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Abstract of the Dissertation

Application of Asymptotic LRTS Results to
Mixture Problems in Genetic Research

by

Wonkuk Kim

Doctor of Philosophy

in

Applied Mathematics and Statistics

Statistics

Stony Brook University

2007

This dissertation considers two mixture problems. The first has known mixing

proportions, fixed but arbitrary number of components, and component density func-

tion from the one parameter exponential family. The asymptotic null distribution of

the likelihood ratio test statistic (LRTS) of the null hypothesis of a single component

distribution versus the alternative of two or more components in a mixture is proven

to be 1
2
χ2

0 + 1
2
χ2

1. The result is shown to hold when the component density function

has a nuisance parameter satisfying a linearly independence condition on the partial

derivatives. These results are applied to an F-2 breeding experiment in which the

mixing proportions are known to be 1/4, 1/2, and 1/4. The scientific problem un-

derlying the second problem is that there is a continuous variable used in assigning

a subject in a genetic study to a genotype, which can be modeled by a mixture dis-
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tribution with the same known number of components in controls and cases. The

component parameters are assumed to be equal but unknown in the two groups. The

null hypothesis is that the case mixing proportions are equal to the control mixing

proportions. The LRTS for this hypothesis is presented, and the non-centrality pa-

rameter of the power function is derived. We compare the power of the LRTS to the

power of the chi-square test of independence using genotype classifications from two

classification rules, a half-way rule and a Bayesian rule. The LRTS is more power-

ful asymptotically than the test of independence using either classification rule, with

increasing superiority as the frequency of the least common component becomes small.

Key Words: F-2 breeding experiment, genetic association study, case control study,

statistical power, non-central parameter, classification rule.
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Chapter 1

Introduction

Finite mixture models are useful to understand hidden heterogeneous structures

in data. Mixture models have been widely applied in many fields including genetics,

social sciences, biology, medicine, economics, engineering.

In 1893, Pearson [25] applied a mixture of two normal density functions to data of

the ratio of forehead to body length of 1000 crabs sampled from the Bay of Naples. He

used the method of moments to estimate the five parameters of the two component

heteroscedastic normal mixture model. Rao [26] used the maximum likelihood to

estimate the parameters in a mixture distribution by Fisher’s scoring method. Tan

and Chang [29] showed that maximum likelihood estimation (MLE) is superior to

the method of moments for this problem. Dempster et al. [5] formalized an iterative

algorithm, which is called the Expectation-Maximization (EM) algorithm. Wu [34]

showed the convergence of the EM algorithm.

A number of papers have been written on the testing of the number of com-

ponents of a mixture problem using the likelihood ratio test (LRT). However, the

classical regularity conditions [16] for the asymptotic theory to the LRT do not hold

in these mixture testing problems. Hartigan [11] and Liu et al. [19] showed that the

asymptotic null distribution of the likelihood ratio test statistic (LRTS) is asymptoti-
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cally unbounded in probability at a rate of log log n. Titterington [31] proved that the

asymptotic null distribution of a single univariate density against a mixture of two

known densities is a 50:50 mixture of a point mass at zero and a chi-square of degrees

of freedom one. Ghosh and Sen [8] showed that the asymptotic LRTS is distributed

as a functional form of a Gaussian process when the component parameter space is

compact. Other approaches to obtain the percentiles of LRTS of mixtures are to

use the bootstrap method by McLachlan [22] and the simulation results by Thode et

al. [30].

In genetic research, one approach to detect a major gene is to use a mixture

model with three component normal distributions [21]. For example, if the distribu-

tion of a phenotype is consistent with three normals with Hardy-Weinberg weights

p2, 2p(1 − p), and (1 − p)2, where the allele frequency p is estimated from the data,

then we may have empirical support for a major locus model for the phenotype.

Kruglyak and Lander [14] applied a mixture model to identity by descent (IBD) data

for quantitative trait locus (QTL) analysis. They used the likelihood of the sib-pair

difference. Later, Fulker and Cherny [7] suggested that a more powerful test can be

obtained by considering the likelihood of a bivariate model.

Goffinet et al. [9] considered the LRTS of two component mixtures of normal

distributions when the mixing proportions are known. Later, Loisel et al. [20] partially

extended this work to three component mixtures of normal distributions when the

mixing proportions are p = (1/4, 1/2, 1/4). They applied these results to detect major

genes of a QTL in an F2 breeding experiment.

This dissertation extends the asymptotic results of the LRTS of mixtures with

known mixing proportions to the case in which the component is not a normal prob-

ability density. The rigorous mathematical proof is given in Chapter 3. The results

show that the asymptotic null distribution of the LRTS does not depend on the
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number of components of the alternative hypothesis. The degeneracy of the Fisher

information matrix can cause the collapse of the dimension of the hypothesis space.

Kang et al. [12] suggested using a mixture of the bivariate t-distributions for clus-

tering the single nucleotide polymorphism (SNP) data that are continuously measured

by the fluorescence intensity signal. They showed that the use of the maximum likeli-

hood estimation of mixtures performs better than the use of the k-means clustering.

They conducted a test of independence followed by the MLE of the parameters of the

mixtures.

We recommend the use of the LRTS testing the equality of mixing proportions in

two groups under the assumption that the number of components and their parame-

ters are equal but unknown. The major theorem of Chapter 4 provides the asymptotic

power of the LRTS of mixtures in terms of the non-centrality parameter (NCP) of a

chi-square distribution. The theoretical comparison of the asymptotic power function

of the test of independence to the LRTS is given.

In summary, Chapter 2 presents the current asymptotic results on the distribu-

tion of the LRTS and other background material. In Chapter 3, our main results in

the asymptotic null distribution of a mixture model with known mixing proportions

is proven. In Chapter 4, my other main result about a mixture model in a genetic

case/control study is proven. We also compare the power of the mixture LRTS to the

chi-square test of independence.

3



Chapter 2

Quadratic Expansions and Asymptotic

Calculations in Statistics

2.1 Likelihood Expansion and Likelihood Ratio Test

Suppose that a sample X1, · · · , Xn is drawn from f(·|θ0). We wish to test the

null hypothesis H0 : θ ∈ Θ0 versus the alternative hypothesis H1 : θ ∈ Θ1. Let

Θ = Θ0∪Θ1. An extension of the Neyman-Pearson test is based on the log-likelihood

ratio [32]

Λ∗n = log
supΘ1

∏n
i=1 f(Xi|θ)

supΘ0

∏n
i=1 f(Xi|θ)

. (2.1)

If the hypotheses are simple, then the test statistic (2.1) is equivalent to the Neyman-

Pearson most powerful test.

Definition 2.1 (LRTS). The log-likelihood ratio statistic (LRTS) is defined by

LRTS = 2Λn = 2 max(Λ∗n, 0) = 2 log
supΘ

∏n
i=1 f(Xi|θ)

supΘ0

∏n
i=1 f(Xi|θ)

. (2.2)

The following notation applies throughout this dissertation: l(θ|X) = log f(X|θ)

and L(θ|X) =
∑n

k=1 l(θ|Xk) =
∑n

k=1 log f(Xk|θ). We sometimes use the shortened

notation l = l(θ|X), l0 = l(θ0|X), L = L(θ|X), and L0 = L(θ0|X). Every parameter
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or random variable may be a vector depending on the problem of interest. Before we

discuss the asymptotic results of the LRTS, we illustrate the exact null distribution

of the LRTS applied to a random sample from a normal distribution.

Example 2.1 (Exact Case)

Suppose that X1, · · · , Xn is drawn from N(θ0,Σ) with a known non-singular covari-

ance matrix Σ, where θ0 ∈ Rd. We can diagonalize the covariance matrix Σ =

P Tdiag(σ2
1, · · · , σ2

d)P = P TΣdP = (Σ
1/2
d P )TΣ

1/2
d P with an orthogonal matrix P .

Therefore, cov(PX,PX) = Eθ0PX(PX)T = P (Eθ0XX
T )P T = Σd. We define

W = Σ
−1/2
d P (X − θ0) ∼ N(0, Id×d), where Id×d is the d dimensional identity ma-

trix, and φ = Σ
−1/2
d P (θ − θ0). The log-likelihood can be expanded as

2(L− L0) =−
n∑
i=1

(Xi − θ)TΣ−1(Xi − θ) +
n∑
i=1

(Xi − θ0)TΣ−1(Xi − θ0)

=− n(θ − θ0)TΣ−1(θ − θ0) +
∑

(Xi − θ0)TΣ−1(θ − θ0)

+
∑

(θ − θ0)TΣ−1(Xi − θ0)

=−
(√

n(θ − θ0)− 1√
n

∑
(Xi − θ0)

)T
Σ−1

(√
n(θ − θ0)− 1√

n

∑
(Xi − θ0)

)
+
( 1√

n

∑
(Xi − θ0)

)T
Σ−1

( 1√
n

∑
(Xi − θ0)

)
=−

(√
nφ− 1√

n

∑
Wi

)T (√
nφ− 1√

n

∑
Wi

)
+
( 1√

n

∑
Wi

)T ( 1√
n

∑
Wi

)
=−

(√
nφ− Z

)T (√
nφ− Z

)
+ ZTZ.

