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Abstract of the Dissertation

Canalization of Gap Gene Expression During Early
Development in Drosophila melanogaster

by
Manu

Doctor of Philosophy
in
Applied Mathematics and Statistics
Stony Brook University
2007

The process of animal development is stable with respect to genotypic and
environmental variation. This stability property was first described by C. H.
Waddington, who characterized it in terms of a metaphor of canalized flow
on the epigenetic landscape of an animal. Recent quantitative studies permit
the analysis of canalization at the molecular level in certain systems, where it
manifests itself as a reduction in the variation of gene expression over time. In
particular, canalization is evident during the segment determination process
of Drosophila melanogaster, during which gap genes form precisely positioned
expression domains controlled by maternal factors and gap gene cross regula-
tion. These studies have shown that besides reduction in variation over time,
gap gene expression patterns also have much lower positional variance than
Bicoid, a morphogenetic gradient active in the embryo.

This dissertation presents a theoretical and experimental analysis of the
origin of canalization in the gap gene system. The theoretical analysis was
performed using the method of gene circuits, which permits the representa-
tion of gene networks as dynamical systems which reproduce gene expression
data with high fidelity. Despite biophysical evidence of the importance of
protein synthesis delay in gene expression, I establish that ordinary differen-
tial equations are sufficient for implementing a gene circuit that describes the
dynamics of the gap gene system.

I further demonstrate that such circuits correctly predict the observed vari-
ance of the gap gene borders in the presence of the much larger variance of the
Bicoid gradient. Analysis of the regulation of the gap genes in these circuits
leads to the prediction that the canalization of Bicoid variation results from
gap gene cross-regulation. This prediction was confirmed experimentally.

These circuits also reproduce the reduction in variance of gap gene ex-
pression over time. This property of the gene circuit is characterized further

il



by studying the qualitative dynamics of the phase space of the gap gene dy-
namical system. The dynamical analysis demonstrated that the embryo can
be divided into two regions with very different qualitative properties. In the
anterior, gap gene expression states are determined and canalized by point
attractors. In the posterior, states are determined and canalized by a one-
dimensional attracting manifold. Gap gene borders can form by one of the
following mechanisms: 1) the movement of an attractor through the phase
space; 2) an initial state crossing a boundary between basins of attraction; or
3) reaching different regions of the attracting one-dimensional manifold.

These results imply that stable steady states are not necessary to pro-
vide canalization, and furthermore that descriptions which only involve stable
steady states are insufficient for capturing the dynamical behavior that occurs
in actual developmental systems. These results provide a precise mathemat-
ical description of canalization in a specific biological system which is fully
supported by quantitative molecular data.

v
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Chapter 1

Introduction

Animals have the ability, within limits, to be viable even if their genotype or
environment deviates from normal. This ability of animals to buffer genotypic
and environmental variation is termed canalization. Canalization, so defined,
is not only an empirical observation, but is also a requirement for evolution
by natural selection. A population must possess a variety of traits for some
among them to be selected, and its members must remain viable, despite this
variation, in order to reproduce.

The phenotype of an animal is produced during its development by the
interaction of its genotype and its environment. Therefore, a necessary con-
dition for canalization is that the course of the development of an animal be
stable with respect to environmental perturbations. Further, the canalization
of development is a mechanism for the ability of animals to acquire characters
that are adapted to environmental conditions. If an environmental stimulus
produces a phenotype that has evolutionary advantage, the genotype will ad-
just in order to produce the new phenotype in a stable manner, and will then

continue to produce it even if the environmental stimulus is removed.



Though it is clear that canalization during development is both evident and
important, its origins are not so well understood. C.H. Waddington proposed
that canalization could be understood in terms of the interactions between the
genes of an animal (Waddington, 1942), while René Thom created a mathe-
matical formalism for understanding it (Thom, 1975). Limited progress was
made in applying these ideas to an actual biological system since neither the
genes, nor their interactions were known in molecular terms.

The advances of the past three decades in molecular biology, genetics, and
computing have made it possible to approach the problem of canalization in
an actual developmental system. During the early embryogenesis of Droso-
phila melanogaster, the genes that set its body pattern have been very well
characterized at the molecular level (see Akam, 1987, for review). The time
course of the protein concentrations of these genes has been observed at a high
temporal resolution (Surkova et al., 2007; Myasnikova et al., 2002). These data
have revealed specific instances of canalization in the segmentation system of
Drosophila. At the same time, combining such data with dynamical systems
models (Reinitz et al., 1995; Reinitz and Sharp, 1995; Jaeger et al., 2004a) has
allowed the reconstruction of the developmental trajectories in silico with high
fidelity. The aim of this dissertation is to use techniques of non-linear dynam-
ical analysis to better understand canalization during the early development

of Drosophila melanogaster.



1.1 Canalization, epigenetic landscape, and struc-

tural stability

1.1.1 Experimental evidence for canalization and genetic

assimilation

Waddington coined the term canalization based on the observation that in
Drosophila, mutants have greater phenotypic variability than the wild type
(Waddington, 1942). To give an example relevant to this study, larvae homozy-
gous for an amorphic allele of the segmentation gene Kriippel, Kr', sometimes
show three denticle bands, sometimes four, and one band may or may not have
reverse polarity (Wieschaus et al., 1984b). Indeed almost every segmentation
gene mutant (see for example, Lehmann, 1988; Schiipbach and Wieschaus,
1986) phenotype is variable.

Recent work (Rutherford and Lindquist, 1998), suggests that the pheno-
typic variability in mutants mirrors the underlying genotypic variability. Flies
heterozygous for mutant alleles of the heat shock gene Hsp83 were observed to
have a large variety of morphological defects. In a detailed set of experiments,
Rutherford and Lindquist (1998) showed that the type of defect is dependent
on the genotype of the fly, and that the defect is a heritable trait. This estab-
lished that the phenotypic variation observed in Hsp83 mutants arises from
genotypic variation among individuals. The effects of this genotypic variation
are normally buffered in wild type flies by the activity of the Hsp90 protein
encoded by Hsp83.

The canalization of development is also well supported by experimental

evidence. A result of the earliest embryological investigations by Driesch,



Spemann and others (Gilbert and Sarkar, 2000) into the nature of develop-
ment is that under certain circumstances embryos can survive radical surgery.
Driesch discovered that if the cells of a 4-cell-stage sea urchin embryo are
separated, they will each grow into a complete larva. Thus development is
regulated, capable of correcting for perturbations or irregularities.

Further, the genotype of an animal is capable of assimilating phenotypes
produced by environmental stimuli (Waddington, 1942, 1959b,a) as shown by
the following experiment (Waddington, 1953). Drosophila melanogaster flies
were selected for a certain phenotype, crossveinless, that appears only when
pupae are heat-shocked. After several generations of selection, the phenotype

showed even without heat-shock.

1.1.2 The epigenetic landscape and chreods

Waddington invoked a metaphor to illustrate how canalization comes about
(Waddington, 1966, 1968). The course of the development of an animal is rep-
resented by water flowing in a landscape of hills and valleys (see Figure 1.1).
The valleys represent different cell fates. This landscape is called the “epige-
netic landscape” because its structure is determined by the interactions of the
genes of the animal, and it causes the epigenesis of the animal.

The flow of the water in the valleys is stable with respect to changes in the
landscape, that is, with respect to the genotype. The flow is also stable if its
path is perturbed by an environmental stimulus, since it would tend to return
to the valley. Such a stable developmental trajectory that attracts neighboring
perturbed trajectories is called a chreod.

The genetic assimilation experiment described in Section 1.1.1 can now be

understood in terms of chreods. The wild type developmental trajectory of



Figure 1.1: Epigenetic landscape. Above, metaphorical representation of the
development of an animal by water flowing in a landscape of hills and val-
leys. Below, the “underbelly” of the landscape reveals that it is determined
by the animal’s genotype. The ropes represent its genes. Reproduced from
http://www.usc.edu/hsc/dental/odg/jaskol101.htm, originally from Wadding-
ton (1957).



the flies is a chreod and leads to the development of wings with a posterior
crossvein. When the heat-shock is applied, the trajectory shifts and is not
a chreod anymore. If the stimulus is maintained across several generations,
the requirement of canalization that the developmental trajectory be a chreod
leads to a shift in the epigenetic landscape such that the new trajectory is a
chreod. In subsequent generations, this new trajectory will then be taken even

in the absence of the stimulus.

1.1.3 Structural stability and genotypic canalization

Thom formalized the ideas presented by Waddington (Thom, 1969, 1975,
1983). The state of a cell is described by the concentrations of all its chemi-
cal constituents. Let the state variables be ¢;(z,t), ca(x,t),. .., cp(z,t), where
there are k chemical species, space is represented by x, and time by ¢. Also,
let the state variables ¢;(x,t) be governed by the system of coupled ordinary

differential equations

oc; _
ot

where i = 1,2, ..., k. The space of all possible values of the state variables R*

Xi(cr, ..o e, x,t), (1.1)

is called the phase space of the system. The dynamics of the cell are governed
by a vector field X (cy,...,cx, x,t) = X1, Xo, ..., X defined on RF.

A homeomorphism between two subsets of R*, A and B is a one-to-one
and onto continuous mapping h : A — B that has an inverse h™! : B — A
that is also continuous (Perko, 1996).

X is considered to be structurally stable if, for every vector field X’ on R*
sufficiently close to X, there exists a homeomorphism hx: : R¥ — RF which

transforms every trajectory of X into a trajectory of X’ (Thom, 1983). In



other words, the topology of the phase space does not qualitatively change in
going from X to X'.

The vector field X is determined by the genotype of the animal. Therefore,
if the vector field X is structurally stable, the animal is said to have genotypic

canalization.

1.1.4 Attractors and stability of developmental trajecto-
ries

A necessary condition for buffering of the phenotype against genotypic and
environmental variation is that the developmental trajectories are stable, that
is, they are chreods (Section 1.1.2). A topological feature of vector fields,
attractors, can explain how this stability arises. Attractors are defined below.

For Eq. (1.1), the orbit is defined as the function ¢(-,x) : R — R*, where
x € R*. In other words, the orbit is the set of points that can be reached from
the starting point x.

A subset E of F' C R* is called dense in F' if every point of F is a limit
point of E, or a point of £, or both.

For the vector field X, an attractor A is defined as follows (Thom, 1983).

e A; maps to itself under X, that is, it is invariant.
e Almost all orbits that start in A; are dense in A.

e There exists a system of neighborhoods U; of A, such that all trajectories
starting in U; asymptotically approach A; and if a point u € U; meets A

as t — —oo, then u must lie on A.

The union of neighborhoods U; is called the basin of attraction of A.



Since trajectories in the basin of an attractor of A asymptotically approach
A, the final state is stable with respect to small perturbations, and the tra-
jectories are said to canalize. If there is more than one attractor in the phase
space, the attractors’ basins are separated by surfaces called basin boundaries.
Note that attractors are more general than steady states, which are just point
attractors. For example, an attractor may be a closed trajectory, also called a
limit cycle.

The specification of cell fate by point attractors is called homeostasis
(Thom, 1983). Homeostasis as a concept has been rather popular and has
been used in many theoretical models of biological systems (Kauffman, 1969;
Huang et al., 2007; von Dassow et al., 2000; Umulis et al., 2006; Sanchez and
Thieffry, 2001). Although particular components of the state of a cell can
reach steady state, the state as a whole will not, since the cell is not immortal.

Therefore, the stability of developmental trajectories is more general than
homeostasis. If the developmental trajectory itself is stable, that is, trajec-
tories perturbed by small amount tend to return to it, this developmental

trajectory is said to be homeorhetic.

1.1.5 Catastrophes, differentiation and pattern forma-
tion

The vector field X = X (cy, ..., ¢, z,t) of Eq. (1.1) is parameterized by space
and time. Since X changes with x, ¢ it is possible for X not to be structurally
stable for certain values of x and ¢t. These situations are called catastrophes
(Thom, 1969, 1983). Catastrophes occur when the Jacobian of X is singular.
In other words, at a catastrophe of the dynamical system, the topology of

the phase space changes discontinuously. Specifically, the number and type of



attractors of the phase space changes.

As the time parameter of X, t is varied, the catastrophes that occur de-
scribe the different attractors, or cell types, that arise as the animal develops.
In other words, the catastrophes describe differentiation. As the space param-
eter of X, x is varied, the catastrophes describe the different cell types possible
in space. That is, they describe pattern formation.

This mathematical framework captures the key biological ideas of canaliza-
tion, stability of developmental trajectories, differentiation, and pattern for-
mation. However, it has limited applicability if the state variables to describe
the system are not known. I will now exhibit a specific canalizing system with

observable state variables, the Drosophila blastoderm.

1.2 Segment determination in Drosophila

The body plan of the adult fruit fly Drosophila melanogaster consists of four-
teen repeating units called segments. There are three segments in the head
(mandibular, maxillary, and labial), three in the thorax (T1-T3) and eight in
the abdomen (A1-A8). Each segment has a different identity which is spec-
ified by the Hox genes (Gilbert and Sarkar, 2000). The life cycle of the fly
consists of an embryogenesis stage (~1 day), a larval stage (~4 days), a pupal
stage (~4 days), and adulthood (~60 days) (Campos-Ortega and Hartenstein,
1985).

The segments are determined (Simcox and Sang, 1983) in the first three
hours of the development of Drosophila. We briefly describe the events during
this early stage below; for a more comprehensive description of Drosophila em-

bryogenesis, see Campos-Ortega and Hartenstein (1985) and Lawrence (1992).



Drosophila melanogaster embryos are approximately ellipsoidal in shape, with
an anteroposterior (adult head-to-tail) length of 500um, and a dorsoventral
(adult back-to-abdomen) length of 150um. During this stage, the embryo is
a syncytium, which means that nuclei are not surrounded by cell membranes.
Nuclear division (cleavage) begins around 18 minutes after egg laying (Foe
and Alberts, 1983), and the syncytium undergoes nine very rapid nuclear di-
visions. Following the ninth division, a majority of the nuclei migrate to the
periphery of the embryo, leaving behind the yolk cells. The embryo is then a
blastoderm, and remains in this state for four more cleavage cycles (10-14A).
During the middle of cycle 14A, the cell membrane begins to invaginate; this
is called cellularization. During late cycle 14A, the embryo undergoes the mid-
blastula transition (Foe and Alberts, 1983; Renzis et al., 2007), when maternal
mRNA and proteins are degraded, and zygotic transcription increases many
fold. At the completion of cellularization (end of cycle 14A), the embryo un-
dergoes a complex set of tissue movements, called gastrulation, that leads to
the formation of the germ layers.

During this three-hour period, the segments are determined by a set of
genes called the segmentation genes. These genes were discovered in mutagen-
esis screens for segmentation defects (Niisslein-Volhard and Wieschaus, 1980;
Niisslein-Volhard et al., 1984; Jiirgens et al., 1984; Wieschaus et al., 1984a;
Schiipbach and Wieschaus, 1986; Niisslein-Volhard et al., 1987). The earliest
morphological defects are seen only 15 minutes after gastrulation (Niisslein-
Volhard and Wieschaus, 1980), therefore the steps of the segment determi-
nation process before gastrulation largely occur at the molecular level. The
mRNA transcripts and proteins produced by these genes have been molecu-

larly characterized and visualized. Based on their genetic interactions, these

10



genes can be organized into a causal hierarchy (see Akam, 1987; Ingham, 1988,
for review). The genes at lower levels of this hierarchy are expressed at finer
spatial resolution along the anteroposterior axis of the embryo. The proteins
of the maternal coordinate genes form monotonic gradients from mRNA de-
posited in the egg by the mother. The gap genes are expressed in broad
overlapping domains. The pair-rule genes are expressed in overlapping stripes
with double segment periodicity. The segment-polarity genes are expressed in
the germ band after gastrulation and form the segment prepattern.

There are three groups of maternal genes (Schiipbach and Wieschaus,
1986). The anterior group specifies the formation of the head and thorax,
the posterior group specifies the abdomen, and the terminal group specifies
the terminal regions. The anterior system acts primarily through bicoid (bcd),
and is independent of the posterior system and the terminal system in the pre-
sumptive germ band of the embryo (Driever and Niisslein-Volhard, 1988a). bed
mRNA is deposited at the anterior tip of the embryo by the mother, and starts
to be translated soon after egg laying, forming an exponential profile from an-
terior to posterior (Driever and Niisslein-Volhard, 1988b). bed sets up another
maternal gradient in the syncytium, caudal (cad, Mlodzik et al., 1985), by re-
pressing its translation (Rivera-Pomar et al., 1996). cad is expressed both ma-
ternally and zygotically, and embryos lacking both maternal and zygotic gene
function show segment deletions like the gap genes (Macdonald and Struhl,
1986). Another gene with both maternal and zygotic activity is the gap gene
hunchback (hb, Tautz et al., 1987; Tautz, 1988). The posterior maternal system
acts through hb by repressing the translation of its uniformly distributed ma-
ternal mRNA (Irish et al., 1989; Lehmann and Niisslein-Volhard, 1991). The

terminal system acts through two genes with gap gene-like activity, tailless
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(tll) and huckebein (hkb) (Casanova, 1990; Reinitz and Levine, 1990; Duffy
and Perrimon, 1994).

The maternal systems establish the expression of the gap genes, which
comprise the next level in the segmentation gene hierarchy. This dissertation
focusses on the gap genes expressed in the presumptive germ band, hb, Kr,
gt, and kni. These genes start to be zygotically expressed during the cleavage
cycles 1012 (see Jaeger et al., 2007, and refs. therein), and reach maximum
expression during the middle of cycle 14A (Surkova et al., 2007). Their ex-
pression patterns are very dynamic, since they are established in 60 mins,
and also shift with time (Jaeger et al., 2004b). All of them encode tran-
scription factors (Tautz et al., 1987; Redemann et al., 1988; Nauber et al.,
1988; Mohler et al., 1989), that is, their proteins regulate the expression of
other genes by binding to DNA. They are transcriptionally regulated by bed
(Driever and Niisslein-Volhard, 1989; Rivera-Pomar et al., 1995; Hoch et al.,
1991; Eldon and Pirrotta, 1991), hb (Tautz, 1988; Hoch et al., 1991), and
cad (Rivera-Pomar et al., 1995; Schulz and Tautz, 1995). bcd and cad act as
transcriptional activators, that is, they promote the transcription of a gene
when bound to its DNA control region (Driever and Niisslein-Volhard, 1989;
Rivera-Pomar et al., 1995). hb can be a repressor (Tautz, 1988), that is, it can
inhibit the transcription of a target, or an activator, by acting together with
bed (Simpson-Brose et al., 1994). Also, based on their expression patterns in
mutants, it was established that the gap genes cross-regulate each other (Gaul
et al., 1987; Tautz, 1988; Eldon and Pirrotta, 1991; Kraut and Levine, 1991a;
Clyde et al., 2003).

The monotonic maternal gradients of Bed, Hb, and Cad specify the posi-

tions of gap gene domains, and hence, through the segmentation gene
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hierarchy, ultimately specify the positions of the segment prepattern. Posi-
tional information is a hypothesis for the mechanism by which maternal gradi-
ents might specify position in the embryo. The hypothesis is that a monotonic
gradient, termed a morphogen, which is set up by production at a source,
diffusion, and degradation at a sink, instructs patterns to form at particular
values of its concentration (Wolpert, 1968). The following experiments seem
to confirm that Bcd and maternal Hb provide positional information in the
embryo, and are morphogens. First, if the protein concentrations of bed and
maternal hb are varied by changing the number of their copies (or dosage)
in the maternal genome, the downstream gene patterns (gap, pair-rule) shift
along the A-P axis (Driever and Niisslein-Volhard, 1988a; Struhl et al., 1992;
Houchmandzadeh et al., 2002). Second, in mutants for all three maternal sys-
tems, gap genes are expressed uniformly, that is, no pattern is formed (Struhl
et al., 1992).

With the availability of higher-resolution quantitative data (Surkova et al.,
2007), and a careful study of Bcd dosage in a large population of embryos
(Houchmandzadeh et al., 2002), this statement of positional information had
to be revised. First, the positions of gap gene domains and pair-rule stripes in
the posterior half of the embryo changes with time, which cannot be explained
by threshold-based pattern formation (Jaeger et al., 2004b). Second, though
gap genes domains shift with bcd dosage, the magnitude of the shifts does not
follow a concentration threshold of Bed (Driever and Niisslein-Volhard, 1988a;
Houchmandzadeh et al., 2002; Bergmann et al., 2007).

The nature of the revision (Jaeger et al., 2004b) was the incorporation of
the role of gap gene cross regulation and dynamics in specifying positional

information. Using quantitative models that faithfully reproduce the wild

13



type gene expression patterns (Jaeger et al., 2004a; Perkins et al., 2006), it
was found that the gaps genes are activated by the maternal gradients of
bed and cad, with mutually-repressive interactions between them setting their
boundaries. With these interactions, the model is able to capture the temporal
shifts in the gap gene domains (Jaeger et al., 2004b). It was deduced from
the analysis of the model that asymmetric repression between the gap genes
is responsible for the anterior shifts of domains. Thus positions of target gene
borders are specified not only by the maternal information, but by the internal

dynamics of the targets themselves.

1.3 Evidence for canalization during segmenta-
tion

This section presents experimental evidence that the segmentation gene system
is a model for the study of developmental canalization. Antibodies that allow
the visualization of all the major segmentation proteins have been developed
(Kosman et al., 1998). Using these antibodies, an atlas of segmentation gene
expression patterns with high temporal resolution has been built (Surkova
et al., 2007). This atlas of segmentation gene expression provides us with
snapshots of the developmental trajectory of a Drosophila embryo during the
syncytial blastoderm stage. This trajectory eventually leads to the specifica-
tion of the segment prepattern, and its canalization is therefore biologically

significant.
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Data from individual embryos show that variation in gap gene expression
levels reduces over time, and by gastrulation the patterns are very reproducible
from embryo to embryo (see Surkova et al., 2007; Jaeger et al., 2007, and Fig-
ure 1.2). Variation in border positions of gap gene domains also show a similar
reduction. The effect is even more striking in pair-rule patterns. Unlike gap
genes patterns, which vary in expression level but have the same shapes, indi-
vidual pair-rule patterns have variation in the order in which stripes resolve.
By gastrulation, though, pair-rule patterns also have high reproducibility in
shape, levels, and border positions from embryo to embryo. These data thus
hint at the possibility that the developmental trajectories of gap and pair-rule
genes are stable (as defined in Waddington, 1942).

In addition to providing evidence for stability, gene expression data also
provides evidence for genotypic canalization. The wild type variation of the bcd
gradient is much larger than that of the gap genes (see Surkova et al., 2007,
and Figure 1.3). This was first demonstrated for hb by Houchmandzadeh
et al. (2002). The variability of the Bed gradient is due to intrinsic factors
such as the localization of its mRNA (Berleth et al., 1988), diffusion and
degradation rates. These intrinsic factors are determined by the genotype of
the mother and the zygote. For example the localization of bcd mRNA to
the anterior pole is controlled by other maternal genes (for example staufen,
exuperantia, swallow, see Johnston and Niisslein-Volhard, 1992; Frohnhdofer
and Niisslein-Volhard, 1987). Therefore, the variability of the Bed gradient is
due to genotypic variability. Houchmandzadeh et al. (2002) also showed that
the Bed gradient changes with temperature, while the border position of Hb
does not. This can be regarded as an instance of environmental canalization.

However, this case is not considered in this dissertation.
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Figure 1.2: Canalization of segmentation gene expression patterns. Early (a) and
late (b) Kr and gt expression patterns during cycle 14A. The variation in expression
levels is much lower in late cycle 14A. Early (c) and late (d) expression patterns
for the pair-rule gene ftz. Reproduced here with permission of S. Surkova (Surkova
et al., 2007).
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Figure 1.3: Reduction of Bed variation by hb. (a) Wild type cleavage cycle 14A Hb
expression patterns in 89 embryos. The range of border positions at half-maximum
is 5% EL. (b) Wild type cleavage cycle 13 Bced expression patterns in 89 embryos.
The range of positions at a fixed threshold is 25% EL. All data are from FlyEx.

1.4 Gene circuits

We can better understand how segmentation genes canalize by analyzing the
vector field X (Eq. 1.1), that determines the developmental trajectories. It
is possible to construct a dynamical system that reproduces gene expression
data (Surkova et al., 2007; Myasnikova et al., 2001) with high accuracy using
the gene circuit method (Reinitz and Sharp, 1995; Reinitz et al., 1998; Jaeger
et al., 2004a, 2007).

The gene circuit method consists of three steps. First, a model is formu-
lated. Second, the model’s parameters are determined by optimization. Third,
the model’s behavior is analyzed for biological insight.

The state variables of such a gene circuit are protein concentrations in
nuclei that are arranged in a one-dimensional row in the A-P direction along

the surface of the syncytium. The circuit operates according to three rules:
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interphase, mitosis, and division. The division rule specifies that nuclei divide
simultaneously at the end of a mitosis, and daughter nuclei inherit their states
from mother nuclei. The interphase and mitosis rules use coarse-grained rate
equations to specify the rate of change of the state variables during interphase
and mitosis respectively.

The gene circuit’s parameters are determined from gene expression data
by an optimization method called Parallel Lam Simulated Annealing (PLSA)
(see Kirkpatrick et al., 1983; Lam and Delosme, 1988a,b; Chu et al., 1999;
Chu, 2001, and Section A.2.2). Once a circuit that reproduces gene expression
data has been obtained, its behavior is analyzed to determine the dynamical
properties of the gene network being modeled.

