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Abstract of the Dissertation

Shape Registration and Analysis Framework for Computer Vision and
Graphics

by
Sen Wang

Doctor of Philosophy
in
Computer Science
Stony Brook University
2008

As 3D digital photographic and scanning devices produckedrigesolution images,
acquired geometric data sets grow more complex in termseofibdeled objects’
size, geometry, texture, and topology. To use and analyze data, developing
new algorithms and techniques for shape registration aatysis has become a
common and long-term mission in the computer vision andgcaield. In this
dissertation, we propose a novel framework for shape magchegistration, and
scientific analysis especially for 3D facial data and bioio@ddata. In particular,
we address the challenges of 3D shape registration andsialith noise, occlu-
sion, resolution variation and non-rigid deformation.

Firstly, we analyze a family of quasi-conformal maps inahgdharmonic
maps, conformal maps, and least squares conformal mapsegginds to 3D shape
matching. As a result, we propose a novel and computatipmediicient shape
matching framework by using least squares conformal magse robustness of
least squares conformal maps is evaluated and analyzedrebemsively in 3D
shape matching with occlusion, noise, and resolution traria In addition to the
above conformal geometry approaches, we also propose avrark of shape reg-
istration and analysis using Ricci flow. Previous methodsetdaon conformal ge-
ometries, such as harmonic maps and least squares conforaps, which can
only handle 3D shapes with simple topology are subsumed bRiagi flow based



method which can handle surfaces with complex topology.theumore, we in-
troduce a method that constrains Ricci flow computationguéature points and
feature curves. We also demonstrate the applicability isfititrinsic shape rep-
resentation through standard shape analysis problemsasu8D shape matching
and registration.

As 3D scanning technologies continue to improve, dynamisdkly-sampled
3D data is becoming more and more prevalent for analysis amteasis. To study
and analyze such huge data, an efficient non-rigid registraigorithm is nec-
essary to establish one-to-one inter-frame correspomdegnatomatically. Toward
this goal, we present a new framework for automatic norgriggistration of 3D
dynamic facial data. Based on this registration framewask also develop a new
system of facial expression synthesis and transfer.

We have implemented our framework in a wide range of appdinatwhich
represent the identified challenges in shape registratidraaalysis. This includes
dynamic noise, occluded data, resolution variation, ngietdeformation, etc. Fur-
thermore, We describe these applications in detail andneudl few new applica-
tions which include surface matching, alignment and stitighdynamic non-rigid
deformable shape registration, facial expression syitlaesl transfer.



To My Parents, My Wife and My Children with My Love!



Contents

List of Figures iX
List of Tables XVi
Acknowledgements XVii
Publications XViii

1 Introduction 1
1.1 ProblemStatement . . ... ... ... ... . ... ... .....
1.2 Contributions . . . . . .. ..
1.3 Dissertation Organization . . . . . . .. .. ... ... .......

2 Background Review 7
2.1 TheoreticalBackground . . . . . .. .. ... ............
2.1.1 Quasi-ConformalMaps. . . .. ... ... ... ......

2.1.2 RicciFlow . . ... . .. . . . .. 13

2.2 3D Facial Expression AnalysisReview . . . . .. .. ... ... 14

3 Shape Registration and Analysis Using Quasi-Conformal Maps 16

3.1 Introduction . . . . . . . ...
3.2 Shape Matching and Registration Using Least Squarefo@oal

Maps . . . . e e e

3.2.1 Correspondence Detection Using Spin-Images . . . . . 19.

3.2.2 Least Squares Conformal Shape Images (LSCSIs) .. .0.

3.2.3 Matching Surfaces by Matching LSCSIs. . . . ... .. ..

Vi



3.3 Experimental Results and Performance Analysis . . . . . .. . 22

3.3.1 RobustnessAnalysis . .. .. ... .. ... ... ..., 23
3.3.2 Recognitionof3DFaces . . . ... ............. 32
3.3.3 Non-Rigid Surface Alignment and Stitching . . . . . . . . 34

3.4 DISCUSSION . . . . . v i e 35

Shape Registration and Analysis Using Ricci Flow 39

4.1 Introduction . . . . . . ... 39

4.2 Generalization of ConformalMaps . . . . . ... .. .. ... .. 2 4
4.2.1 Comparing with Conventional Conformal Map Methods 42
4.2.2 DiscreteRicciFlow. . . .. ... ... .. ......... 43

4.3 Feature Based Canonical Domain Decomposition . . . . . . .. 45

4.4 Ricci Flow Based Shape Representation . . . . .. .. .. ... 49.

45 ExperimentalResults . . .. ... .. ... .. ... ... ..., 50
4.5.1 Experiments on Isometrically Deformed Surfaces . ..... 50
4.5.2 Experiments on Complex Topology . . . .. .. ... ... 51
4.5.3 Registration with Large Non-Rigid Deformation . . . . . 53

4.6 DISCUSSION . . . . . v v it 56

Dynamic Non-Rigid Registration for Facial Expression Analysis 57

5.1 Introduction . . . . . . . . . . .. 57

5.2 Non-Rigid Registration Algorithm for 3D Dynamic Facata . . . 59
521 FeatureTracking . . ... .. .. ... .. .. .. ..... 59
5.2.2 Dynamic Non-Rigid Registration . . .. .. .. ...... 60

5.3 A Framework of Facial Expression Synthesis and Transfer. . . 61
5.3.1 Facial Expression Synthesis . . . .. ... ... ...... 61
5.3.2 Facial ExpressionTransfer . . . . .. ... ... ...... 64

5.4 ExperimentalResults . . . .. ... ... ... ... . ... .... 65
5.4.1 Evaluation of 3D Non-Rigid Registration . . . .. .. .. | 6 6
5.4.2 Evaluation of Facial Expression Synthesis and Teainst . 68

55 DISCUSSION . . . . . . o o 74

Conclusions and Future Work 75

6.1 Conclusions . . . . . . . . . .. 75

Vil



6.2 FutureWork . . . . . . . .

6.2.1 Novel Shape Representations. . . . .. .. ......... 76
6.2.2 New Shape Retrieval Frameworks . . . .. .. .. ... .. 77
6.2.3 Non-Rigid Shape Registration with Manifold Learning . 77
6.2.4 Dynamic Shape Analysis for New Medical Imaging Modal-
itieS . . . 77
78

6.3 ConcludingRemarks . . .. .. ... .. ... .. ... ......

Bibliography

viii



List of Figures

1 Conceptual hierarchy of the proposed research. . . ... ... .3

2 Distortion comparison between a conformal map and a hammon
map. (a) Original surface without texture. (b) Originalfage with
texture. (c) The 2D conformal map of the surface with texture
(d) The harmonic map of the surface with texture. (e) Chéduder
textured surface by conformal mapping. (f) Checkerboxueed
surface by harmonic mapping. Because of angle-presenvdtp
and (e) have less distortions than (d) and (f), which can earlk
seen in the close-up views (g) and (h) of the chin areas indtie r
boxesrespectively. . . . .. ... L L 19

3 Least Squares Conformal Shape Image: (a) Original suvigtte
texture. (b) Original surface without texture. (c) Leastiags
conformal maps with texture. (d) Least squares conformapsh
image. (e)Least squares conformal maps of the same susiaoe,
sampled by a factor of 4, still very similarto(c). . . . . ... .. 21



10

11

12

13

Surface matching with deformation: The original 3D suefawith

texture are in the top row. The detail of the deformed moudasir

are shown in the second row and the LSCSiIs of the original sur-
faces are in the last row. In each row, the first, the secoraiten

third surfaces are from the same person with different esgpoas

and the forth one is another person. The normalized coivalat
coefficient () j) between (i) and (j) and the normalized correlation
coefficient (; x) between (i) and (k) are 0.92 and 0.86, respectively,
while the normalized correlation coefficierl{;) between (i) and
(Disonly0.65. . . . . . . . . . . 23
An example of surface matching with holes : (a) A frontal 32rs

(b) The LSCSI of (a). (c) A side 3D scan of the same subject as in
(a), which has a hole illustrated in (d). (e) The same surfd¢e,d)

after hole filling. (f) The LSCSlof(e). . . . .. ... ... ... .. 24
3D face surfaces and their LSCSIs under occlusion. Thenatig

3D face surfaces with different occlusions are in the top rbieir

LSCSIs are inthe bottomrow. . . .. ... .. .. ... ...... 25
Average matching results of the face surfaces under doalusing
LSCMS. . . . . e 25

3D brain surfaces and their LSCSIs under occlusion. Thegrai
3D brain surfaces with different occlusions are in the tog. roheir

LSCSIs are inthe bottomrow. . . . . ... ... ... ....... 26
Average matching results of the brain surfaces under siariws-
INGLSCMS. . . . . . . e 26
Examples of face and brain surfaces under gaussian nifsdifv

ferento setto 0.0, 0.4, 1.0 and 2.0 mm, respectively. . . . .. ... 27

Average matching results of LSCMs under gaussian noise in
creases. The window size for computing the curvatures adsfac
surfaces and brain surfaces is 10.0 mm andthereases from 0.0

mmto2.0mm. . . .. .. 28
3D face and brain surfaces with 1, 1/2,1/4 and 1/8 of thgirzal
resolution, respectively. . . . . . . . .. ... Lo 29
Average matching results of LSCMs under resolution tiarna. . . 30



14

15

16

17

18

19

Average matching results of the face and brain surfacdsrusc-

clusion using all three parametricmaps. . . .. .. .. .. ...

Average matching results of all three parametric mapgugdus-
sian noise increases. The window size for computing theaturgs
of faces surfaces and brain surfaces is 10.0 mm and thereases

fromO0.0mmto2.0mm. . . . .. . . . . . ...

Average matching results of all three parametric map®ureso-

ution variation. . . . . . . . ..

Two subjects in the 3D face database. Shape informationtiese
first row and texture information is in the second row.

An example of surface alignment and stitching: (a,b) Twaioal 3D
faces with texture in different poses and deformationd) (©riginal 3D
faces without texture. (e,f) The Least Squares conformap8hmages
(LSCSis) of the faces. (g) The aligned LSCSI of the two fade3.The
resulting 3D face by stitching a part of (c) into (d). Becao$¢he one-
to-one mapping between the LSCSI and original face, we dgn ahd
stitch 3D faces by registering and stitching 2D LSCSls.. . . . . . . .
Another example of surface alignment and stitching: (awed ©riginal
3D faces with texture in different poses and deformatiorsd) (Origi-
nal 3D faces without texture. (e,f) The Least Squares camdbiShape
Images (LSCSIs) of the faces. (g) The aligned LSCSI of thefages by
connecting the non-overlapping area in (f) into (e). (h) &lgned LSCSI
of the two faces by connecting the non-overlapping area)imte (f). (i)
The resulting 3D face by stitching a part of (d) into (c). ()elresulting
3D face by stitching a part of (c) into (d). Because of the t;iene map-
ping between the LSCSI and original face, we can detect andve the
duplicated regions in the original 3D surfaces by removimg averlap-
ping areas in the resulting 2D common parametric domain. UEkee can
decide which of the two expressions to keep on the final stitchesh. In
this case (i) has the expression of original (a) and (j) afiogl (b).. . . .

Xi

37



20

21

22

23

A comparison between the alignment and stitching resultuofroethod

and of the ICP method: (a) A 3D scan of a neutral face. (b) A 3@8nhsc

of the same face undergoing a large deformation in the maet. &c)

and (d) are the front view of (a) and (b) with the occlusionaasbown

clearly. (e) The face alignment and stitching result of B method. (g)

The close up view in the mouth area of (e). (f) The face aligmnaad
stitching result of our method. (h) The close up view in theuthcarea of

(D).« o e 38

Circle packing metric for a triangle. The dual circle (ted one) in
orthogonal to the other 3 circles. . . . . .. .. ... ... ... .. 43
Canonical surface decomposition using Ricci flow. Theerigsis
selected as a feature point. A flat metric is computed usingiRi

flow, such that all interior points and all boundary points aith

zero curvatures, except the feature point where the Gausgraa-

ture equals to-2rt. Straight lines under the new metric, which are
either parallel or perpendicular to the boundaries, resuhe blue

curves on the original surface that pass through the fegutoiret

in (). Then the surface is decomposed to patches, each igatch
conformally equivalent to a rectangle or a trapezoid on thee
shownin(b). . ... .. ... .. .. 49
Surface matching under isometric deformation using antagk.

The first row shows two views of the original surface and its-co
formal image; the second row shows two views of the deformed
surface and its conformal image. Pixel intensities in th&fa@onal

images are copied from the corresponding points in the 3Dssca
Under isometric deformation, the conformal images aretideh

The normalized registration error is 0.018 computed usiqgae
tion22. . . . . e 51

Xil



24  Comparison of Ricci flow with LSCM and Harmonic maps. (a)
and (f) are two surfaces to be registered. (b) and (g) are Rieci
flow maps. (c) and (h) are these two surfaces after holegfill{d)
and (i) are their LSCMs. (e) and (j) are their harmonic magse T
registration error of Ricci flow using Equation 22 is 0.058)ile,
the registration errors (without including hole area) ofd\s and
Harmonics are 0.072 and 0.081, respectively. . . . ... .. .. 52.
25 Registration of facial expression data using featuredha®main
decomposition. The first column shows two face scans witly ver
large non-rigid deformation. The second column shows tlae pl
nar domains computed using uniform flat metrics. Becausheof t
large deformation, there is significant difference betwibeplanar
domains. Selecting the nose tip as the feature points, tieces
are decomposed to canonical planar domains using the md#iod
scribed in Section 4.3. The surfaces are registered by iingttie
corresponding planardomains. . . . . ... ... ... .. ... .. 54
26 Registration of 3D dynamic heart data. Registrationltesising
Ricci flow for 4 different frames are shown in the top row. The
original heart data for the same frames are shown in the totto
row. The data on frame 1 were texture mapped with a grid patter
that helps to visualize the subsequent deformati¢iisart dataset
courtesy of Professor Dimitris N. Metaxas at Rutgers Ursitg)y . . 55

27 AAM feature detection. (a) The feature template of AAM. (bBR face
projected onto an image plane. (c) The detected featurdsedia¢e. . . . 60
28 Registration using least squares conformal maps (LSCMs).arfd (d)
are two original inter-frame 3D face surfaces with texturBimation.
(b) and (e) are these faces without texture. (c) and (f) aie thgistered
LSCMS. . . . e e e e e 61
29 Facial expression manifold. The curve is Isomap for 30steged
facial expression sequence(some frames are shown in uppgerr. 63

Xiii



30

31

32

33

34

35

36

Spatial feature correspondence detection using harmamisnga) and (c)

are source and target faces. (b) and (d) are their harmornps nommputed

by our method. After detecting the one-to-one correspoceein their

2D harmonic maps, we can obtain the spatial feature cormelgpees be-
tween 3D source and targetfaces.. . . . . . .. . ... 65
An example of motion vector transfer. (a) and (b) are souaced with
different expressions. (c) is the color-coded magnitudemation vectors

in the source model. (d) is the target face model. (e) is teares] expres-

sion on the target face. (f) is the color-coded magnitudeatfon vectors

to be transferred to the target face model (d). . . . . . . . . . . ... 66
Comparison of the three registration methods. . . . . .. ... 67
Synthesis of new facial expression by weighting two déffe ex-
pression type: smile in the first row and surprise in fourtiv.ro
Second row: 70%mile+ 30%surprise Third row: 30%smile+
TOUBUIPrISE . . . v o e e e e e e e e 69
Exaggerated expression transfer. Source face modekwattger-

ated expressions are shown in the first row. Transferreceszmms

on two target faces are showed in the second and third ropgces
tively. The target faces have different shapes and textwieshe
expressions are proportionally scaled to fit each modelwell. . . 70
Expression transfer. Source face model with differepressions

are shown in the first row. Transferred expressions on tlgetar
face are shown in the second row. From left to right, emotiona
expressions are neutral, happy, surprised, sad and aegpgatively. 71
Expression transfer from a male subject to a topologiddiffer-

ent face model under different resolutions. Source faceemnwidh
different expressions are shown in the first row. Transteesgres-

sions on the target face which has different topology dueissimg

data (missing in eye region during data acquisition) arevshio

the second row. Expression transfer results of the targetvath

only 1/4 of the original resolution are shown in the third row. . . 72

Xiv



37

Expression Transfer results (Man Man and Man= Woman=-

Man). Source face models in different frames are shown iffitsie

row. Expression transfer results (Mas Man) are shown in the
second row. Expression transfer results (ManNoman=- Man)

are showninthethirdrow. . . .. .. ... ... ... ....... 73

XV



List of Tables

1 Performance comparison of conformal geometric maps. . . . . . . .

2 Recognition results of least squares conformal mapsyisahbar-
monic shape contexts and surface curvature technique.

3 Average errors of expression transfer. . . . .. .. ... .. ..

XVi



Acknowledgements

| want to express my deep gratitude to my advisor, ProfessoigHQin, for his
years of support and encouragement. He gave me a great hdlppaght me how
to set higher goals and accomplish them.