The supremum of 2(L(θ|X) − L0) is equal to ZTZ when φ = Z/
√
n. Therefore, the

LRTS of H0 : θ = θ0 against H1 : θ 6= θ0 is a χ2
d when

√
n(θ− θ0) = 1√

n

∑
(Xi− θ0) ∼

N(0,Σ).

When H0 is a composite hypothesis such as Θ0 = {(θ1, · · · , θd0 , θ0,d0+1, · · · , θ0,d)},

there exists an orthogonal matrix Q such that ψ = Qφ and Ψ0 = QΣ
−1/2
d P (Θ0−θ0) =

5



{(ψ1, · · · , ψd0 , 0, · · · , 0)}. Therefore,

2(LΘ0 − L0) =−
(√

n(ψ1, · · · , ψd0)− (Z1, · · · , Zd0)
)

√
nψ1 − Z1

...

√
nψd0 − Zd0


+ (Z1, · · · , Zd0)(Z1, · · · , Zd0)T and

2(LΘ − L0) =−
(√

nψ − Z
)T (√

nψ − Z
)

+ ZTZ.

The LRTS is equal to Z2
d0+1 + · · ·+ Z2

d = χ2
d−d0 .

As seen in the example, the distribution of LRTS is obtained by completing

the square. To consider the cases in which a sample is drawn from a non-normal

distribution, we use definitions ofOP and oP [18, 32]. The notationXn = OP (1) means

that a sequence of random variables {Xn} is bounded in probability and Xn = oP (1)

means that {Xn} converges to zero in probability.

Definition 2.2 (Bounded in probability OP (1)). A sequence of random variables

{Xn} is said to be bounded in probability (uniformly tight or OP (1)) if for all ε > 0,

there exists M = M(δ) > 0 such that supn P (|Xn| > M) < δ. Note that if for all

δ > 0, there exist M = M(δ) > 0 and N = (δ,M) ∈ N such that P (|Xn| > M) < δ

for n ≥ N , then Xn = OP (1).

Definition 2.3 (Convergence to zero in probability oP (1)). A sequence of random

variables {Xn} converges to zero in probability, denoted by Xn
P→ 0, if for all ε > 0

and δ > 0, there exists N = N(δ, ε) ∈ N such that P (|Xn| > ε) < δ for n ≥ N .

Using the definitions of boundedness in probability and convergence in probabil-

ity, the notations OP and oP are defined as:

Definition 2.4 (OP ). Define Xn = OP (Rn) if Xn = YnRn and Yn = OP (1).
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Definition 2.5 (oP ). Define Xn = oP (Rn) if Xn = YnRn and Yn
P→ 0.

Given a family of random sequences, uniform OP and oP are defined as follows.

Definition 2.6 (Uniform OP and oP ). A family of random sequences {Xn(θ)|Θ}

is said to be uniformly OP (1) if for all δ > 0, there exist M = M(δ) > 0 and

N = N(δ,M) ∈ N such that P (supθ∈Θ |Xn(θ)| > M) < δ for n ≥ N . The sequence

{Xn(θ)} is said to be uniformly oP (1) if for all ε > 0 and δ > 0, there exists N =

N(δ, ε) ∈ N such that P (supθ∈Θ |Xn(θ)| > ε) < δ for n ≥ N .

Using notation of the gradient ∇l = (∂l/∂θ1, · · · , ∂l/∂θd)T and the Hessian ma-

trix (∇2l)ij = (∂2l/∂θi∂θj), the log-likelihood function may be expanded as

L(θ|X) =L(θ0|X) +
1√
n

n∑
k=1

(
∇l(θ0|Xk)

)T√
n(θ − θ0)

+
1

2

√
n(θ − θ0)T

1

n

n∑
k=1

∇2l(θ0|Xk)
√
n(θ − θ0) (2.3)

+
1

3!

∑
i1,i2,i3

n∑
k=1

∂3L(θ∗|Xk)

∂θi1∂θi2∂θi3
(θi1 − θi10)(θi2 − θi20)(θi3 − θi30).

Definition 2.7. The Fisher information I(θ) is defined as the symmetric quadratic

form I(θ0) = Eθ(∇l∇lT ).

By the central limit theorem, 1√
n

∑n
k=1∇l(θ0|Xk) converges in distribution to

a mean zero normal random vector W . The covariance of the mean zero normal

random vector W is equal to the Fisher information matrix I(θ0). Using the weak

law of large numbers, − 1
n

∑n
k=1∇2l(θ0|Xk) converges in probability to the Fisher

information matrix I(θ0) at the true parameter value θ0. By assuming the uniform

boundedness of the third order derivatives (i.e., the third of term in equation (2.3) is

7



oP (1)) , the log-likelihood expansion (2.3) can be written as

L(θ|X) =L(θ0|X) +W T
√
n(θ − θ0)− 1

2

√
n(θ − θ0)T Iθ0

√
n(θ − θ0) + oP (1)

=L(θ0|X)− 1

2
(
√
n(θ − θ0)− I−1

θ0
W )T Iθ0(

√
n(θ − θ0)− I−1

θ0
W ) (2.4)

+
1

2
W T I−1

θ0
W + oP (1).

where W ∼ N(0, I(θ0)). Therefore, the asymptotic null distribution of the LRTS can

be obtained in the form of χ2 distributions as in the example.

2.2 Consistency of the maximum likelihood estimators

As seen in previous sections, it is assumed that the third order terms are uni-

formly oP (1) in the parameter space. However, it may not hold or may not be easy

to show in the whole parameter space. A common argument is to use the consis-

tency of the maximum likelihood estimators to obtain the uniform oP (1) quadratic

expansion of the log-likelihood function in a small neighborhood of the true parame-

ter value. Because the consistency provides that the maximum likelihood estimators

fall into the neighborhood with probability one as the sample size tends to infinity,

one only needs to show the uniform quadratic expansion of the log-likelihood func-

tion in the neighborhood. Another usual technique is to obtain the expansion of the

log-likelihood function in a (1/
√
n)-neighborhood of the true parameter value and

extend the expansion to the neighborhood by showing that L − L0 > 0 implies the

parameters fall into the (1/
√
n)-neighborhood with probability one as the sample size

tends to infinity.

Definition 2.8 (Consistency). If the estimator θ̂ converges to the true parameter θ in

probability, then the estimator is said to be consistent. That is, limn→∞ Pr(|θ̂n− θ| <

8



ε) = 1 for all ε > 0. It is called strongly consistent, if the sequence of the estimator

converges almost surely to the true value. If limn→∞ Pr(
√
n|θ̂n − θ| < ε) = 1 for all

ε > 0, the the sequence of the estimator θ̂n is called
√
n-consistent.

Let K = E0 log f
f0

be the negative Kullback-Leibler information [15]. Concavity

of the logarithmic function gives thatK is uniquely maximized when f = f0. Identifia-

bility of the parameter space means that f = f0 implies θ = θ0. Hence, K has a unique

maximum when θ = θ0. With supΘ |Kn(θ)−K(θ)| P→ 0, where Kn = 1
n

∑n
i=1

f(X|θ)
f(X|θ0)

,

it is not hard to see that any sequence {θn} such that Kn(θn) ≥ Kn(θ0) − oP (1)

converges to θ0 in probability:

K(θ0)−K(θn) ≤ Kn(θn)−K(θn) + oP (1)

≤ sup
Θ
|Kn(θ)−K(θ)|+ oP (1)

P→ 0.

The consistency of the maximum likelihood estimators is proved by Wald [33] in 1949.

Redner [27] extended the proof when the null space does not have identifiability.

He established the consistency of the maximum likelihood estimators in a quotient

topology with a quotient metric.

In 1954, Chernoff [3] proved the
√
n-consistency of the maximum likelihood es-

timators. For instance,

L− L0 =
1√
n

∑ f ′

f
(
√
nθ)− 1

2

[ 1

n

∑
(
f ′

f
)2 +

1

n

∑
R(θ∗)nε

]
(
√
nθ)2

where Eo supΘ |Rn| = M < ∞ and |θ| < ε. With the consistency of the maximum

likelihood estimators and positive definiteness of the information, one can choose

ε > 0 such that E0(f
′

f
)2 +Mε > 0. Then, L−L0 > 0 implies that

√
nθ < C for some

C > 0. Liu and Shao [18] also used the same argument to obtain the
√
n-consistency

9



with Hellinger distance of mixture problems.

