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Abstract of the Dissertation

Transaction Models for Web Accessibility

by
Jalal Uddin Mahmud

Doctor of Philosophy
in
Computer Science
Stony Brook University
2008

The Web has evolved into a dominant digital medium for cotidganany types of

online transactions such as shopping, paying bills, matengl plans, etc. Such
transactions typically involve a number of steps spannevgial web pages. For
sighted users these steps are relatively straightfornabtwith graphical web

browsers. But they pose tremendous challenges for visuajpaired individuals.

This is because screen readers, the dominant assistiveotegly used by visu-

ally impaired users, function by speaking out the screeordent serially. Conse-
guently, using them for conducting transactions can caoissiderable information
overload.

But usually one needs to browse only a small fragment of a wgb fado a
step of a transaction (e.g., choosing an item from a seastlitsdist). Based on
this observation this dissertation develops a model-tBcetransaction framework
to identify, extract and aurally render only the “relevaptige fragments in each
step of a transaction. The framework uses a process modattmwe the state of
the transaction and a concept model to identify the pagerfeads relevant for the
transaction in that state. The two models are constructed fabeled transaction
sequences using traditional classification and automatailey methods.

Next, we relax the requirement of needing fully labelednirag data. Specif-
ically, we present a framework to mine transaction modeisfpartially labeled
click stream data generated by transactions, where sometbe dabels could be
missing. Not having to rely exclusively on (manually) ladsbLlick stream data has



important benefits: Visually impaired users do not have toede on third party
(e.q., sighted users) for constructing transaction modeiss makes it possible to
mine personalized models from transaction click strearssaated with sites that
visually impaired users visit regularly. Since partiatipeled data is relatively eas-
ier to generate, scaling up the construction of domainipdtansaction models
(e.q., shopping, airline reservations, bill payments,) atcfeasible. Lastly, adjust-
ing the performance of deployed models over time with newitng data is also
doable.

In terms on techniques used for mining we expand our repertoiinclude
web content analysis to partition a web page into segmemtsisting of seman-
tically related content elements, contextual analysisatd durrounding clickable
elements in a page and clustering of page segments basedtextcal analysis.

We provide qualitative and quantitative experimental eaicke of the practical
effectiveness of our models in improving user experiencewtonducting online
transactions with non-visual modalities.
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Chapter 1

Introduction

Over a relatively short period of time the Web has evolved an ecosystem
where anyone can communicate, find information, shop, tamkpay bills online.
With the expansion of Web users, Web transaction activigeg., buying a CD
player from an online store, paying a utility bill) are alsoging rapidly.

There are two essential components to a Web transactiolocé&)ing the rel-
evant content, such as a search form or the desired item inbapafge, and (ii)
performing a sequence of steps, such as filling out a search felecting an item
from the search result and doing a checkout. For completitrgresaction these
steps usually span several pages.

The primary mode of interaction with the Web is via graphlma@wsers, which
are designed for visual interaction. Most Web pages cottamers, ads, naviga-
tion bars, and other data distracting us from the infornmatids we browse the
Web, we have to filter through a lot of irrelevant data. We glyiscan through the
rich engaging content in Web pages scripted for e-commaerdéozate the objects
of interest easily. Moreover, the spatial organizationasftent in these pages helps
users comprehend the sequence of steps necessary to mpkatsaction.

Now consider scenarios where visual interaction is imfds<e.g, when the
user is a visually handicapped individual). Speech intedaoffer narrow interac-
tion bandwidths making it cumbersome and tedious to getd@#rtinent content
in a page. For instance, state-of-the-art screen readdrauatio browserse(g,
JAWS [1], IBM’s Home Page Reader [11], Windows-Eyes [37]) pdevalmost no
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form of filtering of the content in a Web page, resulting ines@mnformation over-
load. This problem is further exacerbated when such an intenagpans several
pages as in an online transaction.

In particular the loss of spatially organized content dusraple reading of the
screen contents makes it difficult for users to compreheadéguence of transac-
tional steps. While content summarization can compensatewbat for this loss,
it alone is inadequate for handling the information ovedldhat the user faces.
Thus, there is a need for developing techniques to faaINgtb transactions using
non-visual modalities that are far less cumbersome thareicuapproaches.

We capture the two aspects of a transaction, namely its tpersequence
and content identification, by process modehnd anontologyrespectively. The
ontology describes the set s&mantic conceptsccurring in Web pages, which are
considered essential for conducting Web transactions iarécplar domain, e.g.,
online shopping.

The circled elements in Figure 1 are examples of such coac&pe sequence
of actions is captured by a process model, which is a detestwtiinite state au-
tomaton. Each state, representing an atomic operatiorramsaaction, is associated
with a set of semantic concepts drawn from the ontology. Whemtodel makes a
transition to a state during the course of a transaction, laj¥ge is provided to the
state as an input. If the concepts associated with the stateresent in the page,
then they alone are identified and presented to the user.

Thus a process model can overcome the information overladadgm for non-
visual Web transactions. For instance, if the page showmguaré 1 (a) is given as
the input to a state associated with the concepts “ltem Taxgt and “Search
Result”, only the two circled items in the figure will be iddi@d and presented
to the user. In this thesis, we establish a formal definitmmsuch a transaction
model. In our initial work [81, 82], we demonstrated that mupling content se-
mantics with model-directed navigation facilitated by fhecess model, we can
overcome the information overload problem by deliveringvant content at every
step of the transaction. A supervised machine learningiiqak was used to learn
the transaction model from manually labeled Web transac@guences. Sighted
users labeled these sequences, as well as instances optoimca Web page. A
predefined ontology describing concepts and associatedtapes was used.
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However, such a supervised approach is not readily scatalleferent con-
tent domains. Besides, the supervised approach makes istalmpossible for
blind users to build their own personalized transaction el®déor Web sites that
they have to use regularly, e.g. online banking, utility pdyment.

Utilizing unsupervised mining methods that learn modaisfunlabeled data,
we can address the above limitations of supervised meth®dwards that, we
develop a technique to learn transaction models from utddlo partially labeled
transaction sequences. The salient aspects of this tesharg highlighted below:

e We develop the notion of context [19, 57—60] for Web objeetg)( link,
button).

e We use the context of the Web object accessed by the user irbardres-
action, coupled with geometric segmentation [39] to re&ithe Web page
segment containing that object.

e These segments are clustered based on generic featureslustezed seg-
ments represent the semantic concepts in the ontology. A-8Nbkifier [89]
is automatically learnt for each such concept.

e In our prior work, we used a DFA learning [70] technique tortethe pro-
cess model. DFA learning requires a sizable number of negatiamples
which are often difficult to obtain. For unsupervised modeling, we have
developed a new process model learning algorithm which asdg complete
transaction sequences (positive examples), i.e. congpietesactions.

1.1 Organization

The rest of this thesis is organized as follows: Chapter 2rdeescthe data
structures and Web content analysis techniques (geonagialysis and contextual
analysis), that have been developed and are used for tteomsatodel mining. In
Chapter 3, definitions and formal semantics are establisitatid rest of the thesis.
Chapter 4 describes our initial work to mine transaction nedsing a supervised
approach. Chapter 5 describes the unsupervised approachedremsaction mod-
els. Related research appears in Chapter 6 and conclusion jateCfia



Chapter 2

Preliminaries

In this chapter, we present a brief description of the datacgire we use for
Web content analysis as well as some of the content anag@isiques, we use for
transaction model mining.

2.1 Frame Tree

TheFrame Treg59, 60] of a page is Mozilla [62]'s internal representataira
Web pageatfter the Web page has been presented for rendering on the scit@en. T
is a tree-like data structure that contains Web page cqratemig with its formatting
information, which specifies how that Web page has to be rexlden the screen.
A frame tree is composed of nestéchmes so that the entire page is a root frame,
containing other nested frames down to the smallest indalidbjects on the page.
For example, Figure 3 shows a snapshot of the Google News feage and the
corresponding frame-tree partially expanded to dematesthee types of frames.
We distinguish between the following classes of frameg, teks, images, image-
links, and non-leaf frames. Section 1 of Figure 3 (a) showsrsd nested frames
enclosed by rounded boxes. We will continue referring toraoge of a frame tree
as aframe
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2.2 Geometric Segmentation

We use the observation that semantically related contemezits in a web
page exhibit spatial locality [64, 65] and often share thaeealignment (matching
X orY coordinate) on aweb page. Since a frame tree repregentayout of a web
page, we infer that geometrical alignment of frames may ynspimantic relation-
ship between their respective content. A frameassistentif its descendants are
consistently aligned either alongorY axes.

A Maximal Semantic Bloglor simply block, is the largest of the consistent
frames on the path from a leaf to the root of a frame tree. Tihisslikely to be the
largest possible cluster containing semantically relatedent items. For example,
Figure 4(b) shows how the alignment information is used tstelr the New York
Times Web page into maximal semantic blocks: banner labedet], search - 2,
taxonomy - 3, and news - 4.

The FindBlocksalgorithm is used to find the blocks in a frame tree. The al-
gorithm runs a depth-first search over the frame tree andsiwely determines
whether the frames are consistent, ignoring the alignmileiad-frames. A frame
is consistently X-aligned all of its non-leaf descendants are X-aligned. Similarly
a frame isconsistently Y-aligned all of its non-leaf descendants are Y-aligned.
Otherwise, the frame is not considered to be consistenhigrcase, all of its chil-
dren are marked aslocks

Algorithm FindBlocks

Input: Frame node of a frame tree

Output: Blocks set of maximal semantic blocks
1. Identify all childrenCq, Cp, .. .,Cy, of Frame

2. FramelsConsistent—true

3. forj«—1ltom

4. do if Cj.IsLeaf=false

5. then FindBlocks(G)

6 if Cj.Alignment= NONE

7 then FramelsConsistent—false
8. if FramelsConsistent false

9 thenfor j«— 1tom
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10. do if Cj.Alignment# NONE

11. then Blocks«—BlocksU {C;j}

12. else FrameAlignment—GetAlignment(Frame)
13. if FrameAlignment= NONE

14. thenfor j «— 1tom

15. do if Cj.Alignment# NONE

16. then Blocks—BlocksU {Cj}

17. return Blocks

The FindBlocksalgorithm uses th&etAlignmenglgorithm to check whether
the children of a frame have matching alignment. That isGkb#&Alignmentlgo-
rithm determines that a frame ¥alignedif all of its children are aligned on the
left, right, or center of the X-axis. Y-alignment of a fransecomputed in a similar
fashion.

Algorithm GetAlignment
Input: Frame node of a frame tree
Output: Alignment: alignment ofFrameés descendants
Identify all childrenCy, Cy, ...,Cy of Frame
XFirst «+Cq.X
Y First «—C1.Y
XAlignedDescendants-true
Y AlignedDescendants-true
Alignment<—NONE
for j«—2tom
doif Cj.IsLeaf=false
then XCord «Cj.X
YCord«+C;.Y
if XCord # XFirst
then X AlignedDescendants-false
if YCord# Y First
then Y AlignedDescendants-false
if Cj is not X Aligned
then X AlignedDescendants-false

© 0N O~ ODNRE

e el e o
©o gk wbdkE O
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] Questions | Possible Responsés
Does this block contain important content ? Yes/No

What amount of the block contents are geometrically aligned ‘All/Some/None

What amount of the block contents are semantically related ?All/'Some/None

Table 1: Questionnaire for Evaluation of Geometric Segmentation Algorithm

17. if Cj is not Y Aligned

18. then Y AlignedDescendants-false
19. if XAlignedDescendantstrue

20. then Alignment—XAlign

21. if YAlignedDescendantstrue

22. then Alignment—Y Align

23. return Alignment

2.2.1 Evaluation of Geometric Segmentation

We evaluated the algorithiindBlocksusing 20 pages from 20 Websites, 5
Web sites in each of the domairshoppingnews servicespersonal 10 sighted CS
graduate students were used as evaluators. To help thesaua tool was designed
[18]. None of the evaluators were HearSay [20] developehgyTwere trained on
how to use the evaluation tool. Each Webpage was evaluat@cebgluators. For
each Webpage used in the evaluation, the geometric segimeanaégorithm was
applied to retrieve the list of blocks. Then, evaluatorsengresented with a set of
guestions for each of the segments blocks. The questiostiann in table 1. They
were also asked whether there was content on this page thdtidhe grouped into
a block but was not identified as a block by the algorithm.

Using the responses collected from the evaluators, we ctedpacall, preci-
sion and F-measure of the segmentation algorithm. Spdtyfiga computed these
metrics for each feature of the algorithm, i.e. geometngrahent and semantic
relatedness. Let C denote the total number of blocks forhvlliccontents are geo-
metrically aligned, P denote the total number of blocks fbirolt some contents are
geometrically aligned, | denote the total number of blocksshich no contents are
geometrically aligned, and M denote the total number of mgsblocks(i.e. there
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100.00%
90.00%
80.00% 1
70.00% 1+
60.00% 1+
50.00% 1+—
40.00% 1+—
30.00% 1+—
20.00% +—
10.00% +—

0.00%

ORecall
B Precision
@ F-measure

Accuracy(%)

Shopping News Services Personal

Domains

Figure 6: Geometrical Alignment Accuracy for All Blocks

was content on this page that should be grouped into a blackdsinot identified
as a block by the algorithm). Then, recall is defined as (C +®fC+P+M) and
precision is defined as (C + P*0.5)/(C+P+l). Note that, we @ieweight to each
partially correct response, assuming that it is equallyoabte to be correct or in-
correct. F-measure is the simple harmonic mean of recallpaacision. Using a
similar formula, we calculated the metrics for semantiatesiness of blocks.

Figures 5, 6, 7, 8 show the experimental results. We obséategeometric
segmentation algorithm exhibits reasonably high pregisiecall and f-measure for
all cases.
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Figure 9: Concept Segments in Web Pages

2.3 Web Obijects

A Web Objectis an atomic element of a Web page. A Web object is associated
with an id that uniquely identifies that object. Each Web obpso has several
attributes, e.g. text, style, location.

For example, the button Checkout is a Web object in figure 9 Ttle text
“Checkout”, the button’s geometric coordinates in the Wegepatc. are various
attributes of this Web object. L&bj denote a Web object arittr denote the set
of attributes of that object. Leétdenote théttribute Mapping function to retrieve
the set of attributesttr of a Web objecObj, i.e. L(Obj) = Attr.

Let us consider the button “Checkout” in figure 9 (c) which hagjue id
F567585 and the following four attributes.

Text: “Checkout”
X-Cord: 220
Y-Cord: 85
Style: Button
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Given the unique idF567585 as parameter, the functiometurns the set
Attr = {“Checkout, 220, 85, Button}

2.4 Context Analysis

Here we describe how we collect the context of a Web objectcallect the
context, a topic-detection algorithm is applied to the infation surrounding the
object. We gather the text that shares a common topic [5,t6]tve textual content
of the Web object as context.

2.4.1 Context Identification

The Context of a Web object is the content around the Web oty)atimaintains
the sameopic as the text content of the Web object.

Consider Figure 4, showing the front page of The New York Tiveb site
and the corresponding frame tree. The link (a Web objectp“G@neral Warns
Against Irag Timetable” is indicated by an arrow. The conhtaixthis is the text
surrounded by the dotted line. Notice how the topic chang®es bne headline to
another.

A block, produced by the Geometric Segmentation algoritid®ally repre-
sents a segment of text on the same topic, but may have séwpred within it.
Therefore, we limit topic boundary detection and contextection to the block
containing the Web object. Context collection begins fromdbntent of the object
and expands around the object until the topic of the text géanA simple cosine
similarity technique is used to detect the boundaries ofdpi, see equation (1).