This dissertation presents a study of the canalization of four gap genes: hb,
Kr, gt, and kni using the gene circuit method. In Chapter 2, a gene circuit for
these genes is constructed with outside input from bed, cad, and tll. Several
numerical methods for the solution of the gene circuit’s equations are evaluated
on the criteria of accuracy, stability, and efficiency, and the Bulirsch-Stoer
method is chosen from among them. A modified gene circuit that incorporates
protein synthesis delays is also constructed using delay differential equations.
It is shown that despite the evidence for the importance of such delays (Rothe
et al., 1989), gene circuits implemented with ordinary differential equations
are sufficient for describing the dynamical behavior of the gap genes.

In Chapter 3, it will be shown that the gene circuit exhibits genotypic
canalization. This is done by varying the Bed profile from data, and monitoring
the resulting gap gene patterns. It is established that this property of the gap
gene system arises due to epistasis between the gap genes. The experimental

verification for this prediction is presented in Chapter 4.
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The possibility that gap gene trajectories are stable (Section 1.3) is inves-
tigated by qualitative dynamical analysis of each nucleus in Chapter 5. It is
shown that the trajectories of the gap genes are stable, and that homeostasis
is not sufficient to explain this stability. This analysis also reveals that the
embryo can be subdivided into an anterior, and a posterior region that show
distinct dynamical behavior. In the posterior, the stability of the trajectories
arises from attraction by a one-dimensional manifold. The analysis also sug-
gests different mechanisms for gap gene border formation in dynamical terms.

The results of Chapters 3 and 5 are summarized in Chapter 6. The con-
cepts of genotypic canalization, structural stability, homeostasis, homeorhesis
are reevaluated in light of the canalizing gap gene system. The results on
canalization with respect to Bed are compared with earlier experimental and
theoretical work. Appendix A presents methods that were not invented in the

course of the dissertation, but are used here.
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Chapter 2

(Gene circuits and their numerical

treatment

2.1 Gene Circuits

2.1.1 Gap gene circuits

A gene circuit (Mjolsness et al., 1991; Reinitz et al., 1995; Reinitz and Sharp,
1995; Jaeger et al., 2004b,a) determines the time evolution of protein concen-
trations in the syncytial blastoderm of Drosophila melanogaster. The circuits
used in this paper comprise the gap genes hb, Kr, gt, and kni of the an-
teroposterior segmentation system. Their proteins are transcription factors
that localize in the nuclei of the blastoderm (see Section 1.2). Therefore, the
state variables are the protein concentrations of these genes inside nuclei. An-
teroposterior (A-P) and dorsoventral (D-V) patterning systems are largely
independent of each other in the presumptive germ band of the blastoderm

embryo. This allows us to consider a one-dimensional row of nuclei along the
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anteroposterior axis of the embryo, from 35% EL to 92% EL. The modeled
region extends over 58% EL region of the embryo, from the peak of the third
gt stripe to the posterior border of the posterior hb domain.

The circuit functions according to three rules: interphase, mitosis and di-
vision. The first two rules describe continuous dynamics of proteins during
interphase and mitosis. During interphase the evolution of protein concentra-
tions is determined by three processes: regulated protein synthesis, protein
transport, and protein decay. During mitosis, transcription shuts down and
nascent transcripts are destroyed. Therefore, only protein transport and pro-
tein decay govern the dynamics in the mitosis rule.

The third rule, division, accounts for the cleavage of the blastoderm. It
models mitotic division as a discontinuous change in the state of the system.
At the end of a mitosis, each nucleus is replaced with its daughter nuclei. The
inter-nuclear distance is halved and the daughter nuclei inherit the state of the
mother nucleus. The divisions are carried out according to a division schedule
based cleavage cycle data (Figure 2.1).

The gap gene circuits used in this study start at the onset of cleavage cycles
13 and last until gastrulation at the end of cycle 14A (Foe and Alberts, 1983).
Kr, gt, and kni are exclusively zygotic, and their proteins first appear in early
cycle 13 (Gaul and Jackle, 1987; Eldon and Pirrotta, 1991; Kraut and Levine,
1991b; Jaeger et al., 2007; Surkova et al., 2007; Myasnikova et al., 2005). hb,
which is both maternal and zygotic, also shows a manyfold increase in expres-
sion in cycle 13 (Houchmandzadeh et al., 2002), indicating commencement of
its zygotic expression. Time ¢ is measured in minutes from the start of cleavage
cycle 13. The interphase of cycle 13 lasts for 16.0 min, and its mitosis from

16.0 to 21.1 min. At ¢ = 21.1 min, the thirteenth division is carried out by
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Figure 2.1: Division schedule and time classes. t = 0 is at the start of cleavage cycle
13. The model runs until gastrulation ¢ = 71.1 min. The dashed lines demarcate
time intervals in which different rules of the model apply. The intervals are labeled
with rules on the right. The nine time points at which model is compared to data
are indicated. There is one time point for cycle 13 (C13), and eight points for cycle
14A (time classes T1-T8).
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applying the division rule. Interphase of cycle 14A starts immediately after

division, and lasts until gastrulation at ¢ = 71.1 min.

2.1.2 Equations

The two continuous rules, interphase and mitosis, use a system of ordinary
differential equations (ODEs) to describe the dynamics of protein concentra-
tions. Let there be M nuclei in the modeled region during a particular cleavage
cycle. Let ¢ denote a particular nucleus, counting from anterior to posterior.
We denote a particular segmentation gene by a € 1,..., N, where N genes
are represented in the circuit. v?(t) is the protein concentration of gene a in
nucleus . The time evolution of state variables v{(¢) are given by the solution

of the system of M x N ODEs,

dv? a N ab, b a, Bed 2t aB, B a
o :Rg<bZIT vy +my; +;E v (t) + h

(2.1)
+D%(n) [(viiy — vf) + (Vi —vf)] — A%f.

The first term on the right hand side of Eq. (2.1) represents protein syn-
thesis, the second one protein transport through Fickian diffusion and the last
term represents first-order protein degradation.

Protein synthesis rate for a gene a is determined by the maximum synthesis
rate R* and the regulatory input to a, u,. The rate of protein synthesis is the
product of the maximum synthesis rate and the regulation-expression function
g(u®) =3 [(u“/W) + 1] (see Figure 2.2).

The regulatory input u® = S5 T + mPd + Zgil E“50P (1) + he
in turn accounts for the transcriptional regulation of gene a by transcription

factors. Each term corresponds to a distinct type of factor. The first term
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Figure 2.2: The relative synthesis rate function g(u). The dashed vertical lines are
at values of total input u at which synthesis rate is 10% or 90% of maximum.

represents the regulation of gene a by the genes a = 1,..., N of the circuit.
T characterizes the regulatory effect of protein b on the synthesis of gene
a. Spatially and temporally homogeneous maternal factors are represented
in u* via its fourth term, h®. The second term of u* represents a maternal
factor, Bed, which is spatially inhomogeneous, but constant in time. m® is the
strength of regulation of gene a by Bed, while v is the concentration of Bed
in nucleus 1.

Finally, we incorporate maternal or zygotic factors that are spatially inho-
mogeneous and change with time through the third term of u¢, Zgil E“ﬁviﬁ (t).
N, is the number of such factors in the circuit, £’ is the regulatory effect of
external input 5 on gene a, and Uf (t) is the concentration of external input
[ in nucleus ¢ at time ¢. The gene circuit used in this study has two such
factors, cad (vF?(t)), and tIl (vi'(t)). cad is both maternal and zygotic.
However, its expression pattern is not affected in mutants for hb, Kr, gt and
kni, except for a slight expansion of the posterior stripe in hb~ during late
cycle 14 (Mlodzik and Gehring, 1987). Similarly, ¢l expression is not affected

in these mutants (Bronner and Jackle, 1991).
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Figure 2.3: Initial conditions for the gene circuit. The only non-zero initial condition
(Hb) is shown. The z axis is the modeled anteroposterior region from 35% EL to
92% EL. Kr, Gt and Kni proteins are not detected until cycle 13.

The second term of Eq. (2.1) is protein transport between nuclei repre-
sented as spatially-discretized Fickian diffusion. The diffusion parameter D®
is assumed to vary inversely with the square distance between neighboring
nuclei. The third term is protein degradation, in which A\ is the decay rate of
the product of gene a. It is related to the protein half life of the product of
gene a by t{, =In 2/

Since Kr, gt, and kni proteins first appear only in cycle 13, they have
initial conditions of zero, that is v~ (0) = v7*(0) = v#"(0) = 0. For hb, the
expression data from cycle 12 is used as initial condition (Figure 2.3). These

data are the maternal component of hb since its expression intensifies only in

cycle 13.
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2.1.3 Maternal systems in the gene circuit

The anterior maternal system is represented explicitly through bed in the regu-
latory input term u® of Eq. (2.1). The posterior system is represented through
the maternal Hb gradient (Irish et al., 1989; Struhl, 1989) as an initial con-
dition. The terminal system is represented through ¢l (Weigel et al., 1990;
Bronner and Jackle, 1991; Pignoni et al., 1992), the concentration of its protein

product is included as time varying input.

2.1.4 Time classes

In order to compare with quantitative gene expression data, we calculate the
solution of the model at several time points. The data are classified into one
time class during cycle 13 and eight time classes during cycle 14A. Time points
at half time through each class are used for the comparison: C13, ¢, = 10.550
min; T1, ¢t; = 24.225 min; T2, t; = 30.475 min; T3, t3 = 36.725 min; T4,
ty = 42.975 min; T5, t5 = 49.225 min; T6, tg = 55.475 min; T7, t; = 61.725
min; T8, tg = 67.975 min (Figure 2.1).

2.1.5 Numerical implementation of time varying inputs

In order to specify the right hand side of Eq. (2.1) fully, the concentrations
of Cad and TIl v/(¢) must be supplied for any time in the duration of the
model. Average concentrations for these genes are known at nine time points
ty,k = 0,...,8. ty is the midpoint of cycle 13, and %4, ..., ts correspond to
the eight time classes in cycle 14 (Surkova et al., 2007). Thus for nucleus
1 and external input (3, we know viﬁ(tk) = vfk, where £ = 0,...,8. The

concentration of external input [ in nucleus 7 is then determined at arbitrary
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time t by piecewise linear interpolation,

vf(t) _ (tk1 — t)vp + (t — ty) vk
tey1 — Tk
Fig. 2.4 shows such interpolation at 50% EL for Cad, and at 92% EL for

v e << tgga.

T1l. Higher order methods like cubic splines were not used because they gave

rise to artifacts from experimental noise.

2.1.6 Selection of a representative Bcd profile

The Bed gradient is essentially stationary during cleavage cycles 13 and 14 (Driever

and Niisslein-Volhard, 1988b; Gregor et al., 2007b; Surkova et al., 2007), and

hence, v>°d is assumed to be constant in time. It is known through antibody
studies (Driever and Niisslein-Volhard, 1988b; Houchmandzadeh et al., 2002,
2005; Surkova et al., 2007) and a recent GFP-Bed (Gregor et al., 2007b) study

that the Bcd profile is an exponential function of A-P position x, so that

vP(2) = Aexp(—Az). (2.2)

The arithmetic mean of exponential curves is not exponential. Thus, it is
not possible to generate a representative Bed profile by taking an arithmetic

average over embryos. Instead of averaging, a representative individual Bed
Bed

profile v;>** was chosen in the following manner. Background signal was re-

moved from Bed profiles from 88 cycle 13 embryos as described (Myasnikova

et al., 2005). Taking the logarithm of Eq. (2.2), we get

log(vP“(x)) = log(A) — Ax. (2.3)

The background-removed profiles were then fit by linear least-squares to Eq. (2.3).
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Figure 2.4: Interpolation from data of time-varying external inputs. (a) Cad data
and linearly interpolated time profile at 50% EL. (b) T1l data and linearly interpo-
lated time profile at 92% EL. Square boxes are data at ten time points. Cycle 12
data are used at ¢ = 0.0. The other time points are shown in Figure 2.1. Lines are
interpolated concentrations.
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This procedure yielded two parameters for each profile, A (length scale), and
A (concentration scale). Figure 2.5a is a scatter plot of log A with \. A pro-
file was chosen such that its parameters lie in the middle of the scatter plot
(Figure 2.5a). Since this study concerns only embryo-to-embryo variation and
not nucleus-to-nucleus noise, the exponential fit of the profile was used in the
model. Using background-removed profiles directly in the model yields circuits

with the same properties as those of circuits with exponential fits.

2.2 Numerical treatment of the interphase and
mitosis rules

Gene circuits have two kinds of rules, discrete and continuous (see Section 2.1.1).
In our model, division is the only discrete rule. It determines the number of
nuclei after a division and the protein concentrations in the nuclei. Interphase

and mitosis are continuous rules which determine the time evolution of protein

concentrations during interphase and mitosis. They are governed by systems

of ordinary differential equations or ODEs (Eq. 2.1).

The numerical treatment of the continuous rules is important since an
accurate and efficient solution is required. A numerical solution is always dif-
ferent from the exact solution, and their difference is the error in the numerical
estimate. A solution is accurate when the error is small. It is more computa-
tionally expensive to calculate solutions with lower error. Since the continuous
rules equations are solved tens of millions of times in a single simulated anneal-
ing run (see Section A.2), the numerical method has to be computationally
efficient. For a method to be useful for gene circuits, it should be capable of

satisfying both the accuracy and efficiency requirements simultaneously.
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Figure 2.5: Selection of a representative Bed profile. (a) Scatter plot of log amplitude
(log A) and slope (\) of 88 Bed profiles from cycle 13 embryos. The boxed profile
and the circle profiles were investigated further; unless explicitly mentioned analysis
in this dissertation use the boxed profile. (b) An overlay of all 88 Bed profiles
used in the simulations. The median profile is highlighted in red. The threshold
concentration at which Hb border forms in the gene circuit was determined from the
median profile. The positions at which these 88 profiles cross that threshold has a
range of 20.6% EL, and standard deviation (o) of 4.6% EL.
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Depending on the underlying problem, it is possible for the error in the
numerical solutions of systems of ODEs to grow exponentially. A numerical
method is said to be unstable in such a situation. Instability is especially
likely to occur when solving systems of ODEs whose solutions are comprised
of fast- and slow-changing components. Such equations are said to be stiff.
Furthermore, the optimization of a gene circuit’s parameters by simulated
annealing introduces another level of complication. Since the parameters are
chosen by random moves, extremely stiff equations are possible.

Therefore, the ideal numerical method has to be accurate, computationally
efficient, and stable.

This section begins with a brief review of numerical methods for solving
ODEs. I discuss the stability properties of different solvers and study their
suitability for a stiff systems of ODEs. I then look at gene circuits and show
that this system of equations is stiff. As a result of this stiffness we seek a
computationally efficient and stable solver. We compare the performance of
four different solvers: fourth order Runge-Kutta, Adams-Bashforth, Bulirsch-
Stoer and Bader-Deuflhard. Our results show that the Bulirsch-Stoer solver

is the best compromise between stability and computational efficiency.

2.2.1 Numerical solution of Ordinary Differential Equa-

tions

Consider the system of first order ordinary differential equations (ODEs)

y =f(y,t), (2.4)

where the dependent variable y(t) is an N-dimensional vector, and the
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independent variable ¢ is scalar. y’ is the derivative of y(¢) with respect to
t. f(y,t) is an N-dimensional vector of functions that take NV + 1 arguments.
Given the initial condition y(0) =y, we seek the solution y(¢) on an interval
[0, T]. Due to the fundamental existence theorem (Hochstadt, 1975), Eq. (2.4)
has a unique solution in some domain of y-space provided f(y,t) is bounded
and Lipschitz in that domain.

Numerical methods for the solution of Eq. (2.4) can be categorized in two
ways. The first is according to the number of values of y used in calculating
the solution; one-step methods require only one, while multi-step ones require
several. The second categorization is based on whether the equation that
determines the approximate solution is explicit (of form y = g(¢)), or implicit
(of form y = g(y,t)). Implicit methods are in general more stable than explicit
methods (Conte and de Boor, 1980; Press et al., 1992; Bulirsch and Stoer,
1992). A brief review of these methods presented below. Without loss of

generality, a scalar ODE is considered for all subsequent discussion.

Explicit one-step methods

Given the solution at ¢, y(t¢), a one-step numerical method determines an

approximation to the solution at ¢t + h through the truncated Taylor series

2 k
4 B) =y (1) 4 hFGt) + B ) + ot o P (25)

Here, f*)(y,t) denotes the k'" total derivative of f(y,t) with respect to t.
The local discretization error is the omitted remainder of the Taylor series
expansion. This error is of the order of the first omitted term, or O(h**1). To
keep this error small, 4 needs to be kept small. The solution is thus calculated

in a series of steps n = 0, 1, . . ., such that the n*" step advances the solution at
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tn (yn) to the one at ¢,,11 (y,+1). The simplest such rule is Euler’s rule (Conte
and de Boor, 1980), which simply truncates the Taylor’s series at the second
order term. It has local discretization error of O(h?).

Any higher-order rule made directly from the Taylor series (Eq. 2.5) is not
general. This is because it requires the calculation of higher-order derivatives
of f explicitly for each equation. To generalize the rule, multiple function
evaluations of f(y,t) are made in [t,,t,+1], and a formula is constructed such
that it mirrors the Taylor expansion until the k" order term. Such a formula
gives rise to a O(h*) method. For example, a second-order method may be

constructed from the general formula that requires two function evaluations,

Ynt1 = Yn + (a1 f (Yn, tn) + a2 f (Yn + prhf (yn, tn), tn + p2h)). (2.6)

The special case, a; = 0,00 = 1,p; = %, P2 = % gives rise to the modified

Euler, or the mid-point method,

2
The fourth order Runge-Kutta (Bulirsch and Stoer, 1992; Press et al., 1992)

h h
Ynt1 = Yn + hf (yn + §f(ym tN)v tn + _) . (27)

method (RK4) requires four function evaluations, and is given by

1
Yntl = Yn + 6(7451 + 2ko + 2k3 + ky), (2.8)
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where

kl = hf(ynatn)a

k h
kZth (yn+_17tn+_>7

2 2
h , (2.9)
ks =hf(yn+ — tn+— ),

Practical implementations of these methods do not use a fixed step-size (h).
Rather h is adaptively changed according to estimates of the local discretiza-
tion error. There are two main advantages of one-step methods. First, they
do not make any assumptions about the solution, apart from the existence of
the k' derivative for a method of O(h*) (Conte and de Boor, 1980). Second,
even if there is a discontinuity, Runge-Kutta methods make errors near it, but

the solution far away is still accurate (Bulirsch and Stoer, 1992).

Explicit Multi-Step methods

Multi-step methods are derived from the integral representation of the solution

of the differential equation

tn+1 tn+1

[ vit= [ w00

t’!L tn
that is,

tn+1

Ynt+1 = Yn + / fy(t),t)dt.

tn

34



In order to evaluate this integral, f(y,t) is approximated by polynomial in-
terpolation. For example, by the Newton backward differences interpolation
formula (Conte and de Boor, 1980), we get the fourth order Adams-Bashforth
method

h
Yn+1 = Yn + ﬁ<55fn - 59fn71 + 37fn72 - 9fn73)7 (210)

where f,, = f(yn,t,). This method requires knowledge of the solution at four
points. Therefore, vy, ¥, and y3 cannot be calculated by Adams-Bashforth.
It needs to be “started” by a one-step method such as Runge-Kutta. The ad-
vantage of multi-step methods is that they require fewer function evaluations,
since once started, f,_ 1, f._2 and f,_3 are already known. The disadvan-
tage is that these methods only work well for smooth solutions that are well
approximated by polynomials.

A particularly simple multi-step method is the modified mid-point method
which is based on the mid-point method (Eq. 2.7). It advances y(t) to y(t+H),
in a sequence of p substeps of length h = H/p. The first substep is made with
Euler, and the subsequent steps by midpoint, that is,

20 = Yn ~ y(t)
z1 = 2o+ hf(20,1)

(2.11)
Zma1 = Zm—1 + 2hf(zm, t +mh), for m=1,2,... . p—1,

1
(Zp + Zp—1 + hf(zpat"' H)).

y(t+ H)mylh =5

Here z,, is the result of the m'" substep, and yfﬁzl is the final approximation
to the solution at ¢t + H using p substeps. This is a second order method like

the midpoint method (Eq. 2.7), but requires only one function evaluation per

35



substep, since it uses the previous substep’s result as the midpoint. Another

advantage is that its error series is only in even powers of h,

y =yt + H) =Y ah®. (2.12)
=1

This makes the modified midpoint method particularly suitable for use
with Richardson extrapolation to the limit (Conte and de Boor, 1980; Press
et al., 1992; Bulirsch and Stoer, 1992). In Richardson extrapolation, a solution
is calculated at several step sizes, and then extrapolated to zero step size using
a polynomial fit. The Bulirsch-Stoer method (Press et al., 1992) utilizes the
modified midpoint method in exactly that way.

The solution is advanced by a “large” step H in p substeps using Eq. (2.11).

(p)

Successively better estimates for 4,41, ¥, [, are obtained by increasing p in the

sequence

p=2,4,6,810,... (2.13)

After each refinement, the extrapolated estimate y;%, ~ y(t + H), and an
error estimate €, are calculated. If even after successive refinements the error
estimate does not go below the desired tolerance (say, €), the step-size, H is
reduced. Due the even error series of the modified midpoint method (Eq. 2.12),

€p ~ H**1 and therefore a new estimate for H is,

i 1/(2p+1)
H,=H (—) . (2.14)
€p

Implicit methods

Implicit methods are those in which the rule for calculating y,,,; depends on

Yna1 itself. For instance, the implicit Euler rule is
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Yn+1 = Yn + hf(yn+17 tn—l—l)- (215)

For non-linear ODEs, an implicit rule such as Eq. (2.15) is solved by an
iterative method like Newton-Raphson (Conte and de Boor, 1980), which is
computationally expensive and not always guaranteed to converge. A less
demanding approach is that of semi-implicit methods (Press et al., 1992),
arrived at by linearizing the fully implicit method. For instance, if we linearize

Eq. (2.15) about y,, keeping only the first-order y,, term, we get

Ynt1l = Yn T I [f(yn: tn+1) + J(ym tn)(ynJrl - yn)] : (2'16)

J(Yn, t,) is the Jacobian of f(y,,t,) with respect to y at y,. Solving for v, 1,

the semi-implicit counterpart of the implicit Euler method is

Ynt+1 = Yn + h [1 - Jfl(ynytn)f(ymtn)] . (2'17)

The Bader-Deuflhard method (Press et al., 1992) is an example of a semi-
implicit method. It is similar to the Bulirsch-Stoer in its use of Richardson
extrapolation. However, it uses the semi-implicit modified mid-point rule for

the substeps h = H/p,

(1 — hd(Zmytm)]|Zms1 = [1 + hJ (Zm, tm) ]| 2m—1

+ 2R[f (Zm, tm) — J (Zms tin) 2],

(2.18)

where m =2,...,p— 1 and z,, is the intermediate value at the substep m.

The first substep is the semi-implicit Euler (Eq. 2.17), while the last step is
w _ 1
Y1 = 52 + 2p-1)- (2.19)
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This method, like the modified midpoint method has an even error series
(Eq. 2.12), though a different sequence of refinements is used for the Richard-

son extrapolation and so

p=2,6,10,14,22, 34,50, . .. (2.20)

Though not as demanding as implicit methods, semi-implicit methods can be
fairly computationally expensive due to the matrix inversion if the number of

equations is large.

2.2.2 Numerical Stability and Stiffness

The numerical methods discussed in the previous section approximate the

ODE with a difference equation

Yn+1 = g(h, Yn+1,Yn> Yn—1, - - - Yn—k, tm tn—lv e atn—k)' (221)

Here, ¢ is some function that depends on the numerical method and f(y,1).
As h — 0, the solution of the difference equation, approaches that of the
ODE. However, in practice h is finite, and the numerical solution can diverge
exponentially from the exact solution. We illustrate this with an example.

Consider the solution of

¥ = My, y(0) = yo (2.22)

using the Euler method. With A = —100, and h = 0.03, the difference equation

1S
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Yn+1 = (1+)‘h>yna

or, Ynil = —2Yn.

Using the initial condition, the solution is y, = (—2)"yo, which oscillates
between negative and positive values, while the analytical solution is 15e 1%,
Therefore for this example the Euler method is stable in the region |1+ \h| < 1
(see Figure 2.6a).

In general, the stability region depends on both the ODE being solved and
the numerical method. To compare methods on an equal footing however, the

test system of Eq. (2.22) is used. For this test system, Eq. (2.21) is a linear

homogenous difference equation,

aoYn+1 + a1Yn + ... + Ay 1Yn— = 0, (2.23)

with the general solution

Yn = Clﬁl<)\h)n + CQﬁQ()\h)n + ...+ Ck+1ﬁk+1(/\h)n. (224)

A method is said to be absolutely stable if |3;(AR)| < 1,i=1,...,k+ 1.

The difference equation for explicit single-step methods depends only on
Yn, that is &k = 0. As a consequence, their general solution has only one
component ¢;31(Ah)". For the RK4 method, the region of absolute stability

(see Figure 2.6c) is

(AR)?  (AR)® - (AR)*
2 + 6 + 24

For methods that are absolutely stable, reducing the step size h sufficiently

|BL(AR)| = |14+ Ah +

< 1. (2.25)

guarantees stability. The picture is further complicated when solving systems
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Figure 2.6: Stability regions of (a) Euler, (¢) RK4 for the test system 3y’ = Ay, and
(b) Implicit Euler for the test system y’ = —\y. The graphs show the Ah complex
plane, where h is the stepsize of the method. Shaded regions are stable. (d) The
eigenvalues (crosses) of a gene circuit are plotted with the stability regions of Euler
and RK4 with stepsize h = 1 min. They were calculated for the solution at ¢t = 71.1
min.
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of ODEs such as the gene circuit equations (Eq. 2.1). If we linearize the
solution, about a point y,, we get the counterpart of the one-dimensional test

system (Eq. 2.22)

7= Alyo)z, 2=y — . (2-26)

A(yp) is the Jacobian of the system at y,. Now the stability condition needs
to be satisfied for all eigenvalues \;,j = 1,..., N, that is [5;(\;h)| < 1, Vi, .
If the largest and smallest eigenvalues differ by a large factor, the step size h
needs to be very small for absolute stability. Usually one looks at the ratio

Amae 18 the largest eigenvalue and \,,;, is the smallest. If % > 1,

zn‘

|)\maz‘
|/\min| )

the system of ODEs is said to be stiff.