2.3 Boundary Parameter Problem

Self and Liang [28] characterized the LRTS using a projection of a normal random

variable onto a tangent cone of the parameter space. By letting Z = I−1W and

absorbing
√
n in θ in the equation (2.4), the log-likelihood function is in the form of

2(L− L0) = −(θ − Z)T I(θ − Z) + ZT IZ + oP (1), (2.5)

where Z ∼ N(0, I−1). When the true value (0, · · · , 0) of the parameter is on the

boundary of [0,∞)×Rd−1, the maximum is not realized if Z1 < 0. The maximum like-

lihood estimate in the oP (1) sense can be obtained by projecting Z onto [0,∞)×Rd−1

with the inner product 〈a, b〉 = aT Ib. Let (I ij) be the inverse matrix of I. Then,

the first column of the inverse matrix is orthogonal to all vectors on the boundary

of the parameter space since (0, a2, · · · , ad)I



I11

I21

...

Id1


= 0 for all aj. Therefore (Z1, Z2−

θ2, · · · , Zd−θd) is parallel to (I11, I21, · · · , Id1) = (Z1, Z2I
21/I11, · · · , ZdId1/I11)I11/Z1

and θj = Zj − (Ij1/I11)Z1 for j = 2, · · · , d. The asymptotic maximum likelihood es-

timate (MLE) may be written as



Z1

Z2

...

Zd


1(Z1 ≥ 0) +



0

Z2 − (I21/I11)Z1

...

Zd − (Id1/I11)Z1


1(Z1 < 0). (2.6)

10



After the MLE in (2.6) is substituted into the log-likelihood expansion (2.5), then

LRTS = sup
θ

2(L− L0) = ZT IZ − Z2
1

I11
1(Z1 < 0) + oP (1).

Using the spectral decomposition of Z with an orthogonal matrix P such that

PZ = (Z1, Z
∗
2 , · · · , Z∗d)T ∼ N(0, diag(1/I11, varZ∗2 , · · · , varZ∗d)),

the asymptotic distribution of supθ 2(L − L0) reduces to 1
2
χ2
d−1 + 1

2
χ2
d. Additional

examples may be found in Self and Liang [28].

2.4 Asymptotic Power of the LRTS

In the asymptotic theory of the likelihood ratio test, the asymptotic power of

the LRTS along a contiguous family of hypotheses Hn : θ = θ0 + c/
√
n can be

expressed in terms of the vector c and the information matrix I0 at θ0. Let W (X|θ) =

1√
n

∑ ∇f
f

(X|θ) and θn = θ0+c/
√
n. Under the assumption thatHn is true, W (X|θ0) =

W (X|θn) + 1
n

∑ ∇2f
f

(X|θn) · c + oP (1). From the expansion (2.4), the LRTS is still

asymptotically equivalent to W T I−1
0 W . Therefore, the LRTS asymptotically follows a

non-central chi-square distribution with the non-centrality parameter cT I0c if the null

hypothesis H0 is simple. When the null hypothesis is composite, we may decompose

c = c‖ + c⊥ with respect to an inner product 〈a, b〉 = aI0b such that 〈c‖, c⊥〉 = 0

and θ0 + c‖√
n
∈ Θ0. Therefore, the non-centrality parameter can be obtained from

calculating (c⊥)T I0c
⊥.

11



2.5 Likelihood Ratio Test of Mixtures

Consider a mixture of two components:

h(x|θ1, θ2, p) = pf(x|θ1) + (1− p)f(x|θ2). (2.7)

It is natural to try to use the LRTS to detect a mixture: H0 : h(x|θ1, θ2, p) = f(x|θ)

against H1 : h(x|θ1, θ2, p) = pf(x|θ1) + (1 − p)f(x|θ2) where θ1 6= θ2 and p 6= 0 or 1.

The first obstacle to apply the classical asymptotic theory is identifiability, i.e., in the

null space Θ0 = {(θ1, θ2, p) : p = 0 or p = 1 or θ1 = θ2}, h(x|θ1, θ2, p) = h(x|θ∗1, θ∗2, p∗)

does not implies (θ1, θ2, p) = (θ∗1, θ
∗
2, p
∗). It makes one hard to find a uniform expansion

of the log-likelihood function. Another problem comes from the singularity of the

information matrix. For convenience, we use the following model instead of (2.7):

h(x|θ1, θ2, p) = pf(x|θ1 + qθ2) + qf(x|θ1 − pθ2)

such that H0 : p = 0 or p = 1 or θ2 = 0. By restricting p ∈ [0, 1/2], H0 : pθ2 = 0. By

direct differentiations, we have

∂ log h

∂θ1

∣∣∣
pθ2=0

=
f ′(x|θ1)

f(x|θ1)

∂ log h

∂θ2

∣∣∣
pθ2=0

=0

∂ log h

∂p

∣∣∣
pθ2=0

=
f(x|θ1 + θ2)− f(x|θ1)− θ2f

′(x|θ1)

f(x|θ1)
.

The information matrix on H0 is singular with one or two dimensional degeneracies

depending on p = 0 or θ2 = 0. Other problem for a mixture is the convergence of

LRTS. It was proved that LRTS of mixture does not converge when the parameter

space is unbounded. It diverges at a rate of log log n for normal mixtures [19] and

12



Gamma mixtures [17] when one component is completely known. They showed that

the convergent part of LRTS converges to an extreme value distribution. However,

as they mentioned, the rate of convergence is too slow to apply to practical prob-

lems. Therefore, the parameter space is set to be compact to avoid divergent LRTS.

Dacunha-Castelle and Gassiat [4] introduced a locally conic parametrization to char-

acterize LRTS of mixture problems. They used L2 norm in the space of the mixture

probability density functions and expressed LRTS in terms of the supremum of some

Gaussian processes. Liu and Shao [18] introduced a generalized differentiability in

quadratic mean and used a Hellinger distance. They also expressed LRTS of mixtures

in terms the Gaussian processes.

Definition 2.9 (Gaussian Process). A stochastic process {Wt : t ∈ A} with an index

set A is said to be a Gaussian process if any finite collection (Wt1 , · · · ,Wtk) follows a

multi-variate normal distribution. Note that a Gaussian process is completely char-

acterized by its mean and covariance kernel.

Th Gaussian process expression for the LRTS is

LRTS = sup
θ∈Θ
{max(Gθ, 0)}2,

where θ is a parameter in the component probability density and Gθ is a Gaussian pro-

cess with mean zero with covariance r(θ1, θ2) = cov(Gθ1 , Gθ2) that must be computed

from a given model. Unfortunately, this does not have a simple series expression to

perform a test. In order to find the percentiles of this asymptotic null distribution

of LRTS, one needs to simulate a Gaussian process by discretizing Θ , generating a

large number of independent normal distributions and transforming them to realize

the specified covariance kernel by the Choleski decomposition.

Bootstrapping was suggested by McLachlan [22]. The MLE under the null hy-

13



pothesis is obtained. Bootstrap samples are selected from the fitted null distribu-

tions. The LRTS is calculated for each bootstrap sample to generate the empirical

percentiles which are subsequently used for testing mixtures.
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Chapter 3

Mixtures with known proportions

3.1 Notations, Assumptions and Definitions

In this chapter, we assume that the probability density function is in the form of

h(x|θ1, · · · , θd) =
d∑
i=1

pif(x|θi), (3.1)

where all 0 < pi < 1 are known and {f(x|θ)} is a family of one parameter probability

densities with θ ∈ Θ ⊂ Rd. The information matrix when θi = θ0 for all i = 1, · · · , d

can be easily computed as

Iθ0 = E0(
f ′

f
)2


p2

1 · · · p1pd
...

...

pdp1 · · · p2
d


Since (p1, · · · , pd)T (p1, · · · , pd) is a d× d matrix with the rank one, the Fisher infor-

mation has (d − 1) dimensional degeneracy. The assumptions used in this chapter

are:

(A1) Θ is compact in Rd.

(A2) h is identifiable when θi = θ0 for all i = 1, · · · , d, i.e.,

15



h(·|θ1, · · · , θd) = f(·|θ0)⇔ all θi = θ0

(A3) 0 < Eθ0(
f ′′

f
)2 = M1 <∞.

(A4) The log-likelihood function log h is continuously fifth differentiable with respect

to θ, log h(·|θ) ∈ C5(Θ), and Eθ0 supθ∈Θ |(log h)(k)(X|θ)| < ∞ for k = 0, · · · , 5. Let

max1≤j,k,l,m,n≤dEθ0 supθ∈Θ |
∂5 log h(X|θ)

∂θj∂θk∂θl∂θm∂θn
| = M2.

