

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Practical Information Flow Based Techniques
to Safeguard Host Integrity

A Dissertation Presented
by

Weiqing Sun

to
The Graduate School

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science
Stony Brook University

May 2008

Stony Brook University

The Graduate School

Weiqing Sun

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor R. Sekar, (Advisor)
Computer Science Department, Stony Brook University

Professor Erez Zadok, (Chairman)
Computer Science Department, Stony Brook University

Professor Scott Stoller, (Committee Member)
Computer Science Department, Stony Brook University

Professor Vinod Ganapathy, (External Committee Member)
Computer Science Department, Rutgers University

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Practical Information Flow Based Techniques to

Safeguard Host Integrity

by

Weiqing Sun

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

Security threats have escalated rapidly over the past few years. Malware,

zero-day attacks and rootkits are now common terms heard over the media,

drawing attention from large enterprises to regular computer users. What

makes it worse is that cyber crime has become financially lucrative, leading to

the formation of organizations that specialize in the development and trading

of malware. As a result, computer attacks have become more sophisticated

and more stealthy, and can evade most of today’s defenses.

Current defensive approaches like code analysis and behavior blocking

can be either difficult to utilize or be evaded by indirect attacks. In contrast,

techniques based on information-flow blocking can provide assurances about

system integrity even in the face of sophisticated attacks. However, there

iii

has not been much success in applying information flow based techniques to

modern COTS operating systems to provide satisfactory results in the aspects

of security, usability, and scope. This is, in part, due to the fact that a strict

application of information flow policy can break existing applications. Another

important factor is the difficulty of policy development. We therefore develop

two approaches in an effort to address these issues.

SEE (Safe Execution Environment) is suitable for running stand-alone

untrusted applications in a secure way. It employs one-way isolation: processes

running within the SEE are given read-access to the environment provided by

the host OS, but their write operations are prevented from escaping outside

the SEE. As a result, SEE processes cannot impact the behavior of host OS

processes, or the integrity of data on the host OS. It provides a convenient way

for users to inspect system changes made within the SEE. If the user does not

accept these changes, they can be rolled back at the click of a button. Other-

wise, the changes can be “committed” so as to become visible outside the SEE.

We provide consistency criteria that ensure semantic consistency of the com-

mitted results. Our implementation results show that most software, including

fairly complex server and client applications, can run successfully within the

SEE. The approach introduces low performance overheads, typically below

10%.

The second approach PPI (Practical Proactive Integrity Preservation)

aims at providing integrity guarantees at the whole system level. It focuses

on proactive integrity protection by decoupling integrity labels from low-level

policies that specify how to resolve accesses causing information flows that

may compromise integrity. Therefore, a richer set of security levels, and more

iv

flexible policy choices can be specified to promote usability. We then develop

an analysis technique that can largely automate the generation of integrity

labels and policies that preserve the usability of applications in most cases.

The evaluation of our implementation on Linux desktop distributions indicates

that it can stop a variety of sophisticated malware attacks, while remaining

usable.

v

To my wife Yi,

my daughter Haibei,

and my parents.

Contents

List of Tables x

List of Figures xi

Acknowledgments xii

1 Introduction 1

1.1 Current Techniques in System Integrity Protection 2

1.2 Mechanisms in Restricting Information Flow and Our Approaches 3

1.3 Dissertation Organization . 7

I Safe Execution Environments 9

2 Overview of SEE Approach 10

2.1 Motivating Applications . 10

2.2 SEE Requirements and the Need for New Approach 11

2.3 Approach Overview . 13

2.3.1 Achieving One-way Isolation 14

2.3.2 Committing Changes 17

3 Design and Implementation of SEE 19

3.1 Isolation File System (IFS) . 19

3.1.1 High-Level Overview 19

3.1.2 Design Details . 20

3.2 Implementation of IFS Commit Operation 23

vii

3.2.1 Commit Criteria . 25

3.2.2 Efficient Implementation of Commit 30

3.3 Discussion . 35

3.3.1 Implementing Restriction at System Call Layer. 35

3.3.2 Support for Network Operations. 37

3.3.3 User Interface. 38

4 Evaluation of SEE 40

4.1 Evaluation of Functionality 40

4.2 Evaluation of Performance . 43

5 Related Work of SEE 45

II Practical Proactive Integrity Preservation 51

6 Overview of PPI Approach 52

6.1 Goals of Approach . 55

6.2 Salient Features . 56

7 Design and Implementation of PPI 58

7.1 Policy Framework . 58

7.1.1 Trust and Integrity Levels 58

7.1.2 Integrity Labels Versus Policies 60

7.2 Automating Policy Development 62

7.2.1 Computing Dependencies, Contexts and Labels 63

7.2.2 Policy Generation . 65

7.2.3 Soundness of Policies 69

7.3 Limiting Trust . 70

7.3.1 Limiting Trust on Key Applications 72

7.4 Enforcement Framework . 73

8 Evaluation of PPI 78

8.1 Experience . 78

viii

8.2 Effectiveness against Malicious Applications 81

8.3 Usability of PPI Versus Low Watermark 82

8.4 Performance Overheads . 84

8.5 Limitations . 84

9 Related Work of PPI 86

10 Conclusion 90

ix

List of Tables

1 Comparison for Log-based Commit and State-based Commit.

All numbers are in seconds. 44

2 PPI Policy Generation in Different Phases. 80

3 Microbechmark Result using LMbench. All numbers in mi-

croseconds. 83

4 Application Performance Overhead. All numbers are in seconds

averaged across 10 runs. 84

x

List of Figures

1 Architecture of SEE . 15

2 Illustration of IFS Layout on Modification Operations 21

3 Performance Results for Program Execution in SEE 42

4 Classification of Applications in PPI Policy Framework 59

5 PPI System Architecture . 74

xi

Acknowledgments

I want to express my deepest gratitude to my advisor, Prof. R. Sekar, for his

valuable advising, and invaluable support through my Ph.D. program. During

this long journey, his guidance and encouragement have helped me to keep

focused on my research. I have been greatly benefited from his dedication and

high standard on research.

I would like to thank my dissertation committee members Prof. Erez

Zadok, Prof. Scott Stoller, and Prof. Vinod Ganapathy for their insightful

comments and suggestions.

Secure Systems Lab has been a wonderful workplace. It provides power-

ful computing facilities, spacious cubicles, a good collection of technical books

and comfortable sofas. And most importantly, I have enjoyed working with

outstanding fellow lab members. I am especially grateful to V.N. Venkatakrish-

nan, Zhenkai Liang, Wei Xu and Prem Uppuluri for their direct support at dif-

ferent stages of my research work. I want to thank Alok Tongaonkar, Sandeep

Bhatkar, Lorenzo Cavallaro and Yves Younan for their immense help on my

writing and presentation. I have enjoyed working with Krishna Kumar, Varun

Katta, Munyaradzi Chiwara, Gaurav Poothia, Aditya Rekha Dharanipragada,

Milan Manavat, Manish Nair, Tejas Karandikar, Kumar Thangavelu, Anu-

pama Chandwani, Srivani Narra, Ravi Kiran, Abhishek Dhamija, Sreenath

Vasudevan and Amol Karmarkar. I would like to mention other lab members

with whom I have had enjoyable experience: Ajay Gupta, Tianning Li, Pra-

teek Saxena, Abhishek Chaturvedi, Vishwas Nagaraja, Shruthi Murthy, Yo-

gesh Chauhan, Divya Padbhanabhan, Mohan Channa, Tapan Kamat, Sandhya

Menon, Karthik Sreenivasa Murthy, Mithun Iyer, Xiaojun Wang, Jun Yuan

and several others.

I would like to thank my other friends in Stony Brook, in particular, Wei

Zhang, Chen Ling, Hui Zhang, Zongheng Zhou, Jie Chen, Peiyan Wang, Yang

Wang, Rahul Agarwal, Dimitris Papamichail, Yiguo Wu, for their friendship

and help.

Finally, my special thanks are to my family: my parents, my sister and

my in-laws for their continued support; my lovely 9-month-old daughter Haibei

for bringing immense happiness in my life; and most importantly my wife Yi

for her love, understanding, and care.

CHAPTER 1

Introduction

“We are fielding 2,000 attacks per hour”, said Microsoft. “We see as many as

60,000 come on in a day”, said Symantec on the number of infected systems with

bot software. “My computer got a virus after I clicked an email, what should I

do?”, complained by an anonymous computer user,

Security threats have escalated rapidly over the past few years. Malware,

zero-day attacks and rootkits are now common terms heard over the media,

drawing attention from large enterprises to regular computer users. What

makes it worse is that cyber crime has become financially lucrative, leading to

the formation of organizations that specialize in the development and trading

of malware. As a result, computer attacks have become more sophisticated

and more stealthy, and can evade most of today’s defenses.

As an indicator for the trustworthiness of the system, system integrity

is a fundamental concern in security. It is usually first violated as a result

of a successful attack. Even attacks that focus on stealing user information

need to first break system integrity in order to plant “agent” software, e.g.,

spyware. Hence, in this dissertation, we focus on developing solutions that can

safeguard system integrity from malware attacks.

1

1.1 Current Techniques in System Integrity

Protection

Current defensive techniques in system integrity protection against untrusted

code1 can be broadly divided into the following categories:

• Code analysis focuses on identifying security violations by performing

analysis on the code. Code analysis can be static or dynamic. Static

code analysis involves analyzing the code (usually in binary format) of

the untrusted application without actually executing it. However it is

a difficult task by its own nature. Dynamic code analysis observes its

behavior by actually running the code with possible test data sets. But

more and more malware incorporate anti-analysis mechanisms to thwart

these analyses. Therefore, code analysis is not a practical approach

against new types of adaptive malware.

• Behavior blocking involves monitoring of untrusted code at runtime and

blocking behaviors that are deemed malicious. Sandboxing is one rep-

resentative in this category, and it is typically achieved by restricting

the set of resources (such as files) that can be written by untrusted pro-

cesses. The main drawback of this technique is the difficulty of policy

selection, that is, it is not easy to determine what actions are permissi-

ble for a given application: restrictive policies are likely to break normal

execution of benign applications, while permissive policies lead to se-

curity holes. Moreover, attackers can employ indirect attacks, which

involve multiple steps that gradually gain unauthorized privileges. For

instance, an attacker may first modify .bashrc2 to create an alias for

the command sudo3, and then waits for the user to run sudo, when the

1We use the term “untrusted software” to refer to software obtained from untrusted
sources on the Internet. Untrusted software may be malicious or non-malicious. On the
other hand, benign software, which is obtained from trusted sources, is assumed to be non-
malicious.

2.bashrc is the user-specific Bash init file in which user can define functions and alias for
various bash commands.

3sudo allows a user to execute a command as the superuser or another user.

2

attacker’s trojan program will be invoked. Since it is hard to identify

all the possible intermediate files, sophisticated and stealthy attacks can

evade sandbox-like techniques.

With indirect attacks, an attacker seeks to influence some benign appli-

cations, possibly through multiple steps. We observe that information-flow

blocking techniques can effectively defeat such attacks by blocking information

flows from untrusted to benign applications. Policies that restrict informa-

tion flows are more natural for providing assurances about end-to-end system

integrity.

1.2 Mechanisms in Restricting Information Flow

and Our Approaches

In a simplified model, where benign and untrusted subjects/objects4 co-exist

on the system, unacceptable information flow can happen as a result of (a)

a benign subject reading an untrusted object, or (b) an untrusted subject

writing to a benign object or communicating with a benign subject. Given

such a model, there are the following possible ways to restrict information

flow.

Isolation Approaches.

Isolation is a straightforward way to achieve restriction of information flows.

An untrusted subject can be isolated so that it can no longer affect benign

subjects or objects outside the isolated environment. Usually, in order for an

isolated subject to exhibit the same behavior as it runs natively on the host

environment, all the objects it will access need to be duplicated into an isolated

environment. An isolation-based approach is especially suitable for executing

stand-alone untrusted applications. For instance, suppose that a user down-

loads a photo album utility from an untrusted website, and wants to try it on

4Subjects refer to processes, while objects refer to files, sockets, etc.

3

her own photo files. In this case, isolation would come in handy to prevent

information flows from this untrusted utility to benign subjects/objects.

Current virtual machine based approaches [67] employ two-way isolation

between a host and guest operating system. The “playground” approaches

developed for Java programs in [36, 12] also belong to this general category.

However, two-way isolation is too heavy-weight because of the extra burden of

environment duplication. In the above album utility example, the user has to

manually copy all her photo files into the isolated environment before using the

utility to process them. It also has the inconvenience of requiring an explicit

copy operation to make the results of untrusted execution visible in the host

system.

To mitigate these drawbacks, we propose a new technique called Safe

Execution Environments (SEE), as elaborated in Part I of this dissertation.

This approach uses a one-way isolation technique. It makes the host state

visible inside the SEE so that accurate environment reproduction is assured.

At the same time, it prevents information flow from untrusted applications to

benign applications, so benign applications cannot see the file objects created

or modified by untrusted applications, and hence cannot be compromised by

untrusted applications. To achieve this, we redirect any modification operation

made within the SEE to a different resource that is invisible outside the SEE. If

the result of an SEE execution is deemed safe, our SEE provides a “commit”

functionality to make the results of untrusted execution visible to the host

system.

Approaches Based on Runtime Enforcement.

Although isolation based technique is effective in restricting information flows

without affecting the usability of untrusted applications, there is one problem

it cannot solve by itself: users need to decide whether the results of untrusted

execution are “safe” to be committed to the host system. For instance, in

the above photo album example, the user has to decide whether to commit

the modified photo files back to the host system. It turns out not to be

4

an easy task because users usually lack the necessary knowledge in how the

modified files are going to be used afterwards. An alternative approach that

overcomes this drawback is that of labeling the outputs of untrusted execution

so that additional precautions can be taken at the point where these results are

actually used by benign subjects. This line of thought directs us to information

flow approaches based on runtime enforcement.

Unlike the isolation approaches, runtime enforcement based approaches

provide comprehensive runtime information flow tracking and policy enforce-

ment. Biba [8], as a basic model, has a strict “no read down and no write

up” policy, which prevents any information flowing from low to higher in-

tegrity level. However, the past 30+ years effort in applying this model to

real-world systems has not been much of a success. The task of labeling all

the subjects/objects on the system seems daunting. Moreover, the strict pol-

icy causes usability problems, preventing some benign applications from being

used successfully. For example, a file copying utility should be usable on high

as well as low integrity files, with the copy inheriting the integrity of the orig-

inal. Hence, there are the following efforts aimed at producing more usable

systems by relaxing this basic model.

• No write up, but read down permitted. Windows Vista is one example

in this category, which divides the set of resources in the system into

several integrity levels, and permits a process to overwrite a file only if

its integrity level dominates that of the file. But techniques that regulate

write-access without restricting read-access are not sufficient to thwart

adaptive attacks such as indirect attacks, where a benign application

ends up consuming malicious outputs stored in the file system. For

instance, user-specific customization files and scripts can lead to possible

indirect attacks as we mentioned before, but it is difficult to identify all

such files before hand. Worse, a benign application may be compromised

by an untrusted input file. Clearly, most of the possible inputs to an

application cannot be predicted in advance.

• No read down, but write up allowed. Back to the Future system [21]

5

enforces the “no read down” policy, but not the “no write up” policy.

Untrusted applications can freely write to the file system. But it can

recognize any attempt by malware to inject itself into inputs consumed

by benign applications. The disadvantage of this approach is that of

delayed detection: malware actions are not stopped at the point where

they overwrite critical files, but at the point where a benign application

uses them. This inconveniences the user, as her attempts to run that

application would fail.

• Low Watermark. This model introduces the “subject downgrade” policy

over Biba model, so that a subject can be downgraded to lower level after

reading a low level object. This addresses some of the usability issues,

such as problems associated with running the above-mentioned copy util-

ity, but as described in [19], it now suffers from the “self-revocation”

problem.

Given that the existing relaxed models are not satisfactory, we propose

our second approach, Practical Proactive Integrity protection (PPI) in an ef-

fort to address the above drawbacks. This technique, described in Part II

of this dissertation, follows the direction of traditional runtime enforcement

based integrity protection models with important and innovative enhance-

ments. Specifically,

• Flexible decomposition of high-level policies into low-level policies. In

traditional approaches, labels effectively define the access policies: a

subject is permitted to read (write) an object only if the subject’s in-

tegrity is equal to or lower (equal to or higher) than that of the object.

In contrast, we distinguish between labels, which are a judgment of the

trustworthiness of an object (or subject), from policies that state whether

a certain read or write access should be permitted. Based on this sep-

aration, our approach allows integrity levels of objects or subjects to

change over their lifetime. Moreover, “read-down” and “write-up” con-

flicts are resolved differently for different objects and subjects. These

6

factors provide flexibility in developing low-level policies that preserve

system integrity without unduly impacting usability.

• Automated analysis for generating enforceable policies. Given the large

number of objects (hundreds of thousands) and subjects (thousands),

manual configuration of policies for every object/subject pair is imprac-

tical. We therefore develop techniques that utilize an analysis of access

patterns observed on an unprotected system to automatically derive poli-

cies. This analysis can also be used to automatically complete the set of

integrity-critical applications, starting from a partial list provided by a

policy developer.

• A flexible enforcement framework. Our enforcement framework, consists

of a small, security-critical enforcement component that resides in the

OS kernel, and a user-level component that incorporates more complex

features that enhance functionality without impacting security. This

framework also incorporates features needed for learning and synthesiz-

ing policies for new applications.

• Mechanisms for limiting trust. There are some instances when high-

integrity applications should be allowed to access low-integrity files. We

develop techniques that enable such exceptions to be restricted. Our

techniques typically have the effect of distinguishing between code/configuration

inputs from data inputs, and ensuring that exceptions are made only for

data inputs. Using these mechanisms, we describe how we can limit

the amount of trust placed on important applications such as software

installers, web browsers and email handlers, and file utilities.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Part I describes our first

technique. In particular, Chapter 2 presents an overview of the SEE approach.

