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Abstract of the Dissertation

Repairable File and Storage System

by

Ningning Zhu

Doctor of Philosophy

in

Computer Science

Stony Brook University

2008

The data contents of an information system may be corrupted due to human er-

rors, malicious attacks or untrusted software. The financial loss of such corruption

is typically proportional to the amount of time required to recover the system’s

data/service. Recognizing that it is impossible to build absolutely secure computer

systems and that human errors are inevitable, this dissertation proposes a repairable

system framework which greatly reduces data loss and system downtime with min-

imum cost and performance penalty. We illustrate that repairability is affordable

and ready to be integrated into main stream file/storage system.

Repairable file/storage system needs to perform two tasks. First it has to main-

tain all the raw data so that every update is undoable. Secondly it has to keep track

of data updates due to errors and attacks so that only the data affected by mistakes

or attacks are rolled back to their last known consistent state. We develop two novel

comprehensive versioning schemes for repairable NFS file server and for repairable

iii



SAN storage system. We design a simple solution for dependency tracking and

integrate it with both schemes. We also developed an NFS trace play toolkit and

gained experience on trace driven file system evaluation.

For the repairable file system, we focus on the performance optimization in

the absence of failures and errors. Empirical measurements show that the perfor-

mance overhead due to repairability is less than 10%. For the repairable storage

system, more focuses are shifted to the integration with traditional fault tolerance

techniques. Evaluation results show that the repairable storage system is available

upon any single point of failure, including disk failure with and without data losses,

power failure, network failure and software crash failure.
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Chapter 1

Introduction

Traditional fault tolerance research has been largely focused on tolerating two kinds

of failures. First is the hardware or site failure which may occur to any computer

system. Second is the specific issue of an untrusted peer in a distributed environ-

ment. In recent years, other failure scenarios, including human mistakes, security

breaches, and untrusted software have drawn the attention of both the research com-

munity and industry. In this dissertation these failures are called “soft failures.”

They are distinguished from “hard failures,” which refer to hardware, network, or

site failures that completely halt the system and render it unavailable so that no use-

ful work can be performed unitl the stricken system revovers. By their nature, hard

failures are relatively easy to detect. In contrast, soft failures may not render the

system immediately unavailable and may even allow some useful tasks to execute.

Soft failures therefore may take longer to detect. Although preventing soft failures

is desirable, the preponderance of experience, distilled into the facts and statistics

of failure analysis, show that soft failures are as unavoidable as hard failures.

Despite a growing volume of research focused on improving computer security,

there is no such thing as an unbreakable system. At the same time, according to

1



1. INTRODUCTION 2

Gartner Group’s estimate, on average more than 50% of the cost associated with

a computer security break-in is attributable to lost productivity or revenue due to

data loss, service disruption, or the additional work required to repair the damages

that intruders wrought. These two facts - that computer breaches are inevitable and

that the real cost of an intrusion lies in the post-attack data or service unavailability

- argue strongly for an intrusion-tolerance direction to computer security research.

It is time to shift at least some of the research focus from intrusion prevention

to the design and development of system techniques that can minimize losses by

facilitating post-intrusion system clean-up and restoration.

Soft failures are by no means exclusively the result of premediated attacks. Even

absent malicious attacks, humans make mistakes, which can and do lead to data

damage or service outages. James Reason [10,35] published a study of the types of

computer-related human errors and concluded that they are, even when involving

simple tasks, unavoidable. Interestingly,he found that humans tend to self-detect

errors. According to Reason, people detect about 75% of errors immediately after

they make them. Another study [11],which analysed PSTN and Internet sites’ op-

erational statistics, underscores a consistent pattern: that operator’s errors are the

leading cause of system failures, as compared with other software issues, hardware

faults, or overloads. While some application software supports the ”‘undo”’- rever-

sal - of certain user actions, it is neither feasible nor possible to enhance all software

to cover all user mistakes.

Untrusted software comprises another threat to computer systems. Attracted

by its promised functionality or low price, users consciously accept the risks of

downloading and then running untrusted software, but often find it hard to clean up

the mess once it is proven unsafe and damaging.



1. INTRODUCTION 3

1.1 Tolerance of soft failures

One common fault tolerance approach is redundancy. RAID, local and remote

replications, and alternative network paths are typical redundancy techniques for

hardware and site failures. These assume a variety of forms. In P2P environem-

nts, the peer collaborative design may not amount to redundancy, strictly speaking,

but relies on a similar scheme and the assumption that not all peers are malicious.

Another example of a redundant approach is deploying multiple versions of soft-

ware, each developed independently, to protect the system from bugs. Still another

strategy is requiring two operators to be present simultaneously for important op-

erations, thereby decreasing the liklihood of an operator mistake. To effectively

protect the system from one kind of failure, the redundancy must be deployed at the

same level as the failure, and the probability that each redundant unit fails should

be derived independently. Therefore, hardware redundancy cannot protect systems

from user mistakes; instead, it may simply repeat the mistakes in the redundant

system. In the case of security breaches, the redundancy should be built in such a

way that breaking into one system will not help the attacker break into the redun-

dant one. Redundancy is not always practical, affordable, or legal. While the cost

of low-level redundancy for hardware and site failure is modest, the cost of higher

level redundancy is often unaffordable except for mission critical tasks. In the case

of human mistakes, redundancy is often preempted by privacy concerns.

While redundancy tolerates failures by executing the same task multiple times,

expecting that at least one will be successful, we explore an orthogonal approach in

which tasks execute only once while the system maintains the capability to undo the

effects of failures. This capability is called repairability. Traditional backup helps to

provide primitive system repairability, but it can not meet the current requirements

of “soft failure” tolerance.
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In summary, a system may be damaged due to malicious attack, inadvertent

human error, or untrusted software. It is fundamentally difficult to stop all malicious

attacks, to completely prevent mistakes, or to restrain users from trying untrusted

software. So the next best thing one can hope for is to repair the damaged system

and return it back to a functional state as soon as possible while preserving its most

useful tasks and related data. The file system image is the most important system

state; it is the prime repair target. Repairing other system states, such as memory

or network states, is out of the scope of this dissertation. The goal of a repairable

file/storage system is to minimize the system downtime and data loss upon soft

failures.

The protection provided by a repairable system is complementary to that of the

recoverable system, where redundancy (replication, mirroring) is used to protect

against site or hardware failures. The repairable system is not meant to replace

the documentation control systems or information archival systems which have dif-

ferent goals, provide different features, and are under different performance con-

straints (Chapter 2. But we do expect that repairability can be added extensively

to existing systems without significant performance overhead or extra hardware,

software, or management costs. To protect data from soft failures , repairable

file/storage systems must perform two tasks:

• Comprehensive Versioning. Maintain all the raw data so that every update is

undoable.

• Dependency Tracking. Keeping track of the dependencies between the soft

failure and data updates so that only the data affected by soft failures are

rolled back to their last known consistent state.
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1.2 Comprehensive versioning

Versioning functionality has been built into many systems. Although all version-

ing techniques save old data, the goals can be numerous and varied. In addition to

protecting data against soft failures , such goals include version control documenta-

tion, facilitating backups, resolving concurrency conflicts (in distributed systems),

or archiving information.They also have different workload assumptions and per-

formance requirements. In a repairable file/storage system, the desirable features of

versioning are:

• Versioning should be comprehensive. Soft failures are unavoidable and un-

predictable. This requires that the protection mechanism be deployed exten-

sively and activated by default. This contrasts with versioning systems that

are periodical or triggered by file closure or upon user request, etc.

• Versioning should be simple to configure. The task of configuring the ver-

sioning itself should not be prone to user mistakes. Versioning simplicity also

tends to reduce the TCO (total cost of ownership) The simplest configuration

uses the repairable file/storage system as the default file (storage) system and

protects all data automatically. More complicated configurations may cre-

ate various policies for different files or file types (e.g., files with common

suffixes), which may require significant effort.

• Versioning tasks should not signficantly degrade the performance of the re-

pairable system. If the versioning overhead is low enough to allow the re-

pairable system to achieve benchmark performance for most workloads, the

repairable system can be used extensively. When used extensively, the repa-

iarable system is most effective at protecting user data. Low overhead also



1. INTRODUCTION 6

correlates with simple configuration; when extensive versioning creates sig-

nificant overhead, many systems provide diverse versioning polices or rely

on application-aware solutions.

• The performance of accessing old version is not of great importance. We

assume that old version access is rare and needed only for undo or repair

operations. However, this is in comparison with current data access. Com-

pared to traditional data restoration from backup, our data repair procedure

or old version access are still much faster. When soft failure does occur, typi-

cally the most time-consuming task in the repair process is identifying which

previous version to use (Dependency Analysis), not accessing it.

While the first three features pose great challenges to the design of appropriate

versioning techniques, the last feature allows us to optimize the versioning struc-

tures for current data access. Moreover, the per byte price of disk storage has been

continuously dropping in recent years. With easily accessible large and cheap disk

storage, comprehensive versioning is feasible and cost-effective.

1.3 Dependency Tracking and System Repairing

Comprehensive versioning makes arbitrary point-in-time images available and

forms the basis of a repairable system. The point-in-time image itself can be eas-

ily used to correct simple errors, such as a careless deletion. In more complicated

scenarios, soft failures interleave with useful jobs. By “useful jobs’ we mean those

which create important data for users. Jobs which are not useful (in the above sense)

are called “neutral jobs”. Neutral jobs may update temporary files, cached files, au-

tomatically generated files, or any files that are considered unimportant by the user

or which do not result in updates to the file system.
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To repair effectively, we need to 1) identify the parts of the system that are

compromised directly or indirectly by the soft failures , or 2) identify the parts of

the system that are updated by the most recent useful job and not corrupted by the

soft failure . In case 1), the repair could undo the effects of a soft failure from the

current image. In the case 2), the repair could first roll back the system to the last

clean snapshot and then redo the updates of useful jobs. While sometimes the data

affected by the soft failure or useful job can be easily identified by the user and

the repair process is simple, it can be time consuming and complicated to repair

when there are large amounts of interleaving data updates. The second task of a

repairable system - dependency tracking – helps to correlate data updates with a soft

failure or useful job. Note that similar recovery functionality that is supported by

the application software itself could be fairly easy because of complete application

knowledge. In contrast, the repair scheme in repairable file/storage system is not

application ‘aware.’

1.4 Trace based system performance evaluation

methodology

The performance of comprehensive versioning is essential for a repairable sys-

tem. However, the effectiveness of many design decisions and performance op-

timizations are workload dependent. An ideal file system evaluation workload is

representative of real application requirements, effective in predicting system per-

formance in target environments, easy to use, scalable to stress the system under

evaluation, and reproducible. Currently the most commonly used workloads for

file system evaluation are synthetic workload benchmarks. These benchmarks are
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designed specifically to re-create the characteristics of particular operating environ-

ments. Most synthetic benchmarks are parameterizable, making it possible to tailor

the resulting workload to specific requirements. Although in recent years synthetic

benchmarks have improved significantly in terms of realism and the degree to which

they can be tailored to a specific application, it is not always possible for a synthetic

file system benchmark to mimic file access traces collected from a real-world envi-

ronment. Firstly, there are many time-varying and site-specific factors in a workload

that are very difficult, if not impossible, for a benchmark to capture. Secondly, be-

cause the time required to develop a high-quality benchmark is often on the order

of months or years, benchmarks cannot always keep up with the dynamic changes

in the workload of the target environment.

In contrast, traces taken from a system are, by definition, representative of that

system’s workload as long as they are collected carefully and over a period time

long enough to ensure that the characteristic workload has been captured. There-

fore we believe that file access traces can serve as a basis for file system evaluation

benchmarks. Even though file access traces have been used for workload character-

ization and guided the development of many file system design techniques, they are

rarely used in the evaluation of file systems or servers. Given that disk, network,

and web access traces have been used extensively to evaluate storage systems, net-

work protocols, and web servers respectively, we do not see why file access traces

should not be used to evaluate file systems. The reason that this has not been done

already is because replaying file access traces is more difficult that replaying other

types of traces: we must take into account the related facts that the file system is

stateful and that access requests are dependent on one another.

Another issue independent of synthetic benchmark or trace play-back is file

system aging. File systems that have been in use for a period of time have different

performance characteristics than new file systems. Therefore, “aging” a file system
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is an important part of file system performance evaluation.

1.5 Contribution

In this dissertation, we identify several important computer system failure scenar-

ios which have not been addressed at the system level by traditional fault tolerance

research, namely user mistakes, malicious attacks, and untrusted software. We pro-

pose to enhance existing systems with repairability to tolerate these soft failures

. The solution incorporates comprehensive versioning, dependency tracking, user

knowledge, and external assistance from intrusion detection software, system in-

tegrity checking software, etc.