(A5) (θ0, · · · , θ0) is an interior point in Θ.

3.2 Asymptotic LRTS for Mixture with Known Proportions

Let X = (X1, · · · , Xn) be n independent random variables with probability den-

sity function {h(x|θ)}. Assume that the true value θ0 = (θ01, · · · , θ0d) of parameter

is an interior point in a compact space Θ ⊂ Rd.

Lemma 3.1. Assume (A1), (A2), (A4), and (A5). Suppose that hi = ∂h/∂θi = 0

for all i = 1, · · · , d under the null hypothesis H0 : θ = θ0 (that is equivalent to zero

information matrix I(θ0) = 0) and the Hessian matrix hij = h11λiδij with constants

λi > 0. h11 is none-zero with positive probability at θ0. Then the likelihood expansion

can be written as:

max
(

0, L(θ|X)− L(θ0|X)
)

= max
(

0,
1√
n

n∑
k=1

h11

h
(X|θ0)√
E0(h11

h
)2

√
nD(θ)− 1

2
nD2(θ)

)
+ oP (1), (3.2)

provided D(θ) =
√
E0(h11

h
)2 1

2

∑d
j=1 λj(θj − θ0j)

2 < ε for some small ε > 0. Moreover,

the likelihood ratio test statistic asymptotically follows {max(0, Z)}2 where Z is a one

dimensional standard normal random variable.

16



Proof. We expand the log-likelihood function up to the fifth order to obtain an ap-

proximation of the log-likelihood in the sense of oP (1). For simplicity, all derivative

functions are assumed evaluated at θ0 unless otherwise stated. Without loss of gen-

erality, we assume θ0 = 0 ∈ Rd.

L =L0 +
d∑
i=1

n∑
r=1

∂L

∂θi
θi +

1

2!

∑
i,j

n∑
r=1

∂2L

∂θi∂θj
θiθj +

1

3!

∑
i,j,k

n∑
r=1

∂3L

∂θi∂θj∂θk
θiθjθk

+
1

4!

∑
i,j,k,l

n∑
r=1

∂4L

∂θi∂θj∂θk∂θl
θiθjθkθl +

1

5!

∑
i,j,k,l,m

n∑
r=1

∂5L(θ̃|Xr)

∂θi∂θj∂θk∂θl∂θm
θiθjθkθlθm

=L0 +
1

2!

∑
i

n∑
r=1

hii
h
θ2
i +

1

3!

∑
i,j,k

n∑
r=1

hijk
h
θiθjθk +

1

4!

∑
ijkl

n∑
r=1

hijkl
h
θiθjθkθl

− 1

4!

∑
i

n∑
r=1

3
(hii
h

)2
θ4
i −

6

4!

∑
i<j

n∑
r=1

hii
h

hjj
h
θ2
i θ

2
j (3.3)

+
1

5!

∑
i,j,k,l,m

n∑
r=1

∂5L(θ̃|Xr)

∂θi∂θj∂θk∂θl∂θm
θiθjθkθlθm

=L0 +
1√
n

n∑
r=1

h11

h

(√
n

1

2

∑
i

λiθ
2
i

)
− 1

2n

n∑
r=1

(h11

h

)2(√
n

1

2

∑
i

λiθ
2
i

)2

+
1

3!

∑
i,j,k

n∑
r=1

hijk
h
θiθjθk +

1

4!

∑
ijkl

n∑
r=1

hijkl
h
θiθjθkθl (3.4)

+
1

5!

∑
i,j,k,l,m

n∑
r=1

∂5L(θ̃|Xr)

∂θi∂θj∂θk∂θl∂θm
θiθjθkθlθm.

In a neighborhood of θ0 satisfying D∗(θ) =
∑

i λiθ
2
i ≤ c/

√
n for any c > 0, the second

line in the equation (3.4) is oP (1) since
hijk
h

is a mean zero random variable and

|θiθjθk| = OP (1/n
3
4 ). The third line is oP (1) since maxE0 supθ∈Θ |

∂5L(θ|Xi)
∂θjθkθlθmθn

| = M2 <

∞. It remains to prove the expansion holds uniformly when D∗(θ) < ε for some ε > 0.

For simplicity, we can assume that all λi = 1 because they are positive and finite.

g(X) denotes h11(X|θ0)/h(X|θ0). By the assumption, 0 < M1 = E0g
2 <∞. First we

choose a small ε > 0 such that (1/4)M1 − (d5/5!)M2

√
ε > 0, where ε = ε(M1,M2, d)
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depends only on the model. L − L0 is bounded above in D∗(θ) < ε by following

inequality:

L− L0 ≤
( 1√

n

∣∣∣∑ h11

h

∣∣∣+
d3

3!
max
i,j,k

∣∣∣∑ hijk
h

∣∣∣√ε)√nD∗(θ)
− n

2
D∗(θ)

( 1

n

∑(h11

h

)2 − 2d4

4!
max
i,j,k,l

1

n

∣∣∣∑ hijkl
h

∣∣∣
− 2d5

5!
max
i,j,k,l,m

1

n

∑
sup

Θ

∣∣∣ ∂5L

∂θi · · · ∂θm

∣∣∣√ε)

For a given δ > 0, we can choose N0 = N0(M1, δ, d), N1 = N1(M1, δ, d), N2 =

N2(M1, δ), N3 = N3(M2, δ, d) ∈ N such that

P0(
1√
n

∣∣∣∑ h11

h

∣∣∣+
d3

3!
max
i,j,k

∣∣∣∑ hijk
h

∣∣∣√ε > M1) <
δ

4
for n ≥ N0

P0( max
1≤i,j,k,l≤d

∣∣∣ 1
n

n∑
r=1

hijkl
h

(Xr|θ0)
∣∣∣ > 4!M1

8d4
) <

δ

4
for n ≥ N1.

P0(
∣∣∣ 1
n

n∑
r=1

g2(Xr)−M1

∣∣∣ > M1

2
) <

δ

4
for n ≥ N2,

P0( max
1≤i,j,k,l,m≤d

1

n

n∑
r=1

sup
θ∈Θ

∣∣∣ ∂5L(θ|Xr)

∂θi · · · ∂θm

∣∣∣ > M2

2
) <

δ

4
for n ≥ N3.

Define Bn(δ|M1,M2, d) = {(X1, · · · , Xn) : 1√
n

∣∣∣∑ h11

h

∣∣∣+ d3

3!
maxi,j,k

∣∣∣∑ hijk
h

∣∣∣√ε < M1,

max1≤i,j,k,l≤d

∣∣∣ 1
n

∑n
r=1

hijkl
h

(Xr|θ0)
∣∣∣ < 4!M1

8d4
,
∣∣∣ 1
n

∑n
r=1 g

2(Xr)−M1

∣∣∣ < M1

2
,max1≤i,j,k,l,m≤d

1
n

∑n
r=1 supθ∈Θ

∣∣∣∂5L(θ|Xr)
∂θi···∂θm

∣∣∣ < M2

2
}, then P0(Bn) ≥ 1−δ if n ≥ N = max(N0, N1, N2, N3).

For X = (X1, · · · , Xn) ∈ Bn, L−L0 > 0 implies D∗(θ) < c/
√
n for some c > 0. This

completes the proof.

If the signs of λi’s are not the same, then the Lemma does not hold. In that

case, D(θ) does not measure the distance from the true probability density function

in the space of probability density functions.
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Now we consider a hypothesis testing problem of a mixture family:

h(x|θ1, · · · , θd) =
d∑
i=1

pif(x|θi) (3.5)

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ−Θ0 (3.6)

with known 0 < pi < 1 for i = 1, · · · , d, and Θ0 = span(e) ⊂ Θ, where e =

(1, · · · , 1) ∈ Rd.

Theorem 3.1. Assume that (A1) through (A5) hold and f ′ 6= f ′′ with a positive

probability at θ0. The LRTS to test (3.6) of the model (3.5) follows asymptotically

{max(0, Z)}2 under H0, where Z is a one dimensional standard normal random vari-

able.

Proof. It is enough to show that there exists a reparametrization satisfying condi-

tions in Lemma 3.1 for (d − 1) parameters across the one dimensional null space.