Chapter 3 describes the design and implementation of SEE. Chapter 4 pro-

vides an evaluation of the functionality as well as the performance of the SEE

7

approach. Related work of SEE is discussed in Chapter 5. Part II describes our

second technique. We present an overview of the PPI approach in Chapter 6.

The design and implementation of the PPI approach is described in Chapter 7,

followed by an evaluation of its functionality and performance in Chapter 8.

Related work for PPI is discussed in Chapter 9. Finally, Chapter 10 concludes

this dissertation.

8

Part I

Safe Execution Environments

9

CHAPTER 2

Overview of SEE Approach

2.1 Motivating Applications

System administrators and desktop users often encounter situations where

they need to experiment with potentially unsafe software or system changes.

A high-fidelity safe execution environment (SEE) that can support these ac-

tivities, while protecting the system from potentially harmful effects, will be

of significant value to these users. Applications of such SEE include:

• Running untrusted software. Often, users execute downloaded freeware,

shareware or mobile code. The risk of damage to the user’s computer

system due to untrusted code is high, yet a significant fraction of users

seem to be willing to take this risk in order to benefit from the function-

ality offered by such code. An SEE can minimize security risks without

negating the functionality benefits provided by such software.

• Vulnerability testing. System administrators may be interested in prob-

ing whether a system is susceptible to the latest email virus, worm or

other attacks. A high-fidelity SEE can allow them to perform such test-

ing without the risk of compromising production systems.

• Software updates/patches. Application of security patches are routinely

delayed in large enterprises in order to allow time for compatibility and

10

interoperability testing. Such testing is typically done after shutting

down production systems for extended periods, and hence may be sched-

uled for weekends and holidays. In contrast, a high-fidelity SEE can allow

testing of updates to be performed without having to shutdown produc-

tion systems. These concerns apply more generally to software upgrades

or installations as well.

• System reconfiguration. Administrators may need to reconfigure soft-

ware systems, and would ideally like to “test out” these changes before

deploying them on production systems. This is currently accomplished

manually, by saving backup copies of all files that may be modified dur-

ing reconfiguration. An SEE will automate this process, and moreover,

avoid pitfalls such as overlooking to backup some of the modified files.

2.2 SEE Requirements and the Need for New

Approach

In order to support the kinds of applications mentioned above, an SEE must

provide the following features:

• Confinement without undue restrictions on functionality. The effects

of process execution within an SEE should not “escape” the SEE and

become visible to normal applications running outside. Otherwise, one

cannot rule out the possibility of SEE processes altering the operation

of other applications running on the same system or elsewhere in the

network. Such confinement can be achieved using access control restric-

tions, e.g., by prohibiting all operations that modify files or access the

network. However, such restrictions will prevent most applications from

executing successfully within an SEE.

• Accurate environment reproduction. For SEEs to be useful in the above

applications, it is essential that the behavior of applications be identical,

whether or not they operate within the SEE. Since the behavior of an

11

application is determined by its environment (contents of configuration

or data files, executables, libraries, etc.), it is necessary to reproduce,

as accurately as possible, the same environment within the SEE as the

environment that exists outside SEE.

• Ability to commit results. In many of the above applications, including

untrusted software execution and software or system updates, a user

would like to retain the results of activities that were successful. Thus,

the SEE must provide a mechanism to “commit” the results of activities

that took place within it. A successful commit should have the same

effect as if all of the operations carried out within the SEE actually took

place outside.

Most existing approaches for safe execution do not satisfy these requirements.

For instance, sandboxing techniques achieve confinement, but do so by severely

restricting functionality. Virtual machines (VMs) and related approaches [11,

71] relax access restrictions, but do not offer any support for environment

reproduction or committing. File versioning systems [54, 80, 79, 39, 13, 50, 52,

62, 44] can provide rollback capabilities, but they don’t provide a mechanism

to discriminate among changes made by different processes, and hence cannot

support selective rollback of the effects of untrusted process execution.

The concept of isolation has been proposed as a way to address the prob-

lem of effect containment for compromised processes in [24, 33, 57]. [33] de-

veloped the concept of one-way isolation as an effective means to isolate the

effects of running processes from the point they are compromised (or suspected

of being compromised). They also develop protocols for realizing one-way iso-

lation in the context of databases and file systems. However, they only provide

a high-level treatment, and do not address practical issues that arise in im-

plementing such an approach for COTS applications running over commodity

OSes.

[32] addressed some of these issues and developed a user-level tool for

isolating the effects of COTS applications on the Linux OS. The focus of

that effort was on untrusted software execution, and on a solution that was

12

realized entirely at the user level. Such a solution does not require OS changes

or even administrative privilege to install or use the tool. However, in order to

achieve a completely user-land solution, [32] compromises on performance as

well as generality. In particular, the approach suffers from high overheads that

can be over 100% in some instances. Moreover, isolation semantics cannot

be faithfully reproduced for operations that concern file meta-data such as

permissions and ownership. For directories, isolation is achieved using an

ad-hoc approach that is hard to implement and provides semantics that is

inconsistent with that of files. Finally, no systematic solution to the commit

problem is provided. The approach developed in this part addresses all these

drawbacks. Moreover, it generalizes the approach so that isolation can be

provided for non-file operations, e.g., certain classes of network accesses.

2.3 Approach Overview

The SEEs are based on the concept of one-way isolation. Whereas VMs gener-

ally employ two-way isolation between the host environment and the environ-

ment that exists within a VM, one-way isolation makes the host environment

visible within the SEE. In this sense, the SEE processes can (and do) see the

environment of their host system, and hence accurate reproduction of envi-

ronment is assured. However, the effects of SEE processes are isolated from

outside applications, thereby satisfying the confinement requirement.

In our approach, an SEE is created to run a process whose effects are to

be shielded from the rest of the system. One or more such SEEs may be active

on the host OS. Any children created by processes within an SEE will also be

confined to that SEE, and will share the same consistent view of system state.

Typically, a user will start a command shell within a new SEE, and use this

shell to carry out tasks such as running untrusted programs. She may also run

helper applications, such as image or document viewers, or arbitrary utility

applications to examine the resulting system state. Finally, if she wants to

accept the changes made within the SEE, she can commit the results. The

commit process causes the system state, as viewed inside the SEE, to be

13

merged with the state of the host OS. We present consistency criteria aimed

at ensuring the correctness of the results of the commit process.

Our approach is implemented using interposition at the system call and

virtual file system layers, and hence does not require any changes to applica-

tions that run inside the SEE. Even complex tasks such as compilation and

installation of large software packages, and execution of complex client and

server applications can be carried out successfully within the SEE. This is

because our approach places few restrictions on operations performed by most

applications. In particular, no restrictions are placed on file accesses, except

in the case of access to special devices. Network operations that correspond to

“read” operations, such as querying a name server, can be permitted as well.

Network accesses that correspond to “write” operations can be permitted when

the target of the communication satisfies one of the following conditions:

• it is an application running within an SEE, possibly on a different host,

or

• it is a special-purpose “proxy” that is layered between the application

and the service accessed by it, and can buffer the write actions until

commit time.

The key challenge in implementing such proxies is that even though they buffer

certain operations, they should provide a consistent view of system state to

the SEE applications. Specifically, if an SEE process “writes” to such a proxy

and subsequently performs a “read” operation, the proxy should return the

result that would have been returned if the write operation had actually been

carried out.

2.3.1 Achieving One-way Isolation

Figure 1 illustrates the overview of our SEE. It is a layer between the iso-

lated program and the operating system, which is based on intercepting and

manipulating the requests made by the isolated program. The primary goal

of isolation in our approach is effect containment: preventing the effects of

14

Isolated Resources

SEE

Redirected Requests

Denied RequestsService
Proxy 2

Service
Proxy 1

Confinement

Original Operating System

Isolated Program

Request

Allowed Requests

Figure 1: Architecture of SEE

SEE processes from affecting the operation (or outcome) of processes execut-

ing outside the SEE 1. This means that any “read” operation (i.e., one that

queries the system state but does not modify it) may be performed by SEE

processes. It also means that “write” operations should not be permitted to

affect system state. There are two options in this context: one is to restrict

the operation, i.e., disallow its execution. The second option is to redirect the

operation to a different resource that is invisible outside the SEE. Once a

write operation is redirected, it is important that subsequent read operations

on the same resource be redirected as well.

By restriction, we mean that an operation is prevented from execution.

An error code may be returned to the process, or the operation may be silently

suppressed and a success code returned. In either case, restriction is easy to

implement — we need only know the set of operations that can potentially alter

system state. The main drawback of restriction is that it will likely prevent

applications from executing successfully. For instance, if a program writes a

1Note that we are interested in confinement [30] from the point of view of system integrity,
rather than confidentiality. As such, we do not deal with with issues such as covert channels.

15

file, it expects to get back the same content at a later point in the program

when the file is read. However, an approach based on restriction cannot do

this, and hence most nontrivial applications will fail to run successfully under

such restriction. For this reason, restriction is a choice of last resort in our

approach.

By redirection, we mean that any operation that modifies some compo-

nent of the host environment is instead redirected to a different component

that is not accessed by the host OS processes. For instance, when an SEE

process tries to modify a file, a copy of the original file may be created in a

“private” area of the file system, and the modification operation redirected to

this copy. Redirection is intended to provide a consistent view of system state

to a process, thereby allowing it to run successfully.

Redirection can be static or dynamic. Static redirection requires the

source and target objects to be specified manually. It is ideal for network

operations. For instance, one may statically specify that operations to bind

a socket to a port p should be redirected to an alternate port p′. Similarly,

one may specify that operations to connect to a port p on host h should be

redirected to host h′ (which may be the same as h) and port p′. By using such

redirection, we can build distributed SEEs, where processes executing within

SEEs on multiple hosts can communicate with each other. Such distributed

SEEs are particularly useful for safe execution of a network server application,

whose testing would typically require accesses by nonlocal client applications.

(Note, however, that this approach for distributed SEEs works only when all

cross-SEE communications take place directly between the SEE processes, and

not through other means, e.g., indirect communication through a shared NFS

directory.)

Static redirection becomes infeasible if the number of possible targets is

too large to be enumerated in advance. For instance, it is hard to predict the

files that may be accessed by an arbitrary application. Moreover, there are

dependencies among operations on different file objects, e.g., an operation to

create a file has the indirect effect of changing the contents of the directory

in which the file is created. Simply redirecting an access on the file, without

16

correspondingly modifying accesses of the directory, won’t work. To handle

such complexities, our approach supports dynamic redirection, where the tar-

get for redirection is determined automatically during the execution of SEE

processes. However, the possibility of hidden dependencies means that the

implementation of dynamic redirection may have to be different for different

kinds of objects. Specifically, in our SEE architecture, (Figure 1), dynamic

redirection is supported by service-specific proxies. Currently, there is a proxy

for file service, and we envision proxies for other services such as WWW or

email.

In our current implementation, system call interposition is used to imple-

ment restriction and static redirection. We restrict all modification operations

other than those that involve the file system and the network. In the case of

file operations, all accesses to normal files are permitted, but accesses to raw

devices and special purpose operations such as mounting file systems are disal-

lowed. In terms of network operations, we permit any network access for which

static redirection has been set up. In addition, accesses to the name server

and X-server are permitted. (In reality, SEE processes should not get unre-

stricted access to X-server, Our current implementation solves this problem

by statically redirecting X requests to a separate X-server.)

Dynamic redirection is currently supported in our implementation for

only file system accesses. It is realized using a proxy called the Isolation File

System (IFS), which is described in detail in Section 3.1.

2.3.2 Committing Changes

There are two key challenges in committing: one is to ensure consistency of the

resulting system state; the other is efficiency — to reduce the space and time

overheads for logging and re-running of operations to a level that provides good

performance. Below, we provide a high-level overview of the issues involved in

commit.

The key problem in terms of consistency is that a resource accessed within

the SEE may have been independently accessed outside of the SEE. This

17

corresponds to concurrent access on the same resource by multiple processes,

some within SEE and some outside. One possible consistency criterion is the

serializability criterion used in databases. Other consistency criteria may be

appropriate as well, e.g., for some text files, it may be acceptable to merge

the changes made within the SEE with changes made outside, as long as the

changes involve disjoint portions of the file. A detailed discussion of the issues

involved in defining commit criteria is presented in Section 3.2.1.

There may be instances where the commit criteria may not be satisfied.

In this context, we make the following observations:

• There is no way to guarantee that results can be committed automati-

cally and produce consistent system state, unless we are willing to delay

or disallow execution of some applications on the host OS. Introducing

restrictions or delays on host OS processes will defeat the purpose of

SEE, which is to shield the host OS from the actions of SEE processes.

Hence this option is not considered in our approach.

• If the results are not committed, then the system state is unchanged by

tasks carried out within the SEE. This means that these tasks can be

rerun, and will most likely have the same desired effect. Hopefully, the

conflicts were the results of infrequent activities on the host OS, and

won’t be repeated this time, thus enabling the results to be committed.

• If retry isn’t an option, the user can manually resolve conflicts, deciding

how the files involved in the conflict should be merged. In this case, the

commit criteria identifies the files and operations where manual conflict

resolution is necessary.

As a final point, we note that if a process within an SEE communicated

with another process executing within a different SEE, then all such commu-

nicating SEEs need to be committed as if they were part of a single distributed

transaction. Currently, our implementation does not support distributed com-

mits. Our approach for committing the results of operations performed within

a single SEE is described in Section 3.2.

18

CHAPTER 3

Design and Implementation of

SEE

3.1 Isolation File System (IFS)

3.1.1 High-Level Overview

In principle, a file system can be viewed as a tree structure. Internal nodes

in this tree correspond to directories or files, whereas the leaves correspond to

disk blocks holding file data. The children of directory nodes may themselves

be directories or files. The children of file nodes will be disk blocks that either

contain file data, or pointers to file data.

This view of file system as a tree suggests an intuitive way to realize one-

way isolation semantics for an entire file system: when a node in the original

file system is about to be modified, a copy of this node, as well as all its

ancestors, is created in a “private” area of the file system called temporary

storage. The write operation, as well as all other subsequent operations on

this node, are then redirected to this copy.

In essence, we are realizing isolation using copy-on-write. Although the

copy-on-write technique has been used extensively in the context of plain files,

it has not been studied in the context of directories. Realizing IFS requires us

to support copy-on-write for the entire file system, including directories and

19

plain files.

In our approach, copy-on-write on directories is supported using a shallow-

copy operation, i.e., the directory itself is copied, but its entries continue to

point to objects in the original file system. In principle, one can use shallow-

copy on files as well, thus avoiding the overhead of copying disk blocks that

may not be changed within the IFS. However, the internal organization of files

is specific to particular file system implementations, whereas we want to make

IFS to be file-system independent. Hence files are copied in their entirety.

IFS is implemented by interposing file system operations within the OS

kernel at the Virtual File System (VFS) layer. VFS is a common abstraction in

Unix across different file systems, and every file system request goes through

this layer. Hence extensions to functionality provided at VFS layer can be

applied uniformly and transparently to all underlying file systems such as

ext2, ext3 and NFS.

We realize VFS layer interposition using the stackable file system ap-

proach described in [76]. In effect, this approach allows one to realize a new

file system that is “layered” over existing file systems. Accesses to the new

file system are first directed to this top layer, which then invokes the VFS

operations provided by the lower layer. In this way, the new file system ex-

tends the functionality of existing file systems without the need to deal with

file-system-specific details.

3.1.2 Design Details

The description in the previous section presented a simplified view of the

file system, where the file system has a tree-structure and consists of only

plain files and directories. In reality, UNIX file systems have a DAG (directed

acyclic graph) structure due to the presence of hardlinks. In addition, file

systems contain other types of objects, including symbolic links and special

device files. As mentioned earlier, IFS does not support special device files.

An exception to this rule is made for pty’s and tty’s, as well as pseudo devices

like /dev/zero, /dev/null, etc. In these cases, access is redirected to the

20

/

a
 b

c
 d

/

a
 b

c
 d

/

a
 b

c
 d

/

a
 b

c
 d
 e

/

a

c

/

a

c
 d
 e

/

a
 b

c
 d

/

a
 b

c
 d

Combined View

Temporary

Storage

Main File System

1. Initial state
 2. After modifying file /a/c
 3. After creating file /a/e

IFS file object
 Stub file object
 Full file object

Figure 2: Illustration of IFS Layout on Modification Operations

corresponding device files on the main file system. A symbolic link is simply

a plain file, except that the content of the file is interpreted as the path name

of another file system object. For this reason, they don’t need any special

treatment. Thus, we need only describe how IFS deals with hard links (and

the DAG structure that can result due to their use.)

When the file system is viewed as a DAG, its internal nodes correspond

to directories, and the leaves correspond to files. As mentioned earlier, the

IFS does not look into the internal structure of files, and hence we treat them

as leaf objects in the DAG. All nodes in the DAG are identified by a unique

identifier called the Inode number. (The inode number remains unique across

deletion and recreation of file objects.) The edges in the DAG are links, each

of which is identified by a name and the Inode number of the object pointed

by the link. This distinction between nodes and links in the file system plays

a critical role in every aspect of IFS design and implementation.

Figure 2 illustrates the operation of IFS. The bottom layer corresponds

to a host OS file system. The middle layer is the temporary storage to hold

modified copies of files and directories. The top layer shows the view within

IFS, which is a combination of the views in the bottom two layers. Note that

the ordering of the bottom two layers in the figure is significant: the view

21

contained in the temporary storage overrides the view provided by the main

file system.

The temporary storage area is also known as “private storage area” to

signify that fact that it is not to be accessed by the host OS. In order to

support efficient movement of files between the two layers, which is necessary to

implement the commit operation efficiently, it is preferable that the temporary

storage be located on the same file system as the bottom layer. (If this is

not possible, then temporary storage can be on a different file system, with

the caveat that committing will require file copy operations as opposed to

renames.) Henceforth, we will use the term main file system to denote the

bottom layer and IFS-temporary storage (or simply “temporary storage”) to

refer to the middle layer.