Implicit methods are especially suited for solving stiff problems. They
have much larger stability regions than those of explicit methods. As an
example, consider the implicit Euler method (Eq. 2.15). For the test system
Y = =AY, Ynt1 = 75U, the stability region is [1 + Ah| > 1 (Figure 2.6b),
which covers most of the complex plane. As mentioned before, this stability
comes at the cost of increased computational demands for solving a non-linear
implicit equation at each step. Semi-implicit methods are not guaranteed to

be stable, but usually are (Press et al., 1992).

2.2.3 Stiffness of gene circuits and numerical methods for

their solution

Figure 2.6d shows the spread of the eigenvalues of a gene circuit juxtaposed
over the stability regions of Euler and RK4. The eigenvalues are divided into

two groups that are spread far apart. One group falls into the stability region
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of RK4 and the other group is outside. In fact, “:\\ZZ“ ~ 103 and hence the
gene circuit is stiff.

Therefore, RK4 at step size 1.0 min is expected to be unstable for this
problem. A gene circuit was produced by simulated annealing using RK4
with step size 1.0 min. Figure 2.7a shows the output of this gene circuit.
On lowering the stepsize to 0.1, the output changes qualitatively, resulting in
biologically incorrect patterns (see Figure 2.7b). This shows that RK4 is not
a reliable numerical method for gene circuits.

In order to determine the numerical method best suited to the gene circuit
(Eq. 2.1), several methods were tested. The following methods were tried:
the explicit single-step RK4 method (Eq. 2.8), Adams-Bashforth, an explicit
multi-step method (Eq. 2.10), Bulirsch-Stoer, an explicit adaptive stepsize
method (see Section 2.2.1), and a semi-implicit Bader-Deuflhard method (see
Section 2.2.1). The fixed stepsize solvers were included merely for compari-
son, as it is risky to use them for stiff systems of ODEs (Press et al., 1992).
An explicit solver with stepsize control, however, is capable of handling stiff
systems of ODEs by reducing stepsize to remain in the stable region of the
solver. This comes at the cost of increased computational effort. Similarly,
implicit and semi-implicit solvers have the additional computational burden of
an iterative method or matrix inversion respectively. Since the optimal solver

has to be both efficient and stable, we did not assume a priori which is better.

2.2.4 Solver comparison

The comparison of the four methods is shown in Table 2.1. The root mean
squared difference between data and gene circuit (rms score, Eq. A.1) was used

as a measure of accuracy. The best possible solution was calculated by
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Figure 2.7: Instability of the numerical solution in gene circuits. A gene circuit was
fit to data using RK4 with stepsize h = 1 min. (a) Gap gene patterns produced
by the circuit at time 71.1 mins. (b) Gap gene patterns produced by the circuit if
stepsize is reduced to h = 0.1 min.
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RMS | Time Function

Solver Step/Acc | score (ms) | evaluations
RK4 1.0 | 22.2825 7.93 284
RK4 0.1 | 10.1712 68.48 2844
Adams-Bashforth 1.0 | 25.2379 3.97 160
Adams-Bashforth 0.1 | 10.1713 43.16 1440
Bulirsch-Stoer 1073 | 10.1699 7.87 337
Bulirsch-Stoer 107* | 10.1714 |  16.58 538
Bader-Deuflhard 1073 | 10.1712 | 3809.79 476
Bader-Deuflhard 107* | 10.1713 | 4677.13 682

Table 2.1: Comparison of solver performance on gene circuits
the solvers that were tested. The second column is the stepsize for fixed-stepsize
methods, or accuracy requirement (at each step) for adaptive-stepsize methods. The
rms score is listed in the third column. The rms score with Bulirsch-Stoer with
accuracy requirement 10712 is 10.171220555381. The fourth column gives the CPU
time to solve a gene circuit (average over 1000 repetitions) on a 2.6 GHz Pentium
4 Xeon processor. CPU time was calculated with the getrusage() function call of
the 1ibc6 Linux library. The last column gives the number of times the RHS of
Eq. (2.1) was evaluated to solve the gene circuit.
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lowering the stepsize/accuracy requirement until the methods converged. Both
Bulirsch-Stoer and Bader-Deuflhard are within 0.1% of the best solution at an
accuracy requirement 10~3. Both fixed stepsize solvers require a stepsize of 0.1
to be accurate, and take many more function evaluations and much more time
than Bulirsch-Stoer. Although Bader-Deuflhard makes a comparable num-
ber of function evaluations, each function evaluation is much more expensive,
making it the least-efficient method. Bulirsch-Stoer is the most efficient of all
methods tested by a wide margin, and it is used in all gene circuits in this

thesis (except circuits with production delays, Section 2.3).

2.3 Gene circuits with production delays

One key approximation of the interphase rule of the gene circuit 2.1 is that
synthesis is instantaneous. Synthesis of a protein in eukaryotes, however, in-
volves several steps. First the RNA polymerase II transcribes the DNA base
by base, to produce mRNA. Introns are spliced out of the mRNA to produce
mature mRNA, which is then transported out of the nucleus for translation.
The mature mRNA is translated by the ribosome into protein codon by codon.
Thus, we can expect that there will be some delay from the start of transcrip-
tion to the time when the finished protein becomes available as a transcription
factor.

There is evidence that such delays have a biological function. The gene
knirps-like (knrl), (Oro et al., 1988), encodes a protein with the same DNA-
binding motif as kni, but lacks segmentation function (Rothe et al., 1989).
This is due to the 23kb transcriptional unit of knrl as compared to the 3kb
unit of kni (Rothe et al., 1989). A knrl complementary DNA rescues kni phe-
notype (Rothe et al., 1992), indicating that transcription and splicing delays
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are responsible for the different function of the two genes. In mammalian cell
lines, synthesis delays have been proposed as the mechanism for oscillations in
the expression of Hesl, p53, and NF-xB (Monk, 2003).

In this section we first consider the case for relaxing the instantaneous-
synthesis approximation in gene circuits. Next we propose a model based on
delay differential equations, and discuss the details of its numerical implemen-
tation. Finally we present delay-equation-based gene circuits and discuss their

suitability for describing the gap gene system.

2.3.1 Need for a delay model

Although the mRNA of gap genes is detected as early as cycles 11 and 12 (Knip-
ple et al., 1985; Tautz et al., 1987; Rothe et al., 1989; Jaeger et al., 2007),
proteins are not detected until early cycle 13 (Gaul et al., 1987; Eldon and
Pirrotta, 1991; Kraut and Levine, 1991a; Surkova et al., 2007). Therefore,
even though transcription of gap genes is taking place, significant amounts of
gap proteins are not being translated.

We made very rough estimates of the transcriptional and translational de-
lays, based on transcript and protein lengths from FlyBase (Crosby et al., 2007)
and GenBank (Benson et al., 2007). There are two reports of the transloca-
tion rate of RNA Polymerase II, one in Drosophila, and the other in sea urchin
cells. In Drosophila, the Ubx gene took 55 minutes to transcribe (Shermoen
and O’Farrell, 1991). The transcription unit of Ubz is 77kb long, giving an
estimate of 23 base pairs per second. In sea urchin cells, the transcription rate
was measured to be around eighteen base pairs per second at 25°C (Davidson,
1986) . For bacterial polymerase, the estimate is 40 base pairs per second at

37°C (Lewin, 2000). For simplicity, a value of twenty base pairs per second
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Transcript Txn Protein | Translation

Gene length time length time Total

(bp) 7 (min) (aa) 7 (min) 7 (min)
hb P1 6502 5.4 758 1.1 | 9.5-12.5
hb P2 3284 2.8 758 1.1 | 6.999
Kr 2423 2.0 466 0.8 | 5.8-8.8
gt 1963 1.6 448 08| 5.4-84
kni 3012 2.5 429 0.7] 6.2-9.2

Table 2.2: Estimation of transcription (Txn) and translation times for gap genes
based on unprocessed transcript length and protein length respectively.

was used in our estimates.

The translation rate in bacteria is estimated to be around 15 amino acids
per second at 37°C (Lewin, 2000). A value of 10 amino acids per second at
25°C was used calculate translation time. Splicing delays were estimated to
be around three minutes in the early Drosophila embryo based on electron
microscopy observations (Beyer and Osheim, 1988). The nuclear latency of
(-globin in mammalian cells was measured to be between 2.5 and 4.4 min-
utes (Audibert et al., 2002). Based on these estimates we used three minutes
as a lower bound and six minutes as the upper bound for splicing and nuclear
export delays. The full set of estimates for all the gap genes are shown in
Table 2.2.

Delays of 6-10 minutes are significant compared to the time scale of the
model, which encompasses about 100 minutes from the end of nuclear division
12 to the onset of gastrulation. Furthermore, the effects of these delays are
amplified by the short duration of cleavage cycles 10 and 11 (Foe and Alberts,
1983). Shermoen and O’Farrell (1991) visualized Ubz transcripts using in

situ hybridization and report the disappearance of unfinished Ubx transcripts
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during mitosis. This prevents the synthesis of Ubx protein until much later. In
fact there is global shutdown of transcription during mitosis (Gottesfeld and
Forbes, 1997).

Finally, gene circuits do not produce the early patterns of gap gene in cycle
13 accurately (Jaeger et al., 2004a; Jaeger, 2005). Though gap gene domains
have well-defined boundaries when they first appear in cycle 13 (Jaeger et al.,
2007; Surkova et al., 2007), gene circuits produce patterns that are derepressed
initially, but then get refined by gap-gap cross-regulation (Jaeger et al., 2004a).
As gap transcripts are also produced in a localized manner (Jaeger et al., 2007)
in cycles 10-12, this suggests that production delays might be required in the
model in order to obtain correct behavior of early patterns. In the following
section, we propose a modification of the gene circuit model that incorporates

such delays.

2.3.2 Delay model

In this section, a gene circuit with production delays will be constructed by
modifying its continuous rules (see Section 2.1.2). The segmentation genes
do not regulate the cell cycle, hence the division rule remains the same as in
Section 2.1.1. In order to incorporate delays, it is convenient to rewrite the

interphase rule as

N N,
dl}g a ab, b a, Bed - aB, B a
o :Rﬁ(t)g<;T vy + my; —i—ZE v, +h

p=1 (2.27)

+ D(n)(viyy — 208 +viy) = A%,

where, except for 0(t), all the terms are the same as in Eq. (2.1).
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0(t) is a square-wave of unit magnitude in time that represents the shut-

down of transcription during mitoses because

.
0 before ninth mitotic division,

0(t) = S0 if Myar <t < Myop, (2.28)

1 otherwise.

\
Here Mgiaye and Mg, are times at which mitoses start and end respectively.

Note that since no zygotic transcription is observed for gap genes before cycle
10 (Jaeger et al., 2007), 6(t) is set to 0 before the ninth division. Hence the
interphase and mitosis rules have been combined into a single equation. This
is advantageous because with delays the synthesis rate at the beginning of an
interphase will depend on the state of the system during the preceding mitosis.

It is assumed that the time taken for synthesis (transcription, splicing,
export, and translation) does not vary in time or depend on the protein con-
centrations of the gap genes. Also, diffusion and decay are assumed to be much
faster than synthesis. They will be represented as instantaneous steps (as in
Eq. 2.1). Letting the production delay for protein a be 7,, the rate of change
of its concentration in nucleus ¢, v{ is represented by the delay differential

equation (DDE, Bellman and Cooke, 1993)

“ N N.
d;ti = R(t — %) <Z T (t — 7%) + m P + Z E“ﬁviﬁ(t — 7%+ ha)
b=1 p=1

+ D%(n)(viyy — 20 + i) = A%y
(2.29)

To completely specify the delay differential equation, the history S must be

provided, which is a generalization of the initial conditions. It is specified as
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vi(t) = SHt), for —7<t<0, 7=max{7"}.
In Eq. (2.29), the rate of protein synthesis depends on the concentrations
of the products of genes b at a point 7 minutes in the past. The numerical
treatment of such equations is considered next.

2.3.3 Numerical Integration of gene circuits with delays

The numerical integration of the delay model (Eq. 2.29) is relatively simple
compared to the general case, since the time delays are constant. The method
of steps (Bellman and Cooke, 1993) was employed to solve the gene circuit

with production delays.

The method of steps

Consider the scalar DDE

v =Ffty@)yt—7), =1t (2-30)

with the history specified by

y(t) = S(t),  t<to. (2.31)

The method of steps solves Eq. (2.30) over successive intervals

[to+ (I — 1)1, tg +17], 1=1,2,3,... by setting
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vi(t) = f{t,p1 (1), S(t = 7)), t € [to,to+7],

yh(t) = F(tya(D),m(t = 7)), L€ [to+T 1o +27), (2.32)

() = ft,ym(t), Ym_1(t — 7)), t € [to+ (m —1)7,t9 +m7].

This yields the solution y(t) = y,(t) for t € [to + (I — 1)7,to + I7].

A general property of DDEs is that the discontinuities in the history S(t)
propagate to the points tq 4 [7. For instance, it is not unusual for f and the
left derivative of S(t) to be different at ¢y, that is, f(to,y(to),S(to — 7)) #
S'(ty ), introducing a first-order discontinuity that propagates. For example,
Figure 2.8 shows the solution of Eq. (2.30) with 7 = 1, and S(¢) = 1, < 0. The
first order discontinuity propagates as higher order discontinuities to points
1,2,3, ..., making the solution smoother.

Next, a numerical solver is presented that uses the method of steps to solve

DDEs.

A numerical method for DDEs

The specific implementation of the solver is based on the dde23 solver in
MATLAB (Shampine and Thompson, 2001). Since Eq. (2.29) has multiple
delays, the equation is of the type

y,<CL’) = f([)?, y(x)v y(ZL’ - Tl)a y([L’ - 7-2)7 s ,y([L’ - Tk))? (233)

on [a, b], for constant delays 7; such that 7 = min(7y,...,7;) > 0. The history
needs to be specified as y(xr) = S(z) for # < a. No generality is lost in

considering a scalar equation, as the formulas are valid for systems of DDEs
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Figure 2.8: Propagation of discontinuities in delay equations. The solution to the
delay equation y' = —y(¢t — 1), with history S(t) =1, ¢ <0.

also. The key features of this solver are determined by the following general

properties of delay equations.

1. Need for dense output. Suppose f is being evaluated at some grid point
Zp. It is likely that its arguments, x,, — 7,2, — 72, ..., T, — Tk, are not
grid points. Thus, an approximation to the solution at non-grid-points

is needed.

2. Ability to handle discontinuities. As discussed above, the discontinuity
in ¥/ at x = a will propagate as discontinuities in higher derivatives at
(a+71,a+21,...), (a+T72,a+27,...) and so on. The order of the solver
formulas depends on the smoothness of the solution, and therefore the
solver should either be able to side step these discontinuities, or ignore

them if they are in a high enough derivative.
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3. Implicit formulae. If at some point, the step-size h,, > 7, the formulae

become implicit and the solver must be capable of handling them.

In view of these required features, dde23 is based on what is called the
BS(2,3) Runge-Kutta triple (Bogacki and Shampine, 1989), which is modi-
fied to handle discontinuities and implicit formulae. The BS(2,3) triple uses
continuous extensions (Dormand, 1996) to provide dense output.

The triple consists of three explicit formulas. The first formula advances
the solution, while the second one provides a lower-order estimate of the so-
lution, so that an error estimate can be made. The third formula provides
a polynomial interpolation so that the solution can be approximated at non-
grid-points.

Suppose an approximation g, to y(x) at x, is known, and the solution
needs to be advanced to ¥,.1 at ,.1 = =, + h,,. The formula to advance the
solution is a three stage Runge-Kutta method. The intermediate stages v,;
are evaluated at z,; = x,, + ¢;h,,, where, i = 1,2, 3,4. The parameters for the
BS(2,3) triple are listed in Table 2.3. The intermediate stages for the method

are given by

i—1
Yni = g)n + hn Za'ijfnja

=1

where f,; = f(%n, Yni). Then the solution at x,, + h, is given by

3
gn-ﬁ-l = g)n + hn Z bzfnm

i=1
which provides a third order estimate to y(x,). The second formula is a four-

stage formula that provides a second-order estimate. It is given by
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Table 2.3: Parameter values for the BS(2,3) triple.

4
Yn+1 = gn + hn Z bzfm

i=1

The parameters (Table 2.3) are chosen such the fourth stage in the above
formula is given by the third-order estimate itself, that is y,4 = ¥,.1. This
trick saves three function evaluations, and is known as the “First Same As
Last” device.

The third formula provides the continuous extension of the solution from

Un t0 Uny1. It is given by

4
y;kz—i-a = Yn + hn Zb;k(o-)fnz

=1

o assumes values between 0 and 1. This last formula provides the dense output,
or intermediate output at non-grid-points required for a delay solver.

The step-size is controlled by

c 1/3
hn+1 - hn ( > 5 (234)

5nJrl

where 0,,.1 is the error estimated from the second-order formula, and ¢ is the

desired accuracy.
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In dde23, the intermediate stages of the BS(2,3) triple f,,; are retained even
when the step from x,, to x,, + h, is complete. This is because later steps of
the solver might require the solution in this interval due to delays.

The other two features required of a delay solver, that is, provision for
discontinuities, and for implicit equations are handled as follows. Since the
delay gene circuit has constant delays, a list of time points is precalculated
where discontinuities are expected to arise. Then, using the method of steps,
the equation is only solved on intervals between these points.

Secondly the formulas for the BS(2,3) triple can become implicit if the step
size is bigger than the smallest delay. Function iteration (Press et al., 1992)
is used to solve the implicit equations. If the iteration does not converge, the

step size is reduced, making the formulas explicit.

Customization for gene circuits

Due to the combination of discrete and continuous rules of gene circuits (Sec-
tion 2.1.1), further customization of the dde23 solver described above was
made in two steps. In the first step, the precalculation of discontinuities in-
cluded the first-order discontinuities at the beginning of mitoses and inter-
phases when the right hand side of Eq. (2.29) changes discontinuously.

The second complication involved the discrete rule of division. As men-
tioned at the end of the previous section, the intermediate calculations of the
BS(2,3) triple are retained in case they are required in the calculation at a
later point. In gene circuits, however, the number of equations is not fixed,
and changes at each division. Hence, situations are possible, in which, to cal-
culate a daughter nucleus’s concentration, the mother nucleus’s concentration

is required. This was handled by applying the division rule to the BS(2,3)
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intermediates. Note that for a general gene circuit, it is not possible to assume
a maximum delay, and it is quite possible to require the intermediates from

cleavage cycle 11 for the solution in cleavage cycle 14A.

2.3.4 Results

A delay gene circuit was constructed with six gap genes, cad, hb, Kr, gt, kni,
and tll. No external inputs were included in this circuit. For Kr, gt, kn:, and
tll, the history was zero, as they are only detected first in cleavage cycle 13
(Section 2.1.2). For hb and cad, data from cleavage cycles 11 and 12 were
provided as history.

This circuit was fit to integrated gap gene data (Surkova et al., 2007)
using two different approaches. In the first, the delay values were fixed to
empirical values calculated in Table 2.2. In the second approach, delays 7¢
were determined by the optimization. Figure 2.9 shows the early and late
patterns for the two circuits.

The empirical-delays gene circuit has an rms score of 13.95, and accordingly
has several patterning defects (see Figure 2.9). The optimized-delays circuit
has score 10.97, but still has minor patterning defects. The early patterns
in both circuits do not form clearly-defined Kr or gt domains. This suggests
delay gene circuits with simple production delays (Eq. 2.29) are not sufficient
to accurately reproduce early gap gene patterns. Circuits without delays were

used for all other computation in this dissertation.
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Figure 2.9: Integrated gap gene data (a) early (middle of cycle 13), and (d) late
(time class T8 of cycle 14A). (b, e) Early and late gap gene patterns produced
by the production-delay gene circuit with empirically estimated delays (Table 2.2).
This circuit does not produce correct early patterns; gt is derepressed in the middle
(compare with panel a), and kni posterior boundary does not form. Also, there are
major patterning defects (arrows) in the late patterns. (c, f) Early and late patterns
produced by the gene circuit in which delay values were determined by optimization.
This circuit does not produce correct early patterns also; Kr anterior boundary does
not form, and ¢t is derepressed in the middle. The late patterns have minor defects
(arrows) in tll, which is not represented correctly in this circuit (see Section 2.1.1).
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Chapter 3

Reduction of Bed variation by the

gap gene system

In Section 1.3 (Figure 1.3), recent experimental results (Surkova et al., 2007;
Houchmandzadeh et al., 2002) revealed by quantitative gene expression data
were reviewed. These data establish that gap gene borders have reduced vari-
ance compared to the Bed gradient. Since the Bed gradient is established by
intrinsic factors determined by the genotype of the fly, these results present
an instance of genotypic canalization.

In this chapter, the effects of Bed variation on the gap genes will be simu-
lated using gene circuits. In the framework of the model, all interactions are
subsumed in the structure of the regulatory input u® (Section 2.1.2). Hence,
Bcd variation is simulated by using Bed data from individual embryos, while
keeping the regulatory parameters of the gene circuits fixed.

The first section describes a particular circuit that was obtained by op-
timization. In Section 3.2, we simulate Bcd variation using Bed data from

FlyEx and show that in this circuit, gap gene borders have reduced variation
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as compared to Bed. Finally, this property is investigated by analyzing the

regulation of gap gene borders in this circuit.

3.1 Optimization and selection of a gap gene cir-
cuit

The gap gene circuit formulated in Section 2.1.1 was fit to integrated gap
gene data (Surkova et al., 2007) using Parallel Lam Simulated Annealing
(PLSA) (Chu et al., 1999; Chu, 2001). PLSA minimizes the root mean squared
(rms) difference (see Section A.2.1) between model output and data. The min-
imized rms difference for a circuit is a measure of the quality of fit, and is called
the rms score. This procedure produces many candidate circuits, and we se-
lected a circuit using a three-step method (Jaeger et al., 2004a). First, only
circuits with an rms score less than 12.0 were considered. These circuits were
screened further for patterning defects, and any circuit with major defects was
discarded. Finally, experimental (Clyde et al., 2003) and theoretical (Perkins
et al., 2006) investigations have shown that Kr represses hb, therefore, we only
select circuits for further consideration if they show this property.

With this screening process, we obtained 23 circuits out of a total of 65
optimizations. This set of circuits have the same network topology as the
circuits studied in earlier work (Jaeger et al., 2004a; Perkins et al., 2006). Bed
and Cad are activators of hb, Kr, gt, and kni. tll is an activator of hb, and a
repressor of the other gap genes. The interaction between the four gap genes
is one of mutual repression, with two exceptions: (1) gt is an activator of hb in
all the circuits obtained. (2) kni is an activator of g¢ in about half the circuits,

and a repressor in the other half. This network topology is discussed in depth
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Regulator gene b
Target gene a bed cad til hb Kr gt kni
hb 0.025 0.004 0.003 0.021 -0.001 0.022 -0.112
Kr 0.118 0.021 -0.203 -0.026 0.035 -0.042 -0.062
gt 0.256 0.023 -0.011 -0.028 -0.202 0.007 0.003
kna 0.012 0.020 -0.187 -0.082 0.000 -0.017 0.013

Table 3.1: Regulatory parameters of the nonautonomous gap gene circuit
hkgn58c13kl 007. The first, second, and third columns show m¢, E*~°? and
E*~" respectively. The columns of the 4 x 4 matrix 7% are shown in the last four
columns of the table. The parameters are explained in Eq. (2.1).

elsewhere (Jaeger et al., 2004a; Perkins et al., 2006). These results also hold
true for circuits obtained using other Bicoid profiles from the middle of the
parameter scatter in Figure 2.5a (black circles).

We chose one circuit (hkgn58c13kl 007) which has rms score 10.76 for
further analysis. Its parameters are given in Tables 3.1 and 3.2. The chosen
circuit’s gap gene patterns (Figure 3.1) are consistent with data except for two
minor defects. The first one is a bulge on the anterior border of the posterior
hb domain. The second is that the posterior border of posterior hb domain
does not form fully. Some circuits reported in previous work (Jaeger et al.,
2004a) also suffer from these defects. The first defect is due to very low levels
of spurious tll expression in the middle part of the embryo stemming from
imperfect background removal. The second is due to the omission of the gene
hkb (Weigel et al., 1990; Bronner and Jackle, 1991; Pignoni et al., 1992) from

the model. hkb is a terminal gap gene expressed near the posterior pole.
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Gene a
Parameter hb Kr gt kni
R® 15.000 10.354 15.000 15.000
D° 0.166 0.200 0.103  0.200
75 9.529 15.908 9.438 13.062
Table 3.2: Kinetic parameters of the nonautonomous gap gene circuit

hkgnb8c13kl 007. h* was kept fixed at —2.50 during optimization.
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Figure 3.1: Gap gene expression patterns in gene circuit hkgn58c13kl 007. Early
(a) and late (b) gap gene expression patterns produced by the gene circuit. The
arrow shows the main patterning defect, which is related to experimental noise in
TIl data. Early (c) and late (d) gap gene expression patterns in the same circuit if
diffusion is turned off (D® = 0 for all proteins).
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3.2 Simulating Bcd variation

We simulated the effects of embryo-to-embryo variation by using a family of
88 bicoid profiles (shown in Figure 2.5) in the circuit derived from the median
Bed (highlighted in Figure 2.5a by a red circle). All parameters of the circuit
were kept fixed, and only the Bed input to the circuit was changed. The
positional variance of the gap gene borders was compared with that of Bed
profiles. The position of a gap gene domain’s border was calculated as the point
where the gene’s concentration was half its maximum level in the domain. The
positional variance of a border is the standard deviation of its position in the
88 simulations. The positional variance of the family of Bed profiles is the
standard deviation of the position at which each profile crosses a threshold
concentration. The threshold is the concentration at which a particular gap
gene border forms in the circuit with the median Bed.

