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Abstract of the Dissertation
Global Reinforcement Training of CrossNets
by

Xiaolong Ma

Doctor of Philosophy
in
Physics
Stony Brook University
2007

Hybrid “CMOL” integrated circuits, incorporating advanced CMOS
devices for neural cell bodies, nanowires as axons and dendrites,
and latching switches as synapses, may be used for the hardware
implementation of extremely dense ( 107 cells and 10'? synapses
per cm?) neuromorphic networks, operating up to 10° times faster
than their biological prototypes. We are exploring several “Cross-
Net” architectures that accommodate the limitations imposed by
CMOL hardware and should allow effective training of the net-
works without a direct external access to individual synapses. Our
studies have show that CrossNets based on simple (two-terminal)
crosspoint devices can work well in at least two modes: as Hop-
field networks for associative memory and multilayer perceptrons
for classification tasks.

For more intelligent tasks (such as robot motion control or com-
plex games), which do not have “examples” for supervised learning,
more advanced training methods such as the global reinforcement
learning are necessary. For application of global reinforcement
training algorithms to CrossNets, we have extended Williams’s
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REINFORCE learning principle to a more general framework and
derived several learning rules that are more suitable for Cross-
Net hardware implementation. The results of numerical experi-
ments have shown that these new learning rules can work well for
both classification tasks and reinforcement tasks such as the cart-
pole balancing control problem. Some limitations imposed by the
CMOL hardware need to be carefully addressed for the the suc-
cessful application of in situ reinforcement training to CrossNets.
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Chapter 1

Introduction

1.1 Introduction to Artificial Neural Networks

The human brain is superior to a digital computer at many tasks which are
hard to define mathematically or algorithmically. A good example is image
processing, such as recognition of objects. A one-year old baby is much better
at performing theses tasks than the best supercomputer. Furthermore, the
human brain can deal with fuzzy information, and it is robust, fault tolerant,
easy to adapt to new situation. These features and capabilities of human brain
are much desirable in artificial information processing systems; yet very less is
understood about its functionality [I].

The brain is composed of about 10'! neurons, which are connected to each
other through about 10> synapses. As shown in Fig. [1.1} the main part of a
neuron is the cell body or soma. A long fiber called axon (which branches to
strands that reach many other neurons) carries the output of the neuron, while

de"qf"{escell body (soma)

nucleus

containing the

chromosomes
axon A
terminals

Figure 1.1: Schematics of a biological neuron.
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Figure 1.2: Schematics of the firing rate model of a neuron.

smaller fibers called dendrites receive the signals from other neurons through
the coupling of synaptic junctions.

The process of transmitting signals form one cell to another is rather com-
plicated. A simple model was proposed by McCulloch and Pitss [2] to describe
aneuron as a binary threshold unit. It “fires” when the weighted sum of signals
from other neurons exceeds certain threshold:

yi(t+1) = @(Z wiy; (t) — i), (1.1)

where y; is either 0 or one, and ©(x) is the unit step function:

@(w){ 1, ifz <0; (1.2)

0, otherwise.

Equation (1.1) can be generalized by replacing O(z) with a more general
nonlinear function g(z) (for example the tanh) called the “activation function”.
Without writing the time explicitly we denote the update rule as the following:

Yi = Q(Z WigYj — fhi)- (1.3)

This model is schematically shown in Fig.

In Artificial Neural Networks (ANN), the neurons can be connected to each
other in many different ways. In this work we discuss two most commonly
seen architectures: the Hopfield Networks and the Multi-Layer Perceptrons
(MLPs). The former is simply a fully connected, recurrent network in which
every neuron is connected to all the others; the latter is a layered, feed-forward
network shown in Fig. [1.3] *

Examples of applications of ANNs include associative memory (Hopfield
Networks, [4]), speech generation (NETtalk [5]), face detection [6], handwrit-

'The input layer performs no computation and therefore sometimes not included in the
layer count.



input hidden output
SR layer layer

Figure 1.3: Three-layer perceptron. The cells are divided into layers; and there
are only forward connections between adjacent layers (from Ref. [3]).

ten character recognition [7], and signal prediction and forecasting [1].

1.2 CMOL Circuits

Recent results [8 9], indicate that the current VLSI paradigm, based on
a combination of lithographic patterning, CMOS circuits, and Boolean logic,
can hardly be extended into a-few-nm region. The main reason is that at
gate length below 10 nm, the sensitivity of parameters (most importantly, the
gate voltage threshold) of silicon MOSFETS to inevitable fabrication spreads
grows exponentially. As a result, the gate length should be controlled with
a few-angstrom accuracy, far beyond even the long-term projections of the
semiconductor industry [10]. (Similar problems are faced by the lithography-
based single-electron devices [I1].) Even if such accuracy could be technically
implemented using sophisticated patterning technologies, this would send the
fabrication facilities costs (growing exponentially even now) skyrocketing, and
lead to the end of the Moore’s Law some time during the next decade. This
is why there is a rapidly growing consensus that the impending crisis of the
microelectronics progress may be resolved only by a radical paradigm shift
from the lithography-based fabrication to the ”bottom-up” approach based on
nanodevices with Nature-fixed size, e.g., specially designed molecules. Since



the functionality of such nanodevices is relatively low [9], they necessarily
should be used as an add-on to a CMOS subsystem. Several proposals of such
hybrid CMOS /nanodevice circuits were put forward recently (for their reviews,
see Ref. [12HIg]).The main idea of this combination is that the two-terminal
devices have only one critical dimension (distance between two electrodes)
which can be readily controlled, with sub-nanometer precision and without
overly expensive equipment, by film thickness.

Our group is working on a particular circuit concept, dubbed CMOL [9] [16],
for which the application prospects look best. As in several earlier proposals,
nanodevices in CMOL circuits are formed (e.g., self-assembled) at each cross-
point of a “crossbar” array, consisting of two levels of nanowires (Fig. |1.4]).
However, in order to overcome the CMOS /nanodevice interface problems per-
tinent to earlier proposals, in CMOL circuits the interface is provided by pins
that are distributed all over the circuit area, on the top of the CMOS stack.
(Silicon-based technology necessary for fabrication of pins with nanometer-
scale tips has been already developed in the context of field-emission arrays
[19].) As Fig. shows, pins of each type (reaching to either the lower or
the upper nanowire level) are arranged into a square array with side 25 Fcyos,
where Fonos is the half-pitch of the CMOS subsystem, and 3 is a dimen-
sionless factor larger than 1 that depends on the CMOS cell complexity. The
nanowire crossbar is turned by angle oo = arcsin(Fpano/ 5 Fenmos) relative to the
CMOS pin array, where F.,, is the nanowiring half-pitch.

By activating two pairs of perpendicular CMOS lines, two pins (and two
nanowires they contact) may be connected to CMOS data lines (Fig. [1.4(b))).
As Fig. illustrates, this approach allows a unique access to any nanode-
vice, even if Flano < Fomos - see Ref. [16] for a detailed discussion of this
point. If the nanodevices have a sharp current threshold, like the usual diodes,
such access allow to test each of them. Moreover, if the device may be switched
between two internal states, e.g., as the single-electron latching switch [9] 20],
each device may be switched into the desirable (ON or OFF) state by applying
voltages +Viy to the selected nanowires, so that voltage V' = +2Viyy applied to
the selected nanodevice exceeds the corresponding switching threshold, while
half-selected devices (with V' = £V4y) are not disturbed. (For details, see Sec.
3)

Two advantages of CMOL circuits over other crossbar-type hybrids look
most important. First, due to the uniformity of the nanowiring/nanodevice
levels of CMOL, they do not need to be precisely aligned with each other and
the underlying CMOS stack (for details, see Ref. [3] 17, 18], thus allowing the
use for nanowire formation of advanced patterning techniques [21H23] which
lack precise alignment. This technique has already allowed to demonstrate
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Figure 1.4: Low-level structure of the generic CMOL circuit: (a) schematic
side view; (b) the idea of addressing a particular nanodevice, and (c¢) zoom-
in on several adjacent interface pins to show that any nanodevice may be
addressed via the appropriate pin pair (e.g, pins 1 and 2 for the leftmost of
the two shown devices, and pins 1 and 2’ for the rightmost device). On panel
(b), only the activated CMOS lines and nanowires are shown, while panel
(c) shows only two devices. (In reality, similar nanodevices are formed at all
nanowire crosspoints.) Also disguised on panel (c¢) are CMOS cells and wiring,.



crossbars with half-pitch Flano of 17 nm [24] and 15 nm [25]. Second, recently
there was a remarkable progress in fabrication of reproducible crosspoint de-
vices with the necessary functionality of “latching switches” (see Sec. for
details), notably by Spansion LLC [26] and an IBM-led collaboration [27] -
see Introduction to Ref. [28] for a review of recent literature. As a result,
all major components of CMOL circuits may be considered demonstrated and
ready for the beginning of a serious integration work [18]. Still, CMOL, simi-
larly to all other nanodevice-based technologies, requires defect-tolerant circuit
architectures, since the fabrication yield of such devices will hardly ever ap-
proach 100% as closely as that achieved for the semiconductor transistors (for
example, see Sec. .

Application of CMOL circuits includes memories [29], boolean logic circuits
[30] and neuromorphic networks [31]. The following chapters discuss CMOL
application for neural networks.

1.3 CrossNets: CMOL Neuromorphic Networks

ANNs can be implemented on conventional computers by sequential al-
gorithms. While this is adequate for many applications, only the hardware
implementation can fully take advantage of the intrinsic parallelism of the
neural network models [32]. There are numerous studies addressing the hard-
ware implementation of neural networks through CMOS circuits. The latest
reviews can be found in [33, B4]. Despite all the advances, the number of
neurons and synapses in these implementations remain quite low compared to
the human cerebral cortex [1].

Single electron devices can provide high densities and low power dissipation
[35]. The idea that these devices can be used in neural networks was first
proposed in Ref. [30] (and later developed in Ref. [37]), for a review, see Ref.
[38]. None of these proposals come close to implementing a perceptron with
adjustable weights.

We have proposed [39-45] a family of neuromorphic circuits, called Dis-
tributed Crossbar Networks (“CrossNets”), whose topology is uniquely suit-
able for CMOL implementation. Like most artificial neural networks explored
earlier (see, e.g. References [1, 46H48]), each CrossNet consists of the following
components:

1. Neural cell bodies (“somas”) are relatively sparse and hence may be
implemented in the CMOS subsystem. Most our results so far have been
received within the simplest “firing rate” model, in which somas operate
just as a differential amplifier with a nonlinear saturation (“activation”)

function (Fig. [L.5)).
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Figure 1.5: Structure of neural cell bodies (somas) of: (a) feedforward; and (b)
recurrent CrossNets in the operation mode. Low input resistances R; are used
to keep all input (“dendritic”) voltages V4 = Ry ). I; well below the output
(“axonic”) voltage V,, for any possible values of net input currents I; , thus
preventing undesirable anti-Hebbian effects [39]. G is the voltage gain of the
somatic amplifier. Bold points show open-circuit terminations of nanowires,
that do not allow somas to interact in bypass of synapses (see below).

2.

“Axons” and “dendrites” are implemented as physically similar, straight
segments of mutually perpendicular metallic nanowires (Fig. ) So-
matic load resistances Ry (Fig. keep all dendritic wire voltages Vjy
much lower than axonic voltages V, (see Sec. for an example of
the effect of relatively large load resistance). Estimates show that wire
resistances may be negligible in comparison with nanodevice resistances,
even in the open state (see below). On the contrary, capacitance of the
wires cannot be neglected and (in combination with Ry) determines the
CrossNet operation speed.

Synapses, each comprising one or several similar nanodevices, are formed
at crosspoints between axonic and dendritic nanowires (Fig. [1.4). Demon-
strations of single-molecule single-electron devices by several groups can
be found in Refs. [49-53], they provide an attractive option for synapse
implementation. More recently, there has been a spectacular progress in
the reproducible fabrication of the crosspoint devices based on metallic
oxides, e.g., CuOy [26], or doped GeSb [27], though scaling them below ~
10 nm may require using self-assembled monolayers (SAM) of specially
designed molecules [18] [40], [45].
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Figure 1.6: (a) Schematics; (b) functionality; and (c)possible molecular imple-
mentation of a two-terminal single-electron latching switch. The tunnel barrier
connecting the box island is substantially thicker than those embedding the
transistor island, so that the rate of tunnelling to and from the box is much
lower. V; is the voltage applied to the (quasi-) global gate (Fig [l.4[(a)). Fig.
is courtesy of Prof. A. Mayr (SBU/Chemistry).



In this dissertation, we use the single-electron implementation as an exam-
ple to illustrate the functionality of these two terminal crosspoint nanodevices.

Fig. |1.6(a)| shows the schematics of the simplest single-electron device,
latching switch, that has functionality (Fig. [1.6(b)|) sufficient for CrossNet
operation and allows a natural molecular implementation (Fig. [1.6(c)). The
device is essentially a combination of two well-known single-electron devices:
the transistor and the “trap” [11, 20, 54]. If the applied voltage V' =V, — Vj is
low, the trap island in equilibrium has no extra electrons (n = 0), and its total
electric charge Q = —ne is zero. As a result, the transistor is in the closed
(“Coulomb-blockade”) state, and source and drain are essentially disconnected.
If V is increased beyond a certain threshold value Viy;, its electrostatic effect
on the trap island potential (via capacitance Cy) leads to tunneling of an
additional electron into the trap island: n — 1. This change of trap charge
affects, through the coupling capacitance C,., the potential of the transistor
island, and suppresses the Coulomb blockade threshold to a value well below
Vinj; as a result, the transistor, whose tunnel barriers should be thinner than
that of the trap, is turned into ON state in which the device connects the
source and drain with a finite resistance Ry. (For a symmetric transistor, Ry
is close to the tunnel resistance of a single tunnel junction of the transistor
[11].) Thus, the trap island plays the role similar to that of the floating gate
in the usual nonvolatile semiconductor memories [55]. If V' stays above Viy; ,
this connected state is sustained indefinitely; however, if the synaptic activity
V (t) remains low for a long time, the thermal fluctuations will eventually kick
the trapped electron out, and the transistor will get closed, disconnecting the
wires. This ON — OFF switching may be forced to happen much faster by
making the applied voltage V sufficiently negative. 2 Thus the device works
as an adaptive binary-weight, analog-signal synapse.

Fig. shows the general topology of CMOL CrossNets on the exam-
ples of the simplest feedforward (a, ¢) and recurrent (b, d) networks. Red
lines show “axonic”, and blue lines “dendritic” nanowires. Dark-gray squares
are interfaces between nanowires and CMOS-based cell bodies (somas), while
light-gray squares in panel (a) show the somatic cells as a whole. (For the sake
of clarity, the latter areas are not shown in the following panels and figures.)
Note that the real area of the somatic CMOS cell may be much larger than
that of the interface pin area of that cell; the former area is only limited by
the distance between the adjacent somas. Signs show the somatic amplifier
input polarities. Green circles denote nanodevices (latching switches) forming

2A virtually similar functionality may be achieved using configurational changes of spe-
cially selected molecules [56H58], however, such molecules are rather complex, and their
switching may be too slow for most applications.
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elementary synapses.

In Fig. , any pair of cells may be connected, in one way (from j to i,
for example), by maximum two synapses leading to different somatic amplifier
inputs, so that the net synaptic weight w;; may take any of three values. (They
may be normalized to -1, 0, and +1).

The nanowires are doubled in Fig. to form the “Hebbian synapsis”.
Because both axonic and dentritic wires are doubled, this leads to 8 switches for
one way connection. A group of four switches in different polarities (++, +—,
—+ and ——), either in the vertical or horizontal direction (the duplication
is for the purpose symmetry), enables us to achieve the so-called Hebbian
adaptation. (Please see Sec. for details.)

For clarity the panels (a)-(c) show only the synapses and nanowires con-
necting one couple of cells (j and ). In contrast, Fig. [1.7(d)| shows not only
those synapses, but also all other functioning synapses located in the same
“synaptic plaquettes” (painted light-green) and the corresponding nanowires,
even if they connect other cells. (In CMOL circuits, molecular latching switches
are also located at all axon/axon and dendrite/dendrite crosspoints; however,
they do not affect the network dynamics, resulting only in approximately 50%
increase of power dissipation.) The solid dots on panel (d) show open-circuit
terminations of synaptic and axonic nanowires, that do not allow direct con-
nections of the somas, in bypass of synapses.