In addition to storing private copies of files modified within the SEE

in the temporary storage, the IFS layer also contains a table that maintains

additional information necessary to correctly support IFS operation. This

table, which we call as inode table, is indexed by the inode numbers of file

system objects. It has a field indicating that whether the inode corresponds an

object in temporary storage (temp) or an object the main file system (main).

Further, if it is an object in the temporary storage, the flag indicates whether it

is a stub object (stub). A stub object is simply a reference to the version of the

same object stored in the main file system. In addition, auxiliary information

needed for the commit operation is also present, as described in Section 3.2.

In our IFS implementation, copy-on-write of regular files is implemented

using normal file copy operations. In particular, when a plain file f is modified

for the first time within the SEE, a stub version of all its ancestor directories

is created in temporary storage (if they are not already there). Then the file

f is copied into temporary storage. From this point on, all references to the

original file will be redirected to this copy in temporary storage.

After creating a copy of f , we create an entry in the inode table corre-

sponding to the original version of f on the main file system. This is done

so as to handle hard links correctly. In particular, consider a situation when

there is a second hard link to the same file object, and this link has not yet

22

been accessed within IFS. When this link is subsequently accessed, it will be

referencing a file in the main file system. It is necessary to redirect this refer-

ence to the copy of f in temporary storage, or otherwise, the two links within

IFS that originally referred to the same file object will now refer to different

objects, thereby leading to inconsistencies.

The copy-on-write operation on directories is implemented in a manner

similar to that of files. Specifically, a stub version of the directory’s ancestor

nodes are first created in temporary storage. Next, the directory itself is

copied. This copy operation is a shallow copy operation, in that only a stub

version of the objects listed in the directory are created.

We illustrate the operation of IFS using the example shown in Figure 2.

Suppose that initially (i.e., step 1 in this figure), there is a directory a and

a file b under the root directory in the main file system, with files c and d

within directory a. Step 2 of this figure illustrates the result of modifying the

file /a/c within the SEE. The copy-on-write operation on /a/c first creates a

stub version of the ancestor directories, namely, / and /a. Then the file /a/c

is copied from the main file system to the temporary storage. Subsequent

accesses are redirected to this copy in temporary storage.

The third step of Figure 2 shows the result of an operation that creates a

file /a/e within the SEE. Since this changes the directory a by adding another

file to it, a shallow copy of the directory is made. Next, the file e is created

within the directory. The combined view of IFS reflects all these changes:

accesses to file /a/c and /a/e are redirected to the corresponding copies in the

temporary storage, while accesses to file /a/d will still go to the version in the

main file system.

3.2 Implementation of IFS Commit Operation

At the end of SEE execution, the user may decide either to discard the results

or commit them. In the former case, the contents of IFS are destroyed, which

means that we simply delete the contents of temporary storage and leave the

contents of the main file system “as is.” In the latter case, the contents of the

23

temporary storage need to be “merged” into the main file system.

When merging the contents of temporary storage and main file systems,

note that conflicting changes may have taken place within and outside the

IFS, e.g., the same file may have been modified in different ways within and

outside the SEE. In such cases, it is unclear what the desired merge result

should be. Thus, the first problem to be addressed in implementing the commit

operation is that of identifying commit criteria that ensure that the commit

operation can be performed fully automatically (i.e., without any user input)

and is guaranteed to produce meaningful results. We describe possible commit

criteria in Section 3.2.1. Following this, we describe an efficient algorithm for

committing results in Section 3.2.2.

If the commit criteria is not satisfied, then manual reconciliation of con-

flicting actions that took place inside the SEE and outside will be needed. The

commit criteria will also identify the set of conflicting files and operations. At

this point, the user can decide to:

• abort, i.e., discard the results of SEE execution. This course of action

would make sense if the activities performed inside SEE are no longer

relevant (or useful) in the context of changes to the main file system.

• retry, i.e., discard the results of SEE execution, create a new SEE en-

vironment, redo the actions that were just performed within the SEE,

and then try to commit again. If the conflict were due to activities on

the host OS that are relatively infrequent, e.g., the result of a cron job

or actions of other users that are unlikely to be repeated, then the retry

has a high probability of allowing a successful commit. (Note that the

retry will likely start with the same system state as the first time and

hence will have the same net effect as the first time.)

• resolve conflicts, i.e., the user manually examines the files involved in the

conflict (and their contents) and determines if it is safe to commit; and

if so, what the merged contents of the files involved in the conflict. The

commit criteria will identify the list of files involved in the conflict and

24

the associated operations, but the rest of the steps need to be performed

manually.

3.2.1 Commit Criteria

The commit criteria is a set of rules which determine whether the results of

changes made within an SEE can be committed automatically, and lead to a

consistent file system state. Since the problem of consistency and committing

has been studied extensively in the context of database transactions, it is

useful to formulate the commit problem here in the terms used in databases.

However, note that there is no well-defined notion of transactions in the context

of IFS. We therefore identify the entire set of actions that took place within

SEE in isolation as a transaction Ti and the entire set of actions that took

place outside of the SEE (but limited to the actions that took place during

the lifetime of the SEE) as another transaction Th.

There are several natural choices for commit criteria:

• Noninterference. This requires that the actions contained in Ti be un-

affected by the changes made in Th and vice-versa. More formally, let

RS(T) and WS(T) denote respectively the set of all filesystem objects

read and written by a transaction T , respectively. Then, noninterference

requires that

RS(Ti) ∩ WS(Th) = φ

RS(Th) ∩ WS(Ti) = φ

WS(Ti) ∩ WS(Th) = φ

The advantage of this criteria is that it leads to very predictable and

understandable results. Its drawback is that it is too restrictive. For

instance, consider a conflict that arises due to a single file f that is

written in Th and read in Ti. Also suppose that f was read within the

SEE after the time of the last modification operation on f in Th. Then

it is clear that Ti used the modified version of f in its computation, and

25

hence it need not be aborted, yet the noninterference criteria will not

permit Ti to be committed.

• Serializability. This criteria requires that the effect of concurrent trans-

actions be the same as if they were executed in some serial order, i.e.,

an order in which there was no interleaving of operations from differ-

ent transactions. In the context of IFS, there are only two possible serial

orders, namely, TiTh and ThTi. Serializability has been used very success-

fully in the context of database transactions, so it is a natural candidate

here. However, its use in SEE can lead to unexpected results. For in-

stance, consider a situation where a file f is modified in Ti and is deleted

in Th. At the point of commit, the user would be looking at the contents

of f within the SEE and would expect this result to persist after the

commit, but if the serial order TiTh were to be permitted, then f would

no longer be available! Even worse, its contents would not be recover-

able. Thus, serializability may be too general in the context of SEE: if

results were committed automatically when Ti and Th were serializable,

then there is no guarantee that the resulting system state would be as

expected by the user of the SEE.

• Atomic execution of SEE activities at commit time. If the state of main

file system after the commit were as if all of the SEE activities took place

atomically at the point of commit, then it leads to a very understandable

behavior. This is because the contents of the main file system after the

commit operation will match the contents of the IFS on every file that

was read or written within the IFS. The atomic execution criteria (AEC)

is a restriction of serializability criterion in that only the order ThTi is

permitted, and the order TiTh, which led to unexpected results in the

example above, is not permitted.

Based on the above discussion, we use AEC as the criteria for automatic

commits in SEE. In all other cases, the user will be presented with a set

of files and directories that violate the AEC, and the user will be asked to

26

resolve the conflict using one of the options discussed earlier (i.e., abort, redo,

or manually reconcile).

In addition to providing consistent results, a commit criteria should be

amenable to efficient implementation. In this context, note that we don’t have

detailed information about the actions within Th. In particular, the UNIX file

system maintains only the last read time and write time for each file system

object, so there is no way to obtain the list of all read and write actions that

took place within Th, or their respective timestamps. We could, of course,

maintain such detailed information if we intercepted all file operations on the

main file system and recorded them, but this conflicts with our design goal

that operations of processes outside SEE should not be changed in any way.

On the other hand, since we do intercept all file accesses within the IFS, we can

(and do) maintain more detailed information about the timestamps of the read

and write operations that took place within the SEE. Thus, an ideal commit

criteria, from an implementation perspective, will be one that leverages the

detailed timestamp information we have about Ti while being able to cope

with the minimal timestamp information we have about Th. It turns out that

AEC satisfies this condition, and hence we have chosen this criteria as the

basis for fully automated commits in IFS.

In order to determine whether AEC is satisfied, we need to reason about

the timestamps of operations in Th and Ti and show that their orders can be

permuted so that all operations in Th occur before the operations in Ti, and

that this permutation does not change the semantics of the operations. We

make the following observations in this regard:

• Any changes made within the SEE are invisible on the main file system,

so the results of operations in Th would not be changed if all Ti operations

were delayed to the point of commit.

• A read operation R(f) performed in Ti can be delayed to the point of

commit and still be guaranteed to produce the same results, provided

the target f was unchanged between the time R was executed and the

time of commit. This translates to requiring that the last modification

27

time of f in the main file system precede the timestamp of the first read

operation on f in Ti.

• The results of a write operation W (f) performed in Ti is unaffected by

any read or write operation in Th, and hence it can be delayed to commit

time without changing its semantics.

Based on the observations, we conclude that AEC is satisfied if:

the earliest read-time of an object within the IFS occurs after the

last modification time of the same object on the main file system.

Note that the latest modification time of an object on the main file system is

given by the mtime and ctime fields associated with that object. In addition,

we need to maintain the earliest read-time of every object within the IFS in

order to evaluate this criteria.

A slight explanation of the above criteria is useful in the context of append

operations on files. Consider a file that is appended by an SEE process is

subsequently appended by an outside process. Both appends look like a write

operation, and hence the above commit criteria would seem to indicate that

it is safe to commit results. But if this were done, the results of the append

operation performed outside IFS would be lost, which is an unexpected result.

Clearly, if the SEE process were run at the time of commit, then no information

would have been lost. However, this apparent problem is clarified once we

realize that an append operation really involves a read and then a write. Once

this is taken into account, a conflict will be detected between the time the file

was read within IFS and the time it was modified outside, thereby causing the

AEC criteria to be violated. More generally, whenever a file is modified within

IFS without completely erasing its original contents (which is accomplished

by truncating its length to zero), we treat this as a read followed by a write

operation for the purposes of committing, and handle the above situation

correctly.

28

Improvements to AEC The above discussion of AEC classifies operations

into two kinds: read and write. The benefit of such an approach is its simplic-

ity. Its drawback is that it can raise conflicts even when there is a meaningful

way to commit. We illustrate this with two examples:

• System log files are appended by many processes. Based on earlier dis-

cussion about append operations on files, the AEC criteria won’t be sat-

isfied whenever an SEE process appends an entry e1 to the log file and

an outside process subsequently appends another entry e2 to the same

file. Yet, we see that the results can easily be merged by appending both

e1 and e2 to the log file.

• Directories close to the root of the file system are almost always examined

by SEE process as part of looking up a file name in the directory tree.

Thus, if any changes were to be made in such directories by outside

processes, it will lead to AEC being violated. Yet, we see that a name

lookup operation does not conflict with a file creation operation unless

the name being looked up is identical to the file created.

These examples suggest that AEC will permit commits more often if we distin-

guished among operations at a finer level of granularity, as opposed to treating

them as read and write operations. However, we are constrained by the fact

that we don’t have a complete record of the operations executed by outside

processes. Therefore, our approach is to try to infer the operations by looking

at the content of the files. In particular, let fo denote the (original) content

of a file system object at the point it was copied into temporary storage, and

fh and fi denote the content of the same file in the main file system and the

IFS at the point of commit. We can then compute the difference δ
f
h between

fo and fh, and the difference δ
f
i between fo and fi. From these differences,

we can try to infer the changes that were made within and outside SEE. For

instance, if both δ
f
h and δ

f
i consist of additions to the end of the file, we can

infer that append operations took place, and we can apply these differences to

fo.

29

In the case of directories, the situation is a bit simpler. Due to the nature

of directory operations, δ
f
h will consist of file (or subdirectory) creation and

deletion operations. Let Fh denote the set of files created or deleted in δ
f
h , and

let Fi be the set of names in this directory that were looked up in Ti. This

information, as well as the time of first lookup on each of these names, are

maintained within the IFS. Let Fc = Fh ∩ Fi. Now, we can see that the AEC

criteria will be satisfied if either one of the following conditions hold:

• Fc = φ, or

• the modification time of fo precedes all of the lookup times on any of

the files in Fc.

In the first case, none of the names looked up (i.e., “read”) within the SEE

were modified outside, thus satisfying AEC. In the second case, conflicts are

again avoided since all of the lookups on conflicting files took place after any

of the modification operations involving them in the main file system.

We point out that inferring operations from the state of the file system

can be error-prone. For instance, it is not possible to distinguish from system

state whether a file a was deleted or if it was first renamed into b and then

deleted. For this reason, we restrict the use of this approach to log files and

directories. In other cases, e.g., updates of text files, we can use this technique

with explicit user input.

3.2.2 Efficient Implementation of Commit

After making a decision on whether it is safe to commit, the next step is to

apply the changes to the main file system. One approach in this context is to

traverse the contents of the temporary storage and copy them into the main

file system. However, this simple approach does not always produce expected

results. Consider, for instance, a case where a file a is first renamed to b and

then modified. A simple traversal and copy will leave the original version of a

as is, and create a new file b whose contents are the same as in the temporary

storage. The correct result, which will be obtained if we redo all the (write)

30

operations at the point of commit, will leave the system without the file a.

Thus, the simple approach for state-based commit does not work correctly.

The above example motivates a log-based solution: maintain a complete

log of all successful modifications operations that were performed within the

SEE, and replay them on the main file system at the point of commit. This

approach has the benefit of being simple and being correct in terms of pre-

serving the AEC semantics. However, its drawback is that it is inefficient,

both in terms of space and time. In the worst case, the storage overhead can

be arbitrarily higher than an approach that uses state-based committing. For

instance, consider an application that creates and deletes many (temporary)

files. The state-based approach will need to store very few files in temporary

storage, but a log-based approach will need to store all the write operations

that were performed, including those on files that were subsequently deleted.

Moreover, redoing the log can be substantially more expensive than state-

based commit, since the latter can exploit rename operations to avoid file

copies altogether.

The above discussion brings forth the complementary benefits of the two

approaches. The first approach makes use of the accumulated modification

results on file system objects, thus avoiding the expense associated with the

maintenance and redoing of logs. The second approach, by maintaining logs,

is able to handle subtle cases involving file renames. In our implementation of

the commit operation, we combine the benefits of both.

We refer to our approach as state-based commit. For files, the commit

action used in our approach involves simply renaming (or copying) the file into

the main file system. For operations related to links, it records a minimal set

of link-related operations that captures the set of links associated with each

file system object. In this sense, one can think of the approach as maintaining

“condensed” logs, where redundant information is pruned away. For instance,

there is no need to remember operations on a file if it is subsequently deleted.

Similarly, if a file is renamed twice, then it would be enough to remember the

net effect of these two renames. To identify such redundancies efficiently, our

approach partitions the logs based on the objects to which they apply. This

31

log information is kept in the inode table described earlier.

Operations that modify the contents of a file or change metadata (such

as permissions) on any file system object are not maintained in the logs, but

simply applied to the object. In effect, the state of the object captures the

net effect of all such operations, so there is no need to maintain them in a

log. Thus, only information about file or directory creation and deletion, and

those that concern addition or removal of links are maintained in the log. In

addition, to simplify the implementation, we separate the effects of creating

or deleting file system objects from the effect of adding or deleting links. This

means that the creation of a file would be represented in our logs by two

operations: one to create the file object, and another to link it to the directory

in which the object is created. Similarly, a rename operation is split into an

operation to add a link, another to remove a link, and a third (if applicable) to

delete the file originally referenced by the new name. As in previous sections,

file objects involved in these operations are identified by inode numbers rather

than path names.

Specifically, the log contains one of the following operations:

• create and delete operations denote respectively the creation of a file or

a directory, and are associated with the created file system object.

• addlink and rmlink operations denote respectively the addition and dele-

tion of a link from a directory to a file system object. These operations

are associated with the file system object that is the target of the link,

and have two operands. The first is the inode number of the parent

directory and the second is the name associated with the link.

The effect of some of these operations is superceded by other operations,

in which case only latter operations are maintained. For instance, a delete

operation supercedes a create operation. An rmlink operation cancels out a

preceding addlink with the same operands.

In addition to removing redundant operations from the logs, we also

reorder operations that do not interfere with each other in order to further

simplify the log. In this context, note that two valid addlink operations in

32

the log associated with any file system object are independent. Similarly,

any addlink operation on the object is independent of an rmlink operation.

(Both these statements are true only when we assume that operations that

are superceded or canceled by others have already been removed from the

log.)

Based on this discussion, we can see that a condensed log associated with

a file system object can consist of operations in the following order:

• zero or one create operation. Since the file system object does not exist

before creation, this must be the first operation in the log, if it exists.

• zero or more rmlink operations. Note that multiple rmlink operations

are possible if the file system object was originally referenced by multi-

ple links. Moreover, the parent directories corresponding to these rmlink

operations must all have existed at the time of creation of SEE, or oth-

erwise an addlink operation (to link this object to the parent directory)

must have been executed before the rmlink. In that case, the addlink

and rmlink operations would have cancelled each other out and hence

won’t be present in the condensed log.

• zero or more addlink operations. Note that multiple addlink operations

are possible if the object is being referenced by multiple links. Also,

there must be at least one addlink operation if the first operation in the

log is a create operation.

• zero or one delete operation. Note that when a delete operation is

present, there won’t be any addlink operations, but there may be one or

more rmlink operations in the log.

Given the condensed logs maintained with the objects in the inode table, it

seems straightforward to carry out the commit operation. The only catch is

that we only have the relative ordering of operations involving a single file

system object, but lost information about the global ordering of operations

across different objects. This raises the question as to whether the meanings

33

of these operations may change as a result. In this context, we make the

following observations:

• Creation and deletion operations do not have any dependencies across

objects. Hence the loss of global ordering regarding these operations

does not affect the semantics of these operations.