I would also like to thank Professors Joseph Mitchell, Xesngf Gu for their
valuable advices, collaborations, as well as for servingrarious committees.

| would like to thank Professor Lijun Yin for taking the tinederve as the
external member of my dissertation committee.

| would also like to thank all my collaborators and colleague the center of
visual computing and computer science department for tiad.

Last but not least, | want to thank my family for their endles® and support.
This dissertation is dedicated to them.



Publications

Journal Publications

1. Yang Wang, Mohit Gupta, Song Zharfggn Wang, Xianfeng Gu, Dimitris
Samaras, Peisen Huang. “High Resolution Tracking of NayieRViotion of
Densely Sampled 3D Data Using Harmonic Magsternational Journal of
Computer Vision (IJCV)Volume 76, Issue 3, Pages: 283-300, March 2008.

2. Sen Wang, Yang Wang, Miao Jin, Xianfeng Gu, Dimitris Samaras. “Canfo
mal Geometry and Its Applications on 3D Shape Matching, Beitimn and
Stitching”. IEEE Transactions on Pattern Analysis and Machine Intellige
(PAMI), Volume 29, Issue 7, Pages: 1209-1220, July 2007.

Conference Publications

3. Sen Wang, Xianfeng Gu, Hong Qin. “Automatic Non-rigid Registratiof
3D Dynamic Data for Facial Expression Synthesis and Trathsfa IEEE
Computer Vision Pattern Recognition 2008 (CVPRG@®)chorage, Alaska,
USA, June 2008.

4. Xianfeng Gu,Sen Wang, Junho Kim, Yun Zeng, Yang Wang, Hong Qin,
Dimitris Samaras. “Ricci Flow for 3D Shape Analysis”. International
Conference of Computer Vision 2007 (ICCV(Rio de Janeiro, Brazil. pp.1-
8, October 2007.

5. Sen Wang, Yang Wang, Miao Jin, Xianfeng Gu, Dimitris Samaras. “3D-Sur
face Matching and Recognition Using Conformal Geometng'lHEE Com-
puter Vision Pattern Recognition (CVPRO®ew York, USA, pp. 11:2453-
2460, June 2006.

6. Yang Wang, Mohit Gupta, Song Zhartgen Wang, Xianfeng Gu, Dimitris
Samaras, Peisen Huang. “High Resolution Tracking of NayieR8D Motion

Xvili



of Densely Sampled Data Using Harmonic Maps”.International Confer-
ence of Computer Vision 2005 (ICCV0QBEijing, China, pp. 388-395, Octo-
ber 2005.

. Sen Wang, Lei Zhang, Dimitris Samaras. “Face Reconstruction acinks
ferent Poses and Arbitrary Illumination Conditions”. Audio and Video
based Biometric Person Authentication (AVBPAM®Ww York, USA, pp. 91-
101, July 2005.

. Lei Zhang,Sen Wang, Dimitris Samaras. “Face Synthesis and Recognition
under Arbitrary Unknown Lighting using a Spherical HarnoBiasis Mor-
phable Model”. InNIEEE Computer Vision Pattern Recognition (CVPR05)
San Diego, USA, pp. 11:209-216, June 2005.

. Lei Zhang, Yang WangSen Wang, Dimitris Samaras. “Image-Driven Re-
targeting and Relighting of Facial Expressions”. Gomputer Graphics In-
ternational (CGI05) New York, USA, pp. 11-18, June 2005.

XiX



Chapter 1
| ntroduction

Shape registration is a fundamental issue in computenvesnal graphics with
many applications, such as partial scan alignment, 3D bbgeognition and clas-
sification, shape modeling and analysis, etc. Nowadaysjgisldohotographic
and scanning technologies improve, large databases of &% sequire automated
methods for matching and registration. However, registeBD shapes in noisy
and cluttered scenes is a challenging task. Moreover, siost 3D shape scanners
can only capture 2.5D data of the target surfaces, aligmaigséitching partial 3D
surfaces is a fundamental problem in many research aredsasicomputer vision
and graphics, mechanical engineering, and molecular dpyolBxamining the rich
literature of shape registration and analysis, the topic®a-rigid shape registra-
tion, dynamic deformable surface tracking, and shape nmoglahd analysis appear
to be less explored. Developing new algorithms and teclasidor shape registra-
tion and analysis has become a common and long-term missmmputer vision
and graphics field.

Our research tries to build useful and high-fidelity shapéchiag and reg-
istration methods and apply them to many applications. @search focuses on
the following aspects: (1) How to design shape matching agiktration meth-
ods with noise, occlusions and resolution variations; (8vHo register 3D non-
rigid deformable data automatically and efficiently witmmaum human labor and
manual work; (3) For one kind of specific shape - human fack wiany degree
of freedom, how to build a system to automatically registan-nigid 3D dynamic
facial data with expressions.



CHAPTER1. Introduction 2

In this dissertation we present a novel framework for shapdeting, regis-
tration and scientific analysis especially for facial datd anedical data. Figure 1
shows the complete conceptual hierarchy of the proposedrres. Firstly, we ana-
lyze a family of quasi-conformal maps including harmonigasiaconformal maps,
and least squares conformal maps with regards to 3D shaphimgt As a result,
we propose a novel and computationally efficient shape rnmgdramework by us-
ing least squares conformal maps. The robustness of leaatesjconformal maps
is evaluated and analyzed comprehensively in 3D shape mgtefith occlusion,
noise, and resolution variation. In order to further dentiate the performance of
our proposed method, we also conduct a series of experirantso computer
vision applications, i.e., 3D face recognition and 3D nimidrsurface alignment
and stitching. After that, we show that previous method®8as conformal ge-
ometries, such as harmonic maps and least squares conforaps, which can
only handle 3D shapes with simple topology are subsumed bRRizgi flow based
method which can handle surfaces with arbitrary topologcdiise the Ricci flow
method is intrinsic and depends on the surface metric ohiy,invariant to rigid
motion, scaling, and isometric and conformal deformatioffse solution to Ricci
flow is unique and its computation is robust to noise. Large-ngid deforma-
tions can be registered with feature constraints, hencentmeduce a method that
constrains Ricci flow computation using feature points aadure curves. We also
demonstrate the applicability of this intrinsic shape esentation through standard
shape analysis problems, such as 3D shape matching anttatgrs

Automatic non-rigid registration of 3D time-varying datfundamental in
many vision and graphics applications such as facial espeanalysis, synthesis,
and transfer. Despite many research advances in recers, yeatill remains to
be technically challenging, especially for 3D dynamic, skp-sampled facial data
with a large number of degrees of freedom (necessarily usegpresent rich and
subtle facial expressions). We present a new method foneaatto non-rigid reg-
istration of 3D dynamic facial data using least squaresaonél maps, and based
on this registration method, we also develop a new framewbfécial expression
synthesis and transfer. Nowadays more and more 3D dynaensety-sampled
data become prevalent with the advancement of novel 3D sogtechniques. To
analyze and utilize such huge 3D data, an efficient non-riggstration algorithm



CHAPTER1. Introduction
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Figure 1. Conceptual hierarchy of the proposed research.

Facial Expression
Analysis

!

is needed to establish one-to-one inter-frame correspmede Towards this goal,
a non-rigid registration algorithm of 3D dynamic facial @& developed by using
least squares conformal maps with additional feature spmedences detected by
employing active appearance models (AAMs). The proposetthadewith addi-
tional, interior feature constraints guarantees that the-nigid data will be accu-
rately registered. The least squares conformal maps bettmee3D surfaces are
globally optimized with least angle distortion and the fesg 2D maps are stable
and one-to-one. Furthermore, by using this non-rigid tegfion method, we de-
velop a new system of facial expression synthesis and gansf perform a series
of experiments to evaluate our non-rigid registration mmdtAnd demonstrate its ef-
ficacy and efficiency in the applications of facial expresggnthesis and transfer.
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1.1 Problem Statement

A fundamental question in 3D shape matching and registraitinding good
shape representations: What mathematical descriptiomcéhe chosen to repre-
sent the surface of a 3D object on a digital computer? Thersliyeof the ap-
plication fields of 3D shape matching is reflected in a wideetgrof shape rep-
resentations that have been proposed in the past. Diffeygmioaches include
curvature-based representations [77], regional poimesgmtations [15,43,64,72],
spherical harmonic representations [26,27,44], shapeliitons [58], spline rep-
resentations [9] and harmonic shape images [89]. Howeamyrshape represen-
tations that use local shape signatures are not stable amdbtcperform well in
the presence of noise, occlusion and resolution variatiimere also has been a
lot of research on 3D surface alignment and stitching innmedecades, such as
identification and indexing of surface features [24, 70jnpating principal axes
of scans [20], exhaustive search for corresponding poi8§ pr iterative closest
point(ICP) methods [8,48,62,65]. Compared to matchingydlare other additional
issues in surface stitching, such as registration and ratieq [76]. 3D surface
alignment and stitching is still a hard problem especialhew the transformation
between the surfaces to be aligned is non-rigid, e.g., wlldng successive scans
of humans that might not be standing still.

Automatic non-rigid registration of 3D dynamic data is dreathard topic and
still remains a challenging task, especially for dynamumidhdata with many de-
grees of freedom. There has been much research on non-egjgtration of 3D
facial data in recent decades. Existing approaches torgptliis problem typically
involve three key techniques: one is to select feature sparedences manually or
use markers attached on human faces. The second one islibsbstater-frame
correspondences hierarchically using multi-resolutiacidl data. The third kind
of techniques computes correspondences using a 3D deflamalolel. However,
most of existing 3D non-rigid registration methods rely enavering low dimen-
sional parameters of face model or register 3D faces withlloptimization that
may not establish accurate one-to-one inter-frame cooreggnces successfully.
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1.2 Contributions

To overcome the above difficulties, in this dissertation weppse an inte-
grated 3D shape registration and analysis framework fdiasermatching, reg-
istration and reconstruction, facial expression analysiathesis and transfer. In
particular, the contributions of this dissertation aredkoiws:

1. We present a novel shape registration and analysis frarkear computer
vision and graphics based on conformal geometry theoryhwtan map 3D
surfaces to a 2D planar domain, and thus simply all 3D problen2D image
problems.

2. We analyze a family of quasi-conformal maps includingin@mic maps, con-
formal maps and least squares conformal maps with regar@® tehape
matching. As a result, we propose a novel and computatiprdiicient
shape matching and registration framework by using leasareg confor-
mal maps. The robustness of least square conformal mapsalisaéed and
analyzed comprehensively in 3D shape matching with oamtysioise and
resolution variation. We also conduct a series of expertmien two com-
puter vision applications, i.e., 3D face recognition andr8id-rigid surface
alignment and stitching.

3. We demonstrate that previous methods based on confoeoaigjries, such
as harmonic maps and least squares conformal maps, whicbntaman-
dle 3D shapes with simple topology are subsumed by our Riowi flased
method which can handle surfaces with complex topologygéaron-rigid
deformations can be registered with feature constraimiscé we propose a
method that constrains Ricci flow computation using feapaiats and fea-
ture curves. Finally, we demonstrate the applicabilitylos$ intrinsic shape
representation through standard shape analysis probsrols,as 3D shape
matching and registration.

4. We propose a new framework of automatic non-rigid regiitn for 3D dy-
namic facial data. The non-rigid registration frameworkiéveloped by us-
ing least squares conformal maps with additional featureespondences
detected by employing active appearance models (AAMs)e®@as this reg-
istration method, we also develop a new system of facialesgion synthesis
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and transfer.

5. Our shape analysis framework is the first time to solve 3ipshegistration
problems using conformal mapping techniques and can sertreedounda-
tion for a wide range of applications in computer vision anajpdics.

1.3 Dissertation Organization

The remainder of the dissertation is organized as followsChapter 2, we
briefly review theoretical background of parameterizatieohnology and prior
work done in shape registration and facial expression arsalyn Chapter 3, after
analyzing a family of quasi-conformal maps including hameanaps, conformal
maps and least squares conformal maps with regards to 3@ shagching, we
propose a novel and computationally efficient shape magdnamework by using
least squares conformal maps. In Chapter 4, we proposeacsudgistration and
analysis system using Ricci flow. In Chapter 5, we presentaamethod for auto-
matic non-rigid registration of 3D dynamic facial data amdéd on this registration
method, we also develop a new framework of facial expressyothesis and trans-
fer. Finally we conclude this dissertation and outline sdutere research work in
Chapter 6.



Chapter 2
Background Review

Our shape registration and analysis framework is based @vipus work in
conformal geometry and Ricci flow parameterization methdtls also apply our
framework to facial analysis, synthesis and expressiondtier. In this chapter, we
present a brief survey of the prior work done in these relagsgarch fields.

2.1 Theoretical Background

In this section, we briefly introduce theoretical backgmwi three quasi-
conformal maps (harmonic maps, conformal maps and leastragjiconformal
maps) and Ricci flow.

