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Abstract of the Dissertation

Shape Registration and Analysis Framework for Computer Vision and

Graphics

by

Sen Wang

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

As 3D digital photographic and scanning devices produce higher resolution images,

acquired geometric data sets grow more complex in terms of the modeled objects’

size, geometry, texture, and topology. To use and analyze such data, developing

new algorithms and techniques for shape registration and analysis has become a

common and long-term mission in the computer vision and graphics field. In this

dissertation, we propose a novel framework for shape matching, registration, and

scientific analysis especially for 3D facial data and biomedical data. In particular,

we address the challenges of 3D shape registration and analysis with noise, occlu-

sion, resolution variation and non-rigid deformation.

Firstly, we analyze a family of quasi-conformal maps including harmonic

maps, conformal maps, and least squares conformal maps withregards to 3D shape

matching. As a result, we propose a novel and computationally efficient shape

matching framework by using least squares conformal maps. The robustness of

least squares conformal maps is evaluated and analyzed comprehensively in 3D

shape matching with occlusion, noise, and resolution variation. In addition to the

above conformal geometry approaches, we also propose a framework of shape reg-

istration and analysis using Ricci flow. Previous methods based on conformal ge-

ometries, such as harmonic maps and least squares conformalmaps, which can

only handle 3D shapes with simple topology are subsumed by our Ricci flow based
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method which can handle surfaces with complex topology. Furthermore, we in-

troduce a method that constrains Ricci flow computation using feature points and

feature curves. We also demonstrate the applicability of this intrinsic shape rep-

resentation through standard shape analysis problems, such as 3D shape matching

and registration.

As 3D scanning technologies continue to improve, dynamic densely-sampled

3D data is becoming more and more prevalent for analysis and synthesis. To study

and analyze such huge data, an efficient non-rigid registration algorithm is nec-

essary to establish one-to-one inter-frame correspondences automatically. Toward

this goal, we present a new framework for automatic non-rigid registration of 3D

dynamic facial data. Based on this registration framework,we also develop a new

system of facial expression synthesis and transfer.

We have implemented our framework in a wide range of applications which

represent the identified challenges in shape registration and analysis. This includes

dynamic noise, occluded data, resolution variation, non-rigid deformation, etc. Fur-

thermore, We describe these applications in detail and outline a few new applica-

tions which include surface matching, alignment and stitching, dynamic non-rigid

deformable shape registration, facial expression synthesis and transfer.
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Chapter 1

Introduction

Shape registration is a fundamental issue in computer vision and graphics with

many applications, such as partial scan alignment, 3D object recognition and clas-

sification, shape modeling and analysis, etc. Nowadays, as digital photographic

and scanning technologies improve, large databases of 3D scans require automated

methods for matching and registration. However, registering 3D shapes in noisy

and cluttered scenes is a challenging task. Moreover, sincemost 3D shape scanners

can only capture 2.5D data of the target surfaces, aligning and stitching partial 3D

surfaces is a fundamental problem in many research areas, such as computer vision

and graphics, mechanical engineering, and molecular biology. Examining the rich

literature of shape registration and analysis, the topics of non-rigid shape registra-

tion, dynamic deformable surface tracking, and shape modeling and analysis appear

to be less explored. Developing new algorithms and techniques for shape registra-

tion and analysis has become a common and long-term mission in computer vision

and graphics field.

Our research tries to build useful and high-fidelity shape matching and reg-

istration methods and apply them to many applications. Our research focuses on

the following aspects: (1) How to design shape matching and registration meth-

ods with noise, occlusions and resolution variations; (2) How to register 3D non-

rigid deformable data automatically and efficiently with minimum human labor and

manual work; (3) For one kind of specific shape - human face with many degree

of freedom, how to build a system to automatically register non-rigid 3D dynamic

facial data with expressions.

1



CHAPTER1. Introduction 2

In this dissertation we present a novel framework for shape modeling, regis-

tration and scientific analysis especially for facial data and medical data. Figure 1

shows the complete conceptual hierarchy of the proposed research. Firstly, we ana-

lyze a family of quasi-conformal maps including harmonic maps, conformal maps,

and least squares conformal maps with regards to 3D shape matching. As a result,

we propose a novel and computationally efficient shape matching framework by us-

ing least squares conformal maps. The robustness of least squares conformal maps

is evaluated and analyzed comprehensively in 3D shape matching with occlusion,

noise, and resolution variation. In order to further demonstrate the performance of

our proposed method, we also conduct a series of experimentson two computer

vision applications, i.e., 3D face recognition and 3D non-rigid surface alignment

and stitching. After that, we show that previous methods based on conformal ge-

ometries, such as harmonic maps and least squares conformalmaps, which can

only handle 3D shapes with simple topology are subsumed by our Ricci flow based

method which can handle surfaces with arbitrary topology. Because the Ricci flow

method is intrinsic and depends on the surface metric only, it is invariant to rigid

motion, scaling, and isometric and conformal deformations. The solution to Ricci

flow is unique and its computation is robust to noise. Large non-rigid deforma-

tions can be registered with feature constraints, hence we introduce a method that

constrains Ricci flow computation using feature points and feature curves. We also

demonstrate the applicability of this intrinsic shape representation through standard

shape analysis problems, such as 3D shape matching and registration.

Automatic non-rigid registration of 3D time-varying data is fundamental in

many vision and graphics applications such as facial expression analysis, synthesis,

and transfer. Despite many research advances in recent years, it still remains to

be technically challenging, especially for 3D dynamic, densely-sampled facial data

with a large number of degrees of freedom (necessarily used to represent rich and

subtle facial expressions). We present a new method for automatic non-rigid reg-

istration of 3D dynamic facial data using least squares conformal maps, and based

on this registration method, we also develop a new frameworkof facial expression

synthesis and transfer. Nowadays more and more 3D dynamic, densely-sampled

data become prevalent with the advancement of novel 3D scanning techniques. To

analyze and utilize such huge 3D data, an efficient non-rigidregistration algorithm
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Figure 1: Conceptual hierarchy of the proposed research.

is needed to establish one-to-one inter-frame correspondences. Towards this goal,

a non-rigid registration algorithm of 3D dynamic facial data is developed by using

least squares conformal maps with additional feature correspondences detected by

employing active appearance models (AAMs). The proposed method with addi-

tional, interior feature constraints guarantees that the non-rigid data will be accu-

rately registered. The least squares conformal maps between two 3D surfaces are

globally optimized with least angle distortion and the resulting 2D maps are stable

and one-to-one. Furthermore, by using this non-rigid registration method, we de-

velop a new system of facial expression synthesis and transfer. We perform a series

of experiments to evaluate our non-rigid registration method and demonstrate its ef-

ficacy and efficiency in the applications of facial expression synthesis and transfer.
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1.1 Problem Statement

A fundamental question in 3D shape matching and registration is finding good

shape representations: What mathematical description should be chosen to repre-

sent the surface of a 3D object on a digital computer? The diversity of the ap-

plication fields of 3D shape matching is reflected in a wide variety of shape rep-

resentations that have been proposed in the past. Differentapproaches include

curvature-based representations [77], regional point representations [15,43,64,72],

spherical harmonic representations [26,27,44], shape distributions [58], spline rep-

resentations [9] and harmonic shape images [89]. However, many shape represen-

tations that use local shape signatures are not stable and cannot perform well in

the presence of noise, occlusion and resolution variation.There also has been a

lot of research on 3D surface alignment and stitching in recent decades, such as

identification and indexing of surface features [24, 70], computing principal axes

of scans [20], exhaustive search for corresponding points [13], or iterative closest

point(ICP) methods [8,48,62,65]. Compared to matching, there are other additional

issues in surface stitching, such as registration and integration [76]. 3D surface

alignment and stitching is still a hard problem especially when the transformation

between the surfaces to be aligned is non-rigid, e.g., when taking successive scans

of humans that might not be standing still.

Automatic non-rigid registration of 3D dynamic data is another hard topic and

still remains a challenging task, especially for dynamic facial data with many de-

grees of freedom. There has been much research on non-rigid registration of 3D

facial data in recent decades. Existing approaches to solving this problem typically

involve three key techniques: one is to select feature correspondences manually or

use markers attached on human faces. The second one is to establish inter-frame

correspondences hierarchically using multi-resolution facial data. The third kind

of techniques computes correspondences using a 3D deformable model. However,

most of existing 3D non-rigid registration methods rely on recovering low dimen-

sional parameters of face model or register 3D faces with local optimization that

may not establish accurate one-to-one inter-frame correspondences successfully.
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1.2 Contributions

To overcome the above difficulties, in this dissertation we propose an inte-

grated 3D shape registration and analysis framework for surface matching, reg-

istration and reconstruction, facial expression analysis, synthesis and transfer. In

particular, the contributions of this dissertation are as follows:

1. We present a novel shape registration and analysis framework for computer

vision and graphics based on conformal geometry theory which can map 3D

surfaces to a 2D planar domain, and thus simply all 3D problems to 2D image

problems.

2. We analyze a family of quasi-conformal maps including harmonic maps, con-

formal maps and least squares conformal maps with regards to3D shape

matching. As a result, we propose a novel and computationally efficient

shape matching and registration framework by using least squares confor-

mal maps. The robustness of least square conformal maps is evaluated and

analyzed comprehensively in 3D shape matching with occlusion, noise and

resolution variation. We also conduct a series of experiments on two com-

puter vision applications, i.e., 3D face recognition and 3Dnon-rigid surface

alignment and stitching.

3. We demonstrate that previous methods based on conformal geometries, such

as harmonic maps and least squares conformal maps, which canonly han-

dle 3D shapes with simple topology are subsumed by our Ricci flow based

method which can handle surfaces with complex topology. Large non-rigid

deformations can be registered with feature constraints, hence we propose a

method that constrains Ricci flow computation using featurepoints and fea-

ture curves. Finally, we demonstrate the applicability of this intrinsic shape

representation through standard shape analysis problems,such as 3D shape

matching and registration.

4. We propose a new framework of automatic non-rigid registration for 3D dy-

namic facial data. The non-rigid registration framework isdeveloped by us-

ing least squares conformal maps with additional feature correspondences

detected by employing active appearance models (AAMs). Based on this reg-

istration method, we also develop a new system of facial expression synthesis
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and transfer.

5. Our shape analysis framework is the first time to solve 3D shape registration

problems using conformal mapping techniques and can serve as the founda-

tion for a wide range of applications in computer vision and graphics.

1.3 Dissertation Organization

The remainder of the dissertation is organized as follows. In Chapter 2, we

briefly review theoretical background of parameterizationtechnology and prior

work done in shape registration and facial expression analysis. In Chapter 3, after

analyzing a family of quasi-conformal maps including harmonic maps, conformal

maps and least squares conformal maps with regards to 3D shape matching, we

propose a novel and computationally efficient shape matching framework by using

least squares conformal maps. In Chapter 4, we propose a surface registration and

analysis system using Ricci flow. In Chapter 5, we present a new method for auto-

matic non-rigid registration of 3D dynamic facial data and based on this registration

method, we also develop a new framework of facial expressionsynthesis and trans-

fer. Finally we conclude this dissertation and outline somefuture research work in

Chapter 6.



Chapter 2

Background Review

Our shape registration and analysis framework is based on previous work in

conformal geometry and Ricci flow parameterization methods. We also apply our

framework to facial analysis, synthesis and expression transfer. In this chapter, we

present a brief survey of the prior work done in these relatedresearch fields.

2.1 Theoretical Background

In this section, we briefly introduce theoretical background of three quasi-

conformal maps (harmonic maps, conformal maps and least squares conformal

maps) and Ricci flow.

2.1.1 Quasi-Conformal Maps

An important merit of quasi-conformal maps, including harmonic maps, con-

formal maps and least squares conformal maps, is to reduce the 3D shape-matching

problem to a 2D image-matching problem, which has been extensively studied.

Quasi-conformal mappings, which are almost conformal, do not distort angles ar-

bitrarily and this distortion is uniformly bounded throughout their domain of def-

inition [3]. We are dealing with 3D surfaces, but since they are manifolds, they

have an inherent 2D structure, which can be exploited to makethe problem more

tractable using conformal geometry theory [32, 68]. Most work using conformal

geometry theory is done in surface parameterization, whichcan be viewed as an

7



CHAPTER2. Background Review 8

embedding from a 3D surfaceS with disk topology to a planar domainD. Follow-

ing the introduction of the notions of harmonic maps, conformal maps and least

squares conformal maps, these three parametric maps will becompared in a com-

prehensive manner.

