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Abstract of the Thesis 

Primary Aberrations: An Investigation 

from the Image Restoration Perspective 

By 

Shekhar Sastry 

Master of Science 

In 

Electrical Engineering 

Stony Brook University 

2009 

 Image restoration is a very important topic in digital image 

processing. A lot of research has been done to restore digital images 

blurred due to limitations of optical systems. Aberration of an optical 

system is a deviation from ideal behavior and is always present in 

practice. Our goal is to restore images degraded by aberration.  This 

thesis is the first step towards restoration of images blurred due to 

aberration. In this thesis we have investigated the five primary aberrations, 

namely, Spherical, Coma, Astigmatism, Field Curvature and Distortion 

from a image restoration perspective. We have used the theory of 

aberrations from physical optics to generate the point spread function 

(PSF) for primary aberrations. The important issue of a missing link 
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between depth and the amount of aberration has been addressed for a 

simple thin lens model. A simulation of blurring due to aberration is carried 

out. All the results have been documented and a brief analysis is 

presented where necessary.  
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Chapter 1 
 

Introduction 

 

The motivation for this thesis is our interest in the restoration of 

images blurred due to optical aberrations. Our brief investigation of 

restoration of different aberrations revealed a gap in understanding the 

theory and phenomenon of aberrations. This thesis attempts to fill such 

gap. This work will guide us to investigate the subject of restoration with 

more insight. Some of the questions that we have attempted to address 

are: 

• What are the different kinds of aberrations; why and how do they 

occur? 
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• How are primary aberrations different from the more common 

defocus (or out-of-focus aberration)? 

• How do primary aberrations vary with camera parameters and 

distance? 

• Why do aberrations result in shift variant blurring? Etc. 

Chapter 2 starts with different imaging models such as the pinhole 

camera model, the Gaussian imaging model and diffraction imaging 

model, and their properties. It is essential to understand the behavior of 

different imaging models before we attempt to understand aberration. 

In Chapter 3, we will take a look, in detail, at different kinds of 

aberrations starting from tilt, defocus, to the five primary aberrations. The 

concept of aberration function is introduced and all of the aberrations are 

explained using this concept. 

Chapter 4 and onwards deal with only the primary aberrations. 

Calculation of aberration coefficients is explained in Chapter 3. A set of 

equations is also given to calculate the aberration coefficients of a thin 

lens. Later in this chapter, behavior of aberrations with distance and the 

size of the aperture are dealt.  

Chapter 5: Calculation of aberration point spread functions (PSFs) is 

illustrated in this chapter. The knowledge of aberration function and 

aberration coefficient is used to calculate the PSFs. A simple algorithm is 

given to calculate the aberration PSF, which we have followed to obtain 

the results included in this chapter 

The shift variant model of blurring has been introduced in Chapter 6. 

Starting with Fredholm equation, shift variant nature of blurring is 

discussed. Examples of simulated shift variant blurring using aberration 

PSF are included.  
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Chapter 7 includes a summary of this investigation and highlights our 

learning. It concludes with the scope of this thesis.  
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Chapter 2 

 

Imaging Models 

A brief discussion of different kinds of imaging models is presented 

here. We begin with the simple pinhole camera model which forms ideal 

2D image, and discuss Gaussian imaging model. Finally, diffraction 

imaging is described whose results will be used in further chapters. 

2.1 The Pinhole camera model 

A pinhole (a small opening on an opaque surface) tends to form a 

real or inverted image of an object, behind the surface. A ray originating at 

a point object and travelling through the small opening remains in its path 

and forms image of the point object anywhere behind the surface. Ideally, 

in a pinhole camera, every point in the image is in focus as rays traveling 

through the pinhole do not get deflected 
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Figure 2.1: A diagram showing cone of light passing through a pinhole 

 

2.2 A thin lens aperture model 

A lens is an image forming element that contains many surfaces 

(usually part of a sphere, cylinder etc). It is different from pinhole as it has 

a much larger opening than the size of pinhole. The opening is referred to 

as the aperture of the lens. Lenses have the property of bringing rays that 

are parallel to the axis or normal at the center of the lens to focus. The 

point where such rays converge is called the focus. Any point object forms 

an image behind the lens where the chief ray meets the marginal rays, 

shown in Fig 2.2. The relation between the object and the image is given 

by the lens maker’s formula 

1 2

1 1 1
l l f

+ =      (2.1) 

Where, is the object distance, is the image distance and 1l 2l f is the focal 

length (effective) of the lens. 
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 Figure 2.2: Gaussian imaging model 

Gaussian imaging is when all rays from a point object are brought 

to focus. It is the ideal behavior of an image forming system and exists 

when all the rays from the object are parallel (nearly parallel) to the optical 

axis. If the image plane is at a distance different from that computed by 

the lens maker’s formula, then the image is out of focus. This is commonly 

known as defocus and will be explained in detail later. 

2.3 Diffraction imaging model 

In this model we leave the confinement of geometric optics. Light is 

treated as a wave propagating in three dimensions. In vacuum, light 

travels like a spreading sphere around its origin and hence light incident 

on image forming system will be a part of such sphere. A perfect image 

forming system would invert a diverging spherical surface into a 

converging one so that a point image is formed behind the lens. The 

image is formed at a distance equal to the radius of sphere. So far we 

have explained Gaussian imaging in terms of waves.  

Marginal Ray 

Chief Ray 

1l

2l
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An exit pupil in an imaging system is a virtual aperture or an image 

of the aperture stop seen from image space. If we trace rays from the 

source up till the exit pupil such that all rays travel same optical distance 

as the chief ray, then collection of such points is called a wavefront. Due 

to diffraction at the exit pupil, a wavefront never results in a point image; 

instead it is a set of rings around the Gaussian image point called Airy 

pattern.  There are two important results due to this model:  

1. The diffraction PSF of an imaging system is proportional to the 

modulus square of the inverse Fourier transform of the complex 

amplitude distribution at the exit pupil. 