2.1.1 Quasi-Conformal Maps

An important merit of quasi-conformal maps, including hanmit maps, con-
formal maps and least squares conformal maps, is to reda@tishape-matching
problem to a 2D image-matching problem, which has been sitely studied.
Quasi-conformal mappings, which are almost conformal, alodistort angles ar-
bitrarily and this distortion is uniformly bounded througit their domain of def-
inition [3]. We are dealing with 3D surfaces, but since they manifolds, they
have an inherent 2D structure, which can be exploited to ntiadg@roblem more
tractable using conformal geometry theory [32, 68]. Mostkmasing conformal
geometry theory is done in surface parameterization, wbashbe viewed as an

7
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embedding from a 3D surfacgwith disk topology to a planar domab. Follow-
ing the introduction of the notions of harmonic maps, comfak maps and least
squares conformal maps, these three parametric maps withipg@ared in a com-
prehensive manner.

2.1.1.1 Harmonic Maps

As described in [89], a harmonic ma: S — D is a critical point for the
harmonic energy functional,

E(H) = /5 IOH|2d s, 1)

and can be calculated by minimizig(H). The norm of the differentialdH |
is given by the metric ors and D, and s is the area element on 3D surfaSe
[21,23,57,67]. Since the source surface n&ghin the form of aliscretetriangular
mesh, we approximate the harmonic energy as [21, 32, 89],

E(H) =) Kyouy[H(Vo) —H(va)[%, (2)
[Vo,v1]

where[vo, v1] is an edge connecting two neighboring vertiggandvy, andKy, v,
is defined as

}< (Vo—V2) - (V1—V2) (Vo—V3) - (V1 —V3) )
2 |(Vo—V2) X (vi—V2)| ~ [(Vo—V3) X (Vi —V3)| "

3)

where{vp,Vv1,V2} and{vp,Vv1,Vv3} are two adjacent triangular faces.
By minimizing the harmonic energy, a harmonic map can be edatpusing
the Euler-Lagrange differential equation for the energyctional, i.e.,

AE =0, (4)

whereA is the Laplace-Beltrami operator [21,23,57,67]. This Veilld to solving a
sparse linear least squares system for the mappioigeach vertex; [21,32,83,89].
If the boundary condition

H|ss:0S — 0D, (5)

is given, the solution exists and is unique.
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Although harmonic maps are easy to compute, they requirgfaetion of the
above boundary condition, which becomes unreliable wheretare occlusions in
the 3D original data. To overcome this problem, the missiagriolaries can be
approximated [89], which might be enough for rough surfaegamng. However,
since interior feature points are often more robust to aichy it is desirable to
replace the boundary condition with feature constraintsis Tan be achieved by
conformal maps, another mathematical tool in conformahgetoy theory, which
only require several feature constraints as an input anthtebthe need to specify
the boundary condition.

2.1.1.2 Conformal Maps

It can be proven that there exists a mapping from any surfateavdisk topol-
ogy to a 2D planar domain [36], which is one-to-one, onto, angle preserving.
This mapping is calledonformal mappin@nd keeps the line element unchanged,
except for a local scaling factor [25].

Conformal maps have many appealing properties, one of whitteir con-
nection to complex function theory [25, 49]. Consider the @i3e of mapping a
planar regiors to the plane. Such a mapping can be viewed as a function of a com
plex variabled = @ (s). Locally, a conformal map is simply any functianwhich
is analytic in the neighborhood of a poimand such that:’(s) # 0. A conformal
mappingu thus satisfies the Cauchy-Riemann equations, which are

ou ov du ov
x a/, a/ T T ox (6)
whered = u+iv ands= x-+1iy.

Differentiating one of these equations with respecktand the other with

respect to/, we obtain the two Laplace equations
Au=0,Av=0. (7

whereA = % + aa—; Any mapping which satisfies these two Laplace equations is
called a harmonic mapping. Thus a conformal mapping is assmbnic. How-
ever, unlike the harmonic maps described in the previousoseavhich need the



CHAPTER2.  Background Review 10

boundary mappind |55 fixed in advance, conformal maps can be calculated with-
out demanding the mesh boundary to be mapped onto a fixed.slkapen dis-
crete mesh, the main approaches to achieve conformal peana¢gions are: har-
monic energy minimization [19, 30, 32, 81, 82], Cauchy-Raam equation approx-
imation [49], Laplacian operator linearization [36], d@@acking [41], circle pat-
terns [45], most isometric parameterizations(MIPS) [38] angle-based flattening
method [69]. Here, we compute conformal maps using the haicvemergy mini-
mization method [32].

Riemann’s theorem states that for any surf@¢e®meomorphic to a disc, it is
possible to find a parameterization of the surface satigfi@iquation 6 [49], which
can be uniquely determined by two points on surf&ceHowever, to better han-
dle the errors caused by noise in the data and the inaccufaiyding feature
points, we introduce additional feature constraints,dating that the correspond-
ing features on two 3D surfaces should be mapped onto the lemaigons in the
2D domain. However, with these additional constraintss ihdt always possible
to satisfy the conformality condition. Hence, we seek toimire the violation of
Riemann’s condition in the least squares sense.

2.1.1.3 Least Squares Conformal Maps

The Least Squares Conformal Map(LSCM) parameterizatigorthm gener-
ates a discrete approximation of a conformal map by adding @wanstraints. Here
we give a brief description (see [49] for details using ddf@ constraints).

Given a discrete 3D surface meShand a smooth target mappirg : S —
(u,v), then, as described in section 2.1.122js conformal onS if and only if the

Cauchy-Riemann equation,
ou  .0u

& +1 a—y =
holds true on the whole &. However, in general this conformal condition cannot
be strictly satisfied on the whole triangulated surf&eo the conformal map is
constructed in the least squares sense:

U U
MinC(S) = i« 9
inc(9 %S/d'ax“ay' A ©

0 (8)
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whered is a triangle on the mes& If we suppose the mapping is linear ond

then du .0u
CS_—E —— +i—|?A(d), 10

whereA(d) is the area of the triangle. Furthermore letr; = uj +iv; andj =
Xj +iyj, soaj = u(Bj) for j =1,2,...,n. Then, we rearrange the vectrsuch
thata = (a,ap) whereas consists oh — p free coordinates anal, consists ofp
constraint point coordinates. Therefore, Equation 10 earetyritten as

C(S) = |[Mfas +Mpop| %, (11)

whereM = (M¢,Mp), a sparseén x n complex matrixnis the number of triangles
andn is the number of vertices). The least squares minimizatioblpm in Equa-
tion 11 can be efficiently solved using the Conjugate Gradiethod. Thus we
can map a 3D surface to a 2D domain with multiple corresporeeas constraints
by using the LSCM technique.

Since LSCMs have almost all the properties of conformal naaqasalso pro-
vide more correspondences as additional constraints, wecexhem to be very
useful in 3D shape matching and recognition.

2.1.1.4 Comparison of Quasi-Conformal Maps

Based on conformal geometry theory, harmonic maps, cordormaps and
least squares conformal maps(LSCMs) between two topabdijisks preserve con-
tinuity of the underlying surfaces, with minimal stretchi@nergy and angle distor-
tion. All the above quasi-conformal maps are invariant ke $ame source surface
with different poses, thus making it possible to accountdimbal rigid transfor-
mations. A very important property, which governs our matghalgorithm, is that
all the maps can establish a common 2D parametric domaiméotvwio surfaces.
Therefore we can simplify the 3D shape-matching problenfd anage-matching
problem. However, they vary in performance for 3D surfaceacimag as can be
seen in table 1.

Compared to the exact solutions for harmonic maps and coaflomaps,
LSCMs are generated by minimizing the violation of Riemarntondition in the
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Table 1. Performance comparison of conformal geometric maps.

Least Squares

Harmonic Maps Conformal Maps Conformal Maps
Resolution changes Not sensitive Not sensitive Not sensitive
Boundary constraint Needed Not needed Not needed
Boundary occlusion |Difficult to handlg No significant impact |No significant impact
Interior feature Use 2 Points Use more

points used in mapping Do notuse |(from Riemann’s theorem) feature constraints
Error of interior

feature points detection| Not sensitive Sensitive Not sensitive
Nonlinear (with linear
Computational Complexity Linear approximation available Linear

least squares sense. This optimization-based paranatienaznethod has the fol-
lowing properties:

1. LSCMs have the same properties as conformal maps, eigtemse and
uniqueness which have already been proven in [49].

2. LSCMs can map a 3D shape to a 2D domain in a continuous mavitkrer
minimized local angle distortion.

3. LSCMs can handle missing boundaries and occlusion anchliésv multiple
constraints.

4. LSCMs are independent of mesh resolution.

5. The least squares minimization problem in calculatin@Ms has the advan-
tage of being linear.

For actual 3D surfaces, it is very likely to have noise andsmigdata. From
the above comparison, we can see that LSCMs are the bestlasmdimong all
three parametric maps to perform 3D shape matching effigiehSCMs do not
require the boundary condition explicitly which means tloayn handle missing
boundaries and occlusions. Also, they take multiple featianstraints as input,
which allows them to better handle noise introduced by theufe point detection.
We will confirm this experimentally in the Chapter 3 by anahggthe robustness
of the three parametric maps for 3D shape matching with sauhy noise and res-
olution variation.
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2.1.2 Ricci Flow

This section briefly introduces the theoretic backgroungsusface Ricci flow
(For the details in [37]).

Let Sbe a smooth surface embeddedri® thenS has an induced Euclidean
metricg. Supposeal: S— R is a function on the surface, we can define another
metricg = €“g, which isconformalto the original metrigy with an area distortion
factore. We callu the conformal factor

Furthermore, when the metric 8fis changed frong to g along the change of
u, every intrinsic property (e.g., Gaussian and geodesiatures) ofSis changed.
The Gaussian curvatukeof interior points changes Hy= e 2U(k—Au), whereA is
the Laplace-Beltrami operator [11] induced by the origimetricg. The geodesic
curvaturekg on the boundary points changeskgs= e (kg — ), wheren is the
normal to the boundary of the surfags.

Although the curvature value at a point is determined from Riemannian
metric, the sum of the total curvatures solely depends otoffedogy of the surface,
as described in the Gauss-Bonnet formulae [11], such that

/S kdA+ /a Skgds: /S kdA -+ /a Sl?gds—: 21x(S), (12)

wherex(S) is the Euler characteristic number of the surf&ce

Ricci flow is a powerful tool to compute the desired metrihich satisfies
the given target curvatute from the induced metrig in S. Supposesis a closed
surface with a Riemannian metiggthe Ricci flow is defined as

dg
it —2kg, (13)

wherek is the Gaussian curvature determined by the current metric.

Surface Ricci flow deforms a Riemannian meito another metrie2()g,
which is conformal to the original one. When the desiredetacglrvaturé?is given,
then the corresponding conformal metric can be achievetdjoilowing general
Ricci flow

du(t)

—r = 2(k—k(t)). (14)

Eventually, the limit metrigy(e) becomesg, which is conformal tay and satisfies
the target curvaturk.
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Surface Ricci flow offers a novel means to manipulate shagesubvatures
and Riemannian metrics. Specifically, it ceonformallytransform all shapes to
one of the three canonical spaces: the sphere, the planghehgperbolic space.
For example, by using Ricci flow we can calculate the madrievhich satisfies
non-zero curvatureis_g only on the boundary o6 Then, we can simply flatten
Sinto a 2D planar domain with the metrgc Therefore, all 3D problems can be
converted to 2D problems in theses canonical spaces. Int@hapve demonstrate
how Ricci flow provides a powerful unified tool for computesizin applications,
such as surface matching and shape registration.

2.2 3D Facial Expression Analysis Review

Automatic non-rigid registration of 3D time-varying defyseampled data is a
fundamental and critical issue in 3D vision and graphicschiias widespread ap-
plications. As 3D scanning technologies continue to impr@D dynamic densely-
sampled data is becoming more and more prevalent for asaysi synthesis. To
study and analyze such huge data, an efficient non-rigictragion algorithm is
necessary to establish one-to-one inter-frame corregmued automatically. How-
ever, automatic 3D non-rigid registration still remainshaltenging task, espe-
cially for dynamic densely-sampled facial expression deith many degrees of
freedom. There has been much research on registration oa&BIl fdata in re-
cent decades. Existing approaches to solving this probypmdlly involve three
key techniques: one is to select feature correspondenceaathaor use mark-
ers attached on human faces [34, 56, 71]. The second one ®ablish inter-
frame correspondences hierarchically using multi-rdsmufacial data [55, 85].
The third kind of techniques computes correspondenceg aslow-resolution 3D
deformable model [12, 60, 73]. However, most of these axgsB8D non-rigid reg-
istration methods rely on recovering low dimensional pastars of face model or
register 3D faces with local optimization that may not esalaccurate one-to-one
inter-frame correspondences successfully.

Realistic facial animation and expression analysis remairnfundamental
challenge in vision and graphics. Earlier approaches etglimodel the facial
anatomy, deriving facial animations from the physical bétvs of the bone, joint,
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and muscle structures [47, 86]. Others focus only on thexsardf the face, using
smooth surface deformation mechanisms to create faciakssions [34, 56, 85].
These approaches make use of existing data for animatingvanuelel. Previ-
ous works also use techniques for tracking head motions aaidl fexpression in
video [18, 60] and copy deformations from one subject onéogbometry of other
faces [12]. Expression cloning [56, 63, 71] improves upas tleformation trans-
fer process with both 3D source and target face data. Rgcéatial animation
and expression analysis using 3D motion capture becomdsltaeawith the ad-
vancement of new 3D scan techniques [85, 90]. However, tBBs@otion data is
not registered in the space-time domain. For this purposan@er of registration
method have been proposed for 3D dynamic facial data. Zhiaalg [90] propose
a new tracking method based on optic flow estimation whichlm&aensitive to
noise. Wang et al. [85] use a hierarchical method to track 3ifian facial data
with expression transfer at the cost of making the estimatfiomodel parameters
more difficult. Moreover, their method requires a lot of mahwork by dividing
the face model into several deformable regions.



Chapter 3

Shape Registration and Analysis
Using Quasi-Conformal M aps

In this chapter, we analyze a family of quasi-conformal miagtuding har-
monic maps, conformal maps and least squares conformal mvdapsregards to
3D shape matching. As a result, we propose a novel and comigradly efficient
shape matching framework by using least squares conforrapbnThe robustness
of least square conformal maps is evaluated and analyzeg@mansively in 3D
shape matching with occlusion, noise and resolution vamat\We also conduct a
series of experiments on two computer vision applicatioes,3D face recognition
and 3D non-rigid surface alignment and stitching.

This work has been published in the proceedings of the IEE&rational
Conference on Computer Vision and Pattern Recognition 2096 An extended
version with more applications has been published in IEE&h$ection on Pattern
Analysis and Machine Intelligence 2007 [80].

3.1 Introduction

3D shape matching is a fundamental issue in computer visidngaaphics
field with many applications, such as shape registrationtjgbascan alignment,
3D object recognition and classification [10, 40, 64, 87]. digital photographic
and scanning technologies improve, large databases of &% sequire automated

16
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methods for matching. However, matching 3D shapes in naidychuttered scenes
is a challenging task. Moreover, since most 3D shape scarmuagr only capture
2.5D data of the target surfaces, aligning and stitchintjgd&D surfaces is a fun-
damental problem in many research areas, such as compsien,vinechanical
engineering, and molecular biology.

