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Abstract of the Dissertation

Transaction Models for Web Accessibility

by

Jalal Uddin Mahmud

Doctor of Philosophy
in

Computer Science
Stony Brook University

2008

The Web has evolved into a dominant digital medium for conducting many types of

online transactions such as shopping, paying bills, makingtravel plans, etc. Such

transactions typically involve a number of steps spanning several web pages. For

sighted users these steps are relatively straightforward to do with graphical web

browsers. But they pose tremendous challenges for visually impaired individuals.

This is because screen readers, the dominant assistive technology used by visu-

ally impaired users, function by speaking out the screen’s content serially. Conse-

quently, using them for conducting transactions can cause considerable information

overload.

But usually one needs to browse only a small fragment of a web page to do a

step of a transaction (e.g., choosing an item from a search results list). Based on

this observation this dissertation develops a model-directed transaction framework

to identify, extract and aurally render only the “relevant”page fragments in each

step of a transaction. The framework uses a process model to encode the state of

the transaction and a concept model to identify the page fragments relevant for the

transaction in that state. The two models are constructed from labeled transaction

sequences using traditional classification and automata learning methods.

Next, we relax the requirement of needing fully labeled training data. Specif-

ically, we present a framework to mine transaction models from partially labeled

click stream data generated by transactions, where some or all the labels could be

missing. Not having to rely exclusively on (manually) labeled click stream data has
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important benefits: Visually impaired users do not have to depend on third party

(e.g., sighted users) for constructing transaction models. This makes it possible to

mine personalized models from transaction click streams associated with sites that

visually impaired users visit regularly. Since partially labeled data is relatively eas-

ier to generate, scaling up the construction of domain-specific transaction models

(e.g., shopping, airline reservations, bill payments, etc.) is feasible. Lastly, adjust-

ing the performance of deployed models over time with new training data is also

doable.

In terms on techniques used for mining we expand our repertoire to include

web content analysis to partition a web page into segments consisting of seman-

tically related content elements, contextual analysis of data surrounding clickable

elements in a page and clustering of page segments based on contextual analysis.

We provide qualitative and quantitative experimental evidence of the practical

effectiveness of our models in improving user experience when conducting online

transactions with non-visual modalities.
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Chapter 1

Introduction

Over a relatively short period of time the Web has evolved into an ecosystem

where anyone can communicate, find information, shop, bank,and pay bills online.

With the expansion of Web users, Web transaction activities(e.g., buying a CD

player from an online store, paying a utility bill) are also growing rapidly.

There are two essential components to a Web transaction: (i)locating the rel-

evant content, such as a search form or the desired item in a Web page, and (ii)

performing a sequence of steps, such as filling out a search form, selecting an item

from the search result and doing a checkout. For completing atransaction these

steps usually span several pages.

The primary mode of interaction with the Web is via graphicalbrowsers, which

are designed for visual interaction. Most Web pages containbanners, ads, naviga-

tion bars, and other data distracting us from the information. As we browse the

Web, we have to filter through a lot of irrelevant data. We quickly scan through the

rich engaging content in Web pages scripted for e-commerce and locate the objects

of interest easily. Moreover, the spatial organization of content in these pages helps

users comprehend the sequence of steps necessary to complete a transaction.

Now consider scenarios where visual interaction is impossible (e.g., when the

user is a visually handicapped individual). Speech interfaces offer narrow interac-

tion bandwidths making it cumbersome and tedious to get to the pertinent content

in a page. For instance, state-of-the-art screen readers and audio browsers (e.g.,

JAWS [1], IBM’s Home Page Reader [11], Windows-Eyes [37]) provide almost no
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CHAPTER1. Introduction 2

form of filtering of the content in a Web page, resulting in severeinformation over-

load. This problem is further exacerbated when such an interaction spans several

pages as in an online transaction.

In particular the loss of spatially organized content due tosimple reading of the

screen contents makes it difficult for users to comprehend the sequence of transac-

tional steps. While content summarization can compensate somewhat for this loss,

it alone is inadequate for handling the information overload that the user faces.

Thus, there is a need for developing techniques to facilitate Web transactions using

non-visual modalities that are far less cumbersome than current approaches.

We capture the two aspects of a transaction, namely its operation sequence

and content identification, by aprocess modeland anontologyrespectively. The

ontology describes the set ofsemantic conceptsoccurring in Web pages, which are

considered essential for conducting Web transactions in a particular domain, e.g.,

online shopping.

The circled elements in Figure 1 are examples of such concepts. The sequence

of actions is captured by a process model, which is a deterministic finite state au-

tomaton. Each state, representing an atomic operation in a transaction, is associated

with a set of semantic concepts drawn from the ontology. When the model makes a

transition to a state during the course of a transaction, a Web page is provided to the

state as an input. If the concepts associated with the state are present in the page,

then they alone are identified and presented to the user.

Thus a process model can overcome the information overload problem for non-

visual Web transactions. For instance, if the page shown in Figure 1 (a) is given as

the input to a state associated with the concepts “Item Taxonomy” and “Search

Result”, only the two circled items in the figure will be identified and presented

to the user. In this thesis, we establish a formal definition for such a transaction

model. In our initial work [81, 82], we demonstrated that by coupling content se-

mantics with model-directed navigation facilitated by theprocess model, we can

overcome the information overload problem by delivering relevant content at every

step of the transaction. A supervised machine learning technique was used to learn

the transaction model from manually labeled Web transaction sequences. Sighted

users labeled these sequences, as well as instances of concepts in a Web page. A

predefined ontology describing concepts and associated operations was used.
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(a)           (c)(b)
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Figure 2: A Web Transaction in Utility Bill Payment Domain
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However, such a supervised approach is not readily scalableto different con-

tent domains. Besides, the supervised approach makes it almost impossible for

blind users to build their own personalized transaction models for Web sites that

they have to use regularly, e.g. online banking, utility bill payment.

Utilizing unsupervised mining methods that learn models from unlabeled data,

we can address the above limitations of supervised methods.Towards that, we

develop a technique to learn transaction models from unlabeled or partially labeled

transaction sequences. The salient aspects of this technique are highlighted below:

• We develop the notion of context [19, 57–60] for Web objects (e.g. link,

button).

• We use the context of the Web object accessed by the user in a Web trans-

action, coupled with geometric segmentation [39] to retrieve the Web page

segment containing that object.

• These segments are clustered based on generic features. Theclustered seg-

ments represent the semantic concepts in the ontology. A SVM-classifier [89]

is automatically learnt for each such concept.

• In our prior work, we used a DFA learning [70] technique to learn the pro-

cess model. DFA learning requires a sizable number of negative examples

which are often difficult to obtain. For unsupervised model mining, we have

developed a new process model learning algorithm which onlyuses complete

transaction sequences (positive examples), i.e. completed transactions.

1.1 Organization

The rest of this thesis is organized as follows: Chapter 2 describes the data

structures and Web content analysis techniques (geometricanalysis and contextual

analysis), that have been developed and are used for transaction model mining. In

Chapter 3, definitions and formal semantics are established for the rest of the thesis.

Chapter 4 describes our initial work to mine transaction models using a supervised

approach. Chapter 5 describes the unsupervised approach to mine transaction mod-

els. Related research appears in Chapter 6 and conclusion in Chapter 7.



Chapter 2

Preliminaries

In this chapter, we present a brief description of the data structure we use for

Web content analysis as well as some of the content analysis techniques, we use for

transaction model mining.

2.1 Frame Tree

TheFrame Tree[59,60] of a page is Mozilla [62]’s internal representationof a

Web page,after the Web page has been presented for rendering on the screen. This

is a tree-like data structure that contains Web page content, along with its formatting

information, which specifies how that Web page has to be rendered on the screen.

A frame tree is composed of nestedf rames, so that the entire page is a root frame,

containing other nested frames down to the smallest individual objects on the page.

For example, Figure 3 shows a snapshot of the Google News front page and the

corresponding frame-tree partially expanded to demonstrate the types of frames.

We distinguish between the following classes of frames: text, links, images, image-

links, and non-leaf frames. Section 1 of Figure 3 (a) shows several nested frames

enclosed by rounded boxes. We will continue referring to anynode of a frame tree

as af rame.

6
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2.2 Geometric Segmentation

We use the observation that semantically related content elements in a web

page exhibit spatial locality [64,65] and often share the same alignment (matching

X or Y coordinate) on a web page. Since a frame tree representsthe layout of a web

page, we infer that geometrical alignment of frames may imply semantic relation-

ship between their respective content. A frame isconsistentif its descendants are

consistently aligned either alongX or Y axes.

A Maximal Semantic Block, or simplyblock, is the largest of the consistent

frames on the path from a leaf to the root of a frame tree. Thus,it is likely to be the

largest possible cluster containing semantically relatedcontent items. For example,

Figure 4(b) shows how the alignment information is used to cluster the New York

Times Web page into maximal semantic blocks: banner labeledas 1, search - 2,

taxonomy - 3, and news - 4.

The FindBlocksalgorithm is used to find the blocks in a frame tree. The al-

gorithm runs a depth-first search over the frame tree and recursively determines

whether the frames are consistent, ignoring the alignment of leaf-frames. A frame

is consistently X-alignedif all of its non-leaf descendants are X-aligned. Similarly,

a frame isconsistently Y-alignedif all of its non-leaf descendants are Y-aligned.

Otherwise, the frame is not considered to be consistent. In this case, all of its chil-

dren are marked asblocks.

Algorithm FindBlocks

Input: Frame: node of a frame tree

Output: Blocks: set of maximal semantic blocks

1. Identify all childrenC1, C2, . . . ,Cm of Frame

2. Frame.IsConsistent←true

3. for j ← 1 to m

4. do if Cj .IsLea f = false

5. then FindBlocks(Cj )

6. if Cj .Alignment= NONE

7. then Frame.IsConsistent←false

8. if Frame.IsConsistent= false

9. then for j ← 1 to m
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10. do if Cj .Alignment6= NONE

11. then Blocks←Blocks∪ {Cj}

12. else Frame.Alignment←GetAlignment(Frame)

13. if Frame.Alignment= NONE

14. then for j ← 1 to m

15. do if Cj .Alignment6= NONE

16. then Blocks←Blocks∪ {Cj}

17. return Blocks

TheFindBlocksalgorithm uses theGetAlignmentalgorithm to check whether

the children of a frame have matching alignment. That is, theGetAlignmentalgo-

rithm determines that a frame isX-alignedif all of its children are aligned on the

left, right, or center of the X-axis. Y-alignment of a frame is computed in a similar

fashion.

Algorithm GetAlignment

Input: Frame: node of a frame tree

Output: Alignment: alignment ofFrame’s descendants

1. Identify all childrenC1, C2, . . . ,Cm of Frame

2. XFirst←C1.X

3. YFirst←C1.Y

4. XAlignedDescendants←true

5. YAlignedDescendants←true

6. Alignment←NONE

7. for j ← 2 to m

8. do if Cj .IsLea f = false

9. then XCord←Cj .X

10. YCord←Cj .Y

11. if XCord 6= XFirst

12. then XAlignedDescendants←false

13. if YCord 6= YFirst

14. then YAlignedDescendants←false

15. if Cj is not X Aligned

16. then XAlignedDescendants←false
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Questions Possible Responses

Does this block contain important content ? Yes/No
What amount of the block contents are geometrically aligned ?All/Some/None
What amount of the block contents are semantically related ?All/Some/None

Table 1: Questionnaire for Evaluation of Geometric Segmentation Algorithm

17. if Cj is not Y Aligned

18. then YAlignedDescendants←false

19. if XAlignedDescendants= true

20. then Alignment←XAlign

21. if YAlignedDescendants= true

22. then Alignment←YAlign

23. return Alignment

2.2.1 Evaluation of Geometric Segmentation

We evaluated the algorithmFindBlocksusing 20 pages from 20 Websites, 5

Web sites in each of the domains:shopping, news, services, personal. 10 sighted CS

graduate students were used as evaluators. To help them, a visual tool was designed

[18]. None of the evaluators were HearSay [20] developers. They were trained on

how to use the evaluation tool. Each Webpage was evaluated by2 evaluators. For

each Webpage used in the evaluation, the geometric segmentation algorithm was

applied to retrieve the list of blocks. Then, evaluators were presented with a set of

questions for each of the segments blocks. The questions areshown in table 1. They

were also asked whether there was content on this page that should be grouped into

a block but was not identified as a block by the algorithm.

Using the responses collected from the evaluators, we computed recall, preci-

sion and F-measure of the segmentation algorithm. Specifically we computed these

metrics for each feature of the algorithm, i.e. geometric alignment and semantic

relatedness. Let C denote the total number of blocks for which all contents are geo-

metrically aligned, P denote the total number of blocks for which some contents are

geometrically aligned, I denote the total number of blocks for which no contents are

geometrically aligned, and M denote the total number of missing blocks(i.e. there
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Figure 5: Geometrical Alignment Accuracy for Core Blocks
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Figure 6: Geometrical Alignment Accuracy for All Blocks

was content on this page that should be grouped into a block but was not identified

as a block by the algorithm). Then, recall is defined as (C + P*0.5)/(C+P+M) and

precision is defined as (C + P*0.5)/(C+P+I). Note that, we give0.5 weight to each

partially correct response, assuming that it is equally probable to be correct or in-

correct. F-measure is the simple harmonic mean of recall andprecision. Using a

similar formula, we calculated the metrics for semantic relatedness of blocks.

Figures 5, 6, 7, 8 show the experimental results. We observe that geometric

segmentation algorithm exhibits reasonably high precision, recall and f-measure for

all cases.
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Figure 7: Semantic Relatedness Accuracy for Core Blocks
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Figure 8: Semantic Relatedness Accuracy for All Blocks
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Figure 9: Concept Segments in Web Pages

2.3 Web Objects

A Web Object is an atomic element of a Web page. A Web object is associated

with an id that uniquely identifies that object. Each Web object also has several

attributes, e.g. text, style, location.

For example, the button Checkout is a Web object in figure 9 (c).The text

“Checkout”, the button’s geometric coordinates in the Web page, etc. are various

attributes of this Web object. LetOb j denote a Web object andAttr denote the set

of attributes of that object. LetL denote theAttribute Mapping function to retrieve

the set of attributesAttr of a Web objectOb j, i.e. L(Ob j) = Attr.

Let us consider the button “Checkout” in figure 9 (c) which has unique id

F567585 and the following four attributes.

Text: “Checkout”

X-Cord: 220

Y-Cord: 85

Style: Button
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Given the unique idF567585 as parameter, the functionL returns the set

Attr = {“Checkout′′,220,85,Button}

2.4 Context Analysis

Here we describe how we collect the context of a Web object. Tocollect the

context, a topic-detection algorithm is applied to the information surrounding the

object. We gather the text that shares a common topic [5,6] with the textual content

of the Web object as context.

2.4.1 Context Identification

The Context of a Web object is the content around the Web objectthat maintains

the sametopicas the text content of the Web object.

Consider Figure 4, showing the front page of The New York TimesWeb site

and the corresponding frame tree. The link (a Web object) “Top General Warns

Against Iraq Timetable” is indicated by an arrow. The context of this is the text

surrounded by the dotted line. Notice how the topic changes from one headline to

another.

A block, produced by the Geometric Segmentation algorithm,ideally repre-

sents a segment of text on the same topic, but may have severaltopics within it.

Therefore, we limit topic boundary detection and context collection to the block

containing the Web object. Context collection begins from the content of the object

and expands around the object until the topic of the text changes. A simple cosine

similarity technique is used to detect the boundaries of thetopic, see equation (1).

