ + − ⋅
    (1.3) 

where 0 1,  0p< ≤ ∆ ≠ , and 1G  and 2G  denote the cdf for the control group and treatment 

group respectively.   

 Good (1979) suggested that there would be a reduction in the power of the t-test 

and that the Wilcoxon Rank Sum test would perform even poorer.  The reduction in 

power was claimed to be due to a decrease in the absolute difference between means and 

to an increase in the variance in the treatment group.  He suggested an alternative 

randomization test that would take into account such properties due to a mixture: 

 ( ) ( ) ( )
1

2 21 1
1

y
v X Y S

n m
θ θ θ

−
 

= + − + − 
 

 for 0 1θ≤ ≤    (1.4) 

where ( )2 2, , , ,
x y

X S n Y S m  denote the mean, sum of squares of deviations about the 

mean, and size of the control (treatment) sample.   

Good investigated the power of ( )0.67v , suggesting that it would be sensitive a 

mean shift and increase in variance in the treatment group. It was found through 

simulation that the power of their test was comparable to that of the ordinary t-test in 

detecting a treatment effect in the presence of non-responders.   

 Boos and Brownie (1986) followed up a study on the randomization test that 

Good (1979) had suggested.  They believed that the Good (1979) test statistic was 

effective when the mixing proportion in the treatment group mixture was small.   
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However, they found that when the mixing proportion was at least 0.6, that the Wilcoxon 

rank sum test, t-test and ( )0.67v  test all appeared to be as effective as one another.  Boos 

and Brownie (1986) suggested that the use of the Wilcoxon rank sum test or t-test are 

favorable in such situations since they are much easier to apply and simpler to interpret.    

The use of mixtures to model non-response in treatment groups has as well been 

considered by various other researchers (Salsburg, 1986; Conover and Salsburg, 1988; 

Razzaghi and Nanthakumar, 1992, 1994; Razzaghi and Kodell 2000).  Lo et al (2002) 

considered a two-sample permutation test incorporating mixtures using the likelihood 

ratio test statistic.  Their study concentrated on comparing controls versus relatives of 

schizophrenia patients for three different measurements.  They tested to see if these two 

groups of individuals arise from the same distribution versus the alternative that an 

unknown proportion of the relatives arise from a different distribution.  The null 

hypothesis was that both groups had equal component means.   They considered three 

different alternatives involving the normal and exponential distributions, for which the 

relatives consisted of a two-component mixture in which one of the means is the same 

mean as that of the controls.  The likelihood ratio test did not follow an asymptotic chi-

squared distribution with degrees of freedom equal to the difference in the number of 

parameters between the two hypotheses.  This discrepancy may be due to either small 

sample size or the fact that under the null hypothesis the mixing proportions are on the 

boundary of the parameter space and therefore are not identifiable (Hartigan, 1985).  An 

empirical power study was conducted to assess the power of the likelihood ratio test they 

derived for small and moderate samples.  Based on their results, the power of the test 
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depended on sample sizes, the mixing proportion, difference of component means and 

ratio of component variances.    

 Duan (2005) derived a generalized likelihood ratio test for comparing two groups 

under the assumption of a two-component normal mixture within each group.  A study 

was conducted to compare the power of the LRT compared to that of the Welch-

Satterthwaite t-test and Wilcoxon Rank Sum test.  She found for sample sizes of one 

hundred per group that the LRT was significantly more powerful than the other tests 

when differences existed in either the mixing proportions or exactly one component 

mean.   For the other models that they studied, the power of the t-test was comparable to 

the LRT if not slightly more powerful.  Duan et al. (2005) used the generalized likelihood 

ratio test comparing sex adjusted neurological values of alcohol-dependent individuals to 

controls assuming that within each group there existed a two-component normal mixture 

distribution.   

 Kim (2007) considered the LRT of normal mixtures for testing equality of mixing 

proportions in two groups under the assumption that the two mixtures are the same but 

their parameters are unknown.  He derived the asymptotic power of this test in terms of a 

non-central chi-squared distribution.  As well, they provided a comparison of power for 

the LRT of mixtures to the chi-square test of independence. 

 

 

 

 

 



15 

 

1.2.6 Review of Statistical Power of Tests Comparing Two Independent Group 

Means 

 

 

A natural test to see whether two independent samples have been drawn from 

different distributions with unequal means is Student’s t-test.  This test assumes the 

populations drawn from are normally distributed with a common population variance.  

An alternative non-parametric test, which relaxes this assumption of normality, is the 

Wilcoxon rank sum test (Wilcoxon, 1945).  As a result, interest has been in comparing 

the power for these two tests.   

 For the Poisson distribution for which there exists a mean-variance relationship, 

we are interested in comparing the power and size of Wilcoxon Rank Sum test to the 

Welch-Satterthwaite t-test (Welch, 1938; Satterthwaite, 1946), which assumes unequal 

population variances.   The use of a two-sample independent mean test assuming equality 

of variance versus inequality of variance has been a concern for many.   Ogenstad (1998) 

stated that the assumption of homoscedasticity is typically made for simplicity and 

mathematical ease.  There seems to be a movement of researchers who prefer to use the 

Welch-Satterthwaite t-test, which assumes inequality of population variances (Moser et 

al. 1989, Moser and Stevens 1992, Neuhauser 2001).  

Under normality but with variance inequality, the actual Type I error rate of the 

independent sample t-test tends to be (1) near the nominal significance level when the 

sample sizes are equal or sufficiently large; (2) larger than the nominal level when the 

smaller sample size is paired with the larger population variance, and (3) smaller than the 

nominal level when the larger sample size is paired with the larger population variance 
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(Ramsey, 1980; Scheffe, 1956).  Algina et al. (1994) estimated the Type I error rates for 

three different tests comparing means from two independent samples, including the 

independent samples t-test and Welch-Satterthwaite approximate t-test.  Type I error rates 

were estimated using skewed distributions (lognormal, exponential, and beta) for various 

total sample sizes with equal and unequal variances, and equal and unequal sample sizes.   

Their results indicated that Welch-Satterthwaite t-test tended to control the Type I error 

rate the same as the independent sample t-test if not better.  Moser et al. (1989) showed 

similar results for Student’s t-test based on the additional assumption of normality.  

Zimmerman and Zumbo (1993) showed that the Welch-Satterthwaite t-test performed on 

ranked data performed just as well in controlling Type I error as the Wilcoxon Rank Sum 

test when variance are equal and considerably better when the variances were unequal.   

One main concern has been whether to conduct a preliminary variance test to see 

which t-test should be used.  Many researchers feel that performing a statistical test on 

the basis of the outcome of another test is not a good technique.  The acceptance or 

rejection of a null hypothesis doesn’t establish scientific knowledge with the same degree 

of conviction (Neuhauser 2002).  Failure to reject the null hypothesis does not prove it 

true.  Fisher (1935) stated “the null hypothesis is never proved or established, but is 

possibly disproved in the course of experimentation.  Every experiment may be said to 

exist only in order to give the facts a chance of disproving the null hypothesis.”  

Conclusions based on nonsignificant results are often not valid (Neuhauser 2002)  

Therefore this two-stage procedure does not seem optimal since they are based on 

nonsignificant results.   Zimmerman (1996, 2004) showed that such preliminary test for 

homogeneity of variance affects the error rates of the test substantially leading the test to 
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be invalid.  The primary problem is that the test statistics distribution of the test of 

interest is conditional on the outcome of the preliminary test (Wells and Hintze, 2007).  

Thus, if an error occurs in the preliminary test then the significance level of the second 

stage is affected.   

Moser et al (1989) and Moser & Stevens (1992) suggest when the variance ratio is 

unknown, which is most common, that Welch-Satterthwaite t-test should be used.  This 

test provides reasonable type I error rates and powers (Neuhauser, 2002).  Moser et al, 

(1989) showed the main advantage of the Welch-Satterthwaite t-test over Students t-test 

is that it has acceptable type I error rates when the variances differ.  As well, the power of 

the Welch-Satterthwaite t-test is similar to Student’s t-test even if population variances 

are equal (Moser et al. 1989, Moser and Stevens 1992; Coombs et al. 1996). 

   There has been a long standing debate regarding the differences in power 

between non-parametric and parametric tests.  It has been shown through simulation and 

theory that the Wilcoxon Rank Sum test and Students t-test have similar, basically 

equivalent, power when sampled from normal distributions (Hodges and Lehmann, 1956; 

Lehmann 1975).  Lehmann (1975) stated that the t-test is more powerful compared to the 

Wilcoxon Rank Sum test when the dealing with normal distributions, however the 

efficiency loss of the Wilcoxon Rank Sum test is only about 5 percent.  However, much 

of the claim of superiority of Student’s t-test was based on normal theory.    

A simple way to compare such tests is to use the Pitman efficiency (Pitman, 1948) 

also referred to as the asymptotic relative efficiency (A.R.E), which is used to compare 

large sample power for two tests.  Hodges and Lehmann (1956) showed that the Pitman 

efficiency of the Wilcoxon Rank Sum test compared to the t-test will always be greater 
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than 0.864 for any distribution with a finite variance.  When normality holds true, the 

Wilcoxon Rank Sum test has a Pitman efficiency of / 3 0.955π =  compared to Students t-

test (Lehmann, 1975).    However, one criticism made by Bradley (1968) is that A.R.E’s 

apply to very large sample sizes.  Therefore, the asymptotic result may be misleading for 

more realistic situations where one would be dealing with smaller sample sizes.   

Since Student’s t-test and Wilcoxon Rank Sum test differ based on the assumption 

of normality it seems obvious that a comparison of the two tests should be done for non-

normal distributions.  Boneau (1962) conducted a simulation study that compared these 

two tests when sampling from normal, rectangular and exponential distributions.  They 

found that the t-test was only slightly more powerful than its non-parametric counterpart.  

And, he implied that Hodges and Lehmann (1956) asymptotic results are not valid for 

small sample sizes.  Toothaker (1972) compared these two tests for the normal, uniform 

and skewed distributions for small sample sizes (at most five).  They found a minor 

difference in the power of the two tests, which are similar to the results found by Boneau 

(1962).   

Neave and Granger (1968) considered the power difference for a non-normal 

population formed by the super position of two normal distributions.  They found that the 

Wilcoxon statistic was significantly more powerful compared to the t-test.  Blair et al. 

(1980) compared the relative power for these two tests while sampling from an 

exponential distribution.  They found that the Wilcoxon Rank Sum test had power 

advantages over the t-test.  As well, they commented results found by Boneau (1962) and 

Toothaker (1972) may be questionable since they used such small sample sizes.  Blair et 
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al. (1980) suggested that using more common moderate sample sizes would lead to 

different results.     

Lehmann (1975) compared these two tests for four non-normal distributions 

(logistic, double exponential, rectangular, and exponential).  The values of the Pitman 

efficiencies that were found are shown in Table 1.1 

 

Table 1.1 - Pitman efficiency of Wilcoxon Rank Sum test to Student’s t-test 

Distribution Logistic Double 

Exponential 

Rectangular Exponential 

Pitman 

Efficiency 

2 / 9 1.097π =

 

1.5 1 3 

 

 

 

For distributions close to normal, the power of the tests was approximately equal.  And, 

for distributions whose tails are much heavier than that of the normal distribution, it is 

possible the Wilcoxon Rank Sum test would be more efficient than the t-test.   

This debate is what led Blair et al. (1980) to conduct a study comparing the 

relative power between the Wilcoxon Rank Sum test and Student’s t-test.  They 

considered a variety of non-normal distributions, including mixtures of normal and 

uniform distributions, as well as an assortment of moderate sample sizes.   Blair et al. 

(1980) claimed that (1) the Wilcoxon Rank Sum test statistic had significantly larger 

power advantage compared to the Student’s t-test statistic, where the term power 

advantage refers to the quantity obtained when the proportion of hypotheses rejected by 

the less powerful statistic is subtracted from the proportion of rejections by the more 

powerful statistic with both proportions being calculated at a particular difference of 

means, (2) the asymptotic relative efficiencies (Pitman efficiencies) were good indicators 
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of the relative power of the two statistics, (3) there were significant differences in power 

for small samples versus large samples. 

 

 

1.3   Outline of Dissertation 
 

 

 

 

 

As one can see based on the literature review, much attention regarding mixtures 

has been on homogeneity versus heterogeneity.  Studies regarding the two-group 

comparison test involving mixtures have been focused primarily on the normal 

distribution.  Very few studies have investigated the power of test procedures involving 

mixtures.  

In this thesis, we conduct a power analysis comparing four different tests for the 

two-group comparison problem assuming heterogeneity within each group.  We focus our 

attention on mixtures of Poisson distributions.  We considered three different alternatives 

differing by one additional parameter from the null hypothesis: 

 

Alternative I – The two groups differ in mixing proportions only. 

i.e., 1 2 ,π π≠  and 0 1
x

π< <  for 1, 2x = , 11 21 12 22,λ λ λ λ= =  

Alternative II – The two groups differ by the value of second component means. 

i.e., 12 22 ,π π π= =  and 0 1π< < , 11 21 12 22,λ λ λ λ= ≠  

Alternative III – The two groups differ by the value of first component means. 

i.e., 12 22 ,π π π= =  and 0 1π< < , 11 21 12 22,λ λ λ λ≠ =  
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Chapter 2 

 

Two Sample Likelihood Ratio Test in the Presence of Mixture 
 

 

 

 

 

 

2.1  The Likelihood Ratio Test 
 

 

 

 

 

The general model for the two-group comparison in the presence of a mixture is a 

special case of the general mixture model where the variable X is binary.  For the two-

group comparison in the presence of a mixture, the null and alternative models are as 

follows: 
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such that  
1

1
k

xj

j

π
=

=∑ , 0 1
xj

π< < ,   where k  represents the number of components in 

group X for 1,2x = . 
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More specifically, for the two-component Poisson mixture, ( ; )
xj

g Y θ ( ; )
xj xj

g Y λ=  

represents the Poisson density function where 
xj

λ  represents the mean and variance for 

the jth component density, where  j 1,2 and 1,2x= = . 

Therefore, the null and alternative models for the two-group comparison in the 

presence of a two-component Poisson mixture are: 

 

( ) ( )1 2: ( ; 1) ( ; 2) (1 ) ; ;oH f Y X f Y X g Y g Yπ λ π λ= = = = − +  
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:
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                     = 1 ; ;

a
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g Y g Y
H
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g Y g Y

π λ π λ

π λ π λ

 =


− +


=
 − +

   (2.2) 

 

Based on the above model, the likelihood function for an observation from the control 

group (X=1) is: 

( ) ( ) ( ) ( )12 11 12 12; 1  = 1 ; ;f Y X g Y g Yπ λ π λ= − +     (2.3) 

and the likelihood function for an observation from the treatment group (X=2) is: 

( ) ( ) ( ) ( )22 21 22 22; 2  = 1 ; ;f Y X g Y g Yπ λ π λ= − +     (2.4) 

It follows that the likelihood function under the null hypothesis is: 
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and the likelihood function under the alternative hypothesis is: 
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∏

    (2.6) 

where C denotes the control group (X=1) and T denotes the treatment group (X=2). 

 The likelihood ratio test statistic, 2 2lnG = − Λ  is computed, where 0

a

L

L
Λ = is the 

ratio of the maximum value of the likelihood function under the null hypothesis and the 

maximum value of the likelihood function under the alternative model being considered.   

The likelihood ratio test statistic, 2
G , asymptotically follows the chi-squared distribution 

with degrees of freedom equal to the difference in the number of parameters under the 

null and alternative hypotheses (Cox and Hinkley, 1974). 

 

 

2.2 Models for Generalized Two-Group Comparison in the Presence of 

Mixtures 
 

 

 

 

The models considered for the generalized two-group comparison in the presence of 

mixtures have been summarized in Table and will be discussed in detail in this section. 

In Table 2.1,  we denote 2x x
π π=  for 1,2x = .  We refer to a given hypothesized 

model as 
ijk

H  where  

1 2

1 2

0   if 

1    if 
i

π π

π π

=
= 

≠
 , 

11 21

12 22

0   if 

1    if 
j

λ λ

λ λ

=
= 

≠
  and  

11 21

12 22

0   if 

1    if 
k

λ λ

λ λ

≠
= 

=
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Table 2.1 - Models for two-group comparison in the presence of two component  

 Poisson mixtures 

 

 
11 21

21 22

λ λ

λ λ

=

=
 

11 21

21 22

λ λ

λ λ

=

≠
 

11 21

12 22

λ λ

λ λ

≠

=
 

1 2π π=  000H  010H  001H  

1 2π π≠  100H  n/a n/a 

 

 The null hypothesis is denoted by Model 000H .  The null hypothesis claim is that 

the mixing proportions and component means for both the control and treatment groups 

are the same, i.e., 1 2 11 21 1 12 22 2,  ,  π π λ λ λ λ λ λ+ += = = = = .   