None of the existing versioning schemes can satisfy the stringent performance

requirements for comprehensive versioning in a repairable system. Accordingly,

we designed two novel comprehensive versioning schemes customized specifically

for two repairable systems that we built. The first scheme works with NFS protocol.

It focuses on transparency and portability. The second scheme works at the block

device level. It focuses on seamless integration with other advanced features of a

high performance large storage system (replication, multicast, low latency write)

and fault tolerance design.

We bring forth the notion of dependency tracking in the context of tolerating

soft failures . We explored design choices of dependency tracking in general and

present effective solutions for the two repairable systems that we built.

We advocate a trace-driven file system evaluation methodology. En route to

this methodology, we identified many challenges in playing file system traces that

do not exist for other traces such as network traces and disk traces. We developed

the first general purpose, fully-fledged network file system trace player. We also

developed a unique artificial file system aging technique that ages a file system
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much faster than any other file system aging technique. We publish here for the

first time the results of a file system evaluation that employs long duration traces

from commercial servers using the tools we developed.

The rest of the dissertation is organized as follows. Chapter 2 analyzes the de-

sign choices of versioning systems and reviews related work in the area of logging,

versioning and system repair. In Chapter 3, we explore the design choices for de-

pendency tracking. Chapter 4 describes the design, implementation and evaluation

of RFS, a repairable file system. Chapter 5 describes Mariner, a high performance

storage system with repairability, recoverability and robust fault tolerance design.

Chapter 6 describes TBBT, an NFS trace play toolkit. Chapter 7 concludes the

dissertation.



Chapter 2

Related Work

In this chapter we review the related work of repairable file and storage systems.

The related work for TBBT - the NFS trace player - is described in Chapter 6.

The related works presented in this chapter focus on versioning and dependency

tracking techniques. In addition we discuss general logging techniques and data

mirroring/replication techniques.

2.1 Versioning

In this section, we provide an overview of the versioning system design choices.

Then we compare the techniques and trade-offs of versioning systems at the file

system level and at the storage system level. Finally we describe each versioning

system separately.

In general, a versioning system can be characterized by: (1) The level that a

versioning system is built at, (2) the interface that a versioning system provides for

old data access, and (3) the frequency of versioning, i.e., continuous or discrete.

Versioning functionality can be built at different levels, namely, the application

11
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level, the file system level, or the storage system level. In this chapter, storage sys-

tem refers to block-based storage systems only; object-based storage interfaces such

as NASD are classified as file system level interfaces because, with the excepton of

directory hierarchy, object-based approaches retain most of the file system seman-

tics. File system level versioning can be further subdivided and includes systems

built at these levels: the system call interface (Alcatraz), the VFS interface (Ver-

sionFS), the physical file system (Elephant, CVFS, WAFL), distributed file systems

(Google File System, Oceanstore), or object storage (S4). Storage system level ver-

sioning also has subtypes including block device driver (clotho) or iSCSI. In the

case of the Frangipani [68] distributed file system, which is built upon Petal [39] (a

distributed storage device), the versioning functionality is provided by the collabo-

ration of the two.

The versioning system design is also affected by the historical version access

interface, specifically, whether each version is object-based or (logical) partition-

based, and whether the access to the old version is through a point-in-time rollback

or through a point-in-time snapshot.

Versioning frequency directly affects system performance, versioning data orga-

nization and the historical data access interface. As versioning frequency increases,

journaling and logging techniques are favored over checkpointing techniques, and

historical access may become less direct.

As we can see, these three characteristics are closely related to each other and

to versioning data organization and system performance. In general, high level

versioning is characterized by a smaller scope of protection, less frequency, and a

better historical data access interface. Low level versioning delivers a higher scope

of protection and frequency but with a worse historical data access interface.
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2.1.1 Versioning Systems at file system level

Physical file system level versioning provides great flexibility for optimization. The

object store level is similar to the physical file system level except that there are no

directory operations. S4 is the first fine grain versioning system built for security

purposes at the object store level. CVFS, which solves the metadata versioning in-

efficiency in Elephant and S4, achieves good performance. While the performance

of normal operations (i.e., access to current data) gets high priority in our repairable

file system, CVFS tries to strike a balance between current data and old data access.

A disadvantage of physical file system level versioning is its poor portability, which

also affects performance in the long run because such a versioning system can not

easily take advantage of the new advances in file system development. Another

disadvantage is implementation complexity.

VFS level versioning systems sacrifice performance for better portability and

reduced complexity. For example, due to the limitations of the VFS interface, Ver-

sionFS [50] generates a new inode and a new directory entry for each version of a

file.

The file system syscall interface differs from the VFS interface mainly in that

an object is referred by name (or file descriptor) instead of by inode. While the

VFS interface is more natural for versioning, the syscall interface is well-defined

and portable. In many systems, syscall can be intercepted without changing the OS

kernel. Alcatraz [64] is such a user-level Isolation Execution environment for un-

trusted code. Strictly speaking, Alcatraz itself is not a versioning system because it

maintains only a clean file system image and a delta image as result of the execution

of the untrusted code. At the end of each execution, the user must decide immedi-

ately whether to discard the execution result or commit the result to the clean file

system image before the next execution.
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2.1.2 Versioning at storage system level

The main disadvantage of storage level versioning is the storage inefficiency in

metadata versioning. Specifically, file system operations such as setattr, create and

delete trigger updates to the inode and directory entry. The size of an inode or a

directory entry is usually small, but the update at the storage level is at least one

disk sector. The advantages to storage level versioning are as follows:

• It is simple and file system agnostic. Therefore its implementation can be

relatively easy and portable.

• Storage level versioning does not have the cascading block update problem

that earlier file system versioning had. The cascading problem occurs when

file block updates are saved to a new disk location for versioning purposes.

If this block is referred to by an indirect block, there will be an update to the

indirect block which also needs to be saved to a new location. The updates

propagate through the indirect block chain until they finally reach the inode.

This problem is better addressed in the more recent CVFS versioning file sys-

tem. At the storage level, this problem does not exist because the versioning

is transparent to the file system. File system data updates do not propagate to

indirect blocks at all.

• In recent years, the cost of disk space has dropped faster than the cost of

disk bandwidth. This means that the disadvantage of storage level versioning

over file system level versioning, in terms of disk inefficiency (considering

both space and bandwidth factors), is constantly diminishing. In terms of

bandwidth efficiency, storage level versioning is about the same as file system

level versioning.

• There have been many file system optimizations designed to reduce the disk
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load. Small in-place metadata updates can be delayed and coalesced for bet-

ter performance. As a side effect this improves the space efficiency for meta-

data versioning. Therefore, file system performance optimization and storage

level versioning space efficiency are two consistent goals.

This good news suggests that the metadata versioning inefficiency issue may

not be severe enough to affect the feasibility of versioning at the storage level.

This suggestion is confirmed by a simulation study using one day of the Harvard

trace [17]. The result shows that for the workload of that day, 90% of the disk write

is for file data updates; only 10% of the disk write is for metadata updates.

A seeming limitation of block based storage level versioning is that it is not

possible to set different versioning policies for different files. While this may be

a constraint for other versioning systems, it is consistent with the goals of our re-

pairable system.

2.1.3 Discrete Versioning Systems

Elephant [56] is a versioning file system that defines versions when files close but

does not distinguish updates within an open-close session. Elephant features a flexi-

ble versioning policy. It is the end-user’s responsibility to set up the policy properly.

Due to its relatively high versioning cost, Elephant does not expect a large scope of

files to be protected with frequent versioning. Elephant extends the inode structure

for each file into a log that holds multiple inodes, each corresponding to one ver-

sion. The authors point out that metadata storage for versioned files can be 24 times

larger than for non-versioned files because of the cascading problem.

VersionFS [50] is a versioning file system implemented using a stackable file

system technique [73]. Similar to that of Elephant [56], the version is based on

open-close sessions and the versioning policy is flexible. VersionFS also provides
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a friendly interface for users to access old versions and to customize versioning

policies. VersionFS still incurs non-negligible performance overhead - about 100%

- when measured by Postmark.

WAFL [32] is a general-purpose high performance file system versioning prod-

uct with snapshot support developed by Network Appliance. WAFL allows a lim-

ited number (32 originally) of snapshots. Its block bitmap contains a 32-bit entry

for each block, with each bit corresponding to a snapshot. The snapshot is taken at a

coarse granularity and the cost is amortized over many file updates. Its architecture

is not scalable to allow increased snapshot frequency.

Petal [39] is a distributed storage service which provides automatically man-

aged virtual disks. Virtual disk addresses are translated into physical disk addresses

according epoch-number. Petal supports a snapshot feature that could provide fast,

efficient support for backup and recovery. Petal itself is not a data versioning sys-

tem. But it is easy to build a data versioning system above it using its snapshot

feature.

Frangipani [68] is a scalable distributed file system built on top of Petal. It can

directly generate backup versions with crash consistency. Crash consistency means

that the snapshot image is not a consistent state for the file systems, though it is a

consistent state of the virtual disk. When Frangipani wants to mount a virtual disk

version with crash consistency, file system utilities (similar to the unix command

fsck) can restore to a state with file system consistency. Frangipani can also flush

all the updates to ensure that the virtual disk is at the file system consistency level

after which it can mount the old virtual disk version without executing the fsck-like

utility.
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2.1.4 Comprehensive Versioning/Logging Systems

Wayback [14] is a user-level versioning file system for Linux. It is implemented

with a user-level file system implementation toolkit FUSE(Section 2.2). For data

updates, Wayback [14] uses an undo logging scheme similar to our first repairable

file system prototype RFS-O(Section 4.1.2). For metadata updates, Wayback’s ver-

sioning scheme incurs higher overhead than the logging scheme of our repairable

file system. For old data access, Wayback supports an easy-to-use user interface.

But for normal file system updates, the performance of Wayback is quite poor com-

pared with that of traditional file systems. When compared with EXT3, the data

read/write overhead ranges from -2% to 70% and the metadata update overhead

ranges from 100% to 400%. In contrast, the performance of our third and fourth

repairable file system prototypes(RFS-I and RFS-I+, Section 4.1.2) are comparable

to that of an generic NFS server running on top of EXT3.

S4 [63] is a secure network-attached object store design for protection against

malicious attacks. S4 logs every update and minimizes the space explosion. S4

uses log structured design to avoid overwriting of old data. S4 improves the

inode/indirect-block logging efficiency by encoding their changes in a logging

record. Performance evaluation shows that S4 logging is very lightweight without

cleaning. But the cost of cleaning can be as high as 50%.

CVFS [61] is a kernel versioning file system focused on improving metadata-

logging space efficiency. Journal-based Meta-data is used for inode/indirect-block

updates and multiversion b-tree [70] is used for directory updates. In contrast, RFS

performs logging at the NFS level, which preempts the space inefficiency problem.

Both CVFS and our logging scheme favor current data access performance over

historical data access performance but we favor it more: CVFS binds the access

latency to historical data but its current data access performance cannot completely

match non-versioning file systems. We provide matching performance for current
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data access but the user may experience delays for very old historical data.

Clotho [25] is a storage abstraction layer that allows transparent and automatic

data versioning at the block level. It strives to improve versioning metadata man-

agement efficiency. The performance measurements affirm the feasibility of block

level versioning. Compared to Mariner’s trail logging server, Clotho is geared more

towards periodic versioning rather than comprehensive versioning; Clotho does not

attempt to provide low-latency writes. Clotho’s historical data access also involves

more disk seeks than trail.

SVSDS [65] is a block level versioning system that performs selective, flexible

and transparent versioning of disk data. It leverages the idea of Type-Safe Disks: by

making small modification to the file system, the storage system can distinguish be-

tween file system data and file system metdata. The updates to file system metadata

are always versioned. Other flexible policies can be enforced for file data, executa-

bles and log files. The evaluation shows that the block level versioning has minimal

space and performance overhead. This is similar to our findings. The main differ-

ence between SVSDS and Mariner is that Mariner automatically does versioning

for all storage blocks instead of only the selective ones. In addition, Mariner devel-

opped techniques to integrate block level versioing with traditional fault tolerance

techniques.

ReVirt [16] is a virtual machine-based logging scheme that logs each non-

deterministic system event(not just file updates). Starting from an initial check-

point, ReVirt logs enough input information (keyboard, mouse, network traffic, etc.)

to replay a long-term execution of the virtual machine. ReVirt logging is secure,

general, and comprehensive but not file system oriented. If applied to a network

file server environment, ReVirt logging will be a heavyweight scheme(with a worse

case overhead of 58%).

David Patterson [11,20] advocates a radical shift from a performance-dominated
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research focus to what he refers to as Recovery Oriented Computing (ROC). With

ROC, the focus is on improving system availability by reducing MTTR and even-

tually the overall system ownership cost. One of the applications that was pursued,

an undoable email system [20], shares a similar approach with RFS but focuses

specifically on email message protection rather than on file system data in general.