TheFindContextalgorithm initializes theContextmultiset with the words and

word combinations (bigram and trigram), excluding the function words (i.e. stop

words), from the object and its non-link siblings; the text in the link siblings is

ignored because links tend to be semantically independent of each other, i.e. have

different topics (e.g., each news headline is a link and starts a new topic). It then

collects all text pertaining to the same topic around the Webobject, adding the

words to theContextmultiset.
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In the NYTimes example, Figure 4(a), the user follows the link (a Web object)

“Top General Warns Against Iraq Timetable”, indicated by the mouse pointer. The

multiset is initialized with the words collected from the link node e.g. “general”,

“top”, “warns”, etc. of the frame tree, indicated by a mouse pointer in Figure 4(b),

as well as from the non-leaf sibling (e.g. the node with X coordinate 3457, Y

coordinate 3796) which follows the link node e.g. “david”, “stout”,etc. . The

multiset now contains single words (e.g. “general”, “david”, “stout”, “gen” “john”,

etc.), their bigrams (e.g., “david stout”, “gen john”), andtrigrams (e.g. “gen john

abizaid”).

After the initialization stage, the context of the link is collected, starting from

the parent frame of the link node, by expanding the context toinclude the frame’s

siblings. The siblings are divided intoPredList andSuccList, containing the pre-

decessor and successor siblings respectively, to expand the context window in both

directions. Next, the geometric distances1 are calculated between the initial frame

and its siblings and the siblings are sorted accordingly.

Again, in our example, the parent frame of the link in the frame tree is the node

labeled as“a” in Figure 4(b). The node does not have any predecessor siblings. Its

successor siblings, labeled as“b” and“c” , are respectively 2795 and 3675 pixels

away from frame“a” . Hence, we start with the sibling “b”, construct multiset

STextfrom the sibling’s text, and compare its content to the content of theContext

multiset. The comparison is done using cosine similarity ofthe multisets. More

formally, for any two multisetsM1 andM2, their cosine similarity is defined as:

Cos(M1,M2) =
|M1∩M2|

√

|M1|
√

|M2|
(1)

In the above formula, each multiset, created from a passage of text, is consid-

ered to be a vector. The cosine of the angle between the vectors is equal to 1 if

the passages are identical, and 0 if they are dissimilar. Twomultisets are said to

be similar if their cosine similarity is above a threshold. The threshold that best

determines whether a topic changes between theContextand theSTextmultisets is

computed statistically (described in Section 2.4.3).

1Geometric distance between two frames is the Euclidean distance between their upper-left cor-
ners on the screen.
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If the cosine similarity between the multisets is above the threshold, i.e. a

topic boundary is not detected, the multisets are merged. Otherwise, expansion of

the context window in that direction is stopped. The processcontinues until the

Blockboundary is reached or when there is no direction along whichto expand. At

that point, the algorithm returns theContextmultiset as the context of the link.
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Algorithm FindContext

Input: Ob jectNode: leaf-frame containing the Web Object

Output: Context: multiset with collected context

1. Context←non-function words, their bigrams and trigrams fromOb jectNode

and its non-link siblings

2. LetancesBlockbe the ancestorBlockof Ob jectNode

3. if ancesBlock6= Ob jectNode.Parent

4. then Node←Ob jectNode.Parent

5. Expand←true

6. repeat

7. ChildList←Node.Parent.Children

8. LetPredListandSuccListbe the lists of predecessors and succes-

sors ofNodein ChildList, sorted by their geometric distance from

Node

9. StopExpand←false

10. repeat

11. Sibling←PredList.Next

12. SText←non-function words, their bigrams, trigrams from

Sibling

13. Similarity←Cos(Context,SText)

14. if Similarity> Threshold

15. then Context←Context∪ {SText}

16. else StopExpand←true

17. Expand←false

18. until PredList.IsLastor StopExpand

19. Repeat line 9 to 17 forSuccList

20. Node←Node.Parent

21. until Node= ancesBlockor Expand= false

22. return Context

Continuing with the example in Figure 4, the algorithm collects the text from

the closest sibling frame“b” , corresponding to the news item “Plea Deal in Seton

Hall Arson Case”. The multisetSText, constructed for this frame, now contains

{“plea”, “deal”, “seton”, . . ., “plea deal”,. . ., “plea deal seton”,. . .}. It computes
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the cosine similarity of theContextand aSTextmultisets, which turn out to be

below the threshold. The algorithm detects a topic boundarybetween the content

of the multisets and, therefore, stops expanding the context window and returns the

Contextmultiset. The context of the followed link, Figure 4(a), is enclosed by the

dotted line.

2.4.2 Context Segment

A Context Segmentof a Web object is the segment of the Web page, where

the content of the section maintains the same topic as the text content of the Web

object.

The Context analysis algorithm is used to retrieve the context surrounding a

Web object. However, the context collection algorithm is modified to return aCon-

text Segmentinstead of the context multiset containing words, bigrams and tri-

grams. This modification is straightforward. Start with a single frame tree node,

that contains the Web object. This frame tree node represents our initial context

segment. Next try to expand context in both directions usingthe topic boundary de-

tection algorithm. As the context is expanded, update the context segment in both

directions.

For example, the section of the web page marked as dotted rectangle is the

context segment for the link pointed to by the arrow in Figure4 (a).

A Context Segmentis repeated if its presentation pattern is repeated within a

geometric segment. For example, Figure 10 illustrates a repeated context segment.

For another example, the section of the web page marked as dotted rectangle

is the context segment for the link pointed to by the arrow in Figure 3 (a). Note how

the presentation pattern of this segment is repeated withinthe geometric segment

(each news items are presented using the same pattern).

2.4.3 Evaluation

We used twenty-five Web sites for evaluation and data collection, 5 Web sites

in each of 5 content domains:news, books, consumer electronics, office supplies,

and informational. The informational category included various Web sites, such
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Figure 10: An Example of a Repeated Pattern

as MTA Long Island Rail Road2 and Medicaid3. Thirty CS graduate students

were used as evaluators. It was impractical to get quantitative measurements of the

accuracy of context collection algorithm with blind users.This is because, we did

our evaluation for hundreds of pages and from each page we asked our evaluators

to select a link and its context. It takes a lot of time for a blind user to reach the link,

(compared to sighted users). Sighted users can quickly decide what is the context

surrounding a link and can select that. However, it takes a significant amount of

time for a blind user to listen to the content of surrounding text and decide what is

the context of the link.

Therefore, we used sighted students to obtain the accuracy of the context col-

lection algorithm.

2.4.3.1 Data Collection

To have an efficient infrastructure for experiments, a visual tool for viewing

frame trees as well as collecting data was designed [18]. We also embedded a

Web browser to aid the data collection. We manually collected around1000Web

pages to calculate a threshold for topic identification. During the data collection

stage, the participants were asked to select any link and thecontext around it on the

2http://www.mta.nyc.ny.us/lirr
3www.cms.hhs.gov/home/medicaid.asp
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Figure 11: Performance of Context Identification

Web pages. The frame trees, corresponding to the pages, wereautomatically saved

together with the user selections.

2.4.3.2 Evaluation Result

We used the collected source pages to statistically computethe performance of

our context identification algorithm and the threshold for our topic boundary detec-

tion algorithm, as described in Section 2.4.1. We used 50% ofthe page samples to

estimate the threshold value and the remaining 50% were usedto calculate the per-

formance of the context identification algorithm in terms ofrecall, precision, and

F-measure.

Let M1 be the multiset with the context selected by the user, and letM2 be the

multiset computed by our algorithm, then, the recall value for the context identifi-

cation algorithm is|M1∩M2|/|M1|, and the precision value is|M1∩M2|/|M2|. The

F-measure is calculated by taking the harmonic mean of recall and precision.

We used the F-measure to estimate the cosine similarity threshold. We de-

signed a greedy algorithm that started with an unrealistically high threshold, used

our context identification algorithm to find the context of the selected links in the

500 sample Web pages, compared the results with the human-selected context, and,

then, adjusted the threshold value iteratively until it converged to the F-measure

that locally could not be improved any further. Specifically, we set the threshold
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T1 = 1, n = 1, andδ = 0.1; we compared the F-measuresFn andFn+1 while adjust-

ing the thresholdTn+1 = Tn− δ iteratively, as long asFn < Fn+1. Then, we used a

binary-search approach to converge to the optimal threshold Topt betweenTn and

Tn+1, where the F-measureFopt was the local maximum. Once the threshold was

determined, we used the remaining 50% of the human-selectedcontext to com-

pute the average recall, precision, and F-measure in each ofthe 5 domains. Figure

11 summarizes the experimental results. We observe that, context identification

achieved higher recall, precision, and F-measure with the “News” and “Informa-

tional” Web sites; higher performance of context identification in these domains

can be explained by the fact that they are better organized and have more textual

content. Context identification performance received the worst score in the “Elec-

tronics” domain, and average scores in “Books” and “Office Supplies” Web sites,

most likely, because e-commerce Web sites crowd their pageswith more diverse

information, preferring images over text.
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Transaction Model

In this chapter, we formalize the notion of a Web transactionand transaction

models.

3.1 Transaction Concept

A Web page can be partitioned into a logical structure of segments (i.e. sec-

tions of a webpage) containing related Web objects. Using anunderlying ontology

of concepts present in Web pages, we classify these segmentsto these concepts and

assign the corresponding concept names to the classified segments. The ontology

describes the set of semantic concepts occurring in Web pages, which are relevant

for conducting Web transactions in a particular domain. These semantic concepts

present in a transaction ontology are calledTransaction Concepts.

In this thesis we use the termTransaction ConceptandConceptinterchange-

ably.

Note that, the ontology (i.e. concepts and operations) are given apriori.

3.1.1 Concept Segment

The Web page segment containing a transaction concept is called aConcept

Segment

A concept segment may contain one or more Web objects. We haveobserved

that Web objects contained within a concept segment are presented using similar

22
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Figure 12: Concept Segments in Web Pages

presentation style.

Figure 12 shows three pages from the Bestbuy Website. Concept segments are

encircled in each page. The concept segment labeled as “ItemTaxonomy” in figure

12 (a) contains a collection of Web objects presented using the same presentation

style (each of the Web objects in this collection is a link).

Table 2 shows concept names in our shallow ontology for the online shopping

domain (e.g. books, consumer electronics, office supplies).

3.1.2 Concept Features

Each concept is associated with features. The features extracted from the con-

tent of the concept segments are used for classifying the segments to the concept.

For example, the segment containing the concept “AddToCart”in figure 12 (b) con-

tains the word “addtocart” as feature.
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Concept Operation Name

Shopping Cart view shoppingcart
Add To Cart add to cart

Edit Cart updatecart
Continue Shopping continueshopping

Checkout checkout

Search Form submit searchform
Search Result item select

Item List item select
Item Taxonomy selectitem category

Item Detail show item detail

Table 2: Concepts in Ontology for Online Shopping.

3.2 Transaction Operation

A Web transaction is composed of sequence of operations on Web objects.

Each transaction operation is an atomic activity on a Web object.

For example, following a link (a Web object) to select an itemfrom a list is

a transaction operation. Submitting a search form (a Web object) to search for a

product is another transaction operation.

Each transaction operation is associated with a concept present in the ontol-

ogy. Table 2 shows concept names and associated operation names in our shallow

ontology for the online shopping domain. When the user selects a concept when

presented with the list of concepts in a Web page, the correspondingOperation is

invoked.

A transaction operationO performed on a Web objectOb j is denoted as

O(Ob j). However for simplicity, we often do not specifyOb j on which the trans-

action operationO is performed.

We may labelO by one of the names in the ontology. Such transac-

tion operations are calledLabeled Transaction Operations. For example,

submit search f ormis a labeled transaction operation.

A transaction operation which is not labeled by the operation name in the

ontology is anUnlabeled Transaction Operation.
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In this thesis, we use the termOperation andTransaction Operation inter-

changeably.

3.3 Transaction Sequence

A Web transaction sequence is a non-empty sequence of transaction opera-

tions. LetO1,O2, . . . , On is a sequence of transaction operations. Then, the corre-

sponding transaction sequence is denoted asTSwhereTS= O1,O2, . . . ,On

For example, the following sequence of operations is aTransaction Sequence:

select item category. select item category. select item. add to cart. checkout.

In this transaction sequence, each operation is labeled. This is aLabeled Transac-

tion Sequence. The following is another example of a labeled transaction sequence:

select item category(Ob j 1). select item category(Ob j 2). select item(Ob j 3).

add to cart(Ob j 4). checkout(Ob j 5).

In this sequence, we include the Web Objects on which each transaction operation is

performed. A transaction sequence is called anUnlabeled Transaction Sequence

if all the transaction operations in that sequence are unlabeled. For example, fol-

lowing sequence of operations is anUnlabeled Transaction Sequence: O 1. O 2.

O 3. O 2. O 4.

The following is another example of an unlabeled transaction sequence.

O 1(Ob j 1). O 2(Ob j 2). O 3(Ob j 3). O 2(Ob j 4). O 4(Ob j 5).

The transaction sequence is called aPartially Labeled Transaction Sequenceif

it includes both labeled and unlabeled operations. For example, the following se-

quence of operations is aPartially labeled Transaction Sequence:

O 1(Ob j 1). select item(Ob j 2). O 3(Ob j 3). add to cart(Ob j 4).

checkout(Ob j 5).

3.3.1 Complete Transaction Sequence

A transaction sequence is calledComplete if it completes a transaction (e.g.

buying a MP3 player from Amazon, paying the utility bill in Verizon). The follow-

ing is an example of complete transaction sequence:
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select item category. select item category. select item. add to cart. checkout.

3.3.2 Incomplete Transaction Sequence

A transaction sequence is calledIncomplete if it does not represent a com-

plete transaction (e.g. A MP3 player is selected but not added to shopping cart or

checked out). The following is an example of an incomplete transaction sequence:

select item category. select item category. select item.

3.4 Transaction Model

A Web Transaction Model captures the semantics of a Web transaction. The

model uses a shallow ontology of transaction concepts, an underlying concept

model (i.e. concept classifiers) to identify instances of a concept from a Web page,

and a process model to present concept instances in a Web pageassociated with the

current state, and to make a transition to the next state as the user selects an oper-

ation associated with the concept. In the next subsections,we define the process

model and the concept model.

3.4.1 Process Model

The process model is a deterministic finite state automaton (DFA) that captures

the set of transaction sequences. Each state is associated with a set of concepts

drawn from the ontology. When user selects an operation associated with a concept

in a state, the model makes a transition to the next state. As aresult, a Web page

is provided to that state as an input. If the concepts associated with the state are

present in the page, then they alone are identified and presented to the user.

3.4.1.1 Formal Definition

Formally, a process model is defined as follows: LetC = {c0,c1, . . .} be a

set of transaction concepts, andI(c) denote the setc of concept instances. Let
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Figure 14: A Process Model for Utility Bill Payment Domain

Q = {q0,q1, . . .} be a set of states. With every stateqi we associate a setSi ⊆C

of concepts. LetO = {o0,o1, . . .} be a set of operations. An operationoi can take

parameters. A transitionδ is a functionQ×O→ Q, and a concept operationρ is

also a functionC→O. Operations label transitions,i.e., if δ(qi ,o) = q j theno is the

label on this transition. An operationo = ρ(c) is enabled in stateqi whenever the

user selects an instance ofc∈ Si and when it is enabled a transition is made fromqi

to stateq j = δ(qi ,o).

Note that, here a process model is defined as a DFA. This is because, selecting

an operation from a state always leads to a single state (and hence this is DFA).

Associating concepts with every state does not violate any characteristics of a DFA
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since there is a mapping function from concept to operation and operations can be

simply treated as alphabet symbol of an automaton.

Technically a concept instance is the occurrence of a concept in a Web page.

For example, the circled items in Figure 1 are all concept instances. But for brevity

we choose not to make this distinction explicitly and use concepts and concept

instances interchangeably when referring to content segments in Web pages.

