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Abstract of the Dissertation  

Step Density Estimation and Bootstrap Resampling  

by  

Yeming Ma  

Doctor of Philosophy  

in  

Applied Mathematics and Statistics  

Stony Brook University  

2007 

 

Some failures of the nonparametric bootstrap resampling originate from the 

discreteness of the empirical distribution function used in the resampling process. Density 

estimation with smoothing kernel functions is the most suitable method to solve the 

problem; yet in reality density estimation had not been widely applied due to its tedious 

fine-tuning of smoothing width in addition to the ad hoc selection of smoothing kernel 

from many candidate functions. With the above restrictions in mind a novel Step Density 

Estimation has been devised from simple step-functions in this thesis. The step density 

function has been constructed and shown to be MLE and UMVUE as an estimator of the 

underlying distribution with a clear goal to make the density estimation objective as 

possible while keeping the smoothed bootstrap still as simple as it is. A well known 

bootstrap bias problem in small sample cases was chosen to test the success of the 

approach of bootstrap resampling drawn from the step density function. 
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                 Preface 
 

The probability density function (pdf), or simply the density F, is a fundamental 

concept in probably and statistics. If “Every road leads to Rome” then probability density 

function would have been the Rome in probability and statistics since every problem 

leads to it.  

 

In the old days of R.A. Fisher when statisticians had little computing power (with 

papers and tabulated distributions), F was often restricted to functional families with 

some unknown parameters, for example the location and dispersion (µ , 2σ ) family, to be 

determined by sample data points, and thus the term “parametric” method. When F is 

taking a more flexible form other than a set of functional families, it is termed as 

“nonparametric”, which is less rigid and more adaptive to the observed data. The 

nonparametric bootstrap, also referred to as B. Efron’s naïve bootstrap (Efron, 1979a), is 

the most frequently used among the nonparametric methods. Density estimation is to 

construct an estimated density function,  for the underlying population F from the 

observed sample.   

ˆ ,F

 

For a random sample of size n from F, 

 

F  (x1, x2,…, xn),  (1) 

 

an empirical density function (edf) is defined to be the discrete distribution that puts 

probability 1/n on each value x

nF̂

i, which can be scalar, vector or any data unit, i = 1, 2, …, 

n.  In other words, assigns to a set A in the sample space of x its empirical probability nF̂

 

,/}{#}{ˆ nAxAP i ∈=  

 



the proportion of the observed sample x = (x1, x2,… xn) occurring in A. The hat symbol 

“^” indicates quantities calculated from the observed data. The empirical density function 

(edf)  is the simplest example of nonparametric density estimation; and the step 

density function (sdf) to be discussed in this thesis may be regarded just as another special 

case of nonparametric density estimation. Intuitively we may view density estimation as a 

reverse of (1) 

nF̂

 

       (x1, x2,…, xn)  .        (2) F̂

 

The nonparametric bootstrap or B. Efron’s naïve bootstrap is mainly a device to 

estimate sample uncertainties done by i.i.d. sampling from the edf ( ) nF̂

 

nF̂  * * *
1 2( , ,..., ).nx x x        (3) 

 

 

In practice the bootstrap sample * * *
1 2( , ,..., )nx x x  is simply drawn with replacement 

form the sample, and the only difference between (1) and (3) is that F is replaced by , 

which had been vividly described by Efron as the plug-in principle.  

nF̂

 

 Some failures of the nonparametric bootstrap resampling originate from the 

discreteness of . Density estimation with smoothing kernel functions is the most 

suitable method to solve the problem; yet in reality density estimation had not been 

widely applied due to its tedious fine-tuning of smoothing width in addition to the ad hoc 

selection of smoothing kernel from many candidate functions. With the above restrictions 

in mind a novel Step Density Estimation has been devised from simple step-functions to 

resolve a well known bootstrap bias problem in small sample cases.  

nF̂
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Chapter 1. Introduction to the bootstrap 
 

The bootstrap, due to B. Efron (1979), is a computer intensive resampling 

method, which has been gaining popularity since its invention and is the most frequently 

used among all the resampling plans, such as Jackknife, subsampling or half-sampling, 

etc. Its root goes back to the earlier methods of Fisher’s permutation tests and jackknife. 

Excellent reviews (Young, 1994, Hall, 2003, D. Boos, 2003) and books (Efron and 

Tibshirani, 1992, Shao and Tu, 1995, Davison and Hinkley, 1997) are available at 

different depth after three decades of intensive exploration in both theory and application. 

By the year of 2004, more than 1000 papers had been published on bootstrap (Efron, 

2004). However one still could not tell if the unparallel bootstrap phenomenon has 

reached its climax or not because new problems of bootstrap arise before existing 

problems are resolved, and among which lays the intriguing bootstrap bias problem we 

would study next. 

 

One common feature that all the resampling methods share is that they generate 

many “pseudo” samples from one observed sample through the resampling procedures. 

From the “pseudo” samples, statistical inferences, particularly measures of accuracy such 

as standard errors and confident intervals, could be drawn under a central assumption that 

these “pseudo” samples from the empirical density function (edf) could be treated the 

same as, or very similar to, real samples that had never been collected from a true 

population distribution F. Therefore it might be reasonable to imagine that edf  may 

play a key role in the bootstrap method and even be responsible to some of its failures or 

“pathologies”. 

nF̂

nF̂

 

1.1 The bootstrap resampling procedures 
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Suppose we are in a common data analysis situation: a random sample x =(x1, 

x2,…, xn) from an unknown distribution F  had been observed and we wish to estimate a 

parameter of interest ( )t Fθ = on the basis of x. For this purpose we calculate an estimate 

� ( )s xθ = from x, which could be the plug-in estimate of . The plug-in principle is a 

simple method of estimating parameters from samples. The plug-in estimate of 

( )t F

( )t Fθ = is defined by  

 

l( ).t Fθ =  

  

When the bootstrap was first introduced in 1979 (B. Efron, 1997) as a data-based 

simulation method, its main purpose was to estimate the standard error of �θ .  It enjoyed 

the advantage of being completely automatic without any theoretical calculations and 

applicable no matter how mathematically complicated the estimation � ( )s xθ = may be.  

 

The bootstrap methods depend on the notion of a bootstrap 

sample, * * *
1 2 ( ,  ,...,  )n

*x x x x= , defined to be a random sample of size n drawn from  the 

empirical density function (edf) , nF̂

 

nF̂  * * *
1 2( , ,..., )nx x x . 

 

The star notion indicates that *x is not the actual data set x, but rather a 

randomized, or resampled, version of x. Corresponding to a bootstrap data set, *x , is a 

bootstrap replication of �θ , 

 

l* *( ).s xθ =  
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Figure.1.1 Schematic diagram of the bootstrap applied to problems with a general data 
structure . The crucial step “ ” produces an estimate  of the entire probability 
mechanism P from the observed data x. The rest of the bootstrap picture is determined by 
the real world: “

xP → ⇒ lP

l *xP → ” is the same as “ xP → ”; the mapping from  , is 

the same as the mapping from 

l* *, ( )x xsθ→ *

� , ( )x xsθ→ . 
 

 

The bootstrap estimate of � �
1
2( ) [var ( )]F Fse θ θ= , the standard error of a statistic �θ , is 

a plug-in estimate that uses the edf in place of the unknown population pdf F, which is 

called the ideal bootstrap estimate of 

nF̂

�( )Fse θ and defined by 

 

m
l*( ).

nF
se θ  

 

Let Fµ and 2
Fσ  be the expectation and the variance of the real-valued random 

variable X, 2~ ( , )F FX µ σ ,  When.F∀ � Xθ = , we have 
1
2( ) [var ( )] /F F Fse X X nσ= = . 

Unfortunately for virtually any estima et �θ other than the mean, there is no explicit 

formula like this. The bootstrap algorithm, described next, is a computational way of 

obtaining a good approximation to the numeric oal value f m
l*( ).

nF
se θ  
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Bootstrap: Step 1.  Fit the nonparametric MLE of F, 

 l 1: , 1,2,..., .F mass at x i nn =  (1.1) 

 

Bootstrap: Step 2. Select B independent bootstrap samples, , each 

consisting of n data values drawn with replacement from sample x. Evaluate the 

bootstrap replication corresponding to 

*1 *2 *, ,..., Bx x x

each bootstrap sample, 

1, 2,..., .bb s x b Bθ  l* *( ) ( ),= =

 

Bootstrap: Step 3.  Estimate the standard error �( )Fse θ , by the sample standard 

deviation of the B replications 

 

l l l 1
* * 2 2

1
{ [ ( ) (.)] /( 1)} ,

B

B
b=

se b Bθ θ= − −∑  where l l* *

1
(.) ( ) /( 1).

B

b
b Bθ θ

=

= −∑  

 

The bootstrap procedure for standard error has been used as an example. The 

bootstrap sample size is recommended by Efron, B=200 for standard error estimations 

and B=1000 for confidence interval estimations. The bootstrap method can be easily 

adapted to many problems by simply modifying Step #3 to extract the statistics of interest 

from the bootstrap samples. The simplicity of the bootstrap procedure provided a 

powerful set of solutions for applied statisticians; mathematically, however, it is also 

highly evolved as a rich source of theoretical and methodological problems for statistics 

.C. Davison, D.V. Hinkley and G.A. Young, 2003). 

1.2 The role of empirical density function (edf) 

m likelihood estimate was studied by 

iefer and Wolfowitz (1956) and Scholz (1980). 

 

(A

 

 

In the bootstrap procedure, we can see that Step #1 is the essential step, which 

determines the bootstrap sample distribution. The justification of the empirical 

distribution function as a nonparametric maximu

K
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The next two steps are only the mathematical processing of the bootstrap samples 

generated from the i.i.d. sampling from Step #1. The procedure of drawing a bootstrap 

sample independently with replacement from sample x has guaranteed the identical 

distribution from which the bootstrap samples were drawn, which is the empirical density 

function (edf) . Thus bootstrap method satisfies the traditional theory i.i.d. random 

sample, 

nF̂

 . . . .
1 2( , ,..., )i i d

nF x x⎯⎯⎯→ x

F

 

Using the ‘plug-in’ principle we replace , and have the bootstrap 

resampling process presented as following, 

l
nF →

 

nF̂ . . . * * *
1 2( , ,..., )i i d

nx x x⎯⎯⎯→ . 

 

From the discussion on density estimation in the next chapter we would see that 

 is the MLE of F (B. Efron, 1982, p.28), and the simplest density estimator without 

any smoothing, that is the smoothing bandwidth, 

nF̂

0.h =  The major advantage of this 

choice lies in the simplicity in the resampling step #2, which had thus been referred to as 

automatic by B. Efron. Any smoothing on  is to choose a density estimate with 

nonzero bandwidth, .  

nF̂

0h ≠

 

Silverman and Young had furbished a general discussion on simulation from 

density estimates including standard bootstrap as well as smoothed bootstrap (B.W. 

Silverman, 1986; B.W. Silverman and G.A. Young, 1987; D. de Angelis and G.A. 

Young, 1992).  In Silverman’s example of density estimation, the bump-hunting problem, 

he used bootstrap as a resampling plan to construct a test for multimodality in search for a 

value h , namely the critical window width or bandwidth. Our goal here is to remedy the 

bootstrap method, especially failures caused by the discreteness of the edf, , by 

introducing density estimation with an automatically chosen bandwidth.  

nF̂
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One critical observation on discrete edf is referred to by Silverman as ‘rather 

peculiar”. That is nearly every bootstrap sample contains repeated values, and when n is 

large most samples contain values repeated several times. We will see that this ‘peculiar 

property’ would sometimes result in failures for the bootstrap method in our later 

discussion (Beran and Ducharme, 1991). Although there were more repeated values when 

n is large, the problem due to discreteness of the plug-in distribution, , is less severe 

as n . Asymptotically both the density estimation and the bootstrap method are exact 

at , which is intuitive because when sample size approaches infinity, the sample 

itself is the true population; therefore any density estimation from the sample would 

approach that of the population (J. Shao, 1997). The real challenge is for small sample 

size, n, and how to provide the bootstrap with a smoothed 

nF̂

→∞

n →∞

lF  to resolve the failures due 

to the discreteness of  for small sample. nF̂

 

1.3 Bootstrap and other resampling methods 

 

In contrast to conventional parametric methods, resampling methods are aimed to 

generate a sampling distribution of a statistic by drawing random samples from the 

observed sample itself. This eliminates the need to assume a specific functional form for 

the population distribution such as normality. Obviously the sampling distribution thus 

obtained is, after all, only one particular realization from the population. The argument is 

that the error resulted from this kind of resampling distribution could be far less serious 

than making wrong and often unverifiable assumptions about the population distribution, 

F. 