CDP(Comprehensive Data Protection) is a hot topic in recent years. There

have been many start-ups on this frontier. Some of them have gone out of busi-

ness(Mendocino). Many have been acquired by larger companies ( Revivio by

Symantec, Kashya by EMC, Alacritus and Topio by NetApp, TimeSpring by

Double-Take, Storactive by Atempo, FilesX by IBM, LassoLogic by SonicWALL,

ConstantData by BakBone, Availl by GlobalScape or XOsoft by CA). The indepen-

dent, pure-CDP players now include only Asempra and InMage Systems. Below

we selectively introduce CDP products.

Enterprise Rewinder [72], is a file system level CDP product suite of Xosoft,

Inc. The versioning could be either by operation or by open-close session. The in-

terception of file system traffic is implemented as a file system-level operation filter.

The products are application aware. They are customized to work with Exchange,

Microsoft SQL, Oracle, or NFS, respectively. They can achieve application level

consistency and automatic application failover. Data protection is through undo

logging. Redundant hardware is used.

RealTime [48], was a product from Mendocino, Inc. It provides comprehensive

block-level versioning. RealTime has an efficient logging data structure (both redo

and undo logging) for fast recovery speed. It can restore a 1-tera to 1-petabyte

database in 20 minutes.

RTP(RealTimeProtection) is a CDP product originally from Revivio. The soft-

ware was later integrated into a Veritas backup product [66]. RTP provides instant

(close to zero) point-in-time storage image upon request. RTP bears similarity to
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Mariner: the write requests are duplicated at the storage client to both primary stor-

age and backup/versioning storage. The main difference is that Mariner naturally

supports N-way mirroring and M-way logging depending on system performance

and reliability requirements. Moreover, in Mariner the logging nodes and the pri-

mary nodes are closely integrated and interchangeable (primary storage can do log-

ging too, however with lower performance); the write requests are committed to

logging storage first, which provides a low-latency write. In contrast, RTP is usually

configured with one set of primary storage and one set of backup/versioning storage.

RTP uses a side-band architecture; the I/O processing on the versioning/mirroring

node is removed from the critical path of I/O processing. However RTP still pays a

small cost of dirty region block logging on the critical path for write requests. One

good feature of RTP is that its point-in-time image is fully read/write capable, which

allows file systems/databases/applications to perform their own recovery procedure

on a block level image with crash-consistency. On Mariner, instead of running a

file system fsck, we provide a faster in-house fsck to recover a historical snapshot

to consistent state [43].

Finally Table 2.1 summaries the design choices of the versioning systems de-

scribed in this section.

2.2 User Level File System Implementation Toolkits

Fist [73] is a language for generating stackable file systems. Fist can output kernel

code for Solaris, Linux and FreeBSD, and this provides some amount of portabil-

ity. Its stackable file system attempts to strike a balance between portability and

efficiency. The stackable file system exploits the VFS layer. It manipulates syscall
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System Level Granularity Old Data Frequency Portability

Access

CVS application object Direct D high

Elephant file system object Direct D low

VersionFS file system object Direct D near low

S4 object object Direct& C low

store Rollback

CVFS file system object Direct& C low

Rollback

WAFL file system partition Direct D low

WANsync syscall object Direct& C low

interface Rollback

RFS file system partition Rollback C high

Petal storage block device Direct D low

Clotho storage block device Direct Near C near low

SVSDS storage block device Rollback Partial C near low

RealTime storage block device Direct& C unknown

Rollback

Revivio storage block device Unknown C unknown

Mariner storage block device Direct& C near low

Rollback

Table 2.1: The design choices of various versioning file/storage systems. ”C” stands

for ”Comprehensive”, ”D” stands for ”Discrete”
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parameters before calling the underlying physical file system interface and manip-

ulates returned values before returning to the application. In comparable fashion,

RFS logging works between an NFS client and an NFS server by modifying NFS

requests and replies.

David Mazières developed a toolkit [44] to facilitate UNIX file system exten-

sions. The toolkit exposes the NFS interface, allowing new file systems to be

implemented and ported at the user-level. The NFS protocol gives the software

an asynchronous, low-level interface to the file system that can greatly benefit the

performance, security, and scalability of certain applications. The toolkit uses an

asynchronous I/O library to build large, event-driven programs. The default con-

figuration of this toolkit has one NFS proxy daemon on the client side and another

on the server side. Our user-level file update logging uses a similar technique but

incurs less overhead because we have only one NFS proxy daemon on the server

side.

FUSE [67] is a package that facilitates user-level file system development. It

redirects file system related system calls from the kernel to the user space. FUSE

is implemented as a kernel module available on Linux systems. It is simple, stable,

and secure. It is very useful in scenarios where functionality is preferred over per-

formance. According to the measurements from Wayback [14], which is a FUSE

implementation, FUSE causes significant performance overhead (around 20% to

50%).The repairable file system (RFS) project had user-level implementation but

did not use FUSE. The reason is because FUSE is developped after RFS. Moreover,

the overhead of FUSE would have been too high for RFS anyways.
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2.3 Other Application of Logging Techniques

LFS [55] uses append logging schemes similar to those of repairable file and storage

systems but for somewhat different purposes. Accordingly, there are different trade-

offs. The main purpose of ”append logging” in repairable file system and storage

systems is to preserve old data. In LFS, updates are written to new locations in

large batches to improve small write performance. Cleaning is essential and more

frequent in LFS to maintain disk access efficiency. In repairable file system and

storage systems, the data is kept for longer periods and metadata manages different

versions of data. The garbage collection is not as aggressive.

Journaling file system logs metadata updates to maintain file system metadata

consistency and for fast recovery upon crashes. The log record in repairable systems

can serve the same purpose in addition to the capability of providing comprehensive

versioning.

Trail [13] is a track-based disk logging technique that can reduce the latency of

synchronous disk writes to the level of 1.5 msecs. Trail also provides fast recovery

upon failures. For low-latency writes, the data should be written where the disk

head is at that instant. Commodity disk drivers do not provide such flexibility. Trail

developed techniques to predict where the disk head is. Its logging scheme does

not yield a contiguous log. Trail developed recovery software that can identify

where, in each track, the log records are, and can quickly locate the most recent

log records without scanning the entire log device. Mariner’s trail node is extended

from the original trail node, but has a more complex log device usage pattern and

consequently needs more complex recovery software.
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2.4 Related Works in Dependency Tracking

2.4.1 Taser

Taser [29] is an intrusion recovery system that is very similar to our repairable file

system - each with its own advantage and complementing each other. Taser has

better and more flexible dependency analysis policies and an optimized recovery

algorithm. RFS has a more efficient logging mechanism integrated into its version-

ing file system. RFS also provides better support for NFS.

Regarding dependency analysis, Taser [29] can be customized to specify

whether to consider or ignore IPCs, signals, file attribute reads, file name reads, and

file content reads. In addition, there is a “whitelist” that specifies the files whose

write operations are also ignored. RFS considered but did not actually implement

support for policy customization. Instead, RFS provides only one practical policy

that is neither too conservative nor too aggressive. Taser also optimized the recovery

algorithm, which includes a special conflict resolving mechanism. RFS’s recovery

algorithm is simpler but it may run more slowly and there is no requirement for a

special conflict resolving component.

Regarding system call logging or auditing, Taser [29] uses the Forensix sys-

tem [28] as its auditor to log all kernel operations related to dependency analy-

sis including process management, file system syscalls, etc. Its evaluation results

show high auditing overhead. This is similar to our findings in the first RFS pro-

totype [75]. The main reason for the high auditing overhead is that write request

logging is very expensive due to the large data size. In their future work, Taser pur-

sued integration with journaling and versioning file systems to improve scalability

and reduce logging overhead. RFS implemented its own syscall logging module.

In the second RFS prototype [76], a comprehensive versioning file system is inte-

grated with logging and recovery capabilities. Taser also disclosed that it currently
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does not support network file systems such as NFS because of the limitation of its

auditing module. In contrast, RFS is built on top of NFS by design.

2.4.2 Post-intrusion database damage repair

There have been several research projects on post-intrusion database damage repair.

Ammann et al. [22,23] proposed a transaction models and protocols that allow nor-

mal transactions to proceed against a database that had sustained partial damage

from an intrusion event. The proposal is largely a theoretical exercise without de-

tailed system-level considerations.

Peng Liu [23, 24, 41] described a concrete intrusion-tolerant database system

that can continue its transaction processing service even in the presence of active

attacks. It logs database updates as SQL-based transactions. Instead of tracking

inter-transaction dependencies at run time, it identifies them at repair time by an-

alyzing the SQL log. To support continuous operation, this system incorporated

several schemes to detect, assess, and repair damaged databases on the fly without

completely halting incoming transaction processing. However, during repair time,

the effective throughput of DBMS is degraded. This high-availability design is sim-

ilar to Mariner. RFS takes a simpler “stop and repair” model, which is consistent

with common system administration practice after an attack.

Fastrek [53, 59] is a dependency tracking approach for adding intrusion re-

silience in database systems. It shares similar principles with RFS but is designed

for DBMS. The main difference is that RFS maintains the undo log but Fastrek

utilizes the undo log maintained by DBMS for each transaction for abort purpose.

Another difference is that Fastrek maintains an inter-transaction dependency graph

on the fly to achieve fast recovery. File system operation granularity is smaller than

transaction granularity. For RFS, the overhead and performance penalty incurred

with such an approach would be too high. During normal processing states, RFS
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keeps raw log records only. During repair time, only those records which are related

to the corruption are analyzed and used to build the dependency graph.

2.5 Complementary Data Protection Techniques

File system backup protects data for a potentially longer duration but in much

coarser granularity than our repairable system. The backup may use either oper-

ating system utilities or commercial software such as Amanda [1]. File system

replication or mirroring (such as SnapMirror [21]) provides protection against dis-

asters and failures but not against intrusions and user mistakes. Documentation

versioning control systems(such as CVS [30]) gives users full control over the pro-

tection of a smaller number of important files. It also provides easy access to older

versions. Tripwire [2] is an auditing tool that keeps track of changes to important

system configurations files and is capable of recovering files to a known good status

when soft failures occur. These changes are usually rare and small but could have a

significant impact up to and including system malfunction.



Chapter 3

Dependency Tracking

In this chapter, we describe the framework of dependency tracking in a repairable

file and storage system. Conceptually, the output of dependency tracking is a set of

file system objects whose state needs to be restored to a particular version. This out-

put is provided as input to the recovery algorithm. The recovery for the repairable

file system is straight forward. For the repairable storage system, we build a user

level versioning file system on top of the versioning storage system, and then run

the recovery algorithm on top of the user level versioning file system. The details

of the recovery algorithm are described in Chapter 4 and Chapter 5 respectively.

The goal of dependency tracking is to discover all the data updates involved in

a soft failure or useful work. The distinction between soft failure and useful work is

from the user’s viewpoint. From a system viewpoint, both involve tasks that change

the system state. Each task may involve many resources, such as processes, data,

and userids, but the task is usually initiated by only a few of them, called “root

resources.” While it is usually not possible to identify all the resources in a task,

it is much easier to pinpoint only a few “root processes.” Other resources can be

discovered through the dependency relationships with the root resources. These

27



3. DEPENDENCY TRACKING 28

dependencies are caused by certain system events. The discovery of all resources

involved in a task is a transitive closure problem. Next we give the formal descrip-

tion of the dependency tracking framework.

3.1 Dependency Tracking Framework

Figure 3.1 (a) is a directed graph G=< V,E > that represents the state change

of a system for a certain duration. The system is made of a set of resources

RS=R1, ..Rm and a set of events TS=T1, ...Tn. Each event has a unique times-

tamp. Each vertex V =< R, T >, R ∈ RSandT ∈ TS, represents the snap-

shot of resource R when event T happens. To better illustrate this, we arrange the

vertices in rows and columns. Each row represents a resource and each column

represents the system snapshot when an event occurs. An event correlates with de-

pendency relations among vertices in the same column, shown as the vertical edges

<< Ri, T >, < Rj, T >>. All vertices in G (except those in the first column) have

exactly one incoming edge. Any vertex < R, T > which does not have an incoming

vertical edge inherits status from its previous snapshot < R, T − 1 >, shown as a

horizontal edge << R, T − 1 >,< R, T >>. In practice, resources may have a

finite lifetime and may be dynamically added or removed. For the sake of simpli-

fication, we assume that they always have a snapshot at any time T. If the lifetime

of a resource R is from Ti to Tj, then the vertices < R, T > |T < Ti represent the

pre-born status, and < R, T > |T > Tj represent the after-delete status.