2.1.1.1 Harmonic Maps

As described in [89], a harmonic mapH : S → D is a critical point for the

harmonic energy functional,

E(H) =

∫

S
|∇H|2dµS, (1)

and can be calculated by minimizingE(H). The norm of the differential|∇H|

is given by the metric onS and D, andµS is the area element on 3D surfaceS

[21,23,57,67]. Since the source surface meshS is in the form of adiscretetriangular

mesh, we approximate the harmonic energy as [21,32,89],

E(H) =
∑

[v0,v1]

k[v0,v1]|H(v0)−H(v1)|
2
, (2)

where[v0,v1] is an edge connecting two neighboring verticesv0 andv1, andk[v0,v1]

is defined as

1
2
(

(v0−v2) · (v1−v2)

|(v0−v2)× (v1−v2)|
+

(v0−v3) · (v1−v3)

|(v0−v3)× (v1−v3)|
), (3)

where{v0,v1,v2} and{v0,v1,v3} are two adjacent triangular faces.

By minimizing the harmonic energy, a harmonic map can be computed using

the Euler-Lagrange differential equation for the energy functional, i.e.,

∆E = 0, (4)

where∆ is the Laplace-Beltrami operator [21,23,57,67]. This willlead to solving a

sparse linear least squares system for the mappingH of each vertexvi [21,32,83,89].

If the boundary condition

H|∂S : ∂S → ∂D, (5)

is given, the solution exists and is unique.
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Although harmonic maps are easy to compute, they require satisfaction of the

above boundary condition, which becomes unreliable when there are occlusions in

the 3D original data. To overcome this problem, the missing boundaries can be

approximated [89], which might be enough for rough surface matching. However,

since interior feature points are often more robust to occlusion, it is desirable to

replace the boundary condition with feature constraints. This can be achieved by

conformal maps, another mathematical tool in conformal geometry theory, which

only require several feature constraints as an input and obviate the need to specify

the boundary condition.

2.1.1.2 Conformal Maps

It can be proven that there exists a mapping from any surface with a disk topol-

ogy to a 2D planar domain [36], which is one-to-one, onto, andangle preserving.

This mapping is calledconformal mappingand keeps the line element unchanged,

except for a local scaling factor [25].

Conformal maps have many appealing properties, one of whichis their con-

nection to complex function theory [25, 49]. Consider the 2Dcase of mapping a

planar regionS to the plane. Such a mapping can be viewed as a function of a com-

plex variable,d =U (s). Locally, a conformal map is simply any functionU which

is analytic in the neighborhood of a points and such thatU ′(s) 6= 0. A conformal

mappingU thus satisfies the Cauchy-Riemann equations, which are

∂u
∂x

=
∂v
∂y

,
∂u
∂y

= −
∂v
∂x

. (6)

whered = u+ iv ands= x+ iy.

Differentiating one of these equations with respect tox and the other with

respect toy, we obtain the two Laplace equations

∆u = 0,∆v = 0. (7)

where∆ = ∂2

∂x2 + ∂2

∂y2 . Any mapping which satisfies these two Laplace equations is

called a harmonic mapping. Thus a conformal mapping is also harmonic. How-

ever, unlike the harmonic maps described in the previous section, which need the
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boundary mappingH|∂S fixed in advance, conformal maps can be calculated with-

out demanding the mesh boundary to be mapped onto a fixed shape. For a dis-

crete mesh, the main approaches to achieve conformal parameterizations are: har-

monic energy minimization [19, 30, 32, 81, 82], Cauchy-Riemann equation approx-

imation [49], Laplacian operator linearization [36], circle packing [41], circle pat-

terns [45], most isometric parameterizations(MIPS) [38] and angle-based flattening

method [69]. Here, we compute conformal maps using the harmonic energy mini-

mization method [32].

Riemann’s theorem states that for any surfaceS homeomorphic to a disc, it is

possible to find a parameterization of the surface satisfying Equation 6 [49], which

can be uniquely determined by two points on surfaceS. However, to better han-

dle the errors caused by noise in the data and the inaccuracy of finding feature

points, we introduce additional feature constraints, indicating that the correspond-

ing features on two 3D surfaces should be mapped onto the samelocations in the

2D domain. However, with these additional constraints, it is not always possible

to satisfy the conformality condition. Hence, we seek to minimize the violation of

Riemann’s condition in the least squares sense.

2.1.1.3 Least Squares Conformal Maps

The Least Squares Conformal Map(LSCM) parameterization algorithm gener-

ates a discrete approximation of a conformal map by adding more constraints. Here

we give a brief description (see [49] for details using different constraints).

Given a discrete 3D surface meshS and a smooth target mappingU : S→

(u,v), then, as described in section 2.1.1.2,U is conformal onS if and only if the

Cauchy-Riemann equation,
∂U
∂x

+ i
∂U
∂y

= 0 (8)

holds true on the whole ofS. However, in general this conformal condition cannot

be strictly satisfied on the whole triangulated surfaceS, so the conformal map is

constructed in the least squares sense:

MinC(S) =
∑

d∈S

∫

d
|
∂U
∂x

+ i
∂U
∂y

|2dA, (9)
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whered is a triangle on the meshS. If we suppose the mappingU is linear ond

then

C(S) =
∑

d∈S

|
∂U
∂x

+ i
∂U
∂y

|2A(d), (10)

whereA(d) is the area of the triangled. Furthermore letα j = u j + iv j andβ j =

x j + iy j , so α j = U (β j) for j = 1,2, ...,n. Then, we rearrange the vectorα such

thatα = (α f ,αp) whereα f consists ofn− p free coordinates andαp consists ofp

constraint point coordinates. Therefore, Equation 10 can be rewritten as

C(S) = ‖M f α f +Mpαp‖
2
, (11)

whereM = (M f ,Mp), a sparsem×n complex matrix(m is the number of triangles

andn is the number of vertices). The least squares minimization problem in Equa-

tion 11 can be efficiently solved using the Conjugate Gradient Method. Thus we

can map a 3D surface to a 2D domain with multiple correspondences as constraints

by using the LSCM technique.

Since LSCMs have almost all the properties of conformal mapsand also pro-

vide more correspondences as additional constraints, we expect them to be very

useful in 3D shape matching and recognition.

2.1.1.4 Comparison of Quasi-Conformal Maps

Based on conformal geometry theory, harmonic maps, conformal maps and

least squares conformal maps(LSCMs) between two topological disks preserve con-

tinuity of the underlying surfaces, with minimal stretching energy and angle distor-

tion. All the above quasi-conformal maps are invariant for the same source surface

with different poses, thus making it possible to account forglobal rigid transfor-

mations. A very important property, which governs our matching algorithm, is that

all the maps can establish a common 2D parametric domain for the two surfaces.

Therefore we can simplify the 3D shape-matching problem to a2D image-matching

problem. However, they vary in performance for 3D surface matching as can be

seen in table 1.

Compared to the exact solutions for harmonic maps and conformal maps,

LSCMs are generated by minimizing the violation of Riemann’s condition in the
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Table 1: Performance comparison of conformal geometric maps.

Least Squares
Harmonic Maps Conformal Maps Conformal Maps

Resolution changes Not sensitive Not sensitive Not sensitive
Boundary constraint Needed Not needed Not needed
Boundary occlusion Difficult to handle No significant impact No significant impact

Interior feature Use 2 Points Use more
points used in mapping Do not use (from Riemann’s theorem) feature constraints

Error of interior
feature points detection Not sensitive Sensitive Not sensitive

Nonlinear (with linear
Computational Complexity Linear approximation available) Linear

least squares sense. This optimization-based parameterization method has the fol-

lowing properties:

1. LSCMs have the same properties as conformal maps, e.g., existence and

uniqueness which have already been proven in [49].

2. LSCMs can map a 3D shape to a 2D domain in a continuous mannerwith

minimized local angle distortion.

3. LSCMs can handle missing boundaries and occlusion and also allow multiple

constraints.

4. LSCMs are independent of mesh resolution.

5. The least squares minimization problem in calculating LSCMs has the advan-

tage of being linear.

For actual 3D surfaces, it is very likely to have noise and missing data. From

the above comparison, we can see that LSCMs are the best candidate among all

three parametric maps to perform 3D shape matching efficiently. LSCMs do not

require the boundary condition explicitly which means theycan handle missing

boundaries and occlusions. Also, they take multiple feature constraints as input,

which allows them to better handle noise introduced by the feature point detection.

We will confirm this experimentally in the Chapter 3 by analyzing the robustness

of the three parametric maps for 3D shape matching with occlusion, noise and res-

olution variation.
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2.1.2 Ricci Flow

This section briefly introduces the theoretic background ofsurface Ricci flow

(For the details in [37]).

Let Sbe a smooth surface embedded inR3, thenShas an induced Euclidean

metric g. Supposeu : S→ R is a function on the surface, we can define another

metric ḡ = eug, which isconformalto the original metricg with an area distortion

factore2u. We callu theconformal factor.

Furthermore, when the metric ofS is changed fromg to ḡ along the change of

u, every intrinsic property (e.g., Gaussian and geodesic curvatures) ofS is changed.

The Gaussian curvaturek of interior points changes bȳk= e−2u(k−∆u), where∆ is

the Laplace-Beltrami operator [11] induced by the originalmetricg. The geodesic

curvaturekg on the boundary points changes ask̄g = e−u(kg−
∂u
∂n), wheren is the

normal to the boundary of the surface∂S.

Although the curvature value at a point is determined from the Riemannian

metric, the sum of the total curvatures solely depends on thetopology of the surface,

as described in the Gauss-Bonnet formulae [11], such that
∫

S
kdA+

∫

∂S
kgds=

∫

S
k̄dĀ+

∫

∂S
k̄gds̄= 2πχ(S), (12)

whereχ(S) is the Euler characteristic number of the surfaceS.

Ricci flow is a powerful tool to compute the desired metricḡ which satisfies

the given target curvaturēk, from the induced metricg in S. SupposeS is a closed

surface with a Riemannian metricg, the Ricci flow is defined as

dg
dt

= −2kg, (13)

wherek is the Gaussian curvature determined by the current metric.

Surface Ricci flow deforms a Riemannian metricg to another metrice2u(t)g,

which is conformal to the original one. When the desired target curvaturēk is given,

then the corresponding conformal metric can be achieved by the following general

Ricci flow
du(t)

dt
= 2(k̄−k(t)). (14)

Eventually, the limit metricg(∞) becomes̄g, which is conformal tog and satisfies

the target curvaturēk.
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Surface Ricci flow offers a novel means to manipulate shapes by curvatures

and Riemannian metrics. Specifically, it canconformallytransform all shapes to

one of the three canonical spaces: the sphere, the plane, andthe hyperbolic space.

For example, by using Ricci flow we can calculate the metricḡ, which satisfies

non-zero curvatures̄kg only on the boundary ofS. Then, we can simply flatten

S into a 2D planar domain with the metric̄g. Therefore, all 3D problems can be

converted to 2D problems in theses canonical spaces. In Chapter 4, we demonstrate

how Ricci flow provides a powerful unified tool for computer vision applications,

such as surface matching and shape registration.

2.2 3D Facial Expression Analysis Review

Automatic non-rigid registration of 3D time-varying densely-sampled data is a

fundamental and critical issue in 3D vision and graphics which has widespread ap-

plications. As 3D scanning technologies continue to improve, 3D dynamic densely-

sampled data is becoming more and more prevalent for analysis and synthesis. To

study and analyze such huge data, an efficient non-rigid registration algorithm is

necessary to establish one-to-one inter-frame correspondences automatically. How-

ever, automatic 3D non-rigid registration still remains a challenging task, espe-

cially for dynamic densely-sampled facial expression datawith many degrees of

freedom. There has been much research on registration of 3D facial data in re-

cent decades. Existing approaches to solving this problem typically involve three

key techniques: one is to select feature correspondences manually or use mark-

ers attached on human faces [34, 56, 71]. The second one is to establish inter-

frame correspondences hierarchically using multi-resolution facial data [55, 85].

The third kind of techniques computes correspondences using a low-resolution 3D

deformable model [12, 60, 73]. However, most of these existing 3D non-rigid reg-

istration methods rely on recovering low dimensional parameters of face model or

register 3D faces with local optimization that may not establish accurate one-to-one

inter-frame correspondences successfully.

Realistic facial animation and expression analysis remains a fundamental

challenge in vision and graphics. Earlier approaches explicitly model the facial

anatomy, deriving facial animations from the physical behaviors of the bone, joint,
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and muscle structures [47, 86]. Others focus only on the surface of the face, using

smooth surface deformation mechanisms to create facial expressions [34, 56, 85].

These approaches make use of existing data for animating a new model. Previ-

ous works also use techniques for tracking head motions and facial expression in

video [18, 60] and copy deformations from one subject onto the geometry of other

faces [12]. Expression cloning [56, 63, 71] improves upon this deformation trans-

fer process with both 3D source and target face data. Recently, facial animation

and expression analysis using 3D motion capture becomes available with the ad-

vancement of new 3D scan techniques [85, 90]. However, these3D motion data is

not registered in the space-time domain. For this purpose, anumber of registration

method have been proposed for 3D dynamic facial data. Zhang et al. [90] propose

a new tracking method based on optic flow estimation which canbe sensitive to

noise. Wang et al. [85] use a hierarchical method to track 3D motion facial data

with expression transfer at the cost of making the estimation of model parameters

more difficult. Moreover, their method requires a lot of manual work by dividing

the face model into several deformable regions.