Generally, the crux of 3D shape matching is finding good shapeesen-
tations, allowing us to match two given free-form surfacgscbmparing their
shape representations. Different approaches includeattuerbased representa-
tions [77], regional point representations [15, 43, 64, Bpherical harmonic rep-
resentations [26, 27, 44], shape distributions [58], spliepresentations [9] and
harmonic shape images [89]. However, many shape repréieestéhat use local
shape signatures are not stable and cannot perform wek iprésence of noise. In
this chapter, we propose to use a family of quasi-conformgbsnincluding har-
monic maps, conformal maps and least squares conformal thapdoes not suffer
from such problems. According to conformal geometry theeagh 3D shape with
disk topology can be mapped to a 2D domain through a globahagtion and the
resulting map is a diffeomorphism, i.ene-to-oneandonto. Consequently the 3D
shape-matching problem can be simplified to a 2D image-rnrajgiroblem of the
guasi-conformal maps. These maps are stable, insensitiesdlution changes and
robust to occlusion and noise. The 2D maps integrate geanaetd appearance
information and 2D matching is a better understood probl&nd]]. Therefore,
highly accurate and efficient 3D shape matching algorithamshe achieved using
guasi-conformal maps.

The robustness and easy use of the technique we proposeduslith cope
with more challenging problems such as surface alignmedtsatitching, when
only two parts of surfaces could be matched. There has beehd tesearch
on 3D surface alignment and stitching in recent decades, asiaentification and
indexing of surface features [24, 70], computing principats of scans [20], ex-
haustive search for corresponding points [13], or iteeatisest point(ICP) meth-
ods [8,48,62,65]. Compared to matching, there are othdtiedal issues in sur-
face stitching, such as registration and integration [3g]).surface alignment and
stitching is still a challenging task especially when ttengformation between the
surfaces to be aligned is non-rigid, e.g., when taking ssgige scans of humans
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that might not be standing still. Based on conformal geoytégory, an important
property of Least Squares Conformal Maps(LSCMS) is that tae map a 3D sur-
face to a 2D domain in a continuous manner with minimizedllangle distortion.
This implies thalLSCMs are not sensitive to surface deformatjomisich leads to
a natural solution to 3D non-rigid surface alignment anttistng.

Quasi-Conformal maps including harmonic maps, conformabsnand least
squares conformal maps have been used in several appiisaifocomputer vi-
sion and graphics. In [89], Zhang et al. proposed harmonipsniar surface
matching. In [83], Wang et al. use harmonic maps to track odya@D surfaces.
In [30, 32, 81, 82], conformal maps are used for face and lsaiface matching.
Moreover, Sharon et al. [68] use conformal maps to analyaelagities of 2D
shapes. Least squares conformal maps are introduced byetalyf49] for texture
atlas generation and used by Wang et al. [79] to do 3D surfatetmg. In order to
calculate harmonic maps, the surface boundary needs teebsfidd and a bound-
ary mapping from 3D surfaces to the 2D domain needs to beatteahich can be a
difficult problem especially when part of the surface is adeld. However, the two
other quasi-conformal maps we discuss in this chapter,ocoral maps and least
squares conformal maps, do not need boundary informatidsa@afend themselves
as a natural choice to solve this problem. Moreover, in adib the advantages
of harmonic maps, such as sound mathematical basis anavatse of continuity
of the underlying surfaces, conformal maps are also angieepving, which leads
to less distortion and robustness to noise. The differebeggeen conformal maps
and harmonics maps are shown in Figure 2.

3.2 Shape Matching and Registration Using Least
Squares Conformal Maps

To match 3D shapes accurately and efficiently, a new 2D reptason, least
squares conformal shape images, is developed in our frarkewging LSCMSs.
Therefore, we simplify the original 3D shape-matching peaibto a 2D image-
matching problem. In particular, our shape matching fraor&includes two steps:
First, interior feature correspondences are detectediby apin-images [43]; After



CHAPTER3.  Shape Registration and Analysis Using Quasi-Confornagd/ 19

(h)

Figure 2: Distortion comparison between a conformal map and a hawmap. (a) Orig-
inal surface without texture. (b) Original surface withttee. (c) The 2D conformal map
of the surface with texture. (d) The harmonic map of the serfaith texture. (e) Checker-
box textured surface by conformal mapping. (f) Checkerlexxured surface by harmonic
mapping. Because of angle-preservation, (c) and (e) hasedistortions than (d) and (f),
which can be clearly seen in the close-up views (g) and (H)ethin areas in the red boxes
respectively.

that, we generate and match least squares conformal shagesm

3.2.1 Correspondence Detection Using Spin-l mages

In order to use least squares conformal mappings, we neestablish inte-
rior feature constraints between the 3D shapes. For thisogetr we first select
candidate points with curvature larger than a thresfigldnd then compare their
spin-images to detect feature correspondences. The spige is a well-known
technique that has been proven useful for 3D point matchag [It encodes the
surface shape surrounding an oriented pgpibly projecting nearby surface points
into a 2D histogram, which has cylindrical coordinates diwar and heighh cen-
tered atp, with its axis aligned with the surface normal pf The number of bins
and support size in the spin-image histograms are parasrfeted at generation. It
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has been shown that the matching results using spin-imageasensitive to the
choice of the above parameters [40]. In our experimentshitjeest confidence
feature correspondences are used. The typical numberauitedlfeature points is
5-6 for 3D face surfaces and 10-12 for brain surfaces.

3.2.2 Least Squares Conformal Shape Images(LSCSls)

In this section, we will introduce a method to describe 30aes using least
squares conformal shape images (LSCSIs). In section 2,g. have shown that
there exists a least squares conformal mapping that can awp3® surface with
disk topology to the canonical 2D domain. The LSCSIs are ge#ed by asso-
ciating a shape attribute with each vertex. Mean curvatsii@ useful geometric
attribute that depends only on the surface’s intrinsic getoyn In our method, the
mean curvature is computed in the same way as in [32]. Moretaast squares
conformal maps can also help generate additional shapesemations by associ-
ating other attributes, e.g. texture, which leads to a aagolution of combining
multiple important cues for 3D surface matching and recgmj such as shape
and texture. In our current framework, these cues are waigbqually for surface
matching. More elaborate schemes to combine different caesbe done in the
future work.

As an example, Figure 3(d) shows the LSCSI of the surfacer€ig(b), with
darker color representing larger mean curvature. Figuagi8(the original surface
with texture information and Figure 3(c) is its LSCM. Figde) is the LSCM of a
lower resolution(25%) version of the original surface. Bimailarity between Fig-
ure 3(c) and Figure 3(e) shows that LSCMs are independeatstdution variation.

3.2.3 Matching Surfaces by Matching LSCSIs

Given two general surfacéy andS, with disk tropology, we first detect high
curvature correspondences using spin-images. Then, bypoarating interior cor-
respondences as constraints, LSCSIs are generated fagwtdhes as described in
the above section. After that, the normalized correlatiogfficientMs, s, and the
similarity criterionS(S;, ;) introduced in [42] are computed on the two resulting
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(a) (b) - (d) {e)

Figure 3: Least Squares Conformal Shape Image: (a) Original surfaitetexture. (b)
Original surface without texture. (c) Least squares candrmaps with texture. (d) Least
squares conformal shape image. (e)Least squares confanap@d of the same surface,
sub-sampled by a factor of 4, still very similar to (c).

LSCSIs by

NS pp? - pr Y p?

Ms,s, = ; (15)
VNS (p2)2— (2 p2)2)(NY(p)2 - (3 p2)2)
1+Ms, 1
(S, S) :(mﬁ)z—m- (16)

whereN is the number of overlapping points in the LSCSIs of 3D sw@facandS,,
and pis“ is the value (e.g., the mean curvature or the texture) oftpamthe LSCSI
of surfaceS((k = 1,2). In the case of matching surfaces with different resohsj
N is the number of overlapping points in the LSCSIs of the sigfaith the lower
resolution.

According to section 2.1.1.4, an important property of lt&xguares Confor-
mal Maps (LSCMs) is that they can map a 3D shape to a 2D domaircontin-
uous manner with minimized local angle distortion. This liepthatLSCSIs are
not sensitive to surface deformatioresg., if there is not too much stretching be-
tween two faces with different expressions, they will indgemilar LSCSIs. As an
example, Figure 4 shows a comparison between the LSCSlses faith different
expressions and of different faces. More specifically, tist, fthe second, and the
third columns of Figure 4 correspond to face scans of oneestlyith different
expressions while the forth column corresponds to anothigjest. For each col-
umn in Figure 4, the bottom row represents the LSCSIs of thiases (shown in
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the middle row), with darker color representing larger mearvature. The orig-
inal surfaces with texture information are also shown intthgerow of Figure 4.
Based on Equation 15, the normalized correlation coeffidiel ;) between Fig-
ure 4(i) and Figure 4(j) and the normalized correlation iceht (M; k) between
Figure 4(i) and Figure 4(k) are 0.92 and 0.86, respectiwehjle the normalized
correlation coefficientNJ; |) between Figure 4(i) and Figure 4(l) is only 0.65. As is
evident, the normalized correlation coefficients of LSCi@swveen the face scans
of the same person with different expressions are muchrénge the coefficients
between face scans of different persons, thus making iifdess match surfaces
with small deformations using LSCSIs. This relative expr@s-invariance is also
an important property for shape representations used ér&ognition.

However, for 3D surfaces with holes, which violate the dgkdlogy assump-
tion, we can not calculate the LSCMs directly. To overcomes pinoblem, we can
simply fill in the holes through interpolation [50] and thesewour method to gen-
erate the LSCSIs of the new surfaces. The filled-in regioasvasked out when
we compute the normalized correlation coefficient usingdfign 15. As discussed
in section 2.1.1.4, LSCMs depend on the geometry in a cootismanner, which
leads to robustness to local perturbation. Figure 5 dematestthe robustness of
our method to holes on surfaces. The normalized correlato®ificient of the
LSCSIs shown in Figure 5(b,f) is 0.99, which means a very goatch between
the two surfaces of Figure 5(a,e) after hole filling. If weide$o preserve the non-
disk topology of the object during matching, then the obgaiuld be partitioned
into simpler parts with disk topology [49] which could thea tmatched. Optimal
partitioning will be studied in future work.

3.3 Experimental Results and Performance Analysis

In this section we analyze the robustness of our proposecapesmatching
method using least squares conformal maps on real data edthsion, noise and
resolution variation. Furthermore, we demonstrate théop@ance of our method
through two applications: 3D face recognition and 3D na@ndrsurface alignment
and stitching.
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(i) 0) (k) ()

Figure 4: Surface matching with deformation: The original 3D surtawesth texture are

in the top row. The detail of the deformed mouth areas are showhe second row and
the LSCSIs of the original surfaces are in the last row. Irhaaav, the first, the second,
and the third surfaces are from the same person with diffesgrressions and the forth one
is another person. The normalized correlation coefficight( between (i) and (j) and the
normalized correlation coefficientk k) between (i) and (k) are 0.92 and 0.86, respectively,
while the normalized correlation coefficieMl{;) between (i) and () is only 0.65.

3.3.1 Robustness Analysis

In this section we use two surface types: brains (4 instgrasesfaces (6 in-
stances) to analyze the performance of our proposed 3D shaghing method.
We present three experiments in which 3D surface matchipgiliformed under
occlusion, noise and resolution variation using least segiaonformal maps, fol-
lowed by a full comparison between several related work asgeonformal maps
including harmonic maps, conformal maps and least squargsmnal maps.
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(b) (d)

Figure 5: An example of surface matching with holes : (a) A frontal 3&rsc (b) The
LSCSI of (a). (c) A side 3D scan of the same subject as in (ai;iwimas a hole illustrated
in (d). (e) The same surface of (c,d) after hole filling. (ENbSCSI of (e).

3.3.1.1 Experiment on Data Occlusion

In this experiment, we test the robustness of Least Squasatofinal Maps
(LSCMs) under occlusion for both face and brain surfacesh®weclusions might
be caused by rotation of the object in front of the scannguiréis 6 and 8 show ex-
amples of 3D face and brain surfaces respectively, undfareift occlusions with
their least squares conformal shape images (LSCSIs). Fbr @&ginal surface,
partially occluded surfaces were generated with occlustes between 5% and
45%. Average matching results of these face and brain fgfasing LSCMs are
shown in Figure 7 and 9, respectively. In experiments, wesopose the matched
surfaces with significant occlusions (only 60% of area is icam to both). Match-
ing error is very hard to detect visually, which suggests tha framework could
be useful for partial scan alignment.

3.3.1.2 Experiment on Noisy Data

The second experiment tests the robustness of Least Sqtamézmal Maps
(LSCMs) in the presence of noise. We add gaussian ngige(o)) on each vertex
of the face and brain surfacew increases from 0.0 mm to 2.0 mm while the
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Figure6: 3D face surfaces and their LSCSIs under occlusion. Theali@D face surfaces
with different occlusions are in the top row. Their LSCSIe ar the bottom row.
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Figure 7. Average matching results of the face surfaces under oociuging LSCMs.
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Figure 8: 3D brain surfaces and their LSCSIs under occlusion. Thamai@D brain
surfaces with different occlusions are in the top row. Th&CSIs are in the bottom row.
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Figure 9: Average matching results of the brain surfaces under dotlussing LSCMs.

window size for computing the curvatures of 3D face and bgairfaces is 10.0
mm. Example surfaces with noise under differerdire shown in Figure 10. We
match the various noisy surfaces to the original noisedrteéace and the average
matching results of the face and brain surfaces are showigurd-11 for various
o values. From the results we can see that LSCMs appear rabgatissian noise.
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Figure 10: Examples of face and brain surfaces under gaussian noikdifférento set
t0 0.0, 0.4, 1.0 and 2.0 mm, respectively.
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Figure 11: Average matching results of LSCMs under gaussian noiseasess. The win-
dow size for computing the curvatures of faces surfaces eaid burfaces is 10.0 mm and
theo increases from 0.0 mm to 2.0 mm.

3.3.1.3 Experiment on Resolution Variation

The third experiment tests the robustness of Least Squarefonal Maps
(LSCMs) to resolution changes. Figure 12 shows example®dk8e and brain
surfaces with resolution variation, where all the meshe® lthe same shape but
different resolution. The surfaces with low resolution aratched to the original
surfaces and average matching results using the LSCMs avensh Figure 13.
Results show that LSCMs achieve fairly stable matchingltesind impervious to
resolution changes. A small deterioration of the matchesylts is due to the use
of a discrete curvature approximation, since approxinmagioor increases as the
resolution drops.