 

Another method closely related to resampling methods, the Monte Carlo 

simulation usually starts with a known F, and/or the probabilistic mechanism that could 

be realized by a computer program. A well-known Monte Carlo simulation might be the 

“Buffon’s needle” experiment first stated by Georges Louis de Buffon in 1777 in the 

early days of probability and statistics.  By throwing a needle of length L on the table 

with grid of parallel lines with spacing D (D>L), we may easily compute the chance that 
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the needle intersects one of the lines is 2 /L Dπ . And the proportion of “intersects” in N 

throws can be measured by the experiment as mNp , and the estimate of π is 

 l
m

N

2lim .
pN

L
D

π
→∞

=
i

 

 

It had been fondly used as an example to demonstrate the basic idea of Monte 

Carlo method with a probability mechanism completely known that can be practically 

used to estimate the mathematical constant of π (J. Liu, 2002). 

Resampling methods are data-based simulation without the full knowledge of F or 

its probability mechanism but merely a random sample x drawn from F. Permutation 

tests, jackknife and subsampling methods are the resampling methods that were predated 

to bootstrap and had profound influence on the development of bootstrap method.  

 

R.A. Fisher introduced the permutation test (randomization test) in the 1930’s, a 

computer-intensive statistical technique before modern computers’ invention, therefore it 

bared with a modest goal as a theoretical argument supporting Student’s t-test than as a 

useful statistical method in its own right. Modern computers make it feasible to use 

permutation tests on a routine basis, mainly for the two-sample problem. The basic idea is 

attractively simple. These procedures were used for determining statistical significance 

directly from the data without recourse to some particular sampling distribution.  It tests 

the null hypothesis  

 

0 :H F G=  

 

based on two independent samples drawn from possibly different probability distributions 

F and G,  ,G y . 
1

. . .
1 2( , ,..., )i i d

nF x x x⎯⎯⎯→
2

. . .
1 2( , ,..., )i i d

ny y⎯⎯⎯→

And the achieved significance level (ASL) of the test defined to be the probability of 

observing at least that large a value under 0H , 
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m �Pr( * ),permASL θ θ= >  

 

where �θ is the observed statistic difference between the two samples, and l*θ is generated 

through permutations of the combined sample  

1 21 2 1 2( , ,..., , , ,..., )n nx x x y y y . 

 

If permASL is smaller than some significance level α, the results are significant at 

the level α. A permutation test exploits special symmetry under the null hypothesis to 

create a permutation distribution of the test statistic. As a result of this symmetry, the 

permASL from a permutation test is exact in the sense that permASL is the exact probability 

of obtaining a test statistic as extreme as the one observed, having fixed the data values of 

the combined sample. 

 

It would be interesting to compare the permutation test (B. Efron and R.J. 

Tibshirani, 1992, p.223) to the bootstrap method for hypothesis testing under the null 

hypothesis,  

 

n
1 20 : n nH F G F += = . 

 

 The bootstrap resampling is carried out from the combined sample 

11 1( ,..., , ,..., )n 2nx x y y  which formed the �F n
1 2n nedf F + . In contrast, the bootstrap explicitly 

estimates the probability mechanism under the null hypothesis, and then sample from it to 

estimate the  

 

n l m � m �Pr( * ) #{ * }/ .bootASL Bθ θ θ θ= > = >  

 

 Bootstrap removes the restrictions in permutation tests, such as every permuted 

sample has the same combination which violates the independency of the i.i.d. aspect of 

the original problem.  



9 

 

Jackknife was first proposed by Quenouille (1949) for estimating bias. 

Recognizing its potential for estimating standard errors, J. Tukey coined the name 

“jackknife” (1958). Further development was made by Miller (1964, 1974), Gray and 

Schucany (1972), Hinkley (1977), Reeds (1978), Parr (1983,1985), Hinkley and Wei 

(1984), Sen (1988), and Wu (1986) in the linear regression setting. It has been developed 

from its original popular delete-1 scheme into delete-d jackknife (Shao and Wu, 1989; 

Shao, 1991) to amend the inconsistency for non-smooth statistics like median or 

percentile. Jackknife focuses on the samples that leave out one observation at a time; 

therefore the jackknife has a finite sample space at the same size of the original sample. 

Its close form is an advantage of jackknife estimate over permutation and bootstrap, both 

frequently need simulations with uncertainties; however the delete-d jackknife at ~d n  

would make its performance similar to the bootstrap (J. Shao 1992). The tradeoff is that 

the jackknife sub-sample size would be necessarily reduced by deleting d data points than 

that in the original sample. In bootstrap, every bootstrap sample would enjoy the same 

number of observations as the original sample, which is usually the default inferential 

interest in most cases. Thus, the bootstrap method has an advantage of estimating the 

accuracy at the original sample size though it is not limited to it (Fan and Wang, 1996).  

 

Since bootstrap’s conception (B. Efron, 1978), jackknife was usually treated as a 

golden standard against which to compare partly due its connectivity. Theoretically Efron 

had shown that jackknife could be viewed as a linear approximation of bootstrap that 

should be applied to a linear statistics that can be written in the form of 

 

�
1

1( ) ( ),
n

i
i

s x x
n

θ µ α
=

= = + ∑  

 

whereµ  is a constant and (.)α is a function, because jackknife is inefficient for higher 

order statistics where bootstrap can be applied successfully.  

 



1 0 

Subsampling is also called random subsampling, which was first introduced by 

Hartigan (1969) as another resampling plan designed to give exact confidence intervals, 

rather than just the standard deviations. It may be viewed theoretically a super class of 

nonparametric resampling methods that may include jackknife and half-sampling etc., 

which were developed for dealing with special problems: that of estimating the center of 

a symmetric distribution on the real line.  Its merits and limitations were studied in theory 

and in application (Hartigan, 1969, 1971, 1975; McCarthy, 1969) as well as in 

comparison to bootstrap (B. Efron, 1982). 

 

Among the numerous volumes on the above nonparametric methods, works on 

detailed comparisons were abundant while clear delineation on the fundamental 

differences was much less (Efron and Tibshirani, 1992, p.216). The differences 

underlying the major resampling methods may be delineated from their resampling 

procedures.  The original sample was always assumed under the i.i.d. condition, while in 

contrast the jackknife and permutation were more deviated from the i.i.d. condition than 

the bootstrap as listed in Table 1.1. 

 

Table. 1.1. Basic properties of the sampling and resampling methods. 

 Original Bootstrap Jackknife Permutation 

independent Yes Yes No No 

Identically distributed Yes Yes No Yes 

Density function F 
nF̂  N.A.      F=G 

 

 

From the above table we may see that bootstrap resampling most closely 

resembles the original sampling process while the other two listed in the table are 

different. The fundamental differences in the probability mechanism may account for 

some of the excellent properties of bootstrap over the other resampling methods (B. 

Efron, 1982). The important difference is between the unknown density F, and the 

discrete MLE  via the plug-in principle . Therefore it is reasonable to study l
nF l

nF → F
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smoothed bootstrap beyond that of the simplest plug-in estimate  (B. Efron, 1982; 

B.W. Silverman and G.A. Young, 1987; D. de Angelis and G.A. Young, 1992). 

l
nF

 

Jackknife samples are not independent from each other. Denote a jackknife 

sample without one original value xi as x-i. The difference between any two jackknife 

samples, x-i and x-j, are only in one values that x-i has xj but not xi and x-j has xi xj but not 

xj; all the remaining (n-2) values are all the same. In term of correlation these jackknife 

samples are strongly correlated, especially pair-wise inter-correlated. To put it in another 

way, the sampling is dependent so the samples are not random samples at all. It is all due 

to the “sample without replacement” restriction that best illustrated in the delete-d 

jackknife that at each step of deleting i-th value, the distribution is changing from the 

previous deleting step; therefore there is no identically distributed population space, so 

the i.d. condition was also violated. Then why jackknife had been quite successfully 

applied to many problems for so many years? There are two major reasons. 

 

1. The identical distribution still held approximately after deleting only a few out of a 

relatively large sample size n. From the i.i.d. condition each sample value contributes 

1
n

of the total information contained in the whole sample about the density, so the 

majority 1(1 )
n

−  of information remained. 

 

2. On the other hand a larger sample size n would cause even stronger correlation 

between samples, which had been mended by the 1n− correction factor that were 

derived from the simplest sample statistic, sample mean, and expanded to all statistics 

without much justification. 

 

Permutation test certainly has all its samples identical in content but with different 

order, which make partial use of the independency of the i.i.d. condition, that is the order 

of each observed values are random and can be randomly permuted which still makes a 

plausible sample observation. Correlations among permuted samples are stronger than 
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that among jackknife samples, which is at its maximum possible value of 1; interestingly 

permutation test safely gets around of the identical distribution violation in jackknife with 

an extremely strong hypothesis in a very specific two-sample setting of  

  

0 : .H F G=  

 

The permutation method is impossible to be adopted for parameter estimation, a 

frequently encountered statistical problem, such as problem of estimating the standard 

error of one sample mean. It could not be accomplished by permutation because the 

entire permutated sample was identical. Thus permutation test applies mainly to 

inferences on at least two samples.  

 

1.4 Some bootstrap failures 

 

 Bootstrap method has been enjoying huge success in application since its 

invention, and as a convenient toolbox it has been implemented in many statistical 

software packages, such as in SAS and Matlab, for error estimation as well as confidence 

interval construction (A.C. Davison and D.V. Hinkley, 1997). Its flexibility stems from 

its simple mathematical structure that has frequently been touted as “Such a simple idea!” 

However, on the other side, after nearly 30 years of enthusiastic theoretical exploration 

we may find that its theoretical foundation was still mainly in the asymptotic framework 

(J. Shao, 1995), or at most quite large sample cases. Here three bootstrap failures, or 

pathologies as some prefer to call it, were listed next. The first two problems were 

considered as partially resolved with parametric or smoothed bootstrap; while the last is 

to our best knowledge still considered as an open question that we are trying to provide a 

solution. All three problems related to the properties of the density function in either local 

or global scale, therefore are served to illustrate the close connection of density 

estimation to bootstrap in general. 

 

• Local discrete density problem 
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 This is a well-known example that B. Efron had used to illustrate situations when 

bootstrap failed by citing the original work of Beran and Ducharme (1991, page 23). 

 
. . .

1 2( , ,..., )i i d
nF x x x⎯⎯⎯→ ~ (0, )F U, θ . 

 

 The MLE �θ  is the maximum of the sample in this example, ( )nx . A sample of 50 

uniform numbers in the range (0 is generated and computed ,1) � 0.988θ = .The left panel 

of Fig. 1.2 shows a histogram of 50 sample points, and the right panel of 2000 bootstrap 

replications obtained sampling with replacement from the data. The left panel of Fig. 1.3 

shows 2000 parametric bootstrap replications obtained by sampling from the uniform 

distribution on �(0, )U θ . It is evident that the right panel of histogram in Fig. 1.3 is a poor 

approximation to the histogram we expect. Particularly, on the right left histogram it had 

a large probability mass at �0.62 θ× of the value �*θ θ= . In general, it is easy to show that  

� �* * 1 1P( ) 1 P( ) 1 (1 ) 1 0.632nn

n e
θ θ θ θ →∞= = − ≠ = − − ⎯⎯⎯→ − ≈ . 

However, in the parametric setting of the right panel, �*P( ) 0θ θ= = . 

 

 
Figure. 1.2 The histogram with 100 bins that imitate the needle plot to show the original 
50 data points ~  on (a), and the 2000 nonparametric bootstrap replications 

obtained sampling with replacement from the empirical distribution function,

(0,1)U
l

nF . 
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Figure. 1.3 The histogram with 100 bins that imitate the needle plot to show the 2000 
parametric bootstrap replications with random sampling from uniform distribution 

�(0, )U θ  in (a) and 2000 nonparametric bootstrap replacement from the step density 
function, nF  in (b).  
  

We think it is proper to the cited the exquisite insight from Efron on the issue.  

 “What goes wrong with the nonparametric bootstrap? The difficulty occurs 

because the empirical distribution function lF is not a good estimation of the true 

distribution F in the extreme tail. Either parametric knowledge of F or some smoothing 

of lF is needed to rectify matters. The nonparametric bootstrap can fail in other examples 

in which θ depend on the smoothness of F.” 