 

We considered three different alternative hypotheses. 

 

(1) Alternative Model 100H :   

For this alternative, the claim is that there is a difference in only the mixing 

proportions for the two groups, i.e., 1 2 1 2,  
k k k

π π λ λ λ+≠ = =  for 1,2k = .  By 

reparameterizing, we have 1α λ+= , 2α β λ++ =  where 0β > .  An example of this 

alternative model is illustrated in Figure 2.1     
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Figure 2.1     - Illustration of Alternative Model 100H  ( 1 2π π≠ ) 
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Under this alternative, the only difference between the two groups is their mixing 

proportions, i.e., 1 20 1π π< ≠ < .  Thus, the difference between the number of parameters 

under the null and alternative hypotheses is one.  Therefore, the LRT statistic, 

2 2lnG = − Λ , asymptotically follows the chi-squared distribution with one degree of 

freedom. 
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(2) Alternative Model 010H : 

 

For this alternative, the claim is that there is a difference in only the second 

component means for the two groups, i.e., 1 2π π=  such that 0 1
i

π< <  for 1,2i = , 

11 21 1λ λ λ+= = , and 12 22λ λ≠ .  By reparameterizing, we have 1α λ+= , 12α β λ+ = , and 

22α β γ λ+ + = .   An example of this alternative model is illustrated in Figure 2.2   . 

 

Figure 2.2   - Illustration Alternative Model 010H  ( 12 22λ λ≠ ) 
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Under this alternative, the only difference between the two groups is their second 

component means, i.e., 12 22λ λ≠ .  Thus the difference between the number of parameters 

under the null and alternative hypotheses is one.  Therefore, the LRT statistics, 

2 2lnG = − Λ , asymptotically follows the chi-squared distribution with one degree of 

freedom. 

 

(3) Alternative Model 001H : 

 

For this alternative, the claim is that there is a difference in only the first component 

means for the two groups, i.e., 1 2π π=  such that 0 1
i

π< <  for 1,2i = , 11 21λ λ≠ , and 

12 22 2λ λ λ+= = .  By reparameterizing, we have 12 22 2α λ λ λ+= = = ,  11α β λ− = ,  and 

21α β γ λ− − = .   An example of this alternative model is illustrated in Figure 2.3   . 
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Figure 2.3   - Illustration of Alternative Model 001H  ( 11 21λ λ≠ ) 
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Under this alternative, the only difference between the two groups is their first 

component means, i.e., 11 21λ λ≠ .  Thus the difference between the number of parameters 

under the null and alternative hypotheses is one.  Therefore, the LRT statistics, 

2 2lnG = − Λ , asymptotically follows the chi-squared distribution with one degree of 

freedom. 
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2.3   Maximum Likelihood Estimation 
 

 

 

 

 

2.3.1 Expectation Maximization (EM) Algorithm 

 

 

 

 

The EM algorithm (Dempster et al., 1977) is an iterative approach to compute 

maximum likelihood estimates when the observations can be viewed as incomplete data.  

The EM algorithm is widely used with mixture models.  Typically, the component 

density function associated with an observation is unknown causing the data to be 

incomplete.   

 The application of the EM algorithm to mixture distributions is done in the 

following manner.  Suppose that y consisting of n observations, ( )1 2, , , ny y y y= … , is 

observed from a k- component Poisson mixture.  Thus, y can be viewed as the incomplete 

data since the components for each observation is unknown.  The complete data can be 

viewed as ( )1 1 1,x y z= , ( )2 2 2,x y z= , …, ( ),n n nx y z=  where ( )1 2, ,...,
j j j jk

z z z z=  for 

j=1,…,n is an unobserved indicator vector whose components are all zero except for the 

one equal to unity representing the component density function that observation j belongs 

to (Dempster et al., 1977).  The estimation of the parameters can not be done using the 

complete data likelihood function.  A numerical determination of the maximum 

likelihood estimates is found by maximizing the expectation of the incomplete data log 

likelihood function. 
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The incomplete likelihood function for ( )1 2, , , ny y y y= …  is 

( ) ( ) ( )
11 1

| ; ;
n n k

j i i j i

ij j

G Y g y f yθ θ π λ
== =

= = ∑∏ ∏   (2.7)  

and the complete likelihood function for ( )1,..., nx x x=  is  

( ) ( )
1 1

| ;
jiji

n k
zz

i i j i

j i

F X f yθ π λ
= =

= ∏∏     (2.8) 

where ( )1 1,..., , ,...,k kθ π π λ λ= is a vector of unknown parameters and 
ji

z is a indicator 

variable for the component density function that the jth observation arises from. 

 

 The conditional likelihood function of x given y is given by 

  ( )
( )
( )

( )

( )
1

1

1

;
|

| ,
|

;

jiji

k
zz

i i j in

i

k
j

i i j i

i

f y
F X

K X Y
G Y

f y

π λ
θ

θ
θ

π λ

=

=

=

= =
∏

∏
∑

   (2.9) 

 

Therefore, the incomplete log likelihood function is  

 

 

  ( ) ( ) ( )log | log | log | ,G Y F X K X Yθ θ θ= −    (2.10) 

 

The conditional expectation of the incomplete data log likelihood function, ( )log |G Y θ , 

is  

   ( ) ( ) ( ), , ,t t tL Q Hθ θ θ θ θ θ= −     (2.11) 

 

where ( ) ( ), , , | ,t t

com
Q E L Z Y Yθ θ θ θ =    is the conditional expectation of the complete 

data log likelihood function is and ( ) ( ), log | , | ,t tH E K X Y Yθ θ θ θ =   . 
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 By applying Jensen’s inequality to the above convex function, ( ), tH θ θ , it can be 

shown that ( ) ( )1, ,t tH Hθ θ θ θ+ ≤  where equality holds true if 

( ) ( )1| , | ,t tK X Y K X Yθ θ+ = .  Therefore, it follows that in order to maximize the 

expectation of the incomplete data  log likelihood function, ( ), tL θ θ , one must maximize 

( ), tQ θ θ . 

 The EM algorithm is an iterative method that involves two steps: the expectation 

(E) step and the maximization (M) step.  In order to start the procedure, one must set 

initial values for the parameters being estimated.  In the E-Step, one computes 

( )
( )

( )
1

;
| , 1| ,

;

t t

i i j it t

ji ji k
t t

i i j i

i

f y
E z Y P z Y

f y

π θ
θ θ

π θ
=

  = = = 
∑

 and calculates ( ), tL θ θ .  In the         

 M-Step, one maximizes ( ), tQ θ θ with respect to θ  in order to find 1tθ + .  This procedure 

continues until the stopping criteria is meet.  The stopping criteria that I choose to use is 

based on the relative change of the log likelihood function and parameter values in 

consecutive iterations, 1 1 .0001t t t tL L θ θ+ +− + − <  

 

 

 

 

 

 

 



32 

 

2.3.2 MLE based on EM Algorithm 

 

 

 

 

For the two-component Poisson mixture groups, the estimation of ijλ  for 1,2i =  

and  1,2j =  can be viewed as an incomplete data problem since the component densities 

which the individual observations are drawn from is not known (Dempster et al,. 1977).  

Suppose the observations ,iky 1,2i =  and ( )1 21,2, , ik n n n N= + =…  are independent and 

identically distributed.  Then the incomplete data, ,iky can be thought of as complete by 

considering ( ),ik ik
y z , where ,iky  is the observed measurement and 1

ik
z =  if ,iky  belongs 

to the second component density in group i.   

Let  0
i

x =  for the control group and 1
i

x = for the treatment group.  The complete 

data and observed data likelihood functions for the cases we considered are given, 

respectively, as follows: 

1.  Model 100H : comparison of two two-component Poisson mixture groups in the 

presence of differences in only the mixing proportions. 

i.e., 1 2π π≠  and 0 1
i

π< < , 1 2j jλ λ=  for , 1,2i j = , or equivalently 1 2π π≠  and 

0 1
i

π< < , 0β >  
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The observed (incomplete) data likelihood function is written as  

 

( ) ( )1 1 1 2 2 2( , ) ; , ; ,k k

k control k treatment

Likelihood Y f y x f y xθ λ λ
∈ ∈

= ⋅∏ ∏                     

                         

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

2 2 2 2

1 ; , ; ,

1 ; , ; ,

k k

k control

k k

k treatment

f y x f y x

f y x f y x

π α π α β

π α π α β

∈

∈

= − ⋅ + ⋅ +  

× − ⋅ + ⋅ +  

∏

∏
  (2.12) 

 

The complete data likelihood function is 

 

      

( )

( ) ( ) ( )
2

1 1

1 1

, ,

; , ; , 1
i

ik ik ikik

n
z z zz

ik i ik i i i

i k

Likelihood Y Z

f y x f y x

θ

α α β π π
− −

= =

 = + ⋅ ⋅ −
 ∏∏

 (2.13) 

 

 

Therefore, the complete data log likelihood function is 

 

  

( )

( ) ( ) ( )( )

( ) ( )

( )

( ) ( )

2
1 1

1 1

1
2

1

1 1

, ,

log ; , ; , 1

log 1
! !

log ! log log

i

ik ik ikik

ik
ik ik

i ik

ikik

com

n
z z zz

ik i ik i i i

i k

zz yn y
zz

i i

i k ik ik

ik ik ik ik

L Y Z

g y x g y x

ee

y y

y y z y z
N

α βα

θ

α α β π π

α βα
π π

α
α

α βα

− −

= =

− − +−
−

= =

 
= + − 

 

  +  = −         

 
− + − − 

+= − +  

∏∏

∏∏

( ) ( ) ( )

2

1 1
log 1 log 1

in
ik

i k

ik i ik i
z z

β

π π
= =

 
 
 
 + + − − 

∑∑

 (2.14) 
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The steps of the EM algorithm iteratively update the maximum likelihood estimates 

   ( )1 1 1 1, ,t t t t

i
θ π α β+ + + +=      (2.15) 

using the current estimates of the parameters, ( ), ,t t t t

i
θ π α β=  by choosing the values of 

θ  that maximize ( ) ( ), , , | ,t t

com
Q E L Z Y Yθ θ θ θ =   .  During the E-step, 

ik
z is replaced 

by the conditional expectation  

 

( )
( )

( ) ( ) ( )
;

| ,
; 1 ;

i ik

ik ik

i ik i ik

g y
E z y

g y g y

π α β
θ

π α β π α

+
=

+ + −
    (2.16) 

 

During the M-step, the derivatives of ( ), tQ θ θ with respect to ,
i

π α  and β are set equal 

to zero to obtain the new estimates, 1tθ + ,  of the parameters. 

 

 

Let  

( )

( )
1

1

,
0. i.e.,

1 1
           1 0

1

i

i

t

i

n

t t

ik ik

k i i

n

t

ik

k

i

i

Q

z z

z

n

θ θ

π

π π

π

=

=

∂
=

∂

 −
⋅ + − ⋅ = 

− 

⇒ =

∑

∑

    

Therefore, 

 

1

1
1 1

1

1

 

n
t

k
t k

z

n
π + ==

∑
  and     

2

2
1 1

2

2

n
t

k
t k

z

n
π + ==

∑
    (2.17) 

 

 



35 

 

Let  

 

( )

2

1 1

,
0. i.e.,

1 1 1
           1 0

i

t

n

t t

ik ik ik ik ik

i k

Q

y z y z y

θ θ

α

α α α β= =

∂
=

∂

     
− + − + =      

+      
∑∑    (2.18) 

 

 

 

Let 

 

( )

2

1 1

,
0. i.e.,

1
           0

i

t

n

t t

ik ik ik

i k

Q

z y z

θ θ

β

α β= =

∂
=

∂

  
− =  

+  
∑∑       (2.19) 

 

 

By using equations 2.18 and 2.19, we obtain: 

 

  
2

1 1

2

1 1

1

i

i

n

t

ik ik ik

i k

n

t

ik

i k

y y z

z

α = =

= =

 − 
=

 − 

∑∑

∑∑
      (2.20) 

 

 

and  

 

2 2

1 1 1 1

2 2

1 1 1 1

1

i i

i i

n n
t t

ik ik ik ik ik

i k i k

n n

t t

ik ik

i k i k

y z y y z

z z

β = = = =

= = = =

   −   
= −

   −   

∑∑ ∑∑

∑∑ ∑∑
  (2.21) 
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2.  Model 010H : comparison of two two-component Poisson mixture groups in the 

presence of a difference only in the second component means. 

 

i.e.,  1 2 11 21 12 22  and 0< 1,   and   for 1, 2.
i

iπ π π π λ λ λ λ= = < = ≠ =   

Therefore, 0  and 0β γ> > . 

 

 

The observed data likelihood function is: 

 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 2

1 1

2 2

, ; , ; ,

                           1 ; , ; ,

                            1 ; , ; ,

k k

k Control k Treatment

k k

k Control

k k

k Treatment

Likelihood Y f y x f y x

g y x g y x

g y x g y x

θ λ λ

π α π α β

π α π α β γ

∈ ∈

∈

∈

=

= − + +  

× − + + +  

∏ ∏

∏

∏

(2.22) 

 

 

The complete data likelihood function for this case is the following: 

 

 

 

( )

( ) ( ) ( )
2

1 1

1 1

, ,

; , ; , 1
i

ik ik ikik

n
z z zz

ik i ik i i

i k

Likelihood Y Z

g y x g y x x

θ

α α β γ π π
− −

= =

=

 + + −
 ∏∏

  (2.23) 
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Thus, it follows that the complete log likelihood function is the following: 

 

 

( )

( ) ( ) ( )
2

1 1

1 1

, ,

log ; , ; , 1
i

ik ik ikik

com

n
z z zz

ik i ik i i

i k

L Y Z

g y x g y x x

θ

α α β γ π π
− −

= =

  = + + −   
∏∏  (2.24) 

( ) ( )

( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )

1
2

1 1

1

2

1 1

! !log

           1

log ! 1 log log

log 1 log 1

ik
ik ik ii ik

ikik

i

zz y xn y
i

i k ik ik

zz

n
ik ik ik ik ik i i

i k ik ik

x ee

y y

y z y z y x x
N

z z

α β γα α β γα

π π

α α β γ β γ
α

π π

− − + +−

= =

−

= =

  + +       =     
 ⋅ − 

 − + − + + + − −
= − +  

+ + − −  

∏∏

∑∑

 

 

 

 

The steps of the EM algorithm iteratively update the maximum likelihood estimates 

   ( )1 1 1 1 1, , ,t t t t tθ π α β γ+ + + + +=      (2.25)  

using the current estimates of the parameters, ( ), , ,t t t t tθ π α β γ=  by choosing the values 

of θ  that maximize ( ) ( ), , , | ,t t

com
Q E L Z Y Yθ θ θ θ =   .  During the E-step, 

ik
z is replaced 

by the conditional expectation  

 

[ ]
( )

( ) ( ) ( )
;

| ,
; 1 ;

ik i

ik ik

ik i ik

g y x
E z y

g y x g y

π α β γ
θ

π α β γ π α

+ +
=

+ + + −
  (2.26) 

 

 

During the M-step, the derivatives of ( ), tQ θ θ with respect to ,
i

π α  and β are set equal 

to zero to obtain the new estimates, 1tθ + ,  of the parameters. 
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Let  

( )

( )
2

i=1 1

2

i=1 1

,
0. i.e.,

1 1
         1 0

1

i

i

t

n
t t

ik ik

k

n
t

ik

k

Q

z z

z

N

θ θ

π

π π

π

=

=

∂
=

∂

− 
⋅ + − ⋅ = − 

  
⇒ =

∑∑

∑∑

     (2.27) 

 

Let 

( )

( )
2

i=1 1

,
0. i.e.,

1 1
         1 0

i

t

n
t t

ik ik ik ik

k i

Q

N z y z y
x

θ θ

α

α α β γ=

∂
=

∂

 
− + − + = 

+ + 
∑∑

   (2.28) 

 

Let 

( )

2

i=1 1

,
0. i.e.,

1
         0

i

t

n
t t

ik ik ik

k i

Q

z y z
x

θ θ

β

α β γ=

∂
=

∂

 
− = 

+ + 
∑∑

     (2.29) 

 

Let 

( )

2

i=1 1

,
0. i.e.,

         0
i

t

n
t ti

ik ik i ik

k i

Q

x
z y x z

x

θ θ

γ

α β γ=

∂
=

∂

 
− = 

+ + 
∑∑

     (2.30) 
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By setting equations (2.28) and (2.29) equal, we can solve for α   and obtain the 

following: 

  

( )

( )

2

1 1

2

1 1

1

1

i

i

n
t

ik ik

i k

n
t

ik

i k

y z

z

α = =

= =

 − 
=

−

∑∑

∑∑
     (2.31) 

 

By setting equations (2.29) and (2.30) equal, we can solve for β  and obtain the 

following: 

 

( )

( )

1

1

2

1 1

1 1 1

2

1

1 1 1

1

1

i

i

nn
t t

k k ik ik

k i k

n n
t t

k ik

k i k

z y y z

z z

β = = =

= = =

 − 
= −

−

∑ ∑∑

∑ ∑∑
    (2.32) 

 

By using equations (2.30), (2.31) and (2.32), we can solve for γ  and obtain the 

following: 

2 1

2 1

2 2 1 1

1 1

2 1

1 1

n n
t t

k k k k

k k

n n
t t

k k

k k

z y z y

z z

γ = =

= =

= −
∑ ∑

∑ ∑
    (2.33) 

 

 

3.  Model 001H , comparison of two two-component Poisson mixture groups in the 

presence of a difference only in the first component means. 

