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Abstract of the Dissertation

Design and Analysis of Heterogeneous Sensors based Object
Tracking Systems

by

Jinseok Lee

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2009

In a surveillance system for monitoring objects, there is an increasing need for

developing robust algorithm as well as dealing with intelligent interaction among

different types of sensors and information. This dissertation describes a design and

an analysis of object tracking methodology in heterogeneous sensor network.

Recently, Sequential Monte Carlo (SMC) techniques, or particle filters have re-

ceived a great deal of attention due to desirable characteristics such as the ability to

achieve multiple hypotheses and the relaxation of the Gaussian and linear modeling

assumption. Such characteristics allow SMC techniques to be applied to a variety

of areas including audio processing, RFID detection processing and computer vision.

In this dissertation, the investigation of SMC technique is primarily formulated and
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analyzed based on an acoustic sensor. Once the performance is analyzed, we address

an inherent limitation of the technique with the single type of sensor, an acoustic

sensor. In order to overcome the limitation, we propose a multiple types of sensors

based cooperation method. In addition, since a visual sensor requires much higher

computational resources than an acoustic sensor, we focus on a sensor cooperation

method for minimized overall computation while the limitation is significantly allevi-

ated. Note that the cooperation method assumes that visual sensors detect an object.

In practice, however, visual sensors do not necessarily detect an object due to object

overlapping, obstacle occlusion and background noise. Thus, we finally present the

method for increasing an object detection through information collaboration.

In the first part, we consider the object tracking problem in three dimensional

(3-D) space when the azimuth and the elevation of the object are available from

the passive acoustic sensor. The particle filtering technique can be directly applied to

estimate the 3-D location of the object, but we propose to decompose the 3-D particle

filter into the three planes’ particle filters which are individually designed for the 2-D

bearings-only tracking problems. The 2-D bearing information is derived from the

azimuth and the elevation of the object to be used for the 2-D particle filter. Two

estimates of three planes’ particle filters are selected based on the characterization

of the acoustic sensor operation in noisy environment. The proposed approach is

extended to multiple acoustic sensors and its robustness is analyzed. The Cramer-

Rao Lower Bound of the proposed 2-D particle filter-based algorithm is derived and

compared against the algorithm based on the direct 3-D particle filter.

In the second part, the object tracking by a single acoustic sensor based on the
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particle filtering is extended for the multiple objects, and the corresponding inherent

limitation is introduced. In order to overcome the limitation of the acoustic sensor

for the simultaneous multiple object tracking, the support from the visual sensor with

the objects’ localization is considered. The cooperation from the visual sensor, how-

ever, should be minimized, as the visual sensor’s object localization requires much

higher computational resources than the acoustic sensor based estimation, and the

visual sensor is usually not dedicated to the object tracking and deployed for other

applications. The acoustic sensor mainly tracks multiple objects and the visual sen-

sor supports the tracking task only when the acoustic sensor has a difficulty. Several

techniques of the particle filtering are used for the multiple object tracking by the

acoustic sensor and the limitations of the acoustic sensor are discussed to identify

the need of the visual sensor cooperation. Performance of the triggering-based co-

operation of the two visual sensors is evaluated and it is compared with a periodic

cooperation in a real environment.

In the third part, we address enhancement of object detection with multiple vi-

sual sensors. The detection enhancement we introduce is to recover missed object

detection given partially detected objects among multiple visual sensors. Once an

object is detected by one or more visual sensors, the detected local object positions

are transformed into a global object position. Based on a local and global informa-

tion collaboration, any missed local object position is recovered by the global to local

transformation. However, the collaboration may degrade the detection performance

by incorrectly recovering the local object position, which is propagated from false

object detection. Furthermore, local object positions corresponding to an identical
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object are transformed into inequivalent global object positions due to detection un-

certainty such as a shadow. We minimize the performance degradation by preventing

from the propagation of the false object detection. In addition, we present an eval-

uation method for a final global object position. Finally, the proposed method is

analyzed and evaluated with case studies.

In the last part, we summarize and highlight our proposed object tracking method-

ology in heterogeneous sensor network. In addition, ongoing and future research is

presented. The future research includes face identification, robot navigation and other

sensors combination based cooperation method. In the face identification issue, we

study temporal and spatial face characteristics. In the robot navigation issue, we

identify a limitation of the existing method, potential field method, and present a

possible solutions. In the other sensors combination based cooperation issue, Radio

Frequency Identification (RFID) and visual sensor combination is considered with

data traffic analysis.
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Chapter 1

Introduction

Tracking is generally defined as successive estimation of any unknown variable that is

continuously evolving in the physical world [58]. The estimation process in tracking

usually involves two indispensable components: the physical measurements provided

by available sensors and the knowledge about the dynamics. Without sensor inputs,

the unknown variable can only be guessed, or predicted, but can never be verified

by physical evidence. Without information about dynamics, the unknown variable

can only be derived from measurements. The measurements vary from each type

of a sensor. In an acoustic tracking, the measurement is angle, intensity or time

delay [1] [3] [10]. In a RFID tracking, the measurement is an identification number by

a detecting RFID reader [72] [73]. Furthermore, in a visual tracking, the measurement

is motion, color, feature or/and edge [59] [60] [61] [62].

Sequential Monte Carlo (SMC) methods are a set of flexible simulation-based

methods for sampling from a sequence of probability distributions. These methods

were originally introduced in the early 50’s by physicists and have become very pop-
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ular over the past few years in statistics and related fields. Hence, they are now

extensively used to solve sequential Bayesian inference problems arising in signal pro-

cessing, robotics and networks [5] [6] [7].

The SMC methods approximate the sequence of probability distributions of inter-

est using a large set of random samples which is called particles. These particles are

propagated over time using simple Importance Sampling (IS) and resampling mech-

anisms [17] [18] [19]. Asymptotically, i.e. as the number of particles goes to infinity,

the convergence of these particle approximations towards the sequence of probability

distributions can be ensured under very weak assumptions. However, for practical

implementations, a finite and sometimes quite restricted number of particles has to

be considered. Much research is therefore devoted to the design of efficient sampling

strategies in order to sample particles in regions of high probability mass. Throughout

this dissertation, an acoustic sensor based SMC technique is applied and evaluated

with inherent limitation. Then, we use visual sensors for alleviating the limitation. In

this chapter, we briefly explain about the background knowledge of SMC techniques

as well as general tracking problem definition, and present general visual sensor based

object tracking.

1.1 Tracking Problem Definition

To define the problem of tracking, consider the evolution of the state sequence Xn

Xn = fn−1(Xn−1) + Qn−1, (1.1)
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where fn is a nonlinear, state transition function of the state Xn, and Qn−1 is the

non-Gaussian, process noise in the interval time-instant between n and n − 1. The

measurements of the evolving target state vector is expressed as

Zn = hn(Xn) + En, (1.2)

where hn is a nonlinear and time-varying function of the target state, En is the

measurement error which is independent identically distributed white noise process.

In order to estimate target state vector, dynamic prior probability density function

(pdf) [8] is obtained as

p(Xn|Z1:n−1) =

∫
p(Xn|Xn−1)p(Xn−1|Z1:n−1)dXn−1, (1.3)

where Z1:n represents the sequence of measurements up to time instant n, and p(Xn|Xn−1)

is the state transition density with Markov process of order one related to fn(·) and

Qn−1 in (1.1).

For the next time estimation based on Bayes’ rule, posterior pdf involving predic-

tion pdf is obtained [8] as

p(Xn|Z1:n) =
p(Zn|Xn)p(Xn|Z1:n−1)∫

p(Zn|Xn)p(Xn|Z1:n−1)dXn

, (1.4)

where p(Zn|Xn) is a likelihood function and the denominator is the normalizing con-

stant.

The recursive propagation in (1.3) and (1.4) are only conceptual solution in the
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sense that generally they cannot be determined analytically [19]. In other words, the

implementation of the conceptual solution requires the storage of the entire pdf which

is equivalent to an infinite dimensional vector. Since the analytic solution of in most

practical situations (1.3) and (1.4) are intractable, suboptimal Bayesian algorithms

approximate the solution.

1.2 Motivation of Particle Filter

Optimal finite-dimensional algorithms for recursive Bayesian state estimation are dif-

ferently formulated according to assumptions. In a linear-Gaussian case, the func-

tional recursion of (1.3) and (1.4) becomes the Kalman Filter. In addition, if the

state space is discrete-valued with a finite number of states, the grid-based methods

provide the optimal algorithm. [19]

However, the assumption of linear and Gaussian system are too strict and do not

hold for most real world problems. As the system is non-linear or non-Gaussian, the

closed form expressions are almost impossible to obtain. Hence, the approximation

technique is required for real world system. In the approximation methods, the

extended Kalman filter (EKF), the unscented Kalman filter (UKF) have been applied

in a deterministic approach. However, the deterministic approaches turn out to be

ineffective or too computationally demanding [7] [8]. Consequently, methods based

on particle filter, which is simulation-based technology, has been widely applied in

many tracking applications [16] [19].
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1.3 Particle Filter

The sequential Monte Carlo (SMC) methods, referred to as particle filters, have re-

ceived a lot of attention because they are particularly suitable for real-time estimation.

Particle filters provide sequential procedures that use information from the previous

time instant and current measurement to update the posterior distribution.

Sequential importance sampling (SIS) is widely applied to perform nonlinear fil-

tering which is introduced in (1.3) and (1.4). The SIS algorithm determines the

required posterior pdf by a set of random samples with associated weights [8]. The

SIS algorithm forms the basis for most of the proposed particle filters such as sam-

pling importance resampling particle filter (SIR-PF), auxiliary sampling importance

resampling particle filter (ASIR-PF) and regularized particle filter (RPF). Under the

assumption of which nonlinear functions fn−1 and hn in (1.3) and (1.4) are known,

SIR algorithm is derived by choosing the candidates of estimation referred as im-

portance density as well as by performing the resampling step at every time-instant.

The resampling step is required for eliminating the degeneracy problem in the particle

filtering (i.e., the samples with small weight are becoming smaller as the estimation

is recursively iterated) [17] [18]. The SIR filter method has the advantage that the

importance weights are easily evaluated and the importance density can be easily

sampled. Throughout the thesis, we apply SIR particle filter, especially in acoustic

tracking.
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1.4 Visual Sensor based Object Detection and Track-

ing

In a real-world problem, particle filter algorithms heavily depends on how accurate

the underlying probabilistic model matches the real dynamic system [12] [40]. The

model selection is typically based on physics, aimed at matching real measurements to

standard analytical distributions. In addition, it is affected by mathematical tractabil-

ity, computational complexity or heuristic considerations. Furthermore, based on an

acoustic sensor, sound waves may be transmitted sporadically due to blocks. That

is the reason why we collaborate multiple types of sensors, an acoustic sensor and a

visual sensor.

Based on a visual sensor, the available measurement becomes more reliable and

accurate. Figure 1-1 illustrates the basic surveillance system with motion detection,

body tracking, face detection/tracking and localization modules [26] [45]. In addi-

tion to the modules, database is incorporated to the system for robust surveillance.

Furthermore, the association method based on homographic lines and local-to-global

information transformation is incorporated into the system even though the module

and interaction is not explicit in Figure 1-1.

Figure 1-2 shows an example of object detection and tracking. In the example,

body and head are detected and tracked with bounding boxes.
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Figure 1-1: Simplified surveillance system with detection, tracking, face detec-
tion/tracking and localization modules.

(a) Frame #8 (b) Frame #9 (c) Frame #10

Figure 1-2: Two persons are moving apart and a bounding box for each human is
drawn.

1.5 Contribution and Overview

This thesis is mainly concerned with solving problems in object tracking based on

acoustic and visual sensors with the frame of particle filter.
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Specifically, this thesis has following contributions:

• (Chapter 2) Acoustic sensor based 3 dimensional particle filtering formulation

in object tracking methodology

• (Chapter 3) Visual sensor and acoustic sensor cooperation method for alleviat-

ing the limitation of the only acoustic sensor based tracking as well as minimiz-

ing overall computational resources

• (Chapter 4) Object Detection Enhancement using multiple visual sensors
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Chapter 2

Object Tracking in 3-D Space with

Passive Acoustic Sensors using

Particle Filter

2.1 Introduction

Locating and tracking an object using passive sensors both indoor and outdoor have

been great interests in numerous applications. For tracking an object with passive sen-

sors, several approaches based on time-delay estimation (TDE) methods and beam-

forming methods have been proposed. The TDE method estimates location based

on the time delay of arrival of signals at the receivers [1]. The beamforming method

uses the frequency-averaged output power of a steered beamformer [2] [3]. The TDE

method and beamforming method determine the current source location using the

data obtained only at the current time. Each method transforms the acoustic data to
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a spatial data so that the peak represents the source location in a deterministic way.

The estimation accuracy of these methods, however, is sensitive to the noise-

corrupted signals. In order to overcome the drawback of these methods, a state-space

driven approach based on particle filtering was proposed [4] [5]. The particle filtering

is an emerging powerful tool for sequential signal processing, especially for nonlinear

and non-Gaussian problems [6] [7] [8]. Tracking with particle filters for the source

localization is formulated in [9], where the TDE and beamforming methods are revised

for the new framework. In [9], sensors are positioned at specified locations with a

constant height to estimate an object’s trajectory in two dimensional (2-D) space. The

extension to 3-D space from the revised TDE and beamforming methods is difficult

and a large number of microphones are required to generate a new 2-D plane for

the 3-D extension. In addition, mobility of the sensors cannot be supported due to

their fixed positions. In order to overcome the mobility problem, Direction of Arrival

(DOA) based bearings-only tracking has been widely used in many applications [10]

[11] [12].

In this chapter, we analyze the tracking methods based on passive sensors for

flexible and accurate 3-D tracking. Tracking in 3-D has been addressed by directly

extending 2-D bearings-only tracking problem to 3-D problem [13] [14]. Instead of

directly extending traditional particle filtering algorithms for bearings-only tracking

in a 3-D space, we propose to decompose the 3-D particle filter into several simpler

particle filters designed for 2-D bearings-only tracking problems. The decomposition

and planes selection are based on the characterization of the acoustic sensor operation

under noisy environment. We use the passive acoustic localizer model in [15], where
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the two angle components (azimuth angle θ and elevation angle φ) between a sensor

and an object are detected by the localizer. We also extend the proposed approach

to multiple particle filter fusion for a robust performance. We compare the proposed

approach with the directly extended bearings-only tracking method using Cramer-

Rao Lower Bound.

2.1.1 Background and Problem Description

2.1.2 Noisy Measurement Characterization on Projected Planes

XXXX

YYYY

ZZZZ

xyθ=θ

yzθ

zxθ φ

Figure 2-1: Conversion of the originally measured angles θ and φ to the projected
angles θxy, θyz and θzx.

3-D localizer model and its implementation are described in [15], and it is based on

the gradient flow to determine the DOA of the acoustic source. Figure 2-1 illustrates

the simplified angle conversion process. Based on the two measured angles, azimuth

θ and elevation φ, (0≤θ<2π, 0≤φ<π), three projected angles onto two dimensional

(2-D) planes are derived; θxy, θyz and θzx. Each of these three angles can be used for

a 2-D tracking using particle filter [16]. For example, θxy is used in xy-plane, θyz and
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θzx are used in yz-plane and zx-plane, respectively. The projected angles are derived

and defined as

θxy = θ, θyz = arctan

( | sec θ|
tan θ tan φ

)
+ β, θzx = arctan

(
tan φ

| sec θ|
)

+ γ, (2.1)

where

β =





0, for y ≥ 0, z ≥ 0

π, for y < 0,

2π, for y ≥ 0, z < 0,

γ =





0, for z ≥ 0, x ≥ 0

π, for x < 0,

2π, for z ≥ 0, x < 0,

and sec θ =
1

cos θ .

(2.2)

We assume that each of measurement error of original angles θ and φ is an indepen-

dent and identically distributed random sequence respectively and the two random

sequences are independent. Also, we assume that the measurement errors are zero-

mean with the same variance of σ2. Then, the noisy measurements of θ and φ with

the same error variance of σ2 are reflected to the projected plane angles θxy, θyz and

θzx with their own variances σ2
xy, σ2

yz, and σ2
zx. Define the projected plane angles as

θxy,n = θ̄xy,n + exy
n , θyz,n = θ̄yz,n + eyz

n , θzx,n = θ̄zx,n + ezx
n , (2.3)

where θ̄P,n is the projected true angle, ePn is the angle error with the variance σ2
P in

P-plane at time instant n respectively, and P ∈ {xy, yz, zx}. Note that the original

measurement error variance, σ2, is differently projected to σ2
xy, σ2

yz and σ2
zx.

Projected angles from the original measurements θ and φ are derived in (2.1),

12



φ = 10 ο

φ = 20 ο

φ = 30 ο

φ = 45 ο

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

18
20

θ ( degree)

(a) φ : 10◦, 20◦, 30◦, 45◦

0

0.5

1

1.5

φ = 60 ο

φ = 70 ο

φ = 80 ο

0 50 100 150 200 250 300 350

θ ( degree)

(b) φ : 60◦, 70◦, 80◦

0

0.5

1

1.5

φ = 100 ο

φ = 110 ο

φ = 120 ο

φ = 135 ο

0 50 100 150 200 250 300 350

θ ( degree)

(c) φ : 100◦, 110◦, 120◦, 135◦

0 50 100 150 200 250 300 350

θ ( degree)

φ = 150 ο

φ = 160 ο

φ = 170 ο

0

2

4

6

8

10

12

14

16

18
20

(d) φ : 150◦, 160◦, 170◦

Figure 2-2: Angle variances σyz in a projected yz-plane according to θ and φ. The
originally measured angle variances are 1. (x-axis: angle θ (degree), y-axis: variance)

but it is difficult to derive the closed-form expression for their variances from the

variances of the original measurement errors – it requires the variance of products

and the variance of nonlinear functions. Results from the Monte-Carlo simulation

in Figure 2-2 and Figure 2-3 show the projected angles’ variances when the original

measurements’ variances are the same by one. Note that the projected measurement

in xy-plane, θxy is the same as the original θ; thus, σ2
xy is the same as σ2. The projected

variances in yz- and zx-planes are functions of θ and φ. In yz-plane, the elevation
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Figure 2-3: Angle variances σzx in a projected z-x plane according to θ and φ. The
originally measured angle variances are 1 (x-axis: angle θ (degree), y-axis: variance).

angles φ between 45◦ and 135◦ are projected with a smaller variance than the original

measurement variance of one. In addition, as the azimuth angle θ approaches to 0◦

or 180◦, the variance decreases further. For zx-plane, the other ranges of φ and θ are

projected with a smaller variance than the original measurements’ variance.

14



2.1.3 Problem Formulation for 3-D Space Estimation

Consider an object’s state vector Xn, with discrete time instant n ∈ {1, 2, · · · }, evolv-

ing according to

Xn = fn−1(Xn−1) + Qn−1, (2.4)

where fn−1 is a nonlinear dynamic transition function on state vector Xn−1 and Qn−1

is a noise process (not-necessarily Gaussian) sampled at time instant n − 1. The

measurements of the object state vector is expressed as

Zn = hn(Xn) + En, (2.5)

where hn is a nonlinear and time-varying observation function of state vector Xn and

En is the measurement error referred to as a measurement noise sequence which is

independent identically distributed (IID) noise process. Then, the prediction proba-

bility density function (pdf) is obtained as

p(Xn|Z1:n−1) =

∫
p(Xn|Xn−1) p(Xn−1|Z1:n−1) dXn−1, (2.6)

where Z1:n represents the sequence of measurements up to time instant n, and p(Xn|Xn−1)

is the state transition density with Markov process of order one related to fn(·) and

Qn−1 in (5.35) [19]. Note that p(Xn−1|Z1:n−1) is recursively obtained from previous

time instants.

From the Bayes’ rule, the estimation at the next time instant can be done as
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follow. The posterior pdf is obtained using the prediction pdf as

p(Xn|Z1:n) =
p(Zn|Xn) p(Xn|Z1:n−1)∫

p(Zn|Xn) p(Xn|Z1:n−1) dXn

, (2.7)

where p(Zn|Xn) is the likelihood or measurement density in (5.36) related to the

measurement model hn(·) and the noise process En, and the denominator is the

normalizing constant. Note that the measurement Zn is used to modify the prior

density in (5.37) to obtain the current posterior density in (5.38) [19].