 

 The discrete problem of the empirical distribution function had been recognized 

by Efron and applied the parametric strategy with result that was displayed in the left 

panel of Figure1.4 that nicely fixed the problem.  As for the second suggestion of some 

smoothing on lF , which had been the old idea that Efron introduced as “smoothed 

bootstrap” (B. Efron, 1982), Efron did not further pursue. However there were many 

studies on smoothing the discrete density and bootstrap performances on confidence 

interval and related applications had been done later with various degree of success (D.B. 

Rubin, 1981, N. Schenker, 1985, J. Farway, 1990, and A.M. Polansky and W.R. 

Schucany, 1997, S. Wang, 1989, 1995, Young, 1990a,).  
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We are taking the same strategy in our step density estimation, which is another 

smoothed bootstrap among the many existed except it is simpler than all of them, or the 

simplest smoothing of lF . The unique approach of step density estimation lies in its 

automatic estimation of the smoothing bandwidth and the ease to be implemented into 

nonparametric bootstrap.  

  

• Global density regulation needed 

K.B. Athreya (1987) proved the theorem on bootstrap of the mean in the infinite 

variance case. The nonparametric bootstrap was referred as the naïve bootstrap in the 

theorem (followed some authors of the early days of bootstrap). It was shown that if the 

population distribution has its second moment  

2EX = ∞ , 

then the bootstrap mean would have a random distribution (given the sample) whose limit 

is also a random distribution implying that the naïve bootstrap could fail in the heavy 

tailed case. Apparently it was taken at once as a severe failure of bootstrap, which I 

would cite the remark in the same paper of K.B. Athreya. 

 “What, if any, is the significance of the Theorem? It says that if one does a naïve 

bootstrap on the sample mean and if the underlying population does not have a finite 

variance then the bootstrap distribution will not converge to the same limit as the sample 

mean. Thus, conducting confidence intervals on the basis of a Monte Carlo simulation of 

the bootstrap could yield misleading results. So unless one is reasonably sure that 

underlying distribution is not heavy tailed, one should hesitate to use the naïve bootstrap. 

In particular, in variance estimation using bootstrap could be bad if the underlying 

distribution has no fourth moment.” 

However I have a second thought 20 years after Athreya’s paper that if we look 

up the table of common distributions, for example in Casella and Berger’s textbook 

(2002), there is only one distribution, the Cauchy distribution that is with an unbounded 
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second momentum, 2EX = ∞ . Note that the mean of the Cauchy distribution actually 

does not exist strictly, but since the distribution is symmetric, it is generally taken to 

beµ .   

 

 2 2

1 1( ; , ) ,
1 ( ) /

c x
x

µ α
πα µ

=
+ + α

 

  

  

 , ,mean medianµ µ= = Variance=∞ , mode=µ . 

 

When 2EX = ∞ , strictly speaking even the population mean, EX, does not exist. 

To fully appreciate the very peculiar property of 2EX = ∞ in the Cauchy distribution, we 

may recall its sample mean Z of  i.i.d. Cauchy1 2, ,..., nZ Z Z ∼ 2(0, )σ  is also Cauchy 

2(0, )σ . Or in other words, var( ) var( )Z Z= , because var( )var( ) ZZ
n

=  only holds when 

2EX < ∞ . By definition the unavailability of sample mean under 2EX = ∞  is indeed an 

intrinsic property of statistics that handle sample of finite size. Since it is such a “failure 

of statistics” (if we may call it) there would be no surprise that it is also a “failure of the 

bootstrap”. However looking at this from another angle, we would have been surprised if 

the bootstrap does not fail when 2EX = ∞ . In other words, we may conclude that 

bootstrap is a generally applicable device that could be relied to for any distribution once 
2EX is bounded  2( )EX < ∞ .

 

 

• Small sample 

 

G.A. Young and H.E. Daniels (1990) discussed the bias in the nonparametric 

bootstrap, which appears to have been introduced by using the edf, , in place of the true 

distribution F. It was shown by their simulation study that the bootstrap mean was biased 

for small sample sizes. The bias was indicated by the estimated bootstrap pdf of the 

nF̂
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sample mean, BX , which was noticeably and systematically wider in comparison to the 

standard analytical results as a gold standard. In terms of moments of the distribution, the 

simulation study indicated that the bootstrap estimate of BX  had shown to be a biased 

estimator of variance. Due to the limitations of a numerical simulation study, the 

mathematical structure or the bias mechanism had been poorly understood; and the exact 

analysis of bias based on saddle point approximation also seems stretched to its limit for 

the simple statistics mX X− n already. Therefore further investigation on the bias issue 

remains on other estimators of practical importance. The current view is that it is a failure 

of bootstrap method at small sample size and that favorable asymptotic property is no 

guarantee of good small-sample performance.  

 

In a review (G.A. Young, 1994) the importance of the issues are raised again in a 

more general form including but not limited to small sample issues, by a were asked 

under the title “Bootstrap: more than a stab in the dark?” including “When does bootstrap 

work?”, “When does bootstrap fail to provide valid inference?”, “Are cases of failure 

pathological, or practically significant?”. While the bootstrap is continuing to make a 

fundamental impact on how we carry out statistical inferences for problems without 

analytic solutions, the small sample bias mechanism of bootstrap still remain a mystery to 

date. This thesis intends to unravel the mechanism and provide some simple guidelines 

for applying bootstrap in small sample cases. 
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Chapter 2. Review of density estimation 
 

Despite progress on the technical aspects of density estimation, it is still more of 

theoretical importance than application relevance. In contrast the bootstrap method is 

most valued for its application in real world data analysis especially when no analytic 

solution is available while its theoretical development is mainly restricted to asymptotic 

properties (J.Shao and D. Tu, 1995). The subtle gap between the two important 

ingredients of bootstrap has been widely recognized in an effort to investigate its internal 

connections (B. Silverman, 1986; B. Efron, 1992; P. Hall, 2003). 

 

Traditional approach to density estimation is parametric by assuming that the data 

are drawn from one of a known parametric family of distributions, for example the 

normal distribution with mean µ and variance . The underlying distribution F could 

then be estimated by estimates of 

2σ

µ and  refined by the data and substituting these 

estimates back to F. Usually the nonparametric approach will be far more less rigid, with 

much less prior assumptions made about the distribution of the observed data; instead a 

nonparametric class of function would be estimated from the sample more directly (x

2σ

F̂ 1, 

x2,…, xn)  .      F̂

 

Nonparametric density estimation was first proposed as a way of freeing 

discriminant analysis from rigid distributional assumptions. Since then, density 

estimation and related ideas have been used in a variety of contexts. We will present a 

very brief review of the existing nonparametric density estimation methods for univariate 

density estimation and their most important properties. These properties will serve as the 

yardstick against which the step density estimator will be measured in Chapter 3.  

 

The data set used to help illustrate the methods was the observations of eruptions 

of the Old Faithful geyser at the Yellowstone National Park provided by Weisberg (1980) 

and reproduced in Table 2.1. 
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Table 2.1 Eruption lengths (in minutes) of 107 eruptions 
of the Old Faithful Geyser. 

4.37 3.87 4.00 4.03 3.5 4.08 2.25 

4.7 1.73 4.93 1.73 4.62 3.43 4.25 

1.68 3.92 3.68 3.10 4.03 1.77 4.08 

1.75 3.2 1.85 4.62 1.97 4.50 3.92 

4.35 2.33 3.83 1.88 4.60 1.80 4.73 

1.77 4.57 1.85 3.52 4.00 3.70 3.72 

4.25 3.58 3.80 3.77 3.75 2.50 4.50 

4.10 3.7 3.80 3.43 4.00 2.27 4.40 

4.05 4.25 3.33 2.00 4.33 2.93 4.58 

1.90 3.58 3.73 3.73 1.82 4.63 3.50 

4.00 3.67 1.67 4.6 1.67 4.00 1.80 

4.42 1.9 4.63 2.93 3.5 1.97 4.28 

1.83 4.13 1.83 4.65 4.2 3.93 4.33 

1.83 4.53 2.03 4.18 4.43 4.07 4.13 

3.95 4.1 2.72 4.58 1.9 4.50 1.95 

4.83 4.12      

 

 

2.1 Histogram 

 

The oldest and most widely used density estimator is the histogram. It bins the 

sample (x1, x2, …, xn) into the intervals 

 

0 0[ , ( 1x mh x m h+ + + ) )

 

, 

 

where x0 is the origin, m is positive or negative integers and h is the bin width. The 

intervals have been closed on the left and open on the right for definitiveness. The 

histogram is thus defined by  



2 0 

1ˆ( ) #{ if x x
nh

=  in the same bin as x} 

 

Histogram is piece-wise continuous, which is discontinuous at the boundaries 

between bins. The choices of an origin x0 and bin width h were in general arbitrary 

despite of many rules of thumb from experience that could be followed. The problem 

become more severe for small sample size for example n = 10~20, as different choices of 

origin x0 and bin width h would produce dramatically different density estimates and it is 

nearly impossible to determine which estimate would be the right choice. The choice of 

the bin width primarily controls the amount of smoothing inherent in the procedure. 

Histogram remains an excellent tool for data presentation mainly for quite large sample 

size. Histogram is not very sensible for small sample as it requires that the data to be 

grouped first. 

 

  

Figure.2.1 Two histograms with different starting point of bins of eruption lengths of the 

 

herefore one of the challenges for density estimation is how to obtain a unique 

density

2.2 The naïve estimator 

By definition the pdf of random variable X is 

Old Faithful geyser. 
 

T

 function that is reliable for small sample size.  
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0

1( ) ( ).
2lim

h
f x P x h X x

h→

h= − < < +  

Thus a natural estimator lf of the density is given by choosing a small number h 

and setting  

 

l 1( ) #{ ( )}
2 if x x x h X x

nh
= ∈ − < < + h  

 

which is called the naïve estimator. Define a weight function w by  

 

1 | | 1,
2

( ) 0 .{
if x

w x otherwise

<

=  

 

Then it is easy to write the naïve estimator as 

 

l
1

1 1( ) ( ).
n

i

i

x Xf x w
n h h=

−
= ∑  

 

Imagine that the estimate is constructed by placing a ‘box’ of width 2h and height 

(2nh) -1 on each observation and then summing up to obtain the estimation.  

 

The naïve estimator can be seen as an attempt to construct a histogram that every 

data point is the center of a sampling interval, thus freeing the histogram from a particular 

choice of bin positions. Here lf  is also piece-wise continuous similar to the histogram. 

The choice of the bin width h still remains unresolved, which controls the amount of 

smoothing to produce the estimate.  
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Figure.2.2 Naïve estimate constructed from Old Faithful geyser data, h=0.25. 

 

2.3 The kernel estimator 

 

The kernel estimator is an extension of the naïve estimator by replacing the 

weight function w by a kernel function K that satisfies the condition  

 

( ) 1.K x dx
∞

−∞
=∫  

 

Usually, but not always, K  will be a symmetric probability density function, the 

normal density, for instance, or the ‘box’ weight function w used in the definition of the 

naïve estimator. By analogy to the definition of the naïve estimator, the kernel estimator 

with kernel K is defined by 

 

l
1

1( ) ( ).
n

i

i

x Xf x K
nh h=

−
=∑  

 

The window width h is also called the smoothing parameter or bandwidth. Just as 

the naïve estimator can be imagined as a sum of ‘boxes’ centered at the observations, the 

kernel estimator is a sum of ‘bumps’ placed at the observations. The kernel function K 

determines the shape of the bumps while the window width h determines their width. An 
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illustration is given in Figure. 2.3, individual bumps 1 ( i )x XK
h h

−  with different window 

width h are shown as well as the estimate lf  constructed by adding them up. Two 

elementary properties of kernel estimates may follow at once 

 

(1) lf is a pdf,  if and only if  K is pdf;  

(2) lf has the same continuity and differentiability properties of the kernel K. 

For example if K is the normal density function, then lf will be a smooth curve having 

derivatives of all orders. 

 

 Apart from the histogram, the kernel estimator is probably the most commonly 

used density estimator and certainly the most studied mathematically. The major 

drawback is the fixed window width h across the entire sample. The amount of 

smoothing might be too much for the higher density locations, where more observations 

were clustered; but not enough for the lower density locations, where fewer observations 

were found, which are usually at the tails. Various adaptive methods have been proposed, 

and these are discussed in the next two sections. 

 

(a) 
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Figure. 2.3 Kernel estimates showing individual kernels. Window widths: 
(a) 0.2; (b) 0.4; (c) 0.8. 
 

 
 

Figure.2.4 Kernel estimate for Old Faithful geyser data, window width 0.25. 