 

i.e.,  1 2 11 21 12 22  and 0< 1,   and   for 1, 2.
i

iπ π π π λ λ λ λ= = < ≠ = =   

Therefore, 0  and 0β γ> > . 
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The observed data likelihood function is: 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 2

1 1

2 2

, ; , ; ,

                           1 ; , ; ,

                            1 ; , ; ,

k k

k Control k Treatment

k k

k Control

k k

k Treatment

Likelihood Y f y x f y x

g y x g y x

g y x g y x

θ λ λ

π α β π α

π α βγ π α

∈ ∈

∈

∈

=

= − − +  

× − − +  

∏ ∏

∏

∏

 (2.34) 

 

 

 

The complete data likelihood function for this case is the following: 

 

 

( )

( ) ( ) ( )
2

1 1

1 1

, ,

; , ; , 1
i

ik ik ikik

n
z z zz

ik i i ik i

i k

Likelihood Y Z

g y x x g y x

θ

α β γ α π π
− −

= =

=

 − − −
 ∏∏

  (2.35) 

 

 

Thus, it follows that the complete log likelihood function is the following: 

 

 

 

( )

( ) ( ) ( )
2

1 1

1 1

, ,

log ; , ; , 1
i

ik ik ikik

com

n
z z zz

ik i i ik i

i k

L Y Z

g y x x g y x

θ

α β γ α π π
− −

= =

  = − − −   
∏∏  

           (2.36) 
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π π
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π π

−
− + + −

= =

−

= =

  − −        =    
 ⋅ − 

 − + − − − + + +  
= − +  

+ + − −  

∏∏

∑∑
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The steps of the EM algorithm iteratively update the maximum likelihood estimates 

   ( )1 1 1 1 1, , ,t t t t tθ π α β γ+ + + + +=      (2.37) 

using the current estimates of the parameters, ( ), , ,t t t t tθ π α β γ=  by choosing the values 

of θ  that maximize ( ) ( ), , , | ,t t

com
Q E L Z Y Yθ θ θ θ =   .  During the E-step, 

ik
z is replaced 

by the conditional expectation  

 

[ ]
( )

( ) ( ) ( )
;

| ,
; 1 ;

ik

ik ik

ik ik i

g y
E z y

g y g y x

π α
θ

π α π α β γ
=

+ − − −
  (2.38)  

 

 

During the M-step, the derivatives of ( ), tQ θ θ with respect to ,
i

π α  and β are set equal 

to zero to obtain the new estimates, 1tθ + ,  of the parameters. 

 

Let  

( )

( )
2

i=1 1

,
0. i.e.,

1 1
         1 0

1

i

t

n
t t

ik ik

k

Q

z z

θ θ

π

π π=

∂
=

∂

− 
⋅ + − ⋅ = − 

∑∑
      

    

2

i=1 1

in
t

ik

k

z

N
π =

  
⇒ =

∑∑
       (2.39) 
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Let 

( )

( )
2

i=1 1

,
0. i.e.,

1 1
         1 0

i

t

n
t t

ik ik ik ik

k i

Q

N z y z y
x

θ θ

α

α β γ α=

∂
=

∂

 
− + − + = 

− − 
∑∑

   (2.40) 
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( ) ( )
2

i=1 1

,
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1
         1 1 0

i

t
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k i

Q

z y z
x

θ θ

β

α β γ=

∂
=

∂

 −
− + − = 

− − 
∑∑

   (2.41) 

 

 

Let 

( )

( ) ( )
2

i=1 1

,
0. i.e.,

         1 1 0
i

t

n
t ti

ik ik i ik

k i

Q

x
z y x z

x

θ θ

γ

α β γ=

∂
=

∂

 −
− + − = 

− − 
∑∑

   (2.42) 

 

By setting equations (2.41) and (2.42) equal, we can solve for α β−   and obtain the 

following: 

  

( )
( )

( )

1

1

1

1

1

1

n
t

ik ik

k

n
t

ik

k

y z

z

α β =

=

 − 
− =

−

∑

∑
    (2.43) 
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By plugging equations (2.43) into (2.42), we can solve for γ  and obtain the following: 

 

( ) ( )

( )

( )

( )

2 1

2 1

2 2 1 1

1 1

2 1

1 1

1 1 1

1 1

n n
t t

k k k k

k k

n n
t t

k k

k k

z y z y

z z

γ = =

= =

− − −

= −

− −

∑ ∑

∑ ∑
   (2.44) 

 

By using equations (2.40) and (2.42) and (2.43), we can solve for  α   and get the 

following: 
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1 1

2

1 1
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n
t

ik ik

i k

n
t

ik

i k

z y

z
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       (2.45) 

 

By using equations (2.43) and (2.45), we can solve for β  and obtain the following: 
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2.3.3 Selection of Starting Values for the EM Algorithm and Calculation of the 

Likelihood 

 

 

 

 

One of the major considerations that have to be made while using the EM 

algorithm is the choice of initial values for the unknown parameters.  A set of good initial 

values is important because they can affect the convergence rate and the algorithms 

ability to locate the global maximum.  There are various methods that have been used to 

choose appropriate initial values.   

Laird (1978) suggested a grid search, Leroux (1992) and Woodward et al (1984) 

suggested clustering techniques, and McLachlan (1988) proposed the use of principal 

component analysis.  Other suggestions have been to use estimates obtained by other 

estimation techniques, such as the method of moments.  Hasselbad (1969) fit a mixture of 

two Poisson’s using the EM algorithm with the initial values for the mixing proportion 

and component means set to the moment estimates.   

Karlis and Xekalaki (2003b) compared various existing methods for choosing 

initial values for the EM algorithm as well as modifications of existing techniques 

through a simulation study for finite normal and Poisson mixtures.  They noted that 

Bohning et al. (1999) suggested the use of well-separated values, which resulted in an 

increase in the convergence rate of the algorithm.  However, Karlis and Xekalaki (2003b) 

found in their simulation study that for the finite Poisson mixtures, where the variance 

depends on the mean, finding well separated initial values is not very simplistic. 

Many suggestions involve various ways of partitioning the data sets to obtain 

estimates.  Atwood et al. (1992) suggested five different mixing proportion values based  
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on different partitions of the data into groups.  Whereas, Bohning (1999) suggested 

partitioning the data by maximizing the within sum of squares criterion.    

McLachlan and Basford (1988, Section 3.2) noted that finding an accurate 

estimate for the mixing proportion is very important.  Fowlkes (1979) recommended 

using the point of inflection in quantile-quantile (Q-Q) plots to estimate the mixing 

proportion.  When dealing with a two-component normal mixture, Thode et al. (1988) 

suggested that only an initial estimate for the mixing proportion was needed, since the 

rest of the parameters could be estimated by partitioning the data set by this value .  

Thode et al. (1988) used the Engelman-Hartigan (1969) test procedure for clusters to split 

the data set into two groups, which maximizes the ratio of the between-sample variation 

to the within-sample variation.  They as well suggested using ¼, 3/4, (n-1)/n and 1/n as 

initial estimates for the mixing proportion.  Karlis and Xekalaki (2003b) found that 

Thode et al. (1988) method was a good contender for three-component normal mixtures 

and two-component Poisson mixtures compared to the other methods used in their 

simulation study, since for distributions with high overdispersion it requires fewer 

iterations.   Overall, the consensus is to use various initial values to ensure that the global 

maximum is obtained while using the EM algorithm.   

For each model that we considered, we used 101 different sets of initial values for 

the parameters.    A description of the algorithm used to calculate the MLE’s for Model 

010H  is described below: 
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 In Model 010H , the null hypothesis is that the both groups being compared are 

drawn from the same two-component Poisson mixture distribution.  The alternative is 

that the groups are drawn from two-component Poisson mixtures with the same mixing 

proportion and first component means but unequal second component means.  The model 

is described as: 

 

 

( ) ( )1 2: ( ; 1) ( ; 2) (1 ) ; ;oH f Y X f Y X g Y g Yπ λ π λ= = = = − +   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 12

1 22

( )         ; 1  = 1 ; ;
:

( )     ; 2  = 1 ; ;
a

control f Y X g Y g Y
H

treatment f Y X g Y g Y

π λ π λ

π λ π λ

+

+

 = − +


= − +
  (2.47)  

Let 
xx1 x2 xny ,y ,...,y be a random sample of size xn , for x=1,2 drawn from the alternative 

hypotheses.   

 

 For the null hypothesized model,  the algorithm used to find the MLE’s for the 

parameters ( )1 2, ,θ π λ λ+ +=  is as follows: 

 

Step 1: Use Thode et al. (1988) method to find an optimal starting value for the mixing   

proportion. 

 

The following is a description of the Engelman-Hartigan test procedure for 

clusters (1969): 
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Given a set of data consisting of n observations, 1,...., n
x x , which are in ascending 

order.  Such a set of data can be partitioned into two samples 
111 12 1, ,...,

n
x x x  and 

221 22 2, ,...,
n

x x x , which maximize the ratio of the between-sample variation to the within-

sample variation.    There are 1n − partitions that must be considered: 

 

Partition Sample 1 Sample 2 

1i =  
1{ }x  2{ ,..., }

n
x x  

2i =  
1 2{ , }x x  3{ ,..., }

n
x x  

… … … 

( )1i n= −  1 1{ ,..., }
n

x x −  { }
n

x  

 

 

For ( )1,..., 1i n= − , the following must be computed  

 

( )
( ) ( ) ( )

2

1 2 1 2

2 2

1 1 2 2 1 21 1
i

n n x xB
C

W n s n s n n

⋅ ⋅ −
= =

 − + − + 
   (2.48) 

 

where  ,
i i

n x  and 2

i
s  are the sample size, sample mean and sample variance of the th

i  

sample respectively.   

We are interested in finding the value of i for which the maximum value of 

i
C occurs.  Using this value of i , we obtain the following estimates: 

   1 1 2 2
ˆ ˆˆ ,  ,  and 

i
x x

n
π λ λ= = =     (2.49) 

This procedure is done for both the control sample and treatment sample.  Using the 

values above, we obtain the following initial values for the parameters to be: 

 

 
( ) ( ) ( )0 0 01 1 2 2

1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ,  ,  and 
2 2 2

C T C T C T
π π λ λ λ λ

π λ λ+ +

+ + +
= = =    (2.50) 
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The EM algorithm is run using the program we developed and the log likelihood is 

calculated.  

 

Step 2:   Generate 100 uniform (0, 1) random numbers as initial estimates for the mixing 

proportion, 
( )0π̂ .  Given a value

( )0π̂ , both samples are separated into two parts to obtain 

estimates of the component means in the mixture. 

 

Let 
xx1 x2 xny ,y ,...,y be a random sample of size xn , for x=1,2.  Define 

xj
n for 1, 2j =  as  

 
( )0

12 1 11 1 12
ˆ , n n n n nπ = ⋅ = −        (2.51) 

 
( )0

22 2 21 2 22
ˆ , n n n n nπ = ⋅ = −        (2.52) 

 

 

where [ ]i  takes the integer part of the number in the bracket (Duan).   

 

The initial estimates for the component means (variances) are given by: 

 

 

 
( )

( ) ( )

11 21

1 2
1 1

0 11 21
1

ˆ
2

n n

i i
i i

y y

n n
λ

= =

+

+

=

∑ ∑

            (2.53) 

 

( )

( ) ( )

1 2

11 21

1 2
1 1

0 12 22
2

ˆ
2

n n

i i
i n i n

y y

n n
λ

= + = +

+

+

=

∑ ∑

       (2.54) 

 

   

where ( )x i
y  for 1,2,...,

x
i n=  and x=1,2 are the order statistics of the random samples. 

 

Using these initial values of the parameters, the EM algorithm is applied and the log 

likelihood is computed.   
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Step 3:  The maximum likelihood of Step 1 and Step 2 is chosen to be the global 

maximum likelihood; hence the corresponding parameter values are the MLE’s. 

 

 

 For the alternative hypothesis, the same steps are followed except we obtain the 

following initial values of the parameters ( )1 12 22, , ,θ π λ λ λ+= : 

 

Step 1:  The initial values for the parameters are: 

 

 

( ) ( ) ( ) ( )0 0 0 01 1
1 12 2 22 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ,  ,  ,  and 
2 2

C T C T
C T

π π λ λ
π λ λ λ λ λ+

+ +
= = = =   (2.55) 

 

 

Step 2:  The starting values for the parameters based on the initial estimates of the mixing 

proportion, 
( )0π̂ , are: 

 

  

( )

( ) ( )

11 21

1 2
1 1

0 11 21
1

ˆ
2

n n

i i
i i

y y

n n
λ

= =

+

+

=

∑ ∑

         (2.56) 

  

( )
( )

1

11

1
10

12

12

ˆ

n

i
i n

y

n
λ

= +
=

∑
         (2.57)  

and 

 
( )

( )

2

21

2
10

22

22

ˆ

n

i
i n

y

n
λ

= +
=

∑
        (2.58) 

 

 

Using the log likelihood function values obtained under the null and alternative 

hypotheses, the LRT statistic is calculated.  The power of the Likelihood Ratio Test is 

measured using the asymptotic chi-squared with one-degree of freedom critical value, 
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3.84.  We then investigate the null distribution of 2 2lnG = − Λ and the power of the LRT 

is measured using the empirical 95
th

 percentile of 2
G . 
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Chapter 3 
 

Statistical Tests considered in Power Analysis of Two-Component 

Poisson Mixtures 
 

 

 

 

 

 

 

For each simulated data set, the Likelihood Ratio Test (LRT) statistic, the Welch-

Satterthwaite t-test, Wilcoxon Rank Sum test statistic and Adjusted Wilcoxon Rank Sum 

test statistic were calculated.  The LRT statistic is calculated by using the maximum 

likelihood estimates based on the EM algorithm described earlier in Chapter 2.    

A description of the various tests we considered is given in this chapter. 
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3.1 Welch-Satterthwaite t Statistic 
 

 

 

 

 

The Welch-Satterthwaite t-test (Welch, 1938 and Satterthwaite 1946) is a test 

which compares means for independent samples drawn from populations with unequal 

variances.  The Welch-Satterthwaite test assumes the random samples are drawn from 

two normally distributed populations.   

 

The Welch-Satterthwaite t-test statistic is calculated as follows: 

 

    1 2

2 2

1 2

1 2

Y Y
T

s s

n n

−
=

+

      (3.1) 

 

where 
i

n  denotes the sample size in group i  for 1,2i = .  
i

Y  denotes the average of the 

observations in group i  for 1,2i = ; and 2

i
s  denotes the sample variance in group i  for 

1,2i = , i.e., 

   

( )
2

2 1

1

in

ij i

i
i

i

Y Y

s
n

=

−

=
−

∑
      (3.2) 

The degrees of freedom, ν̂ ,  are given by : 

   

( ) ( )

2
2 2

1 2

1 2

2 2
2 2

1 1 2 2

1 2

ˆ

1 1

s s

n n

s n s n

n n

ν

 
+ 

 =

+
− −

     (3.3) 



53 

 

where 1,2i = , and ( ) ( )1 2 1 2
ˆmin 1, 1 2n n n nν− − ≤ ≤ + − .   The degrees of freedom are 

estimated from the data and are not a function of the sample sizes alone.  Often, they are 

fractional and rounded down to the nearest integer. 