Define a d-dimensional vector p = (p1, · · · , pd). Since we assumed that all mixing

proportions are known and positive, it is possible to define an inner product 〈a, b〉p =

aTdiag(pT )b in Rd. One can choose an orthogonal frame {w1 = e, w2, · · · , wd} in-

cluding e = (1, · · · , 1) with respect to the inner product just defined. Now introduce

a new parameters φ defining θi − θ0i =
∑d

k=1wkiφk, where wki is the i-th element

of wk and θ0i is the i-th element of the true value of the parameter θ. We also

use notations hi1,··· ,ir(x|θ(φ)) = ∂rh(x|θ(φ))/(∂φi1 · · · ∂φir). It is easy to see that

hi(x|θ0) = 〈w1, wi〉pf ′(x|θ0) and hij(x|θ0) = 〈wi, wj〉pf ′′(x|θ0). From how we selected

{wi}, all hi(x|θ0) for i ≥ 2 and non-diagonal terms hij(x|θ0) for i 6= j vanish. More-

over, every second order diagonal term has strictly positive coefficient 〈wi, wi〉p of

the function f ′′(x|θ0). Therefore, with λi = 〈wi, wi〉p/〈w1, w1〉p, Lemma 3.1 can be
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applied to the log-likelihood function:

L(θ(φ)|X) =L(θ0|X) +
1√
n

( n∑
k=1

f ′

f
(Xk|θ0),

1

2

n∑
k=1

f ′′

f
(Xk|θ0)

)√
n
(
φ1, D

∗(φ))T

− 1

2

√
n
(
φ1, D

∗(φ))E0

 (
f ′

f

)2 (
f ′

f
f ′′

2f

)
(
f ′

f
f ′′

2f

) (
f ′′

2f

)2

√n(φ1, D
∗(φ))T + oP (1)

Because the null space Θ0 = span(e) = {D∗(φ) = 0}, this completes the proof.

Corollary 3.1. Assume that (A1) through (A5) hold. Suppose that {f(x|θ)} is

a one parameter exponential family, then the asymptotic distribution of LRTS is

{max(0, Z)}2 where Z is a one dimensional standard normal random variable.

Proof. Use a canonical form f(x|θ) = A(θ)B(x) exp(θτ(x)). It suffices to show that

f ′ is not proportional to f ′′. Suppose not. Direct differentiation gives A(θ0)τ 2(x) +

(2A′(θ0)−CA(θ0))τ(x) +A′′(θ0)−CA′(θ0) = 0 for some constant C. Therefore, τ(x)

must be a constant.

3.3 Presence of a Nuisance Parameter

When a mixture model includes one or more nuisance parameter, the asymptotic

result depends on the linear dependency of the derivative of the log-likelihood function

with respect to the nuisance parameter and the first or the second derivatives with

respect to other parameters. Consider a mixture with known proportions when the

probability density function includes a nuisance parameter η:

h(x|θ1, · · · , θd, η) =
d∑
i=1

pif(x|θi, η), (3.7)
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If fθ, fθθ and fη are linearly independent, then with assumptions (A0) through (A6)

the log-likelihood function can be written as:

L = L0 +W T
√
n


φ1

D∗(φ)

η

− 1

2

√
n(φ1, D

∗(φ), η)I0

√
n


φ1

D∗(φ)

η

+ oP (1), (3.8)

where W asymptotically follows a normal distribution with mean zero and variance

I0:

W =
1√
n

(
∑ fθ

f
,
∑ fθθ

f
,
∑ fη

f
)T

I0 = E0


(fθ
f

)2 fθfθθ
f ·2f

fθfη
f ·f

fθfθθ
f ·2f (fθθ

2f
)2 fθθfη

2f ·f

fθfη
f ·f

fθθfη
2f ·f (fη

f
)2


Therefore, the asymptotic null distribution of LRTS follows {max(0, Z)}2, where

Z ∼ N(0, 1).

Example 3.1 Mixture of Weibull Distributions

When f(x|θ, η) = θηxη−1 exp(−θxη), we have

∂f

∂θ
=ηxη−1(1− xη) exp(−θxη)

∂2f

∂θ2
=− ηx2η−1(1− xη) exp(−θxη)

∂f

∂η
=θxη−1(1− x log x) exp(−θxη)

∂2f

∂η2
=− θ2x2η−1(1− x log x)(log x) exp(−θxη)

There are two possible models: (1) the shape parameter η is a nuisance parameter.
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(2) the scale parameter θ is a nuisance parameter. In either case, the asymptotic

quadratic expansion can be written in the form of (3.8). Since they are linearly

independent at any (θ, η) ∈ (0,∞)×(0,∞), the asymptotic null distribution of LRTS

of homogeneity of Weibull components when the mixing proportions are known is

{max(0, Z)}2 with Z ∼ N(0, 1).

When the first derivative of the probability density function with respect to a

nuisance parameter is linearly dependent on one of the other derivatives. For instance,

in a mixture of normal distribution components with a nuisance parameter standard

deviation σ, fσ is linearly dependent to fθθ in H0. Then, (3.8) does not hold for normal

mixtures with a nuisance parameter σ. Let f(x|θ, η) = η√
2π

exp(−η2(x− θ)2/2) with

η = 1/σ.

fθ =
1√
2π

(x− θ)η3 exp(−η2(x− θ)2/2)

fθθ =
1√
2π

(−η3 + (x− θ)2η5) exp(−η2(x− θ)2/2)

fη =
1√
2π

(1− η2(x− θ)2) exp(−η2(x− θ)2/2)

fηη =
1√
2π

(−2η(x− θ)2 − η(x− θ)2 + η3

Since fθθ = −η3fη, the expansion (3.8) does not contain all limit points of the score

vectors. We provide the simulation results for this case in following section.

3.4 Simulation

We use a random starting point (RSP) strategy in our simulation studies [6].

Given ordered data X(1), · · · , X(n) chosen from N(0, 1) for the null distribution to

test a normal mixture, select a random sample (N1, · · · , Nd) from a Multinomial(p).
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We start an iteration algorithm such as expectation-maximization (EM) method with

the following initial values:

θ
(0)
j =

1

Nj

N1+···+Nj∑
k=N1+···+Nj−1+1

X(k)

When the standard deviation σ is a nuisance parameter, we calculate a pooled variance

of the grouped data:

s2
j =

1

Nj − 1

N1+···+Nj∑
k=N1+···+Nj−1+1

(X(k) − θ(0)
j )2

(σ2)(0) =
(N1 − 1)s2

1 + · · ·+ (Nd − 1)s2
d

N1 + · · ·+Nd − d

We select 25 samples from the Multinomial(p) and maximize the likelihood with

each RSP with the tolerance 10−16 and the maximum iteration 1000. To obtain the

maximum of the likelihood function, we choose the maximum of 25 maxima. We used

the statistical software R for our simulation study.

Table 3.1: Summary of null distribution of the LRTS of the null hypothesis of single
normal versus the alternative of three component normal mixture with known mixing
proportions (1/4, 1/2, 1/4)

p Sample Size Mean Variance 90% 95% 99%
χ2

2 2 4 4.6052 5.9915 9.2103
1
2
χ2

1 + 1
2
χ2

2 1.5 3.25 3.8078 5.1384 8.2733
χ2

1 1 2 2.7055 3.8415 6.6349
(0.25, 0.5, 0.25) 100 2.031464 5.145351 5.029431 6.592596 10.32350
(0.25, 0.5, 0.25) 1000 1.599577 3.805618 4.019602 5.457903 9.001206
(0.25, 0.5, 0.25) 5000 1.535972 3.401620 4.005553 5.423889 8.242983
(0.25, 0.5, 0.25) 10000 1.495016 3.149016 3.898502 5.139938 7.992714

Notes: Simulation results based on 5,000 replicates per line.

Table 3.1 contains the mean, variance, and selected percentiles from the simulated

null distribution of the LRTS for sample size between 100 and 10,000 for the test
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discussed in Loisel et al. [20]. We also report the values for selected distributions.

The means, variances, and percentiles constantly decrease. The null distribution

appears to converge, possibly to the 1
2
χ2

1 + 1
2
χ2

2 as stated in Loisel et al. However, at

n = 10, 000, simulated values are less than values for 1
2
χ2

1 + 1
2
χ2

2, raising the question

that this distribution may not the limit.

3.5 Dimension Loss

When the information matrix is singular, the parameter space may be folded

and the dimensionality of the asymptotic results may reduce. The following example

shows that the dimension of the LRTS may decrease when the hypothesis space is a

cusp.

Example 3.2

Suppose that the log-likelihood can be expanded uniformly in the parameter space Θ

as

L =(Z1, Z2)
√
n(θ1, θ2)T − 1

2
n(θ1, θ2)I(θ1, θ2)T + oP (1), (3.9)

where I is a 2× 2 identity matrix. Consider hypothesis testing in a parameter space

Θ = {(θ1, θ2) : θ2
1 ≥ θ2 and θi ≥ 0 for i = 1, 2}

H0 : θ = (0, 0)

H1 : θ 6= (0, 0)

In R2, the maximum likelihood estimate of θ̂ = (Z1/
√
n, Z2/

√
n) + oP (1). When
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θ̂2
1 < θ̂2, the restricted MLE can be obtained by solving

y = x2

(x− a, y − b) · (1, 2x) = 0,

where (a, b) = θ̂.

x =
(108a+

√
1082a2 + 4(6− 12b)3)1/3

6 · 21/3

− 6− 12b

3 · 22/3(108a+
√

1082a2 + 4(6− 12b)3)1/3
6 · 21/3

y = x2

Using the Taylor series expansion in a and b,

x =
Z1√
n

+ 2
Z1Z2

n
+ o(1/n)

y =
Z2

1

n
+ o(1/n).