In this chapter, θxy,n and Zn(xy) are interchangeably used as the projected angle

measurement in xy-plane. Similarly, θyz,n, Zn(yz), θzx,n, Zn(zx) are for yz-plane and

zx-plane, respectively. State vectors of an object in 3-D space (Xn) and in 2-D planes,

(Xn(xy), Xn(yz), Xn(zx)) are defined as

Xn =




xn

V x
n

yn

V y
n

zn

V z
n




,

Xn(xy) =




xn(xy)

V x
n (xy)

yn(xy)

V y
n (xy)




,

Xn(yz) =




yn(yz)

V y
n (yz)

zn(yz)

V z
n (yz)




,

Xn(zx) =




zn(zx)

V z
n (zx)

xn(zx)

V x
n (zx)




,

(2.8)
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where {xn, yn, zn} and {V x
n , V y

n , V z
n } are the true source location and the velocity in

3-D Cartesian coordinates at time instant n. {xn(xy), yn(xy)} and {V x
n (xy), V y

n (xy)}

are the projected true source location and velocity on xy-plane at time instant n;

the same notation is applied for yz- and zx-planes. Note that xn(xy) and xn(zx) are

estimated separately and xn is the finally fused value based on xn(xy) and xn(zx); the

rest of components are applied by the same way. The three posterior pdf involving

prediction probability density functions are given as

p(Xn(xy)|Z1:n(xy)) =
p(Zn(xy)|Xn(xy)) p(Xn(xy)|Z1:n−1(xy))∫

p(Zn(xy)|Xn(xy)) p(Xn(xy)|Z1:n−1(xy)) dXn(xy)
,

(2.9)

p(Xn(yz)|Z1:n(yz)) =
p(Zn(yz)|Xn(yz)) p(Xn(yz)|Z1:n−1(yz))∫

p(Zn(yz)|Xn(yz)) p(Xn(yz)|Z1:n−1(yz)) dXn(yz)
,

(2.10)

p(Xn(zx)|Z1:n(zx)) =
p(Zn(zx)|Xn(zx)) p(Xn(zx)|Z1:n−1(zx))∫

p(Zn(zx)|Xn(zx)) p(Xn(zx)|Z1:n−1(zx)) dXn(zx)
.

(2.11)

Three 2-D estimates from the posterior pdfs given by equations (2.9), (2.10) and

(2.11) can be used to estimate a single object’s 3-D state vector. However, equations

(2.9), (2.10) and (2.11) are only for the conceptual purpose, and in general they

cannot be computed analytically except in special cases such as the linear Gaussian

state space model. Instead of using those equations, for a nonlinear system, the

particle filter can approximate the posterior pdf using a cloud of particles, and a

sequential importance sampling (SIS) can be applied to perform the nonlinear filtering

[8]. The particle filtering further derives to the sequential importance resampling

(SIR) algorithm which chooses the candidates of importance density and performs

the resampling at every time instant [18]. In this chapter, we use the SIR particle
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filter which has a generic particle filtering algorithm for an object tracking.

2.1.4 Dynamic Model and Observation Likelihood Function

Several dynamic models have been proposed to estimate the time-varying location

and velocity. For the bearings-only tracking, three types of models are presented [12].

In 2-D xy-plane, the constant velocity (CV) model, the clockwise coordinated turn

(CT) model, and the anti-clockwise coordinated turn (ACT) model are expressed by

state transition matrices F(1)
n , F(2)

n and F(3)
n respectively as

F(1)
n =




1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1




,

(2.12)

and

F(d)
n =




1 sin(<(d)
n Ts)/<(d)

n 0 −(1− cos(<(d)
n Ts))/<(d)

n

0 (1− cos(<(d)
n Ts))/<(d)

n 1 sin(<(d)
n Ts)/<(d)

n

0 cos(<(d)
n Ts) 0 − sin(<(d)

n Ts)

0 sin(<(d)
n Ts) 0 cos(<(d)

n Ts)




,

(2.13)
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where Ts is the sampling period, d = 2,3 and <(d)
n is the mode-conditioned turning

rate expressed as following;

<(2)
n =

α√
(V x

n )2 + (V y
n )2

,

and <(3)
n =

−α√
(V x

n )2 + (V y
n )2

,

(2.14)

where α is a constant for the rotated angle degree. In addition, Constant Acceleration

(CA) model in xy-plane is expressed as follows,

F(4)
n =




1
(
AxT

2
s /2V x

n−1

)
+ Ts 0 0

0
(
AxTs/V

x
n−1 + 1

)
0 0

0 0 1
(
AyT

2
s /2V y

n−1

)
+ Ts

0 0 0
(
AyTs/V

y
n−1

)
+ 1




(2.15)

where Ax and Ay denote accelerations in xy-plane for x- and y-directions, respectively.

For yz- and zx-planes, V x and V y in (2.14), and Ax and Ay in (2.15) are replaced

according to the object state directional components. Furthermore, the CA model

becomes the CV model when the values of Ax and Ay are zeros.

The SIR particle filter operates as follow [18]. After a dynamic model propagates

the sets of M particles for X
(1:M)
n−1 (xy), X

(1:M)
n−1 (yz) and X

(1:M)
n−1 (zx), new sets of par-

ticles X(1:M)
n (xy), X(1:M)

n (yz), and X(1:M)
n (zx) are generated. Then, the observation

likelihood functions

p
(
Zn(xy)

∣∣∣ X(1:M)
n (xy)

)
, p

(
Zn(yz)

∣∣∣ X(1:M)
n (yz)

)
, and p

(
Zn(zx)

∣∣∣ X(1:M)
n (zx)

)

(2.16)
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calculate weights of the generated particles and estimate Xn(xy), Xn(yz) and Xn(zx)

respectively, through the resampling processes.

2.2 Projected Planes Selection for Object Track-

ing in 3-D Space

2.2.1 Projected Planes Selection (PPS) Method

Planes selection and particles generation

Instead of using the particle filter formulation with the direct 3-D state, the approach

in this chapter is to use two of three possible 2-D particle filter formulations in order

to estimate the 3-D state information. In the PPS method, we choose two planes with

the smallest variance according to Figure 2-2 and Figure 2-3. Note that xy-plane is

always chosen because the projected variance in xy-plane is the second best plane

with the same variance as the originally measured azimuth angle θ. The other yz- or

zx-plane is selected based on the measured angle. For example, when φ is measured

between 45o and 135o, yz-plane is chosen. Otherwise, zx-plane is chosen.

Once the two planes are selected, the two 2-D particle filters estimate states sep-

arately. Figure 2-4 illustrates an example where xy- and yz-planes are chosen and

the selected 2-D particle filters estimate the 3-D state vector (i.e., the projected mea-

surement variance in yz-plane is less than the variance in zx-plane, according to the

originally measured θ and φ). While the particle filters in the chosen planes esti-

mate the state vectors, the particle filter in the other remained plane is waiting for
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Figure 2-4: Illustration of Projection Planes Selection (PPS) method which chooses
xy- and yz-planes while the other zx-plane is waiting for the plane selection.

the selection. When the measured angles become close to the range where the pro-

jected measurement variance in the remained plane becomes less than the originally

measured variance, the selected plane is switched.

There is always one redundant component that appears in both planes (i.e., y-

component appears in xy-and yz-planes). As two particle filters are estimating the

states separately, the redundant directional state from two particle filters may dif-

fer. For example, as discussed in (2.8), the intermediate 2-D object state vectors

are given as (xn(xy), V x
n (xy), yn(xy), V y

n (xy))T from the xy-plane particle filter and

(yn(yz), V y
n (yz), zn(yz), V z

n (yz))T from the yz-plane particle filter. Both yn(xy) and

yn(yz) represent y directional position information, but the two values are different.

Therefore, a combining method should be considered in order to get one final 3-D

object state vector Xn.
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Redundancy consideration in combining method

There are two ways to combine the two estimates of y-direction’s state vectors when

xy- and yz- planes are selected; the planes weighted combining and the equal weight

combining.

In the planes weighted combining method, the two estimates are weighted accord-

ing to the unnormalized particles’ weight-sum of each plane’s particle filter. This

method is derived from the multiple particle filtering method [20], and extended to

combine into a final value with respect to the redundant state. Since a particle repre-

sents a point mass of the probability density, the unnormalized particles weight-sum

can be used in evaluating how the expected state is close to the true state [16] [20] [21].

The final 3-D object state vector Xn with the planes weighted combining method is

obtained by

Xn =




1 0

0 1

0 0

0 0

0 0

0 0




Xn(x|xyz) +




0 0

0 0

1 0

0 1

0 0

0 0




Xn(y|xyz) +




0 0

0 0

0 0

0 0

1 0

0 1




Xn(z|xyz), (2.17)

where Xn(x|xyz), Xn(y|xyz) and Xn(z|xyz) are final 3-D estimated vectors with

respect to each directional component representing [xn, V
x
n ]T , [yn, V y

n ]T and [zn, V
z
n ]T ,
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respectively. When xy- and yz-planes are selected

Xn(x|xyz) = Xn(x|xy), (2.18)

Xn(y|xyz) =
Xn(y|xy)

∑M
i=1 w

(i)
n (xy) + Xn(y|yz)

∑M
i=1 w

(i)
n (yz)∑M

i=1 w
(i)
n (xy) +

∑M
i=1 w

(i)
n (yz) ,

(2.19)

Xn(z|xyz) = Xn(z|yz), (2.20)

where Xn(x|xy) and Xn(y|xy) represent the x and y directional 2-D state vectors in

xy-plane. Xn(y|yz) and Xn(z|yz) represent the y and z directional 2-D state vectors

in yz-plane. w
(i)
n (xy) and w

(i)
n (yz) are the i-th particle’s weight of the particle filter

for xy- and yz-plane at time instant n, and M represents the the number of particles

for each particle filter. Thus, the redundant y directional states are combined as in

(2.19), where the weighting factors are
∑M

i=1 w
(i)
n (xy) to xy-plane and

∑M
i=1 w

(i)
n (yz)

to yz-plane.

For the equal weight combining method, as it simply takes an average value, the

redundant component y in (2.19) is replaced by

Xn(y|xyz) =
Xn(y|xy) + Xn(y|yz)

2 .
(2.21)

The Algorithm 1 summarizes the PPS with the planes weighted combining method.
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Algorithm 1: Projected Planes Selection (PPS) with Planes Weighted Com-
bining Method

Given Zn, calculate Zn(p) based on (2.1) and (2.2), where p ∈ {xy, yz, zx}.
Find the plane with a smaller variance of measurements between yz and zx
based on Figure 2-2 and 2-3.
Independently estimate an object state vector Xn(p1) with Zn(p1) and Xn(p2)
with Zn(p2).

Draw X(1:M)
n (p1) ∼ p(Xn(p1)|X(1:M)

n−1 (p1)) and X(1:M)
n (p2) ∼

p(Xn(p2)|X(1:M)
n−1 (p2))

Calculate w
(1:M)
n (p1) = p(Zn(p1)|X(1:M)

n (p1)) and w
(1:M)
n (p2) =

p(Zn(p2)|X(1:M)
n (p2))

Calculate total weights:
∑M

i=1 w
(i)
n (p1) and

∑M
i=1 w

(i)
n (p2)

Planes Weighted Combining with Redundancy for Xn(x|xyz), Xn(y|xyz) and
Xn(z|xyz)
if p1 = yz then

Xn(x|xyz) = Xn(x|xy).

Xn(y|xyz) =
Xn(y|xy)

∑M
i=1 w

(i)
n (xy)+Xn(y|yz)

∑M
i=1 w

(i)
n (yz)∑M

i=1 w
(i)
n (xy)+

∑M
i=1 w

(i)
n (yz)

.

Xn(z|xyz) = Xn(z|yz).
else if p1 = zx then

Xn(x|xyz) =
Xn(x|xy)

∑M
i=1 w

(i)
n (xy)+Xn(x|zx)

∑M
i=1 w

(i)
n (zx)∑M

i=1 w
(i)
n (xy)+

∑M
i=1 w

(i)
n (zx)

.

Xn(y|xyz) = Xn(y|xy).
Xn(z|xyz) = Xn(z|zx).

end

2.2.2 Discussion

Planes Weighted Combining Versus Equal Weight Combining

It has been assumed that the nonlinear dynamic transition function fn is known as

the state transition matrix Fn – as the particle filter is a model-based approach. If

the dynamic model fn changes in the middle of the tracking, the estimation from

the particle filter can diverge. The divergence means that a predicted state and a

true state continuously become more distant due to unmatched model of a particle

filter. Also, if the state of the unmatched model lasts longer, the estimation may not
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recover even after recovering the model. The planes weighted combining method can

discard the estimation from the plane with negligible unnormalized particles weight-

sum based on the likelihood function p
(
Zn

∣∣∣X(1:M)
n

)
, and thus prevents the estimation

from deviation.

The equal weight combining and the planes weighted combining methods have

similar tracking performances if all selected plane-particle filters show good tracking

performances. However, when one of two particle filters’ tracking performance de-

teriorates, the planes weighted combining method shows a better performance. The

scenario to be investigated is that an object is moving in the range of φ being be-

tween original measurements are between 50.47o and 82.14o as well as in the range of

θ being between 36.35o and 85.60o. More specifically, a single sensor is placed in an

origin (0m, 0m, 0m), and an initial position of the object is (10m, 130m, 18m) with

an initial velocity of (1m/s, -0.75m/s, 0.75m/s). The sensor is measuring θ and φ

with the interval of 1 second for 165 seconds, and the variances of the measurements

are both 3. The observed object is moving in CV at the x-direction and in CT at

the y and z directions with 0.01m/s2. Since the φ is measured in the range between

50.47o and 82.14o, xy- and yz-planes are selected. In addition, the initial object state

is given. TABLE 2.1 shows the comparison of RMSE between the two combining

methods when all selected plane-particle filters hold correct dynamic models. On the

other hand, TABLE 2.2 shows the comparison between the two combining methods

when yz-plane particle filter has incorrect dynamic models: the dynamic model is

temporarily manipulated with CV instead of CT during 50 seconds. 1,000 particles

are used for generating the results.
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RMSE Equal Weight Combining Weighted Combining
x component 1.8267 1.7258
y component 0.5673 0.5378
z component 1.6134 1.6235

average 1.3358 1.2957

Table 2.1: RMSE of the equal weight combining method versus the weighted combin-
ing method when all plane-particle filters have good tracking performance (100 times
simulation).

RMSE Equal Weight Combining Weighted Combining
x component 1.7958 1.6459
y component 17.3250 0.6243
z component 1.5783 1.6431

average 6.8997 1.3044

Table 2.2: RMSE of the equal weight combining method versus the weighted combin-
ing method when yz-plane particle filter has poor tracking performance (100 times
simulation).

The tracking performance is also shown in Figure 2-5 and Figure 2-6, where the

particle filter in yz-plane results in deviated estimation. Since xy- and yz-planes are

selected, y direction’s state estimates are combined. Figure 2-5 shows the example

of tracking deviation in yz-plane due to the unmatched model or a particle filter’s

performance degradation. Figure 2-6 shows a final estimation after applying two

combining methods. Especially in Figure 2-6(b), it is shown that the planes weighted

combining method maintains the object tracking by considering the contribution of

unnormalized particles’ weight-sums from different planes.

PPS Versus Direct 3-D Method

The 3-D object state model directly uses two original measurements and a cone shape

likelihood function for assigning 3-D distributed particle weights [22]. The direct

26



20 40 60 80 100 120 140
0

33

67

100

133

167

200
Tracking Before Weighting (yz-plane)

Movement

Tracking

Y

Z

Figure 2-5: Poor tracking performance in yz-plane without combining methods.
(Number of particles : 1,000)

3-D Method uses the two original measurements with σ2 while the PPS method

uses two projected measurements with σ2
xy and min(σ2

yz, σ
2
zx). Figure 2-7 shows the

unnormalized particles weight-sums corresponding to the selected yz-plane and the

direct 3-D model. It is shown that the selected plane is less sensitive to measurement

noise than the direct 3-D model; thus, the unnormalized particles weight-sums of

PPS method is larger than those of the direct 3-D Method. In addition, the direct

3-D Method cannot obtain a redundancy, and thus there is no opportunity to avoid

the performance degradation when a particle filter has a poor performance. The

performances are compared according to the Cramer-Rao Lower bound (CRLB) in

Chapter 2.3.

2.2.3 Extended PPS Method with Multiple Sensors

The tracking trajectory deviation due to an unexpected change of an object is shown

to be mitigated by applying the planes weighted combining method. In addition,

27



70 80 90 100 110 120 130 140

After Equal Weight Combining

Y

100 105 110 115 120 125 130 135

After Weighted Combining

Y

Movement

Tracking
Movement

Tracking

(a) (b)

0

33

67

100

133

167

200

Z

0

33

67

100

133

167

200

Z

Figure 2-6: Modified tracking performance with combining methods ( Number of par-
ticles : 1,000) (a) Equal weight combining method (b) Weighted combining method.

the PPS method can also be extended to multiple sensor environment by consider-

ing multiple particle filter fusion. Multiple sensor based particle filtering has been

introduced for a robust tracking, especially when some of measurements are severely

corrupted [12] [19]. In this subchapter, we present the extended PPS method in

multiple sensor environment.

Global Coordinate Transformation

Denote k, k = 0,1 , 2, · · · , K − 1, the index of sensor when there are K acoustic

sensors. Also, define the location of k-th sensor as
(
xk

s , y
k
s , z

k
s

)
. As illustrated in

Figure 2-8, each sensor has its own coordinate system with x and y directional unit

vectors as uk
x and uk

y in xy-plane; the same notation and illustration are applicable for

yz- and zx-planes. Each data in the different coordinate system should be converted

to the global coordinate, especially when the data obtained from multiple sensors are

collected and associated. Assume that the global coordinate is corresponding to the
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Figure 2-7: Comparison between the selected yz- planes and 3-D space: unnormal-
ized particles weight-sums according to the variances of original measurements (The
number of particles: 100).

coordinate of one senor called the primary sensor and for example, sensor 0 is the

primary sensor as illustrated in Figure 2-8. The primary sensor is placed at the origin

as x0
s = y0

s = 0, and x0
s ≤ xk

s and y0
s ≤ yk

s , for k = 1,2,3.

Given an object state vector Xn(xy) in the global coordinate, each sensor dif-

ferently expresses the objects state vector as Xk
n(xy) in its own coordinate, where k

represents the sensor index. The data conversion from Xk
n(xy) to Xn(xy) is done by

a multiplication of conversion matrix Dk(xy) and an addition of shift matrix Sk(xy)

as

Xn(xy) = Dk(xy)Xk
n(xy) + Sk(xy), (2.22)
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Figure 2-8: Each sensor has its own coordinate, and the primary sensor coordinate is
the global coordinate.

where Dk(xy) is a 4× 4 matrix and Sk(xy) is a 4× 1 vector as

Dk(xy) =




1 0 0 0

0 uk
x · u0

x 0 0

0 0 1 0

0 0 0 uk
y · u0

y




and Sk(xy) =




sk
x

0

sk
y

0




,

(2.23)

where

sk
x =





−xk
s , for uk

x · u0
x = 1,

xk
s − xk

n(xy), for uk
x · u0

x = −1,

sk
y =





−yk
s , for uk

y · u0
y = 1,

yk
s − yk

n(xy), for uk
y · u0

y = −1.

(2.24)

In (2.23), uk
x ·u0

x determines the polarity of x directional velocity component of the

state vector, and uk
y · u0

y determines the polarity of y directional velocity component

of the state vector. In (2.23), sk
x and sk

y are x and y directional shifted distances
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according to the relative positions between senor 0 and sensor k. They also depend

on the values of uk
x · u0

x and uk
y · u0

y as in (2.24).

Extended PPS Method

The extended PPS method is to select two projected measurements with the lowest

variances and estimate the state vectors independently. Denote all the projected mea-

surements at time instant n as Zk
n(P), where k, k ∈ {0, 1, 2, · · · , K − 1}, is the sensor

index and P, P ∈ {xy, yz, zx}, represents the plane. Also, denote the two selected

measurements as Zk1
n (P1) and Zk2

n (P2), where Zk1
n (P1) is with the lowest variance cor-

responding to the projected measurement to P1-plane from sensor k1, Zk2
n (P2) is with

the next lowest variance corresponding to the projected measurement to P2-plane

from sensor k2, and P1 6= P2 (i.e., xy- and yz- planes, xy- and zx- planes or yz- and

zx- planes). First, the measurement Zk1
n (P1) is selected by finding the lowest variance

among (σk
n(P))2 corresponding to all projected measurements Zk

n(P), where (σk
n(P))2

is obtained based on the range of the original measurement φ and θ according to the

variances of the projected angles shown in Figure 2-2 and Figure 2-3. If P1 is zx-plane,

Zk2
n (P2) is selected by finding the lowest variance among (σk

n(yz))2 and (σk
n(xy))2 cor-

responding to projected measurements Zk
n(yz) and Zk

n(xy). In other words, Zk2
n (P2)

should be selected among P2, such that P2 6= P1.