(b) 

(c) 
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2.4 The nearest neighbor method 

 

The nearest neighbor estimator represents an attempt to adapt the amount of 

smoothing to the ‘local’ density of data. The degree of smoothing is controlled by an 

integer k, chosen to be considerably smaller than the sample size; typically .k n≈  

Define the distance , and for each t define ( , ) | |d x y x y= −

 

1 2( ) ( ) ... ( )nd t d t d t≤ ≤ ≤  

 

to be the distances, arranged in ascending order, from t to the point of the sample, xi. 

 

 The k-th nearest neighbor density estimator is then defined by 

 

l( )
2 (k

kf t
nd t

=
)

 

 

One would expect about observations to fall into the interval [ for each 

. By definition exactly k observations fall into the interval[ , an 

estimate of the density at may be obtained by rearranging the following 

2 ( )rnf t , ]t r t r− +

0r > ( ), ( )]k kt d t t d t− +

 

l2 ( ) ( ).kk d t n f t=  

 

At the lower density locations, the distance will be larger than that at the higher 

density locations of the distribution, and so the problem of under-smoothing in the tails 

should be reduced. The nearest neighbor estimator is not a smooth curve like the naïve 

estimator; to be precise, 

( )kd t

lf is first order continuous with discontinuous derivative at some 

locations. 
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Figure.2.5 Nerest neighbor estimate for Old Faithful geyser data, window width k = 20. 

 

In contrast to the kernel estimator, the nearest neighbor estimator does not 

integrate to unity therefore is not automatically a density function. Intuitively 

l( )
2 (k

kf t
nd t

=
)

 is derived from the local property of for parameters k and n 

according to the k-nearest neighbor restriction, so sophisticated computational techniques 

were usually necessary. An alternative solution called the generalized k-nearest neighbor 

estimate is defined by  

( )kd t

 

l
1

1( ) ( ).
( ) ( )

i
n

ik k

t X
f t K

nd t d t=

−
= ∑  

 

It can be seen at once that this is the kernel estimator evaluated at t with different 

window width dk(t). The global smoothing is governed by the choice of the integer k, but 

the window width dk(t) used at any particular point for local smoothing depends on the 

density of observations near that point of t. 
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2.5 Variable kernel method 

 

The variable kernel method, is somewhat related to the nearest neighbor approach 

and is another method that adapts the amount of smoothing to the local density of the 

data. The estimate is constructed similarly to the classical kernel estimate, but the 

smoothing parameter of the ‘bumps’ placed on the data points is allowed to vary from 

one data point to another.  

 

Define dj,k to be the distance from Xj to the k-nearest point in the set comprising 

the other n-1 data points. Then the variable kernel method with smoothing parameter h is 

defined by 

l
1 , ,

1 1( ) ( ).i
n

j j k j k

t X
f t K

n hd hd=

−
= ∑  

 

The window width of the kernel placed on the point Xj is proportional to dj,k, so 

that data points in regions where the data are sparse will have flatter kernels associated 

with them. For any fixed k, the overall degree of smoothing will depend on the parameter 

h. The choice of k determines how responsive the window width choice will be to the 

very detail. 

 

The subtle difference from the generalized k-nearest neighbor estimator may be 

compared with the variable kernel estimator. Note dk(t) depends on the distance from t to 

the data points; while dj,k is independent of t at which the density is estimated, and 

depends only on the distances between the data points.

 

Another important generalization of variable kernel method, the adaptive kernel 

method, has been developed with more flexibility to handle the complexity in reality, 

however based on the same common-sense notion that a natural way to deal with long-

tailed densities is to use a broader kernel in regions of low density. Thus the observation 

in the low density part will spread out a wider range than one in the high density part. 
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2.6 Discussion 

 

The theoretical importance of density estimation had been well established and an 

increasing number of conscientious authors have been working in the technical aspects to 

make it accessible to a wider audience in light of the central role of the probability 

density function, which is like the Rome that every road leads to it. 

 

The density estimators introduced above cover most of the important ideas, from 

which we may see that the smoothing window width or bandwidth, h, plays a central role 

in all the methods introduced above. The details of the nonparametric density estimates 

and the corresponding results of data analysis were at influenced by h. Thus various plans 

for the selection of h have been the key ingredient that differentiates each of the density 

estimators. This is rather intuitive because density estimation is all about “filling up” the 

gaps between observations at n discrete data points, and h is the measure of this “filling 

up” process; and h should be optimized according to some criteria either globally or 

locally. 

  

Density estimation with smoothing kernel functions is the most suitable method to 

solve the problem; yet in reality density estimation had not been widely applied due to its 

tedious fine-tuning of smoothing width in addition to the ad hoc selection of smoothing 

kernel from many candidate functions. To confirm the existence of a unique optimized h 

in the frame work of functional analysis can be a daunting task in theory as well as in 

application; and the lack of general criteria for optimization made the optimization rather 

problem-specific if not arbitrary. Sometimes after the painstaking process of selecting the 

h, we may found that it is not sensitive to the analysis results at all. This reminds us of 

Fisher’s witty comment --- “it is not only shooting a sparrow with a cannon, it might even 

miss the sparrow as well.” That is why density estimation has not been widely used in 

exploratory data analysis, such as bootstrap. However there are wider applications of 

smoothing other than statistical density estimation. Another major application in statistics 

might be the “smoother” used in regression (T. Hastie and R. Tibshirani, 1990), and in 
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engineering fields for such applications like noise filtering and signal smoothing 

whenever the bandwidth, h, can be effectively optimized for example with tools such as 

Fourier Transformation.  
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Chapter 3. Theory of step density estimation 
 

In this chapter we will discuss the motivation and the criteria to construct a 

density estimation, the step density function (sdf), to replace the discrete empirical 

density function (edf) for bootstrap resampling. The criteria were raised from studies of 

smoothed bootstrap, which is an old idea when bootstrap first invented (B. Efron, 1982) 

and researched by Silverman and Young (1987), Hall, Diciccio and Ramano (1989).  In 

general, there is no global preference for procedures based on a smoothed version of the 

empirical distribution function rather than the empirical density function itself. In the 

majority of problems smoothing only influences the second order properties of the 

estimator while requiring greater computation and a suitable amount of smoothing (de 

Angelis and Young, 1992). However the step density function we will construct is aiming 

to automatically provide an objective amount of smoothing with the minimum amount of 

increase in the computation budget.  

 

Throughout this chapter it will be assumed that we have a sample 1,..., nX X of 

independent, identically distributed observations from a continuous univariate 

distribution with probability density function F. There are many practical problems where 

these assumptions are not necessarily justifiable, but nevertheless they provide a standard 

frame work in which to discuss the properties of the step density function (sdf). 

 

3.1 Definition of step density function (sdf) 

 

Step density function (sdf) is the result of step density estimation procedure, 

which produce a piece-wise continuous smoothed version of the edf that can be readily 

applied to nonparametric bootstrap resampling. Considering a random sample of size 

 from an unknown probability distribution F, 11n =

 

{1,1.2,2,3,4,5,10,12,12.5,13,14}.F →  
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The observed sample is plotted via a “needle plot” in Figure 3.1, which put weight 1 on 

every observed data point; so a normalized needle plot is the edf.  
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Figure 3.1 Needle Plot constructed on the example data set, {1, 1.2, 2, 3, 4, 5, 10, 12, 

12.5, 13, 14}. 
 

The Step density function (sdf) is defined as a class of functions that partition the 

domain of the sample values (1) (1) ( ) ( )[ , n nx x ]−∆ + ∆  that covers the sample points with a 

set of bins with varied width ,( )id (1) (2) ( ) ( ){ , ,..., , }n nd d∆ ∆ ; and the set of middle intervals of 

 and the two end intervals (2) (3) ( ){ , ,..., }nd d d (1) ( ), n∆ ∆  together form a partition of the 

domain , and there would be no overlap between any two bins. It is 

like a histogram with variable bin width that keeps each and every bin with only one 

sample point in it; i.e.

(1) (1) ( ) ( )[ , n nx x−∆ + ∆ ]

( )ix  will fall into bin with width, . There are some freedoms in 

choosing the way of dividing the bins by selecting the set of  

and ; and it is the freedom of this partition scheme that we may take advantage to 

construct the density estimation in such a way that is computational efficient when 

applying to bootstrap resampling. 

( )id

(1) (2) ( ){ , ,..., }nd d d

(1) ( ), n∆ ∆
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Once the set of  were determined the probability density on 

each bin width, , will be fixed as a constant 

(1) (2) ( ) ( ){ , ,..., , }n nd d∆ ∆

( )id
( )

1

ind
; and the sdf constructed this way 

would be shown in section 3.3 that it has the nice properties of MLE, and UMVUE as an 

estimator of the unknown density function, F. And we will use a new symbol nFsut to 

denote the sdf, with the hat ‘ st ’ symbol representing the shape of the function. Step 

density function, , is constructed on the example data set, {1, 1.2, 2, 3, 4, 5, 10, 12, 

12.5, 13, 14}. Figure 3.2 is the 

nFsut

nFsut  constructed by defining 

and( ) ( ) ( 1) , 2,..., ;i i id d d i n−= − = (2) ( )
(1) ( ),

2 2
n

n

d d
∆ = ∆ = . 
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 Figure 3.2 Step density function, nFsut , for the example data set, {1, 1.2, 2, 3, 4, 5, 10, 12, 
12.5, 13, 14}. 

 

3.2 Two key issues 

 

The problem we are trying to solve is the bootstrap failure in local extreme values 

as well as the global property of the distribution. In Chapter 1, we briefly outlined the 

motivation of the problem as searching for a properly constructed smoothed estimation of 
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the probability density function, which will not only smooth out the discreteness of edf 

but also satisfy two more criteria.  

 

a) The first criterion is to eliminate the tedious fine-tuning of smooth bandwidth, 

h, and the ad hoc optimization rules, which compromises the objectiveness of 

bootstrap (bootstrap is usually considered a Frequentist method with the 

minimum amount of assumption beside the sample itself).  

 

b) Secondly it is to make sure that the “smoothed” density function should add 

the minimum amount of computational effort to the usually computer-

intensive bootstrap method.  

 

The step density functions (sdf), developed in this work, will be measured according to 

the two criteria above. 

 

• Discreteness of edf 

 

We start with the following natural question. Why the discreteness of empirical 

density function (edf) was not a problem for most bootstrap applications except for the 

extreme values at the tail or for very small sample size?  

 

Apparently empirical density function (edf) is the simplest, as well as the most 

generally applicable density estimation. Smoothed density function is naturally available 

to univariate data, but is complicated to be extended to multivariate data analysis (B. 

Silverman, 1976) or in higher dimension geometric settings. In fact, the edf itself without 

smoothing guaranteed the wide application of bootstrap to problems with high dimension 

or complicated statistics without an analytic solution. The advantage of smoothing has a 

second order effect on the convergence of bootstrap estimator, and strongly depends on 

the underlying F and sample size n (D. de Angilis and G.A. Young, 1992).  An adaptive 

bandwidth , which varies at different location ( )ih x ix , is preferred to reflect the shape of 
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F; and the most effective case should be for small sample size n because the smoothing 

effect would diminish when . n →∞

 

B. Efron explained when smoothed bootstrap is necessary and simple guidelines 

on the discrete issue:  “the empirical distribution function is not a good estimate of the 

true distribution F in the extreme tail. Either parametric knowledge of F or some 

smoothing of is needed to rectify matters. The nonparametric bootstrap can fail in 

other examples in which 

lF

θ depend on the smoothness of F.” The step density function 

(sdf) might be a solution to this class of problems as mentioned above and we are set to 

study procedures that can produce a piece-wise smoothed density estimation for the 

empirical distribution function for nonparametric bootstrap resampling. 

 

• Continuity and adaptiveness of sdf 

 

As we illustrated in the last example, step density function (sdf) that covers the 

sample points with a set of bin width (1) (2) ( ) ( ){ , ,..., , }n nd d∆ ∆  is a piece-wise continuous 

function. There are other density estimators that are smooth at higher orders, such as the 

kernel method, the nearest neighbor method, the variable kernel method as shown in 

Chapter 2. We avoid those more smoothed density estimators for two reasons, (a) 

bandwidth selection, and (b) bootstrap application. By defining 

and( ) ( ) ( 1) , 2,..., ;i i id d d i n−= − = (2) ( )
(1) ( ),

2 2
n

n

d d
∆ = ∆ =  in section 3.1, the selection of  

is objective without the optimization of h, which was equivalent to the 1-nearest 

neighbor density estimation and adaptive to the local density at 

( ) ( )ih d= i

ix . The piece-wise 

smoothness of a density function is also mathematical tractable with very little 

computation added to the bootstrap resampling, which we will show in Chapter 5. 