Chapter 3

Shape Registration and Analysis

Using Quasi-Conformal Maps

In this chapter, we analyze a family of quasi-conformal mapsincluding har-

monic maps, conformal maps and least squares conformal mapswith regards to

3D shape matching. As a result, we propose a novel and computationally efficient

shape matching framework by using least squares conformal maps. The robustness

of least square conformal maps is evaluated and analyzed comprehensively in 3D

shape matching with occlusion, noise and resolution variation. We also conduct a

series of experiments on two computer vision applications,i.e., 3D face recognition

and 3D non-rigid surface alignment and stitching.

This work has been published in the proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition 2006[79]. An extended

version with more applications has been published in IEEE Transection on Pattern

Analysis and Machine Intelligence 2007 [80].

3.1 Introduction

3D shape matching is a fundamental issue in computer vision and graphics

field with many applications, such as shape registration, partial scan alignment,

3D object recognition and classification [10, 40, 64, 87]. Asdigital photographic

and scanning technologies improve, large databases of 3D scans require automated

16
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methods for matching. However, matching 3D shapes in noisy and cluttered scenes

is a challenging task. Moreover, since most 3D shape scanners can only capture

2.5D data of the target surfaces, aligning and stitching partial 3D surfaces is a fun-

damental problem in many research areas, such as computer vision, mechanical

engineering, and molecular biology.

Generally, the crux of 3D shape matching is finding good shaperepresen-

tations, allowing us to match two given free-form surfaces by comparing their

shape representations. Different approaches include curvature-based representa-

tions [77], regional point representations [15, 43, 64, 72], spherical harmonic rep-

resentations [26, 27, 44], shape distributions [58], spline representations [9] and

harmonic shape images [89]. However, many shape representations that use local

shape signatures are not stable and cannot perform well in the presence of noise. In

this chapter, we propose to use a family of quasi-conformal maps, including har-

monic maps, conformal maps and least squares conformal maps, that does not suffer

from such problems. According to conformal geometry theory, each 3D shape with

disk topology can be mapped to a 2D domain through a global optimization and the

resulting map is a diffeomorphism, i.e.,one-to-oneandonto. Consequently the 3D

shape-matching problem can be simplified to a 2D image-matching problem of the

quasi-conformal maps. These maps are stable, insensitive to resolution changes and

robust to occlusion and noise. The 2D maps integrate geometric and appearance

information and 2D matching is a better understood problem [5, 51]. Therefore,

highly accurate and efficient 3D shape matching algorithms can be achieved using

quasi-conformal maps.

The robustness and easy use of the technique we proposed allow us to cope

with more challenging problems such as surface alignment and stitching, when

only two parts of surfaces could be matched. There has been a lot of research

on 3D surface alignment and stitching in recent decades, such as identification and

indexing of surface features [24, 70], computing principalaxes of scans [20], ex-

haustive search for corresponding points [13], or iterative closest point(ICP) meth-

ods [8, 48, 62, 65]. Compared to matching, there are other additional issues in sur-

face stitching, such as registration and integration [76].3D surface alignment and

stitching is still a challenging task especially when the transformation between the

surfaces to be aligned is non-rigid, e.g., when taking successive scans of humans
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that might not be standing still. Based on conformal geometry theory, an important

property of Least Squares Conformal Maps(LSCMs) is that they can map a 3D sur-

face to a 2D domain in a continuous manner with minimized local angle distortion.

This implies thatLSCMs are not sensitive to surface deformations, which leads to

a natural solution to 3D non-rigid surface alignment and stitching.

Quasi-Conformal maps including harmonic maps, conformal maps and least

squares conformal maps have been used in several applications of computer vi-

sion and graphics. In [89], Zhang et al. proposed harmonic maps for surface

matching. In [83], Wang et al. use harmonic maps to track dynamic 3D surfaces.

In [30, 32, 81, 82], conformal maps are used for face and brainsurface matching.

Moreover, Sharon et al. [68] use conformal maps to analyze similarities of 2D

shapes. Least squares conformal maps are introduced by Levyet al. [49] for texture

atlas generation and used by Wang et al. [79] to do 3D surface matching. In order to

calculate harmonic maps, the surface boundary needs to be identified and a bound-

ary mapping from 3D surfaces to the 2D domain needs to be created, which can be a

difficult problem especially when part of the surface is occluded. However, the two

other quasi-conformal maps we discuss in this chapter, conformal maps and least

squares conformal maps, do not need boundary information and so lend themselves

as a natural choice to solve this problem. Moreover, in addition to the advantages

of harmonic maps, such as sound mathematical basis and preservation of continuity

of the underlying surfaces, conformal maps are also angle preserving, which leads

to less distortion and robustness to noise. The differencesbetween conformal maps

and harmonics maps are shown in Figure 2.

3.2 Shape Matching and Registration Using Least

Squares Conformal Maps

To match 3D shapes accurately and efficiently, a new 2D representation, least

squares conformal shape images, is developed in our framework using LSCMs.

Therefore, we simplify the original 3D shape-matching problem to a 2D image-

matching problem. In particular, our shape matching framework includes two steps:

First, interior feature correspondences are detected by using spin-images [43]; After
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Figure 2: Distortion comparison between a conformal map and a harmonic map. (a) Orig-
inal surface without texture. (b) Original surface with texture. (c) The 2D conformal map
of the surface with texture. (d) The harmonic map of the surface with texture. (e) Checker-
box textured surface by conformal mapping. (f) Checkerbox textured surface by harmonic
mapping. Because of angle-preservation, (c) and (e) have less distortions than (d) and (f),
which can be clearly seen in the close-up views (g) and (h) of the chin areas in the red boxes
respectively.

that, we generate and match least squares conformal shape images.

3.2.1 Correspondence Detection Using Spin-Images

In order to use least squares conformal mappings, we need to establish inte-

rior feature constraints between the 3D shapes. For this purpose, we first select

candidate points with curvature larger than a thresholdTc, and then compare their

spin-images to detect feature correspondences. The spin-image is a well-known

technique that has been proven useful for 3D point matching [43]. It encodes the

surface shape surrounding an oriented pointp by projecting nearby surface points

into a 2D histogram, which has cylindrical coordinates of radiusr and heighth cen-

tered atp, with its axis aligned with the surface normal ofp. The number of bins

and support size in the spin-image histograms are parameters fixed at generation. It
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has been shown that the matching results using spin-images are insensitive to the

choice of the above parameters [40]. In our experiments, thehighest confidence

feature correspondences are used. The typical number of selected feature points is

5-6 for 3D face surfaces and 10-12 for brain surfaces.

3.2.2 Least Squares Conformal Shape Images (LSCSIs)

In this section, we will introduce a method to describe 3D surfaces using least

squares conformal shape images (LSCSIs). In section 2.1.1.3, we have shown that

there exists a least squares conformal mapping that can map each 3D surface with

disk topology to the canonical 2D domain. The LSCSIs are generated by asso-

ciating a shape attribute with each vertex. Mean curvature is a useful geometric

attribute that depends only on the surface’s intrinsic geometry. In our method, the

mean curvature is computed in the same way as in [32]. Moreover, least squares

conformal maps can also help generate additional shape representations by associ-

ating other attributes, e.g. texture, which leads to a natural solution of combining

multiple important cues for 3D surface matching and recognition, such as shape

and texture. In our current framework, these cues are weighted equally for surface

matching. More elaborate schemes to combine different cuescan be done in the

future work.

As an example, Figure 3(d) shows the LSCSI of the surface Figure 3(b), with

darker color representing larger mean curvature. Figure 3(a) is the original surface

with texture information and Figure 3(c) is its LSCM. Figure3(e) is the LSCM of a

lower resolution(25%) version of the original surface. Thesimilarity between Fig-

ure 3(c) and Figure 3(e) shows that LSCMs are independent to resolution variation.

3.2.3 Matching Surfaces by Matching LSCSIs

Given two general surfacesS1 andS2 with disk tropology, we first detect high

curvature correspondences using spin-images. Then, by incorporating interior cor-

respondences as constraints, LSCSIs are generated for bothsurfaces as described in

the above section. After that, the normalized correlation coefficientMS1,S2 and the

similarity criterionS(S1,S2) introduced in [42] are computed on the two resulting
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Figure 3: Least Squares Conformal Shape Image: (a) Original surface with texture. (b)
Original surface without texture. (c) Least squares conformal maps with texture. (d) Least
squares conformal shape image. (e)Least squares conformalmaps of the same surface,
sub-sampled by a factor of 4, still very similar to (c).
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whereN is the number of overlapping points in the LSCSIs of 3D surfaceS1 andS2,

andpSk
i is the value (e.g., the mean curvature or the texture) of point i in the LSCSI

of surfaceSk(k = 1,2). In the case of matching surfaces with different resolutions,

N is the number of overlapping points in the LSCSIs of the surface with the lower

resolution.

According to section 2.1.1.4, an important property of Least Squares Confor-

mal Maps (LSCMs) is that they can map a 3D shape to a 2D domain ina contin-

uous manner with minimized local angle distortion. This implies thatLSCSIs are

not sensitive to surface deformations, e.g., if there is not too much stretching be-

tween two faces with different expressions, they will induce similar LSCSIs. As an

example, Figure 4 shows a comparison between the LSCSIs of faces with different

expressions and of different faces. More specifically, the first, the second, and the

third columns of Figure 4 correspond to face scans of one subject with different

expressions while the forth column corresponds to another subject. For each col-

umn in Figure 4, the bottom row represents the LSCSIs of the surfaces (shown in
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the middle row), with darker color representing larger meancurvature. The orig-

inal surfaces with texture information are also shown in thetop row of Figure 4.

Based on Equation 15, the normalized correlation coefficient (Mi, j ) between Fig-

ure 4(i) and Figure 4(j) and the normalized correlation coefficient (Mi,k) between

Figure 4(i) and Figure 4(k) are 0.92 and 0.86, respectively,while the normalized

correlation coefficient (Mi,l ) between Figure 4(i) and Figure 4(l) is only 0.65. As is

evident, the normalized correlation coefficients of LSCSIsbetween the face scans

of the same person with different expressions are much larger than the coefficients

between face scans of different persons, thus making it possible to match surfaces

with small deformations using LSCSIs. This relative expression-invariance is also

an important property for shape representations used in face recognition.

However, for 3D surfaces with holes, which violate the disk topology assump-

tion, we can not calculate the LSCMs directly. To overcome this problem, we can

simply fill in the holes through interpolation [50] and then use our method to gen-

erate the LSCSIs of the new surfaces. The filled-in regions are masked out when

we compute the normalized correlation coefficient using Equation 15. As discussed

in section 2.1.1.4, LSCMs depend on the geometry in a continuous manner, which

leads to robustness to local perturbation. Figure 5 demonstrates the robustness of

our method to holes on surfaces. The normalized correlationcoefficient of the

LSCSIs shown in Figure 5(b,f) is 0.99, which means a very goodmatch between

the two surfaces of Figure 5(a,e) after hole filling. If we desire to preserve the non-

disk topology of the object during matching, then the objectshould be partitioned

into simpler parts with disk topology [49] which could then be matched. Optimal

partitioning will be studied in future work.

3.3 Experimental Results and Performance Analysis

In this section we analyze the robustness of our proposed 3D shape matching

method using least squares conformal maps on real data with occlusion, noise and

resolution variation. Furthermore, we demonstrate the performance of our method

through two applications: 3D face recognition and 3D non-rigid surface alignment

and stitching.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Surface matching with deformation: The original 3D surfaces with texture are
in the top row. The detail of the deformed mouth areas are shown in the second row and
the LSCSIs of the original surfaces are in the last row. In each row, the first, the second,
and the third surfaces are from the same person with different expressions and the forth one
is another person. The normalized correlation coefficient (Mi, j ) between (i) and (j) and the
normalized correlation coefficient (Mi,k) between (i) and (k) are 0.92 and 0.86, respectively,
while the normalized correlation coefficient (Mi,l ) between (i) and (l) is only 0.65.

3.3.1 Robustness Analysis

In this section we use two surface types: brains (4 instances) and faces (6 in-

stances) to analyze the performance of our proposed 3D shapematching method.

We present three experiments in which 3D surface matching isperformed under

occlusion, noise and resolution variation using least squares conformal maps, fol-

lowed by a full comparison between several related work of quasi-conformal maps

including harmonic maps, conformal maps and least squares conformal maps.
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(a) (c) (e)

(b) (d) (f)

Figure 5: An example of surface matching with holes : (a) A frontal 3D scan. (b) The
LSCSI of (a). (c) A side 3D scan of the same subject as in (a), which has a hole illustrated
in (d). (e) The same surface of (c,d) after hole filling. (f) The LSCSI of (e).