CrossNet species differ by the number and direction of intercell couplings
(Fig. [1.7) and by the location of somatic cells on the axon/dendrite/synapse
field (Fig. [1.§). The cell distribution pattern determines the character of cell
coupling. For example, the simplest CrossNet, the so-called FlossBar (Fig.
1.8(a)]), in its feedforward version is essentially a Flavor of MLPs (Fig. [1.3)
[T, [46H48], with quasi-local connectivity. Thus, the study of FlossBars allows
a natural comparison of CrossNets with traditional artificial neural networks
(typically implemented in software running on usual digital computers). In
the so-called Inclined Crossbar (or just “InBar”, see Fig. [1.8(b))), somatic cell
pin areas are located on a square lattice that is inclined by a (small) angle
«a relatively to the axonic/dendritic nanowire array.® This geometry is more
natural for CMOL implementation, because each somatic cell may have the
same shape.

Also important is the average distance M between the somas, that de-
termines connectivity of the networks, i.e. the average number of other cells
coupled directly (i.e., via one synapse) to a given soma. The mechanism of
this limitation is shown in Fig. [L.5[(b) and [1.7(d)} any axon running into a

3There is a substantial parallel between the incline angles o shown in Fig. b) and
This analogy makes InBar arrays especially natural for CMOL implementation.

11
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connections between one soma (indicated by the dashed circle) and its recip-
ients (inside the dashed oval), for the feedforward case. For FlossBars, the
number M of direct recipients is always even (in (a), equal to 10), while for
InBars M is always the square of an integer number M'/? = 1/tan a, where
« is the angle of incline of the square lattice of somatic cells relative to the
nanowire arrays. (In (b), M = 9.) In recurrent CrossNets (Fig. [L.5|[b)), the
cell connectivity is four times higher (equals 4M).
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somatic cell is open-circuit terminated (bold red points); so is any dendritic
wire starting at a somatic cell (bold blue points). These terminations do not
allow cell connections bypassing synapses, and set finite lengths for axons and
dendrites and hence a finite connectivity: the farther are the somatic cells,
the longer are the nanowire segments, and the more synapses they contact,
providing connections to more cells. The most remarkable property of CMOL
CrossNets is that the connectivity of these (quasi-)2D structures may be very
large, for example, as high as 104, the number typical for the biological cor-
tical networks with their quasi-3D structure [54, 59]). This property is very
important for advanced information processing, and distinguishes CrossNets
favorably from the so-called cellular automata with small (next-neighbor) con-
nectivity which severely limits their functionality. (The price for the increase
of connectivity is the operation speed-to-power tradeoff and noise immunity -
see Sec. below.)

While the somatic cell density in CrossNets is very important since it de-
termines the network connectivity, the particular location of the cells is not
too crucial (say, may be completely random [39, [42]) and may be directed by
the convenience of either hardware implementation, or training, or both.

1.4 CrossNets: Modelling

Somatic cells were modelled by simple differential amplifiers (Fig. [L.5),
with voltage gain GG for small signals and sharp saturation at output levels
+Vh:

Va/Vo = FIGVy = Vi) Vi) (L4)

Here V" and V] are input voltage signals on, respectively, vertical and hor-
izontal dendritic wires, f(z) is the activation function which limits the range
of the input signal. For example it can be the segmentally linear function

Fa) = { x, for |x| < 1; (15)

signz, for |z| > 1.’

or more frequently, we use the differentiable function f(z) = tanh(z) in our
simulations.

Connected synapses are modelled by constant (Ohmic) resistances Ry be-
tween the corresponding axonic and dendritic wires, disconnected synapses
are treated as infinite resistances, while wire resistances are neglected. On the
contrary, capacitance of dendritic wires is very important. In fact, for small
load resistance Ry, the law of recharging of the dendrites by synaptic and
load currents yields the system of differential equations describing the system
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dynamics for soma i in Fig. [1.7(b);

Ry

Vd_)j:| B (‘g)i

AV Va)y = (Vi) (Vi
J

% + {G(VdJr — + L;(1), (1.6)

= — Wi-
Ry &~ Y Vo
J

where
J
In Eq. Cy is the dendrite capacitance per unit plaquette, MijE is the length

(measured as number of plaquettes) of horizontal /vertical dentritic wire, I;(t)

is the external input current, and w;';- is the net synaptic weight of the latching
switch connecting axons of jth cell with ¢th dendrite, which may take binary
values: 0 and 1. Each switch in Fig. can be replaced with an array of n?
switches and therefore implementing quasi-continuous synaptic weights (Fig.
1.12)).

Subtracting the equation for V; from that of V', and denoting the nor-

malized dentritic signal as
zi(t) = G(Vy" = Vi )i/, (1.8)
we arrive at the following equations:

J

where w;; = w;; —w;; (for binary switches, wy; = —1,0, 1, s;(t) = L;(t)GRL/ Vb,
7, = (M;" + M;)R;Cy and g; = GR;/Ry. Due to the isotropy of the Inbar
structure, we have M = M for all 4; also, in the limit of MR/Ry < 1,

R; =~ Ry, therefore the global time constant
T = 2MRLC(], (110)
and the global effective voltage gain of the somatic cell

g:GRL/Ro, (111)
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and Eq. becomes

J

For hardware simulation, however, we usually use Eq. (|1.6)) in the following
form (for the isotropic structures):

AV = % (Z wis[(Va); — (V)i = (V)i/r + Iz‘(f)ROCb) /M,
J (1.13)

where r = Ry, /Ro. In this case it is more convenient to measure time in RyCj.
And if the voltages are measured in Vj, then Eq. becomes unitless.
In later demonstrations, we often show time in RyCys. Although the time
constant of the system is 7 (Eq. , the limit of the speed of the system is
ultimately determined by RyCy (see Sec. for details).

1.4.1 Self-excitation of Recurrent Networks

As an example, let us study the behavior of a recurrent InBar network (Fig.
1.8(b)|) under Eqgs. ([1.12)) without external inputs (s; = 0 for all 7). Suppose
the synaptic weights are randomly initialized with a global probability p for
the ON state for all the switches in the network, the typical behavior of the
system is a chaotic oscillation [39], as shown in Fig. In the experiments,
we have used the four-group Hebbian synapses as shown in Fig. , but
for simplicity, only the axonic wires are doubled (resulting 4 switches for one
way connection).? If each switch is replaced with an array of n? switches (as
shown in Fig. [1.12), the quasi-continuous weights —2n? < w;; < 2n?. The
capacity of the dentritic wires per synaptic plaquette Cy o< n?. To keep the
time constant of the system unchanged, we need to reduce load resistance
accordingly: Ry oc 1/n? - see Eq. . We have also scaled the effective
gain ¢ = 1/n to keep the amplitude of the dentritic signals constant. As we
can see from Fig. [I.9) both the frequencies and amplitudes of the normalized
dentritic signals (Eq. becomes invariant with respect to n as a result of
this scaling of hardware parameters (see the following for detailed discussions).

4In hardware implementation we may wish to double both the axonic and dentritic wires
to achieve symmetric layout, as shown exactly in Fig. [1.7(c)l but the results discussed in
this section (and later) is still valid after simple adjustments to the parameters.
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Figure 1.9: Sample normalized dentritic signals (x;) from a recurrent Inbar
with 425 neurons and connectivity M = 16. The system was simulated for
4 x 107 with a time step At = 47. Other parameters are: r = R /Ry =
0.1/M/n? and g = 1/n.
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Figure 1.10: Self-excitation activity x,,s averaged over all neurons and the last
2 x 10*7. The system is the same as in Fig. [1.9] The black line is the mean
values of 100 independent experiments (different initializations of synaptic
weights) while the red and green ones are the maximum and minimum values,
respectively.

The activity of the system over a time period from ¢; to ¢, measured by

Tome — \/ <t2 ! - /: xg(t)dt>, (1.14)

where the average () is carried out over the statistical ensemble of all cells.
ZTms 18 closely related to global parameters g and n. To see this, let us assume
the activation function Eq. , and first study the case of very small gain. In
this limit, because most signals z; are small, we have f(z) ~ x, and Egs.
become linear. Applying to these equations the Fourier transform (X;(w) =
Flzi(t)] = \/% J7 ez (t)dt), multiplying each equation by its complex
conjugate, and averaging over the statistical ensemble of all cells, we get

<X2XZ*>(1 + w272) = 92 Z <wijwij/XjX;-‘,>, (115)

33’

where z* is the complex conjugate of x. It is reasonable to assume that there is
no statistical correlation between X; and w;;, because with large connectivity,
each X; depends many other synaptic weights collectively. Therefore,

<wijwij/XjX;-‘/> ~ <U)Zj’wlj/><X]X]*/> (116)
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Since each synaptic weight is a sum of four independent binomially distributed
random numbers ranging from 0 to n?, and the weights are independent with
each other, we have (w;;w;;) = 4n’*p(1 —p)d; ;. Because each cell is connected
to 2M cells, the sum in Eq. gives 2M equal terms, so that for variance
X? = (|X;]?) we get the following equation:

X1+ w?r* — 8Mn?p(1 — p)g®] = 0. (1.17)

This equation gives us the critical value of g for the low-frequency excitation
to arise (w = 0):
9. = [8Mn*p(1 —p)] /2. (1.18)

In Fig. [1.9, M = 16, and p = 0.5, therefore g.n ~ 0.177. This is confirmed by
Fig. [L.10]

If the system is in the limit of deep saturation g > g., then most of the
time z; > 1, f(x;) = sign(x;) and the amplitude of f(x;) no longer depends
on ;. Therefore Eq. becomes

(X X)) (1+wr?) = ¢ Z (wijwip FLf ()] FLf (25)]"),
=g Z (wijwig) (Ff @)IF[f (@0)]),
= 8Mn*p(1 — p)g*|F(w)|*. (1.19)

where F(w) = (|F[f(z;)]|?) does not depend on X (w). This gives us®

o[BG

14 w272

This relation can be confirmed by Fig. and [1.10]

1.5 CrossNets: Training

In neural networks training means adjusting the strength of synaptic weights
to achieve desired network behavior.

CrossNets can be trained as neural networks to perform information pro-
cessing tasks, including the Hopfield type associative memories [39H44], pattern
classification [61H63], and global reinforcement learning tasks [311, 64H66]. The

®According to Rayleigh’s theorem [60], the same relation holds for the s defined in

Eq. @
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Figure 1.11: The model for the switching rates for the single-electron latching
switches.

training of CrossNets are achieved through turning the switches (as shown in
Fig. ON or OFF by applying proper voltage V = V, — V4, and there-
fore adjusting the synaptic weights according to some training algorithms for
neural networks. The ON and OFF switching processes (as all dynamics of
single-electron devices) are random, the probability of having any latching
switch in ON state is controlled by the following dynamics:

dp/dt =T(1—p) —Tp, (1.21)

where I'y is the switching probability rate for turning the switch on if the
switch is originally in the OFF state, and I'| is the reverse. I'y| are definite
functions of the applied voltage V' [9]. The model for these rates is schemati-
cally shown in Fig. The switching rates are sharp functions of the applied
voltage, growing rapidly from virtually zero to a high value at the correspond-
ing voltage threshold, and saturating at certain level for large enough voltages.
Below the saturating voltage, The “orthodox” theory of single-electron tun-
nelling predicts the rates to be exponentially-linear functions of V', close to
the Arrhenius law

FTl = FO exp[j:,ﬁ(v + S)], (122)

where 3 = e/kgT, T is the effective temperature, while S is a shift parameter
that depends on the switch design, and may be changed by applying voltage
to a special global gate electrode (Fig. [L.6[(a)). The desired average synaptic
weight adjustment may be implemented using three different techniques, as
discussed by the following sections.

1.5.1 Weight Import

For relatively small tasks, the training can be done outside and the re-
sulted weights can be simply imported into the hardware. This procedure
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Figure 1.12: A half of the composite synapse for providing L = 2n?+1 discrete
levels of the weight in (a) operation and (b) weight import modes. The dark-
grey rectangles are resistive metallic strips (with the total resistance Rg <
Rp) serving as soma/nanowire interfaces. Plate (c) shows (schematically) the
boundary between the domains of two possible states of elementary synapses.
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is started with training of a homomorphic “precursor” artificial neural net-
work with continuous synaptic weighs w;;, implemented in software, using
one of established methods (e.g., error backpropagation)®. Then the synaptic
weights w;; are transferred to the CrossNet, with some “clipping” (rounding)
due to the discrete nature of elementary synaptic weights. To implement this
transfer, all latching switches are first reset to their OFF state. For binary
weights implemented as single switches, pairs of somatic cells are sequentially
selected via CMOS level wiring. Using the flexibility of CMOS circuitry, these
cells are reconfigured to apply external voltages =V} to the axonic and den-
dritic nanowires leading to a particular synapse, while all other nanowires are
grounded. The voltage level Vj is selected so that it does not switch the
synapses attached to only one of the selected nanowires, while voltage 2V
applied to the synapse at the crosspoint of the selected wires is sufficient for
its reliable switching.

In the composite synapses with quasi-continuous weights, only a part of
the corresponding switches is turned ON or OFF. The details is discussed as
follows. Suppose each switch in Fig. is replaced by a square array of
switches shown in Fig. [1.12] in the operation mode Fig. [1.12(a)] all the n
axons (red lines) are applied the same axonic voltage, while the currents in n
dendrites are summed up, giving total weight w = w* — w~, where w™ and
w™ is the number of switches in the ON state in each array. In order to fix
the desirable value of weight w, one has to fix w* and w~. To achieve this,
during the training mode (Fig. [1.12(b))), somas apply graded voltages to their
axons and dendrites:

Va=Vw +A(i/n = 1/2), Va=£[Vi+ A('/n - 1/2)], (1.23)

where i(1 < i < n) is the nanowire number, the voltage spread A is slightly
lower than V;, and the sign of Vg is, as before, opposite for horizontal and
vertical dentrites. This creates a gradient of the net voltage on the square
grid of molecular devices; and in particular a boundary (Fig. |1.12(c)) that
separates the region where the net voltage V' applied to a molecule is less than
the threshold voltage, V;, from the region where V' > V;. This allows the
neuron somas to adjust w' and w~, and hence w. For further discussions, see
Refs. [40, 144].

6Tn this case, better training accuracy may be achieved by using a discrete precursor
that has the same quantization as in the hardware. For training of such software networks
with discrete weights, please see Ref. [67].
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1.5.2 Hebbian Adaptation

Let us consider a synapse that is composed of four switches with different
polarity, as shown in Fig. (but with the doubling of only the axonic
wires):
++ +— —+ —
According to Eq. (1.21)) and Eq. (1.22)), the dynamics of individual switches

1S

wij:w

d < wit >

SEUE T o mp{(1- < wht ) eplf(ViEE + 5]
— < w;t > exp[-A(V;T + 9]}, (1.25)

where Vji are the voltages applied to each of the four groups. If the axonic
voltages are transferred back to the dendrites for each cell, the voltage applied
to the switches in the “Hebb training mode” is

VEE = (V)7 — (Va)f = (V)7 — (V)i (1.26)
The somas are configured so that

(Va)i = =(Va)i = (V)i (1.27)
By summing up the four equations for different polarities and transforming
into the triangular form, the dynamics of the average synaptic weight < w;; >
can be reduced to a simple formula if the synaptic weights are not close to
saturation [40]

d<wij>

n ~ —4T' sinh[5S] sinh[F(V,),] sinh[B(VL),]. (1.28)

Eq. represents a correlation between the presynaptic and postsynaptic
signals, which is exactly the fundamental idea of the well know Hebb-rule
[T, [68] in neural computation. The Hebbian rule is a linear correlation between
the pre- and post- synaptic signals:

where 7 is a constant learning rate. Although Eq. is nonlinear, it
prescribes the same “direction” for single weight change. We call the dynamics
of four-group synapse in the training mode “Hebbian adaptation”.