The FindContextalgorithm initializes the&Contextmultiset with the words and
word combinations (bigram and trigram), excluding the fiorcwords (i.e. stop
words), from the object and its non-link siblings; the textthe link siblings is
ignored because links tend to be semantically independexdgah other, i.e. have
different topics (e.g., each news headline is a link andsstanew topic). It then
collects all text pertaining to the same topic around the \&ject, adding the
words to theContextmultiset.
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In the NYTimes example, Figure 4(a), the user follows thk (sWeb object)
“Top General Warns Against Iraq Timetable”, indicated by thouse pointer. The
multiset is initialized with the words collected from theKinode e.g. “general”,
“top”, “warns”, etc. of the frame tree, indicated by a mousénger in Figure 4(b),
as well as from the non-leaf sibling (e.g. the node with X diwate 3457, Y
coordinate 3796) which follows the link node e.g. “david&téut’,etc. . The
multiset now contains single words (e.g. “general”, “ddyfdtout”, “gen” “john”,
etc.), their bigrams (e.g., “david stout”, “gen john”), am@jrams (e.g. “gen john
abizaid”).

After the initialization stage, the context of the link idleated, starting from
the parent frame of the link node, by expanding the contexkidlude the frame’s
siblings. The siblings are divided inferedListand SuccList containing the pre-
decessor and successor siblings respectively, to exparmbtiiext window in both
directions. Next, the geometric distantese calculated between the initial frame
and its siblings and the siblings are sorted accordingly.

Again, in our example, the parent frame of the link in the featnee is the node
labeled asa” in Figure 4(b). The node does not have any predecessorgsblits
successor siblings, labeled ‘'@ and“c” , are respectively 2795 and 3675 pixels
away from frame“a” . Hence, we start with the sibling “b”, construct multiset
STextfrom the sibling’s text, and compare its content to the cohté the Context
multiset. The comparison is done using cosine similaritghef multisets. More
formally, for any two multiset$1; andMsy, their cosine similarity is defined as:

M M
CogMy, My) — — MMz )

v/Ma]/IMz|
In the above formula, each multiset, created from a passag&tois consid-
ered to be a vector. The cosine of the angle between the geistequal to 1 if
the passages are identical, and O if they are dissimilar. Mwlisets are said to
be similar if their cosine similarity is above a thresholdneTthreshold that best
determines whether a topic changes betweerCth@extand theSTeximultisets is
computed statistically (described in Section 2.4.3).

1Geometric distance between two frames is the Euclideaardistbetween their upper-left cor-
ners on the screen.
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If the cosine similarity between the multisets is above tireghold, i.e. a
topic boundary is not detected, the multisets are mergelker@ise, expansion of
the context window in that direction is stopped. The proams#inues until the
Blockboundary is reached or when there is no direction along wioiexpand. At
that point, the algorithm returns ti@ontextmultiset as the context of the link.
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Algorithm FindContext

Input: ObjectNodeleaf-frame containing the Web Object

Output: Context multiset with collected context

1. Context—non-function words, their bigrams and trigrams fr@b jectNode
and its non-link siblings

2. LetancesBloclbe the ancestdslockof ObjectNode

3. if ancesBlock# ObjectNodéParent

4 then Node«—ObjectNodeParent

5. Expand<true

6 repeat

7 ChildList <NodeParentChildren

8 LetPredListandSuccListbe the lists of predecessors and succes-
sors ofNodein ChildList, sorted by their geometric distance from
Node

9. StopExpand—false

10. repeat

11. Sibling«—PredListNext

12. SText«—non-function words, their bigrams, trigrams from

Sibling

13. Similarity «Cog ContextSTex}

14. if Similarity > Threshold

15. then Context—Contextu {STex}

16. else StopExpand—true

17. Expand«<false

18. until PredListlsLastor StopExpand

19. Repeat line 9 to 17 fduccList

20. Node<—NodeParent

21. until Node= ancesBloclor Expand= false

22. return Context

Continuing with the example in Figure 4, the algorithm cdieihe text from
the closest sibling fram#” , corresponding to the news item “Plea Deal in Seton
Hall Arson Case”. The multiseésText constructed for this frame, now contains
{“plea”, “deal”, “seton”,..., “plea deal”,..., “plea deal seton”,..}. It computes
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the cosine similarity of th&Contextand aSTextmultisets, which turn out to be
below the threshold. The algorithm detects a topic bountiatween the content
of the multisets and, therefore, stops expanding the comtiexlow and returns the
Contextmultiset. The context of the followed link, Figure 4(a), iscéosed by the
dotted line.

2.4.2 Context Segment

A Context Segmentof a Web object is the segment of the Web page, where
the content of the section maintains the same topic as theoexent of the Web
object.

The Context analysis algorithm is used to retrieve the cargiesrounding a
Web object. However, the context collection algorithm isdified to return a&Con-
text Segmentinstead of the context multiset containing words, bigramd -
grams. This modification is straightforward. Start with agée frame tree node,
that contains the Web object. This frame tree node representinitial context
segment. Next try to expand context in both directions uiegopic boundary de-
tection algorithm. As the context is expanded, update timexd segment in both
directions.

For example, the section of the web page marked as dotteahrgetis the
context segment for the link pointed to by the arrow in Figi{@).

A Context Segments repeated if its presentation pattern is repeated within a
geometric segment. For example, Figure 10 illustrates @atep context segment.

For another example, the section of the web page marked teidettangle
is the context segment for the link pointed to by the arrowiguFe 3 (a). Note how
the presentation pattern of this segment is repeated witieirgeometric segment
(each news items are presented using the same pattern).

2.4.3 Evaluation

We used twenty-five Web sites for evaluation and data catlecs Web sites
in each of 5 content domainstews books consumer electroni¢®ffice supplies
andinformational The informational category included various Web siteghsu
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1. The Lord of the Rings (50th Anniversary Edition) -- by J.R.R.
Tolkien; Leather Bound
Buy new: $61.11 -- Used & new from: $57.98

J.R.R. Tolkien Boxed Set (The Hobbit and The Lord of the
Rings) [BOX SET] -- by 1.R.R. Tolkien; Paperback
Buy new: $19.18 -- Used & new from: $10.00

3. wouwsti The Lord of the Rings (Collector's Edition} -- by J.R.R. Tolkien;
Hardcover
Buy new: $47.25 -- Used & new from: $19.95

Figure 10: An Example of a Repeated Pattern

as MTA Long Island Rail Road and Medicaid. Thirty CS graduate students
were used as evaluators. It was impractical to get quamétateasurements of the
accuracy of context collection algorithm with blind usef#is is because, we did
our evaluation for hundreds of pages and from each page vesl ask evaluators
to select a link and its context. It takes a lot of time for adluser to reach the link,
(compared to sighted users). Sighted users can quicklgldednat is the context
surrounding a link and can select that. However, it takegaifstant amount of
time for a blind user to listen to the content of surroundiext and decide what is
the context of the link.

Therefore, we used sighted students to obtain the accufdbg gontext col-
lection algorithm.

2.4.3.1 Data Collection

To have an efficient infrastructure for experiments, a Jisoal for viewing
frame trees as well as collecting data was designed [18]. ¢ embedded a
Web browser to aid the data collection. We manually coll@eeund1000Web
pages to calculate a threshold for topic identification. iByithe data collection
stage, the participants were asked to select any link anchbifiéext around it on the

2http://www.mta.nyc.ny.us/lirr
Swww.cms.hhs.gov/home/medicaid.asp



CHAPTER2.  Preliminaries 20

100.00%

90.00%

80.00% + —

70.00% —

60.00% + — |@mRecall
50.00% A — | O Precision
40.00% |— |OF-measure

Accuracy

30.00% —

20.00% A

10.00% A —

0.00% +

News Books Electronics Office Informational

Domains

Figure 11: Performance of Context Identification

Web pages. The frame trees, corresponding to the pagesawmatically saved
together with the user selections.

2.4.3.2 Evaluation Result

We used the collected source pages to statistically contpeteerformance of
our context identification algorithm and the threshold for topic boundary detec-
tion algorithm, as described in Section 2.4.1. We used 50%epage samples to
estimate the threshold value and the remaining 50% weretasedculate the per-
formance of the context identification algorithm in termgetall, precision, and
F-measure.

Let M1 be the multiset with the context selected by the user, and4die the
multiset computed by our algorithm, then, the recall valuetiie context identifi-
cation algorithm igM1 N M3z|/|M1|, and the precision value |81 N Mz|/|M2|. The
F-measure is calculated by taking the harmonic mean oflraedlprecision.

We used the F-measure to estimate the cosine similaritghbid. We de-
signed a greedy algorithm that started with an unrealigfitegh threshold, used
our context identification algorithm to find the context o thelected links in the
500 sample Web pages, compared the results with the hunestesecontext, and,
then, adjusted the threshold value iteratively until it\enged to the F-measure
that locally could not be improved any further. Specificallye set the threshold
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T1=1,n=1, andd = 0.1; we compared the F-measufgsandF,, 1 while adjust-
ing the thresholdy, .1 = T, — & iteratively, as long a&, < F,.1. Then, we used a
binary-search approach to converge to the optimal threshpl betweenT, and
Th+1, Where the F-measul&p; was the local maximum. Once the threshold was
determined, we used the remaining 50% of the human-selectetxt to com-
pute the average recall, precision, and F-measure in eatie & domains. Figure
11 summarizes the experimental results. We observe thatextoidentification
achieved higher recall, precision, and F-measure with Mews” and “Informa-
tional” Web sites; higher performance of context identiima in these domains
can be explained by the fact that they are better organizdchame more textual
content. Context identification performance received thestvacore in the “Elec-
tronics” domain, and average scores in “Books” and “Officeiep” Web sites,
most likely, because e-commerce Web sites crowd their pagbhsmore diverse
information, preferring images over text.



Chapter 3
Transaction Model

In this chapter, we formalize the notion of a Web transac#iod transaction
models.

3.1 Transaction Concept

A Web page can be partitioned into a logical structure of ssgm(i.e. sec-
tions of a webpage) containing related Web objects. Usingraerlying ontology
of concepts present in Web pages, we classify these segtoghese concepts and
assign the corresponding concept names to the classifiecesésy The ontology
describes the set of semantic concepts occurring in Webspadech are relevant
for conducting Web transactions in a particular domain. SEngemantic concepts
present in a transaction ontology are callednsaction Concepts

In this thesis we use the terfnansaction ConceptandConceptinterchange-
ably.

Note that, the ontology (i.e. concepts and operations) igem@priori.

3.1.1 Concept Segment

The Web page segment containing a transaction conceptiésl @GConcept
Segment

A concept segment may contain one or more Web objects. Wedimerved
that Web objects contained within a concept segment arepied using similar

22
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Figure 12: Concept Segments in Web Pages

presentation style.

Figure 12 shows three pages from the Bestbuy Website. Coragpients are
encircled in each page. The concept segment labeled as THgomomy” in figure
12 (a) contains a collection of Web objects presented usiaggdme presentation
style (each of the Web objects in this collection is a link).

Table 2 shows concept names in our shallow ontology for thie@shopping
domain (e.g. books, consumer electronics, office supplies)

3.1.2 Concept Features

Each concept is associated with features. The featurescéstt from the con-
tent of the concept segments are used for classifying theeseig to the concept.
For example, the segment containing the concept “AddTo@afijure 12 (b) con-
tains the word “addtocart” as feature.
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] Concept | Operation Name |
Shopping Cart view_shoppingcart
Add To Cart addto_cart
Edit Cart updatecart
Continue Shopping continueshopping
Checkout checkout
Search Form submitsearchform
Search Result item_select
Item List item_select
Item Taxonomy | selectitem_category
Item Detalil show.item_detalil

Table 2: Concepts in Ontology for Online Shopping.

3.2 Transaction Operation

A Web transaction is composed of sequence of operations dndhfects.
Each transaction operation is an atomic activity on a Webdaibj

For example, following a link (a Web object) to select an itgom a list is
a transaction operation. Submitting a search form (a Webobpjo search for a
product is another transaction operation.

Each transaction operation is associated with a concepeptén the ontol-
ogy. Table 2 shows concept names and associated operati@sna our shallow
ontology for the online shopping domain. When the user sel@aoncept when
presented with the list of concepts in a Web page, the casrelpgOperation is
invoked.

A transaction operatio® performed on a Web objedbj is denoted as
O(Obj). However for simplicity, we often do not speci@bj on which the trans-
action operatior® is performed.

We may labelO by one of the names in the ontology. Such transac-
tion operations are calletlabeled Transaction Operations For example,
submitsearchfornis a labeled transaction operation.

A transaction operation which is not labeled by the operatiame in the
ontology is anJnlabeled Transaction Operation
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In this thesis, we use the ter@peration and Transaction Operation inter-
changeably.

3.3 Transaction Sequence

A Web transaction sequence is a non-empty sequence of ttaorsapera-
tions. LetO1,0,, ..., 0O, is a sequence of transaction operations. Then, the corre-
sponding transaction sequence is denotefSwhereT S= 01,02, ...,0p
For example, the following sequence of operationsTisamsaction Sequence
selectitem.category selectitem category selectitem add to_cart. checkout.

In this transaction sequence, each operation is labelad.igaLabeled Transac-
tion Sequence The following is another example of a labeled transactemuence:
selectitem.categoryObj_1). selectitem.categoryOb|_2). selectitem(Obj_3).
add to_cart(Obj_4). checkout(Obj.5).

In this sequence, we include the Web Objects on which eankdcdion operation is
performed. A transaction sequence is calledJaltabeled Transaction Sequence
if all the transaction operations in that sequence are etg¢db For example, fol-
lowing sequence of operations is @nlabeled Transaction SequenceO_1. O_2.
03.02.04.

The following is another example of an unlabeled transaceqguence.
0_1(Obj.1). 0.2(0Obj 2). 0_3(0Obj_3). 0.2(0Obj 4). 0.4(0bj.5).

The transaction sequence is calleBartially Labeled Transaction Sequencef
it includes both labeled and unlabeled operations. For ei@nthe following se-
guence of operations isRartially labeled Transaction Sequence

0O_1(Obj1). selectitem(Obj_2). 0_3(0bj_3). add to_cart(Obj. 4).
checkout(Obj_5).

3.3.1 Complete Transaction Sequence

A transaction sequence is call€@mpleteif it completes a transaction (e.g.
buying a MP3 player from Amazon, paying the utility bill in Neon). The follow-
ing is an example of complete transaction sequence:
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selectitem category selectitem category selectitem add to_cart. checkout.

3.3.2 Incomplete Transaction Sequence

A transaction sequence is callettomplete if it does not represent a com-
plete transaction (e.g. A MP3 player is selected but not @doehopping cart or
checked out). The following is an example of an incompledagaction sequence:
selectitem.category selectitem category selectitem

3.4 Transaction Model

A Web Transaction Model captures the semantics of a Web transaction. The
model uses a shallow ontology of transaction concepts, a@erlying concept
model (i.e. concept classifiers) to identify instances obracept from a Web page,
and a process model to present concept instances in a Webgsmmated with the
current state, and to make a transition to the next stateeassdr selects an oper-
ation associated with the concept. In the next subsectiwagjefine the process
model and the concept model.

3.4.1 Process Model

The process model is a deterministic finite state autom&6A) that captures
the set of transaction sequences. Each state is associdked get of concepts
drawn from the ontology. When user selects an operation edésdavith a concept
in a state, the model makes a transition to the next state. rAsudt, a Web page
is provided to that state as an input. If the concepts adwsatiaith the state are
present in the page, then they alone are identified and pgesstnthe user.

3.4.1.1 Formal Definition

Formally, a process model is defined as follows: Cet {cop,c1,...} be a
set of transaction concepts, ah@) denote the set of concept instances. Let
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show item detail add_to_cart add_to_cart
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submit_searchfor

select_item/category .
item_select'sypmit_searchform

CD

view_shoppingcart,
update_shoppingcart

Figure 14: A Process Model for Utility Bill Payment Domain

Q= {0qo,q1,...} be a set of states. With every stajewe associate a s& C C
of concepts. LeD = {0p,01,...} be a set of operations. An operationcan take
parameters. A transitiod is a functionQ x O — Q, and a concept operatignis
also a functior€ — O. Operations label transitionise., if 3(q;,0) = g; thenoiis the
label on this transition. An operatian= p(c) is enabled in statg; whenever the
user selects an instancemf S and when it is enabled a transition is made frgm
to stategj = 8(q;,0).