3.3.1.1 Experiment on Data Occlusion

In this experiment, we test the robustness of Least Squares Conformal Maps

(LSCMs) under occlusion for both face and brain surfaces. Such occlusions might

be caused by rotation of the object in front of the scanner. Figures 6 and 8 show ex-

amples of 3D face and brain surfaces respectively, under different occlusions with

their least squares conformal shape images (LSCSIs). For each original surface,

partially occluded surfaces were generated with occlusionrates between 5% and

45%. Average matching results of these face and brain surfaces using LSCMs are

shown in Figure 7 and 9, respectively. In experiments, we superimpose the matched

surfaces with significant occlusions (only 60% of area is common to both). Match-

ing error is very hard to detect visually, which suggests that our framework could

be useful for partial scan alignment.

3.3.1.2 Experiment on Noisy Data

The second experiment tests the robustness of Least SquaresConformal Maps

(LSCMs) in the presence of noise. We add gaussian noise(N (0,σ)) on each vertex

of the face and brain surfaces.σ increases from 0.0 mm to 2.0 mm while the
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Figure 6: 3D face surfaces and their LSCSIs under occlusion. The original 3D face surfaces
with different occlusions are in the top row. Their LSCSIs are in the bottom row.
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Figure 7: Average matching results of the face surfaces under occlusion using LSCMs.
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Figure 8: 3D brain surfaces and their LSCSIs under occlusion. The original 3D brain
surfaces with different occlusions are in the top row. TheirLSCSIs are in the bottom row.

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(Occlusion Area/Surface Area)% on Brain Surfaces

A
ve

ra
ge

 N
or

m
al

iz
ed

 C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Figure 9: Average matching results of the brain surfaces under occlusion using LSCMs.

window size for computing the curvatures of 3D face and brainsurfaces is 10.0

mm. Example surfaces with noise under differentσ are shown in Figure 10. We

match the various noisy surfaces to the original noise-freesurface and the average

matching results of the face and brain surfaces are shown in Figure 11 for various

σ values. From the results we can see that LSCMs appear robust to gaussian noise.
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Figure 10: Examples of face and brain surfaces under gaussian noise with differentσ set
to 0.0, 0.4, 1.0 and 2.0 mm, respectively.
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Figure 11: Average matching results of LSCMs under gaussian noise increases. The win-
dow size for computing the curvatures of faces surfaces and brain surfaces is 10.0 mm and
theσ increases from 0.0 mm to 2.0 mm.

3.3.1.3 Experiment on Resolution Variation

The third experiment tests the robustness of Least Squares Conformal Maps

(LSCMs) to resolution changes. Figure 12 shows examples of 3D face and brain

surfaces with resolution variation, where all the meshes have the same shape but

different resolution. The surfaces with low resolution arematched to the original

surfaces and average matching results using the LSCMs are shown in Figure 13.

Results show that LSCMs achieve fairly stable matching results and impervious to

resolution changes. A small deterioration of the matching results is due to the use

of a discrete curvature approximation, since approximation error increases as the

resolution drops.

3.3.1.4 Comparison Between Quasi-conformal Maps

For completeness purposes, we also performed comparison experiments be-

tween several related work of quasi-conformal maps, including least squares con-

formal maps, conformal maps [32] and harmonic maps [83, 89],to confirm the
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Figure 12: 3D face and brain surfaces with 1, 1/2,1/4 and 1/8 of the original resolution,
respectively.
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Figure 13: Average matching results of LSCMs under resolution variation.

conclusion in Section 2.1.1.4. Average matching results ofthe face and brain sur-

faces using the above three parametric maps under occlusion, noise and resolution

variation are shown in Figure 14, 15 and 16, respectively. InFigure 14, since the

harmonic maps require satisfaction of the surface boundarycondition as discussed

in section 2.1.1.1, the performance of harmonic maps is moreimpacted than the per-

formance of conformal maps and least squares conformal maps. Instead, changes of

boundary have very small effects on both conformal maps and least square confor-

mal maps. From the results in Figure 15 we can see that all three maps appear robust

to gaussian noise. However, since conformal maps depend on 2feature points only,

which might be detected with errors caused by the noise, theyhave lower matching

rates than the harmonic maps and the least square conformal maps. Finally, Fig-

ure 16 shows that the above three parametric maps achieve fairly stable matching

results and all of them are impervious to resolution changes.
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Figure 14: Average matching results of the face and brain surfaces under occlusion using
all three parametric maps.
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Figure 15: Average matching results of all three parametric maps undergaussian noise in-
creases. The window size for computing the curvatures of faces surfaces and brain surfaces
is 10.0 mm and theσ increases from 0.0 mm to 2.0 mm.



CHAPTER3. Shape Registration and Analysis Using Quasi-Conformal Maps 32

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resolution Variation (1/x)

A
ve

ra
ge

 N
or

m
al

iz
ed

 C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Least Squares Conformal Maps of Face Surfaces
Conformal Maps of Face Surfaces
Harmonic Maps of Face Surfaces
Least Squares Conformal Maps of Brain Surfaces
Conformal Maps of Brian Surfaces
Harmonic Maps of Brian Surfaces

Figure 16: Average matching results of all three parametric maps underresolution varia-
tion.

3.3.2 Recognition of 3D Faces

In this section, we apply Least Squares Conformal Maps (LSCMs) to 3D face

recognition on a 3D face database which contains 100 3D face scans from 10 sub-

jects. The data are captured by a phase-shifting structuredlight ranging system in

different time [91]. Each face has approximately 80K 3D points with both shape and

texture information available (example face data from two subjects in the database

are shown in Figure 17). In order to further evaluate our recognition method, we

also perform a comparison with other existing methods, including the surface curva-

ture technique [77] and the spherical harmonic shape contexts [26]. For the compu-

tation of curvatures from 3D surfaces we had to chose the sizeof the neighborhood

for the surface fit. Clearly, choosing the mask size is a trade-off between reliability

and accuracy. When choosing a small mask curvature computation will be strongly

affected by noise, due to the small number of points considered for regression. The

reliability of the curvature estimation can be improved by increasing the size of

the mask. However, a large mask size will produce an incorrect result in the area

curvature changes quickly. In our experiments, we used a mask size of 10×10.
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The spherical harmonic shape contexts descriptor is computed using the method

developed in [26], based on 3D shape contexts. The 3D shape contexts technique is

the straightforward extension of 2D shape contexts [54], tothree dimensions. The

support region for a 3D shape contexts is a sphere centered onthe basis point p

and its north pole oriented with the surface normal estimateN for p. The support

region is divided into bins by equally spaced boundaries in the azimuth and eleva-

tion dimensions and logarithmically spaced boundaries along the radial dimension.

Based on the histogram from 3D shape contexts, we use the bin values as samples

to calculate a spherical harmonic transformation for the shells and discard the orig-

inal histogram. The descriptor is a vector of the amplitudesof the transformation,

which are rotationally invariant in the azimuth direction,thus removing the degree

of freedom. We compute the spherical harmonic shape contexts representations in

64× 64 grids sampled evenly along the directions of longitude and latitude with

bandwidthb = 16.

In each experiment, we randomly select a single face from each subject for the

gallery and use all the remaining faces as the probe set. The average recognition re-

sults from 15 experiments (with different randomly selected galleries) are reported

in Table 2. From the recognition results, we can see that the least squares conformal

maps perform 10.7% better than the spherical harmonic shape contexts and 14.3%

better than the surface curvature technique even if only theshape information is

used. Moreover, least squares conformal maps allow to combine both shape and

texture information, which improves the accuracy of 3D facerecognition.

Table 2: Recognition results of least squares conformal maps, spherical harmonic shape
contexts and surface curvature technique.

Recognition Result Least Squares Spherical Harmonic Surface
Conformal Maps Shape Contexts Curvature

Using shape information only 97.3% 86.6% 83.0%
Using texture information only 98.0% N/A N/A
Using both shape and texture 98.4% N/A N/A
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Figure 17: Two subjects in the 3D face database. Shape information is inthe first row and
texture information is in the second row.

3.3.3 Non-Rigid Surface Alignment and Stitching

In this section, we apply the Least Squares Conformal Maps(LSCMs) to an-

other application: 3D non-rigid surface alignment and stitching. A very important

property, which governs our alignment and stitching algorithm, is that the LSCMs

can establish a 2D common parametric domain for the 3D surfaces. Therefore we

can simplify the 3D surface alignment and stitching problemto a 2D registration

and stitching problem. Furthermore, because the LSCMs is a diffeomorphism, i.e.,

one-to-one and onto, we can detect and remove the duplicatedregions in the original

3D surfaces by removing the overlapping areas in the resulting 2D common para-

metric domain. After that, we can stitch the 3D surface patches by connecting the

exclusive regions in the resulting LSCMs. There is a lot of research on 3D surface

remeshing [1, 2, 6, 61], but in our case the problem is simplified to a 2D triangula-

tion problem by connecting the neighboring patches in the 2Dcommon parametric

domain. As an example, Figure 18 demonstrates the alignmentand stitching of two

3D surfaces undergoing non-rigid deformations. 3D faces are captured by a phase-

shifting structured light ranging system [91] and each facehas approximately 80K

3D points with both shape and texture information available. The subjects were not
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asked to keep their head and facial expression still during the 3D face scanning.

Furthermore, Figure 19 shows another example of the accurate face alignment

and stitching result of our method on two 3D scans of one face undergoing differ-

ent transformations and deformations. The leftmost columnshows the two input

3D face scans with texture. The same 3D face scans without texture information

are shown in the second column. The Least Squares Conformal Shape Images

(LSCSIs) of both 3D scans are in the third column. Their aligned LSCSIs and the

resulting stitched 3D faces are in the fourth column. Because of the one-to-one

mapping between the LSCSI and original face, we can align andstitch 3D faces by

registering and stitching 2D LSCSIs.

In order to demonstrate the performance of our method, we also compare our

results to the results from the Iterative Closest Point (ICP) method [65] in Figure 20.

Figure 20(a) shows a 3D scan of a neutral face, while Figure 20(b) shows a 3D scan

of the same face undergoing a large deformation in the mouth area. From Figure

20(c) and (d) which are the front view of (a) and (b), we can seethe occlusion area

clearly. The face alignment and stitching result of our method is in Figure 20(f)

with the close up view of mouth area in Figure 20(h). The result of the ICP method

is in Figure 20(e) with the close up view in Figure 20(g). As wecan see, in the

close up view Figure 20(g), there is a redundant region in theresult because the ICP

method failed to detect the overlapping areas between deformed surfaces and can

only register two surface with rigid transformations. However, as can be seen in

Figure 20(g) and (h), our method correctly aligns even at areas of significant local

deformations.

3.4 Discussion

In this chapter, we presented a family of quasi-conformal maps, including har-

monic maps, conformal maps and least squares conformal maps, and proposed a

fully automatic and novel 3D shape matching framework usingleast squares con-

formal shape images – a new shape representation which simplified the 3D surface

matching problem to a 2D image matching problem. The performance of least

squares conformal maps was evaluated vis-a-vis other existing techniques in 3D

face recognition and 3D non-rigid surface alignment and stitching. Furthermore,
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 18: An example of surface alignment and stitching: (a,b) Two original 3D faces with
texture in different poses and deformations. (c,d) Original 3D faces without texture. (e,f)
The Least Squares conformal Shape Images (LSCSIs) of the faces. (g) The aligned LSCSI
of the two faces. (h) The resulting 3D face by stitching a partof (c) into (d). Because of the
one-to-one mapping between the LSCSI and original face, we can align and stitch 3D faces
by registering and stitching 2D LSCSIs.

our comparison results have shown that all above three parametric maps are robust

to occlusion, noise and different resolutions and that the least squares conformal

mapping is the best choice for 3D surface matching.
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(a) (c) (e) (g) (i)

(b) (d) (f) (h) (j)

Figure 19: Another example of surface alignment and stitching: (a,b) Two original 3D
faces with texture in different poses and deformations. (c,d) Original 3D faces without
texture. (e,f) The Least Squares conformal Shape Images (LSCSIs) of the faces. (g) The
aligned LSCSI of the two faces by connecting the non-overlapping area in (f) into (e). (h)
The aligned LSCSI of the two faces by connecting the non-overlapping area in (e) into (f).
(i) The resulting 3D face by stitching a part of (d) into (c). (j) The resulting 3D face by
stitching a part of (c) into (d). Because of the one-to-one mapping between the LSCSI and
original face, we can detect and remove the duplicated regions in the original 3D surfaces
by removing the overlapping areas in the resulting 2D commonparametric domain. The
user can decide which of the two expressions to keep on the final stitched mesh. In this case
(i) has the expression of original (a) and (j) of original (b).
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 20: A comparison between the alignment and stitching result of our method and of
the ICP method: (a) A 3D scan of a neutral face. (b) A 3D scan of the same face undergoing
a large deformation in the mouth area. (c) and (d) are the front view of (a) and (b) with the
occlusion area shown clearly. (e) The face alignment and stitching result of the ICP method.
(g) The close up view in the mouth area of (e). (f) The face alignment and stitching result
of our method. (h) The close up view in the mouth area of (f).