• Rmlink operation depends upon the existence of parent directory, but

nothing else. This means that as long as it is performed prior to the dele-

tion of parent directory, its meaning will be the same as it was executed

in the global order in which it was executed originally.

• Addlink operation depends on the creation of the parent directory (i.e.,

the directory in which the link will reside) and the target object. More-

over, an addlink operation involving a given parent directory and link

name has a dependency on any other rmlink operation involving the same

parent directory and link names. This is because the addlink operation

cannot be performed if a link with the same name is present in the par-

ent directory, and the execution of rmlink affects whether such a link is

present. Thus, the effect of addlink operations will be preserved as long

as any parent directory creation, as well as relevant rmlink operations

are performed before.

Among operations that have dependency, one of the two possible orders is

allowable. For instance, an rmlink operation cannot precede the existence of

either the parent directory or the target of the link. Similarly, an addlink

operation cannot precede an rmlink operation with the same parent directory

and name components. (Recall that we have decomposed a rename operation

into rmlink (if needed), addlink and an object delete (if needed) operations, so

it cannot happen that an addlink operation is invoked on a parent directory

when there is already another link with the same name in that directory.)

This means that even though the global ordering on operations has been lost,

it can be reconstructed. Our approach is to traverse the file system within

the temporary storage, and combine the condensed logs while respecting the

34

above constraints, and then execute them in order to implement the commit

step.

Atomic Commits. As mentioned before, the committing of modifications

should be done atomically in order to guarantee file system consistency. The

natural way to do atomic operations is through file-locking: to prevent access

to all the file system objects that are to be modified by the committing pro-

cess. We use Linux mandatory locks to achieve this. Immediately before the

committing phase, a lock is applied to the list of to-be-committed files, so that

other processes do not gain access to these files. Only when the committing is

completely done, the locks on these files are released.

3.3 Discussion

In the previous two sections, we discussed aspects of IFS, our filesystem proxy.

In this section, we discuss how the other components of SEE fit together,

including the components that support restriction, network level redirection,

and user interface.

3.3.1 Implementing Restriction at System Call Layer.

The actions of SEE processes are regulated by a kernel-resident policy enforce-

ment engine that operates using system call interposition. This enforcement

engine generally enforces the following policies in order to realize SEEs:

• File accesses. Ensure that SEE processes can access only the files within

the IFS. Access to device special files are not allowed, except for “harm-

less” devices like tty’s and /dev/null.

• Network access. Network accesses for which an explicit (static) redirec-

tion has been set up are allowed. The redirection may be to another

process that executes within a different SEE, or to an intelligent proxy

for a network service. (Note that network file access operations do not

fall in this category — they are treated as file operations.)

35

• Interprocess communication (IPC). IPC operations are allowed among

the processes within the same SEE. However, no IPC may take place

between SEE and non-SEE processes. An exception to this rule is cur-

rently made for X-server access. (To be safe, we should restrict X-server

accesses made by SEE applications so that they don’t interfere with

X-operations made by non-SEE applications. However, our implemen-

tation does not currently have the ability to enforce policies at the level

of X-requests.)

• Signals and process control. A number of operations related to process

control, such as sending of signals, are restricted so that a process inside

an SEE cannot interfere with the operation of outside processes.

• Miscellaneous “safe” operations. Most system calls that query system

state (timers and clocks, file system statistics, memory usage, etc.) are

permitted within the SEE. In addition, operations that modify process-

specific resources such as timers are also permitted.

• Privileged operations. A number of privileged operations, such as mount-

ing file systems, changing process scheduling algorithms, setting system

time, and loading/unloading modules are not permitted within SEE.

Note that the exact set of rules mentioned above may not suit all applications.

For instance, one may want to disallow all network accesses for an untrusted

application, but may be willing to allow some accesses (e.g, DNS and WWW)

for applications that are more trusted. To support such customization, we use

a high-level, expressive policy specification language called BMSL [58, 66] in

our implementation. This language enables convenient specification of policies

that can be based on system call names as well as arguments. The kinds of

policies that can be expressed include simple access control policies, as well

as policies that depend on history of past accesses and/or resource usage. In

addition, the language allows response actions to be launched when policies are

violated. For instance, it can be specified that if a process tries to open a file

f , then it should be redirected to open another file f ′. Efficient enforcement

36

engines are generated by a compiler from these policy specifications. More

details about this language and its compiler can be found in [66].

In our experience, we have been able to specify and enforce policies that

allow a range of applications to function without raising exceptions, and the

SEE experimentation chapter describes some of our experiences in this regard.

3.3.2 Support for Network Operations.

Support for network access can be provided while ensuring one-way isolation

semantics in the following cases:

• access to services that only provide query (and no update) functionality,

e.g., access to domain name service and informational web sites, can be

permitted by configuring the kernel enforcement engine so that it permits

access to certain network ports on certain hosts.

• communication with processes running within other SEEs can be sup-

ported by redirecting network accesses appropriately. This function is

also provided by the kernel enforcement engine.

• accesses to any service can be allowed, if the access is made through an

intelligent proxy that can provide isolation semantics.

Currently, our implementation supports the first two cases. Use of distributed

SEEs provides an easy way to permit isolated process to access any local

server — one can simply run the server in isolation, and redirect accesses by

the isolated process to this isolated server. However, for servers that operate in

a different administrative domain, or servers that in turn access several other

network functions, running the server in isolation may not always be possible.

In such cases, use of an intelligent proxy that partially emulates the server

function may be appropriate.

Intelligent proxies may function in two ways. First, they may utilize

service-specific knowledge in filtering requests to ensure that only “read” op-

erations are passed on to a server. Second, they may provide some level of

37

support for “write” operations, while containing the effects within themselves,

and propagating the results to the real server only at the point of commit. For

instance, an email proxy may be implemented which simply accepts email for

delivery, but does not actually deliver them until commit time. Naturally, such

an approach won’t work in the case when a response to an email is expected.

Another limitation of our current implementation is that it does not pro-

vide support for atomic commits across distributed SEEs.

3.3.3 User Interface.

In this section, we describe the support provided in our implementation for

users to make decisions regarding commits.

Typically, an SEE is created with an interactive shell running inside it.

This shell is used by the user to carry out the tasks that he/she wishes to do

inside the SEE. At this point, the user can use arbitrary helper applications

to analyze, compare, or check the validity of the results of these tasks. For

instance, if the application modifies just text files, utilities like diff can point

out the differences between the old and new versions. If documents, images,

video or audio files are modified, then corresponding document or multimedia

viewers may be used. More generally, users can employ the full range of file

and multimedia utilities or customized applications that they use everyday to

examine the results of SEE execution and decide whether to commit.

Before the user makes a final decision on committing, a compact summary

of files modified within the SEE is provided to the user. If the user does not

accept the changes, she can just roll them back at a click of button. If she

accepts the changes, then the commit criteria is checked. If it is satisfied, then

the commit operation proceeds as described earlier. If not, the user may still

decide to proceed to commit, but this is supported only in certain cases. For

instance, if the whole structure of the file system has been changed outside the

SEE during its operation, there won’t be a meaningful way to commit. For

this reason, overriding of commit criteria is permitted only when the conflict

involves a plain file.

38

Recall that SEEs may be used to run untrusted and/or malicious soft-

ware. In such cases, additional precautions need to be taken to ensure that

this software does not interfere with the helper applications, subverting them

into providing a view of system state that looks acceptable to the user. In par-

ticular, we need to ensure that untrusted processes cannot interfere with the

operation of helper application processes, or modify the executables, libraries

or configuration files used by them. To ensure this, helper applications can

be run outside of the SEE, but having a read-only access to the file system

view within the IFS using a special path name. This approach ensures that

the helper application gets its executable, libraries and config files from the

host file system. Another advantage of doing this is that any modifications to

the system state made by helper applications do not clutter the user interface

that reports file modifications that were carried out within the SEE. (While it

may seem that helper applications are unlikely to modify files, this is not true.

For instance, running the bash shell causes it to update the .bash history file;

running a browser updates its history and cache files; and so on.)

39

CHAPTER 4

Evaluation of SEE

In this chapter, we present an evaluation of the functionality and performance

of our SEE implementation.

4.1 Evaluation of Functionality

Untrusted applications. We describe two applications here: a file renam-

ing utility freeware called rta [65], which traverses a directory tree and renames

a large number of files based on rules specified on the command line, and a

photo album organizer freeware called picturepages [45]. These applications

ran successfully within our SEE. Our implementation includes a GUI that

summarizes files modified in the SEE so as to simplify user’s task of decid-

ing whether the changes made by the application are acceptable. Using this

GUI, we checked that the modifications made by these applications were as in-

tended: renaming of many files, and creation of several files and/or directories.

We were then able to commit the results successfully.

To simulate the possibility that these programs could be malicious, we

inserted an attack into picturepages that causes it to append a new public

key to the file .ssh/authorized keys. (This attack would enable the author of

the code to later log into the system on which picturepages was run.) Using

our GUI, it was easy to spot the change to this file. The run was aborted,

leaving the file system in its original state.

40

Malicious code. Email attachments and WWW links are a common source

of viruses and other malware. We used an SEE to protect systems from such

malware. Specifically, we modified the MIME type handler configuration file

used by Mozilla so that executables, as well as viewers launched to process

documents (e.g., ghostscript and xpdf) fetched over the Internet, were run

within SEE. We fetched sample malicious PostScript and Perl code over the

network using this approach. This code was executed inside the SEE. Using

our GUI, we were able to see that these programs were performing unexpected

actions, e.g., creating a huge file in the user’s home directory. These actions

were aborted. Also, at the time of implementing this approach, there were

several image flaw exploits (JPEG virus) that have captured the attention of

many researchers. Running such image viewers inside an SEE will help elim-

inate this potential danger, because any malicious activity from the exploits

will be isolated from affecting the main system.

Some kinds of malicious code are written to recognize typical sandbox

environments, and if so, not display their malicious behavior. This can cause

a user to develop trust in the code and then execute it outside of sandbox,

when the malcode will deliver its payload. With our approach, we point out

that running the code inside SEE does not incur significant inconvenience for

the user, thereby making it easy for the user to always use it. In this case, the

code will always display benign behavior.

Software installation. Another experiment performed a trial installation

of mozilla browser. During the installation, an incorrect directory name

/usr/bin was chosen as the location for installation, instead of the default di-

rectory /usr/local/mozilla. Under normal circumstances, this causes Mozilla

to copy a number of files into /usr/bin, thereby “polluting” the directory. Af-

ter running the program in an SEE, the user interface indicated that a large

number of files (some are non-executables) were added to /usr/bin, which was

not desirable. Aborting this installation, we ran the installation program a sec-

ond time, this time with /usr/local/mozilla as the location for installation.

At the end of installation, we restarted the browser, and visited several sites

41

ghostview tar postmark Am−utils

Pe
rc

en
ta

ge
 o

f O
ve

rh
ea

d
(%

)

Overhead for applications running in SEE

Commit
Isolation

 0

 5

 20

 15

 10

 0

 1

 2

 3

 4

 5

2−clients 16−clients 30−clients

Pe
rc

en
ta

ge
 o

f D
eg

ra
da

tio
n

(%
)

Degradation for httpd server running in SEE

Average Response Time
Connection Rate

(a) Utility applications (b) Apache httpd server

Figure 3: Performance Results for Program Execution in SEE

to make sure that the program worked as expected. (For this experiment,

the system call restriction layer was modified to allow all WWW accesses.)

Finally, we committed the installation, and from that point on, we were able

to use the new installation of the browser successfully, outside of SEE.

Upgrading and testing a server. Specifically, we wanted to upgrade our

web server so that it can support SSL. We started a command shell under SEE,

and used it to upgrade the apache software installation. We then ran the new

server. To enable it to run, we used static redirection for network operations,

so that a bind operation to port 80 was redirected to port 3080. We then ran

a browser that accessed this server by connecting to this port. We verified

that the new server worked correctly. Meanwhile, the original server was still

accessible to every one. Thus, SEE allowed the software upgrade to be tested

easily and conveniently, without having to shutdown the original server.

After verifying the operation of the new server, we attempted to commit

the results. Unfortunately, this produced conflicts on some files such as the

access and error log files used by the server. We chose to ignore updates to

such output files that were made within the SEE, and commit only the rest of

the files, which could be done successfully.

42

4.2 Evaluation of Performance

All performance results reported in this part were obtained from a laptop

running Red Hat Linux 7.3 with a 1.0GHz AMD Athlon4 processor, 512MB

memory and a 20GB, 4200rpm IDE hard disk. The primary metric was elapsed

time.

For performance evaluation, we considered the following classes of exam-

ples:

• Utility programs. In this category, we studied ghostview and tar util-

ities. Specifically, we performed ghostview on a 31M file, with no file

modification operations; and tar to generate a tarball from a 26M direc-

tory, and the only modification operations involved was the creation of

this archive. From Figure 3, we can see a 3-12% overhead incurred for

such applications during isolation phase, and a negligible commit time

overhead.

• Servers. We measured the performance overhead on the Apache web

server using WebStone [70], a standard web server benchmark. We used

version 2.5 of this benchmark, and ran it on a separate computer that is

connected to the server through a 100Mbps network. We ran the bench-

mark with two, sixteen and thirty clients. In the experiments, the clients

were simulated to access the web server concurrently. They randomly

fetch html files whose size is from 500 bytes to 5M. The benchmark was

run for a duration of 30 minutes, and the results were averaged across

ten such runs. The results are shown in Figure 3.

• File system benchmarks. We used Postmark [27] and Am-Utils [43] bench-

marks to get the benchmark data for IFS. Postmark is a file system

benchmark to measure the performance for file system used by Internet

applications, such as email. In this experiment, we configured Postmark

to create 500 files in a file pool, with file sizes ranging from 500 bytes to

500KB. A total of over 5000 file system operations were performed. In

total, 1515 files were created, 1010 files read, 990 file written, and 1515

43

Log-based Commit State-based Commit
Time Time Speedup

ghostview 0.03 0.03 1
tar 0.14 0.03 4.7

postmark 225 0.07 3214.3
Am-utils 16.9 0.35 48.3

Table 1: Comparison for Log-based Commit and State-based Commit. All
numbers are in seconds.

files deleted. The tests were repeated ten times. The results are as de-

picted in figure 3. Overall, a 18% performance degradation is observed,

and commit overhead is near zero. Am-Utils is a CPU-intensive bench-

mark result by building the Am-Utils package, which contains 7.6M lines

of C code and scripts. The building process creates 152 files and 19 di-

rectories, as well as 6 rename and 8 setattr operations. We ran this

experiment in both original file system and IFS. The results, shown in

Figure 3, indicate a low isolation overhead of under 2% and a negligible

commit overhead.

In addition, we also collected results in Table 1 to show the efficiency

of our state-based commit approach. An implementation that used log based

committing was compared with our state based committing implementation,

and the performance of both of the approaches were compared for applications

such as tar, postmark and Am-utils. The results project the advantage of

using a state based commit approach, particularly illustrating the advantage

of having accumulative effects for file objects. For instance, the large number

of temporary files created then deleted in Am-utils compilation and all the

files created then deleted in Postmark execution, are not considered in the

committing stage as candidates, while log-based commit still needs to perform

the whole set of operations (e.g. write) to all these files, so there is a significant

difference between the two approaches in terms of commit time.

44

CHAPTER 5

Related Work of SEE

Sandboxing. Sandboxing based approaches [20, 15, 4, 47, 56, 48] involve

observing a program’s behavior and blocking actions that may compromise

the system’s security. Janus [20] incorporates a proc file system based system

call interposition technique for the Solaris operating system. A more recent

version has been implemented on Linux, and uses a kernel module for inter-

position. Chakravyuha [15] uses a kernel interception mechanism. MAPbox

[4] is a sandboxing mechanism where the goal is to make the sandbox more

configurable and usable by providing a template for sandbox policies based

on a classification of application behaviors. [47] creates the policy sandbox

for programs (such as web browser) by first tracking the file requests made

by the programs. This approach, however, requires a training phase, in which

users need to run the programs using “normal” inputs, so that the policy sand-

box can capture a complete set of files accessed by the programs. But in the

case of untrusted code, the choice of such inputs may not be clear. Safe Vir-

tual Execution (SVE) [56] uses Software Dynamic Translation, a technique for

modifying binaries as they execute, to implement sandboxing. Systrace [48] is

a sandboxing system that notifies the user about all system calls that an ap-

plication tries to execute and then uses the response from the user to generate

a policy for the application.

The main drawback of sandboxing based approaches is the difficulty of

policy selection, i.e., determining what actions are permissible for a given piece

45

of software. Note that malicious behavior may not only involve accessing

unauthorized resources, but also accessing authorized resources in unautho-

rized ways. For instance, a program that creates a compressed version of a file

may instead create a file that contains no useful data, which is equivalent to

deleting the original file. It is unlikely that a practical system can be devel-

oped that can allow users to conveniently state policies that allow write access

to the file while ensuring that the file is replaced with its compressed version.

In contrast, an SEE permits manual inspection, aided by helper applications,

to be used to determine if a program behaved as expected. This approach is

much more flexible. Indeed, it is hard to imagine that tasks such as verifying

whether a software package has been installed properly can even be formally

specified using any sandbox-type policy.

[57, 77] extend sandboxing by allowing operations to be disallowed silently,

i.e., by returning a success code to the program. The goal of the approaches is

deception, i.e., making a malicious program believe that it is succeeding in its

actions so as to observe its behavior. In our terminology, these approaches use

restriction rather than redirection. As we observed earlier, use of restriction

is likely to break many benign applications, as well as alert malicious appli-

cations very quickly to the effect that their actions are not succeeding. For

instance, if a write operation is silently suppressed, the application can easily

detect this by reading back the contents.