During operation, usually Vg < V,. Therefore, if V, < V;, then there is
no adaptation in the “operation mode”. However, we may use relative large
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Ry, such that Vy is comparable with V,, and hence achieve adaptation in the
operation mode. In this case, the voltages applied to the switches are
70

ViEE = (V)F — (Va)f (1.30)

and generally
(Va)i # —(Va); - (1.31)

It is straightforward to prove that in the operation mode,

d<d#‘> ~ 4T sinh[3(V,),] sinh {5 M}
s [ (VL 08 5] o

Since (Vq)§ — (V3); always has the same sign as (V,);, we can guarantee
Hebbian or anti-Hebbian adaptation provided that the strength of the global
shift is large enough

|51 >

+ —
M . for all j. (1.33)

Hebbian adaptation, either achieved by Eq. (1.28)), Eq. (1.32), or by the
random multiplication technique discussed in the next section, is very impor-

tant for virtually all of the training algorithms known for neural networks.
When n > 0, the Hebb’s rule Eq. reinforce the current input-output
relation by strengthening the correlation between pre- and post- synaptic sig-
nals. When n < 0 (in this case it is called anti-Hebbian rule), on the other
hand, it has the opposite effect. This is useful in the global reinforcement
training discussed in latter Chapters. For details, please see Sec. [.1]

The following chapters will be focused on training CrossNets as Hopfield
networks and reinforcement learning agents, both relies on the Hebb’s rule
for training. CrossNets can also be trained as pattern classifiers using similar
Hebbian type of adaptation. For details, please see Refs. [61H63].

1.5.3 Time Multiplexing

For room temperature operation, the single-electron island size should be
so small (below 1 nm) that electron motion in it is substantially quantum-
confined, making the energy spectrum discrete [9]. Theory [69] shows that in
this case, for a substantially large distance between the switching threshold
values, 2V, > kpT'/e ~ 26 meV, the dependence I'y| (V') as shown Fig. [1.11
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Figure 1.13: Stochastic multiplier using a single AND gate. P4, Pg and P¢
are firing probabilities of the input and output streams; and P ~ P4 Pp (form
Ref. [70]).

may be well approximated by step functions.”

Let us assume that below the threshold £V, the switching rates I'y| are

0; while above the threshold they are constants independent of the magnitude

of the voltages applied to the switches. The strength of the adaptation can

be controlled instead by the time duration of the voltages. According to Eq.
(1.21]),

Ap = [I'1(1 = p) = T plAt. (1.34)

In this case, the multiplication of two signals (which is needed for Hebbian
type of adaptation), can be achieved by “stochastic multiplication” [62]. The
basic idea is to represent real valued signals using stochastic bit streams [71].
This allows a dramatic simplification of the circuitry required to implement
many devices, since the multiplication of two values may be performed by a
simple AND [70] [72] or XOR [73] gate. For example, see the illustration of
Fig. [1.13] The following explains how this is achieved by time multiplexing in
CrossNets.

As shown in Fig. , each synapse consists of four groups (arrays) of
n x n elementary latching switches. In the operation mode, the open switches
supply currents, proportional to axonic voltages, to the inputs of differential
dendritic amplifiers, with different polarities. As a result, the net synaptic
weight is

N (1.35)
W = Wmax5 o5 .
2n?
N — N++—|—N__ —N+_ —N_+ (136)

where each N,y is the number of ON-state switches in each group (0 < N <
n?), so that w can take L = 4n? 4+ 1 quantized values.

In the training mode, signals that are to be multiplied (z12 € [0, Zmax])
are compared with random signals REF} 5, which are independent and evenly

"The same is true for other types of latching switches [17, [I8] [63].
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Figure 1.14: The scheme for in-situ training. Reference signals REF} o are
random analog signals. Each small circle is the latching switch; the composite
synapse consists of four groups of n x n similar switches. (The figure is for
the case n = 3). C) 2 are the signal comparators with binary output signals.
The alternating global shift signal S(t) = Sy, together with flipping the signs
of signals z; 5, performs time division multiplexing (from Ref. [62]).
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distributed within the same range [0, Zax]. The comparator C; generates volt-
age Vi ~ sign(+x;)(V;/2), when z; > REF;, and 0 otherwise. This produces
bit steams with densities of nonzero values proportional to x;. The switches
naturally perform the AND function because the net voltage can not exceed
the threshold unless both V; and V, are nonzero (similar to the discussion in
Sec[L.5.1)). A global shift signal S(t) = £S5, with an amplitude slightly below
V;/2, is added to the output voltages to further differentiate among the groups
of switches and allow us to select only one of the four for update in each stage.
The sign of z; and S(t) alternates according to the table to perform the 4-stage
time division multiplexing.

The overall result is that the switches are updated with time/probability
proportional to xjxs:

Wmax — W, when z1x9 > 0;

Wmax + w, when x1x9 < 0, (1.37)

(Aw) o< Atxyzy X {

where the relaxation term w is due to the fact that only the switches that are
in the off state can be turned on (for details see Ref. [62]).

1.6 Performance Estimation

We can estimate the time constant and power consumption of CrossNets.
The most fundamental limitation on the half-pitch F.,, (see Fig. comes
from quantum-mechanical tunnelling between nanowires. If the wires are sep-
arated by vacuum, the corresponding specific leakage conductance becomes
uncomfortably large ( 10?Q " m™!) only at F.,, = 1.5nm; however, since real-
istic insulation materials (SiO,, etc.) provide somewhat lower tunnel barriers,
let us use a more conservative value Fj.,, = 3nm. With the typical specific
capacitance of 3 x 1071°F /m = 0.3aF /nm [40], this gives nanowire capacitance
Cy ~ laF per working elementary synapse, because the corresponding segment
has length F ... (see Fig. [1.7(c)).

The CrossNet operation speed is determined by the time constant of den-
drite nanowire capacitance discharging through the load resistance (see Fig.
[L.5): 7 = R.Cy (see Eq. [1.10). This resistance can not be made arbitrarily
small, however, because the effective gain g oc Ry /Ry (see Eq. [L.11]), where
Ry is the resistance of a latching switch in the “on” state. To keep desired
functionality, let us assume g is hold constant. Then the limit of speed actually
comes from Ry, because the switch resistances are the main power consumers
of the system.

Therefore, let us define 7y = RoCy (which is also used as unit to measure
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time in hardware simulations) as the measurement of the the speed the system.
For example, the time of image recovery for Hopfield type operation (see Fig.
is approximately 6.

The possibilities of reduction of Ry, and hence 7y, are limited mostly by
acceptable power dissipation per unit area, that is close to V#/(2Fpan0)* Ro-
For room temperature operation, the voltage scale Vi &~ V; should be of the
order of at least 30kgT /e =~ 1V to avoid thermally induced errors. With our
number for Fi.,,, and a relatively high but acceptable power consumption
of 100W/cm?, we get Ry =~ 10'°Q (which is a very realistic value for single
molecule single-electron devices like one shown in Fig. [1.6(c)). With this
number, 7 is as small as ~ 10ns® This means that the CrossNet speed may be
at least six orders of magnitude higher than that of cerebral cortex circuitry.
Even scaling Ry up by a factor of 100 to bring power consumption to a more
comfortable level of 1W/cm?, would still leave us at least a four-orders-of-
magnitude speed advantage.

8The real time constant 7 is even r times smaller, where r = Ry, /Ry is typically much
smaller than 1. The actually value of r depends on the effective gain g that the network is
operating at, as well as the gain of the differential amplifier G.
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Chapter 2

CMOL CrossNets Operating in
Hopfield Mode

2.1 Introduction to Hopfield Networks

The Hopfield networks [4] are simple examples of how collective computa-
tion can work [I]. The task is to store P patterns into a fully connected neural
network (for example, in a network with N cells, each cell in the network is
connected to all the other N — 1 cells) so that when the network is presented
with a partial or damaged image, the original pattern can be reconstructed
(Fig. 2.1).

We denote the ith pixel in the pth pattern by &/, where p = 1,2, ..., P and
t=1,2,...,N, and N is the size of both the patterns and the network. Let us
assume black and white images and & = +1. The solution to this problem is
the so-called Hebb’s prescription:

1 &
Wij = N ;555# (2.1)

The idea is based on Hebb’s hypothesis [68] that the synaptic weight adap-
tation should be made according to the correlation between pre- and post-

synaptic signals (see Eq. [1.29)).
The Hopfield networks have a physical analogy to magnetic systems. An
“energy function” can be defined for the network

1
vy
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Figure 2.1: Example of associate memory. The middle column shows some
intermediate states (from Ref. [1]).

where y; are the outputs of the cells. It can be shown that for the weights
defined by Eq. , the patterns to be stored are natural stable states (or
attractors) for which the energy function has local minima. Actually the net-
works can be made stochastic [74), [75] to introduce the concept of “tempera-
ture”; and the Ising model [76] and the minefield theory in statistical physics
can be applied to analyzing the Hopfield networks[77].

For a fully connected McCulloch-Pitss network (Eq. of size N, the
storage capacity, for 99% of correct recall for example, can be shown to be [1]:

Prax = 0.15N (2.3)

2.2 Hopfield Network in CrossNets

In a isotropic Inbar CrossNet (Fig. [1.8(b))), the time evolution of the signals
in the circuits (without external inputs) are described by Eq. (1.12)):

J

In the discussions in this chapter we use the segmentally linear activation
function (Eq. [L.5):

x, for|z| <1
signz, for|z| >1"

f(x) =A{ (2.5)
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Figure 2.2: An InBar with N = 256 x 256 neurons and 4M = 64 connectivity
in the Hopfield operation mode. The system is taught four images. Recall of
two images are shown. After initialized to one of the patterns with 40% of
bits flipped, the system converges to the original image with 100% fidelity in
~ 6RyCy where Ry is the resistance of a molecular device on the “on” state,
and Cj is the capacitance of nanowires per one plaquette. (From Ref. [3].)
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For symmetric weights, i.e., w;; = wj;, Eq.(2.4) always reaches the following
stable equilibrium solution [J:

T; = ngijf(xj). (2.6)

To implement Hopfield network in CrossNets with binary weights, we set the
synaptic weights according to the “clipped Hebb rule”:

P-1

pn=0

The exact solution of the “clipped” Hopfield Model based on Ising Model is
given in [7§]. Setting weights to externally calculated values can be readily
achieved by the weight import procedure described in Sec. [1.5.1] An example
of such implementation is shown in Fig.

Unlike the traditional fully connected Hopfield model discussed in the pre-
vious section, the connectivity CrossNets is limited. For an recurrent Inbar
CrossNet of N cells, each cell is connected to 4M neighbors(see Fig. [1.8(b))),
where 4M < N is the connectivity of the network. The capacity of this net-
work with localized connectivity can be estimated using similar method as in
Ref. [I]. The maximum number of patterns the system can recall with 99%
correct bits is (for details, see Ref. [39)]):

P & aa(4M), (2.8)

with ae = 0.118.

2.3 Defect Tolerance

The Synapse in the CrossNets can be implemented by self-assembling
molecular latching switches described in [39]. The practical fabrication of
those molecular devices with extremely high density will never achieve a 100%
yield. Luckily, thanks to parallel processing of information, neural networks
are naturally robust and fault tolerant [I]. This is one of the motivations be-
hind neural network application of CMOL circuits. This section studies the
effect of a small fraction of bad devices to the network and shows that defect
tolerance of CrossNets running in Hopfield mode is exceptionally high. De-
tailed studies on defect tolerance of CrossNets operating as pattern classifiers,
as well as training methods specifically designed to address this problem can
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be found in Ref. [63].

We will use the same defect model which has been accepted in other stud-
ies of hybrid semiconductor/nanodevice circuits |28, [79-81], namely that the
crosspoint latching switch defects are independent (with probability p) and are
equivalent to “stuck-at-open” faults, i.e. that the bad device is either miss-
ing (leaving the nanowires disconnected) or is always in the OFF state (Fig.
. It is believed that most of the defects in molecular devices will just cause
latching switches to be disconnected. Therefore we simulate the defects by
randomly setting synaptic weights w;; to zero. If the fraction of bad devices
is small, the dynamics of the system will not change much, and the result of
defect is just a lower connectivity Megective < M. Considering the fact that
each pair of connected somatic cells are connected by two Synapse simulta-
neously (see Fig. and Ref. [39]), and that we need to disconnect both
synapses in order to fully cut the connection between two cells, we can obtain
the formula for effective connectivity:

Meffective = M(l - p2) (29)

Now we can calculate the capacity of the network with defects, following similar
arguments as in [39)].
Without losing generality, let us examine the stability of the first pattern
(u = 0). To achieve consistence between the input and desired output, we
require:
sign(2?) = &) (2.10)

for all 7. According to Eq. ,

o =) wig) =) Esign (Z é”ﬁf) : (2.11)
J J Iz

if all outputs are clamped at the correct value (f(z;) = £J) in Eq. (2.6). (For
simplicity we have set g = 1.) We define variable Z; as the desired output of
cell 4, multiplied by it’s input:

Z; =& =) sign (g?gg Zg;gg) = sign(1 + d;;) (2.12)
J I3 J
where we have moved £)¢? into the signum and,

6y = Y &leeret (2.13)

p#0
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is the noise term. Because of defects in the network, we should keep in mind
that the summation is only carried over js for which w;; # 0, so there are
only 4 M gective terms instead of 4 M terms in the summation over signum. For
large P and M, both §;; and Z; are random walks with step size 1, and the
distributions are approximately Gaussian. If we define the output of cell i to
be “correct” when it produces the correct sign, i.e. f(x;)€2 > 0 or Z; > 0,
then we will get the same capacity as in Eq. , only with M replaced by
Meffective:

P = ay(4M)(1 — p?). (2.14)

max

Therefore, if the corruption rate of the switches is p, the capacity is decreased
by a factor of p?.

In our numerical simulation, however, the number of patterns is small(ranging
from 3 to 8). Moreover, we had adopted a more strict yet more practical cri-
teria for “correct” bits: the output of cell i is correct if f(z;) = &Y. To fully
explain the experiment data, we need more exact calculations than that in
Ref. [39].

First of all, the noise distribution is no longer a Gaussian. We use the
exact Binomial distribution (for equal probability of £1):

fs(x) = Prob|d;; = ]
r+P—-1 1 aexP—1

5 =5:Cr1 - (2.15)

= Binomial[P — 1, 5

For discrete distribution, one has to consider the situation when the signum
is zero. The zero terms has no effect to the random walk and hence should be
excluded from summation in Eq. when one calculates the distribution.
The actual number of terms in the summation over signum is therefore

n = 4Meffective(1 - p0)7 (216)

where pg = fs(—1) is the probability for the signum to be zero. The probabil-
ities of the signum being +1 and -1, respectively, are:

o Zfa (2.17)

Z fi(a (2.18)

1—p0 —P+1

where the factor 1/(1 —pg) is to normalize p, and p_ so that p, +p_ = 1. For
large M, the distribution of Z can still be approximated by a Gaussian with
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Figure 2.3: Defect tolerance of Crossnet as Hopfield network. The results are
from a recurrent InBar as a Hopfield network: the fraction of wrong output
bits as a function of the fraction of disconnected molecular devices (latching
switches). Lines show the results of an approximate analytical theory (see
[44]), while dots those of a numerical experiment.

mean n(py — p—), and variance n.

Under the new criteria, the output is correct if f(x;) = £Y. By comparing
Eq. with the stable solution Eq. and talking into account the factor
g, one finds that this means Z > 1/g. Therefore, we need to integrate the
distribution of Z over —oo to 1/g to get the ratio of wrong bits. The results
of theoretical calculation and experimental simulation are shown in Fig [2.3]
The simulation was done for N = 3744, M = 25, g = 1.0. We can see that the
Corruption Rate can reach as high as 80%, while still retain a stability of 99%.

2.4 Storing Correlated Patterns

The calculations in the previous section are based on the assumption that
the patterns are independent to each other. The storage of correlated patterns
in Hopfield model is a general topic addressed by many researches in the 1980s.
We can define two types of correlation: the “semantic” correlation is that
among different patterns, while the “spacial” correlation is among different
cells of the network. The storage capacities for both types of correlation are
calculated in [82] using the space of interactions method proposed by Gardner
[83]. Phase diagram based on Ising Model for the spatially correlated patterns
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are obtained in [84].