 

Despite both the histogram and the naïve estimator are step-wise continuous like 

sdf, they were fundamentally different from the sdf.  The first two density estimations 

both have the smoothing parameter selection issue, i.e., the bin size selection for 
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histogram and the window width for the naïve estimator. Histogram usually needs a 

relatively larger sample size in order to have a reasonable number of data points in each 

bin, and the bin boundary may have a large effect on the histogram in the small sample 

example given in Chapter 2.1.  

 

The local adaptive property of the estimated density function is a property to be 

stressed for small sample cases while for large sample the issue is less important. 

However, regardless of sample size it is important for extreme value estimation, where 

essentially the estimation heavily relies on the very few data points in the tail portion. 

The way we constructed the sdf is dependent on the data point and its k-nearest neighbor 

(k=1), by which the local adaptiveness tends to be automatically satisfied. 

 

3.3 Properties of sdf 

 

• Easy to construct  

 

Having observed a random sample of size n from F, 

 

F  (x1, x2,…, xn), 

 

we first rank the sample (x1, x2,…, xn) into order statistic (x(1), x(2),…, x(n)), then calculate 

the middle intervals i.e. the distance between ( 1) ( )[ ,i i ]x x− , 

 

( ) ( ) ( 1)i i id x x −= − . 

 

If ( 1) ( )i ix x− = , we define ( 1) ( )id d+ i=  , with a number of degeneracy at ( )ix  denoted 

as  (and  if( ) 1ik = ( ) 0ik = ( 1) ( )i ix x− ≠ ); and in total there would have (n- ) distinctive ( )
2

n

i
i

k
=
∑
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distances in the set . The two end intervals were defined as (1) (2) ( ) ( ){ , ,..., , }n nd d∆ ∆

(2) ( )
(1) ( ),

2 2
n

n

d d
∆ = ∆ = , which is half of its neighboring middle interval. 

 

The density between interval ( 1) ( )[ ,i i ]x x−  is defined as reciprocal to , i.e. on 

 the density as 

( 1)id −

(2) ( ){ ,..., }nd d
(2) ( )

1 1{ ,..., }
nnd nd

. The sum of the total density on the middle 

intervals would be 11
n

− , so at the two end intervals (1)∆ and ( )n∆ we will add two density 

mass, 
(2)

1
nd

 on (1) (1) (1)[ , ]x x−∆  and 
( )

1

nnd
 on ( ) ( ) ( )[ ,n n nx x ]+ ∆ . Please note that there can 

be another convenient partition to having (2 1)n+  intervals in the  

by inserting a new boundary point between any two points at its middle intervals. Then 

the density on the left and right sides of each point is adaptive to its neighbors. 

(1) (2) ( ) ( ){ , ,..., , }n nd d∆ ∆

 

• Maximum likelihood estimator  

 

Vapnik (1996) has shown that the MLE of an unknown density F can not be 

generally available without any restrictions on the density estimate, usually given by a 

family of distribution functions to choose from. It applies to the parametric density 

estimation as to the choice of a family of distribution functions for , or to the 

nonparametric density estimation as to the choice of a family of distribution functions for 

the local atomic smoothing kernels of the . (Here F and f , and 

lF

l
nF lF lf might be used in a 

exchangeable way when there is no confusion existed. ) 

 

Theorem1. For any partition,  of an observed discrete sample space (1) (2) ( ){ , ,..., }jd d d

(1) (2) ( ){ , ,..., }nx x x , with number of observations in each region  to partition the total 

number of observations, , and 

in ( )id

1 2{ , ,..., }jn n n
1

j

i
i

n n
=

=∑ . Assume in general lf  belong to a 
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family of step functions that have density iθ in each region , which is a “generalized 

histogram” with variable bin widths . Then when

( )id

(1) (2) ( ){ , ,..., }jd d d
( )

i
i

i

n
nd

θ = , lf is the 

MLE of  f . 

Proof. The generalized histogram with variable bin widths  can be 

written as 

(1) (2) ( ){ , ,..., }jd d d

l
( )

1
( ) ( )

i

j

i d
i

f x Iθ
=

=∑ x , using  

l

( )

( )

( )

( )

1

1 2
11 1

 :  ( ) 1, ,

( ) 0, ,

( ) .
     

( , ,..., ) ( ) (1 )

i

i

i

i i

d i

d i

i

nn J J
n n

n i i i i
ii i i

indicator function I x if x d

I x if x d

where multiple parameteres need tobeestimated
The likelihood function is defined as

L x x x f x

θ

θ θ θ
−

== =

= ∈

= ∉

= = = −∑∏ ∏
1

1 2
1

1 1

1 2 1 2
1 1

, ( ... 1)

  log-   

( , ,..., ) log ( , ,..., ) log(1 ) log .

J

J

J J

n n j i i i
i i

and the likelihood function is

l x x x L x x x n n

θ θ θ

θ θ

−

=

− −

= =

+ + + =

= = − +

∏

∑ ∑

∵  

  

In searching for conditions for the extrema of , we take the 

derivative of , i.e. 

1 2( , ,..., )nl x x x

1 2( , ,..., )nl x x x

( )

( )

1

1
1

1

1 2
1

2

12 2
2

1

1 0, 0 (1 ) ,
1

1 ... ,

, ;

2 0,      
(1 )

j
j ji i

i i ij
ii i j j

i
i

j
j j

j i
ij j

j i
j i

j i
j

i i
i

i

n n nl n
n n

n n
n n

n n
n n

n nl which assures that the extrema is a imummax .

θ
θ θ

θ θθ

θ θ
θ θ θ

θ θ

θ θθ

−

−
=

=

=

−

=

−∂
= ⇒ + = ⇒ = − =

∂ −

∴ = + + + = =

∴ = =

− −∂
= + <

∂ −

∑
∑

∑

∑

 

l
( )

1 ( )

( ) ( ) .
i

j
i

d
i i

nf x I x is the MLE o
nd=

= ∑ f f  End of proof. 
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Theorem 2. The step density function 
(1) (2) ( )

1 1 1{ , ,..., }
nnd nd nd

defined on any partition 

 with constant probability density mass(1) (2) ( ){ , ,..., }nd d d 1
n

, is a maximum likelihood 

estimator (MLE) of the unknown density function f. 

 

Proof. In Theorem 1 let j n= , and 1, 1,2,..., ,in i n= =  Theorem 2 will immediately follow. 

The sdf is a special case of the generalized histogram for a specific choice of the 

partition, . Since sdf is a generalized histogram, any general properties 

of the generalized histogram should also be valid for the sdf. 

(1) (2) ( ){ , ,..., }jd d d

 

• UMVUE 

 

Theorem 3. The generalized histogram with variable bin widths is an 

unbiased estimator for f. 

(1) (2) ( ){ , ,..., }jd d d

 

Proof.  First l
( ) 1 2

1
( ) ( ), ( , ,..., )

i

j

i d j
i

f x I xθ θ θ θ θ
=

= =∑ , is an unbiased estimator for f.  

In each bin of , and frequency ( )id i
i

n
n

θ =  is an unbiased estimator of the density function 

at , ( )id

( ) ( )

( ) ( )

( )

( ( ) )
|

| ( ) | ( ( )i i

i i

i

i x d x di
i x d x d

x d

E n f x dx
EnnE E E f x

n n n
θ ∈ ∈

∈ ∈
∈

= = = =
∫

∫ )dx . End of proof. 

 

Theorem 4. The step density function is a uniform minimum variance unbiased estimator 

(UMVUE) for f. 
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Proof. The sample, X , is a minimum sufficient statistics (MSS) for sdf  

l
( )

1
( ) ( )

i

n

i d
i

f x I xθ
=

=∑ , 1 2( , ,..., )nθ θ θ θ= , which can be shown as the following.  

The joint pdf of sample X  is
1 1

ˆ( | ) ( | )
n n

i
i i

g X f x iθ θ
= =

= = θ∏ ∏ , and thus for two 

sample points X  and  Y  the ratio '
1

'
'

1

( | )
( | )

n

i
i
n

i
i

g X
g Y

θ
θ
θ

θ

=

=

=
∏

∏
 would be a constant independent of 

1 2( , ,..., )nθ θ θ θ=  iff X Y= .  

From Lehmann and Scheffe’s theorem (Casella and Berger, 2001, p. 281), the sdf 

sample X is a minimum sufficient statistics (MSS) for f. 

 From Theorem 3, the sdf l
( )

1
( ) ( )

i

n

i d
i

f x Iθ
=

=∑ x  is a special case of the generalized 

histogram and is an unbiased estimator for f ; thus it is conditioned on the minimum 

sufficient statistics (MSS) X . From the theorem of Rao-Blackwell (Casella and Berger, 

2001. p. 342), sdf l
( )

1
( ) ( )

i

n

i d
i

f x Iθ
=

=∑ x

i

is a UMVUE of the density function f.  

End of proof. 

 

The edf, , is a sufficient statistic for the true distribution (B. Efron and R. 

Tibshirani, 1992). After searching the literature for such a proof, we failed to locate a 

documented proof for its sufficiency, MLE or UMVUE. So we outline a brief proof here. 

The major steps of the proof are the family of the estimation function 

l
nF

l
1

( ) ( )
j

i
i

f x xθ δ
=

= −∑ x i, the likelihood function 1 2
1 1

ˆ( , ,..., ) ( )
n n

n i
i i

L x x x f x θ
= =

= =∏ ∏ , 

and 1 2 ... 1nθ θ θ+ + + = . The last two equations constitute a classical optimization problem 

with the well-known results that was at maximum 

when

1 2( , ,..., )nL x x x

1 2
1... n n

θ θ θ= = = = . However the most direct argument may be as simple as that 
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the complete sample, X , is always a sufficient statistics, so  and any functional of l
nF X is 

also S.S. for f. 

 

• Ready for bootstrap 

 

The single most important property of the sdf is that it can be naturally 

implemented into bootstrap resampling. The real hard work in smoothed bootstrap, i.e. 

smoothing kernel function selection and suitable amount smoothing by choosing 

bandwidth h, are eliminated automatically by the sdf. However, the bootstrap sample is 

not a “resample” with the peculiar property such as multiple observation of the same 

sample point (B. Silverman, 1987), but as imputed new sample points from a continuous 

distribution sdf. Therefore bootstrap resampling from sdf might be better called “imputed 

bootstrap resampling” instead of “smoothed bootstrap” to stress this basic change of 

imputed resampling technique with an automatic sdf, which is almost as simple as edf.   

 

Here is the computation implementation of sdf. Let ( 1) ( ) ( 1)i i id x x− −= − , add one data 

point, (0)x , for programming purpose only to remove the distinction between the end 

intervals, and middle intervals, . (1) ( ), n∆ ∆ (1) (2) ( ){ , ,..., }nd d d

 

(0) (1) (2) (1) (2) (1)
1 3( )
2 2

1 ,
2

x x x x x x= − − = −  

 

(0) (2) (1) ( ) ( ) ( 1)
1 1( ), (
2 2n n nd x x d x x −= − = − ) . 

 

Two random variable 1R  and 2R are drawn from uniform distribution , 

where  is the nearest integer 

[0,1]U

1[k R n= • ] 1R n< • , 0,1,2,..., 1k n= − .When 0k = , 50% 

chance let and 50% chance let 0k = k n= . The bootstrap sample is generated as 

following 
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*

( ) 2 ( )i k kX x R d= + • . 

 

The imputed bootstrap resampling will be used routinely in examples of the following 

chapters.  

 

• Limitations of sdf 

 

Before we went on to the applications of sdf we think it is time to discuss the  

fundamental limitations of the sdf and their consequences on imputed resampling. 

 

The 1st limitation is more “philosophical” and related to the freedoms in selecting 

the set of bin width , which is mainly restricted by the partition 

requirement that each bin has one and only one sample value, 

(1) (2) ( ){ , ,..., }nd d d

( )ix . Essentially we 

adopted the 1-nearest neighbor approach. It stemmed from the same principle in other 

kernel-based density estimators that each kernel is a single-mode bell or box shaped 

function that weighs more on the center, which was the observation and less on its 

neighboring observations. The advantage of the choice was that it would automatically 

adapt to the local property. For example if ( 1) ( )id d− i< , the density on the sides of 

( )ix would be unsymmetrical with 
( 1)

1

ind −

on ( 1) ( )[ ,i i ]x x−  and 
( )

1

ind
on , where ( ) ( 1)[ ,i ix x + ]

( 1) ( )

1

i ind nd−

>
1 . The unique choice of sdf based on the distance to the 1-nearest neighbor 

has the advantage in simplifying the h–optimization at the expenses of a less smooth 

density estimate by completely ignoring the 2 or 3-nearest neighbor that may improve the 

estimation in a less influential manner than the 1-nearest neighbor. So it is not “getting 

something from nothing” - we obatin what we need by giving up less relevant details in 

the same way of edf for naïve bootstrap to gain on the side of objectivity and ease of use. 