Given a set of resource snapshots V r = {< R, T >, ...} selected by the user as

task roots, the transitive closure of V r represents all the resource snapshots that are

involved in this task. The bold vertices and edges show V c, the transitive closure

of V r, and the edges that connect them. In the example, V r contains only one task

root < R4, T2 >, but it could have more.
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Figure 3.1: Dependency Analysis
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The output of dependency analysis is a set of vertices that will be the input for

the recovery algorithm. The output could be in one of two forms depending on the

nature of the task. If the task roots represent a soft failure , the output is V undo,

which represents the last clean snapshot of corrupted resources. If the task roots

represent a useful job, the output is V redo, which represents the last good image of

the resources involved in the useful work. This is, in formal notation, as follows:

V undo = {< R, T > |T < Tmax,< R, T >∈ (V − V c),∀ < R, T ′ >∈
(V − V c), T >= T ′}, V redo = {< R, T > | < R, T >∈ V c,∀ < R, T ′ >∈
V c, T >= T ′}.

Note that Tmax is the last event that happened to the system. Correspondingly,

< R, Tmax > represents the current image of resource R. In Figure 3.1(b), V undo

vertices are shown with thin underlines and V redo vertices are shown with bold

underlines. This formal description can be applied to system resource repair in

general. In this thesis, we are only interested in data repair. Accordingly, the final

output will filter out non-data vertices, such as vertices for processes.

3.2 Design choices

Given such a framework, to build an actual system, we must identify the vertices

(resources, events) and the vertical edges (dependency relations). This boils down

to five specific questions:

• What are the resources that constitute a task?

• What are the relations that create dependency among two resources?

• What are the events that cause such relations?

• How to log such events?
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suitable tasks relations & resources event where to log

soft failure/ the event

useful job

both parent-child (P→P) fork syscall

both same process group, fork syscall

session, user (P→P)

both IPC(P→P) signal,pipe, syscall

shared memory,lock,

semaphore,socket

soft failure network communication send, recv syscall, network

({PUHL}→{PUHL})

soft failure exec program (D→P) exec syscall

soft failure data access (D→P) read syscall, network

data server

both data update (P→D) write syscall, network

data server

both customized reuse existing reuse

({PUHLD}→{PUHLD}) events existing logs

Table 3.1: Design space. P(rocess), U(ser), H(ost), L(an) and D(ata) is the re-

sources. Each row is a dependency relation (X→Y) between two resources X and

Y. {X1..Xp} → {Y1...Yq}means{Xi → Yj|1 ≤ i ≤ p, 1 ≤ j ≤ q}
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• How can users pinpoint the task roots?

These questions are not independent from each other. The answer to one ques-

tion may affect the answer to another. The first and second questions are the most

important ones. The resources and relations should be extensive and at a granular-

ity fine enough to distinguish a soft failure from a useful job. In the mean time the

resources should be at a (not too low) level so that it is feasible for users to pin-

point the root resources. The events that cause the dependency relations should be

“trackable” both in terms of implementation feasibility and performance overhead.

Process is a straightforward candidate for resources. We can use a set of pro-

cesses to represent a useful job or a soft failure , and redo or undo their operations in

the repair phase. Two processes could be related from the parent-child relationship.

They may also be related in a producer-consumer relationship where one process

generates some information to be consumed by another process, such as IPC com-

munication, network communication, file system data read/write, etc. These rela-

tions can be tracked at the system call interface level. Syscall tracing has been used

extensively for various purposes, dependency tracking is yet another application.

Syscall tracing requires modification to the host.

When fine granularity dependency tracking is not available, there can be re-

sources at coarser granularity such as “user” and “host.” The relations among user

and host are much simpler. The dependency can only be due to network commu-

nication and file system data read/write operations. In the WAN environment, the

granularity of resources can be even coarser and based on the “local area network.”

It is arguable that very fine grain resources such as “thread” may also be used in

dependency tracking, but we haven’t considered it seriously.

In the above description, data are considered as media for two resources to have

dependencies. Another way of expressing this kind of dependency is to consider

data a resource, and to have two extra relations: data read and data write. This way,
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the data dependency among two processes can be expressed in two dependency

relations: first the data is affected by a process, then another process is affected

by the data. This greatly simplifies the dependency analysis. Data can be “root

resources,” too. For example, an intrusion can be detected by the fact that one

important file got modified. How the file got modified is probably not important

or can not be identified. What is important is that many subsequent operations are

affected by this corrupted file and need to be rolled back.

Identifying “root” resources V r can be tricky. A general solution is difficult and

out of scope for this dissertation. Taser [29] proposed some practical strategies to

alleviate the problem. Here we provide only sample solutions for some simple and

common scenarios. A user mistake may consist of one or more commands, each

being executed through one or more processes. To undo the effect of user mistakes,

all file system updates from these processes should be rolled back. If the user

mistake occurs during the interaction with an application process, the subsequent

updates from this process must be rolled back. In such a case, a timestamp is

required to describe the moment when the user mistake occurs. In malicious attacks,

the intruder may hijack an existing process and then spawn new ones. All updates

made by the hijacked process after it is hijacked and by the new processes must

be rolled back. Similarly a timestamp is required to specify the hijack time. In

the case of untrusted software, the software will be run as one or more processes.

If the software is proven to be unsafe, all updates from these processes should be

rolled back. Useful jobs can be described in a similar way as a set of processes and

associated timestamps.

Table 3.1 illustrates the dependency tracking on a UNIX like system. It lists the

potential resources, possible dependency relations, the events that may cause these

dependencies, and where to track these events.
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The dependency relations to be considered for soft failures and for useful jobs

can be different. For example, if the root resources represent a soft failure , a

process that reads the polluted data might be presumed contaminated and therefore

included in the transitive closure. On the other hand, if the root resources represent

a useful job, a process that reads some data produced by the root resources is not

necessarily considered part of the useful job.

For maximum flexibility, in addition to general dependency relations, we allow

customized dependency relations at repair time for individual tasks. This is shown

as the last row in the table. The events log must be able to support all possible

dependency relations.

3.3 False Positives and false negatives

The output of dependency analysis, V redo and V undo, may have both false posi-

tive and false negative results, either because the root resources V r are not identified

precisely, or because the dependency relations used in the analysis are inaccurate.

These two issues are not completely independent: if more resources are included in

the root resources, there is no need to discover them through dependency relations.

The extreme example is that no dependency relationship is required if V r = V redo

or V r = V undo. We have mentioned such scenarios in the introduction, where de-

pendency analysis would not be required if users have complete knowledge about

the updates involved in a task. On the other hand, if the dependency relations are

comprehensive, users need to pinpoint very few root resources.

Table 3.1 does not attempt to establish a standard. Rather it serves only as guid-

ance for the design of dependency tracking. The relations listed in the table are

only strong hints of dependency. It may be neither complete nor necessary. First

we discuss false negatives. Processes on the same machine share much common
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system status. In addition to explicit communication through the IPC or loop back

network, there can be implicit communication. Consider, for example, one process

allocated a lot of disk space, which then triggers aggressive garbage collection by

another process, which consequently deletes many files unnecessarily. Such depen-

dencies cannot be tracked unless there is a dependency relation that says that any

process which measures free disk space depends on all processes that allocate or

de-allocate any disk space. But then this dependency would cause false positives

in most scenarios. Hopefully such a sample scenario is not common in practice.

Another source of a false positive is implicit communication through users. Users

may provide input to a process according to the screen output of another process.

Unless the user marks both processes as root resources, it is very hard to track their

dependencies.

False positives can occur, too. Firslty, they can be occasioned by false data

sharing, which is a common problem in distributed file systems and SMP (share

memory multiprocessor) systems. A sample case is access to the /etc/passwd file.

A compromised process can modify the /etc/passwd to add a new user account or

disable the root passwd. Later many other good login processes may access other

lines of the /etc/passwd file. While these processes are probably not affected by

the attacker, block-based data dependency will assume they are compromised. Sec-

ondly, even true data sharing, IPC, and network communication are not sufficient

to prove the dependency between two processes. For example, process A may send

process B a signal or some compromised network data, but process B may have a

strong integrity check and therefore the signal is ignored and the data is discarded.

The consequence of false positives to useful jobs is that corrupted data remains

in the system. The consequence of false negatives is that some useful work will

get lost. The consequences of a soft failure are just the opposite. In practice, users
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may chose a redo-based repair (identify useful work) or an undo-based repair (iden-

tify soft failure ) depending on 1) which would have more accurate results, and 2)

whether it is more important to preserve all useful work or it is more important to

avoid corrupted data.

event log

event logging

event to logdefault dependency

resource versioning

user

resource restore

dependency analysis

module
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Normal System Running Stage

Repair Stage

Versions for repair (Vredo or Vundo)
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Figure 3.2: Dependency Tracking Overview
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3.4 Summary

Figure 3.2 gives an overview of dependency tracking in a repairable system.

The default dependency relationships, the events to be logged, and the resources

for comprehensive versioning are decided at system design stage. Events are

logged during normal system processing. The customized dependency relations

and root resources are specified at repair time. The events log is of the format:

< timestamp, eventcode,R1, ..Rp >. Both default dependency relations and

customized dependency relations are of the format < eventcode, R1, ..., Rp >→
{Rx → Ry|x, y ∈ {1, ..., p}} Upon soft failure , the dependency analysis algorithm

incorporates the default dependencies, the customized dependencies, and the event

log to build the system state evolution graph as shown in Figure 3.1(a). Then it

calculates the transitive closure from the root resources specified by the user. The

output of dependency analysis is used for recovery. V redo and V undo specify

the final valid versions of the resources, which can be retrieved from the version

repository.



Chapter 4

Repairable File System

The Repairable File System (RFS) is a general framework for protecting networked

file servers from irrevocable damage caused by errors or attacks. It has two oper-

ating modes: In the normal mode, RFS maintains a file update log and an inter-

process dependency log. In the repair mode, RFS first determines the exact ex-

tent of system damage, and then performs selective roll-back of those data blocks

that are considered contaminated. There is a limit on how much old data could be

maintained, which decides the protection window provided by the repairable file

system. 1

RFS focuses on speeding up the system repair process after an intrusion. It

does not perform intrusion detection by itself. At repair time RFS assumes that

the processes that start an attack are already identified, either through an intrusion

detection system, or through manual inspection of the system log. Given these

processes, RFS can partially or completely automate the subsequent damage repair.

In addition to the goal of fast and fine-granularity repair with minimum data loss,

1The protection window is the maximal interval between the time when an attack occurs and

when it is detected such that an RFS installation can ensure lossless recovery.

38
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RFS is designed with performance, flexibility, and portability in mind.

• RFS should not introduce significant logging overhead. The goal is to match

the performance of standard file server systems, such as an NFS.

• RFS should be a flexible system that can work well with existing legacy file

servers.

• The system architecture of RFS should be sufficiently modular that the com-

ponents independent of the underlying network file access protocol (e.g.,

NFSv2) should be reusable across different network file access protocols.

Our prototype implementation of RFS is on top of NFS, with the following

assumptions:

1. There are no intrusions and user errors occurring on NFS server.

2. The data on the NFS server can only be accessed by NFS client, i.e., there

is no local access from the NFS server. This means that intrusions and user

errors only occur on NFS clients and all file updates are through the NFS

protocol.

3. The system call log (used for dependency analysis and collected on NFS

client) cannot be corrupted.

In general it is efficient to do logging at the NFS command interface. It leads

to a more compact log and simpler design because one NFS operation could map

to multiple inode/indirect-block/data-block updates. For example, an NFS create

request triggers the following local file system operations on the NFS server: (1)

a new inode is created, (2) the file name is added to the parent directory, (3) the

parent directory file may be expanded with a new block, (4) the block pointer of
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the parent directory file is added to point to the new block, and (5) the attributes

of the parent directory’s inode are updated. As a consequence, a create operation

may generate multiple log records if logging is done at the inode/block level. But

in RFS it generates only one log record.

4.1 Overview

In this section we start with the design issues of a repairable file system. We have

built four different prototypes (RFS-O/RFS-A/RFS-I/RFS-I+) for the repairable file

system. We describe their basic architectures and characteristics. We also discuss

the common software components shared by different prototypes. The four proto-

types differ mainly in the logging scheme, which is discussed in detail in subsequent

sections.

4.1.1 Design Issues

The dependency analysis has been discussed in-depth in Chapter 3. Repair is a

relatively simple issue that naturally follows the design of logging and dependency

analysis. In this section we focus on the logging design. The main research ques-

tions are:

• Should we use redo logging or undo logging?

• What information needs to be logged?

• In a distributed environment that consists of an NFS server and multiple NFS

clients, how to consolidate the logs from multiple nodes?

• How to log the data in the write request?
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In the event of a failure, forward recovery resets the system state to the last

clean snapshot, and selectively applies redo operations to retain uncontaminated in-

formation. Backward recovery, on the other hand, rolls back the system from the

current state by undoing contaminated operations until the entire system is clean.