After measurements Zk1
n (P1) and Zk2

n (P2) are selected, their own 2-D particle filters

estimate the object state vectors independently. Once the estimated state vectors are

obtained, they should be converted to the global coordinate with respect to a pri-

mary sensor as in (2.22). As in the PPS method, there is one redundant directional
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component, and the sensor-weighted combining method can be considered in evalu-

ating weighting values between the two selected sensors. The unnormalized particles’

wight-sums W k1
n and W k2

n obtained from each selected plane from different sensors

are used for the combining and they are evaluated as

W k1
n =

M∑
i=1

wk1,(i)
n (P1), and W k2

n =
M∑
i=1

wk2,(i)
n (P2), (2.25)

where w
k1,(i)
n (P1) represents the ith particle weight in P1-plane of sensor k1, and

w
k2,(i)
n (P2) represents the ith particle weight in P2-plane of sensor k2. Similarly to

the example in (2.19), when xy- and yz-planes are selected from sensor k1 and k2,

respectively, the redundant y-direction components are combined as

Xn(y|xyz) =
Xk1

n (y|xy)W k1
n + Xk2

n (y|yz)W k2
n

W k1
n + W k2

n ,

(2.26)

and for the non-redundant directional components,

Xn(x|xyz) = Xk1
n (x|xy), and Xn(z|xyz) = Xk2

n (z|yz). (2.27)

Finally, (2.17) is used to obtain the final 3-D state vectors.

32



2.3 Cramer-Rao Lower Bound Derivation and Per-

formance Analysis

The Cramer-Rao Lower Bound (CRLB) has been widely used as a reference in evaluat-

ing an estimator by representing the minimum covariance of the estimated states that

an unbiased estimator can achieve. For the object tracking problem with bearings-

only measurements, the CRLB is investigated in [23], and the similar approaches are

taken in this chapter. As in [23], we assume that the process noise Qn is zero and the

dynamic models are fixed and known; otherwise, the derivation is intractable. The

covariance matrix of the state estimate X̂n is given as follow

Cn = E

[(
X̂n −Xn

)(
X̂n −Xn

)T
]
≥ J−1

n , (2.28)

where Jn is the information matrix, and it is defined as

Jn = E
{

[∇Xn log p(Xn|Zn)] [∇Xn log p(Xn|Zn)]T
}

, (2.29)

where ∇Xn denotes the gradient operator with respect to the state vector Xn and

p(Xn|Zn) is the conditional pdf of state Xn given the observation Zn. Note that

the inequality of the square matrix in (2.28) means that matrix Cn − J−1
n is positive

definite. The CRLB’s of the components in the state vector Xn is the lower bound

of its variance and it is the diagonal elements of the inverse matrix of Jn [24].

We do not directly obtain the information matrix as in (2.29), but it is derived
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recursively as follow. In the absence of the process noise, the evolution of the state

vector is deterministic and it is given as [19] [25]

Jn+1 =
[
F−1

n

]T
JnF

−1
n + HT

n+1R
−1
n+1Hn+1, (2.30)

where Fn is the state transition matrix that represents CV or CA as shown in (2.13)

and (2.15), Rn+1 is the covariance matrix of the bearing measurements and Hn is the

gradient component of a measurement function hn. Hn is given as follow and it is

referred to as the Jacobian of hn,

Hn =
(∇XnhT

n (Xn)
)T

. (2.31)

In the following subchapters, the CRLB’s for the PPS method are compared against

the direct 3-D Method. The dynamic model of interest is assumed to be CV in a

x-axis, CA with Ay and Az in y and z-axis.

2.3.1 CRLB Derivation based on the PPS Method

In the PPS method, two information matrices in (2.30) are generated for each selected

plane. For a clear notation, we put the plane type P as JP
n, which represents Jxy

n , Jyz
n

or Jzx
n . Similarly, the transition matrix, measurement variance and Jacobian of hn

are also denoted as FP
n, RP

n and HP
n, respectively for P ∈ {xy, yz, zx}. From (2.12)
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and (2.15), transition matrices FP
n’s are derived as

Fxy
n =




1 Ts 0 0

0 1 0 0

0 0 1 AyT
2
s /2V y

n−1 + Ts

0 0 0 AyTs/V
y
n−1 + 1




,

Fzx
n =




1 AzT
2
s /2V z

n−1 + Ts 0 0

0 AzTs/V
z
n−1 + 1 0 0

0 0 1 Ts

0 0 0 1




,

(2.32)

and

Fyz
n =




1 AyT
2
s /2V y

n−1 + Ts 0 0

0 AyTs/V
y
n−1 + 1 0 0

0 0 1 AzT
2
s /2V z

n−1 + Ts

0 0 0 AzTs/V
z
n−1 + 1




.

(2.33)

In the PPS method, the covariance matrix of measurement, RP
n becomes σ2

xy, σ2
yz or

σ2
zx which is the variance of a single (projected) bearing measurement in the projected

plane xy, yx or zx-plane respectively. The performance of the PPS method is mainly

enhanced by taking only the measurement with a smaller variance. According to

Figure 2-2 and 2-3, the raw bearings, θ and φ are projected onto the three planes

with the different angle variances according to the object’s position.

For Jacobians in xy-plane Hxy
n+1 is derived from

hT
n+1 (Xn+1(xy)) = θxy (Xn+1(xy)) = arctan

(
yn+1

xn+1

)
(2.34)
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and

∂

∂xn+1

arctan

(
yn+1

xn+1

)
=

−yn+1

x2
n+1 + y2

n+1 ,

∂

∂yn+1

arctan

(
yn+1

xn+1

)
=

xn+1

x2
n+1 + y2

n+1 ,

∂

∂V x
n+1

arctan

(
yn+1

xn+1

)
=

∂

∂V y
n+1

arctan

(
yn+1

xn+1

)
= 0. (2.35)

Then,

Hxy
n+1 =

(∇Xn+1(xy)h
T
n+1(Xn+1(xy))

)T
=

( −yn+1

x2
n+1 + y2

n+1

, 0,
xn+1

x2
n+1 + y2

n+1

, 0

)

,

(2.36)

and by the same way, Jacobians for yz- and zx-planes are derived as follow

Hyz
n+1 =

( −zn+1

y2
n+1 + z2

n+1

, 0,
yn+1

y2
n+1 + z2

n+1

, 0

)

,

(2.37)

and

Hzx
n+1 =

( −xn+1

x2
n+1 + z2

n+1

, 0,
zn+1

x2
n+1 + z2

n+1

, 0

)

.

(2.38)

For the PPS method with a single sensor, the information matrix Jn given in

(2.30) can be recursively obtained using equations from (2.32) to (2.38) except the

initial condition. We can assume that J0 is the zero matrix – no information at all at

the beginning of the estimation.

36



2.3.2 CRLB Derivation based on the Direct 3-D Method

In the direct 3-D method, the information matrix Jn is expressed as a 6× 6 matrix,

and the lower bound is directly obtained from (2.30) with the extension of 2-D state

vector based matrices.

The state transition matrix is expressed as

Fn =




1 Ts 0 0 0 0

0 1 0 0 0 0

0 0 1 AyT
2
s /2V y

n−1 + Ts 0 0

0 0 0 AyTs/V
y
n−1 + 1 0 0

0 0 0 0 1 AzT
2
s /2V z

n−1 + Ts

0 0 0 0 0 AzTs/V
z
n−1 + 1




.

(2.39)

Measured bearings vector [θ, φ]T is given with variances σ2
θ and σ2

φ, and it can be noted

that the two bearings’ tracking are simply extended to multiple sensors tracking. For

the 3-D state vector estimation, only a single sensor detects bearings physically, but

the bearings measurement should be interpreted such that two different sensors detect

each angle independently. The measurement error covariance Rn and the Jacobian

Hn+1 are expressed as in the multiple sensors’ case as follow,

Rn =




σ2
θ 0

0 σ2
φ


 , (2.40)
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and

Hn+1 =
(
∇xn+1

[
hθ

n+1(Xn+1) hφ
n+1(Xn+1)

])T

=




∂hθ

∂xn+1

∂hθ

∂V x
n+1

∂hθ

∂yn+1

∂hθ

∂V y
n+1

∂hθ

∂zn+1

∂hθ

∂V z
n+1

∂hφ

∂xn+1

∂hφ

∂V x
n+1

∂hφ

∂yn+1

∂hφ

∂V y
n+1

∂hφ

∂zn+1

∂hφ

∂V z
n+1




=




−yn+1

x2
n+1 + y2

n+1

xn+1zn+1

(x2
n+1 + y2

n+1 + z2
n+1)

√
x2

n+1 + y2
n+1

0 0

xn+1

x2
n+1 + y2

n+1

yn+1zn+1

(x2
n+1 + y2

n+1 + z2
n+1)

√
x2

n+1 + y2
n+1

0 0

0
−√

x2
n+1 + y2

n+1

(x2
n+1 + y2

n+1 + z2
n+1)

0 0




T

,

(2.41)

where hθ
n and hφ

n are measurement functions of bearings θ and φ, respectively. Also,

we can assume that J0 is the zero matrix – no information at all at the beginning of

the estimation.

2.4 Analysis and Simulation

In this Chapter, the PPS and the direct 3D methods are compared with their simula-

tion results and CRLB’s. As the proposed method selects the smallest measurement

variance, the covariance Rn plays an important role for the lower bound. The min-

imum covariances obtained from the PPS method minimizes the lower bound – the
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PPS method is to flexibly choose planes with the smallest variances. Several scenarios

are considered for the performance comparisons. Scenario 1 and 2 show the single

sensor based plane selection according to φ. Scenario 3 shows the changes of the

plane selection from xy- and yz-planes to xy- and zx-planes according to φ. Scenario

4 shows the multiple sensors based planes and sensors selection according to θ and φ.

2.4.1 Scenario 1

In this scenario, an object is moving in the range of φ being between 45.36o and 76.74o

as well as in the range of θ being between 45.00o and 49.04o. More specifically, a single

sensor is placed in the origin (0m, 0m, 0m), and the initial position of the object is

(3m, 3m, 1m) with initial velocity of (1m/s, 1m/s, 1m/s). The sensor is measuring

θ and φ with the interval of 0.1 second and the variances of the measurements are

both 3. The observed object is moving in CV at the x-direction, in CA at the y and

z directions, with 0.1m/s2 and 0.5m/s2, respectively. Since the φ is measured in the

range between 45.36o and 76.74o, xy- and yz-planes are selected. In addition, the

initial object state is given.

2.4.2 Scenario 2

In this scenario, an object is moving in the range of φ being between 25.24o and 36.26o

as well as in the range of θ being between 45.00o and 50.28o. Similar to scenario 1, a

single sensor is placed at the origin (0m, 0m, 0m) with the same initial object velocity

and movement. Initial position of the object is (1m, 1m, 3m). Since the φ is in the
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range between 25.24o and 36.26o, xy- and zx-planes are selected. Also, the initial

object state is given.

2.4.3 Scenario 3

In this scenario, an object is moving in the range of φ being between 28.07o and 48.24o

crossing 45o. More specifically, a single sensor is placed at the origin (0m, 0m, 0m),

and the initial position of the object is (2m, 1m, 2m) with initial velocity of (0.3m/s,

0.3m/s, 0.3m/s). Similar to previous scenarios, the observed object is moving in

CV at the x-direction, in CA at the y and z directions, with 0.1m/s2 and 0.5m/s2,

respectively. Since φ of the first 13 time instants is measured between 48.24o and

45.42o, xy- and yz-planes are selected. In the last 37 time instants, xy- and zx-planes

are selected since φ is measured between 28.07o and 44.96o.
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Figure 2-9: Elevation angles φ and azimuth angles θ in the view of two multiple
sensors
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Figure 2-10: Scenario 1: Selected xy- and yz- planes based on PPS shows better
performance.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time-instant

(m
)

X(xy) (CRLB)

X(zx) (CRLB)

X(Direct) (CRLB)

X(PPS) (RMSE)

X(Direct) (RMSE)

(a) CRLB X

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

35 40 45 50

Time-instant

(m
)

Y(xy) (CRLB)

Y(yz) (CRLB)

Y(Direct) (CRLB)

Y(PPS) (RMSE)

Y(Direct) (RMSE)

(b) CRLB Y

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Time-instant

(m
)

Z(yz) (CRLB)

Z(Direct) (CRLB)

Z(PPS) (RMSE)

Z(Direct) (RMSE)

Z(zx) (CRLB)

(c) CRLB Z

Figure 2-11: Scenario 2: Selected xy- and zx- planes based on PPS shows better
performance

2.4.4 Scenario 4

In this scenario, an object is moving as in scenario 3. The sensors, sensor 1 and 2 are

placed at (0m, 0m, 0m) and (10m, 10m, 10m) respectively. The measured elevation

angles φ and azimuth angles θ are different with respect to each sensor position as

shown in Figure 2-9. During the first 13 time instants, the projected measurement

with the lowest variance is selected with yz-plane from sensor 1. In addition, since

the measurement with the second lowest variance is with yz-plane from sensor 2, xy-

plane from any of two sensors is selected. After the time instant 13, zx-plane from
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sensor 1 and yz-plane from sensor 2 are selected.
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Figure 2-12: Scenario 3: Since φ of the first 13 time instants is measured between
48.24o and 45.42o, xy- and yz-planes are selected. In the last 37 time instants, xy-
and zx-planes are selected since φ is measured between 28.07o and 44.96o. For the
performance comparison between PPS and direct 3D method, the certain section in
CRLB is enlarged (A, B and C)

2.4.5 Result

Figure 2-10 and 2-11 represent the lower bound and RMSE in each direction based

on the scenario 1 and 2, respectively. In Figure 2-10, the selection of yz- plane

with xy- plane, in Figure 2-11, the selection of zx- plane with xy- plane show the

good performance which proves the PPS method is a good estimator. Note that all

boundaries are presented for the comparison of other planes selection. In addition,
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Figure 2-13: Scenario 4: Multiple sensor and single sensor based estimation with PPS
are compared.

single sensor and multiple sensor based estimations are compared in Figure 2-12 and

2-13 which have the same scenario except for the number of sensors. In particular,

the multiple sensor based estimation is using the scheduling method finding the best

two planes among the multiple sensors. Since the multiple sensors support broader

choices for planes selection, the performance is shown to be better comparing single

sensor based estimation.

2.5 Conclusions

We have proposed an object tracking algorithm in 3-D space with a passive acoustic

sensor. Particle filtering technique used in the 2-D bearings-only tracking problem

has been applied to the 3-D space. 3-D space is decomposed into 2-D planes, and by

exploiting the fact that the noisy measurements of the acoustic sensor differ on the

projected planes, we have proved the effectiveness of the plane selection based on the

characteristics. We have shown that the particle filtering with the proposed plane

selection is more flexible than the direct 3-D method where the proposed method can
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be easily extended to multiple sensor particle filtering. We have also analyzed the

performance of the proposed method using the Cramer-Rao Lower Bound (CRLB)

and the theoretical lower bound and the simulation results are compared to the direct

3-D method. We have shown that the proposed method outperforms the direct 3-D

method.
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Chapter 3

Acoustic Sensor Based Multiple

Object Tracking with Visual

Information Association

3.1 Introduction

Tracking multiple objects has been a great interest to numerous surveillance-required

areas applied in diverse fields such as a military, a factory, a hospital and a mining [27]

[19]. Among a variety of sensors deployed in a surveillance system, an acoustic sensor

is widely used since it allows easy and quick deployment with a less computational

complexity as well as a broad sampling range [15] [28]. Acoustic sensor based object

tracking is widely studied with several approaches. A time delay estimation method

aims at measuring the time delays of arrival signals at receivers [29]. A beamforming

method uses a frequency-averaged output power of a steered beamformer [30]. A
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bearings-only tracking method aims at estimating position, velocity and possibly

some extra features by measuring bearings [31].

Despite the easy deployment of the acoustic sensor, there are several difficult

issues when one acoustic sensor tracks multiple objects. Multiple objects and multi-

ple measurements can be incorrectly associated when an acoustic sensor receives the

measurements with negligibly small difference [32]. In addition, the number of mea-

surements is varying when the objects do not transmit sound-wave, new objects come

into an acoustic sensing range or objects move out an acoustic sensing range. The

varying number of measurements gives inconsistent measurement sequences to the

acoustic sensor based estimator [33]. Furthermore, when measurements are severely

corrupted with the noise or the dynamic models are incorrect, the estimation perfor-

mance is degraded with a deviated estimation more severely for the multiple object

tracking.

In order to overcome the limitations of the acoustic sensor based estimation for

multiple objects’ tracking, the visual sensor based estimation is combined [34] [35]

[36] [37]. In [34], the visual sensor mainly tracks the objects, and the acoustic sen-

sor partially supports the estimation when the tracked objects are occluded. This

method is experimentally shown in a video conferencing environment, where persons

are seated and speak in a small space. In [35], the acoustic-visual combining method

is presented with the iterative decoding algorithm from the theory of turbo codes and

factor graphs. This method computes both the likelihood values from the acoustic

sensor and the visual sensor, and one of the two data with a higher likelihood is

selected for a more accurate estimation. In [36] and [37], two data from acoustic and

46



visual sensors are simultaneously combined. In [36], a way of jointly processing dif-

ferent sources of information is presented using cooperative Hidden Markov Models

(HMMs) with appearance models, whereas in [37], an implicated interaction of lip

movements synchronized with acoustic samples is proposed. Our interest is to mini-

mize the resources from visual sensor since the visual sensor based object localization

requires much higher computational complexity [38] [39], and the visual sensor is

assumed to be deployed for other purpose so the visual sensor cannot dedicate its

operation to support one acoustic sensor. We take the approach where the acoustic

sensor mainly tracks the objects and the visual sensor cooperation is performed when

the acoustic sensor has a difficulty. The timing of the cooperation is determined from

the triggering timing by the acoustic sensor.

The acoustic sensor based estimation is performed with bearings-only tracking

developed by the sequential Monte Carlo methods known as the particle filter. In

the fields of wireless communications, navigation systems, sonar, and robotics ap-

plications, the particle filtering is adopted as an emerging powerful tool for solving

non-linear and non-Gaussian problems [6] [7] [8] [40]. The particle filters are generally

used for an estimation and/or a detection of dynamic system parameters or states in

real-time application. While the particle filter with an acoustic sensor tracks multiple

objects, the visual sensor detects the objects and localizes their positions when the

acoustic sensor triggers for the visual sensor cooperation.
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3.2 Background

3.2.1 Object tracking with an acoustic sensor with the multi-

model and multi-measurement particle filtering

The acoustic sensor’s object tracking is performed with bearings-only measurements.

A bearings-only tracking is to estimate object positions and velocities with a sequence

of noisy bearing measurements [31] [12]. For an object in tracking, its state at a

discrete time k, k ∈ {1, 2, · · · } is described by

x(k) = F(m(k)) x(k − 1) + w(k − 1), (3.1)

z(k) = H (x(k)) + v(k), (3.2)

where x(k) denotes the state vector of the object as [x(k) y(k) V x(k) V y(k)]T and

z(k) is the corresponding bearing measurement for the object. [x(k), y(k)] is the

2-dimensional location of the object at time k and [V x(k) V y(k)] is the x- and y-

directional velocity of the object at time k. H(x) is the bearing measurement function

for state vector x as H (x(k)) = arctan
(

y(k)
x(k)

)
. The noise random process w(k − 1)

and measurement noise v(k) are modeled as zero-mean independent Gaussian. F(m)

is the 4 × 4 state-transition matrix for model m, m ∈ {1, 2, · · · , J}, where J is

the number of the hypothesized models [27] [41], and m(k) represents the model

index at time k for the object in tracking. For the object of interest, the model

switching is governed by a finite-state Markov chain according to the switching prob-

abilities Prob [m(k) = v|m(k − 1) = u] of switching from model u to v, u, v ∈
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{1, 2, · · · , J}. Note that this switching probabilities are not needed in the following

estimation. As there are multiple measurements, let z(k) denote a set of measure-

ments as
{
z1(k), z2(k), · · · , zN(z(k))(k)

}
, where zi(k) is the i-th measurement and

N(z(k)) is the number of bearing measurements at time k. Also define zi(1 : k) as

the set of measurements up to and including time k as {zi(1), zi(2), · · · , zi(k)}, where

i = 1, 2,· · · , N(z(k)). Note that as the unlabeled measurements are received by an

acoustic sensor, it is not known which measurement index is corresponding to the

object of interest.

The goal of the object tracking is to estimate the state of the object x(k) and

the probability that the object’s model index is m at time k for the given history of

observations. More specifically, based on the particle filtering,

• Conditional probability density function (pdf) of the object’s state x(k) at time

k given the history of observation up to time k; p (x(k)|z(1 : k))

• Conditional expected state when the model index is m at time k; x̄m(k)

• Unconditional probability that the object’s model index is m at time k; µm(k)

where m ∈ {1, 2, · · · , J} and
∑J

m=1 µm(k) = 1. Conditional expected means and the

probabilities are not directly used for the object tracking but it is used to trigger

the visual sensor association. As we use the particle filtering technique for the state

estimation, the conditional pdf is estimated with many particles in the state space

where each particle is of equal conditional probability density through the sequential

importance resampling (SIR) algorithm [18]. L, L >> 1, particles are updated for

every new observation, and the estimation is done as follow. L resampled particles are
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given and they represent the conditional pdf, p (x(k − 1)|z(1 : k − 1)). Then, there

is a set of new N(z(k)) measurements
{
z1(k), z2(k), · · · , zN(z(k))(k)

}
. From these

measurements and the given L particles, we want to obtain

• L resampled particles representing p (x(k)|z(1 : k))

• Conditional mean vector, x̄m(k) and the unconditional probabilities of the ob-

ject’s model, µm(k), where m ∈ {1, 2, · · · , J}, then eventually the mean vector

estimate x̄(k) as the weighted sum.