Note that, here a process model is defined as a DFA. This isibecselecting
an operation from a state always leads to a single state (@ncehthis is DFA).
Associating concepts with every state does not violate aayacteristics of a DFA
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since there is a mapping function from concept to operatimhaperations can be
simply treated as alphabet symbol of an automaton.

Technically a concept instance is the occurrence of a camecepWeb page.
For example, the circled items in Figure 1 are all concepaimses. But for brevity
we choose not to make this distinction explicitly and usecegts and concept
instances interchangeably when referring to content setge Web pages.

3.4.1.2 Process Model Example

Figure 14 illustrates a process model. The concepts assdaiath stateg;
are “ltem Taxonomy”, “Item List”, and “Search Form”. This s that if these
concept instances are present in the Web page given &s its input, they will
be extracted and presented to the user. The user can sefeat tiese concepts.
We say that the user chooses the “Iltem Taxonomy” concept evlegrne selects a
particular category of item in the taxonomy and upon sedacthe corresponding
operationselectitem.category(see table 2) is invoked. This amounts to fetching
a new Web page corresponding to the selected category aadstion is made
to stateq;. When the user selects the “Search Form” concept he is reljtore
supply the form input upon which tteeibmitsearchfornoperation is invoked. This
amounts to submitting the form with the user-supplied fonpuit. A Web page
consisting of the search results is generated and a t@msstimade tayz. Lastly
a user can select an item from a list of items in the “ltem Listhcept. This
will result in a Web page describing the item selected anditdesition labeled
item.selectis made to statgp. The state transitions of other states can be similarly
described.In the figure, statg is deemed as the final state. We have omitted the
payment steps following checkout. Henggwhich is entered upon eheckout
operation is deemed as the final state.

3.5 Concept Model

Concept models, i.e. concept classifiers are used to idesgifyantic con-
cepts present in Web pages. For example, a model (i.e. fatas$or the concept
“add_to_cart” is used to identify instances of this concept from Welggs. The
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concept models are trained from set of example conceptriosta For example,
a concept classifier for “adtb_cart” concept can be trained by many concept in-
stances (e.g. “add to cart” buttons), given as training gtamusing the trained
concept model, concept instances are identified and pexseéntthe user. Each
concept is associated with an operation, e.g. an “add td amtept is associated
with the operation “addo_cart”, i.e. adding an item to shopping cart. When the
concept instance is identified and presented to the usercaseloes the associated
operation (e.g. user can click the “add to cart” button to additem to shopping
cart). As a result of this operation, a transition is madétortext state of the pro-
cess model, concept instances for the page mapped to tteaastaidentified and
presented to the user.



Chapter 4

Mining Transaction Models:
Supervised Approach

The components of a transaction model are: (i) a processImadgii) con-
cept models to identify the concept instances from Web padeshis chapter,
we describe our initial work to mine such transaction modiels transaction se-
guences using a supervised approach. The approach is Bgukesince we manu-
ally label the transaction sequences. Section 4.1 descgpitlmeess model learning
in details. Concept Identification is described in Secti¢h 4.

4.1 Process Model Learning

We build the process model using DFA learning techniquekpeotighly re-
searched topic (see Chapter Chapter 6 for related work). IDEAelearning prob-
lem the training set consists of two sets of example striogs,labeled positive and
the other negative. Only strings in the positive set are @DRA's language. The
objective is to construct a DFA that is consistent with respe these two setsge,,
it should accept strings in the positive set while rejectimgse in the negative set.
We adapted the heuristic in [68] for learning our process ehdtie choice being
mainly dictated by its simplicity and low complexity.

We usedLabeled Transaction Sequenceto learn the process model. The
sequencsubmitsearchform itemselect add to_cart. checkout is one example

30
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ect_item_category

Figure 15: (a) A Prefix Automata. (b) Learned DFA

of a labeled transaction sequence.

These training sequences are (manually)labeled “congjleted “not com-
pleted”. The positive example s&{) consists of sequences labeled “completed”
while the negative example s&-) consists of those labeled “not completed”.

We first construct a prefix tree automaton as shown in 15(agusnly the
examples in the positive s8t-.

In 15(a), the sequence of operations along each root-fqpkgé constitutes
a string inS+. For this example the negative s&t consists of the strings:
{checkout, submitsearchform. addo_cart, submitsearchform. checkut,
selectitem _category.addo_cart. checkout}.

The prefix of every string ir5+ is associated with a unique state in the prefix
tree. The prefixes are ordered and each state in the prefiatteenaton is num-
bered by the position of its corresponding prefix string is txicographic order.

Next we generalize the prefix tree automaton by state mergitig choose
state pairgi, j), i < j as candidates for merging. The candidate (ajr) is merged
if it results in a consistent automaton.

For example, merging the pair (1,2) is consistent whereds {8 not merged
as the resulting automata will accept the stsagpmitsearchform. checkutin S—.

The DFA that results upon termination of this merging preoas the above
example set is shown in Figure 15(b).
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4.2 Concept Detection

After a frame tree is generated, our task is to associatestarioce of a concept
to some nodes in the frame tree. The subtree rooted at sucthear@presents the
smallest segment of the Web page covering the concept oestdowards this, we
have designed a feature space for frame tree nodes. For edelinthe frame tree,
its features are collected as a vector in the feature spdmefebtures are then used
to build a statistical concept model. The model is trainddgiprelabeled nodes.
For a new frame tree, each node is ranked by the concept mudigi@ one with the
highest rank is selected as the instance of the concept. Bedogive a description
of the feature space.

4.2.1 Feature Space

Each node in the frame tree can be represented by a vectotuafsvieepre-
senting its attributes, namely features. The set of featamtors forms a multi
dimensional feature space.

In our concept identification problem, given a frame treeanpchy, , denotes
the frequency of occurrence of featufien p. We use the following categories of
features in the analysis:

4.2.1.1 Word features

These are features drawn from the text encapsulated witlnanee tree node.
An instance of a concept usually contains a set of partisautads occurring more
often than others. For example, given the Search Form corememstance usually
contains words like “search” and “find”. Such concept spegifords are of great
importance in identifying the instance. Word features &ee rmost widely used
features in textrelated machine learning tasks such asagagorization.

We collect the following word features: unigram, bigrammgrams, and their
stemmed counterparts.

Word stemming is done using Porter’s stemmer [73]
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For a leaf node in the frame tree, word features are drawn ft®mmwn text
while for an internal frame tree node, the words presentlithalleaves within the
subtree rooted at it are aggregated. Stop words are ignoriedth casesny, p is
the number of timed; occurs in the text op.

Consider a frame tree node that contains the text “Nice Looking Video
Player”. Linguistic feature analysis collects the follagifeatures from this node:
Unigram: Nice, Looking, Video, Player
Bigram: Nice Looking, Looking Video, Video Player
Trigram: Nice Looking Video, Looking Video Player
Stemmed: Nice, Look, Video, Play
Stemmed-Bigram: Nice Look, Look Video, Video Play
Stemmed-Trigram: Nice Look Video, Look Video Play

42.1.2 Pattern features

These are features representing the visual presentaticongént. In content-
rich Web pages, it is often the case that the presentationsahs@antic concept
exhibits similarity across sites. For instance, in Figuit@) leach item is presented
as a link with the item name, followed by a short text desmiptand ending with
miscellaneous text information. Similar visual presdotatan also be found on
other sites. The pattern features capture these presangatnilarities. The basic
pattern features are links, text, and image found in leah&#&ee nodes. The basic
pattern features are link, text and image. Complex pattetufes are any sequence
of basic or complex pattern features. For example, the segumklinktextis a
complex pattern feature. we compute all the basic and conpaéern features
occurring in the concept segment. Like word featurgs; is the number of times
fi occurs in the subtree rooted@at

4.2.2 Concept Model

Our concept identification task is to assign a score to evedg Ip in the frame
tree given a concept c. The node covering only the instancegets the highest
score.
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A Bayesian concept model consists of two components: (i) baiitity distri-
bution on the frequency of occurrence of features, and fitpdability distribution
on the number of nodes present in the entire subtree of a firma@ode. A collec-
tion of frame trees whose nodes are (manually) labeled asepbimstances serve
as training set for learning the parameters of these disioibs.

A collection of frame trees whose nodes are (manually) &bels concept
instances serves as the training set for learning the paeasrad these distributions.

A maximum likelihood approach is used to model the distrdyubf a feature
in a concept. Given a training set bfframe tree nodes identified as instances
of conceptcj, the probability of occurrence of a featufein c; is defined using
Laplace smoothing as:

ZpeLnfi,p+1
i=|F
iz | |ZpeLnf|p+|F|

whereny, , denotes the number of occurrencesfoin frame tree node and |F|

is the total number of unique feature. The number of nodekinvihe subtree
of a frame tree node for a conceptis modeled as a Gaussian distribution with
parameters mean,; and varianceerCj defined as:

P(filcj) =

_ZpeL|p‘ O. — ZpeL(|p|_|JCj)2
T Li-1

For new frame trees, the probabili®(cj|p) of a nodep being an instance of
concepic; is proportional toP(p|cj) assuming an uniform distribution fd?(c;).
We use a modified multinomial distribution to model the likebd P(pjc;):

N i=[F|

N!
P(p|cj) = ><||Pfcfup
(plcj) <Nf1.,p Nip,p! 11 Cj

_— —_— . 2 2 - - -
whereN = K x elPl+e;) /(ZGCJ), with K being a normalized total feature frequency

count, |p| being the total number of frame tree nodes within the subteted
at p, and Ny, , is a scaled value ofi;, , such that) ;Nr, , = N. Note that the
above formulation of the likelihood takes into consideatboth thenumber of
nodeswithin p as well as the frequencies of the various features in theeabnt
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Figure 16: Recall/Precision of the Learned Process Model.

encapsulated withirp. This results in a tight coupling between content analysis
and document structure during concept identification. Tamé tree node with the
maximum likelihood value is identified as the concept ins&an

4.3 Evaluation

Here we describe the experimental performance of our ldanmedels, i.e.
process models and concept models.

4.3.1 Performance of Process Model Learning

We collected 200 example transaction sequences from 30 Weh Shese
were sequences whose elements are concept operationssasiiédd in Figure 15.
A number of CS graduate students (all were sighted) weretedlier this purpose.
Specifically each student was told to do around 5 to 6 traisectith a Web
browser and the sequences were generated by monitorimdtbeising activities.
They labeled a sequence as “completed” whenever they wédabomplete the
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Figure 17: Failure Analysis of the Learned Process Model.

transaction; otherwise they labeled it as “not completedfe used 120 of these
sequences spanning 15 Web sites (averaging 7 to 9 sequestc@tepas the train-
ing set for learning the process model. The remaining 80 wseel for testing its
performance. The learned model is shown in Figure 14 (payjeT2e first metric
that we measured was its recall/precigiofihey were 90%/96% for the books do-
main, 86%/88% for the consumer electronics domain and 82%/fr the office
supplies domain. The second metric we measured was the mwhbansitions
that remained to be completed when a true trace (completaddction) in the test
set failed to reach the final state. We observed that more50&smof such failures
ended one hop away from that state. That means even in cadaihire, the user
will be only one hop away from the final state. A fast error reay technique
(e.g. a technique that may store the history of the previtates so that user may
go back to the previous state in case of a failure and try atperations from that
state) can be designed with such a process model.

2Recall for a process model is the ratio of the number of coteglgansactions accepted by the
model over the total number of completed transactions. Feci§ion, this denominator becomes
the total number of accepted transactions (completed ancomapleted).
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Figure 18: Recall for Concept Extraction.

4.3.2 Concept Extraction Performance

We built a statistical concept model for each of the conceptable 2.

Recall that the five concepts in the upper half of the table areegc for all
the three domains whereas those in the lower half are dospaoHic. For instance
the feature set of a list of books differs from that of consueiectronic items. We
built one model for each concept in the upper half of the talbie three - one per
domain — for each concept in the lower half.

The concept models were built using the techniques destpleviously. To
build the model for each of the five generic concepts we c@teB0 pages from 15
out of the 30 Web sites. For each of the domain specific coaaseptcollected 30
Web pages from five Web sites that catered to that domain.

Note that pages containing more than one concept were skiargth the
building of the respective concept models. These modals thie concept extractor

at runtime.
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We measured the recilbf the concept extractor for each concept in the on-
tology. Roughly 150 Web pages collected from all of 30 Welssitas used as the
test data. Figure 18 shows the recall values for all of thedl@epts in each of the
three domains.

An examination of the Web pages used in the testing reveh#dte high re-
call rates (above 80% for “Item Taxonomy”, “Search Form”d@#To Cart”, “Edit
Cart”, “Continue Shopping” and “Checkout”) are due to the higlgrde of consis-
tency of the presentation styles of these concepts acidbesd Web sites. The low
recall figures for the “Item Detail” (about 65% averaged dierthree domains) and
“Shopping Cart” (about 70%) are mainly due to the high degfemation in their
features across different Web sites. A straightforward teaynprove the recall of
such concepts is to use more training data. However evemtfiysnot help for
concepts such as “Add To Cart” that rely on keywords as thequnétant feature.
Quite often these are embedded in a image precluding teaxhadysis. It appears
that in such cases the local context surrounding the corzzepbe utilized as a
feature to improve recall.

Observe that we did not measure the precision value (poecisidefined as
TP/(TP+FP), TP = true positive, FP = false positive). In saases concept identi-
fier may detect a non-concept (e.g. a button labeled “Add &hliét”) as a concept
instance and present it to the user. Such cases are faldegasid will drop the
precision value. Although a drop in precision value willrease information over-
load, we felt that recall is more imortant for a transactiad aneasured only recall
value. This is because, itis more important for us to find a ingtance of a concept
(e.g. an “add to cart” button) so that the user does not matsathd can complete
the transaction.

3Recall value for a concept is the ratio of the number of calydabeled concept instances in
Web pages over the actual number of concept instances piesbam.
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4.4 Guide-O-Speech: A Prototype for Conducting
Model-directed Transaction using Non-Visual
Modality

Transaction models can be applied to reduce informatiomlaae in Non-
visual Web transactions. We built a prototype, Guide-Oe8peto conduct Web
transactions using non-visual modalities. We describasesscenario and perfor-
mance in this section.

4.4.1 Use Scenario

Alice, who is a visually impaired individual, is planning oeplacing her bro-
ken CD player with a new one from Best Buy. She uses our Web traosakt
system for this task. To begin, she speaks Best Buy's URL. A#itereving the
home page, the system analyzes this page, extracts the twems in it, namely
“Iltem Taxonomy” (the circled item on the left in Figure 19(land “Search Form”
(the circled item on the top of Figure 19) and asks Alice tood®one of them. Al-
ice says “Search Form” and in response the system readseodtdp-down items
in the search form pausing briefly after each item. Alice ciek pn item at any
time by either saying the item name or its number. Alice s&fsctronics” and the
system prompts her for the electronic item she wishes tabkdar.

Alice responds with “CD Player”. The search form filled witreie two pa-
rameters is submitted that results in fetching the pageagang the search results
shown in Figure 19(b). The system extracts the “Search Resnittcept and begins
reading out the brief description associated with each CReplmn this list. Alice
says “item 1” to follow the link associated with the 1st plag€DP-CE375) in the
list to the page containing a detailed description of thesypt (Figure 19(c)). In
this page three concepts, namely “Search Form”, “ltem Dedad “Add To Cart”
are extracted. Alice is asked if she wishes to hear the ptatkiails. When Alice
responds in the affirmative, the system reads out the detadscription of the CD
player she picked earlier. At the end Alice is asked if shehessto add this to
her shopping cart. Alice responds “yes”. The system folltweslink labeledAdd
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To Cartin Figure 19(c) to the page shown in Figure 19(d). In this pidugecon-
cepts of “Search Form”, “Shopping Cart”, “Checkout” and “Coni Shopping”
are extracted. When presented with these choices Alice esd@heckout”. To
complete the transaction Alice must provide credit cardnmiation upon check-
out. Its details have been omitted as they are quite sinoléing form filling step
described in the first step of the scenario. At any point Atiae also say any one of
a set of general-purpose navigation commands, such as “Bdok page”, “Start
over”, “Repeat” (last item) or “Stop”. Besides, on a laptop esktop computer
Alice could also use a keyboard in addition to speech toaaterith Guide-O.