The model correctly predicts the positional variance of six gap gene bor-
ders: the posterior border of the anterior hb domain, the posterior border of
the central Kr domain, both borders of the abdominal kni domain and both
borders of the posterior gt domain (see Table 3.3 and Figure 3.2). Further-
more, all six borders show variation comparable to data. For instance, the
posterior border of the anterior hb domain has a standard deviation of 1.3%
EL in the simulations and 1.1% EL in data, both of which are much less than
the standard deviation of the Bed threshold position, 4.6% EL. We performed
the in silico control experiment of putting hb under exclusive control of bed by
turning off gap gene cross regulation of hb in the model. In this simulation,
the posterior border of the anterior hb domain had the same variation as the
Bed threshold position.

From the 23 circuits that had consistent network topology, 15 showed
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Figure 3.2: Simulation of Bed variation using gene circuits. (a, b) Model, and (c, d)
Data. (a) hb, Kr, gt, kni patterns three minutes before gastrulation (time class T8) in
88 simulations using a single gene circuit. A unique Bcd profile from a set of 88 cycle
13 embryos was used in each simulation. The hb threshold has a standard deviation
(0) of 4.6% EL (range of 21% EL) in this family of Bed profiles (see Figure 2.5). With
the exception of four borders, variation in gap gene border positions is comparable
to data, and much less than Bed variation. The four exceptions are posterior border
of the third gt domain, anterior border of the central Kr domain, and the borders of
the posterior Ab domain. (b) Model output for the posterior border of the anterior
hb domain. This border’s position in model has ¢ = 1.3% EL (range 5.6% EL). (c)
Gap gene expression data from a 10% D-V strip in 92 late cleavage cycle 14 (time
class T8) wild type embryos. Embryos were stained for eve, and two gap genes (hb,
Kr, gt, kni). There are 18 profiles for hb, 33 for Kr, 20 for gt, and 17 for kni. (d) hb
border position data has o = 1.1% EL, and range 5.9% EL.
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positional accuracy for these six borders. Also, the ability of the gene circuit
to filter out Bed’s positional variation does not depend on the particular Bed
profile used to fit the circuit. Circuits produced with other profiles from the
middle of the parameter scatter (black circles in Figure 2.5b) also showed
accuracy when subjected to Bed variation (see Table 3.4). The gene circuit
has this filtration property irrespective of whether smoothed or unsmoothed
profiles are used to simulate Bed variation (Table 3.4).

Four borders show large variation: The posterior border of the third gt
domain, the anterior border of the central Kr domain, and both the borders
of the posterior hb domain (see Figure 3.2). All these borders are at the edges
of the modeled region, where the model is missing key regulators. In the
anterior, the head gap genes, orthodenticle, empty spiracles, and buttonhead
(Dalton et al., 1989; Finkelstein and Perrimon, 1990; Wimmer et al., 1995)
are excluded. They are known to affect the anterior pattern of trunk gap
genes (Eldon and Pirrotta, 1991), and respond to Bed in a concentration-
dependent manner (Gao and Finkelstein, 1998). As previously mentioned, in

the posterior terminal region, hkb has been left out.

3.3 Regulatory analysis of gap gene borders

We performed regulatory analysis of all the gap gene borders that show low
positional variation with respect to bed. This analysis is done by determining
which regulators of a gene a are driving the synthesis term R%g(u) to form
a border. Let ip be the indices of the nuclei over which the border of gene a
forms. Since the sigmoid g(u®) is approximately linear between 10% and 90%
expression levels (Figure 2.2), we can write g(uf, ) ~ uf, = S T%0 +
meyPed + Zgil EByP ,, T h® for the purposes of this analysis.

iB
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Bcd threshold

Gap gene boundary

position position

Boundary (% EL) (% EL) N/TC

range | std dev | range | std dev |std dev | (data)

(model) | (model) | (data)

hb posterior 20.6 4.6 5.9 1.3 1.10 | 71/T4-T7
Kr posterior | 30.7 6.0 5.1 0.7 1.04 46/T5
kni anterior 30.7 6.0 44 1.0 1.00 22/T5
kni posterior | 44.4 7.7 7.1 1.3 1.18 22/T5
gt anterior 43.1 7.5 7.3 1.2 0.97 23/T5
gt posterior 56.8 9.3 6.2 1.1 1.48 23/T5

Table 3.3: Comparison of positional variance of six gap gene borders with positional
variance of Bed. The first column lists the borders. The range and standard deviation
of the Bed threshold position in the family of 88 Beds are shown in the second and
third columns, respectively. The range and standard deviation of the positions of the
borders in the corresponding simulations are shown in the fourth and fifth columns,
respectively. The sixth column lists the standard deviation of border positions in
our dataset (Surkova et al., 2007). The last column shows the number of embryos
and their time class (TC) used to calculate the positional variation of the borders in
data. Time class T4-T7 data were used for hb. Since the other borders shift in cycle
14A (Jaeger et al., 2004b), only time class T5 data were used for them.
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k1_007 | k12 004 k13 015 k14 015 k15 004

Boundary - - - -

raw fit | raw | fit | raw | fit | raw | fit | raw
hb posterior 1.45 | 1.27 | 142 | 0.75 | 091 | 0.94 | 1.07 | 0.98 | 1.16
Kr posterior 0.78 1 0.58 | 0.74 | 0.51 | 0.58 | 0.41 | 0.48 | 0.59 | 0.61
kni anterior 0.96 | 0.62 | 0.89 | 1.00 | 0.99 | 0.38 | 0.68 | 1.13 | 0.99
kni posterior 1.05 | 1.17 | 0.86 | 0.89 | 0.86 | 0.90 | 1.03 | 1.28 | 1.15
gt anterior 1.11 1095|099 | 1.04 | 1.39 | 1.30 | 1.49 | 1.37 | 1.44
gt posterior 1.56 | 1.30 | 1.51 | 0.57 | 1.59 | 1.44 | 1.93 | 1.08 | 1.83

Table 3.4: Positional variation of gap gene borders in circuits produced with Bed
gradients other than the median. Numbers are standard deviations in % EL. Top row
shows the circuits. k1_007 is the circuit hkgn58c13k1_007 analyzed in this study.
The others are circuits fit using Bed profiles highlighted in Figure 2.5b with black
circles. First column shows the six borders that show low positional variation in gene
circuit simulations. Bed variation was simulated in each circuit with two families
of Bed profiles. The first family consisted of raw, background-removed Bcd profiles
(even-numbered columns). The second family consisted of the exponential fits of
the profiles of the first family made using Eq. (2.3) (odd-numbered columns). The
positional variation of the borders in circuit hkgn58c13k1_007 using exponential fits
is given in Table 3.3.
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Consider the posterior border of a gap gene a. Let a’s protein be at 90%
expression level at ¢ = iy, and at 10% level at ¢ = i,,. The analysis is similar
for anterior borders, but with i = ¢; at the 10% level, and i = i), at the 90%
level. The total change in u” is uf, — w . Since this change is just a sum of

regulatory contributions, we can divide it into its constituent parts,

M i1 (33

N Ne
ug, —ug, = Z T“b(vf1 — b )+ m“(vBCd - vBCd) + Z E“ﬁ(vg — vfM). (3.1)
b=1 B=1

By comparing the magnitudes of the different regulatory terms, we can deter-
mine which regulators are driving the formation of the boundary.

It is possible to simplify this analysis by eliminating many regulators that
cannot set the border. Autoregulation, for instance, cannot set the boundary
position. It can only make a boundary sharper. Since this is a posterior border,
the concentration of a reduces as one goes from anterior (i;) to posterior
(ipr)- An activator whose concentration is increasing from #; to iy, will tend
to counteract the reduction in a’s concentration. Thus an activator whose
gradient is in the opposite direction to the border cannot aid its formation.
Similarly a repressor whose concentration is decreasing from i to i,;, that is, a
repressor gradient in the same direction as the border, will not set its position.

Such simplification is also possible for anterior borders (increasing from
i1 to ipr). Activator gradients in the opposite direction to the border, and
repressor gradients in the same direction as the anterior border cannot set its
position.

Following this method we analyzed the six borders that show accuracy in
the nonautonomous gap gene model. For graphical representation, we plot the

spatial derivative of u® and the regulatory contributions to a gene, such that
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the area between curves is proportional to the regulatory contribution of an
input. The analysis is shown in Figure 3.3a for the posterior border of the hb
anterior domain, Figure 3.4a for the posterior border of the central Kr domain,
Figures 3.5a and 3.6a for the anterior and posterior kn: borders respectively,
and Figures 3.7a and 3.8a for the gt anterior and posterior borders respectively.
The results are consistent with previous work (Jaeger et al., 2004a; Perkins
et al., 2006). We briefly summarize them below; see captions of these figures
and (Jaeger et al., 2004a; Perkins et al., 2006) for details.

In general, these borders are set up by an activator (either bed or cad) and
two repressors. There are two tiers of repression. Genes with complementary
domains in the modeled region, Kr and gt for example, have strong mutual
repression (Figure 3.1b). Genes with overlapping domains in the modeled re-
gion, gt and kni for example, have weak mutual repression. The only exception
to this rule is that the anterior border of the posterior g¢ domain has only one
repressor, Kr. This is well supported by the very large anterior shift of this
border in Kr~ embryos (Kraut and Levine, 1991a).

We studied the effects of varying the Bed profile in the gap gene circuit as
follows. For all borders except gt’s, the positions at which the circuits formed
a particular boundary were divided into 1% EL bins. Circuits with boundary
positions falling in the same bin were grouped together. We averaged the
repression levels at the border for each group. Similarly, we averaged the bed
activation at the border for each group.

The pooled Bed activation and gap repression levels at gap gene borders
are plotted for the posterior border of anterior hb domain (Figure 3.3b,c), the
posterior border of the central Kr domain (Figure 3.4b,c), the anterior border

of the abdominal kni domain (Figure 3.5b,c), and the posterior border of the
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Figure 3.3: Regulatory analysis of the posterior border of the anterior hb domain.
(a) Spatial derivatives of regulatory contributions to the synthesis term of hb on its
border. Dashed vertical lines are positions where Hb is at 90% and 10% of peak level.
The solid black line is the discretized spatial derivative of the total regulatory input
u" to hb. The area above 1’ is the total change in u"® that drives the formation of
the border. The colored lines are spatial derivatives of components of u such that
the area between curves corresponds to the regulatory contribution of a particular
input. bed activation is cyan, Kr repression is magenta, kn¢ repression is blue, and
Hb autoactivation is red. Together these four account for all of the change in u"
since they cover the area above u®. Of these inputs, hb autoactivation does not set
the border, but merely sharpens it. The colored bar shows the relative contribution
of the remaining three external inputs to hb. Kr and kni provide a relatively large
contribution in setting the posterior border of the anterior b domain. (b, ¢) Balance
of activation and repression at the posterior border of the anterior hb domain in
88 simulations. Circuits that form the border within a 1% EL bin were grouped
together. Each bar shows the average Bced activation (red) and combines Kr/Kni
repression (blue) for each group. z-axis is bin position.
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Figure 3.4: Regulatory analysis of the posterior border of the central Kr domain. (a)
Spatial derivatives of regulatory contributions to the synthesis term of Kr. Dashed
vertical lines are positions where Kr is at 90% and 10% of peak level. The black
curve is the discretized spatial derivative of u*", and the colored area above it is total
change in uX" that drives Kr from a 90% expression level to a 10% level. The colored
lines are spatial derivatives of individual regulators. The colored area between the
lines is the total change in an individual regulatory input. Regulators that cannot
set the Kr boundary are lumped together (red area). The Kr posterior border is set
by Bed activation (cyan), and repression from Kni (magenta) and Gt (blue). (b, c)
Balance of activation (b) and repression (c) at the border in 88 simulations. Circuits
that form the border within a 1% EL bin were grouped together. Each bar shows the
average Bed activation (red) and Kni/Gt repression (blue) for each group. z-axis is
the bin position.
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Figure 3.5: Regulatory analysis of the anterior border of the abdominal kni do-
main. (a) Spatial derivatives of regulatory contributions to the synthesis term of
kni. Dashed vertical lines are positions where Kni is at 90% and 10% of peak level.
The black curve is the discretized spatial derivative of u*", and the colored area
below it is total change in u*™ that drives Kni from a 10% expression level to a
90% level. The colored lines are spatial derivatives of individual regulators. The
colored area between the lines is the total change in an individual regulatory input.
Regulators that cannot set the kni boundary are lumped together (red area). kni
anterior border is set by Cad activation (cyan), and repression from Kr (magenta)
and Hb (blue). (b,c) Balance of activation (b) and repression (c) at the kni anterior
border in 88 simulations. Circuits that form the kni border within a 1% EL bin
were grouped together. Each bar shows the average Bed activation (red) and Kr/Hb
repression (blue) for each group. z-axis is the bin position.

71



0.4 - 0.2
2 5 | |
o 0.2 =
5 S 01f b
2 0.0 g i |
= <
§—0.2 0.0 b
>-0.4+ c 0.0
S S
T-0.6 I Gt ?-1.0
2.0.8 | &
& '1 ‘ ‘ B Other — u a 2-2.0

62 64 66 . 68 70 72 74 65 66 67 68 69
AP Position (% EL) AP Position (% EL)

Figure 3.6: Regulatory analysis of the posterior border of the abdominal kni do-
main. (a) Spatial derivatives of regulatory contributions to the synthesis term of
kni. Dashed vertical lines are positions where Kni is at 90% and 10% of peak level.
The black curve is the discretized spatial derivative of ", and the colored area
above it is total change in u*™ that drives Kni from a 90% expression level to a
10% level. The colored lines are spatial derivatives of individual regulators. The
colored area between the lines is the total change in an individual regulatory input.
Regulators that cannot set the kni boundary are lumped together (red area). The
border is set by repression from Gt (cyan) and Hb (magenta). (b, c¢) Balance of
activation (b) and repression (c) at the border in 88 simulations. Circuits that form
the kni border within a 1% EL bin were grouped together. Each bar shows the
average Bcd activation (red) and Gt/Hb repression (blue) for each group. x-axis is
the bin position.
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Figure 3.7: Regulatory analysis of the anterior border of the posterior gt domain.
(a) Analysis of the circuit with median Bed. Spatial derivatives of regulatory contri-
butions to the synthesis term of gt. Dashed vertical lines are positions where Gt is
at 10% and 90% of peak level. The black curve is the discretized spatial derivative
of u9t, and the colored area below it is total change in 9 that drives Gt from a 10%
expression level to a 90% level. The colored lines are spatial derivatives of individual
regulators. The colored area between the lines is the total change in an individual
regulatory input. Regulators that cannot set the gt boundary are lumped together
(red area). gt anterior border is set by Cad activation (cyan) and Kr repression
(magenta). (b) Balance of activation (Bed) and repression (Kr) at the gt anterior
border in 88 simulations.
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Figure 3.8: Regulatory analysis of the posterior border of the posterior g¢ domain.
(a) Spatial derivatives of regulatory contributions to the synthesis term of gt. Dashed
vertical lines are positions where Gt is at 90% and 10% of peak level. The black
curve is the discretized spatial derivative of u9%, and the colored area above it is total
change in u9 that drives Gt from a 90% expression level to a 10% level. The colored
lines are spatial derivatives of individual regulators. The colored area between the
lines is the total change in an individual regulatory input. Regulators that cannot
set the gt boundary are lumped together (red area). gt posterior border is set by Bed
activation (cyan), and repression from Hb (magenta) and Tl (blue). (b) Balance of
activation (Bcd) and repression (Hb/TIl) at the g¢ posterior border in 88 simulations.

abdominal kni domain (Figure 3.6b,c).

We assayed the average Bed activation levels in each 1% EL pool of circuits.
The Bcd activation levels increase with A—P position for three borders, showing
that greater Bed levels cause borders to form at more posterior positions.
These borders are the posterior border of the anterior hb domain (Figure 3.3b),
the posterior border of the central Kr domain (Figure 3.4b), and the posterior
border of the abdominal kni domain (Figure 3.6b. The average repression
levels at these borders show a concomitant increase with position in each pool
as well (panels ¢ of Figures 3.3, 3.4, and 3.6), and hence modulate the effect
of Bed.

At the kni anterior border, while pools of circuits with higher Bed levels

cause the border to form further posterior, the effect is modulated by repression
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levels decreasing with A—P position. This is suggestive of the position being
set repressively by the domains immediately anterior of the abdominal kn:
domain, namely, Kr and hb.

At the two borders of gt, Bed activation levels are no longer related to
position. In general the relationship between Bed levels and position becomes
weaker at more posterior positions. The borders are set primarily by repression
by other gap genes. However, the borders still form at a balance of activation
and repression levels (panel b of Figures 3.7 and 3.8).

The correlation of Bed level with position at more anterior borders sug-
gests that Bed provides positional information at these positions in the embryo.
However, the shift induced by Bced is limited by a simultaneous change in re-
pression by other gap genes. With more posterior positions, the relationship
between Bed level and position becomes weaker, until at the borders of the
posterior gt domain, there is none at all. Hence, Bcd does not provide posi-
tional information to the posterior. The borders in this region are set primarily
by repression by other gap genes.

The epistasis of the gap genes provides genotypic canalization. This is an
instance of the epigenetic landscape being structured by the interactions of
the gap genes such that variations in the genotype, that is, Bed, do not affect
the developmental trajectory.

The canalization of the gap gene system also implies that gap gene mutants
will exhibit greater variability (see Section 1.1). Houchmandzadeh et al. (2002)
performed just such an experiment. They measured the variability of the
posterior border of the anterior hb domain in Kr~, kni~, and g¢t~. The border
was found to have exactly the same variance as in wild type. This experiment

directly contradicts the results of this chapter. If the border is set by Kr and
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kni, then removing either of them should result in increased variability. In
the next chapter, an experiment is presented that attempts to resolve this

dilemma.
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Chapter 4

Kr /kni double mutants

In the previous chapter we showed that the gap gene circuit (Section 2.1)
is able to reproduce the canalization of gap gene boundary positions. We
also found that this property of the circuit arises due to the epigenetic balance
between activating and repressing factors at gap gene boundaries (Section 3.3).
In particular, it was shown that the posterior border of the anterior hb domain
is buffered from bcd variation due to the repressive influence of Kr and kni.
This contradicts the result of Houchmandzadeh et al. (2002) that the posterior
border of the anterior hb domain has the same variation as wild type in embryos
mutant for Kr or kni.

It is possible that both Kr and kni are required to balance the variation
induced by becd. We checked this possibility by measuring the variation of
the posterior border of the anterior hb domain in embryos mutant for both
Kr and kni. In this chapter, we describe the cross carried out to make such
mutant embryos, the acquisition of expression data from these embryos, and

the methods for calculating positional variation.
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4.1 Double mutant experiment

4.1.1 The cross

We made embryos null for both Kr and Kni proteins by the cross described be-
low. For Kr, we used flies carrying an amorphic allele of Kr, Kr', that does not
have any Kr protein. For kni, the flies had a deficiency (deletion), Df(3L)ri—
79c, in the kni locus, from chromosome segment 77B7-77F5 (FlyBase, Crosby
et al., 2007).

The Kr allele and the kni deletion are recessive lethal. Therefore, flies
carrying them are kept in what are known as balanced stocks. In such flies,
the chromosome homologous to the one carrying the mutation is a balancer
chromosome. Balancer chromosomes have multiple inversions that prevent
recombination with their homolog. This way the mutation cannot be lost
through recombination. The balancer also has dominant markers, that allow
the unambiguous identification of flies that receive the recessive mutation in a
cross. In the balancers used here, the dominant marker is also recessive lethal,
which means that the flies can be maintained as a heterozygous stock.

Because the Kr', and Df(8l)ri-79c flies are kept in a balanced stock,
of their embryos are homozygous. In a double mutant therefore, % of the
embryos are homozygous for both Kr' and Df(8l)ri-79c. Also due to the
recessive lethality of these mutations, a method is required to unambiguously
differentiate the genotypes of the embryos. This was accomplished by staining
for both Kr and Kni proteins. Double mutants will not show any signal.

The cross was carried out as follows:
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Krt . Df(3L)ri=79c
SM6a TM3, Sb'

e d
l (Cross 1)

Krl . Df(8L)ri=79c¢  Kr' . TM3,5b  SM6a. Df(8L)ri-=79c  SM6a . TMS3,Sb!
+ + + + + + + +

Kr' Df(3L)ri-79c y Kr' Df(3L)ri-79c
+ + + +
Q J

’

l (Cross 2)

Kr' Df(8L)ri-79¢
Kr'’ Df(8L)ri—=79¢

embryos

Here, SM6a is the balancer for the second chromosome and carries the dom-
inant visible marker Cy'. Flies that have this balancer have curled-up wings
and can be easily identified. TM3 is the balancer for the third chromosome,
and carries the marker Sb', that is easily identifiable as short, thick bristles
on the back of the fly. The symbol + signifies a wild type chromosome.

In the first cross (Cross 1), the visible markers allowed us to pick out flies
that were heterozygous for both Kr' and Df(3L)ri-79c. The second cross
(Cross 2), was carried out in a fly cage. The embryos were collected and fixed

according to standard protocols (Kosman et al., 1998). These embryos were
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Krl . Df(3L)ri—79¢

expected to have the genotype ’1; DF(3L)ri=79c

with a frequency 1/16.

4.1.2 Staining scheme and confocal imaging

The embryos resulting from the cross described above were immunofluores-
cently stained for the proteins Kr, Kni, Gt, and Hb using the standard protocol
(Kosman et al., 1998). The primary antibodies used were guinea pig anti-Kr,
guinea pig anti-Kni, rabbit anti-Gt, and rat anti-Hb. The secondary antibod-
ies, all from goat, were anti-guinea pig, anti rabbit, and anti-rat conjugated to
Alexa Fluor 488, Alexa Fluor 555, and Alexa Fluor 647 respectively. Histone
was also stained for as described in Section A.1.1. Oregon R. embryos were
also stained in an identical manner, and in parallel with the mutants. It was
ensured that all sera and reagents were added to mutants and wild type in the
same dilution.

The confocal imaging of these embryos was done as described in Sec-
tion A.1.1 with one important difference. The microscope’s gain and offset
were standardized on wild type embryos. This allows us to compare the in-
tensity of mutant expression patterns with our wild type dataset (see Surkova
et al., 2007, and Section A.1). The standard was remade for each staining, and
only one standard was used to record data from all embryos in a staining. To
set the gain for a given protein, we identified four to five wild type embryos in
the time class that the protein has maximal expression in (T4 for Hb, T7 for
Gt). For each embryo we set the gain such that a few pixels saturated, that is,
had value 255. Next we compared the gain setting for the wild type embryos
identified for standardization. The brightest embryo requires the least gain to
saturate the pixels, and hence was chosen as the standard embryo.

The first channel contained both Kr and Kni signal. Absence of signal
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in that channel allowed us to identify embryos homozygous for both Kr' and
Df(3L)ri-79c unambiguously. Such embryos in lateral orientation were imaged
for Gt, Hb, and histone staining in a transverse section. The membrane was
also imaged in the sagittal plane on the dorsal and ventral sides for time

classification.

4.1.3 Data processing and boundary position measure-

ment

The segmentation and background removal for these embryos was done in
exactly the same manner as was done for the segmentation genes’ integrated
dataset (see Sections A.1.2 and A.1.4). For time classification, we had to rely
purely on morphological cues such as size and shape of nuclei, invagination
of membrane, (Section A.1.3), as the embryos were not stained for eve. No
registration or averaging was done (Section A.1.5) since we are interested in
the variation of boundary positions in these data.

Boundary position measurement was done in two steps. First, we fit a
quadratic spline to the one-dimensional profile derived from a 10% D-V strip
of the embryo (Myasnikova et al., 2001). Using the spline, we located the
peaks of the gt domain, or the parasegment four stripe in late hb pattern (see
Figure 4.1). Then the domain border, or the posterior border of the anterior
hb domain was calculated as the point on the border where expression was

half the peak level.
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Figure 4.2: Variation of hb and gt expression patterns in Kr/kni double mutants.
(a) Wild type Hb expression in 68 embryos. (b) Wild type Gt in 92 embryos. (c) Hb
in 28 Kr/kni double mutant embryos. (d) Gt in 28 K7 /kni double mutant embryos.
All data are from a 10% D-V strip along the A—P axis. All embryos are from time
classes T4-T7. Wild type data are from FlyEx.

4.2 Results

The expression patterns of hb and gt in K~ /kni~ embryos in time classes T4—
T7 is shown in Figure 4.2. We found that the standard deviation of the position
of the posterior border of the anterior hb domain was 2.2% EL compared to
a wild type value of 1.1% EL. The range increased to 9.3% EL from 4.9%
EL in wild type. The standard deviation of the gt third stripe’s position also
increases from 1.2% EL to 1.9% EL.

In K7r/kni double mutants, hb mRNA data show derepression of hb expres-

sion between the PS4 stripe and the posterior domain during late cycle 14A
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(Clyde et al., 2003). PS4 stripe and posterior domain expression arises from
the promoter P1 of hb, and is not thought to be under the control of Bed.