Semantic Correlation (simply refereed to as correlation in the following
discussion) generally decrease the storage capability of the network. Basically,
when stored patterns are correlated with each other, the noise distribution
become biased and the simple Hebb rule is no longer suitable. Several other
prescriptions with some modifications to Eq. have been proposed. The
most effective one is the Pseudo-Inverse prescription illustrated in [1], which
gives capacity of Py.x ~ N. But nonlocality has to be introduced in the
learning process. Alternative local learning rules are proposed in [85] and [86],
which give a capacity of a. = (1 —1b])?/2In N for all the patterns to be stable,
where 0 < |b| < 1 is the level of correlation.

Here we try to use the same signal-noise analysis in the previous section to
study how the correlation affects the storage capability of the network if the
learning rule remains unchanged as Eq..

We use the method proposed in [85] to generate the hierarchically corre-
lated patterns. The probability distribution of the patterns sequences are:

1. Ancestors
1 1
pE) = S+ a)d(€ )+ 51— +1)  (219)
2. Descendants

PE™) = S(1+ ERBE” — 1) + (1 - E00E" +1)  (220)

where 0(z) = 0 for x # 0 and §(0) = 1. The superscript uv in Eq.
means that the descendent pattern v is derived from ancestor pattern pu. We
see that the ancestors are independent random sequences with a bias con-
trolled by a. Later we will set a = 0 and only consider the unbiased patterns.
The distribution of descendants are dependent on their ancestors, creating a
correlation controlled by b among the patterns. The correlations among the
descendants themselves, and that between the descendants and their ancestors
are, respectively:

(™)) = v (p=pv#)
= a’V  (u# )
(e = b (u=u)
= a’b  (p# )

where ((-)) means average over all pixels and all patterns.
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The average bias of the patterns are:

(&) =a (2.25)
(&) = ab (2.26)

Let us assume a = 0, i.e., there is no bias for any patterns.

We study two different cases. In the first one we try to store patterns that
are descendants from a single ancestor. In the second case all patterns are
from the same ancestor except the one we want to retrieve, which is from a
different ancestor. Note that all the patterns stored in the network belong to
the second generation. Intuitively, one expects worse results for the latter case
because in that case the pattern we want to retrieve is alien to all the others.
As usual, we define Z; as:

Zi = Z sign(ffboffo Z fflyfflu) = Z sign(1 + (5ij), (2.27)
J v#0 j

where the noise term is

Gy =) &oeever. (2.28)
v#0

Without losing generality, suppose the ancestor of the pattern we want to
retrieve is u = 0, then the probability density function of the noise distribution
will depend on four random variables: £°, €20, €7, and &;. However, since we
are only interested in the summation over j in Eq. (2.27)), we should calculate
the density function averaged over £7°, and £). And because it does not matter
if we calculate this average before or after the summations of probabilities in
Eq. and Eq. , we do it here to simplify the equations.

Therefore, for the the patterns with same ancestors (u = p/ = 0), the

probability distribution of the noise is:

P—1+2690 P16
f&(x) = 2_PCP—12 (1- b4(§?)2) 2
{(1 = %0)"8" 4 (1 4 b2e0)s”
FD[(1+ b2E0)7E” — (1 — b))} (2.29)

And when p # ¢/ (let us assume ' = 1), the probability distribution of noise
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is:
o= 2ro e
{(1—0%))™ + (14 %)™
+a’B(1 4 62E])" — (1 - %)™} (2.30)

For large connectivity, Z; obey Gaussian distribution with density function:

o 1 [{L‘—m( 1007 ?7511)]2
12(0) = o P g g0 g1y ) (231)
where the mean and variance are:
m( ?07 zoagzl) = 4M[p+( 1007 107511) _p—( iOOv ?’gzl)]v (2'32)
02( ?07 ?763):: 4A4{1 _'pO( ?07 ?75})L (2‘33)
and pg, ps, and p_ are defined as:
Po = jb(__1>7 (2'34)
P—1
Py = Zf(g(l’), (2.35)
x=0

o= Y ), (2:36)

r=—P+1

The mean and variance are all functions of random variables £P,¢!,and £°.
They are, respectively, the ¢th pixels of the two ancestors, and the ith pixel of
the first descendant (that is the one we want to retrieve). The distribution of
Z; need to be averaged over the distribution of those variables.

For the two cases, examples of the distribution of § and Z are shown in Fig
and Fig[2.5] in which a = 0,b = 0.3,0.6,0.9, M = 25,n = 10. Simulation
was done for N = 1664, M = 25, g = 0.3, the results was shown in Fig [2.6(a)|
and Fig .

As we can see, in both cases, the correlation between patterns has an ad-
verse influence on retrieving. The correlation between the background patterns
(those not being retrieved) will increase the noise amplitude, while the corre-
lation between the target (the pattern that is being retrieved) and the other
patterns will generate a biased noise distribution. Generally, error probability
will increase in both situations. In the case of correlated patterns, however,
the theory does not explain the experiment as well as that for independent
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Figure 2.4: Noise and output distribution example 1. All patterns are from
the same ancestor except the first pattern.
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Figure 2.5: Noise and output distribution example 2. All patterns are from
the same ancestor.

39



0.5 <
= 3patterns
] = 4 patterns
0.4 4 5 patterns
o)
9 -
R
2
5 J
0.2 S
0.1 5
0.0 S P
| ! | ! | ! | ! | ! |
0.0 0.2 04 0.6 0.8 1.0
Correlation b
(a)
0.3 = 3patterns
= 4 patterns
1 5 patterns
) = 6 patterns " .
o 0.2 5 wm
S
5 J
0.1 5
0.0 S

0.0 0.2 04 0.6 0.8 1.0
Correlation b
(b)

Figure 2.6: Storing correlated patterns. a) All patterns are from the same
ancestor except pattern 0. b) All patterns are from the same ancestor. The
solid lines are theoretical results.
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patterns. We believe the reason is that the Central Limit Theorem is no
longer applicable if the patterns are not independent (see Eq. . Prob-
ably the distribution of Z; is still close to Gaussian, but the variance of the
sum of correlated random variables would certainly be larger than Eq.
has suggested. And that explains the worse performance than the theory has
predicted.
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Chapter 3

Introduction to Reinforcement
Training

3.1 Supervised and Reinforcement Learning

In the field of machine learning, supervised learning means learning from
examples. A training set with known correct outputs has to be provided for
supervised learning. One way to teach a learning agent to achieve some desired
input-output mapping (when the output of the learning agent is a function of
the input and some internal parameters, for example), is to minimize the error
by following the gradient of the error function with respect to the internal
parameters. When the error function is a sum of squared differences between
actual and desired outputs, for example, this technique is basically a Least
Mean Square (LMS) fitting of the mapping function (which is usually a very
complicated and nonlinear function) to the observed training data [87]. The
most successful and widely applied training algorithm in neural networks, the
error Back-Propagation (BP) method, is a gradient following technique [I].
It finds the gradient of the error function elegantly by back-propagating the
error signals through the network itself. It can be extremely efficient because
it allows the parallel computation power of the network to be fully utilized
in the training stage. This method was invented independently several times
[88-91]. Its implementation in CrossNets can be found in Ref. [61H63)].

Supervised learning may be inadequate for the more general interactive
learning because it is often impractical to obtain examples of desired behavior
[92]. In reinforcement learning the learning agent learns through its own expe-
rience, by interacting with the “environment”. It observe the current “state”
of the environment s; at time ¢; it then performs an “action” a; to change the
state to s;;1, and at the same time a “reward” 7,y is given as an evaluative
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Figure 3.1: The agent-environment interaction in reinforcement learning (from

Ref. [92]).

feedback from the environment (when the reward is negative it actually means
punishment). This interaction is illustrated in Fig. . If such an interac-
tive process does not depend on history, the reinforcement learning task is a
Markov Decision Process [92].

The reward is intended to “reinforce” good behavior and punish bad be-
havior, like the way one would use snacks to train a dog. It is, however, very
different from the supervision (such as the error function) provided to the agent
in the supervised learning. First of all, the relation between current reward
and the desired action is usually unknown to the agent (if there exists such a
relation), while the error function is clearly defined as the difference between
the actual and desired behavior. More importantly, it may be impossible to
define the reward as a function of a single action. For example the reward
may be “delayed”, as in a chess game where the final consequence of wining
and losing is a combined result of a sequence of actions taken by the player.
In this case one would define the state to be the current positions of all the
chessmen on the board. It is inappropriate to define the reward in a chess
game for single actions, as these definitions are almost always shortsighted. It
is also impractical to define reward as a function of a sequence of actions since
the number possibilities is astronomical. To alow the reinforcement learning
to solve this problem in full, the agent should be rewarded (punished) only
at the final point when the game is won (lost) [92]. Note that in this case
not only the learning agent are not given the correct answer, but the reward
may not even be an indication of whether the action is right nor wrong - it is
merely an indication of good or bad consequences. The agent may be receiving
negative feedbacks while it is actually performing good actions, because some
bad actions in an earlier time are causing the bad consequence. Under these
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circumstances, the only way for the agent to learn the desired behavior is to
try many different actions; and it is important that the goal is to maximize
the long term expected reward.

3.2 General Reinforcement Learning Algorithms

The long term reward can be defined as the discounted future “return”:

Ry = ZWth+k+17 (3-1)
k=0

where 0 < v < 1 is the discount factor. Discounting puts more weights on
rewards from near future than from distant future; and it makes the summation
finite as long as the reward is bounded. When v = 0, it becomes a problem of
“immediate reward” .

The learning agent takes actions according to some “policy” which can be
defined as the probability 7(s,a), of taking action a when current state is s.
This is a general definition. If 7 can only take values 0 or 1, the policy is
deterministic. In principle the agent can perform random search in the policy
space and try to find an optimal policy that maximize the return. But the
pure policy search is very inefficient when the reward is delayed.

Although in general the value for action can not (and should not) be de-
fined, we can define “value” for a state (when a given policy is followed) to be
the expected return starting from that state and following the policy there-
after:

V™ (s) = E.{Ry|s; = s}, (3.2)

where E;{-} means the expectation under the condition that policy 7 is fol-
lowed. The concept of value is very important in reinforcement learning.
Crudely speaking, it guides the policy search toward more “promising” states
(states with higher values) and actions (that leads to high-value states), and
therefore achieve a much more efficient algorithm. Intuitively the value func-
tion is a much better guidance for improving policy than just the reward. In
fact, when the values of stats are known for a given policy, a new policy that
is greedy with respect to the value functions (i.e., a policy that determinis-
tically leads to the state that has the highest value among possible choices),
is guaranteed to be a better policy. This known as the “policy improvement
terrorem” [93H95]. Based on this theorem, we arrive at the following learning
algorithm:

1. evaluate the value functions for current policy;
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2. improve the policy with an greedy policy based on the value functions;
3. repeat 1) and 2) until the policy is optimal.

This is know as policy iteration, and it is proven to converge to an optimal
policy (a policy that maximize long term reward) [02]. It is the central idea
lying behind all known reinforcement learning algorithms, for example, the
Dynamic Programming (DP) [93], Mote Carlo (MC) methods [92], and Tem-
poral Difference (TD) algorithms [96]. Note that the policy evaluation process
itself is a multi-step iteration, but in practice it is not necessary to wait for
its convergence. As a result the two processes can proceed in parallel. This
is called value iteration [97]. But if that is the case, we may be using a crude
estimations of the value functions in stead of their true values, therefore it is
important to keep some degree of randomness in the policy (at least in the early
stage of the learning) to prevent convergence into suboptimal solutions. There
is an important topic of the trade off between the “exploration” (meaning
random policy search) and the “exploitation” (meaning taking greedy policy
derived from the estimated value functions) in reinforcement learning.

The TD algorithm, which performs the value evaluation, is of particular
interest to us. It learns the value function of current state by comparing with
that of the next state:

V(s) «— V(s) +ri1 + V(') — V(s), (3.3)

where s is the current state and s’ the next state. The learning rule uses
the discounted value at next state, plus current reward, as the “target” to
update the value of current state. The discount factor is the same as that
in the definition of return (3.1). This learning rule is related to the famous
Bellman’s Equation in reinforcement learning [93] which expresses a relation
between the value of a state and the values of its successor states. The idea
behind this is simple: the states that lead to bad (good) states are also bad
(good), unless the current reward r.;; is exceptionally high (low).

To understand intuitively how the TD learning rule works, let us suppose
we are trying to solve a delayed reward problem of finite episode, i.e., a problem
in which a long sequence of actions are performed before a reward is received;
and after the reward the sequence terminates and a new episode begins (an
example can be found in Sec. . According to Eq. , the value functions
of the terminal states (the states that directly leads to feedbacks) are the
first to be learnt. This is because the values are initialized to zero, and Eq.
becomes V (sr) < ryyq1, where sy denotes the last state, and rpyq the
reward at the end of the episode. After that, as the update rule is repeated
for many episodes, the value function starts to “back-propagate” through the
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chain of events, as stated by Eq. (3.3). If we are following a policy that leads
to nonzero probability of visiting any state, the estimated value functions
eventually converge to their true values [92].

The TD learning rule can be made more efficient by introducing the “el-
igibility traces”, which remember which states that were visited during an
episode. At each time step, all the states that have been visited are eligible
for update by the following rule:

V(s) « V(s) + des(t), (3.4)

where
=11 +9VI(s) = V(s), (3.5)

as in Eq. (3.3), is called the TD error, and e4(t) is the eligibility trace of
state s. Usually e4(t) is set to 1 each time the state s is visited and starts to
decay exponentially thereafter with the factor e=*. This algorithm is called
TD()), where A determines how much we emphasize on more recent states.
It can be viewed as a combination of DP and MC methods [92]. It is often
more efficient than simple TD (or TD(0)) method, because all states along the
history of an episode are updated simultaneously, rather than just the current
state. Justification of the method can be found in Ref. [92].

3.3 (Generalization in Reinforcement Learning

The generalization ability is what differentiates supervised learning from
simple memorization. After being taught the training examples, the agent
has to make reasonable inductions about unseen samples. This is actually
achieved by complicated interpolation and extrapolation from the examples
by the input-output mapping function. Generalization in supervised learning
for neural networks has been extensively studied [98]; and the results are very
impressive [1].

The concept can be directly brought to reinforcement learning. In order
to gain generalization ability in reinforcement learning, the value functions
should have a parameterized function form V(s, @), where 6 is a vector of
parameters. The general gradient following techniques can be combined with
TD method to learn such functions. If we know the “target” (correct answer)
of V(s,0), denoted by v(s), the gradient following method tells us that the
parameters should be updated according to the following:

0 — 0+ nv(s)—V(s,0)]VelV(s,0), (3.6)
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where Vg = 0/00, and n > 0 is the learning rate. Since we do not know
the correct answer, we use the TD error instead. This (combined with the
eligibility trace) yields the following algorithm:

0 — 0 + node,
e — e+ VoV (s,0),

where 4 is the usual TD error (3.5)), and the eligibility trace e here is a moving
average of past gradients. For an analysis of convergence of this algorithm,
please see Ref. [99].

Obviously, this method of function approximation can also be applied to
the more general case where the state variable is vector of continuous values. A
reinforcement framework that learns in continuous time and space can be found
in Ref. [I00]. In this case, the policy should also take a parameterized function
form 7 (s, a, ). As we shall see later, this can be readily achieved by the neural
network implementation of of policy improvement; and the statistical gradient
following learning rules can be used to learn such parameterized policies.

The previous discussion helps us see the key difference between supervised
and reinforcement learning from another angle. In supervised learning, the
correct answers are already provided by the teacher, and the learning agent
learns to replicate and generalize. In reinforcement learning, on the other hand,
the agent has to find the answers first through the trial and error experience.
In this sense the supervised learning only solves part of the problem while
reinforcement learning with function approximation tries to solve the “whole
learning problem” [92].

The most impressive applications of reinforcement learning are in the field
of game playing. For example, Tesauro’s TD-Gammon [I0I]. Other examples
include control problems [102] and dynamic channel allocation [103].