4.4.2 Evaluation
4.4.2.1 Experimental Setup

We used a 1.2 GHz desktop machine with 256 MB RAM as the comgutin
platform for running the Guide-O-Speech system. To do thainstalled our own
VoiceXML interpreter along with off-the-shelf speech SD&neponents. We used
30 CS graduate students as evaluators.

Evaluators were asked to measure the total time taken toletertpe transac-
tions with Guide-O-Speech. The screen was disabled andaeas had to interact
with the system using a headphone and a keyboard. For baselnparison, eval-
uators were also asked to conduct another experiment vatBAWS screen reader
on the same set of transactions. For every page used in at¢taomssequence they
were asked to record the time it took JAWS to read from the Imaggnof the page
until the end of the selected concept’s content. The sumasietiimes over all the
pages associated with the transaction denotes the time takeerely listen to the
content of the selected concepts with a screen reader.

4.4.2.2 Quantitative Evaluation Result

Here we describe the evaluation results of the usabilitjuesi@n of the Guide-
O-Speech system. For this evaluation, 9 Websites were &satliators conducted
roughly 5 to 6 transactions on each of them. We calculatechri@and standard
deviation ) for all the measured metrics.
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Time Taken (using)

Web Sites | Voice Pages Guide-O- JAWS
Interac- Explored | Speech Screen
tions Reader
T o o T o T g

Amazon 8 0 0 306.1 13.73| 1300| 120.2

BN 9 0.82 0 351.5| 40.78| 1130| 176.78

0.82| 384.9 31.35| 700 | 176.78

1.26] 386.6] 60.15| 1413 130.11
0.82] 360.5| 13.34| 931.5| 211.42
0.82] 357.7| 30.07 | 1293 212.13
OfficeMAX | 10 | 0.82 0.96] 341.6] 23.69] 686 | 61.52
OfficeDepot | 10 | 2.16 1.41] 309.9 45.87| 604 | 55.23
QuillCorp | 9.6 | 1.73| 5.2| 0.96] 382.6 49.61| 625 | 51.84
*All times are In seconds

AbeBooks | 10.8 0.96

Amazon 9.8| 3.1
CompUSA | 9 1.15
tigerdirect | 9.4 | 1.29

©
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Table 3: Guide-O-Speech Performance.

Table 3 lists the metrics measured for each Web site. ObseareSuide-O-
Speech compares quite favorably with the best-of-breezkescreaders and hence
can serve as a practical assistive device for doing onlaresictions.

4.4.2.3 Qualitative Evaluation

To gauge user experience we prepared a questionnaire fevdhgators (see
Table 4). They were required to answer them upon completisgquantitative
evaluation. The questions were organized into two broaegecaies — system (S1
to S4) and concepts (C1 to C3) — the former to assess the owamatidnality and
usability of the system and the latter to determine the g¥fexess of the semantic
concepts in doing Web transactions. All of the concept qoestxcept S1 and S2
required a yes/no response. From the responses we competedan percentages
shown in the table.

A large percentage of evaluators felt that the conceptspted were self ex-
planatory and contained enough information based on wiheh ¢ould take the
right steps to make progress on their transactions (resgomguestion C1). Some
evaluators felt that notification of promotional offersupons,etc. was important
and that such concepts ought to be presented (responsestigue?).

Most were able to find the items they were looking for (respotts ques-
tion S1). However at times they were unable to complete @esaction (the “no”
response to questions C3 and the unfinished transactiong.ilA8alysis of such
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C1 | Did you find the concepts used in93.33%
doing the transaction informative?
C2 | Do they capture all the useful infor-76.67%
mation in the Web pages?
C3 | Did they help in accomplishing the 86.67%
transaction?
S1 | How often were you able to find the96.67%
desired item?
S2 | How often were you able to com-93.33%
plete the transaction for the item
found?
S3 | Do you feel that the system re-80%
stricted your navigation?
S4 | Did you find the system useful far 96.67%
conducting transactions?

Table 4: Questionnaire with Response

transactions revealed that in many cases the problem agoaese: (a) the expected
concepts in a state were not extracted; (b) the extractecepis were mislabeled;
or (c) the model could not make the correct transition. Tetl&o problems could
be addressed by training the concept extractor and the ggauedel with more
examples.

A number of evaluators felt that they expected more flexipitin how they
can complete the transactions (response to question S3er@bthat the number
of possible paths to complete a transaction is limited bytrédiaeing data and hence
this criticism can be addressed with more training. Ovetadly all felt that the
system was adequate to do their tasks (response to queddon S

Evaluators also had general comments. In particular tHdglathat the sys-
tem requires help utilities to assist users to become familith the use and effects
of each concept.



Chapter 5

Mining Transaction Models:
Unsupervised Approach

In this chapter, the techniques of mining transaction nefleim unlabeled
or partially labeled transaction sequences are descriBdgbrithm LearnTrans-
actionModelillustrates a high level overview of unsupervised transacimodel
learning.

The main steps to mine transaction models from transacéquences are as
follows.

e Label unlabeled operations in each transaction sequence
e Learn process model and concept models from labeled seggienc

Consider Table 5. The table shows 4 Web transaction sequeftesfirst
transaction sequence (illustrated in figure 20) is from “Apracom” and is a com-
pletely unlabeled sequence. The second transaction segj(@#astrated in figure
21) is from “AbeBooks.com” and is a partially labeled sequenkhe third transac-
tion sequence (illustrated in figure 22) is from “CircuitCaym” and is a partially
labeled sequence. The fourth transaction sequence i@tadtin figure 23) is from
“Bestbuy.com” and is a patrtially labeled sequence. In Fig@a@, 21, 22, 23, the
transaction operations are shown using arrows. The segroentaining the con-
cepts associated with each transaction operations arslasm using rectangles.

The concept segments, containing labeled Web objectsabeteld with the
concept name. Other concept segments are unlabeled.

44
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Figure 20: A Web Transaction in Amazon.com

Section 5.1 describes how we can assign labels to such dosegments.
Next, in Section 5.2, we describe how concept models aradeansing labeled
sequences. Learning process models from labeled sequsuleseribed in Section
5.3.

Algorithm LearnTransactionModel
Input: SequencedsA Set of Transaction Sequences
Output: Model (ProcessModel, ConceptModels) Transaction Model
if SequenceBnlabeled

then labeledSequences GenerateLabélSequences
if SequencePRartiallabeled

then labeledSequences GenerateLabé€lSequences
if Sequencekabeled

then labeledSequences Sequences
ConceptModels— LearnConce ptModé¢labeledSequences
ProcessModel- LearnProcessModéiabeledSequences
return (ProcessModel, ConceptModels)

© 0o N Ok ODNRE
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| No. | Training Sequence

1 < 073A133F, 0A3B135E, 0A732F 3 >

2 < selectitem(041A122F ), 031AB23F, 0A14B25F, 04F 354A2 >

3 < selectitem(145AB2D1),05F 354A1, 731DA231 873A11F 2 >,
4 | < selectcategory01A561AF),81121F 2A 0214 4B,02345°21 >

Table 5: Example Training Sequences
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Figure 21: A Web Transaction in AbeBooks.com
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5.1 Label Generation

The label generation step associates a label with each elathloperation.
The algorithmGenerateLabelllustrates the label generation steps. Briefly, the
algorithm does the following.

Line 1 of the algorithmGenerateLabe{ExtractConceptSegmen} uses con-
text analysis and geometric segmentation (as describeekitio® Chapter 2) to get
the Concept Segment(see Section 3.1 for definition of concept segments) con-
taining the web object. Section 5.1.1 gives more detailsiaboncept segments
retrieval. Next, we cluster similar concept segments @mé the algorithmGener-
ateLabe). Section 5.1.2 describes this process. We assign a colatepto each
cluster, and associate each of the segments with a labetadFtoept labels are also
used to label the transaction operations in an unlabeledrtiafly labeled sequence
(line 3 of GenerateLab@l Section 5.1.3 describes this process in more details.

Algorithm GeneratelLabel

Input: SequencesA Set of Unlabeled or Partially Labeled Transaction Segeasn
Output: labeledSequences Set of Labeled Transaction Sequences

1. ConceptSegments ExtractConceptSegmeli8equences

2. labeledSegmentSets ClusterSegment€onceptSegments

3. labeledSequences LabelSequencélabeledSegmentSe&equences

4. return labeledSequences

5.1.1 Concept Segment Retrieval

Web objects are contained within concept segment. GivenladbgctObj,
we can retrieve its concept segment using our Web conterysasmdechnique,
which we will describe now.

We observe that, some concept instances contain objedigeyeating pre-
sentation pattern, e.g. a list of items. Concept segmenufdr a concept instance
is the geometric segment that contains those objects pgesbera repeating pattern
and sharing similar alignment in the web page. In figure 22(@metric segment
marked using solid rectangle contains list of objects wiithilar presentation style,
which is the semantic concept “Item List”.
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Other concept instances does not contain such a collecfiajects with
repeating pattern. A single clickable object (i.e. buttimk) is the instance of a
concept in those cases. Concept segment for such a concigpidagontains the
object and its surrounding text that shares common topib thi¢ caption of the
object. This is same as context segment of the object. Indigar(b), concept
segment is shown using solid rectangle.

Thus the algorithm to retrieve the concept segment fromengiWeb object is
as follows:

e We apply repeated pattern analysis algorithm [39] to fin@aded patterns in
geometric segment containing the Web object.

o If the Web object is presented as a repeated pattern, theetwa the geo-
metric segment as concept segment.

e Otherwise, we return the context segment as concept segment

The detailed algorithm is described in AlgoritiEtractConceptSegmerasd
GetConceptSegment

Consider the second sequence in Table 5. The first Web Objdet sequence
is labeled with the operation name “selétem”.
Hence the concept segment containing this Web object is rshath the corre-
sponding concept name “ltemList” in figure 21 (a).

Algorithm ExtractConceptSegments
Input: SequencedA Set of Unlabeled or Partially labeled Transaction Segasn
Output: ConceptSegmenté Set of Concept Segments
ConceptSegments0
n — SequenceSize
i—1
repeat
Sequence- Sequences)
WebOb jectsSeg Sequenc&/ebOb jects
m «— WebOb jectsSefize
j<—1
repeat
10. WebOb ject— WebObjectsS€f

© 0N Ok WDNPRE
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11. ConceptSegment GetConce ptSegmeht/ebObject

12. if WebOb jeclLabeled

13. then Conce ptSegmenhiabel — WebOb jeclabel

14. ConceptSegments ConceptSegmentsConceptSegment
15. je—j+1

16. until j =m+1

17. i—i+1

18. until i =n+1
19. return ConceptSegments

Algorithm GetConceptSegment
Input: Object a WebObiject in a Web Page
Output: ConceptSegmenf Concept Segment
ContextSegment- Context Segment Containing the WebObject
GeometricSegmenrt- Geometric Segment Containing the WebObiject
Apply Pattern Analysis ilseometricSegment
if ContextSegmeliRepeated
then ConceptSegmenrt GeometricSegment
ConceptSegmeigRepeated— true
else ConceptSegment ContextSegment
ConceptSegmeintRe peated— false
return ConceptSegment

© 0N O~ ODNRE

5.1.2 Concept Segment Clustering

Once the concept segments are retrieved, we cluster thent grpilar seg-
ments into the same cluster.
First, we describe the concept segment features, clustenés and similarity met-
rics used for clustering. We then describe the clusteriggrahm.

5.1.2.1 Concept Segment Features

We extractWord Features andPattern Featuresfrom non-repeating concept
segments (e.g., a concept segment containing the constgae of “AddToCart”)
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and Pattern Featuresfrom repeating concept segments (e.g., a concept segment
containing the concept instance of “IltemList”). Here wealdse the features.

Word Features: These are features drawn from the text encapsulated witlein t
concept segment.

We collect the following word features: unigram, bigrammgyrams, and their
stemmed counterparts.

For example, consider the concept segment illustrated urdig@l (d). The
word features extracted from the concept segments are éBdd¢c “Checkout”,
“Proceed to”, “to Checkout”, “Proceed to Checkout”, etc.

Special Fields (e.g., Number, Date, Money) are tagged dsfesa So $2499
in figure 22 (b) is tagged as MONEY
Pattern Features: These are features representing the visual presentatioonef
tent. The basic pattern features are link, text and image. pBoapattern features
are any sequence of basic or complex pattern features. bBor@g, the sequence
linklinktext is a complex pattern feature. we compute all the basic anclepm
pattern features occurring in the concept segment.

In concept segment illustrated in figure 20 (a), some of thiepafeatures are
“linklinktext”, “linktext”, "text”.

5.1.2.2 Concept Segment Similarity Computation

Jaccard Similarity [69] is used to measure the similaritiMeen two concept
segments. For concept segmé&nandsS;, the Jaccard Similarity is defined as fol-
lows.

_F(8)nF(S)
IF(S)UF(S)]
HereF (S) andF (S)) are set of features for concept segm&rands;.
The Jaccard similarity between the concept segments id txjtiaf they are
identical, and 0 if they are completely different.

J(S,S)

(2)

Word stemming is done using Porter’s stemmer [73]



CHAPTERS.  Mining Transaction Models: Unsupervised Approach 51

M store locator od o | shop by phone aoess M storelocatormmzm‘shogbmhonew-ema w stote locatotgasiore - shop by phone 1043 xay A‘ store locator g scre | hop by phone raxc ais246

TVAHOME  HP3R COMPUTERS  CAMERAS® [AR w TYRHOME  MPI®  COMPUTERS CAMERASE (A TYAHOME  WP3&_ COMPUTERS CANERAS®  [AR% VI
ENTERTAINHEST™ AUDIO" %DFFICE " CAMCORDERS " HoBIL| ENTERTAINNENT AUDIO & OFFICE ~ CANCORDERS ™ NO| ESTERTAINMENT AUDID & OFFICE  CAMCORDERS HOELLE ™ GAM

WEEKLYAD CATALOG CUTLET GIFTCARDS ~SHOP BY ERAHD SEARC ‘W[Hl\‘b\ll CATALOG QUILET GFTCARDS ~SHOP BY BRAND SE WEERLYAD CATALOG OUTLET GIFTCARDS SHOP BY BRAHD SEﬂRCH:- WEEKLY AD  CATALOG OUTLET GIFT CARDS SHOPEY BRAKD SEARCH:

TYAHOME _ NP3& CONPUTERS CANERAS® . CAR%  VID

ENTERTAINMENT ™ AUDIO & OFFICE " CAMCORDERS " NOBILE ™ GAM]

Addedto cat: »
g ™ Shopping cart
arernn Element 154" LCD HOTV g Eenent 54 LCDHOTY .
o I PR EenentBOLOHOY e s
Y Saiad BT Fice v 2499 @( v Y e 5 9
| Vs 00 e A 0y
) o0 0o | Pt Ruelirordin -l s
e e D) - el ime 4993
@ s = oMo
i s w | | b
e addtocat Recommended ” ocVantuge
b rmiente B e
& HexiTech Utinte Recommended i tca
HDMito HDMI cabie
=y = 1 Pratectyourinestrenznd ederd e & Youraccount
Bement 1410 il conerhi ; Nealechllide N
| 100 U HD#Ato HDMI cable Create anaccount:
o 1) o | ( e
e ;% oieed ) Ciuh Cty Riataye Prtecron Pl n ~Sigy hett
| WIS l Ll onBenent {5.4LDHOTY o0 40K Vs e s
ternt10 i w0 ~Swe st o
=" B e
- Aot
o o _ ) Lt ) it st

(@ (b) (o (d

Figure 22: A Web Transaction in CircuitCity.com

5.1.2.3 Intra-Cluster Similarity

Intra-Cluster Similarity measures the similarity of the cept segments in a
cluster [80]. Let usC is a cluster withn concept segment&y, S, ..., S, are concept
segments in clust&®. Then, intra-cluster similarity is defined as:

Intra(C) = ﬁZZJ(S,Sj) (3)
o

A high value for this similarity score indicates that contcepgments in the
cluster are very similar, i.e. homogeneous. On the othed hatow intra-cluster
similarity indicates that concept segments are quite mii¢si, i.e. heterogeneous.
Therefore, a high value of intra-cluster similarity is dedi Note that, intra-cluster
similarity is undefined (0/0) for singleton clusters, i.ehemn = 1.