 

 

 

3.2   Wilcoxon Rank Sum Statistic  
 

 

 

The Wilcoxon Rank Sum test (Wilcoxon, 1945) is a non-parametric alternative to 

the Welch-Satterthwaite t-test.  The Wilcoxon Rank Sum test compares two independent 

samples, , 1,2, , ,  and 1,2ij iy j n i= =…  to see whether they are drawn from identical 

distributions.  The test is based on the observed values combined into a single ordered 

sample in ascending order for which the means of the ranks for each sample are 

compared.  If the two distributions were to be identical, we would expect to find the same 

average of ranks for each group. 

 

The procedure for conducting a Wilcoxon Rank Sum test is as follows: 

1. Rank the combined sample ( 1 2N n n= + ) of observations in ascending order while 

keeping track of which sample each observation was drawn from.  Assign ranks to 

each observation without regard to which sample each value came from.  A rank of 1 

is assigned to the smallest observation, 2 to the second smallest, and so on.  If 

multiple observations are identical (tied), a rank equivalent to the average of their 

ranks if no ties occurred is assigned. 
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2. Sum the ranks for each group separately denoting them by 1 2 and R R .  Therefore, 
i

R  

is the sum of the ranks for , 1,2, , ,  and 1,2ij iy j n i= =… .  Since the ranks range over 

the integers 1,2,…, N, we have 

( )
1 2

1
1 2

2

N N
R R N

+
+ = + + + =�  

3. Reject 
o

H  if 1R  is larger or smaller than expected under the null hypothesis. 

 

For large 1 2 and n n , the null distribution of 1R  can be well approximated by a normal 

distribution with a mean and variance given by 

  ( )
( )1

1

1

2

n N
E R

+
=  and ( )

( )1 2

1

1

12

n n N
Var R

+
=  

It follows a large sample z-test can be based on the following test statistic 

   

( )

( )

1

1

1 2

1

2

1

12

n N
R

Z
n n N

+ 
−  
 =

+
      (3.4) 

For a two-sided hypothesis test, the p-value is given by ( )2* P Z z≥  
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3.3. Adjusted Wilcoxon Rank Sum Statistic 

 

 

One issue that arises when dealing with count data is the duplication of values.  

The distribution of  1R  is not solely based on each sample size but as well on the number 

of observations tied at each value.  When ties occur frequently and sample sizes are large, 

the distribution of 1R can be approximated by the normal distribution with the same mean 

as described above.  However, the variance of  1R  is decreased by the amount 

( )

( )

3

1 2

1

12 1

e

i i

i

n n d d

N N

=

−

−

∑
 where e denotes the number of distinct values observed and 

j
d  

represents the number of ties for value i , 1,...,i e= .  One other condition in order to use 

the normal approximation is that 
1,...,

max i

i e

d

N=

 
 
 

 is bounded away from 1 as N → ∞  

(Lehmann, 1975) 

 

 Therefore, the Adjusted Wilcoxon Rank Sum Test statistic is: 

  

 

( )

( ) ( )

( )

1

1

3

1 2
1 2 1

1

2

1

12 12 1

e

i i

i

n N
R

Z

n n d d
n n N

N N

=

 +
−  
 =

−
+

−
−

∑
   (3.5) 
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3.4  Approximate Power Calculation for the Two-Independent-Sample t-    

      Test 
 

 

 

 

 

In order to verify that our simulation results were reasonable, we calculated the 

approximate power of the t-test in order to compare it to the observed t-test power.  In 

order to do so, we made the assumption that each group followed a single normal 

distribution with unequal variances and means. As a result, the power is approximate 

because we are actually comparing two-component mixtures of Poisson’s. 

In our simulations, the sample sizes we considered were large ( 1 2 50n n n= = > ).  

Therefore the critical value for the test statistic, 1 2

2 2

1 2

1 2

Y Y
T

s s

n n

−
=

+

, with degrees of freedom 

greater than 50 is approximately 2.  As well, since we simulated large sample sizes 

( )100 or n=250n = , the t-test statistic can be approximated by the standard normal 

distribution.   

As a result, we used the following test statistic to approximate the power of the 

unequal variance t-test,  

 

( ) ( )
* 2 1

2
1 2

1 2

Z Z
Var Y Var Y

n n

α

µ µ−
= −

+

    (3.6) 
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where 
i

µ and ( )iVar Y  represents the mean and variance for group i where i =1,2.   The 

mixture of distributions is taken into account by the formulas for
i

λ and ( )iVar Y  for           

i =1,2 which are given in Table 3.1    

 

Table 3.1  - Mean differences between groups in the presence of mixtures 

 

2 1µ µ−  0  

( )1Var Y  [ ] ( ) 21 [ ]α πβ π π β+ + −  

 

000H  

( )2Var Y  [ ] ( ) 21 [ ]α πβ π π β+ + −  

2 1µ µ−  ( )2 1β π π−  

( )1Var Y  [ ] ( ) 2

1 1 11α βπ π π β+ + −  

100H  

( )2Var Y  [ ] ( ) 2

2 2 21α βπ π π β+ + −  

2 1µ µ−  πγ  

( )1Var Y  [ ] ( ) 21 [ ]α πβ π π β+ + −  

010H  

( )2Var Y  ( ) ( ) ( )
2

1α π β γ π π β γ+ + + − +    

001H  

 

 

 

2 1µ µ−  

 

( )1Var Y  

 

( )2Var Y  

( )1γ π− −  

 

( ) ( ) 21 [ ]α β πβ π π β − + + −   

 

( ) ( ) ( )( )
2

1α β γ π β γ π π β γ − − + + + − + 
 

 

( ) ( )

( ) ( )
1 1 1

2 2 2

:  Mean of Control group (X=1)  = 1-

:  Mean of Treatment group (X=2)  = 1-

µ π α π α β

µ π α π α β γ

⋅ + ⋅ +

⋅ + ⋅ + +
 

 

( )

( )
1

2

Var Y :  Variance of Control Group  (X=1)

Var Y :  Variance of Treatment Group (X=2)
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3.5   Using McNemar’s test to compare the power of the LRT to the       

       Adjusted Wilcoxon Rank Sum test and Welch-Satterthwaite t-test. 
 

 

 

We are interested in determining whether the Likelihood Ratio Test is more 

powerful compared to the Adjusted Wilcoxon Rank Sum test and Welch-Satterthwaite t-

test.  Since all three test statistics was computed for every sample, the power comparison 

of the LRT to the Adjusted Wilcoxon Rank Sum test, and power comparison of the LRT 

to the Welch-Satterthwaite t-test., fits a matched pair design.  Therefore, we are able to 

apply McNemar’s test to compare the power of the tests.  We compared the power of the 

tests using the 95
th

 and 99.9
th

 percentile values of the chi-squared distribution with one-

degree of freedom.   
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Chapter 4 
 

Empirical Null Distribution for the Likelihood Ratio Test 
 

 

 

 

 

 

  

According to Cox and Hinkley (1974) the likelihood ratio test statistic, 2
G , 

asymptotically follows the chi-squared distribution with degrees of freedom equal to the 

difference in the number of parameters under the null and alternative hypotheses.  Due to 

the sample sizes that we considered, we wanted to verify that this holds true for the LRT 

test comparing mixture models.  Therefore, through our simulation we found the 

empirical null distribution for the LRT statistic.  We compared the theoretical asymptotic 

distribution with the empirical null distributions found from simulation.  The 95
th

 

percentile for the empirical null distribution of the LRT was calculated and corresponding 

confidence intervals.     
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4.1  Simulation Results of the Null Distribution for the Likelihood Ratio 

Test 
 

 

 

 

We considered fifteen different configurations of the parameter values to generate the 

null distributions.  For each configuration, the first component mean was one.  For each 

of the generating null models, one thousand samples were simulated for each of the three 

alternative models.  Table 4.1 shows the generating model parameters used to simulate 

the data. 

 

Table 4.1 -  Null generating model parameter values  

 

 

β  π  

 

 

2 

0.1 

0.3 

0.5 

0.7 

0.9 

 

 

3 

0.1 

0.3 

0.5 

0.7 

0.9 

 

 

4 

0.1 

0.3 

0.5 

0.7 

0.9 

 

 

As well, we considered three different sample sizes per group, 

100, 500 and 1,000n =  to model both small and large samples. For each configuration 

the size of the LRT, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test and the 

Adjusted Wilcoxon Rank Sum Test were estimated through simulation.  
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4.1.1 Empirical Null Distribution of LRT for Models 100H , 010H , and 001H   

 

 

 

 

 For each alternative considered in this dissertation, the difference between the 

number of parameters in the null distribution versus the alternative distribution is one.  

Therefore, the critical value for the LRT for each alternative is the theoretical 95
th

 

percentile for the chi-square distribution with 1 degree of freedom, 3.84.  For each 

configuration in Table 4.1, we computed the 95% confidence interval for the empirical 

95
th

 percentile of the LRT test static value for each alternative model and sample size.  

The confidence intervals for these 45 models are displayed in  Figures 4.1 – 4.3 .   

 

 

Figure 4.1 - 95% confidence intervals for the empirical 95
th

 percentile of the LRT 

statistic ( 100n = ) 
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Figure 4.2 - 95% confidence intervals for the empirical 95
th

 percentile of the LRT 

statistic ( 500n = ) 
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Figure 4.3 - 95% confidence intervals for the empirical 95
th

 percentile of the LRT 

statistic ( 1000n = ) 
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 As one can see by looking at Figures  4.1- 4.3 , it appears that a majority of the  

95% confidence intervals for the 95
th

 percentile overlapped.  Therefore, we combined the 

45,000 LRT statistics obtained from the simulations to attain a more precise estimate of 

the empirical 95
th

 percentile of the null distribution.  We found the 95
th

 percentile of the 

null distribution of the LRT statistics for sample size of 100 per group to be 4.26.  The 

95% confidence interval for the empirical 95
th

 percentile was [4.20, 4.36].  As one can 

see this value is higher than the asymptotic 95
th

 percentile of the LRT for these models, 

which is 3.84.   

 We decided to conduct a similar investigation of the empirical 95
th

 percentile of 

the null distribution using larger sample sizes per group of 500n =  and 1000n = .  We 

considered larger sample sizes since the empirical 95
th

 percentile for the null distribution 

for 100n = per group was significantly higher than the asymptotic 95
th

 percentile, 3.84.   

We found the 95
th

 percentile of the null distribution of the LRT statistics for sample size 

of 500 per group to be 3.95.  The 95% confidence interval for the empirical 95
th

 

percentile was [3.88, 4.03].    We found the 95
th

 percentile of the null distribution of the 

LRT statistics for sample size of 1000 per group to be 3.82.  The 95% confidence interval 

for the empirical 95
th

 percentile was [3.76, 3.89].  

Table 4.2 show the size of the LRT under each generating null model for sample 

size of one hundred per group ( 100n = ) for each of the three alternative models.  For 

each configuration we ran 1000 replications.  The Type I error was estimated using the 

asymptotic chi-squared distribution with one degree of freedom 95
th

 percentile value, 

3.84, for the LRT and the asymptotic 95
th

 percentile standard normal value, 1.96, for the 

Welch-Satterthwaite t-test and Adjusted Wilcoxon Rank Sum Test.  Based on Table 4.2, 
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the size of the LRT seemed to be slightly inflated and the size of the Welch-Satterthwaite 

t-test and Adjusted Wilcoxon Rank Sum test seemed to be close to the desired value of 

0.05. 

 

Table 4.2 – Size of the LRT, Welch-Satterthwaite t-test, and Adjusted Wilcoxon Rank 

Sum test under the generating null hypothesis using asymptotic 95
th

 percentile chi-

squared value, 3.84 for the LRT for each alternative model ( 100n = per group)  

 

 

 The margin of error of 0.03±  for each configuration 

 

 

 

Table 4.3 show the size of the LRT under each generating null model for sample 

size of one hundred per group ( 100n = ) for each of the three alternative models.  For 

each configuration, we ran 1000 replicates.  The Type I error was estimated using the 

empirical 95
th

 percentile of the null distribution of 4.26 for the LRT and the asymptotic 

95
th

 percentile standard normal value, 1.96, for the other tests considered.   

β  π  T-Test Wilcoxon - 

Adj 

LRT 

Model 

100H  

LRT  

Model 

010H  

LRT  

Model 

001H  

0.1 0.047 0.043 0.072 0.074 0.058 

0.3 0.036 0.045 0.052 0.049 0.059 

0.5 0.061 0.060 0.076 0.062 0.062 

0.7 0.048 0.050 0.059 0.060 0.064 

 

 

2 

0.9 0.049 0.049 0.084 0.085 0.097 

0.1 0.048 0.052 0.069 0.084 0.054 

0.3 0.046 0.049 0.053 0.051 0.061 

0.5 0.061 0.059 0.054 0.065 0.062 

0.7 0.044 0.038 0.048 0.049 0.061 

 

 

3 

0.9 0.052 0.049 0.081 0.068 0.097 

0.1 0.036 0.052 0.058 0.048 0.052 

0.3 0.050 0.050 0.058 0.057 0.053 

0.5 0.061 0.066 0.067 0.054 0.069 

0.7 0.059 0.055 0.063 0.055 0.067 

 

 

4 

0.9 0.054 0.050 0.066 0.075 0.084 
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Table 4.3 – Size of the LRT, Welch-Satterthwaite t-test, and Adjusted Wilcoxon Rank 

Sum test under the generating null hypothesis using the empirical 95
th

 percentile of the 

null distribution of 4.26 for the LRT for each alternative model ( 100n = per group)  

 

 

 

The margin of error of 0.03±  for each configuration. 

 

 

 

 

 

 Figures 4.4- 4.6 illustrate the size of the LRT for the 15 models considered using 

the asymptotic critical value in Table 4.3 compared to the size of the LRT using the 

empirical critical value in Table 4.4.  As one can see, the size of the LRT using the 

empirical 95
th

 percentile value seem closer to the desired value of 0.05 compared to when 

using the asymptotic critical value. 

 

 

 

 

β  π  T-Test Wilcoxon 

Adjusted 

LRT 

Model 

100H  

LRT  

Model 

010H  

LRT  

Model 

001H  

0.1 0.053 0.044 0.062 0.062 0.049 

0.3 0.053 0.053 0.047 0.052 0.048 

0.5 0.051 0.048 0.051 0.039 0.050 

0.7 0.053 0.050 0.054 0.052 0.055 

 

 

2 

0.9 0.047 0.056 0.059 0.054 0.068 

0.1 0.046 0.040 0.056 0.054 0.033 

0.3 0.043 0.052 0.037 0.047 0.052 

0.5 0.062 0.050 0.043 0.051 0.049 

0.7 0.050 0.046 0.039 0.043 0.052 

 

 

3 

0.9 0.055 0.053 0.059 0.063 0.074 

0.1 0.046 0.054 0.046 0.049 0.043 

0.3 0.058 0.062 0.049 0.051 0.046 

0.5 0.052 0.057 0.045 0.044 0.049 

0.7 0.045 0.043 0.032 0.044 0.051 

 

 

4 

0.9 0.058 0.061 0.057 0.059 0.078 
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Figure 4.4 – Comparison of Size of LRT for Model 100H  using asymptotic and empirical 

critical values  
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Figure 4.5 – Comparison of Size of LRT for Model 010H  using asymptotic and empirical 

critical values  
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Figure 4.6 – Comparison of Size of LRT for Model 001H  using asymptotic and empirical 

critical values  
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Chapter 5 
 

Power Study of the Likelihood Ratio Test based on the Empirical Null 

Distribution 
 

 

 

 

 

 

5.1   Data Simulation 
 

 

 

For our power study, we considered 156 configurations of the parameters.   For each 

configuration, we simulated one thousand samples of size one hundred ( 1 2 100n n= = ) 

using the program that we developed.  For each sample the Welch-Satterthwaite t-test 

statistic, Wilcoxon Rank Sum test statistic, Adjusted Wilcoxon Rank Sum test Statistic, 

and Likelihood Ratio Test (LRT) statistic were calculated.  For each configuration, we 

then found the power for each of the above statistics through a simulation study using the 

program that we developed.   The power for the Likelihood Ratio Test was based on the 

95
th

 percentile of the empirical null distribution, 4.26, which was found in Chapter 4.  