3.3.1.4 Comparison Between Quasi-conformal Maps

For completeness purposes, we also performed comparigmarnierents be-
tween several related work of quasi-conformal maps, inotkast squares con-
formal maps, conformal maps [32] and harmonic maps [83, &80Lonfirm the
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Figure 12: 3D face and brain surfaces with 1, 1/2,1/4 and 1/8 of the waigiesolution,
respectively.
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Figure 13: Average matching results of LSCMs under resolution vamati

conclusion in Section 2.1.1.4. Average matching resulthefface and brain sur-
faces using the above three parametric maps under occjusitse and resolution
variation are shown in Figure 14, 15 and 16, respectivelyrigure 14, since the
harmonic maps require satisfaction of the surface bounctamgition as discussed
insection 2.1.1.1, the performance of harmonic maps is mgpacted than the per-
formance of conformal maps and least squares conformal.nagisad, changes of
boundary have very small effects on both conformal maps @ast kquare confor-
mal maps. From the results in Figure 15 we can see that adl thegps appear robust
to gaussian noise. However, since conformal maps dependeaiite points only,
which might be detected with errors caused by the noise,libeg lower matching
rates than the harmonic maps and the least square conforapa. nirinally, Fig-
ure 16 shows that the above three parametric maps achielestable matching
results and all of them are impervious to resolution changes
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Figure 14: Average matching results of the face and brain surfacesrwuabusion using
all three parametric maps.
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Figure 15: Average matching results of all three parametric maps ugdessian noise in-
creases. The window size for computing the curvatures ekfaarfaces and brain surfaces
is 10.0 mm and the increases from 0.0 mm to 2.0 mm.
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Figure 16: Average matching results of all three parametric maps ureseiution varia-
tion.

3.3.2 Recognition of 3D Faces

In this section, we apply Least Squares Conformal Maps (LSadm3D face
recognition on a 3D face database which contains 100 3D faaressrom 10 sub-
jects. The data are captured by a phase-shifting structigleicranging system in
different time [91]. Each face has approximately 80K 3D p®imith both shape and
texture information available (example face data from twbjscts in the database
are shown in Figure 17). In order to further evaluate our gad¢con method, we
also perform a comparison with other existing methodsuuiclg the surface curva-
ture technique [77] and the spherical harmonic shape ctst2&]. For the compu-
tation of curvatures from 3D surfaces we had to chose theo$itee neighborhood
for the surface fit. Clearly, choosing the mask size is a t@tibetween reliability
and accuracy. When choosing a small mask curvature conmputaill be strongly
affected by noise, due to the small number of points consaiar regression. The
reliability of the curvature estimation can be improved hygreasing the size of
the mask. However, a large mask size will produce an incbresult in the area
curvature changes quickly. In our experiments, we used & isias of 10x 10.
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The spherical harmonic shape contexts descriptor is cadpusing the method
developed in [26], based on 3D shape contexts. The 3D shaypexts technique is
the straightforward extension of 2D shape contexts [54§htee dimensions. The
support region for a 3D shape contexts is a sphere centerdégedmasis point p
and its north pole oriented with the surface normal estimater p. The support
region is divided into bins by equally spaced boundariefiénazimuth and eleva-
tion dimensions and logarithmically spaced boundariesgtbe radial dimension.
Based on the histogram from 3D shape contexts, we use theahias/as samples
to calculate a spherical harmonic transformation for tredlstand discard the orig-
inal histogram. The descriptor is a vector of the amplituofethe transformation,
which are rotationally invariant in the azimuth directidinys removing the degree
of freedom. We compute the spherical harmonic shape cantegtesentations in
64 x 64 grids sampled evenly along the directions of longitude latitude with
bandwidthb = 16.

In each experiment, we randomly select a single face frorn salject for the
gallery and use all the remaining faces as the probe set.VEnage recognition re-
sults from 15 experiments (with different randomly seldagalleries) are reported
in Table 2. From the recognition results, we can see thatts kquares conformal
maps perform 10% better than the spherical harmonic shape contexts aBé&dl4
better than the surface curvature technique even if onlystiaoe information is
used. Moreover, least squares conformal maps allow to cuentoth shape and
texture information, which improves the accuracy of 3D femsognition.

Table 2. Recognition results of least squares conformal maps, mglhdrarmonic shape
contexts and surface curvature technique.

Recognition Result Least Squares| Spherical Harmoni¢c Surface
Conformal Mapg Shape Contexts | Curvature
Using shape information only 97.3% 86.6% 83.0%
Using texture information only 98.0% N/A N/A
Using both shape and texturg 98.4% N/A N/A
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Figure 17: Two subjects in the 3D face database. Shape informationtigifirst row and
texture information is in the second row.

3.3.3 Non-Rigid Surface Alignment and Stitching

In this section, we apply the Least Squares Conformal Ma&pSMs) to an-
other application: 3D non-rigid surface alignment ancchiitg. A very important
property, which governs our alignment and stitching aktoni, is that the LSCMs
can establish a 2D common parametric domain for the 3D ssfatherefore we
can simplify the 3D surface alignment and stitching probtena 2D registration
and stitching problem. Furthermore, because the LSCMs ifedhorphism, i.e.,
one-to-one and onto, we can detect and remove the duplieagexhs in the original
3D surfaces by removing the overlapping areas in the reguD common para-
metric domain. After that, we can stitch the 3D surface peddby connecting the
exclusive regions in the resulting LSCMs. There is a lot skagch on 3D surface
remeshing [1, 2, 6, 61], but in our case the problem is singglifo a 2D triangula-
tion problem by connecting the neighboring patches in the@Dmon parametric
domain. As an example, Figure 18 demonstrates the alignamehgtitching of two
3D surfaces undergoing non-rigid deformations. 3D face<aptured by a phase-
shifting structured light ranging system [91] and each faae approximately 80K
3D points with both shape and texture information availalblee subjects were not
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asked to keep their head and facial expression still duhe@D face scanning.

Furthermore, Figure 19 shows another example of the aectae¢ alignment
and stitching result of our method on two 3D scans of one fakergoing differ-
ent transformations and deformations. The leftmost colshmws the two input
3D face scans with texture. The same 3D face scans withotutréeinformation
are shown in the second column. The Least Squares ConfornagleSimages
(LSCSIs) of both 3D scans are in the third column. Their adyjb SCSIs and the
resulting stitched 3D faces are in the fourth column. Beeaafsthe one-to-one
mapping between the LSCSI and original face, we can aligrsttath 3D faces by
registering and stitching 2D LSCSIs.

In order to demonstrate the performance of our method, wecspare our
results to the results from the Iterative Closest Point JI@EBthod [65] in Figure 20.
Figure 20(a) shows a 3D scan of a neutral face, while Figufe)2hows a 3D scan
of the same face undergoing a large deformation in the maetl &rom Figure
20(c) and (d) which are the front view of (a) and (b), we canteeencclusion area
clearly. The face alignment and stitching result of our rodtls in Figure 20(f)
with the close up view of mouth area in Figure 20(h). The resiuihe ICP method
is in Figure 20(e) with the close up view in Figure 20(g). As gan see, in the
close up view Figure 20(g), there is a redundant region imebelt because the ICP
method failed to detect the overlapping areas between mefbisurfaces and can
only register two surface with rigid transformations. Howe as can be seen in
Figure 20(g) and (h), our method correctly aligns even aasaté# significant local
deformations.

3.4 Discussion

In this chapter, we presented a family of quasi-conformgisnancluding har-
monic maps, conformal maps and least squares conformal, raagroposed a
fully automatic and novel 3D shape matching framework useagt squares con-
formal shape images — a new shape representation whichisgdphe 3D surface
matching problem to a 2D image matching problem. The perémce of least
squares conformal maps was evaluated vis-a-vis otherirgxistchniques in 3D
face recognition and 3D non-rigid surface alignment anidtstig. Furthermore,
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(@)

(b) (d) (f)

Figure 18: An example of surface alignment and stitching: (a,b) Twgiodl 3D faces with
texture in different poses and deformations. (c,d) Orig8iafaces without texture. (e,f)
The Least Squares conformal Shape Images (LSCSIs) of the.fég) The aligned LSCSI
of the two faces. (h) The resulting 3D face by stitching a p&(t) into (d). Because of the
one-to-one mapping between the LSCSI and original face aneatign and stitch 3D faces
by registering and stitching 2D LSCSils.

our comparison results have shown that all above three gdr@maps are robust
to occlusion, noise and different resolutions and that &aetl squares conformal
mapping is the best choice for 3D surface matching.
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(f)

Figure 19: Another example of surface alignment and stitching: (aysp Briginal 3D
faces with texture in different poses and deformationsd)(@riginal 3D faces without
texture. (e,f) The Least Squares conformal Shape ImageS$Ls of the faces. (g) The
aligned LSCSI of the two faces by connecting the non-oveitaparea in (f) into (e). (h)
The aligned LSCSI of the two faces by connecting the nontapping area in (e) into (f).
() The resulting 3D face by stitching a part of (d) into (c)) The resulting 3D face by
stitching a part of (c) into (d). Because of the one-to-on@pirey between the LSCSI and
original face, we can detect and remove the duplicated msgiothe original 3D surfaces
by removing the overlapping areas in the resulting 2D compemametric domain. The
user can decide which of the two expressions to keep on thesfitthed mesh. In this case
(i) has the expression of original (a) and (j) of original.(b)
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(a) (c) (e) 9)

(b) (d) (® (h)
Figure 20: A comparison between the alignment and stitching resuluoiheethod and of
the ICP method: (a) A 3D scan of a neutral face. (b) A 3D scah@fame face undergoing
a large deformation in the mouth area. (c) and (d) are the friew of (a) and (b) with the
occlusion area shown clearly. (e) The face alignment atehstg result of the ICP method.

(g) The close up view in the mouth area of (e). (f) The facenamtignt and stitching result
of our method. (h) The close up view in the mouth area of (f).




Chapter 4

Shape Registration and Analysis
Using Ricci Flow

This work is the first application of surface Ricci flow in cartey vision. We
demonstrate that previous methods based on conformal deesjesuch as har-
monic maps and least-square conformal maps, which can argle 3D shapes
with simple topology are subsumed by our Ricci flow basedadetinich can han-
dle surfaces with arbitrary topology. Our Ricci flow basedtimoel can convert
all 3D problems into 2D domains and offers a general framdwfor 3D surface
analysis. Large non-rigid deformations can be registerdtth feature constraints,
hence we introduce a method that constrains Ricci flow coatiput using feature
points and feature curves. Finally, we demonstrate theiagbpility of this intrinsic
shape representation through standard shape analysidemud such as 3D shape
matching and registration.

This work has been published in the proceedings of the IEE&rational
Conference on Computer Vision 2007 [31].

4.1 Introduction

Ricci flow is a powerful curvature flow method in Riemanniarogetry.
In particular, 3-manifold Ricci flow has been successfulbpléed to prove the
Poincaré conjecture recently [59]. In this chapter, weokhtice Ricci flow as a

39
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novel 3D shape representation for computer vision and gea@pplications. We
are motivated by the fact that Ricci flow can handle arbittapologies, allowing
the mapping of any 3D surface to 2D domain and its ability tadia large 3D
shape deformation.

In recent decades, there have been a lot of researches toglsueface repre-
sentations for 3D surface analysis, which is a fundamessald for many computer
vision and graphics applications, such as 3D shape retiyistrgartial scan align-
ment, 3D object recognition, and classification [10, 40864, However, matching
surfaces undergoing non-rigid deformation is still a aradjing problem, especially
when data is noisy and with complicated topology. Differapproaches include
curvature-based representations [77], regional poimesgmtations [15,43,64,72],
spherical harmonic representations [26, 27], shape loigitans [58], harmonic and
conformal shape images [79, 81, 89], physics-based defdenmaodels [75], Free-
Form Deformation (FFD) [39], and Level-Set based metho@% [However, many
surface representations that use local shape signhatweasoaistable and cannot
perform well in the presence of non-rigid deformation. Gwnial geometric maps
have been used in several applications of computer visidngaaphics. In [89],
Zhang et al. propose harmonic maps for surface matchin@3j) YWang et al. use
harmonic maps to track dynamic 3D surfaces. However, inrdalealculate har-
monic maps the surface boundary needs to be identified andredboy mapping
from 3D surfaces to the 2D domain needs to be created whictbeamn difficult
problem. In [32,81], conformal maps are used for face anohlstarface matching.
Levy et al. [49] use least squares conformal maps for texitles generation, and
Sharon et al. [68] analyze similarities of 2D shapes usingamonal maps. In [79],
Wang et al. analyze a family of quasi-conformal maps for 3&8pgmatching, such
as harmonic maps and least squares conformal maps. Howleeerpnventional
conformal geometric methods have the drawbacks such tbgtcén only handle
surfaces with simple topologies or compute simple maps. Assalt, most ex-
isting algorithms are limited to surfaces with simple ta@p such as genus zero
with/without a single boundary. In contrast, our method bandle surfaces with
arbitrary topologies for shape analysis.

In this chapter, we introduce a new 3D non-rigid surface ysialframework
based on Ricci flow conformal mapping. Surface Ricci flow iaffe novel means to
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manipulate shapes by curvatures and Riemannian metri¢k.Stiface Ricci flow,
the curvature evolves like a heat diffusion process on thfaseland converges ex-
ponentially fast to a constant value. During the whole psscthe angle structure on
the surface is preserved, and the final surface can be emibedadee of the canon-
ical domain, such as the sphere, the plane, or the hyperdudice. By computing
conformal maps using the Ricci flow method, each 3D surfa@n with a compli-
cated topology (e.g. having multiple holes), can be mapped®D domain through
a global optimization. The resulting map does not have amguarities and is a
diffeomorphism, i.e.pne-to-oneandonto. These maps are stable, insensitive to
resolution changes, and robust to noise. Hence, the oligihaurface-matching
problem simplifies to a 2D image-matching problem of the oomfal geometric
maps, which is a better understood problem [5,51, 54].

The previous conformal map methods are subsumed by Ricci fléance,
our framework is more general, while we can take advantagiefignificant
body of work for 3D surface analysis using previous confdrmap methods
[32,68, 79,81, 83,89]. To integrate feature constraintRioti flow computation.
Taking advantage of meaningful features is essential fpmaatching or registra-
tion method. In the case of large non-rigid deformationgchmed features allow ac-
curate description of the deformations. Thus, in order tkerRicci flow applicable
to computer vision problems, we develop: 1) a represemtatideature points and
feature curves suitable to our framework; 2) a novel feabased metric; 3) an al-
gorithm which, based on features, decomposes the surfaceanformal patches;
and 4) an algorithm to embed these patches onto the plané@arget canonical
domains, the entire curvature is concentrated on featurésgpand feature curves
are mapped to straight boundary lines). This associatideatfire points with tar-
get domain curvature is novel and has broader implicationgéometric modeling
and graphics. Finally, we provide initial experiments tdatnonstrate the poten-
tial of our method in a broad range of 3D shape analysis agijdics such as 3D
shape matching and registration in a variety of data setadimg face scans and
biomedical data.



CHAPTER4.  Shape Registration and Analysis Using Ricci Flow 42

4.2 Generalization of Conformal Maps

Conventional conformal geometric methods, such as haenowips, least
squares conformal maps (LSCMs), and methods based on higdbiadorms, can
be unified by Ricci flow. In order to clarify this point, we firstmpare Ricci flow
with conventional methods. Then, we briefly introduce treeite Ricci flow and
show the intrinsic connection between Ricci flow and otherfaomal geometric
maps such as harmonic maps.