For example, consider the cluster in figure 25 (a). It has £ephsegments.
Jaccard Similarity values are as follows.

J(S,S) =08,3(S,Ss) =0.75,3(S, %) = 0.6,
J(&,S) =0.65J(,%) = 0.55J(S, &) =0.75.
Thenlintra — ClusterSimilarityis
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Intra(C) = 2% (0.840.75+4 0.6+ 0.65+0.55+0.75) /12
Intra(C) = 0.6833

5.1.2.4 Inter-Cluster Similarity

Inter-Cluster Similarity measures similarity between tvasters [80]. IfC;,
Cj are two clusters an§,, S,, ..., S, are concept segments in clus@rands;,,
Sj,, - Sj,; are concept segments in clus@r Then,

Inter(Gi,Cj) = ﬁZZJ(Sm,Sjn) (4)

HereS,, denote then th concept segment in clusteandS;,, denote then th
concept segment in cluster

A high value for this similarity score indicates that clustare very similar.
On the other hand, a low inter-cluster similarity indicatieat concept segments
in different clusters are quite dissimilar. Therefore, & lalue of inter-cluster
similarity is desired.

Let us consider the clusters in figure 25 (a) and 25 (b).

The Jaccard Similarity scores between the concept segmeirtd cluster (25
(a)) and the concept segments in second cluster (25 (b) pdadl@ws:

ISy, &) = 0.05, JGy,, ,) = 0.052, I, S;) = 0.06, I61,, ) = 0.05,
IS, Ss) = 0.00.

IS, S,) = 0.08, J61,, $,) = 0.012, G}, S,) = 0.09, IGy,, S,) = 0.015,
IS, ) = 0.019.

IS, S,) = 0.08, I6,, ,) = 0.032, I§1,, S,) = 0.07, I6,, S,) = 0.04,
I(S1,, S) = 0.09.

ISy, S,) =0.021, I8, $,) = 0.032, I, S,) = 0.016, I8y, S,) = 0.02,
ISy, S;) =0.012.
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Here$S, is the 1st concept segment in clusigr S, is the 1st concept segment
in clusterC,, and so on.

Using equation 4, we compute Int€i( C,) as follows:

Inter(Cy, Cp) = (0.05 + 0.052 + ... + 0.012)/20 = 0.0465

5.1.2.5 Quality of Clustering

Quality of clustering measures goodness of clustering. [BObther words, it
measures how good the clusters are. It is desired that cosegments in a cluster
be similar (i.e. intra-cluster similarity should be highjdaconcept segments in
different clusters be dissimilar (i.e. inter-cluster damty should be low).

Say we have concept segments afd, Cp, ....,Cyx arek non-singleton clusters
(i.e. clusters with more than one concept segment) of thegments. Intra-Cluster
Similarities are Intrdt,), IntraCy), ...., IntraCy).

Inter-Cluster Similarities are Int&2{, C,), InterCy, C3),......... JInterCy_1, Cy).
Then quality of clustering is defined based on the ratio ofgvesd average inter-
cluster to weighted average intra-cluster similarity:

S e i v, Ny-Inter(G,C))
Z!‘Zl Intra(G;)

The quality valueg¢c [0, 1] (¢R is negative in case of inverse/pathological
clustering, i.e. when intra-cluster similarities are lomdanter-cluster similarities
are high).

Note that we compute quality of clustering only from nongs@ton clusters.
This is because intra-cluster similaritiy is undefined @0 singleton clusters [80].

Let us consider the clusters in figure 25. The clusters aretddrasC; and
Cz.

Intra(C;) = 0.68, IntraCy) = 0.51, InterCy, Co) = 0.0465.

Then, quality of clustering is,
1-(4/5*(5*0.0465) + 5/4 * (4 * 0.0465))/(4*0.68 + 5*0.51) =@

=1 (5)
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5.1.2.6 Clustering Algorithm

Here we describe the clustering algorithm which is illustdain ClusterCon-
ceptSegmentsine 1 initializes the set of clusters to be the empty sateki2 to 11
iterate over each concept segment and does the followirthe l€oncept segment
is labeled, then the concept segment is added to the clugtettive same label.
Otherwise a new cluster is created and the concept segmeadtesd to the new
cluster.

For the example training sequences in table 5, 15 conceptesgtg are shown
in figure 20, 21, 22, 23. 2 of the concept segments are labdlbdcancept name
“ltemList” and another concept segment is labeled with ephcmame “ltemTax-
onomy”. Therefore, we have 14 clusters initially. One of thesters is labeled
“ltemList” and contains 2 concept segments labeled “Itestil(these concept seg-
ments are shown in figure 21 (a) and figure 22 (a)). Anothertalus labeled
“ltemTaxonomy” (shown in figure 23 (a)). Thus we have 12 urled and 2 la-
beled clusters.

Lines 12 to 20 construct pair of clusters from list of clusteuch that at least
one cluster in a pair is unlabeled. The inter-cluster sintylasalues are also com-
puted.

For our example, we construct 132 unlabeled cluster paith {ihe clusters in
the pair are unlabeled) and 24 labeled cluster pairs (orfeeafltisters in the pair is
labeled). We compute the inter-cluster similarity valuedach of the pairs.

Line 21 invokes the algorithr®etQualitywhich returns the quality value of
the current clusters. This algorithm computes quality @gas defined in section
5.1.2.5) from non-singleton clusters, and returns thatleialHowever, it returns
“Undefined” if none of the clusters are non-singleton. Thaliqyvalue is saved as
maximum quality value. Current clusters are saved as besteci(line 22). For
our example, the current quality value is 0.13231.

Lines 23 to 34 is the main clustering loop. At each step of teetion, the
most similar clusters are retrieved by invoking the aldgoniGetMostSimilarClus-
tergline 24). The algorithm sorts the cluster pairs based oim Huwmilarity value
(i.e. inter-cluster similarity) and the pair with the highesimilarity value is re-
turned. The clusters with highest similarity value are redr(figure 24).

The algorithm continues until we are left with only 1 clusbethe number of
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unlabeled clusters becomes 0 or no similar clusters aredftmmerge (line 34).
For our example, the algorithm continues until we have origb2led clusters.

Line 35 returns the cluster8éstClusterswith the highest quality value. For
our exampleBestClustergontains 4 clusters. 2 of the clusters are labeled and the
others are unlabeled. Figure 25 shows the unlabeled ctuster

Algorithm ClusterConceptSegments

Input: ConceptSegmenté Set of Concept Segments

Output: Concepts A Set of ConceptSegment Sets where Segments Representing
Same Concepts are Placed in the Same Set

1. Clusters— 0

2. fori=1toConceptSegmentze

3 do if ConceptSegmeriig.Labeled

4 then Cluster«—GetCluste(ClustersConceptSegmenis(Label)

5. if Cluster= NULL

6 then Cluster«new Cluster

7 ClusterLabel —ConceptSegmertis.Label

8

9

else
. Cluster«<new Cluster
10. ClusterSegments— ClusterSegments) ConceptSegmerti$
11. Clusters—Clustersu Cluster

12. ClusterPairs—0
13. for i = 1to ClustersSize—1
14. do for j =i+ 1to ClustersSize

15. do if Clustergi).Label= NULL or Clustergj).Label= NULL

16. then ClusterPair<— new Pair Cluster(i), Cluster(j))

17. Featuresi) < Cluster(i).Features

18. Featuregj) < Cluster(j).Features

19. ClusterPairSimilarity  «—GetSimilarityEeaturesi),
Featuregj))

20. ClusterPairs— ClusterPairsJ ClusterPair

21. MaxQuality<—GetQualityClusterg
22. BestClusters—Clusters
23. repeat
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24. (first, second < GetMostSimilarCluster§{lusterPairg

25. if first # NULL andsecond# NULL

26. then if first.Label=NULL

27. then (ClustersClusterPair§ «—MergeCluster, ClusterPairs
second first)

28. else

29. Clusters ClusterPairg «—MergeCluster, ClusterPairs
first, second

30. CurrentQuality<—GetQualityClusterg

31. if (MaxQuality = UNDEFINED and CurrentQuality

#UNDEFINED)or (CurrentQuality-MaxQuality)
32. then MaxQuality<—CurrentQuality
33. BestClusters—Clusters

34. until ClustersSize= 1 or ClustersNumU nlabeled= O or first = NULL or
second= NULL
35. return BestClusters

Algorithm GetMostSimilarClusters

Input: ClusterPairs A Set of Cluster Pairs

Output: (firstCluster, secondClustgr a Cluster Pair

1. Sort the pair of clusters based on their similarity value
2. Arrange the cluster pairs from highest to lowest sinyaralue
3. (first, second «—next cluster pairs from sorted cluster pairs.
4. if Similarity(first.second =0

5 then first —NULL

6 second—NULL

7. return (first, second)

Algorithm Merge

Input: Clusters A Set of Clusters Containing Concept Segments
Input: ClusterPairs A Set of Cluster Pairs

Input: firstCluster. a Cluster

Input: secondClustera Cluster

Output: (Clusters, ClusterPairs)The updated set of Clusters
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Figure 23: A Web Transaction in BestBuy.com

for i1 to secondClusteEegmentSize

do insertsecondClusteSegments) to firstClusterSegments
RemovesecondClustefrom Clusters
Compute similarity offirstClusterfrom other Clusters
UpdateClusterPairs
return (Clusters, ClusterPairs)

o0k wdPE

Algorithm GetQuality

Input: Clusters A Set of Clusters Containing Concept Segments
Output: qualityVal The quality of clusters

1. ClustersNonSingletor-ClustersGetNonSigletonClusters
2. if ClustersNonSingleto8ize= 0

3 then qualityVal—UNDEFINED

4. else

5 qualityVal «—compute quality using equation 5

6. return qualityVval
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Figure 26: An Example Noisy Cluster

5.1.2.7 Elimination of Noisy Clusters

After the clustering algorithm returns a set of clusters, elimminate noisy
clusters which are:

¢ singleton unlabeled clusters, i.e. a cluster with a singlecept segment.
We assume that a concept should have multiple occurencesoiteation of
transaction sequences.

¢ non-singleton unlabeled clusters which have Intra-CluSierilarity below a
threshold. (The threshold value 0.01 worked well in pramtic

Figure 26 shows an example of a noisy cluster.

5.1.3 Labeling

Once the clustering algorithm clusters the concept segsmetat a set of clus-
ters, unlabeled clusters are labeled (line 27 to 31 in alyorClusterConceptSeg-
ment3. Next the label of each of the clusters is used to label timeept segments
and the Web objects in each concept segments. The followiog@pproaches are
used for cluster labeling.
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Figure 27: Ad-hoc Labeling

Ad-hoc Labeling

This approach is used when we do not have labeled sequentehis lap-
proach, we assign ad-hoc labels sequentially to the urddlmlisters. Fom unla-
beled clusteran labels are assigned starting frdabel, to labely,.

Continuing with our example, the first unlabeled cluster (@8 in Figure
25(a)) is labeled as “labdl” and the second unlabeled cluster (as shown in Figure
25 (b)) is labeled as “lab&?”. The clusters in Figure 25(a) and 25(b) after ad-hoc
labeling are shown in Figure 27.

Labeling using Co-training

We described how we label the unlabeled clusters in ad-hgcAvsother sim-
ple idea is to generate the label of each unlabeled clustertine concept segments
present in that cluster. However, that would not give us nmgalabel used in that
domain (e.g. alabel “search form” may not be available ia #pproach). Observe
that when any concept segmentin a cluster is labeled, tséechs also labeled with
that label. For example, a concept segment labeled “Itethdlso labels the cluster
containing that segment as “ItemList”. Therefore, an uelad cluster means none
of the concept segments in that cluster are labeled. We bahdach an unlabeled
cluster using co-training approach. In this approach,l&btansaction sequences
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are used to label the unlabeled sequences. The underlyimgpbe is described
in [13], where unlabeled data is labeled with the help of lathelata.

Specifically, we will label the unlabeled clusters consieddoy our clustering
algorithm with the help of labeled clusters constructednfitabeled sequences.

We apply the concept segment retrieval algorithm on theléalbsequences to
get a set of concept segments for each sequence. Since thenseg are labeled,
we associate the concept label with each concept segmgni(eoncept segment
labeled with “SearchForm”). We construct clusters contajrconcept segments
with the same label.

Let A = A1,A2,...Av denote the set of clusters (either labeled or unlabeled)
constructed by our algorithm andAq(),F(A2),...,FAm) denote the feature vectors
computed from each such cluster. lk¢t= Hq,Ho,... Hy denote the set of clusters
constructed from labeled data andHt),F(H2),...,FHn) denote the feature vectors
computed from each such cluster.

Next, we take an unlabeled clust&rfrom the set of clusters constructed by
our algorithm and compute the inter-cluster similarityvbe¢nA; andHj, for all
clustersH; in the set of user-labeled clusters. The clugtewhich is most similar
to Hj is labeled with the label dfi;. Then, the clustet; is removed from the sé.
This procedure is applied repeatedly until all the clustetbe setA are labeled, or
the setH is empty. In the second case, the unlabeled clusters iA ast assigned
ad-hoc labels.

Let us consider the labeled sequences in Table 6. The finstcéion sequence
is shown in Figure 28 and the other one is shown in Figure 29aM#éy the concept
segment retrieval algorithm for each sequence to retrisgebdncept segments as
shown in Figure 28, 29. Next we construct four labeled chgstentaining those
concept segments, (Figure 30).

The first cluster contains the concept segment from Figur@p8nd labeled
“ltemTaxonomy”. The second cluster contains concept seggneom Figure 28
(b) and 29 (b) and labeled “AddToCart”. The third cluster eams the concept
segment from Figure 29 (a) and labeled “IltemList”. The firlakter contains the
concept segments from Figure 28 (c) and Figure 29 (c)andddib€heckOut”.
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| No. | Training Sequence \
1 | < selectcategory093A233E),add to_cart(0B7424A3), checkout(632A213) >
2 < selectitem(03EA162B),add to_cart(0A942523, checkout(7A1B5138) >

Table 6: Example Labeled Transaction Sequences:
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Figure 28: A Web Transaction in BN.com

Now consider the unlabeled cluster (returned by our algarjtshown in Fig-
ure 25 (a). We compute similarity of this cluster with all tabeled clusters. Simi-
larity values are shown as labels of the arrows in figure 30.

This cluster is found to be most similar with the user labaledter “AddTo-
Cart”. Hence we label this cluster as “AddToCart”, (Figure.30)

Then, we remove the user labeled cluster “AddToCart” fromdéeof user
labeled clusters. Next, we take the unlabeled cluster shovigure 25 (b) and
compute its inter-cluster similarity with the user labetdasters, “ltemTaxonomy”,
“ltemList” and “Checkout”. This cluster is most similar toetluser labeled cluster
“CheckOut”. Hence the unlabeled cluster is labeled “Check@kigure 30).
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Figure 29: A Web Transaction in Buy.com

5.1.3.1 Web Object Labeling

Once the clusters are labeled, the concept segments in kemtlrare also
labeled(line 31 of algorithn€ClusterConceptSegmehtd-or example, the concept
segments of the clusters in Figure 31 are labeled with thed Gftihe clusters. Next,
we associate th&vebObject(i.e. URL) which is embedded within the concept
segment with the operation name corresponding to the ldlleésegment.

Continuing with our example, th&ebOb ject in Table 5 are labeled with the
operation name for each concept label. Table 8 shows thesmwnding labeled
transaction sequences. For simplicity, operations arédemriasoperationName
instead ofo perationNam@NebObject.