Yet no justification above constitutes any proof of optimality of selecting sdf, a result of 

compromise between getting around the discreteness of edf in an efficient way, so other 

better density estimation might be necessary in special situations.  



4 2 

  

And the 2nd limitation is more paradoxical in nature of the extreme value 

statistics.  It is intuitive to see that the few data points in the tail weigh more than the bulk 

of the remaining observations, so the first impression was the effect of sdf as a global 

density may not be effective or even relevant. The result in the next chapter may be 

surprisingly in its effectiveness. Since the discreteness in the few local points near the 

tails, so the careful choice of local adaptive property is crucial and needs more 

investigation from an order statistics frame work (H.A. David and H.N. Nagaraja, 2003).  
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Chapter 4. Application of step density estimation 
 

The step density function was demonstrated in (1) the estimation of local density, 

(2) unique mode selection, and (3) quick estimation for further smoothing. Its most 

important application, namely, (4) imputed bootstrap resampling, was presented in 

Chapter 5. 

 

4.1 Local density estimated by step density function 

 

Local density becomes an important issue for statistical procedures that is 

determined mainly by the local property of a distribution, for example the uniform 

distribution parameter estimation problem we used to illustrate as one of the bootstrap 

failures (B. Efron, 1993). Intuitively we sense it is a hard problem because a statistic, 

such as the extreme values, that relies on the local density property, would involve very 

few data point as support from the original data and the rest of data points had little to do 

with the accuracy of the statistic.  

 

Step density estimation seems to be a quick choice in this situation by adding 

more support, infinitely many indeed, by filling up the gaps between discrete sample 

points with a simple uniform distribution. With additional information more complicated 

model can be chosen; but a non-informative choice of a uniform distribution might be 

less biased like a non-informative Bayesian prior. 

 

 Let’s restate the well-known example that B. Efron had used to illustrate 

situations when bootstrap failed, 
. . .

1 2( , ,..., )i i d
nF x x x⎯⎯⎯→ ~ (0, )F U, θ . 
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Figure 4.1 The histogram with 100 bins that imitate the needle plot to show the original 
50 data points ~  on (a), and the 2000 nonparametric bootstrap replications 

obtained sampling with replacement from the empirical distribution function, . 

(0,1)U
l

nF
 

 The MLE �θ  is the largest sample value ( )nx . A sample of 50 uniform numbers in 

the range ( is generated and computed resulting in .The left panel of Figure 

4.1 shows a histogram of 50 sample points, and the right panel of 2000 bootstrap 

replications obtained sampling with replacement from the data. The left panel of Figure 

4.2 shows 2000 parametric bootstrap replications obtained by sampling from the uniform 

distribution on

0,1) � 0.988θ =

�(0, )U θ . It is evident that the right histogram of Figure 4.2 is an 

approximation to the left histogram. In particular, the left histogram has a large 

probability mass at �0.62 θ× of the value �*θ θ= . In general, it is easy to show that  

 

 � �* * 1 1P( ) 1 P( ) 1 (1 ) 1 0.632nn

n e
θ θ θ θ →∞= = − ≠ = − − ⎯⎯⎯→ − ≈ . 

 

However, in the parametric setting of the right panel, �*P( ) 0θ θ= = . 
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Figure 4.2 The histogram with 100 bins that imitate the needle plot to show the 2000 
parametric bootstrap replications obtained sampling with �(0, )U θ  in (a) and 2000 
nonparametric bootstrap replacement from the step density function, nF  in (b).  

 

The improvement from the step density estimate, nF , over that from the empirical 

distribution function, , is apparent that the previous totally discrete sample distribution 

of 

l
nF

l*θ becomes continuous more resembling that from the parametric bootstrap. This 

made the accuracy measures such as n*. .( )C I θ  and n*( )se θ possible from Figure 4.2 (b) 

and reasonably reliable even in comparison to that in Figure 4.2 (a). 

 

The vaguely observable steps in Figure 4.2 (b) overlap reasonably with the 

locations of the first two order statistics (1) (2),x x  and (3)x  in Figure 4.1 (b), which is a 

good indication of how the step density estimate works. This non-smoothness character 

can be less observable when sample size gets larger, which left with narrower gaps 

between any two adjacent points in the original data. 

 

4.2 Unique mode selection 

 

Table 4.1 shows the results of a small experiment from B. Efron (1992), in which 

7 out of 16 mice were randomly selected to receive a new medical treatment, while the 

remaining 9 were assigned to the non-treatment (control) group. The treatment was 
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intended to prolong survival after a test surgery. The table shows the survival time 

following surgery, in days, for all 16 mice. 

 

Table 4.1 The mouse data. Sixteen mice were randomly assigned to a treatment group or 
control group. Shown are their survival times, in days, following a test surgery. Did the 
treatment prolong survival? 

 
Group Data Sample size X  m

Xσ

Control 

 

52   104   146    10    51    30    40 

 27    46 

9 86.86 25.24 

Treatment 

 

94   197    16    38    99   141    23 7 56.22 14.14 

  Difference 30.63 28.93 

 

This set of data has been intensively analyzed by B. Efron using different 

methods. The standard error for the difference ( )X Y−  equals 28.93 = 2 225.24 14.14+  

(since the variance of the difference of two independent quantities is the sum of their 

variances). We see that the observed difference ( )X Y− =30.63 is only  

 

n
30.63 1.05
28.93

X Y

X Y
σ −

−
= =  

 

estimated standard errors greater than zeros, which yields one-side p-value 0.15≈ by 

assuming two samples were both from normal distributions. It was an insignificant result, 

one that could easily arise by chance even if the treatment really had no effect at all. 

Several nonparametric permutation and bootstrap analysis basically yield the similar 

insignificant results. 

 

Because the sample size is small 1, 2( )n n = (9, 7), it was not reliable to test the 

normality of the two samples. For the same reason of sample size histogram shown in 
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Figure 4.3 was not as intuitive as it should be for large sample to observe any modes 

from its sample distribution. 

 

 
Figure 4.3 Histogram of the mouse data: (top) control group, (bottom) treatment. 
 

 

 

The needle plot shown in Figure 4.4 indicated that within the range [10, 60] it 

seems to have some clustered observations especially for the control group. However it 

would be much intuitive to have an estimated density instead of the clustering frequency. 
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Figure 4.4 Needle plot for the mouse data: (top) control group, (bottom) treatment. 

 
 

 

 

Step density estimate could be the first choice for this type of data display to lend 

the user a quick look because it is both unique in presentation and adaptive to local 

density variations. The other density estimates would either yield different estimates with 

window width selections, or be not adaptive to large local density variations that are 

usually severe for small samples. Those that can do both are usually rather cumbersome 

even with software. Figure 4.5 and Figure 4.6 are the same step density estimate 

displayed in linear as well as logarithmic scales for easy reading. 
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Figure 4.5 The unique step density estimate of the mouse data in linear scale: (top) 
control group, (bottom) treatment. 
 

 

 

We observed that the step density estimation for the control had a mode in the 

range [0, 60] with a long tail in the range [60,180], and for the treatment group the mode 

in the range [0, 60] is significantly reduced with a new mode surging in the range 

[60,240] with a longer tail extended to the longer survival time. Since the data points 

were so scarce we combined the control and the treatment groups to see more clearly the 

two modes in survival time as shown in Figure 4.7, which confirmed our speculation that 

there might be two modes in the data structure, one concentrated mode in the range of [0, 

60] and one widely-spreading mode in the range of [80,240]. The clear gap between the 

two modes may serve as the criteria to distinguish the mixture of the two modes.  
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Figure 4.6 The unique step density estimate of the mouse data in logarithmic scale: (top) 
control group, (bottom) treatment. 
 

 
Figure 4.7 Step density estimate of the combined mouse data in linear scale. 
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Let’s consider a simple binomial model. The proportion of the longer survival 

mode is denoted as p, the control group ~ 1 1( ,  ) Bin p n and the treatment group 

~ 2 2( ,  )Bin p n , we will test the hypothesis 

 

0 1 2: 0H p p− ≥  vs. 1 1 2: 0H p p− <  . 

 

 If we take c = 80 by visual inspection of the step density function as the threshold 

to distinguish the two modes, , and the test statistics l
1 2 / 9 0.222,p = = m

2 4 / 7 0.57p = =

l m

l l m m
1 2 1 2

1 1 2 2

1 2

( ) 0.35 1.51
0.23(1 ) (1 )

p p p pz
p p p p

n n

− − −
=

− −
+

� �  and p-value 0.067, which is marginal to say the 

treatment have significant effects to prolong the survival time after surgery. 

 

 

 
Figure 4.8 Histogram of the proportion of mice in each group with survival time > 80 
days from bootstrap resampling with step density function, B=10000. The top panel is for 
the control group, and the bottom panel for the treatment group. 
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To confirm the stability of the test we run a bootstrap resampling for the two 

groups separately to estimate the proportions, the bootstrap sample size we used was B 

=10,000 . From the resampling data presented in Figure 4.8, * *
1 1( , ) (0.2019,0.1338)p σ = , 

* *
2 2( , ) (0.4707,0.1881)p σ = , and the variance of m m

1 2( )p p− , 

 

l m
n

1 2

* 2 * 2 2 2
1 2( ) ( ) 0.1338 0.1818 0.231

p p
σ σ σ

−
= + = + = , 

 

which is much closer to the simple binomial estimate of 0.23 than the traditional 

bootstrap estimate of S.E.(m m* *
1 2( )p p− )=0.28.  

 

4.3 First-order approximation for further smoothing 

 

As we saw from the review on density estimation methods in Chapter 2 the most 

important application of the smoothing procedure is to the empirical density (edf) 

estimator . As we can imagine gaps between the isolated points need to be filled up by 

properly selecting the window width of the smoothing kernels, preferably with some 

local adaptive ability. The step density estimate (sdf) we constructed,

l
nF

nF , has been shown 

to be unique like the empirical density estimate, , and piece-wise continuous without 

the gaps between isolated data points. However the sdf we constructed was discrete at 

each joint between steps, which was not differentiable. For applications where 

smoothness of a density function becomes necessary, we can always start the smoothing 

procedure from sdf,

l
nF

nF , instead of edf . This would carry all the local adaptive 

property over, and greatly reduce the effort of making the kernel function to be local 

adaptive. The lone item remains is to select a constant smoothing window width. This 

would be the major potential application of sdf as a first-order density approximation for 

further smoothing. 

l
nF
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Chapter 5. Bootstrap small sample bias 
 

 G.A. Young and H.E. Daniels (1990) studied the bias of nonparametric bootstrap 

estimation of a simple pivot for small sample sizes by a very simple situation, 

namely . It is of practical importance for statisticians in the filed, who often 

find bootstrap an attractive method especially in small sample situations.  

~ (0,1)F N

 

 

(5.1) 

 

 It is required to study the distribution of the random variable, 

possibly dependent on the distribution , where 1( ,..., ; )mT X X F F 1,..., mX X  is a random 

sample from . The bootstrap method approximates the sampling distribution of 

under by that of under , where n is the original 

sample size and m is the bootstrap sample size. The distribution of  is 

denoted as  

F

1( ,..., ; )mT X X F F l
1( ,..., ; )m nT Y Y F l

nF

1( ,..., ; )mT X X F

 

1( ) { ( ,..., ; ) | }mP a pr T X X F a F= > ,      (5.2) 

 

which was estimated by the bootstrap distribution, 

 i l
1( ) { ( ,..., ; ) | }m n nP a pr T Y Y F a F= l>

x

.     (5.3) 

. . .
1 2( , ,..., )i i d

nF x x⎯⎯⎯→

 

 

 The bias is defined as the difference between true distribution (5.2) and bootstrap 

sampling distribution (5.3). The estimated density has the full information about a 

statistic and offers a comprehensive picture of the bias behavior more than any moment 

estimation. The techniques of computer algebra are used to obtain an exact analytical 
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assessment of the bias from a bootstrap procedure. The expectation of 

i l
1( ) { ( ,..., ; ) | }m n nP a pr T Y Y F a F= l>  by a simulation study agrees with the exact analytical 

results. Being able to determine the bias by two totally independent methods had been a 

unique advantage of this study, which cast mistrust on how to apply bootstrap properly 

with such a noticeable bias on the sampling distribution for the simplest summary 

statistic, the sample mean. It was difficult to extend the exact method in the study further 

to other statistic to verify if such bootstrap bias observed was an exceptional pathological 

case or a general limitation of bootstrap (G.A. Young, 1994). 