Isolation approaches. Two-way isolation between a host and guest oper-

ating system forms the basis of security in virtual machine based approaches

for realizing SEEs. The “playground” approaches developed for Java programs

in [36, 12] also belong to this general category — untrusted programs are run

on a physically isolated system, while their display is redirected to the user’s

desktop. Note that the file system on the user’s computer cannot directly

be accessed on the playground system, which means that there is two way

isolation being employed in this case. Covirt [11] proposes that most of appli-

cations be run inside virtual machine instead of host machines. Denali [71] is

another virtual machine based approach that runs untrusted distributed server

46

applications. As outlined in the introduction, all the above approaches suffer

from the difficulty of environment reproduction, and also in committing the

changes back to the original system.

[33] was the first approach to present a systematic development of the

concept of one-way isolation as an effective means to isolate the effects of

running processes from the point they are compromised. They developed

protocols for realizing one-way isolation in the context of databases and file

systems. However, they do not present an implementation of their approach.

As a result, they do not consider the research challenges that arise due to the

nature of COTS applications and commodity OSes. Moreover, they do not

provide a systematic treatment of issues related to consistency of committed

results.

[32] developed a practical approach for secure execution of untrusted soft-

ware based on isolation. The focus of this effort was on developing a tool that

can be easily installed and used by ordinary users that may not have admin-

istrative access to a computer. It is implemented entirely at the user level,

and does not require any changes to the OS kernel. In order to achieve this

objective, [32] compromises on performance as well as generality. In particu-

lar, the approach suffers from high overheads that can be over 100% in some

instances. Moreover, isolation semantics cannot be faithfully reproduced for

certain operations that involve meta-data such as permissions and ownership.

For directories, isolation is achieved using an ad-hoc approach that is hard to

implement and its semantics is inconsistent with that of file updates. Finally,

no systematic solution to the commit problem is provided. The approach de-

veloped in this part addresses all these drawbacks by implementing isolation

within the kernel at the VFS layer. Moreover, it shows how the approach can

be generalized so that isolation can be provided for non-file operations, e.g.,

certain classes of network accesses.

On the other hand, Nooks [63] focuses on improving OS reliability by

isolating OS from buggy device drivers. This can be deemed complementary

to our work, as it targets kernel land untrusted drivers, while our approach

targets at isolating user land untrusted programs.

47

Recovery-oriented systems. The Recovery-Oriented Computing (ROC)

project [51] develop techniques for fast recovery from failures, focusing on fail-

ures due to operator errors. [10] presents an approach that assists recovery

from operator errors in administering a network server, with the specific ex-

ample of an email server. The recovery capabilities provided by their approach

are more general than those provided by ours. The price to be paid for achiev-

ing more general recovery capabilities is that their implementation needs to

be application specific, and hence will have to be tailored for each specific

application/service. In contrast, we provide an application-independent ap-

proach. Another important distinction is that with our approach, consistency

of system state can be assured whenever the commit proceeds successfully.

With the ROC approach, which does not restrict network operations, there is

no way to prevent the effects of network operations from becoming so widely

distributed in the network they cannot be fully reversed. In the case of email

service, they allow a certain level of inconsistency, e.g., redelivering an email

that was previously read and deleted by a client, and expect the user to man-

ually resolve this inconsistency. This potential for inconsistency is traded in

favor of eliminating the risk of commit failures.

File system approaches. Elephant file system [54] is equipped with file

object versioning support, and supports flexible versioning policies. [13, 50,

52, 62, 44] use check pointing technique to provide data versioning. [39] im-

plements VersionFS, a versatile versioning file system. They use a stackable

template file system as ours, and use a sparse file technique to reduce storage

requirements for storing versions of large files. While all of these approaches

provide the basic capability to rollback system state to a previous time, such

a rollback will discard all changes made since that time, regardless of whether

they were done by a malicious or benign process. In contrast, the one-way

isolation approach implemented in this part guarantees selective rollback of

the actions of processes run within the SEE without losing the changes made

by benign processes executing outside of the SEE.

Repairable File System [80, 79] makes use of versioning file system to

48

bring repair facility to a compromised file server. Fastrek [46] applies the

similar approach to protect databases. These approaches can attribute changes

to malicious or benign process executions, and allow a user to rollback changes

selectively. However, since the changes made by (potentially) compromised

processes are not contained within any environment, “cascading aborts” can

become a problem. Specifically, a benign process may access the data produced

by a compromised process, in which case the actions of the benign process may

have to be rolled back, as well as the actions of processes that used the results

of such a benign process and so on. The risk of such cascaded aborts should

be weighed against the risk of not being able to commit in our approach.

Thus, this approach as well as the ROC approach mentioned above are more

suitable when the likelihood of rollbacks is low, and commit failures cannot be

tolerated.

Loopback file system [34] can create a virtual file system from existing

file system and allow access to existing files using alternative path name. But

this approach provides no support for versioning or isolation.

3D file system [28] provides a convenient way for software developers to

work with different versions of a software package. In this sense, it is like

a versioning file system. It also introduces a technique called transparent

viewpathing which is based on translating file names used by a process. It

gives a union view of several directory structures thus allowing an application

to transparently access one directory through another’s path. As it is not

designed to deal with untrusted applications, it needs the cooperation from

the application for this mechanism to work. TFS [64] is a file system in earlier

distributions of Sun’s operating system (SunOS), which allowed mounting of

a writable file system on top of a read-only file system. TFS also has a view

similar to 3DFS, where the modifiable layer sits on top of the read only layers.

[42] describes a union file system for BSD, that allows “merging” of several

directories into one, with the mounted file system hiding the contents of the

original directories. The union mount will show the merger of the directories

and only the upper layer can be modified. All these file systems are intended

for software development, with the UnionFS providing additional facilities for

49

patching read only systems. However, they do not address the problem of

securing the original file system from untrusted/faulty programs; nor do they

consider problems such as data consistency and commit criteria.

50

Part II

Practical Proactive Integrity

Preservation

51

CHAPTER 6

Overview of PPI Approach

Today’s malware defenses rely mainly on reactive approaches such as signature-

based scanning, behavior monitoring, and file integrity monitoring. Unfortu-

nately, attackers can easily modify the structure and behavior of their malware

to evade detection by signature-based or behavior-based techniques. They may

also subvert system integrity monitoring tools using rootkit-like techniques. It

is therefore necessary to develop proactive techniques that can stop malware

before it damages system integrity.

Sandboxing is a commonly deployed proactive defense against untrusted

(and hence potentially malicious) software. It restricts the set of resources

(such as files) that can be written by an untrusted process, and also limits

its communication with other processes on the system. However, techniques

that regulate write-access without restricting read-access aren’t sufficient to

address adaptive malware threats. Specifically, they do not satisfactorily ad-

dress indirect attacks, where a benign application ends up consuming malware

outputs stored in persistent storage (e.g., files). For instance, malware may

modify the following types of files used by a benign application:

• System libraries, configuration files or scripts. One may attempt to elim-

inate this possibility by preventing untrusted software from storing any

files in system directories, but this will preclude the use of many legiti-

mate (untrusted) applications that expect to find their binaries, libraries

52

and configuration files in system directories. Alternatively, one can ex-

plicitly enumerate all the files in system directories that are used by be-

nign applications, but this becomes a challenging task when we consider

the number of such files — for instance, a typical desktop Linux distri-

bution contains over 100K files in system directories. Errors may creep

into such enumerations, e.g., one may leave out optional libraries (e.g.,

application extensions such as Apache modules, media codecs, etc.) or

configuration/customization files, thereby introducing opportunities for

indirect attacks.

• User-specific customization files and scripts. Identifying all user-specific

scripts and customization files is even harder: different applications use

different conventions regarding the location of user-specific customization

files. Moreover, some of these files may in turn load other user files, or

run scripts within user directories. Static identification of all the files

used by a benign application may be very hard.

We observe that significant harm can result from unauthorized modi-

fications to user files. For instance, by altering ssh keys file, malware

may enable its author to log into the system on which it is installed. By

modifying a file such as .bashrc, e.g., by creating an alias for a command

such as sudo, malware can cause a Trojan program to be run each time

sudo is used. Worse, malware can first modify a configuration file used

by a less conspicuous benign application, such as a word-processor. For

instance, it may replace the name of a word-processor plug-in with a

Trojan program that in turn modifies .bashrc.

• Data files. Malware may create data files with malicious content that can

exploit vulnerabilities in benign software. The recent spate of vulnerabil-

ities in image and document viewers, web browsers, and word-processors

shows that this is indeed a viable approach. Malware may save these

files where they are conspicuous (e.g., on the desktop), using names that

are likely to grab user attention. When the user invokes a benign viewer

on the file, it will be compromised. At this point, malware can achieve

53

its objectives using the privileges available to the viewer.

In contrast, we develop an approach in this part that aims to provide positive

assurance about overall system integrity. Our method, called PPI (Practical

Proactive Integrity protection), identifies a subset of objects (which are typi-

cally files) as integrity-critical and a set of untrusted objects. We assume that

system integrity is preserved as long as untrusted objects are prevented from

influencing the contents of integrity-critical objects either directly (e.g., by

copying of an untrusted object over an integrity-critical object) or indirectly

through intermediate files. In other words, there should be no information

flow from untrusted objects to integrity-critical objects.

Although information-flow based integrity preservation techniques date

as far back as the Biba integrity model [7], these techniques have not had much

success in practice due to two main reasons. First, these techniques require

every object in the system to be labeled as high-integrity or low-integrity —

a cumbersome task, considering the number of files involved (more than 100K

on typical Linux systems). Manual labeling is prone to errors that can either

damage system integrity (by allowing an integrity-critical file to be influenced

by a low-integrity application) or usability (by denying a legitimate operation

as a result of security violation). Secondly, the approach is not very flexible,

and hence breaks many applications. To overcome this problem, many ap-

plications may need to be designated as “trusted,” which basically exempts

them from the information flow policy. Obviously, an increase in the number of

trusted applications translates to a corresponding decrease in assurance about

overall integrity.

As a result of the factors mentioned above, information-flow based tech-

niques have not become practical in the context of contemporary operating

systems such as Windows and Linux. In contrast, we have been able to de-

velop a practical information-flow based integrity protection for desktop Linux

systems by focusing on (a) automating the development of integrity labels and

policies, (b) providing a degree of assurance that these labels and policies ac-

tually protect system integrity, and (c) developing a flexible framework that

can support contemporary applications while minimizing usability problems

54

as well as the need to designate applications as “trusted.” Our experiments

considered a modern Linux Workstation OS together with numerous benign

and untrusted applications, and showed that system usability is preserved by

our technique, while thwarting sophisticated malware.

6.1 Goals of Approach

The objectives of our approach include the following:

• Provide positive assurances about system integrity on a contemporary

Workstation, e.g., a Linux CentOS/Ubuntu desktop consisting of hun-

dreds of benign applications and tens of untrusted applications. Integrity

should be preserved even if untrusted programs run with root privileges.

• Effectively block rootkits and most other malware. Most malware, in-

cluding rootkits and spyware, should be detected when they attempt to

install themselves, and removed automatically and cleanly. Stealthier

malware should be detected when they attempt to damage system in-

tegrity, and can be removed at that point. We do not address malware

that can operate without impacting system integrity, e.g., a P2P appli-

cation that transmits user data to a remote site when it is explicitly

invoked by a user.

• Be easy to use, for end-users as well as system administrators. Usability

encompasses the following:

– Preserve availability of benign applications, specifically, provide a

certain level of confidence that benign applications would not fail

due to security violations during their normal use.

– Minimize administrator effort by automating the development of

file labels and integrity policies.

– Eliminate user prompts. Security mechanisms that require frequent

security decisions from users don’t work well in practice for two

55

reasons. First, users get tired and don’t cooperate. Second, these

user interactions become the basis for social engineering attacks by

malware writers.

• Reduce reliance on trusted applications so as to provide better overall

assurance.

6.2 Salient Features

The principal elements of our approach that enables us to achieve the above

goals are summarized below:

• Flexible decomposition of high-level policies into low-level policies. Tradi-

tional approaches for information-flow based integrity, such as the Biba

integrity model [7], associate a label with an object (or subject) at the

time of their creation, and this label does not change during the lifetime

of the object or subject. In other words, these labels effectively define

the access policies: a subject is permitted to read (write) an object only

if the subject’s integrity is equal to or lower (equal to or higher) than

that of the object. In contrast, we distinguish between labels, which are

a judgment of the trustworthiness of an object (or subject), from policies

that state whether a certain read or write access should be permitted.

Based on this separation, our approach (described in Section 7.1) al-

lows integrity levels of objects or subjects to change over their lifetime.

Moreover, “read-down” and “write-up” conflicts are resolved differently

for different objects and subjects. These factors provide flexibility in de-

veloping low-level policies that preserve system integrity without unduly

impacting usability.

• Automated analysis for generating enforceable policies. Given the large

number of objects (hundreds of thousands) and subjects (thousands),

manual setting of policies for every object/subject pair is impractical.

In Section 7.2, we therefore develop techniques that utilize an analysis

56

of access patterns observed on an unprotected system to automatically

derive policies. This analysis can also be used to automatically com-

plete the set of integrity-critical applications, starting from a partial list

provided by a policy developer.

As we show in Section 7.2.3, our technique is sound, i.e., it will gener-

ate policies that preserve system integrity, even if the access logs used

in analysis are compromised by malicious applications running on the

unprotected system. However, corrupted logs can compromise system

availability.

• A flexible enforcement framework. Our enforcement framework, de-

scribed in Section 7.4, consists of a small, security-critical enforcement

component that resides in the OS kernel, and a user-level component that

incorporates more complex features that enhance functionality without

impacting security. This framework also incorporates features needed

for learning and synthesizing policies for new applications.

• Mechanisms for limiting trust. There are some instances when high-

integrity applications should be allowed to access low-integrity files. In

Section 7.3, We develop techniques that enable such exceptions to be

restricted. Our techniques typically have the effect of distinguishing

between code/configuration inputs from data inputs, and ensuring that

exceptions are made only for data inputs. Using these mechanisms,

we describe how we can limit the amount of trust placed on important

applications such as software installers, web browsers and email handlers,

and file utilities.

We have implemented our technique on desktop systems running RedHat/Ubuntu

Linux, consisting of several hundred benign software packages and a few tens

untrusted packages, the evaluation shows that the approach is practical, and

does not impose significant usability problems. It is also effective in prevent-

ing installation of most malware packages and detection (and blocking) of

malicious actions performed by stealthy malware.

57

CHAPTER 7

Design and Implementation of

PPI

In this Chapter, we present how we design and implement different components

of PPI as outlined in Chapter 6.

7.1 Policy Framework

7.1.1 Trust and Integrity Levels

Figure 4 illustrates the integrity and trust levels used in our framework. To

simplify the presentation, we use just two integrity levels: high and low. In-

tegrity labels are associated with all objects in the system, including files,

devices, communication channels, etc. A subset of high-integrity objects need

to be identified as integrity-critical, which provide the basis for defining system

integrity:

Definition 1 (System Integrity) We say that system integrity is preserved

as long as all integrity-critical objects have high integrity labels.

The set of initial integrity-critical objects is externally specified by a system

administrator, or better, by an OS distribution developer. It is important to

point out that the integrity-critical list need not be comprehensive: if objects

58

(Low Integrity)
Untrusted

Benign
(High Integrity)

Malicious
Integrity−critical

Trusted

Figure 4: Classification of Applications in PPI Policy Framework

are left out of this list, our technique will automatically detect them using the

analysis described in Section 7.2, as long as these objects are accessed after

the kernel module enforcing PPI policies has begun execution. In particular,

objects that are accessed during early phases of the boot process, as well those

objects that are accessed by PPI, must be explicitly included in the integrity-

critical set. On Linux, this (minimal) set of integrity-critical objects includes

all the files within /boot, the binaries used by init and the files used by PPI,

as well as devices such as the hard disk.

When referring to applications, we use the term “trust level” instead of

“integrity level.” Benign applications are those that are known to be benign,

and may include applications that are obtained from a trusted source such

as an OS vendor. Hence the files that constitute benign applications will

have high integrity. Moreover, benign applications will remain trustworthy

(i.e., produce high-integrity outputs) as long as they are never exposed to

low-integrity (and hence potentially malicious) inputs. A subset of benign

applications may be designated as trusted. These applications are deemed to

sufficiently validate their inputs that they can produce high-integrity outputs

even when some of their inputs have low-integrity. Untrusted applications

are those that are obtained from untrusted sources, e.g., downloaded from an

unknown website or those arriving via email from unauthenticated sources.

An unspecified subset of these applications may be malicious.

Since trusted applications are being exempted from information flow poli-

cies, it is important that only a small number of well-tested applications are

59

designated this way. In addition, the scope and purpose of this trust should

be minimized as much as possible. We defer these issues until Section 7.3.

7.1.2 Integrity Labels Versus Policies

Given our goal of preserving system integrity, the Biba model is an obvious

starting point [7]. However, a traditional interpretation of multi-level security

(MLS) can lead to a rigid system that is difficult to use. To address this

problem, we distinguish between integrity labels and policies. In our view, an

integrity label on a file simply indicates whether its content is trustworthy, but

does not dictate whether trustworthiness must be preserved, say, by preventing

low-integrity subjects from writing to that file. A policy, on the other hand,

indicates whether a certain read or write access should be permitted. This

separation yields flexibility in developing policies that preserve system integrity

without unduly impacting usability. For instance, we have the following choices

for policies when a high-integrity subject (process) attempts to read a low-

integrity object:

• deny: deny the access

• downgrade: downgrade the process to low-integrity

• trust: allow the access without downgrading the process, trusting the

process to protect itself

The following examples illustrate the need for this flexibility. Consider a util-

ity such as cp that accesses high-integrity objects in some runs (e.g., copy

/etc/passwd), and accesses low-integrity objects in other runs (e.g., copy user

files). Downgrading (the second alternative above), which corresponds to the

low-water mark (LOMAC) policy [7, 8, 19], permits such dual use. How-

ever, this choice of downgrading is inappropriate in some cases, and leads to

the well-known self-revocation problem: consider a process that has opened

a high-integrity file H for writing, and subsequently attempts to read a low-

integrity file L. If the process is downgraded at this point, we need to revoke

its permissions to H. Applications typically assume that access permissions

60

cannot be revoked, and hence may not handle the resulting access errors grace-

fully. On the other hand, if we deny the read access to L, it is likely to be

better handled by the application.