Chapter 4

Shape Registration and Analysis

Using Ricci Flow

This work is the first application of surface Ricci flow in computer vision. We

demonstrate that previous methods based on conformal geometries, such as har-

monic maps and least-square conformal maps, which can only handle 3D shapes

with simple topology are subsumed by our Ricci flow based method which can han-

dle surfaces with arbitrary topology. Our Ricci flow based method can convert

all 3D problems into 2D domains and offers a general framework for 3D surface

analysis. Large non-rigid deformations can be registered with feature constraints,

hence we introduce a method that constrains Ricci flow computation using feature

points and feature curves. Finally, we demonstrate the applicability of this intrinsic

shape representation through standard shape analysis problems, such as 3D shape

matching and registration.

This work has been published in the proceedings of the IEEE International

Conference on Computer Vision 2007 [31].

4.1 Introduction

Ricci flow is a powerful curvature flow method in Riemannian geometry.

In particular, 3-manifold Ricci flow has been successfully applied to prove the

Poincaré conjecture recently [59]. In this chapter, we introduce Ricci flow as a

39
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novel 3D shape representation for computer vision and graphics applications. We

are motivated by the fact that Ricci flow can handle arbitrarytopologies, allowing

the mapping of any 3D surface to 2D domain and its ability to handle large 3D

shape deformation.

In recent decades, there have been a lot of researches to develop surface repre-

sentations for 3D surface analysis, which is a fundamental issue for many computer

vision and graphics applications, such as 3D shape registration, partial scan align-

ment, 3D object recognition, and classification [10,40,64,87]. However, matching

surfaces undergoing non-rigid deformation is still a challenging problem, especially

when data is noisy and with complicated topology. Differentapproaches include

curvature-based representations [77], regional point representations [15,43,64,72],

spherical harmonic representations [26,27], shape distributions [58], harmonic and

conformal shape images [79, 81, 89], physics-based deformable models [75], Free-

Form Deformation (FFD) [39], and Level-Set based methods [52]. However, many

surface representations that use local shape signatures are not stable and cannot

perform well in the presence of non-rigid deformation. Conformal geometric maps

have been used in several applications of computer vision and graphics. In [89],

Zhang et al. propose harmonic maps for surface matching. In [83], Wang et al. use

harmonic maps to track dynamic 3D surfaces. However, in order to calculate har-

monic maps the surface boundary needs to be identified and a boundary mapping

from 3D surfaces to the 2D domain needs to be created which canbe a difficult

problem. In [32,81], conformal maps are used for face and brain surface matching.

Levy et al. [49] use least squares conformal maps for textureatlas generation, and

Sharon et al. [68] analyze similarities of 2D shapes using conformal maps. In [79],

Wang et al. analyze a family of quasi-conformal maps for 3D shape matching, such

as harmonic maps and least squares conformal maps. However,the conventional

conformal geometric methods have the drawbacks such that they can only handle

surfaces with simple topologies or compute simple maps. As aresult, most ex-

isting algorithms are limited to surfaces with simple topology such as genus zero

with/without a single boundary. In contrast, our method canhandle surfaces with

arbitrary topologies for shape analysis.

In this chapter, we introduce a new 3D non-rigid surface analysis framework

based on Ricci flow conformal mapping. Surface Ricci flow offers a novel means to
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manipulate shapes by curvatures and Riemannian metrics. With surface Ricci flow,

the curvature evolves like a heat diffusion process on the surface and converges ex-

ponentially fast to a constant value. During the whole process, the angle structure on

the surface is preserved, and the final surface can be embedded in one of the canon-

ical domain, such as the sphere, the plane, or the hyperbolicspace. By computing

conformal maps using the Ricci flow method, each 3D surface, even with a compli-

cated topology (e.g. having multiple holes), can be mapped to a 2D domain through

a global optimization. The resulting map does not have any singularities and is a

diffeomorphism, i.e.,one-to-oneandonto. These maps are stable, insensitive to

resolution changes, and robust to noise. Hence, the original 3D surface-matching

problem simplifies to a 2D image-matching problem of the conformal geometric

maps, which is a better understood problem [5,51,54].

The previous conformal map methods are subsumed by Ricci flow. Hence,

our framework is more general, while we can take advantage ofthe significant

body of work for 3D surface analysis using previous conformal map methods

[32, 68, 79, 81, 83, 89]. To integrate feature constraints inRicci flow computation.

Taking advantage of meaningful features is essential for any matching or registra-

tion method. In the case of large non-rigid deformations, matched features allow ac-

curate description of the deformations. Thus, in order to make Ricci flow applicable

to computer vision problems, we develop: 1) a representation of feature points and

feature curves suitable to our framework; 2) a novel featurebased metric; 3) an al-

gorithm which, based on features, decomposes the surface into conformal patches;

and 4) an algorithm to embed these patches onto the plane (On the target canonical

domains, the entire curvature is concentrated on feature points and feature curves

are mapped to straight boundary lines). This association offeature points with tar-

get domain curvature is novel and has broader implications for geometric modeling

and graphics. Finally, we provide initial experiments thatdemonstrate the poten-

tial of our method in a broad range of 3D shape analysis applications such as 3D

shape matching and registration in a variety of data sets including face scans and

biomedical data.
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4.2 Generalization of Conformal Maps

Conventional conformal geometric methods, such as harmonic maps, least

squares conformal maps (LSCMs), and methods based on holomorphic forms, can

be unified by Ricci flow. In order to clarify this point, we firstcompare Ricci flow

with conventional methods. Then, we briefly introduce the discrete Ricci flow and

show the intrinsic connection between Ricci flow and other conformal geometric

maps such as harmonic maps.

4.2.1 Comparing with Conventional Conformal Map Methods

In general, conformal mapping algorithms can be classified to the following

categories. The first class computes maps from the surface tothe plane, such as

harmonic map method [83, 89], least squares conformal maps (LSCMs) [49, 79],

spherical conformal maps [4, 32]; The second class aims at computing the deriva-

tives of maps, such as the method based on holomorphic forms [33]; The third class

computes the conformal metrics to induce conformal maps. The Ricci flow method

belongs to the third class, which is more general than the other two classes.

The pull-back metric of a conformal map is a conformal metricon the surface,

which induces zero curvature in the entire interior of the target domain. Conversely,

the map can be recovered by its pull-back metric directly. Since the curvature is zero

everywhere in the map, the pull-back metric can be computed using Ricci flow by

specifying the target curvature 0 everywhere. Therefore, any conformal maps (with

zero target curvature) which can be computed using either harmonic maps, LSCMs

or holomorphic 1-form method can be computed by Ricci flow.

The main difference between Ricci flow and conventional methods is in how

much complicated topologies they can handle. In particular, the algorithms in the

first class can handle surfaces with genus 0 with/without a single boundary, but

can not handle high genus cases. The algorithms in the secondclass can handle

all topologies, but they can not compute the conformal maps between multi-holed

annuli, as shown in Figure 25, which are frequently encountered in the scanning

process. Furthermore, if the target surface has arbitrary curvature, only Ricci flow

can find the map. Therefore, Ricci flow is much more general, and all algorithms in

the other two categories can only handle a subset problems handled by Ricci flow.
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Figure 21: Circle packing metric for a triangle. The dual circle (the red one) in orthogonal
to the other 3 circles.

Ricci flow can address situations that can not be handled by other existing

algorithms, such as Iterative Closest Point (ICP) [66] and level set based meth-

ods [52]. ICP can find a good rigid alignment inR3, but for non-rigid surface

deformations, such as the bending deformation shown in Figure 23, ICP can not

find a good registration between two surfaces. Level set based methods are power-

ful tools for surface analysis. However, it is required thatthe surface deformation

process performed explicitly inR3 at each step, which will be difficult for surfaces

with complex topology since the deformed surface may not be able to be embedded

in R
3.

4.2.2 Discrete Ricci Flow

Conventional Ricci flow is defined onC2 smooth surfaces. In this section, we

focus on the discrete approximation of Ricci flows on triangular meshes [14], which

is robust for polygonal meshes with sharp corners. DiscreteRicci flow is useful

for handling noisy data sets in real applications, as shown in the heart registration

example in Section 4.5.

The key observation about the discrete Ricci flow is that the conformal metric
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deformation can be treated as a local scaling transformation, which preserves an-

gles and transforms an infinitesimal circle to an infinitesimal circle. Therefore, the

general idea of the discrete Ricci flow is to cover the mesh by many circles centered

at the vertices. Each circle has a cone angle at the vertex, which can be treated

as the discrete curvature. Then, by adjusting the circle radii, we can deform the

Riemannian metric of the mesh in a discrete conformal way [14]. The change of

the circle radii is the analogy to the change of the conformalfactoru. The relation

between the discrete curvature and the discrete conformal factor isexactly sameas

that in the smooth case.

SupposeM is a mesh with boundary∂M, a circle packing metric(M,Γ,Φ)

is shown in Figure 21, whereΓ andΦ represent the radius function of circles on

each vertex and the intersection angle between two circles at one edge, respectively.

Each edge length is determined by using the cosine law with the radii of two circles

and the intersection angle on the edge. The vertex curvaturek(v) measures the

flatness of its neighborhood, which is defined as 2π−
∑

i αi for an interior vertex

andπ−
∑

i αi for a boundary vertex, whereαi ’s are the corner angles surrounding

a vertexv. As in the smooth case, the discrete version of Gauss-Bonnetformulae

holds,
∑

vk(v) = 2πχ(M). Two circle packing metrics(M,Γ1,Φ1) and(M,Γ2,Φ2)

are conformal, if and only ifΦ1 ≡ Φ2.

Therefore, the discrete Ricci flow can be defined in the same way

dγi(t)
dt

= −2kiγi(t), (17)

which converges to constant curvature under the constraintthat the total area

of the mesh is fixed. If we define thediscrete conformal factoras u =

{lnγ1, lnγ2, · · · , lnγn} and the prescribed target curvature ask̄ = {k̄1, k̄2, · · · , k̄n},

then the general discrete Ricci flow is

dui(t)
dt

= k̄i −ki(t), (18)

which will lead to the desired conformal metric satisfying the desired target curva-

ture.

Actually, Ricci flow is the gradient flow of a specific energy form, Ricci en-

ergy:

E(u) =
∑

i

(k̄i −ki)dui . (19)
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Ricci energy is convex, and therefore it has a unique global optima ū, which in-

duces the target curvaturēk. In practice, optimizing Ricci energy is more efficient

than computing Ricci flow. The convex Ricci energy can be stably optimized us-

ing Newton’s method. The Hessian matrix of the energyE(u) can be computed

explicitly as follows.

Supposefi jk ∈ F is a face on the mesh, there exists a unique circle orthogonal

to all three circles at the vertices, shown as the red circle in Figure 21. We denote

the center of that circle asoi jk . The distance fromoi jk to the edgeei j is denoted

ashk
i j . If an interior edgeei j 6∈ ∂M is shared by two facesfi jk and f jkl , its weight

is wi j = hk
i j +hl

ji . If the edge is on the boundary, and only adjacent to facefi jk , its

weight iswi j = hk
i j .

The Hessian matrix ofE(u) has the formulae as

∂2E(u)

∂ui∂u j
=











−wi j i 6= j,ei j ∈ E
∑

k wik i = j,eik ∈ E

0 otherwise

(20)

which is positive definite on the hyperplane
∑

ui = const.

Now, we will describe how to obtain the conformal map of a given surface

from the conformal metric obtained from Ricci flow. Alg. 1 shows the procedures of

computing the desired conformal metric by prescribed curvature by minimizing the

Ricci energy. For surfaces with boundaries, we introduce a novel metric computed

by Alg. 2, such that all interior points have zero curvature,and the vertices on the

same boundary component share the same curvature. Intuitively, this metric will

flatten the surface and map all the boundaries to circles, as shown in Figure 23.

Once the metric is obtained, the mesh can be isometrically embedded onto the

plane. The isometric embedding is denoted asτ : V → C. This embedding in fact

is harmonic, namely, it minimizes the harmonic energyE(τ) =
∑

ei j∈E wi j |τ(vi)−

τ(v j)|
2, i.e.,∆(u)τ = 0.