3.4.1.2 Process Model Example

Figure 14 illustrates a process model. The concepts associated with stateq1

are “Item Taxonomy”, “Item List”, and “Search Form”. This means that if these

concept instances are present in the Web page given toq1 as its input, they will

be extracted and presented to the user. The user can select any of these concepts.

We say that the user chooses the “Item Taxonomy” concept whenever he selects a

particular category of item in the taxonomy and upon selection the corresponding

operationselectitem category(see table 2) is invoked. This amounts to fetching

a new Web page corresponding to the selected category and a transition is made

to stateq1. When the user selects the “Search Form” concept he is required to

supply the form input upon which thesubmitsearchformoperation is invoked. This

amounts to submitting the form with the user-supplied form input. A Web page

consisting of the search results is generated and a transition is made toq3. Lastly

a user can select an item from a list of items in the “Item List”concept. This

will result in a Web page describing the item selected and thetransition labeled

item selectis made to stateq2. The state transitions of other states can be similarly

described.In the figure, stateq6 is deemed as the final state. We have omitted the

payment steps following checkout. Henceq6 which is entered upon acheckout

operation is deemed as the final state.

3.5 Concept Model

Concept models, i.e. concept classifiers are used to identifysemantic con-

cepts present in Web pages. For example, a model (i.e. classifier) for the concept

“add to cart” is used to identify instances of this concept from Web pages. The



CHAPTER3. Transaction Model 29

concept models are trained from set of example concept instances. For example,

a concept classifier for “addto cart” concept can be trained by many concept in-

stances (e.g. “add to cart” buttons), given as training example. Using the trained

concept model, concept instances are identified and presented to the user. Each

concept is associated with an operation, e.g. an “add to cart” concept is associated

with the operation “addto cart”, i.e. adding an item to shopping cart. When the

concept instance is identified and presented to the user, user can does the associated

operation (e.g. user can click the “add to cart” button to addthe item to shopping

cart). As a result of this operation, a transition is made to the next state of the pro-

cess model, concept instances for the page mapped to that state are identified and

presented to the user.



Chapter 4

Mining Transaction Models:

Supervised Approach

The components of a transaction model are: (i) a process model and (ii) con-

cept models to identify the concept instances from Web pages. In this chapter,

we describe our initial work to mine such transaction modelsfrom transaction se-

quences using a supervised approach. The approach is supervised since we manu-

ally label the transaction sequences. Section 4.1 describes process model learning

in details. Concept Identification is described in Section 4.2.

4.1 Process Model Learning

We build the process model using DFA learning techniques, a thoroughly re-

searched topic (see Chapter Chapter 6 for related work). In theDFA learning prob-

lem the training set consists of two sets of example strings,one labeled positive and

the other negative. Only strings in the positive set are in the DFA’s language. The

objective is to construct a DFA that is consistent with respect to these two sets,i.e.,

it should accept strings in the positive set while rejectingthose in the negative set.

We adapted the heuristic in [68] for learning our process model, the choice being

mainly dictated by its simplicity and low complexity.

We usedLabeled Transaction Sequencesto learn the process model. The

sequencesubmitsearchform. item select. add to cart. checkout is one example

30



CHAPTER4. Mining Transaction Models: Supervised Approach 31

1

3

4 5

10 7

11

submit_searchform

add_to_cart

select_item_category

submit_searchform

check_out add_to_cart

check_out

6

submit_searchform

8

12

add_to_cart

check_out

2

9

add_to_cart

13

check_out

submit_searchform

1

2

4

add_to_cart

submit_searchform

check_out

3

add_to_cart

select_item_category

(a) (b)

Figure 15: (a) A Prefix Automata. (b) Learned DFA

of a labeled transaction sequence.

These training sequences are (manually)labeled “completed” and “not com-

pleted”. The positive example set (S+) consists of sequences labeled “completed”

while the negative example set (S−) consists of those labeled “not completed”.

We first construct a prefix tree automaton as shown in 15(a) using only the

examples in the positive setS+.

In 15(a), the sequence of operations along each root-to-leaf path constitutes

a string in S+. For this example the negative setS− consists of the strings:

{checkout, submitsearchform. addto cart, submitsearchform. checkout,

selectitem category.addto cart. checkout}.

The prefix of every string inS+ is associated with a unique state in the prefix

tree. The prefixes are ordered and each state in the prefix treeautomaton is num-

bered by the position of its corresponding prefix string in this lexicographic order.

Next we generalize the prefix tree automaton by state merging. We choose

state pairs(i, j), i < j as candidates for merging. The candidate pair(i, j) is merged

if it results in a consistent automaton.

For example, merging the pair (1,2) is consistent whereas (3,4) is not merged

as the resulting automata will accept the stringsubmitsearchform. checkout in S−.

The DFA that results upon termination of this merging process on the above

example set is shown in Figure 15(b).
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4.2 Concept Detection

After a frame tree is generated, our task is to associate an instance of a concept

to some nodes in the frame tree. The subtree rooted at such a node represents the

smallest segment of the Web page covering the concept instance. Towards this, we

have designed a feature space for frame tree nodes. For each node in the frame tree,

its features are collected as a vector in the feature space. The features are then used

to build a statistical concept model. The model is trained using prelabeled nodes.

For a new frame tree, each node is ranked by the concept model and the one with the

highest rank is selected as the instance of the concept. Belowwe give a description

of the feature space.

4.2.1 Feature Space

Each node in the frame tree can be represented by a vector of values repre-

senting its attributes, namely features. The set of featurevectors forms a multi

dimensional feature space.

In our concept identification problem, given a frame tree node p, nfi ,p denotes

the frequency of occurrence of featurefi in p. We use the following categories of

features in the analysis:

4.2.1.1 Word features

These are features drawn from the text encapsulated within aframe tree node.

An instance of a concept usually contains a set of particularwords occurring more

often than others. For example, given the Search Form concept, an instance usually

contains words like “search” and “find”. Such concept specific words are of great

importance in identifying the instance. Word features are the most widely used

features in textrelated machine learning tasks such as textcategorization.

We collect the following word features: unigram, bigrams, trigrams, and their

stemmed1 counterparts.

1Word stemming is done using Porter’s stemmer [73]
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For a leaf node in the frame tree, word features are drawn fromits own text

while for an internal frame tree node, the words present in all the leaves within the

subtree rooted at it are aggregated. Stop words are ignored in both cases.nfi ,p is

the number of timesfi occurs in the text ofp.

Consider a frame tree nodep, that contains the text “Nice Looking Video

Player”. Linguistic feature analysis collects the following features from this node:

Unigram: Nice, Looking, Video, Player

Bigram: Nice Looking, Looking Video, Video Player

Trigram: Nice Looking Video, Looking Video Player

Stemmed:Nice, Look, Video, Play

Stemmed-Bigram:Nice Look, Look Video, Video Play

Stemmed-Trigram: Nice Look Video, Look Video Play

4.2.1.2 Pattern features

These are features representing the visual presentation ofcontent. In content-

rich Web pages, it is often the case that the presentation of asemantic concept

exhibits similarity across sites. For instance, in Figure 1(b), each item is presented

as a link with the item name, followed by a short text description, and ending with

miscellaneous text information. Similar visual presentation can also be found on

other sites. The pattern features capture these presentation similarities. The basic

pattern features are links, text, and image found in leaf frame tree nodes. The basic

pattern features are link, text and image. Complex pattern features are any sequence

of basic or complex pattern features. For example, the sequence linklinktext is a

complex pattern feature. we compute all the basic and complex pattern features

occurring in the concept segment. Like word features,nfi ,p is the number of times

fi occurs in the subtree rooted atp.

4.2.2 Concept Model

Our concept identification task is to assign a score to every node p in the frame

tree given a concept c. The node covering only the instance ofc gets the highest

score.
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A Bayesian concept model consists of two components: (i) a probability distri-

bution on the frequency of occurrence of features, and (ii) aprobability distribution

on the number of nodes present in the entire subtree of a frametree node. A collec-

tion of frame trees whose nodes are (manually) labeled as concept instances serve

as training set for learning the parameters of these distributions.

A collection of frame trees whose nodes are (manually) labeled as concept

instances serves as the training set for learning the parameters of these distributions.

A maximum likelihood approach is used to model the distribution of a feature

in a concept. Given a training set ofL frame tree nodes identified as instances

of conceptc j , the probability of occurrence of a featurefi in c j is defined using

Laplace smoothing as:

P( fi |c j) =

∑

p∈L nfi ,p +1
∑i=|F|

i=1

∑

p∈L nfi ,p + |F|

wherenfi ,p denotes the number of occurrences offi in frame tree nodep and |F|

is the total number of unique feature. The number of nodes within the subtree

of a frame tree node for a conceptc j is modeled as a Gaussian distribution with

parameters meanuc j and varianceσc j defined as:

µc j =

∑

p∈L |p|

|L|
,σc j =

√

∑

p∈L(|p|−µc j )
2

|L|−1

For new frame trees, the probabilityP(c j |p) of a nodep being an instance of

conceptc j is proportional toP(p|c j) assuming an uniform distribution forP(c j).

We use a modified multinomial distribution to model the likelihoodP(p|c j):

P(p|c j) = (
N!

Nf1,p! · · ·Nf|F |,p!
)×

i=|F|
∏

i=1

P( fi |c j)
Nfi ,p

whereN = K×e
(|p|−µcj )

2/(2σ2
cj

)
, with K being a normalized total feature frequency

count, |p| being the total number of frame tree nodes within the subtreerooted

at p, and Nfi ,p is a scaled value ofnfi ,p such that
∑

i Nfi ,p = N. Note that the

above formulation of the likelihood takes into consideration both thenumber of

nodeswithin p as well as the frequencies of the various features in the content
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Figure 16: Recall/Precision of the Learned Process Model.

encapsulated withinp. This results in a tight coupling between content analysis

and document structure during concept identification. The frame tree node with the

maximum likelihood value is identified as the concept instance.

4.3 Evaluation

Here we describe the experimental performance of our learned models, i.e.

process models and concept models.

4.3.1 Performance of Process Model Learning

We collected 200 example transaction sequences from 30 Web sites. These

were sequences whose elements are concept operations as illustrated in Figure 15.

A number of CS graduate students (all were sighted) were enlisted for this purpose.

Specifically each student was told to do around 5 to 6 transactions with a Web

browser and the sequences were generated by monitoring their browsing activities.

They labeled a sequence as “completed” whenever they were able to complete the
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Figure 17: Failure Analysis of the Learned Process Model.

transaction; otherwise they labeled it as “not completed”.We used 120 of these

sequences spanning 15 Web sites (averaging 7 to 9 sequences per site) as the train-

ing set for learning the process model. The remaining 80 wereused for testing its

performance. The learned model is shown in Figure 14 (page 26). The first metric

that we measured was its recall/precision2. They were 90%/96% for the books do-

main, 86%/88% for the consumer electronics domain and 84%/92% for the office

supplies domain. The second metric we measured was the number of transitions

that remained to be completed when a true trace (completed transaction) in the test

set failed to reach the final state. We observed that more than50% of such failures

ended one hop away from that state. That means even in case of afailure, the user

will be only one hop away from the final state. A fast error recovery technique

(e.g. a technique that may store the history of the previous states, so that user may

go back to the previous state in case of a failure and try otheroperations from that

state) can be designed with such a process model.

2Recall for a process model is the ratio of the number of completed transactions accepted by the
model over the total number of completed transactions. For Precision, this denominator becomes
the total number of accepted transactions (completed and not completed).
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Figure 18: Recall for Concept Extraction.

4.3.2 Concept Extraction Performance

We built a statistical concept model for each of the conceptsin Table 2.

Recall that the five concepts in the upper half of the table are generic for all

the three domains whereas those in the lower half are domain-specific. For instance

the feature set of a list of books differs from that of consumer electronic items. We

built one model for each concept in the upper half of the tableand three - one per

domain – for each concept in the lower half.

The concept models were built using the techniques described previously. To

build the model for each of the five generic concepts we collected 90 pages from 15

out of the 30 Web sites. For each of the domain specific concepts we collected 30

Web pages from five Web sites that catered to that domain.

Note that pages containing more than one concept were sharedduring the

building of the respective concept models. These models drive the concept extractor

at runtime.
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We measured the recall3 of the concept extractor for each concept in the on-

tology. Roughly 150 Web pages collected from all of 30 Web sites was used as the

test data. Figure 18 shows the recall values for all of the 10 concepts in each of the

three domains.

An examination of the Web pages used in the testing revealed that the high re-

call rates (above 80% for “Item Taxonomy”, “Search Form”, “Add To Cart”, “Edit

Cart”, “Continue Shopping” and “Checkout”) are due to the high degree of consis-

tency of the presentation styles of these concepts across all these Web sites. The low

recall figures for the “Item Detail” (about 65% averaged overthe three domains) and

“Shopping Cart” (about 70%) are mainly due to the high degree of variation in their

features across different Web sites. A straightforward wayto improve the recall of

such concepts is to use more training data. However even thismay not help for

concepts such as “Add To Cart” that rely on keywords as the predominant feature.

Quite often these are embedded in a image precluding textualanalysis. It appears

that in such cases the local context surrounding the conceptcan be utilized as a

feature to improve recall.

Observe that we did not measure the precision value (precision is defined as

TP/(TP+FP), TP = true positive, FP = false positive). In somecases concept identi-

fier may detect a non-concept (e.g. a button labeled “Add to Wishlist”) as a concept

instance and present it to the user. Such cases are false positive and will drop the

precision value. Although a drop in precision value will increase information over-

load, we felt that recall is more imortant for a transaction and measured only recall

value. This is because, it is more important for us to find a true instance of a concept

(e.g. an “add to cart” button) so that the user does not miss that and can complete

the transaction.
3Recall value for a concept is the ratio of the number of correctly labeled concept instances in

Web pages over the actual number of concept instances present in them.
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4.4 Guide-O-Speech: A Prototype for Conducting

Model-directed Transaction using Non-Visual

Modality

Transaction models can be applied to reduce information overload in Non-

visual Web transactions. We built a prototype, Guide-O-Speech, to conduct Web

transactions using non-visual modalities. We describe itsuse scenario and perfor-

mance in this section.

4.4.1 Use Scenario

Alice, who is a visually impaired individual, is planning onreplacing her bro-

ken CD player with a new one from Best Buy. She uses our Web transactional

system for this task. To begin, she speaks Best Buy’s URL. After retrieving the

home page, the system analyzes this page, extracts the two concepts in it, namely

“Item Taxonomy” (the circled item on the left in Figure 19(b)) and “Search Form”

(the circled item on the top of Figure 19) and asks Alice to choose one of them. Al-

ice says “Search Form” and in response the system reads out the drop-down items

in the search form pausing briefly after each item. Alice can pick an item at any

time by either saying the item name or its number. Alice says “Electronics” and the

system prompts her for the electronic item she wishes to search for.

Alice responds with “CD Player”. The search form filled with these two pa-

rameters is submitted that results in fetching the page containing the search results

shown in Figure 19(b). The system extracts the “Search Result” concept and begins

reading out the brief description associated with each CD player in this list. Alice

says “item 1” to follow the link associated with the 1st player (CDP-CE375) in the

list to the page containing a detailed description of this player (Figure 19(c)). In

this page three concepts, namely “Search Form”, “Item Detail” and “Add To Cart”

are extracted. Alice is asked if she wishes to hear the product details. When Alice

responds in the affirmative, the system reads out the detailed description of the CD

player she picked earlier. At the end Alice is asked if she wishes to add this to

her shopping cart. Alice responds “yes”. The system followsthe link labeledAdd
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Figure 19: A Web Transaction in Online Shopping Domain
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To Cart in Figure 19(c) to the page shown in Figure 19(d). In this pagethe con-

cepts of “Search Form”, “Shopping Cart”, “Checkout” and “Continue Shopping”

are extracted. When presented with these choices Alice chooses “Checkout”. To

complete the transaction Alice must provide credit card information upon check-

out. Its details have been omitted as they are quite similar to the form filling step

described in the first step of the scenario. At any point Alicecan also say any one of

a set of general-purpose navigation commands, such as “Back to top page”, “Start

over”, “Repeat” (last item) or “Stop”. Besides, on a laptop or desktop computer

Alice could also use a keyboard in addition to speech to interact with Guide-O.