The power for the three other tests was based on the 95
th

 percentile asymptotic standard 

normal distribution value, 1.96.   As well, we calculated the approximate t-test power as 

given in equation 3.6 for each configuration.   
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5.2 Power Study Based on Empirical Null Distribution for the LRT  

Statistic  
 

 

 

 

  

5.2.1 Power Study for Model 100H  using the Empirical Null Distribution for the 

LRT Statistic  

 

 

 

 

Table 5.1 shows the various configurations of parameters settings used to generate 

the data.  As well, it contains the power of the Welch-Satterthwaite t-test, Wilcoxon Rank 

Sum Test, Adjusted Wilcoxon Rank Sum Test and Likelihood Ratio Test based on the 

simulated data for each configuration.   For each configuration, we ran 1000 simulations 

with sample sizes per group of 100.  The power of the LRT is calculated based on the 

empirical 95
th

 percentile critical value, 4.26.  The power of the Wilcoxon Rank Sum tests 

and Welch-Satterthwaite t-test were based on the 95
th

 percentile asymptotic standard 

normal distribution value, 1.96.   

Based on the empirical critical value, it appears that the power of LRT is similar 

to the other tests considered.  In several cases, the power of the Welch-Satterthwaite t-test 

and Adjusted Wilcoxon Rank sum test were more powerful compared to the LRT.  Figure 

5.1 illustrates the power results found in Table 5.1.  In Figure 5.1, the models are in 

ascending order based on the power of the LRT.   

 

 

 

 



70 

 

Table 5.1 - Power of the LRT using the empirical 95
th

 percentile, compared to the power 

of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, and 

Adjusted Wilcoxon Rank Sum Test for model 100H ; 1 and n=100α = per group. 

  

 

 ( ) ( ) ( ) ( )100 : |  1 i iH f x Group i P Pπ α π α β= − + +    for 1, 2x =  

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

  

 

 

β  
1π  2π  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.2 0.182 0.194
**

 0.139 0.157
**

 0.157 

0.3 0.516 0.541
**

 0.383 0.413
**

 0.559 

 

0.1 

0.4 0.823 0.851 0.733 0.749
**

 0.829 

0.3 0.155 0.142
*
 0.100 0.121

**
 0.139 

0.4 0.447 0.459 0.367 0.387
**

 0.441 

 

0.2 

0.5 0.762 0.757 0.715 0.738
*
 0.728 

0.4 0.139 0.141
*
 0.125 0.135

*
 0.133 

0.5 0.403 0.429
*
 0.398 0.418

**
 0.421 

 

0.3 

0.6 0.718 0.740
*
 0.729 0.746

*
 0.730 

0.5 0.130 0.134
*
 0.126 0.131

**
 0.134 

0.6 0.376 0.375
*
 0.364 0.384

*
 0.359 

 

 

 

 

 

2 

 

0.4 

0.7 0.688 0.669
** 

0.701 0.729 0.681 

0.2 0.262 0.272
**

 0.168 0.183
**

 0.288 

0.3 0.695 0.694
**

 0.541 0.577
**

 0.693 

 

0.1 

0.4 0.943 0.941
*
 0.867 0.881

**
 0.948 

0.3 0.208 0.221
*
 0.176 0.194

**
 0.214 

0.4 0.597 0.583
**

 0.526 0.540
**

 0.587 

 

0.2 

0.5 0.897 0.894
**

 0.874 0.883
**

 0.910 

0.4 0.182 0.169
**

 0.161 0.175
*
 0.166 

0.5 0.537 0.556
*
 0.538 0.550

**
 0.542 

 

0.3 

0.6 0.860 0.855
**

 0.865 0.870
*
 0.865 

0.5 0.167 0.172 0.166 0.172 0.157 

0.6 0.502 0.477
**

 0.502 0.511
*
 0.495 

 

 

 

 

 

3 

 

0.4 

0.7 0.837 0.842
**

 0.877 0.880
*
 0.871 
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Table 5.1 (continued) - Power of the LRT using the empirical 95
th

 percentile, compared 

to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum 

test, and Adjusted Wilcoxon Rank Sum Test for model 100H ; 1 and n=100α = per group. 

 

 

 

( ) ( ) ( ) ( )100 : |  1 i iH f x Group i P Pπ α π α β= − + +    for 1, 2x =  

   

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

 

 

 

 

 

β  
1π  2π  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.2 0.319 0.322
**

 0.192 0.207
**

 0.365 

0.3 0.788 0.782
**

 0.606 0.635
**

 0.799 

 

0.1 

0.4 0.976 0.986 0.937 0.943
**

 0.991 

0.3 0.245 0.234
*
 0.178 0.194

**
 0.230 

0.4 0.682 0.680
**

 0.605 0.627
**

 0.689 

 

0.2 

0.5 0.945 0.945
*
 0.925 0.928

**
 0.954 

0.4 0.210 0.230
*
 0.205 0.219

*
 0.213 

0.5 0.617 0.605
**

 0.598 0.612
**

 0.612 

 

0.3 

0.6 0.918 0.922
**

 0.939 0.941 0.941 

0.5 0.192 0.209
**

 0.201 0.208
**

 0.213 

0.6 0.580 0.596
**

 0.635 0.644 0.630 

 

 

 

 

 

4 

 

0.4 

0.7 0.902 0.904
**

 0.932 0.935
*
 0.935 
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Figure 5.1 – Summary of power results for the LRT using the asymptotic chi-squared 

95
th

 percentile, compared to the power of the Welch-Satterthwaite t-test, and Adjusted 

Wilcoxon Rank Sum Test for model 100H ; 1 and n=100α =  per group.  
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5.2.2 Power Study for Model 010H  using the Empirical Null Distribution for the 

LRT Statistic  

 

 

 

 

 

Table 5.2(a)  shows the various configurations of parameters settings used to 

generate the data.  As well, it contains the power of the Welch-Satterthwaite t-test, 

Wilcoxon Rank Sum Test, Adjusted Wilcoxon Rank Sum Test and Likelihood Ratio Test 

based on the simulated data for each configuration.   The power of the LRT is calculated 

based on the empirical 95
th

 percentile critical value, 4.26.  The power of the Wilcoxon 

Rank Sum tests and Welch-Satterthwaite t-test were based on the 95
th

 percentile 

asymptotic standard normal distribution value, 1.96.  

Based on the simulation, the LRT remains to be significantly more powerful than 

the Welch-Satterthwaite t-test and Adjusted Wilcoxon Rank Sum Test.  Figure 5.2 (a) 

illustrates the power results from Table 5.2 (a).   Given each beta, the models in the figure 

are in ascending order based on the power of the LRT.   
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Table 5.2 - Power of the LRT using the empirical 95
th

 percentile, compared to the power 

of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, and 

Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α = per group. 

 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
 

 

The margin of error of 0.03±  for each configuration. 

 

 Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.046 0.054
**

 0.034 0.045
**

 0.088 

1.0 0.075 0.076
**

 0.032 0.042
**

 0.151 

1.5 0.113 0.099
**

 0.044 0.059
**

 0.255 

 

0.1 

2.0 0.157 0.139
**

 0.050 0.060
**

 0.343 

0.5 0.093 0.085
**

 0.053 0.061
**

 0.120 

1.0 0.224 0.215
**

 0.099 0.111
**

 0.316 

1.5 0.395 0.416
**

 0.151 0.159
**

 0.608 

 

0.3 

2.0 0.564 0.557
**

 0.227 0.240
**

 0.840 

0.5 0.158 0.153
**

 0.095 0.100
**

 0.190 

1.0 0.435 0.446
**

 0.274 0.284
**

 0.545 

1.5 0.714 0.731
**

 0.476 0.491
**

 0.868 

 

0.5 

2.0 0.885 0.892
**

 0.597 0.609
**

 0.981 

0.5 0.253 0.235
**

 0.181 0.189
**

 0.258 

1.0 0.684 0.684
**

 0.541 0.555
**

 0.751 

1.5 0.932 0.945
**

 0.867 0.872
**

 0.969 

 

0.7 

2.0 0.991 0.993
*
 0.972 0.972

**
 0.999 

0.5 0.399 0.410
**

 0.370 0.380
**

 0.406 

1.0 0.901 0.900
*
 0.869 0.875

**
 0.901 

1.5 0.996 0.999 0.998 0.998 0.999 

 

 

 

 

 

 

 

 

 

2 

 

0.9 

2.0 1.000 1.000 1.000 1.000 1.000 
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Table 5.2 (continued) - Power of the LRT using the empirical 95
th

 percentile, compared 

to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum 

test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α = per group. 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
 

 

The margin of error of 0.03±  for each configuration. 

 

 Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.042 0.057
**

 0.035 0.045
**

 0.075 

1.0 0.065 0.065
**

 0.035 0.041
**

 0.138 

1.5 0.095 0.100
**

 0.048 0.055
**

 0.209 

 

0.1 

2.0 0.128 0.132
**

 0.037 0.049
**

 0.306 

0.5 0.075 0.075
**

 0.045 0.052
**

 0.112 

1.0 0.164 0.152
**

 0.060 0.069
**

 0.289 

1.5 0.286 0.287
**

 0.096 0.106
**

 0.534 

 

0.3 

2.0 0.423 0.419
**

 0.132 0.140
**

 0.752 

0.5 0.117 0.110
**

 0.071 0.073
**

 0.138 

1.0 0.308 0.286
**

 0.175 0.179
**

 0.459 

1.5 0.546 0.565
**

 0.321 0.324
**

 0.791 

 

0.5 

2.0 0.747 0.756
**

 0.462 0.471
**

 0.948 

0.5 0.183 0.181
**

 0.141 0.149
**

 0.216 

1.0 0.519 0.504
**

 0.414 0.420
**

 0.641 

1.5 0.818 0.836
**

 0.739 0.743
**

 0.923 

 

0.7 

2.0 0.954 0.944
**

 0.879 0.881
**

 0.991 

0.5 0.302 0.308
**

 0.286 0.293
**

 0.323 

1.0 0.791 0.805
**

 0.774 0.782
**

 0.815 

1.5 0.979 0.983
*
 0.981 0.981

*
 0.990 

 

 

 

 

 

 

 

3 

 

0.9 

2.0 0.999 1.000 0.999 0.999 1.000 
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Table 5.2 (continued) - Power of the LRT using the empirical 95
th

 percentile, compared 

to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum 

test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α = per group. 

 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
 

 

The margin of error of 0.03±  for each configuration. 

 

 Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.039 0.042
**

 0.028 0.035
**

 0.068 

1.0 0.058 0.064
**

 0.043 0.051
**

 0.094 

1.5 0.081 0.069
**

 0.050 0.061
**

 0.163 

 

0.1 

2.0 0.108 0.087
**

 0.036 0.049
**

 0.243 

0.5 0.063 0.083 0.052 0.054
**

 0.093 

1.0 0.128 0.133
**

 0.061 0.067
**

 0.260 

1.5 0.217 0.206
**

 0.074 0.079
**

 0.491 

 

0.3 

2.0 0.324 0.306
**

 0.073 0.078
**

 0.713 

0.5 0.093 0.108
**

 0.076 0.081
**

 0.143 

1.0 0.230 0.214
**

 0.119 0.122
**

 0.399 

1.5 0.418 0.404
**

 0.216 0.222
**

 0.725 

 

0.5 

2.0 0.609 0.625
**

 0.367 0.377
**

 0.919 

0.5 0.142 0.160
**

 0.132 0.134
**

 0.178 

1.0 0.398 0.401
**

 0.337 0.340
**

 0.554 

1.5 0.688 0.699
**

 0.599 0.603
**

 0.880 

 

0.7 

2.0 0.880 0.876
**

 0.786 0.790
**

 0.989 

0.5 0.240 0.254
*
 0.251 0.257

*
 0.260 

1.0 0.679 0.686
**

 0.671 0.680
**

 0.733 

1.5 0.941 0.932
**

 0.921 0.922
**

 0.964 

 

 

 

 

 

 

 

4 

 

0.9 

2.0 0.995 0.991
*
 0.993 0.993

*
 0.997 



77 

 

Figure 5.2 – Summary of power results for the LRT using empirical 95
th

 percentile, 

compared to the power of the Welch-Satterthwaite t-test, and Adjusted Wilcoxon Rank 

Sum Test for model 010H ; 1 and n=100α =  per group.  
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Figure 5.2 (continued) – Summary of power results for the LRT using empirical 95
th

 

percentile, compared to the power of the Welch-Satterthwaite t-test, and Adjusted 

Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α =  per group.  
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Figure 5.2 (continued) – Summary of power results for the LRT using empirical 95
th

 

percentile, compared to the power of the Welch-Satterthwaite t-test, and Adjusted 

Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α =  per group. 
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5.2.3 Power Study for Model 001H  using the Empirical Null Distribution for the 

LRT Statistic  

 

 

 

 

 

 

Table 5.3   shows the various configurations of parameters settings used to 

generate the data.  As well, it contains the power of the Welch-Satterthwaite t-test, 

Wilcoxon Rank Sum Test, Adjusted Wilcoxon Rank Sum Test and Likelihood Ratio Test 

based on the simulated data for each configuration.   The power of the LRT is calculated 

based on the empirical 95
th

 percentile critical value, 4.26.  The power of the Wilcoxon 

Rank Sum tests and Welch-Satterthwaite t-test were based on the 95
th

 percentile 

asymptotic standard normal distribution value, 1.96.   

Based on the empirical critical value, the LRT appeared to be more powerful 

compared to the Welch-Satterthwaite t-test and Adjusted Wilcoxon Rank Sum test for a 

majority of the configurations.  Figure 5.3 illustrates the power results from Table 5.3.   

Given each beta, the models in Figure 5.3 are in ascending order based on the power of 

the LRT.   
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Table 5.3 - Power of the LRT using the empirical 95
th

 percentile, compared to the power 

of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, and 

Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α = per group. 

 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

 Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon – 

Adj 

LRT 

0.5 0.276 0.272
*
 0.269 0.277

*
 0.258 

1.0 0.787 0.769
**

 0.779 0.783
**

 0.796 

1.5 0.986 0.978
**

 0.992 0.993
*
 0.986 

 

0.1 

2.0 1.000 1.000 1.000 1.000 1.000 

0.5 0.161 0.164
**

 0.174 0.179
**

 0.200 

1.0 0.486 0.505
**

 0.549 0.553
**

 0.589 

1.5 0.814 0.822
**

 0.883 0.883
**

 0.914 

 

0.3 

2.0 0.963 0.938
**

 0.976 0.976
**

 0.993 

0.5 0.097 0.106
**

 0.106 0.107
**

 0.124 

1.0 0.255 0.233
**

 0.245 0.251
**

 0.345 

1.5 0.483 0.492
**

 0.552 0.555
**

 0.696 

 

0.5 

2.0 0.705 0.715
**

 0.795 0.798
**

 0.947 

0.5 0.058 0.072
**

 0.065 0.068
**

 0.097 

1.0 0.117 0.123
**

 0.128 0.130
**

 0.192 

1.5 0.204 0.238
**

 0.245 0.248
**

 0.411 

 

0.7 

2.0 0.316 0.315
**

 0.328 0.329
**

 0.681 

0.5 0.034 0.063
**

 0.059 0.062
**

 0.073 

1.0 0.045 0.062
**

 0.064 0.067
**

 0.083 

1.5 0.058 0.069
**

 0.069 0.069
**

 0.118 

 

 

 

 

 

 

 

2 

 

0.9 

2.0 0.074 0.079
**

 0.070 0.072
**

 0.166 
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Table 5.3 (continued) - Power of the LRT using the empirical 95
th

 percentile, compared 

to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum 

test, and Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α = per group. 

 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

 Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon – 

Adj 

LRT 

0.5 0.294 0.286
**

 0.309 0.315
**

 0.308 

1.0 0.814 0.797
**

 0.870 0.873
**

 0.882 

1.5 0.990 0.987
*
 0.997 0.997 0.997 

 

0.1 

2.0 1.000 1.000 1.000 1.000 1.000 

0.5 0.153 0.165
**

 0.192 0.197
**

 0.209 

1.0 0.455 0.453
**

 0.589 0.595
**

 0.677 

1.5 0.777 0.767
**

 0.911 0.913
**

 0.969 

 

0.3 

2.0 0.944 0.935
**

 0.993 0.993
*
 1.000 

0.5 0.091 0.105
**

 0.113 0.114
**

 0.159 

1.0 0.230 0.242
**

 0.285 0.288
**

 0.458 

1.5 0.432 0.443
**

 0.551 0.554
**

 0.834 

 

0.5 

2.0 0.642 0.645
**

 0.775 0.778
**

 0.982 

0.5 0.056 0.056
**

 0.056 0.059
**

 0.104 

1.0 0.108 0.111
**

 0.107 0.109
**

 0.258 

1.5 0.185 0.188
**

 0.175 0.183
**

 0.541 

 

0.7 

2.0 0.283 0.285
**

 0.268 0.273
**

 0.834 

0.5 0.033 0.050
**

 0.048 0.050
**

 0.073 

1.0 0.044 0.063
**

 0.062 0.062
**

 0.115 

1.5 0.057 0.064
**

 0.064 0.068
**

 0.188 

 

 

 

 

 

 

 

3 

 

0.9 

2.0 0.072 0.082
**

 0.068 0.070
**

 0.297 
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Table 5.3 (continued) - Power of the LRT using the empirical 95
th

 percentile, compared 

to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum 

test, and Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α = per group. 