The state estimation is done by the interactive multiple model particle filter

(IMM-PF) framework [42]. The IMM estimator is a state estimation algorithm for

a system represented by Markovian switching model with multiple model indices. In

the particle filtering stage at time k, L × J particles x̂(l)
m (k), for l ∈ {1, 2, · · · , L}

and m ∈ {1, 2, · · · , J}, are drawn from the previous a posteriori density function

p (x(k − 1)|z(1 : k − 1)) for each model m as follow.

x̂(l)
m (k) = F(m)x̃(l)(k− 1)+n(l)

m (k) for l ∈ {1, 2, · · · , L} and m ∈ {1, 2, · · · , J} (3.3)

where x̃(l)(k− 1) is the resampled particles at time k− 1 and n
(l)
m (k)’s are identically

distributed independent Gaussian zero-mean noise. The predicted bearing measure-

ments to particles x̂(l)
m (k)’s are obtained as

ẑ(l)
m (k|k − 1) = H(x̂(l)

m (k)) = arctan

(
ŷ

(l)
m (k)

x̂
(l)
m (k)

)

,

(3.4)
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for l ∈ {1, 2, · · · , L} and m ∈ {1, 2, · · · , J}, where
(
ŷ

(l)
m (k), x̂

(l)
m (k)

)
is the lth particle’s

2-dimensional position of x̂(l)
m (k) with model m. Note that there are L× J predicted

measurements for the object of interest. These L × J predicted measurements lead

to the weight evaluation from the set of actual measurements z(k) as

w̄i,(l)
m (k) = d

(
zi(k)− ẑ(l)

m (k|k − 1)
)
, (3.5)

for i ∈ {1, 2, · · · , N(z(k))}, l ∈ {1, 2, · · · , L} and m ∈ {1, 2, · · · , J}, where d(·) is the

particle weight evaluation function from the Gaussian probability density function [8]

[43]. Since each particle x̂(l)
m (k) is assigned with N(z(k)) weights, there are L × J ×

N(z(k)) weights. w̄
i,(l)
m (k) denotes the (unnormalized) weight of the lth particle in

model m for given measurement zi(k). These L×J×N(z(k)) weights are normalized

as follow,

wi,(l)
m (k) =

w̄
i,(l)
m (k)∑N(z(k))

i′=1

∑J
m′=1

∑L
l′=1 w̄

i′,(l′)
m′ (k)

,

(3.6)

for i ∈ {1, 2, · · · , N(z(k))}, l ∈ {1, 2, · · · , L} and m ∈ {1, 2, · · · , J}. The SIR algo-

rithm is used to obtain x̃(l)(k)’s, l ∈ {1, 2, · · · , L} with the equal conditional proba-

bility density from x̂(l)
m (k) particles with w

i,(l)
m (k) weights. Note that there are L× J

particles and each particle has N(z(k)) weight values. However, in order to apply the

SIR algorithm, each particle has to have only one weight. Each particle is identically

copied N(z(k)) times to have the same number of weights, then the SIR algorithm is

applied as in Figrue 3-1, where L × J × N(z(k)) particles are transformed to L re-

sampled particles. Each circle in Figrue 3-1 illustrates the weight of the particle. The
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resampled particles are assigned with an equal weight of 1/L. The particles distribu-

tion with the resampled particles x̃(l)(k) with each corresponding weight value 1/L

represents the conditional pdf of p(x(k)|z(1 : k)). The resampled particles, x̃(l)(k),

are used for generating particles x̂(l)
m (k + 1) as in (3.3) for time k + 1.

~
~
~

~
~
~

~
~

L x J x N(z(k)) L

normalized particles and the corresponding 

weight values (circle sizes)

resampled particles and the corresponding 

weight values (circle sizes)

Figure 3-1: Resampling of L× J ×N(z(k)) particles to L particles

In order to estimate the final estimated state vector denoted as x̄(k), the joint

probability density association (JPDA) method is used which makes use of all L ×

J × N(z(k)) particles. x̄(k) can also be obtained from the resampled L particles,

but using the original L × J × N(z(k)) particles can give a better mean estimate

of the state. The JPDA technique uses a weighted average of all the measurements

falling inside an object track’s validation region to update the object state [44]. In

addition, the weighted average of all possible J models is also applied for estimating

x̄(k). First, x̄i
m(k)’s, i ∈ {1, 2, · · · , N(z(k))}, the conditional means of the state given
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each measurement zi(k) over the particles set, x̂(l)
m (k)’s of model m is obtained as

x̄i
m(k) =

L∑

l=1

x̂(l)
m (k) · wi,(l)

m (k). (3.7)

Then, x̄m(k)’s, m ∈ {1, 2, · · · , J}, the conditional means of the state for model m is

obtained as

x̄m(k) =

N(z(k))∑
i=1

x̄i
m(k) · µi

m(k), (3.8)

where µi
m(k) represents the probability that the model index is m given the measure-

ment zi(k), and it is obtained as

µi
m(k) =

∑L
l=1 w

i,(l)
m (k)∑J

m=1(
∑L

l=1 w
i,(l)
m (k)) .

(3.9)

Finally, the mean state vector estimate x̄(k) is obtained as

x̄(k) =
J∑

m=1

x̄m(k) · µm(k), (3.10)

where µm(k) is the probability that the object’s model index is m, and it is obtained

as

µm(k) =

∑N(z(k))
i=1 µi

m(k)∑J
m=1(

∑N(z(k))
i=1 µi

m(k)) .

(3.11)

3.2.2 Object tracking with a visual sensor

In our application, once an acoustic sensor triggers for visual sensor cooperation,

the visual sensor performs the object localization and supports the acoustic sensor
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with the localized position. The visual sensor localizes the object positions with

the parallel projection model which supports zooming, panning and tilting of the

visual sensor [45] [16], and simplifies the computational complexity in determining

the object positions with automatically focusing on the objects. As the visual sensor

cooperation is triggered, a pair of visual sensors simultaneously detect, identify and

localize the multiple objects as shown in Figrue 3-2. The objects are detected with

motion analysis and color information as shown in [47] [48]. We assume that the

viewable range of the visual sensors and the measurable range of the acoustic sensor

are overlapped so that the visual sensors support the localized positions of the objects

moving within the measurable range of acoustic sensors.

Figure 3-2: Visual sensors based tracking demo: as visual sensors cooperation is
triggered, two visual sensors simultaneously detect, identify and localize multiple
objects.

Let (x[v](k), y[v](k)) denote the visually localized position of the triggered object

at time k. Then, if the cooperation is performed at time k, the final estimated

state vector x̄(k) = [x̄(k) ȳ(k) V̄ x(k) V̄ y(k)]T of the object of interest is replaced

by [x[v](k) y[v](k) V̄ x(k) ȳy(k)]. Figure 3-3 illustrates the simplified acoustic sensor
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based IMM-PF data flow incorporated with the visual sensor cooperation where the

triggering conditions can be from measurements and/or estimated results with the

particle filtering.
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Figure 3-3: IMM-PF data flow incorporated with the visual sensor cooperation

3.3 Effect of Visual Sensor Cooperation

In this Chapter, the triggering conditions of the visual sensor cooperation are dis-

cussed. As a simple case, unconditional periodic triggering is discussed in Chapter

3.3.1, and we show that additional triggering conditions are needed unless the coop-

eration period is sufficiently small. The acoustic sensor based estimation can have
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difficulties from two different perspectives – the system dynamics and the estimation

performance. These two issues can be considered as two different triggering condi-

tions. Firstly, due to the system dynamics, the number of tracked objects and the

number of measurements in the acoustic sensor can be different. If so, the acous-

tic sensor cannot track multiple objects correctly, and the support from the visual

sensor is needed. There can be several cases for the system dynamics and they are

discussed in Chapter 3.3.2. The performance degradation of the object tracking by

the acoustic sensor, in our application the particle filter’s performance, can be over-

come by the support from the visual sensor even when the number of tracked objects

and the number of measurements are the same. In this case, the performance of the

estimation can be a condition for the triggering and they are discussed in Chapter

3.3.3. Performance improvement by having the two triggering conditions is presented

by the simulation in Chapter 3.3.4.

3.3.1 Periodic Visual Sensor Cooperation

Suppose that the visual sensor periodically localizes the object positions and supports

the acoustic sensor based estimation every visual sampling time Tv. In order to verify

the effect of the periodic visual sensor cooperation, the tracking environment with

three objects and an acoustic sensor are used as follow.

• Objects O1, O2 and O3 are initially positioned at (50m, 30m), (35m, 50m) and

(45m, 45m), respectively. Trajectories of the three objects are shown in Figrue

3-4(a).
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• Each object trajectory is sampled by 200 acoustic bearing data.

• Three models are considered – constant velocity F(1), clockwise coordinated

turn F(2) and anticlockwise coordinated turn F(3) with manoeuvre rotation ac-

celeration 0.01m/s2 [49]. They are

F(1) =




1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1




, F(p) =




1 0
sin(<(p)

k Ts)

<(p)
k

− (1−cos(<(p)
k Ts))

<(p)
k

0 1
(1−cos(<(p)

k Ts))

<(p)
k

sin(<(p)
k Ts)

<(p)
k

0 0 cos(<(p)
k Ts) − sin(<(p)

k Ts)

0 0 sin(<(p)
k Ts) cos(<(p)

k Ts)




,

(3.12)

where p = 2,3 and <(p)
k is the model-dependent turning rates expressed as

<(2)
k =

α√
(V x(k − 1))2 + (V y(k − 1))2

,

<(3)
k =

−α√
(V x(k − 1))2 + (V y(k − 1))2

,

(3.13)

with α being the factor determining the rotation degree as 1m/s2.

• Measurement noise variance σ2 varies from 0.0 to 5.0.

Figrue 3-4 shows the performance of the acoustic sensor based estimation for

various noise variances, where 500 particles are used for each object in each model. As

the noise variance increases, the estimation has a higher Root-Mean-Square (RMS)

position error. Especially with the noise variance of 5.0, the RMS position error

of each object is 3.98, 9.80 and 1.08, respectively. Under the same condition with
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Figure 3-4: The estimation with an acoustic sensor only is shown according to different
measurement noise variance σ2: 0, 0.5, 1.5, 5.0.

the noise variance of 5.0 in Figrue3-4(d), the visual sensor periodically supports the

acoustic sensor based estimation by updating the localized object position for each

object. The effect of the periodic visual sensor supports with different sampling time

Tv is shown in Figrue 3-5 and 3-6. In Figrue 3-5, the estimated trajectories are shown

for different visual sensor’s sampling times Tv: 10Ts, 20Ts, 50Ts and 100Ts. Figrue

3-6 shows the average RMS position errors with visual sensor’s sampling time Tv from

1Ts to 100Ts through 1,000 time trials respectively.
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Figure 3-5: Visual sensor cooperation performance is shown according to periodic
cooperation with Tv: 10Ts, 30Ts, 50Ts, 100Ts based on the result with measurement
variance 5 in Figrue 3-4(d) (500 particles are used in the simulation).

From the results shown in Figrue 3-5 and 3-6, it is difficult to find an optimal visual

sensor’s sampling time Tv. It can only be seen that the estimated object position

becomes more accurate as the visual sensor’s sampling time Tv is close to the acoustic

sampling time Ts. Even when the acoustic sensor estimates an object’s position

close to the true position, the visual sensor may unnecessarily support the acoustic

sensor through the periodic cooperation. In order to efficiently use the precious

visual sensor cooperation, it has be triggered only when the cooperation is necessary.
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Figure 3-6: RMS position error is shown according to periodic cooperation with Tv:
1Ts to 100Ts. (500 particles are used in the simulation)

Furthermore, the periodic cooperation does not efficiently support the acoustic sensor

based estimation against deviated estimation, measurement resolution problem and

a varying number of objects. These issues are discussed in the following subchapters.

3.3.2 Triggering based on System Dynamics

An acoustic sensor can have a difficulty in measuring multiple measurements when

their difference is negligibly small – the acoustic sensor has a limited resolution

of ∆zcritical [15] [50]. The bearing measurement difference of two objects less than

∆zcritical can cause an acoustic sensor to recognize only one sound wave by merging

the incoming sound wave. Let I(k) denote the number of objects estimated by the

acoustic sensor at time k. Then, if the acoustic sensor cannot differentiate the ob-

jects, the number of measurements at time k, N(z(k)) and the number of estimated
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objects at time k − 1 become unequal as

N(z(k)) 6= I(k − 1). (3.14)

The visual sensor cooperation should be triggered in case of (3.14). Once the visual

sensor supports the acoustic sensor based estimator with the visually localized posi-

tions at time k, the number of estimated objects I(k) is updated and verified with

N(z(k + 1)) for time k + 1.

Together with the measurement resolution problem, an acoustic sensor also has

a difficulty in estimating the state with a varying number of objects/measurements

positioned within the measurable range of the acoustic sensor. The number of mea-

surements is varying when the objects do not transmit sound-wave, new objects

come into an acoustic sensing range or objects move out an acoustic sensing range.

Then, similarly to the measurement resolution problem, the number of measure-

ments at time k and the number of estimated objects at time k − 1 become unequal

as in (3.14). More specifically in the varying number of objects/measurements, if

N(z(k)) < I(k − 1), objects move out of acoustic sensing range, or/and an acoustic

sensor does not receive bearing measurements from objects at time k. On the other

hand, if N(z(k)) > I(k − 1), new objects are moving into the acoustic sensing range

at time k. That is, the varying number of objects/measurements also can be triggered

for the visual sensor cooperation with the same condition of (3.14). After the visual

sensor cooperation, I(k) is updated and verified with N(z(k + 1)) for time k + 1.

Consider the environment shown in Figrue 3-7(a) where the acoustic sensor is posi-
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tioned at (25m, 25m) while the bearing sources are sampled every 1 second during 200

second period with the noise variance of 3. Object 1 and object 2 starts from (5m, 3m)

and (22m, 3m) with initial velocities of (0.2m/s, 0.2m/s) and (−0.2m/s, 0.2m/s), re-

spectively. Two objects are with model F(1) except at time k = 51Ts, 101Ts and

151Ts. Their models at those times are F(2) or F(3) defined in equation (3.12), and

the resulting trajectories are shown in Figrue 3-7(a). Object O1 is moving into the

acoustic sensing range at time 25Ts and object O2 is moving out at time 175Ts. The

new object O3, is moving in the acoustic sensing range at time 63Ts and moving out

at time 188Ts. Object O3 is initially with model F(1), and it changes to F(2) and

returns to F(1) at time 101Ts and 151Ts, respectively. Figrue 3-7(b) shows the trig-

gering timings based on the system dynamics including the measurement resolution

problem and the varying number of objects. For better understanding, ‘o′ is marked

when the triggering timing is caused by the varying number of objects while ‘∗′ is

marked when it is caused by the measurement resolution problem.

3.3.3 Triggering based on Estimation Performance

The triggering based on (3.14) cannot trigger the visual sensor association for a si-

multaneous varying number of objects or measurements. Figrue 3-8 shows several

examples. Given the three objects in Figrue 3-8 (a), Figrue 3-8 (b) shows that a new

object, O4 moves into the acoustic sensing range while O3 bearing measurement is not

received by an acoustic sensor. In this case, the number of objects I(k − 1) and the

number of measurements N(z(k)) are the same even though the number of objects
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Figure 3-7: The triggering timings based on system dynamics

is varying and the association of a visual sensor is needed. Similarly, the condition

in equation (3.14) does not trigger an association either for the case in Figrue 3-8

(c), where the new object, O4 moves into the acoustic sensing range while O3 moves

out the acoustic sensing range. Figrue 3-8 (d), (e) and (f) also illustrate similar

cases, where the association is not triggered despite the need. The cases in Figrue

3-8 (b) through 3-8 (f) should trigger the visual sensor association by considering the

estimation performance at the particle filtering state.

The triggering based on the estimation performance is to find the triggering timing

with the deviated estimation at the particle filtering stage while the triggering based

on the system dynamics is to find the triggering timing with the inconsistency between

I(k) and N(z(k)). The deviated estimation is caused by the cases in (3-8) or an

incorrect interaction between the measurement and the predicted particles. It is non-
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Figure 3-8: Examples when the triggering based on (3.14) does not work.

trivial to evaluate how the estimated position is deviated from a true object position

because an acoustic sensor receives only the bearing measurements, and the triggering

should be based on the difference between the angle from the estimated position and

the bearing measurement. Let (x̄(k), ȳ(k)) be the estimated position of an object

and a bearing measurement zi(k), i ∈ {1, 2, · · · , N(z(k))} with noise variance σ2

are given as illustrated in Figrue 3-9. Assuming that the bearing measurement zi(k)

follows the Gaussian distribution, its range between zi(k)−2σ and zi(k)+2σ contains

95% (2σ confidence) of the true bearing. Then, the estimated position (x̄(k), ȳ(k)) is

considered as a deviation if the following condition is satisfied,

arctan

(
ȳ(k)

x̄(k)

)
< zi(k)−2σ or arctan

(
ȳ(k)

x̄(k)

)
> zi(k)+2σ, ∀i, i ∈ {1, 2, · · · , N(z(k))}.

(3.15)

This means that if no bearing measurement falls within ± 2σ of the estimated angle,

the visual sensor is triggered for the cooperation. Note that the measurement variance
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σ2 is known from the acoustic sensor’s performance characteristics.

The 95 % confidence true bearing range plays an important role to evaluate the

deviated estimation, especially for estimating multiple object states with multiple

models; I(k) > 1 and J > 1. Consider the estimation with multiple objects and

two models. Figrue 3-10 illustrates a deviated estimation example with simplified

sequential steps from particles generation to object state estimation. In Figrue 3-

10(a), two-model based particles x̂
(1:L)
1 (k) and x̂

(1:L)
2 (k) are generated for an object,

and the unlabeled measurements z1(k) and z2(k) are updated. Suppose that mea-

surement z1(k) is obtained from the object of interest while measurement z2(k) is

obtained from another object. Suppose also that x̂
(1:L)
1 (k) is generated close to z1(k)

and x̂
(1:L)
2 (k) is generated close to z2(k). Then, in Figrue 3-10(b), particles’ weights

for model 1 given measurement z1(k), w̄
1,(1:L)
1 and particles’ weights for model 2 given

the measurement z2(k), w̄
2,(1:L)
2 are evenly dominating for the particles x̂

(1:L)
1 (k) and

x̂
(1:L)
2 (k), respectively. According to the weights, the estimated object state x̄(k) is

obtained with the average of each model based particles information. Finally, the

bearing of the estimated position arctan
(

ȳ(k)
x̄(k)

)
strays off from the 95 % confidence

true bearing range of z1(k) as illustrated in Figrue 3-10(c).

However, the 95 % confidence true bearing range as in (3.15) does not necessarily

trigger the visual sensor cooperation. Figrue 3-11 illustrates another deviated esti-

mation example, where the visual sensor cooperation cannot be triggered with the

95 % confidence true bearing range from the condition in (3.15). Similarly to the

example in Figrue 3-10, suppose that measurement z1(k) is obtained from the object

of interest while measurement z2(k) is obtained from another object. In Figrue 3-
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Figure 3-10: Deviated estimation example with multiple models and multiple mea-
surements

11(a), two-model based particles x̂
(1:L)
1 (k) and x̂

(1:L)
2 (k) for the object of interest are

generated and both of them are at the angle close to z1(k). Then, in Figrue 3-11(b),

particles’ weights for model 1 given measurement z1(k) and particles’ weights for the

model 2 given the measurement z1(k), w̄
1,(1:L)
1 and w̄

1,(1:L)
2 are evenly dominating for

the particles x̂
(1:L)
1 (k) and x̂

(1:L)
2 (k), respectively. According to the weights, the esti-
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Figure 3-11: Deviated estimation example where the triggering condition in (3.15) is
not enough

mated object state x̄(k) is obtained with the average of each model based particles.

As illustrated in Figrue 3-11(c), even though the estimated object state x̄(k) is devi-

ated by the two models, the bearing of the estimated position arctan
(

ȳ(k)
x̄(k)

)
does not

trigger the visual sensor cooperation from the condition in (3.15).