Backward recovery avoids the overhead of checkpointing, and the repair time is

proportional to the interval before intrusion or mistakes are detected. Forward re-

covery avoids the overhead of reading the prior image to construct undo records,

and the repair time is proportional to the interval between intrusion time and the

time of the last clean snapshot. We assume that with current intrusion detection

techniques, intrusions and errors can mostly be detected within a short period of

time after their occurrence. RFS uses the backward recovery approach, and logs

file system updates to an undo log. As we may observe later in this chapter and in

the next chapter, the distinction between forward recovery and backward recovery

is blurred if the underlying file system or storage system support comprehensive

versioning.

System call logging provides both the information for the dependency analy-

sis(Chapter 3) and the data for repair. The information to be logged includes the

system call type, the timestamp, the system call parameters, and sometimes, the

data. Most system calls do not contain data, except file system read/write and net-

work send/receive. For dependency analysis, we do not need to log the data. But

for file system recovery, we need to log the data in the write system call. Since we

are not doing application level recovery like [37], the data in network send/receive

is not needed.

Since files are stored on the NFS server and intrusions/user errors occur on

NFS clients, the logging needs to be done on both the client side (called syscall

log) and the server side (called file update log). The dependency analysis algo-

rithm(Chapter 3) requires a global order among all syscall log records. It is not
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straightforward to impose a global order among the syscall logs from multiple NFS

clients, especially with NFS client caching, since there need not be a one-to-one

mapping between a file system syscall on the NFS client and an NFS request to the

NFS server.

In the absence of a global timestamp, RFS solves this problem by inserting an

RPC message entry to both the client-side syscall log and the server-side file up-

date log. On the NFS client, the entry is added before a request is sent to NFS server.

On the NFS server, the entry is added when a NFS request is received. By analyzing

the syscall log entries immediately before an RPC message entry, RFS can deter-

mine the process or processes responsible for a particular NFS request. The RPC

message ids serve as synchronization points between the syscall logs and the file

update log. Since RFS assumes that two NFS clients can only affect each other

through NFS data dependency, this coarse granularity synchronization is enough

for the dependency analysis. If we also consider network dependencies, the net-

work communication itself can serve as extra synchronization points. The intuition

behind this is that if there is a communication that might cause dependencies, the

communication itself serves as a synchronization point. If there is no communica-

tion for a certain period of time, we wouldn’t care about the global ordering because

there would be no dependencies.

Logging the data in the write request is tricky because it incurs a very large

logging overhead. Most syscalls and NFS requests do not take more than 128 bytes

and the logging overhead is negligible. However, the data in the write syscall is at

least 4K and often bigger, up to 64K. Storing data directly in the log record incurs

a heavy disk load. With undo logging, the overhead doubles because we need to

retrieve and store the prior image data. This approach is called overwrite-logging.

One way to avoid the overhead of reading/writing the prior image is to use a com-

prehensive versioning file system that keeps all versions of data and only refers to
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the location of the data in the log record. We call this approach append-logging.

We have experimented with both logging approaches in different prototypes.

4.1.2 System Architecture

We have experimented with two system structures. The decoupled structure has

a legacy file server. The file update logging is done by a separate logging server.

There is a traffic interceptor dispatching the NFS traffic in front of the legacy file

server and the logging server. The decoupled structure can take advantage of the

benefits of a legacy file server, such as superb performance and reliability. This

structure also make it easier to apply the RFS framework to different network file

system technologies, such as SUN’s NFS protocol [4] or Microsoft Server Message

Block (SMB) [3] or CIFS [38] protocol. The logging server is invisible to both

the network file server and its clients – it only monitors NFS traffic. There is little

chance for it to be attacked. In the decoupled structure, the read performance and

write latency are decided by the legacy file server, and the write throughput is de-

cided by the slower of the legacy file server and the logging server. In our system,

if the logging server is slow and cannot keep up with the legacy server, eventually

the traffic interceptor will stop dispatching requests.

In the integrated structure, instead of the legacy file server, an NFS-Processor

is added to the logging server to handle all NFS requests. The traffic interceptor is

no longer needed. The decoupled structure has better performance isolation while

the integrated has reduced hardware cost.

We have built four prototypes with different logging approaches and system

structure, as shown in Table 4.1. In RFS-O, to compose the undo record, the log-

ging server needs a mirror file system to serve the prior image. In RFS-A, there

is also a base image to help with the append logging. There is no combination
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Figure 4.1: System architectures of four RFS prototypes. The traffic interceptor

intercepts NFS requests and responses. It runs on a bridge device in front of the

protected NFS file server. The user-level non-overwrite Logger records all file up-

dates. Both RFS-O and RFS-A require separate nodes for traffic interception, file

update logging, and NFS request processing. RFS-I integrates NFS processing and

file update logging into one host and eliminates the interception device. RFS-I+

incorporates an in-kernel packet interception mechanism to reduce context switch

and memory copy overhead.
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overwrite-logging append-logging

decoupled RFS-O RFS-A

integrated RFS-I, RFS-I+

Table 4.1: Four RFS prototypes

of overwrite-logging and integrated structure because the overhead of overwrite-

logging turned out to be very high. Even with the decoupled structure, we observed

that the write throughput dropped significantly. The integrated structure would per-

form even worse. In RFS-A and RFS-I, the file update logging is implemented at

the user-level, incurring some memory copy and context switch overhead. RFS-I+

is largely the same as RFS-I, except that it has additional optimizations to reduce

the memory copy and context switching overhead. Figure 4.1 shows the architec-

ture of the four prototypes. Figure 4.2 shows the data structures that are needed in

each prototype.

4.1.3 Contamination Analysis and Repair

The dependency analysis and repair run in the repair mode. Given a set of client

syscall logs and the server file update log, the dependency analysis algorithm coa-

lesces them into a single log by the RPC message entries(Section 4.1.1. Both the

syscall logs and the file update log are stored on the logging server. Among many

choices in dependency analysis(Chapter 3), we chose a set of practical and rela-

tively simple policies. The dependency analysis outputs a set of undo records. The

repair module executes these undo records to restore system data status. The re-

pair component will vary slightly with different system structures and file update

logging schemes.

In RFS, the dependency analysis is damage oriented rather than useful work
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Figure 4.2: This figure shows the data structures of the four prototypes. It also

shows whether they are maintained at user-level or at kernel-level. Data refers to

the regular file blocks. Kernel level meta-data refers to superblock, inode, indirect

block and directory, which are maintained by the underlying file system. User-level

metadata includes various versioning data structures maintained by the user-level

file update logging module.
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oriented(Chapter 3). Therefore we also call it contamination analysis. The contam-

ination analysis considers all mutable file system syscalls (and corresponding NFS

requests) unless they only affect the last access time attribute. One reason is that

these operations are very frequent and cause a blow-up in the log size. Another

reason is that we suspect these operations will lead to a lot of false positives. As

future work, this conjecture needs to be verified. Another option is to provide con-

tamination analysis at different security levels. We always log these operations, but

only use them in the analysis at a high security level.

RFS distinguishes between a contaminated file and a contaminated file block.

If a file is contaminated, all its blocks are contaminated. The converse is not true

– even if all the blocks are contaminated, a file may still not be contaminated (the

attributes are clean). A file created by a corrupted process is a contaminated file.

If a corrupted process writes into a file block, only that file block is contaminated.

With this distinction, RFS considers a process contaminated if it

• is a child of a contaminated process,

• reads contaminated file blocks, or

• performs any operation that depends on the existence of a contaminated ob-

ject. This includes read, write, get attributes, and set attributes calls on the

contaminated object. It also includes any operations on the objects that are

descendants of the contaminated object in the file system hierarchy.

According to the above rules, if a process just writes to a contaminated file

block, the process is not considered contaminated. However, if a process writes to

any block or manipulates the attributes of a contaminated file, the process becomes

contaminated. The rationale of the third rule is that processes that touch contami-

nated files could not have continued because contaminated files will be deleted in

the repair process.
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Conceptually the contamination analysis assumes that an individual process is

the unit of repair. Update operations of a process are either all preserved or all re-

moved. In practice, the output of the contamination analysis is a set of undo records

from the file update log. It is essential for RFS to determine the initiating process

of each NFS request. Unfortunately, NFS requests only contain user ID. Again the

RPC message entry(Section 4.1 helps to determine the process or processes that

are responsible for a particular NFS request. RFS sends each undo operation as a

normal NFS request. As a result, the undo operation is also undoable.

Repair
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Syscall log
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Applications
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Repair−inode−map

NM−inode−map

Figure 4.3: The detailed software architecture of the RFS-O system. Only the

redo-to-undo converter is protocol dependent. All the other modules are reusable

across different network file access protocols.

As described in Chapter 3, dependency analysis can have false positives and

false negatives. The policy that we selected could be too liberal or too strict for

a particular situation. It would be nice to have an interactive exploration tool for

system administrators to interactively examine the validity of the output of contam-

ination analysis. Along similar lines, RFS allows system administrators to specify
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the scope of protection in terms of a set of file partitions, directories, or files on the

NFS server.

4.1.4 Client-Side Syscall Logging

As determined by the contamination analysis policy, the client-side syscall logging

records mutable file system syscalls except those that only modifies last access time.

It also records the syscalls that create parent-child relationships, e.g., fork() and

exit(). The implementation is similar to the syslogd in Unix system. The only

difference is that instead of being stored locally, client-side logs are sent to the RFS

server to be more secure. The client-side logging module is pretty thin, consisting

of 203 lines of changes to the Linux kernel code and 273 lines of new code to

maintain the logging buffer.

4.1.5 Traffic Interceptor

A traffic interceptor is needed in RFS-O and RFS-A. The requests from the NFS

client are forwarded to the legacy NFS server immediately. The replies from the

legacy NFS server are forwarded to the NFS client immediately. If a request is

mutable (write, setattr, mkdir etc) and its reply is successful, they are put into a

redo record and sent to the logging server. The interceptor maintains a buffer for

all pending update requests that are waiting for replies. The interceptor interacts

with the NFS server and the logging server through NFS protocol which is based

on UDP. Therefore it needs to overcome packet loss and duplication issues.
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nfs operations mirror operations undo record NM- repair-

inode-map inode-map

R:create a R:create a R:remove a

A:(10) A:(20) A:NULL (10, 20)

R:write(10), R:write(20), R:setattr(10),

0,2,xx 0,2,xx size 0

A:success A:success A:NULL

R:remove a R:lookup a R:create a

A:success A:(20) A:(10)

R:read(20), R:write(10),

0,2 0,2,xx

A:xx A:NULL

R:create a R:create a R:remove a

A:(11) A:(22) A:NULL (11, 22) (10, 11)

R:write(11), R:write(22), R:setattr(11),

0,2,xx 0,2,xx size 0

A:success A:success A:NULL

Table 4.2: In this example three requests (create, write, remove) are sent to the

protected NFS server. The last (remove) is malicious and needs to be undone. The

table presents the operations that are applied to the protected NFS file system and

the mirror file system on the logging server, together with the associated changes

to the NM-inode-map and repair-inode-map. (10) means file with inode number

10, write(10),0,2,xx means write to file(10), offset 0, count 2, with data xx. R

means REQ, A means ACK. In this example, file “a” is associated with four inode

numbers: 10 on the protected file system before repair, 20 on the mirror file system

before repair, 11 on the protected file system after repair, and 22 on the mirror file

system after repair.



4. REPAIRABLE FILE SYSTEM 51

4.1.6 Inode Mapping Issue

In the decoupled configuration, there are two file systems accepting the NFS re-

quests, the protected file system and the mirror file system. In RFS-O, the mirror

file system is another NFS file system. In RFS-A, the mirror file system is a user-

level versioning file system based on the underlying NFS file system. Conceptually

the protected and mirror file system are identical. They are initialized with the same

state and accept the same update requests. However they are not completely identi-

cal on a byte-by-byte basis. One difference that matters to RFS is that inode number

for the same file could be different on the two file systems.

To carry out a update request to the same file on both file systems, RFS main-

tains a NM-inode-map to keep track of the one-to-one mapping. We call it an

”inode” map because conceptually inode is the identifier of a file system object.

However, the map actually stores NFS file handles instead of inode numbers. The

reason is that in the NFS protocol each file is identified by an NFS file handle al-

though the most important information in the NFS file handle is the inode. The file

handle of a redo record is specified with respect to the protected file system. On

the logging server, it is translated to the corresponding file handle in the mirror file

system through the NM-inode-map.

In addition to the NM-inode-map, RFS also needs another inode map for repair

time. Some undo operations create new file system objects, for example, the undo

of rm and rmdir. The file handle of the new file object created by the undo opera-

tion may not be the same as the file handle being deleted. Therefore, in the undo

process, RFS maintains another inode map (repair-inode-map) to keep track of

the association between a file that is eventually deleted and its compensation copy.

Table 4.2 presents an example to illustrate these inode mapping issue.
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4.2 RFS-O: basic prototype

4.2.1 Undo Logging

File system updates can be classified into three categories: file block updates, di-

rectory updates, and attribute updates. To log a file block update, the undo logging

first reads the prior image of the target block, updates the target block, and then

appends the prior image to the undo record.