 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

  

 

 Significantly different in power compared to LRT using McNemars Test 

 * .05      **.001 

 

 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.306 0.318
**

 0.416 0.422
**

 0.431 

1.0 0.828 0.831
**

 0.948 0.952 0.953 

1.5 0.992 0.989
**

 1.000 1.000 1.000 

 

0.1 

2.0 1.000 1.000 1.000 1.000 1.000 

0.5 0.141 0.132
**

 0.197 0.202
**

 0.261 

1.0 0.410 0.402
**

 0.647 0.651
**

 0.840 

1.5 0.720 0.723
**

 0.950 0.951
**

 0.997 

 

0.3 

2.0 0.911 0.902
**

 0.992 0.992
*
 1.000 

0.5 0.083 0.068
**

 0.091 0.097
**

 0.202 

1.0 0.202 0.208
**

 0.268 0.272
**

 0.615 

1.5 0.376 0.370
**

 0.552 0.556
**

 0.957 

 

0.5 

2.0 0.568 0.591
**

 0.770 0.772
**

 1.000 

0.5 0.053 0.072
**

 0.069 0.070
**

 0.123 

1.0 0.099 0.091
**

 0.094 0.095
**

 0.373 

1.5 0.165 0.155
**

 0.149 0.151
**

 0.729 

 

0.7 

2.0 0.249 0.263
**

 0.243 0.244
**

 0.962 

0.5 0.033 0.060
**

 0.055 0.057
**

 0.079 

1.0 0.043 0.058
**

 0.043 0.045
**

 0.159 

1.5 0.055 0.066
**

 0.059 0.060
**

 0.287 

 

 

 

 

 

 

 

4 

 

0.9 

2.0 0.069 0.071
**

 0.049 0.050
**

 0.495 
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Figure 5.3 – Summary of power results for the LRT using the empirical 95
th

 percentile, 

compared to the power of the Welch-Satterthwaite t-test, and Adjusted Wilcoxon Rank 

Sum Test for model 001H ; 7 and n=100α =  per group.  
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Figure 5.3 (continued) – Summary of power results for the LRT using the empirical 95
th

 

percentile, compared to the power of the Welch-Satterthwaite t-test, and Adjusted 

Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α =  per group.  
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Figure 5.3 (continued) – Summary of power results for the LRT using the empirical 95
th

 

percentile, compared to the power of the Welch-Satterthwaite t-test, and Adjusted 

Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α =  per group.  
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Chapter 6 
 

Power Studies of the LRT Based on the Asymptotic Null Distribution 
 

 

 

 

 

 

6.1  Data Simulation 

 

 

 

 

 
For our power study, we considered 156 configurations of the parameters.   For each 

configuration, we simulated one thousand samples of size one hundred ( 1 2 100n n= = ) 

using the program that we developed.  For each sample the Welch-Satterthwaite t-test 

statistic, Wilcoxon Rank Sum test statistic, Adjusted Wilcoxon Rank Sum test Statistic, 

and Likelihood Ratio Test (LRT) statistic were calculated.  For each configuration, we 

then found the power for each of the above statistics through a simulation study using the 

program that we developed.  As well, we calculated the approximate t-test power as given 

in equation 3.6 for each configuration.  For each alternative model whose approximate t-

test power was less than 0.9, we compared the power of the various tests when the sample 

size per group was increased to 250 ( 1 2 250n n= = ) through a similar simulation study. 
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6.2 Power Comparison Results Based on the Asymptotic Null 

Distribution 
 

 

 

 

 

 

6.2.1 Results of Model 100H :  Two Component Poisson Mixture with Equal 

Component Means and Unequal Mixing Proportions 

 

 

 

 

 

For this model, we considered 36 configurations of the parameter settings.  We 

considered 1 0.1,  0.2,  0.3, 0.4π =  and 2 1 0.1,  0.2, 0.3π π− = ; 1α = ; 2,  3,  4β =  and 

1 2 100n n n= = = .  Using the 1000 simulated samples for each configuration of parameter 

settings, the powers for the various tests considered were estimated.   

 Table 6.1 (a) shows the various configurations of parameters settings used to 

generate the data.  It contains the power of the Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum Test, Adjusted Wilcoxon Rank Sum Test and Likelihood Ratio Test based on 

the simulated data for each configuration.   As well, the approximate power of the t-test 

was calculated using equation (3.6) for each configuration and reported in Table 6.1(a).  

The power of the LRT is calculated based on the 95
th

 percentile asymptotic critical value 

of the chi-squared distribution with one degree of freedom, 3.84.  The power of the 

Wilcoxon Rank Sum tests and Welch-Satterthwaite t-test were based on the 95
th

 

percentile asymptotic standard normal distribution value, 1.96.   

 Based on the simulation, we found the power for the LRT to be greater than the 

Welch-Satterthwaite t-test as well as the Wilcoxon Rank Sum tests for all configurations.  
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Based on McNemar’s test, there was a significant difference in power between the LRT 

and Welch-Satterthwaite t-test for all configurations where the difference between the 

mixing proportions was at least 0.2.  There was a significant difference between the LRT 

and Adjusted Wilcoxon Rank Sum test for 28 out of the 36 configurations considered 

based on McNemar’s test.  For each beta, the power for the LRT increased as the 

difference between the mixing proportions increased.   And for each configuration of 

mixing proportions, the power of the LRT increased as the difference between the 

component means increased. 

Figure 6.1 (a) illustrates the power results for the LRT, Welch-Satterthwaite t-test 

and Adjusted Wilcoxon Rank Sum Test that were reported in Table 6.1 (a) for the various 

configurations for model 100H .  The 36 models are ordered by increasing power of the 

LRT.   As one can see by looking at the graph, the power of the LRT is above the power 

of the other tests considered.   

 Based on the approximate power calculation of the t-test when the sample size n 

increased from 100 to 250 per group, there were 17 configurations where the power was 

less than 0.9.  We decided to investigate the power of the tests considered above for these 

selected models.  Table 6.1 (b) shows the generating model parameters used to simulate 

the data, and the power of the LRT, Welch-Satterthwaite t-test, Adjusted Wilcoxon Rank 

Sum test, Wilcoxon Rank Sum test as well as the approximate power of the t-test.  The 

results for these selected models are similar to those when the sample size per group was 

100.  For all 17 settings considered, the power of the LRT is higher than the other tests 

studied.  Based on McNemar’s test, there was a significant difference between the LRT 

and Welch-Satterthwaite t-test for 16 out of the 17 cases and a significant difference 
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between the LRT and Adjusted Wilcoxon Rank Sum test for 13 out of the 17 parameter 

settings considered.  The power results from Table 6.1 (b) are illustrated in Figure 6.1 (b).  

In Figure 6.1 (b), the models are in ascending order based on the observed LRT power.     
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Table 6.1 (a) - Power of the LRT using the chi-squared 95
th

 percentile, compared to the 

power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, 

and Adjusted Wilcoxon Rank Sum Test for alternative 100H ; 1 and n=100α = per group. 

 

 

 

β  
1π  2π  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.2 0.182 0.185
** 

0.124 0.149
** 

0.234 

0.3 0.516 0.552
** 

0.414 0.439
** 

0.603 

 

0.1 

0.4 0.823    0.852
* 

0.737 0.755
** 

0.867 

0.3 0.155 0.161
* 

0.122 0.139
** 

0.184 

0.4 0.447 0.473
** 

0.408 0.431
** 

0.504 

 

0.2 

0.5 0.762 0.772
* 

0.734 0.749
** 

0.790 

0.4 0.139 0.156
* 

0.147 0.155
* 

0.175 

0.5 0.403 0.398
** 

0.393 0.412
* 

0.432 

 

0.3 

0.6 0.718 0.733
* 

0.738 0.749 0.758 

0.5 0.130 0.139
 

0.132 0.142 0.153 

0.6 0.376 0.421
* 

0.405 0.416
** 

0.446 

 

 

 

 

 

2 

 

0.4 

0.7 0.688 0.695
** 

0.723 0.737 0.740 

0.2 0.262 0.263
* 

0.175 0.193
** 

0.292 

0.3 0.695 0.742
** 

0.571 0.592
** 

0.775 

 

0.1 

0.4 0.943 0.946
** 

0.884 0.892
** 

0.963 

0.3 0.208 0.196
* 

0.165 0.179
** 

0.221 

0.4 0.597 0.622
* 

0.558 0.578
** 

0.649 

 

0.2 

0.5 0.897 0.889
** 

0.882 0.887
** 

0.937 

0.4 0.182 0.177 0.174 0.182 0.186 

0.5 0.537 0.518
** 

0.524 0.539
* 

0.566 

 

0.3 

0.6 0.860 0.870
** 

0.892 0.897 0.899 

0.5 0.167 0.170
* 

0.182 0.186 0.197 

0.6 0.502 0.522
** 

0.541 0.561
* 

0.580 

 

 

 

 

 

3 

 

0.4 

0.7 0.837 0.847
** 

0.888 0.891 0.904 

 

 

( ) ( ) ( ) ( )100 : |  1 i iH f x Group i P Pπ α π α β= − + +    for 1, 2x =  

 

The margin of error of 0.03±  for each configuration. 

 

Significantly lower power compared to LRT using McNemar’s Test      

* .05         **.001 
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Table 6.1 (a) (continued)  - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for alternative 100H ; 

1 and n=100α = per group. 

 

 

 

 

β  
1π  2π  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.2 0.319 0.334
** 

0.189 0.206
** 

0.389 

0.3 0.788 0.802
** 

0.601 0.627
** 

0.842 

 

0.1 

0.4 0.976 0.981
* 

0.924 0.936
** 

0.991 

0.3 0.245 0.242
* 

0.177 0.192
** 

0.268 

0.4 0.682 0.688
* 

0.584 0.607
** 

0.712 

 

0.2 

0.5 0.945 0.952
* 

0.928 0.933
** 

0.965 

0.4 0.210 0.227
* 

0.214 0.225
* 

0.246 

0.5 0.617 0.620
** 

0.626 0.643
** 

0.706 

 

0.3 

0.6 0.918 0.919
** 

0.932 0.936
* 

0.951 

0.5 0.192 0.221 0.207 0.219
* 

0.237 

0.6 0.580 0.603
** 

0.620 0.628
** 

0.665 

 

 

 

 

 

4 

 

0.4 

0.7 0.902 0.902
** 

0.936 0.938 0.947 

 

( ) ( ) ( ) ( )100 : |  1 i iH f x Group i P Pπ α π α β= − + +    for 1, 2x =  

 

The margin of error of 0.03±  for each configuration. 

 

Significantly lower power compared to LRT using McNemar’s Test       

* .05         **.001 
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Figure 6.1 (a) – Summary of power results for the LRT using the asymptotic chi-squared 

95
th

 percentile ordered by ascending power, compared to the power of the Welch-

Satterthwaite t-test, and Adjusted Wilcoxon Rank Sum Test for model 100H ; 

1 and n=100α =  per group.  
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Table 6.1 (b)  - Power of the LRT using the chi-squared 95
th

 percentile, compared to the 

power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, 

and Adjusted Wilcoxon Rank Sum Test for model 100H ; 1 and n=250α =  per group. 

 

β  
1π  2π  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.2 0.385 0.385
** 

0.244 0.259
** 

0.435  

0.1 0.3 0.885 0.879
* 

0.755 0.783
** 

0.900 

0.3 0.321 0.314
*
 0.242 0.263

**
 0.337  

0.2 0.4 0.823 0.824
*
 0.752 0.781

**
 0.839 

0.4 0.283 0.297
*
 0.278 0.290

**
 0.323  

0.3 0.5 0.774 0.789 0.779 0.794 0.798 

0.5 0.260 0.235
**

 0.246 0.258 0.271 

 

 

 

 

2 

 

0.4 0.6 0.739 0.720
**

 0.760 0.768 0.779 

0.1 0.2 0.552 0.558
**

 0.361 0.385
**

 0.601 

0.2 0.3 0.442 0.450
*
 0.363 0.387

**
 0.481 

0.3 0.4 0.383 0.379
*
 0.350 0.364

**
 0.412 

0.5 0.349 0.345
**

 0.350 0.363
**

 0.389 

 

 

3 

0.4 

0.6 0.874 0.883
**

 0.916 0.919 0.920 

0.1 0.2 0.654 0.662
**

 0.421 0.454
**

 0.707 

0.2 0.3 0.519 0.523
**

 0.432 0.453
**

 0.561 

0.3 0.4 0.447 0.451
**

 0.425 0.442
**

 0.507 

 

4 

0.4 0.5 0.407 0.402
** 

0.406 0.420
*
 0.448 

 

 

( ) ( ) ( ) ( )100 : |  1 i iH f x Group i P Pπ α π α β= − + +    for 1, 2x =  

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Figure 6.1 (b) – Summary of power results for the LRT using the asymptotic chi-squared 

95
th

 percentile ordered by ascending power, compared to the power of the Welch-

Satterthwaite t-test, and Adjusted Wilcoxon Rank Sum Test for model 100H ; 

1 and n=250α = per group.  
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6.2.2. Results of Model 010H :  Two Component Poisson Mixture with Equal Mixing 

Proportions and Unequal Second Component Means 

 

 

 

 

 

For this model, we considered 60 different configurations of the parameter 

settings.  The configurations that we considered were 1 2 0.1,  0.3,  0.5, 0.7, 0.9π π= = ; 

1α = ; 2,  3, 4β = ; 0.50,  1.00, 1.50γ = , 2.00 and 1 2 100n n n= = = .  Using the 1000 

simulated samples for each configuration of parameter values, the power for the various 

tests considered were estimated.   

 Table 6.2 (a) shows the various configurations of parameters settings used to 

generate the data.  It contains the power of the Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum Test, Adjusted Wilcoxon Rank Sum Test and Likelihood Ratio Test based on 

the simulated data for each configuration.   As well, the approximate power of the t-test 

was calculated using equation (3.6   ) for each configuration and reported in Table 6.2 (a).  

The power of the LRT is calculated based on the 95
th

 percentile asymptotic critical value 

of the chi-squared distribution with one degree of freedom, 3.84.  The power of the 

Wilcoxon Rank Sum tests and Welch-Satterthwaite t-test were based on the 95
th

 

percentile asymptotic standard normal distribution value, 1.96.   

 The power for the LRT was greater than or equal to the power of the other tests 

considered for all the configurations.  Given a specific beta and mixing proportion, the 

power of each of the tests increased as the value of gamma increased.  As the mixing 

proportion increased, corresponding to a larger percentage of the groups having different 

second component means, the power of the tests increased as well.  However as beta 

increased, there was a decrease in the power of all three tests holding the other conditions 
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constant.  The Welch-Satterthwaite t-test test had greater power for each configuration 

considered compared to the corresponding Adjusted Wilcoxon Rank Sum test.  For all 

differences in component means considered, given the mixing proportion was at most 0.9 

there was a significant difference in power between the LRT and Welch-Satterthwaite as 

well as LRT and Adjusted Wilcoxon Rank Sum test based on McNemar’s test. 

Figure 6.2 (a) illustrates the power results that were reported in Table 6.2 (a) for the 

various configurations for model 010H  .   