In order to overcome the limitation of the triggering with the 95 % confidence

true bearing range in (3.15), we consider an additional triggering condition based on

predicted particles distribution. The particle distribution can be expressed with an

ellipse representing the region, which contains 95% (2σ confidence) of the particles

assuming that they are Gaussian distributed [51] in two dimension. Denote the 95%

confidence ellipse of x̂
(1:L)
j (k) as Dj(k), where j, j ∈ {1, 2, · · · ,M}, represents the

model index. Figrue 3-12 illustrates the 95% confidence particles ellipses D1(k) and

D2(k) corresponding to x̂
(1:L)
1 (k) and x̂

(1:L)
2 (k) in the deviated estimation example

in Figrue 3-11. If the estimated position (x̄(k), ȳ(k)) is obtained outside the 95%
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Figure 3-12: Particle distribution containing 95% (2σ confidence) of the particles
assuming they are Gaussian distributed

confidence predicted particles ellipse as in Figrue 3-11, then it is considered as a

deviation. In a general form, the estimated position (x̄(k), ȳ(k)) is considered as a

deviation with the condition as

(x̄(k), ȳ(k)) /∈ Dj(k), ∀j ∈ {1, 2, · · · ,M} . (3.16)

Even though the 95% confidence particles ellipses in the condition (3.16) is to

overcome the limitation of the triggering with the 95 % confidence true bearing range

in the condition (3.15), these two conditions should be used together – at least one

condition indicates a deviation then the association should be triggered. Figrue 3-13

illustrates another deviated example, where the visual sensor cooperation are trig-

gered not by (3.16) but from (3.15). Also, suppose that measurement z1(k) is obtained

from the object of interest while measurement z2(k) is obtained from another object.

In Figrue 3-13(a), three-model based particles x̂
(1:L)
1 (k), x̂

(1:L)
2 (k) and x̂

(1:L)
3 (k) for the

object of interest are generated as x̂
(1:L)
1 (k) are generated close to z1(k) and x̂

(1:L)
2 (k)
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Figure 3-13: Deviated estimation example where both conditions (3.15) and (3.16)
should be considered for the visual sensor association.

are generated close to z2(k). Then, as illustrated in Figrue 3-13(b), each model based

particles’ weights w̄
1,(1:L)
1 , w̄

2,(1:L)
1 , w̄

1,(1:L)
2 , w̄

2,(1:L)
2 , w̄

1,(1:L)
3 and w̄

2,(1:L)
3 are evaluated

corresponding to the unlabeled measurements z1(k), z2(k) and z3(k), where w̄
1,(1:L)
1

and w̄
2,(1:L)
2 are evenly dominating for the particles x̂

(1:L)
1 (k) and x̂

(1:L)
2 (k), respectively.

Finally, the estimated object state x̄(k) is obtained with the particles information av-

eraged over model 1 and 2, which is close not to x̂
(1:L)
1 (k) but to x̂

(1:L)
2 (k). In this

case, the estimated position (x̄(k), ȳ(k)) is satisfied with (3.16), but the bearing of the

estimated position arctan
(

ȳ(k)
x̄(k)

)
is not satisfied with (3.15) as illustrated in Figrue

3-13(c). Thus, the 95% confidence particles ellipses in (3.16) and the 95 % confidence

true bearing range in (3.15) should be considered together.
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3.3.4 Performance Evaluation

In this subchapter, the performance of the triggering-based visual sensor cooperation

is evaluated with the comparison to the performance of the periodic visual sensor co-

operation as well as no visual sensor cooperation. For the performance evaluation, the

environment described in Figrue 3-7(a) is considered with 200 acoustic sampling times

with 100 trials. Figrue 3-14 shows the average RMS position errors corresponding

to triggering based visual sensor cooperation, periodic visual sensor cooperation and

no visual sensor cooperation. As shown in Figrue 3-14(a), the average RMS position

errors of object O1 is 1.38 based on the triggering based visual sensor cooperation and

7.54 without the visual sensor cooperation. Also, the average RMS position errors

with the periodic visual sensor cooperation are shown according to different visual

sensor’s sampling time Tv: 1Ts to 100Ts. In the triggering based visual sensor co-

operation, the average visual sensor’s sampling time Tv is approximately 4.55Ts. In

the periodic visual sensor cooperation, on the other hand, the visual sensor’s sam-

pling time Tv corresponding to the average RMS position error 1.38 is approximately

4.16Ts. It shows that the triggering based visual sensor cooperation requires less vi-

sual sensor resources than the periodic visual sensor cooperation for the same tracking

performance. Similarly, Figrue 3-14(b) and 3-14(c) show the same pattern for the ob-

jects O2 and O3. Furthermore, in the periodic visual sensor cooperation, the visual

sensor’s sampling time Tv corresponding to the average RMS position error 0.64 is

approximately 4.21Ts.

Table 3.1(a) summarizes the average RMS position errors with the triggering
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Figure 3-14: Average RMS position errors with three cooperation approaches. For
the periodic visual sensor cooperation, the period varies from 1Ts to 100Ts

based visual sensor cooperation and the no visual sensor cooperation. Table 3.1(b)

summarizes the average triggered visual sensor’s sampling time and the periodic visual

sampling time corresponding to the performance level as same as the RMS position

error in the triggering sensor based cooperation.

In practice, the visual sensor cooperation period is unknown since the triggering

mechanism is dependent on system dynamics and estimation performance. In any

environment, the triggering visual sensors cooperation adapts the cooperation period

while periodic visual sensors cooperation may waste resources. In addition, under

the cooperation period restriction due to network delay and image processing, the

triggering mechanism may support the cooperation to the objects with the highest

priority since it recognizes critical ones.
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Object 1

Object 2

Object 3

no visual sensor 

cooperation

7.54

3.70

5.54

Total 

average
5.59

triggering based 

visual sensors 

cooperation

1.38

0.24

0.32

0.64

(a) Average RMS position errors

periodic visual 

sensors 

cooperation

4.16Ts

4.28Ts

4.19Ts

4.21Ts

Object 1

Object 2

Object 3

Total 

average

triggering based 

visual sensors 

cooperation

4.55Ts

(b) Equivalent visual sensor cooperation
period

Table 3.1: Performances of the triggering based visual sensor cooperation, the periodic
visual sensors cooperation and the no visual sensor cooperation

3.4 Simulation and Analysis

3.4.1 Simulation Setup

The visual sensor cooperation with the acoustic sensor based estimation is simulated

in an indoor environment with size 14.63m×8.23m illustrated in Figrue 3-15. Object

O1 starts with initial velocity (0m/s, -0.3m/s) from position (2.9m, 4.5m), object

O2 starts with initial velocity (0.3m/s,−0.1m/s) from position (4.8m, 3.5m) and

object O3 starts with initial velocity (0m/s, 0m/s) from position (5.1m,8.2m). Two

acoustic sensors A1 and A2 are deployed on the ceiling positioned at (3.2m, 1.9m)

and (7.6m, 6.8m) each with 100 emulated samples per second. Each acoustic sensor

receives the acoustic samples with variance 3 during 19 seconds, and tracks the objects

independently. Three visual sensors V1, V2 and V3 are placed at positions (1.9m, 6.3m),

(13.4m, 5.0m) and (5.5m, 0.3m) each with 6 samples per second.
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Figure 3-15: The visual sensor cooperation with an acoustic sensor based estimation
is simulated in an indoor environment with size 14.63m× 8.23m.

3.4.2 Objects Dynamic Characteristics with Acoustic Sens-

ing Range

Figrue 3-16 shows the three objects movement by switching three dynamic models:

the constant velocity with F(1) (CV), the clockwise coordinated turn with F(2) (CT)

and the anticlockwise coordinated turn with F(3) (ACT) in (3.12).

Object O1 starts with the CV model for 3.6 seconds. Between 3.6s and 7.1s, the

object moves with the ACT model with α = 0.15m/s2. Between 7.1s and 13.5s, the

object moves with the CV model. Between 13.5s and 15.0s, the object moves with

ACT model with α = 0.20m/s2. Finally, between 15.0s and 19.0s, the object moves

with the CV model. Object O2 starts with the CV model for 4.5s. Between 4.5s and

6.1s, the object moves with the ACT model with α = 0.45m/s2. Between 6.1s and

7.5s, the object moves with the CV model. Between 7.5s and 8.5s, the object moves

with the ACT model with α = 0.30m/s2. Between 8.5s and 9.5s, the object moves

with the CT model with α = 0.30m/s2. Between 9.5s and 13.0s, the object moves
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with CV the model. Between 13.0s and 16.0s, the object moves with the CT model

with α = 0.25m/s2. Finally, between 16.0s and 19.0s, the object moves with the CV

model. Object O3 initially does not move without transmitting sound wave for 13.0

seconds, and starts to move with the CV model between 13.0s and 19.0s.

In addition, given the acoustic sensors A1 and A2 shown in Figrue 3-16, if the

measurement is received by only acoustic sensor A1, a circle is marked (’o’). If the

measurement is received by only acoustic sensor A2, a square is marked (’¤’). If the

measurement is received by both sensors A1 and A2, a diamond is marked (’¦’). If

the measurement is not received by any of two sensors, a star is marked (’*’).
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Figure 3-16: Three objects trajectories and the positions of the two acoustic sensors

Figrue 3-17(a) arranges non-measurement, new object appearance and movement

out of sensing range with respect to each sensor. Sensor A1 initially receives one

measurement from object O1 and does not receive measurements between 5.0s and

7.0s. At time 15.0s, sensor A1 starts to receive new measurement from object O2,

but starts to miss the measurement from object O1 since object O1 moves out the
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sensing range. At time 16.0s, sensor A1 starts to receive another new measurement

from object O3. Sensor A2 initially receives one measurement from object O2. At

time 11s, sensor A2 starts to receive new measurement from object O1. At time 13.0s,

sensor A1 starts to receive another new measurement from object O3. Figrue 3-17(b)

shows that the measured objects from each sensor A1 and A2.
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(object 1)
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new object

(object 2)

out of sensing 

range

(object 1)

new object

(object 3)
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acoustic
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1100 1300

(a) Non-measurement, new object appear-
ance and movement out of sensing range
with respect to each sensor
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(b) Measured objects from each sensor A1

and A2

Figure 3-17: Measured objects over time

3.4.3 Visual Sensor Cooperation with Triggering Timing Anal-

ysis

For the triggering timing analysis, the objects movement scenario is simulated 100

times, and the triggering timing is represented as the triggering probabilities. In

addition, the triggering probabilities are compared with the two cases. The one is

that the visual sensor supports the localized positions to acoustic sensor estimator

when they are triggered. The other is that the visual sensor does not support the
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localized positions to the acoustic sensor based estimation.

From time 1Ts to 500Ts, acoustic sensor A1 receives measurements from object

O1, and acoustic sensor A2 receives measurements from object O2. Since each sensor

estimates different objects’ state, it is considered as the single object estimation with a

single sensor. Then, the triggering timing is obtained from the estimation performance

only. Figrue 3-18(a) and 3-18(b) show the triggering probabilities with the visual

sensor cooperation in sensors A1 and A2, respectively between 1Ts and 500Ts. For

comparison, Figrue 3-18(c) and 3-18(d) show the triggering probabilities without

visual sensor cooperation in sensors A1 and A2, respectively.

From time 501Ts to 700Ts, object O1 does not transmit sound wave. Due to

the non-measurement, the acoustic sensor A1 triggers visual sensor cooperation: the

number of objects and the number of measurements are different. Figrue 3-19 contin-

ually shows the triggering probabilities of the two sensors between 1Ts and 1,100Ts

through 100 times trial. Figrue 3-19(a) and 3-19(b) show the triggering probabilities

with visual sensor cooperation in sensors A1 and A2, respectively. Also, Figrue 3-19(c)

and 3-19(d) show the triggering probabilities without the visual sensor cooperation

in sensors A1 and A2, respectively.

At time 1,101Ts, acoustic sensor A2 receives additional new measurement from

object O2. At time 1,300Ts, acoustic sensor A2 receives additional new measure-

ment from object O3. At time 1,500Ts, acoustic sensor A1 receives additional new

measurement from object O2, but the measurement from object O1 is not received

simultaneously. At time 1,600Ts, acoustic sensor A1 receives additional new mea-

surement from object O3. Figrue 3-20 shows the triggering probabilities of the two
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(b) Triggering probabilities with visual
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0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

T
s

tr
ig
g
e
ri
n
g
 p
ro
b
a
b
ili
ty

(d) Triggering probabilities without vi-
sual sensor cooperation in the sensor A2

Figure 3-18: Triggering probabilities of the two sensors between 1Ts and 500Ts

sensors between 1,100Ts and 1,900Ts. Figrue 3-20(a) and 3-20(b) show triggering

probabilities with the visual sensor cooperation in sensors A1 and A2, respectively.

Also, for the comparison, Figrue 3-20(c) and 3-20(d) show the triggering probabilities

without the visual sensor cooperation in sensors A1 and A2, respectively,

Finally, Figrue 3-21 shows the estimated final position of the three objects in each

sensor. Figrue 3-21(a) shows the final estimated position with acoustic sensor A1,

and Figrue 3-21(b) shows the final estimated position with acoustic sensor A2.
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Figure 3-19: Triggering probabilities of two sensors time between 501Ts and 1100Ts

3.5 Conclusion and Remarks

In this chapter, the acoustic-visual sensor cooperation method for multiple object

tracking was presented. Since the visual sensor based object localization requires

much higher computational complexity than acoustic sensor based estimation, the

minimized visual sensor cooperation is adopted throughout this chapter. The visual

sensor cooperation method was proposed based on the analysis of the limitation in
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Figure 3-20: Triggering probabilities of two sensors time between 1101Ts and 1900Ts

the acoustic sensor based estimation. In order to alleviate the limitation estimation,

the visual sensor is triggered for the cooperation. For comparison, the proposed

acoustic-visual sensor cooperation method was evaluated with a periodic visual sensor

cooperation method and the no cooperation. Finally, the cooperation method was

verified in a real environment.

In the future work, we extend the cooperation method in a large scale environ-

ment. Since an acoustic sensor has a limited coverage as well as a capacity measuring
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Figure 3-21: Final estimated position for acoustic sensors A1 and A2

the limited of sound wave, it is required to deploy multiple acoustic sensors. We

investigate the effects of interaction among acoustic sensors. In addition, we analyze

the effect of visual sensors cooperation delay time since visual sensors and acoustic

sensors receive measurements with different sampling rates.
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Chapter 4

Local and Global Collaboration for

Object Detection Enhancement

with Information Redundancy

4.1 Introduction

Visual sensor based surveillance system has been great interest to diverse fields, and

many researchers have made every effort to enhance the performance of object detec-

tion, tracking and localization [52] [53] [54]. Among the components, object detection

by a visual sensor is not only a critical part to evaluate an overall surveillance system,

but also a challenging problem. Difficulties in object detection arise due to abrupt

object motion, varying lighting condition, changing appearance patterns of both an

object and a background, non-rigid object structures, object-to-object occlusions and

object-to-background occlusions. More specifically, [53] proposes a face detection
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method for color images in the presence of varying lighting conditions and complex

backgrounds. However, the method has an assumption that a human face of interest

should be viewed by a visual sensor. [54] presents a comprehensive survey on object

detection based on object motion and behaviors, and addresses an occlusion handling.

It suggests that the most promising practical method for addressing occlusion is to

utilize multiple visual sensors. The advantage of the multiple visual sensors is that

when an object is detected by one or more visual sensors, any missed local object

position is recovered based on a local and global collaboration. That is, detected

local object positions are transformed into a global object position, and it aids in

recovering any missed local object position.

Throughout this chapter, we identify the limitations of the collaboration, and

propose to find the solution of the limitations. The collaboration may degrade the

detection performance by propagating false object detection. For instance, when some

of visual sensors detect a false object, the false local object position is propagated to

the other non-detecting visual sensors with a falsely recovered local object position.

Furthermore, the detected local object position has uncertainty even though it rep-

resents a true identical object. For instance, in an outdoor environment, a change

detection algorithm may detect an object together with a shadow [55]. Then, the

local object positions corresponding to an identical object are transformed into in-

equivalent global object positions. The inequivalent global object positions may be

recognized as multiple objects. Our objective is to handle the inequivalent global

object positions transformed by local object positions corresponding to an identical

object. Furthermore, we minimize the performance degradation by preventing from
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the propagation of the false detection.

4.2 Problem Description and Formulation

4.2.1 Application Model

Figure 4-1 shows an application model for an object detection enhancement, where

multiple visual sensors share a viewable range. Once any of visual sensors detects an

object, the detected local information is transformed into a global coordinates, and

it is re-transformed into local information for all visual sensors; thus, any missing

detection is recovered. Let denote the j-th visual sensor as V j, where j =1, 2,..., J

detected object

transformed 

global position

recovered (enhanced) 

object detection

Figure 4-1: Application model for an object detection enhancement

for the number of visual sensors J . Once an object is detected by V j, let denote the
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detected local object position viewed by V j as lj(n) or (ljx(n), ljy(n)). The local object

position lj(n) is transformed into a global object position in a global coordinates

denoted as gj(n) or (gj
x(n), gj

y(n)). For the local to global transformation, we use

a perspective model widely used in a surveillance system [57]. The global object

position gj(n) can be re-transformed into the local object position, and it is denoted

as l̃
j
(n) or (l̃jx(n), l̃jy(n)). By the local-global-local transformation using multiple visual

sensors, any of missed local object position lj(n) is recovered by l̃
j
(n) as long as at

least one of visual sensors detects an object. Throughout this chapter, we restrict our

attention to single object detection.

4.2.2 Problem Formulation

Let us consider a binary hypothesis testing problem at time n with the following two

hypothesis:

H0(n) : an object is absent in a surveillance area

H1(n) : an object is present in a surveillance area

The a-priori probabilities of the two hypotheses are denoted by P (H0(n)) = P0(n)

and P (H1(n)) = P1(n). From the perspective of each visual sensor, each local object

status such as detection or non-detection is classified as binary representation as

Ej(n) = E1 when an object is detected by V j,

Ej(n) = E0 when an object is not detected by V j.

84



Each visual sensor independently detects an object and that conditional prob-

ability is denoted by P (Ej(n)|Hd(n)), where d=1,2 and j=1,2...,J . Specifically,

P (Ej(n) = E0|H1(n)) represents the probability that an object detection is missed,

and P (Ej(n) = E1 |H0(n)) represents the probability that a false object is detected.

We denote the false and missing detection probabilities by P j
M(n) and P j

F (n), and the

probabilities are equivalent to the following conditional probabilities as

P j
M(n) = P (Ej(n) = E0|H1(n)), (4.1)

P j
F (n) = P (Ej(n) = E1|H0(n)). (4.2)

We assume P j
M(n) and P j

F (n) are known.

After processing the object detections locally, the local object status Ej(n) such

as E0 or E1 from V j is transmitted to a global information center. Based on above

specification, [56] formulates an overall decision function based on an optimal decision

rule as

Y (E1(n), ..., EJ(n)) = log
P1(n)

P0(n)
+

∑
SE1

log
1− P j

M(n)

P j
F (n)

+
∑
SE0

log
P j

M(n)

1− P j
F (n)

=





> 0 ⇒ G(n) = G1

< 0 ⇒ G(n) = G0,

(4.3)

where
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G(n) = G0 : the detected object is declared false at time n

G(n) = G1 : the detected object is declared true at time n.

4.3 Object Detection Enhancement

4.3.1 Quality Information based Object Decision

The overall decision function Y (·) is easily biased by the number of visual sensors.

That is, given P j
M=P j

F ,

Y (·) = log
P1(n)

P0(n)
+ (N(SE1)−N(SE0)) log

1− P j
M

P j
F

, (4.4)

where N(SE1) is the element number of a set SE1 , and N(SE0) is the element number

of a set SE0 .

Hence, we consider quality information corresponding to a detected object by

visual sensor V j. The quality information indicates the degree of confidence as to

Ej = E1, and denoted by W j, where j ∈ SE1 and 0 ≤ W j ≤ 1. Note that W j is not

existent when Ej = E − 0. When W j is close to zero, Ej is with less confidence. On

the other hand, when W j is close to one, Ej is with more confidence. By considering

quality information W j corresponding to Ej, the maximum a-posterior probability
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based decision rule is

P (H1|E1:J ,W 1:J)

H1

≷

H0

P (H0|E1:J ,W 1:J), (4.5)

where E1:J = {E1, ..., EJ} and W 1:J = {W 1, ..., W J}. Note we omit the time notation

n for simplicity.

Since W j indicates the degree of confidence as to Ej = E1, Ej is weighted by each

corresponding quality information W j as

P (H1|E1 ·W 1, ... ...)

H1

≷

H0

P (H0|E1 ·W 1, ... ...). (4.6)

From Bayes theorem, we have

P (E1 ·W 1, ..., EJ ·W J |H1)

P (E1 ·W 1, ..., EJ ·W J |H0)

H1

≷

H0

P0

P1 ,

(4.7)

and the corresponding likelihood ratio test (LRT) is described as

P (E1 ·W 1, ..., EJ ·W J |H1)

P (E1 ·W 1, ..., EJ ·W J |H0)
=





> P0

P1
⇒ E = E1

< P0

P1
⇒ E = E0

.

(4.8)
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For simplicity, we denote Ej ·W j by Ej
w, and the left-hand side of (4.8) is simplified

and decomposed as

P (E1:J
w |H1)

P (E1:J
w |H0)

=
∏
SE0

P (Ej
w|H1)

P (Ej
w|H0)

︸ ︷︷ ︸
A

·
∏
SE1

P (Ej
w|H1)

P (Ej
w|H0)

︸ ︷︷ ︸
B

(4.9)

where {E1
w, ..., EJ

w} = E1:J
w , A is for only Ej consideration on the condition of Ej =

E0, and B is for both Ej and W j consideration on the condition of Ej = E1.