This leads to the question of whether the increased variability in hb pre-
sented here reflects Bed variability or not. These protein data are from time
classes T4-T7, which reflect the transcription of ~12 minutes earlier (Sec-
tion 2.3.1 and Table 2.2) due to transcription delays. Therefore, these protein
expression patterns are from the transcripts produced from T2-T5. The tran-
scripts that form the PS4 stripe start to appear only during mid cycle 14A
(Schroder et al., 1988), and it is visible in integrated protein data only in T7
(Surkova et al., 2007). Furthermore, while the region between the PS4 stripe
and the posterior Hb domain is completely derepressed in the data presented
in Clyde et al. (2003), the anterior and posterior domains are separate in the
data shown in Figure 4.2. Therefore, it may be concluded that the variation
of Hb seen in the double mutants reflects the variability of the Bed gradient,
rather than the derepression of hb between the PS4 stripe and the posterior
domain.

The results of this chapter show that the variability of the posterior border
of the anterior hb domain is under combined maternal and zygotic control,

and not under the exclusive control of Bed.
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Chapter 5

Qualitative Dynamics

In Chapters 3 and 4, it was shown that gene circuits show genotypic canal-
ization with respect to Bcd. The stability of developmental trajectories is a
necessary condition for canalization (Section 1.1). Quantitative gene expres-
sion data show that the variation of gap gene expression patterns reduces over
time in cleavage cycle 14A (Section 1.3). In this chapter, the reduction of
initial variation is studied using the techniques of qualitative dynamics. It is
shown that the reduction in initial variation is due to the presence of stable
developmental trajectories, satisfying a necessary condition for canalization.
Qualitative dynamics is a technique for studying nonlinear dynamical sys-
tems. It is usually not possible to express solutions of systems of nonlinear
first-order ODEs in terms of exact functions. However insight can be gained
into the behavior of solutions by studying the structure of the ODE’s phase
space (Hirsch et al., 2004; Perko, 1996). The phase space contains subsets
that are mapped to themselves, and hence as a whole are invariant under the
flow defined by the ODE. The simplest such set is a single point, an equilib-

rium solution of the ODE. More complicated invariants that have geometrical
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structure are also possible. The geometry of these invariant sets reflects the un-
derlying structure of the phase space that guides the solutions and constrains
their behavior. Thus, calculating such invariant sets, starting with equilibria,
allows one to understand the solutions’ behavior in the absence of analytical
solutions. Such an analysis is termed qualitative dynamics (Thom, 1983).
Eq. (2.1) is a set of M x N coupled ODEs. In the gap gene circuit used in
this study (Section 2.1.1), there are 58 nuclei and 4 gap genes. Such a large
number of dimensions pose a significant visualization challenge for the analysis
of the phase space. In order to make this analysis tractable, we considered the

approximation that there is no diffusion, that is, D* = 0 in Eq. (2.1).

5.1 Diffusionless approximation and positional
information

It has been noted before that in autonomous gap gene circuits, diffusion does
not play a role in patterning except for smoothing gap domains (Jaeger et al.,
2004b). The same holds true for nonautonomous circuits. Diffusion was turned
off in the circuit by setting the diffusion coefficients D® to zero, while keeping
all other parameters constant. Figure 3.1 shows the comparison of the gap
gene patterns produced by the circuits and their diffusionless approximation.
Setting D® = 0 in Eq. (2.1) uncouples the nuclei. The system of M x N
coupled ODEs reduces to a set of M independent systems of N ODEs

N N,
d’U? a ab, b a, Bed - a8, B a a,a
7 :Rg(ZT v; + mv; +;E v (t) +h" | — X (5.1)

b=1

The diffusionless circuit (Eq. 5.1) has the correct progression of gap-gene
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Position | Position
with without

Boundary . . . .
diffusion | diffusion
(% EL) | (% EL)
hb posterior 46 45-46
Kr anterior 43 45-46
Kr posterior 56 57-58
kni anterior 56 57-58
kni posterior 66 6364
gt anterior 65 63—-64

Table 5.1: Position of gap gene boundaries in the circuit with (first column) and with-
out (second column) diffusion in time class T8. The position of a domain boundary
is the nucleus in which the concentration is half its maximum value in the domain.
For the diffusionless case, the domain boundaries are steep (see Figure 3.1). Hence,
the pair of nuclei between which the concentration changes the most are shown in
the second column.

domains from anterior to posterior. The domain border positions are within
3% EL (Table 5.1) of those in the circuit with diffusion. It also captures the
key dynamical feature of domain shifts (Jaeger et al., 2004b). There are three
main differences in gap gene patterns between circuits having, or not having
diffusion. First, whereas in circuits with diffusion, adjacent gap gene domains
overlap by about 5% EL during late cycle 14A, they are almost mutually
exclusive in the diffusionless circuit. Second, patterns are spatially smoother
in the presence of diffusion. Third, in the diffusionless circuit the most anterior
nucleus (35% EL) has an incorrect state (see Section 5.4.1 for discussion) that
is smoothed out in the presence of diffusion.

In Eq. (5.1), each nucleus i has a system of N ODEs describing its state.

Since i depends on A-P position z, we can write its state as v = v*(z, 1),
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where a = 1,..., N. We can also rewrite v2 = vB(z), and v (t) = v°(z, ).

Eq. (5.1) then becomes

dv®
dt

N Ne
= R% <Z T + mBd(z) + Z Byl (x,t) + h“) — A% (5.2)

b=1 p=1

In Eq. (5.2), A-P position only appears through the terms v®“!(z) and
v?(x,t). In other words, in the absence of diffusion position is directly pa-
rameterized by the concentrations of Bed, Cad, and TII, vB(x), vC(x,1),
and v™(z,t). There is one more source of spatial asymmetry that provides
positional information in the gene circuit: the initial conditions specified by
the maternal Hb gradient (see Section 2.1.2 and Figure 5.10b). As mentioned
before (Section 2.1.3), these factors represent the three maternal systems in
the circuit and specify the anteroposterior position of a nucleus.

The inputs to the synthesis term and the initial conditions have distinct
roles in positional specification. Bed, Cad, and TIl concentrations act as pa-
rameters of the dynamical system defined by Eq. (5.2). The dynamical struc-
ture of the phase space is determined by these inputs. In contrast, the initial
conditions function by selecting a particular trajectory from the many that
are possible in the phase space.

The dynamical analysis of gap gene circuits proceeds from anterior to pos-
terior by varying three parameters—Bcd, Cad and Tll—according to nuclear
position. To further simplify the analysis, a circuit without ¢/l was considered.
The concentration of Tl was set to zero in the diffusionless gap gene circuit

(Eq. 5.2), giving the equation,
dv® al
E = R% (Z Taby,b +maUBCd<£L’) + EaHCadead(x’t) + ha) — \%%. (53)
b=1
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The patterns (Figure 5.1) of such a circuit (Eq. 5.3) are consistent with
a tll/hkb double mutant (Eldon and Pirrotta, 1991, hkb is not represented in
the model). This analysis in only valid in the region from 35% EL to 72% EL,
since tll is required for correct pattern formation in the region posterior to
72% EL. Thus, the three-parameter analysis is simplified to a two-parameter

one.

5.2 Setting up the analysis

In the previous section the full 232-dimensional gap gene circuit equations was
reduced to 58 independent 4-dimensional systems of ODEs (Eq. 5.3) parame-
terized by Bed and Cad concentrations. These equations are nonautonomous,
hence the dynamical structure of the gene circuit changes with time. We are
interested in studying the dynamical structure during late cycle 14A, since
that is when the variation in gap gene patterns is least (Figure 1.2). How-
ever, there is a two-fold decrease in Bed concentration in time classes T7 and
T8 (Surkova et al., 2007), and a stationary approximation is not valid after
time class T6. For this reason, the dynamical structure of the system in time
class T6 was studied. This is accomplished by rewriting Eq. (5.3) such that
the system is nonautonomous until time class T6, and autonomous thereafter.

Eq. (5.3) is rewritten as

p

Rag (Zé\le Tab,Ub + maUBcd($) + EaeCadUCad(x7t) + ha)

o SNt < g,
;t - (5.4)
Rag (Eé\f:l Tobyb 4 aBed (i) 4 Fo—CadyCad (5 4y ha)

—Aeif >t
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Figure 5.1: Anteroposterior region for qualitative dynamics analysis. (a) Patterns
in the diffusionless circuit (hkgn58c13kl 007) that includes TIl as a nonautonomous
input. (b) Patterns in the circuit if TIl is removed from it. The dynamics divide
into two distinct regimes, anterior (highlighted in blue), and posterior (highlighted
in red). Grayed area (panel a) anterior to dashed line shows the region (35%—-72%
EL) in which gap gene patterns are not affected by TIL
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Here, ¢ is the midpoint of time class T6 (see Section 2.1.4). Note that for
t > tg, v (2, t) = v¥%4(x, t6), that is, the concentration of Cad doesn’t change
after T6.

The trajectories of the dynamical system were calculated with the nonau-
tonomous set of equations (Eq. 5.4). To determine the dynamical structure at
t = tg, the first step is to calculate the equilibria, that is, points 0 that satisfy

the condition

do®
dt

This is equivalent to setting the autonomous part of Eq. (5.4) to zero. Let

=0, for t>t. (5.5)

9¢ad = ¢9“ad(z ts). Then the equilibria ¢ are the solutions of a system of

nonlinear coupled equations, given by

N
R%g (Z T 4 m®Bd(z) 4 B4 (1) 4- h) — X% =0. (5.6)
b=1

5.3 Qualitative dynamics

5.3.1 Equilibria and other invariant sets

Qualitative dynamics was used to analyze the phase space for each nucleus in
the region from 35% to 72% EL. For the pair of Bed and Cad concentrations
(vP(z) and ©°*(x)) that position the nucleus at A—P position x, the equi-

Ho pKr Gt §Kn) were calculated by solving Eq. (5.6), using the

libria v = (v
Newton-Raphson method (Conte and de Boor, 1980; Press et al., 1992). The
ability of the Newton-Raphson algorithm to find zeroes depends on the start-
ing point. To ensure that all equilibria were obtained, the Newton-Raphson

iteration was started from n* points on a uniform grid in the four-dimensional
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Existence

Equilibrium (% EL) Comments

Aj 35-72 | hb,gt-on attractor until 41%,
hb-on after 41%

A 35-72 | hb,Kr-on attractor

A 35-53 | Kr-on attractor

sty 35-72

sz, 35-72

ST 4 35-37 | Annihilated at 36.96% with S35,

S34 35-37 | Annihilated at 36.96% with S7,

S 4654 | Created at 46.14% with S5, and
annihilated at 53.64% with Aj ,

S5 46-72 | Created at 46.14% with S7 ,

Sis 53-72 | Created at 53.32% with S5,

S5 53-72 | Created at 53.32% with S{,

Table 5.2: Summary of all equilibria, the A—P region they exist in, and their function.
Creation and annihilation are with respect to motion from anterior to posterior.
Bifurcation values were determined by the method described in Section 5.3.2.

box (0, 250) x (0, 250) x (0, 250) x (0,250). This box contains the upper bounds
R*/\* of the solutions of Eq. (5.3). Newton-Raphson was run with a tolerance
of 107%, and only a negligible number of starting points failed to converge. n

was increased from 3 to 51. For all nuclei, no new equilibria were found after

The equilibria were classified according to the eigenvalues of the linearized
system of equations % = J(0%)y, where y = v* — 0% is a 4-dimensional vector,
and J(0) is the Jacobian of the autonomous part of Eq. (5.4) at the equilib-
rium point v*. The eigenvalues are complex numbers in general, and the real

part determines the stability of the equilibrium. An equilibrium which has
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all eigenvalues with negative real parts is called an attractor. An equilibrium
which has at least one eigenvalue with a positive real part and none that are
zero is called a non-degenerate hyperbolic equilibrium. Degenerate equilibria,
which have at least one zero eigenvalue, occur when J is singular. This sit-
uation is called a bifurcation, and number and stability of equilibria of the
dynamical system change.

A non-degenerate hyperbolic equilibrium has p < 4 eigenvalues with posi-
tive real parts and g = 4 — p eigenvalues with negative real parts. The ;" such
point is denoted by SIZg. p is called the index of the hyperbolic equilibrium.
Associated with such a point are two invariant sets, called the global stable
manifold and the global unstable manifold (Perko, 1996). The global stable
manifold is the set of all points such that trajectories starting from them have
the hyperbolic equilibrium as their limit as ¢ — 0o, and is of dimension 4 — p.
The global unstable manifold is the set of all starting points whose trajectories
have the hyperbolic equilibrium as their limit as ¢ — —oo, and is of dimension
p. The stable and unstable manifolds of saddles of index 1 (S{'73) are of par-
ticular interest. The three-dimensional stable manifold of such points forms
the boundaries for basins of attraction of point attractors (Guckenheimer and
Vladimirsky, 2004). A stable manifold of dimension 3 is very computation-
ally expensive to calculate (Krauskopf and Osinga, 2005; Dellnitz et al., 2001).
By comparison, calculating the one-dimensional unstable manifold of S{yg is
straightforward (Guckenheimer and Vladimirsky, 2004). Two starting points
were chosen, one displaced by 10~! from 3{73 in the direction of the eigenvector
of the positive eigenvalue; the other displaced by the same amount in the op-
posite direction. The union of trajectories resulting from these starting points,

U er, and U’ is an approximation to the one-dimensional unstable manifold of
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S5

Note that even though the unstable manifolds of S{'73 were calculated for
the autonomous part of Eq. (5.4), their definition is more general, and holds
for nonautonomous systems of equations too. The same holds true for stable
manifolds.

An equilibrium point that has all eigenvalues with negative real parts is
called a node or a point attractor (Hirsch et al., 2004; Perko, 1996). The
jth such point is denoted by A{;A. There exists a set of points such that any
trajectory starting within it approaches the node as t — oo (Perko, 1996). This
set is called the basin of attraction of the node, and the node is an attractor
of this set.

Since the Hb axis forms the biological set of initial conditions (no Kr,
Gt, and Kni protein is detected before cycle 13, see Section 2.1.2), we only
characterized the intersection of the Hb axis with the basin of attraction of
the nodes. In all subsequent discussion, the term “basin of attraction” is used
with the special meaning that it is the intersection of the four-dimensional
basin of attraction with the Hb axis. The trajectories were calculated using
the hybrid nonautonomous-autonomous system (Eq. 5.4). They were started
from uniformly spaced starting points on the Hb axis and integrated until
|vg(t) — A%A‘ < 107%. The set of starting points that came close to A%A formed
the preliminary characterization of its basin.

Next the open interval (B, B}) on the Hb axis was explicitly calculated,
within which all starting points reached the point attractor AgA. BJ and
Bg are starting points (on the Hb axis) of singular trajectories that reach a
hyperbolic equilibrium point of index 1. The set of all singular trajectories

that reach a hyperbolic equilibrium of index 1 defines the boundary between
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basins of attraction (Guckenheimer and Vladimirsky, 2004) of the attractors
of the system. Thus the B} and B} are the intersection of the basin boundaries

with the Hb axis.

5.3.2 Continuous analysis

The calculations described in the previous section involve varying the A-P po-
sition x in Eq. (5.6) at integer values that correspond to nuclear position. This
is because the concentration of Cad (9“*!(x)) is known only at those positions
in data. This leads to the question of whether appearances or disappearances
of equilibria as x is varied are important for the dynamics, or artifacts of small
fluctuations in the Cad data.

To answer this question, a continuation analysis was performed (O. Rad-
ulescu, unpublished data). The T6 Cad data were interpolated with a cubic
polynomial (Figure 5.2). This allows the continuous variation of x in Eq. (5.6).
Note that the Bed profile has already been parameterized (Eq. 2.2) with posi-
tion and can be varied continuously.

In this analysis, x was varied continuously, and bifurcations are detected
when the determinant of the Jacobian became zero. Then, the bifurcation’s
type was determined. All the bifurcations were of saddle-node type. The bi-
furcations determined in this manner cross-validated the discrete analysis of
the previous section—the two analyses found the same equilibria and bifurca-
tions. Since the continuation analysis and the discrete analysis used different
Cad profiles (Figure 5.2), the A-P positions at which these bifurcations occur
are slightly different. The comparison is shown in Table 5.3. For simplicity,
the bifurcation positions determined by continuation analysis are used in the

discussion of the dynamical structure.
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Figure 5.2: Interpolation of T6 Cad profile for continuation analysis. The interpolant
(black curve) is the cubic polynomial —0.0075z% + 0.226422 + 2.3611x + 9.8004.

5.4 Dynamical structure of the phase space

The region of interest from 35% EL to 72% EL can be divided into two regions
based on the biological properties of the qualitative dynamics. In the anterior
region, pattern formation is largely controlled by Bcd, while in the posterior
it is controlled by maternal Hb. In previous work (Jaeger et al., 2004b), it was
shown that dynamical shifts occur in the posterior of the embryo, but not in
the anterior. The regions identified here correspond exactly to the regions of
that study.

These regions are separated by a saddle-node bifurcation at 53.64% EL.
Although there are other bifurcations (Table 5.3) within these regions, the bi-
furcation at 53.64% EL is the only one that involves an attractor, and changes

the overall dynamical picture.
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Newton-Raphson | Continuous
Equilibria Type value analysis value
involved (between %EL) (at %EL)
S} 455, Annihilation 35-37 36.96
ST 555 Creation 43-45 46.14
A} =573 Annihilation 51-53 53.64
S{5-55, Creation 53-55 53.32

Table 5.3: Comparison of bifurcation parameter values determined by Newton-
Raphson and continuous analysis. In the continuous analysis, A—P position x was
varied from anterior to posterior. All bifurcations are saddle-node bifurcations. The
type of saddle-node bifurcation is shown in the second column. The third column
shows the nuclei positions between which the equilibria either appear or disappear.
The last column shows the A—P positions at which these bifurcations occur for con-
tinuous approximation to the cad profile.

The anterior region extends from 35% EL to 53% EL, which corresponds
roughly to the region between the peak of the third anterior Gt domain and
the peak of the Kr abdominal domain (Figure 5.1b). The posterior region
stretches from 53% EL to 72% EL, that is, from the peak of the Kr domain to
the peak of the Gt posterior domain.

The dynamical regimes in the two regions are distinguished by three fea-
tures. The first is the number of point attractors. The anterior region has
three point attractors (A 4, Aj,, Aj4) and the posterior region has only two
(Ag4s Af4)- The second distinguishing feature is the degree of sensitivity of
the dynamical structure with respect to anteroposterior position. In the ante-
rior region, as nuclear position changes, the positions of the equilibria change
significantly and the sizes of basins of attraction change. The qualitative pos-
terior dynamical structure is invariant with nuclear position, save for a single

bifurcation and movements of the hyperbolic equilibria. The final difference
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between the two regions is in the time taken by trajectories to relax to point
attractors. Whereas in the anterior region all trajectories are close to their at-
tractors by gastrulation, the posterior region has trajectories that reach their
point attractors after the biologically observable period has ended.

In this section it is shown through dynamical analysis that while the trajec-
tories of anterior nuclei are stable due to attraction by point attractors, nuclear
trajectories in posterior nuclei are stable due to attraction by a one-dimensional
manifold of a hyperbolic equilibrium. It is also shown that boundaries form by
three different mechanisms. (1) By the continuous dependence of an attractor
on a morphogen (the posterior border of the third gt stripe), (2) by the cross-
ing of a basin boundary by the initial condition (the posterior border of the
anterior hb domain), and (3) by reaching an attracting manifold at different
points (all boundaries in the posterior region). Finally, it was found that the
dynamical shifts occur in the posterior region due to the attracting manifold.

Two conventions are adopted for all subsequent discussion. In the analysis
of the phase space it was found that attractors were either at high concen-
trations or low, but not in intermediate values. Therefore, they were given
descriptive names based on which proteins were at high levels (on) and which
proteins were at low levels (off). Additionally, genes that are off in the quali-
tative description of equilibria are not mentioned explicitly. For example, if a
point attractor is at hb-on, Kr-off, gt-on, and kni-off, it is referred to as the

“hb,gt-on” attractor.

5.4.1 Anterior Regime 35% to 53% EL

The phase space of nuclei in the anterior region has three point attractors:

Aja AGy, and Af,. Ag, is in hb,gt-on state at 35% EL. Gt expression at

98



this attractor reduces smoothly with AP position (compare panels b and ¢ of
Figure 5.3), until it becomes hb-on at 43% EL, and remains in that state at
further posterior positions. By contrast, A%A and AgA are in the same state
in all the nuclei of the anterior region. Af, is in the hb,Kr-on state and A},
is in the Kr-on state.

At 35% EL, there are four hyperbolic equilibria: S}, Sts, Sf4, and S5,
(see Figure 5.3a). At 36.96% EL, S} 3 and S;, annihilate each other through
a saddle-node bifurcation (compare panels a and b of Figure 5.3), leaving only
Sis and S}, Two new saddles, S74 and S5 ,, are created by another saddle-
node bifurcation (compare panels ¢ and d of Figure 5.3) at AP position 46.14%,
and remain for the rest of the anterior region. S| ; is contained in the Hb-Kr
plane, at the hb-on edge (Figure 5.3). Kr expression at this equilibrium point
increases with AP position, that is, the saddle moves towards the hb, Kr-on
attractor A(%A. The 5%73 hyperbolic equilibrium is also contained in the Hb-
Kr plane, at the Kr-on edge. With increasingly posterior AP position, hb
expression increases; S7 5 also moves towards Af ,.

The stable manifolds of the hyperbolic equilibria of index 1 (S}, S73)
form the boundaries of the basins of attraction of the point attractors (A,
A% 4, Ad ). By calculating singular trajectories from the Hb axis that reach
such hyperbolic equilibria, it was found that the basins of Aj, and Aj, are
separated by the stable manifold of S] ;. Similarly, the basins of Aj , and A},
are separated by the stable manifold of 51273. The basins of the three attractors
in the anterior region were determined (see Table 5.4). Trajectories within a
basin reach close to their attractors by gastrulation (see Figure 5.4), and hence
show stability.

The anteroposterior progression of states in the diffusionless model is then
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Figure 5.3: Bifurcations in the anterior region. Hb-Kr-Gt projection of equilibria dia-
grams at (a) 35% EL, (b) 37% EL, (c) 43% EL, and (d) 45% EL.The axes originate from
(—=10,—10,—10), and have length 250 in relative concentration units. The xy-plane is shown
in gray. To aid perception of depth, shadows from a light source directly above the xy-plane
are rendered as dark gray traces on the xy-plane. Equilibria are represented by spheres of
radius 10. Point attractors are blue, hyperbolic equilibria of index 1 are red, and hyperbolic
equilibria of index 2 are brown. Red arrows in panel (a) point to saddles, S7 5 and S3,,
that disappear through a saddle-node bifurcation between 35% EL and 37% EL. In panels
(b) and (c), the A, attractor goes from hb,gt-on state to hb-on state. Red arrows in panel
(d) point to two saddles, S} 5 and SS, created by a saddle node bifurcation between 43%
EL and 45% EL. S} ; and A3, disappear through a saddle node bifurcation at 53% EL that
separates the anterior and posterior regimes.
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Figure 5.4: All four three-dimensional projections of the phase portrait at 37% EL.
(a) Hb-Kr-Gt projection; red arrows are basin boundaries. (b) Hb-Kr-Kni projec-
tion. (c) Hb-Gt-Kni projection. (d) Kr-Gt-Kni projection. The axes, zy-plane,
and equilibria are as in Figure 5.3. 10 trajectories are shown with starting points
equally distributed on the Hb axis between 0—100. Time is represented as a color
gradient along the trajectories, with start of cycle 13 as green, and gastrulation as
red; trajectories are blue after gastrulation. The temporary reversals in trajectories
are mitoses, during which trajectories move towards the origin.
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determined by which basin the maternal hb gradient passes through. As an
example, we illustrate the case of the nucleus at AP position 37%. The
basin of attraction (range of v"'(t = 0)) of Aj, is (0.00,2.05). Aj, has
a basin of (2.05,52.12), and Aj,’s basin is (52.12,100.00). In our circuit
hkgn58c13kl 007, the value of maternal hb in this nucleus is 53.63. This
places the nucleus in the basin of attraction of Afj,, which corresponds to
hb,gt-on. The last column of Table 5.4 shows the selection of states for all
nuclei in the anterior region of circuit hkgn58c13k1l 007.

The nuclei remain in the basin of Aj, until 43% EL. As A-P position is
varied from anterior to posterior, A(l)’4 moves from a hb,gt-on state to a hb-on
state. Therefore the posterior border of the third anterior g¢ domain forms
by the movement of this attractor. This is the first mechanism of border
formation revealed by qualitative dynamics.

At 45% EL the nucleus passes from the basin of Aj, into the basin of
A} (Kr-on) at 45% EL. This exemplifies the second mechanism of border
formation in the circuit. The posterior border of the anterior hb domain and
the Kr anterior border form by the nucleus crossing a basin boundary in a
multistable dynamical system.