3.4 Reinforcement Learning in Neural Networks
and Actor-Critic Method

The focus of the following chapter is global reinforcement learning in ANNs.
The term “global” emphasize the fact that the same reward r is used for
update rules through the entire network. This is different from BP, in which
the error function has to be back-propagated through the network to develop
“local” error signals for weight update. Because no backward propagation of
signals is required, reinforcement learning algorithms are believed to be more
biologically plausible [104].
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We discuss networks consisting of neural cells whose output signals y are
sent to inputs of other cells through synapses with certain weights w;;:

Ti= ) wiy;. (3.9)
j

In this case, the policy can be achieved by the input-output mapping. More
specifically, the state should be the input to the network; while the network
output is the action. The synaptic weights are the internal parameters that
determine the probability producing certain action under the condition of cur-
rent state.

Most previous work on reinforcement training in neural networks has been
focused on networks in which the randomness necessary for policy exploration
is provided by stochastic neural cells (“Boltzmann machines” [105]) with ran-
dom outputs. For such networks, Williams [I06] has been able to derive a
general class of “REINFORCE” (REward Increment = Nonnegative Factor x
Offset Reinforcement x Characteristic Eligibility) learning algorithms which
achieve a statistical gradient ascent of the average reward, E{r|w}, in the
multi-dimensional space of w;;. This gradient ascent is achieved with the help
of signals readily developed in the network, similar to that in BP, but without
back-propagating signals!

To apply reinforcement training to CrossNets, however, we need to extend
the REINFORCE approach to networks with noisy synaptic weights. This is
motivated by the characteristic of the synapsis in CMOL CrossNets. In CMOL
hardware, the synapses are implemented by naoelectronics and therefore are
by their nature stochastic (see Sec. [1.5). In addition, stochastic synapses
are believed to be more biological [107, [108], and some existing supervised
learning algorithms (see Refs. [109], [I10] and [I1I] for examples) also rely
on random weights. The generalization of REINFORCE to boarder sources of
randomness and the derivation of some new learning rules are the topic of the
following chapter.

The REINFORCE algorithms, however, including the learning rules we
derived based this framework, are pure policy searching algorithms which does
not use the value functions. These rules by themselves are only expected
to work well for the “immediate reward” problems. The TD(A) method we
discussed in the previous section, on the other hand, is a learning rule for the
value functions only. To solve the more general reinforcement tasks, we need
to combine these two methods together to complete the full cycle of policy (or
value) iteration. In Ref. [I12] a set of learning rules called Value and Policy
Search (VAPS) algorithms that combines policy and value search together were
derived.

48



In this work, however, we adopt a method that is easier to implement for
neural networks: the so-called actor-critic method. Two separate networks are
needed in this method: the actor that performs the policy improvement (using
reinforcement learning rules for nerual networks), and the critic that learns
the value function through TD(A) method combined with gradient following
method. The gradient in this case can be readily obtained by usual BP method.
For details please see Sec. [4.7]

Before deriving formal reinforcement learning algorithms for neural net-
works, however, in Sec. we shows how the simple Hebbian adaptation
(Sec. can be combined with concept of global reinforcement to teach
a recurrent network to solve parity problems. In Sec. we will derive the
REINFORCE approach from a more general point of view (the likelihood ra-
tio method), so that it can be then applied to networks with other sources
of randomness. (It will also be argued that the new derivation can be gener-
alized to any feedforward or recurrent network.) In Section , and
we derive novel learning rules for networks with random inputs or random
weights, based on the arguments provided in Sec. In Sec. we apply
those rules to a set of classification problems ! and compare the results with
those from other algorithms. In Sec. [£.7] we apply the new rules to a popular
delayed reward control problem using the usual actor-critic method. Finally,
in conclusion (Sec. we discuss the advantages and limitations of the new
learning rules.

! Classification problems can be formed as a special case of reinforcement learning prob-
lems.
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Chapter 4

Reinforcement Algorithms for
CrossNets

4.1 Reinforcement by Hebbian Adaptation

The initial idea of this approach has been based on the fact of chaotic
excitation of recurrent CrossBars with differential dendritic signals (Eq. [1.12)),
at sufficiently large effective gain of somatic cells, as discussed in Sec. [1.4.1]
(see Fig. . One may say that in this regime the system walks randomly
though the multi-dimensional phase space of all possible values of somatic
output voltages V;.

We have also mentioned in Sec. that the Hebbian (anti-Hebbian)
adaptation (Eq. strengthens (weakens) the input-output relation. In a
recurrent network, Hebbian adaptation has an effect of stabilizing the system
(and therefore suppressing the chaos); while the anti-Hebbian rule, has the
opposite effect of driving the system away from current state (or even starting
a chaotic excitation from a otherwise stable state). Fig. shows an example
of the effect of Hebbian (anti-Hebbian) adaptation for n > 0 (n < 0).

Now, let us see how chaotic excitation, utilized as exploration, can be
combined with with the Hebbian adaptation as reinforcement to implement
learning ability. First, input signals are inserted into some of the cells, and
outputs picked up from a smaller subset of cells. The system is allowed to
evolve freely, but this evolution is periodically interrupted, for brief time in-
tervals At, by the application of somatic output voltages V; of each cell back
to its input dendritic wires. Simultaneously, the tutor applies to all synapses
a global shift S corresponding to its satisfaction with the system output at
this particular instant: S < 0 if the network output is correct and S > 0 if
it is not. This operation results is a small change of average synaptic weights
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Figure 4.1: The effect of Hebbian and anti-Hebbian adaptation in a recurrent
network. The figure shows the evolution of cell input signals z, as in Eq. (L.9).
The system is a small (fully connected) recurrent network of 10 cells. It starts
from a random carotic state as described in Sec. and undergoes four
stages of training. During each stage, the learning rate 7 is a constant and the

simple Hebb’s rule Eq. ((1.29)) is applied.

(w;;), that is described by Eq. , thus implementing the Hebb rule if the
system output is correct, and the anti-Hebb rule if it is incorrect. It had been
our hope that the repeated application of this procedure would increase the
probability of the system’s eventual return to the “good” regions of the phase
space, possibly with the eventual quenching of the chaotic dynamics.

Fig. shows the results from a small recurrent InBar, taught by this
technique to solve the parity problem. In a parity problem, the network is
presented a binary vector (composed of +1s, for example); and it has to tell
wether the number of +1s is even or odd. The parity function is actually a
very difficult problem for machine learning, because it is extremely nonlinear.
Indeed, by flipping just one bit in the input, one gets the opposite output.
This is why the parity function (often its two-bit version, XOR) is popular for
testing a learning algorithm’s ability to do nonlinear classification.

The fact that this intuitive technique worked is actually quite surprising. It
lacks theoretical support; and it is not expected to work for more complicated
problems (like delayed reward problems). For those problems, we need the
formal theoretical framework discussed in the following sections. However,
since there are evidence suggesting that Hebbian kind of adaptation is really
happening (and may be playing an important role) in the biological brain [I13],
this simple experiment may provide us a glimpse at how the brain functions.
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Figure 4.2: A preliminary result of reinforcement training: the input signal of
the output cell of a recurrent InBar with quasi-continuous doubled synapses
(Fig. trained to calculate parity of three binary inputs. (Any output
signal value above the top horizontal line means binary unity, while that below
the bottom line is binary zero). System parameters: N = 612, M = 16,
n = 10, Ry /(R/Mn?) = 0.1, Ty/RsCy = 5 x 1075 g = 1, /T = 10,
Smax/T = In 100 =~ 0.46, At = RyCy = 1073,

4.2 Derivation of the REINFORCE Algorithm
using the Likelihood Ratio Method

Let v = {v1, v2, ...} denote a vector of some activity signals of a stochastic
network with a set of deterministic internal parameters 6. Let us make a
natural assumption that the probability p(v,8) of the system to generate a
particular set of signals, at fixed network input, is a continuous function of 6.
In this case the average reward received at a given set of parameters 0 is*

E{r|6} =Y r(v)p(v,0), (4.1)

where we assume that the reward is some function r(v) of the signals, and
that U, which does not depend on 6, is the set of all possible vectors v. By

'For the simplicity of notation, we assume that the signals take discrete values. All the
results are trivially generalized to the case of continuous signals.

52



calculating the gradient with respect to @ we obtain

S (V) Vop(v, 0)

veU

- Zm%mv,e)

— E{re|6}, (4.2)

VoE{r|0}

where the vector

Vep(Va 0)
p(v, )
= Voln[p(v,0)] (4.3)

had been known in classical statistics as the “score function” or “likelihood
ratio”, and was called “characteristic eligibility” in Ref. [I06]. Equation
was originally proposed for computing performance gradients in i.d.d. (inde-
pendent and identically distributed) processes [114].

If the incremental update rule is

AO = nre, (4.4)
where 7 is positive constant (“learning rate”), then according to Eq. (4.2)),

E{A6|0} = nE{re|0}
= nVeE{r|6}. (4.5)
so that the average update is an unbiased estimate of the average reward

gradient.
In the more general case of nonuniform learning rates,

A(gk = NkTreg, (46)

the estimation may deviate from the exact direction of the gradient. But as
long as all components 7, of the vector n are non-negative and sufficiently
small, we will always move “uphill” along the reward profile, because the
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change of the average reward

AB{r|0} ~ VoE{r|0} - E{A0]0)

- S (55
o.k k (4.7)

v

One can easily verify that this is also true for the case when coefficients 7
depend on time but do not correlate with rey. (In that case we require (n;) >
0.)

This basic formulation is actually quite general. It does not tell us where
the randomness comes from; and the complexity of the learning rule depends
heavily on the form of the eligibility. The practical value of Eq. (4.6]) is
especially significant for the case of neural networks, where it is often possible
to localize and simplify e;. Before moving on, let us specify our notations for
an MLP (multi-layer perceptron see Fig [1]). We denote the collection of
all weights in the network as w, while the set of weights that connect mth
layer to the previous layer is presented by vector w™. Similarly, the set of
output signals of all the neurons in the network are denoted as y, while y™ is
the subset of outputs from layer m.

For an M-layer MLP with deterministic synapses and random cells, we
can identify v with the set of all cell outputs y, and @ with weights w. Note
that for an MLP, the probability p(y,w) may be calculated layer by layer.
Indeed, given that the output of layer m — 1 is y™ !, the probability for
the mth layer to produce output y™ is a function of y™, w™ and y™!, i.e.
p™ = pm(y™, w™, y™ ). For the input layer, p*(y!) is simply the probability
of a particular input y' which does not depend on any weights or other cells.
Therefore, according to the basic relation of conditional probability,

ply.w) = p'(y 1) (y2 w2yt
pM (M, WMy, (4.8)

Now let us calculate the derivative of Inp(y, w) with respect to a particular
weight w;; which connects cell j in layer m — 1 to cell 7 in layer m:

_ Ohfply, W)

ij —

4.
e (1.9)

By conditioning on (i.e. fixing) the previous layer, only one of the factors in

o4



Eq. (4.8) is affected by the variation of w;;. Therefore,

B o hl[pm(ym7 Wm’ ym—l)]
eij = .

4.10
o (4.10)
Since p™(y™, w™, y™ 1) is simply a multiplication of independent probabilities
for different cells in the mth layer (because there is no connections with a

layer for a MLP), we can further “localize” e;; to a single cell and obtain the
following REINFORCE learning rule [106]?:

Awgj = nijreq;, (4.11a)

- aln[pl(yla Wm7 ym—l)]
" (9wz-j ’

(4.11D)

As an example of how Eq. (4.11b)) can lead to extremely simple learning
rules, let us consider the “Bernoulli-logistic” stochastic cells. In this case, y;
can take only two values (0 and 1), with probabilities

pilys, W™ y™ ) = { ;(;5’(%)’ i z - ? (4.12)
where g(x) is the “logistic” activation function,
1
g(x;) = Ppp— (4.13)
It may be readily shown [I06] that in this case e;; takes the form
e = (yi — (Wi))¥s» (4.14)

where (y;) is the average output of cell i for a given input x;. With all the learn-
ing rates equal, n;; = 1, Eq. (4.11a]) yields a local rule called the Associative
Reward-Inaction (A,;) [92]:

Awij = nr(ys — (Yi) )Y (4.15)

2Here we have used the same method of conditional probability to localize the learning
rules. Williams’s original derivation, however, started from p(y, w) with the assumption of
random output and deterministic weights. By showing that Eq. (4.11al) can be viewed as
a particular example of Eq. , and that the localization procedure only depends on the
feed-forward structure of the network, we have removed the assumptions on the source of
randomness.
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The addition of a small extra term (which is not responsible for following the
gradient but helps to kick the system out of local minima) yields the famous
Associative Reward-Penalty (A,.,) rule [115]:

Awi; = n[r(yi — (yi))y; + A1 =) (—yi — (¥i))ys] (4.16)

where r € [0,1]® and A is a small positive number.

Some other activation functions that lead to simple learning rules can be
found in Ref. [I16]. Existing algorithms that can be associated with the
REINFORCE principle include also L,; [I17], and the learning rules for the
“exponential families of distributions” [I06]. All of them rely on stochastic
neural cells.

For an arbitrary feedforward network the concept of “layer” is not very
clear but still definable for the purpose of our derivation. The input layer
is simply the collection of all those cells which receive only external inputs.
The second layer then can be chosen from the rest of the cells (excluding
those that are already categorized as the input layer) which receive no inputs
except those from the input layer or external signal. Generally, we will assume
that a cell belongs to layer m if all the cells that directly feed it belong to
the previous layers and at least one of them belongs to layer m — 1. This
way, all the cells in the network can be labeled with a layer number, and
p(v,0) can still be calculated “layer” by “layer”. In this case, however, we
should directly factorize p(v, 0) into individual cells downstream through the
connections rather than into layers because the input signal to any cell may
come from any previous layer.

REINFORCE learning rule can even be generalized to recurrent networks.
Williams derived “episodic” REINFORCE algorithms for episodic reinforce
tasks, based on the fact that any recurrent network can be unfolded in time[I]
into a feed-forward one (for details, see [106]). Baxter et al. [118] showed how
to generalize REINFORCE algorithm for recurrent networks to non-episodic
problems through Partially Observable Markov Decision Processes. All these
extensions are applicable to the new derivation provided above.

3This is the reward representation originally proposed in Ref. [I15]. According to the
REINFORCE theory, however, the learning rule should be able to maximize the expectation
value of r regardless of the representation. In our simulation A,., performed equally well or
even better for r € [—1, 1] (Sec. .
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4.3 Networks with Noisy Inputs

The merit of the derivation in the previous section is that it has much more
flexibility to be easily grafted to networks with different sources of randomness.
To show this, let us first consider a MLLP in which an additive Gaussian noise
with zero mean dx; is injected into the cell input x;:

r; = () + dzy, (4.17)

In this case y; = g(x;), where g(x) can be an arbitrary activation function;
while x; is a random variable obeying the Gaussian distribution, with the
following probability density function:

pilwi, w™, y™ ') = Aexp [—w] , (4.19)

where A is a normalization factor and o7 is the variance of the random noise.

Now let us identify variables v of Sec. with the set of input signals x,

and @ with the set of synaptic weights w;;. Then from Eq. (10), the eligibility
component

~ Olnp; (v — (x:)y;

€ij = 3 .

3wij o;

(4.20)

Therefore, the eligibility looks close to that expressed by Eq. (15), which
leads to the A,; rule, even for an arbitrary activation function and for any
(e.g., continuous) probability distribution of output signals y;. As a result, if
we take 17;; = no?, we obtain the following simple local learning rule:

Rule Al: Aw;; = nr(z; — (z;))y;. (4.21)

which is very close in structure to A,;.

Fig. shows the learning dynamics (for 10 independent experiments)
of a fully connected MLP (4-10-1) trained with Rule A1 to perform the parity
function, which tells wether a binary vector contains even or odd number of
1s. The inputs are binary (-1 and +1).* The reward signal is simply r = +1
for the correct sign of the output signal, and » = —1 for the wrong sign. The
network performance has been measured by the sliding average reward defined

4Because of such symmetric data representation, a certain number of bias cells with
constant output (+1) had to be added to the input and hidden layer, in both this task, and
that described in the next section. These biases are not included into the cell count.
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Figure 4.3: Parity function learning dynamics. a) Al, n = 0.1. b) A2, n =
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ra(t) = (1 = )ra(t — 1) +r(t). (4.22)

Here « is a small positive constant (for the results shown in this paper, v =
0.01), t is the training epoch number, and r(t) is r averaged over all training
patterns in the t-th epoch. One epoch consisted of the system exposure to all
training patterns, and the resulting adaptation of all weights. The training set
consisted of all 16 possible input patterns.