A of (4.9) is

∏
SE0

P (Ej
w|H1)

P (Ej
w|H0)

=
∏
SE0

P (Ej = E0|H1)

P (Ej = E0|H0)
=

∏
SE0

P j
M

1− P j
F ,

(4.10)

and B of (4.9) is

∏
SE1

P (Ej
w|H1)

P (Ej
w|H0)

=
∏
SE1

P (Ej = E1|H1) ·W j

P (Ej = E1|H0) · (1−W j)

=
∏
SE1

(1− P j
F ) ·W j

P j
F · (1−W j)

. (4.11)

By substituting (4.10) and (4.11) into (4.9),

P (E1:J
w |H1)

P (E1:J
w |H0)

=
∏
SE0

P j
M

1− P j
F

·
∏
SE1

(1− P j
F ) ·W j

P j
F · (1−W j) ,

(4.12)
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and the corresponding log-LRT is

log
P (E1:J

w |H1)

P (E1:J
w |H0)

= log
P1

P0

−
∑
SE0

log
1− P j

F

P j
M

+
∑
SE1

log
1− P j

F

P j
F

+
∑
SE1

log
W j

1−W j

=





> 0 ⇒ G(n) = G1

< 0 ⇒ G(n) = G0
.

(4.13)

By considering the quality information W j corresponding to the local decision Ej,

we reduce the decision bias as to the difference between N(SE1) and N(SE0).

4.3.2 Dynamic Model based a Priori Probabilities

As in (4.13), if G(n) = G1, the detected object is considered true, and l̃
j
(n) replaces

the original lj(n). On the other hand, if G(n) = G0, the detected object is considered

as false, and the original lj(n) is eliminated. However, the overall decision function

requires exact knowledge of the a-priori probabilities of the hypotheses, P1(n) and

P0(n).

In order to obtain the P1(n) and P0(n), we first define a global object state ĝ(n)

as

ĝ(n) = [ĝx(n) ĝvx(n) ĝy(n) ĝvy(n)]T (4.14)

where [ĝx(n) ĝy(n)] and [ĝvx(n) ĝvy(n)] are true global object position and velocity

at time n. Consider the global object state ĝ(n) with discrete time instant n ∈
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{1, 2, · · · }, evolving according to

ĝ(n) = F(n− 1) · ĝ(n− 1) + Q, (4.15)

where Q includes a Gaussian noise for an object position described as

Q =

[
N(0, σ2) 0 N(0, σ2) 0

]T

, (4.16)

and F(n− 1) is a dynamic transition function [49].

Given the previous global object position (gx(n− 1), gy(n− 1)) at time n− 1, the

possible global object position range at time n is estimated with (5.35). Let denote

the estimated mean position as (ḡx(n), ḡy(n)), and it is obtained from ḡ(n) as

ḡ(n) = F(n− 1) · ĝ(n− 1). (4.17)

From the perspective of Bayesian estimation, the posterior probability density

function (PDF) as to g(n) is estimated by propagating the PDF over time [8]:

p(g(n)|Z(1 : n)) ∝ p(Z(n)|g(n)) · p(g(n)|Z(1 : n− 1)), (4.18)

where Z(n) represents a measurement at time n, and Z(1 : n) represents a history

of measurements up to time n. Generally, the measurement term depends on a type

of sensor and an application. In this chapter, the measurement Z(n) is replaced by
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ḡ(n), and it is obtained as

ḡ(n) = F(n− 1) · g(n− 1), (4.19)

where g(n − 1) is the final global object state at time n − 1, and ḡ(n) represents

[ḡx(n) ḡvx(n) ḡy(n) ḡvy(n)]T . Given that an object follows the dynamic model F(n−

1), the weight wj(n) corresponding to gj(n) is evaluated how gj(n) is close to ḡ(n)

as

wj(n) = exp(−(
(gj

x(n)− ḡx(n))2

2σ2
+

(gj
y(n)− ḡy(n))2

2σ2
)), (4.20)

where wj(n) is obtained based on the 2-D Gaussian distribution function, and it de-

notes the probability that an object corresponding to gj(n) and lj(n) follows the

dynamic model F(n − 1). On the condition which an object moves based on a

given dynamic model, wj(n) represents the quality information as to gj(n) and lj(n):

W j(n) = wj(n).

The associated set {gj(n), wj(n)} approximates the posterior pdf p(g(n)|ḡ(1 : n))

as [8]

p(g(n)|ḡ(1 : n))

' 1∑
SE1

wk(n)
·
∑
SE1

wj(n) · δ (
ḡ(n)− gj(n)

)
.

(4.21)

For the final global object state g(n), each component of gj(n) is weighted and

averaged, which is based on a probability data association method (PDA) [58]. That

is, gj
x(n) and gj

y(n) contribute the final global object position with each corresponding
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wj(n) as

gx(n) =

∑
SE1

gj
x(n)wj(n)

∑
SE1

wj(n)
, gy(n) =

∑
SE1

gj
y(n)wj(n)

∑
SE1

wj(n)
. (4.22)

Once the final global object position (gx(n), gy(n)) is obtained, the position is

evaluated how (gx(n), gy(n)) is close to (ḡx(n), ḡy(n)) as

w(n) = exp(−(
(gx(n)− ḡx(n))2

2σ2
+

(gy(n)− ḡy(n))2

2σ2
)). (4.23)

The evaluated w(n) also denotes the probability that an object follows the dynamic

model F(n − 1). If w(n) is close to zero, the object is completely deviated from the

position based on dynamic model. On the other hand, if w(n) is close to one, the

object fully follows the dynamic model. On the condition which an object moves

based on a dynamic model, w(n) represents a-priori probability P1(n); thus the a-

priori probabilities are

P1(n) = w(n) and P0(n) = 1− w(n). (4.24)

Figure 4-2 shows the a-priori probability P1(n) according to gx(n)−ḡx(n), gy(n)−ḡy(n)

and Gaussian distribution noise σ.

In addition, in order to recursively obtain ḡ(n) in (4.19), the velocity is derived as

gvx(n) = gx(n) − gx(n − 1) and gvy(n) = gy(n) − gy(n − 1), and g(n) is updated as

[gx(n) gvx(n) gy(n) gvy(n)]T .
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Figure 4-2: The a-priori probability P1(n) corresponding to w(n) are shown according
to gx(n)− ḡx(n), gy(n)− ḡy(n) and σ.

4.4 Performance Analysis and Case Studies

4.4.1 Performance Analysis

We use six visual sensors sharing a viewable range with P j
M = P j

F = 0.2 for the

performance analysis. Given (ḡx(n), ḡy(n)), each transformed global object position

(gj
x(n), gj

y(n)), where j ∈ SE1 , is collected to a decision center. We analyze the

performance in declaring a detected object as a true according to a distance between

(gj
x(n), gj

y(n)) and (ḡx(n), ḡy(n)). For the distance variation, we define σxy as

|gj
x(n)− ḡx(n)| ∼ N(0, σ2

xy)

|gj
y(n)− ḡy(n)| ∼ N(0, σ2

xy), (4.25)

and the corresponding W j(n) is investigated with Gaussian variance σ2 = 1.

Figure 4-3(a) shows a probability of a true object declaration, P (G1), according

to N(SE1) and σ2
xy. The probability is calculated through 10,000 simulation trials:

P (G1)=N(G1)/10, 000. Figure 4-3(b) shows the values σ2
xy which are satisfied with
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P (G1) > 0.99 and P (G1) > 0.50 according to N(SE1). When N(SE1) = 5, P (G1) is

more than 0.99 until σ2
xy reaches 1.135, and P (G1) is more than 0.5 when σ2

xy reaches

4.485. When N(SE1) = 4, P (G1) is more than 0.99 until σ2
xy reaches 0.480, and P (G1)

is more than 0.5 when σ2
xy reaches 1.565. When N(SE1) = 3, P (G1) is more than

0.99 until σ2
xy reaches 0.195, and P (G1) is more than 0.50 when σ2

xy reaches 0.635.

When N(SE1) = 2, P (G1) is more than 0.99 until σ2
xy reaches 0.085, and P (G1) is

more than 0.50 when σ2
xy reaches 0.325. When N(SE1) = 1, P (G1) is more than 0.99

until σ2
xy reaches 0.030, and P (G1) is more than 0.55 when σ2

xy reaches 0.235. Note

when σ2
xy exceeds 0.55, P (G1) with N(SE1) = 1 becomes larger than P (G1) with

N(SE1) = 2 as illustrated in Figure 4-3(a). Also, note when σ2
xy exceeds 1.74, P (G1)

with N(SE1) = 1 becomes larger than P (G1) with N(SE1) = 3. It shows that the

quality information based true/false object decision is dependent on the accuracy of

detected local information and not entirely dependent on the number of visual sensors

detecting an object.

4.4.2 Case Studies

Figure 4-4 through 4-6 show the object detection enhancement with three visual

sensors in different scenarios. For the object detection enhancement, we assume that

P j
M = P j

F = 0.2 and W j(n) is investigated with Gaussian variance σ2 = 1.

In Figure 4-4(a), the visual sensor 1 does not detect an object due to an occlusion

while the other two visual sensors correctly detect the object. Each two detected local

object position is transformed into the global object position as g2(n) = (5.2, 5.2) and
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Figure 4-3: Relationship among N(SE1), σ2
xy and P (G1)

g3(n) = (4.9, 5.0). Figure 4-4(b) illustrates the surveillance environment in a global

coordinates including visual sensor positions, viewable ranges as well as the positions

g2(n), g3(n) and ḡ(n). Given the position ḡ(n) as (5.0,5.0), W 2(n) and W 3(n) are

0.9608 and 0.9950, respectively. Thus, we obtain the final global object position

g(n) as (5.05,5.10) and P1(n) as 0.9938. In addition, it results in the value of an

overall decision as 2.78. Based on the true object declaration, the object detection is

enhanced as shown in Figure 4-4(c), where the missed local object position from the

visual sensor 1 is recovered.

In Figure 4-5(a), the visual sensor 1 correctly detects an object while the other
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(a) Original detection
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(b) Global map

(c) Enhanced detection

Figure 4-4: Original and enhanced detection (case 1)

visual sensors 2 and 3 detect the object with each deviated local object position, which

is merged with a shadow. Each three detected local object position is transformed

into the global object position as g1(n) = (13.0, 7.0), g2(n) = (15.2, 7.4) and g3(n) =

(15.8, 6.9). Figure 4-5(b) also illustrates the surveillance environment in a global

coordinates. Given the position ḡ(n) as (13.1,7.0), W 1(n), W 2(n) and W 3(n) are

0.9950, 0.1018 and 0.026, respectively. Thus, we obtain the final global object position

g(n) as (13.55,7.18) and P1(n) as 0.8892. In addition, it results in the value of an

overall decision as 0.13. Based on the true object declaration, the object detection is

enhanced as shown in Figure 4-5(c), where the deviated local object positions from
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the visual sensors 2 and 3 are correctly recovered.

(a) Original detection
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Figure 4-5: Original and enhanced detection (case 2)

In Figure 4-6(a), the visual sensors 1 and 2 detect a false object given an object is

positioned out of viewable ranges. The detected local object position is transformed

into the global object position as g1(n) = (7.3, 5.1) and g2(n) = (7.1, 6.3). Figure

4-6(b) also illustrates the surveillance environment in a global coordinates. Given

the position ḡ(n) as (4.9,3.4), W 1(n) and W 2(n) are 0.0132 and 0.0013, respectively.

Thus, we obtain the final global object position g(n) as (7.28,5.21) and P1(n) as

0.0114. In addition, it results in the value of an overall decision as -6.101. Based on the

false object declaration, the global information assisted object detection enhancement
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is shown in Figure 4-6(c), where all detected local object positions from the visual

sensors 2 and 3 are eliminated. For the performance comparison, Figure 4-6(d) shows

the result based on (4.3) without a-priori probabilities (i.e. P1(n) = P0(n) = 0.5).

The value of an overall decision is 0.4; thus, the true object is declared, and the false

object detection is propagated to other visual sensors.

(a) Original detection

V
3

V
2

V
1

(5,1) (13,1)

(3,6)

x

y

g
1
(n)

(7.3,5.1)
g(n)

(4.9,3.4)

g
2
(n)

(7.1,6.3)

(b) Global map: out of
viewable range

(c) Enhanced detection

(d) based on (4.3) without a-priori probabilities

Figure 4-6: Original and enhanced detection (case 3)
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4.5 Conclusions

In this chapter, we present an object detection enhancement with the collaboration

of local and global information. In order to minimize the detection performance

degradation, we use quality information indicating the degree of confidence as to

each object detection. We show that the quality information based object true/false

decision considers not only the number of visual sensors detecting an objects, but also

the accuracy of detected local object position. In addition, it supports the a-priori

probabilities for making a more precise decision on true/false object. Finally, the

performance is analyzed and evaluated with occlusion, deviated detection and false

detection cases.
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Chapter 5

Conclusions and Future Work

This thesis is primarily dealing with three themes in object tracking based on acoustic

and visual sensors with the frame of particle filter. The first one is the problem

of 3 dimension formulation: “How do we efficiently formulate 3 dimensional object

tracking under noisy characteristics?”. The second one is to find the optimal sensor

cooperation method, which considers resource usage minimization. The third one is

to enhance object detection in visual tracking.

These themes have led us to explore the use of heterogeneous sensors network as

well as apply particle filter for object tracking. This chapter summarizes the main

contribution of the thesis and introduces ongoing future research.

5.1 Contributions

• We showed 3-D decomposition and plane selection. By exploiting the fact that

the noisy measurements of the acoustic sensor differs on projected planes, we
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proved the effective plane selection based on the characteristics. We illustrated

that the particle filtering with the proposed plane selection is more flexible than

the direct 3-D method where the proposed method can be easily extended to

multiple sensor particle filtering. We have also analyzed the performance of

the proposed methods using Cramer-Rao Lower Bound (CRLB) and compared

to that of the direct 3-D method. We have shown that the proposed methods

outperforms the direct 3-D method.

• The limitations of the particle filtering using a passive acoustic sensor for an

object tracking are first addressed in mathematical and empirical studies. The

performance of the tracking based on the passive acoustic sensor suffers from

inability to detect the change of the dynamic model, unreliable measurements

and unknown initial object state. From the perspectives, we propose and ana-

lyze an approach to enhance the performance of the tracking by incorporating

visual association. The proposed approach is to minimize resource since a visual

sensor require much higher resources than an acoustic sensor.

• we present an object detection enhancement with the collaboration of local and

global information. In order to minimize the detection performance degrada-

tion, we use quality information indicating the degree of confidence as to each

object detection. We show that the quality information based object true/false

decision considers not only the number of visual sensors detecting an objects,

but also the accuracy of detected local object position. In addition, it supports

the a-priori probabilities for making a more precise decision on true/false object.
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Finally, the performance is analyzed and evaluated with occlusion, deviated de-

tection and false detection cases.

5.2 Future research

5.2.1 Temporal and Spatial Human Face Characterization

Application Model

In an environment with multiple humans as illustrated in Figure 5-1, a searching for

specific person given a target face image is addressed.

Figure 5-1: A picture sample illustrating crowded environment

Figure 5-2 illustrates a system overview for searching specific person given a target

face image. Let denote fT as target face information, and fCi as candidate face

information, where i=1,2,..., I for the number of detected faces I. Once a visual

sensor detects human faces, the candidate face information fCi is compared with

target face fT . Similarity function S(·) has an argument fCi|fT .
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S(fc1|fT)
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S(fc2|fT)

S(fc4|fT)

Figure 5-2: System overview: once a visual sensor detects human faces, each detected
face fCi is compared with target face fT . Similarity function S(·) has an argument
fCi|fT .

Face Information Characterization

In order to characterize face information, the target face fT as a reference is repre-

sented by probability density function (pdf) of color. A candidate face fCi is also

characterized by the pdf. The pdf is discrete densities with m-bin histogram, where

the maximum value of m is 256. Thus, a target face pdf fT and a candidate face fCi

is formulated as

fT = {fu
T}u=1,...m,

m∑
u=1

fu
T = 1 (5.1)

fCi = {fu
Ci}u=1,...m,

m∑
u=1

fu
Ci = 1 (5.2)

Given the target face pdf fT and the candidate face pdf fCi, a similarity function

S(fCi|fT ) computes a likelihood representing similarity between the target face and

the candidate face. Then, the following issues and questions arise: Do we properly

match faces? If not, why? What is the limitation?
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If we know additional information of moving direction, we estimate the part of

face: front face, back head, etc. Suppose we have only a front face, the face recognition

system should suspend decision making until a visual sensor views front face. If a

visual sensor views part of the front face such as front right side, then we may make

decision with the right side information.

Figure 5-3: Target image for search

(a) Face detection

candidate face 

F1

candidate face 

F2

(b) Can-
didate
faces F1

and F2

Figure 5-4: Frame #1

Based on known camera positions, actual movement is roughly estimated with

a monitored face movement. Figure 5-8 illustrates the movement and/or size of

monitored faces according to camera positions and actual movement directions. For

example, when a person is moving toward to N direction, left movement in Camera
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(a) Face detection

F1

F2

F3

(b) Can-
didate
faces F1,
F2 and
F3

Figure 5-5: Frame #26

1 and 2, smaller size in Camera 3, right movement in Camera 4, and bigger size in

Camera 5 are monitored. Figure 5-9 represents the movement of monitored faces

in more specific directions. In those movement directions, movement and size are

both changed. When a person is moving toward NE direction, left movement and

smaller size for Camera 1 and 2, right movement and smaller size for Camera 3,

right movement and bigger size for Camera 4, and left movement and bigger size for

Camera 5 are monitored. Hence, multiple faces from cameras are differentiated based

on known camera positions.

To generalize the concept, the actual movement Mpq
n is expressed as

Mpq
n = r cos θ, (5.3)

where Mpq
n is actual movement state of pth face from qth camera at time-instant n,
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(a) Face detection

F2

F3

(b) Can-
didate
faces F2

and F3

Figure 5-6: Frame #35

and r represents movement degree and θ is .

However, in the case that more than one person are moving toward the same

direction, it is difficult to differentiate them. In addition, the uncertainty of the

monitored face movement and size change needs to be considered as well.

Temporal and Spatial Face Characteristics

Feature space of an object is represented by probability density functions (PDF).

The PDF is estimated by m- bin histograms, where m is the number of colors of an

object. Given a reference PDF, a similarity degree is evaluated by comparing with

candidate PDFs. Both the reference and the candidate PDFs are represented by

m-bin histograms as an estimate to their PDFs as

f̂ r = {f̂(u)r}u=1,...,m , f̂ c
i = {f̂(u)c

i}u=1,...,m , (5.4)
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(a) Face detection

F2

F3

F1

(b) Can-
didate
faces F2

and F3

Figure 5-7: Frame #46

where f̂ r and f̂ c
i represent the PDFs of a reference object and the i-th candidate

object with m-bin histograms, respectively, where i = {1, 2, ..., I} for the number of

candidate objects I. f̂(u)r and f̂(u)c
i represent density of a reference object and i-th

candidate object according to u-th bin, respectively.

For the similarity degree evaluation, Bhattacharyya coefficient is widely used [].

The coefficient defines a normalized distance between f̂ r and f̂ c
i . The sample estimate

of Bhattacharyya coefficient between f̂ r and f̂ c
i is defined as

ρi ≡ ρ̂i[f̂
r, f̂ c

i ] =
m∑

u=1

√
f̂(u)r · f̂(u)c

i . (5.5)

The Bhattacharyya coefficient is in the range as 0 ≤ ρi ≤ 1. If f̂ r and f̂ c
i are similar,

ρi becomes close to one. Otherwise, ρi becomes close to zero. Note when we construct

a histogram, we need to consider the width of the bins and the end points of the bins.
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Figure 5-8: Movement or size change of monitored faces according to camera positions
and moving directions (N, S, W and E)

As a result, the problems with histograms are that they are not smooth, depend on

the width of the bins and the end points of the bins. In order to make a smooth

histogram, which is independent on the end points of the bins, kernel estimators are

applied in many applications. However, we are in fact interested in the accuracy of

object identification without computational issue. In other words, we are exploring

the question that how well a candidate object is identified given a reference object.

In order to investigate the performance evaluation of the Bhattacharyya coeffi-

cient, for simplicity, one reference object and three candidate objects are considered

as illustrated in Figure 5-10. Figure 5-11 shows a PDF of the reference object, and

Figure 5-12, 5-13 and 5-14 show PDFs of the candidate objects. According to the
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Camera 1 & 2
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Figure 5-9: Movement and change of monitored faces according to camera positions
and moving directions (NE, SE, NW and SW)

(a) reference object

(b) candidate object 1 (c) candidate object 2 (d) candidate object 3

Figure 5-10: One reference object and three candidate objects

condition, the coefficient is obtained as ρ1 = 0.8039, ρ2 = 0.8040 and ρ3 = 0.9989.

This methodology is applied in a face identification problem and the corresponding

Bhattacharyya coefficients are shown as an example in Figure 5-20. The example

shows a face identification among different races. However, within same race with

same skin and hair color, the face identification becomes challenging. Figure 5-21

shows the limitation of the Bhattacharyya coefficients.