Therefore, we have

L =
1

2
Z2

1 + Z2
Z2

1√
n
− 1

2

Z4
1

n
+ oP (1).

The asymptotic null distribution of LRTS is {max(0, Z1)}2.

The following example shows a nested mixture of a three component mixture

from one parameter family densities, which is discussed in the lemma.

Example 3.3

Consider a three component mixture with two parameters h(x|θ1, θ2) = (1/3)f(x|θ1 +

θ2) + (1/3)f(x| − θ1 + θ2) + (1/3)f(x| − 2θ2). We assume that the true parameter
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values are θ0 = (0, 0). The first partial derivatives ∂h/∂θi vanishes at θ0. The

second partial derivatives can be combined as (f ′′/f)[2/3θ2
1 + 2θ2

2]. The third partial

derivatives are (f ′′′/f)[(2/3)θ2
1θ2− 2θ3

2]. Using a non-linear transformation (φ1, φ2) =

(2/3θ2
1 + 2θ2

2, (2/3)θ2
1θ2 − 2θ3

2), the log-likelihood in some small ε neighborhood of θ0

may be expanded with a new information matrix defined with f ′′/f and f ′′′/f if they

are linearly independent. However, the third order terms decrease faster than 1/
√
n

and these terms asymptotically vanish.

3.6 Detection of a Major Gene

Loisel et al. [20] applied the asymptotic results of mixtures of known proportions

to detect a major gene of quantitative trait loci (QTL). They used a mixture model

of normal distributions with known proportion p = (1/4, 1/2, 1/4).

h(x|θ1, θ2, θ3, σ) =
1

4
f(x|θ1, σ) +

1

2
f(x|θ2, σ) +

1

4
f(x|θ3, σ)

They applied normal mixtures to analyze the square root of the number of grains in

an F2 population of 150 plants. By Theorems in Chapter 3, we may apply mixtures

of other exponential families. For illustration, a mixture of a gamma, Gamma(θ, 1),

distribution is applied to the data to test hypotheses

H0 : θ1 = θ2 = θ3

H2 : θ2 = θ3 Dominance

H3 : (θ1, θ2, θ3) Saturated model

The LRTS = 163.65 > 1.92 for H0 against H3 and the LRTS < 10−12 < 1.92 for

H2 against H3, which suggest the dominance model, i.e., two component mixture
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of gamma distributions. The estimated parameters are θ̂1 = 3.29, θ̂2 = 11.08 and

θ̂3 = 11.08. The critical value 1.92 is the 95th percentile of the 50:50 mixture of a

point mass at zero and a chi-square of degrees of freedom one.

Figure 3.1: Histogram of data and fitted mixture
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Chapter 4

A Mixture Model in Genetic Association Studies

In this chapter, we discuss the likelihood ratio test of a mixture model in a

genetic association study with genotyping errors. Suppose that genotypes of a single

nucleotide polymorphism (SNP) marker are determined by a continuous measurement

such as the fluorescence intensity signal. When the signals are well separated among

the different genotypes, a 2x3 test can be easily applied to test association between

the marker and trait of interest. The distribution of intensities of a large number

of samples is a mixture of a normal or other distributions. If the separation of the

intensities are small, then it is not easy to call the genotypes of the sample. We

propose the likelihood ratio test (LRT) without genotype calls when the separations

are not large and compare the performance of LRT to 2× 3 tests with two different

types of genotype calls: (1) the half-way rule and (2) a Bayesian rule.

If the genotyping errors are non-differential across cases and controls, then the

Type I error of the chi-square test is not affected, but the power of the test decreases.

Two samples are randomly selected from two populations, cases and controls, inde-

pendently. Although we assume that the dependent variable is univariate, this is not

an important limitation. For example, a two dimensional intensity scatter plot can

be projected using the angle from an axis or the ratio of intensities; so that a two
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dimensional data problem is reduced to one dimension. All parameters θi and σ in

a component probability density function are nuisance parameters and the mixing

proportions are to be tested whether or not they are equal, that is, H0 : pa = pu

against H1 : pa 6= pu, where pb = (pb1, · · · , pbd), with b = a or u. That is,

ha(x|θ, σ, pa) =
d∑
i=1

paif(x|θi, σ)

hu(x|θ, σ, pu) =
d∑
i=1

puif(x|θi, σ),

where f(x|θi, σ) is a probability density of a normal distribution with mean θi and

standard deviation σ. If two dimensional data is analyzed without projection, then

θi ∈ R2 and σ = Σ is a 2 × 2 covariance matrix. Since LRTS for the model satisfies

classical regularity conditions, the asymptotic null distribution of LRTS follows a

χ2 with (d − 1) degrees of freedoms. The asymptotic power can be obtained by

calculating the non-centrality parameter since the alternative distribution of the LRTS

asymptotically follows a non-central chi-square distribution.

4.1 Calculation of the non-centrality parameter of LRTS

In this section, we derive the non-centrality parameter of the LRTS to test

whether or not the mixing proportions of two populations are equal. We assume

the number of components is fixed and known for both populations. Let f(x|θi, η)

denote the probability density function of the ith component of a mixture distribu-

tion, where η is a vector of nuisance parameters. Suppose that the ith population
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follows a mixture distribution with common components

hi(x|pi, θ, η) =
d∑
j=1

pijf(x|θj, η) (4.1)

Theorem 4.1. Assume two independent random samples are drawn from hi(x|p, θ, η)

for i = 1, 2. Let pi = (pi1, · · · , p1d) and θ = (θ1, · · · , θd). Let H0 : p1j = p2j for all

j = 1, · · · , d. Assume that the classical regularity conditions hold for the consistency

of the maximum likelihood estimators and quadratic approximations of the likelihood

function. Then, (1) the LRTS under H0 follows a χ2
d−1 distribution and (2) the

asymptotic power along a contiguous family of hypotheses HN : pij = p0j + cij/
√
N

can be calculated by a non-central chi-square distribution χ2
d−1,λ with the non-centrality

parameter:

λLRT = NQ1Q2

(
p11 − p21, · · · , p1(d−1) − p2(d−1)

)
J0


p11 − p21

· · ·

p1(d−1) − p2(d−1),

 (4.2)

where J0 is a (d− 1)× (d− 1) symmetric matrix

J0 = E0


(
f(x|θ1,η)−f(x|θd,η)P

p0if(x|θi,η)

)2

· · ·
Q
k=1,d−1

(
f(x|θk,η)−f(x|θd,η)

)
(
P
p0if(x|θi,η))2

... · · · ...Q
k=1,d−1

(
f(x|θk,η)−f(x|θd,η)

)
(
P
p0if(x|θi,η))2

· · ·
(
f(x|θd−1,η)−f(x|θd,η)P

p0if(x|θi,η)

)2

 .

Proof. The first part of Theorem is a direct conclusion from the classical asymptotic

result of the likelihood ratio test. To prove the second part of Theorem, let p0 =

(p01, · · · , p0d) denote the true parameter under H0 and h0 = h(x|p0, θ, η). Since∑
pij = 1, we use pid = 1 −

∑d−1
j=1 pij. The information matrix I0 = I(p0) can be
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written as

I(p0) =

K(p0) A(p0)

AT (p0) B(p0)

 where B(p0) is symmetric.

K(p0) =

J(p0) 0

0 J(p0)

 and

J0 = J(p0) = E0


(
f(x|θ1,η)−f(x|θd,η)P

p0if(x|θi,η)

)2

· · ·
Q
k=1,d−1

(
f(x|θk,η)−f(x|θd,η)

)
(
P
p0if(x|θi,η))2

... · · · ...Q
k=1,d−1

(
f(x|θk,η)−f(x|θd,η)

)
(
P
p0if(x|θi,η))2

· · ·
(
f(x|θd−1,η)−f(x|θd,η)P

p0if(x|θi,η)

)2

 .