Based on the approximate power calculation of the t-test when the sample size n 

increased from 100 to 250 per group, there were 38 configurations where the power was 

less than 0.9.  We decided to investigate the power of the tests considered above for these 

selected models.  Table 6.2 (b) shows the generating model parameters used to simulate 

the data, and the power of the LRT, Welch-Satterthwaite t-test, Adjusted Wilcoxon Rank 

Sum test, Wilcoxon Rank Sum test and approximate power of the t-test.  The power 

results from Table 6.2 (b) are illustrated in Figure 6.2 (b).  In Figure 6.2 (b), the models 

are in ascending order based on the observed LRT power.    As one can see by looking at 

the graph, the power of the LRT is more powerful than the Welch-Satterthwaite t-test and 

the Wilcoxon Rank Sum test when 250n = per group for the selected models we 

examined. 
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Table 6.2 (a) - Power of the LRT using the chi-squared 95
th

 percentile, compared to the 

power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, 

and Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α = per group. 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.046 0.065
** 

0.041 0.048
** 

0.107 

1.0 0.075 0.077
**

 0.052 0.061
**

 0.158 

1.5 0.113 0.117
**

 0.053 0.067
**

 0.274 

 

0.1 

2.0 0.157 0.149
**

 0.049 0.060
**

 0.418 

0.5 0.093 0.097
**

 0.046 0.052
**

 0.135 

1.0 0.224 0.211
**

 0.091 0.102
**

 0.366 

1.5 0.395 0.378
**

 0.154 0.163
**

 0.642 

 

0.3 

2.0 0.564 0.574
**

 0.197 0.212
**

 0.853 

0.5 0.158 0.196
*
 0.144 0.147

**
 0.232 

1.0 0.435 0.468
**

 0.284 0.294
**

 0.625 

1.5 0.714 0.729
**

 0.473 0.483
**

 0.893 

 

0.5 

2.0 0.885 0.889
**

 0.632 0.645
**

 0.979 

0.5 0.253 0.232
**

 0.176 0.184
**

 0.293 

1.0 0.684 0.676
**

 0.559 0.568
**

 0.769 

1.5 0.932 0.938
**

 0.846 0.851
**

 0.968 

 

0.7 

2.0 0.991 0.989
*
 0.958 0.962

**
 0.998 

0.5 0.399 0.414
**

 0.368 0.382
**

 0.454 

1.0 0.901 0.888
*
 0.860 0.865

**
 0.905 

1.5 0.996 0.996 0.993 0.993 0.996 

 

 

 

 

 

 

 

 

 

2 

 

0.9 

2.0 1.000 1.000 1.000 1.000 1.000 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
    

 

The margin of error of 0.03±  for each configuration. 

 

Significantly lower in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Table 6.2 (a) (continued)  - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 

1 and n=100α = per group. 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.042 0.062
*
 0.038 0.047

**
 0.092 

1.0 0.065 0.064
**

 0.045 0.051
**

 0.137 

1.5 0.095 0.092
**

 0.042 0.054
**

 0.224 

 

0.1 

2.0 0.128 0.120
**

 0.040 0.050
**

 0.375 

0.5 0.075 0.075
**

 0.044 0.046
**

 0.114 

1.0 0.164 0.158
**

 0.062 0.071
**

 0.320 

1.5 0.286 0.277
**

 0.093 0.099
**

 0.580 

 

0.3 

2.0 0.423 0.416
**

 0.119 0.133
**

 0.795 

0.5 0.117 0.152
*
 0.100 0.107

**
 0.179 

1.0 0.308 0.333
**

 0.185 0.192
**

 0.515 

1.5 0.546 0.554
**

 0.317 0.328
**

 0.822 

 

0.5 

2.0 0.747 0.759
**

 0.437 0.440
**

 0.957 

0.5 0.183 0.164
**

 0.129 0.137
**

 0.230 

1.0 0.519 0.509
**

 0.421 0.425
**

 0.690 

1.5 0.818 0.811
**

 0.694 0.701
**

 0.937 

 

0.7 

2.0 0.954 0.947
**

 0.867 0.872
**

 0.996 

0.5 0.302 0.304
**

 0.271 0.279
**

 0.351 

1.0 0.791 0.774
**

 0.752 0.754
**

 0.827 

1.5 0.979 0.973
**

 0.968 0.969
**

 0.990 

 

 

 

 

 

 

 

3 

 

0.9 

2.0 0.999 1.000 1.000 1.000 1.000 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly lower in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Table 6.2 (a) (continued)  - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 

1 and n=100α = per group. 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.039 0.058
*
 0.039 0.045

**
 0.084 

1.0 0.058 0.057
**

 0.039 0.045
**

 0.133 

1.5 0.081 0.078
**

 0.037 0.050
**

 0.212 

 

0.1 

2.0 0.108 0.102
**

 0.039 0.048
**

 0.329 

0.5 0.063 0.067
**

 0.037 0.045
**

 0.103 

1.0 0.128 0.129
**

 0.052 0.055
**

 0.296 

1.5 0.217 0.213
**

 0.074 0.080
**

 0.510 

 

0.3 

2.0 0.324 0.306
**

 0.094 0.100
**

 0.750 

0.5 0.093 0.117
**

 0.091 0.094
**

 0.170 

1.0 0.230 0.241
**

 0.142 0.147
**

 0.454 

1.5 0.418 0.433
**

 0.229 0.235
**

 0.766 

 

0.5 

2.0 0.609 0.601
**

 0.318 0.328
**

 0.933 

0.5 0.142 0.134
**

 0.110 0.114
**

 0.207 

1.0 0.398 0.390
**

 0.339 0.341
**

 0.618 

1.5 0.688 0.675
**

 0.587 0.593
**

 0.899 

 

0.7 

2.0 0.880 0.867
**

 0.766 0.768
**

 0.991 

0.5 0.240 0.245
**

 0.232 0.239
**

 0.303 

1.0 0.679 0.672
**

 0.654 0.660
**

 0.748 

1.5 0.941 0.934
**

 0.929 0.931
**

 0.974 

 

 

 

 

 

 

 

4 

 

0.9 

2.0 0.995 0.994 0.992 0.992
*
 0.999 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly lower in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Figure 6.2 (a) – Summary of power results for the LRT using the chi-squared 95
th

 

percentile in ascending order, compared to the power of the Welch-Satterthwaite t-test, 

and Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=100α =  per group.  

 

 

 

B=2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parameter Settings

P
o

w
e
r

T AWRS LRT

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

 

Figure 6.2 (a)  (continued) – Summary of power results for the LRT using the chi-

squared 95
th

 percentile in ascending order, compared to the power of the Welch-

Satterthwaite t-test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 

1 and n=100α =  per group.  
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Figure 6.2 (a) (continued) – Summary of power results for the LRT using the chi-

squared 95
th

 percentile in ascending order, compared to the power of the Welch-

Satterthwaite t-test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 

1 and n=100α =  per group.  
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Table 6.2 (b)  - Power of the LRT using the chi-squared 95
th

 percentile, compared to the 

power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, 

and Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=250α = per group. 

 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
010

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α π α β

π α π α β γ

= = − + +


= = − + + +
 

The margin of error of 0.03±  for each configuration. 

 

Significantly lower in power compared to LRT using McNemar’s Test  

* .05   **.001 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon 

- Adj 

LRT 

0.5 0.063 0.067
**

 0.044 0.056
**

 0.130 

1.0 0.128 0.133
**

 0.054 0.067
**

 0.290 

1.5 0.219 0.241
**

 0.060 0.067
**

 0.549 

0.1 

2.0 0.325 0.324
**

 0.084 0.099
**

 0.761 

0.5 0.171 0.161
**

 0.096 0.102
**

 0.267 

1.0 0.476 0.475
**

 0.193 0.204
**

 0.718 

0.3 

1.5 0.763 0.789
**

 0.326 0.347
**

 0.964 

0.5 0.328 0.305
**

 0.178 0.189
**

 0.423 0.5 

1.0 0.811 0.813
**

 0.570 0.581
**

 0.943 

0.7 0.5 0.535 0.542
**

 0.438 0.455
**

 0.621 

2 

0.9 0.5 0.769 0.756
*
 0.719 0.728

**
 0.778 

0.5 0.056 0.071
**

 0.046 0.054
**

 0.110 

1.0 0.106 0.107
**

 0.048 0.059
**

 0.228 

1.5 0.174 0.182
**

 0.054 0.066
**

 0.472 

0.1 

2.0 0.257 0.252
**

 0.050 0.062
**

 0.674 

0.5 0.127 0.128
**

 0.074 0.080
**

 0.208 

1.0 0.341 0.358
**

 0.132 0.138
**

 0.690 

1.5 0.598 0.613
**

 0.201 0.213
**

 0.930 

0.3 

2.0 0.797 0.798
**

 0.270 0.284
**

 0.995 

0.5 0.229 0.242
**

 0.154 0.158
**

 0.376 0.5 

1.0 0.635 0.668
**

 0.401 0.412
**

 0.885 

0.5 0.385 0.410
**

 0.328 0.329
**

 0.506 0.7 

1.0 0.888 0.895
**

 0.802 0.805
**

 0.968 

3 

0.9 0.5 0.624 0.653
*
 0.611 0.615

**
 0.684 
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Table 6.2 (b) (continued) - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 010H ; 

1 and n=250α = per group. 
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π α π α β γ

= = − + +


= = − + + +
 

 

The margin of error of 0.03±  for each configuration. 

 

 

Significantly lower in power compared to LRT using McNemar’s Test  

* .05   **.001 

 

 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon 

- Adj 

LRT 

0.5 0.050 0.054
**

 0.045 0.052
**

 0.096 

1.0 0.089 0.070
**

 0.035 0.045
**

 0.199 

1.5 0.142 0.150
**

 0.043 0.054
**

 0.436 

0.1 

2.0 0.206 0.205
**

 0.050 0.059
**

 0.616 

0.5 0.100 0.117
**

 0.059 0.070
**

 0.206 

1.0 0.255 0.256
**

 0.092 0.102
**

 0.578 

1.5 0.462 0.488
**

 0.130 0.139
**

 0.898 

0.3 

2.0 0.662 0.681
**

 0.163 0.180
**

 0.983 

0.5 0.171 0.147
**

 0.098 0.102
**

 0.305 

1.0 0.489 0.486
**

 0.269 0.274
**

 0.811 

0.5 

1.5 0.791 0.791
**

 0.481 0.491
**

 0.987 

0.5 0.289 0.316
**

 0.256 0.260
**

 0.462 0.7 

1.0 0.768 0.765
**

 0.675 0.679
**

 0.947 

4 

 

0.9 0.5 0.508 0.535
**

 0.516 0.526
**

 0.601 
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Figure 6.2 (b) – Summary of power results for the LRT using the chi-squared 95
th

 

percentile in ascending order, compared to the power of the Welch-Satterthwaite t-test  

and Adjusted Wilcoxon Rank Sum Test for model 010H ; 1 and n=250α =  per group.  
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6.2.3. Results of Model 001H  :  Two Component Poisson Mixture with Equal 

Mixing Proportions and Unequal First Component Means 

 

 

 

 

 

 

For this model, we considered 60 different configurations of the parameter 

settings.  The configurations that we considered were 1 2 0.1,  0.3,  0.5, 0.7, 0.9π π= = ; 

1α = ;  2,  3,  4β = ; 0.50,  1.00, 1.50γ = , 2.00 and 1 2 100n n n= = = .  Using the 1000 

simulated samples for each configuration of parameter values, the power for the various 

tests considered were estimated.   

 Table 6.3 (a) shows the various configurations of parameters settings used to 

generate the data.  It contains the power of the Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum Test, Adjusted Wilcoxon Rank Sum Test and Likelihood Ratio Test based on 

the simulated data for each configuration.   As well, the approximate power of the t-test 

was calculated using equation (3.6   ) for each configuration and reported in Table 6.3 (a).  

The power of the LRT is calculated based on the 95
th

 percentile asymptotic critical value 

of the chi-squared distribution with one degree of freedom, 3.84.  The power of the 

Wilcoxon Rank Sum tests and Welch-Satterthwaite t-test were based on the 95
th

 

percentile asymptotic standard normal distribution value, 1.96.  

 For a majority of the configurations, the power for the LRT was greater than or 

equal to the power of the other tests considered.  Given a specific beta and mixing 

proportion, the power of each of the tests increased as the value of gamma increased.  As 

the mixing proportion decreased, corresponding to a larger percentage of the groups 

having different first component means, the power of the tests increased as well.  As well, 
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as beta increased there was an increase in the power of all three tests holding the other 

conditions constant.  For all differences in component means considered, given the 

mixing proportion was at least 0.3 there was a significant difference in power between 

the LRT and Welch-Satterthwaite.  The same held true for the LRT and Adjusted 

Wilcoxon Rank Sum test based on McNemar’s test, excluding one case when 

4,  0.3,  and =2.0β π γ= = .   Figure 6.3 (a) illustrates the power results that were 

reported in Table 6.3 (a) for the various configurations for model 001H  .   

Based on the approximate power calculation of the t-test when the sample size n 

increased from 100 to 250 per group, there were 42 configurations where the power was 

less than 0.9.  We decided to investigate the power of the tests considered above for these 

selected models.  Table 6.3 (b) shows the generating model parameters used to simulate 

the data, and the power of the LRT, Welch-Satterthwaite t-test, Adjusted Wilcoxon Rank 

Sum test, Wilcoxon Rank Sum test and approximate power of the t-test.  The power 

results from Table 6.3 (b) are illustrated in Figure 6.3 (b).  In Figure 6.3 (b), the models 

are in ascending order based on the observed LRT power.    Similarly, the power of the 

LRT was higher than all of the other tests considered.   
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Table 6.3 (a) - Power of the LRT using the chi-squared 95
th

 percentile, compared to the 

power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, 

and Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α = per group. 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.276 0.275
**

 0.272 0.280
**

 0.317 

1.0 0.787 0.745
**

 0.784 0.787 0.793 

1.5 0.986 0.982 0.990 0.990 0.986 

 

0.1 

2.0 1.000 1.000 1.000 1.000 1.000 

0.5 0.161 0.166
**

 0.174 0.181
*
 0.211 

1.0 0.486 0.492
**

 0.548 0.559
**

 0.632 

1.5 0.814 0.824
**

 0.889 0.890
**

 0.921 

 

0.3 

2.0 0.963 0.954
**

 0.982 0.982
**

 0.994 

0.5 0.097 0.089
**

 0.085 0.088
**

 0.131 

1.0 0.255 0.248
**

 0.269 0.272
**

 0.392 

1.5 0.483 0.497
**

 0.545 0.549
**

 0.727 

 

0.5 

2.0 0.705 0.705
**

 0.790 0.792
**

 0.926 

0.5 0.058 0.078
**

 0.069 0.072
**

 0.122 

1.0 0.117 0.126
**

 0.110 0.113
**

 0.237 

1.5 0.204 0.213
**

 0.216 0.218
**

 0.411 

 

0.7 

2.0 0.316 0.354
**

 0.367 0.370
**

 0.683 

0.5 0.034 0.053
**

 0.049 0.053
**

 0.087 

1.0 0.045 0.074
**

 0.062 0.068
**

 0.111 

1.5 0.058 0.078
**

 0.076 0.078
**

 0.145 

 

 

 

 

 

 

 

2 

 

0.9 

2.0 0.074 0.087
**

 0.078 0.081
**

 0.200 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Table 6.3 (a) (continued) - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 001H ; 

7 and n=100α = per group. 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon – 

Adj 

LRT 

0.5 0.294 0.303
**

 0.322 0.331
*
 0.359 

1.0 0.814 0.781
**

 0.854 0.857
*
 0.874 

1.5 0.990 0.988
*
 0.997 0.997 0.997 

 

0.1 

2.0 1.000 0.999 1.000 1.000 1.000 

0.5 0.153 0.138
**

 0.172 0.175
**

 0.237 

1.0 0.455 0.468
**

 0.588 0.590
**

 0.714 

1.5 0.777 0.769
**

 0.909 0.912
**

 0.966 

 

0.3 

2.0 0.944 0.937
**

 0.992 0.993
*
 1.000 

0.5 0.091 0.099
**

 0.114 0.119
**

 0.159 

1.0 0.230 0.257
**

 0.314 0.319
**

 0.538 

1.5 0.432 0.452
**

 0.538 0.542
**

 0.848 

 

0.5 

2.0 0.642 0.641
**

 0.751 0.751
**

 0.986 

0.5 0.056 0.063
**

 0.064 0.067
**

 0.114 

1.0 0.108 0.105
**

 0.103 0.105
**

 0.277 

1.5 0.185 0.181
**

 0.176 0.180
**

 0.542 

 

0.7 

2.0 0.283 0.268
**

 0.258 0.262
**

 0.856 

0.5 0.033 0.055
**

 0.056 0.057
**

 0.113 

1.0 0.044 0.057
**

 0.049 0.049
**

 0.142 

1.5 0.057 0.072
**

 0.065 0.067
**

 0.228 

 

 

 

 

 

 

 

3 

 

0.9 

2.0 0.072 0.079
**

 0.067 0.070
**

 0.342 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Table 6.3 (a) (continued)  - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 001H ; 

7 and n=100α = per group. 