The proposed face identification technique is to use multiple spatial face infor-

mation. The spatial face information is obtained by capturing a face image from

different angles of a visual sensor. Figure 5-22 shows the image planes from different
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Figure 5-11: f̂ r: reference object
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Figure 5-12: f̂ c
1 : candidate object 1

visual sensor angle by ∆θ. It stores a face information from front face to back head.

Let denote the face (head) reference PDF viewed by relative angle (n − 1)∆θ from

a visual sensor as f̂ r,[n], where n={1, 2, ..., N} for the total number of spatial face

information N . More specifically,

f̂ r,[1] : a front face PDF

...

f̂ r,[n] : a left or right side of face (head) PDF with (n− 1)∆θ

...

f̂ r,[N ] : a back head PDF

We assume that a face is symmetrical between left and right sides. Since f r,[N ]
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Figure 5-13: f̂ c
2 : candidate object 2
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Figure 5-14: f̂ c
3 : candidate object 3

represents a back head,

∆θ =
π

N − 1
or N =

π

θ
+ 1 (5.6)

Figure 5-23 shows an arrangement of multiple spatial face PDF.

5.2.2 Robot Navigation

The potential field method has been widely studied for autonomous mobile robot path

planning, whose purpose is that a robot reaches a goal with an obstacle avoidance

[63] [64]. The principle of the potential field method is that an obstacle exerts a

repulsive force onto a robot while an goal applies an attractive force to a robot [65].

One of the reasons for the popularity of the method is its simplicity and mathematical

elegance. However, it has some inherent limitations such as trap situations due to

local minima. The trap situations may occur when a robot runs into a a dead end,
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Figure 5-15: Target image for search

(a) Face detection

candidate face 

F1

candidate face 

F2

(b) Can-
didate
faces F1

and F2

Figure 5-16: Frame #1

and a robot never reach a goal [66]. Many researchers have addressed their solutions

with heuristic recovery or new potential functions [67] [68] [69].

Besides the limitations, there exists an additional problem, which is a collision by

aligned robot-obstacle-goal (CAROG). In most of the previous studies, the positions

of a robot, an obstacle and a goal are not aligned in a line. In this case, when a robot

and a goal are blocked by an obstacle in a line, the repulsive force from an obstacle

and the attractive force from a goal are exerted onto a robot in an opposite direction.

If the repulsive force is bigger than the attractive force, a robot moves away from an

obstacle and stops until the repulsive force and the attractive force are equal. That
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(a) Face detection

F1

F2

F3

(b) Can-
didate
faces F1,
F2 and
F3

Figure 5-17: Frame #26

is the one of trap situations due to local minima mentioned above. On the other

hand, if the attractive force is bigger than the repulsive force, a robot moves toward

an obstacle, and it collides with an obstacle when the inequality force condition is

continuously kept hold.

In order to overcome this problem, we propose a new force function by taking

into account a robot speed and sampling time. The new force function ensures that

the repulsive force is always bigger than the attractive force before a robot collides

with an obstacle; and thus, a robot never collide with an obstacle. However, another

subsequent problem arises after the CAROG prevention. Once a robot moves away

from an obstacle by the modified force function, it moves back and forth between

two positions. Thus, we also propose the shortest path when a robot continuously

oscillates two points.
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(a) Face detection

F2

F3

(b) Can-
didate
faces F2

and F3

Figure 5-18: Frame #35

Potential Field Method and CAROG Problem

For simplicity, we assume that a robot, an obstacle and a goal are represented by

a point mass in two-dimension coordinates, respectively. Given a space with size

Xs × Ys, each position is denoted by

p = [x y]T (5.7)

where 0 ≤ x ≤ Xs and 0 ≤ y ≤ Ys. In addition, each position of a robot, an obstacle

and a goal is denoted by

pr = [xr yr]
T , po = [xo yo]

T and pg = [xg yg]
T . (5.8)

In the potential field method, an attractive potential is defined as a function of the

relative distance between a robot and a goal while a repulsive potential is defined as a
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(a) Face detection

F2

F3

F1

(b) Can-
didate
faces F2

and F3

Figure 5-19: Frame #46

function of the relative distance between a robot and an obstacle. The two potential

functions are commonly expressed as [65] [67] [70] [71]

Uatt(p) = catt ·
(
ρ(p,pg)

)m
, (5.9)

and

Urep(p) =





crep ·
(

1
ρ(p,po)

− 1
ρ0

)n

if ρ(p,po) ≤ ρ0

0 if ρ(p,po) > ρ0
,

(5.10)

where catt and crep are constant values for an attractive potential and a repulsive

potential. ρ(p,pg)=||p,pg|| is the shortest distance between two positions, p and pg.

Similarly, ρ(p,po)=||p,po|| is the shortest distance between two positions, p and po.

ρ0 is a positive constant denoting the distance influence of an obstacle. m and n are
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reference face

candidate face 1 candidate face 2 candidate face 3

1 = 0.6371 2 = 0.9013 3 = 0.9537

Figure 5-20: Among races: different skin and hair color

1 = 0.9559 2 = 0.9539 3 = 0.9596 4 = 0.9596

reference face

candidate face 1 candidate face 2 candidate face 3 candidate face 4

Figure 5-21: within a race: same skin and hair color

positive integer constants. For m = n = 1, each potential is conic in shape, and for

m = n = 2, each potential is parabolic in shape.

The corresponding attractive force and repulsive force are then given by the neg-

ative gradient of each attractive potential and repulsive potential as

Fatt(p) = −∇Uatt(p)

= −m · catt ·
(
ρ(p,pg)

)m−1 · ∇ρ(p,pg), (5.11)
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f
r[N]

Figure 5-22: Image planes from different visual sensor angle by ∆θ

and

Frep(p) = −∇Urep(p)

=





n · crep ·
(

1
ρ(p,po)

− 1
ρ0

)n−1

·
(

1
ρ(p,po)

)2

· ∇ρ(p,po) if ρ(p,po) ≤ ρ0

0 if ρ(p,po) > ρ0
.

(5.12)

where ∇ρ(p,po) and ∇ρ(p,pg) are two unit vectors pointing from an obstacle to a

robot and from a goal to a robot, respectively. That is, the two unit vectors are

expresses as

∇ρ(p,po) =
(x− xo)ux + (y − yo)uy√

(x− xo)2 + (y − yo)2
, (5.13)

∇ρ(p,pg) =
(x− xg)ux + (y − yg)uy√

(x− xg)2 + (y − yg)2
(5.14)

where ux and uy are unit vectors in x and y direction, respectively.
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Figure 5-23: An arrangement of multiple spatial face PDF

The total force applied to each position p is the sum of the attractive force and

the repulsive force as

Ftot(p) = Fatt(p) + Frep(p), (5.15)

which determines the robot direction for reaching a goal with an obstacle avoidance.

We assume that a robot moves with constant speed sr and change its direction based

on Ftot(pr) by every sampling time Ts. That is, a robot moves sr ·Ts with the direction

of Ftot(pr) every Ts.

Figure 5-24 illustrates the total force Ftot(pr) onto a robot by addition of the

attractive force Fatt(pr) and the repulsive force Frep(pr). When the robot approaches

its goal, Fatt(pr) becomes dominating and Frep(pr) becomes negligible.

However, the above induced force based on the potential field method has an

inherent problem, a collision by aligned robot-obstacle-goal (CAROG). Figure 5-25
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Frep(pr)

Fatt(pr)

Ftot(pr)

goal

obstacle

robot

pg

pr

po

o

Figure 5-24: Total force Ftot(pr) onto a robot by addition of the attractive force
Fatt(pr) and the repulsive force Frep(pr)

illustrates the CAROG problem, where a robot and a goal are blocked by an obstacle

in a line. A robot positioned at pr is exerted by two forces, Fatt(pr) and Frep(pr), in

an opposite direction: ∇ρ(p,po) = ∇ρ(p,pg). In the case, if |Fatt(pr)| < |Frep(pr)|,

a robot moves away from a goal and an obstacle until |Fatt(pr)| = |Frep(pr)|. It is

called trap situations due to local minima, which is another inherent limitation of the

potential field method addressed by [67]. On the other hand, if |Fatt(pr)| > |Frep(pr)|

a robot moves close to an obstacle as well as a goal. Once the inequality condition is

continuously kept hold until |pr − p0| ≤ sr · Ts, a robot collides with an obstacle. In

other words, CAROG problem is defined on the following three conditions

|Fatt(pr)| > |Frep(pr)| (5.16)

|pr − p0| ≤ sr · Ts, (5.17)

∇ρ(p,po) = ∇ρ(p,pg). (5.18)

For example, consider the case illustrated in Figure 5-25, where pr=[12 12]T ,
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Frep(pr)

Fatt(pr)

pg

po

pr

F>0

F<0

s r
•T
s

Figure 5-25: Robot and a goal are blocked by an obstacle in a line.

po=[8 8]T and pg=[6 6]T . A robot moves with sr=
√

2 and Ts=1; a robot moves
√

2

every sampling time. Both a robot and a goal are within the distance of influence of an

obstacle with ρo=10. The attractive potential and repulsive potential are specifically

given by [68]

Uatt(p) =
1

2

(
ρ(p,pg)

)2
, (5.19)

Urep(p) = 5

(
1

ρ(p,po)
− 1

10

)2

.

(5.20)

Note that m=2, n=2, catt=0.5 and crep=5 are used in a general form of (5.9) and

(5.10). Their corresponding attractive force and repulsive force are obtained as

Fatt(p) = −ρ(p,pg) · ∇ρ(p,pg), (5.21)

Frep(p) = 10

(
1

ρ(p,po)
− 1

10

)
·
(

1

ρ(p,po)

)2

·∇ρ(p,po). (5.22)

Figure 5-26 shows the attractive force, the repulsive force and the total force in a
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Figure 5-26: Example of CAROG problem

diagonal line from (2,2) to (14,14). In this example, for better understanding, each

force direction away from an origin is denoted as positive and each force direction

toward an origin is denoted as negative. From the goal position (6,6), the attractive

force is symmetrically exerted as shown in Figure 5-26 (a). From the obstacle position

(8,8), the repulsive force is symmetrically exerted as shown in Figure 5-26 (b). By

addition of the attractive and repulsive forces, the total force is shown in Figure 5-26

(c), where the total forces from (14,14) to (8.9,8.9) are negative, which causes a robot

to move toward an obstacle. We denote the transitional point having zero total force

by pδ. Note that a robot moves toward an obstacle from the starting point (12,12),

and pass by the points (11,11), (10,10) and (9,9). From the point (9,9), a robot is still

exerted by negative total force; and thus it continuously moves toward an obstacle and

collides with the obstacle positioned at (8,8). Note that we are not trying to tackle

the common trap situation due to the relatively bigger repulsive force. We restrict
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our attention to the problem of collision by aligned robot-obstacle-goal (CAROG).

The CAROG problem has been not addressed yet, and it should be taken into

account to prevent a robot from damage by collision. We define the distance between

two points, pδ and po by

δ = |pδ − po|. (5.23)

If δ is larger than the distance sr · Ts, the collision is prevented. In the previous

example, δ is 1.27, and sr · Ts is
√

2. We deal with the CAROG prevention method

by presenting a new force function as well as the method for finding the shortest path

to a goal.

Total Force Modification and Oscillation Escape

The CAROG problem arises because an obstacle blocks both a goal and a robot in a

straight line, and |Fatt(pr)| > |Frep(pr)| when |pr − p0|≤sr · Ts. It is found that if δ

is larger than sr · Ts, the collision is avoided by having |Fatt(pr)| < |Frep(pr)| when

|pr − p0|≤sr · Ts. This motivates us to consider a new total force as

Ftot(p) =





∇ρ(p,po), where |p− po| ≤ sr · Ts,

if δ < sr · Ts

& ∇ρ(p,po) = ∇ρ(p,pg)

Fatt(p) + Frep(p), elsewhere.

(5.24)

In comparison with (5.15), the new total force ensures that a robot moves away
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from an obstacle before it is collided with an obstacle. In the previously shown

example, since δ is 1.27 and sr · Ts is
√

2, Ftot(p), where |p − po| ≤
√

2, becomes

∇ρ(p,po). Figure 5-27 shows the total force based on (5.24). Then, when a robot

moves from the position (10,10) to the position (9,9), it moves back to the position

(10,10), and the collision is avoided.

-6

-4

-2

0

2

4

6
F
to
t(
p
)

-8

-10

-12

(2,2) (4,4) (6,6) (8,8) (10,10) (12,12) (14,14)

p

sr•Ts= 2

(9,9)

Figure 5-27: Total force based on (5.24)

As the new total force in (5.24) is considered, each size of robot and an obstacle

becomes an important parameter. We assume that a robot and an obstacle are circles

in shape with radius rr and ro, respectively. Then, the distance, δ, for an obstacle

avoidance is extended from sr · Ts to sr · Ts + rr + ro. Also, the new total force is

revised as

Ftot(p) =





∇ρ(p,po), where |p− po| ≤ sr · Ts + rr + ro,

if δ < sr · Ts + rr + ro

& ∇ρ(p,po) = ∇ρ(p,pg)

Fatt(p) + Frep(p), elsewhere.

(5.25)

Though the new total force described in (5.25) guarantees the CAROG prevention,
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a subsequent problem arises. For example, when the robot moves back to the position

(9,9) from the position (10,10) in the previous example, it again moves back and

forth between the two positions (9,9) and (10,10). It is an oscillated robot movement

problem, which a robot never reach to a goal by oscillating between two positions. In

order to reach to a goal, a robot should be out of the oscillated line track as illustrated

in Figure 5-28.

sr•Ts+rr+ro

pg po prpr

oscillated line track

Figure 5-28: Illustration of oscillated line track

Since the two successive total forces are with an opposite direction, the oscillated

robot movement is recognized at time t when

Ft−1
tot (pr) · Ft

tot(pr) = −|Ft−1
tot (pr)| · |Ft

tot(pr)| (5.26)

where t − 1 and t denotes time. Then, a robot deviates the oscillated line track

at time t. Figure 5-29 illustrates the CAROG prevention and oscillation escape.

Especially, in order to escape the oscillated line track in step 3, two possible cases

are considered: deviate the oscillated track line when a robot is inside the region

|p− po| ≤ sr · Ts + rr + ro (step 3.1 ) or outside (step 3.2 ).

We denote the deviation angle for the oscillated robot movement by θosc as il-

lustrated in Figure 5-30. Also, we denote the distance between center points of an
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=

=

Figure 5-29: Illustration of CAROG prevention and oscillation escape

obstacle and a robot by dosc. The distance, dosc, is

0 < dosc ≤ sr · Ts + rr + ro, (5.27)

when a robot deviates the oscillated line track from the point inside the region |p−

po| ≤ sr · Ts + rr + ro, and

sr · Ts + rr + ro < dosc ≤ 2(sr · Ts) + rr + ro, (5.28)

when a robot deviates the oscillated line track from the point outside the region

|p− po| > sr · Ts + rr + ro.

Since the relationship between θosc and dosc is established as

rr + ro

sin θ
= dosc, (5.29)

θosc = csc

(
rr + ro

dosc

)
, (5.30)
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Figure 5-30: Deviation angle for the oscillated robot movement by θosc

the angle, θosc, has ranges as

csc

(
rr + ro

sr · Ts + rr + ro

)
≤ θosc <

π

2
, (5.31)

when a robot deviates the oscillated line track from the point inside the region |p−

po| ≤ sr · Ts + rr + ro, and

csc

(
rr + ro

2(sr · Ts) + rr + ro

)
≤ θosc < csc

(
rr + ro

sr · Ts + rr + ro

)
, (5.32)

when a robot deviates the oscillated line track from the point outside the region

|p− po| > sr · Ts + rr + ro.

Note that the range of distance, dosc, is known, but the exact position is un-

known. Thus, in order to completely avoid the collision with an obstacle, we always

should consider the maximum value of dosc. Then, the deviation angle for the os-

cillated robot movement, θosc, should be chosen as a maximum value of (5.31) and

(5.32) according to each case. In other words, the maximum values of θosc, π/2 and

csc ((rr + ro)/(sr · Ts + rr + ro)), support the shortest path to a goal as well as the

obstacle avoidance, respectively.
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We denote the unit vector of total force Ft
tot at time t as ut

Ftot
, and its angle in a

xy- plane as θt
Ftot

. Then, Ft
tot is expressed as

Ft
tot = |Ft

tot|ut
Ftot

(5.33)

= |Ft
tot|

(
cos(θt

Ftot
)ux + sin(θt

Ftot
)uy

)
(5.34)

5.2.3 Object Tracking with RFID and Visual Sensors Asso-

ciation and Data Traffic Analysis

Localization and tracking of multiple objects have been great interest to numer-

ous surveillance-required areas. Tracking system is applied in diverse fields such as

military, hospital and mining. However, the reliable and robust tracking is hardly

accomplished due to unexpected trajectory and diversified environmental errors to be

adapted. As a widely used tracking example, the Global Positioning System (GPS)

utilizes a constellation of satellites which broadcasts precise timing signals based on

a receiver’s call. However, in contrast to GPS, tracking in wireless sensor network

without a receiver calling is more difficult and challengeable.

For tracking objects, acoustic sensors have been widely used in many applications.

Acoustic sensors have flexibility, low cost and easiness of deployment. However, an

acoustic sensor is not only sensitive to surrounding environment with noisy data, but

also not fully satisfying the requirement of consistent data. Thus, the substitution for

acoustic sensor is necessary for more consistent and reliable data. Among a variety of

sensors, visual sensors support consistent and reliable data for localization. However,
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the disadvantage of visual sensor is that the roughly estimated position of observed

objects should be known in advance.

Our objective is to propose object tracking algorithm based on association with

RFID coverage scheme and a visual sensor. Firstly, we estimate coarse location of

objects with multiple sensor nodes with a RFID reader. Secondly, the location co-

ordinate determination is further improved with visual data compensation. In the

RFID sensor nodes, objects with proximity to RFID readers are detected. Especially,

redundant detection from different RFID readers is inferred that the object is posi-

tioned in the common coverage of the readers. Hence, the concept of virtual sensors is

applied for the localization [74]. A virtual sensor is a RFID readers combination. In

addition, each virtual sensor has a reference point which represents the central point

of the overlapped coverage from RFID readers. Visual sensors are compensating for

the coarse estimation based on parallel projection model. The visual compensation

requires a reference point for improved estimation. The reference points are obtained

from RFID coverage scheme. Finally, we present the experimental results; localization

with RFID sensor nodes, visual compensation with one reference point and multiple

reference points.

Background and Motivation

Figure 5-31 illustrates our proposed system model for tracking objects. RFID sensors

and visual sensors are placed in a closed space with association. In Figure 5-31(a),

the circles with A to H and the dots with C1 to C4 represent RFID sensors and

visual sensors, respectively. All of the sensors are tracking objects (squares 1 to 11)
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by accomplishing the coarse and the refined localization in order. Figure 5-31(b)

illustrates the flow from RFID detection to visual sensing. Multiple RFID readers

detect moving objects and accomplish the coarse estimates. The estimated position

is determined using a virtual sensor with a reference point which will be discussed.

After the coarse localization, image frames from two cameras improve the estimation

based on parallel projection model. For instance from Figure 5-31(a), the object with

ID 2 is detected by reader A, B and E. The global range is estimated based on

common range of three circles from readers A, B and E. Finally, the refined position

is determined by visual sensors C1 and C2 with improvement.
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Figure 5-31: System model with RFID coverage scheme for tracking.

For the previous work on tracking with RFID, self-localization with a mobile

robot is accomplished [72] [73] with visual sensors. However, the self-localization

with a mobile robot is sensitive to a variety of environments.

Our proposed method tracks objects with sensor nodes in wireless network. Thus,

the approach is independent of the environment and easy to implement. However, for

the complete tracking, RFID collision problem should be considered. Especially in
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dense RFID readers environment, overlapping of RFID coverage prevents readers from

tags detection due to interference [75]. In order to solve the problem, [76] proposes

coloring solution, and [77] proposes fine-tuning method with several frequencies or

channels.

Incorporated RFID coverage scheme

In dealing with multiple objects tracking, data association is a problem of great

importance. Recently the particle filter based estimation has addressed to the data

association proposing a variety of strategies [78] [79]. Consider single object state

vector Xn evolving according to

Xn = fn−1(Xn−1) + Qn−1, (5.35)

where fn is a nonlinear, state transition function of the state Xn, and Qn−1 is the

non-Gaussian, process noise in the interval time-instant between n and n − 1. The

measurements of the evolving target state vector is expressed as

Zn = hn(Xn) + En, (5.36)

where hn is a nonlinear and time-varying function of the target state, En is the

measurement error which is independent identically distributed white noise process.

In order to estimate target state vector, dynamic prior probability density function
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(pdf) is obtained as

p(Xn|Z1:n−1) =

∫
p(Xn|Xn−1)p(Xn−1|Z1:n−1)dXn−1, (5.37)

where Z1:n represents the sequence of measurements up to time instant n, and p(Xn|Xn−1)

is the state transition density with Markov process of order one related to fn(·) and

Qn−1 in Equation (5.35).