4.4.2 Evaluation

4.4.2.1 Experimental Setup

We used a 1.2 GHz desktop machine with 256 MB RAM as the computing

platform for running the Guide-O-Speech system. To do that we installed our own

VoiceXML interpreter along with off-the-shelf speech SDK components. We used

30 CS graduate students as evaluators.

Evaluators were asked to measure the total time taken to complete the transac-

tions with Guide-O-Speech. The screen was disabled and evaluators had to interact

with the system using a headphone and a keyboard. For baseline comparison, eval-

uators were also asked to conduct another experiment with the JAWS screen reader

on the same set of transactions. For every page used in a transaction sequence they

were asked to record the time it took JAWS to read from the beginning of the page

until the end of the selected concept’s content. The sum of these times over all the

pages associated with the transaction denotes the time taken to merely listen to the

content of the selected concepts with a screen reader.

4.4.2.2 Quantitative Evaluation Result

Here we describe the evaluation results of the usability evaluation of the Guide-

O-Speech system. For this evaluation, 9 Websites were used.Evaluators conducted

roughly 5 to 6 transactions on each of them. We calculated mean (µ) and standard

deviation (σ) for all the measured metrics.
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Time Taken (using)
Web Sites Voice

Interac-
tions

Pages
Explored

Guide-O-
Speech

JAWS
Screen
Reader

µ σ µ σ µ σ µ σ
Amazon 8 0 5 0 306.1 13.73 1300 120.2

BN 9 0.82 5 0 351.5 40.78 1130 176.78
AbeBooks 10.8 0.96 6 0.82 384.9 31.35 700 176.78

Amazon 9.8 3.1 5.2 1.26 386.6 60.15 1413 130.11
CompUSA 9 1.15 6 0.82 360.5 13.34 931.5 211.42
tigerdirect 9.4 1.29 6 0.82 357.7 30.07 1293 212.13

OfficeMAX 10 0.82 5.8 0.96 341.6 23.69 686 61.52
OfficeDepot 10 2.16 6 1.41 309.9 45.87 604 55.23
QuillCorp 9.6 1.73 5.2 0.96 382.6 49.61 625 51.84

*All times are in seconds .

Table 3: Guide-O-Speech Performance.

Table 3 lists the metrics measured for each Web site. Observethat Guide-O-

Speech compares quite favorably with the best-of-breed screen readers and hence

can serve as a practical assistive device for doing online transactions.

4.4.2.3 Qualitative Evaluation

To gauge user experience we prepared a questionnaire for theevaluators (see

Table 4). They were required to answer them upon completing the quantitative

evaluation. The questions were organized into two broad categories – system (S1

to S4) and concepts (C1 to C3) – the former to assess the overall functionality and

usability of the system and the latter to determine the effectiveness of the semantic

concepts in doing Web transactions. All of the concept questions except S1 and S2

required a yes/no response. From the responses we computed the mean percentages

shown in the table.

A large percentage of evaluators felt that the concepts presented were self ex-

planatory and contained enough information based on which they could take the

right steps to make progress on their transactions (response to question C1). Some

evaluators felt that notification of promotional offers, coupons,etc. was important

and that such concepts ought to be presented (response to question C2).

Most were able to find the items they were looking for (response to ques-

tion S1). However at times they were unable to complete the transaction (the “no”

response to questions C3 and the unfinished transactions in S2). Analysis of such
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C1 Did you find the concepts used in
doing the transaction informative?

93.33%

C2 Do they capture all the useful infor-
mation in the Web pages?

76.67%

C3 Did they help in accomplishing the
transaction?

86.67%

S1 How often were you able to find the
desired item?

96.67%

S2 How often were you able to com-
plete the transaction for the item
found?

93.33%

S3 Do you feel that the system re-
stricted your navigation?

80%

S4 Did you find the system useful for
conducting transactions?

96.67%

Table 4: Questionnaire with Response

transactions revealed that in many cases the problem arose because: (a) the expected

concepts in a state were not extracted; (b) the extracted concepts were mislabeled;

or (c) the model could not make the correct transition. The last two problems could

be addressed by training the concept extractor and the process model with more

examples.

A number of evaluators felt that they expected more flexibility on how they

can complete the transactions (response to question S3). Observe that the number

of possible paths to complete a transaction is limited by thetraining data and hence

this criticism can be addressed with more training. Overallthey all felt that the

system was adequate to do their tasks (response to question S4).

Evaluators also had general comments. In particular they all felt that the sys-

tem requires help utilities to assist users to become familiar with the use and effects

of each concept.



Chapter 5

Mining Transaction Models:

Unsupervised Approach

In this chapter, the techniques of mining transaction models from unlabeled

or partially labeled transaction sequences are described.Algorithm LearnTrans-

actionModelillustrates a high level overview of unsupervised transaction model

learning.

The main steps to mine transaction models from transaction sequences are as

follows.

• Label unlabeled operations in each transaction sequence

• Learn process model and concept models from labeled sequences.

Consider Table 5. The table shows 4 Web transaction sequences. The first

transaction sequence (illustrated in figure 20) is from “Amazon.com” and is a com-

pletely unlabeled sequence. The second transaction sequence (illustrated in figure

21) is from “AbeBooks.com” and is a partially labeled sequence. The third transac-

tion sequence (illustrated in figure 22) is from “CircuitCity.com” and is a partially

labeled sequence. The fourth transaction sequence (illustrated in figure 23) is from

“Bestbuy.com” and is a partially labeled sequence. In Figures 20, 21, 22, 23, the

transaction operations are shown using arrows. The segments containing the con-

cepts associated with each transaction operations are alsoshown using rectangles.

The concept segments, containing labeled Web objects, are labeled with the

concept name. Other concept segments are unlabeled.

44
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Figure 20: A Web Transaction in Amazon.com

Section 5.1 describes how we can assign labels to such concept segments.

Next, in Section 5.2, we describe how concept models are learned using labeled

sequences. Learning process models from labeled sequencesis described in Section

5.3.

Algorithm LearnTransactionModel

Input: Sequences: A Set of Transaction Sequences

Output: Model (ProcessModel, ConceptModels): A Transaction Model

1. if Sequences.Unlabeled

2. then labeledSequences← GenerateLabel(Sequences)

3. if Sequences.Partiallabeled

4. then labeledSequences← GenerateLabel(Sequences)

5. if Sequences.Labeled

6. then labeledSequences← Sequences

7. ConceptModels← LearnConceptModel(labeledSequences)

8. ProcessModel← LearnProcessModel(labeledSequences)

9. return (ProcessModel, ConceptModels)
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No. Training Sequence

1 < 073A133F,0A3B135E,0A7324F3 >

2 < select item(041A122F),031AB23F,0A14B25F,04F354A2 >

3 < select item(145AB2D1),05F354A1,731DA231,873A11F2 >,
4 < selectcategory(01A561AF),81121F2A,02141F4B,02345A21>

Table 5: Example Training Sequences

Figure 21: A Web Transaction in AbeBooks.com
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5.1 Label Generation

The label generation step associates a label with each unlabeled operation.

The algorithmGenerateLabelillustrates the label generation steps. Briefly, the

algorithm does the following.

Line 1 of the algorithmGenerateLabel(ExtractConceptSegment) uses con-

text analysis and geometric segmentation (as described in Section Chapter 2) to get

the Concept Segment(see Section 3.1 for definition of concept segments) con-

taining the web object. Section 5.1.1 gives more details about concept segments

retrieval. Next, we cluster similar concept segments (line2 of the algorithmGener-

ateLabel). Section 5.1.2 describes this process. We assign a conceptlabel to each

cluster, and associate each of the segments with a label. Theconcept labels are also

used to label the transaction operations in an unlabeled or partially labeled sequence

(line 3 ofGenerateLabel). Section 5.1.3 describes this process in more details.

Algorithm GenerateLabel

Input: Sequences: A Set of Unlabeled or Partially Labeled Transaction Sequences

Output: labeledSequences: A Set of Labeled Transaction Sequences

1. ConceptSegments← ExtractConceptSegments(Sequences)

2. labeledSegmentSets←ClusterSegments(ConceptSegments)

3. labeledSequences← LabelSequences(labeledSegmentSets,Sequences)

4. return labeledSequences

5.1.1 Concept Segment Retrieval

Web objects are contained within concept segment. Given a Web objectOb j,

we can retrieve its concept segment using our Web content analysis technique,

which we will describe now.

We observe that, some concept instances contain objects with repeating pre-

sentation pattern, e.g. a list of items. Concept segment for such a concept instance

is the geometric segment that contains those objects presented in a repeating pattern

and sharing similar alignment in the web page. In figure 22(a), geometric segment

marked using solid rectangle contains list of objects with similar presentation style,

which is the semantic concept “Item List”.
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Other concept instances does not contain such a collection of objects with

repeating pattern. A single clickable object (i.e. button,link) is the instance of a

concept in those cases. Concept segment for such a concept instance contains the

object and its surrounding text that shares common topic with the caption of the

object. This is same as context segment of the object. In figure 22 (b), concept

segment is shown using solid rectangle.

Thus the algorithm to retrieve the concept segment from a given Web object is

as follows:

• We apply repeated pattern analysis algorithm [39] to find repeated patterns in

geometric segment containing the Web object.

• If the Web object is presented as a repeated pattern, then we return the geo-

metric segment as concept segment.

• Otherwise, we return the context segment as concept segment.

The detailed algorithm is described in AlgorithmExtractConceptSegmentsand

GetConceptSegment.

Consider the second sequence in Table 5. The first Web Object inthe sequence

is labeled with the operation name “selectitem”.

Hence the concept segment containing this Web object is shown with the corre-

sponding concept name “ItemList” in figure 21 (a).

Algorithm ExtractConceptSegments

Input: Sequences: A Set of Unlabeled or Partially labeled Transaction Sequences

Output: ConceptSegments: A Set of Concept Segments

1. ConceptSegments← /0
2. n← Sequences.Size

3. i ← 1

4. repeat

5. Sequence← Sequences(i)

6. WebOb jectsSeq← Sequence.WebOb jects

7. m←WebOb jectsSeq.Size

8. j ← 1

9. repeat

10. WebOb ject←WebOb jectsSeq(j)
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11. ConceptSegment← GetConceptSegment(WebObject)

12. if WebOb ject.Labeled

13. then ConceptSegment.Label←WebOb ject.Label

14. ConceptSegments←ConceptSegments∪ConceptSegment

15. j ← j + 1

16. until j =m+1

17. i ← i + 1

18. until i =n+1

19. return ConceptSegments

Algorithm GetConceptSegment

Input: Ob ject: a WebObject in a Web Page

Output: ConceptSegment: A Concept Segment

1. ContextSegment← Context Segment Containing the WebObject

2. GeometricSegment← Geometric Segment Containing the WebObject

3. Apply Pattern Analysis inGeometricSegment

4. if ContextSegment.Repeated

5. then ConceptSegment← GeometricSegment

6. ConceptSegment.isRepeated← true

7. else ConceptSegment←ContextSegment

8. ConceptSegment.isRepeated← false

9. return ConceptSegment

5.1.2 Concept Segment Clustering

Once the concept segments are retrieved, we cluster them to put similar seg-

ments into the same cluster.

First, we describe the concept segment features, cluster features and similarity met-

rics used for clustering. We then describe the clustering algorithm.

5.1.2.1 Concept Segment Features

We extractWord FeaturesandPattern Featuresfrom non-repeating concept

segments (e.g., a concept segment containing the concept instance of “AddToCart”)
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andPattern Features from repeating concept segments (e.g., a concept segment

containing the concept instance of “ItemList”). Here we describe the features.

Word Features: These are features drawn from the text encapsulated within the

concept segment.

We collect the following word features: unigram, bigrams, trigrams, and their

stemmed1 counterparts.

For example, consider the concept segment illustrated in figure 21 (d). The

word features extracted from the concept segments are “Proceed”, “Checkout”,

“Proceed to”, “to Checkout”, “Proceed to Checkout”, etc.

Special Fields (e.g., Number, Date, Money) are tagged as Features. So $249.99

in figure 22 (b) is tagged as MONEY.

Pattern Features: These are features representing the visual presentation ofcon-

tent. The basic pattern features are link, text and image. Complex pattern features

are any sequence of basic or complex pattern features. For example, the sequence

linklinktext is a complex pattern feature. we compute all the basic and complex

pattern features occurring in the concept segment.

In concept segment illustrated in figure 20 (a), some of the pattern features are

“linklinktext”, “linktext”, ”text”.

5.1.2.2 Concept Segment Similarity Computation

Jaccard Similarity [69] is used to measure the similarity between two concept

segments. For concept segmentSi andSj , the Jaccard Similarity is defined as fol-

lows.

J(Si,Sj) =
|F(Si)∩F(Sj)|

|F(Si)∪F(Sj)|
(2)

HereF(Si) andF(Sj) are set of features for concept segmentSi andSj .

The Jaccard similarity between the concept segments is equal to 1 if they are

identical, and 0 if they are completely different.

1Word stemming is done using Porter’s stemmer [73]
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Figure 22: A Web Transaction in CircuitCity.com

5.1.2.3 Intra-Cluster Similarity

Intra-Cluster Similarity measures the similarity of the concept segments in a

cluster [80]. Let us,C is a cluster withn concept segments.S1, S2, ...,Sn are concept

segments in clusterC. Then, intra-cluster similarity is defined as:

Intra(C) =
1

(n−1) ·n

∑

i

∑

j

J(Si,Sj) (3)

A high value for this similarity score indicates that concept segments in the

cluster are very similar, i.e. homogeneous. On the other hand, a low intra-cluster

similarity indicates that concept segments are quite dissimilar, i.e. heterogeneous.

Therefore, a high value of intra-cluster similarity is desired. Note that, intra-cluster

similarity is undefined (0/0) for singleton clusters, i.e. whenn = 1.

For example, consider the cluster in figure 25 (a). It has 4 concept segments.

Jaccard Similarity values are as follows.

J(S1,S2) = 0.8,J(S1,S3) = 0.75,J(S1,S4) = 0.6,

J(S2,S3) = 0.65,J(S2,S4) = 0.55,J(S3,S4) = 0.75.

Then, Intra−ClusterSimilarityis:
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Intra(C) = 2∗ (0.8+0.75+0.6+0.65+0.55+0.75)/12

Intra(C) = 0.6833

5.1.2.4 Inter-Cluster Similarity

Inter-Cluster Similarity measures similarity between two clusters [80]. IfCi,

Cj are two clusters andSi1, Si2, ..., Sini are concept segments in clusterCi andSj1,

Sj2, ...,Sjn j are concept segments in clusterCj . Then,

Inter(Ci,Cj) =
1

ni ·n j

∑

m

∑

n

J(Sim,Sjn) (4)

HereSim denote them th concept segment in clusteri andSjn denote then th

concept segment in clusterj.

A high value for this similarity score indicates that clusters are very similar.

On the other hand, a low inter-cluster similarity indicatesthat concept segments

in different clusters are quite dissimilar. Therefore, a low value of inter-cluster

similarity is desired.

Let us consider the clusters in figure 25 (a) and 25 (b).