 

 However, the simulation strategy of Young and Daniels’ could be applied to other 

statistics without the exact analytical confirmation step, which was mathematically less 

vigorous but application-wise more flexible. Through simulation within the framework of 

Young and Daniels we found that the bootstrap-t was much less biased than the 

bootstrap-z. Perhaps more importantly, our study illustrated the first-order mechanism of 

the bootstrap bias. In small sample cases bootstrap bias may not be an issue by judicially 

selecting proper statistics. Furthermore, the step density function can be used as a second-

order means of imputation that will further reduce the bootstrap bias for small sample 

cases.  

 

5.1 Bootstrap bias for sample mean  

 

The bias is defined as the difference between bootstrap 

distribution i l
1( ) { ( ,..., ; ) | }m n nP a pr T Y Y F a F= > l , where l

1( ,..., ; )m n mT Y Y F Y= , the estimated 

bootstrap sample mean, and 1( ) { ( ,..., ; ) | }mP a pr T X X F a F= > , the true distribution. In 

principle, i( )P a should be constructed by considering all possible bootstrap samples. 

In practice, 

mn

i( )P a is estimated by drawing a large number of bootstrap samples from . 

The bootstrap sample size used here was, B, which equals 50000. The sampling 

procedure was repeated over different  to estimate

l
nF

l
nF i( ( ))E P a via a Monte Carlo 

simulation with 1000 repetitions. Young’s results were summarized in Table 5.1 and 
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Table 5.2 for two combinations of data and bootstrap sample sizes: (m, n) = (5,10) and 

(20,20), where P(a) is the expected theoretical value computed from N(0, 1/5), and the 

simulation results were listed as i( ( ))E P a  (sim.Young). The simulation had been 

performed on a HP9000/330 UNIX workstation, which was considered a fast computer 

back in 1990 when the original work was done. 

 

Table 5.1 Simulation and theoretical expectations, normal distribution. 
 
m,n  a P(a) i( ( ))

( )
E P a
exact

i( ( ))
( .
E P a
simYoung)

i( ( ))
( .
E P a
dup Ma)

 
.

( )
Est Error
Young

0.1 0.41153 0.40138 0.40066 0.4006 0.00103 

0.3 0.25116 0.22901 0.22807 0.2273 0.00186 

0.5 0.13177 0.11220 0.11246 0.1106 0.00174 

0.7 0.05876 0.04851 0.04928 0.0478 0.00120 

0.9 0.02208 0.01909 0.01937 0.0189 0.00070 

1.1 0.00695 0.00702 0.00735 0.0071 0.00036 

1.3 0.00182 0.00247 0.00266 0.0025 0.00018 

1.5 0.00040 0.00085 0.00094 0.0009 0.00009 

5,10 

1.7 0.00007 0.00029 0.00033 0.0003 0.00004 

Max( ) ∆    0.0231 0.0239 0.00186 

mean( ) ∆    0.0075 0.0080 0.00080 

std( ) ∆    0.0088 0.0093 0.00070 

 

 We define = ∆ i| ( ( )) ( ) |E P a P a− , an absolute distance measure between the 

bootstrap estimation and the true distribution.Young used the techniques of computer 

algebra to obtain exact assessment of i( ( ))E P a  that was listed in the table as i( ( ))E P a  

(exact), which may be served as a validation of the simulation results in the study. The 

estimated error was used by Young to indicate the bias is significant relative to the 

estimated standard error. 
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We had duplicated Young’s simulation results and listed as i( ( ))E P a  (dup.Ma) in 

Table 5.1, which indicated that within the simulation error our simulation results were in 

good agreement to Young’s original results. Therefore we may infer that we have 

implemented the equivalent simulation procedure, and we may apply the simulation 

procedure to evaluate other pivotal in studying of other statistics.  

 

Table 5.2 Simulation and theoretical expectations, normal distribution. 
 

m,n  a P(a) i( ( ))
( )
E P a
exact

i( ( ))
( .
E P a
simYoung)

i( ( ))
( .
E P a
dup Ma)

 
.

( )
Est Error
Young

0.1 0.41153 0.40138 0.31806 0.3176 0.00094 

0.2 0.25116 0.22901 0.17403 0.1735 0.00124 

0.3 0.13177 0.11220 0.08226 0.082 0.00103 

0.4 0.05876 0.04851 0.03406 0.0342 0.00065 

0.5 0.02208 0.01909 0.01254 0.0128 0.00034 

0.6 0.00695 0.00702 0.00417 0.0044 0.00016 

0.7 0.00182 0.00247 0.00129 0.0014 0.00007 

0.8 0.00040 0.00085 0.00037 0.0004 0.00002 

20,20 

0.9 0.00007 0.00029 0.0001 0.0001 0.00001 

Max( ) ∆    0.0115 0.0120 0.00124 

mean( ) ∆    0.0036 0.0038 0.00050 

std( ) ∆    0.0046 0.0048 0.00048 

 

One of the conclusions from the original study is that favorable asymptotic 

property is no guarantee for good small sample performance. This conclusion had been 

fully supported by the simple and yet convincing work of Young and thus casting a long 

shadow in the application of bootstrap resampling methods in small sample size 

situations, where nonparametric methods such as bootstrap resampling are most needed 

[Young, 1994 review]. It also played down the importance of the theoretical asymptotic 

work, which had dominated publications in bootstrap theory [J. Shao]. 
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5.2 Two-level structure of the bootstrap bias 

 

As we discussed in Section 5.1, Young and Daniels had demonstrated the bias in 

bootstrap method in small sample sizes by a simple and yet convincing example. 

However neither their analytical calculation nor their simulation study can explain the 

mechanism that caused the bias. Therefore the structure and nature of the bootstrap bias 

had been a mystery, which we try to unravel as the following.   

 

We found in the schematic diagram in Figure 5.1 the bootstrap resampling was 

represented in two levels. Traditional statistical inference is done with the original sample 

on the 1st level in the “real world”, while resampling methods is applied to the duplicated 

samples on the second level created by the original sample in the “bootstrap world”. The 

“bootstrap world” appears to possess all the information of the “real world”, and 

intuitively the “bootstrap world” would asymptotically approach the “real world” when 

sample size .  n →∞

 

 
 
Figure 5.1 Schematic diagram of the bootstrap applied to problems with a general data 
structure . The crucial step “⇒” produces an estimate xP → lP  of the entire probability 
mechanism P from the observed data x. The rest of the bootstrap picture is determined by 
the real world: “ l *xP → ” is the same as “ ”; the mapping fromxP → l* * *, ( )x xsθ→  , is 

the same as the mapping from � , ( )x xsθ→ . 
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However our problem is associated with the small sample size, and our solution is 

to apply the statistical information between the “bootstrap world” and the “real world” to 

correct the well known bias, such as that between the population variance, σ2, and the 

sample variance, 2

mYσ . 

 

 From the moment generating function of , lnF 1 2
1

1( | , ,..., ) i

n
x t

Y n
i

M t x x x e
n =

= ∑  and  

1 2 1 2( | , ,..., ) [ ( | , ,..., )]
m

m
n Y nY

tM t x x x M x x x
m

= , 

 

we may derive the following bootstrap expectations, 

 

m XY EX µ= = , 
2

2

m

X
Y m

σσ = , 

 

noting that 2~ ( , )X XX µ σ , which is not necessarily from normal 2( ,X XN )µ σ . Apparently 

the bootstrap mean mY is unbiased but not the bootstrap sample variance, which is biased 

from the well-known result n
2

1m

X
X m

σσ =
−

. The first major term of bias in a distribution 

function in terms of the moments is the variance, or the 2nd moment; therefore our first 

step towards bias correction is using the bootstrap-t statistic as described next.  

 

• Bootstrap level 

 

There are two levels in Young’s bootstrap simulation, the “real world” and the 

“bootstrap world”, and correspondingly there are two ways of implementing the 

bootstrap-t statistics. We may study the statistic mY X− n  through the bootstrap-t at the 

bootstrap level 
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m
m

m n

Y

Y X
σ
− . 

 

Table 5.3 Comparison of three-simulation results, normal distribution. 
 

 

 

m, n  

 

 

a 

 

 

P(a) 

i

n

( ( ))

n

m n

X

E P a

Y X
σ

⎛ ⎞−⎜
⎜
⎝ ⎠

⎟
⎟

 

t*(a) 

 

Scaled

t-table

i

m

( ( ))

m

m n

Y

E P a

Y X
σ

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎝ ⎠

 

i( ( ))E P a  

( )m nY X−  

.
( )
Est Error
Young

0.1 0.41153 0.40066 0.4163 0.4149 0.4006 0.00103 

0.3 0.25116 0.22807 0.2695 0.2676 0.2273 0.00186 

0.5 0.13177 0.11246 0.1628 0.1659 0.1106 0.00174 

0.7 0.05876 0.04928 0.0966 0.104 0.0478 0.0012 

0.9 0.02208 0.01937 0.0575 0.0678 0.0189 0.0007 

1.1 0.00695 0.00735 0.0352 0.0463 0.0071 0.00036 

1.3 0.00182 0.00266 0.0221 0.0331 0.0025 0.00018 

1.5 0.00040 0.00094 0.0144 0.0246 0.0009 0.00009 

5,10 

1.7 0.00007 0.00033 0.0096 0.0188 0.0003 0.00004 

Max( ) ∆   
0.01110(∆ )

43.0% 
 0.01110( '∆ )

46.5% 
0.0231 0.00186 

mean( ) ∆   
0.00729(∆ )

55.3% 
 

0.00729( '∆ )
91.5% 

0.00796 0.00080 

std( ) ∆   
0.00404(∆ )

43.4% 
 

0.00404( '∆ )
43.3% 

0.00934 0.00070 

 

• Sample level  

 

Alternatively we may study the statistic mY X− n  through the bootstrap-t at the 

sample level  

n
n

m n

X

Y X
σ
− . 
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 The simulations were performed under the same conditions as B=5000, Monte 

Carlo simulation at 1000 repetitions, except two bootstrap-t statistics were used and the 

results were summarized in the following two tables 5.3 and 5.4.  

 

Table 5.4 Comparison of three-simulation results, normal distribution. 
 

 

 

m, n  

 

 

a 

 

 

P(a) 

i

n

( ( ))

n

m n

X

E P a

Y X
σ

⎛ ⎞−⎜ ⎟
⎜
⎝

⎟
⎠

 

t*(a) 

 

Scaled

t-table

i

m

( ( ))

m

m n

Y

E P a

Y X
σ

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎝ ⎠

i( ( ))E P a  

( )m nY X−  

.
( )
Est Error
Young

0.1 0.32736 0.3238 0.3304 0.3292 0.3176 0.00094 

0.2 0.18555 0.1799 0.1909 0.1907 0.1735 0.00124 

0.3 0.08986 0.0845 0.0984 0.0983 0.082 0.00103 

0.4 0.03682 0.033 0.0451 0.0462 0.0342 0.00065 

0.5 0.01267 0.0107 0.0186 0.0204 0.0128 0.00034 

0.6 0.00365 0.0029 0.0074 0.0088 0.0044 0.00016 

0.7 0.00087 0.0006 0.0028 0.0038 0.0014 0.00007 

0.8 0.00017 0.0001 0.0011 0.0016 0.0004 0.00002 

20,20 

0.9 0.00003 0 0.0004 0.0007 0.0001 0.00001 

Max( ) ∆   
0.005647(∆ )

46.9% 
 

0.0018( '∆ )
14.9% 

0.012 0.00124 

mean( ) ∆   
0.002386(∆ )

63.2% 
 

0.0008( '∆ )
22.4% 

0.0038 0.00050 

std( ) ∆   
0.002267(∆ )

47.6% 
 

0.0006( '∆ )
12.5% 

0.00048 0.0048 

 

 The scaled t-table, t*(a), in both tables were transformed from the standard t-table 

to the normal-distribution scale we used in the remaining of the simulation. We denote 

= ∆ i| ( ( )) ( ) |E P a P a− , when follow normal distribution; =( )P a '∆ i| ( ( )) ( ) |E P a P a−  

= i *| ( ( )) ( ) |E P a t a−  when follow t-distribution. ( )P a
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The bootstrap-t can be regarded as the variance-corrected bootstrap-mean, 

mY X− n . Just as we expected from the previous analysis on the variance bias in the two-

level structure, the bootstrap-t statistic showed about 50% reduction in its distribution 

for , and ( , ) (5,10)m n = m
m

m

Y

Y X
σ
− n performed even better by reducing the bias by about 80% 

in the larger sample case of ( , ) (20,20)m n = . From a distance measure of simulation 

distribution deviation, (Max(∆ ),mean(∆ ),std(∆ )) ( )0.0018,  0.0008,  0.0006= , the bias 

is marginally observable in comparison to intrinsic statistical error estimated by Young, 

which was ( ; therefore further improvement might be masked 

by simulation errors and we would use the (

)0.00124, 0.00050, 0.0048

, ) (5,10)m n =  case to study further bias 

reduction. The trend also agrees with the bias behavior of sample variance that when m 

gets larger, we will have
2 2

1
X X

m m
σ σ⎛ ⎞ ⎛

→⎜ ⎟ ⎜−⎝ ⎠ ⎝

⎞
⎟
⎠

.  