The neural cells were deterministic, with the following activation functions:

y; = tanh(h;) = tanh( x;) (4.23)

Ny

[y

where G = 0.4 throughout the paper and N,,_; is the number of cells in the
previous layer®.

The noises dx; are Gaussian random variables with equal fluctuation swings
(0; = 0). In order to arrive finally at a trained network with fixed (determin-
istic) weights, we used the following “fluctuation quenching” procedure:

o(t) =a(0)[1 —ry(t)]%, (4.24)

where the constant « controls the quenching speed. This is in the line with the
idea of balancing exploration and exploitation. In the simulation for parity
function, o = 1, and ¢(0) = 10 unless otherwise specified.

Since Rule A1 looks very similar to the A,; rule, (except that the post-
activation signal y; is replaced for the pre-activation signal x;), it is natural to
assume that the same problem of local minimum may be tackled by a similar
antitrapping A-term:

Rule A2: Aw;; =n[r(z; — (z;))
+ A1 = r)(—x — (@:)] ;. (4.25)
Learning dynamics for Rule A2 on the same parity problem is shown in

Fig. |4.3(b)l We can see clear improvement of performance in comparison with
Rule Al.

5In simulations we have used the “normalized” input h; in place of z; for all the learning
rules.
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4.4 Networks with Stochastic Weights

To apply the derivation in Sec. to the case when randomness comes
from the weights, let us now consider an MLP composed of deterministic cells
connected by stochastic synapses. In this case each w;; in Eq. is a
random number. Let us assume that the synaptic weights have the Gaussian
distribution with some mean value p;; and variance afj. It can be easily shown
that x; is also a Gaussian random number with a pdf of Eq. .6 But the
mean and variance of z; are now”:

(z;) = Zﬂijyg’, (4.26)

J
of = Doy (4.27)
j

Therefore we obtain exactly the same learning rules (Al and A2) if we calcu-
late the derivative with respect to p;; and replace Aw;; with Ap,;. But one
has to keep in mind that now the adaptive parameters are the average (or
unperturbed) weights f4;;.

There are two subtle difference between these two implementations of rules
A. First, the variance o? in the later is modulated by the activities in the
previous layer - cf. Eq. . (This is exactly why it is, in this case, called
“multiplicative” noise.) In most cases, however, the network quickly becomes
saturated (y; ~ £1 for all j) and we have an almost constant variance. Second,
by letting 7;; = no? the learning rate will depend on output signals if the noises
come from the weights. However, since o2 is the “activity” of the previous layer
weighted by o;;, for large networks it should largely remain constant or drift
slowly with time. We believe (although we have not been unable to prove this
analytically so far) that the correlation between 1/0? and re;; is marginal.
Therefore according to the arguments in Sec. [£.2] the learning rules should
lead in the right direction. Of course we could have taken uniform learning rate
n;; = n and completely eliminated both of those concerns with a more complex
learning rule. But none of them have produced any noticeable differences in
performance in our simulations.

In hardware implementation it may be difficult to keep track of the average
input (x;) (as in the case of CMOL [40]). In that case, the following rule can

6 According to the central limit theorem, if the cell connectivity is sufficiently large, the
distribution of x; is approximately Gaussian regardless of the distribution of w;;. In this
case, our assumption of a Gaussian distribution of the weights may be dropped.

"Note that at this averaging, by our definition of p;, y; should be considered not as a
random variable but a fixed number - cf. the derivation of Eq. .
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be used as a substitute:

Rule A3: Apy =1 [r(z; — )
+ A1 = r)(—z — 2))] y;. (4.28)

where z; is as in Eq. (A.1)),
v= wy;, (4.29)
J

w;j, wi; are independent random weights with the same mean values, and r is
the reward corresponding to w;;. The proof is as the following.

Let us denote the weight changes derived from A2 and A3 respectively,
as Ap;; and Apj;. Apparently these weight changes are different random
numbers, but let us calculate their expectation values (with A = 0). First,

E{Ap;} = E{nr(z; — x})y;}. (4.30)

Since w;; and w;; are independent, w;; does not correlate with r or y; which
are all functions of wy;s. Thus we can replace all wi;s in Eq. (4.30) with their
expectation values {wj;} = 5, this immediately gives us

E{Ap;y = E{nr(zi — (:)y;}
= E{Ap;}. (4.31)

Therefore A1 and A3 follow the same gradient stochastically.®

Learning dynamics for Rule A3 on the same parity problem is shown in
Fig. [4.3(c)|

Rules A have been obtained by looking at the reward as a function of
x. However, there is another legitimate way to look at the reward: at a
fixed network input, we may consider it a function of the synaptic weight set,
r = r(w). From this standpoint, in Eqs. (4.2)-(4) we can replace v with w,
and @ with p. Assuming the Gaussian distribution of the random weights,

2
Wi — [lij

8Note that when implementing the second set of random weights (4.29)), the output
signals are memories from the first perturbation, i.e., y; = g(x;). Otherwise (suppose if we
had used y; = g(z})) we would not have been able to obtain the same expectation values.
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we get
dlnp; ij — Mij
ey = P = D M (4.33)

ij

8,uij N [
Again, we utilize the flexibility in choosing n;; to further simplify the learning
rule. With n;; = nafj, we obtain the following simple rule:

Rule B: A,LLZ] = nr(wij — ,LLZ]) (434)

This is perhaps the simplest learning rule suggested for artificial neural
networks so far. Each weight change involves no information other than its
own perturbation and the global reward signal. Fig. [4.3(d)|shows that this rule
follows the gradient at a lower speed than Rule Al .9 In the simulation
the synaptic weights were independent Gaussian random variables with equal
fluctuation swings (0;; = o), but generally different mean values ;5. And the
same quenching procedure as in the previous section has been applied.

An interesting fact is that rule B can also be applied to binary weights.
For example if the weights w;; can be either 0 or 1, with the probability

oy ) g if wy; =15
p(wz]a uZJ) - { 1— i, if wij = 07 (435)
then . /
np 1/ g, if w;; = 1;
- : 4.36
Ohi { —1/(1 — pi;), if wy; = 0. ( )
Therefore
€ij i Mg Wi 2#37 (4.37)

(L= ) o
and the learning rule is the same as Eq. (4.34)).

4.5 Networks with Noisy Outputs

Let us consider an MLP in which an additive Gaussian noise with zero
mean Jy; is directly injected into the cell output y;:

yi = (Yi) + 0y, (4.38)
(i) = g(x:), (4.39)

9Adding an antitrapping term, similar to those used in Rules A,., and A2, does not help
here.
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where x; is as in Eq. (A.1). In this case y; is a random variable obeying the
Gaussian distribution, with the following probability density function:

pi(ys, w,y™ ) = Cexp [—@2_0#»2] . (4.40)

And the eligibility component is

B 0ln p; _ (yi — (%))9’(1’1’)%’.

= 4.41
€ij awij 0i2 ( )
If we take 7;; = no?, we obtain the following general learning rule:

Rule CO:  Aw;; = nr(yi — (yi))y;9 (). (4.42)

The simplest activation function one can think of is g(x) = z, only that it
does not work for non-linear classification. It is tempting however to try the
alternative segmentally linear activation function

g(x) =z, if |z| <1,
{ g(x)=1, if |z| > 1, (4.43)

using the following simple learning rule:

Rule C1:

oy =y, i x| <L
Awyg = { 0, if |z > 1. (4.44)

But the simulation results have shown that it does not work very well (Fig

4-3(e))).
Another option is to use g(z) = tanh(z), and ¢'(r) = 1 — ¢g*(x). For this
activation function we obtain (with the anti-trap term):

Rule C2: Auw;; = nr(yi — (vi))
+ AL =) (=y — )] (L = (wa)?)y;- (4.45)

The simulation results are shown in Fig 4.3(f)]
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4.6 Comparison on MONK’s Problems

In this section we applied the new rules to some classification benchmark
tasks. There tasks are best solved by supervised learning algorithms such as
BP, but we use them as a initial test of generalization performance of the
learning rules. Because reinforcement learning address the more general task
of learning, a supervised learning task can also be formed as a reinforcement
task. Like the parity function problems, we simply give positive feedback when
the network produce correct classification and vice versa.

The “MONK’s” problems [119] are widely used for neural network algo-
rithm benchmarking. It contains three classification tasks with two classes.
Each of the 3 problems contains 432 data vectors with 17 binary components
each. For Problems 1, 2 and 3, there are, respectively, 124, 169, and 122
vectors in the training sets; the rest of the data are used as the test sets.

For the comparison of different training methods, we have used the MLPs
of the same size as used earlier by other authors: 17-3-1. The positive output
was treated as representing one class and negative one as representing the other
class. The training was carried out in the online mode, i.e., the weights were
updated after each pattern was presented at the input!®. We have used r = +1
for correct classifications and r = —1 for wrong classifications''. Training was
stopped either when the sliding average reward r,(t) exceeded 0.99 or after
10000 epochs.

Table shows the generalization performance (the percent of correct
classifications on the test set) after training the networks with the new and
some well known algorithms, including both supervised training rules (Error
Backpropagation (BP) [I19], Weight-Decay Backpropagation (WDBP) [121],
Alopex [IT1], Weight Perturbation (WP) [110], Summed Weight Neuron Per-
turbation (SWNP) [109]) and global reinforcement rules (A,; and A, [115]).
Rule C1 was not tested on the MONK'’s problems due to its poor performance
on the parity function problem. Rules A were implemented by additive noises
in the inputs (multiplicative noises in the weights produce the same results but
at slightly different parameters). The error bars correspond to the standard
deviation of the results of 5 experiments except for the case of A,,, A2, and A3
where they were the results of 20 experiments. The simulation results for the
first three algorithms have been borrowed from Ref. [111]. The last column of
the table shows the parameters used for each training rule. In order to ensure
a fair comparison between the best reinforcement learning rules (A,.,, A2 and

10A rigorous analysis of the convergence of online stochastic algorithms can be found in
Ref. [120].

A, was originally designed for r € [0, 1]. But in our simulation we have found marginal
improvement of performance under r = +1
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the best values obtained from (a), (b).
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Figure 4.5: The Cart-Pole Balancing problem. The force applied to the cart
is a(t)Finax, where —1 < a(t) < 1 is a function of time. In our particular
example Fi,., = 10 N, the masses of the cart and pole are 1.0 kg and 0.1 kg,
respectively, and the length of the pole is 1 m. The dynamics of the system
is simulated with a time step of 0.02 s which is small in comparison with the
dynamics time scales (which are of the order of 1 s).

A3), we have optimized their performances for individual problems over dif-
ferent learning parameters. Fig. shows as an example the optimization on
the second problem.

4.7 Comparison on the Cart-Pole Balancing
Problem

One may argue that the global reinforcement rules have to be also charac-
terized on problems which do not allow direct supervision. We have done this
for the Cart-Pole Balancing task [102] in which the system tries to balance a
pole hinged to a cart moving freely on a track (Fig. by applying a hor-
izontal force to the cart. A failure occurs when either the pole incline angle
magnitude exceeds 12 degrees, or the cart hits one of the walls (x = +2.4
m). A reward of r = —1 is issued upon failure and r = 0.1 otherwise!?. This
is a classic example of delayed reward problem. The agent is punished only
when the pole actually falls, even though the actions responsible for the failure
happened some time earlier.

To solve this problem, the usual actor-critic method [92] was used. The
actor is a 4-30-1 MLP which takes the state vector of the cart-pole system
{z(t),&(t),0(t),0(t)} as input and produces a single output a(t) as the action.
This network has been trained by either A1 or A,; (for this task, anti-trapping

12We have used r = 0.1 rather than r = 0 for intermediate movements to help jump start
the learning process.
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terms are not necessary) with the temporal difference (TD) error [92]
6(t) =r(t+1)+~V(t+1)=V(1), (4.46)

playing the role of the instant reward signal. In Eq. , r(t+1) is the real
reward from time ¢ to t + 1, V(¢) is the value function and ~ is the discount
factor. The TD error (Eq. can be viewed as an evaluation of the long-
term reward which truly reflect the goodness of current action. Therefore, by
replacing r with §(¢) in the learning rules, the delayed reward problems can
be solved. For example, in the case of TD()), the Al rule takes the form

Aw;;(t) =na6(t)ei;(t), (4.47a)
eij(t) =yArpei(t — 1) + [i(t) — (2:(t))]y;(t). (4.47Db)

For Rule B, on the other hand, we would use the following eligibility:
€ij(t) = YArpei;(t — 1) + [wij () — pi; (1)) (4.48)

One more option here is to use an additional adaptation of fluctuation
intensity instead of global quenching used in the previous tasks. Indeed, by
identifying the set of variances o; with € in Eqgs. and letting n; = 1,02,
one arrives at the following!®

Rule 0: Aoy = n,r|(z; — (2;))* — 0] /0. (4.49)

Unfortunately, this rule seems inconvenient for hardware implementation.

The critic is a 5-30-1 MLP which takes the state-action vector {z(t), &(t),
0(t),0(t),a(t)} as input and produces a single output V (t) as a value function
estimate. The critic has been trained by error backpropagation with TD error.
In the case of TD()),

Aw(t) = no(t)e(t), (4.50a)

e(t) = yArpe(t — 1) + VV (t), (4.50Db)

where the gradient can be obtained by back-propagating the TD error through
the network (for details, please see Ref. [1,192]).

All the somatic cells in the critic network have the tanh activation function
(4.23), except for the output cell which is linear:

13 Actually, this rule had been derived by Williams [L06] for random somas with the
Gaussian statistics of the output signal fluctuations.
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Figure 4.6: Training dynamics for the cart-pole balancing, using Rules Al,
Ale, B, and A, ;. All results were averaged over 20 independent experiments.
After each failure, the system is restored to its initial condition (z =& =6 =
6 = 0), and the experiment is continued. Parameters used in the training are:
for Rule Al: n, = 0.01, and o; = 10 for all cells (no quenching); for Rule
B: n, = 0.006; for Rule o: ¢; = 10 initially and 7, = 0.0002; for Rule A,;:
Ne = 0.02; for Backprop: 1. = 10; for TD(\): v = 0.95, Arp = 0.6.

The results of simulation are shown in Fig. [4.6] As we can see, although
rules A, ; and Alo (which is a combo of Al and o rules) lead to faster training,
simple rule A1 and B!'* are also able to fully solve this problem (i.e., to learn
how to balance the pole without failure indefinitely) eventually. Rule B, in
particular, is extremely simple. This rule does not assume any knowledge of
the structure of the network, therefore it is applicable to any learning model
with an arbitrary set of internal parameters (not limited to neural networks).

In comparison with the usual reinforcement learning using RBF network
[92] or CMAC [122], the learning is slow. However, unlike in those methods,
rule A1 learns directly in the continuous space. (No discretization whatsoever
is involved). We believe it makes our method applicable to a broader range of
tasks.

4.8 Discussion

Although the performance of the global reinforcement training rules on the
classification tasks are not better than that of supervised learning rules, their

4Combined with rule ¢ Rule B performed slightly better.
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natural domain of application are cases when the supervision is not available.
An interesting fact, however, is that reinforcement learning rules (including
our new rules) all had very good performance on the third of the MONK’s
problems, which includes noise in the training set and had been believed to be
the most difficult one for supervised learning[119].

The most important result of this study is a constructive proof that neural
networks with stochastic synapses, can perform classification (trained using at
least one rule family A), and reinforcement tasks (trained using rule A and
B) on a par with the Boltzmann machines using A,; and A, rules. The new
rules are very simple and local, giving hope that it may be readily implemented
in hardware, in particular in ultradense nanoelectronic networks like CMOL
CrossNets [40]. Such implementation is the topic of the next chapter.

Note that although rules of types A and B can be derived for the same
random system using the same approach, they are rather different in struc-
ture. Indeed, the weight changes Ap;; given by these rules are different ran-
dom numbers, even though for 7;; = n they have the same expectation value
(Api;) = noE{r|p}/0w;;. Apparently Rule B is ultimately localized and
makes less use of information about the network. (Indeed, the structure of
Eq. completely ignores the existence of the pre-synaptic and post-
synaptic signals!). We believe that this is why Rules Al and A2 are more
effective for training MLPs, while Rule B may be more applicable to learning
in more complex systems. (Our plans are to explore this opportunity.) The
two implementations (either by additive or multiplicative noises) of rules A,
on the other hand, provide flexibility for hardware implementation.