4.3 Feature Based Canonical Domain Decomposition

In practice, it is often useful to add feature constraints, such as point and curve

correspondences when comparing 3D shapes. Hence we proposethe incorporation
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Algorithm 1 Compute Conformal Metric by Prescribed Curvature Using Ricci
Flow

while |k̄−k|> ε do
Compute dual circles
Compute edge weightwi j

Form the Hessian matrix∆(u)
Solve∆(u)du = (k̄−k) constrained at

∑

i dui = 0
Updateu = u +du
Updatek

end while

Algorithm 2 Compute Uniform Flat Metric

Compute the boundary components,∂M = C1∪C2∪ ·· ·∪Ck.
∀v 6∈ ∂M, setk̄⇐ 0.
∀v∈Cj , k̄(v) ⇐ sj

2π
|Cj |

, wheres1 = 1, sj = −1 for j 6= 1.

while |k̄−k|> ε do
Computeū by k̄ using the Ricci energy algorithm.

∀v∈Cj , k̄(v) ⇐ sj π(l̄(e−)+l̄(e+))
∑

e∈Cj
l̄(e)

,

wherel̄(e) is the edge length under ¯u, and
e− ande+ represent two boundary edges incident tov.

end while
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of such constraints to the energy minimization and formulate the main framework

of surface matching using Ricci flow in the following commutative diagram,

S1
φ

−−−→ S2

τ1





y





y

τ2

D1
φ̄

−−−→ D2

(21)

S1,S2 are two given original surfaces,φ : S1 → S2 is the desired 3D surface match-

ing. We use Ricci flow to computeτi : Si → Di which mapsSi conformally onto the

canonical domainDi. D1 andD2 are simple planar domains. The topology and the

curvature ofD1 andD2 incorporate the major feature information of the original

surfacesS1 andS2. If there are certain feature constraints, we can further incorpo-

rate them using the method described below and compute a mapφ̄ : D1 → D2. The

final mapφ is induced byφ = τ−1
2 ◦ φ̄◦ τ1.

For surfaces with significant point features, we design the target curvature such

that those features are transformed to the branch points of the Riemann surfaces of

in the target domains. Alg. 3 uses features to design such target domains.

After computing the metric incorporating all the major features using Alg.

4, the surface is decomposed to canonical patches, each of which is mapped to a

rectangle or a trapezoid as shown in Figure 22.

As described in Section 4.2.2, each patch is embedded onto the plane by mini-

mizing the harmonic energy with the feature point position constraints as described

in Alg. 5.

Algorithm 3 Computing Feature Based Flat Metric
Specify the feature curves
Slice the surface open along the feature curves.
Specify the feature points{v1,v2, · · · ,vm}.
Compute the boundary components,∂M = C1∪C2∪ ·· ·∪Ck.
for each vertexv∈ M, setk̄⇐ 0.
Allocate curvature on feature points,k̄i = 2miπ,mi ∈ Z ,

∑

i mi = χ(M).
Use Ricci energy optimization to compute the metric.

An example result on human face scan is demonstrated in Figure 22. The orig-

inal surface is a 2-holed annulus. We select the nose tip as the only feature point,
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Algorithm 4 Computing Feature Based Domain Decomposition
Compute the feature based target metric, such that all boundaries become straight lines
under the target metric.
Compute the straight lines starting from the feature pointsand are perpendicular to the
boundaries under the new metric.
Compute the straight lines parallel to boundaries under thenew metric.
Slice the surface open along the straight lines to decomposethe surface to patches, each
of which is conformally mapped to a rectangle or a trapezoid.

Algorithm 5 Computing the Isometric Embedding
On each face, compute the dual circle which is orthogonal to all three vertex circles.
Compute the distance from the center of the dual circle to three edges.
Embed a seed trianglef on the mesh.
Minimize the harmonic energy with the constraints of the embedded trianglef .

and set the target curvature to be zero everywhere (including both the interior points

and the boundary points) except for the noise tip, whose curvature equals to−2π.

Then, we use Ricci flow to compute the target metric of the Riemann surface, which

is a flat surface with a single branch point. Because the target surface can not be em-

bedded inR3 directly, we decompose it to canonical patches, shown as blue curves

in the figure intersecting the boundaries, where all the boundaries are straight lines

in the target domain. The decomposition includes three steps: First, under the target

metric we find straight lines from the branch point to the boundaries, each of which

is perpendicular to a boundary; Next, we trace the straight lines which are parallel

to the boundaries under the target metric, shown as curves circling around the eye

contours in the figure; Finally, all the straight lines partition the surface to patches

and each patch is conformally embedded onto the plane eitheras a rectangle or a

trapezoid. Thanks to the conformal deformation, this decomposition is solely deter-

mined by the geometry of the original surface and the choice of features. Therefore,

surface matching and registration can be carried out by matching the decomposed

patches on the planar domain, while the features are guaranteed to match as they

become patch corners or boundaries.

The main reason for the decomposition is to improve the efficiency and accu-

racy of the method. We convert surface matching to matching between rectangles

and trapezoids, as simpler process. Because we incorporatefeature constraints to
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(a) A face surface with (b) Planar domain for
segmenting curves each patch

Figure 22: Canonical surface decomposition using Ricci flow. The nose tip is selected as
a feature point. A flat metric is computed using Ricci flow, such that all interior points and
all boundary points are with zero curvatures, except the feature point where the Gaussian
curvature equals to−2π. Straight lines under the new metric, which are either parallel or
perpendicular to the boundaries, result in the blue curves on the original surface that pass
through the feature point in (a). Then the surface is decomposed to patches, each patch is
conformally equivalent to a rectangle or a trapezoid on the plane, shown in (b).

the mapping by minimizing harmonic energy, which requires the domain to be con-

vex, the decomposition is also necessary to ensure the convexity and to guarantee

the globally optimum solution.

4.4 Ricci Flow Based Shape Representation

In this section, we present a new shape representation for 3Dsurface analy-

sis, such as shape matching and registration based on Ricci flow, which can handle

surfaces with varying boundaries and arbitrary topologies. Moreover, it also al-

lows multiple types of feature constraints, such as featurepoint constraints, feature

curve constraints, and target curvature constraints. Therefore, it provides a unified

framework for non-rigid 3D surface analysis.

Ricci Flow Shape and Texture Images The main advantage of the Ricci flow

method is that it can convert all 3D problems into 2D domains.By computing

conformal maps using the Ricci flow method, each 3D surface, even with a compli-

cated topology (e.g. having multiple holes) can be mapped toa 2D domain through

a global optimization. Therefore, we can generate the Ricciflow shape images
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by associating a shape attribute with each vertex in the Ricci flow conformal maps.

Among the shape attributes, we use mean curvatures to obtainRicci flow conformal

images since mean curvature depends only on surface geometry. In our method, the

mean curvature is computed in the same way as in [32]. Moreover, it is also pos-

sible to generate other Ricci flow conformal images by associating other attributes

such as textures.

Surface Matching with Ricci Flow Representation Given two general surfaces

S1 andS2, we first compute the Ricci flow shape or texture images. Because the

resulting maps do not have any singularities and are a diffeomorphism, i.e., one-

to-one and onto, we can register these two 3D surfaces by simply matching and

registering with the aligned Ricci flow shape or texture images. We evaluate the

accuracy of surface matching by using the error distance between the two resulting

maps, as follows

normalized errorS1,S2 =

∑N
i=1‖pS1

i − pS2
i ‖

∑N
i=1‖pS1

i ‖
, (22)

whereN is the number of overlapping points in the Ricci flow conformal shape

or texture images of 3D surfaceS1 andS2, andpSk
i is the value of pointi in the 2D

image of surfaceSk(k= 1,2). This is the matching method used in our experiments.

4.5 Experimental Results

In this section, we demonstrate the performance of our framework by several

experiments on real 3D data, such as isometrically deformedsurfaces, dynamic fa-

cial expression with complex topology, and human heart surfaces undergoing com-

plex non-rigid motion deformations.

4.5.1 Experiments on Isometrically Deformed Surfaces

Firstly, as a simple experiment, we test our method on isometrically deform-

ing data. We scanned a flexible (but non-stretchable) toy mask two times, one for

the original and another for its deformed version. Since there is no stretching the
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Figure 23: Surface matching under isometric deformation using a toy mask. The first row
shows two views of the original surface and its conformal image; the second row shows
two views of the deformed surface and its conformal image. Pixel intensities in the con-
formal images are copied from the corresponding points in the 3D scans. Under isometric
deformation, the conformal images are identical. The normalized registration error is 0.018
computed using Equation 22.

deformation is isometric which can be easily handled by Ricci flow, as shown in

Figure 23. The conformal images of the two scans are practically identical with

normalized error 0.018.

4.5.2 Experiments on Complex Topology

As described in Section 4.2, the major advantage of our method against to the

existing 3D surface-matching methods based on conformal geometric maps [49,79,

83, 89], is that our framework can handle surfaces with arbitrary topology directly.

Therefore, for surfaces with multiple holes our method doesnot require additional

pre-processing steps such as hole fillings. Figure 24 shows acomparison between

our method and the LSCM-based method [79] and the harmonic map based [83]

methods. Figure 24 (a, f) show the original 3D surfaces of thesame subject with

different expressions, and Figure 24 (b, g) depict the resulting Ricci flow texture

images computed by our method. Since the LSCM-based method and harmonic

maps can only handle disk topology, the holes in the eye and mouth on the original
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Figure 24: Comparison of Ricci flow with LSCM and Harmonic maps. (a) and (f) are two
surfaces to be registered. (b) and (g) are their Ricci flow maps. (c) and (h) are these two
surfaces after hole-filling. (d) and (i) are their LSCMs. (e)and (j) are their harmonic maps.
The registration error of Ricci flow using Equation 22 is 0.058, while, the registration errors
(without including hole area) of LSCMs and Harmonics are 0.072 and 0.081, respectively.

3D scan data need to be filled before computing the 2D conformal map, as shown

in Figure 24(c, h). As shown in Figure 24(d, i) and Figure 24(e, j), the introduction

of fake geometry to fill the holes leads the large distortion errors around the eye and

mouth areas in both of the least-squares conformal maps and the harmonic maps.

Notice that our texture images obtained from Ricci flow in have no signification

distortions as shown in Figure 24 (b, g), although we leave the holes as they are in

the raw data.

The normalized matching error of Ricci flow is 0.058, compared to 0.072 for

LSCM and 0.081 for harmonic maps. All errors were computed using Equation 22,

where hole areas were not included. For each 3D facial scan with around 100K

vertices, The process time of LSCM and harmonic maps is approximately 40 sec-

onds on a Pentium4 2.4 GHz PC, while the process time of Ricci flow is around

400 seconds. Moreover, Our method is robust enough to handlelimited amounts

of non-isometric deformations (which violate the Ricci flowdefinition). However

large deformations can be handled with incorporation of feature constraints as de-

scribed in the following experiment.
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4.5.3 Registration with Large Non-Rigid Deformation

In order to demonstrate the performance of our method on surfaces with large

non-rigid deformation, we captured 3D facial expression data using a phase-shifting

structured light ranging system [91] with large non-rigid deformations. Since our

method allows feature curve correspondence constraints, we detect the contour of

the lips and the eyes and integrate them into the computationof the Ricci flow maps

(these curves can be detected by methods such as [53, 88]). Based on the resulting

2D maps, we can perform the registration between two scannedfaces with different

expressions, as shown in Figure 25. Since the deformation between two scanned

faces is non-rigid, the surface matching with single maps isproblematic as shown

in the 2nd column in Figure 25. In this case, we apply the decomposition method

described in Section 4.3. The 3rd-5th columns in Figure 25 illustrate the pairs

of the Ricci flow images which corresponds to a part of the original surfaces as

shown in the 1st column in Figure 25. Each pair of patches are registered with the

corresponding patch boundaries, and we measure the errors between the patches by

Equation 22.

The original registration error between two faces in Figure25 is 0.0447. In

order to demonstrate the robustness of the feature detection accuracy in our de-

composition method, we randomly perturb the feature point around the nose tips in

Figure 25. The average error of three different perturbations within a 3mm (resp.

6mm) radius is 0.045 (resp. 0.048).

Although our method is not limited to handle face data, it is worth to com-

pare our method with the face registration method based on multi-dimensional scal-

ing [7]. Compared to Bronstein et al. [7], which cannot guarantee to obtain global

optima in isometric embedding, our method reaches global optima in handling ani-

sometric data with arbitrary topologies, as shown the following experiments.

For medical data application, we use a 3D deforming heart sequence1. The

original tagging data were acquired using a 3T MRI machine. The data are image

sequences from end diastole to end systole. The reconstruction was done based on

methods developed by the authors of [35], who made the data available to us. The

output from the analyzed data result are 3D corresponding points over time from

1This experiment was carried out by Yun Zeng
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Figure 25: Registration of facial expression data using feature baseddomain decomposi-
tion. The first column shows two face scans with very large non-rigid deformation. The
second column shows the planar domains computed using uniform flat metrics. Because of
the large deformation, there is significant difference between the planar domains. Selecting
the nose tip as the feature points, the surfaces are decomposed to canonical planar domains
using the method described in Section 4.3. The surfaces are registered by matching the
corresponding planar domains.

end diastole to end systole. We experimented using a sequence of 21 frames of 3D

corresponding points. Experiments were performed on the deforming 3D surface.