To justify the third choice, consider an SSH server that reads low-integrity

data from remote clients. The server code anticipates that clients may be ma-

licious, and can reasonably be expected to protect itself adequately, thereby

ensuring that the low-integrity input will not corrupt any high-integrity out-

puts. In contrast, the other two choices (deny or downgrade) will prevent the

server from carrying out its function.

Analogous to the choices above, the following options are available when

a low-integrity process attempts to write a high-integrity file (i.e., a file con-

taining trustworthy data).

• deny: deny the access

• downgrade: downgrade the object to low-integrity, and allow the write

operation

• redirect: redirect the access to a file f so that it accesses another file

fu instead. All subsequent accesses by an untrusted application to f

will be redirected to fu, while accesses by a benign application won’t be

redirected.

To justify the second choice, consider a file that is created by copying a high-

integrity file. By default, the copy would have a high-integrity label, but if the

copy is subsequently used only in low-integrity applications, downgrading it is

the best option, as it would permit this use. As a second example, consider

a commonly executed shell command such as cat x > y. Here, the shell will

first create the output file y before cat is launched. If the shell has high

integrity, then y would be created with high integrity, but subsequently, if x

turns out to have low integrity, the best option is to downgrade y rather than

to deny access to x. On the other hand, if a file is known to be used by high-

integrity applications, it should not be downgraded, and the write access must

be denied.

61

To justify the third choice, consider a benign application that is some-

times used with untrusted objects, e.g., a word-processor that is used on a file

from the Internet. During its run, this application may need to modify its

preferences file, which would have a high-integrity label, since the application

itself is benign. Denying this write operation can cause the word-processor to

fail. Permitting the access would lower the integrity of the preferences file,

leading to all future runs of the word-processor to have low integrity. How-

ever, by redirecting accesses to a low-integrity copy of the preferences file, both

problems can be avoided.

In summary, there are several ways to resolve potential integrity violations

(conflicts), and different resolutions are appropriate for different combinations

of objects, subjects, and operations. Our (low-level) policy specifies, for each

combination of object O and subject S, which of the six different choices

mentioned above should be applied. The sheer number of objects and subjects

on modern operating systems (e.g., >100K files in system directories on typical

Linux distributions) makes manual policy development a daunting task. We

have therefore developed techniques to automate this task in the next section.

Although we discussed only file read/write operations above, the same

concepts are applicable to other operations, e.g., file renames, directory oper-

ations, device accesses, and inter-process communication. We omit the details

here, covering them briefly in the implementation section.

7.2 Automating Policy Development

The large number of objects and subjects in a modern OS distribution moti-

vates automated policy development. We envision policy development to be

undertaken by a security expert — for instance, a member of a Linux distri-

bution development team. The goal of our analysis is to minimize the effort

needed on the part of this expert. The input to the policy generation algorithm

consists of:

• software package information, including package contents and dependen-

cies,

62

• a list of untrusted packages and/or files,

• the list of integrity-critical objects,

• a log file that records resource accesses observed during normal operation

on an unprotected system.

We use these to compute dependencies between objects and subjects in the

system, based on which trust labels and policies are generated. Ideally, all

accesses observed in the log would be permitted by these policies without gener-

ating user prompts or application failures, but in practice, some failures may

be unavoidable. Naturally, it is more important to minimize failures of benign

applications as opposed to untrusted ones. Given this goal of policy analysis,

it becomes important to ensure coverage of all typical uses of most applications

in the log, with particular emphasis on benign applications. Since usage is a

function of users and their environments, better coverage can be obtained by

analyzing multiple logs generated on different systems.

7.2.1 Computing Dependencies, Contexts and Labels

Critical to the success of our approach was the observation that software pack-

age information, such as those contained in RPM or Debian packages, can be

leveraged for extracting subject/object dependencies. The package informa-

tion indicates the contents (i.e., files) in each package, and the dependencies

between different packages.

Since some of the dependences, such as those on configuration or data

files, may not be present in the package database, we analyze the access log to

extract additional dependency information. The dependencies can vary for the

same application depending on the context in which it is used. For instance,

when used by system processes (such as a boot-time script), bash typically

needs to be able to write high-integrity files, and hence must itself operate at a

high-level of integrity. However, when used by normal users, it can downgrade

itself when necessary to operate on untrusted files. In the former context,

bash reads and writes only high-integrity files, whereas in the latter context,

63

it may read or write a mixture of high and low integrity files. To identify such

differences, we treat each program P as if it were several distinct programs,

one corresponding to each of the following execution contexts: Ps that is used

by system processes, Pa that is used by processes run by an administrator,

and Pui
for processes run by a normal user ui. (The distinction between Ps

and Pa is that in the second case, the program is run by a descendant of an

administrator’s login shell.) For simplicity, we will assume that there is only

one normal user u.

Once the logs are generated, it is straight-forward to compute the set of

files read, written, or executed by a program in each of the above contexts. In

addition, for each program and file read (written or executed) by that program,

we compute the fraction of runs of that program in each context during which

the file was read (written, or executed).

Deriving Initial Object Labels. Initial object labels are derived using the

following steps. The assumption behind this algorithm is that all packages and

files on the system are benign unless specified otherwise:

• Mark all packages that depend on untrusted packages as untrusted.

• Label all objects that belong to untrusted packages (or are explicitly

identified as untrusted) with low integrity.

• Label any object that was written by an untrusted subject (i.e., a process

whose executable or one of its libraries are from low-integrity files) with

low integrity.

• Label all other objects as having high integrity.

We reiterate that object labels do not dictate policy: an object may have a

high label initially, but the policy synthesized using the algorithm below may

permit it to be written by an untrusted subject, which would cause its integrity

label to become low.

64

7.2.2 Policy Generation

The policy generation algorithm consists of four phases as described below.

The first phase identifies the set of “preserve-high” objects, i.e., objects whose

integrity needs to be preserved. In the second phase, we generate the low-

level policies for each (subject, object, access) combination, reflecting one of

the policy choices described in Section 7.1.2. Phase III refines the policies by

simulating the accesses contained in the log. Phase IV consists of ongoing

policy refinement, as new applications are installed.

Phase I: Identification of objects whose integrity needs to be pre-

served.

1. Initialize:

• Mark the initially specified integrity-critical objects as preserve-

high.

• For every program P that is ever executed in the system context,

mark P as preserve-high.

2. Propagate between package and object:

• For every object that is labeled as integrity-critical, the package

that owns the object is marked as integrity-critical.

• For every package P such that an integrity-critical package depends

on it, add P to the set of integrity-critical packages.

• For every object that belongs to an integrity-critical package (or

object that is explicitly labeled as integrity-critical), mark it as

“preserve-high.”

3. Propagate from object to subject. If a program P writes an object Q that

is marked preserve-high, then mark P as preserve-high.

4. Propagate from subject to object. If a program P reads or executes an

object Q then mark Q as preserve-high if any of the following hold:

65

(a) Ps (i.e., P operating in system context) reads/executes Q.

(b) Pa reads or executes object Q in non-negligible fraction of runs, say,

over 10% of the runs.

(c) P is marked preserve-high and Pu almost always reads or executes

Q, say, in over 95% of the runs.

Every program that is run in system context is expected to be run in

high-integrity mode, and hence the first rule. Most activities performed

in administrator context have the potential to impact system integrity,

and hence most of these activities should be performed in high integrity

mode, and hence the second rule. For the third rule, if a benign program

P almost always reads or executes a specific file Q, then, if Q has low

integrity, it will prevent any use of P in high integrity mode. It is unlikely

that a benign program would be installed on a system in such a way that

it is only executed at low-integrity level, and hence the third rule.

5. Repeat the previous three steps until a fixpoint is reached.

If any low-integrity file gets marked as preserve-high, there is a conflict and the

policy generation cannot proceed until it is manually resolved. Such a conflict

is indicative of an error in the input to the policy generation algorithm, e.g.,

a software package commonly used in system administration has been labeled

as untrusted.

Phase II: Resolution of conflicting accesses. This phase identifies which

of the policy choices discussed in Section 7.1.2 should be applied to each con-

flicting access involving (subject, object, access).

• Deny policy: For every object labeled preserve-high, the default pol-

icy is to permit reads by any subject but deny writes by low-integrity

subjects. Similarly, for every object labeled with low-integrity, the de-

fault policy is to permit reads by low-integrity subjects but deny reads

66

by high-integrity subjects. Exceptions to these defaults are made as de-

scribed below, depending upon the program executed by a subject, and

its trust level.

• Downgrade subject policy: A high-integrity subject P running in

context c will be permitted to downgrade itself to low-integrity if there

are runs in the log file where Pc read a low integrity file, and did not

write any high integrity objects subsequently. Such runs show that Pc

can run successfully, without experiencing security violations. If there

are no such runs, then the downgrade policy is not used for Pc.

Note that at runtime, a subject running Pc may still be denied read access

if it has already opened an object O such that the policy associated with

O prevents its label from being downgraded.

Finally, note that the use of context makes the downgrade policy more

flexible. For instance, we may permit bash to downgrade itself when

running in user mode, but not when it is run in system mode.

• Trust policy: Each subject P that reads a low-integrity object and

writes to an object marked preserve-high is a candidate for the “trust”

policy. Such candidates are listed, and the policy developer needs to

accept this choice. If this choice is not accepted, the log analyzer lists

those operations from the log that would be disallowed as a result of this

decision.

• Downgrade object policy: Any object that is not marked as preserve-

high can be downgraded when it is overwritten by a low-integrity subject.

• Redirect policy: A redirect policy is applied to the (P, O, write) com-

bination if (a) O is marked preserve-high, (b) P reads O in almost every

run, and (c) P writes O in a non-negligible fraction of runs1.

1These three conditions characterize the access by most applications to their preference
files — the context in which the redirect policy was motivated.

67

Phase III: Log simulation and policy refinement. The algorithm de-

scribed above did not take into account that file labels will change as the

operations contained in the log file are performed. (If we did not make the

simplifying assumption that the labels are static, then the analysis would be-

come too complex due to mutual dependencies between policy choices and file

labels.) To rectify this problem, we “simulate” the accesses found in the log.

We track the integrity levels of objects and subjects during this simulation,

and report all accesses that cause a violation of the policy generated in the

previous step. The violation reports are aggregated based on the subject (or

object), and are sorted in decreasing order of the number of occurrences, i.e.,

the report lists the subject (or object) with the highest number violations first.

Subjects with high conflict counts are suggestive of programs that may need

to be trusted, or untrusted programs that cannot be used.

Based on the conflict report, the policy developer may refine the set of

trusted, benign, or untrusted programs. If so, the analysis is redone. In

general, more than one iteration of refinement may be needed, although in our

experience, one iteration has proven to be sufficient.

Phase IV: Policy generation for new applications. New files get cre-

ated in the system. In addition, new applications may become available over

time. In both cases, we cannot rely on any “logs” to generate policies for them.

Our approach is as follows.

For objects that are created after policy deployment, their labels will be

set to be the same as that of the subject that created them. The default policy

for such newly created objects is that their labels can be downgraded when

they are written by lower integrity subjects. In addition, accesses to these

objects are logged. The resulting log is analyzed periodically using the same

criteria described above to refine the initial policy. For instance, if the object

is used repeatedly by high-integrity subjects, the policy would be set so that

writes by lower-integrity subjects are denied.

If a new software package is installed, labels for the objects in the package

are computed from the trust level of the package, which must be specified at

68

the time of installation. The policies for these files are then refined over time,

as the package is used by the user.

7.2.3 Soundness of Policies

Recall that the policies derived above are based on accesses observed on an

unprotected system. Being unprotected, it is possible for the log to have been

compromised due to malicious untrusted code. Thus, an important question

is whether the soundness of the derived policies is compromised due to the use

of such logs. An important feature of our policy generation technique is that

this does not happen. Thus, if the generated policies are enforced on a newly

installed system, these policies will preserve its integrity.

Observation 2 As long as the programs identified as trusted are indeed trust-

worthy, the policies generated above will preserve system integrity even if the

access logs were compromised due to attacks.

Proof sketch: Recall that preserving system integrity means that integrity-

critical objects should never be written by low-integrity subjects. Observe that

all integrity-critical objects are initialized to preserve-high in the first phase of

the policy generation algorithm. The propagation steps in this phase can add

to the set of objects marked preserve-high, but not remove any objects. In

the next phase, note that “downgrade object” policy is applied only to those

objects that aren’t marked preserve-high. All other policy choices ensure that

object labels will not be downgraded. Thus, the generated policy will ensure

that the labels of integrity-critical objects remain high.

Observe that if the logs were compromised, far too many conflicts may

be reported during policy generation. Worse, because the compromised logs

may not reflect the behavior of programs on an uncompromised system, the

generated policies may cause many accesses (not recorded in the log) to be

denied, which can make the system unusable. Both these symptoms are sug-

gestive of a compromised log file. The policy developer needs to obtain a new,

69

uncompromised log and rerun the policy generation algorithm2.

The above observation indicates that the primary weakness of PPI arises

due to trusted programs. If they are incorrectly identified, or if they contain

exploitable vulnerabilities, they can compromise end-user security objectives.

This factor motivates features and techniques in the next section that limit

and reduce the scope of trust.

7.3 Limiting Trust

Unlimited and unrestricted trust is often the weakest link in security, so we

have incorporated features in PPI to reduce the scope and nature of trust

placed on different programs. We describe these features below, followed by

a discussion of how these features are used to address important applications

such as software installers, browsers and email handlers, window systems, and

so on.

Invulnerable and Flow-Aware Applications. All outputs of an Invul-

nerable applications continue to have high integrity even after reading low-

integrity inputs. An example would be an ssh server that can be trusted to

protect itself from potentially malicious network inputs, and maintain its high

integrity.

Flow-aware applications can simultaneously handle inputs with different

integrity levels. They keep track of which inputs affect which outputs, and

label the outputs appropriately. (Our enforcement framework provides the

primitives for flow-aware applications to control the labels on their outputs.)

Flow-awareness is natural for some applications such as web-browsers that al-

ready keep track of the associations between their input actions and output

2Recall that end-users are not expected to generate policies, so they won’t experience
the security failures that result due to compromised logs; and hence we don’t expect this
possibility to negatively impact end-user experience.

70

actions. (Web browsers use this type of information to enforce the “same ori-

gin policy [22].”) Alternatively, automated techniques such as runtime taint-

tracking [41, 75, 49] may be used to achieve flow-awareness.

A generic technique to mitigate the risk due to excessive trust is to de-

ploy defenses against the most common ways of exploiting applications using

malicious inputs, e.g., address-space randomization [6, 74] or taint-tracking3

[41, 75, 49]. This technique can be combined with a more specific risk mitiga-

tion mechanism described below that limits trust to certain contexts.

Context-aware Trust. A key observation is that programs are rarely de-

signed to accept untrusted inputs on every input channel. For instance, while

an ssh server may be robust against malicious data received over the network,

it cannot protect itself from malicious configuration files, shared libraries or

executables. Our approach, therefore, is to limit trust to the specific input

contexts in which an application is believed to be capable of protecting it-

self. For an ssh server, this may be captured by explicitly stating that it is

Invulnerable to inputs received on port 22.

With respect to files, one approach for limiting trust is to enumerate all

the files read by an application in advance, and identify those that can have low

integrity. This is far too cumbersome (or may not even be feasible) since the

number of files read by an application may be very large (or unbounded). An

alternative approach is to categorize a file as “data input” or “control input”

(configuration or a library), and to permit a trusted application to read low-

integrity data inputs but not control inputs. But manual identification of

data and control inputs would be cumbersome. Instead, we rely on some of

the properties of our policy synthesis techniques to achieve roughly the same

effect. Specifically, note that configuration and library inputs will be read

during practically every run of an application. As such, these files will be

marked “preserve-high” in phase I of the policy generation algorithm, and

hence the application will not be exposed to low-integrity configuration or

3Taint-tracking is preferable due to the weaknesses of ASR against local attacks.

71

library files4.

7.3.1 Limiting Trust on Key Applications

Software Installers pose a particular challenge in the context of integrity

protection. Previous techniques simply designated software installers as “trusted.”

This designation is problematic in the context of contemporary package man-

agement systems, where packages may contain arbitrary installation scripts

that need to be run by the installer. During this run, they may need to

modify files in system directories, and hence scripts cannot be run with low

privileges.

We have developed a new approach to address this software installation

problem. In our approach, the installer consists of two processes: a “worker”

that runs as a low-integrity subject (but may have root privileges), and per-

forms installation actions. To ensure that this low-integrity subject can over-

write system files if needed, a redirection policy is applied to all files written

by this subject. A second high integrity “supervisor” subject runs after the

first one completes. It verifies that the actions performed during installation

were legitimate. In particular, it ensures that (a) the modifications made to

the package management database are exactly those that were made to the file

system, and (b) all the files installed are those that can be overwritten by a

low-integrity subject. If the verification succeeds, the supervisor renames the

redirected copies of files so that they replace their original versions. Otherwise,

all the redirected copies are removed and the installation aborted.

Web Browser and Email Handler. Web browser and email client act as

conduits for data received from the network. In our system, both web browser

and email handler are considered flow-aware applications. Specifically, data

4This does not protect against the possibility that the application may, in a subsequent
run, read a different configuration file. However, this is usually the result of running the
application with a command-line option or an environment variable setting that causes it to
read a different configuration/library file. These “inputs” are provided by a parent process,
and hence are trusted, since the parent itself must have high-integrity in order for a child
process to have high integrity.

72

received by a browser can be deemed high or low integrity based on the source

of data and other factors such as the use of SSL. For the Mozilla browser used

in our experiments, we built a small external program that uses the contents

of a file “downloads.rdf” to correlate network inputs with the files written by

the browser, and to label these files accordingly. We wrote a similar program

for pine email reader.