Rules C do not perform as well as rules A even with the anti-trap term.
We believe that the advantage of adding noise in the input is because that the
squashing activation function automatically quenches the noise when the cell is
saturated. We have tried, instead of using uniform noises, to manually quench
the noise in rules C according to the cell saturation, i.e., o;(t) = o(t)g'(z;),
and have obtained results comparable to those of rules A. However, we did
not include the discussion about this “modulated noise in the outputs” in this
paper, because we believe that rather than a new set of learning rules, it is
more of an awkward way of implementing rules A.
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Chapter 5

In Situ Reinforcement Training

In this chapter we discuss hardware implementation of the learning rules
discussed in the previous chapter. We use the stochastic multiplication method,
using time-division multiplexing (TDM) [62], as discussed in Sec. for
the in-situ implementation of the synaptic weight change proportional to the
product of two voltages A(w;;) = nV;V,. This method may be applied, for
example, to pre-synaptic and post-synaptic signals (giving the Hebb’s rule),
or for the realization of error backpropagation (in that case one of the voltages
represents the feedforward signal while another one, the backpropagating er-
ror). Superficially, it might seem that this approach enables one to implement
any of rules A1-A3 readily. Indeed, Aw;; given by any of these rules may be
presented as a sum of either two (Al) or four (A2 and A3) signal products.
Thus, using either two or four composite synapses in parallel (which is quite
natural in the CrossNet topology [40, [45]) may apparently do the job.

Two complications, however, cause our usual in-situ training method fail
to work for reinforcement learning. The first one is that Eq. has a
relaxation term. It makes the in-situ learning rule close to Oja’s rule A{w;;) =
V;V; —b{w;;), with b > 0 [123]. This relaxation has an effect of constraining the
growth of synaptic weights. It is useful in unsupervised learning * like Principle
Component Analysis (PCA) [1], but it is detrimental to BP training when the
training set is very large [63]. For reinforcement learning rules, the result is
even worse [65]. In CrossNets this term comes from the fact that the switches
that are already in the ON state can no longer be turned on, while random
fluctuations in the opposite direction can easily change the state to OFF. For
deterministic updates, this naturally limits the range of weights within the
capability of the hardware. For noisy updates such as those in reinforcement

'The unsupervised learning has even less external guidance than reinforcement learning:
neither supervision or any kind of feed back is available. The objective in unsupervised
learning, for example, can be discovering some underling structure of the data [124].
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learning rules, however, this results in a limitation that is less than the full
capacity of the synapses composed of arrays of switches (see the next section
for details).

The other (and more important) problem is the internal stochasticity of the
learning rules as such - see previous chapter - resulting from the very nature of
reinforcement learning which implies a statistic exploration of the phase space.
As a result, many weight iterations are needed to average out the noise. In
the case of continuous weights, this means just more training time. For the
discrete weight learning rules, however, large noise can result in a complete
failure of training, even after the relaxation effects have been. Indeed, discrete
weights jump in relatively big steps; therefore the average (correct) direction
of their evolution is difficult to calculate. Smaller learning rate could help
to average the noise and give a smoother learning curve; however, sufficiently
large rate is necessary for any gradient following learning rule to avoid local
optima.

The following sections try to quantify these effects and propose a solution
that solves both problems.

5.1 Relaxation Term in In Situ Training

Let p be the probability of a group of CMOL switches to be in the “on”
state. The dynamics of the probability adaptation is ([1.21))

dp/dt =T1(1 —p) —T'p. (5.1)

In the following let us assume that the tunnelling rates are determined as
follows

{ ]‘—‘T Fodw, Fl 0, if dw > 0; (52)

FT = O,Fl = —Fod'w, if dw < 0.

where dw is the incremental weight change derived from the learning algorithm
and I'y is a constant.

For consistent updates (i.e., updates in which dw never change sign), Eq.
ensures that only one of the tunnelling rates I'; and I'| is nonzero. When
the learning rule is noisy, however, this update rule has an intrinsic problem
that is independent of the learning algorithm or the discreteness of the weights.
Fig. shows an example of this problem. The goal of the experiment is to
try to drive the weight to saturation (p = 0, 1) using noisy weight change with
constant mean. The incremental weight change dw in this case is a Gaussian
random number with mean value m and variance v?. Even though the constant
mean is always driving the weight toward p = 0 or 1, depending on the sign of
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Figure 5.1: Noisy update and relaxation. a) Dynamics of p with different m.
Other parameters: v = 5 and ')At = 0.0006, where At is the time interval
used in the simulation. b) Dynamics of p with 10 times smaller learning rate,
['yAt = 0.00006, but 10 times longer training time. Other parameters are the
same as a).

m, the random fluctuation has the opposite effect of driving the wight toward
neutral (i.e., p = 0.5). At the equilibrium, only a fraction of the switches can
be turned on no matter how long we apply the adaptation.

This problem can not be solved by reducing the the tunnelling rate and
therefore “smoothing out” the fluctuation. For example, in Fig the
curves are smoother, but they have the same saturation point as those in Fig
. A quantitative explanation is provided by the following.

For simplicity let us consider the case of very small learning rates. If the
time scale of the dynamics of p is much larger than the time scale of the random
fluctuation, dynamic rule Eq. can be written as

p= ()1 —p) —(Tp,

where (z) denotes the mean value of the random variable z. From this we
immediately obtain the saturation point at p = 0:

py— —1)__ (5.3)
() +(T'y)
From Eq. we can see that if one and only one of the two values (I'y)
and (I'}) is nonzero, the weight will be able to reach maximum potential, i.e.,
saturating at either 1 or 0. Otherwise, the full potential of the weight can
never be reached.
For the Gaussian weight change in the previous section, it can be calculated
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Figure 5.2: Quantitative explanation of relaxation. a) Saturation point under
Gaussian noisy update. In this experiment I'gyAt = 0.00003, v = 5 and the
values of ps were taken at ¢ = 200000. b) Histogram of ¢ for A2 training for
the firs of the MONK’s problems. The plot shows the result for all the weights
under one exposure to all the patterns in the training set. Parameters used in
A2: 7 =0.0008,\ = 0.005,0(0) = 1.8, = 1.
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where ¢ = m/v. In Fig. we plot ps against ¢ and compare with experiment
results.

The implication of the this formula for training is the following. In order
for the full potential of the weights to be reached, the “signal to noise ratio”
lg| has to be at least larger than 1. Fig. shows the distribution of ¢
for the weights in A2 training for the MONK’s problem. As we can see, in
this case the learning rule is too noisy for the hardware update rule Eq.
to work. In fact, for ¢ ~ 0.1, only about 10% of the weight range is being
used. In other words, we need ten times more hardware resources to achieve
the same capability.

ps(Q) =

5.2 Solution

Fortunately, this problem can be solved in the following way. Let us use
a separate (relatively small) array of switches, whose total synaptic weight
represents Aw;;, to perform the stochastic multiplication of pre- and post-
synaptic signals. The results are picked up, added to calculate the aggregate
w;;, and then written into another (typically, larger) array of n binary switches,
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which represents the full synaptic weight. (A somewhat similar trick was
used for supervised training in Ref. [61], with good results). Since in this
implementation all the switches in the multiplication array are reset to (p ~
0.5) at each iteration, the relaxation term disappears. On the other hand,
weights (represented by the secondary arrays) are able to reach their maximum
values, because the weight changes are simply added to the original weights.

Suppose the synapses are composed of two arrays of switches (one for pos-
itive weights, and the other for negative weights): w;; = w,;; — w;;, where
0< w;'; < n are integers, and that each group has a corresponding multiplica-
tion unit with just one binary switch. Let dw = Aw;; < 1 be the weight change
calculated from the learning rule; then using the method discussed above we
can implement the following discrete learning rule in CrossNet hardware:

w4+ 1, with probability dw if dw > 0 and w;'; < n;
with probability —dw if dw < 0 and w;; >0; , (b.4a)
w; otherwise.

w;§<— wi — 1

w;; — 1, with probability dw if dw > 0 and w;; > 0;
1, with probability —dw if dw < 0 and w;; <n; . (5.4b)
otherwise.

W, —

150

The rule ensures that the average weight follows the product of input volt-
ages probabilistically, except for the “hard wall” restrictions on the weight
range. Of course this method requires an external system that reads out Aw;;,
performs the addition of the increments, and writes the aggregate weight back
into the secondary arrays. However, this operation is much simpler than the
multiplication (which is done in parallel by the multiplication arrays), so that
in-situ training will still be much faster than software training of a precursor
network.

There is still the dilemma between the necessary random exploration and
the detrimental effect of noisy updates to the discreet training. This can also
be resolved by exactly the same two-unit weight method used to eliminate
the relaxation term. To do this, we simply fix the input pattern, and keep
updating the multiplication array for m > 1 iterations without the reset of
Aw;; before reading out the finite weight change, and adding it to the weight-
representing array. (At that point, the switches in the multiplication arrays
are reset to neutral.) Since the switching probability change is typically very
small, the relaxation effects in the first array still may be ignored during all
m iterations. Formally, this approach may still be described by Eq. , but
with dw = 7" Awj;/m, where Awj}; is the weight change obtained at ¢,
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iteration.

In this way, the multiplication arrays are used as effective noise filters; so
that the fluctuations can be effectively suppressed (as long as m is sufficiently
large), while keeping the stochastic exploration of the phase space necessary
for reinforcement learning intact. Of course, the training time is proportional
to m, but in CMOL CrossNets with realistic parameters (Sec. the noise
bandwidth is of the order of 109 Hertz [40], 45], so that even with m ~ 100
(see Fig. below) one weight increment may still take much less than a
microsecond. Note that this method differs from merely using a small learning
rate, in that it allows us to calculate the average weight change under fixed
inputs and weights, and therefore to implement the exact definition of Aw;;
for a given input pattern.

There are two possible ways of implementing random fluctuations required
for the reinforcement learning rules. One is to use the natural shot and thermal
noise of the synapse current to implement Eq. . The second one is to
use two sets of latching switches: one responsible for storing average weights
(wij), and the other one as the physical source of fluctuations (Sec. [4.4).
The former group is adjusted using the discrete learning rule Eq. (5.4)), with
short voltage pulses to ensure small switching probabilities. The second set of
elementary synapses is agitated with, for example, periodic square waveforms
of alternating polarity, with the total time period 7' = T, + 7" (which satisfies
condition 7' < 1), for an extended period of time mT. The integer m controls
the fluctuation variance, while ratio T /T_ determines the bias. (For T, =T_,
the synaptic weight produced by the agitated switches fluctuates with zero
mean.) In either case, the random component is equivalent to a Gaussian
fluctuation added to x; ; and that is what we have used in our simulations
presented below.

Fig. shows a typical dependence of the generalization performance of
CrossNets, trained using the in-situ version of rule A2, on parameters m and
n, while the last line of Table present the results (for relatively large n
and m) for the MONK’s problems. One can see that in-situ training produces
results quite comparable with, and in some cases even better than those for
the corresponding continuous weight (e.g., software-implemented) networks.

5.3 Conclusion and Discussion

In the mixed-signal neuromorphic networks - “CrossNets” - implemented
using hybrid CMOS /nanoelectronic circuits, the synaptic weights are naturally
random. Earlier it was shown that this situation invites new rules of global
reinforcement training, and that for networks with stochastic synapses these
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Table 5.1: Optimized Generalization Performance for in situ training on the

MONK’s Problems

Algorithm Problem 1 Problem 2 Problem 3
99.440.5 99.840.3 96.84+0.0
Arp at n = 0.6, at n = 0.7, at n = 0.07,
A =0.035 A =0.025 A =0.001
96.3+4.0 99.7+0.5 96.84+0.0
at n = 0.08, at n =0.1, at n = 0.007,
Software A2 o(0) = 1.8, o(0) =1, o=1,
A = 0.005, A =0.003, A = 0.004,
a=4 a=.2 a=1
9442 99.95+0.14 96.94+0.3
at n = 0.01, at n = 0.01, at n =107°,
Hardware A2 | o m = 500, m = 500,
n = 50 n = 200 n = 100
100 sl il 100 —tsus el
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Figure 5.3: Generalization performance of in-situ training with A2 for the
second of the MONK’s Problem, as a function of m and n. The parameters
not shown in figures are the same as optimized for the continuous weights
[64, 65]. The results are averaged over 8 independent experiments; the error
bar represents the standard deviation of these samples.
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rules may provide generalization performance on a par with that of networks
with random somas (“Boltzmann machines”), trained using learning rules of
the REINFORCE class. (Let us emphasize again that the latter rules are not
applicable to the case of random synapse.)

Although the new rules have been suggested with the CMOL CrossNet
hardware in mind, some hardware-imposed limitations had to be overcome to
make them suitable for internal (“in-situ”) training which seems necessary for
solving large-scale problems. We have found a way to suppress the unfavorable
relaxation and fluctuation effects on synaptic adaptation by using two latching
switch arrays for each synapse, and have shown that for at least relatively small
classification problems the generalization fidelity provided by two of the new
rules (A2 and A3) is quite comparable with that of the software-implemented
networks with quasi-continuous synapses. (The speed of such codes, run on
any realistic digital computers, is far inferior to the estimated speed of CMOL
CrossNets circuits [16], 40}, 45].)
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Chapter 6

Conclusion and Possible Future
Work

6.1 Summary of Main Results

CrossNets, specialized topologies of CMOL chips for massive intercommu-
nications between CMOS cells, can be trained to perform artificial intelligence
functions including associative memory, pattern classification, and reinforce-
ment learning [31].

This dissertation has shown that CrossNets can be trained by reinforce-
ment learning rules to perform pattern classification and reinforcement learn-
ing tasks. It has also shown that CrossNets has extremely high tolerance to
manufacturing defects when they are used as Hopfield networks.

The following is the list of the main results achieved by the author (in the
order they appear in this dissertation):

Self-excitation of Recurrent CrossNets (Sec. |1.4.1])

I have studied the self-excitation of recurrent CrossNets, and calculated
the critical gain (i.e., the smallest value of g at which the self-excitation
starts) in the case of multi-valued synapses. The theoretical predictions
were confirmed by numerical experiments. On the other hand, this cal-
culation has explained the close-to-linear relation between x5 and g for
very high gains.

Hebbian Adaptation in Operation Mode (Sec. |1.5.2)

I have shown that a similar Hebbian adaptation can be achieved with-
out switching from the “operation” to “training” mode, but instead by
simply increasing the load resistance Ry. This may be very useful for
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relatively simple learning tasks. Without having to switch the circuit
configuration and feed the axonic signals back to dentritic wires, this
method would significantly reduce the hardware complexity as well as
operation time.

Defect Tolerance of Hopfield CrossNets (Sec. [2.3] Refs. [40, 43,
44])

I have studied recurrent CrossNets as Hopfield networks, and calculated
defect tolerance of these networks based on the assumption of completely
random (uncorrelated) patterns. The calculation was based on methods
similar to those used to calculate the storage capacity of the Hopfield
networks. I have also carried out a more detailed derivation of network
capacity and defect tolerance for the case when the independence as-
sumption is not true (which will be the case for almost any real world
application).

Reinforce by Hebbian Adaptation (Sec. Ref. [40])

I have shown that by a simple combination of self-excitation and Heb-
bian adaptation, a recurrent CrossNet can be taught simple classification
tasks, using a global reinforcement learning algorithm.

New Reinforcement Rules for CrossNets (Chapter [4] Refs. [64-66])

I have re-derived the REINFORCE approach from a more general point
of view (the likelihood ratio method), so that it can be then applied
to networks not only with random somas, but also with other sources
of randomness. Based on that argument, novel learning rules for net-
works with randomness from various locations of the network have been
proposed. The new rules were tested on both classification and rein-
forcement tasks and achieved results comparable to those for the known
reinforcement learning rules. The new rules, however, are more friendly
for CMOL hardware implementation.