2. The diffraction image of a planar incoherent object is equal to the 

convolution of its Gaussian image and the PSF of the imaging 

system. We will use these two results in further chapters. 

 For illustration and proof of results refer [5]. A nice introduction to imaging 

models is given in [11].  

So far three imaging models have been described. Ideally point light 

source should result in a point image. We will learn that due to some 

properties of imaging systems that is seldom the case. An image is said to 

be aberrated if it is different from the expected image given by imaging 

model. The diffraction imaging model is the reference model in our case. 
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Chapter 3 

 

Aberrations 

In the previous chapter we touched upon the phenomenon of 

aberrations. It was said that any behavior outside the diffraction imaging 

model (for our purposes) is called ‘aberration’. In this chapter let us delve 

more into the physics of aberration. First, we shall start with different kinds 

of aberrations describing each briefly. 

Aberration is any deviation from an expected behavior. For 

example, if we choose diffraction imaging model as our primary model for 

imaging, then any deviation from that will be an aberration in most general 

sense. Refer [2] for details on different kinds of aberrations.  For diffraction 

imaging and related topics, refer [5, 4] 

 

3.1 Aberrations within paraxial optics 

3.1.1 Tilt 

It is a simple form of aberration. This occurs when the image of a 

point object is brought to focus on the Gaussian image plane but with a 

shift. If the expected location of image is at (Xi, Yi) but was shifted to (X’i, 

Y’i) in the same plane then Tilt aberration is said to have occurred. This 
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usually happens if the surface of the imaging element is tilted with respect 

to the optical axis of the system. 

 

Gaussian image 
plane 

( ),i iX Y′ ′  

( ),i iX Y

( ),i iX Y′ ′  

Figure 3.1: Shift in Gaussian image due to Tilt 

3.1.2 Defocus Aberration 

An image is observed on a plane behind the image forming system. 

The lens maker’s formula gives the image distance in the Gaussian 

imaging model as 

1
2

1

l fl
l f

=
−

    (3.1) 

It is apparent from Eq. (3.1) that if the image distance is not the 

same as where the observation plane is, then the image is simply out of 

focus. The resulting image of a point object is not a point anymore, but it is 

smeared on the observation plane. As this is clearly a deviation from the 

expected behavior, the resulting image is aberrated and this aberration is 

called defocus. Such aberration can be corrected by moving the 

observation plane along the optical axis so that it is at a distance , image 

distance, from the exit pupil. 

2l

These two aberrations exist even in most simplified models of 

image forming systems. It can occur even in paraxial optics assumption 
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unlike the primary aberrations which become prominent as paraxial 

assumption is relaxed.  

3.2 Primary aberrations  

 There are five primary aberrations. They are Spherical, Coma, 

Astigmatism, Field Curvature and Distortion. In this section, we will 

describe each of the five primary aberrations in detail. 

3.2.1 Aberration function 

It is important to introduce something called as the aberration function 

before considering the aberrations. The aberration function is given by Eq. 

(3.2) 

  

( ) 4 3 2 2
0 40 1 31 2 22

2 2 3
2 20 3 11

, , cos cos

                 cos

W h r a r a h r a h r

a h r a h r

2θ θ θ

θ

′ ′ ′= + +

′ ′+ +
                    (3.2) 

 

It is a function of three parameters h′, r and θ: 

h′ normalized image height in the observation plane 

r  normalized height in pupil plane 

θ  angle tan-1(Y/X) in the pupil plane 

xaxx  peak aberration coefficient  

  

Aberration function simply measures the total amount of aberration 

of the system for a given point object. As we can see, it is a sum 

containing five terms. The first term is the expression for spherical 

aberration and subsequent terms are for coma, astigmatism, field 
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curvature and distortion respectively. The pupil function, used to calculate 

PSF, is a function of W. It contains W in complex exponential term and 

describes the amplitude distribution in the pupil plane. We can use the 

result from diffraction imaging that the PSF is proportional to the inverse 

Fourier transform of the pupil function while calculating the PSF.  

3.2.2 Spherical aberration  

Spherical aberration is a property of imaging surfaces. It occurs 

whenever the incident wavefront at the lens does not match its surface 

i.e., if the wavefront is not complimentary to the surface of the lens then 

the emerging wavefront gets bent either too much or too little at the ends. 

This results in a ring like pattern around the point of Gaussian focus. 

Circle of least 
confusion 

 

Figure 3.2: Spherical aberration 

Imagine a wave emerging from a point far from the imaging system, 

so that its incident wavefront is almost planar. As it strikes a convex lens, 

the points near the axis meet the lens before the points off axis. The 

wavefront itself moves slowly near the center and it moves faster near the 

boundaries of lens. For the emerging wavefront, the points away from the 

axis emerge before others and hence they continue to travel faster. We 

can clearly visualize a planar wavefront getting bent towards the axis at 

each end causing spherical aberration, as shown in Fig. 3.2.  
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The expression for spherical aberration is given by . We can 

see that the aberration varies in fourth power of normalized height in the 

pupil plane.  Also the expression is devoid of the term 

4
0 40a r

h′. Hence, it is 

apparent that spherical aberration is independent of object location on the 

image plane unlike any other primary aberration. It means that spherical 

aberration remains same across the image as long as the point object is 

located at the same distance from the imaging system. The amount of 

aberration depends on the aberration coefficient due to the point object 

under consideration.  

This is the most important form of aberration to be considered for 

correction as it practically exists everywhere in the image. In optics, 

spherical aberration is known to be corrected by having surfaces with 

gradient refractive indices. For our purpose we measure the aberration 

with respect to the Gaussian image point. As we can see from the ray 

diagram there is a best focus point for spherical aberrated image, which is 

not Gaussian image point, called the circle of least confusion.  If we 

measure the aberration with respect to this point then the aberration is 

called balanced spherical aberration. In practice, balanced aberrations are 

used (for optics), for us however classical aberrations are the norm. 