4.2.1 Comparing with Conventional Conformal Map M ethods

In general, conformal mapping algorithms can be classifietth¢ following
categories. The first class computes maps from the surfatteetplane, such as
harmonic map method [83, 89], least squares conformal MzpENIs) [49, 79],
spherical conformal maps [4, 32]; The second class aimsmpuating the deriva-
tives of maps, such as the method based on holomorphic f@&8fsihe third class
computes the conformal metrics to induce conformal maps.Ribci flow method
belongs to the third class, which is more general than thera®o classes.

The pull-back metric of a conformal map is a conformal metrigdhe surface,
which induces zero curvature in the entire interior of thgegadomain. Conversely,
the map can be recovered by its pull-back metric directigc&the curvature is zero
everywhere in the map, the pull-back metric can be compusewyLRicci flow by
specifying the target curvature O everywhere. Therefarng canformal maps (with
zero target curvature) which can be computed using eithrendraic maps, LSCMs
or holomorphic 1-form method can be computed by Ricci flow.

The main difference between Ricci flow and conventional méshis in how
much complicated topologies they can handle. In partictiar algorithms in the
first class can handle surfaces with genus 0 with/withouiglsiboundary, but
can not handle high genus cases. The algorithms in the sedassl can handle
all topologies, but they can not compute the conformal mapaden multi-holed
annuli, as shown in Figure 25, which are frequently encaedtén the scanning
process. Furthermore, if the target surface has arbittamyature, only Ricci flow
can find the map. Therefore, Ricci flow is much more general @ralgorithms in
the other two categories can only handle a subset problentidthby Ricci flow.
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Figure 21. Circle packing metric for a triangle. The dual circle (thd mne) in orthogonal
to the other 3 circles.

Ricci flow can address situations that can not be handled lhgr aixisting
algorithms, such as lIterative Closest Point (ICP) [66] aakl set based meth-
ods [52]. ICP can find a good rigid alignment R?, but for non-rigid surface
deformations, such as the bending deformation shown inr&ig@, ICP can not
find a good registration between two surfaces. Level setdhasthods are power-
ful tools for surface analysis. However, it is required ttreg surface deformation
process performed explicitly iR at each step, which will be difficult for surfaces
with complex topology since the deformed surface may notlteta be embedded
in RS,

4.2.2 DiscreteRicci Flow

Conventional Ricci flow is defined @ smooth surfaces. In this section, we
focus on the discrete approximation of Ricci flows on tridagmeshes [14], which
is robust for polygonal meshes with sharp corners. Disdretei flow is useful
for handling noisy data sets in real applications, as shawthe heart registration
example in Section 4.5.

The key observation about the discrete Ricci flow is that trdarmal metric
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deformation can be treated as a local scaling transformatbich preserves an-
gles and transforms an infinitesimal circle to an infinitedigircle. Therefore, the
general idea of the discrete Ricci flow is to cover the mesh agywircles centered
at the vertices. Each circle has a cone angle at the vertexhvdan be treated
as the discrete curvature. Then, by adjusting the circle, ra@ can deform the
Riemannian metric of the mesh in a discrete conformal way. [Tée change of
the circle radii is the analogy to the change of the conforfiaetioru. The relation
between the discrete curvature and the discrete confoantrfisexactly sameas
that in the smooth case.

SupposeM is a mesh with boundargM, a circle packing metri¢M,I", ®)
is shown in Figure 21, where and ® represent the radius function of circles on
each vertex and the intersection angle between two cirtl@sesedge, respectively.
Each edge length is determined by using the cosine law watinatiii of two circles
and the intersection angle on the edge. The vertex curv&fuwjemeasures the
flatness of its neighborhood, which is defined &s-2) ; a; for an interior vertex
andm— ) ; a; for a boundary vertex, whei®’s are the corner angles surrounding
a vertexv. As in the smooth case, the discrete version of Gauss-Bdomatlae
holds,) ", k(v) = 2mx(M). Two circle packing metricéM, "1, ®1) and(M, I 2, ®,)
are conformal, if and only ifp; = ®,.

Therefore, the discrete Ricci flow can be defined in the sanye wa

dy; (t

O _ aen) an
which converges to constant curvature under the constthait the total area
of the mesh is fixed. If we define thdiscrete conformal factoras u =
{Inyy,Iny,,--- . Iny,} and the prescribed target curvaturekas: {ki,ko,---,kn},

then the general discrete Ricci flow is

du(t) ~

—i =k~ k), (18)
which will lead to the desired conformal metric satisfyihg tdesired target curva-
ture.

Actually, Ricci flow is the gradient flow of a specific energyrfg Ricci en-
ergy.
E(u)=> (k —k)du. (19)
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Ricci energy is convex, and therefore it has a unique gloptihm u, which in-
duces the target curvatuke In practice, optimizing Ricci energy is more efficient
than computing Ricci flow. The convex Ricci energy can belgtaptimized us-
ing Newton’s method. The Hessian matrix of the enelgy) can be computed
explicitly as follows.

Suppostfijx € F is a face on the mesh, there exists a unique circle orthogonal
to all three circles at the vertices, shown as the red circlegure 21. We denote
the center of that circle agjx. The distance fronw;j to the edges;j is denoted
ash}‘j. If an interior edges; ¢ dM is shared by two face§jk and fjq, its weight
iswij = h +hi;. If the edge is on the boundary, and only adjacent to fageits
weight iswij = hh

The Hessian matrix dE(u) has the formulae as

-wij i#j,a €k

> KWk i=j,ex€E (20)
0 otherwise

0’E(u)
0u;0u; N

which is positive definite on the hyperplahéu; = const

Now, we will describe how to obtain the conformal map of a giwairface
from the conformal metric obtained from Ricci flow. Alg. 1 stethe procedures of
computing the desired conformal metric by prescribed duresby minimizing the
Ricci energy. For surfaces with boundaries, we introducevelmetric computed
by Alg. 2, such that all interior points have zero curvataneg the vertices on the
same boundary component share the same curvature. latyjtiltis metric will
flatten the surface and map all the boundaries to circled)y@srsin Figure 23.

Once the metric is obtained, the mesh can be isometricalbedaed onto the
plane. The isometric embedding is denoted a¥ — C. This embedding in fact
is harmonic, namely, it minimizes the harmonic enedy) = EajeEWij IT(vi) —
T(vj)|? i.e.,Au)T=0.

4.3 FeatureBased Canonical Domain Decomposition

In practice, itis often useful to add feature constrainishsas point and curve
correspondences when comparing 3D shapes. Hence we pithedseorporation
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Algorithm 1 Compute Conformal Metric by Prescribed Curvature UsingcRic
Flow
while |k —k| > & do
Compute dual circles
Compute edge weight;;
Form the Hessian matri&(u)
SolveA(u)du = (k — k) constrained a} _;dy =0
Updateu = u+du
Updatek
end while

Algorithm 2 Compute Uniform Flat Metric

Compute the boundary componerdy] =C,UCU---UC.
Vv & OM, setk < 0.
W eCj k(v) < 58, wheres; = 1,5 = —1for j # 1.
while [k —k| > € do

Computeu by k using the Ricci energy algorithm.

) si(l(e_)+l(e}))
Y e CJ_, k(v) < T Tl
wherel (e) is the edge length under and
e_ ande, represent two boundary edges incident.to

end while
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of such constraints to the energy minimization and fornautae main framework
of surface matching using Ricci flow in the following commtixta diagram,

S

Tll sz (21)

D; —— D,

S, S are two given original surface®,: S — S is the desired 3D surface match-
ing. We use Ricci flow to compute : § — D; which mapsS conformally onto the
canonical domai;. D; andD; are simple planar domains. The topology and the
curvature ofD; andD; incorporate the major feature information of the original
surfacesS; andS,. If there are certain feature constraints, we can furthewripo-
rate them using the method described below and compute ap_@map—> D,. The
final mapgis induced byp=T1,%0 o T;.

For surfaces with significant point features, we designalgget curvature such
that those features are transformed to the branch pointed®iemann surfaces of
in the target domains. Alg. 3 uses features to design sughttdomains.

After computing the metric incorporating all the major f@&s using Alg.
4, the surface is decomposed to canonical patches, eachidf vehmapped to a
rectangle or a trapezoid as shown in Figure 22.

As described in Section 4.2.2, each patch is embedded omfdhe by mini-
mizing the harmonic energy with the feature point positionstraints as described
in Alg. 5.

Algorithm 3 Computing Feature Based Flat Metric

Specify the feature curves

Slice the surface open along the feature curves.

Specify the feature points/y, Vo, - -+ ,Vin}.

Compute the boundary componerdy] =C,UCU---UC.

for each vertexw € M, setk < 0. _

Allocate curvature on feature pointg,=2mm,m € z, >, m = x(M).
Use Ricci energy optimization to compute the metric.

An example result on human face scan is demonstrated ind=RfurThe orig-
inal surface is a 2-holed annulus. We select the nose tipeasrily feature point,
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Algorithm 4 Computing Feature Based Domain Decomposition

Compute the feature based target metric, such that all lzoi@sdbecome straight lines
under the target metric.

Compute the straight lines starting from the feature pcanis are perpendicular to the
boundaries under the new metric.

Compute the straight lines parallel to boundaries undenéwemetric.

Slice the surface open along the straight lines to decomibessurface to patches, each
of which is conformally mapped to a rectangle or a trapezoid.

Algorithm 5 Computing the Isometric Embedding

On each face, compute the dual circle which is orthogonall thrae vertex circles.
Compute the distance from the center of the dual circle &etledges.

Embed a seed triangleon the mesh.

Minimize the harmonic energy with the constraints of the eddd trianglef .

and set the target curvature to be zero everywhere (inguzbth the interior points
and the boundary points) except for the noise tip, whoseature equals te-21.
Then, we use Ricci flow to compute the target metric of the Riemsurface, which
is a flat surface with a single branch point. Because thettatgtace can not be em-
bedded irfR3 directly, we decompose it to canonical patches, shown asdlwes
in the figure intersecting the boundaries, where all the batias are straight lines
in the target domain. The decomposition includes threesstepst, under the target
metric we find straight lines from the branch point to the lanres, each of which
is perpendicular to a boundary; Next, we trace the straighslwhich are parallel
to the boundaries under the target metric, shown as curvasgiaround the eye
contours in the figure; Finally, all the straight lines pi#ot the surface to patches
and each patch is conformally embedded onto the plane eitharrectangle or a
trapezoid. Thanks to the conformal deformation, this dgmasition is solely deter-
mined by the geometry of the original surface and the chditeatures. Therefore,
surface matching and registration can be carried out byhmmagdhe decomposed
patches on the planar domain, while the features are gem@nd match as they
become patch corners or boundaries.

The main reason for the decomposition is to improve the eficy and accu-
racy of the method. We convert surface matching to matchetgden rectangles
and trapezoids, as simpler process. Because we incorgeedtee constraints to
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C d ’
| o
(a) A face surface with (b) Planar domain for
segmenting curves each patch

Figure 22: Canonical surface decomposition using Ricci flow. The ngsé&stselected as
a feature point. A flat metric is computed using Ricci flow,Isthat all interior points and
all boundary points are with zero curvatures, except thaufegoint where the Gaussian
curvature equals te-2rt. Straight lines under the new metric, which are either jral
perpendicular to the boundaries, result in the blue curvethe original surface that pass
through the feature point in (a). Then the surface is decaeghdo patches, each patch is
conformally equivalent to a rectangle or a trapezoid on thagy shown in (b).

the mapping by minimizing harmonic energy, which requitesdomain to be con-
vex, the decomposition is also necessary to ensure the xipheed to guarantee
the globally optimum solution.

4.4 Ricci Flow Based Shape Representation

In this section, we present a new shape representation fausiace analy-
sis, such as shape matching and registration based on Rigciwhich can handle
surfaces with varying boundaries and arbitrary topolagikt®reover, it also al-
lows multiple types of feature constraints, such as fegtoret constraints, feature
curve constraints, and target curvature constraints. efbie, it provides a unified
framework for non-rigid 3D surface analysis.

Ricci Flow Shape and Texture Images The main advantage of the Ricci flow
method is that it can convert all 3D problems into 2D domaiBy. computing
conformal maps using the Ricci flow method, each 3D surfae) with a compli-
cated topology (e.g. having multiple holes) can be mapped2id domain through
a global optimization. Therefore, we can generate the Rloa shape images
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by associating a shape attribute with each vertex in thei Roxe conformal maps.
Among the shape attributes, we use mean curvatures to dtitainflow conformal
images since mean curvature depends only on surface ggonetur method, the
mean curvature is computed in the same way as in [32]. Moredvs also pos-
sible to generate other Ricci flow conformal images by assing other attributes
such as textures.

Surface Matching with Ricci Flow Representation  Given two general surfaces
S andS,, we first compute the Ricci flow shape or texture images. Bexdloe
resulting maps do not have any singularities and are a ditephism, i.e., one-
to-one and onto, we can register these two 3D surfaces bylysimgatching and
registering with the aligned Ricci flow shape or texture iemgWe evaluate the
accuracy of surface matching by using the error distancedsat the two resulting
maps, as follows

N oS oS
normalized errog s, = E'Zlh’,‘ B Slp, H
>z I

whereN is the number of overlapping points in the Ricci flow confolrslape
or texture images of 3D surfa& andS,, and piSk is the value of point in the 2D
image of surfac&(k = 1, 2). This is the matching method used in our experiments.

, (22)

4.5 Experimental Results

In this section, we demonstrate the performance of our fwasrleby several
experiments on real 3D data, such as isometrically deforsuefdces, dynamic fa-
cial expression with complex topology, and human heartsed undergoing com-
plex non-rigid motion deformations.

451 Experimentson Isometrically Deformed Surfaces

Firstly, as a simple experiment, we test our method on isooadly deform-
ing data. We scanned a flexible (but non-stretchable) toyrtvas times, one for
the original and another for its deformed version. Sinceetli® no stretching the
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Figure 23: Surface matching under isometric deformation using a togkm@he first row
shows two views of the original surface and its conformalgeiathe second row shows
two views of the deformed surface and its conformal imageelRntensities in the con-
formal images are copied from the corresponding pointseér3th scans. Under isometric
deformation, the conformal images are identical. The nbmeé registration error is 0.018
computed using Equation 22.

deformation is isometric which can be easily handled by Riogv, as shown in
Figure 23. The conformal images of the two scans are prdlgtickentical with
normalized error 0.018.

45.2 Experimentson Complex Topology

As described in Section 4.2, the major advantage of our ndedlgainst to the
existing 3D surface-matching methods based on confornmathg&ric maps [49, 79,
83, 89], is that our framework can handle surfaces with eahyittopology directly.
Therefore, for surfaces with multiple holes our method dussequire additional
pre-processing steps such as hole fillings. Figure 24 shawsn@arison between
our method and the LSCM-based method [79] and the harmonclbrased [83]
methods. Figure 24 (a, f) show the original 3D surfaces ofstimae subject with
different expressions, and Figure 24 (b, g) depict the teguRicci flow texture
images computed by our method. Since the LSCM-based metimbdhamonic
maps can only handle disk topology, the holes in the eye andham the original
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Figure 24: Comparison of Ricci flow with LSCM and Harmonic maps. (a) aéfe two

surfaces to be registered. (b) and (g) are their Ricci flowsndp) and (h) are these two
surfaces after hole-filling. (d) and (i) are their LSCMs. ey (j) are their harmonic maps.
The registration error of Ricci flow using Equation 22 is @0&hile, the registration errors
(without including hole area) of LSCMs and Harmonics are&/@.8nd 0.081, respectively.