The Jaccard Similarity scores between the concept segmentsin first cluster (25

(a)) and the concept segments in second cluster (25 (b)) are as follows:

J(S11, S21) = 0.05, J(S11, S22) = 0.052, J(S11, S23) = 0.06, J(S11, S24) = 0.05,

J(S11, S25) = 0.09.

J(S12, S21) = 0.08, J(S12, S22) = 0.012, J(S12, S23) = 0.09, J(S12, S24) = 0.015,

J(S12, S25) = 0.019.

J(S13, S21) = 0.08, J(S13, S22) = 0.032, J(S13, S23) = 0.07, J(S13, S24) = 0.04,

J(S13, S25) = 0.09.

J(S14, S21) = 0.021, J(S14, S22) = 0.032, J(S14, S23) = 0.016, J(S14, S24) = 0.02,

J(S14, S25) = 0.012.
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HereS11 is the 1st concept segment in clusterC1, S21 is the 1st concept segment

in clusterC2, and so on.

Using equation 4, we compute Inter(C1, C2) as follows:

Inter(C1, C2) = (0.05 + 0.052 + ... + 0.012)/20 = 0.0465

5.1.2.5 Quality of Clustering

Quality of clustering measures goodness of clustering [80]. In other words, it

measures how good the clusters are. It is desired that concept segments in a cluster

be similar (i.e. intra-cluster similarity should be high) and concept segments in

different clusters be dissimilar (i.e. inter-cluster similarity should be low).

Say we haven concept segments andC1,C2, ....,Ck arek non-singleton clusters

(i.e. clusters with more than one concept segment) of those segments. Intra-Cluster

Similarities are Intra(C1), Intra(C2), ...., Intra(Ck).

Inter-Cluster Similarities are Inter(C1, C2), Inter(C1, C3),.........,Inter(Ck−1, Ck).

Then quality of clustering is defined based on the ratio of weighted average inter-

cluster to weighted average intra-cluster similarity:

φQ = 1−

∑k
i=1

ni
n−ni

∑

j∈{1,...,i−1,i+1,...,k}n j .Inter(Ci,Cj)
∑k

i=1 Intra(Ci)
(5)

The quality value,φQ∈ [0, 1] (φQ is negative in case of inverse/pathological

clustering, i.e. when intra-cluster similarities are low and inter-cluster similarities

are high).

Note that we compute quality of clustering only from non-singleton clusters.

This is because intra-cluster similaritiy is undefined (0/0) for singleton clusters [80].

Let us consider the clusters in figure 25. The clusters are denoted asC1 and

C2.

Intra(C1) = 0.68, Intra(C2) = 0.51, Inter(C1, C2) = 0.0465.

Then, quality of clustering is,

1 - (4/5 * (5 * 0.0465) + 5/4 * (4 * 0.0465))/(4*0.68 + 5*0.51) = 0.92
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5.1.2.6 Clustering Algorithm

Here we describe the clustering algorithm which is illustrated inClusterCon-

ceptSegments. Line 1 initializes the set of clusters to be the empty set. Lines 2 to 11

iterate over each concept segment and does the following: Ifthe concept segment

is labeled, then the concept segment is added to the cluster with the same label.

Otherwise a new cluster is created and the concept segment isadded to the new

cluster.

For the example training sequences in table 5, 15 concept segments are shown

in figure 20, 21, 22, 23. 2 of the concept segments are labeled with concept name

“ItemList” and another concept segment is labeled with concept name “ItemTax-

onomy”. Therefore, we have 14 clusters initially. One of theclusters is labeled

“ItemList” and contains 2 concept segments labeled “ItemList” (these concept seg-

ments are shown in figure 21 (a) and figure 22 (a)). Another cluster is labeled

“ItemTaxonomy” (shown in figure 23 (a)). Thus we have 12 unlabeled and 2 la-

beled clusters.

Lines 12 to 20 construct pair of clusters from list of clusters such that at least

one cluster in a pair is unlabeled. The inter-cluster similarity values are also com-

puted.

For our example, we construct 132 unlabeled cluster pairs (both the clusters in

the pair are unlabeled) and 24 labeled cluster pairs (one of the clusters in the pair is

labeled). We compute the inter-cluster similarity value for each of the pairs.

Line 21 invokes the algorithmGetQualitywhich returns the quality value of

the current clusters. This algorithm computes quality value (as defined in section

5.1.2.5) from non-singleton clusters, and returns that value. However, it returns

“Undefined” if none of the clusters are non-singleton. The quality value is saved as

maximum quality value. Current clusters are saved as best clusters (line 22). For

our example, the current quality value is 0.13231.

Lines 23 to 34 is the main clustering loop. At each step of the iteration, the

most similar clusters are retrieved by invoking the algorithm GetMostSimilarClus-

ters(line 24). The algorithm sorts the cluster pairs based on their similarity value

(i.e. inter-cluster similarity) and the pair with the highest similarity value is re-

turned. The clusters with highest similarity value are merged (figure 24).

The algorithm continues until we are left with only 1 clusteror the number of
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unlabeled clusters becomes 0 or no similar clusters are found to merge (line 34).

For our example, the algorithm continues until we have only 2labeled clusters.

Line 35 returns the clusters (BestClusters) with the highest quality value. For

our example,BestClusterscontains 4 clusters. 2 of the clusters are labeled and the

others are unlabeled. Figure 25 shows the unlabeled clusters.

Algorithm ClusterConceptSegments

Input: ConceptSegments: A Set of Concept Segments

Output: Concepts: A Set of ConceptSegment Sets where Segments Representing

Same Concepts are Placed in the Same Set

1. Clusters← /0
2. for i = 1 to ConceptSegments.Size

3. do if ConceptSegments(i).Labeled

4. then Cluster←GetCluster(Clusters,ConceptSegments(i).Label)

5. if Cluster= NULL

6. then Cluster←new Cluster

7. Cluster.Label←ConceptSegments(i).Label

8. else

9. Cluster←new Cluster

10. Cluster.Segments←Cluster.Segments∪ConceptSegments(i)

11. Clusters←Clusters∪Cluster

12. ClusterPairs← /0
13. for i = 1 to Clusters.Size−1

14. do for j = i +1 to Clusters.Size

15. do if Clusters(i).Label= NULL or Clusters(j).Label= NULL

16. then ClusterPair← new Pair (Cluster(i), Cluster(j))

17. Features(i)←Cluster(i).Features

18. Features(j)←Cluster(j).Features.

19. ClusterPair.Similarity ←GetSimilarity(Features(i),

Features(j))

20. ClusterPairs←ClusterPairs∪ClusterPair

21. MaxQuality←GetQuality(Clusters)

22. BestClusters←Clusters

23. repeat
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24. (f irst, second)←GetMostSimilarClusters(ClusterPairs)

25. if f irst 6= NULL andsecond6= NULL

26. then if f irst.Label= NULL

27. then (Clusters,ClusterPairs) ←Merge(Cluster, ClusterPairs,

second, f irst)

28. else

29. (Clusters, ClusterPairs) ←Merge(Cluster, ClusterPairs,

f irst, second)

30. CurrentQuality←GetQuality(Clusters)

31. if (MaxQuality = UNDEFINED and CurrentQuality

6=UNDEFINED)or (CurrentQuality>MaxQuality)

32. then MaxQuality←CurrentQuality

33. BestClusters←Clusters

34. until Clusters.Size= 1 or Clusters.NumUnlabeled= 0 or f irst = NULL or

second= NULL

35. return BestClusters

Algorithm GetMostSimilarClusters

Input: ClusterPairs: A Set of Cluster Pairs

Output: ( f irstCluster, secondCluster): a Cluster Pair

1. Sort the pair of clusters based on their similarity value

2. Arrange the cluster pairs from highest to lowest similarity value

3. (f irst, second)←next cluster pairs from sorted cluster pairs.

4. if Similarity(first,second) = 0

5. then f irst ←NULL

6. second←NULL

7. return ( f irst, second)

Algorithm Merge

Input: Clusters: A Set of Clusters Containing Concept Segments

Input: ClusterPairs: A Set of Cluster Pairs

Input: f irstCluster: a Cluster

Input: secondCluster: a Cluster

Output: (Clusters, ClusterPairs): The updated set of Clusters
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Figure 23: A Web Transaction in BestBuy.com

1. for i←1 to secondCluster.Segments.Size

2. do insertsecondCluster.Segments(i) to f irstCluster.Segments

3. RemovesecondClusterfrom Clusters

4. Compute similarity off irstClusterfrom other Clusters

5. UpdateClusterPairs

6. return (Clusters, ClusterPairs)

Algorithm GetQuality

Input: Clusters: A Set of Clusters Containing Concept Segments

Output: qualityVal: The quality of clusters

1. ClustersNonSingleton←Clusters.GetNonSigletonClusters

2. if ClustersNonSingleton.Size= 0

3. then qualityVal←UNDEFINED

4. else

5. qualityVal←compute quality using equation 5

6. return qualityVal
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Figure 24: Merging Similar Clusters

Figure 25: Clusters Containing Unlabeled Concept Segments
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Figure 26: An Example Noisy Cluster

5.1.2.7 Elimination of Noisy Clusters

After the clustering algorithm returns a set of clusters, weeliminate noisy

clusters which are:

• singleton unlabeled clusters, i.e. a cluster with a single concept segment.

We assume that a concept should have multiple occurences in acollection of

transaction sequences.

• non-singleton unlabeled clusters which have Intra-ClusterSimilarity below a

threshold. (The threshold value 0.01 worked well in practice).

Figure 26 shows an example of a noisy cluster.

5.1.3 Labeling

Once the clustering algorithm clusters the concept segments into a set of clus-

ters, unlabeled clusters are labeled (line 27 to 31 in algorithm ClusterConceptSeg-

ments). Next the label of each of the clusters is used to label the concept segments

and the Web objects in each concept segments. The following two approaches are

used for cluster labeling.
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Figure 27: Ad-hoc Labeling

Ad-hoc Labeling

This approach is used when we do not have labeled sequences. In this ap-

proach, we assign ad-hoc labels sequentially to the unlabeled clusters. Form unla-

beled clusters,m labels are assigned starting fromlabel1 to labelm.

Continuing with our example, the first unlabeled cluster (as shown in Figure

25(a)) is labeled as “label1” and the second unlabeled cluster (as shown in Figure

25 (b)) is labeled as “label2”. The clusters in Figure 25(a) and 25(b) after ad-hoc

labeling are shown in Figure 27.

Labeling using Co-training

We described how we label the unlabeled clusters in ad-hoc way. Another sim-

ple idea is to generate the label of each unlabeled cluster from the concept segments

present in that cluster. However, that would not give us meaning label used in that

domain (e.g. a label “search form” may not be available in this approach). Observe

that when any concept segment in a cluster is labeled, the cluster is also labeled with

that label. For example, a concept segment labeled “ItemList” also labels the cluster

containing that segment as “ItemList”. Therefore, an unlabeled cluster means none

of the concept segments in that cluster are labeled. We can label such an unlabeled

cluster using co-training approach. In this approach, labeled transaction sequences
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are used to label the unlabeled sequences. The underlying principle is described

in [13], where unlabeled data is labeled with the help of labeled data.

Specifically, we will label the unlabeled clusters constructed by our clustering

algorithm with the help of labeled clusters constructed from labeled sequences.

We apply the concept segment retrieval algorithm on the labeled sequences to

get a set of concept segments for each sequence. Since the sequences are labeled,

we associate the concept label with each concept segment (e.g. a concept segment

labeled with “SearchForm”). We construct clusters containing concept segments

with the same label.

Let A = A1,A2,...,AM denote the set of clusters (either labeled or unlabeled)

constructed by our algorithm and F(A1),F(A2),...,F(AM) denote the feature vectors

computed from each such cluster. LetH = H1,H2,...,HN denote the set of clusters

constructed from labeled data and F(H1),F(H2),...,F(HN) denote the feature vectors

computed from each such cluster.

Next, we take an unlabeled clusterAi from the set of clusters constructed by

our algorithm and compute the inter-cluster similarity betweenAi andH j , for all

clustersH j in the set of user-labeled clusters. The clusterAi which is most similar

to H j is labeled with the label ofH j . Then, the clusterH j is removed from the setH.

This procedure is applied repeatedly until all the clustersin the setA are labeled, or

the setH is empty. In the second case, the unlabeled clusters in setA are assigned

ad-hoc labels.

Let us consider the labeled sequences in Table 6. The first transaction sequence

is shown in Figure 28 and the other one is shown in Figure 29. Weapply the concept

segment retrieval algorithm for each sequence to retrieve the concept segments as

shown in Figure 28, 29. Next we construct four labeled clusters containing those

concept segments, (Figure 30).

The first cluster contains the concept segment from Figure 28(a) and labeled

“ItemTaxonomy”. The second cluster contains concept segments from Figure 28

(b) and 29 (b) and labeled “AddToCart”. The third cluster contains the concept

segment from Figure 29 (a) and labeled “ItemList”. The final cluster contains the

concept segments from Figure 28 (c) and Figure 29 (c)and labeled “CheckOut”.
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No. Training Sequence

1 < selectcategory(093A233E),add to cart(0B7424A3),checkout(632A213F) >

2 < select item(03EA162B),add to cart(0A942522),checkout(7A1B513B) >

Table 6: Example Labeled Transaction Sequences:

Figure 28: A Web Transaction in BN.com

Now consider the unlabeled cluster (returned by our algorithm) shown in Fig-

ure 25 (a). We compute similarity of this cluster with all thelabeled clusters. Simi-

larity values are shown as labels of the arrows in figure 30.

This cluster is found to be most similar with the user labeledcluster “AddTo-

Cart”. Hence we label this cluster as “AddToCart”, (Figure 30).

Then, we remove the user labeled cluster “AddToCart” from theset of user

labeled clusters. Next, we take the unlabeled cluster shownin Figure 25 (b) and

compute its inter-cluster similarity with the user labeledclusters, “ItemTaxonomy”,

“ItemList” and “Checkout”. This cluster is most similar to the user labeled cluster

“CheckOut”. Hence the unlabeled cluster is labeled “CheckOut”, (Figure 30).
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Figure 29: A Web Transaction in Buy.com

5.1.3.1 Web Object Labeling

Once the clusters are labeled, the concept segments in each cluster are also

labeled(line 31 of algorithmClusterConceptSegments). For example, the concept

segments of the clusters in Figure 31 are labeled with the label of the clusters. Next,

we associate theWebOb ject(i.e. URL) which is embedded within the concept

segment with the operation name corresponding to the label of the segment.

Continuing with our example, theWebOb ject’s in Table 5 are labeled with the

operation name for each concept label. Table 8 shows the corresponding labeled

transaction sequences. For simplicity, operations are written asoperationName

instead ofoperationName(WebObject).

5.2 Unsupervised Learning of Concept Models

The label generation method described in the previous section associates con-

cept labels with segments containing theWebOb ject. It also clusters similar seg-

ments. Each cluster represents semantic concept. We may useeach such cluster as

a classifier to classify a concept segment as instance of thatconcept. For example,

given a concept segment and a set of clusters, we can compute the inter-cluster sim-

ilarity between the single cluster containing that segmentand each of the clusters.
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Figure 30: Labeling Unlabeled Clusters using Labeled Clusters
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Figure 31: Concept Segments Labeling using Cluster Label
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Then we can label the concept segment (i.e. categorize the segment) with the label

of its most similar cluster. This approach is simple and willwork for many cases,

but it has some shortcomings:

• Inter-cluster similarity does not weight the features. Observe that jaccard

similarty metric does not consider importance of a particular feature. Us-

ing uniform weight for each feature may result poor performance, especially

when there are common features across different concepts.