 

3.2.3 Coma  

Coma derives its name from the shape of the point image affected 

with this particular aberration. A point object gets shaped like a comet with 

sharpness decreasing along the axis of aberration. The occurrence of 

coma is due to the wavefront, from point object, being tilted with respect to 

the surface of lens. 
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Point Object Comatic Image  

Figure 3.3: Diagram showing comatic blur of a point object. The axis of 

aberration is vertical in the diagram. 

The expression for coma from the aberration function is 
3

1 31 cosa h r θ′ . As we can see coma varies in third power with respect to 

the normalized height in pupil plane r. It has cos θ term which implies that 

coma is not symmetric about the optical axis. Lastly, we notice the term 

. This simply means that coma is absent near the center and it grows 

linearly as we move away from the optical axis on the observation plane. 

In other words, coma affects points that are off axis and grows linearly 

with the off axis distance of the point object. 

h′

Even for coma there are two forms; balanced coma and classical 

coma. For our purpose it is sufficient to understand and measure the 

classical coma, as it measures the aberration with respect to the Gaussian 

image point. The aberration coefficient for coma too depends on the object 

distance. We will consider this in detail when we describe aberration 

coefficients and PSFs. 

3.2.4 Astigmatism 

Astigmatism is another asymmetric aberration which affects off axis 

object points. The nature of this aberration is best explained by 
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consid

as

ering rays. The plane containing the point object and the optical 

axis is called the meridional plane and a sagittal plane is the one 

perpendicular to it, both shown in Fig. 3.4. Astigmatism occurs when the 

rays in meridional plane and sagittal plane come to focus at different 

points. Usually, astigmatism is noticed by blur in a particular direction, for 

example, in the case of human eye we can notice that the horizontal 

edges are blurred whereas vertical edges are in focus (or vice versa). 

 The expression from aberration function for astigmatism is given 
2 2 2

2 22 cosa h r θ′

ith th

. We notice that it is a function of r cosθ in degree two. 

W

3.2.5

ests this aberration is due to curvature of field. It 

is because of the fact that we observe the image on a plane whereas the 

e usual conventions, the term r cosθ results in yp coordinate of the 

pupil plane and hence should not be confused with defocus. Also it varies 

as 2h′ , which means that astigmatism affects off axis points and the 

aberration is absent near the center. The severity of aberration grows in 

powers of two of the off axis distance. The aberration coefficient itself is 

independent of distance; it depends on the optical system’s variables like 

Lagrange invariant, Power etc. 

Meridional Plane 

 

Figure 3.4: Sagittal and Meridional rays converging at different points  

Sagittal Plane 

 Field curvature 

 As the name sugg
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points in the field are brought to focus on a parabolic surface. Such a 

surface is called Petzval surface. If we observe the expression for field 

curvature in the aberration function, 2 2
2 20a h r′ we can see the term 

2r ,which is the term for defocus. So field curvature is defocus but only it is 

multiplied by 2h′ . Unlike defocus, field c depends on the off axis 

tance and as in astigmatism, its severity grows as the square of the off 

axis distance. At the center however this aberration is absent. Field 

Curvature is intuitively defocus but parabolic with respect to the off axis 

distance. 

 

urvature 

dis

 Distortion 

erration renders the image as depicted in the Fig. 3.5. 

The expression for distortion 

3.2.6

 Distortion ab
3

3 11 cosa h r θ′  contains the term in first 

 

 

 

The Tilt gets more pronounced as we he 

severity of aberration increases in thir f axis distance and 

is linear in pupil coordinates. 

r

degree. This is really Tilt aberration but multiplied by the third power of off 

axis distance h′ . We can deduce that the aberration is absent at the 

center, as we can see from the figure below.  

 

Barrel Distortion Pincushion Distortion Image 

Figure 3.5: Effects of distortion 

 move away from the axis. T

d power of the of
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Chapter 4 

 

Seidel aberrations and coefficients 

 In the last chapter we looked at five primary aberrations of an 

optical system. Now we discuss more about how they are measured and 

determined. We will talk about aberration coefficients and take up an 

example of thin lens and give the expression for calculating aberration 

coefficients for it.  For illustrations refer [3, 2]. 

4.1 Quantifying primary aberrations 

 Wavefront propagating through an optical system does not undergo 

any change after it crosses the exit pupil. Theoretically, the film or sensor 

could serve as exit pupil too. We have defined exit pupil as the image of 

aperture stop as seen from the image space of the optical system. For our 

purposes exit pupil is a plane and we assume circular symmetry. It has 
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been said that wavefront at the exit pupil is spherical for an ideal image 

forming system. So applying our definition of aberration, we shall say that 

y wavefront which is either not spherical at the pupil or has a different 

radius of curvature is said to be aberrated.  

 

Figure 4.1: Showing wavefront propagation at pupil 

erence between 

 the pupil. It is 

measured in fractions of the wavelength λ as we are measuring path 

 Optical path difference could be either positive or negative. If 

 they should and 

opposite for negative aberration. Conceptually, Point Spread Function is 

an

P 

A Principal Ray O Q 

Axis Ā 
Ō 

 Aberration is measured as the total optical path diff

a reference sphere and the aberrated wavefront across

difference. For example a point object at a certain location may cause 

spherical aberration of 0.89 λ. It means that all rays originated at the point 

object and propagating through the system result in a total optical path 

difference of 90% of wavelength.  

positive, then the aberrated rays travel longer than

similar to impulse response of a linear system. An aberrated optical 

system is not space invariant. Hence a point object, depending on its 

location, in the field of view gives a unique output (or an image in our 

case). Every point object in the field forms a unique wavefront at the exit 

17 



pupil. According to Gaussian imaging model the wavefront at the exit pupil 

is spherical. 

 In case of aberrated imaging systems the wavefront formed will not 

be spherical. The difference between an aberrated wavefront and the 

reference sphere is the Optical Path Difference for example OQ in Fig. 4.1 

above. The total wave aberration is the sum of such path differences 

across the wavefront.  