The given 3D correspondences were not used in the experiments, but only as ground

truth.

In order to test the robustness of our method to initial surface segmentation,

we experiment using only the left ventricle data. We first detect and segment along

the boundary between the surface of the left ventricle and the rest of the heart. Af-

ter segmenting the heart data for each frame, we apply the Ricci flow algorithm to

map each heart into its canonical planar domain, and register each adjacent frame

by mapping the corresponding planar domains. In a first experiment, we manu-

ally defined a boundary on the first frame and consistently kept these points as

the boundary points throughout the sequence. Even though there are large inte-

rior deformations, the boundary is sufficient in establishing almost perfect surface
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Figure 26: Registration of 3D dynamic heart data. Registration results using Ricci flow for
4 different frames are shown in the top row. The original heart data for the same frames
are shown in the bottom row. The data on frame 1 were texture mapped with a grid pattern,
that helps to visualize the subsequent deformations.(Heart dataset courtesy of Professor
Dimitris N. Metaxas at Rutgers University)
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correspondences, with an average registration error of 0.006. In the second exper-

iment, the boundary was automatically determined based on curvature, using the

VTK software package. These boundary points are not guaranteed to be consistent

across frames. The method is still very robust with an average registration error of

0.03.

Figure 26 illustrates the effectiveness of registration using Ricci flow. The first

frame is texture-mapped with a grid pattern both in the experimental and ground

truth data, in order to better visualize the deformation. Although the non-rigid de-

formation of the heart is significant between different frames, our method captures

the deformation almost indistinguishably from the ground truth.

4.6 Discussion

In this chapter, we proposed a 3D shape analysis method basedon surface

Ricci flow. Since Ricci flow is a powerful tool to handle geometries with arbitrary

topologies our method can unify conventional methods basedon conformal geom-

etry. It also allows different types of feature constraints, such as feature point and

curve constraints, to handle large deformations and to further improve the accu-

racy of surface matching and registration. A series of algorithms was introduced to

map the 3D surfaces onto canonical 2D domains, and a new surface representation

is proposed to combine multiple features for 3D shape analysis. Finally, the gen-

erality and flexibility of Ricci flow were demonstrated by various experiments on

human face scans and dynamic heart surface data.



Chapter 5

Dynamic Non-Rigid Registration for

Facial Expression Analysis

In this chapter, we present a novel framework for automatic non-rigid registra-

tion of 3D dynamic facial data using least squares conformalmaps with additional

feature correspondences detected by employing active appearance models (AAMs).

Based on this registration method, we also develop a new system of facial expression

synthesis and transfer. We perform a series of experiments to evaluate our non-rigid

registration method and demonstrate its efficacy and efficiency in the applications

of facial expression synthesis and transfer.

This work has been published in the proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition 2008[78] .

5.1 Introduction

Automatic non-rigid registration of 3D time-varying densely-sampled data is a

fundamental and critical issue in 3D vision and graphics which has widespread ap-

plications. As 3D scanning technologies continue to improve, 3D dynamic densely-

sampled data is becoming more and more prevalent for analysis and synthesis. To

study and analyze such huge data, an efficient non-rigid registration algorithm is

necessary to establish one-to-one inter-frame correspondences automatically. How-

ever, automatic 3D non-rigid registration still remains a challenging task, especially

57
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for dynamic densely-sampled facial expression data with many degrees of free-

dom. Most of existing 3D non-rigid registration methods rely on recovering low

dimensional parameters of face model or register 3D faces with local optimization

that may not establish accurate one-to-one inter-frame correspondences success-

fully. In this chapter, an automatic non-rigid registration algorithm of 3D dynamic

densely-sampled facial data is developed using least squares conformal maps with

additional interior feature correspondences detected by active appearance model

(AAM) [17, 28, 29]. The least squares conformal maps betweentwo 3D surfaces

are globally optimized with less angle distortion and the resulting 2D map is stable,

one-to-one, insensitive to resolution changes and robust in the existence of noise.

Through the way of mapping 3D surfaces to a 2D common domain, it simplifies the

original 3D surface-registration problem to a 2D registration problem. Thus, more

accurate and efficient non-rigid registration algorithms could be achieved by using

least squares conformal maps. In sharp contrast to previousworks on 3D non-rigid

registration, especially the methods using attached markers, which unavoidably re-

quire much laborious human intervention and also are more invasive to human sub-

jects, our new method can register non-rigid 3D dynamic dataautomatically and

efficiently with minimum manual work.

Conformal maps have already been employed in many vision andgraphics

applications most recently. A surface matching method based on harmonic maps

was proposed in [89]. Sharon et al. [68] use conformal maps toanalyze similarities

of 2D shapes. Moreover, conformal maps are used for 3D face and brain surface

matching in [32,81,82]. Least squares conformal maps are introduced by Levy et al.

[49] for texture atlas generation and used by Wang et al. [79]to conduct 3D surface

matching with feature detection using the technique of spin-image. Because spin-

image can only detect features on surfaces with rigid transformation, their method

can not guarantee to successfully match surfaces with non-rigid deformation. For

non-rigid 3D surface registration, Wang et al. [83] use a modified harmonic map to

track 3D high resolution facial motion data. In order to calculate these harmonic

maps, the surface boundary must be identified and a boundary mapping from 3D

surfaces to the 2D domain must be properly created, which canbe a difficult task

especially when parts of the surface are occluded. In contrast, conformal maps and

least squares conformal maps do not necessarily require boundary information to be



CHAPTER5. Dynamic Non-Rigid Registration for Facial Expression Analysis 59

aligned and so give rise to a natural choice to combat this difficulty. Moreover, least

squares conformal maps enable users to enforce more interior feature constraints

which will guarantee to achieve more accurate registrationresults in an automatic

way.

Facial expression undergos complicated global and local nonlinear deforma-

tion between frames and is represented by a high dimensionalvector (a collection

of 3D vertices). It is impossible to analyze and synthesize facial expression in high

dimensional space. In this chapter, we describe a dynamic facial expression syn-

thesis system using isomap [74] which can embed facial expression manifolds in

high dimension into low dimensional space. Finally, we present a facial expression

transfer framework based on our non-rigid registration method using least-squares

conformal maps and our approaches lead to more accurate results with minimum

human intervention.

5.2 Non-Rigid Registration Algorithm for 3D Dy-

namic Facial Data

We now introduce an automatic non-rigid registration algorithm by using least-

squares conformal maps which can map 3D surfaces to a 2D common domain

with global optimization. Therefore, they can simplify theoriginal 3D surface-

registration problem to a 2D registration problem. In particular, our registration

algorithm includes two steps: First, interior feature correspondences are detected

by using Active Appearance Model (AAM); After that, by generating and register-

ing the 2D least-squares conformal maps of 3D faces in two frames, we compute

their dense one-to-one correspondences to register these two frames.

5.2.1 Feature Tracking

There are many features in the human face such as corners of eyes, nose

and mouth. Detecting and tracking these features accurately and efficiently in 3D

dynamic facial data still presents difficulties. Active Appearance Model (AAM)

[17, 28, 29] is successfully used to track facial features invideo sequences. AAM

is a face detection technique that combines shape and texture information into one
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PCA space. The model iteratively searches a new image by using the texture resid-

ual to update the model parameters. To use AAM to detect features in 3D dynamic

facial data, firstly, we use a projection matrixP to project the 3D faces onto a 2D

image plane. Then we use AAM to detect the features in each 2D video frame.

After that, with the known projection and depth informationof these 3D data, we

can project the features detected by AAM back to 3D face surfaces. Finally, we

can automatically get the initial inter-frame feature correspondences in these 3D

dynamic data. In experiments, we select 200 frames in training data containing dif-

ferent facial expressions to build the AAM and the facial feature template contains

50 vertices, as shown in Figure 27.

(a) (b) (c)

Figure 27: AAM feature detection. (a) The feature template of AAM. (b) A3D face
projected onto an image plane. (c) The detected features on the face.

5.2.2 Dynamic Non-Rigid Registration

After detecting the initial corresponding features in two framesSi andSi+1,

we can compute their least squares conformal maps (LSCMs) using the method

described in Section 2.1.1.3. As the LSCMs are driven by representative motion

features between the two frames, they capture the inter-frame non-rigid deforma-

tion. Furthermore, because this mapping isone-to-one and onto, by registering their

2D LSCMs, we can recover the inter-frame registration on these 3D face surfaces.

As an example, Figure 28(c,f) show the LSCMs of the inter-frame 3D faces in

Figure 28(a,d). Figure 28(a,d) are the original faces with texture information and

Figure 28(c,f) are their registered 2D LSCMs. The similarity of these two LSCMs
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(a) (b) (c)

(d) (e) (f)

Figure 28: Registration using least squares conformal maps (LSCMs). (a) and (d) are two
original inter-frame 3D face surfaces with texture information. (b) and (e) are these faces
without texture. (c) and (f) are their registered LSCMs.

in Figure 28(c,f) shows that we can successfully register two inter-frame non-rigid

3D faces by just registering their 2D LSCMs.

5.3 A Framework of Facial Expression Synthesis and

Transfer

We now present the new framework of dynamic facial expression synthesis

and transfer based on our non-rigid registration method.

5.3.1 Facial Expression Synthesis

Expression synthesis generates new facial animations using existing expres-

sion data. Our expression synthesis framework includes twosteps: The first step
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analyzes existing expression data by embedding them into a low-dimensional man-

ifold using Isomap [74] after registering these data using our 3D non-rigid registra-

tion method described in section 5.2. The second step synthesizes new expression

by selecting parameters of these expression data analyzed in the first step.

5.3.1.1 Facial Expression Manifold Embedding

Facial expression undergos complicated global and local nonlinear deforma-

tion between frames. In order to analyze expression data easily and efficiently, we

need embed facial expression manifolds non-linearly into alow dimensional space.

We adapt Isomap framework [74] to achieve a low dimensional manifold embed-

ding for individual facial expressions that provides a goodrepresentation of facial

motion. Isomap finds the best embedding manifold with nonlinear dimensionality

reduction by preserving the proportion of distance in the embedding space and the

original facial motion space. Figure 29 shows the embeddingof smile motion to

a 3D space. It is an elliptical one dimensional manifold in 3-dimensional space.

In embedding space, the expression manifolds are elliptical curves with distortions

according to face geometry, expression types. To analyze these expression man-

ifolds, we need align these one dimensional manifolds in embedding space. For

each manifold, correspondences are initially establishedusing the points with high

curvatures. Then, multiple manifolds are aligned using an approach similar to [16].

Thus, we can align the original expression sequences in temporal space by aligning

expression manifolds in the embedding space.

5.3.1.2 Dynamic Expression Synthesis

After we align N expression styless1,s2, ...,sn of the same person using

method described above, we then generate a new style vectorsnew by linear in-

terpolation of theseN styles using control parametersw1,w2, ...,wn as follows:

snew= w1s1+w2s2+ ...+wnsn, (23)

where
∑N

i=1wi = 1. For example, if we want to generate new expression as style

with 50% of the first style and 30% of the second style and 20% ofthe third style,

then we generate new style assnew= 0.5s1+0.3s2+0.2s3.
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Figure 29: Facial expression manifold. The curve is Isomap for 3D registered facial ex-
pression sequence(some frames are shown in upper row).
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5.3.2 Facial Expression Transfer

Expression transfer directly maps expressions of the source model to the target

model. In particular, our expression transfer framework includes two steps: The

first step determines temporal correspondences between every two adjacent frames

of the source model and spatial correspondences between thesource and target

models; The second step transfers the adjusted motion vectors from source model

vertices to target model vertices.

5.3.2.1 Dense Surface Correspondences

Source models at each frame do not have temporal inter-framecorrespon-

dences. In addition, source model and target model do not have spatial correspon-

dences as they may have different structures. However, we can establish both tem-

poral and spatial correspondences by using parameterization methods [22,25,36,49]

to map 3D source and target models to a 2D domain. Therefore, we can compute

3D dense surface correspondences by just detecting correspondences in their 2D

maps.

Temporal Correspondences: In our experiments, we use fine facial motion

data which are captured by a structured lighting method [91]with 30 frame per

second. A 3D face in each frame has approximately 70K points with both shape

and texture information. To utilize this 3D dynamic data, weuse our 3D non-rigid

registration method described in Section 5.2 to obtain the one-to-one inter-frame

correspondences, as shown in Figure 28.

Spatial Correspondences: For expression transfer, it is crucial to find spatial

correspondences between the source and target models. Harmonic mapping is a

popular approach for recovering dense surface correspondences [22,46]. However,

difficulties arise when specific points need to be matched exactly between models.

Our approach to finding spatial correspondences starts withinitial corresponding

feature points which the user specifies [46] between the source and target models.