Let Jij be the ij element of the matrix J0. The total sample size N = N1 +N2 and the

fraction of ith sample Qi = Ni/N . Consider a contiguous family of hypotheses HN :

pij = p0j +
cij√
N

. By decomposing a vector v = (c11

√
Q1, · · · , c1(d−1)

√
Q1, c21

√
Q2, · · · ,

c2(d−1)

√
Q2)T into a sum of two orthogonal vectors with respect to the inner product

generated by K0 = K(p0),



c11

√
Q1

...

c1(d−1)

√
Q1

c21

√
Q2

...

c1(d−1)

√
Q2


=



c11Q1+c21Q2

Q1+Q2

√
Q1

...

c1(d−1)Q1+c2(d−1)Q2

Q1+Q2

√
Q1

c11Q1+c21Q2

Q1+Q2

√
Q2

...

c1(d−1)Q1+c2(d−1)Q2

Q1+Q2

√
Q2


+



(c11−c21)
√
Q1Q2

Q1+Q2

√
Q2

...

(c1(d−1)−c2(d−1))
√
Q1Q2

Q1+Q2

√
Q2

− (c11−c21)
√
Q1Q2

Q1+Q2

√
Q1

...

− (c1(d−1)−c2(d−1))
√
Q1Q2

Q1+Q2

√
Q1


(4.3)

= v‖ + v⊥.
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Since (v‖)TK0v
⊥ = 0 and v = v‖ + v⊥, the non-centrality parameter can be obtained

in a quadratic form (v⊥)TK0v
⊥.

λLRT = Q1Q2

d−1∑
i=1

d−1∑
j=1

Jij(c1i − c2i)(c1j − c2j)

Using the relationship
√
N(pij − p0j) = cij,

λLRT = NQ1Q2

d−1∑
i=1

d−1∑
j=1

Jij(p1i − p2i)(p1j − p2j) (4.4)

This completes the proof.

Example 4.1

When d = 3 and N1 = N2, the non-centrality parameter of the power of the LRT

may be written

λLRT =
N

4

(
J11(p11 − p21)2 + 2J12(p11 − p21)(p12 − p22) + J22(p12 − p22)2

)
. (4.5)

4.2 Classification Rules, Error Matrices, and Power for 2× 3

Test

Assume that observations follow h(x|pi, θ, η) =
∑d

j=1 pif(x|θj, η) for i = 1, 2. We

define two classification rules for clustering data: (1) the first classification method

is to use a half-way rule proposed by Kang et al. [13]. Once a centroid g(θi, η) of

each component is chosen, then determine the component of an observation X by a

rule that X belongs to the component i if D(X, g(θi, η)) ≤ min1≤j≤d{D(X, g(θj, η)},

where D(x, y) is the distance between x and y.
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Example 4.2

Suppose that d = 3, f is a univariate normal probability density function, and

D(x, y) = |x − y|k is the Lk distance in Euclidean space. Define the centroids

g(θi, η) = θi, and two boundary points γH1 = θ1+θ2
2

, and γH2 = θ2+θ3
2

. The half-way

rule can be written

X ≤ γH1 ⇔ Genotype AA

γH2 < X ≤ γH2 ⇔ Genotype AB

γH2 ≤ X ⇔ Genotype BB.

(2) Another classification method is to use the Bayes rule [23]. An observation X

is assigned to the ith component if and only if p0if(X|θi, η) ≥ max1≤j≤d(p0jf(X|θj, η)),

where p0i = Q1p1i +Q2p2i is the pooled mixing proportion to satisfy non-differential

error mechanism.

Example 4.3

When d = 3 and f is a univariate normal probability density function, the boundaries

of clusters can be obtained by straightforward calculations

γB1 = min(
θ2 + θ1

2
− σ2

θ2 − θ1

log
p02

p01

,
θ3 + θ1

2
− σ2

θ3 − θ1

log
p03

p01

) (4.6)

γB2 = max(
θ3 + θ1

2
+

σ2

θ3 − θ1

log
p01

p03

,
θ3 + θ2

2
+

σ2

θ3 − θ2

log
p02

p03

). (4.7)

We now formulate the error matrix E = (εij = Pr( assigned to i|true component j))

in terms of the cumulative distribution function (CDF) F of a univariate random
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Figure 4.1: Probability density function of three component normal mixture.
Bayesian classification division points γBi . Half-way rule division points γHi .
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variable X. Assuming θ1 < · · · < θd and −∞ = γ0 < γ1 < · · · < γd−1 < γd = ∞,

εij = F (γi|θj, η)− F (γi−1|θj, η) for i = 1, · · · , d.

Example 4.4

Suppose that f(x|θi, η) is a normal density with mean θi and variance σ2. In case

d = 3, the error matrix has the form

E =


Φ(γ1−θ1

σ
) Φ(γ1−θ2

σ
) Φ(γ1−θ3

σ
)

Φ(γ2−θ1
σ

)− Φ(γ1−θ1
σ

) Φ(γ2−θ2
σ

)− Φ(γ1−θ2
σ

) Φ(γ2−θ3
σ

)− Φ(γ1−θ3
σ

)

1− Φ(γ2−θ1
σ

) 1− Φ(γ2−θ2
σ

) 1− Φ(γ2−θ3
σ

)

 ,

where Φ is a CDF of a standard normal distribution. The misclassified proportions

are computed from p∗Yi = EY pi for Y = H or B, i.e.,


p∗i1

p∗i2

p∗i3

 =


Φ(γ1−θ1

σ
) Φ(γ1−θ2

σ
) Φ(γ1−θ3

σ
)

Φ(γ2−θ1
σ

)− Φ(γ1−θ1
σ

) Φ(γ2−θ2
σ

)− Φ(γ1−θ2
σ

) Φ(γ2−θ3
σ

)− Φ(γ1−θ3
σ

)

1− Φ(γ2−θ1
σ

) 1− Φ(γ2−θ2
σ

) 1− Φ(γ2−θ3
σ

)



pi1

pi2

pi3

 .

The non-centrality parameter λYCS [10, 24] with classification rule Y = H or B

can be written

λYCS = NQ1Q2

d∑
i=1

(p∗Y1i − p∗Y2i )2

p∗Y0i
. (4.8)

4.3 Comparison of the LRT and the chi-square tests

We define the relative efficiency EffY of the chi-square test to the LRT and the

extra sample size NY that is needed so that the chi-square test has the same power

as the LRT.
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Definition 4.1. The ratio of the non-centrality parameter of the chi-square test to

the non-centrality parameter of the LRT is called the relative efficiency.

EffY =
λYCS
λLRT

.

By equating the non-centrality parameter of a chi-square test with sample size

N + N∗ to the non-centrality parameter of the LRT with sample size N , we define

the extra sample size N∗.

Definition 4.2. The extra sample size N∗Y can be written as

N∗Y =
( 1

EffY
− 1
)
N.

Example 4.5

Given mixing proportions pi ∈ Rd, p0 = Q1p1 +Q2p2. The non-centrality parameters

(4.8) and (4.4) can be used to derive the relative efficiency

EffY =
λYCS
λLRT

=

∑d
i=1

(p∗Y1i −p∗Y2i )2

Q1p∗Y1i +Q2p∗Y2i∑d−1
i=1

∑d−1
j=1 Jij(p1i − p2i)(p1j − p2j)

,

where

Jij = E0

[(f(x|θi, η)− f(x|θd, η)
)(
f(x|θj, η)− f(x|θd, η)

)
(
∑d

i=1(Q1p1i +Q2p2i)f(x|θi, η))2

]
.

We illustrate tables and figures of the relative efficiencies and the extra sample

sizes when the number of components of a univariate mixture distribution d is three

and the components are normally distributed. In order to make parameter config-
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urations simpler, we assume Hardy-Weinberg equilibrium (HWE) in both cases and

controls. That is, p11 = p2
u, p12 = 2pu(1 − pu), p13 = (1 − pu)2 in control group and

p21 = p2
a, p22 = 2pa(1 − pa), p23 = (1 − pa)

2 in case group. We set θ3 = −θ1 and

θ2 = 0 and call S = (θ3/σ) the separation of the mixture distribution. The smaller

the separation S is, the smaller the relative efficiency EffY is. The relative efficiency

becomes smaller as the minor allele frequency pu decreases.