 

4.2 Seidel sums 

4.2.1 General case 

 Aber the optical rations are a property of each refracting surface in 

system. The total aberration for the entire system is the sum of aberrations 

due to each surface. These expressions were derived by Ludwig von 

Seidel and hence bear his name. They are as follows (Eq. 4.1):  
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Where, 
2
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= − , 

2
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 While actually summing over all surfaces we have to keep in mind 

that the angle of refraction of a surface is same as angle of incidence of 

, we assume thin lens as the optical system and 

ence obtain the following expressions (Eq. 4.2) which are derived in [3]: 

the next surface and this signifies the quantity Δ in all the summations 

above. For a complete derivation of the above summation refer [3]. 

4.2.2 Special case: A thin lens 

 For our purpose
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( )( )0 11K n n c c= − − 2 , power of the lens.  
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−

 are conjugate variables of the lens. 

 are the lens curvature, and m is the transverse magnific

lens. 
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4 berration coefficients and object distance 

4.3.1 Spherical aberration 

.3 A

aberration is very high when object is 

very close to the imaging system (the lens). Usually very high aberrations 

 

there is a dip in its value. This dip was observed to move along abscissa 

with different focal lengths of lens. As seen below in Fig. 4.2, the 

aberration has a significant positive slope between 10 cm and 1 m, and 

this trend was quite consistent even with varying focal lengths. It remains 

more or less constant beyond 1 m.  

 As we can see in the plot, 

are encountered when objects are too close, that is, within about 10 cm 

from the imaging system. Spherical aberration never disappears, although

 

Figure 4.2: Spherical aberration vs distance 
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4.3.2 Coma 

 The plot observed is very different from that of spherical aberration. 

Firstly, coma increases rapidly at near distances and then settles to a 

constant value. One point for observation is the zero crossing of 

coefficient value. This is observed to shift right along abscissa with 

increasing focal lengths of lens. However, consistently the amount of 

aberration remained constant beyond 1 m.  The code for plotting graphs in 

Fig. 4.2 & 4.3 has been included in Appendix. 

 
Figure 4.3: Coma vs distance 

4.3.3 Other primary aberrations 

 Other aberrations coefficients namely, astigmatism, field curvature 

and distortion f te variable C. 

ence it is implied that the amount of aberration doesn’t depend on the 

or a thin lens do not depend on the conjuga

H
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distance from the imaging system. However, in next section we will see 

that all five primary aberrations depend on aperture and vary exponentially 

ith it.

 depend on the size of the 

aperture. For example, spherical aberration varies directly as fourth power 

of aperture. From the graph below it is clear that as the aperture 

increases, aberration increases exponentially. Nature of curve obtained for 

all five primary aberrations were similar. The figure shows plot of spherical 

aberration against F Number* (aperture). Appendix contains the code to 

generate the graph shown in Fig. 4.4  

w  

 

4.4 Aberration coefficients and aperture 

 The normalized height in the pupil is a component of every 

aberration. It is quite obvious that aberrations

 
e 4.4: Diagram showing variation of spherical aberration coefficient 

against aperture 

*Lower F Number means open aperture and aperture decreases as F Number increases. 

Figur
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Calculating aberration PSF  

 One of the important results of diffraction imaging model is that the 

Incoherent PSF is proportional to the square of the modulus of inverse 

Fourier Transform of the Pupil Function. We elaborate more on this result 

in this chapter and give a simple algorithm to calculate Incoherent PSF of 

an imaging system. 

 

 

 

Chapter 5 

5.1 Background 

In  

into incoherent point sources ives the complex amplitude 

coherent PSF is one which results from an object that can be divided

. Pupil Function g
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distribution at the exit pupil due to a point source. Its expression is given 

as  

( ) ( ) ( ) in the exit pupil
 

outside the exit pupil

; ; exp ;     , 
 

             0                                        , 
p o p o p oP r r A r r ikW r r ⎫⎡ ⎤ ⎪⎣ ⎦ ⎬

⎪⎭

=

=

r r r r r r

   (5.1) 

( );p oA r rr r  is called the apodization function and controls the amplitude 

distribution across the exit pupil. For our purpose it is sufficient to keep a 

nstant value of one within a unit circle. Using the pupil function 

expression from Eq. 5.1 in the equation below, we can compute the PSF 

 the system given by Eq. 5.2. 

co

of

( ) ( )
2

2 2
1 2; ; expi i p i p i p

ex

i .PSF r z P r z r r dr
P R R

π
λ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= −∫
r r r r r  (5.2) 

 analysis of PSF and its significance refer [5]. 

5.2 Algorithm to compute PSF 

cient (as described in the 

previous chapter) depending on the distance. Compute the peak 

For a more detailed

1. Determine the Seidel aberration coeffi

aberration coefficient from the Seidel sums using the following 

relation. 

0 40 8
Sa Ι ⎫

V

V
2 20

3 11

4
S

a

a

ΙΙΙ Ι

1 31

2 22

2

2

Sa

Sa

S S

ΙΙ

ΙΙΙ

⎪=
⎪
⎪
⎪
⎪⎪
⎬
⎪

+ ⎪
⎪
⎪
⎪
⎪⎭

=

=     (5.3) 

=

=
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2. Substitute aberration coefficient to obtain the aberration function, 

( ) 4 3 2 2
0 40 1 31 2 22

2 2 3
2 20 3 11

, , cos cos

                  cos

W h r a r a h r a h r

a h r a h r

2θ θ θ

θ

′ ′ ′= + +

′ ′+ +
 (5.4) 

3. Evaluate the aberration function using the following substitutions 

within a unit circle bounded by 1r ≤ .  