Except for the anteriormost nucleus (35% EL), the selection of nuclear
states by the combination of the dynamical structure and initial conditions
(Table 5.4) correctly accounts for all the nuclei in the anterior region. For the
anomalous nucleus, the value of maternal Hb puts it in the A7, (hb,Kr-on)
basin instead of the A(1)74 basin, suggesting that the dynamical structure is not
correct in this nucleus. This is a minor problem, since the nucleus behaves

correctly in the circuit with diffusion (see Section 5.1 and Figure 3.1).
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Mat.
Nuc. Basin Basin Basin Hb Basin
(%EL) A A Aj conc. | selected

A3 4

35 NA (0,58.20) | (58.20,100) | 57.43 | (hb,Kr-on)
Aj 4

37 (0,2.05) | (2.05,52.12) | (52.12,100) | 53.63 | (hb,gt-on)
Ap 4

39 (0,10.61) | (10.61,47.87) | (47.87,100) | 50.05 | (hb,gt-on)
Ap 4

41 (0,19.01) | (19.01,42.98) | (42.98,100) | 47.73 | (hb,gt-on)
Ap 4

43 (0,26.29) | (26.29,41.04) | (41.04,100) | 42.27 | (hb-on)
Ap 4

45 (0,30.79) | (30.79,37.46) | (37.46,100) | 39.12 | (hb-on)
AS 4

47 0,34.18) | (34.18,37.76) | (37.76,100) | 32.69 | (Kr-on)
Ab 4

49 (0,35.24) | (35.24,36.91) | (36.91,100) | 29.40 | (Kr-on)
Ab 4

51 | (0.94,38.31) | (38.31,39.26) | (39.26,100) | 23.39 | (Kr-on)

Table 5.4: Basins of point attractors in the anterior region, and their selection
by maternal Hb. The last column shows the attractor in whose basin the initial
condition lies. The diffusionless circuit remains in the basin of the A(1]7 4, attractor in
the region where the g¢ border forms. The border forms by the movement of A(I)A
from hb,gt-on state to hb-on state. The hb and Kr borders form by switching basins
instead (from Ag, to A3 ,).
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Figure 5.5: Bifurcations in the posterior region. Hb-Kr-Kni projection of phase
portraits at (a) 53% EL and (b) 55% EL. The axes, xy-plane, and equilibria are
as in Figure 5.3. See Table 5.3 for bifurcation parameter values determined by
continuation. Black arrows point to saddles, 51773 and 5372, that are created via a
saddle-node bifurcation between 53% EL and 55% EL.

5.4.2 Posterior Region 53% to 72% EL

A saddle-node bifurcation at 53.64% EL sets up the system for posterior regime
dynamics. Aj, and S} ; annihilate each other (compare Figures 5.3d and 5.5a),
leaving only two attractors, Aj, (hb-on) and A, (hb,Kr-on). Also, saddles
Sis, S73, and S5, carry over from the anterior region. Two new saddles S7
and S3, are created through a saddle-node bifurcation at 53.32% EL (see
Figure 5.5). Following this bifurcation, the qualitative dynamical structure
remains invariant for the rest of the posterior region.

Since the dynamical structure is parameterized by Bed and Cad concen-
tration, its invariance merely reflects the relative constancy of Bed and Cad
in the region. The Bcd profile becomes shallow at these positions due to its

exponential decay with AP position. Unlike the anterior region, where bcd
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drives boundary formation by changing the dynamical structure, the posterior
region’s pattern formation process is independent of becd. Therefore, in the
posterior region only one maternal gradient, maternal hb, drives pattern for-
mation. In fact, changing only the maternal Hb concentration in a posterior
region nucleus (Bcd concentration is fixed), produces correct gap gene patterns

in the posterior region (see Figure 5.6).
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Figure 5.6: Maternal Hb is the morphogen in the posterior region. Gap gene con-
centrations in a single nucleus as a function of initial Hb concentration. The initial
Hb concentration was varied uniformly in the nucleus at 63% EL (Kni peak at gas-
trulation), keeping the Bed and Cad inputs constant. The nucleus produces all gap
gene states in the posterior region from Kr peak (53% EL) to gt peak (72% EL)
as initial Hb concentration is decreased from 40 to 0. The shapes of the “domains”
are distorted since maternal Hb has faster than linear decay with position; as a
consequence anterior “domains” are exaggerated. The x-axis on the top shows AP
positions determined from the values of maternal Hb, showing that domains are in
corrected proportions spatially. Posterior region nuclei form domains by responding
to maternal Hb without any instruction for Bed.
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This prediction finds confirmation in an experiment which demonstrated
that maternal hb is a morphogen (Struhl et al., 1992). This was accomplished
by showing that gap gene patterns in embryos from bed ~tsl~ females respond
to maternal hb in a dosage-dependent manner. These embryos simulate the
posterior dynamical region since, (1) Bed protein is absent and hence con-
stant (simulating low, slowly changing Bed levels in the posterior region). (2)
The terminal system is absent (¢/l and hkb are not expressed in the posterior
region). With wild type maternal hb, these embryos produce the posterior
region’s sequence of gap gene patterns, from the Kr peak in the anterior to the
Gt peak in the posterior. Since there is no other maternal gradient present,
maternal hb is driving pattern formation in these embryos (and the posterior
dynamical region).

In order to characterize the mechanism by which maternal Hb patterns the
posterior, we consider the dynamical structure of these nuclei in greater detail.
Except for a very small interval (basin of A7), all initial conditions form the
basin of Aj,. Af,’s basin divides Aj,’s basin into two intervals. The first
interval is between zero and the stable manifold of 512’3, and the second interval
is from the stable manifold of Sf; to 100.0. The behavior of trajectories
originating in the two intervals is very different. While trajectories originating
in the second interval (direct route) reach close to A(IL4 by gastrulation (see
Figure 5.7), the trajectories in the first interval (indirect route) reach A,
only asymptotically. In fact, maternal Hb concentrations in the circuit place
all posterior region nuclei in the first interval of A(%A’s basin. For example,
at 53% EL, Aj ,’s basin is (39.09,39.62), and Aj,’s basin is divided into the
intervals (0.0, 39.09) and (39.62, 100.0). The first interval gives rise to indirect

trajectories, while the second one gives rise to direct ones.
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Figure 5.7: All four three-dimensional projections of the phase portrait at 57% EL.
Axes, xy-plane, and equilibria are as in Figure 5.3. All hyperbolic equilibria are
not shown (see Figure 5.5). The unstable manifold of saddle 5%73, U? is shown as a
translucent magenta tube of radius 5. (a) Hb-Kr-Gt projection. Red arrow shows the
separation of the indirect route trajectories from direct route ones. (b) Hb-Kr-Kni
projection. Red arrow shows the separation of the indirect route trajectories from
direct route ones. (c) Hb-Gt-Kni projection. (d) Kr-Gt-Kni projection. U? traverses
the anteroposterior progression of gap gene states in the posterior region—Kr-on to
kni-on to gt-on.
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Since nuclear states in the posterior region are determined by the indi-
rect route trajectories, all of which lie in the same basin (of Aj,), patterning
by the crossing of basin boundaries is ruled out. Since Aj, does not move
with AP position, the boundary doesn’t form by movement of an attractor
either. Instead, the indirect route trajectories converge to an invariant tra-
jectory (Figure 5.7), U2, that traverses all the posterior region states (Kr-on,
kni-on, gt-on, and intermediate values), before reaching Atl)A' U2 is one of the
two trajectories that constitute the one-dimensional unstable manifold, U?, of
the hyperbolic equilibrium S} ;. The other trajectory, U?, goes from S 4 to
A, (Figure 5.7).

U? is an attracting manifold, since all the indirect route trajectories con-
verge to it. Moreover, the trajectories reach close to U} by gastrulation (see
Figure 5.7). In other words, in the posterior region, this attracting invari-
ant manifold plays the same role as the point attractors do in the anterior
region, and is the reason for the stability of indirect route trajectories. The
state achieved by such a trajectory has a continuous dependance on initial
Hb value. High values of maternal Hb (20-40) in a nucleus lead to a Kr-on
state, intermediate levels (12-20) lead to a kni-on state and lower values (4-8)
lead to a gt-on state. Since maternal Hb monotonically reduces with AP posi-
tion, this leads to the gap gene expression patterns in the posterior region (see
Figure 5.6). This is the third mechanism of pattern formation in the model:

attraction by an invariant manifold with dependence on initial conditions.

Shifts in the Posterior Region

The hkgn58c13kl 007 circuit and its diffusionless counterpart show the dy-

namic shifts of posterior gap gene domains reported in Jaeger et al. (2004b).
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The shifts only happen in the posterior region (53% EL-72% EL). The dynam-
ical analysis reveals that the shifts are a consequence of two features of the
posterior region’s dynamical structure. First, the U? trajectory goes through
the anteroposterior sequence of gap domains: Kr-on, Kni-on, and Gt-on (see
Figure 5.5d). Second, U} is an attracting manifold. Taken together, these
points imply that as a nucleus is pulled into U?, it will go through anterior
states before reaching its gastrulation state. We illustrate this mechanism
with the nucleus through which the Kr posterior border and the Kni anterior
border pass as they shift anteriorly (Figure 5.8(b,d)). Figure 5.8a shows the
trajectory of the nucleus at 59% EL. The trajectory starts on the Hb axis,
and is attracted into U?, reaching close to the kni-on state at gastrulation.
However in approaching U?, it first goes through intermediate states. First
Kr increases, and then Kni increases with a concomitant reduction in Kr (see
Figure 5.8c). A similar mechanism applies to nuclei at the Kni posterior and
Gt anterior boundaries.

Finally, we observe that the U? trajectory is a result of asymmetric re-
pression of anterior domain genes by posterior domain proteins. A nucleus in
Kr-on state goes to Kni-on state because Kni’s repression of Kr is stronger
than that of kni by Kr. Similarly Kni-on state goes to Gt-on due to asym-
metric repression of kni by Gt, and Gt-on state leads to Hb-on because of
asymmetric repression of gt by Hb. This analysis is consistent with the results

in Jaeger et al. (2004b).

5.5 Stability of trajectories

In Section 5.4 it was shown that the trajectories are stable due to attraction

by either point attractors or a one-dimensional manifold. In other words, they
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Figure 5.8: Shifts due to attraction by the manifold U_%. Dynamics of the nucleus at
59% EL, through which the Kr posterior and Kni anterior boundary pass. (b,d) The
patterns of Kr, Kni in the diffusionless model show anterior shifts. The nucleus at
59% EL is indicated with a dashed vertical line. (a) A three dimensional projection
of the phase portrait of the nucleus in the Hb, Kr, Kni hyperplane. The invariant
manifold U? is shown as a magenta tube. The trajectory in the nucleus is plotted in
a continuous color gradient from green (¢ = 0 min) to red (¢ = 71 min, gastrulation).
Times after gastrulation are depicted as blue. The nucleus passes through inter-
mediate states (indicated with arrow) with high Kr concentrations before reaching
the peak of kni domain. This registers as an anterior shift in the posterior K7 and
anterior kni borders. (¢) A two dimensional projection of the trajectory in the Kr,
Kni plane. The trajectory (red) starts at the origin. It attains a high Kr value at
t = 45 mins (arrow) before approaching the Kni peak. The temporary reversal in
the trajectory is a mitosis, during which the trajectory moves towards the origin.
Time after gastrulation is shown in blue.
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reduce variation in initial conditions. It is however important to establish
the extent to which this variation is reduced, and whether it is biologically
significant.

The biological initial conditions for a nucleus are v*7(0) = 0, v9¢(0) = 0,
v*(0) = 0, and v"*(0) is specified by the maternal Hb concentration in the
nucleus (Section 2.1.2, Figure 2.3). Early gap gene mRNA data (Jaeger et al.,
2007) and protein data (Surkova et al., 2007) show large variation in expression
levels. This early variability can be modeled through the initial conditions of
the model.

From gap gene protein expression data during cleavage cycle 13 an upper
bound for expression levels of a protein was determined. Based on these data a
“box” of initial conditions was constructed in the four-dimensional phase space.
The volume of the box forms an upper bound for initial variation observed in
gap gene expression levels. Then, this box was evolved forward in time using
the dynamical system, and its volume was tracked in time. The amount of
volume reduction by gastrulation is a measure of how well this system reduces

initial variation.

5.5.1 Calculating volumes in time

Given the diffusionless gap gene dynamical system in nucleus ¢,

dv® a - ab_ b a, Bed o af3, B a a,a
pn :Rg<;TU+mvi —i—;E vy (t) + h* | — A%,

we want to calculate the volume at time, V;, of a box of initial conditions B,.
The variables have the same meaning as in Eq. (5.1), except the index i has

been dropped from v¢. Let us represent the right hand side as f(v;,t), where
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vy = (v}, 02,03, v}) is the four-dimensional state vector at time .

The ODE is discretized into a map,

Vitdt = V(Uta t), (5-7)

where (v, t) = vy + f(vg, t)dt. Regard the map at time ¢ + (n — 1)dt,

Vt+ndt = ’V(Ut+(n—1)dt> t+ (” - 1>dt)7

as a curvilinear coordinate transformation of the phase space at ¢t + (n — 1)dt

to t + ndt, then the infinitesimal volume at time ¢ + ndft,
AVipnar = dvtl-l-ndtdth—i-ndth?-i-ndtdvf-i-ndt
can be written as,
AVignat = J (Ve (n—vyaes t + (n — 1)dt)dVig (n—1yaz- (5.8)

Here, dViy(n—1)a: is the infinitesimal volume at ¢ + (n —1)dt, and J(vy,t) is the
Jacobian of the map at time ¢. Applying Eq. (5.8) repeatedly, the infinitesimal
volume at ¢, dV;, can be written in terms of the initial infinitesimal volume,

dV, as

dVy = J(V—n-1yar, t — (n — 1)dt) J (ve—(n—2)at, t — (n — 2)dt) ... J(vo, 0)dVj.

If the initial box B, evolves to B; at time ¢, B;’s volume is

o

- ////[J(Ut—(n—l)dtut — (n—1)dt) ... J(vg,0)]dvidviduvidug.
Bo

113



The integral on the right hand side was evaluated using the multidimen-
sional trapezoidal rule (Press et al., 1992), successively refining the grid on the
initial box By until the integral converged. The time-step for the discretized
map (v, t) was chosen small enough such that the Euler-method solution of

Eq. (5.1) converged.

5.5.2 Reduction of initial variation

First, the upper bound for the variation in initial conditions needs to be de-
termined. For anterior nuclei the basin boundary for the attractor gives the
bounds for Hb variation. For instance at 37% EL, the trajectories are attracted
by Aj4 (Table 5.4), whose basin is (52.12,100.0). For the other gap genes
whose proteins are only expressed in cycle 13, the upper bound is determined
from FlyEx data. At 37% EL, Kni and Kr expression was zero in all embryos,
while the maximum Gt expression observed was 60 (embryo as14 from FlyEx).
Hence, for the nucleus at 37% EL the initial box (52, 100)x (0, 1)x (0, 60)x (0, 1)
was evolved forward in time. Its volume reduces by a factor of ~10® by gas-
trulation (Figure 5.9). The average shrinkage in a dimension is given by V1/4
which reduces by a factor of ~0.05. For the posterior region nucleus at 57%
EL, the initial box is (0,20) x (0,80) x (0,80) x (0,80). At this A-P position
maximum expression for Kr is 80 (embryo iz4), Kni is 75 (embryo dm16), Gt
is 50 (embryo ral0). Maternal Hb, that is Hb data from cleavage cycle 12,
has a range 0-20 in the posterior region in all embryos. Volume reduces by
a factor of ~107% by gastrulation, and each dimension shrinks by an average

factor of ~0.1.
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Figure 5.9: Reduction of initial variation. (a) Reduction in the initial volume of a
box (52,100) x (0,1) x (0,60) x (0,1) in the anterior region nucleus at 37% EL. (b)
Reduction in the initial volume of a box (0, 20) x (0, 80) x (0, 80) x (0, 80) in posterior
region nucleus at 57% EL. Dashed line is volume in log-scale, solid line is V1/4.

5.5.3 Stability of trajectories in the posterior region

In the anterior region, reduction in initial variation happens due to the con-
vergence of trajectories to a point attractor. The size of an attractor’s basin
is a natural tolerance range for variation in initial conditions. In the posterior
region, since the trajectories are attracted by the one-dimensional manifold
U2, there is a residual dependence on initial Hb concentration. This sensitiv-
ity to maternal Hb concentration is required in order to pattern the posterior
(Figure 5.6). Despite this sensitivity, there is a further reduction of variation
in initial conditions. The indirect trajectory interval of Aj,’s basin can be di-
vided into subintervals, such that trajectories from within a subinterval reach
the same state at gastrulation.

Unlike the anterior region, where basin boundaries provided a natural tol-
erance range, the posterior phase portraits don’t have any feature that can be
exploited to calculate these subintervals or tolerances. They were calculated
empirically from gap gene variation data in FlyEx. The variation in expres-

sion levels of Hb, Kr, Gt, and Kni in time class T8 was determined at three
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positions on the AP axis (corresponding to the peaks of Kr, Kni, and Gt).
Next, the model was solved with different values of initial Hb concentration
as starting points. The tolerance was calculated as the range of Hb initial
concentrations that produced model output with the same variation in expres-
sion levels as data. The results are shown in Figure 5.10. It was found that
there is significant reduction of maternal Hb variation in posterior nuclei. For
instance, at Kr peak, where Kr expression level varies by 30% in time class
T8, the tolerance for initial variation is 150%.

In this section it has been established that the gap gene system reduces
initial variation. Therefore its developmental trajectories are stable. In the
anterior region, homeostasis (Section 1.1.4), that is, attraction by point at-
tractors is responsible for this stability. However, in the posterior region, a
one-dimensional manifold attracts the trajectories. This implies that some-
thing more general than homeostasis is operative in the posterior region of
the embryo. Furthermore, this section established that the indirect route tra-
jectories produce a given gap gene state on U? within a tolerance range of
maternal Hb concentration. This suggests that these trajectories are show-
ing homeorhesis, as small perturbations within this tolerance are removed as
they approach U?. In other words, the trajectories with starting points in the

tolerance range are chreods.
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Figure 5.10: Tolerance to variation in initial data. Tolerance to initial Hb variation
(b) was determined from variation in time class T8 data (a). (a) The variation in
expression levels at the Kr peak is 30% (yellow bar), at the Kni peak is 35% (red
bar), and at the Gt peak is 50% (black bar). (b) The tolerance range for maternal hb
is shown as error bars for one anterior region position (45% EL) and three posterior
region positions (K7, kni, and gt peaks). Maternal Hb is shown in red. The tolerance
range at 45% EL is the extent of the attractor’s (Aé’ 4) basin. For the posterior region
positions, the range was determined as the set of initial Hb starting points in the
gene circuit that produce the variation levels determined in panel (a). The tolerance
to initial variation is 150% at Kr peak, 85% at kni peak and 100% at gt peak.
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Chapter 6

Conclusions

There are two major results from the work reported in this dissertation. First,
it has been established that the reduction in gap gene borders’ variation with
respect to Bed is due to gap gene cross regulation, which has resolved a con-
troversy over the variance of the posterior border of the anterior hb domain.
Second, it has been shown that gap gene expression patterns in the posterior
are stable with respect to initial variation due to the existence of a chreod in
the dynamical system.

The first section of this chapter discusses the reduction of the variance of
the posterior border of the anterior hb domain with respect to Bed. Recent
experimental and theoretical work is reviewed and evaluated in light of the
results presented in Chapters 3 and 4. In the second section, the results
from the qualitative dynamics analysis (Chapter 5) are elaborated upon. The
ideas of canalization, structural stability, and homeorhesis are evaluated in the
context of the dynamical structure of the gap gene system. The third section
contains a discussion of the limitations of this study, while the last section

proposes future experimental and theoretical studies suggested by this work.
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For the rest of this chapter, we refer to the posterior border of the anterior

hb domain as the hb border.

6.1 Reduction of the variance of the hb border

The reduction of the variance of the hb border with respect to Bced, first
discovered by Houchmandzadeh et al. (2002), and confirmed by Surkova et al.
(2007), has received considerable attention. On the one hand, a great number
of theoretical models have been built in order to explain the effect, and on the
other the result’s validity has been challenged.

This section begins with a review of some pertinent points from Houch-
mandzadeh et al. (2002). Then, recent work (Gregor et al., 2007a; Crauk and
Dostatni, 2005) suggesting that the variance of the kb border is accounted for
by the variance of the Bcd gradient is critically examined. I argue that though
the variance of Bed gradient is lower than previously thought, it is still twice
that of the hb border. Finally, other theoretical models to explain this effect

are discussed.

6.1.1 Antibody data, dosage, and mutants

By immunofluorescently staining fixed embryos for Bcd and Hb proteins simul-
taneously, Houchmandzadeh et al. (2002) showed that the range of positions
where the Bed gradient crossed a particular threshold is 30% EL, equivalent
to oBea = 7% EL (cf. Figure 2.5, Surkova et al., 2007). The position of the hb
border had a range of 4% EL (0w, = 1% EL, cf. Table 3.3).

Additional data are presented in Houchmandzadeh et al. (2002) which sup-

ports the conclusion that the hb border position is not determined exclusively
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by Bed concentration. In embryos from mothers with one dose, or more than
two doses of bed, the hb border position is expected to shift anteriorly or poste-
riorly respectively. This is because the threshold occurs at a different position
in these embryos. The hb border does shift in the predicted direction, but by
an amount smaller than the spatial shift of a fixed Bed threshold. For exam-
ple, in embryos derived from mothers with one copy of the bcd gene, the hb
border is expected to shift by 19% EL to the anterior, however the average
shift observed is about half that, 8% EL to the anterior. oy, is still 1% EL
(Houchmandzadeh et al., 2002, 2005).

Further, the authors showed that while the position of hb border scales
with egg size, the position of the Bed threshold does not. Since Bed provides
a measure of distance from the anterior pole, it was postulated that a simi-
lar gradient from the posterior that regulates hb might provide a measure of
distance from the posterior pole, and hence explain the scaling property.

Houchmandzadeh et al. (2002) performed a systematic search for genes that
affect the variability of the hb border. Several maternal and zygotic mutants
were tested. As mentioned at the end of Chapter 3, the variability of the
hb border in gap gene mutants is o, = 1.0-1.1% EL, essentially the same
as wild type. The largest zygotic effect was observed in embryos missing the
chromosome arm 3L, in which oy, = 2% EL.

Among maternal mutants, obvious candidates for posterior gradients like
oskar and nanos were tested. It was found that the posterior group of maternal
genes (see Section 1.2) increased the variability of the hb border by a factor of
1.6.

The biggest effect was seen in two maternal genes, swallow (Frohnhofer and

Niisslein-Volhard, 1987), and staufen (Driever and Niisslein-Volhard, 1988a;
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Johnston et al., 1991), that are involved in the localization of bed mRNA to
the anterior pole and affect the Bed gradient (Driever and Niisslein-Volhard,
1988a).

There was one weakness in the data analysis of Houchmandzadeh et al.
(2002). In calculating the variance of the Bed threshold, the Bed profiles were
normalized so that their maximum fluorescence level was set to one, and the
minimum level was set to zero. In other words, in a profile Aexp(—Az), A=
1 (Eq. 2.2), leaving A as the only source of variance in the profile. As shown
in Figure 2.5a, A and )\ are correlated, which means that such a normalization
would exaggerate the variance of the Bed threshold position. In the unnormal-
ized Bed data (Surkova et al., 2007) used in this dissertation op.q = 4.6% EL,
lower than the value of 7% EL obtained by Houchmandzadeh et al. (2002),

but still much higher than oyy,.

6.1.2 In vivo Bcd data
Reevaluating Bcd and Hb variability

The reason for normalization of the Bed data in Houchmandzadeh et al. (2002)
is that such data are collected over the course of several experiments. The mi-
croscope gain is standardized separately for each experiment. This implies that
the fluorescence levels in such data have higher variability than the intrinsic
variability of the protein concentration in the embryo. Note that the measure-
ment of the Hb protein is much less affected by this experimental error, since
its expression domains have a characteristic temporal profile (Surkova et al.,
2007) that allows reliable standardization across experiments. The position of

the hb border is also much less affected by the concentration scale, since the
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border is steep (see Figure 3.2¢c, and Surkova et al., 2007).

Gregor et al. (2007a) addressed the lack of an absolute concentration scale
for Bed by measuring the Bed gradient in vivo. This was done by constructing
a fully functional fusion of the Bed protein with enhanced green fluorescent
protein (eGFP) (Gregor et al., 2007b). The Bed-GFP construct rescues the
phenotype of embryos that lack endogenous Bed protein. The progeny develop
to adulthood, and the position of the cephalic furrow is unchanged from wild
type. The Bed-GFP protein therefore has the same function as the endogenous
Bcd.

Gregor et al. (2007a) calculated the variability of the Bed gradient in three
steps. In the first step, in vivo Bed profiles were measured in several embryos
placed on the same slide in the course of a single experiment. This solved
the problem of reliable microscope standardization across experiments. In the
second step, the A—P axis was divided into 2% EL bins. The relative error in
the Bed concentration, that is, the ratio of the standard deviation to mean was
calculated for each bin. In the third step, this relative error in concentration
was translated into the relative error in position by multiplying it with the

inverse of the slope of the average of all the Bcd profiles, that is

de|™!

= (6.1)

Oy = O¢

Here, 0. is the standard deviation of the concentration in a bin, ¢ is the average
concentration profile, and o, is the positional error. With these three steps
0Bed ~ 2% EL for the in vivo profiles.

An additional step of subtracting estimated experimental errors was ap-
plied that further reduced the estimate of op.q to 1-2% EL. The experimental

errors were estimated from live embryos. For example, the imaging noise was
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determined by repeatedly imaging Bed-GFP in live embryos and calculating
the variance of the observed fluorescence levels. This step of subtracting errors
is problematic, since the error has not been determined independently of the
observed variable.

A further problem with interpreting the op.q determined by these Bed-
GFP measurements is that the hb border accuracy was not estimated in these
embryos. The variance of Bed profiles does not convey any meaning by itself,
but can only be looked at in comparison to the variance of downstream gene
borders.

Since a Hb-GFP fusion is not available, one has to resort to fixed tissue
data to make such a comparison. Gregor et al. (2007a) proposed a new nor-
malization method to resolve the problems associated with the one employed
in Houchmandzadeh et al. (2002). This method does not try to minimize the
difference between profiles at any particular A—P position. Instead, it scales
individual profiles such that the sum of squared difference between normalized
profiles and the mean profile over all A—P positions is minimized. Then the
relative error in concentration is translated into relative error in position by
Eq. (6.1). The authors reanalyzed the data of Houchmandzadeh et al. (2002)
using this new normalization method, and found that op.q ~ 3% EL. This is
still three times the oy, = 1% EL observed by Houchmandzadeh et al. (2002).