For the next time estimation based on Bayes’ rule, posterior pdf involving predic-

tion pdf is obtained as

p(Xn|Z1:n) =
p(Zn|Xn)p(Xn|Z1:n−1)∫

p(Zn|Xn)p(Xn|Z1:n−1)dXn

, (5.38)

where p(Zn|Xn) is a likelihood function and the denominator is the normalizing con-

stant. The measurement Zn modifies the prior density (5.37) to obtain the current

posterior density (5.38), which extends to multiple objects posterior pdf is expressed

as:

pτn|Σ1:n(Xn|Z1:n) =
pΣn|τn(Zn|Xn)pτn|Σ1:n−1(Xn|Z1:n−1)∫

pΣn|τn(Zn|Xn)pτn|Σ1:n−1(Xn|Z1:n−1)dXn

,

where Σn is the random set of K observations received at time n representing {Z1
n,

..., ZK
n }, and τn is the random set of K state vectors at time n representing {X1

n, ...,

XK
n }. The random sets have multiple objects prior pτn|Σ1:n−1(Xn|Z1:n−1) and posterior

pdf pτn|Σ1:n(Xn|Z1:n) with multiple observation likelihood function pΣn|τn(Zn|Xn).

The RFID coverage scheme reduces the data association computation by recogniz-
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ing each object identification. By classifying objects based on different RFID readers

detection, the multiple posterior pdf is simplified as:

p
τ
(i)
n |Σ1:n

(Xn|Z1:n) =
p

Σn|τ (i)
n

(Zn|Xn)p
τ
(i)
n |Σ1:n−1

(Xn|Z1:n−1)∫
p

Σn|τ (i)
n

(Zn|Xn)p
τ
(i)
n |Σ1:n−1

(Xn|Z1:n−1)dXn

,

where τ
(i)
n is a subset of τn representing objects placed in reader coverage i (i = 1,

2, ..., I for the number of readers). For simplicity, we assumed that the number

of objects N i
n in coverage i is equal to N i

n−1 in order to validate the evolving pdf

p
τ
(i)
n |Σ1:n

(Xn|Z1:n).

Visual sensor association

Turning now to an object tracking, visual sensors are associated with readers detec-

tion. Coarse localization with readers and refined localization with visual association

are presented.

For coarse localization, each divided range from each RFID reader detection cov-

erage should be considered as shown in Figure 5-32(a). In order to effectively utilize

all overlapped ranges, the concept of virtual sensor nodes is introduced. A virtual

sensor is applied to a wide range of field in order to figure out complicated struc-

ture [74]. In addition, it helps us approach problems in a graphical model which is

viewed at a glance. Figure 5-32(b) shows a graphic model of virtual sensors based

on each reader coverage including the overlapped area. The size of circles (v1 to v7)

represents the coverage size. In the same method, Figure 5-31(a) is restated that 26

virtual sensors are tracking 11 targets (1 to 11); externally, 8 deployed RFID readers
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(A to H) are tracking 11 targets. The 26 virtual sensors are created by separation

and overlapping of 11 RFID reader coverages. In the coarse localization, each virtual

sensor has a reference point which represents a center of rough range. By conversion

of a large scale with RFID coverage to each reference point of a virtual sensor, coarse

localization is accomplished.

R1

R3R2

V1

V4

V5
V6

V3
V2

V7

(a) sepa-
ration of
overlapping

R1 R2 R3

V1 V3 V4
V5V2 V6 V7

(b) Representation as
virtual sensors

Figure 5-32: RFID coverages and virtual sensors (RFID coverages : R1 to R3, virtual
sensors : v1 to v7).

Figure 5-33 illustrates the RFID readers detection with object trajectory. Accord-

ing to time, moving objects are detected by 12 different readers as shown in Figure

5-33(b). Under the assumption in which the overlapping area is generated by two

readers maximally, the number of possible combination of 12 readers is 12C1 + 12C2

or 78; the numbers of covered ranges by one reader and two readers are 12C1 and

12C2, respectively. However, the readers combinations with long distance may be ex-

cluded even though the RFID coverage pattern is irregular and changed with time in

real environment. Thus, in the total k RFID readers environment with p maximum

coverage overlapping, the number of possible virtual sensors is equal to or less than

∑p
i=1kCi. Tracking accuracy is in inverse proportion to not only RFID coverage but
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also distance between adjacent readers. The small RFID coverage and short distance

between adjacent readers increase tracking accuracy while deployed readers density

increases.

Object Detection Reader according to Time

t1 t2 t3 t4

O1

R1 R1   R3 R5   R9 R10

t5 t6 t7 t8

R11 R8 R4   R8 R4

(a) RFID readers
detection

t1

t2

t3

t4

t5

t6

t7

t8

(b) estimate: dash
line, real: solid line

Figure 5-33: RFID readers detection and global estimation by virtual sensor nodes
from RFID coverage.

After the coarse range tracking with virtual sensor nodes based on the RFID de-

tection, two visual sensors take object snapshots for refined localization. The estimate

improvement is based on the parallel projection model as shown in Figure 5-34. The

global estimation from RFID detection and real object position is denoted as E(xe,

ye) and P , respectively. Virtual viewable planes are the image frames with parallel

projection of a real object; the parallel planes to Z1 or Z2. The object planes (Z ′
1 and

Z ′
2) are the parallel planes with respect to each virtual viewable plane. Basically, the

estimated position (E ′
v) with visual sensors is expressed as

E ′
v = (xe ±∆u2, ye ±∆u1), (5.39)

where the sign ± is determined according to the relative object position (P ) with

respect to coarse estimated position (xe and ye)
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The estimate conversion scheme in Equation (5.39) is illustrated in Figure 5-34.

At first, projections to virtual viewable planes of the coarse estimate and the real

object are from different height with ∆d1 or ∆d2. Thus, the estimation should be

modified by considering the parameters d1, ∆d1, d2 and ∆d2. In the ratio of triangles

similitude, the Equation (5.39) is modified as

Ev = (xe ±∆ur2, ye ±∆ur1), (5.40)

∆ur1 = ∆u1(
d1 + ∆d1

d1

)(
Z1

Z ′
1

),

∆ur2 = ∆u2(
d2 + ∆d2

d2

)(
Z2

Z ′
2

),

where Ev represents the final estimation with visual sensors, and the sign ± is de-

termined according to the relative object position (P ) with respect to the global

estimated position (xe and ye).

E(xe,ye)

Oc2(xc2 ,yc2)

d1

Oc1(xc1 ,yc1)

d2

Camera 1

Camera 2

∆∆∆∆d1

∆∆∆∆d2

Z1

Z2

Z1'Virtual Viewable
Plane 1 Z2'

∆∆∆∆u1

∆∆∆∆u2

Virtual Viewable
Plane 2

P

Figure 5-34: The parallel projection model in visual sensors.

The other factor for consideration is scale distortion. The parallel projection

model estimates position under the assumption in which the sight of vision boundary
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Figure 5-35: Distortion error for nonlinear sight of vision boundary.

is linearly drawn as solid lines in Figure 5-34. However, a real camera supports the

nonlinear boundary which results in scale distortion. This non-linearilty contributes

to the difference in Z and Z ′. Figure 5-35 shows the zooming factor distortion error

which is measured by Canon Digital Rabel XT with Tamron SP AF17-50mm Zoom

Lens. The data shows the error according to the distance between a object plane and

a virtual viewable plane. As the planes distance increases, the error is found to be

decreased with zooming discrepancy reduction.

Simulation and Analysis

Figure 5-36 shows object trajectory (P1 to P12) with different readers environment.

Two visual sensors (Oc1, Oc2) are placed in the middle of left and bottom wall.

Figure 5-36(a) illustrates an object tracking with one reference point from single

RFID reader. Figure 5-36(b) illustrates an object tracking with two reference points

from two RFID readers. Virtual sensors based on RFID detection results in estimating

a point E, E1 or E2 relying on the belonged coverage. From the coarse estimation,

the point E, E1 or E2 becomes a reference point for visual sensing.

Figure 5-37 shows the visual compensation results from global localization in Fig-
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(b) Object trajectory in
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Figure 5-36: Simulation setup based on RFID detection (the coarse estimation with
RFID is a point E in (a) and E1 or E2 in (b)).

ure 5-36(a) and 5-36(b). From the simulation results, improved estimates with visual

sensors are shown with the refined tracking. The tracking accuracy is almost no

difference between one and two reference points having visual compensation. Since

passive tags have practical read distances ranging from approximately 4 inches up to

a few meters, visual sensing refines estimation with similar accuracy to any object.

In other words, visual sensing compensation results in almost same tracking accuracy

unless RFID detection range is scores of meters,

The accuracy of the coarse estimation with RFID readers is dependent on the

number of readers and the adjacent readers distance. The more readers are placed,

the more accurate the estimation is. However, the refined estimation with visual

sensors improves any coarse estimation similarly regardless of error difference. Thus,

the final estimation with visual sensors has little effect on the number of RFID readers

as well as distance between adjacent readers.
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Figure 5-37: Visual compensation result after the coarse estimation with RFID de-
tection based on Figure 5-36.

Data Traffic Analysis

As time passes by, demanding degree of tracking accuracy is increased while existent

sensors and tracking algorithm still have limitation. The acoustic sensors, RFID and

visual sensors are widely used in many applications that needs the localization of sen-

sors. However, an acoustic sensor is not only sensitive to surrounding environment

with noisy data, but also requires endless sound wave from sources. RFID localization

accomplishes only approximate estimation with specific coverage [80]. A visual sensor

requires initial position in advance. In other words, only single sensor is not enough

to manage accurate tracking in diversified environments. Thus, fusion sensors asso-

ciation is required for object position compensation. However, in the fusion sensor

network, data traffic may stir up the whole tracking performance, and data packets

are dropped in heavy traffic network.

Our objective is to present fusion sensor association with our proposed network

protocols. The data traffic is investigated and analyzed in wireless sensor network
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quipped with mesh routers [81]. An acoustic sensor and RFID reader are incorpo-

rated in a sensor node. Based on RFID detection, acoustic sensors determine which

objects are taken charged. The acoustic sensor detecting Direction of Arrival (DOA)

estimates objects position based on Particle Filtering as an example of tracking algo-

rithm [16] [82]. Since the weakness of the acoustic sensors and the tracking algorithm,

the estimation is refined with visual sensors in a final stage [17]. For the sensors data

association, routers and a server are connected composing the whole wireless fusion

sensor network. Based on the network protocol construction, we analyze the network

traffic mixed by multiple types of fusion data by using NS-2 simulations under various

network scenarios. We mention the feasible placement of the functionalities for object

tracking with fusion sensors by observing the end-to-end and hop-by-hop delays. In

addition, we also get the insight how we configure the wireless fusion sensor network

for more accurate object tracking.

Tracking with acoustic sensors based on traditional algorithms should be satisfied

by a few conditions for complete performance. For example, the Kalman filter is not

applied to nonlinear trajectory, and the Particle Filter requires initial position and ve-

locity [6]. Furthermore, sound waves for acoustic sensors are transmitted sporadically

due to blocks. For those limitations, additional data with visual sensors compensate

the performance. RFID, acoustic sensors and visual sensors are cooperating with

multimodal signal processing as shown in Figure 5-38.

A RFID reader and an acoustic sensor are assumed to be fused in a single sensor

node (S1 to S3). Objects (O1 to O4) are detected with proximity to RFID readers

and acoustic sensors determine which objects are taken charged based on the RFID
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Figure 5-38: Fusion sensors with RFID detection, acoustic sensing and visual sensing
(Object : O, RFID and acoustic sensor : S, visual sensor : V)

detection. After the base estimation from the acoustic sensors, visual sensors (V)

refine the estimation for the final result.

RFID readers
(S1, S2, ..., Sn)

Detect Objects
(every TRFID)

Track Objects

Acoustic sensors
(S1, S2, ..., Sn)
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Visual sensors

(a) Fusion sensors association based on
a router.
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(b) Re-arrangement for acoustic sens-
ing based on RFID detection

Figure 5-39: RFID detection, acoustic sensing and visual sensing.

The sensors association is illustrated in Figure 5-39(a). Based on RFID detection,

a router rearranges objects for each acoustic sensor as shown in Figure 5-39(b). Object

positions based on acoustic sensing are also estimated in a router by using particle

filtering algorithm. Furthermore, the refined estimation with visual sensors may be
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processed in a router, or a server in lieu of a router may estimate the refined estimation

after receiving the image frames containing snapshot of space from visual sensors. The

estimation with visual sensing will be more discussed in Chapter 5.2.3 with respect to

network performance. In summary for tracking with multiple sensors, DOA (Direction

of Arrival) from acoustic sensors are two angle components which are azimuth angle

θ, elevation angle φ between a sensor and an object [82]. Basic algorithm with the

acoustic data is bearings that is applied in tracking of an object in 2-D plane with

one angle measurement based on a particle filter. In a single sensor node, the 2-D

tracking results are extended for 3-D result using 2-D planes combination [16]. The

estimation is refined by visual sensors by parallel projection model [45]. The parallel

projection model improves estimation by comparing unreliable estimation with real

object position from two image frames.

For a large space, multiple routers and a server need to manage and control the

overall tracking system. In a network aspect, data traffic with transmission delay

should be considered. Figure 5-40 illustrates the overall network topology with mul-

tiple routers and a server in a sensor network, where the routers are configured as

wireless mesh backbone. A sensor node equipped by a RFID reader and an acoustic

sensor communicates with a router which is connected to a server. Visual sensors

are connected to each router as well. However, the visual sensors are not required

for connecting to every single router since visual sensors such as cameras sufficiently

accomplish the wide range sensing so that it may capture the whole tracking space

in a single image frame. For example, only two visual sensors are used in the parallel

projection model in [45]. A sensor node for RFID detection with acoustic sensing,
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a visual sensor, and a router are denoted as Sij and Vi, Ri, respectively. Here, ith

represents router ID and j is a sensor ID.

Server

802.11a/g802.11b
R3 R2

R4

R1

R5

S33

S31

S21

S22

S23

S11

S12
S13

S51

S52

S53
S41

S42

S43

S32

V : Visual sensor: RouterR

: Sensor node (Acoustic sensor + RFID reader)

V3

V2

V1
V5

V4

Figure 5-40: Fusion sensor network model.

We propose the networking protocols to support the object tracking with multiple

types of sensors. In order to simplify the network complexity, we reconfigure Figure

5-40 to string scenario as shown in Figure 5-41. In order to accomplish feasible net-

work environment, multiple channels are assumed to be utilized such that different

channels are used for different group of sensors and a router. Therefore, acoustic

sensors incorporated with RFID readers, routers, visual sensors and a sever commu-

nicate each other in more reliable manner by eliminating channel interference. In

this environment, two possible communication protocols should be considered with

analysis: one is the router base visual compensation (RBVC) and the other one is the

server base visual compensation (SBVC). In RBVC, the routers process the visual

compensation as well as perform the sensor management and particle filtering. To do
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this, the image frames should to be distributed to all the routers. In case of SBVC,

the parallel projection model is conducted in a server so that the estimated object

positions from acoustic sensors and image frames from visual sensors are sent to the

server. Note, in the sensor delivery, an image frame is range of dozens of Kbytes

to a few Mbytes, so that the visual compensation is mainly affected by the image

transferring. The visual estimation process is not necessary but assistant for esti-

mate compensation in the case of tracking deviation from acoustic sensing because

visual data is more reliable than acoustic data. Thus, the estimations based on visual

sensing and acoustic sensing have different sampling times. Our proposed protocols

R3 R4 R5R2 serverR1

S11

S12 S13

S21

S22 S23

S31

S32 S33

S41

S42 S43

S51

S52 S53

V1

V2

Figure 5-41: String scenario for wireless fusion sensor network. Different color repre-
sents different channel.

require following achievements. At first, a server should have final estimated posi-

tions in order to control all system. Secondly, a router manages acoustic data based

on RFID detection on its own. Thirdly, in the case processing visual compensation,

a router needs final estimated positions in order to estimate next position based on

the particle filtering algorithm which generates the possible particles with compen-

sated estimation for the next estimates. At last, visual compensation requires the

estimation from acoustic sensing and the image frames from at least two cameras.

Figure 5-42 illustrates the router base visual compensation (RBVC) protocol in
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which the compensation with visual sensors is processed in routers. The points E

and E ′ represent the compensation processes with acoustic data and image frames,

respectively. RFID detection data is transmitted to a router which determines target

objects among the numerous objects within acoustic sensing range. A router transmits

assigned object data to acoustic sensors receiving acoustic sensing data. A router

estimates the objects positions based on the acoustic sensing data by using particle

filtering algorithm. In the meantime, visual sensing data (image frame) is sent to a

router. The data is transmitted with several packets with ACK since the image frame

should be provided with reliable transmission. Based on the visual sensing data and

the estimation from acoustic sensing, the final estimated position is determined. In

case the visual sensing data is not sent, the acoustic sensing estimation is the final

estimated position. Finally, the final estimation data is sent to a server based on the

first protocol requirement.

Final estimation data

Visual sensing data

ACK

Sij Ri

RFID detection data

Assigned object data

Acoustic sensing data

server V

E

E'
Visual sensing data

ACK

Figure 5-42: Router base visual compensation (RBVC)

In contrast to the RBVC protocol, the server base visual compensation (SBVC)

protocol is to lift a router burden to a server in estimating visual compensation as

shown in Figure 5-43. The transmission between RFID-acoustic sensors and a router

is the same as RBVC protocol. After estimating object positions in a router, the
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estimation based on acoustic sensors is sent to a server. In the meantime, visual

sensing data is transmitted to a server with the acknowledge transmissions. The

server estimates the final objects positions based on the estimation based on acoustic

sensors and the visual sensing data. In case the visual sensing data is not sent, the

acoustic sensing estimation is the final estimated position similar to RBVC. Finally,

for the third protocol requirement, the final estimation data is sent to each router.

Sij Ri V

RFID detection data

Assigned object data

Acoustic sensing data

Final estimation data

server

Visual sensing data

Estimation based
on acoustic sensors

ACK

E

E'
Visual sensing data

ACK

Figure 5-43: Server base visual compensation (SBVC)

In order to perform the traffic analysis, we conduct the extensive NS-2 simulations

in this Chapter. Simulation setup is based on the network in Figure 5-40 with a server,

5 routers and 3 sensors for each router. 100 objects are distributed in each router

(Ri) range and each RFID reader in sensor nodes (Si1, Si2, Si3) are detecting objects

such that Si1 detects 30 objects, Si2 detects 40 objects, and Si3 detects 50 objects,

respectively. The objects assignment for acoustic sensing is that 30α, 30α and 40α

objects for acoustic sensors (Si1, Si2, Si3), respectively, where α is the ratio of the

number of tracked objects with respect to the number of total objects. For example, if

the α is 0.1, acoustic sensors Si1, Si2, Si3 receive acoustic data from 3, 3 and 4 objects.

In this case, total 10 objects get tracked among 100 objects. Based on these objects

distribution, three possible scenarios are examined from the simulations. The first
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scenario is that 100 objects are distributed in only a router 1 (R1) range, and the other

routers have no objects. In addition, visual sensors are connected to a router 2 (R2)

and a router 4 (R4). The second scenario is that 100 objects are distributed in each

router range, that is, total 500 objects are distributed in the whole sensor network

range. Similar to the first case, the visual sensors are connected to the same routers

(R2, R4). In the third scenario, two visual sensors are simultaneously connected to

a router 4 (R2) which is the closest to a server. This scenario is devised to minimize

the transmission of image frames from visual sensors to a server.

In this first scenario, the end to end delay is shown in Figure 5-44. As the observed

objects ratio or the image frame size increases, the end-to-end delay increases as well.

However, we understand the delay is more sensitive to the image frame size since the

image is so large that it overwhelms the overall network traffic. As the number of

observed objects increase, the delay difference is negligible as shown in Figure 5-44(a).

We also figure out RBVC achieves lower end-to-end delay than SBVC.
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Figure 5-44: Scenario 1: 100 objects are distributed only in a R1 range and visual
sensors are connected to routers R2 and R4.

The second and third scenario are more realistic than the first one as objects are
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Figure 5-45: Scenario 2: 100 objects are distributed in each router Ri range for
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Figure 5-46: Scenario 3: the same objects distribution as the scenario 2 except that
two visual sensors are connected to R5.

distributed in all routers range. In contrast to the first case, the end-to-end delay of

SBVC is lower than RBVC since the large image frame should be distributed to all

the routers in RBVC. This leads to heavy network traffic, consequently, large delays.

Figure 5-45(b) and 5-46(b) illustrates this consequence, in which the hop-by-hop delay

of visual sensing in RBVC is larger than that of SBVC. We find out the end-to-end

delay in Figure 5-46(a) is lower than Figure 5-45(a) since the image frames in the

third scenario are fast transmitted to the server. This fact is well described in Figure
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