3D scan data need to be filled before computing the 2D confamag, as shown
in Figure 24(c, h). As shown in Figure 24(d, i) and Figure 2§)(eghe introduction
of fake geometry to fill the holes leads the large distortioors around the eye and
mouth areas in both of the least-squares conformal mapshaniarmonic maps.
Notice that our texture images obtained from Ricci flow indao signification
distortions as shown in Figure 24 (b, g), although we leagenties as they are in
the raw data.

The normalized matching error of Ricci flow is 0.058, compla@0.072 for
LSCM and 0.081 for harmonic maps. All errors were computéagusquation 22,
where hole areas were not included. For each 3D facial scinasund 100K
vertices, The process time of LSCM and harmonic maps is appegely 40 sec-
onds on a Pentium4 2.4 GHz PC, while the process time of Riowi i around
400 seconds. Moreover, Our method is robust enough to hdindted amounts
of non-isometric deformations (which violate the Ricci flowfinition). However
large deformations can be handled with incorporation ofuisaconstraints as de-
scribed in the following experiment.
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453 Registration with Large Non-Rigid Defor mation

In order to demonstrate the performance of our method oacesfwith large
non-rigid deformation, we captured 3D facial expressida daing a phase-shifting
structured light ranging system [91] with large non-rigief@rmations. Since our
method allows feature curve correspondence constraimtsletect the contour of
the lips and the eyes and integrate them into the computatitie Ricci flow maps
(these curves can be detected by methods such as [53,88pd Ba the resulting
2D maps, we can perform the registration between two scafiaced with different
expressions, as shown in Figure 25. Since the deformatitwele two scanned
faces is non-rigid, the surface matching with single magsablematic as shown
in the 2nd column in Figure 25. In this case, we apply the dexasiion method
described in Section 4.3. The 3rd-5th columns in Figure Ristilate the pairs
of the Ricci flow images which corresponds to a part of theioalgsurfaces as
shown in the 1st column in Figure 25. Each pair of patcheseagistered with the
corresponding patch boundaries, and we measure the eatwvedn the patches by
Equation 22.

The original registration error between two faces in Fig2ieis 0.0447. In
order to demonstrate the robustness of the feature deteaticuracy in our de-
composition method, we randomly perturb the feature pomirad the nose tips in
Figure 25. The average error of three different perturlati@ithin a 3mm (resp.
6mm) radius is 0.045 (resp. 0.048).

Although our method is not limited to handle face data, it @t to com-
pare our method with the face registration method based di-dimnensional scal-
ing [7]. Compared to Bronstein et al. [7], which cannot gudéea to obtain global
optima in isometric embedding, our method reaches glokahagan handling ani-
sometric data with arbitrary topologies, as shown the Yalhg experiments.

For medical data application, we use a 3D deforming heatiesezg. The
original tagging data were acquired using a 3T MRI machinge data are image
sequences from end diastole to end systole. The reconstrveas done based on
methods developed by the authors of [35], who made the daitahie to us. The
output from the analyzed data result are 3D correspondimggover time from

1This experiment was carried out by Yun Zeng
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Figure 25: Registration of facial expression data using feature bdsedain decomposi-
tion. The first column shows two face scans with very large-mgid deformation. The
second column shows the planar domains computed usingmifat metrics. Because of
the large deformation, there is significant difference leetwthe planar domains. Selecting
the nose tip as the feature points, the surfaces are decenhpmsanonical planar domains
using the method described in Section 4.3. The surfacesegistered by matching the
corresponding planar domains.

end diastole to end systole. We experimented using a sequé2d frames of 3D
corresponding points. Experiments were performed on tfarméng 3D surface.
The given 3D correspondences were not used in the expesnirrtonly as ground
truth.

In order to test the robustness of our method to initial LEfsegmentation,
we experiment using only the left ventricle data. We firsedeaind segment along
the boundary between the surface of the left ventricle aaddht of the heart. Af-
ter segmenting the heart data for each frame, we apply tha fRiev algorithm to
map each heart into its canonical planar domain, and regsiteh adjacent frame
by mapping the corresponding planar domains. In a first éxet, we manu-
ally defined a boundary on the first frame and consistentlyt Kegse points as
the boundary points throughout the sequence. Even thowegh Hre large inte-
rior deformations, the boundary is sufficient in estabhgh@lmost perfect surface
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ALY

(a) Result by ricci flow

AN

Frame 1 Frame 8 Frame 14

(b) Result from ground truth

Figure 26: Registration of 3D dynamic heart data. Registration resiging Ricci flow for
4 different frames are shown in the top row. The original helata for the same frames
are shown in the bottom row. The data on frame 1 were textuppathwith a grid pattern,
that helps to visualize the subsequent deformatighieart dataset courtesy of Professor

Dimitris N. Metaxas at Rutgers University)
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correspondences, with an average registration error 660.h the second exper-
iment, the boundary was automatically determined baseduorature, using the
VTK software package. These boundary points are not gusgdrb be consistent
across frames. The method is still very robust with an aweregistration error of
0.03.

Figure 26 illustrates the effectiveness of registratiangiRicci flow. The first
frame is texture-mapped with a grid pattern both in the expantal and ground
truth data, in order to better visualize the deformationthéligh the non-rigid de-
formation of the heart is significant between different femmnour method captures
the deformation almost indistinguishably from the grouru.

4.6 Discussion

In this chapter, we proposed a 3D shape analysis method lbmsedrface
Ricci flow. Since Ricci flow is a powerful tool to handle geones with arbitrary
topologies our method can unify conventional methods basetbnformal geom-
etry. It also allows different types of feature constraisisch as feature point and
curve constraints, to handle large deformations and tdéurimprove the accu-
racy of surface matching and registration. A series of algors was introduced to
map the 3D surfaces onto canonical 2D domains, and a newcsudaresentation
is proposed to combine multiple features for 3D shape aisalysnally, the gen-
erality and flexibility of Ricci flow were demonstrated by iars experiments on
human face scans and dynamic heart surface data.



Chapter 5

Dynamic Non-Rigid Registration for
Facial Expression Analysis

In this chapter, we present a novel framework for automatit-rigid registra-
tion of 3D dynamic facial data using least squares conformaps with additional
feature correspondences detected by employing activeaagpee models (AAMS).
Based on this registration method, we also develop a newmsystfacial expression
synthesis and transfer. We perform a series of experimemetsuate our non-rigid
registration method and demonstrate its efficacy and efiiigien the applications
of facial expression synthesis and transfer.

This work has been published in the proceedings of the IEE&rational
Conference on Computer Vision and Pattern Recognition 2088

5.1 Introduction

Automatic non-rigid registration of 3D time-varying defyseampled data is a
fundamental and critical issue in 3D vision and graphicschiias widespread ap-
plications. As 3D scanning technologies continue to impr@D dynamic densely-
sampled data is becoming more and more prevalent for asaysi synthesis. To
study and analyze such huge data, an efficient non-rigicdtragion algorithm is
necessary to establish one-to-one inter-frame corregmmed automatically. How-
ever, automatic 3D non-rigid registration still remaingaltenging task, especially

57
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for dynamic densely-sampled facial expression data withynaegrees of free-
dom. Most of existing 3D non-rigid registration methodsyreh recovering low
dimensional parameters of face model or register 3D fact#slagcal optimization
that may not establish accurate one-to-one inter-frameegpondences success-
fully. In this chapter, an automatic non-rigid registrat@igorithm of 3D dynamic
densely-sampled facial data is developed using least egeanformal maps with
additional interior feature correspondences detectedchiyeaappearance model
(AAM) [17, 28, 29]. The least squares conformal maps between3D surfaces
are globally optimized with less angle distortion and treuteng 2D map is stable,
one-to-one, insensitive to resolution changes and robutkta existence of noise.
Through the way of mapping 3D surfaces to a 2D common domntasmplifies the
original 3D surface-registration problem to a 2D registraproblem. Thus, more
accurate and efficient non-rigid registration algorithragld be achieved by using
least squares conformal maps. In sharp contrast to prewiotks on 3D non-rigid
registration, especially the methods using attached msridnich unavoidably re-
quire much laborious human intervention and also are megsive to human sub-
jects, our new method can register non-rigid 3D dynamic datamatically and
efficiently with minimum manual work.

Conformal maps have already been employed in many visiongaayghics
applications most recently. A surface matching method daseharmonic maps
was proposed in [89]. Sharon et al. [68] use conformal mapsatyze similarities
of 2D shapes. Moreover, conformal maps are used for 3D fadeéeain surface
matching in [32,81,82]. Least squares conformal maps ém@duced by Levy et al.
[49] for texture atlas generation and used by Wang et al.tfy®pnduct 3D surface
matching with feature detection using the technique of-epiage. Because spin-
image can only detect features on surfaces with rigid tansdtion, their method
can not guarantee to successfully match surfaces with igmhdeformation. For
non-rigid 3D surface registration, Wang et al. [83] use a ffiedl harmonic map to
track 3D high resolution facial motion data. In order to cédte these harmonic
maps, the surface boundary must be identified and a boundapping from 3D
surfaces to the 2D domain must be properly created, whictbeaadifficult task
especially when parts of the surface are occluded. In ceitanformal maps and
least squares conformal maps do not necessarily requiredaoyinformation to be
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aligned and so give rise to a natural choice to combat thisdify. Moreover, least
squares conformal maps enable users to enforce more inteature constraints
which will guarantee to achieve more accurate registragsults in an automatic
way.

Facial expression undergos complicated global and localimear deforma-
tion between frames and is represented by a high dimensiectdr (a collection
of 3D vertices). It is impossible to analyze and synthesaogal expression in high
dimensional space. In this chapter, we describe a dynaruial fexpression syn-
thesis system using isomap [74] which can embed facial egpge manifolds in
high dimension into low dimensional space. Finally, we presa facial expression
transfer framework based on our non-rigid registrationhoétusing least-squares
conformal maps and our approaches lead to more accuratésresin minimum
human intervention.

5.2 Non-Rigid Registration Algorithm for 3D Dy-
namic Facial Data

We now introduce an automatic non-rigid registration altpon by using least-
squares conformal maps which can map 3D surfaces to a 2D condiomain
with global optimization. Therefore, they can simplify tbeginal 3D surface-
registration problem to a 2D registration problem. In pmautér, our registration
algorithm includes two steps: First, interior feature espondences are detected
by using Active Appearance Model (AAM); After that, by geaeng and register-
ing the 2D least-squares conformal maps of 3D faces in twodsm we compute
their dense one-to-one correspondences to register theseames.

5.2.1 FeatureTracking

There are many features in the human face such as cornersesf Bgse
and mouth. Detecting and tracking these features accyranel efficiently in 3D
dynamic facial data still presents difficulties. Active Agggance Model (AAM)
[17, 28, 29] is successfully used to track facial featuregideo sequences. AAM
is a face detection technique that combines shape and¢drformation into one
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PCA space. The model iteratively searches a new image by tlsgrtexture resid-
ual to update the model parameters. To use AAM to detectresin 3D dynamic
facial data, firstly, we use a projection matfxo project the 3D faces onto a 2D
image plane. Then we use AAM to detect the features in eachi@&bvrame.
After that, with the known projection and depth informatiminthese 3D data, we
can project the features detected by AAM back to 3D face sasfa Finally, we
can automatically get the initial inter-frame feature egpondences in these 3D
dynamic data. In experiments, we select 200 frames in trgidata containing dif-
ferent facial expressions to build the AAM and the faciatdea template contains
50 vertices, as shown in Figure 27.

(b) ()

Figure 27: AAM feature detection. (a) The feature template of AAM. (b)3® face
projected onto an image plane. (c) The detected featurdsediace.

5.2.2 Dynamic Non-Rigid Registration

After detecting the initial corresponding features in twanfiesS and S, 1,
we can compute their least squares conformal maps (LSCMsy tise method
described in Section 2.1.1.3. As the LSCMs are driven byaesgmtative motion
features between the two frames, they capture the interefnaon-rigid deforma-
tion. Furthermore, because this mappingng-to-one and ontdy registering their
2D LSCMs, we can recover the inter-frame registration osét®D face surfaces.

As an example, Figure 28(c,f) show the LSCMs of the intemiee8D faces in
Figure 28(a,d). Figure 28(a,d) are the original faces wattiure information and
Figure 28(c,f) are their registered 2D LSCMs. The simijaot these two LSCMs
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(f)

Figure 28: Registration using least squares conformal maps (LSCM$an(d (d) are two
original inter-frame 3D face surfaces with texture infotioa. (b) and (e) are these faces
without texture. (c) and (f) are their registered LSCMs.

in Figure 28(c,f) shows that we can successfully registeritver-frame non-rigid
3D faces by just registering their 2D LSCMs.

5.3 A Framework of Facial Expression Synthesisand
Transfer

We now present the new framework of dynamic facial expressimthesis
and transfer based on our non-rigid registration method.

5.3.1 Facial Expression Synthesis

Expression synthesis generates new facial animationg @sisting expres-
sion data. Our expression synthesis framework includessteps: The first step
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analyzes existing expression data by embedding them imw-@limensional man-

ifold using Isomap [74] after registering these data usimg3D non-rigid registra-

tion method described in section 5.2. The second step syimdsenew expression
by selecting parameters of these expression data analyzkd first step.

5.3.1.1 Facial Expression Manifold Embedding

Facial expression undergos complicated global and localimear deforma-
tion between frames. In order to analyze expression datly easl efficiently, we
need embed facial expression manifolds non-linearly intmedimensional space.
We adapt Isomap framework [74] to achieve a low dimensiorahifold embed-
ding for individual facial expressions that provides a goepresentation of facial
motion. Isomap finds the best embedding manifold with n@amdimensionality
reduction by preserving the proportion of distance in théedding space and the
original facial motion space. Figure 29 shows the embeddirgmile motion to
a 3D space. It is an elliptical one dimensional manifold idiBtensional space.
In embedding space, the expression manifolds are elligticaes with distortions
according to face geometry, expression types. To analygsetbxpression man-
ifolds, we need align these one dimensional manifolds inexiding space. For
each manifold, correspondences are initially establists@ng the points with high
curvatures. Then, multiple manifolds are aligned using@pr@ach similar to [16].
Thus, we can align the original expression sequences indehgpace by aligning
expression manifolds in the embedding space.