X-Server and Other Desktop Daemons. GUI-based applications, called

X-clients, need to access the X-Server. To ensure continued operation of be-

nign as well as untrusted X-client applications, the X-Server should be made

Invulnerable on input channels where they accept data from untrusted clients.

We mitigate the risk due to this trust in two ways. First, X-server is made in-

vulnerable only on inputs received via sockets used to connect to an untrusted

client. Second, we make use of the X security extension [72] to restrict low-

integrity applications so that they cannot perpetrate attacks on other windows

that would otherwise be possible.

Unfortunately, due to the design of the GNOME desktop system, there

are some servers (e.g., gconfd) that are used by multiple X-clients and need

to be trusted in order to obtain a working system. We found that some of the

recent results from the SE-Linux project [68, 26] could be applicable in this

context.

File Utilities. Applications that can run at multiple trust levels can some-

times introduce some usability issues, specifically, when they are used to op-

erate on input files with varying trust levels. We modified cp and mv to make

them flow-aware, so that the output files correctly inherit the label from the

input files.

7.4 Enforcement Framework

Our design is a hybrid system consisting of two components: a user-level

library and a kernel-resident checker. Integrity-critical enforcement actions

73

Figure 5: PPI System Architecture

are performed by the kernel component, while “functionality enhancement”

features are relegated to the library. For instance, the kernel component does

not deal with redirection policy. Moreover, while it supports the notion of

trusted subjects, it does not concern itself with mechanisms for limiting trust,

which are provided by the user-level component. While the kernel enforcement

component is always trusted, the user-level component is trusted only when it

operates in the context of a high-integrity process.

In our implementation, the kernel level component is realized using LSM

(Linux Security Modules) [73], which has now become part of the standard

Linux kernel. We use the security hooks of LSM to enforce information flow

policies. Although our policy framework allows for policies to be a func-

tion of objects as well as subjects, for simplicity, the policies enforced by

the kernel component have limited dependence on subjects. (More flexible

subject-dependent policies can be realized using the user-level component.)

This enables kernel-enforced policies to be stored with objects using extended

file attributes available on major Linux file systems (including ext2, xfs, and

reiserfs). Policies as well as integrity labels are stored using these attributes.

Specifically, a 3-bit attribute integ obj is used to store the integrity level of

a file. (For extensibility, our implementation uses eight integrity levels.) A

74

11-bit policy is associated with each file, consisting of two parts. The first

part pertains to read and write operations performed on the file:

• down obj (3 bits) indicates the lowest integrity level to which this object

can be downgraded.

• log obj (1 bit) indicates whether accesses to this object should be logged.

This feature could be used for auditing. In our implementation, it pro-

vides the mechanism for generating the logs used for policy generation.

The second part of the policy pertains to the use of a file to instantiate a

subject, i.e., when the file is executed. It consists of the following components:

• down sub (3 bits) indicates the lowest integrity level to which a process

that executes this object can be downgraded.

• log sub (2 bits) indicates whether accesses made by this subject should

be logged. A second bit indicates whether this policy should be inherited

by descendants of a subject.

• invul sub (1 bit) indicates if this subject is invulnerable. No distinction is

made among various subclasses of trusted applications described in Sec-

tion 7.3 — it is up to the user-level component to implement distinctions

such as flow-awareness and context-awareness.

• super sub (1 bit) allows a subject to modify the labels associated with

objects in the system. Naturally, this capability should be highly re-

stricted. In our implementation, there is one administrative program

that has this capability.

When PPI system is initialized, the extended attributes associated with all the

files are populated using the labels and policies generated using the techniques

in Section 7.2. New files inherit the integrity of the subject creating them. The

log bits are set by default, super sub and invul sub bits are cleared, and the

down sub and down obj bits are set to zero. (A lower integrity level or a higher

downgrade level may be requested by any subject.)

75

After a fork, the child inherits the parent’s attributes, including its in-

tegrity level. After an exec, the integrity of the subject is reduced (but can

never be increased) to that of the file being executed. The super sub policy is

inherited from an executable file only if the subject is at the highest possible

integrity level. Finally, the invul sub as well as log sub attributes are set from

the executable file.

Handling Devices, IPC, and File Renaming. Devices typically need

special treatment since they are not persistent in the same sense as files. The

integrity and down obj labels of devices such as /dev/kmem, /dev/mem, and

/dev/sda* are set to be 111 to ensure that only the highest integrity subjects

can modify them. Devices such as /dev/null and /dev/zero are treated as

having low-integrity for writes, and high integrity for reads. The integrity

labels of devices such as /dev/tty* and /dev/pty/* are derived from that of

the associated login processes, in a manner similar to that of SELinux.

IPC and socket communication are treated as communication channels

between subjects. As such, they inherit labels from the subjects that they con-

nect. Moreover, since most of these communication mechanisms are bidirec-

tional, subjects interconnected using them have identical security attributes5.

The kernel enforcement component keeps track of “groups” of subjects inter-

connected using IPC and socket communication so that operations such as

downgrading can be performed safely.

Finally, file renaming operations are deemed as a write operation on the

file object.

Implementing Subject Downgrading. Subjects are downgraded at run-

time only if doing so will not result in revocation of privileges. Specifically, the

user-level component indicates, at the time of opening a file for read, whether

a higher integrity subject is willing to downgrade to a lower level. The kernel

5An exception occurs in the case of trusted subjects that are invulnerable to inputs
on a communication channel: in this case, the trusted process can continue to maintain
its integrity level and other security attributes regardless of the security attributes of the
subject on the other end of the communication channel.

76

component permits the downgrade if (a) the file can be successfully opened,

(b) the subject does not have higher integrity files that it is writing into, and

(c) all other subjects with which this subject has IPC can also be downgraded.

User-Level Component. The user-level component is implemented by in-

tercepting system calls in glibc. Since the policies themselves are application-

specific, their implementation is kept in a separate library. The user-level

communicates with the kernel level using ioctl’s to implement complex poli-

cies. We already described how “downgrade subject” policy is implemented

through such coordination. It also supports context-aware trust policies: the

user level determines whether a trusted application is Invulnerable (or flow-

aware) in a certain context, and if so requests an open without downgrading

its integrity. For flow-aware applications, the user-level communicates to the

kernel level if files should be opened with a lower integrity level than that of

the subject. The user level is also responsible for implementing the redirection

policy. The kernel level is unaware of this policy, and simply treats it as a

combination of a read operation on the original file, and a write operation on

a new file.

77

CHAPTER 8

Evaluation of PPI

We initially implemented PPI on CentOS and subsequently migrated to an

Ubuntu system. Some of our evaluations were performed on CentOS while

others were performed on Ubuntu. The specifics of these two systems are as

follows:

• CentOS 4.4 distribution of Linux with kernel version 2.6.9. The test

machine has 693 rpm packages and 205k files in total.

• Ubuntu 7.10 distribution of Linux with kernel version 2.6.22-14. The

test machine has 1164 dpkg packages and 159k files in total.

8.1 Experience

Policy Generation on Ubuntu. For generating policies, we used an access

log collected over a period of 4 days on a personal laptop computer. We also

carried out administrative tasks such as installing software, running backups,

etc. The log file we obtained was around 1GB.

The set of initial integrity-critical file objects include files within /boot,

/etc/init.d/, /dev/sda, and /dev/kmem. We identified 26 untrusted applica-

tion packages, which include:

• Media players: mplayer and mpglen

78

• Games: gnome-games, crafty and angband

• Instant messengers: pidgin

• Emulators: apple2 and dosemu

• File utilities: rar, unrar and glimpse

• X utilities: axe

• Java applications: jta, sun-java6-bin and sun-java-jre

Based on the above initial configurations to log analysis, we performed

the procedures described in Section 7.2 for label computation and policy gen-

eration.

Among all the files (159K) and dpkg packages (1164) on the system, the

initial labels of 783 files (including files that belong to 26 untrusted packages

and those written by them) were set to low integrity, while all the others are

labeled high integrity initially.

Then we moved on to the policy generation phase. The number of sub-

jects and objects that were assigned to different policy choices across different

phases are summarized in Figure 2. In Phase I, the log analysis determined

73305 files (934 packages) that need to be marked “preserve-high.” In Phase

II, the analysis identified which of the six policy choices should be applied

to each conflicting accesses. As a result, 168 programs that are exclusively

run in system context were assigned “subject-deny” policy, and they won’t be

allowed to read untrusted input. 4 programs (Xorg, dbus-daemon, gconftool-

2, and gnome-session) were marked “trusted,” and they would retain high

integrity level even when exposed to low-integrity input in certain channels,

for instance, /tmp/.X11-unix/X0 in the case of Xorg. All the rest of programs

(6905) can be downgraded when reading low-integrity input. Correspondingly,

for file objects, deny policies were applied to 73305 integrity critical objects,

while the others can be downgraded. Finally, the analysis identified 15 file

objects for redirection policy, including files such as the preferences files for

gedit editor.

79

Phase I Phase II Phase III
subject object subject object subject object

subject-deny 168 168

subject-downgrade 6905 6905

subject-trust 4 8

object-deny 73305 73305 73305

object-downgrade 86185 86185 86185

object-redirect 15 16

Table 2: PPI Policy Generation in Different Phases.

Phase III used the initial policy configuration from Phase II. It reported

66 violations due to object and subject labels being downgraded in a running

system. (A few thousand object and subject downgrades were observed.) Of

all the violations, trackerd accounted for 51 conflicts. Another ten conflicts

were due to nautilus, gconfd-2, and bonono-activation-server. After an

analysis of the conflict report, it was determined that these four applications

needed to be classified as trusted. Finally, four conflicts arose because bash

could not write to the history file. This was resolved by using the redirect

policy.

In addition, as described earlier, Mozilla and pine were also identified

to be trusted applications. (One could of course avoid this for a browser

by running two instances, one operating in high-integrity and used to access

high-integrity web sites, and the other in low-integrity to access untrusted

web sites.) Most of the trusted applications listed above should be made flow-

aware, so they label their outputs appropriately, based on the integrity of their

inputs.

PPI Experience during Runtime. After we plugged in the policies gen-

erated in the previous step, we ran PPI in normal enforcing mode for several

days. The system booted up without problems, which indicated that none of

the init related programs were affected by low integrity input. We first ran all

the normal administration type of tasks using root privilege, such as checking

80

disk space, configuring network interfaces, etc. Then we logged in as normal

user, and worked on the system as a typical user would. We also used all of

the untrusted applications installed on the system. None of these activities

raised any security violations. (We were able to create violations on purpose,

e.g., by trying to edit a high and low integrity file at the same time using a

benign editor.)

One slight problem is the side-effect of redirection policies: a duplicate

copy of many of the preference files will be created as a result. One option is

to periodically delete the low-integrity version of these files.

8.2 Effectiveness against Malicious Applications

Our integrity policy described in Section 7.2 provides effective defense against

malware attacks.

• Linux rootkits. In this experiment, we downloaded around 10 up-to-

date rootkits from [2]. Since our browser is made flow-aware, it checked

the source of the downloaded software, and marked them as untrusted.

User level rootkits such as bobkit, tuxkit, and lrk5 required an explicit

installation phase. PPI reported permission violations such as deletion

of /etc/rc.sysinit and /bin/ps, and hence their installation failed.

Kernel level rootkits in the form of kernel modules are prevalent nowa-

days and are more difficult to detect. We downloaded, compiled, and

installed one such rootkit, adore-ng. Since the initial download was low-

integrity, the kernel module was also labeled with low-integrity. Since

PPI does not permit loading of kernel modules with low integrity, this

rootkit failed. Since only high integrity subjects are allowed to write to

/dev/kmem, another kernel rootkit mood-nt failed with the error mes-

sage “.D’ho! Impossible aprire kmem.”

• Installation of “Malicious” rpm package. The Fedora package buildsys-

tem [18] suggest three possible attack scenarios from the malicious pack-

age writer. Of these, a malicious rpm-scriptlet is a serious threat. To

81

test the effectiveness of PPI under this threat, we crafted a “malicious”

rpm package. This package is named glibsys.rpm. During the instal-

lation phase, the package tried to overwrite system files /lib/libc.so

and /bin/gcc. These violations are captured by our system, and the

installation aborted cleanly.

• Race condition attack. We crafted a piece of malware which employed a

typical race condition attack. The attack we created is the classic TOCT-

TOU race condition [9], allowing a malicious process racing against a

benign process in writing a high-integrity file (/etc/passwd) using a race

condition by creating a symbolic link. This attack was successful on an

unprotected system, but it was defeated by PPI, since the follow link

operation on the low-integrity symlink downgraded the benign process

and the write was disallowed.

• Indirect attack. In this attack, we created another piece of malware that

first created an executable with an enticing name and waited for users

on the system to run it. The attack did not work as PPI automatically

downgraded the process running the low integrity executable, and as

a result, it could not overwrite any of the files in the system that can

damage system integrity.

• Malformed data input. Similar to the above example, a malformed jpeg

file was downloaded from some unknown source, so PPI marked it as

low-integrity. When an image viewer opened it, although it was compro-

mised, it was running in low-integrity mode, and hence its subsequent

malicious actions failed.

8.3 Usability of PPI Versus Low Watermark

In order to better understand how PPI provides improved usability, we imple-

mented a prototype version of Low watermark model using LSM, and applied

the prototype to exactly the same host environment with the same initial

82

read write stat open/close select pipe latency

Orig 2.1882 1.8670 7.9352 11.4859 27.2026 37.4196

PPI 2.3541 1.9899 15.0348 15.0348 28.5309 38.5261

Table 3: Microbechmark Result using LMbench. All numbers in microseconds.

labeling and policy configurations (including Invulnerable applications). We

used the test environment for a period of one day and observed the violations

in the following several types:

• Because of lack of object downgrade policy, in Low watermark model,

gzip and ggv had difficulty in completing their jobs when handling low

integrity files. In the case of gzip, it first ran with high integrity, created

an output file, then downgraded on reading low-integrity input. Subse-

quently, gzip tried to change permissions on the output file, which was

denied due to the fact that the file was at high integrity while the subject

had been downgraded.

• With PPI, editors such as vi, gedit and gimp could be used to edit low-

integrity as well as high-integrity files. With Low-watermark policy, the

applications experienced a runtime error, if the first run of the applica-

tion was performed with high-integrity input. In this case, the preference

files were marked high-integrity. When the editor was subsequently used

on a low-integrity file, it was downgraded, and its subsequent access to

update the preference file was denied. If the first run was performed

with low-integrity input, then the preference file was created with low

integrity, which meant that every future run of the editor will be down-

graded. In contrast, the use of log-based analysis in PPI enables these

editors to work properly in both scenarios.

• As mentioned earlier, shell redirections typically cause problems due to

self-revocation with Low-watermark model. For instance, when execut-

ing a command such as cat in > out, the shell, typically running at

83

Original PPI Mode
Time Time Overhead

gzip 1.269 1.271 0.1%

xpdf 2.476 2.604 5.1%

make 22.467 23.345 3.8%

Table 4: Application Performance Overhead. All numbers are in seconds
averaged across 10 runs.

high-integrity, creates the file out with high-integrity. If in is a low-

integrity file, then cat will be downgraded on reading it, and then its

attempt to write to out will be denied.

8.4 Performance Overheads

We present both the microbenchmark and macrobenchmark results for PPI.

For microbenchmark evaluation, we used LMbench version 3 [38] to check the

performance degradation of popular system calls. The results are summarized

in Figure 3. We observed that PPI did not introduce noticeable overhead for

most system calls except for open (and other similar system calls such as stat).

For macrobenchmark, we measured 3 typical applications running within PPI

during runtime. As illustrated in the Figure 4, the runtime overhead for ap-

plications in PPI is about 5% or less.

8.5 Limitations

Our approach cannot support arbitrary untrusted software. Some software,

by its very nature, may need resource accesses that cannot safely be granted

to untrusted applications. Our results show that for the type of programs

that tend to be downloaded from untrusted sources, our approach is indeed

applicable.

84

Our work does not focus on confidentiality or availability, but it still con-

tributes to them in two ways. First, solutions for confidentiality and availabil-

ity must build on solutions for integrity. Second, our techniques halt malware

that exploits integrity violations to attack confidentiality; for example, by pre-

venting a rootkit from installing itself, we also prevent it from subsequently

harvesting and sending confidential account information. But no protection

is provided from malware that targets violation of confidentiality without vi-

olating integrity.

85

CHAPTER 9

Related Work of PPI

Information Flow Based Systems. Biba model [8] has a strict “no read

down and no write up” policy. The low watermark model [8] relaxes this

strict policy to permit subjects to be downgraded when they read low-integrity

inputs. LOMAC [19], a prototype implementation of low watermark model on

Linux, addresses the “self-revocation” problem to a certain extent: a group of

processes that share the same IPC can continue to communicate after one of

the processes is downgraded by having the entire group downgraded, but the

problem still remains for files. SLIM (Simple Linux Integrity Model) [53] is part

of the IBM research trusted client project, and is also based on the LOMAC

model. It also incorporates the Caernarvon model [25], which supports verified

trusted programs and limits the trust on these programs by separating read

and execute privileges. The features developed in this part are more general

in this regard, allowing distinctions between data input and control input, and

so on.

IX [37] is an experimental MLS variant of Unix. It uses dynamic labels

on processes and files to track information flow for providing privacy and

integrity. In contrast, our technique generalizes the LOMAC model by offering

several other policy choices, which we have shown to be helpful for improving

usability. Other important distinctions between these works and ours are that

we decouple policies from labels, and provide automated techniques for policy

development.

86

Clark-Wilson Model [14] is different from the above multilevel security

models, it emphasizes “well-formed transaction” and “separation of duty”. It

defines a set of certification and enforcement rules that guarantee the integrity

for constraint data items. And it requires verification of applications (which is

not possible for current technologies) and verification of information integrity

properties of the inputs, which is another difficult task. Also, this model is

not suitable for environment such as operating systems, for which the oper-

ations are not “well-formed transactions”. Clark-Wilson Model defined that

untrusted processes should not send unfiltered inputs to trusted processes and

[60] provided an automatic way for verification. This is similar as the way

we achieve the trust limit on trusted programs. The difference is that it used

source code annotation, while our approach uses runtime mechanism.