For directory updates, the undo logging does not need to save the old directory

explicitly. For example, the undo operation for create is remove, which can directly

be put into the undo record without reading any prior image. The same holds for

mkdir, rmdir, symlink, link where the corresponding undo operations are rmdir,

mkdir, and remove, respectively. The only exception is remove, for which the undo

operation is not very simple. If a hard link is removed, the undo operation is link.

If a symbolic link is removed, the undo operation is symlink, for which we need

to read the contents of the symbolic link. If the object is a regular file, the undo

operation is to create a new file, and write it to the full length for which the logging

system needs to read the whole file and store the content in the undo record.

For file attribute update, i.e., setattr, usually the undo logging just need to save

the old attribute to the undo record. Because the NFS protocol already includes

the old attribute in the NFS reply, the undo logging does not need to issue another

getattr request to retrieve the old attribute. The only exception is when a file is

truncated for which the truncated data needs to be read and written to the undo

record.

File block update, file truncate, and regular file delete are the most expensive

NFS commands in terms of the undo logging overhead, and thus are the major

targets for performance optimization.
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4.2.2 Retrieve before image

A naive way to retrieve the prior image is to issue a file read or get attribute request

to the protected file system before it is updated. This approach adds significant

delay to the original update operation and increases the load on the protected file

server. Another small issue is that if the NFS request fails on the protected file

server, the efforts to get the prior image are wasted. RFS-O uses a different ap-

proach to keep the logging activity isolated from the the interaction between the

NFS client and the protected NFS server by assuming the existence of a separate

mirror file system, (Figure 4.2), which services the requests to get the prior im-

age. Typically the load on the mirror file system is lower than the protected file

system because it does not need to serve non-update file system requests (read,

getattr, lookup, access, readdir etc.) In addition the prior image accesses can be ser-

viced asynchronously and scheduled for better disk access efficiency. The mirror

file system could reside either on a separate server or on the logging server itself.

Figure 4.2 shows the data structures used in RFS-O:

• Protected file system stores the current file system image. It is managed by

the operating system and exported through NFS protocol.

• Mirror file system stores the mirrored file system image. It is also managed

by the operating system and exported through NFS protocol.

• Undo log consists of a list of undo records, each of which stores the prior

image required for an undo operation, including old data blocks, directory

entries and/or attributes. It is managed by the user-level logging daemon.

• File handle map associates the file system objects in the protected file system

to those in the mirror file system. There is also another temporary file handle

map used only at repair time(Section 4.1.6).
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4.2.3 Redo-to-undo conversion

The redo record produced by the Traffic Interceptor is converted to an undo record

by a redo-to-undo converter. The redo-to-undo conversion is crucial to the system

performance. Since the protected NFS server has multiple nfsd processes, the redo-

to-undo converter uses a similar multi-threading structure to match the NFS server’s

processing capacity. In addition, the converter maintains a file attribute cache to

reduce the frequency of contacting the mirror file system.

As shown in Figure 4.4, the converter has a dispatcher thread, three I/O threads

(receive-redo thread, receive-reply thread and flush-undo thread), and a config-

urable number of processing threads. The central data structure is the request queue.

Each queue will be in one of four status: Free, Ready, Processing, Waiting-Reply.

All requests in the same queue operate on the same file system object. A Free queue

is labeled as Ready after the dispatcher puts a request into the queue. Any process-

ing thread can take a Ready queue, label it as Processing and start processing the

requests in that queue. Whenever a processing thread needs to wait for a reply from

the mirror file system, the queue is labeled as Waiting-Reply and will be set back to

Processing after the reply is received. The queue will be labeled as Free when all

the requests in the queue have been processed.

The redo-to-undo conversion must respect the dependencies among NFS re-

quests. For example, a write request for a certain file cannot be dispatched before

the create request for the same file has been processed. Similarly the remove re-

quest for a certain file cannot be dispatched before all the preceding write requests

on the same file have been dispatched.
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Figure 4.4: The redo-to-undo log converter uses a multi-thread software architec-

ture to maximize the concurrency between disk I/O and log processing on the RFS

machine, which hosts the mirror NFS server as well as the log converter.
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4.3 RFS-A: improve logging efficiency

The overwrite-logging used in RFS-O is simple but expensive. For each file update

operation, RFS-O reads the prior image of the written block to compose an undo

record, (2) applies the write operation in place to the mirror file system, and (3)

flushes the undo record onto disk. RFS-O performs undo logging asynchronously

to hide most of its overhead. However, in the case of a long burst of file update

operations, the system performs poorly compared to a standard NFS file server.

RFS-A solves this problem by using the more efficient append-logging scheme.

However it requires significant modifications to file system metadata, as is the case

with existing kernel-level versioning file systems [56, 61]. The append-logging is

implemented at the user-level for ease of debugging and better portability. With

append-logging, the undo log is much smaller than with overwrite logging because

the undo record stores pointers to the old data rather than the actual prior image.

4.3.1 Overwrite logging

When a file block is updated, RFS-A allocates a new file block to hold the new

version. Unlike kernel-level versioning file systems, which can directly modify file

metadata (such as inode) to point to the new version, RFS-A needs to maintain a

separate user-level metadata called block map to achieve the same purpose. The

old data is kept intact during the protection window and recycled only when the

corresponding undo record expires. The first version of every file block is stored

in a place called base image. The base image has a similar role to the mirror file

system in RFS-O. It has the same directory hierarchy and inode attribute values

(except the file length attribute) as the protected file system. However, the base

image is not an exact replica of the protected file system as we will explain later.

RFS-A uses a separate disk block pool, called the overwrite pool, to hold the
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second and later versions of each file block. Each file block in the overwrite pool is

identified by a virtual block number Vblkno. The pool is physically organized into

multiple regular files in the local file system. Each such file is called a stripe. A

block usage map is used to keep track of the usage of the overwrite pool. The map

stores an Oldtime for each virtual block. A virtual block becomes old when the file

block is overwritten, truncated or deleted; and its Oldtime is set to the timestamp of

the corresponding undo record. The Oldtime of a virtual block containing current

data is infinity. The Oldtime of a free virtual block is 0.

A block map is used to keep track of difference between the base image and the

protected file system. For each block in the base image that contains an old image,

there is an entry in the block map. The map entry is of the form <Oldtime, Fid,

Blkno, Vblkno>, which indicates that the newest version of block Blkno of file Fid

is stored at virtual block Vblkno. If Vblkno is -1, it means the target file block has

been truncated. The Oldtime is the time when the file block <Fid, Blkno> in the

base image becomes old.

In summary, when a logical file block is created, it is created in the base image.

When a logical file block is overwritten for the first time, a virtual block is allocated

from the overwrite pool, and an entry is added to the block map. The undo records

uses a special location value of -1 to indicate that the old version is in the base

image. When a logical file block is overwritten the second time, the undo record

uses the Vblkno value in its block map entry to indicate the location of the old

version. A new block from the overwrite pool is allocated and the block map entry

is updated with the Vblkno of the new block.

Essentially, RFS-A distinguishes between write-once file blocks and overwrit-

ten file blocks. When a file contains only write-once file blocks, all its blocks are

stored in the base image. However, as soon as some of them are overwritten, they

will be stored in the overwrite pool. As a result, this design reduces the size of
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the block map and improves the hashing and caching efficiency. For write-once file

blocks, this scheme also preserves the disk proximity among adjacent file blocks.

For file truncate operations, RFS-A does not physically truncate the file in the

base image, instead it maintains a file length map to distinguish the file length of a

logical file and that of the corresponding physical file in the base image. Each file

length map entry is of the form <Fid, Userlen, Baselen>. The truncate operation

is executed as an update to the Userlen field. With append logging, whether a write

operation is an “append” or an “overwrite” is based on Baselen and not Userlen.

Although Baselen can be retrieved from the base image file attributes, it is stored in

this map for the ease of frequent access. All other file attributes in the base image

(except file length) are correct. The undo record for truncate operation contains

only a pointer to the truncated data.

File delete operation is replaced by the rename operation. The deleted file is

moved to a special directory called delete pool. It has a flat structure and assigns

each file a unique name generated from the inode number. Accordingly, the undo

operation is another rename operation that brings the file back to the original di-

rectory. Figure 4.5 illustrates the lifetime of a file under RFS-A, starting from the

time when it was created, then appended, overwritten, truncated, and finally till it is

deleted.

As shown in Figure 4.2, the logging data structures used by RFS-A are:

• Protected file system is the same as that in RFS-O

• Base image stores the current file system hierarchy and most file attributes

except file length. The file blocks it contains could correspond to either cur-

rent or older versions.

• Overwrite pool stores blocks that have been overwritten at least once.

• Delete pool stores deleted files and their attributes.
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• Block map stores the location of the current version of each file block if it is

not in the base image. It also stores the associated timestamp for reclaiming

storage.

• Block usage map is used for allocation of virtual blocks in the overwrite

pool.

• File length map stores each file’s length both as it is perceived by user and

as it is in the base image.

• Undo log is similar to RFS-O except that each undo record contains a pointer

to the prior image rather than the prior image itself.

• File handle map is the same as that in RFS-O.

4.3.2 Garbage Collection

The undo log and the client-side syscall log is recycled whenever they fall out of

the protection window. Old versions of file attributes are stored and reclaimed with

the undo records.

Each truncated file block and overwritten file block is pointed to by some undo

log entries. The Oldtime values of these blocks and files are the timestamps of

the corresponding undo records, which can be reclaimed after they fall outside the

protection window. The Oldtime of each virtual block in the overwrite pool is

stored in the block usage map. It is natural to integrate the garbage collection with

virtual block allocation while scanning through the block usage map, permitting

expired virtual blocks to be re-allocated on the fly.

It is slightly more subtle to reclaim the old blocks in the base image. The Old-

time of a file block in the base image is kept in the corresponding block map entry,
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Figure 4.5: Evolution of a file block under RFS-A. This example includes 5 NFS requests.

The figure shows the operations that are executed, their undo operations, and the metadata

modifications associated with each request. The Time3 is an overwrite operation, vblk0 is

allocated to store the new data, and a new block map entry is added. The Oldtime is set to

“Time3 ”. The Time4 is a truncate operation, the Userlen of corresponding file is set to 0.

The Oldtime of the truncated block (vblk0) is set to Time4. The Vblkno of the block map

entry is set to -1. The Time5 is a delete operation, which moves F1 to the delete pool.
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if it exists. 2 When a file block is overwritten, RFS-A checks the corresponding

block map entry to see if the associated file block in the base image has already

expired. If so, the new data is written to the base image instead of the overwrite

pool. As a result the expired block gets recycled. However, this approach cannot

reclaim all expired blocks in the base image. If an old block in the base image

never gets overwritten after it expires, it cannot be recycled. One solution is to add

a background cleaner which periodically checks if any file block in the base image

has expired, and if so, move the current version from the overwrite pool to the base

image. This block migration incurs extra overhead, hence it should be done when

the system load is light and when heuristics indicate that the file block might not be

overwritten soon.

The background cleaner also checks the last modified time of the files in the

delete pool. Expired files are physically deleted and the corresponding entries in

the file handle map and file length map are freed. Finally the background cleaner

periodically scans through the block map to look for any entry with a Vblkno of -1,

indicating that the block has been logically truncated. If a virtual block is the last

block according to the file’s Baselen and it has expired, the file in the base image is

physically truncated and its Baselen is modified accordingly.

The other three prototypes(RFS-O, RFS-I and RFS-I+) have only have a sub-

set of the data structures that RFS-A has. Their garbage collection can be easily

adapted from the garbage collection scheme described above.

2Actually such entries in block map are kept even if the file is deleted and moved to the delete

pool.
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4.4 RFS-I: reduce hardware cost

RFS-O and RFS-A double the hardware costs of a file system by having both a

protected file server and a logging server that maintains a versioned mirror image.

From a performance perspective, with append logging it is no longer absolutely

necessary to use a separate file server. In RFS-I, we experimented with integrating

the NFS processing into the logging server.

Compared to RFS-A, RFS-I introduces three changes: (1) RFS-I no longer

needs the file handle map. (2) RFS-I needs to process both read and write requests

as well as their responses. In contrast, RFS-O and RFS-A only need to process the

write requests, and do not need to touch the NFS replies. (3) The undo logging in

RFS-I becomes synchronous logging. This logging overhead is added to the latency

of normal request processing.

As shown in Figure 4.6(II), the file update logging module acts as an NFS proxy.

Each NFS request first goes to RFS-I’s user-level file update logging module, which

modifies the request properly and sends it to the local NFS daemon in the kernel,

which in turn sends a reply back. The file update logging module massages the

reply into a response packet and sends it back to the requesting NFS client.