After that, we simplify the source and target models and map them to a 2D plane

by minimizing the harmonic energy [22, 32, 89] with user-specified corresponding

feature points as interior constraints. By detecting and interpolating the one-to-one
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(a) (b) (c) (d)

Figure 30: Spatial feature correspondence detection using harmonic maps. (a) and (c) are
source and target faces. (b) and (d) are their harmonic maps computed by our method.
After detecting the one-to-one correspondences in their 2Dharmonic maps, we can obtain
the spatial feature correspondences between 3D source and target faces.

correspondences in the 2D harmonic maps, we can obtain the spatial correspon-

dences between the source and target models, as shown in Figure 30.

5.3.2.2 Expression Transfer with Motion Vectors

A transferred expression animation displaces each target vertex to match the

motion of a corresponding surface point in source model. Since facial geometry and

aspect ratios are different between the scans of source models and the target face,

source displacement vectors can not be simply transferred without adjusting the

direction and magnitude of each motion vector. In our experiments, we adjust both

the scale and orientation of motion vectors before transferring the source motion to

target model by using the method described in [56]. An example of motion vector

transfer is shown in Figure 31.

5.4 Experimental Results

The performances of our approaches on non-rigid registration of 3D time-

varying data and facial expression synthesis and transfer are evaluated in a num-

ber of experiments. First, we analyze the accuracy of our 3D non-rigid registration

method and compare results with two previous methods. Second, we evaluate the
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(a) (b) (c)

(d) (e) (f)

Figure 31: An example of motion vector transfer. (a) and (b) are source faces with different
expressions. (c) is the color-coded magnitude of motion vectors in the source model. (d) is
the target face model. (e) is transferred expression on the target face. (f) is the color-coded
magnitude of motion vectors to be transferred to the target face model (d).

performance of facial expression synthesis and transfer based on our non-rigid reg-

istration method.

5.4.1 Evaluation of 3D Non-Rigid Registration

We apply our non-rigid registration method on 3D dynamic facial data and

compare results with the tracking method based on modified harmonic maps [83]

and Iterative Closest Point (ICP) method [65] which have been widely used for 3D

registration. In order to evaluate their accuracy, we compute the registration error by

approximately using the difference in the intensity valuesof vertices of registered

3D face surfaces between two frames as:

RegistrationError=

∑N
i=1‖t i

j − t i
j+1‖

∑N
i=1 t i

j

, (24)
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Figure 32: Comparison of the three registration methods.

wheret i
j is intensity value of theith vertex of 3D face surface in thejth frame

andN is the number of registered vertices. If the registration isperfect, the only

difference in the intensity values of vertices of registered two 3D faces will result

from the change of shadowing and shading effects due to geometric deformation.

We present the comparison of these three techniques in Figure 32 by plotting

the registration errors according to different frames. From the results, we can see

that our method performs considerably better than the othertwo methods. The

ICP method can not achieve good results in 3D non-rigid shaperegistration. The

modified harmonic map method uses optical flow to track very few feature points

which are very sensitive to noise. Moreover, their method will have larger registra-

tion errors in the 3D face data with varying boundary, because of the limitation of

harmonic maps.
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5.4.2 Evaluation of Facial Expression Synthesis and Transfer

Firstly, We apply our facial expression synthesis framework on 3D dynamic

facial data to synthesize new facial expressions. Actors perform four different type

of expressions: smile, surprise, sad and angry. The expressions were captured us-

ing our structured lighting ranger scanner. We then registered and analyzed the

captured ranger data using our facial expression synthesisframework described in

section 5.3.1. Figure 33 shows the generation of two expressions: smile and sur-

prise and the synthesis of a new in-between expression by changing the weight of

these two original input expressions. With our method we cangenerate a convinc-

ing combination of two different expressions without loss of details. The generated

in-between expressions are shown in the second and third rows.

Next, we apply our facial expression transfer framework on facial data with

different expressions and transfer these expression styles and details to target face

models. We perform two group experiments to evaluate the accuracy and robust-

ness of our facial expression transfer method both qualitatively and quantitatively.

Our first group experiments are intended to qualitatively show the effectiveness of

our expression transfer approach. Figure 34 shows the expression transfer results

with various exaggerated expressions and Figure 35 shows the results with differ-

ent kinds of expressions which are neutral, happy, surprise, sad and angry. We also

perform expression transfer from the source model to a topologically different tar-

get face model caused by missing data in eye regions during data acquisition under

different resolutions and the results are shown in Figure 36. As shown in these re-

sults, the expressions of the source model are reproduced inthe target model with

convincingly better effects.

The second group experiments are intended to quantitatively measure the ef-

fectiveness of our expression transfer approach. In the third experiment, we use

two different 3D scans of the male subject in Figure 35 as source and target mod-

els, respectively, that is, transferring expressions froma person to himself. In the

last experiment, we transfer expressions of the male subject to the female subject

in Figure 35 and then transfer intermediate results back to another 3D scan of the

male subject. By using Equation (24), the average errors of intensities are mea-

sured between the original and final face models in all framesas shown in Table

3. Figure 37 exhibits some of these expression transfer results in different frames.
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Figure 33: Synthesis of new facial expression by weighting two different expression type:
smile in the first row and surprise in fourth row. Second row: 70%smile+ 30%surprise.
Third row: 30%smile+70%surprise.
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Figure 34: Exaggerated expression transfer. Source face model with exaggerated expres-
sions are shown in the first row. Transferred expressions on two target faces are showed in
the second and third row, respectively. The target faces have different shapes and textures
but the expressions are proportionally scaled to fit each model well.
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Figure 35: Expression transfer. Source face model with different expressions are shown in
the first row. Transferred expressions on the target face areshown in the second row. From
left to right, emotional expressions are neutral, happy, surprised, sad and angry, respectively.

Table 3: Average errors of expression transfer.

Man⇒ Man Man⇒ Woman⇒ Man
Average RegistrationError 2.312% 2.379%

From the results, we can see that in each frame, the finial faces after expression

transfer are very similar to the original source face data and the only difference re-

sults from the change of the shadowing and shading effects due to face geometry

deformation. The overall processing time including 3D non-rigid registration and

expression transfer is approximately 1 minute per frame on aPentium4 2.4 GHz

PC. From all of these results, comparing with the previous research on expression

transfer which typically require many manual labors, our method can transfer ex-

pression from one person to another efficiently and automatically.
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Figure 36: Expression transfer from a male subject to a topologically different face model
under different resolutions. Source face model with different expressions are shown in the
first row. Transferred expressions on the target face which has different topology due to
missing data (missing in eye region during data acquisition) are shown in the second row.
Expression transfer results of the target face with only 1/4of the original resolution are
shown in the third row.
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Frame 50 100 150 200 250

Figure 37: Expression Transfer results (Man⇒ Man and Man⇒ Woman⇒ Man). Source
face models in different frames are shown in the first row. Expression transfer results (Man
⇒ Man) are shown in the second row. Expression transfer results (Man⇒ Woman⇒ Man)
are shown in the third row.
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5.5 Discussion

We have developed a novel method for non-rigid registrationusing least

squares conformal maps to automatically compute one-to-one inter-frame corre-

spondences for 3D time-varying facial data. Moreover, based on this registration

method, we have also implemented a new visual modeling framework of expression

synthesis and transfer for 3D dynamic facial data. Our experimental results demon-

strate that our novel facial modeling framework leads to better registration for 3D

dynamic facial data and subsequent applications such as dynamic facial expression

analysis, synthesis and transfer.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, I present our research results and future research directions

within our generalized framework of shape registration andanalysis. Our proposed

framework takes the advantages of new shape representations by using different

parameterization technology which can map 3D surfaces to a 2D common domain,

and thus can simplify all 3D problems to 2D image problems.

In particular, We analyze a family of quasi-conformal maps including har-

monic maps, conformal maps and least squares conformal mapswith regards to

3D shape matching. As a result, we propose a novel and computationally efficient

shape matching framework by using least squares conformal maps. The robustness

of least square conformal maps is evaluated and analyzed comprehensively in 3D

shape matching with occlusion, noise and resolution variation. In order to further

demonstrate the performance of our proposed method, we alsoconduct a series of

experiments on two computer vision applications, i.e., 3D face recognition and 3D

non-rigid surface alignment and stitching. We show that previous methods based on

conformal geometries, such as harmonic maps and least squares conformal maps,

which can only handle 3D shapes with simple topology are subsumed by our Ricci

flow based method which can handle surfaces with arbitrary topology. The solution

to Ricci flow is unique and its computation is robust to noise.Large non-rigid defor-

mations can be registered with feature constraints, hence we introduce a method that

75
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constrains Ricci flow computation using feature points and feature curves. We also

demonstrate the applicability of this intrinsic shape representation through standard

shape analysis problems, such as 3D shape matching and registration. Moreover,

we present a new method for automatic non-rigid registration of 3D dynamic facial

data using least squares conformal maps, and based on this registration method,

we also develop a new framework of facial expression synthesis and transfer. A

non-rigid registration algorithm of 3D dynamic facial datais developed by using

least squares conformal maps with additional feature correspondences detected by

employing active appearance models. We also perform a series of experiments to

evaluate our non-rigid registration method and demonstrate its efficacy and effi-

ciency in the applications of facial expression synthesis and transfer.

6.2 Future Work

There are many avenues for possible future work, including exploring the the-

oretical foundation of shape representation, designing efficient and accurate algo-

rithms for shape registration, developing new functionalities, improving shape anal-

ysis in wide range of applications such as human facial and body motion analysis,

medical imaging, volumetric data reconstruction and visualization, 3D surveillance,

3D robotics, and etc.

6.2.1 Novel Shape Representations

With development of 3D scanning technologies, large 3D shape databases re-

quire automated methods for matching and registration. However, matching sur-

faces undergoing non-rigid deformation is still a challenging problem, especially

when data is noisy and with complicated topology. The conventional conformal

geometric methods can only handle surfaces with simple topologies or compute

simple maps. As a result, most existing algorithms are limited to surfaces with sim-

ple topology such as genus zero with/without a single boundary [31]. Thus, novel

and effective representations for 3D shapes registration need to be discovered us-

ing new parameterization methods such as hyperbolic Ricci flow, which can handle

surfaces with arbitrary topologies for shape analysis and registration.
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6.2.2 New Shape Retrieval Frameworks

Shape matching and retrieval is a fundamental issue and still a challenging task

in computer vision and graphics. By discovering new shape representations, we can

develop novel and efficient shape matching and retrieval frameworks with many

applications, such as shape registration, partial scan alignment and stitching, 3D

object recognition and classification. Moreover, our shapematching and retrieval

frameworks also can be applied in biometrics and homeland security, such as 3D

human face matching, retrieval, and recognition. Our new shape representations

and matching technique will definitely benefit the registration and recognition in

these areas.

6.2.3 Non-Rigid Shape Registration with Manifold Learning

Trackers based on template matching work well for objects whose shape and

appearance change only slightly during motion. However, inmost real-world ap-

plications, the objects being registered or tracked can undergo a variety of complex

non-rigid deformations that are difficult to parameterize using traditional methods.

After employing the non-rigid registration method to get dense one-to-one corre-

spondences in each frame [78, 84], it will be possible to construct a manifold of

transitions to deformed objects. Therefore, these manifolds will provide us with a

great opportunity to analyze object motion and deformation. There are many ap-

plications of this methodology such as human face and body motion analysis and

animation, 3D surveillance and robotics.

6.2.4 Dynamic Shape Analysis for New Medical Imaging

Modalities

Ultrasound, electron microscopy, and diffusion tensor MRIare imaging

modalities which require different assumptions about the underlying physical pro-

cesses of image formation. The 2D or 3D time-varying images should be registered

because of image variation. Recovering registrations for each modality which accu-

rately model the object transformation while ignoring other effects, such as imaging

noise and no-rigid deformation, will provide methods both for merging the output
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of disparate imaging techniques and allowing for new patient protocols, such as

high-resolution gated-MRI without patient breath-holding, which is difficult with

current technology.

In the long term, my research will focus on theoretical shaperepresentation,

registration, and analysis in computer vision and graphicswith applications to shape

retrieval, human facial and body motion analysis, animation, medical imaging.

This work incorporates ideas from image processing, machine learning, human-

computer interface and biomedical engineering.

6.3 Concluding Remarks

These directions for future work, and the many other open problems that exist,

are sure to encourage interesting and exciting research in shape registration and

analysis for years to come. As technical difficulties are overcome, and existing

computational algorithms are improved, the applications of shape registration and

analysis will increase in variety and number. We are pleasedto have taken the

first step in uncovering the heretofore untapped potential of shape registration and

analysis by presenting our framework to the computer visionand graphics. It is

our hope that this integrated approach and demonstrated applications will foster

continued interest and research in this area. We are lookingforward to the continued

exploration of shape registration and analysis and predicta successful future for it.
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