5.2 Unsupervised Learning of Concept Models

The label generation method described in the previousmseassociates con-
cept labels with segments containing iMebOb ject It also clusters similar seg-
ments. Each cluster represents semantic concept. We maaokesuch cluster as
a classifier to classify a concept segment as instance ofdimaept. For example,
given a concept segment and a set of clusters, we can conmgutedr-cluster sim-
ilarity between the single cluster containing that segnagnt each of the clusters.
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Then we can label the concept segment (i.e. categorize timees#) with the label
of its most similar cluster. This approach is simple and wilirk for many cases,
but it has some shortcomings:

e Inter-cluster similarity does not weight the features. €e that jaccard
similarty metric does not consider importance of a paréictééature. Us-
ing uniform weight for each feature may result poor perfanoeg especially
when there are common features across different concepts.

e The entire process of clustering is done in a batch mode andehthis is
offine. Once a set of transaction sequences are collectedapply our
algorithm. If clusters have to be used for classificatiomntithey have to
stored. That means, all the concept segments extractedtfir@mnansaction
sequences have to be stored. This is not scalable when tisattéon models
are learned from a large number of sequences. Moreovelyérscalcula-
tion intensive. Very large cluster, i.e. a cluster with maoyncept segments
can make computation of inter-cluster similarity difficukrom a computa-
tional point of view, it may require a long time and is not abit for online
processing.

e The simple approach described above assumes that any degnaanin-
stance of a concept since it classifies a given segment asstanae of a
concept class when the segment gets the highest similattitytiae cluster
corresponding to that concept. However, it can be a noisymeay To elimi-
nate such noisy segments, we have to use a threshold forcioster similar-
ity value for each clusters. Manually fixing such threhsa¢dsot justifiable.
Hence, these thresholds have to be determined experidyental

However, a statistical model, e.g. Support Vector Mach8¥\) [89] has the
following advantages:

e An SVM model learned from features vectors of the trainingregles com-
putes weight (i.e. contribution) of each individual feauo classify an in-
stance as a member of the class. This is more justifiable andate than
using uniform weights for each feature which is the case whemrompute
inter-cluster similarity.
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e An SVM models are usually learned as a binary classifier testfijaan in-

stance as either member or not member of the class. Therdfere is no
need to use thereshold for each cluster to eliminate nogyests.

A learned SVM model does not store each data point, it stangstbe sup-
port vectors which are needed to classify a given instaneenasmber of that
class. SVM computation is generally faster than computinglarity value
from large number of data points.

SVM is a well-known statistical model used in classificataond regression.
It has been successfully applied to build classifier fronmliaearly seperable
and non-seperable data points.

Therefore, we automatically learn a support vector mactévl) [23, 89]

for each such concept. Each such concept models are usedras\adiassifier to
classify a given concept segment as either instance or siarice of the concept.

Algorithm LearnConceptModel
Input: SequencedA Set of Labeled Transaction Sequences
Output: Models A Set of Statistical Models

© o N Ok wwDdRE

el e ol =
© 0k wbdrE O

ConceptSets- 0
n «—SequenceSize
i—1
repeat
Sequence- Sequences)
WebOb jectsSeg- Sequenci#/ebOb jects
m «— WebOb jectsSefize
j<—1
repeat
WebOb ject— WebOb jectsSép
ConceptSegmenrt GetConce ptSegmeit/ebObject
ConceptSegmeniabel — WebOb jeciabel
PlaceConce ptSegmeim ConceptSetsabel)
j—jt+1l
until j =m+1
i—i+1



CHAPTERS5.  Mining Transaction Models: Unsupervised Approach 68

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.

Table 7: Description of Concept Segment Features

Feature Description

funigram words present in the segment
fhigram bigram (pairs of words)
firigram trigram (triples of words)

fs[emU nigram WOYd StemS*
fstemsigran | Stemmed bigrams
fstemTrigram | Stemmed trigrams

fpattern patterns
until i =n+1
numConce pt— Total Number of Concepts
Models— 0
i1
repeat

NegativeExamples- ConstructNegExampl&onceptSets)
ConceptModéii) + LearnSV MConceptSets)(,NegativeExamples
Models— ModelsU ConceptMode€i)
i—i+1

until i =numConceptl

return Models

As with many other machine learning tools, an SVM [23, 89wk feature

vector as input and produces its classification. Here, weneléfo classes for
each of our concept modeConceptandNot Concept and describe each concept
segment with a set of feature values.

For example, classes for the concept model “CheckOut'CGireckOut and

Not CheckOut.

We represented each concept segment by a tfplB,(wheref is a feature

vector for that segment ards its concept label. A segment can be either instance
of a conceptl = 1, or not instancet = 0. Segments labeled with concé&ptare
used as positive examples to train the SVM model for conCefEegments labeled
with concepCj, where i# j are used as negative examples to train the SVM model
for concepC,.
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Note that, we did not manually label the concept segments |alels are gen-
erated as a result of clustering them and hence this is atitorfiaus in contrast to
traditional SVM learning which requires manually labeleairting data and hence
is supervised, we used an unsupervised approach to leaBVvitdanodels.

Continuing with our example in the previous section, FigitesBows concept
segments used as positive examples and some of the congergs used as neg-
ative examples for training the SVM model for “Checkout” cept Positive exam-
ples are concept segments taken from the “Checkout” cluskegative examples
are concept segments taken from “AddToCart”, “ltemTaxonbamnd “ltemList”
(not shown in Figure 32 because of limited space) clusteosneSof the features
extracted from the concept segments are also shown in F&fure

The learned SVM concept model is used to classify a given sagas a con-
cept. Given a segmei;, we compute the feature values for it. Next, we use the
learned SVM models to label the segment as as either instanoet-instance of
the concept and get the associated probability values. tNatethe segment can be
identified as an instance of a concept by more than one SVM hiadé which is
an ambiguity). In that case, we label the segment as an westirthe concept for
which corresponding SVM model returns the highest prolighialue.

For example, Figure 33 shows two concept segments. Onerafithelassified
as a “Checkout” concept (33(b))and the other one is not ¢iedsas a “Checkout”
(33 (a)) concept by “Checkout” SVM model.

5.3 Learning Process Model

In the previous chapter, we have described process modeliigausing a
DFA-based technique. There are some drawbacks of using 8dtAihg to learn a
process model from transaction traces.

5.3.1 Limitation of using DFA learning

e The goal of DFA learning is to learn the smallest size DFA tbatonsis-
tent with respect to a set of positive and negative trainixeygles. This
is an NP-hard [9, 10, 38] problem. As a result, there are efiicheuristics
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for DFA learningg.g, [33, 66, 68]) in polynomial time. However, training
examples must certain properties to learn a target DFA usiege heuris-
tics. For example, Parekh and Honavar [70] assume a staligtaomplete
set?. Oncina [68] assumes a characteristics®set samples. Web transac-
tion traces are collected by maintaining logs of transactictivities done by
users. Itis quite diffcult to collect traces that satisfiestsproperties, which
are necessary for DFA learning in polynomial time.

e DFA learning requires a sizable number of negative exanghésh are often
difficult to obtain from logs of transaction activities dooygusers. Moreover,
collecting negative traces may introduce spurious coisdeghe model as a
result of clustering.

One solution to get negative examples is to generate them fasitive ex-
amples. Specifically, each subsequence of a positive examgy be used as
a negative example. However this has the following drawback

e This assumes that a subsequence of a completed transaatiomot
complete another transaction.
For example, consider the positive example
“selectitem_category”.“selecitem”. “add to_cart”.“checkout”. If we
generate a negative example “selgem”. “add to_cart”.“checkout”
from the above mentioned positive example, then the reduttendel
won't accept “selecttem”.“add to_cart”.“checkout”. However, this
transaction sequence can also complete a transaction., génerat-
ing negative examples from subsequences of positive exanphy re-
sult in rejecting transaction sequences by the model whicluld be
accepted.

5.3.2 Inference of the Process Model from Positive Examples

For unsupervised transaction model mining, we have deeeladearning al-
gorithm that can learn a process model from only positivergtes, i.e. complete

2A set S+ is said to be structurally complete with respect té=A B if S+ covers each transition
of A and uses every element of the set of final states of A as@eptiog state [34, 70]

3A characteristics set S= S# S- is such that S+ is structurally complete with respect & th
target and S- prevents merging of any two states that arequatagent
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transaction sequences. We observe that:

¢ If a transaction sequence with a consecutive repeatingatipersubsequence
completes a valid transaction, then discarding the repeathaving the op-
eration subsequence only once in the whole sequence) otifigsany num-
ber of such repeating operation subsequence consecuitivéhg sequence
should also complete a valid transaction.

For example, consider the following sequesetectitemselectitem

add to_cartcheckout. This completes a transaction (selecting an item, se-
lecting another item, adding that item to the shopping aadtthen checking
out). The sequence contains exactly one consecutive expsabsequence,
selectitem Removing that operation gives another transaction seguenc
selectitem

add.to_cart.checkout. This is also a valid transaction (selecting an item,
adding that item to the shopping cart and then checking @ithilarly, the
following sequencaselectitemselectitemselectitemadd to_cart.

checkout also completes a transaction.

So given a set of completed transaction sequences the afotiemed insert
and delete operations allow a limited degree of generaizawe will learn a pro-
cess automaton (i.e. process model) to accept these kimggsefalized sequences
from a training seT of completed transaction sequences. The details are ag/foll

Definition 1 (Language of transaction sequencespiven a training set T, the
language of transaction sequenéeslenoted bya (T) is thesmallesset such that:

e TC4(T),and
e for all x € 2(T) such that x= pmms (p is the prefix, s the suffix and m the
repeated middle, all possibly empty), fae 2 (T) for every k> 0.

Note thata (T) generalizesl, and is the language we seek to learn frém In
particular, we generaliz& such that any consecutively repeating substring in
is now permitted to repeat an arbitrary number of times. Hmgliagea (T) has

4The language definition and the algorithm to construct psscautomaton were developed with
Prof. C.R. Ramakrishnan
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an important property: it is closed with respect to traingggs in the sense that
adding any string in the language to the training set doeslmage the language.
Formally,

Theorem 1 (Closure) Let T be a given training set anal(T) be the corresponding
language of transaction sequences. Then, for all S sucHtkaSC 4 (T), 4(S) =
a(T).

The proof of this property follows from the monotonicity af i.e. if T C S
then 2 (T) C a(S). The property of closure indicates “stability” of the leath
language since no string in the language could have beerdadde original
training set to construct a different (more general) laggua

The definition of2 is does not directly give a procedure to construct an au-
tomaton that accepts(T ). We now outline such a procedure.

Definition 2 Let ® (T) be the set of regular expressions over the alphabet of T,
defined as follows:

e TCR(T)
e Vx €T such that x= pmms, pmse % (T).

Note thatg (T) is a finite set of regular expressions (REs); in particulahéf
largest sequence This of lengthk, then|z (T)| = O(k?|T|), and the largest regular
expression i (T) is of lengthk? or less.

Let £ (r) denote the language of a regular expressiofihe language of a set
of regular expressions is the union of the languages of ebith elements: i.e. if
Ris a set of regular expressions, the(R) = Uycr£ (1).

The language of regular expressians$T) constructed from the training set
is identical toa (T), the language of transaction sequences learned Troas for-
mally stated below.

Theorem 2 For all sets of training sequences B {T) = (R (T)).

The above theorem can be proved by considering the usualfiead point
(iterative) construction af (T ), and showing that the least fixed point computation
will converge in two steps ta (% (T)).
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Note thatg (T) gives us an effective procedure for constructing the tretisa
automaton. For each regular expressiorifir ) we construct the corresponding
nondeterministic finite automaton (NDFA) using Thomsomwastruction [46]. The
automaton forz (% (T)) is simply the union of all the individual automata. Based
on the argument above on the sizezofT ) and Thomson’s construction, it follows
that if k is the length of the longest sequencdirthen the automaton for (T) thus
constructed is of siz&(k*|T|), and can be constructed in tin@k?*|T|). Finding
more efficient construction algorithms and building snradietomata are topics of
future research.

Next, we describe such a learning algorithm in detail.

5.3.2.1 Unsupervised Learning of the Process Model

The steps for learning the process model are as follows.

e Start with training transaction Sequences and a set comggiegular expres-
sions, which is initially empty.

e For a sequencg& S, find all possible non-empty subsequenagesuch that
TS = pmms

e for each suclpmmsgenerate a regular expressiom'™s and insert it to
the set containing regular expressions

¢ if no non-emptymis found, then inserT § to the set containing regular
expressions

e Get the union of the regular expressions from the set cantamegular ex-
pressions

e Build a non-deterministic automaton from the regular exgigesconstructed
above using a standard algorithm [4, 46, 84] and return thenaaton as the
learned process model from training sequences.

The detailed learning algorithm is illustratedliearnProcessModelLine 1
of the algorithm initializes the s&xpSetto be empty. Line 2 to 10 is the main
iteration loop. Line 3 takes each training example, and 4navokes the algo-
rithm FindConsecutiveRepeatingSubsequenths algorithm generates all possi-
ble subsequences in a sequence given as parameter (linelihebf algorithm
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epsilon
add_to_cart

select_category select item

Figure 34: Non Deterministic Process Model (with epsilon transitions) Constructed from
Regular Expressions in Table 9

add_to_cart

check_out

check_out

Figure 35: Non Deterministic Process Model after removing epsilon moves from the model
in Figure 34
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FindConsecutiveRepeatingSubsequendésxt it checks for consecutive repeating
subsequences (line 6 BihdConsecutiveRepeatingSubsequendésuch a repeat-
ing subsequence is found, then the algorithm breaks theeesgguence in the form
pmmg(line 7, 8, 9 ofFindConsecutiveRepeatingSubsequenadere,

e pis the prefix which can be empty.

e Mmis the repeating middle part.
e sis the suffix which can be empty.

Algorithm LearnProcessModel

Input: SequencedA Set of Training Sequences Given as Positive Examples
Output: (Model} The learned process model

1. RegExpSet-0

2. for i<1to SequenceSize

3 do Sequence- Sequencép
4, PreMidSuf f Set— FindConsecutiveRe peatingSub&eguence
5. if PreMidSuf f SeEmpty
6 then ExpSet— ExpSetu Sequence

7 else

8 for j«—1to PreMidSuf f SeBize

9. do (Prefix, Middle, Suf fiXY « PreMidSuf f Sdf))
10. ExpSet—ExpSetJ PrefixMiddle™.Suf fix
11. NonDeterministicProcessModelBuildNFAFromRegEXpEXxpSe}
12. return (NonDeterministicProcessModel)

Algorithm FindConsecutiveRepeatingSubsequences

Input: SequenceA Training Sequence

Output: (PrefixMidMidSuffixSet)A Set where Each Entry is of the form (Prefix,
Middle, Suffix)

1. PrefixMidMidSuf fixSet—0

2. for i—1to SequencSize

3. do for j«1to Sequenc&ize

4 do SubStr—SequencS&ubStringi, )

5 SubStrNext—Sequenc&ubStringj+1, j+ SubSti_ength
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Figure 36: Non Deterministic Process Model Constructed from Regular Expressions
Table 11

6. if SubStrEqualsGubStrNext

7. then Pre fix —Sequenc&ubStringl, i -1)

8. Middle «SubStr

9. Suf fix «—Sequenc&ubStringj+ SubStiength + 1,
Sequencsizg

10. PrefixMidMidSuf fixSet «PrefixMidMidSuf fixSet

U(Prefix,Middle, Suf fix
11. return (PrefixMidMidSuf fixSet)

The algorithm inserts (line 10 dfindConsecutiveRepeatingSubsequences
each such prefix, middle and suffix into a setgfixMidSuf fixSetwhich is re-
turned as output in line 4 of algorithbrearnProcessModel

For example, consider the training sequences in Table 8fildisequence is
selectitemadd to_cart.checkout which does not contain any repeated subse-
guence. Therefore, line 4 of the algoritHrearnProcessModeatketurns the empty
set. For the next sequencse(ectitemselectitemadd to_cart.checkout), the
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Figure 37: Non Deterministic Process Model after removing epsilon moves from the model
in Figure 36

subsequence
selectitemis repeated consecutively. This sequence has a umgquasrepresen-
tation, wherep is empty mis selectitemandsis add to_cart.checkout. The next
sequencesglectitemadd to_cart.add to_cart.checkout) also has a unigupmms
representation whengis selectitem mis add to_cart andsis checkout. The fi-
nal sequence in the tables8lectitem categoryselectitemadd to_cart.checkout
does not contain a repeated subsequence and hence lineedadftinithm Learn-
ProcessModg¢lreturns the empty set. Line 5 of the algorithmarnProcessModel
checks whether the set of (Prefix, Middle, Suffix) is emptyhi$ set is empty (i.e.
no consecutive repeating subsequence in the sequencsggibence is added to the
set containing Regular Expressions (line 6). However, foheen-empty such set,
a Regular Expression is added to thelsgepSet The form of each such expression
is PrefixMiddle™.Suf fix

Continuing with our example, the first and fourth training seaces are
added to the seExpSet(since the set of ((Prefix, Middle, Suffix) become
empty for these sequences). For the second sequence, th&aREgpression
selectitem™.add to_cart.checkout is added to the set. For the third sequence,
selectitemadd.to_cart™.checkout is added to the set. The set of Regular Expres-
sions is shown in Table 9.
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| No. | Training Sequence
1 < selectitem add.to_cart, checkout >
2 < selectitem selectitem add._to_cart,checkout >
3 < selectitemadd.to_cart,add to_cart, checkout >,
4 | < selectitem.categoryselectitem add to_cart,checkout >

Table 8: Labeled Training Sequences for Process Model Learning

| No. | Regular Expressions \
1 < selectitem add to_cart, checkout >
2 < selectitem’, add to_cart,checkout >
3 < selectitem add.to_cart™, checkout >,
4 | < selectitem.categoryselectitem add_to_cart,checkout >

Table 9: Regular Expressions for Sequences given in 8

Once we have a set of Regular Expressions, we construct an ivRAthe
expression using a standard algorithm [46, 84] (line 11)e fidsultant Non Deter-
ministic Process Model is shown in Figure 34.