If an NFS request involves only one data block, RFS-I needs to determine

whether the request should be directed to the base image or to the overwrite pool. If

it should go to the overwrite pool, the request parameters (file handle, offset, count)

need to be modified. If the request involves more than one block, RFS-I needs to

check each block and if necessary, split the request into multiple requests. After

receiving a reply, RFS-I may need to modify the file handle and attribute informa-

tion if the request has been directed to the overwrite pool. If an incoming request is

split into multiple requests, RFS-I needs to reassemble their replies into one reply

and send the whole reply back to the requesting NFS client. In case some of these
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replies are successful and some are not, RFS-I resolves the inconsistency and re-

turns a coherent reply. Things become more complicated if the read/write requests

are not aligned with the block boundaries.
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Figure 4.6: This figure illustrates the packet processing path in RFS-I and its

overhead due to context switch, memory copy and user-level processing. In RFS-

I+, an in-kernel packet interception mechanism reduces the overhead by providing

a short-cut path and eliminating the need to copy large data payloads.
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Figure 4.2 shows the data structures used in RFS-I. The data structures are sim-

ilar to RFS-A except that there is neither a protected file system nor a file handle

map.

4.5 RFS-I+: reduce overhead of user level implemen-

tation

In RFS-I, an NFS request and its reply are passed between the kernel and user

space multiple times. To reduce the data copying and context switching overhead

associated with user-level file update logging, we implemented another prototype

RFS-I+ which incorporates an in-kernel packet interception mechanism to eliminate

most of these overheads. This change has no effect on the logging scheme. RFS-I+

requires exactly same logging data structures as RFS-I. Figure 4.6 illustrates the

difference in packet processing path between RFS-I and RFS-I+. Upon receiving

an NFS request/reply, the kernel module has three possible ways to process it:

• Path-0: Forward the request/reply to the in-kernel NFS daemon/NFS-client

directly (a→d / e→h in Figure 4.6), if the user-level file update logging mod-

ule does not need to modify the request/reply, e.g., readdir.

• Path-1: Forward the request/reply to the in-kernel NFS daemon as well as

the user-level file update logging module (a→b and a→d in parallel / e→f

and e→h in parallel in Figure 4.6), if the request/reply does not need to be

modified, but needs to be recorded, e.g., create.

• Path-2: Forward the request/reply to the user-level file update logging mod-

ule if the request/reply potentially needs to be modified (a→b→c→d /

e→f→g→h in Figure 4.6), e.g., read or write.
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Path-0 represents the zero-overhead path, which is as fast as the standard NFS

request processing time. Path-2 involves two context switches/memory copies be-

cause the original request and reply have to go through the user-level module. It

affects not only the CPU utilization but also the end-to-end latency. Path-1 involves

only one context switch/memory copy for sending the request packet to the user-

level daemon. The overhead affects only the CPU utilization but not the end-to-end

latency because the user-level processing is not on the critical path of NFS process-

ing,

The intelligent demultiplexing scheme described above eliminates the process-

ing overhead of those NFS requests and replies that are not at all relevant to file

update logging. However, in many cases an NFS reply only requires very simple

modification. For example, the getattr reply has completely correct content except

the file length field, which needs to be changed from Baselen to Userlen according

to the file length map. It is the same for many of the read and write replies where

the requests are directed to the base image. Therefore we introduce another opti-

mization called in-kernel reply modification. When the user-level logging module

sends a request to the NFS daemon (step c in Figure 4.6), whenever possible it also

sends an instruction on how to modify the associated reply. With this optimization,

many NFS replies that used to take Path-2 can now take the less expensive Path-0

or Path-1. This optimization is particularly effective for NFS replies that contain

large data payloads.

The last optimization in RFS-I+ is write payload bypassing, which decreases

the memory copying overhead associated with write requests. A write request al-

ways needs to be processed by the user-level logging module. However, because

user-level processing rarely touches a write request’s payload, it is feasible to for-

ward only the request’s header to the user-level logging module (step b). When the

user-level logging module sends the modified header back, the old header of the
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request is replaced with the new header. In case the user-level logging module does

need to touch the write’s payload, for example if the request needs to be split, it can

make another system call to explicitly retrieve the payload.

4.6 Fault tolerance considerations

RFS’s fault tolerance design is very basic. It ignores the issue of high availability

and focuses on restoring the system to a consistent state after failures. We assume

that RFS system stops upon failures and when the failure reason has been fixed,

restarts and initiates a consistency check. RFS is built on top of the kernel file

system. All the metadata are stored as files/directories maintained by the operating

system. The first step in the consistency check is to restore the underlying file

system consistency with conventional fsck. The second step is only needed for

RFS-A, RFS-I and RFS-I+. It restores the consistency of the user-level versioning

file system data structures including undo log, base file system, overwrite pool,

delete pool, file length map, block map and allocation map. The third step applies

only to RFS-O and RFS-A. It restores the consistency between the protected NFS

server and the logging server. It involves the protected file system, the mirror file

system on the logging server and the file handle map. The fourth step restores the

consistency between the client-side syscall log and the undo log. Next we will

describe the second, third and fourth step in detail.

4.6.1 Consistency check among versioning metadata

To understand the consistency check algorithm, first we summarize how the user-

level versioning metadata and data are updated during normal operations. The base

image, overwrite pool, and delete pool are updated through file system interface

upon each NFS request. It is up to the operating system to decide when these
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updates go to the disk. Usually the operating system has an upper limit for the

maximum delay before flushing, say, OS-SYNC-INTERVAL. The situation is sim-

ilar for the undo log. The other metadata (file handle map, file length map, block

map, allocation map) are updated in memory upon each NFS request. Periodically

they are write to the metadata files and flushed to the disk. Let’s call it RFS-SYNC-

INTERVAL. Usually the RFS-SYNC-INTERVAL is bigger than the OS-SYNC-

INTERVAL.

Depending on whether there was data loss caused by disk failure or unsuccessful

kernel fsck in the first step, different approaches are used to restore logging server

consistency. If there is no data loss, assuming the system crashed at time T, the

consistency can be restored by first rolling the system backward to T - OS-SYNC-

INTERVAL, and then replaying the updates to the versioning metadata from T -

RFS-SYNC-INTERVAL to T - OS-SYNC-INTERVAL. This approach is similar

to the fsck of journaling file system. Note that the distinction between redo and

undo logging is only valid for overwrite logging. With the user level versioning

file system, the information in the log record can be used for both redo and undo

recovery.

If there is some data loss, the consistency check is conducted in a brute-force

style. It restores the file system data using a best effort strategy. This approach

is similar to the fsck of non-journaling file system such as ext2, The steps to be

performed are:

1. Traverse the base image, and check (1) for each file system object whether

there is an entry in the file length map and the size of the object equals the

Baselen in file length map.

2. Examine each <Oldtime, Fid, Blkno, Vblkno> entry in the block map. If

the Vblkno is not -1, verify if the Blkno is within the Userlen of the file Fid,
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and the Oldtime of the block usage map entry for Vblkno infinity. If the

Vblkno is -1, check if the corresponding file block is truncated according to

the Userlen attribute of the file.

3. Check that for each entry in the block usage map whose Oldtime is infinity,

there is a corresponding entry in the block map.

4.6.2 Consistency check between protected file system and mir-

ror file system

This step applies only to RFS-O and RFS-A. In the absence of a disk log that records

each NFS request before forwarding it to the protected file server, the only way to

restore the consistency between the protected file system and the mirror file system

is by brute-force.

Either of the protected file system or mirror file system could be used as the

correct image. We chose to use the protected file system unless there is major data

loss on it. A ”diff -r” can be used to find all the differences between the two file

systems, and file system commands such as cp, mkdir, rmdir, remove can be used

to correct the differences. The file handle map is updated along the way.

4.6.3 Consistency check between client syscall log and file up-

date log

It is relatively easy to restore the consistency between client-side syscall log and

the undo log. As described in Section 4.1, the syscall log and the undo log can

be synchronized with RPC message entries. If after the last synchronization point,

there are additional syscall log entries, they are simply discarded. If instead there

are additional undo records entries, we could chose either to do nothing or roll back
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those undo records. If we chose to do nothing, we get to keep a little bit more data

but lose some accuracy in the contamination analysis accuracy (which in any case

has false positives and false negatives).

4.7 Implementation

We have implemented RFS-O, RFS-A, RFS-I and RFS-I+ on Redhat 7.2 with kernel

2.4.7-10. These four file update logging schemes share a common code base, in

total about 16000 lines of C code. The kernel module of RFS-I+ contains another

1500 lines.

We have ported RFS-O, RFS-A, and RFS-I to FreeBSD. The only part of the

code that is OS-dependent is the NFS file handle interpretation. All the four logging

schemes need to extract a unique file object id (including device id, inode number

and generation number) from the NFS file handle. According to the NFS protocol

specification [4], the NFS file handle is an opaque and implementation-dependent

data structure. It is not supposed to be interpreted by NFS clients or any other

third party. The NFS file handle structure is different on Linux and on FreeBSD;

therefore the NFS file handle interpretation code needs to be changed. The modi-

fication is about 200 lines of code. We have not ported the kernel module of RFS-

I+ to FreeBSD. The OS-dependent code in the kernel module of RFS-I+ includes

memory allocation/deallocation, turning on/off interrupt, sleep/wake up operations,

operations on SKB data structure, and some interactions with the network stack.

The RFS-O was implemented for NFSv2. It took 3 person weeks to convert it

to NFSv3. This demonstrates the portability of the RFS architecture. Most mod-

ifications are within the processing thread of the redo-to-undo log converter. We

had to rewrite the parser for NFS requests and replies, and the routines to convert

redo record into undo record. Although the total number of lines of code involved
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in this porting is about 5000 lines, most of the data structures and parser code were

borrowed from the Linux kernel code with minor changes.

Some of NFSv3’s features helped to simplify RFS implementation. In NFSv2,

the NFS request to create a symbolic link does not return the associated file handle;

in NFSv3, it does. Another example is that NFSv3 returns file attributes much more

frequently than NFSv2. This reduces the number of get attribute requests required

in the redo-to-undo log conversion process.

As for NFSv4, most of the protocol changes are related to scalability and se-

curity, and therefore do not affect RFS. The request batching feature can be easily

accommodated by a minor modification to RFS’s request interceptor. For a batch-

ing request and reply, multiple log entries will be constructed in the file update log.

We do not expect much effort will be needed to port RFS to NFSv4. So far we

do not have any concrete experiences to report about porting RFS to network file

servers based on AFS or CIFS.

4.8 Performance Evaluation

RFS facilitates the damage repair process at the expense of runtime overhead and

additional resource consumption. The viability of the RFS approach thus depends

on how expensive this additional performance/hardware cost is and how much RFS

can speed up the repair process. In this section, we evaluate the general aspects of

a repairable file system. We also compare the performance of the four prototypes

in detail.
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Figure 4.7: The system throughput with regard to the update request percentage in

the SPECsfs benchmark under different running conditions
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disk load of the traffic interceptor is 0 and hence omitted in this figure.
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Figure 4.9: Throughput comparison among file update logging schemes as the

percentage of update requests in the input workload is varied.

4.8.1 Testbed setup and evaluation workload

There are five machines in the testbed, all of which run Redhat 7.2 with Linux ker-

nel 2.4.7-10. There are two NFS clients, one NFS server to be protected, one ma-

chine running the traffic interceptor and the last machine (logging server) running

log converter, contamination analysis, repair engine and the mirror file system all

together. The NFS clients and the traffic interceptor machine are connected through

a Fast Ethernet switch. The protected NFS server and the logging server are con-

nected to the traffic interceptor through a crossover cable. Other than one client

machine which has 400MHz CPU and 128-MByte memory, all other machines are

1.4GHz Pentium IV machine with 500-MByte memory. Both the protected NFS

server and the logging server server are configured with a 40GB ST340016A ATA

disk drive with 2-MByte disk cache. The protected NFS server is only used in the

evaluation of RFS-O and RFS-A.
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Figure 4.10: Latency comparison among file update logging schemes as the per-

centage of update requests in the input workload is varied.
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Figure 4.11: CPU utilization comparison among file update logging schemes as the

percentage of update requests in the input workload is varied.

The main workload we used in the experiments is SPEC SFS 3.0 (SFS97 R1),

the Standard Performance Evaluation Corp.’s benchmark for measuring NFS

throughput and response time. Its operation mix closely matches real-world NFS

workloads. SPECsfs includes a representative mix of different types of NFS re-

quests, with 12% of the requests updating the file system and the remaining re-

quests being read-only. Unsurprisingly, the file update logging overhead is more

pronounced when the percentage of update requests in the input workload is higher.

To stress test our logging schemes, we varied the update request percentage from

12% to 96%, but kept fixed the distribution among different types of update requests

and the distribution among different types of read-only requests.