 

 is obtained, take Fourier Transform and 

square it at every sample. (According to the relation between PSF 

and Pupil Function)   

6. Divide the PSF by total power in the pupil and normalize it to 

 

 

amplitu

amplitu

assume that the pupil is circular and normalize its height to unity, that is, 

pupil will have unit radius. When we compute the complex amplitude and 

take its Fourier Transform, we keep the sampling rate same. Hence, to be 

correct physically, the sampling interval of the unit circle should be same 

as the sampling interval of the image (size and spacing between sensors). 

We can clearly see that the sampling rate 

system under consideration. While calculating the PSF, sampling matrices 

always had radix 2 orders so that it is straightforward to compute Fast 

Fourier Transform. However, it was also noted, in our experiments carried 

out at different sampling rates that the PSF generated at lower sampling 

( )2
( )2

4. Use aberration function to evaluate complex amplitude at the exit 

pupil within the unit circle. The next section elaborates on sampling 

this unit circle. 

5. Once complex amplitude

contain unit energy. 

5.3 Sampling the PSF 

A crucial step in calculating a PSF is the evaluation of complex 

de at the exit pupil.  Sampling, while evaluating the complex 

de, is dividing this unit circle into squares at suitable distance. We 

depends on the resolution of the 

2
2 p p

h
r =  , cos

p

x y+
pr yθ =  and 2

2 i iX

i

Y+
h

h′ =      (5.5) 
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rate  

sampling rate, refer Table 5.1. The error between PSFs obtained at 

different sampling rate was found using the error criterion is given by Eq. 

5.5

(less PSF size) was not much different from PSF generated at higher

. 

( ) ( )
2

, ,i jPSF m n PSF m n〈 〉 〈 〉⎡ ⎤⎣ ⎦ε = −∑∑    (5.5) 

Where, i〈 〉 and j〈 〉 indicate the sampling rate.  

 16 x 16 32 x 32 64 x 64 128 x 128 256 x 256 512 x 512 

16 x 16 - 1.5331e-3 2.6895e-3 3.2201e-3 3.4880e-3 3.6331e-3 

32 x 32 1.5331e-3 - 1.8374e-4 3.5156e-4 4.4955e-4 5.0551e-4 

64 x 64 2.6895e-3 1.8374e-4 - 3.0723e-5 6.9239e-5 9.6748e-5 

128 x 128 3.2201e-3 3.5156e-4 3.0723e-5 - 8.5671e-6 2.0657e-5 

56 x 256 3.4880e-3 4.4955e-4 6.9239e-5 8.5671e-6 - 2.6875e-6 2

12 3.6331e-3 5.0551e-4 9.6748e-5 2.0657e-5 2.6875e-6 - 512 x 5

εTable 5.1: Error ( ) between PSFs at different sampling rates. 

table, PSFs with larger than [16 x 16] 

samples were truncated to contain only the center [16 x 16] values. The 

In generating the error metric 

truncated PSF was normalized and then it was used in the error metric 

equation shown above. It was also noted that the computation time 

increases by a factor of 4 as we increase the sampling rate in powers of 

two.  

 

 

 

 

  Figure 5.1 (a) Figure 5.1 (b) 
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Figure 5.1 (d) Figure 5.1 (c)  

 

 

 

 
Figure 5.1 (a)-(f) Showing pupil functions sampled at different sampling 

been generated using the algorithm presented before at 64x64 

am

kept constant at 1λ. All the PSFs have been ge

 a 256 x 256 image.  Refer [5, 6 and 10] for more 

garding computation of PSF. 

 

 Figure 5.1 (f) Figure 5.1 (e) 

rates, from 16x16 to 512x512  
 

5.4 Some PSF examples  

 This section shows examples of aberration PSFs. All the PSFs 

have 

s pling rate. For uniformity, all the aberration coefficients have been 

nerated at a point object 

located at (100, 100) in

re
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Figure 5.2: Showing spherical aberration PSF 

 
 

 
Figure 5.3: Showing coma PSF 
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Figure 5.4: Showing astigmatism PSF 

 
 
 

 
Figure 5.5: Showing field curvature (defocus) PSF 
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Figure 5.6: Showing distortion (Tilt) PSF 
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Chapter 6

 

Simulation of blurring using aberration PSF 

 So far we have discussed various topics related to aberrations and 

understood the behavior of each aberration.  In this chapter, we will use 

planar images to see how each aberration affects them. Before delving 

into simulation a brief introduction on image blurring is given using linear 

system theory.   

 

6.1 Forward blurring process 

The simple relation between a blurred and a focused image is given 

as 

( ) ( ) ( ), ,g x y H f x y x yη⎡ ⎤
⎣ ⎦= + ,    (6.1) 
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( ),g x y is the blurred image, ( ),f x yHere,  is the focused image, 

( ),x yη is the linear operator. If ( ) 0,x yη =is random noise and [ ]H , 

ing superposition theorem, this equation can be written as in Eq. 6.2. It 

notes the blurring of an incoherent object discussed in earlier chapters. 

.

us

de

( ) ( ) ( ), , ,g x y f H x y d dα β δ α β α
∞ ∞

−∞ −∞

⎡ ⎤⎣ ⎦= − −∫ ∫ β  (6.2) 

nalyzing Eq. 6.2, we can note that the linear operator is input with Dirac 

delta or the point object function. Hence the term 

A

( ),H x yδ α β⎡ ⎤⎣ ⎦− − is the 

pulse response of the system. Since the input is a point object, it is also 

known as the point spread function. From the previous chapter, this theory 

th shift variant imaging, as we supply point objects 

located at different coordinates on the image to obtain different PSFs. By 

riting the impulse response as

im

is in agreement wi

( ), , ,h x yα βw , forward blurring process 

.

hence becomes the Fredholm integral of the first kind, given in Eq. 6.3. 

( ) ( ) ( ), , ,, , h x yg x y f d dα βα β α
∞ ∞

β= ∫ ∫    (6.3) 

on 

een generated by capturing 

images of a planar object at a distance between 1-3 m. Our assumption is 

that th

here are two different images. Each is a 

grayscale image of size 640x480 pixels.  