 

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.5 0.306 0.296
**

 0.396 0.404
**

 0.446 

1.0 0.828 0.826
**

 0.933 0.942
**

 0.970 

1.5 0.992 0.990
*
 1.000 1.000 1.000 

 

0.1 

2.0 1.000 1.000 1.000 1.000 1.000 

0.5 0.141 0.143
**

 0.211 0.215
**

 0.320 

1.0 0.410 0.412
**

 0.645 0.652
**

 0.870 

1.5 0.720 0.722
**

 0.943 0.944
**

 0.998 

 

0.3 

2.0 0.911 0.902
**

 0.997 0.997 1.000 

0.5 0.083 0.089
**

 0.116 0.118
**

 0.229 

1.0 0.202 0.174
**

 0.268 0.273
**

 0.676 

1.5 0.376 0.371
**

 0.550 0.555
**

 0.961 

 

0.5 

2.0 0.568 0.591
**

 0.771 0.771
**

 0.999 

0.5 0.053 0.061
**

 0.059 0.059
**

 0.142 

1.0 0.099 0.114
**

 0.106 0.107
**

 0.420 

1.5 0.165 0.159
**

 0.150 0.153
**

 0.764 

 

0.7 

2.0 0.249 0.259
**

 0.232 0.237
**

 0.965 

0.5 0.033 0.050
**

 0.042 0.042
**

 0.135 

1.0 0.043 0.060
**

 0.054 0.054
**

 0.184 

1.5 0.055 0.072
**

 0.049 0.053
**

 0.334 

 

 

 

 

 

 

 

4 

 

0.9 

2.0 0.069 0.074
**

 0.059 0.060
**

 0.535 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Figure 6.3 (a) – Summary of power results for the LRT using the chi-squared 95
th

 

percentile, compared to the power of the Welch-Satterthwaite t-test and Adjusted 

Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α =  per group.  
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Figure 6.3 (a) (continued)– Summary of power results for the LRT using the chi-

squared 95
th

 percentile, compared to the power of the Welch-Satterthwaite t-test and 

Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α =  per group.  
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Figure 6.3 (a) (continued)– Summary of power results for the LRT using the chi-

squared 95
th

 percentile, compared to the power of the Welch-Satterthwaite t-test and 

Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=100α =  per group.  
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Table 6.3 (b)  - Power of the LRT using the chi-squared 95
th

 percentile, compared to the 

power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon Rank Sum test, 

and Adjusted Wilcoxon Rank Sum Test for model 001H ; 7 and n=250α = per group.  

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon - 

Adj 

LRT 

0.1 0.5 0.578 0.575
**

 0.586 0.596 0.611 

0.5 0.335 0.342
**

 0.382 0.390
*
 0.418  

0.3 1.0 0.861 0.842
**

 0.895 0.895
**

 0.923 

0.5 0.180 0.202
**

 0.209 0.212
**

 0.276 

1.0 0.539 0.548
**

 0.611 0.617
**

 0.756 

 

0.5 

1.5 0.858 0.855
**

 0.917 0.919
**

 0.985 

0.5 0.090 0.090
**

 0.096 0.100
**

 0.166 

1.0 0.228 0.214
**

 0.211 0.216
**

 0.405 

1.5 0.433 0.448
**

 0.470 0.477
**

 0.802 

 

0.7 

2.0 0.649 0.648
**

 0.667 0.674
**

 0.958 

0.5 0.040 0.057
**

 0.056 0.057
**

 0.089 

1.0 0.061 0.079
**

 0.070 0.070
**

 0.155 

1.5 0.089 0.097
**

 0.092 0.093
**

 0.257 

 

 

 

 

 

 

 

2 

 

0.9 

2.0 0.125 0.146
**

 0.121 0.125
**

 0.425 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Table 6.3 (b) (continued)  - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 001H ; 

7 and n=250α = per group.  

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon 

– Adj 

LRT 

0.1 0.5 0.611 0.598
**

 0.646 0.651
*
 0.669 

0.5 0.317 0.315
**

 0.395 0.406
**

 0.478 0.3 

1.0 0.832 0.814
**

 0.916 0.916
**

 0.972 

0.5 0.165 0.165
**

 0.190 0.192
**

 0.323 

1.0 0.489 0.473
**

 0.574 0.579
**

 0.862 

 

0.5 

1.5 0.808 0.815
**

 0.918 0.918
**

 0.999 

0.5 0.084 0.084
**

 0.086 0.088
**

 0.182 

1.0 0.208 0.201
**

 0.212 0.213
**

 0.593 

1.5 0.391 0.388
**

 0.391 0.394
**

 0.937 

 

0.7 

2.0 0.592 0.582
**

 0.570 0.572
**

 0.997 

0.5 0.039 0.066
**

 0.061 0.062
**

 0.115 

1.0 0.059 0.070
**

 0.069 0.070
**

 0.194 

1.5 0.086 0.102
**

 0.080 0.083
**

 0.390 

 

 

 

 

 

 

 

3 

 

0.9 

2.0 0.120 0.118
**

 0.088 0.088
**

 0.677 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

  

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Table 6.3 (b) (continued)  - Power of the LRT using the chi-squared 95
th

 percentile, 

compared to the power of the Approximate t-test, Welch-Satterthwaite t-test, Wilcoxon 

Rank Sum test, and Adjusted Wilcoxon Rank Sum Test for model 001H ; 

7 and n=250α = per group.  

 

 

β  π  γ  T 

Approximate 

T 

Observed 

Wilcoxon Wilcoxon 

– Adj 

LRT 

0.1 0.5 0.631 0.636
**

 0.777 0.787
*
 0.805 

0.5 0.287 0.275
**

 0.440 0.446
**

 0.625  

0.3 1.0 0.782 0.782
**

 0.962 0.963
**

 0.997 

0.5 0.147 0.149
**

 0.192 0.192
**

 0.434 

1.0 0.428 0.432
**

 0.600 0.603
**

 0.966 

 

0.5 

1.5 0.739 0.752
**

 0.901 0.904
**

 1.000 

0.5 0.078 0.087
**

 0.092 0.094
**

 0.256 

1.0 0.185 0.190
**

 0.182 0.184
**

 0.771 

1.5 0.344 0.329
**

 0.310 0.312
**

 0.987 

 

0.7 

2.0 0.526 0.524
**

 0.495 0.496
**

 1.000 

0.5 0.039 0.045
**

 0.043 0.044
**

 0.101 

1.0 0.058 0.055
**

 0.044 0.046
**

 0.297 

1.5 0.083 0.076
**

 0.056 0.059
**

 0.594 

 

 

 

 

 

 

 

4 

 

0.9 

2.0 0.114 0.111
**

 0.059 0.060
**

 0.861 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
001

| 1 1
:

| 2 1

f x X P P
H

f x X P P

π α β π α

π α β γ π α

= = − − +


= = − − − +
 

 

The margin of error of 0.03±  for each configuration. 

 

Significantly different in power compared to LRT using McNemar’s Test 

 * .05      **.001 
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Figure 6.3 (b) – Summary of power results for the LRT using the chi-squared 95
th

 

percentile, compared to the power of the Welch-Satterthwaite t-test and Adjusted 

Wilcoxon Rank Sum Test for model 001H ; 7 and n=250α =  per group. 
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Chapter 7  
 

Computer Software 
 

 

 

 

 

 

 The computer application consists of two assemblies.  One assembly is a shared 

DLL which is written in unmanaged C++.  The other assembly is a Microsoft .Net 

WinForms application that is written in C++\CLI.  We choose to use unmanaged C++ for 

the core functionality of the program because it allowed greater performance and 

efficiency.  However, it comes at the cost of more complicated implementation and 

memory management concerns. 

 The initial design consisted of a console, command line driven, interface.  This 

made sense for initial testing purposes but was impractical for production runs.  

Therefore, to make the software more user-friendly we implemented a WinForm 

graphical user interface (GUI).  The application is designed for the user to interact with 

the GUI and have it call through to the unmanaged DLL which performs the core 

calculations.   

 The application provides the user with the ability to simulate data or input their 

own data.  When simulating data, the user will choose the Generate tab at the top of the 

GUI.  They will then input the mixing proportion, component means, and sample size for 

each group.  The default values for both the control group and treatment group are 0.5 for 

the mixing proportion, 1.0 for the first component mean, and 3.0 for the second 

component mean.  A picture of the Generate tab is given in Figure 7.1 
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Figure 7.1 - Picture of Computer Software Graphical User Interface (GUI)  

         Generate Tab 

 

 

 

 

The user has the choice of selecting the number of simulations and which tests 

they would like to run.  The possible test options are the Satterthwaite t-test, Wilcoxon 

Rank Sum test, Adjusted Wilcoxon Rank Sum test, Alternative 1 (LRT – Model 100H ), 

Alternative 2 (LRT – Model 010H ) and Alternative 3 (LRT – Model 001H ).  The user also 

has the option of having the simulated data values, tests results, and power results printed 

to the screen or to an output .xml file which they specify.  If the user has a large number 

of different cases they would like to simulate, they can choose to use the batch option.  
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They would click on the Batch tab and input an .xml file which includes all the different 

parameter settings they would like to run along with corresponding output .xml files.  

 If the user has their own data, which they would like to run through the program, 

they may they do that as well.  To input their own data, they would choose the File tab.  

They will then input a .txt file containing the count data for the control group and a .txt 

file containing the count data for the treatment group.   They then have the similar 

options as to when simulating data.  They get to choose which tests they want run, the 

number of simulations, and whether the results are printed to the screen or to an output 

file.  A picture of the File tab is given in Figure 7.2. 

 

Figure 7.2 - Picture of Computer Software Graphical User Interface (GUI)  

         File Tab 

 

`  
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Chapter 8 
 

Applications of Finite Mixture of Poisson Distributions 
 

 

 

 

 

 

 

 

We applied our testing procedure for comparing two groups of two-component 

Poisson mixtures for two sets of count data that were provided.  One data set that we 

studied consisted of the number of fibromas (benign tumors) which existed on patients 

suffering from the disease tuberous sclerosis.  The other data set that we applied our 

procedure to consisted of the number of deviant verbalizations from a study on 

schizophrenia. 
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8.1   Analysis of Fibroma Data 
 

 

 

 

 

To begin, we divided the sample into two groups based on the age thirty.  We fit 

single Poisson distributions to each group using the sample mean of each group.  We 

conducted chi-squared goodness of fit tests for each group using the single Poisson 

distributions which both resulted in p-values less than .0001 indicating extremely poor 

fits.   As well, for each group the variance was much higher than the mean.  Thus, it 

suggested that within each group there existed heterogeneity.   

Using our program, we ran each age group versus itself under the null hypothesis 

to obtain estimates for a two-component Poisson mixture within the group.  For the 

control group (below 30 years old) we obtained 0.22 for the mixing proportion, 0.15 for 

the first component mean and 3.99 for the second component mean.  For the treatment 

group (at least 30 years old) we obtained 0.37 for the mixing proportion, 1.81 for the first 

component mean and 10.73 for the second component mean.    

Figure 8.1 is a plot of the count of fibromas for the control group and 

corresponding probability distribution function of the single Poisson distribution and 

mixture distribution fit to the data.  Figure 8.2 is a plot of the count of fibromas for the 

treatment group and corresponding probability distribution function of the single Poisson 

distribution and mixture distribution fit to the data.  As one can see, it appears as if the 

two-component mixture for each group fits the data much better.  This reiterates that 

there possibly exists some type of heterogeneity within each group.    
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Figure 8.1 – Observed Number of Fibromas for Control Group (Below 30 years old) 

along with corresponding Expected Counts for Single Poisson Distribution and Two-

Component Mixture Poisson Distribution. 
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Figure 8.2 – Observed Number of Fibromas for Treatment Group (At least 30 years old) 

along with corresponding Expected Counts for Single Poisson Distribution and Two-

Component Mixture Poisson Distribution. 

 

 

 
 

 

 

 We then applied our testing procedure for comparing two groups of two-

component Poisson mixtures.  We considered all three alternative models for the two 

groups.  Based on the Likelihood Ratio Test statistics, there was a significant difference 

between the two groups for all three alternatives.  The likelihood ratio test statistics were 

28.83 for model 100H , 8.82 for model 010H , and 29.19 for model 001H .   
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8.2  Deviant Verbalization Data 
 

 

 

 

 

With this data set, we compared the number of deviant verbalizations of normal 

controls to siblings of Schizophrenics.   For each group, there was an abundant count of 

zeros and the variance was significantly higher than the mean.  Figures 8.3 and 8.4 are 

plots of the observed count of deviant verbalizations for the control group and sibling 

group respectively. 

 

Figure 8.3 – Observed count of deviant verbalizations for the normal controls 
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Figure 8.4– Observed count of deviant verbalizations for siblings of schizophrenics 

 

 

 
 

 

 It was believed that the siblings of Schizophrenics have a higher frequency of 

deviant verbalizations compared to the normal controls.  Therefore, we believed if a two-

component Poisson mixture existed within each group that the sibling group would have 

a higher mixing proportion compared to the control group.  We applied our two group 

two-component Poisson mixture test to the data sets.  We considered all three alternative 

models.   

We found that there was a significant difference between the mixing proportion 

for the two groups (Model 100H ) and first component means (Model 001H ).    The LRT 

test statistic for the difference between mixing proportions was 12.04.  For Model 100H , 

the estimated mixing proportion for the control group was 0.12 and the mixing proportion 

for the sibling group was 0.28 with first and second component means of 1.12 and 9.76, 
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respectively.    The LRT statistic for a difference between first component means was 

16.76.  For Model 001H , the first component mean for the control group was estimated to 

be 0.80 and 1.43 for the sibling group with a common second component mean of 9.87 

with a common mixing proportion of 0.21.    
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Chapter 9 
 

Discussion and Conclusions 
 

 

 

 

 

 

 For this study, we derived a Likelihood Ratio Test comparing two groups 

assuming a two-component Poisson mixture existed within each group.  We considered 

three different alternatives:  (1)  Difference in mixing proportions only ( Model 100H )  (2)  

Differences in second component means only ( Model 010H )  and (3)   Differences in first 

component means only ( Model 001H ).   

 Through a simulation study the power of the LRT was compared to the Welch-

Satterthwaite t-test, Wilcoxon Rank Sum test, and Adjusted Wilcoxon Rank Sum test for 

sample sizes of 100 and 250 per group.  The power of these tests were based on the 

asymptotic 95
th

 percentile critical value of the chi-squared distribution with one degree of 

freedom for the LRT and the asymptotic 95
th

 percentile critical value of the standard 

normal distribution for the Welch-Satterthwaite t-test and Wilcoxon Rank Sum tests.   

We found that in a majority of the cases the LRT was significantly more powerful 

compared to the other tests based on McNemar’s test.   

 One major concern was that the likelihood ratio test did not follow an asymptotic 

chi-squared distribution with the degrees of freedom equal to the difference of the 

number of parameters between the two hypotheses.  Therefore, we investigated the size 

of the test under the null hypothesis at the 5% significance level.  It appeared that the 
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critical value used for the Wilcoxon Rank Sum tests and t-test were valid, however the 

size of the LRT seemed slightly inflated.   

 Based on the study of the size of the LRT, we decided to investigate the empirical 

null distribution of the LRT.  Since all of the 3 alternatives differed by 1 parameter from 

the null hypothesis, we used simulations involving all of them.  Based on these 

simulations, we derived the 95
th

 percentile of the empirical null distribution for the LRT 

for sample sizes of 100, 500 and 1000 per group.  As the sample size increased per group, 

the critical value approached the asymptotic 95
th

 percentile of the chi-squared distribution 

with one degree of freedom.   

 Using the empirical critical values that we derived for the LRT, we conducted a 

similar power study using sample sizes of 100 per group.  When comparing two groups 

whose mixing proportions differed, it appeared that the power of the LRT, Welch-

Satterthwaite t-test and Adjusted Wilcoxon Rank Sum test were all relatively close to one 

another.  However when a difference in one of the component means existed, the LRT 

was significantly more powerful than the other two tests.   

 Based on the study it appears that when comparing a control group and a 

treatment group where a two-component Poisson mixture is though to exist within each 

group that the LRT is more powerful at detecting a difference between the mixtures.  In 

comparisons to the other tests, the LRT does take longer to compute due to the EM 

algorithm; however it seems worth the effort due to the increase in power.  Just as in the 

past when technology limited maximum likelihood estimation, as time goes on the 

advancements in computers will only speed up this process.   
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 Based on this dissertation, we considered only 3 alternatives and conducted a 

power study using sample sizes of 100 and 250 per group.  For future work, one may 

want to investigate the difference in power for these tests using small sample sizes.  

Another topic involving smaller sample sizes that would be of interest is the empirical 

null distribution of the LRT.   As well, the LRT could be extended to involve 

combinations of the alternatives that we presented in this dissertation.   
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