Now we illustrate the process model learning algorithm wiith labeled ex-
amples in Table 10. The set of regular expressions for thes@@es are shown
in Table 11. weconstructNFA fromtheexpressioesig standard algorithm. The
resulting Non-Deterministic Process Model is shown in FegB6.

Note that it is possible to convert the non deterministicpss model returned
by our algorithm to a deterministic process model. Howetle, existing subset
construction algorithm that converts a NFA to DFA is compiotally expensive
(exponential complexity). So we will use the non-deterstiniprocess model re-
turned by our algorithm to avoid such computation.

| No. | Training Sequence
1 < submitsearchselectitem submitsearchselectitem add_to_cart,checkout >
2 < selectcategoryselectitem selectcategoryselectitem add to_cart, checkout >
3 | < selectcategoryselectcategorysubmitsearchselectitem add to_cart, checkout >

Table 10: Labeled Training Sequences for Process Model Learning
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| No. | Regular Expressions \
1 < (submitsearchselectitem)™, add to_cart,checkout >
2 < (selectcategoryselectitem)™, add to_cart, checkout >
3 | < selectcategory ,submitsearchselectitem addto_cart,checkout >

Table 11: Regular Expressions Computed for the Sequences in 10

In Section Chapter 3, we defined a process model as a detetimanitomaton.
According to that definition: when the model makes a tramsito a state during
the course of a transaction, a Web page is provided to the atgtn input. If
the concepts associated with the state are present in tieg {eey they alone are
identified and presented to the user.

However, in a nondeterministic process model, we have tgidena set of
states instead of a single state at any given step of a ttamsatVhen the model
makes a transition, it makes a transition to a set of statess{ply a set with a single
state). As a result the Web page is provided to the set ofsstet@n input. If the
concepts associated with the states (from that set of y&@tepresent in the page,
then they alone are identified and presented to the user.mdusfication is very
straightforward and hence a non-deterministic processeinmah also be used to
conduct transactions.

5.4 Personalized Transaction Models

Concept instances shows variability in texts and presemgtatterns. How-
ever, this variability is less common in a single WebsiteerEfiore, clustering con-
cept segments from different Websites often places corssgphents in the wrong
cluster. For example, an “AddToCart” concept instance in &an.com” contains
the text "add to cart” but the same concept instance in “Buglcoontains the text
“buy now”. The concept segments collected from these ingsmay be placed in
different clusters if other textual and pattern featuresdiohave enough match.

However, a single user most often visits some common Web. sikeWeb
transaction model for each such site can capture the ussspalized transactions
in that Website. Therefore, we can also mine personalizetséaction models using
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the algorithm described in the previous sections.

5.5 EXxperiments

We conducted a series of experiments to evaluate the peafareof the trans-
action model learning algorithms.

5.5.1 Data Collection

To have an efficient infrastructure for experiments, a Jiso@l [18] was de-
signed for viewing frame trees, as well as collecting dat&Veb browser was also
embedded to aid the data collection. During the data cadledtage, participants
were asked to select any link, or submit a search form to aé&iffom one page
to another page. As they navigate from one page to anothey;, fagframe trees,
corresponding to the source and the destination pages, autoenatically saved
together with user selections. This is how we collected helled transaction se-
guences. To aid the collection of labeled sequences, faits chose the name of
the transaction operation for each navigation. They altectsd the nodes of the
frame tree as instances of the concept associated with gratom.

5.5.2 Datasets

Around 500 transaction sequences from 36 Websites in the online shQppi
domain (books, electronics, office supplies) were manualliected using the data
collection method described above. 15 CS graduate studdigghted) were used
to collect transaction sequences. Arotdtransaction sequences were unlabeled
and the remainin@00 were labeled. We denote the set of unlabeled sequences
asUnlabeledSegand the set of labeled sequencedJagrLabeledSeqWe ap-
plied our concept segment retrieval algorithm on sequemceslabeledSe@nd
UserLabeledSetp get set of concept segment;niapeled @NAdCyserLabeled The
setCyserLabelegcOntained 807 labeled concept segments (total eight corategs
were used). and the S8tjnjapelegcontained 1092 unlabeled segments.

We split the seCysertabelediNtO Crestsegment8NACiabeledsegmentTestSegments
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| Cluster Label | Number of User Labeled Segments |

SearhForm 91 (67 inCrestsegments24 INClabeledsegments
AddToCart 118 (91 inCrestsegments2 7 INCLabeledSegments
ContinueShopping 100 (72 inCrestsegment28 iNClLabeledsegments
CheckOut 114 (83 inCrestsegments31 INCLabeledsegments
ShoppingCart 98 (74 iNnCrestsegment24 INClapeledSegments
EditCart 96 (70 iNnCrestsegments26 INClapeledSegments
ItemList 93 (68 INCrestsegment25 N CLabeledSegmen)s
ItemTaxonomy | 97 (75 inCrestsegments22 INCiapeledsegmen)s

Table 12: Segments in User Labeled Clusters

] Dataset | No of Sequences$ No of Concept Segments Labeling |
UnlabeledSeq 300 1092 Unlabeled
UserLabeledSeq 200 807 User Labeled

Table 13: Description of Datasets.

contained 600 segments and was used as a validation seerondet the perfor-
mance of the clustering algorithm, and also to constructebedata sets (The test
sets are described in Table 14}, apeledsegment§Ontained 207 segments and was
used to label unlabeled segments (described in Sectiod)5.1.

Distribution of user labeled concept segments to each garabel is pre-
sented in tabl@?. Note that, since the concept segments in &tk segmentand
ClLabeledsegmentare labeled, 8 labeled clusters are contructed from thenis i$h
done by constructing a cluster for each concept label Alestex,ser (constructed
from Crestsegment¥hich contains 600 concept segments) @idstefapeling (CON-
structed fromCrestsegment@hich contains 207 concept segments) denote the set of
labeled clusters.

5.5.3 Performance of Clustering

Note that, our test set may contain only unlabeled concephsats {y) or
a fraction of the concept segments can be labeled (e.g. 5eételd We apply
the clustering algorithm on segments in testset (testsetdescribed in 17), and
eliminate the noisy clusters. L&lusteg g, denotes the set of clusters constructed
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| Test Set| Description \

TU Concept Segments are Unlabeled
T5L 5% Concept Segments are Labeled
T_10L | 10% Concept Segments are Labeled
T_15L | 15% Concept Segments are Labeled
T_20L | 20% Concept Segments are Labeled
T_25L | 25% Concept Segments are Labeled
T_30L | 30% Concept Segments are Labeled
T_35L | 35% Concept Segments are Labeled
T_40L | 40% Concept Segments are Labeled
T_45L | 45% Concept Segments are Labeled
T_50L | 50% Concept Segments are Labeled

Table 14: Test Datasets for Clustering Performance Evaluation

Test Set.\ Number of Clusted

TU 12
T_5L 11
T_10L 9
T_15L 12
T_20L 12
T_25L 11
T_30L 10
T_35L 10
T_40L 9
T_45L 8
T_50L 8

Table 15: Number of Clusters Constructed from each Test Dataset

from the testset. We label the clustersGiusteggo Using the labeled clusters,
Clustefapeling (the labeling procedure is described in section 5.1.3). bemof
clusters constructed (after eliminating noisy clusteos)dach testset is presented
in 15.

We will determine the performance of clustering in termseafall/precision/f-
measure for each concept present@iustegser.

Srecall value of clustering instances (i.e. segments) ofrtiqodar concept is the ratio of number
of concept instances (i.e. segments) clustered correatlyldbeled as instance of that concept) over
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Let Clustegse; denotes the cluster containing concept segments labeled as
concept by user ancClusteggq denotes the cluster containing concept segments
labeled as concepby our algorithm.

We take each concept segment frGhastef,se; and compare its label (i.e. user
label) with the label assigned by our algorithm. Nt be the total number of
concept segments @lustegse;. Neorrecy b€ the number of concept segments which
are present in bot@lustegse; andClustergg . Nincorrecy € the number of concept
segments which are preseniGituster g, but not present i€lustegse;. Then, the
recall value for the clustering algorithm for concep$ Ncorrecs / Niotay, and the
precision value iNcorreci/ (Ncorrect + Nincorrect). The F-measure is calculated by
taking the harmonic mean of recall and precision.

For each concept, we compute recall/precision/f-measiucdustering using
the above formula. Figure 38 shows performance of clusjefim terms of f-
measure). Note that, clustering performance is higheua®0% f-measure) for
some concepts (e.g. SearchForm, AddToCart, ContinueSrgapireckOut) than
the other concepts. This is because of the consistent teatdapattern features
present in the segments of that cluster.

We average the clustering performance (i.e. recall/pi@oismeasure) of
each concept to get the overall clustering performanceurgi§9 shows perfor-
mance (f-measure) variation of clustering for differerst tdatasets. As the amount
of labeled data was increased, better clustering accurasyashieved.

5.5.4 Performance of Transaction Model Learning

We computed the performance of transaction models (pranedsl and con-
cept models) for both the set$nlabeledSedi.e. set of unlabeled transaction
sequences) andserLabeledSeg.e. set of labeled transaction sequences). The
transaction sequenceslimlabeledSeare labeled using the algorithm described
in GeneratelLabel

Next, each of the sets was divided into training and testiMg used 90%
sequences for training, 10% for testing and performed adatan10-fold cross

the total number of that concept instance (i.e. segment).pfezision, the denominator becomes
the total number of instance (segment) labeled as that poifether correctly or incorrectly). F-
Measure is the simple harmonic mean of recall and precision
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] Dataset \ No. of States in the Process Mod\el

Dataset 45
Dataset 35
Dataset 32
Datasej 29
Dataset 33
Dataseg 36
Dataset 35
Dataseg 42
Dataseg 34
Datasetig 28

Table 16: Process Model Learning Statistics for each Training Set GeneratedUroa-
beled Sequencebl flabeledSey

] Dataset \ No. of States in the Moddl

Dataset 34
Dataset 32
Dataset 29
Datasej 22
Dataset 28
Dataseg 34
Dataset 27
Dataseg 37
Dataseg 31
Datasetig 25

Table 17: Process Model Learning Statistics for each Training Set Generatad_faibeled
SequencedSserLabeledSgq

validation.

5.5.4.1 Performance of Process Model Learning

Note that the transaction sequences used for training wenplete sequences.
The test set contained both complete and incomplete traosaequences.
We computed the recall/precision/f-measPiaf the process model learning.

6Recall for a process model is the ratio of the number of coteglgansactions accepted by the
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Figure 40: Performance of Process Model Learning from Unlabeled Sequences

Figure 40 shows the recall/precision/f-measure of thenk@duprocess model
from unlabeled sequences (i.e. datadetiabeledSely Figure 41 shows the
recall/precision/f-measure of the learned process mooel labeled sequences (i.e.
dataset)serLabeledSeq

Note that performance of process model learning from labséguences (i.e.
datasetserLabeledSéqgs higher than the performance of process model learning
from unlabeled sequences (i.e. datddetabeledSely This is because concept
segments extracted from unlabeled sequences are clustedethen concept la-
bels are generated for them. Clustering of unlabeled corsaghents introduces
inaccuracy in the datasetnlabeledSeqOn the other hand, concept segments in
the datasdt) serLabeledSegre user-labeled and do not contain such inaccuracies.
Hence, performance of process model learning for this dabesomes higher than
the other one.

model over the total number of completed transactions. Feci§ion, this denominator becomes
the total number of accepted transactions (complete arairiptete). F-measure is the harmonic
mean of recall and precision
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Figure 41: Performance of Process Model Learning from Labeled Sequences

5.5.4.2 Concept Identification

We measured the recliprecision and f-measure of concept identification.

Figure 42 shows the recall/precision/f-measure of the gphaentification
from unlabeled sequences (i.e. datadetlabeledSely Figure 43 shows the
recall/precision/f-measure of the concept identificatrom labeled sequences (i.e.
dataset)serLabeledSeq

We average the concept identification performance of eacbegi to get the
overall concept identification performance. We used 90%iseces for training,
10% for testing and performed a standard 10-fold cross atdid.

Figure 44 shows the cross validation performance of the enentifi-
cation when concept models are learned from unlabeled segsdi.e. dataset
UnlabeledSeq Figure 45 shows the cross validation performance of timeept
identification when concept models are learned from labstegiences (i.e. dataset
UserLabeledSeq

"Recall value for a concept is the ratio of the number of calyéabeled concept segments over
the actual number of segments which are instances of thaeptnFor Precision, this denomina-
tor becomes the total number of segments labeled as instdrtbat concepts. F-measure is the
harmonic mean of recall and precision
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Figure 42: Performance of Concept Identification from Unlabeled Sequences
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Figure 43: Performance of Concept Identification from Labeled Sequences
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Figure 44: Cross Validation Performance of Concept Identification when Conceyplelhd
are Learned from Unlabeled Sequences

Note that, performance of concept identification from labdetequences (i.e.
dataset)serLabeledSé@gs higher than the performance of concept identification
from unlabeled sequences (i.e. datéseliabeledSep This is because concept seg-
ments extracted from unlabeled sequences are clustekthemconcept labels are
generated for them. Clustering of unlabeled concept segmeinbduces inaccu-
racy in the datasét nlabeledSeqOn the other hand, concept segments in dataset
UserLabeledSegre user labeled and do not contain such inaccuracy. Heoie, ¢
cept identification performance for this dataset becomgisanithan the other one.