 

−∞ −∞

A good introduction to this topic is given in [1]. Code for simulating shift 

variant blurring has been included in the Appendix.  

6.2 Simulati

 For simulation the test data has b

e captured image is completely focused and simulation is carried 

out on them to view blurring. T
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6.2.1 Case  Alphabet image 

 In this section we will discuss the blurring simulation carried out on 

one of our test images called the alphabet image. The image was taken

 1 ‐

 

with the equipments in our lab. All the images are scaled to 40% of their 

original size of 640x480 pixels. As we can see from Fig. 6

original gray scale image, all parts of the image are in focus and the object 

al aberration PSF with 

 

.1 (a), in the 

plane is perpendicular to the optical axis of the imaging system.   

The image has been blurred with spheric

aberration coefficient 1. Fig. 6.1 (b) shows the results. We can observe 

that the bur is constant across all points and present even at the center. 

Hence, spherical aberration can act as shift invariant for planar objects 

perpendicular to the optical axis.   

      
                   Figure 6.1(a)                                        Figure 6.1(b) 

Figure 6.1(a) – (b) Sho
 

wing the original image and effects of spherical 
aberration on it 
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                   Figure 6.1(c)                                        Figure 6.1(d) 
 

    
                   Figure 6.1(e)                                        Figure 6.1(f)    
 

    
   
 

Figure 6.1(c) – (h) Showing the e
Curvature, Defocus, Barrel Distortion and Pincushion Distortion 

aberrations on test image in Fig. 6.1 (a) 

 

                Figure 6.1(g)                                        Figure 6.1(h) 

ffects of Coma, Astigmatism Field 
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Fig. 6.1 (c) shows blurring with coma PSF with aberration 

coefficient 1.5. We can distinctly observe the absence of blur near the 

center and its presence growing as we move away from the center. In 

practice coma varies directly as the distance (normalized) from the center. 

Also another characteristic of coma is that due to blur the features in 

image appear stretched.  

blurring is less severe in the horizontal direction. Astigmatism unlike coma 

varies as the square of the normalized distance from the center.  

Field curvature and defocus are shown in Fig. 6.1(e) & (f) 

respectively. We have told earlier that field curvature is similar in nature to 

defocus. These two figures show clearly that defocus is constant across 

the image whereas field curvature varies as the square of the normalized 

distance from center. Hence, defo omes shift invariant and field 

s 1. 

Lastly, Fig. 6.1 (g) & (h) show simulation results with distortion PSF. An 

aberration coefficient of -2 and 1 was assumed for the two cases. 

Negative value results in a barrel distortion and pin-cushion distortion 

otherwise. We can see that the shape of the planar image is altered in 

both the cases and is similar to the conceptual figure, Fig. 3.5 of Chapter 

3.  

6.2.2 Case 2 – Alphabet background image

he 

image is a combi ntaining smooth 

variations of intensity, as shown in Fig. 6.2 (a). The simulation of blurring 

using aberration PSF is shown in Fig. 6.2 (b)-(f) 

Effects of astigmatism can be seen in Fig. 6.1(d). The letters

ppear stretched in the vertical direction (horizontal edge blur) and 

 

a

cus bec

curvature is not, for a planar object. The coefficient of aberration i

 

This section contains simulation results of another test image. T

nation of alphabets and a background co
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                   Figure 6.2(a)                                        Figure 6.2(b) 
 
 

    
                   Figure 6.2(c)                                        Figure 6.2(d) 
 
 

    
                   Figure 6.2(e)                                        Figure 6.2(f) 
 

 

Figure 6.2(a) Showing Alphabet background image.  

Figure 6.2(b) - (f) Showing the effects of Spherical, Coma, Astigmatism 
Field Curvature, Defocus, Barrel Distortion and Pincushion Distortion 

aberrations on test image in Fig. 6.2 (a) 
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6.3 Variation of PSF across the image 

This section pictorially shows how PSFs for different aberrations 

vary with the normalized radial distance from the center (image height).  

 

 
 

Figure 6.3: Shows five aberration-PSFs column wise left to right, 
S  
in s 

 

 r
R

ad
ia

l d
is

ta
nc

e 
fro

m
 c

en
te

pherical, Coma, Astigmatism, Field Curvature and distortion sampled at
cremental radial distance from the center. The radial distance increase

by 16/128 between each PSF. 
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We can see from Fig 6.3 first column that spherical aberration 

PSFs do not vary with radial distance. From second column onwards 

coma, e 

th 

image height. The width of PSF grows linearly for coma but we can see 

from the last three images that a sudden increase in width of astigmatism

PSF is present. This verifies the square relation between astigmatism and 

image height. The brightest spot in coma PSF moves as we move away 

from the axis whereas for astigmatism, only the spread is present. 

Field curvature varies exactly same as astigmatism with respect to 

image height. This can be seen in column four of Fig. 6.3. Distortion, 

shown in the last column of Fig. 6.3 does not change its size but moves 

away from the center and this shift from center is proportional to image 

height in third power. This shift can be observed in the last three images of 

distortion PSFs. 

 

astigmatism, field curvature and distortion have been drawn. W

can observe that the PSF for coma and astigmatism spread more wi

 

38 



 

uture work 

 So far we have studied various aberrations focusing on the five 

primary aberrations. We have dealt with the phenomenon of aberrations 

from a physical optics perspective and taken results from diffraction 

imaging model. Also measurement and computation of aberration PSF 

was given for a simplified model of thin lens. Lastly, a simulation of 

degradation of images in presence of aberration was discussed.  

We have learnt how primary aberrations differ from defocus. It was also 

observed that for aberrations like astigmatism, coma and distortion, the 

PSF is often not radially symmetrical. In such cases an assumption of 

radially symmetrical PSFs like Gaussian may not be optimal for 

restoration. 