 

5.3 Imputed bootstrap resampling 

   

 The step density function may be readily used as an imputation technique to 

enlarge the bootstrap original sample size. It seems a natural idea to enlarge the original 

sample size to combat problems caused by the small sample size, the equivalence to 

inserting more points to remedy discreteness. But to our best knowledge from intensive 

literature review, there is no precedence to such effort for improving bootstrap 

performance in small sample scenarios. The lack of practical density estimation method 

may explain this phenomenon because a density function is needed in order to generate 

such imputed, extra data points from the original sample. With the step density estimation 

the task becomes easy since any bootstrap duplicated sample point may be used as the 

imputed data points. 

 

We define an integer, I, the imputation factor indicating the imputed sample with 

size , wheren′ n n I′ = i , because fractional imputation factor seems to be of little practical 

importance. We have applied a uniformly imputed bootstrap resampling scheme that 
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would force the imputed data point to be equally inserted into each possible density step, 

i.e. (I-1) imputed new data points added in each step, to guarantee the newly imputed data 

set with minimum deviation from the original sample. Within each density step the (I-1) 

imputed new data points were drawn randomly form a uniform distribution. Then the 

 resampling scheme will be executed as a (( , )m n , )m n′  resampling scheme, 

where .  n n I′ = i
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Figure 5.2 The uniformly imputed bootstrap resampling scheme had been used 
for ( m nY X− )  with bootstrap sample size B=5000 and Monte Carlo simulation repetitions 
1000, and the performance were reported at imputation factor I = 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, and100. 
 
 

The imputed bootstrap was applied to the ( , ) (5,10)m n =  case with different 

imputation factors from 1 to100. The pivotal statistic, ( m nY X− ) , was used and the results 

summarized in terms of (Max(∆ ),mean(∆ ),std(∆ )) were shown in Figure 5.2. It appears 

that the uniformly imputed bootstrap resampling scheme did not change the bias in any 

consistent pattern at different imputation factors from 1 to 100 for the 2nd-order biased 



6 3 

statistic ( m nY X− ) in small sample situation. A large range of imputation schemes can be 

further studied; and we would first investigate the performance of the uniformly imputed 

bootstrap resampling scheme for the already partially bias-corrected statistics, 

n
n

m n

X

Y X
σ

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎝ ⎠

 and m
m

m n

Y

Y X
σ

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎝ ⎠

 next. 

 

• Bootstrap level: uniform bias reduction 

 

 When the same uniformly imputed bootstrap resampling scheme was applied to 

the  case with different imputation factors from 1 to 100, the pivotal 

statistic with bias-corrected at the bootstrap level,

( , ) (5,10)m n =

n
n

m n

X

Y X
σ

⎛ ⎞−⎜
⎜ ⎟
⎝ ⎠

⎟ , was studied and the results 

were summarized in terms of (Max(∆ ),mean(∆ ),std(∆ )) in Figure 5.3. 
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Figure 5.3 The uniformly imputed bootstrap resampling scheme had been used 
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for n
n

m n

X

Y X
σ

⎛ ⎞−⎜
⎜
⎝ ⎠

⎟
⎟

 with bootstrap sample size B=5000 and Monte Carlo simulation 

repetitions 1000, and the performance were reported at imputation factor I = 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, and100. 
 

 

 The apparently uniform bias reduction for imputation factors starting immediately 

from 2 is surprising and we think it needs further confirmation from different aspects; and 

if in deed confirmed we would also need a through study to understand the probability 

mechanism behind such peculiar effect. However from the parallel but independent 

simulation study on n
n

m n

X

Y X
σ

⎛ ⎞−⎜
⎜
⎝ ⎠

⎟
⎟

, the qualitatively similar surprisingly good results led us 

to future work on the full mechanism of the imputed bootstrap resampling in small 

sample sizes. 

 

• Sample level: optimal bias reduction 

 

 The same uniformly imputed bootstrap resampling scheme was also applied to 

the  case to the pivotal statistic bias-corrected at the bootstrap 

level,

( , ) (5,10)m n =

m
m

m n

Y

Y X
σ

⎛ ⎞−⎜
⎜
⎝ ⎠

⎟
⎟

, with different imputation factors from 1 to100. The results were 

surprisingly positive and effective: first of all, even with the lowest imputation factor, 2, 

the bias had be reduced to 20% of the level without any correction, and at its optimal 

performance at the imputation factor ~ 4 and 5 the bias has been reduced to 12% of the 

un-corrected level, essentially within the statistical error. 

  

 From what is summarized in terms of (Max(∆ ),mean(∆ ),std( )) in Figure 5.4 

we may easily see that the curve was quite similar to that in Figure 5.3 with the bias 

reduction reaching saturation at around the 20% reduction level, which mean too large an 

imputed sample is not of much help. However from the sample size behavior of the 

Student-t statistic, we know that at sample size of 5 (i.e. degree of freedom of 4) the t-

∆
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distribution deviates significantly from the normal distribution; yet if the sample size is 

increased by a factor of two to 10 (i.e. degree of freedom of 9), the amount of deviation 

of the t-distribution from the normal distribution would be greatly reduced; and finally at 

the sample size of 20~30, the difference between the two distribution becomes negligible. 

We believe this explains what we have observed with the imputation effect in the last two 

sections. 
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Figure 5.4  The uniformly imputed bootstrap resampling scheme had been used for 

m
m

m n

Y

Y X
σ

⎛ ⎞−⎜
⎜
⎝ ⎠

⎟
⎟

with bootstrap sample size B=5000 and Monte Carlo simulation repetitions 

1000, and the performance were reported at imputation factor I = 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, and100. 
 

 

The strength of studying bootstrap bias by Monte Carlo simulation is a proper 

framework for the problem. Density is at the heart of many statistical problems, 

especially for nonparametric bootstrap resampling, while other measures may be viewed 

as different aspects of the density. Density is mathematically less tractable than a measure 

of it, such as mean, variance or higher order moments. Yet a Monte Carlo simulation, 
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which is a tally of outcome summarized into histogram or frequency, generates an 

unbiased estimate of the interested density. 

 

 5.4 Mechanism of bootstrap bias 

   

 The error in approximating the sample distribution of nX µ− by that of nnY x− is 

1
2(O n

−
)  (J. Hartigan, 1986), and Table 5.2 shows that this bias is appreciable even for 

n=20 in the case of a normal population.  Further investigation on the bootstrap bias and 

its relationship to a finite support yields to an exact theoretical distribution, which was a 

linear combination of standard densities, such as normal in this case (G.A. Young, 1990).  

 

 

 The two alternative statistics we studied, m
m

m

Y

Y X
σ
− n  and n

n

m

X

Y X
σ
− n , via simulations 

reduced about 80% of the distribution bias. It indicated that t-pivotal is a better statistics 

for small sample bootstrapping. G.A. Young take the normal distribution as the gold 

standard, where the population variance is a known quantity. 

 

1( ) { ( ,..., ; ) | }
{ | }

| (0

m

m

m

P a pr T X X F a F
pr X a F

X apr F N

m m

µ

µ
σ σ ,1),

= >

= − >

⎧ ⎫
⎪ ⎪−⎪ ⎪= >⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∼

 

 

However, the population variance is always an unknown quantity in bootstrap, 

where the only sample variance is a known quantity in the “bootstrap world”. Therefore it 

is proper to take the t-distribution as the gold standard. 
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∼ −

 

 

Accordingly the bootstrap estimator would be the following,  

i l l

l

l
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{ | }

|

m n n
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= − >

⎧ ⎫
⎪ ⎪−⎪ ⎪= >⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

In the simulation we sample form the population distribution ~ N(0,1), so in the 

last step can be reduced by letting  s=1 on the right side of the inequality and two forms 

of standard deviation  were both simulated. 
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.
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The results in Figure 5.3 for n
n

m

X

Y X
σ
− n , and Figure 5.4 for m

m

m

Y

Y X
σ
− n , were very 

similar without imputation, which reflect the relationship between n
nXσ and 

m m n,
m mY Y XE

n
σ σ σ= . However, the difference between n

nXσ and m ,
mYσ were further delineated 

in bootstrap imputation from sdf. Figure 5.2 indicated that sdf can not remedy the 

situation when the gold standard to be compared was not selected properly, which should 

be regarded a pathological case.  

 

Through this specific case of bootstrap mean we might tough the bottom of the 

problem. Other statistics , )X Fθ( of finite sample has an exact bootstrap sampling 

distribution based on the combinatoric structure of finite sample bootstrap. Yet the 

sampling distribution might not always feasible to be compute numerically, therefore an 

approximation of the exact sampling distribution via a relatively simple, standard 

distribution is needed, such as a generalized t-pivotal, 

 

n
n

*
*

( )

 ( ) ( )

X

X Xt
θ

θ θ
σ

−
= . 
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Chapter 6. Summary and future work 

 

 Some failures of bootstrap were related to the discrete nature of the empirical 

distribution function.  Density estimation may overcome the discreteness of the empirical 

distribution function via smoothing techniques. The common difficulty involved in 

density estimation is how to select an optimal smoothing window width. We devised a 

Step Density Function, named after the step-like shape of a histogram. The 

implementation of the step density function would result in a piece-wise continuous 

density function. This step density function is both a MLE and a UMVUE. Its most 

attractive feature, however, is that it can be readily applied to the imputed bootstrap 

resampling, an alternative bootstrap method developed in this thesis. Several examples 

have been provided to illustrate immediate application of univariate step density function, 

and it can be generalized to multivariate cases in the future to handle a wider spectrum of 

small sample problems. 

 

 Small sample bias in terms of the density function is essentially the residue of its 

approximated density to its exact distribution, which is theoretically available but 

difficult to compute in reality. We found that imputed bootstrap resampling may further 

reduce the bias of the small sample mean mX after it was approximated by a t- instead of 

the normal distribution. We would raise the following very general hypothesis. 

(1) A generalized t-pivotal exists in the form of 
n

n
*

*

( )

 ( ) ( )

X

X Xt
θ

θ θ
σ

−
= , where sample 

statistic ( , )X Fθ  in small sample scenario and n( )Xθσ  can be estimated via bootstrapping; 

(2) ~ is the best 1*t ( 1)t n − st-order approximation;  

(3) Imputed bootstrap resampling via sdf would reduce the bootstrap residues/bias of 

from order *t
1
2( )O n

−
 to .  1( )O n−
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 The above general hypothesis on the t-pivotal will serve small sample bootstrap 

analysis in a similar role as the Law of Large Number for asymptotic analysis. An 

analytical proof might be quite difficult because , )X Fθ(  was proposed in a very general 

form; still proof for specific cases of ( , )X Fθ , if attained, can be helpful in 

understanding the general properties or restrictions on ( , )X Fθ . Historically R.A. Fisher’ 

advocations of relaxing the normality assumption on general applications of the t-

distribution have been supported by permutation study that the t-distribution was not 

sensitive to most foreseeable distributions with minimum regulatory conditions. Although 

an analytical proof has been elusive, we are in general faithful believers of Fisher’s 

observations. However, one has to admit that only an analytical proof can fully clear all 

the barriers to the use of t-distributions for reliable analysis in small sample scenarios. If 

our general hypothesis on the t-pivotal could be proven, it would signify a substantial 

advancement in statistical inference based on small samples. 
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