• The entire process of clustering is done in a batch mode and hence this is

offline. Once a set of transaction sequences are collected, we apply our

algorithm. If clusters have to be used for classification, then they have to

stored. That means, all the concept segments extracted fromthe transaction

sequences have to be stored. This is not scalable when the transaction models

are learned from a large number of sequences. Moreover, it isvery calcula-

tion intensive. Very large cluster, i.e. a cluster with manyconcept segments

can make computation of inter-cluster similarity difficult. From a computa-

tional point of view, it may require a long time and is not suitable for online

processing.

• The simple approach described above assumes that any segment is an in-

stance of a concept since it classifies a given segment as an instance of a

concept class when the segment gets the highest similarity with the cluster

corresponding to that concept. However, it can be a noisy segment. To elimi-

nate such noisy segments, we have to use a threshold for inter-cluster similar-

ity value for each clusters. Manually fixing such threhsoldsis not justifiable.

Hence, these thresholds have to be determined experimentally.

However, a statistical model, e.g. Support Vector Machine (SVM) [89] has the

following advantages:

• An SVM model learned from features vectors of the training examples com-

putes weight (i.e. contribution) of each individual feature to classify an in-

stance as a member of the class. This is more justifiable and accurate than

using uniform weights for each feature which is the case whenwe compute

inter-cluster similarity.
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• An SVM models are usually learned as a binary classifier to classify an in-

stance as either member or not member of the class. Therefore, there is no

need to use thereshold for each cluster to eliminate noisy segments.

• A learned SVM model does not store each data point, it stores only the sup-

port vectors which are needed to classify a given instance asa member of that

class. SVM computation is generally faster than computing similarity value

from large number of data points.

• SVM is a well-known statistical model used in classificationand regression.

It has been successfully applied to build classifier from both linearly seperable

and non-seperable data points.

Therefore, we automatically learn a support vector machine(SVM) [23, 89]

for each such concept. Each such concept models are used as a binary classifier to

classify a given concept segment as either instance or not instance of the concept.

Algorithm LearnConceptModel

Input: Sequences: A Set of Labeled Transaction Sequences

Output: Models: A Set of Statistical Models

1. ConceptSets← /0
2. n←Sequences.Size

3. i ← 1

4. repeat

5. Sequence← Sequences(i)

6. WebOb jectsSeq← Sequence.WebOb jects

7. m←WebOb jectsSeq.Size

8. j ← 1

9. repeat

10. WebOb ject←WebOb jectsSeq(j)

11. ConceptSegment← GetConceptSegment(WebObject)

12. ConceptSegment.Label←WebOb ject.Label

13. PlaceConceptSegmentin ConceptSets(Label)

14. j ← j + 1

15. until j =m+1

16. i ← i + 1
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Table 7: Description of Concept Segment Features
Feature Description
funigram words present in the segment
fbigram bigram (pairs of words)
ftrigram trigram (triples of words)
fstemUnigram word stems*
fstemBigram stemmed bigrams
fstemTrigram stemmed trigrams
fpattern patterns

17. until i =n+1

18. numConcept← Total Number of Concepts

19. Models← /0
20. i ← 1

21. repeat

22. NegativeExamples←ConstructNegExamples(ConceptSets, i)

23. ConceptModel(i)← LearnSVM(ConceptSets(i),NegativeExamples)

24. Models←Models∪ConceptModel(i)

25. i ← i + 1

26. until i =numConcept+1

27. return Models

As with many other machine learning tools, an SVM [23, 89] takes a feature

vector as input and produces its classification. Here, we define two classes for

each of our concept model:ConceptandNot Concept, and describe each concept

segment with a set of feature values.

For example, classes for the concept model “CheckOut” areCheckOut and

Not CheckOut.

We represented each concept segment by a tuple (~f , l ), where~f is a feature

vector for that segment andl is its concept label. A segment can be either instance

of a concept:l = 1, or not instance:l = 0. Segments labeled with conceptCi are

used as positive examples to train the SVM model for conceptCi. Segments labeled

with conceptCj , where i6= j are used as negative examples to train the SVM model

for conceptCi.
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Figure 32: Positive and Negative Examples for “CheckOut” SVM Model



CHAPTER5. Mining Transaction Models: Unsupervised Approach 70

Figure 33: Classification of Segments using “CheckOut” SVM Model
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Note that, we did not manually label the concept segments. The labels are gen-

erated as a result of clustering them and hence this is automatic. Thus in contrast to

traditional SVM learning which requires manually labeled training data and hence

is supervised, we used an unsupervised approach to learn theSVM models.

Continuing with our example in the previous section, Figure 32 shows concept

segments used as positive examples and some of the concept segments used as neg-

ative examples for training the SVM model for “Checkout” concept. Positive exam-

ples are concept segments taken from the “Checkout” cluster.Negative examples

are concept segments taken from “AddToCart”, “ItemTaxonomy” and “ItemList”

(not shown in Figure 32 because of limited space) clusters. Some of the features

extracted from the concept segments are also shown in Figure32.

The learned SVM concept model is used to classify a given segment as a con-

cept. Given a segmentBi, we compute the feature values for it. Next, we use the

learned SVM models to label the segment as as either instanceor not-instance of

the concept and get the associated probability values. Notethat, the segment can be

identified as an instance of a concept by more than one SVM model (and which is

an ambiguity). In that case, we label the segment as an instance of the concept for

which corresponding SVM model returns the highest probability value.

For example, Figure 33 shows two concept segments. One of them is classified

as a “Checkout” concept (33(b))and the other one is not classified as a “Checkout”

(33 (a)) concept by “Checkout” SVM model.

5.3 Learning Process Model

In the previous chapter, we have described process model learning using a

DFA-based technique. There are some drawbacks of using DFA learning to learn a

process model from transaction traces.

5.3.1 Limitation of using DFA learning

• The goal of DFA learning is to learn the smallest size DFA thatis consis-

tent with respect to a set of positive and negative training examples. This

is an NP-hard [9, 10, 38] problem. As a result, there are efficient heuristics
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for DFA learning(e.g., [33, 66, 68]) in polynomial time. However, training

examples must certain properties to learn a target DFA usingthese heuris-

tics. For example, Parekh and Honavar [70] assume a structurally complete

set2. Oncina [68] assumes a characteristics set3 of samples. Web transac-

tion traces are collected by maintaining logs of transaction activities done by

users. It is quite diffcult to collect traces that satisfies such properties, which

are necessary for DFA learning in polynomial time.

• DFA learning requires a sizable number of negative exampleswhich are often

difficult to obtain from logs of transaction activities doneby users. Moreover,

collecting negative traces may introduce spurious concepts in the model as a

result of clustering.

One solution to get negative examples is to generate them from positive ex-

amples. Specifically, each subsequence of a positive example may be used as

a negative example. However this has the following drawback.

• This assumes that a subsequence of a completed transaction can not

complete another transaction.

For example, consider the positive example

“select item category”.“selectitem”. “add to cart”.“checkout”. If we

generate a negative example “selectitem”. “add to cart”.“checkout”

from the above mentioned positive example, then the resultant model

won’t accept “selectitem”.“add to cart”.“checkout”. However, this

transaction sequence can also complete a transaction. Thus, generat-

ing negative examples from subsequences of positive examples may re-

sult in rejecting transaction sequences by the model which should be

accepted.

5.3.2 Inference of the Process Model from Positive Examples

For unsupervised transaction model mining, we have developed a learning al-

gorithm that can learn a process model from only positive examples, i.e. complete

2A set S+ is said to be structurally complete with respect to a DFA A if S+ covers each transition
of A and uses every element of the set of final states of A as an accepting state [34,70]

3A characteristics set S= S+∪ S- is such that S+ is structurally complete with respect to the
target and S- prevents merging of any two states that are not equivalent
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transaction sequences. We observe that:

• If a transaction sequence with a consecutive repeating operation subsequence

completes a valid transaction, then discarding the repeat (i.e. having the op-

eration subsequence only once in the whole sequence) or inserting any num-

ber of such repeating operation subsequence consecutivelyin the sequence

should also complete a valid transaction.

For example, consider the following sequenceselect item.select item.

add to cartcheckout. This completes a transaction (selecting an item, se-

lecting another item, adding that item to the shopping cart and then checking

out). The sequence contains exactly one consecutive repeated subsequence,

select item. Removing that operation gives another transaction sequence

select item.

add to cart.checkout. This is also a valid transaction (selecting an item,

adding that item to the shopping cart and then checking out).Similarly, the

following sequenceselect item.select item.select item.add to cart.

checkout also completes a transaction.

So given a set of completed transaction sequences the aforementioned insert

and delete operations allow a limited degree of generalization. We will learn a pro-

cess automaton (i.e. process model) to accept these kinds ofgeneralized sequences

from a training setT of completed transaction sequences. The details are as follows:

Definition 1 (Language of transaction sequences)Given a training set T , the

language of transaction sequences4, denoted byA (T) is thesmallestset such that:

• T ⊆ A (T), and

• for all x ∈ A (T) such that x= pmms (p is the prefix, s the suffix and m the

repeated middle, all possibly empty), pmks∈ A (T) for every k> 0.

Note thatA (T) generalizesT, and is the language we seek to learn fromT. In

particular, we generalizeT such that any consecutively repeating substring inT

is now permitted to repeat an arbitrary number of times. The languageA (T) has

4The language definition and the algorithm to construct process automaton were developed with
Prof. C.R. Ramakrishnan
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an important property: it is closed with respect to trainingsets in the sense that

adding any string in the language to the training set does notchange the language.

Formally,

Theorem 1 (Closure) Let T be a given training set andA (T) be the corresponding

language of transaction sequences. Then, for all S such thatT ⊆S⊆ A (T), A (S) =

A (T).

The proof of this property follows from the monotonicity ofA : i.e. if T ⊆ S

thenA (T) ⊆ A (S). The property of closure indicates “stability” of the learned

language since no string in the language could have been added to the original

training set to construct a different (more general) language.

The definition ofA is does not directly give a procedure to construct an au-

tomaton that acceptsA (T). We now outline such a procedure.

Definition 2 Let R (T) be the set of regular expressions over the alphabet of T ,

defined as follows:

• T ⊆ R (T)

• ∀x∈ T such that x= pmms, pm+s∈ R (T).

Note thatR (T) is a finite set of regular expressions (REs); in particular, ifthe

largest sequence inT is of lengthk, then|R (T)|= O(k2|T|), and the largest regular

expression inR (T) is of lengthk2 or less.

Let L (r) denote the language of a regular expressionr. The language of a set

of regular expressions is the union of the languages of each of its elements: i.e. if

R is a set of regular expressions, thenL (R) = ∪r∈RL (r).

The language of regular expressionsR (T) constructed from the training set

is identical toA (T), the language of transaction sequences learned fromT, as for-

mally stated below.

Theorem 2 For all sets of training sequences T ,A (T) = L (R (T)).

The above theorem can be proved by considering the usual least fixed point

(iterative) construction ofA (T), and showing that the least fixed point computation

will converge in two steps toL (R (T)).
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Note thatR (T) gives us an effective procedure for constructing the transaction

automaton. For each regular expression inR (T) we construct the corresponding

nondeterministic finite automaton (NDFA) using Thomson’s construction [46]. The

automaton forL (R (T)) is simply the union of all the individual automata. Based

on the argument above on the size ofR (T) and Thomson’s construction, it follows

that if k is the length of the longest sequence inT, then the automaton forA (T) thus

constructed is of sizeO(k4|T|), and can be constructed in timeO(k4|T|). Finding

more efficient construction algorithms and building smaller automata are topics of

future research.

Next, we describe such a learning algorithm in detail.

5.3.2.1 Unsupervised Learning of the Process Model

The steps for learning the process model are as follows.

• Start with training transaction Sequences and a set containing regular expres-

sions, which is initially empty.

• For a sequenceTSi , find all possible non-empty subsequencesm such that

TSi = pmms

• for each suchpmms, generate a regular expressionpm+sand insert it to

the set containing regular expressions
• if no non-emptym is found, then insertTSi to the set containing regular

expressions

• Get the union of the regular expressions from the set containing regular ex-

pressions

• Build a non-deterministic automaton from the regular expression constructed

above using a standard algorithm [4, 46, 84] and return the automaton as the

learned process model from training sequences.

The detailed learning algorithm is illustrated inLearnProcessModel. Line 1

of the algorithm initializes the setExpSetto be empty. Line 2 to 10 is the main

iteration loop. Line 3 takes each training example, and line4 invokes the algo-

rithm FindConsecutiveRepeatingSubsequences. This algorithm generates all possi-

ble subsequences in a sequence given as parameter (line 4 andline 5 of algorithm
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Figure 34: Non Deterministic Process Model (with epsilon transitions) Constructed from
Regular Expressions in Table 9

Figure 35: Non Deterministic Process Model after removing epsilon moves from the model
in Figure 34
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FindConsecutiveRepeatingSubsequences). Next it checks for consecutive repeating

subsequences (line 6 ofFindConsecutiveRepeatingSubsequences). If such a repeat-

ing subsequence is found, then the algorithm breaks the entire sequence in the form

pmms(line 7, 8, 9 ofFindConsecutiveRepeatingSubsequences) where,

• p is the prefix which can be empty.

• m is the repeating middle part.

• s is the suffix which can be empty.

Algorithm LearnProcessModel

Input: Sequences: A Set of Training Sequences Given as Positive Examples

Output: (Model): The learned process model

1. RegExpSet← /0
2. for i←1 to Sequences.Size

3. do Sequence← Sequences(i)

4. PreMidSu f f Set← FindConsecutiveRepeatingSubseq(Sequence)

5. if PreMidSu f f Set.Empty

6. then ExpSet← ExpSet∪ Sequence

7. else

8. for j←1 to PreMidSu f f Set.Size

9. do (Pre f ix, Middle, Su f f ix)← PreMidSu f f Set( j)

10. ExpSet←ExpSet∪ Pre f ix.Middle+.Su f f ix

11. NonDeterministicProcessModel←BuildNFAFromRegExp(ExpSet)

12. return (NonDeterministicProcessModel)

Algorithm FindConsecutiveRepeatingSubsequences

Input: Sequence: A Training Sequence

Output: (PrefixMidMidSuffixSet): A Set where Each Entry is of the form (Prefix,

Middle, Suffix)

1. Pre f ixMidMidSu f f ixSet← /0
2. for i←1 to Sequence.Size

3. do for j←1 to Sequence.Size

4. do SubStr←Sequence.SubString(i, j)

5. SubStrNext←Sequence.SubString( j+1, j+ SubStr.Length)
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Figure 36: Non Deterministic Process Model Constructed from Regular Expressionsin
Table 11

6. if SubStr.Equals(SubStrNext)

7. then Pre f ix←Sequence.SubString(1, i -1)

8. Middle←SubStr

9. Su f f ix ←Sequence.SubString( j+ SubStr.Length + 1,

Sequence.Size)

10. Pre f ixMidMidSu f f ixSet ←Pre f ixMidMidSu f f ixSet

∪(Prefix,Middle, Su f f ix)

11. return (Pre f ixMidMidSu f f ixSet)

The algorithm inserts (line 10 ofFindConsecutiveRepeatingSubsequences)

each such prefix, middle and suffix into a set (Pre f ixMidSu f f ixSet) which is re-

turned as output in line 4 of algorithmLearnProcessModel.