5.5.5 Single Site Transaction Model Evaluation

We constructed separate transaction models for 3 Web $&ssgon.com”,
“OfficeMax.com”, “BN.com”) from our dataset (described incien 5.5.2). To
construct a transaction model for a specific site, we segardte transaction se-
guences (both labeled and unlabeled) collected from tteat\ale had 15 unlabeled
and 10 labeled sequences for “Amazon”, 10 unlabeled andetddisequences for
“OfficeMax” and 13 unlabeled and 12 labeled sequences for “BMWe used our al-
gorithm to assign labels to unlabeled sequences, learoed$s model and concept
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Figure 45: Cross Validation Performance of Concept Identification when Conceyplelhd
are Learned from Labeled Sequences
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Figure 46: Performance of Clustering Unlabeled Sequences Collected from “Amazon

models from labeled sequences.
We determined the performance of clustering, process nhealeling and con-
cept identification from the transaction sequences caltefitbom each site.
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Figure 47: Performance of Clustering Unlabeled Sequences Collected from “®ifixe
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Figure 48: Performance of Clustering Unlabeled Sequences Collected from “BN”
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Figure 50: Performance of Concept Identification for “Amazon”

Figures 46, 47, 48, 49, 50, 51, 52, illustrate the experialeesults.

Observe that, we got higher performance of clustering (gorarement of
approximately 10%), process model learning (an improvemémpproximately
12.5%) and concept identification (an improvement of apjpnately 9%) when the



CHAPTERS.

Mining Transaction Models: Unsupervised Approach

Performance

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

SearchForm

DORecall

B Precision

OF-measure

AddToCart

ContinueShopping

CheckOut
ShoppingCart
EditCart

Concept

ItemList

ItemTaxonomy

Figure 51: Performance of Concept Identification for

“OfficeMax”
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models are learned from a single Website. This is becausegpbinstances show
less variability in texts and presentation patterns in glsifneb site. Therefore,
the performance of clustering concept segments from aesisitg is higher than
the performance of clustering concept segments from eéifitesites. A higher per-
formance of clustering also results a higher performangeafess model learning
and concept identification.



Chapter 6

Related Work

The work described in this thesis has broad connectionsseareh in Web
services, semantic understanding of Web content, procedsirtearning, Web ac-
cessibility research, contextual processing, end usegranoming and automatic
information extraction.

6.1 Web Services

Web Services research is an emerging paradigm that focasielonologies
that let service providers to export their functionalitiesthe Web so as to facilitate
automated e-commerce. It has given rise to standardizatiorts resulting in lan-
guages such as WSDL for describing services, SOAP for aceessivices, UDDI
for service discovery and integration, BPEL4WS for businessgss specification,
and OWL-S as an ontology for semantic description of servietadata.

Service providers are beginning to utilize these langudgresxposing their
services (see for exampiet p: / / www. amazon. com webser vi ces).

The complementary task of annotating service descriptigits semantic
metadata has been addressed in [45,71, 78].

In contrast to these works we address a different kind of &tiom problem,
namely automatic annotation of different kinds of concejpéd can occur in a Web
page.

Web services expose very basic functionalities which bynfedves are not
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sufficient to conduct complex transactions. For instanama2on’s Web service
exposes basic tasks such as searching for a product, addinogwct into the shop-
ping cart,etc. One has to compose these primitive services in order to perfo
complex transactions.

This problem has been receiving attention lately [3, 248%690]. All these
works typically use process definitions and an ontology tatg the composite
service with varying degrees of automation. Note that odnneue is based on
composing operations over Web pages instead of services.

A vast majority of transactions on the Web are still conddateer HTML
pages. This focus on Web pages is what sets our work aparttirose in Web
services. Also note that our approach to Web transactiogsite flexible, in the
sense that the users can define their own “personalizeddctional service instead
of being confined to whatever service is exposed by the peovid

6.2 Semantic Analysis of Web content

The essence of the technique underlying our concept idsattdn module
is to partition a page into segments containing “semaiyitatlated items and
classify them against concepts in the ontology.

Substantial research has been done on segmenting Web dusyB& 83,91].
These techniques are either domain [36] or site [83] spemifiepend on fixed sets
of HTML markup [91]. Semantic partitioning of Web pages hast described in
[63—65]. These systems require semantic information @tplogies) to partition
a Web page.

In contrast to these research works, our geometric segti@ntalgorithm
does not require any ontology or domain information.

Web page partitioning techniques have been proposed fatiagacontent on
small screen devices [21, 22, 25, 93], content caching [d&ta cleaning [79, 92],
and search [94]. The VIPS [94] algorithm uses visual cuestttpn a Web page
into geometric segments. The algorithm extracts nodes thenDOM tree, finds
vertical and horizontal separator lines between the naales,segments the Web
page into regions based on a number of handcrafted rules. algorithm is used
in [79], where the segments are described by a set of feafeugsspatial features,
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number of images, sizes, links, etc.). The feature valueshan fed into an SVM,
which labels the segments according to their importance.idéa of using content
similarities for semantic analysis was also recently esgalan [96] in the context
of Web forms. The fundamental difference between our tegrand all the above
works is the tight coupling of the logical structure of a pagth concept learning.
This is because we learn concept models from segments egpiregan instance of
a concept.

Concept identification in Web pages is related to the body séaech on se-
mantic understanding of Web content. Powerful ontology ag@ment systems and
knowledge bases have been used for interactive annotdtMfelo pages [44, 50].
More automated approaches combine them with linguistityaisq 72], segmenta-
tion heuristics [31, 35], and machine learning techniqa&s40].

Our semantic analysis technique does not depend on richidanfiarmation.
Instead, our approach relies on light-weight features iraghime learning setting
for concept identification. This allows users to defpesonalizedsemantic con-
cepts thereby lending more flexibility to modeling Web tactons. Moreover, in
contrast to all of these works, our geometric segmentaganti(ioning) method
does not depend on any domain knowledge or semantic infmmat

It should also be noted that the extensive work on wrappenileg [51] is
related to concept identification. However, wrappers ardgasytbased solutions
and are neither scalable nor robust when compared to cepdsed techniques.

6.3 Process Model Learning

Our work on learning process models from user activity legelated to re-
search in mining workflow process models (see [88] for a sgrvelowever, our
current definition of a process is simpler than traditior@lons of workflows. For
instance, we do not use sophisticated synchronizationifprés. Hence we are
able to model our processes as DFAs instead of workflows ard Eaem from
example sequences. Learning DFAs is a thoroughly resedtope (see [66] for
a comprehensive survey). A classical result is that legrthie smallest size DFA
that is consistent with respect to a set of positive and negtatining examples is
NP-hard [9, 10, 38]. This spurred a number of papers desgyiificient heuristics
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for DFA learningé.g, [66, 68]).

We used the simple yet effective heuristic with low time cdempay described
in [68] for process model learning using a supervised amtrod here are some
drawbacks with learning DFAs.

Web transaction traces are collected by maintaining logeaoaction activ-
ities done by users. It is quite diffcult to collect traceattbatisfies the properties
(e.g. characteristics samples) which are necessary forlBé&Aing in polynomial
time. In addition, DFA learning requires a sizable numbenegative examples
which are often difficult to obtain, specially from logs ofausctivities.

In this research, we have developed a new process modeingaaigorithm
for unsupervised model mining. In contrast to tradition&”dearning, our algo-
rithm does not require negative examples. We defined the ofa#/eb transaction
languages and using such a definition, we proposed a newrigaalgorithm for
process models.

Navigating to relevant pages in a site using the notion diofimation scent”
has been explored in [26]. This notion is modeled using keg&/@xtracted from
pages specific to that site. This is site specific, so keywaskt models have to
be built for each site. This is labor intensive and is notaolal. In contrast, our
process model is domain specific and using it a user can doeottansactions on
sites that share similar content semantics.

6.4 Web Accessibility Research

Several research projects aiming to facilitate Web acb#isgiinclude work
on browser-level support [1, 11, 83], content adaptatiahsaimmarization [42, 77,
95], organization and annotation of Web pages for effeciwdio rendition [47,48],
ontology-directed exploratory browsing as in our HearSagi@browser [20, 74],
WeblInSight [12], etc.

Some of the most popular screen-readers are JAWS [1] and IBbIiséage
Reader [11, 83]. An example of a VoiceXML browsing system @hhpresents
information sequentially) is described in [67]. All of tleeapplications do not per-
form content analysis of Web pages. BrookesTalk [95] fat#it non-visual Web
access by providing summaries of Web pages to give its useasi@dio overview
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of Web page content. The work described in [42] generatess#’ ‘summary of a
Web page to alleviate information overload for blind users.

In our work we need to first filter the content based on the &retsnal context
represented by the states of the process model. Specifiealieed a more global
view of the content in a set of pages in order to determine wiatild be filtered in
a state.

In [61], we described a simple and scalable approach for wctimdy Web
transactions using a shallow knowledge base that storésrésaoccuring in con-
cepts. Since this approach does not use a process modelpitp®ssible to repre-
sent transactional context (i.e. state) and present ctsdepending on the trans-
actional context. In contrast, we can determine what shbaldiltered in a state
using a process model. Process model can also be used toiff@nérd concepts
occuring in a page. Currently the model only stores concepts state. It can
however stores the ranks of the concepts in a state. Suchk cankbe computed
from the transaction traces. In addition, use of a modeetird approach also helps
personalization.

The works describing organization and annotation of Welepdqgr better
audio rendition typically rely on rules or logical struatsr[47]. In [48], authors
propose the idea of extracting content using semantics &}y describe a frame-
work for manual annotation of the content w.r.t. a schemaresenting the task a
user wishes to accomplish. These annotation rules areitdsgpgcific, and, hence,
not scalable over content domains.

The essential difference between our work and all of the edmentioned
research is that we do not require any domain knowledge nstef rules.

6.5 Contextual Analysis

The notion of context has been used in different areas of Cten@cience
research. For example, [49] defines context of a Web page akeatmon of text,
gathered around the links in other pages that are pointirigabWeb page. The
context is then used to obtain a summary of the page. Sumaianzaising context
is also explored by the InCommonSense system [8], where lseaigine results
are summarized to generate text snippets. Context analysisoh-visual Web
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access is described in [41, 43], where the context infoonatif a link is used to
get the preview of the next Web page, so that visually dishbidividuals can
choose whether or not they should follow the link. This ideased in the AcceSS
system [2], to get the preview of the entire page. All of theseks define the
context of the link as an ad-hoc collection of words surrangdt. In contrast, our
notion of context is based on the topic similarity of wordsward the link. We use
a principled approach for context analysis using a simgdectboundary detection
method [5], confined to geometric segments that have secadlytrelated content.

Contextual browsing is a joint effort by me, Prof. 1.V. Ramaknan and my
colleague, Yevgen Borodin. In his thesis, Yevgen has prapasenifying inter-
face for aural web access that can substantially improveisee experience and
make non-visual web browsing more usable [17]. Yevgen's mgdhesis share
context collection algorithm. In my thesis, | have used eghbf Web objects to
identify concept segments. On the other hand, Yevgen descthe context-based
browsing technique as one of the algorithms to improve Welessibility. Apart
from that, we do not share any overlapping content in ourshés contrast to his
thesis proposal which aims to develop the architecturesfexte, and algorithms
for Bridging the Web Accessibility Divide, | have focused amrhalizing transac-
tion models for Web Accessibility and developing algorigfar mining them from
transaction click streams.

6.6 End User Programming

Several research works on end user programming that relatertwork in-
clude programming by demonstration [30, 52, 53], agenthiegr[7], query from
demonstrations [86], learning from instructions [14, 1&)jlding meshups from
examples [87], etc.

Programming by demonstration (PBD) [30, 52, 53] allows uderson-
struct a program by simply performing actions in the useerfiace with which
they are already familiar. CoScripter [56] uses this appnotx build a col-
laborative scripting environment for recording, autom@ti and sharing web-
based processes. Other browser recording and playback, te@. iMacros

la web application that integrates data from multiple welr@gsito provide a unique service
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(http://www.iopus.com/imacros/), also use this approadsing such tools, Web
based tasks can be scripted and automated. However, suciaeep are super-
vised and are not scalable across Websites.

PLOW [7] is a collaborative task learning system that ledaask models from
demonstration, explanation and dialogue. The system esupbchine learning,
natural language processing and Al techniques to learntas&models. Learning
from instructions is described in [14, 15]. For example]didil4] allows users to
modify task information through instruction.

Knoblock at. el [86] describes their system Karma, whicbhvadl users (with-
out programming experience) to easily build services thtdgrate information
from multiple data sources. In a recent work [87], they diégsd how users with
no programming background can easily create Mashups usang&

All of these works enable the user to complete a task withoogamming
knowledge. However, they are supervised and hence a lotesfingeraction is
required throughout the learning process. Some of the w@kgs [7]) also use
domain knowledge to learn a task model.

In contrast, our algorithm of learning transaction modsds click streams is
completely unsupervised and does not need user interantiba learning process.
Moreover, we do not use any domain knowledge to learn traiosaimodels.

However, the fundamental difference between our work arti@babove men-
tioned work is that we learn transaction models from sege€ operations over
multiple Web pages. That allows us to capture transactionesot in states of the
learned process models and present concepts in a state isgheMoreover, it
aims to help visually disabled users build their transactimdels over sites they
frequently visit and quickly conduct transactions.

6.7 Automatic Information Extraction

Our algorithm to automatically assigning labels to unlaberansaction se-
qguences is related to a number of research works [16, 28554, Knoblock at.
el describes automatic labeling of data used by a Web senhege a classifier is
built to label unseen data [55]. Borker at. el [16] uses h&arfisatures and domain-
specific vocabularies, to learn a probabilistic model frosetof training examples
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for automatic text segmentation. These approaches arevisgrtand use domain
knowledge to build the classifier. In contrast, our labeigassent algorithm is
completely unsupervised. Automatic information extractirom HTML tables is
described in [54]. This work is unsupervised, domain indeleait and uses Web
page structures, templates, etc. to extract informatiom frables. We also use the
geometric structure of the concept instances as well as¢betent similarities to
cluster them.

Dong et al [32] describes Woogle, a Web service search enlgidinds sim-
ilarity of Web services using an unsupervised clusteringeyTmatch operations,
input outputs, text descriptions to cluster the Web sesvite contrast, we cluster
segments containing concept segments in a Web page.

The RoadRunner system [28,29] automatically extracts dataWeb sites by
exploiting similarities in page layouts. It learns the urigiag template of Web sites
from examples pages using unsupervised approach, andtuseautomatically
extract data from Web sites. In contrast, we learn proceskelmdrom transaction
sequences and concept models from Web page segments cuniastances of the
concepts.



Chapter 7
Discussion

Advances in web technology have considerably widened theageessibility
divide between sighted and blind users. This divide is @affg@cute when con-
ducting online transactions. Model-directed Web traneacthat uses transaction
models (i.e. process model and concept models) to delileranet page fragment
at each transactional step can improve Web accessibildysabstantially reduce
the digital divide between sighted and blind users. Ourimiabary experimenta-
tion [81] seems to suggest that it is possible to achieve geabinctions in practice.

In this thesis, we describe such transaction models anadhitpods to mine
them using supervised and unsupervised approaches. Wwestliscussed some
of our Web content analysis techniques. We also defined timealonotions of a
Web transaction model and our initial work to mine transattnodels using a su-
pervised approach [81, 82]. Next, we described automatigngiof transaction
models from unlabeled and partially labeled transacti@useces using unsuper-
vised clustering, classification, and our prior researctveb page partitioning and
context analysis [60].

There are several avenues for future research. We perfoerptiments on
Websites from online shopping domains. But it is possiblepjalyaour algorithm
to mine transaction models for other domains (e.g. fligltetidoooking). In our
current framework, we need to build process models for egmh of Web transac-
tions. Itis interesting to investigate the possibility @veéloping a generic process
model to support any type of Web transaction. The transadystem emerged
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from this research will be used to push the state-of-théraatsistive web brows-

ing technology. In particular, the transaction system wél used for non-visual

Web transactions. Towards that the transaction systenbwitleployed at the He-
len Keller Services for the Blind (http://www.helenkeltag) to get feedback from

the visually handicapped community. Using this transactgstem, blind users

will be able to personalize the system for Web sites that tie®d to use on a regu-
lar basis and conduct transactions on these sites with the sase as their sighted
counterparts. Finally, integration of our framework withellVservices standards
is an interesting problem. Success here will let us spebtiéygrocess model in

BPEL4WS which in turn will enable interoperation with sitepeging Web pages

as well as those exposing Web services.
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