 

 

 

 

 

Chapter 7 

 

F
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  Another important issue addressed was the relation between depth 

and the aberration coefficients. We used relations derived in optics to 

lculate aberration coefficients and used them along with the aberration 

function to obtain PSF. It forms a link between PSF and depth or field of 

ew more generally. This could help us retrieve depth information of the 

scene. Our future work will focus mainly on two things:  

• Restoration of images degraded with aberrations; 

• Investigating a possibility of recovering depth related information 

from aberration coefficients. 

ca

vi
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%%%%%%

ppendix 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%%% Calculation of Seidel Aberration Coefficients for a Thin Lens       
%%% 
%%% Plots aberration coefficient against object distance                

 %%%
%%% Shekhar Sastry, CV Lab, Stony Brook University-EE,Feb09.            
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
% Symbols 
% S1, S2, S3, S4 , S5....Seidel aberration sums 
% K .....................Power of thin lens  
% B .....................Shape factor of lens 
% C .....................Conjugate variable of lens 
% H .....................Lagrange invariant 
% c1,c2 .................Curvatures of surface(s) 
% n .....................Refractive index  
% m .....................Magnification of lens 
% u .....................Angles of incidence and refraction (of 
lens) 
% h .....................Height of ray (usually radius of 
aperture)  
  
% Refer pp 192-193 Aberrations of Symmetrical Optical Systems by 
Welford,WT 
% for formuals of Seidel sums 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% Sample lens data 
n = 1.6; 
lambda = 5 * 10^-4; % wavelength of green in mm 
delta = 0.5; % inmm 
  
c1 = 0.02; % 1/R1 in per mm 
c2 = -0.04; % 1/R2 in per mm 
  
f = 1/((n - 1)*(c1 - c2)) % mm 
ap = 4; % in mm 
h = ap/2; % in mm 
  
K = (n - 1)* (c1 - c2); % per mm 
B = (c1 + c2) /(c1 - c2); % no dimension 
  
u = atan(h/f); % thin lens approximation for field angle 
  
H = n*h*u; % lagrange invariant (has dimension mm) 
  
% C = m+1/(m-1)...m = f/(f - z) has no dimension 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%%%%%% ALL aberrations calculated will have dimension 
millimeters(mm) %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
%SPHERICAL 
S_1 = []; 
st1 = (n/(n-1))^2; 
st2 = (n+1)/(n*(n-1)) * B; 
st3 = 2*(n+1)/n ; 
  
% COMA 
S_2 = []; 
ct1 = st2; 
  
% ASTIGMATISM AND F. CURVATURE 
S_3 = []; 
S_4 = []; 
  
  
%####################  Varying distance from the lens 
##################### 
  
for z = 15:5:10000  
     
%     ss = 1/z 
    C = (2*f - z)/( z + delta); %delta is added to avoid division 
by zero 
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%---------------------------------Spherical----------------------
---------- 
    st2 = ((n+2)/(n*(n-1)^2))*(B + 2*(n^2 - 1)*C/(n + 2))^2; 
    st3 = ((n/(n+2))*C^2); 
    S1 = (h^4/4) * K^3 * ( st1 + st2 - st3); 
    S_1 = [S_1;S1]; 
%----------------------------------------------------------------
---------- 
  
%-----------------------------------Coma-------------------------
---------- 
    ct2 = 2*((n+1)/n) * C;  
    S2 = -(h^2/2) * K^2 * H * ( ct1 + ct2 ); 

     S_2 = [S_2;S2];
%----------------------------------------------------------------
---------- 
  
%-----------------------------Astig'sm & F Curv------------------
---------- 
    S3 = K * H^2; 
    S_3 = [S_3;S3]; 
    S_4 = [S_4;(S3/n)];     
%----------------------------------------------------------------
---------- 
  
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%%%%%%%%%     To convert from millimeter into units of lambda      
%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
S_11 = S_1/lambda; 

 S_21 = S_2/lambda;
S_31 = S_3/lambda; 
S_41 = S_4/lambda; 
  
% To obtain coefficients for aberration function e.g., 0a40 = 
S_11/8 
S_11 = S_11/8; 
S_21 = S_21/2; 
S_41 = (S_41 + S_31)/4; 
S_31 = S_31/2; 
  
  
figure;semilogx(15:5:10000, S_11);title('Spherical 
Aberration');xlabel('Axial Distance in mm');ylabel('Aberration 
Coefficient in lambda'); 
figure;stem(15:5:10000, S_11);title('Spherical 
Aberration');xlabel('Axial Distance in mm');ylabel('Aberration 
Coefficient in lambda'); 
figure;semilogx(15:5:10000, S_21);title('Coma');xlabel('Axial 
Distance in mm');ylabel('Aberration Coefficient in lambda'); 
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figure;plot(15:5:10000, S_21);title('Coma');xlabel('Axial 
Distance in mm');ylabel('Aberration Coefficient in lambda'); 
  
%END 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% %%%
%%%%%%%%%% 
%%% Calculation of Seidel Aberration Coefficients for a Thin Lens       
%%% 
%%% Plots aberration coefficient against aperture (F Number)            
%%% 
%%% S Sastry, Computer Vision Lab, Stony Brook University-
EE,Feb09.     %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
% Symbols 
% S1, S2, S3, S4 , S5....Seidel aberration sums 
% K .....................Power of thin lens  
% B .....................Shape factor of lens 
% C .....................Conjugate variable of lens 
% H .....................Lagrange invariant 
% c1,c2 .................Curvatures of surface(s) 
% n .....................Refractive index  
% m .....................Magnification of lens 
% u .....................Angles of incidence and refraction (of 
lens) 
% h .....................Height of ray (usually radius of 
aperture)  
  