For example, consider the training sequences in Table 8. Thefirst sequence is

select item.add to cart.checkout which does not contain any repeated subse-

quence. Therefore, line 4 of the algorithmLearnProcessModelreturns the empty

set. For the next sequence (select item.select item.add to cart.checkout), the
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Figure 37: Non Deterministic Process Model after removing epsilon moves from the model
in Figure 36

subsequence

select item is repeated consecutively. This sequence has a uniquepmmsrepresen-

tation, wherep is empty, m is select itemands is add to cart.checkout. The next

sequence (select item.add to cart.add to cart.checkout) also has a uniquepmms

representation wherep is select item, m is add to cart ands is checkout. The fi-

nal sequence in the table 8select item category.select item.add to cart.checkout

does not contain a repeated subsequence and hence line 4 of the algorithm (Learn-

ProcessModel) returns the empty set. Line 5 of the algorithmLearnProcessModel

checks whether the set of (Prefix, Middle, Suffix) is empty. Ifthis set is empty (i.e.

no consecutive repeating subsequence in the sequence), thesequence is added to the

set containing Regular Expressions (line 6). However, for each non-empty such set,

a Regular Expression is added to the setExpSet. The form of each such expression

is Pre f ix.Middle+.Su f f ix.

Continuing with our example, the first and fourth training sequences are

added to the setExpSet (since the set of ((Prefix, Middle, Suffix) become

empty for these sequences). For the second sequence, the Regular Expression

select item+.add to cart.checkout is added to the set. For the third sequence,

select item.add to cart+.checkout is added to the set. The set of Regular Expres-

sions is shown in Table 9.
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No. Training Sequence

1 < select item,add to cart,checkout >
2 < select item,select item,add to cart,checkout >
3 < select item,add to cart,add to cart,checkout >,
4 < select item category,select item,add to cart,checkout >

Table 8: Labeled Training Sequences for Process Model Learning

No. Regular Expressions

1 < select item,add to cart,checkout >
2 < select item+,add to cart,checkout >
3 < select item,add to cart+,checkout >,
4 < select item category,select item,add to cart,checkout >

Table 9: Regular Expressions for Sequences given in 8

Once we have a set of Regular Expressions, we construct an NFA from the

expression using a standard algorithm [46, 84] (line 11). The resultant Non Deter-

ministic Process Model is shown in Figure 34.

Now we illustrate the process model learning algorithm withthe labeled ex-

amples in Table 10. The set of regular expressions for these examples are shown

in Table 11. weconstructNFA f romtheexpressionsusing standard algorithm. The

resulting Non-Deterministic Process Model is shown in Figure 36.

Note that it is possible to convert the non deterministic process model returned

by our algorithm to a deterministic process model. However,the existing subset

construction algorithm that converts a NFA to DFA is computationally expensive

(exponential complexity). So we will use the non-deterministic process model re-

turned by our algorithm to avoid such computation.

No. Training Sequence

1 < submit search,select item,submit search,select item,add to cart,checkout >
2 < selectcategory,select item,selectcategory,select item,add to cart,checkout >
3 < selectcategory,selectcategory,submit search,select item,add to cart,checkout >

Table 10: Labeled Training Sequences for Process Model Learning
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No. Regular Expressions

1 < (submit search,select item)+,add to cart,checkout >
2 < (selectcategory,select item)+,add to cart,checkout >
3 < selectcategory+,submit search,select item,add to cart,checkout >

Table 11: Regular Expressions Computed for the Sequences in 10

In Section Chapter 3, we defined a process model as a deterministic automaton.

According to that definition: when the model makes a transition to a state during

the course of a transaction, a Web page is provided to the state as an input. If

the concepts associated with the state are present in the page, then they alone are

identified and presented to the user.

However, in a nondeterministic process model, we have to consider a set of

states instead of a single state at any given step of a transaction. When the model

makes a transition, it makes a transition to a set of states (possibly a set with a single

state). As a result the Web page is provided to the set of states as an input. If the

concepts associated with the states (from that set of states) are present in the page,

then they alone are identified and presented to the user. Thismodification is very

straightforward and hence a non-deterministic process model can also be used to

conduct transactions.

5.4 Personalized Transaction Models

Concept instances shows variability in texts and presentation patterns. How-

ever, this variability is less common in a single Website. Therefore, clustering con-

cept segments from different Websites often places conceptsegments in the wrong

cluster. For example, an “AddToCart” concept instance in “Amazon.com” contains

the text ”add to cart” but the same concept instance in “Buy.com” contains the text

“buy now”. The concept segments collected from these instances may be placed in

different clusters if other textual and pattern features donot have enough match.

However, a single user most often visits some common Web sites. A Web

transaction model for each such site can capture the user’s personalized transactions

in that Website. Therefore, we can also mine personalized transaction models using
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the algorithm described in the previous sections.

5.5 Experiments

We conducted a series of experiments to evaluate the performance of the trans-

action model learning algorithms.

5.5.1 Data Collection

To have an efficient infrastructure for experiments, a visual tool [18] was de-

signed for viewing frame trees, as well as collecting data. AWeb browser was also

embedded to aid the data collection. During the data collection stage, participants

were asked to select any link, or submit a search form to navigate from one page

to another page. As they navigate from one page to another page, the frame trees,

corresponding to the source and the destination pages, wereautomatically saved

together with user selections. This is how we collected unlabeled transaction se-

quences. To aid the collection of labeled sequences, participants chose the name of

the transaction operation for each navigation. They also selected the nodes of the

frame tree as instances of the concept associated with the operation.

5.5.2 Datasets

Around 500 transaction sequences from 36 Websites in the online shopping

domain (books, electronics, office supplies) were manuallycollected using the data

collection method described above. 15 CS graduate students (all sighted) were used

to collect transaction sequences. Around300transaction sequences were unlabeled

and the remaining200 were labeled. We denote the set of unlabeled sequences

asUnlabeledSeq, and the set of labeled sequences asUserLabeledSeq. We ap-

plied our concept segment retrieval algorithm on sequencesin UnlabeledSeqand

UserLabeledSeqto get set of concept segments,CUnlabeled andCUserLabeled. The

setCUserLabeledcontained 807 labeled concept segments (total eight concept labels

were used). and the setCUnlabeledcontained 1092 unlabeled segments.

We split the setCUserLabeledinto CTestSegmentsandCLabeledSegments. CTestSegments
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Cluster Label Number of User Labeled Segments

SearhForm 91 (67 inCTestSegments, 24 inCLabeledSegments)
AddToCart 118 (91 inCTestSegments, 27 inCLabeledSegments)

ContinueShopping 100 (72 inCTestSegments, 28 inCLabeledSegments)
CheckOut 114 (83 inCTestSegments, 31 inCLabeledSegments)

ShoppingCart 98 (74 inCTestSegments, 24 inCLabeledSegments)
EditCart 96 (70 inCTestSegments, 26 inCLabeledSegments)
ItemList 93 (68 inCTestSegments, 25 inCLabeledSegments)

ItemTaxonomy 97 (75 inCTestSegments, 22 inCLabeledSegments)

Table 12: Segments in User Labeled Clusters

Dataset No of Sequences No of Concept Segments Labeling

UnlabeledSeq 300 1092 Unlabeled
UserLabeledSeq 200 807 User Labeled

Table 13: Description of Datasets.

contained 600 segments and was used as a validation set to determine the perfor-

mance of the clustering algorithm, and also to construct thetest data sets (The test

sets are described in Table 14).CLabeledSegmentscontained 207 segments and was

used to label unlabeled segments (described in Section 5.1.3).

Distribution of user labeled concept segments to each concept label is pre-

sented in table??. Note that, since the concept segments in bothCTestSegmentsand

CLabeledSegmentsare labeled, 8 labeled clusters are contructed from them. This is

done by constructing a cluster for each concept label. LetClusteruser (constructed

from CTestSegmentswhich contains 600 concept segments) andClusterlabeling (con-

structed fromCTestSegmentswhich contains 207 concept segments) denote the set of

labeled clusters.

5.5.3 Performance of Clustering

Note that, our test set may contain only unlabeled concept segments (TU ) or

a fraction of the concept segments can be labeled (e.g. 5% labeled). We apply

the clustering algorithm on segments in testset (testsets are described in 17), and

eliminate the noisy clusters. LetClusteralgo denotes the set of clusters constructed
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Test Set. Description

T U Concept Segments are Unlabeled
T 5L 5% Concept Segments are Labeled
T 10L 10% Concept Segments are Labeled
T 15L 15% Concept Segments are Labeled
T 20L 20% Concept Segments are Labeled
T 25L 25% Concept Segments are Labeled
T 30L 30% Concept Segments are Labeled
T 35L 35% Concept Segments are Labeled
T 40L 40% Concept Segments are Labeled
T 45L 45% Concept Segments are Labeled
T 50L 50% Concept Segments are Labeled

Table 14: Test Datasets for Clustering Performance Evaluation

Test Set. Number of Clusters

T U 12
T 5L 11
T 10L 9
T 15L 12
T 20L 12
T 25L 11
T 30L 10
T 35L 10
T 40L 9
T 45L 8
T 50L 8

Table 15: Number of Clusters Constructed from each Test Dataset

from the testset. We label the clusters inClusteralgo using the labeled clusters,

Clusterlabeling (the labeling procedure is described in section 5.1.3). Number of

clusters constructed (after eliminating noisy clusters) for each testset is presented

in 15.

We will determine the performance of clustering in terms of recall/precision/f-

measure5 for each concept present inClusteruser.

5recall value of clustering instances (i.e. segments) of a particular concept is the ratio of number
of concept instances (i.e. segments) clustered correctly (i.e. labeled as instance of that concept) over
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Let Clusteruseri denotes the cluster containing concept segments labeled as

concepti by user andClusteralgoi denotes the cluster containing concept segments

labeled as concepti by our algorithm.

We take each concept segment fromClusteruseri and compare its label (i.e. user

label) with the label assigned by our algorithm. LetNtotali be the total number of

concept segments inClusteruseri . Ncorrecti be the number of concept segments which

are present in bothClusteruseri andClusteralgoi . Nincorrecti be the number of concept

segments which are present inClusteralgoi but not present inClusteruseri . Then, the

recall value for the clustering algorithm for concepti is Ncorrecti / Ntotali , and the

precision value isNcorrecti / (Ncorrecti + Nincorrecti ). The F-measure is calculated by

taking the harmonic mean of recall and precision.

For each concept, we compute recall/precision/f-measure of clustering using

the above formula. Figure 38 shows performance of clustering (in terms of f-

measure). Note that, clustering performance is higher (around 80% f-measure) for

some concepts (e.g. SearchForm, AddToCart, ContinueShopping, CheckOut) than

the other concepts. This is because of the consistent textual and pattern features

present in the segments of that cluster.

We average the clustering performance (i.e. recall/precision/f-measure) of

each concept to get the overall clustering performance. Figure 39 shows perfor-

mance (f-measure) variation of clustering for different test datasets. As the amount

of labeled data was increased, better clustering accuracy was achieved.

5.5.4 Performance of Transaction Model Learning

We computed the performance of transaction models (processmodel and con-

cept models) for both the setsUnlabeledSeq(i.e. set of unlabeled transaction

sequences) andUserLabeledSeq(i.e. set of labeled transaction sequences). The

transaction sequences inUnlabeledSeqare labeled using the algorithm described

in GenerateLabel.

Next, each of the sets was divided into training and testing.We used 90%

sequences for training, 10% for testing and performed a standard 10-fold cross

the total number of that concept instance (i.e. segment). For precision, the denominator becomes
the total number of instance (segment) labeled as that concept (either correctly or incorrectly). F-
Measure is the simple harmonic mean of recall and precision
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Figure 38: Performance of Clustering for Each Concept

Figure 39: Performance of Clustering with Increasing Amount of Labeled Sequences
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Dataset No. of States in the Process Model

Dataset1 45
Dataset2 35
Dataset3 32
Dataset4 29
Dataset5 33
Dataset6 36
Dataset7 35
Dataset8 42
Dataset9 34
Dataset10 28

Table 16: Process Model Learning Statistics for each Training Set Generated from Unla-
beled Sequences (UnlabeledSeq)

Dataset No. of States in the Model

Dataset1 34
Dataset2 32
Dataset3 29
Dataset4 22
Dataset5 28
Dataset6 34
Dataset7 27
Dataset8 37
Dataset9 31
Dataset10 25

Table 17: Process Model Learning Statistics for each Training Set Generated from Labeled
Sequences (UserLabeledSeq)

validation.

5.5.4.1 Performance of Process Model Learning

Note that the transaction sequences used for training were complete sequences.

The test set contained both complete and incomplete transaction sequences.

We computed the recall/precision/f-measure6 of the process model learning.

6Recall for a process model is the ratio of the number of completed transactions accepted by the
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Figure 40: Performance of Process Model Learning from Unlabeled Sequences

Figure 40 shows the recall/precision/f-measure of the learned process model

from unlabeled sequences (i.e. datasetUnlabeledSeq). Figure 41 shows the

recall/precision/f-measure of the learned process model from labeled sequences (i.e.

datasetUserLabeledSeq)

Note that performance of process model learning from labeled sequences (i.e.

datasetUserLabeledSeq) is higher than the performance of process model learning

from unlabeled sequences (i.e. datasetUnlabeledSeq). This is because concept

segments extracted from unlabeled sequences are clusteredand then concept la-

bels are generated for them. Clustering of unlabeled conceptsegments introduces

inaccuracy in the datasetUnlabeledSeq. On the other hand, concept segments in

the datasetUserLabeledSeqare user-labeled and do not contain such inaccuracies.

Hence, performance of process model learning for this dataset becomes higher than

the other one.

model over the total number of completed transactions. For Precision, this denominator becomes
the total number of accepted transactions (complete and incomplete). F-measure is the harmonic
mean of recall and precision
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Figure 41: Performance of Process Model Learning from Labeled Sequences

5.5.4.2 Concept Identification

We measured the recall7, precision and f-measure of concept identification.

Figure 42 shows the recall/precision/f-measure of the concept identification

from unlabeled sequences (i.e. datasetUnlabeledSeq). Figure 43 shows the

recall/precision/f-measure of the concept identificationfrom labeled sequences (i.e.

datasetUserLabeledSeq)

We average the concept identification performance of each concept to get the

overall concept identification performance. We used 90% sequences for training,

10% for testing and performed a standard 10-fold cross validation.

Figure 44 shows the cross validation performance of the concept identifi-

cation when concept models are learned from unlabeled sequences (i.e. dataset

UnlabeledSeq). Figure 45 shows the cross validation performance of the concept

identification when concept models are learned from labeledsequences (i.e. dataset

UserLabeledSeq)

7Recall value for a concept is the ratio of the number of correctly labeled concept segments over
the actual number of segments which are instances of that concept. For Precision, this denomina-
tor becomes the total number of segments labeled as instanceof that concepts. F-measure is the
harmonic mean of recall and precision
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Figure 42: Performance of Concept Identification from Unlabeled Sequences

Figure 43: Performance of Concept Identification from Labeled Sequences
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Figure 44: Cross Validation Performance of Concept Identification when Concept Models
are Learned from Unlabeled Sequences

Note that, performance of concept identification from labeled sequences (i.e.

datasetUserLabeledSeq) is higher than the performance of concept identification

from unlabeled sequences (i.e. datasetUnlabeledSeq). This is because concept seg-

ments extracted from unlabeled sequences are clustered, and then concept labels are

generated for them. Clustering of unlabeled concept segments introduces inaccu-

racy in the datasetUnlabeledSeq. On the other hand, concept segments in dataset

UserLabeledSeqare user labeled and do not contain such inaccuracy. Hence, con-

cept identification performance for this dataset becomes higher than the other one.

5.5.5 Single Site Transaction Model Evaluation

We constructed separate transaction models for 3 Web sites (“Amazon.com”,

“OfficeMax.com”, “BN.com”) from our dataset (described in section 5.5.2). To

construct a transaction model for a specific site, we separated the transaction se-

quences (both labeled and unlabeled) collected from that site. We had 15 unlabeled

and 10 labeled sequences for “Amazon”, 10 unlabeled and 8 labeled sequences for

“OfficeMax” and 13 unlabeled and 12 labeled sequences for “BN”. We used our al-

gorithm to assign labels to unlabeled sequences, learned process model and concept
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Figure 45: Cross Validation Performance of Concept Identification when Concept Models
are Learned from Labeled Sequences

Figure 46: Performance of Clustering Unlabeled Sequences Collected from “Amazon”

models from labeled sequences.