Windows Vista enforces only the “no write up” part of an information

flow policy, “no read down” is not enforced as it causes usability problems.

Unfortunately, malware writers can adapt their malware to defeat this protec-

tion, as discussed in the introduction. In contrast, Back to the Future system

[21] enforces only the “no read down” policy. Its main advantages are that it

can recognize any attempt by malware to inject itself into inputs consumed by

benign applications, and the ability to rollback malware effects. A drawback

is that any attempt to “use” the output of an untrusted (but not malicious)

application would require user intervention. It can be difficult for users to

judge whether such inputs are “safe” and respond correctly to such prompts.

Secondly, malware can freely overwrite critical files, which need to be “recov-

ered” when the data is subsequently accessed — a potentially time-consuming

operation.

Virtual machines [69, 16, 5] rely on isolation to confine untrusted pro-

cesses. While isolation is an effective protection technique, maintaining mul-

tiple isolated working environments is not very convenient for users. In par-

ticular, objects such as files that need to be accessed by untrusted code have

to be copied into and/or out of the isolated environment each time.

Li et al [31] also address the problem of making mandatory access control

usable by focusing on techniques for policy development. However, their focus

87

is on servers exposed to network attacks, as opposed to untrusted software

threats on workstations. The nature of the threat (remote attacks versus

adaptive malware) is quite different, causing them to focus on techniques that

are quite different from ours. For instance, they don’t protect user files, while

we consider corrupting of user files to be a very powerful attack vector in our

context. Also, the normal execution of most untrusted software would fail

when disallowing their write to files that are not world-writable. Moreover,

they do not consider the problem of securing software installations, or provide

analysis techniques that can leverage resource access logs to generate policies.

Nevertheless, there are some similarities as well: we have been able to use their

notion of limiting trust to certain network channels. In addition, we provide

a refinement of this notion in the context of files.

All of the above works were based on centralized policies, which are less

flexible than decentralized information-flow control (DIFC) policies. DIFC

policies allow applications to control how their data is used. In this regard,

JFlow [40] is a language level approach. Asbestos [17] and Hi-Star [78] are

new operating system projects that have been architected with information

flow mechanisms incorporated in their design. Flume [29] is focused on im-

plementing an extension to existing operating systems to provide process level

DIFC. Like most other previous works in information-flow based security, these

projects too focus on mechanisms, whereas our focus has been on generating

the policies needed to build working systems.

SELinux, Sandboxing and Related Techniques. Several techniques have

been developed for sand-boxing [20, 4, 48]. Model-carrying code [59] is fo-

cused on the problem of policy development, and provides a framework for

code producers and code consumers to collaborate for developing policies that

satisfy their security goals. Nevertheless, development of sandboxing policies

that can robustly defend against adaptive malware is a challenge due to the

ease of indirect attacks as described in the Introduction.

AppArmor [1] and Smack [55] are MAC protection mechanisms on Linux.

Different from PPI, they mainly focus on mechanisms instead of policies, and

88

they do not track information flow between benign and untrusted applica-

tions, hence suffer from indirect attacks. TOMOYO [3] is another MAC Linux

protection project. It uses program execution chain as domain, and enforces

access policies learned during runtime before hand by the end user. Without

explicitly specifying the trustworthiness of the programs on the system, the

“learned” accesses from malicious programs might be allowed and enforced

during runtime. It is unreasonable to assume that normal users can figure out

what accesses to allow or disallow.

SELinux [35] uses domain and type enforcement (DTE) policies to con-

fine programs. Their main focus has been on servers, and they have developed

very detailed policies aimed at providing the least privilege needed by such

applications. Systrace project [48] has also developed system-call based sand-

boxing policies for several applications, and is widely used in FreeBSD. Neither

approach ensures system integrity by design. SELinux as well as Systrace can

log accesses made during trial runs of an application, and use it as the basis to

generate a policy for that application. Their policy generation technique such

as [61] is useful for benign code, such as servers, but would be dangerous for

untrusted applications.

Whereas our focus is on generating policies that ensure integrity, other re-

searchers have worked on the complementary problem of determining whether

a given policy guarantees system integrity [23].

89

CHAPTER 10

Conclusion

As malware attacks become more and more sophisticated, previous techniques

are either lack of complete protection or are impractical to use because of

usability problems and the difficulty in policy development. This disserta-

tion presented techniques for providing integrity protection on contemporary

operating system distributions: on the one hand, our approach provides posi-

tive assurances against malware from damaging system integrity; on the other

hand, the approach can be readily applied on contemporary OSes with minimal

usability problems.

The SEE approach is especially suitable for end users to run stand-alone

untrusted applications by isolating their effects from the main system. One-

way isolation is used to achieve both light-weight environment duplication and

effect isolation. It is versatile enough to support a wide range of other appli-

cations. A key benefit of this approach is that it provides strong consistency.

In particular, if the results of isolated execution are not acceptable to a user,

then the resulting system state is as if the execution never took place. On the

other hand, if the results are accepted, then the user is guaranteed that the

effect of isolated execution will be identical to that of atomically executing the

same program at the point of commit.

The PPI approach is more general and suitable for the whole system in-

tegrity protection. One of the central problems in developing practical systems

based on mandatory access control policies has been the complexity of policy

90

development. We have developed techniques to automate the generation of

low level information flow policies from data contained in software package

managers, and access logs that capture normal usage of these systems. Our

experimental results show that the technique is efficient, it can provide ro-

bust protection from most malware, and does not pose significant usability

problems.

Although malware attacks against computer integrity can be deployed

in a diversified way, they basically follow the same principle, that is, the at-

tacks try to utilize unacceptable information flows from them to integrity-

critical system resources. The research presented in this dissertation provides

new directions in incorporating practical information flow based mechanisms

to thwart malware attacks in contemporary operating systems. SEE can be

deemed as a quick solution for end users to run untrusted software. PPI of-

fers a more systematic protection mechanism, the policies can be synthesized

at the OS distribution site and then deployed to end user systems so that

thousands (if not millions) of users can benefit from the integrity protection

automatically.

91

Bibliography

[1] Apparmor linux application security. http://www.novell.com/linux/secur-

ity/apparmor/.

[2] Linux rootkits. http://www.eviltime.com/download.php?page=hacking-

&subpage=rootkits.

[3] Tomoyo linux project. http://tomoyo.sourceforge.jp/index.html.en.

[4] A. Acharya and M. Raje. Mapbox: Using parameterized behavior classes

to confine applications. In USENIX Security Symposium, 2000.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In

Proceedings of the nineteenth ACM symposium on Operating systems prin-

ciples, volume 37, 5 of Operating Systems Review, pages 164–177, New

York, Oct. 19–22 2003.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an

efficent approach to combat a broad range of memory error exploits. In

Proceedings of the 12th Usenix Security Symposium, Washington, D.C.,

August 2003.

[7] K. J. Biba. Integrity considerations for secure computer systems. Tech-

nical Report MTR-3153, Mitre Corporation, June 1975.

[8] K. J. Biba. Integrity considerations for secure computer systems. In

Technical Report ESD-TR-76-372, USAF Electronic Systems Division,

Hanscom Air Force Base, Bedford, Massachusetts, 1977.

92

[9] M. Bishop and M. Dilger. Checking for race conditions in file accesses.

Computing Systems, 9(2), 1996.

[10] A. Brown and D. Patterson. Undo for operators: Building an undoable

e-mail store. In USENIX Annual Technical Conference, 2003.

[11] P. M. Chen and B. D. Nobl. When virtual is better than real. In Pro-

ceedings of Workshop on Hot Topics in Operating Systems, 2001.

[12] T. Chiueh, H. Sankaran, and A. Neogi. Spout: A transparent distributed

execution engine for java applets. In Proceedings of International Confer-

ence on Distributed Computing Systems, 2000.

[13] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason,

and R. N. Sidebotham. The Episode file system. In Proceedings of the

USENIX Winter 1992 Technical Conference, pages 43–60, San Fransisco,

CA, USA, 1992.

[14] D. D. Clark and D. R. Wilson. A comparison of commercial and military

computer security policies. In IEEE Symposium of Security and Privacy,

pages 184–194, 1987.

[15] A. Dan, A. Mohindra, R. Ramaswami, and D. Sitaram. Chakravyuha:

A sandbox operating system for the controlled execution of alien code.

Technical report, IBM T.J. Watson research center, 1997.

[16] J. Dike. A User-Mode port of the linux kernel. In Proceedings of the 4th

Annual Showcase and Conference (LINUX-00), pages 63–72, Berkeley,

CA, Oct. 10–14 2000.

[17] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,

E. Kohler, D. Mazires, F. Kaashoek, and R. Morris. Labels and event

processes in the asbestos operating system. In 20th Symposium on Oper-

ating Systems Principles (SOSP 2005), 2005.

[18] The fedora.us buildsystem. http://enrico-scholz.de/fedora.us-

build/html/.

93

[19] T. Fraser. Lomac: Low water-mark integrity protection for COTS envi-

ronments. In IEEE Symposium on Security and Privacy, 2000.

[20] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure envi-

ronment for untrusted helper applications: confining the wily hacker. In

USENIX Security Symposium, 1996.

[21] F. Hsu, T. Ristenpart, and H. Chen. Back to the future: A framework

for automatic malware removal and system repair. In Annual Computer

Security Applications Conference (ACSAC), December 2006.

[22] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser

state from web privacy attacks. In WWW ’06: Proceedings of the 15th

international conference on World Wide Web, pages 737–744, New York,

NY, USA, 2006.

[23] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity protection in

the selinux example policy. In Proceedings of the 12th USENIX Security

Symposium, 2003.

[24] S. Jajodia, P. Liu, and C. D. McCollum. Application-level isolation to

cope with malicious database users. In Annual Computer Security Appli-

cations Conference (ACSAC), 1998.

[25] P. Karger, V. Austel, and D. Toll. Using a mandatory secrecy and integrity

policy on smart cards and mobile devices. In EUROSMART Security

Conference, pages 134–148, Marseilles, France, 2000.

[26] P. Karger, V. Austel, and D. Toll. Using gconf as an example of how to

create an userspace object manager. In SELinux Symposium, 2007.

[27] J. Katcher. Postmark: A new file system benchmark. Technical Report

TR3022, Network Applicance Inc., 1997.

[28] D. G. Korn and E. Krell. A new dimension for the unix file system.

Software: Practice & Experience, 20(S1), 1990.

94

[29] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,

and R. Morris. Information flow control for standard os abstractions.

In Proceedings of twenty-first ACM SIGOPS symposium on Operating

systems principles, pages 321–334, New York, NY, USA, 2007.

[30] B. W. Lampson. A note on the confinement problem. Communications

of the ACM, 16(10):613–615, 1973.

[31] N. Li, Z. Mao, and H. Chen. Usable mandatory integrity protection for

operating systems. In IEEE Symposium on Security and Privacy, 2007.

[32] Z. Liang, V. Venkatakrishnan, and R. Sekar. Isolated program execution:

An application transparent approach for executing untrusted programs. In

Proceedings of Annual Computer Security Applications Conference (AC-

SAC), 2003.

[33] P. Liu, S. Jajodia, and C. D. McCollum. Intrusion confinement by

isolation in information systems. In Proceedings of IFIP Workshop on

Database Security, 1999.

[34] Loop back file system. Unix man page.

[35] P. A. Loscocco and S. D. Smalley. Meeting critical security objectives

with security-enhanced linux. In Proceedings of the 2001 Ottawa Linux

Symposium, 2001.

[36] D. Malkhi and M. K. Reiter. Secure execution of java applets using a

remote playground. Software Engineering, 26(12), 2000.

[37] M. D. McIlroy and J. A. Reeds. Multilevel security in the UNIX tradition.

Software - Practice and Experience, 22(8):673–694, 1992.

[38] L. McVoy and C. Staelin. Lmbench.

http://www.bitmover.com/lmbench/.

[39] K.-K. Muniswamy-Reddy, C. P. Wright, A. P. Himmer, and E. Zadok.

A versatile and user-oriented versioning file system. In Proceedings of

USENIX Conference on File and Storage Technologies, 2004.

95

[40] A. C. Myers and B. Liskov. Protecting privacy using the decentralized la-

bel model. ACM Transactions on Software Engineering and Methodology,

9(4):410–442, 2000.

[41] J. Newsome and D. Song. Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software.

In Proceedings of 12th Annual Network and Distributed System Security

Symposium (NDSS), 2005.

[42] J.-S. Pendry and M. K. McKusick. Union mounts in 4.4bsd-lite. In

USENIX 1995 Technical Conference on UNIX and Advanced Computing

Systems (New Orleans), pages 25–33, 1995.

[43] J. S. Pendry, N. Williams, and E. Zadok. Am-utils user manual, 6.1b3

edition, july 2003. http://www.am-utils.org.

[44] Z. Peterson and R. Burns. Ext3cow: The design, implementation, and

analysis of metadata for a time-shifting file system. Technical Report

HSSL-2003-03, Hopkins Storage Systems Lab, Department of Computer

Science, Johns Hopkins University, 2003.

[45] Picturepages software. Distributed on the Internet.

http://www.canonical.org/picturepages/.

[46] D. Pilania and T. cker Chiueh. Design, implementation, and evaluation

of an intrusion resilient database system. In International Conference on

Dependable Systems and Networks, 2003.

[47] V. Prevelakis and D. Spinellis. Sandboxing applications. In Proceedings

of Usenix Annual Technical Conference: FREENIX Track, 2001.

[48] N. Provos. Improving host security with system call policies. In Proceed-

ings of the 11th USENIX Security Symposium, pages 257–272, 2003.

[49] F. Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, and Y. Wu. LIFT: A low-

overhead practical information flow tracking system for detecting general

96

security attacks. In IEEE/ACM International Symposium on Microarchi-

tecture, December 2006.

[50] S. Quinlan and S. Dorward. Venti: a new approach to archival storage.

In Proceedings of USENIX Conference on File and Storage Technologies,

Monterey, CA, 2002.

[51] Recovery-oriented computing. http://roc.cs.berkeley.edu.

[52] W. D. Roome. 3dfs: A time-oriented file server. In Proceedings of the

USENIX Winter 1992 Technical Conference, 1991.

[53] D. Safford and M. Zohar. A trusted linux client (tlc), 2005.

[54] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C. Veitch. Elephant:

The file system that never forgets. In Proceedings of Workshop on Hot

Topics in Operating Systems, 1999.

[55] C. Schaufler. The simplified mandatory access control kernel.

http://www.schaufler-ca.com/data/SmackWhitePaper.pdf.

[56] K. Scott and J. Davidson. Safe virtual execution using software dynamic

translation. In Proceedings of Annual Computer Security Applications

Conference, 2002.

[57] R. Sekar, Y. Cai, and M. Segal. A specification-based approach for build-

ing survivable systems. In National Information Systems Security Con-

ference, Oct 1998.

[58] R. Sekar and P. Uppuluri. Synthesizing fast intrusion preven-

tion/detection systems from high-level specifications. In Proceedings of

the USENIX Security Symposium, 1999.

[59] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney.

Model-carrying code: A practical approach for safe execution of untrusted

applications. In ACM Symposium on Operating System Principles, Bolton

Landing, New York, October 2003.

97

[60] U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-

flow integrity verification for security-critical applications. In Network

and Distributed Systems Security Symposium, 2006.

[61] B. Sniffen, J. Ramsdell, and D. Harris. Guided policy generation for

application authors. In SELinux Symposium, 2006.

[62] C. Soules, G. Goodson, J. Strunk, and G. Ganger. Metadata efficiency

in a comprehensive versioning file system. In Proceedings of USENIX

Conference on File and Storage Technologies, 2002.

[63] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of

commodity operating systems. ACM Transactions on Computer Systems,

23(1):77–110, Feb. 2005.

[64] Translucent file system, 1990. SunOS Reference Manual, Sun Microsys-

tems.

[65] T. Tiilikainen. Rename-them-all, linux freeware version.

http://linux.iconet.com.br/system/preview/8622.html.

[66] P. Uppuluri. Intrusion Detection/Prevention Using Behavior Specifica-

tions. PhD thesis, Stony Brook University, 2003.

[67] Vmware. URL. http://www.vmware.com.

[68] E. F. Walsh. Integrating xfree86 with security-enhanced linux. In X

Developers Conference, Cambridge, MA, 2004.

[69] B. Walters. VMware virtual platform. j-LINUX-J, 63, July 1999.

[70] Webstone, the benchmark for web servers.

http://www.mindcraft.com/webstone.

[71] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual ma-

chines for distributed and networked applications. In USENIX Annual

Technical Conference, 2002.

98

[72] D. P. Wiggins. Security extension specification, version 7.0. Technical

report, X Consortium, Inc., 1996.

[73] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman.

Linux security modules: General security support for the linux kernel.

In Proceedings of the 11th USENIX Security Symposium, San Francisco,

CA, USA, August 5-9, 2002, pages 17–31. USENIX, 2002.

[74] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization

for security. In Symposium on Reliable and Distributed Systems (SRDS),

Florence, Italy, October 2003.

[75] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A

practical approach to defeat a wide range of attacks. In USENIX Security

Symposium, August 2006.

[76] E. Zadok, I. Badulescu, and A. Shender. Extending file systems using

stackable templates. In Proceedings of USENIX Annual Technical Con-

ference, 1999.

[77] M. Zalewski. Fakebust, a malicious code analyzer, 2004.

http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2004-

09/0251.html.

[78] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazires. Making

information flow explicit in histar. In Seventh Symposium on Operating

Systems Design and Implementation (OSDI06), 2006.

[79] N. Zhu. Data versioning systems. Technical report, Stony Brook Univer-

sity, http://www.ecsl.cs.sunysb.edu/tech reports.html.

[80] N. Zhu and T. Chiueh. Design, implementation, and evaluation of re-

pairable file service. In Proceedings of International Conference on De-

pendable Systems and Networks, 2003.

99