In Situ Reinforcement Learning (Chapter [5 Ref. [3])

Difficulties faced in implementing the new learning rules in CrossNets
have been addressed, and a solution proposed. When implemented in
situ, the new rules can take advantage of both the parallel computation
power of the hardware, as well as the intrinsic randomness that comes
from nanodevice synapses.
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6.2 Future Work

Defect Tolerance of Reinforcement Training

In this dissertation I have shown that defect tolerance of recurrent Cross-
Nets operating in Hopfield mode is extremely high (Sec. . In Ref.
[63] it was shown that the feedforward CrossNets trained as pattern clas-
sifiers by either weight import, or in situ training are also very insensitive
to both synaptic weight discreteness and nanodevice defects. This kind
of robustness comes directly from the parallelism and redundancy na-
ture of neural computing. We expect networks trained by reinforcement
learning algorithms to exhibit the same level of resistance to hardware
imperfection. However, more experiment results are necessary to confirm
these expectations.

Scaling Property of the New Rules

One more important question still open is whether the efficiency of the
new rules may be sustained with the growth of network size. Answering
this question hinges on finding benchmark problems with variable length
L of the input vector, for which the known methods such as A, are
insensitive to L. So far we have been unable to find such problems in
literature.

In Situ Solution to Cart-Pole

The in situ training solution proposed in Chapter [5|has been so far unsuc-
cessful for the cart-pole balancing problem. This is due to a combination
of three factors: the extremely high level of noise in reinforcement learn-
ing rules, the discreetness of synapses in hardware, and the “real-time”
nature of the control problems. A possible remedy is to average Awj;
for m time steps, and during this time the cart-pole system is free to
evolve. This method has been so far unsuccessful, however, even though
we have made the training process much faster than the physical process
of the cart-pole system in our simulation (see Appendix [A| for details).
This is due to the very much delayed reward for this problem, which fur-
ther complicates the already difficult learning process. Since meaningful
feedback only comes at the time of failure, much time may be wasted
averaging the completely random weight changes at the early stage of
learning. Probably this difficulty can be resolved by changing the rel-
ative speed of the cart-pole system to the CrossNet system during the
learning process: a high learning speed at the beginning, and a reduced
speed only at the last stage of training.

81



Possible Connections with Neurobiology

The reinforcement learning is more biologically plausible than the su-
pervised learning. Both assumptions of the noise source and the global
rewards/penalties are believed to be likely to exist in the biological brain.
In fact, it is more reasonable to assume that the noise comes from the
synaptic transmitter release process, rather than in the spike firing mech-
anism (see the discussion about “reward-based learning” in Ref. [125]).
Note that this is exactly what we are proposing for the source of ran-
domness for the new learning rules discussed in Chapter 4] We should
explore the possibility of bridging the large scale CrossNet experiment
with neurobiology research.

Noise Reduction Techniques

A mechanism for controlling the plasticity of individual neurons is pro-
posed in Ref. [125] to reduce the fluctuations of “non-learning” neurons.
This effectively suppress the unnecessary noises while try to retain only
the “useful” fluctuations. The proposal should be further studied as it
may provide means to significantly reduce the noise of the learning rules
that is causing major difficulties in in situ training.
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Appendix A

Noises in the Learning Rules

To better understand the difficulty in in situ training with A2, let us com-
pare A2 with BP on the third of the Monk’s problem, for which we have
achieved 98% of correct classification in the case of continuous weights. The
network is (as usual) a 17-3-1 MLP with the following relations between pre-
and post-synaptic signals:

o= ) Wiy, (A1)
j

G
hi = s, A2
N (A2)

In the case of discrete weights, we use the in situ learning rule Eq. (5.4).
According to A2 (for the case of additive noise in z;),

vy = (x;) + 0y, (A4)
Awij = nlr(z; —(x:) + A1 = r)(—zi — (z:))] y;- (A.5)

And as usual, a global noise is quenched according to the sliding average
reward:

ro(t) = 0.99r,(t — 1)+ 0.01r(¢), (A.6)
ot) = o(0)[1 —ra(t)]". (A7)

This, without the average mentioned in Sec. [5.2] does not work very well
(Fig. |A.1(a))), unless the number of quantization levels is unrealistically high
(Fig. |A.1(b)). Back-prop (BP), on the other hand, can certainly do better
(

Fig. [A1(0)).
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Figure A.1: In situ training without noise filtering. a) In situ training of
A2 on the third of the Monk’s problem. Parameters: n = 100, G = 0.05,
n = 10x 107", o(0) = 4, A = 0.005, « = 1. b) A2 with much higher
number of quantization levels: n = 2 x 105 (the other parameters are the
same as in Fig. |[A.1(a)). ¢) In situ training with BP: n = 100, G = 0.05,
n = 5.0 x 107°. d) In situ training with BP at small n: n = 1 x 107 (the
other parameters are the same as in Fig. |A.1(c)). e) Quasi in situ training
with A2. Parameters: n = 30, G = 0.4, n = 2.5 x 1075, ¢(0) = 10, A = 0.005,
a = 1. f) Visualization of the “cost function” for A2 and BP on the third
Monk’s problem. Parameters: n = 0.01, G = 0.4.
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Figure A.2: Learning dynamics of in situ training for the cart-pole task, where
m is the number of time steps for accumulating Aw;;, before the weight change
is actually applied.
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To help us understand the problem better, let us try to visualize the cost
function profile in some way. Here I plot the cost function in one dimen-
sion by probing the multinational weight space in 10 random directions: u®,
k =1,2,...,10, where the components —1 < ul(f) < 1 are drawn from even
distribution. During the first 10000 epochs, the weights are updated in the
direction u®:

Wi — wi; + nuly (A.8)

17 )
and the they are updated in the direction of u® in the second 10000 epochs,
., ete.

The cost function for BP is E = Z§=1(Tp —0,)?/2P, where T, = +1 is the
target for pattern p and O, is the output, and the total number of patterns is
P. For A2 it is defined as E =1—1r(t) =1— 211;1 17,0,/ P. In the case of A2
with noise, the error for an epoch is averaged over 200 runs at fixed weights.
The results are shown in Fig. |A.1(f)]

Whether it is because of the online implementation or the randomness in
the learning rule itself, the weight changes are usually noisy:

oF
1= (g +9) (A9
where 0 is some noise with zero mean. This noise can always be subdued by
decreasing 7. This is because when 7 is small enough, the partial derivative
can be treated as a constant (even in an online implementation) and therefore

o0FE 0FE

(Aw;;) = anzj +n(6) = ﬁawij

Noise may also come from the discretization of the weights. In this case
the relative error scales with 1/4/n and can only be reduced by increasing n.
However this noise itself may not be a serious problem. For example, if a
continuous variable 0 < p;; < 1 is stored and updated by Aw;; (with “hard-
wall” restrictions); and at each iteration all the switches are turned on from
the off state with probability p;; ( pm for w;), then A2 work fine in this
“quasi in situ” tralmng even for small n (Fig. |A.1( _ It is when the true in
situ training rule is used that it becomes very difficult for A2 to solve
the problem completely (Fig. [A.1(a))).

Apparently the slowly varying noise in the case of Egs. (5.4)) is more harm-
ful because the error can not be averaged out quickly enough. Another factor
that is causing serious problem (especially for A2) is the dilemma between
small and large 1. Small 1 helps reduce noise, but from Fig. |A.1(f) we can
clearly see that a relatively large 7 is necessary to avoid the numerous local
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minima and plateaus in the error profile. To further illustrate this point, Fig
shows that even BP stops working at certain small 7.

The solution in the Sec. failed to work for the cart-pole balance prob-
lem. This is because in the case of control tasks, the training happens at real
time; and it is physically impossible to fix the state of the cart-pole system (i.e.
the input to the actor) while we try different actions. Therefore the average
defined in previous section can not be calculated. The alternative method is
to average Aw;; for m time steps, and during this time the cart-pole system is
free to evolve. This method has been so far unsuccessful (see Fig. [A.2)), even
though we made the training process much faster than the physical process of
the cart-pole system in our simulation. Also shown in Fig. is the result of
quasi in situ training (see previous discussions), which works reasonably well.
This again shows that it is the combination of the discreteness in the weights
and the noise in the learning rule that is causing the problems in A2.
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Appendix B

Generalization Comparison of
Back-Propagation (BP) and
Reinforcement

B.1 Experiment Setup

The experiments were done on fully connected there-layer MLPs. Units in
the input layer have fixed output values and hidden layers and all the other
units have tanh activation function.

J

y; = tanh(g;z;) (B.2)

For the reinforcement algorithm, the networks are composed of discrete stochas-

tic units, so

Di 5 (B.3)
w2 e o
The learning rule for BP is the usual delta rule
Aw;; = 1oy, (B.5)
The error for the output node is
05 = g'(ho)(T" — yp) (B.6)
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Figure B.1: Cost function after 50 epochs of training. For each specific value
of (n,9), the system was trained 200 times and the result was averaged. The
raw data was then smoothed and plotted.

where T}, is the target for current Input I#, and y# is the corresponding out-
put of the output node. Error for the other nodes are calculated by back-
propagating the error signal. Bias units are usually added to the input layer
and hidden layer. They are the same as the other units except that they have
constant output y, = +1.

B.2 BP Training Parameters

B.2.1 nandyg

An MLP of 2 input units, 10 hidden units and 1 output unit is trained
with BP to implement the XOR function. 2 bias units are added to the input
layer and 4 bias units are added to hidden layer. All bias units have constant
output +1. The inputs and targets are, respectively

=) ) (B) () e

T=1{+0.6, —0.6, —0.6, +0.6 } (B.8)
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Figure B.2: (a): 2D color map representation of cost function after 50 epochs.
Top view of the previous figure, with logarithmic color map. (b): Contour
lines with both 7 and ¢ in In scale.

Gains for hidden and output units are, respectively
g =3g/V2 (B.9)
90 = g/V10 (B.10)

The training results under different g and learning rate n are shown in the Fig

and Fig B3
From Fig m, (b) we can see that roughly the cost function will be a
constant if n and g satisfy the following relation:

g@n=A (B.11)

where A is some constant.

B.2.2 Bias Amplitude

Based on the results from the previous experiment, the following param-
eters were chosen for the following experiments: n = 0.95, ¢ = 1.32. In the
following I have added one bias unit to both input layer and output layer, but
control the amplitude of the bias through parameter b. So bias nodes have the

following constant output.
uy = bym (B.12)

where n; is the number of normal units in layer [. The result of training is
plotted against different b in Fig
For hardware implementation, it is better to increase the number of bias
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Figure B.3: Cost function after 20 Epochs of training, under different bias
amplitude. The result was an average of 200 training. Mean and variance
were calculated after applying the log;, function.

units, instead of increasing the output amplitude. For example, I can set the
number of bias nodes for layer [ to be

nk = [by/m] (B.13)

where 0 < b < 3, and [z] is the closest integer to x. All the bias units will
have constant output +1.

Note that all the weights connecting the bias units in a certain layer to
the same regular unit in the next layer change exactly the same way during
training, although the initial value of those weights are independent random
numbers. Therefore the effect of this bias configuration is similar to that in
the previous experiment. But the disruptive effect at large b is now less severe
because the initial value of the effective bias is now smaller(due to cancellation
among different random weights). The result is shown in Fig .

B.2.3 Target Amplitude

Based on the results from previous experiment, the following experiment
was done with 1 bias unit for input layer, and 3 bias units for hidden layer.
All of the bias units have constant output +1.

As we saw in earlier experiments, how one choose target also affects training
speed. If the target is too close to the saturation point of the output node,
then it would be very difficult to decrease cost function to very small value.
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Figure B.4: Cost function after 20 Epochs of training, under different number
of bias units. The relation between the number of bias units and parameter b
is shown in Eq. . The result was an average of 200 training. Mean and
variance were calculated after applying the log;, function.
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Figure B.5: Training with different target amplitude. The result was an av-
erage of 200 training. Mean and variance were calculated after applying the

log,, function.
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In this section I experiment on different target amplitude 7Ty, so
T=T,(+1 -1 —1 +1) (B.14)

where 0 < T, < 1. Fig shows the result of 20 epochs of training with
respect to different T,.

B.3 Reinforcement Training Parameters

The system composed of stochastic units described by Eq. (B.4) was
trained with the following learning rule:

1—r
Awj =ngilr(yi— < 9 >) + A= (=vi— <y >)ly; (B.15)

to implement parity function with 8 input bits. 190 patterns were used as
training set. There were 8 input units, 20 hidden units, and 1 output unit. 2
bias units were added into input layer and 3 to the hidden layer.

For a give input pattern I*(u is the index to the patterns in the training
set), and the corresponding output generated by the system V*, the reward is

rt = THyk (B.16)

where T* is the corresponding target. Eq. was used as reward in
learning rule Eq. .

The performance of the network was measured by the average reward.
First, the average reward for a complete epoch was

Nt

1

Tt = ——
Nr
p=1

r# (B.17)

where Np is the total number of patterns in the training set. Time ¢ is in
the unit of epochs. Then the average reward at t(averaged over time) was
calculated as follows

<r>=<r>_ (1—79)+ry (B.18)

where v = 0.01.
Fig shows C,. = 1— < r >, after 800 epochs of training, averaged over
200 experiments.
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In(g)

Figure B.6: (a): 2D color map representation of equivalent cost C, after 800
epochs of reinforcement training. Color map is in log scale. (b): Contour lines
with both 1 and g in In scale.

B.4 Generalization Performance of BP and Re-
inforcement

B.4.1 Generalization Performance of BP Training

The generalization performance of BP algorithm on parity function with 8
input bits was tested. The network was composed of 8 input units, 20 hidden
units and 1 output unit. 2 bias units were added to the input layer and 3 to
the hidden layer.

In the experiment, a number of patterns were randomly chosen from the
pool of all possible 2% input-output pairs as training set. The rest of the
possible patterns were used as test set. For each corresponding size of training
set, experiment were repeated 200 times, each time with a new training set
randomly drawn from the pool. The results were averaged. The cost function
is

Nt
1
— o g )2
C= 3N ;_1: (T =yt (B.19)

When (' reaches the goal of 0.001 the training stops and the trained system
was tested on the test set( the test set include all those patterns the system
has not seen). If the goal is not met after a maximum of 5000 epochs, training
fails and the result is discarded.

Fig [B.7 shows the test results for different n and g. And Fig[B.§ shows the
test results under different 7.
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Figure B.7: (a): Percent of correct mapping on test set after BP training. (b):
Average number of epochs needed for C' to reach the goal, 5000 epochs was
counted for failed training. In (a) and (b) 7, = .6.
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Figure B.8: (a): Percent of correct mapping on test set after BP training. (b):
Average number of epochs needed for C' to reach the goal, 5000 epochs was
counted for failed training. In (a) and (b) n = .84 and g = 1.4.
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Figure B.9: (a): Percent of correct mapping on test set after reinforcement
training. (b): Average number of epochs needed for C,. to reach the goal, 8000
epochs was counted for failed training.

B.4.2 Generalization Performance of Reinforcement Train-
ing

The same system described in the previous section was trained by the
reinforcement algorithm (B.15). Training and testing were repeated 100 times
for each size of training set. Because the system is stochastic, testing was
repeated 50 times after each training, and the results were averaged. Therefore
for each size of training set, a total of 5000 test results were averaged.

The parameters are g, = .8/v8, g, = .8/v/20, and n = 0.8. Training
succeeds when C,. = 1— < r >; reaches the goal of 0.001 and fails after a
maximum of 8000 epochs. The percent of correct mapping was shown on Fig

[B.9, under different .

B.4.3 Comparison

The best results from BP and reinforcement training are plotted in Fig

B.10

Conclusion In order to compare the generalization performance of BP and re-
inforcement, both algorithms have been optimized with respect to train-
ing parameters. We have used the parity function problem for this com-
parison. And we have used A, , learning rule for reinforcement training.
According to the final results (Fig. [B.10]), the reinforcement algorithm
generalizes much better than BP at small size of training set. There-
fore the reinforcement algorithm seemed to be able to “understand” the
underlining rule (parity) faster than BP. BP only performers better at
large size of training set (close to 55% of all possible input-output pairs),
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Figure B.10: Generalization performance of reinforcement and BP training.

The size of training set is in the form of percentage relative to maximum
number of patterns.

due to its advantage of precision. But these are preliminary results. It
may still be possible to further optimize the generalization performance
of both algorithms.
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