Next, Gregor et al. (2007a) acquired a new fixed-tissue dataset for Bed and
Hb in which a large number of embryos were fixed, stained and scanned to-
gether to minimize experimental error. By applying the data analysis method-
ology described above, it was found that the positional error estimate for Bed
reduced from opeq ~ 3% EL to opeq ~ 2% EL. However, in the new data, oy,

increased to ~2% EL from the 1% EL estimated by Houchmandzadeh et al.
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(2002). This led the authors to claim that Bed variability accounted for Hb
variability within the limits of experimental error.

This is a rather contradictory result, as an experiment with greater control
over experimental error has yielded a larger estimate for oy, rather than a
smaller one. Careful consideration of Eq. (6.1) explains this puzzling result.
Eq. (6.1) relies on the average concentration profile ¢(x) to convert concentra-
tion error into positional error. The slope of the average profile ¢(z) is always
less than the slopes of individual profiles. This means that its inverse will be
larger, leading to a larger estimate of the positional error o,. This is illustrated
by a simple example in Figure 6.1. Two linear profiles ¢;(z) and cy(z), each
with slope 1/, and maximum 1, are separated by a distance S, on the z-axis.

Therefore, the positional error between these two profiles is their spread, .S,,.

c1(z)+ca(x) 1 :
=== has slope At the point marked

Their average profile ¢(x) = S5

X, the concentration error is 1, therefore, using Eq. (6.1), one obtains a spread
of S; + 5, > S5,. The overestimation of o, will be greater if the profiles are
sharper, which explains why the estimate for a shallow profile like Bed re-
duces, while it increases for a sharp one like Hb. Evidently, Figure 6.1 is too
simple an example, and the magnitude of the increase depends on the details
of the profiles and their spread. By applying Eq. (6.1) to the Hb profiles in
Figure 3.2a, we obtained o, = 1.72% EL at 46% EL, and o, = 2.37% EL at
47% EL. The positional variance for the hb border using the half-maximum
method (Section 3.2) is 1.3% EL.

Since the gap genes in general, and hb specifically, are recessive lethal,
the variability of their concentrations is less important than the variability of
their boundary positions. Therefore, it is better to compare the positional

variance of the Bcd-GFP data directly with hb border position variance in
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Figure 6.1: Overestimation of positional variance using average concentration pro-
files. Two concentration profiles c1, co are parallel to each other and have slope
1/S;. They are separated by S,. The average profile ¢ has slope &%Sp At point
X, the concentration error is 1, giving an exaggerated estimate of positional error
S; 4 Sp > Sp.
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fixed-tissue Hb data. Since the numerical Bed-GFP data are not available, a
rough comparison is shown between Figure 5A in Gregor et al. (2007a) and
Hb data from FlyEx in Figure 6.2. The spread of Bed concentrations is ~10%
EL, while that of the hb border is ~5% EL, giving a discrepancy factor of two.
Therefore we find that Bed variability does not fully account for Hb variability.
A direct comparison between Bed-GFP data and Hb data (such as Figure 6.2)

is not made in Gregor et al. (2007a).

Bcd variability due to low molecular numbers

Gregor et al. (2007a) were also able to calculate the absolute protein concen-
tration in a nucleus by calibrating their measurements against a known eGFP
concentration. They estimated that in the middle of the embryo, where the
Hb border forms, the number of Bed molecules is ~4.8/um3. The effects of
molecular noise become evident at such low concentrations.

A formula first used in the theory of bacterial chemotaxis (Berg and Purcell,
1977) allows one to estimate the extent of the variability due to low molecular
numbers. The calculation used to derive the formula takes into account the
effect of the random arrival of the molecules at the receptors of a cell immersed
in a solution of a chemical species. The cell can sense the local concentration
¢ by the capture and release of the molecules of the chemical by its receptors.
Assuming that the cell is a perfect counter of molecules, the error it makes in
sensing c is given by

O, 1

¢ 7 (TeaD)' 2 (6.2)

Here, T is the amount of time spent counting, a is the receptor size, and D

is the diffusion constant of the chemical species. In other words Eq. (6.2) is

126



p=
~
o

450f ", a

nuc

Raw nuclear fluorescence intensity |

\)
(o)
o

200

150

100

a
(@)

Relative fluorescence intensity

(@)

A-P position (% EL)

Figure 6.2: Comparison of in vivo Bed variability with Hb variability. (a) Panel A
from Figure 5 of Gregor et al. (2007a) showing 15 Bed-GFP concentration profiles.
(b) 18 Hb profiles in time class T8 from FlyEx (Surkova et al., 2007). The dotted
vertical line is at the average position of hb border. The dotted horizontal line passes
through the point where the dotted vertical line crosses the middle of the Bed scatter.
The solid black lines delineate the horizontal spread of Bed. The red tick marks have
been placed uniformly using the Linux graphics program Xfig.
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a lower bound for the molecular noise at the receptor due to random arrival
of molecules, without making any assumptions about the internal mechanism
with which the counting is done.

Gregor et al. (2007a) applied this calculation to estimate the effects of
low molecular numbers at the hb promoter. Using the value of the diffusion
constant for Bed (~1um?/s) determined in Gregor et al. (2007b), the size of
a 10bp long binding site (~3nm), and the absolute concentration of Bed in
the nuclei at hb border, the authors estimated that the uncertainty in Bed
concentration was too high for the accurate specification of the hb border.
In order to reconcile the large uncertainty in Bcd concentration with their
claim that Bed variability accounts for Hb variability, it was hypothesized
that spatial averaging by some other chemical species could provide additional
noise reduction. This averaging would work in a manner such that the Hb
level in a nucleus reflects an average over the Bed concentration in many
nuclei. This hypothesis is inconsistent with the Berg-Purcell framework (Berg
and Purcell, 1977), since it assumes that receptors of different chemical species
are independent, and that there is no communication between them.

In summary, the work of Gregor et al. (2007a) has shown that the variability
of Bed is much lower than 7% EL, in fact it is closer to 2% EL. Also, the
Berg-Purcell calculation (Eq. 6.2) shows that the relative error in Bed due to
molecular noise depends on its concentration as N%. As a consequence, the
relative error is lesser in the anterior, where the concentration of Bed is high,
and is greater in the posterior, where the concentration of Bed is low. Finally,
Gregor et al. (2007a) have interpreted their data to mean that Hb variance is
accounted for by Bed variance.

However, the raw data (Figure 6.2) suggest that there is still a
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discrepancy factor of two between Bcd and Hb variability. This discrepancy
shows a remarkable consistency with the results of Chapter 4, since the removal
of zygotic input to hb doubles the variance of its border from 1.1% EL to 2.2%
EL. This suggests that in K7~ /kni~ embryos, Hb is responding only to Bed

and shows the same variability as the underlying Bed gradient.

6.1.3 Reporter constructs

The Bced gradient has been assayed by means of reporter constructs in many
experiments (Driever et al., 1989; Struhl et al., 1989; Simpson-Brose et al.,
1994). In two recent experiments such data were acquired in large numbers
of embryos, allowing the estimation of Bed variability (Bergmann et al., 2007;
Crauk and Dostatni, 2005). In the first experiment (Bergmann et al., 2007),
a reporter construct containing three copies of a 123bp fragment from the P2
Bed-dependent hb promoter (hb123x3-LacZ, Struhl et al., 1989) was used to
assay the Bed gradient. LacZ from this reporter is expressed in an anterior cap
similar to the 2.9kb transcript from the P2 promoter (Schroder et al., 1988),
with a boundary at ~40% EL. It was found (Bergmann et al., 2007, Figure 4)
that its variability is ~10% EL (range of positions).

The second reporter construct (Bed3-LacZ) contains just three Bed sites,
and is expressed at ~30%E L (Crauk and Dostatni, 2005). However, its bound-
ary positions have a range of only ~5% EL. This led Crauk and Dostatni (2005)
to claim that the Bed gradient has the same variability as Hb.

However, once the error in Bed is taken into account (Eq. 6.2), these results
are fully consistent with the rest of the experimental evidence. The variability
of Bed at the hb border position, 46% EL is ~10%EL. The hb123x3-LacZ

construct’s boundary is formed only slightly anterior to this position, and
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therefore has a similar variability. The Bed3-LacZ construct forms its bound-
ary at ~15% EL to the anterior of the hb border. From the GFP measurements
of the Bed gradient (Gregor et al., 2007a, , Figure 2), the concentration of Bed
protein at 30% EL is roughly five times the concentration at the hb border
forms. Since the error in Bed goes as %, a factor of five increase in concen-
tration would roughly halve the error, which is precisely what is observed for
the Bed3-LacZ construct.

These measurements from reporter constructs add to the evidence that the
variability of Bed is twice that of Hb. Recall from Section 6.1.1 that the largest
increase of a factor of two in Hb variability was observed in embryos deficient
for the chromosome arm 3L, suggesting that it is the upper bound for Hb
variability. This upper bound is reached in Kr/kni double mutant embryos
(Chapter 4), in which Hb responds only to the Bed gradient. Finally, the
hb123x3-LacZ construct that was shown to respond only to Bed (Struhl et al.,
1989), also has twice the variability of the hb border in wild type. The border
of the Bed3-LacZ construct has the same variability as the hb border, but the
resemblance is coincidental. This construct’s border forms at ~30% EL, and
its lower variability arises from the lower relative error in Bed concentration
at that position. To summarize, the results of three independent and different
experiments all lead to the same conclusions: (1) Bed cannot account for the
variability of Hb, and (2) the variability of Bed is twice that of Hb.

Since the discovery of the discrepancy between Bcd and Hb variability
(Houchmandzadeh et al., 2002), a large amount of theoretical work has been
done to explain this phenomenon. In the following section, these theoretical

models are reviewed.
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6.1.4 Theories for the accuracy of hb
Posterior gradient models

Following the hypothesis of a posterior gradient discussed in Section 6.1.1, two
models were proposed that incorporated such a gradient (Houchmandzadeh
et al., 2005; Howard and ten Wolde, 2005). The first model proposes an poste-
rior gradient that is a transcriptional regulator of hb and inhibits the activity
of Bed at the hb border. This gradient is assumed to be correlated with
the Bed gradient, and provides posterior information at the hb border. The
second model proposes a gradient of corepressor molecules that bind to Bed
protein molecules and deactivate them. Another work (McHale et al., 2006)
independently proposed both of these mechanisms.

Houchmandzadeh et al. (2005) assume that a maternal posterior gradient
inhibits the activation of hb synthesis transcriptionally. Furthermore, it is
required that the hb border is established at a fixed ratio of the concentrations
of Bed and the hypothetical gradient. It was found that if this ratio is 1, then
the border forms at 50% EL and does not depend on the length scales of the
gradients. Hence, such a model shows scaling with egg length.

If the ratio of Bed concentration and the posterior gradient concentration is
not 1 where the target gene’s border forms, the model does not exhibit scaling.
Since the ratio of Bed concentration to repressor concentration changes with
A-P position, this model cannot explain the accuracy of the more than one
gap gene border (Figure 3.2c) at a time.

In the model of Howard and ten Wolde (2005), a corepressor gradient
from the posterior reduces the activity of Bed in the posterior by binding and

thus deactivating Bed molecules. The Bed and the corepressor gradients are

131



modeled explicitly with synthesis at point sources, Fickian diffusion and first-
order degradation. If one assumes that the degradation rates of Bed and the
corepressor are correlated, then the model shows scaling with embryo length.
However, there are no unbound Bed molecules available posterior to 50% EL
for activating downstream genes in that region. This is incompatible with
experimental evidence that Bed activates kni in the posterior (Rivera-Pomar
et al., 1995).

A set of experiments (Lucchetta et al., 2005) challenge the idea of a simple
posterior gradient mechanism for the accuracy of the hb border. Lucchetta
et al. (2005) maintained the anterior and posterior halves of a Drosophila
embryo at 20 °C and 27 °C, respectively. If the specification of the hb border
relies on the precise balance between Bed and a posterior gradient, this would
disrupt the accuracy of the hb border. It was found, however, that the accuracy
of the hb border was not disrupted in such experiments.

The main problem these models face is that such a gradient has not been
found. The gradient of Nos does not qualify as it regulates Hb translationally
(Lehmann and Niisslein-Volhard, 1991), but not transcriptionally. Further-
more, in contrast to the results presented in Chapter 3, these models cannot
explain the simultaneous low variance of multiple gap gene borders across a
large A—P region of the embryo. These models can only account for the low
positional variance of one border (Houchmandzadeh et al., 2005), or of the

borders in the anterior region of the embryo (Howard and ten Wolde, 2005).

Active transport

Following the result of Houchmandzadeh et al. (2002) that stau affects the
variability of the hb border, Aegerter-Wilmsen et al. (2005) proposed that an
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active transport mechanism might explain its accuracy. This is based on the
role of stau in the localization of bcd and other maternal mRNAs through
active transport in the oocyte (Johnston et al., 1991). stau binds an RNA-
binding domain in the 3’ UTR of bed RNA (Johnston and Niisslein-Volhard,
1992). It is unlikely that the kb mRNA has this domain since maternal hb
mRNA is distributed uniformly in the embryo (Tautz and Pfeifle, 1989).

Pre-steady state Bced gradient

Bergmann et al. (2007) propose that reduced shifts of gap and pair rule pat-
terns upon varying bed dosage (Section 6.1.1, Houchmandzadeh et al., 2002)
can be explained by the determination and fixing of gap gene borders during
the time when Bcd is not stationary. They calculated the transient solution
for Bed before steady state based on localized production, Fickian diffusion,
and protein degradation. It was shown that on changing the synthesis rate,
the expected shift in the Bed profile would increase in time, until it is maxi-
mum at steady state. The in vivo measurements (Gregor et al., 2007a) of the
Bed gradient show that it reaches steady state before cleavage cycle 10, be-
fore zygotic transcription of kb and other gap genes begins (see Section 2.1.1).
Therefore, the interpretation of the transient Bed gradient by the gap genes

cannot account for the reduced shift in gap gene expression patterns.

6.1.5 Summary

The in vivo results of Gregor et al. (2007a) provide the most accurate estimates
of Bed variability so far. The measurement of absolute Bed concentration in
the embryo leads to the important conclusion that molecular noise is an im-

portant source of error in the middle and posterior of the embryo. The authors
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have attempted to show through data analysis that Hb variability is greater
than what has been observed in similar experiments (Houchmandzadeh et al.,
2002; Surkova et al., 2007). At the same time it has been argued that Bed vari-
ability is low despite the limitations of molecular noise. As discussed before,
the theoretical argument of spatial averaging used to support this conclusion is
invalid in the framework of the Berg-Purcell theory (Berg and Purcell, 1977).

If all the experimental results that have been produced so far are considered
together, a consistent interpretation of the data emerges. The Bcd-GFP data
provide the best estimate so far of Bed variability at the hb border (~2% EL).
The Hb data (Houchmandzadeh et al., 2002; Surkova et al., 2007) show a vari-
ability of ~1% EL, half that of Bed. In zygotic mutants, the upper bound for
hb border variability is at the level of Bed variability (Section 6.1.1). Reporter
constructs that are under the exclusive control of Bcd have the same variability
as Bed (Section 6.1.3). If there are any lingering doubts about experimental
error, they are removed by bed dosage experiments (Houchmandzadeh et al.,
2002, see Section 6.1.1) in which average shifts are calculated. The shift of
the hb border in embryos from mothers with a single dose of bed is about half
of what is expected from a fixed Bed threshold, confirming the discrepancy
factor of two between Bed and Hb variabilities.

The work presented in this dissertation shows that gene circuits correctly
predict the reduction of variance of six gap gene borders (Section 3.2). This
property of gene circuits does not depend on the use of a particular Bed profile,
or the use of an exponential fit of a Bed profile. The circuits show reduction of
variance if they are produced using other Bed profiles, or if raw background-
removed Bed data are used to simulate Bed variation. Other theoretical models

predict the accuracy of a single border only, and rely on a posterior gradient
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that has not been found yet. The variance reduction in gene circuits happens
due to dynamic gap gene cross regulation in response to Bed variation (Sec-
tion 3.3). These interactions are known and have been characterized very well
in genetic (Driever et al., 1989; Clyde et al., 2003; Hoch et al., 1991; Eldon
and Pirrotta, 1991; Rivera-Pomar et al., 1995; Kraut and Levine, 1991a; Gaul
et al., 1987) and theoretical studies (Reinitz et al., 1998; Jaeger et al., 2004a;
Perkins et al., 2006).

The Kr/kni double mutant experiment described in Chapter 4 has shown
conclusively that the hb border position is not just under maternal control, but
is under zygotic control as well. The positional variance of the hb border dou-
bles when the zygotic input is removed in these mutant embryos (Section 4.2),

confirming that Bced variance is twice that of the hb border.

6.2 Canalization and dynamical structure of the
gap gene system

This dissertation presents a dynamical analysis of an actual developmental
subsystem with observable state variables. With the results of Chapters 3, 4,
and 5, it is now possible to evaluate the ideas of structural stability, genotypic
canalization, homeostasis, and homeorhesis in the context of this developmen-

tal system.

6.2.1 Genotypic canalization

In Section 1.3 it was proposed that the reduction of variance of gap gene border

positions with respect to Bcd is an instance of genotypic canalization. Using
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this criterion, gap gene circuits show canalization (Section 3.2).

Having obtained a gene circuit that canalizes, it is possible to analyze its
properties that permit this behavior. Regulatory analysis (Section 3.3) of the
gene circuit shows that the gap gene borders have lower variability than Bed
due to epistasis among the gap genes. Activation and repression levels are in
balance at the boundaries of their expression domains. Moreover, it is shown
that the nature of the epistasis is such that regulators of gene respond to
changing levels of Bed in a manner that damps the perturbations caused by
Bed at the border of the gene’s expression domain.

The correspondence between Bced levels and gap gene boundary positions
reduces with increasing A-P position, though the epistatic balance between
activation and repression is still maintained at the borders in the posterior
(Figures 3.7 and 3.8). This supports earlier results (Jaeger et al., 2004b) that
Bed does not provide positional information in the posterior. Consideration of
the dynamical structure of the phase space of posterior nuclei also leads to the
same conclusion, as it remains qualitatively the same in the posterior region

(see Section 5.4.2).

6.2.2 Structural stability

Does this property of genotypic canalization in the gene circuit arise from
structural stability of the gap gene dynamics? Based on the analysis in Chap-
ter 5, it is possible to say that the gap gene dynamical system is at least
locally structurally stable. Although there are several bifurcations that occur
with the A—P position of a nucleus (Section 5.4, Table 5.3), there is only one
that involves an attractor. At the level of the present analysis (Section 5.4),

the other bifurcations between hyperbolic equilibria do not seem to affect the
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overall dynamics, though they may have some subtle, as yet unknown effects.

The bifurcation that annihilates the attractor A}, changes the dynamics
drastically, setting up the attracting manifold U which controls the trajecto-
ries in posterior region nuclei. This bifurcation also divides the embryo into
two regions with very different biological properties (Jaeger et al., 2004b).
This bifurcation can be classified as a fold catastrophe (Thom, 1969, 1983),
since an attractor, AgA, disappears and the trajectories that were previously
attracted by it go to a different attractor, A(1),4’ instead.

Within in the A—P regions separated by the catastrophe, the phase space
of nuclei does not change qualitatively. Hence the phase space of the gap gene
dynamical system can be regarded as having local structural stability. Note
that the structural stability of the phase space implies that patterns will be
qualitatively preserved under variation of the Bcd concentration.

The genotypic canalization studied in Chapter 3 is not only qualitative,
but quantitative as well. Therefore, qualitative structural stability, though
demonstrated in gene expression data and the dynamical system, does not
fully capture the kind of genotypic canalization exhibited by the gap gene

system.

6.2.3 Stability of developmental trajectories

In Section 1.1 it was argued that a necessary condition for canalization is
that the phenotype of an animal be stable against variable conditions during
development. Homeostasis, that is, the specification of the cell fates by steady
states offers a mechanism for such stability.

Many models describe different biological states in terms of point attrac-

tors. The following are a few examples. Reinitz and Vaisnys (1990) describe
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the lytic and lysogenic states of phage lambda as point attractors. von Dassow
et al. (2000) model the establishment and maintenance of Drosophila segment
polarity expression patterns in steady state. Umulis et al. (2006) propose a
model with positive feedback in which initial dorsoventral patterning in Droso-
phila occurs due to a choice between two steady states of the Decapentaplegic
protein. Huang et al. (2007) describe the differentiation of bone marrow-
derived progenitor into a red blood cell fate or a leukocyte fate by means of a
pitch-fork bifurcation.

There have been three attempts to specifically model gap gene expression
patterns as steady states. The first one (Sanchez and Thieffry, 2001) uses
discrete logical variables, while the other two use continuous variables (Alves

and Dilao, 2006; Bergmann et al., 2007).

Gap gene models with homeostasis

Sanchez and Thieffry (2001) used multi-level logical variables to model the gap
genes. A state transition table defines the dynamics of the system, and logical
states that are stable under the action of the transition table represent gap gene
patterns in the blastoderm. Boundaries of gap gene expression patterns are
formed by the establishment of the stable states in a different logical state due
to maternal input. The patterns produced by this model have many defects,
the most notable being that the posterior borders of the anterior hb domain
and the central Kr domain coincide.

The key difference between this approach and the gene circuit approach
is that the latter does not assume the existence of stable steady states, con-
sequently, it is more general and captures dynamical features that the logical

analysis cannot. For instance, in the gene circuit phase space, though A(1)74 is

138



a point attractor, it moves continuously as Bed is varied (Chapter 5). Finally,
one idea from the logical analysis finds firmer footing in qualitative dynamics.
In their analysis Sanchez and Thieffry (2001) found feedback loops that dom-
inate the dynamics of the system. Omne such loop operative in the posterior
region of the embryo is the negative feedback loop gt-kni-Kr. These are pre-
cisely the dynamics that occur on the attracting manifold U3 (Section 5.4.2).

In the work of Alves and Dildo (2006), gap gene patterns are described
by equilibrium binding of each transcription factor to a single site in a gene’s
promoter. The transient patterns are determined by first order ODEs based on
the law of mass action. The gap gene patterns are the steady state solutions
of the ODEs, and are reached in biological time. It was found, however, that
the correspondence between such solutions and gap gene expression data from
FlyEx was weak. Apart from the patterns being qualitatively different, the
anterior hb domain, the anterior gt domain, and the anterior border of the Kr
domain all fall outside the error range of the data.

Bergmann et al. (2007) present a model for gap genes that relies on individ-
ual Hill functions for each regulator, which is equivalent to having individual
thresholds for each regulator. This model is designed such that gap gene pat-
terns once established, do not depend on the morphogen. This is achieved by
reaching steady state around cycle 13. The posterior boundaries of the third
anterior gt domain and the anterior hb coincide in this model (cf. Figure 3.1b),
which is incorrect. Also the gap gene domains are mutually exclusive through-
out the duration of the model. Note that even though in the diffusionless
case of gene circuits have almost mutually exclusive domains in late cycle 14
(Figure 3.1d), they are not so earlier (Figure 3.1c). Also, the gene circuit has

overlapping domains in the presence of diffusion.
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Homeorhesis and chreods

As shown above, descriptions of gap genes that have only involved homeosta-
sis do not faithfully capture the dynamics of the gap gene system, or their
patterns.

So far, gene circuits have been the most successful at capturing the dynam-
ics of the gap gene system (Perkins et al., 2006). The qualitative dynamical
analysis (Section 5.4) shows that gene circuits do not rely exclusively on steady
states to make their patterns. At the same time, their trajectories are canal-
ized by the attracting manifold U2. This leads to the question of whether U?
is a chreod.

The attracting manifold U (Figure 5.7) is a invariant trajectory that re-
duces variation in maternal Hb by attracting all indirect route trajectories
from the basin of attraction of Aj,. However, U? itself is not a biological
trajectory since its starting point is in the unstable eigenspace of 51273 and not
in the biological set of initial conditions that lie on the Hb axis (Section 2.1).

It is also incorrect to regard any one indirect route trajectory as the stable
developmental trajectory, since different maternal Hb initial conditions specify
different gap gene states (Figure 5.6). Figure 5.10 shows that within a tolerance
range that was determined empirically, trajectories canalize to a given state.
These trajectories start from biological starting points, and show stability by
attraction to UZ. Therefore, the set of trajectories within a tolerance range,

taken together, may be regarded as a chreod.
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6.2.4 Boundary formation

Gap gene boundary formation takes place due to maternal regulation and
gap-gap cross-regulation (Jaeger et al., 2004a, 2007; Perkins et al., 2006). The
factors that control a boundary are determined either by genetic studies or
by regulatory analysis of gene circuits. Regulatory analysis (see Reinitz and
Sharp, 1995; Jaeger et al., 2004a, and Section 3.3) is a local analysis in the
sense that regulatory interactions are studied on a single trajectory in the
phase space, one time point at a time. The qualitative dynamical analysis
of Chapter 5 offers a way to understand boundary formation in terms of the
global dynamical picture.

This analysis clarifies the roles of maternal factors in setting up different
gap gene boundaries. Boundaries in the gap gene system form by one of three
methods. The first is by the dependence of the state of a point attractor on
Bed (posterior border of third anterior g¢ domain). The second is by selection
between different point attractors by the initial condition (posterior border of
anterior hb domain and anterior border of the central Kr domain), and the
third is by selection of a gastrulation state on the attracting manifold by the
initial conditions (all borders in the posterior region).