% Refer pp 192-193 Aberrations of Symmetrical Optical Systems by 
Welford,WT 
% for formulas of Seidel sums 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% Sample lens data 
n = 1.6; 
lambda = 5 * 10^-4; % wavelength of green in mm 
delta = 0.5; % in mm 
  
c1 = 0.02; % 1/R1 in per mm 
c2 = -0.04; % 1/R2 in per mm 
  
f = 1/((n - 1)*(c1 - c2)) % mm 
  
K = (n - 1)* (c1 - c2); % per mm 
B = (c1 + c2) /(c1 - c2); % no dimension 
  
z  = 78;  % in mm 
% C = m+1/(m-1)...m = f/(f - z) has no dimension 
C = (2*f - z)/( z + delta); %delta is added to avoid division by 
zero 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%%%%%% ALL aberrations calculated will have dimension 
millimeters(mm) %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
%SPHERICAL 
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S_1 = []; 
st1 = (n/(n-1))^2; 
st2 = (n+1)/(n*(n-1)) * B; 
st3 = 2*(n+1)/n ; 
  
% COMA 
S_2 = []; 
ct1 = st2; 
  
% STIGMATIS A M AND F. CURVATURE 
S_3 = []; 
S_4 = []; 
  
%####################  Varying aperture of the lens 
##################### 
fn = 3.5; % starting aperture 
fn_k = ( sqrt(2) - 1 ) / 3; % Calculating F Number 
  
A_P = []; 
F_N = []; 
for no = 1 : 15 
  
    ap = f / fn ; % in mm 
    A_P = [A_P; ap]; 
    F_N = [F_N; fn]; 
     
    h = ap/2; % in mm 
    u = atan(h/f); % thin lens approximation for field angle 
    H = n * h * u; % lagrange invariant (has dimension mm) 
     
%---------------------------------Spherical----------------------

 ----------
    st2 = ((n+2)/(n*(n-1)^2))*(B + 2*(n^2 - 1)*C/(n + 2))^2; 
    st3 = ((n/(n+2))*C^2); 
    S1 = (h^4/4) * K^3 * ( st1 + st2 - st3); 
    S_1 = [S_1;S1]; 
%----------------------------------------------------------------
---------- 
  
%-----------------------------------Coma-------------------------
---------- 
    ct2 = 2*((n+1)/n) * C;  
  S2 = -(h^2/2) * K^2 * H * ( ct1 + ct2   ); 
    S_2 = [S_2;S2]; 
%----------------------------------------------------------------
---------- 
  
%-----------------------------Astig'sm & F Curv------------------
---------- 
    S3 = K * H^2; 
    S_3 = [S_3;S3]; 
    S_4 = [S_4;(S3/n)];     
%----------------------------------------------------------------
---------- 
    % Calculate next F Num 
    fn = fn + fn * fn_k; 
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    fn = floor(fn* ) / 10; % Precision at one decimal place   10
end 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%%%%%%%%%     To convert from millimeter into units of lambda      
%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  %
S_11 = S_1/lambda; 
S_21 = S_2/lambda; 
S_31 = S_3/lambda; 
S_41 = S_4/lambda; 
  
% To obtain coefficients of aberration in aberration function W() 
S_11c = S 1 / 8; _1
S_21c = S_21 / 2; 
S_31c = S_31 / 2; 
S_41c = (S_31 + S_41) / 4; 
  
% Plot against F Number 
figure;plot(F_N, S_11c);t le('Spherical Aberration');xlabel('F it
Number');ylabel('Aberration Coefficient in lambda'); 
figure;plot(F_N, S_2 );title('Coma');xlabel('F 1c
Number');ylabel('Aberration Coefficient in lambda'); 
figure;plot(F_N, S_31c);title('Astigmatism');xlabel('F 
Number');ylabel('Aberration Coefficient in lambda'); 
figure;plot(F_N, S_41c);title('Field Curvature');xlabel('F 
Number');ylabel('Aberration Coefficient in lambda'); 
  
% END 
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%%%%Shift Variant Blurring with Primary Aberrations 
% Program Description: 
%  
% -   Calculate different PSFs with different aberration 
coefficient  
%     based on the radial distance from the center (only if not 
Spherical) 
%    
% -   Store it in a 3D matrix with primary index as the distance 
from the center 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CODE FOR THESE THREE STEPS HAVE BEEN OMITTED HERE. 
%      
% -   Read the image and perform shift variant blurring using 
PSFs from the 
%     stored array 
  
% By Shekhar Sastry, CVL, ECE DEPT., STONY BROOK UNIVERSITY May 
2009  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Read the image and blur 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%% PSF is stored in a 3D array called psfArr  
 
fImg = imread('Image\Alphabet.tif'); % Input image 
fImg = rgb2gray(fImg); 
[imY imX] = size(fImg); 
  
midY = floor(imY/2); 
midX = floor(imX/2); 
gImg = zeros(size(fImg)); 
gImg(1:end,1:end) = im2double(fImg); 
  
gImgTmp = zeros(imY+32,imX+32); 
  
% Blurring........... 
for y = 17 : imY+16 
    for x = 17 : imX+16 
         
        % Logic to select the PSF based on the distance from the 
center 
        % Selects max(Xdistance,Ydistance) as a rule to pick PSF 
        xDist = abs(floor((x - imX/2)/(imX/(2*midX)))); 
        yDist = abs(floor((y - imY/2)/(imY/(2*midY)))); 
        dist = max(xDist,yDist); 
        if dist <= 0 
            dist = 1; 
        elseif dist > 128 
            dist = 128; 
        end 
        % Each PSF is weighted by the intensity value and summed 
up 
        % Numerically computing shift variant blur (superposition 
integral) 
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        gImgTmp((y-16):(y+16),(x-16):(x+16)) = gImgTmp((y-
16):(y+16),(x-16):(x+16)) + ( squeeze(psfArr(dist,: )) * ,:
gImg((y-16),(x-16))); 
    end 
end 
  
% Throwing away pixels outside the border 
bImg = gImgTmp(17:imY+16,17:imX+16); 
  
% Rescaling image to Uint8 value 
b_img = uint8(255 * bImg); 
imwrite(b_img,'Blurring\New\Alphabet_coma_c15.jpg','JPEG'); 
  
% END 
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