5.3.1.2 Dynamic Expression Synthesis

After we align N expression styles;,s,...,s, of the same person using
method described above, we then generate a new style \&glpby linear in-
terpolation of thes@l styles using control parametess, wo, ..., W, as follows:

Shew = W1S1 +W2Sp +- ... +WnSn, (23)

WhereZiN:lWi = 1. For example, if we want to generate new expression as style
with 50% of the first style and 30% of the second style and 20%hethird style,
then we generate new style ggw= 0.5s1 + 0.3, + 0.2s3.
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015

01

T T 0

Figure 29: Facial expression manifold. The curve is Isomap for 3D tegisl facial ex-
pression sequence(some frames are shown in upper row).
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5.3.2 Facial Expression Transfer

Expression transfer directly maps expressions of the saquadel to the target
model. In particular, our expression transfer framewoiudes two steps: The
first step determines temporal correspondences betweentexeadjacent frames
of the source model and spatial correspondences betweesotiiee and target
models; The second step transfers the adjusted motionrgdoton source model
vertices to target model vertices.

5.3.21 Dense Surface Correspondences

Source models at each frame do not have temporal inter-ficomespon-
dences. In addition, source model and target model do nat $atial correspon-
dences as they may have different structures. However, westablish both tem-
poral and spatial correspondences by using parametenzatthods [22,25,36,49]
to map 3D source and target models to a 2D domain. Theref@eaw compute
3D dense surface correspondences by just detecting corma@spces in their 2D
maps.

Temporal Correspondences: In our experiments, we use fine facial motion
data which are captured by a structured lighting method j@1j 30 frame per
second. A 3D face in each frame has approximately 70K poirtts both shape
and texture information. To utilize this 3D dynamic data, wse our 3D non-rigid
registration method described in Section 5.2 to obtain theto-one inter-frame
correspondences, as shown in Figure 28.

Spatial Correspondences: For expression transfer, it is crucial to find spatial
correspondences between the source and target models.orlarmapping is a
popular approach for recovering dense surface correspordg22, 46]. However,
difficulties arise when specific points need to be matchedtgxbetween models.
Our approach to finding spatial correspondences startsimitibl corresponding
feature points which the user specifies [46] between thececamd target models.
After that, we simplify the source and target models and rhaptto a 2D plane
by minimizing the harmonic energy [22, 32, 89] with usergfied corresponding
feature points as interior constraints. By detecting aterpolating the one-to-one
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(@) (b) ©) (d)

Figure 30: Spatial feature correspondence detection using harmoafsn(a) and (c) are
source and target faces. (b) and (d) are their harmonic mapgwed by our method.
After detecting the one-to-one correspondences in thein&monic maps, we can obtain
the spatial feature correspondences between 3D sourcarged faces.

correspondences in the 2D harmonic maps, we can obtain #imlsporrespon-
dences between the source and target models, as shown e Bigu

5.3.2.2 Expression Transfer with Motion Vectors

A transferred expression animation displaces each tamsyetwto match the
motion of a corresponding surface point in source modekeiacial geometry and
aspect ratios are different between the scans of sourcelsnaaie the target face,
source displacement vectors can not be simply transferrdtbut adjusting the
direction and magnitude of each motion vector. In our expernits, we adjust both
the scale and orientation of motion vectors before transfgthe source motion to
target model by using the method described in [56]. An exampimotion vector
transfer is shown in Figure 31.

54 Experimental Results

The performances of our approaches on non-rigid registraaf 3D time-
varying data and facial expression synthesis and transéeeamluated in a num-
ber of experiments. First, we analyze the accuracy of our @mngid registration
method and compare results with two previous methods. Seeom evaluate the
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(a) (b)

(d) (e)
Figure 31: An example of motion vector transfer. (a) and (b) are souxced with different
expressions. (c) is the color-coded magnitude of motiomovedn the source model. (d) is

the target face model. (e) is transferred expression orathettface. (f) is the color-coded
magnitude of motion vectors to be transferred to the tammt fmodel (d).

performance of facial expression synthesis and transtdan our non-rigid reg-
istration method.

5.4.1 Evaluation of 3D Non-Rigid Registration

We apply our non-rigid registration method on 3D dynamiddhdata and
compare results with the tracking method based on modifietidr@c maps [83]
and Iterative Closest Point (ICP) method [65] which havenb&ilely used for 3D
registration. In order to evaluate their accuracy, we camphe registration error by
approximately using the difference in the intensity valoésertices of registered
3D face surfaces between two frames as:

N e
2= I =t 4l

- 24
St &Y

RegistrationError=

Y
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Figure 32: Comparison of the three registration methods.

wheret} is intensity value of theth vertex of 3D face surface in thgh frame
andN is the number of registered vertices. If the registratiopagect, the only
difference in the intensity values of vertices of registetwwo 3D faces will result
from the change of shadowing and shading effects due to geerdeformation.

We present the comparison of these three techniques ind=gfby plotting
the registration errors according to different frames.nktbe results, we can see
that our method performs considerably better than the dthermethods. The
ICP method can not achieve good results in 3D non-rigid shegistration. The
modified harmonic map method uses optical flow to track venyfsature points
which are very sensitive to noise. Moreover, their methdthaive larger registra-
tion errors in the 3D face data with varying boundary, beeaafghe limitation of
harmonic maps.
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5.4.2 Evaluation of Facial Expression Synthesis and Transfer

Firstly, We apply our facial expression synthesis framéwam 3D dynamic
facial data to synthesize new facial expressions. Actorf®pa four different type
of expressions: smile, surprise, sad and angry. The exprsswaere captured us-
ing our structured lighting ranger scanner. We then regagt@and analyzed the
captured ranger data using our facial expression syntfresmework described in
section 5.3.1. Figure 33 shows the generation of two exjgnesssmile and sur-
prise and the synthesis of a new in-between expression bgaimthe weight of
these two original input expressions. With our method wegmsmerate a convinc-
ing combination of two different expressions without lo§sletails. The generated
in-between expressions are shown in the second and thisl row

Next, we apply our facial expression transfer framework acidl data with
different expressions and transfer these expressiorsstyld details to target face
models. We perform two group experiments to evaluate tharacg and robust-
ness of our facial expression transfer method both quiakisitand quantitatively.
Our first group experiments are intended to qualitativelygthe effectiveness of
our expression transfer approach. Figure 34 shows the ssipretransfer results
with various exaggerated expressions and Figure 35 sha@uesults with differ-
ent kinds of expressions which are neutral, happy, sur@estand angry. We also
perform expression transfer from the source model to a tapcdlly different tar-
get face model caused by missing data in eye regions duriagadguisition under
different resolutions and the results are shown in FigureA36shown in these re-
sults, the expressions of the source model are reprodudée target model with
convincingly better effects.

The second group experiments are intended to quantitatmelsure the ef-
fectiveness of our expression transfer approach. In thd #xperiment, we use
two different 3D scans of the male subject in Figure 35 ascand target mod-
els, respectively, that is, transferring expressions feoperson to himself. In the
last experiment, we transfer expressions of the male sutgebe female subject
in Figure 35 and then transfer intermediate results backaoheer 3D scan of the
male subject. By using Equation (24), the average errorstehsities are mea-
sured between the original and final face models in all fraageshown in Table
3. Figure 37 exhibits some of these expression transfeltsaawifferent frames.
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Figure 33: Synthesis of new facial expression by weighting two différexpression type:
smile in the first row and surprise in fourth row. Second roW%@mile+ 30%sur prise
Third row: 30%smile+ 70%sur prise
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Figure 34: Exaggerated expression transfer. Source face model wétpgexated expres-

sions are shown in the first row. Transferred expressionsvoriarget faces are showed in
the second and third row, respectively. The target faces Hdferent shapes and textures
but the expressions are proportionally scaled to fit eachemnaell.
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Figure 35: Expression transfer. Source face model with different @sgions are shown in
the first row. Transferred expressions on the target faceteoen in the second row. From
left to right, emotional expressions are neutral, happyrssed, sad and angry, respectively.

Table 3: Average errors of expression transfer.

Man=- Man Man = Woman=- Man
Average RegistrationError 2.312% 2.379%

From the results, we can see that in each frame, the finias fafter expression
transfer are very similar to the original source face dathtae only difference re-

sults from the change of the shadowing and shading effee@satace geometry
deformation. The overall processing time including 3D mignd registration and

expression transfer is approximately 1 minute per frame &em@tium4 2.4 GHz

PC. From all of these results, comparing with the previogsaech on expression
transfer which typically require many manual labors, outhod can transfer ex-
pression from one person to another efficiently and aut@ailéti
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Figure 36: Expression transfer from a male subject to a topologicéffgrnt face model
under different resolutions. Source face model with diffgrexpressions are shown in the
first row. Transferred expressions on the target face whiashdifferent topology due to
missing data (missing in eye region during data acquigitese shown in the second row.
Expression transfer results of the target face with only df/¢he original resolution are
shown in the third row.




w

CHAPTERS5.  Dynamic Non-Rigid Registration for Facial Expressioredsis 7

Frame 50

100

Figure 37: Expression Transfer results (Mas Man and Man= Woman=- Man). Source
face models in different frames are shown in the first row.rEsgion transfer results (Man
= Man) are shown in the second row. Expression transfer s2@dlin= Woman=- Man)
are shown in the third row.
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5.5 Discussion

We have developed a novel method for non-rigid registratismg least
squares conformal maps to automatically compute one-¢ohater-frame corre-
spondences for 3D time-varying facial data. Moreover, Basethis registration
method, we have also implemented a new visual modeling freorieof expression
synthesis and transfer for 3D dynamic facial data. Our expental results demon-
strate that our novel facial modeling framework leads tddvetgistration for 3D
dynamic facial data and subsequent applications such asmgriacial expression
analysis, synthesis and transfer.



Chapter 6

Conclusions and Future Wor k

6.1 Conclusions

In this dissertation, | present our research results angdutsearch directions
within our generalized framework of shape registration amalysis. Our proposed
framework takes the advantages of new shape represemstdtyonsing different
parameterization technology which can map 3D surfaces i @2nmon domain,
and thus can simplify all 3D problems to 2D image problems.

In particular, We analyze a family of quasi-conformal mapsluding har-
monic maps, conformal maps and least squares conformal midpsegards to
3D shape matching. As a result, we propose a novel and cotignahy efficient
shape matching framework by using least squares confor@psnThe robustness
of least square conformal maps is evaluated and analyzegretensively in 3D
shape matching with occlusion, noise and resolution varatin order to further
demonstrate the performance of our proposed method, wealshict a series of
experiments on two computer vision applications, i.e., 8efrecognition and 3D
non-rigid surface alignment and stitching. We show thatipres methods based on
conformal geometries, such as harmonic maps and leastesgo@anformal maps,
which can only handle 3D shapes with simple topology arewulesl by our Ricci
flow based method which can handle surfaces with arbitraagitmy. The solution
to Ricci flow is unique and its computation is robust to nolssrge non-rigid defor-
mations can be registered with feature constraints, heréetvoduce a method that

75
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constrains Ricci flow computation using feature points aadure curves. We also
demonstrate the applicability of this intrinsic shape esentation through standard
shape analysis problems, such as 3D shape matching anttaggis Moreover,
we present a new method for automatic non-rigid registnadid3D dynamic facial
data using least squares conformal maps, and based on gisgagon method,
we also develop a new framework of facial expression syighasd transfer. A
non-rigid registration algorithm of 3D dynamic facial dasadeveloped by using
least squares conformal maps with additional feature spmedences detected by
employing active appearance models. We also perform assefriexperiments to
evaluate our non-rigid registration method and demoresiitatefficacy and effi-
ciency in the applications of facial expression synthesdteansfer.

6.2 FutureWork

There are many avenues for possible future work, includikpdoging the the-
oretical foundation of shape representation, designifigiefit and accurate algo-
rithms for shape registration, developing new functidiedi improving shape anal-
ysis in wide range of applications such as human facial anly lbwotion analysis,
medical imaging, volumetric data reconstruction and Migation, 3D surveillance,
3D robotics, and etc.

6.2.1 Nove Shape Representations

With development of 3D scanning technologies, large 3D sligtabases re-
quire automated methods for matching and registration. é¥ew matching sur-
faces undergoing non-rigid deformation is still a challeggproblem, especially
when data is noisy and with complicated topology. The cotiwaal conformal
geometric methods can only handle surfaces with simplelogjes or compute
simple maps. As a result, most existing algorithms are échib surfaces with sim-
ple topology such as genus zero with/without a single bopyn@]. Thus, novel
and effective representations for 3D shapes registraiaual io be discovered us-
ing new parameterization methods such as hyperbolic Rmwj fivhich can handle
surfaces with arbitrary topologies for shape analysis agdstration.
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6.2.2 New Shape Retrieval Frameworks

Shape matching and retrieval is a fundamental issue ahd shibllenging task
in computer vision and graphics. By discovering new shapeesentations, we can
develop novel and efficient shape matching and retrievahdsaorks with many
applications, such as shape registration, partial scgmraknt and stitching, 3D
object recognition and classification. Moreover, our shayaéching and retrieval
frameworks also can be applied in biometrics and homelaadrgg such as 3D
human face matching, retrieval, and recognition. Our neapstrepresentations
and matching technique will definitely benefit the registratand recognition in
these areas.

6.2.3 Non-Rigid Shape Registration with Manifold L earning

Trackers based on template matching work well for objecteselshape and
appearance change only slightly during motion. Howevemast real-world ap-
plications, the objects being registered or tracked camrguda variety of complex
non-rigid deformations that are difficult to parameterizeng traditional methods.
After employing the non-rigid registration method to gehse one-to-one corre-
spondences in each frame [78, 84], it will be possible to tansa manifold of
transitions to deformed objects. Therefore, these matsfulill provide us with a
great opportunity to analyze object motion and deformatibhere are many ap-
plications of this methodology such as human face and bodyomanalysis and
animation, 3D surveillance and robotics.

6.2.4 Dynamic Shape Analysis for New Medical Imaging
Modalities

Ultrasound, electron microscopy, and diffusion tensor M&Ré imaging
modalities which require different assumptions about tha@eulying physical pro-
cesses of image formation. The 2D or 3D time-varying imagesil be registered
because of image variation. Recovering registrationsdohenodality which accu-
rately model the object transformation while ignoring atbiéects, such as imaging
noise and no-rigid deformation, will provide methods bathrherging the output
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of disparate imaging techniques and allowing for new pateotocols, such as
high-resolution gated-MRI without patient breath-holglinvhich is difficult with
current technology.

In the long term, my research will focus on theoretical shegpgesentation,
registration, and analysis in computer vision and graphittsapplications to shape
retrieval, human facial and body motion analysis, aninmtimedical imaging.
This work incorporates ideas from image processing, ma&ctgarning, human-
computer interface and biomedical engineering.

6.3 Concluding Remarks

These directions for future work, and the many other opehlpros that exist,
are sure to encourage interesting and exciting researchaipesregistration and
analysis for years to come. As technical difficulties arerowme, and existing
computational algorithms are improved, the applicatioihnshape registration and
analysis will increase in variety and number. We are pledsdthve taken the
first step in uncovering the heretofore untapped potentighape registration and
analysis by presenting our framework to the computer visiod graphics. It is
our hope that this integrated approach and demonstratdatapms will foster
continued interest and research in this area. We are loddimgrd to the continued
exploration of shape registration and analysis and predsctccessful future for it.
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