Although the dependence of anterior segmentation genes on Bed and ma-
ternal Hb, and of posterior ones on maternal Hb is already known (Driever
and Niisslein-Volhard, 1989; Simpson-Brose et al., 1994; Hiilskamp et al., 1990;
Struhl et al., 1992), and has been captured by dynamical models (Reinitz et al.,
1995; Jaeger et al., 2004a, 2007), the global analysis reveals the dynamical
mechanism by which these interactions happen.

The global dynamical analysis has some advantages over the local analysis.

First, the whole trajectory is visualized at once, providing information that
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can only be obtained in the regulatory analysis by tedious repetition at several
time points. Second, as was seen in Chapter 5, although the phase space is
high-dimensional, the dynamics are confined to lower-dimensional manifolds.
Such manifolds can only be discerned in a global analysis. Related to this, the
local analysis only observes the dynamics on such restricted manifolds, while
the global analysis reveals the whole phase space. This could be useful for
understanding mutants, in which the trajectories are in other regions of the

phase space not observed in wild type.

6.3 Limitations of the gene circuit approach

6.3.1 Unmatched Bcd and maternal Hb gradients

A general problem with gap gene circuits studied here (Sections 2.1.1 and 2.3.4),
and earlier studies (Jaeger et al., 2004b,a) is that early gap gene domains are
derepressed initially but refine later due to gap-gap cross-repression. The
motivation for implementing a delay model was to address this problem (Sec-
tion 2.3.1). However, despite evidence for the functional importance of protein
synthesis delays (see Section 2.3.1), gene circuits with such delays failed to pro-
duce accurate early gap gene expression patterns. This leads to the question
of whether the specific representation of the synthesis term used in this disser-
tation and earlier work (see Section 2.1.1 and Reinitz and Sharp, 1995; Jaeger
et al., 2004b) is capable of giving correct early patterns given the maternal
gradients Bed, Hb, and Cad.

This question was considered by Jaeger et al. (2007) by constructing gene
circuits with gap gene mRNAs as state variables. These started in cleavage

cycle 10 and lasted until early cleavage cycle 13. In these models, there are
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no gap-gap interactions, and pattern formation is driven solely by maternal
Bed, Hb, and Cad. In the early part of cleavage cycle 13, these circuits are
essentially equivalent to gene circuits with production delays (Section 2.3.2),
in which the effects of gap-gap cross regulation don’t appear until the first ten
minutes of cycle 13. In addition, different synthesis terms were tried to see if
they work better than the one in Eq. (2.1).

The gene circuits obtained by Jaeger et al. (2007) using the same synthesis
term and maternal gradients as were used in this dissertation (Eq. 2.1) are
only able to form the borders of the abdominal kni domain correctly. gt shows
derepression between the third anterior domain and the abdominal domain,
while Kr central domain forms either one of the anterior or posterior borders,
but not both. The gene circuits that have production delays have the same
patterning defects (Figure 2.9c). Using other synthesis terms Jaeger et al.
(2007) were able to obtain correct patterns for gt, but not for Kr. These
results led to the conclusion that Bed activation and maternal Hb repression
are not correctly balanced in the early gap gene circuits.

A similar imbalance between Bcd and Hb was observed in the dynamical
analysis of gene circuits (Chapter 5). The most anterior nucleus has an incor-
rect state (Section 5.4.1 and Table 5.4) since the maternal Hb concentration
falls outside the basin of the biologically correct state, hb,gt-on. To require that
the Bed activation and Hb repression be carefully balanced seems biologically
incorrect since the two gradients are established by two independent mater-
nal systems (Driever and Niisslein-Volhard, 1988a). However, it was shown in
Section 5.4.2 that a given Bced gradient imposes tolerance ranges within which
the maternal Hb concentrations must occur (Figure 5.10) for correct pattern

formation. Hence the Bed and Hb gradients do not have to be strictly
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correlated, but be within a certain tolerance of each other. There is certainly
such a limit in the posterior, where ubiquitous maternal Hb in embryos from
nos~ mothers causes segmentation defects. Note that the proposed occurrence
of Bed and Hb gradients within a certain tolerance is different from posterior
gradient models (Section 6.1.4). The two gradients don’t have to be strictly
correlated in their geometrical properties or in the mechanisms that establish

them.

6.3.2 Simulating mutants

In Chapter 3 it was shown that gene circuits show reduction of the variance
of gap gene borders with respect to Bed due to gap-gap cross regulation (see
Figure 3.3 for example). This prediction was verified in Kr/kni double mutants
(Chapter 4), in which the posterior border of the anterior hb domain has
increased variation with respect to Bcd. However, the variance of this border
is unchanged in Kr~ or kni~ (Houchmandzadeh et al., 2002, and unpublished
data of S. Surkova).

In Kr—, the anterior border of the posterior gt domain shifts anteriorly
(Kraut and Levine, 1991a), by about 15% AP (unpublished data of Svetlana
Surkova). Hence it is possible that gt and kni might together regulate the
posterior border of the anterior hb domain. Another hypothesis is that a
single regulator might be sufficient to regulate hb.

So far, the only zygotic mutant that has been simulated correctly by gene
circuits is tIl~ /hkb~ (see Section 5.1 and Figure 5.1). Therefore it is currently
not possible to test the above hypotheses by simulating K7~ or kni~ embryos.
This might be because the wild type patterns impose a lesser constraint on

the parameters of the gene circuit compared to mutant patterns. However,
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efforts to constrain the parameters more by optimizing on the wild type and

Kr~ datasets together have not succeeded either.

6.3.3 Diffusion

The analysis of Chapter 5 relies upon the correctness of the diffusionless
approximation (Section 5.1). Although the progression of the patterns and
boundary placement largely agree (Figure 3.1), the question of whether the
dynamical structure of the nuclei, and the results it implies (Section 5.4) are
preserved in the presence of diffusion. As suggested by Thom (1983), it likely
that dynamical structure in the two cases will be topologically equivalent as
the diffusion term is a linear perturbation, and hence, structurally stable. This
still remains to be explicitly verified, since a dynamical analysis of the gene

circuit in the presence of diffusion has not been attempted here.

6.3.4 Comparison of circuits

It is important to point out that the dynamical analysis of Chapter 5 has been
performed on only one set of parameters, that of gene circuit hkgn58c13k1_007.
In Section 3.2, it was verified that the property of the circuit to reduce po-
sitional variance does not depend on a particular circuit, or a particular Bed
profile. A similar comparison of these circuits needs to be done with respect

to dynamical structure.

6.4 Future directions

As pointed out in Section 6.3.1, one possible reason that the gene circuits

presented here (Section 2.1.1 and Section 2.3.2) and early gap circuits (Jaeger
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et al., 2007) do not have correct early patterns is that the Bed and mater-
nal Hb gradients are mismatched. Since maternal Bed, Hb and Cad used
in these models were patterns averaged over several embryos (Surkova et al.,
2007), they might not be representative of gradients in individual embryos
(Section 2.1.6), nor would they have the same spatial relationship as in an
individual embryo. This situation can be remedied by staining for Bed, Hb
and Cad simultaneously and using all three gradients from a single embryo in
the model. The embryo picked would have to be representative. This might
be accomplished by employing the methods used to pick a median Bcd profile
(Section 2.1.6). Only the Hb gradient would need to be parameterized since
the maternal Cad gradient is established by Bed (Rivera-Pomar et al., 1996).

As mentioned in Section 6.3.2, the gene circuit can simulate only one mu-
tant genotype successfully so far, and efforts to fit a Kr! dataset have not
succeeded. These data show counterintuitive effects, where the removal of a
repressor, Kr, leads to the reduction in levels of other genes. It is possible
that the current representation of interactions that only occur between a pair
of regulators is incorrect, and the synthesis term needs to be revised along the
lines of Jaeger et al. (2007). Also, for correct prediction of maternal mutants,
regulation between maternal gradients (Irish et al., 1989; Rivera-Pomar et al.,
1996) needs to be explicitly represented. For instance in nos~, the abdominal

domain of Cad is absent due to ubiquitous maternal Hb.
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Simulation of genotypic canalization in this dissertation has involved only
the two parameters that specify a Bed profile. For a complete simulation, all
the regulatory parameters might be varied. V. Gursky (personal communi-
cation) has been performing such simulations that suggest that gene circuits
show canalization, within limits, with respect to perturbations of the regula-
tory parameters.

For a complete dynamical characterization of the gap gene system, the
three-dimensional stable manifolds of the hyperbolic equilibria Sj, and St
need to be calculated. Currently, only one method, using computational set
theoretic techniques (Dellnitz et al., 2001), has been implemented that can
do such a calculation. However, this method is impractical for gene circuit
problem since simultaneous representation of both very large and small scales
is required. In principle, other methods (Henderson, 2005; Guckenheimer and
Vladimirsky, 2004; Krauskopf and Osinga, 2003) can be used for manifold of
dimension greater than two, but implementations only exist for two dimen-
sions. Therefore, new algorithms need to be developed for calculating the
stable manifolds for the gene circuit.

In the dynamical analysis of Section 5.4 three mechanisms of boundary
formation were identified. Since the first mechanism involves the movement
of an attractor with changing Bed levels, this leads to a prediction. If one
constructed an embryo with uniform Bcd at high levels, the model predicts
that the posterior boundary of the third anterior g¢ domain will coincide with
the posterior boundary of the anterior hb domain. With uniform Bed, Ag, will
remain in the hb,gt-on state at all A—P positions, hence the posterior boundary
of the third gt domain will not form by its usual mechanism. Instead, it will

form by the second mechanism, namely the switching of a nucleus from the
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basin of A, (hb,gt-on) to that of A7, (Kr-on). Hence the hb border and the
posterior border of the third anterior gt domain will coincide.

Perhaps the biggest advance in understanding canalization and the stabil-
ity of developmental trajectories will come with the construction of fusions
of all segmentation gene proteins with GFP. It will become possible to di-
rectly observe the trajectories with higher temporal resolution than is possible
at present. Knowledge of absolute concentrations will allow us to construct
more accurate dynamical models that can correctly predict mutants. With
these tools it will be possible to understand the organization of the epigenetic

landscape that confers such stability to the phenotype of animals.
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Appendix A

Materials and methods

This appendix describes, for completeness, the lab methodology used, but not
developed in the course of the dissertation work.

The first section describes the methodology with which data on segmenta-
tion genes is acquired and processed. These techniques were used to produce
the integrated dataset for optimizing gene circuits, and also the data on wild
type gap gene variability (Surkova et al., 2007). The same techniques were
also used for the acquisition and processing of the Kr/kni double mutant data
that are described in Chapter 4.

The second section describes the Parallel Lam simulated Annealing algo-

rithm used to optimize gene circuits (Chapter 3).

A.1 Integrated data

Different steps of the data acquisition and processing pipeline are applied
depending on whether the data are used for building a representative data set

of average segmentation gene expression patterns (Surkova et al., 2007), or for
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studying variability.

A.1.1 Fixation, staining, and acquisition of images

Wild type Oregon R. embryos, 1-4 hours old, are collected on fructose-sucrose
agar plates. They are fixed and fluorescently stained for Eve protein and two
other segmentation gene proteins according to standard methods and anti-
bodies as described in Kosman et al. (1998). The secondary antibodies used
are Alexa Fluor 488 anti-guinea pig, Alexa Fluor 555 anti-rabbit, and Alexa
Fluor 647 anti-rat. A monoclonal antibody raised in mice against the his-
tones H1, H2a, H2b, H3, and H4 is used for nuclear staining. In this case, a
biotin-conjugated anti-mouse antibody is used as secondary, with a Strepta-
vidin Alexa Fluor 700 conjugate used as tertiary for visualization.

Laterally oriented embryos are scanned in a confocal microscope. The flu-
orophores are excited using a single laser at a time to prevent leakage between
channels. The microscope used is a Leica TCS SP2 confocal with HC PL. APO
20x objective. This microscope has tunable wavelength detection windows of
500-545, 560-645, and 650-715 nm. The laser wavelengths are 488 nm (Ar),
543 nm (HeNe), 633 nm (HeNe).

A single embryo is scanned multiple times frame-by-frame and the frames
are averaged to suppress optical noise in the photo multiplier tube. Two
z-sections are scanned separately to account for non-uniform localization of
protein along the basal-apical axis. For a given staining, the microscope is
standardized on the embryos showing the greatest signal for a particular gene.
Gain is set such that a few maximally-bright pixels are saturated (had 8-bit
intensity 255). The offset, which sets the zero, is used to remove optical back-

ground in the optical field around the embryo. For time classification (see
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Section A.1.3), a differential interference contrast (DIC) image of the dorsal
and lateral edges of the embryo is also taken at 2.5x magnification in the

sagittal plane.

A.1.2 Segmentation

Segmentation is the process by which average nuclear intensities are extracted
from a bitmap image obtained from the microscope (Janssens et al., 2005).
Embryo images are aligned in an anterior-left, dorsal-up orientation such that
the major axis of the embryo is horizontal. A whole-embryo mask, in which
pixels are 255 inside the embryo, and 0 outside it, is constructed using a
threshold-based method, and the image is cropped according to the mask.
The images from all channels scanned (including the histone channel) are
combined to construct an image in which each nucleus’s intensity is the max-
imum intensity observed in any channel. This maximal image is then used
to construct nuclear masks. In a nuclear mask, pixels of nuclei have intensity
255, while pixels in the cytoplasm have intensity 0. To achieve this, first, the
watershed method is applied to the maximal image. This method marks re-
gions with low intensity compared to nuclei as watershed regions, defining the
limits of nuclei. Then the Shen-Castan edge-detector is applied to detect the
edges of nuclei (see Janssens et al., 2005, and references therein for details).
The nuclear mask allows for the calculation of the positions of nuclei rela-
tive to the A-P and D-V axes (x and y, due to the alignment of the embryo).
The pixel intensities in individual channels are averaged according to the nu-
clear mask, giving a table of positions of nuclei, and the average intensities in

them.
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A.1.3 Time classification

The embryos are anywhere between one hour to four hours old at the time of
fixation. Therefore in a given experiment, a distribution of embryos of varying
ages is obtained. However, for the purposes of averaging expression patterns
to build a dataset, or for studying variability, only similarly aged embryos
should be compared. For this reason embryos are staged according to age
(Myasnikova et al., 2002). First, embryos are classified into cleavage cycles.
Data is only acquired for the syncytial blastoderm stage from cleavage cycle
10 to 14A. Transverse sections of cycle 10 embryos have ~130 nuclei, cycle
11 embryos have ~260, cycle 12 embryos have ~450, cycle 13 embryos have
~1000, and cycle 14A embryos have ~2000. Cycles 10 to 13 are short (8-12
mins) (Foe and Alberts, 1983), and embryos in these stages are not further
classified. Cycle 14A lasts for about 50 mins, and expression patterns change
rapidly. Hence, it is subdivided further into eight time classes T1-T8. Two
criteria are used: (1) patterns of the pair-rule gene eve, (2) morphology of
nuclei and invagination of the cell membrane.

Time classification using eve expression patterns is based on careful visual
inspection. T1-T4 can be distinguished by the number of eve stripes present
in the pattern. T5-T8 are distinguished based on features of the overall eve
pattern. This method has been cross-validated by an automated classification
method that uses complex-valued neural networks (Aizenberg et al., 2002),
and support-vector regression (Myasnikova et al., 2002).

Time classification using membrane morphology relies on 2.5x DIC images
of the dorsal and lateral edges of embryos in a sagittal section. During T1-T2,
nuclei are round and the membrane is not visible. In T3, the nuclei elongate

slightly. In T4, the elongation continues, and the membrane becomes clearly
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visible at the apical end. In T5, the membrane is in the middle of nuclei,
while in T6 it is at their basal end. In T7, it goes beyond the nuclei. T8
is distinguishable by irregular positioning of the nuclei since the embryo is

starting to gastrulate.

A.1.4 Background removal

Immunofluorescently-stained images always have some background signal due
to non-specific binding of the antibodies. By staining for a particular pro-
tein in a mutant background, it was determined that the background is well-
approximated by a quadratic paraboloid (Myasnikova et al., 2005). For an
individual wild type embryo, the background signal is determined by fitting
a quadratic paraboloid to the segmented data. This signal is then subtracted
and the data renormalized by a linear transformation such that non-expressing
nuclei have zero intensity, and maximally-expressing nuclei have intensity 255.

At this stage of data processing, one of two things can be done depending on
the final application of the data. For studying variation, no further processing
is needed. For building an integrated dataset of representative wild type gene
expression patterns, the final step of registration and averaging has to be

applied.

A.1.5 Registration and averaging

Segmentation gene expression patterns vary from individual to individual.
Though this variation is low compared to the maternal environment (see Sec-
tion 1.3), it is enough to render a naive averaging of patterns useless. Regis-

tration is the process by which patterns from individuals are aligned so that
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they can be averaged meaningfully to build an integrated dataset. This is done
by determining features of the eve expression pattern and aligning patterns of
different embryos such that the features line up. The features are extracted
by a fast dyadic wavelet transform, that yields points where the first deriva-
tive of the eve expression pattern is zero. Once the features are extracted,
an affine transformation is applied to the expression patterns such that the
distance between a feature’s position and the average feature position is min-
imized for each feature. The same affine transformation is applied to all the
channels recorded from the embryo, so that the relative placement of differ-
ent genes’ expression patterns is maintained. For details of the registration
method described above, see Myasnikova et al. (2001).

The final step is to construct the average dataset by averaging the registered
patterns of all embryos in a given time class. Since the number of nuclei and
their positions vary from embryo to embryo, the embryo is divided up into
equal-sized bins along the A—P axis. Then for a given segmentation protein,
the intensity is averaged over all the nuclei in a bin and all embryos are stained

for that protein.

A.2 Optimization

The parameters of the gene circuit were determined (Eq. 2.1) by Parallel Lam
Simulated Annealing (Chu et al., 1999; Chu, 2001, PLSA). The squared differ-
ence between model output and integrated data (Section A.1) was minimized
by changing the model parameters according to PLSA. In this section, the cost
function and the annealing search spaces are defined first. Then the PLSA al-

gorithm is described briefly.
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A.2.1 Cost function and search spaces for parameters

The cost function is given by

E= Z (Ug@)model - U?(t)data)z + Epenalty; (Al)

where, v{()model 18 the protein concentration of gene a in nucleus 7 at time ¢.
It is the solution of Eq. (2.1). t is the midpoint of a time class (cycle 13, or one
of the eight time classes in cycle 14, T1-T8). v{(t)gata, is the integrated data
for protein a in nucleus 7 in the corresponding time class. The summation is
over all time classes ¢, nuclei ¢, and genes a represented in the model, and for

which we have data. Let the total number of such points be N;. Then, the

\/% . (A.2)

The rms score is a measure of the quality of fit. Although, in a given opti-

root mean square score is given by

mization, minimizing £ also leads to the minimization of the rms score, the
optimization algorithm is specifically implemented for minimizing £, and not
the rms score.

We can restrict the solution of the optimization problem (the parameters
of the gene circuit) by specifying constraints on their values. These constraints
are called search spaces. Table A.1 lists the search spaces for the kinetic param-
eters R, D°, t{ o T used in fitting the gene circuits used in this dissertation.

For the regulatory parameters 7%, m¢, E% and h?, a penalty function
Epenatty Was specified instead. The penalty function provides a flexible search
space of these parameters so that the saturated part of the threshold function

g(u®) (Figure 2.2) is not sampled endlessly. The penalty function is given by
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Parameter | Lower bound | Upper bound
R (min™!) 10.0 15.0
D® (min™) 0.0 0.2
t{/, (min) 5.0 18.0

7% (min) 2.0 12.0

Table A.1: Search Spaces for Gene Circuits. These parameters are defined in Sec-
tion 2.1.2 and Section 2.3.2. Note that 7 was only used in delay models.

exp (Alla) —exp(l) iff All. > 1,

Epcnalty = (A-?))
0 otherwise,
where
2
e = (Z(T“”vfnaxf + (B0 0)” + (o)™ + <h“)2> .
ab
Here, ©°,  is the maximum concentration of protein b in any nucleus, v°__

is the maximum concentration of nonautonomous input 3, and v2%¢ is the

max

maximum concentration of bed. A is a free parameter that controls how far
from the regulated region the parameters are allowed to go. From Eq. (A.3),

it can be seen that the penalty will be active when

1
D (Tl 4+ (B0 4 (mevfes)” + (h)? >

ab

(A.4)

We chose A = 1072 for all optimizations in this thesis.

The further the dynamics are from the regulated region of g(u®), the larger
the left hand side of Eq. (A.4), hence greater the penalty. Since we are min-
imizing the cost function (Eq. A.1), the penalty term puts pressure on the

parameters to remain in the regulated region of g(u®).
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A.2.2 Parallel Lam Simulated Annealing

Simulated Annealing

Simulated annealing (Kirkpatrick et al., 1983) is an optimization method based
on the Metropolis algorithm (Metropolis et al., 1953). The Metropolis algo-
rithm is a method to calculate an ensemble average of a system at thermody-
namic equilibrium. Let the state variables be specified by a vector z, and F
be the energy of a state. Given a temperature 7', the Metropolis algorithm
samples the Boltzmann probability distribution by the following sequence of

steps:

1. Compute E = F,q at state z.q.

2. Propose a new state x,, (“make a move”).

3. Compute F = E oy at Theyw-

4. If AE = Epewwy — Folqd < 0, Toig = Tnew (“accept the move”).

5. If AF = Fiew — Foaq > 0, Toig = Tnew with Boltzmann probability
exp(—AFE/T), otherwise discard x,., (“reject the move”)

Simulated annealing (SA) adapts the Metropolis algorithm to simulate slow
cooling (annealing) by slowly lowering the temperature at each step. The rule
that determines how much the temperature is lowered at each step is called
the cooling schedule. It is used for optimization by letting the parameters of

the system be the state variables x; of the simulated thermodynamic system.
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Lam simulated annealing

Lam simulated annealing (LSA Lam and Delosme, 1988a,b) provides an adap-
tive cooling schedule, so that it can lower temperature faster in regions of the
state space where the cost function has simpler structure. LSA also provides
a scheme to control move generation so that the state space is sampled most
effectively.

Let sy = 1/T}, be the inverse temperature at the k" iteration of Lam SA.
The inverse temperature in the next step is determined so that the system

remains in quasi-equilibrium. It is determined by the equation

. I LY (Ao (1 = pols)’
Sk+1 = Sk + A <0(sk)> <3i02(3k)) ( (2 o P0(3k>)2 ) ) (A.5)

where o(sy) is the standard deviation of the energy E at step k, and py(si) is

the acceptance ratio, that is, the ratio of accepted moves to the total number
of moves proposed.

A is a quality parameter, such that low values of it lead to better fits
with greater computational effort. o(sy) is the standard deviation of E at

temperature s, and its inverse measures the distance of the system from

4p0(sk)(1—90(5k))2>
(2—po(sk))? ’

is proportional to the variance of the distribution of proposed moves, and

equilibrium. <m> is the specific heat. The last term, <
k

measures how well the state space is being sampled. It is at a maximum when
the acceptance ratio po(sy) ~ 0.44.

In order to sample the state space most effectively, the acceptance ratio
must be maintained near 0.44. This is done by controlling the size of the moves.
For parameter x;, the moves are drawn from an exponential distribution with

mean 8 ' by the equation
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i =x; £ 0 Ing, (A.6)

where ¢ is drawn uniformly from [0, 1]. 0" thus controls the size of the move

for a parameter x; and is adjusted by the feedback equation

nd, ., =Ind.,+3.0(p — 0.44). (A7)

Thus if the current acceptance ratio is above 0.44, the average move size is
increased, which will cause more rejected moves, and vice versa.

Finally, in order to evaluate Eq. (A.5), the algorithm requires the accep-
tance ratio, p(s), and the standard deviation of the energy, o(s). The ac-
ceptance ratio changes slowly with temperature, and can be estimated from
previous moves as the ratio of accepted to proposed moves. Lam and Delosme
(1988b) provided estimators for the mean and standard deviation of energy
that are determined from the energies of past moves by least squares fitting

every 100 moves.

Parallel Lam Simulated Annealing

PLSA exploits the inherent ergodicity of the Metropolis for parallelization (Chu
et al., 1999; Chu, 2001). The state of the system is independently sampled by
P processors using the Lam schedule for cooling. The increased speed comes
about by increasing the rate at which the temperature is lowered (P times
faster). This is made possible by the increased rate at which statistics are
collected by these P processors.

Due to the faster lowering of temperature, the processors will eventually

go out of quasi-equilibrium. To rectify this problem, the states of different
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processors are mixed. This is done after every 100m/P Metropolis iteration
on a single processor. Each processor polls every other processor and retrieves
their states’ energy E. A processor adopts the state of another processor p
with probability P, given by

o—Ep/T

szw-

This ensures that quasi-equilibrium is maintained.

(A.8)

The frequency of mixing, m, has to be chosen carefully. Immediately after
mixing of states, the processors’ states are correlated. If another mixing is
done too soon, they will remain correlated throughout the annealing run, and
the state space will not be sampled effectively. Thus the lower bound for
m is the number of steps it takes for the cross-correlation function between
processors to vanish.

If there is too long a gap between mixing, the processors’ states will not
be in quasi-equilibrium. Therefore, the upper bound for m is the number of
evaluations of F taken for the variance of mean energy between processors
to exceed an empirically-determined threshold of 7%. The lower and upper
bounds for m are determined in a tuning run Chu (2001), and m is set to a
value between them. For optimizations carried out in this thesis, m was chosen

to be 13.

Starting and stopping an optimization

A random state xg is chosen as a starting point. Then the Metropolis algorithm
is run for 10° E evaluations at a temperature of 10°. This is done so that
there is no memory of the initial state. Initial Lam statistics (Chu, 2001) are

collected over an additional 10°/ P evaluations, after which a normal PLSA or
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LSA optimization starts.
An optimization is stopped when E changes less than 1073 over 500 eval-

uations.
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