We determined the performance of clustering, process modellearning and con-

cept identification from the transaction sequences collected from each site.
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Figure 47: Performance of Clustering Unlabeled Sequences Collected from “OfficeMax”

Figure 48: Performance of Clustering Unlabeled Sequences Collected from “BN”
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Figure 49: Performance of Learning Process Model from Unlabeled Sequences

Figure 50: Performance of Concept Identification for “Amazon”

Figures 46, 47, 48, 49, 50, 51, 52, illustrate the experimental results.

Observe that, we got higher performance of clustering (an improvement of

approximately 10%), process model learning (an improvement of approximately

12.5%) and concept identification (an improvement of approximately 9%) when the
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Figure 51: Performance of Concept Identification for “OfficeMax”

Figure 52: Performance of Concept Identification for “BN”



CHAPTER5. Mining Transaction Models: Unsupervised Approach 96

models are learned from a single Website. This is because, concept instances show

less variability in texts and presentation patterns in a single Web site. Therefore,

the performance of clustering concept segments from a single site is higher than

the performance of clustering concept segments from different sites. A higher per-

formance of clustering also results a higher performance ofprocess model learning

and concept identification.



Chapter 6

Related Work

The work described in this thesis has broad connections to research in Web

services, semantic understanding of Web content, process model learning, Web ac-

cessibility research, contextual processing, end user programming and automatic

information extraction.

6.1 Web Services

Web Services research is an emerging paradigm that focuses on technologies

that let service providers to export their functionalitieson the Web so as to facilitate

automated e-commerce. It has given rise to standardizationefforts resulting in lan-

guages such as WSDL for describing services, SOAP for accessing services, UDDI

for service discovery and integration, BPEL4WS for business process specification,

and OWL-S as an ontology for semantic description of service metadata.

Service providers are beginning to utilize these languagesfor exposing their

services (see for examplehttp://www.amazon.com/webservices).

The complementary task of annotating service descriptionswith semantic

metadata has been addressed in [45,71,78].

In contrast to these works we address a different kind of annotation problem,

namely automatic annotation of different kinds of conceptsthat can occur in a Web

page.

Web services expose very basic functionalities which by themselves are not
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sufficient to conduct complex transactions. For instance, Amazon’s Web service

exposes basic tasks such as searching for a product, adding aproduct into the shop-

ping cart,etc. One has to compose these primitive services in order to perform

complex transactions.

This problem has been receiving attention lately [3, 24, 76,85, 90]. All these

works typically use process definitions and an ontology to create the composite

service with varying degrees of automation. Note that our technique is based on

composing operations over Web pages instead of services.

A vast majority of transactions on the Web are still conducted over HTML

pages. This focus on Web pages is what sets our work apart fromthose in Web

services. Also note that our approach to Web transactions isquite flexible, in the

sense that the users can define their own “personalized” transactional service instead

of being confined to whatever service is exposed by the provider.

6.2 Semantic Analysis of Web content

The essence of the technique underlying our concept identification module

is to partition a page into segments containing “semantically” related items and

classify them against concepts in the ontology.

Substantial research has been done on segmenting Web documents [36,83,91].

These techniques are either domain [36] or site [83] specificor depend on fixed sets

of HTML markup [91]. Semantic partitioning of Web pages has been described in

[63–65]. These systems require semantic information (e.g.ontologies) to partition

a Web page.

In contrast to these research works, our geometric segmentation algorithm

does not require any ontology or domain information.

Web page partitioning techniques have been proposed for adapting content on

small screen devices [21, 22, 25, 93], content caching [75],data cleaning [79, 92],

and search [94]. The VIPS [94] algorithm uses visual cues to partition a Web page

into geometric segments. The algorithm extracts nodes fromthe DOM tree, finds

vertical and horizontal separator lines between the nodes,and segments the Web

page into regions based on a number of handcrafted rules. This algorithm is used

in [79], where the segments are described by a set of features(e.g. spatial features,



CHAPTER6. Related Work 99

number of images, sizes, links, etc.). The feature values are then fed into an SVM,

which labels the segments according to their importance. The idea of using content

similarities for semantic analysis was also recently explored in [96] in the context

of Web forms. The fundamental difference between our technique and all the above

works is the tight coupling of the logical structure of a pagewith concept learning.

This is because we learn concept models from segments representing an instance of

a concept.

Concept identification in Web pages is related to the body of research on se-

mantic understanding of Web content. Powerful ontology management systems and

knowledge bases have been used for interactive annotation of Web pages [44, 50].

More automated approaches combine them with linguistic analysis [72], segmenta-

tion heuristics [31,35], and machine learning techniques [27,40].

Our semantic analysis technique does not depend on rich domain information.

Instead, our approach relies on light-weight features in a machine learning setting

for concept identification. This allows users to definepersonalizedsemantic con-

cepts thereby lending more flexibility to modeling Web transactions. Moreover, in

contrast to all of these works, our geometric segmentation (partitioning) method

does not depend on any domain knowledge or semantic information.

It should also be noted that the extensive work on wrapper learning [51] is

related to concept identification. However, wrappers are syntax-based solutions

and are neither scalable nor robust when compared to content-based techniques.

6.3 Process Model Learning

Our work on learning process models from user activity logs is related to re-

search in mining workflow process models (see [88] for a survey). However, our

current definition of a process is simpler than traditional notions of workflows. For

instance, we do not use sophisticated synchronization primitives. Hence we are

able to model our processes as DFAs instead of workflows and learn them from

example sequences. Learning DFAs is a thoroughly researched topic (see [66] for

a comprehensive survey). A classical result is that learning the smallest size DFA

that is consistent with respect to a set of positive and negative training examples is

NP-hard [9,10,38]. This spurred a number of papers describing efficient heuristics
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for DFA learning(e.g., [66,68]).

We used the simple yet effective heuristic with low time complexity described

in [68] for process model learning using a supervised approach. There are some

drawbacks with learning DFAs.

Web transaction traces are collected by maintaining logs oftransaction activ-

ities done by users. It is quite diffcult to collect traces that satisfies the properties

(e.g. characteristics samples) which are necessary for DFAlearning in polynomial

time. In addition, DFA learning requires a sizable number ofnegative examples

which are often difficult to obtain, specially from logs of user activities.

In this research, we have developed a new process model learning algorithm

for unsupervised model mining. In contrast to traditional DFA learning, our algo-

rithm does not require negative examples. We defined the class of Web transaction

languages and using such a definition, we proposed a new learning algorithm for

process models.

Navigating to relevant pages in a site using the notion of “information scent”

has been explored in [26]. This notion is modeled using keywords extracted from

pages specific to that site. This is site specific, so keyword based models have to

be built for each site. This is labor intensive and is not scalable. In contrast, our

process model is domain specific and using it a user can do online transactions on

sites that share similar content semantics.

6.4 Web Accessibility Research

Several research projects aiming to facilitate Web accessibility include work

on browser-level support [1,11,83], content adaptation and summarization [42,77,

95], organization and annotation of Web pages for effectiveaudio rendition [47,48],

ontology-directed exploratory browsing as in our HearSay audiobrowser [20, 74],

WebInSight [12], etc.

Some of the most popular screen-readers are JAWS [1] and IBM’s Home Page

Reader [11, 83]. An example of a VoiceXML browsing system (which presents

information sequentially) is described in [67]. All of these applications do not per-

form content analysis of Web pages. BrookesTalk [95] facilitates non-visual Web

access by providing summaries of Web pages to give its users an audio overview



CHAPTER6. Related Work 101

of Web page content. The work described in [42] generates a “gist” summary of a

Web page to alleviate information overload for blind users.

In our work we need to first filter the content based on the transactional context

represented by the states of the process model. Specificallywe need a more global

view of the content in a set of pages in order to determine whatshould be filtered in

a state.

In [61], we described a simple and scalable approach for conducting Web

transactions using a shallow knowledge base that stores features occuring in con-

cepts. Since this approach does not use a process model, it isnot possible to repre-

sent transactional context (i.e. state) and present concepts depending on the trans-

actional context. In contrast, we can determine what shouldbe filtered in a state

using a process model. Process model can also be used to rank different concepts

occuring in a page. Currently the model only stores concepts in a state. It can

however stores the ranks of the concepts in a state. Such ranks can be computed

from the transaction traces. In addition, use of a model-directed approach also helps

personalization.

The works describing organization and annotation of Web pages for better

audio rendition typically rely on rules or logical structures [47]. In [48], authors

propose the idea of extracting content using semantics [48]. They describe a frame-

work for manual annotation of the content w.r.t. a schema, representing the task a

user wishes to accomplish. These annotation rules are also site specific, and, hence,

not scalable over content domains.

The essential difference between our work and all of the above-mentioned

research is that we do not require any domain knowledge in terms of rules.

6.5 Contextual Analysis

The notion of context has been used in different areas of Computer Science

research. For example, [49] defines context of a Web page as a collection of text,

gathered around the links in other pages that are pointing tothat Web page. The

context is then used to obtain a summary of the page. Summarization using context

is also explored by the InCommonSense system [8], where search engine results

are summarized to generate text snippets. Context analysis for non-visual Web
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access is described in [41, 43], where the context information of a link is used to

get the preview of the next Web page, so that visually disabled individuals can

choose whether or not they should follow the link. This idea is used in the AcceSS

system [2], to get the preview of the entire page. All of theseworks define the

context of the link as an ad-hoc collection of words surrounding it. In contrast, our

notion of context is based on the topic similarity of words around the link. We use

a principled approach for context analysis using a simple topic boundary detection

method [5], confined to geometric segments that have semantically related content.

Contextual browsing is a joint effort by me, Prof. I.V. Ramakrishnan and my

colleague, Yevgen Borodin. In his thesis, Yevgen has proposed a unifying inter-

face for aural web access that can substantially improve theuser experience and

make non-visual web browsing more usable [17]. Yevgen’s andmy thesis share

context collection algorithm. In my thesis, I have used context of Web objects to

identify concept segments. On the other hand, Yevgen describes the context-based

browsing technique as one of the algorithms to improve Web accessibility. Apart

from that, we do not share any overlapping content in our thesis. In contrast to his

thesis proposal which aims to develop the architecture, interface, and algorithms

for Bridging the Web Accessibility Divide, I have focused on formalizing transac-

tion models for Web Accessibility and developing algorithms for mining them from

transaction click streams.

6.6 End User Programming

Several research works on end user programming that relate to our work in-

clude programming by demonstration [30, 52, 53], agent learning [7], query from

demonstrations [86], learning from instructions [14, 15],building meshups1 from

examples [87], etc.

Programming by demonstration (PBD) [30, 52, 53] allows usersto con-

struct a program by simply performing actions in the user interface with which

they are already familiar. CoScripter [56] uses this approach to build a col-

laborative scripting environment for recording, automating, and sharing web-

based processes. Other browser recording and playback tools, e.g. iMacros

1a web application that integrates data from multiple web sources to provide a unique service
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(http://www.iopus.com/imacros/), also use this approach. Using such tools, Web

based tasks can be scripted and automated. However, such approaces are super-

vised and are not scalable across Websites.

PLOW [7] is a collaborative task learning system that learnstask models from

demonstration, explanation and dialogue. The system couples machine learning,

natural language processing and AI techniques to learn suchtask models. Learning

from instructions is described in [14, 15]. For example, Tailor [14] allows users to

modify task information through instruction.

Knoblock at. el [86] describes their system Karma, which allows users (with-

out programming experience) to easily build services that integrate information

from multiple data sources. In a recent work [87], they described how users with

no programming background can easily create Mashups using Karma.

All of these works enable the user to complete a task without programming

knowledge. However, they are supervised and hence a lot of user interaction is

required throughout the learning process. Some of the works(e.g. [7]) also use

domain knowledge to learn a task model.

In contrast, our algorithm of learning transaction models from click streams is

completely unsupervised and does not need user interactionin the learning process.

Moreover, we do not use any domain knowledge to learn transaction models.

However, the fundamental difference between our work and all the above men-

tioned work is that we learn transaction models from sequences of operations over

multiple Web pages. That allows us to capture transaction context in states of the

learned process models and present concepts in a state to theuser. Moreover, it

aims to help visually disabled users build their transaction models over sites they

frequently visit and quickly conduct transactions.

6.7 Automatic Information Extraction

Our algorithm to automatically assigning labels to unlabeled transaction se-

quences is related to a number of research works [16, 28, 54, 55]. Knoblock at.

el describes automatic labeling of data used by a Web servicewhere a classifier is

built to label unseen data [55]. Borker at. el [16] uses heuristic features and domain-

specific vocabularies, to learn a probabilistic model from aset of training examples
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for automatic text segmentation. These approaches are supervised and use domain

knowledge to build the classifier. In contrast, our label assignment algorithm is

completely unsupervised. Automatic information extraction from HTML tables is

described in [54]. This work is unsupervised, domain independent and uses Web

page structures, templates, etc. to extract information from tables. We also use the

geometric structure of the concept instances as well as their content similarities to

cluster them.

Dong et al [32] describes Woogle, a Web service search enginethat finds sim-

ilarity of Web services using an unsupervised clustering. They match operations,

input outputs, text descriptions to cluster the Web services. In contrast, we cluster

segments containing concept segments in a Web page.

The RoadRunner system [28,29] automatically extracts data from Web sites by

exploiting similarities in page layouts. It learns the underlying template of Web sites

from examples pages using unsupervised approach, and uses it to automatically

extract data from Web sites. In contrast, we learn process models from transaction

sequences and concept models from Web page segments containing instances of the

concepts.



Chapter 7

Discussion

Advances in web technology have considerably widened the web accessibility

divide between sighted and blind users. This divide is especially acute when con-

ducting online transactions. Model-directed Web transaction, that uses transaction

models (i.e. process model and concept models) to deliver relevant page fragment

at each transactional step can improve Web accessibility and substantially reduce

the digital divide between sighted and blind users. Our preliminary experimenta-

tion [81] seems to suggest that it is possible to achieve suchreductions in practice.

In this thesis, we describe such transaction models and techniques to mine

them using supervised and unsupervised approaches. First,we discussed some

of our Web content analysis techniques. We also defined the formal notions of a

Web transaction model and our initial work to mine transaction models using a su-

pervised approach [81, 82]. Next, we described automatic mining of transaction

models from unlabeled and partially labeled transaction sequences using unsuper-

vised clustering, classification, and our prior research onweb page partitioning and

context analysis [60].

There are several avenues for future research. We performedexperiments on

Websites from online shopping domains. But it is possible to apply our algorithm

to mine transaction models for other domains (e.g. flight ticket booking). In our

current framework, we need to build process models for each type of Web transac-

tions. It is interesting to investigate the possibility of developing a generic process

model to support any type of Web transaction. The transaction system emerged
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from this research will be used to push the state-of-the-artin assistive web brows-

ing technology. In particular, the transaction system willbe used for non-visual

Web transactions. Towards that the transaction system willbe deployed at the He-

len Keller Services for the Blind (http://www.helenkeller.org) to get feedback from

the visually handicapped community. Using this transaction system, blind users

will be able to personalize the system for Web sites that theyneed to use on a regu-

lar basis and conduct transactions on these sites with the same ease as their sighted

counterparts. Finally, integration of our framework with Web services standards

is an interesting problem. Success here will let us specify the process model in

BPEL4WS which in turn will enable interoperation with sites exposing Web pages

as well as those exposing Web services.
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