Table 4.1: Efficiency of 2×3 independence test relative to LRTS for equal proportions
in cases and controls

pu S EffH EffB N∗H N∗B

0.1 1 0.8357 0.6310 39.31 116.93
2 0.8527 0.8434 34.54 37.13
3 0.9046 0.9375 21.08 13.31
4 0.9621 0.9793 7.88 4.21
5 0.9891 0.9944 2.20 1.11
6 0.9978 0.9989 0.45 0.21

0.2 1 0.8430 0.7384 37.26 70.83
2 0.8808 0.8658 27.08 30.98
3 0.9344 0.9466 14.03 11.26
4 0.9753 0.9825 5.06 3.55
5 0.9931 0.9953 1.40 0.93
6 0.9985 0.9990 0.30 0.19

0.3 1 0.8443 0.7538 36.86 65.31
2 0.8896 0.8747 24.79 28.64
3 0.9438 0.9508 11.89 10.34
4 0.9796 0.9839 4.16 3.25
5 0.9943 0.9957 1.13 0.85
6 0.9987 0.9990 0.24 0.18

0.4 1 0.8444 0.7505 36.85 66.45
2 0.8923 0.8781 24.12 27.75
3 0.9469 0.9525 11.19 9.96
4 0.9811 0.9845 3.85 3.12
5 0.9948 0.9959 1.04 0.82
6 0.9988 0.9991 0.22 0.17

Notes: ∆p = pa − pu = 0.1. N∗ is calculated when NA = NU = 200.
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Figure 4.2: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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0.06 under HWE. Dotted curve for Bayesian classification. Solid curve for half-way
rule.
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Figure 4.3: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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0.15 under HWE. Dotted curve for Bayesian classification. Solid curve for half-way
rule.

39



Figure 4.4: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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0.25 under HWE. Dotted curve for Bayesian classification. Solid curve for half-way
rule.
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Figure 4.5: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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Notes: Minor control allele frequency 0.3 under HWE. Minor case allele frequency
0.35 under HWE. Dotted curve for Bayesian classification. Solid curve for half-way
rule.
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Figure 4.6: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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Notes: Minor control allele frequency 0.01 under HWE. Minor case allele frequency
0.11 under HWE. Dotted curve for Bayesian classification. Solid curve for half-way
rule.
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Figure 4.7: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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Notes: Minor control allele frequency 0.1 under HWE. Minor case allele frequency 0.2
under HWE. Dotted curve for Bayesian classification. Solid curve for half-way rule.
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Figure 4.8: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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Notes: Minor control allele frequency 0.2 under HWE. Minor case allele frequency 0.3
under HWE. Dotted curve for Bayesian classification. Solid curve for half-way rule.
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Figure 4.9: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by separation of components. Two classification rules: Bayesian, Halfway.
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Notes: Minor control allele frequency 0.4 under HWE. Minor case allele frequency 0.5
under HWE. Dotted curve for Bayesian classification. Solid curve for half-way rule.
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Figure 4.10: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by minor control allele frequency. Two classification rules: Bayesian, Halfway.
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Notes: Separation of components D = 3. Difference in minor allele frequencies
∆p = 0.1. Dotted curve for Bayesian classification. Solid curve for half-way rule.
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Figure 4.11: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by minor control allele frequency. Two classification rules: Bayesian, Halfway.
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Notes: Separation of components D = 3. Difference in minor allele frequencies
∆p = 0.01. Dotted curve for Bayesian classification. Solid curve for half-way rule.
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Figure 4.12: Efficiency of 2× 3 independence test with respect to LRTS for mixtures
by minor control allele frequency. Two classification rules: Bayesian, Halfway.
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Notes: Separation of components D = 3. Difference in minor allele frequencies
∆p = 0.001. Dotted curve for Bayesian classification. Solid curve for half-way rule.
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4.4 Limiting Behaviors of the Relative Efficiency

In this section, we calculate the limiting relative efficiencies for three component

mixtures. Assume the HWE in both case and control groups, and let ∆ = pa− pu be

the difference of minor allele frequencies.

pa1 − pu1 = ∆(2pu + ∆)

pa2 − pu2 = 2∆(1− 2pu −∆)

pa3 − pu3 = ∆(−2 + 2pu + ∆).

Then the non-centrality parameter for the LRT can be written

λLRT =
(∆)2N

4

[
J11(2pu + ∆)2 + 2J12(2pu + ∆)(−2 + 2pu + ∆) + J22(−2 + 2pu + ∆)2

]
.

The non-centrality parameter of a 2× 3 chi-square test

λCS =
(∆)2N

2

3∑
i=1

Ai
Bi

,

where Ai = [εi1(2pu + ∆) + 2εi2(1 − 2pu − 2∆) + εi3(−2 + 2pu + ∆)]2 and Bi =

εi1[(pu+∆)2 +p2
u]+2εi2[(pu+∆)(1−pu−∆)+pu(1−pu)]+εi3[(1−pu−∆)2 +(1−pu)2].

The limit of the relative efficiency as ∆→ 0

lim
∆→0

λCS
λLRT

=

∑3
i=1

[εi1(2pu)+2εi2(1−2pu)+εi3(−2+2pu)]2

εi1p2u+2εi2pu(1−pu)+εi3(1−pu)2[
J11(2pu)2 + 2J12(2pu)(−2 + 2pu) + J22(−2 + 2pu)2

] .
By taking limpu→0 lim∆→0 or lim∆→0 limpu→0 to the relative efficiency,

lim
∆→0

lim
pu→0

λCS
λLRT

= lim
pu→0

lim
∆→0

λCS
λLRT

=

∑3
i=1

(εi3−εi2)2

εi3∫ (f3−f2)2

f3

, (4.9)
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where fi is the ith component probability density function.

Example 4.6

Suppose that fi = f(x|µi, σ) is a normal density with mean µi and standard deviation

σ. For simplicity, let D = µ3 = −µ1, µ2 = 0 and σ = 1. The limit of the relative

efficiency (4.9) is

∑3
i=1

(εi3−εi2)2

εi3∫ (f3−f2)2

f3

=
1

eD2 − 1

3∑
i=1

(εi3 − εi2)2

εi3
. (4.10)

We have different limiting behaviors depending upon which classification rule is ap-

plied.

(1) The limit of the relative efficiency of the half-way rule:

The two boundary points γH1 = −D/2 and γH2 = D/2 do not depend on the minor

allele frequencies or the difference in the minor allele frequencies in Example 4.2. The

limit of the relative efficiency (4.10) is always positive because (εi3 − εi2)2 > 0 and

εi3 > 0.

(2) The limit of the relative efficiency of Bayes rule:

From the equation (4.7), γBi tends to the negative infinity as pu and ∆ decrease to

zero. Therefore, εi3− εi2 → 0 and the limit of the relative efficiency (4.10) approaches

zero.
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Chapter 5

Conclusion

The asymptotic null distribution of LRTS of the null hypothesis of single com-

ponent versus the alternative of two or more components in a mixture with known

mixing proportions is a 50:50 mixture of a point mass at zero and a chi-square of

degree of freedom one. The asymptotic null distribution does not depend on the

number of components in the alternative hypothesis. A mixture model with the non-

normal component probability density functions with known mixing proportions has

potential applications to association mapping in population genetics. For example, an

exponential or Weibull distribution can be a possible model for a survival type quan-

titative trait locus (QTL) such as the flowering time [2]. This dissertation extended

the asymptotic results of the LRTS of a mixture with known mixing proportions to

the case in which the component probability density function is from an exponential

family with one parameter. When the component probability density has more than

one parameter, the asymptotic results are still valid if the partial derivatives are lin-

early independent. The next research is to find the asymptotic power of the LRTS of

mixtures with known mixing proportions.

In the second part of the dissertation, we calculated the non-centrality parameter

of the LRTS of the mixture models in case/control studies. The tables and figures
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in Chapter 4 show that the LRTS without genotype calls has better power than

the 2 × 3 independence test in which subjects were assigned to a genotype by a

half-way rule or a Bayesian clustering rule. Specifically, the relative efficiency of

the independence test to the LRT decreases as the minor allele frequency becomes

small and the separation of the components of mixtures becomes small. The non-

centrality parameter is derived for an arbitrary fixed number of components. We

have not assumed that the component probability is normal. This result can be

applied to a genetic association case/control study such as use of the copy number

variants (CNV.) In these studies, the number of components may be greater than

three. The technique of the non-centrality parameter calculations can be extended

to the likelihood ratio test for a trend, and it can be compared to the non-centrality

parameter of the Cochran-Armitage test [1].

52



Bibliography

[1] K. Ahn, C. Haynes, W. Kim, R. St Fleur, D. Gordon, and S. J. Finch. The effects
of SNP genotyping errors on the power of the cochran-armitage linear trend test
for case/control association studies. Annals of Human Genetics, 71:249–U4, Mar
2007.

[2] M. J. Aranzana, S. Kim, K. Y. Zhao, E. Bakker, M. Horton, K. Jakob, C. Lis-
ter, J. Molitor, C. Shindo, C. L. Tang, C. Toomajian, B. Traw, H. G. Zheng,
J. Bergelson, C. Dean, P. Marjoram, and M. Nordborg. Genome-wide association
mapping in arabidopsis identifies previously known flowering time and pathogen
resistance genes. Plos Genetics, 1(5):531–539, Nov 2005.

[3] Herman Chernoff. On the distribution of the likelihood ratio. Ann. Math. Statis-
tics, 25:573–578, 1954.
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