SFS benchmark directly interacts with the NFS server through a UDP socket,

rather than through system calls. As a result, SFS benchmark cannot be used to

evaluate client-side logging overhead. FOr this, we used the SDET [26] benchmark
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instead. SDET represents the workload typically seen in a software development

environment. The evaluation also uses the Harvard NFS traces [18] and some micro

benchmarks.

4.8.2 Syscall logging overhead on NFS client

On the 400MHz client machine, we ran the SDET benchmark using 32 scripts and

generated a total file set size of 55 MBytes. The client-side logging incurred 4.08%

of CPU overhead. The kernel logging buffer required was about 12 MBytes. The

total NFS traffic in this run was 97 MBytes, and the traffic resulting from client-

side log was 3MBytes. The client-side log size was 3MBytes, the the server undo

log size was 80 MBytes. With client-side logging turned on, the NFS server’s

throughput dropped by 5% from 1907 to 1811. This decrease in throughput is

mainly due to the additional CPU overhead used for system call logging.

4.8.3 Effectiveness of Contamination Analysis and Damage Re-

pair

To evaluate the effectiveness of RFS’s automated damage repair procedure, we ran

the SDET benchmark with two clients until the undo log size reached 100 MBytes.

There were 87 processes involved and 985 files modified. We randomly picked

some processes as the root processes. Different numbers of root processes thus

correspond to different contamination levels, i.e., different scopes of contamination.

In Table 4.3, All means that all processes are contaminated and all update operations

need to be undone. Similarly high and low mean the proportion of operations to be

undone is large or small. Contamination level is decided both by the number of

initial root processes and the propagation of contamination.
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Contami- Contami- Contami- Contami- Contamina- Damage Total

-nation -nated -nated -nated -tion Analysis Repair (secs)

Level Processes Files Blocks (secs) (secs)

all 87 985 0 76 95 171

high 77 751 0 76 87 163

low 1 0 1 75 1 76

Table 4.3: The repair time is dependent on the contamination level, whereas the

contamination analysis time is not.

Table 4.3 shows that the contamination analysis time does not depend on the

the contamination level. This is because the contamination analysis module needs

to read in and parse the entire syscall logs and file update log in order to determine

the status of contamination. In contrast, the repair time depends on how many undo

records are selected by the contamination analysis module. From this result, the

contamination analysis and damage repair time for a 700-MByte undo log, or one-

day’s SPECsfs run, is estimated to be between 9 to 20 minutes, depending on the

contamination level. We believe this is much faster than a manual repair process

that is able to repair the system at the same level of precision.

4.8.4 Forwarding latency of traffic interceptor

For each NFS packet, the request interceptor adds a small forwarding delay, ranging

from 0.2 ms to 1.5 ms with different packet size. The throughput of the protected

NFS server is unaffected, as long as the log converter is able to convert redo records

into undo records in time. When the converter fails to keep up with the input load,

the request interceptor will drop NFS packets, and the system throughput decreases.



4. REPAIRABLE FILE SYSTEM 78

4.8.5 Overwrite logging performance of RFS-O

In RFS-O it takes about 5ms for the log converter to process a NFS update request,

so it can process about 200 update requests per second at most. The default update

request percentage in SPECsfs is 12%. We varied this percentage in SPECsfs and

measured the throughput of the protected NFS server. The result is shown in Fig-

ure 4.7. Each percentage corresponds to a SPECsfs benchmark run. The load we

generated was 700 for each run which generated about 7GB of initial file set size.

Note that it’s normal for SPECsfs to have throughput slightly higher than the load

specified. Unless specified otherwise, on the protected NFS server, the operating

system and the testing directories reside on one disk; on the logging server, the op-

erating system, mirror image, RFS undo log and client system call log all reside on

one disk.

When update request percentage is below 30%, we observed no significant

throughput difference between the vanilla NFS server and RFS-O. However, be-

yond 30%, the performance degradation of RFS-O was more and more pronounced.

When update request percentage is 96%, the system throughput dropped to half

(from 600 to 300). Most of the performance cost of RFS-O lies in the log converter,

which spends over 90% of the time processing write requests. Log conversion is I/O

bound, and adding one more disk to the logging server to hold half of the SPECsfs

working directories eliminated the performance degradation of RFS-O, as shown

by the curve labeled ”with RFS, two disks on the mirror NFS server.”

4.8.6 Hardware Requirement of RFS-O

To further understand the hardware requirement of the logging server which runs

log converter and mirror file system, we compared CPU and disk usage of the pro-

tected NFS server and the logging server. For a file update request, the logging
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server needs an additional read for the prior image and an additional write to the

undo log, i.e., three disk accesses in total. The bottleneck of both NFS and the

logging server lies in disk access – Figure 4.8 shows the CPU and disk utilization

comparison between the protected NFS server and the logging server. It also shows

the CPU usage for the traffic interceptor machine, which was always less than 5%

regardless of the update request percentage, indicating that a low-end machine with

a small amount of memory is sufficient. The CPU load of the logging server is com-

parable with that of the protected NFS server. At the default NFS update request

percentage, 12%, the disk load on the logging server is 55% of that of the protected

NFS server.

4.8.7 Performance characteristics of append logging

Under append logging, random writes may become sequential writes to the over-

write pool if the free virtual blocks are contiguous. On the other hand, sequential

reads may become random reads if consecutive file blocks are overwritten non-

sequentially and thus get dispersed in the overwrite pool. As a result, a server doing

append logging may perform better than in-place updates for workloads dominated

by random writes, but perform worse for workloads dominated by sequential reads

after random writes.

To illustrate this characteristic of append logging, we performed the following

experiments using a server machine with smaller (256MB) memory and a client

machine with 128MB memory. The server machine ran either a vanilla NFS server

or RFS-I+. The client machine ran a generic NFS client. First we created a 500MB

file on the server using sequential writes from the client. In this setup, there is no

cache hit on either the client side or the server side. The sequential write throughput

for both vanilla NFS and RFS-I+ was 11MB/sec.

Then we performed a sequence of random write operations (each of size 4096
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bytes) until the size of the overwrite pool reached 2GB, which produced suffi-

cient disk layout difference between the vanilla NFS server and RFS-I+. Under

a vanilla NFS server the disk utilization was 100% and the write throughput was

1.54MB/sec. With RFS-I+, the disk utilization was 22.5% and the write through-

put was 10.23MB/sec. Overall, the disk access efficiency of RFS-I+ was 30 times

higher than the vanilla NFS. This result shows that the append strategy behaves sim-

ilarly to a log structured file system, which has the advantage of converting random

writes into sequential writes.

Finally, we performed a sequence of sequential read operations against the

500MB file with a request size of 4096 bytes. Under the vanilla NFS server, the

disk utilization was 18.6% and the read throughput was 4.76 MB/sec; with RFS-I+,

the disk utilization was 94.4% and the read throughput dropped to 0.87 MB/sec.

Overall, the disk access efficiency of RFS-I+ was 28 times worse than the vanilla

NFS server. Periodic cleaning can mitigate the loss of sequential read locality by

moving the current versions of those file blocks that have become read-only from

the overwrite pool to the base image.

4.8.8 Throughput and latency comparison of four prototypes

We use SPECsfs as the workload to compare the four RFS prototypes. As ex-

pected, the system throughput decreases as the update percentage of the workload

increases(Section 4.8.1). At 12%, it is about 700 ops/sec. The throughput goes

down to 500 ops/sec at 96%. The initial working set size is proportional to the

request rate in the input workload, 7GB for a load of 700 ops/sec and 5GB for a

load of 500 ops/sec. Therefore the measurement results corresponding to different

offered loads may not be directly comparable. Moreover, the performance tends to

decrease when the system is overloaded. For example, the throughput at an offered

load of 700 ops/sec may be 400 ops/sec but reaches 500 ops/sec when the input
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Figure 4.12: The storage requirement break-down for various file update logging

schemes. RFS-I and RFS-I+ require additional storage for old data. RFS-O and

RFS-A double the storage requirement because two file servers are involved - the

protected file server and the logging server.
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Figure 4.13: The break-down of metadata used in various file update logging

schemes. The metadata includes both user-level metadata and kernel-level meta-

data, as shown in Figure 4.2

load is 500 ops/sec.

Figure 4.9 shows that all four prototypes have almost the same throughput when

the update percentage in the input workload is less than 12%. RFS-A performs the

same as the vanilla NFS server because the logging server is never the bottleneck,

and its primary NFS server is identical to the vanilla NFS server. As the update

request percentage increases, the performance of RFS-O is limited by the prior

image read and write. Surprisingly, even with all the extra processing due to file

update logging, RFS-I and RFS-I+ actually over-perform the vanilla NFS server in

throughput by around 7%. The reason is that in this experiment, disk is the system

bottleneck. The advantage of the append logging in processing random write re-

quests, as discussed in Section 4.8.7, is significant enough that it results in a small

but significant overall performance improvement. Another block-level versioning

system, Clotho [25], reported similar performance gain for similar reason. The
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in-kernel packet interception mechanism in RFS-I+ has no effect on disk access

efficiency, therefore RFS-I+ performs roughly the same as RFS-I in all cases.

Figure 4.10 shows the average per-request latency of the vanilla NFS server,

RFS-I and RFS-I+. The per-request latency of RFS-O and RFS-A is similar to the

vanilla NFS because the NFS reply comes directly from the protected NFS server.

Each latency number represents the average of three measurements. The three upper

latency curves correspond to the case when the system is heavily loaded (SPEC

load 500). The three lower latency curves correspond to the case when the system

is lightly loaded (SPEC load 200). The results for RFS-I and RFS-I+ are similar,

because the RFS-I+’s kernel optimizations do not have any significant effect on the

latency. When the percentage of update requests is no more than 36%, the average

latency of RFS-I and RFS-I+ is similar to that of the vanilla NFS server. As the

update request percentage increases further, the per-request latency of RFS-I and

RFS-I+ becomes higher than that of the vanilla NFS server. The latency penalty

of RFS-I and RFS-I+ increases with the update request percentage. In one extreme

case (at 96% and load 200), the latency penalty is about 7 msec, which corresponds

to a 200% latency overhead. However, this latency penalty actually decreases with

the input load. For example, the percentage latency penalty is reduced to 10-30%

at load 500.

The latency penalty of RFS-I and RFS-I+ comes from the extra processing as-

sociated with file update logging. With append logging, the logging server may

need to issue multiple requests to the local NFS daemon to serve one NFS request

from the client. The additional requests could be issued to reassemble read/write

requests, to read the prior image when a write request is not aligned, to verify the

file type of an object to be deleted, etc. These requests do not require additional disk

bandwidth, but they do increase the request processing latency. As the update re-

quest percentage increases, more blocks are overwritten and reside in the overwrite
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pool. Consequently there is a high chance that multiple local requests are needed

to reassemble one client request. This leads to increases in the average per-request

latency.

4.8.9 CPU utilization comparison of RFS-I and RFS-I+

Figure 4.11 compares the CPU utilization of vanilla NFS, RFS-I and RFS-I+. RFS-

O and RFS-A are excluded because they require a separate server. When the in-

put SPECsfs load is 500 ops/sec, the throughputs of NFS, RFS-I and RFS-I+ are

comparable, but the CPU utilization of RFS-I and RFS-I+ is about 170% and 85%

higher than the vanilla NFS server, respectively. These results suggest that user

level append logging indeed consumes additional CPU resource, and the kernel op-

timizations in RFS-I+ effectively reduces the CPU consumption by eliminating a

large portion of the context switching and memory copying overhead. When CPU

is the performance bottleneck, RFS-I+ should out-perform RFS-I. To substantiate

this claim, we modify the SPEC workload so that it is read-only, with a high buffer

hit ratio. We also upgrade the network connection from 100 Mbps to 1000 Mbps.

As a result, disk and network are no longer the system bottleneck. With an initial

working set size of 300MB and a SPECsfs input load of 7000 ops/sec, the measured

throughput of NFS, RFS-I and RFS-I+ are 6560, 4166, and 5441 respectively; RFS-

I+ out-performs RFS-I by 30%.

4.8.10 Storage and Memory Overhead

A major concern for fine-grained file update logging is its storage/memory require-

ment. Figure 4.2 shows the data structures used by RFS-O, RFS-A and RFS-I.
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RFS-I +Intelligent + In-Kernel Reply + Write Payload

Demultiplex Modification Decoupling(RFS-I+)

Path-0 0% 47% 56% 56%

Path-1 0% 1% 6% 6%

Path-2 100% 52% 38% 38%

Context Switch 1 0.52 0.41 0.41

Memory Copy 1 0.81 0.31 0.07

Table 4.4: This table shows the incremental context switch and memory copy sav-

ing due to each of the three optimizations in RFS-I+. The first column is for RFS-I

without kernel module. The last column is for RFS-I+ with all three optimizations

from the kernel module applied. The first three rows show the percentage of NFS

packets taking difference paths. The last two rows show normalized context switch-

ing and memory copying overhead.

Figure 4.12 and 4.13 show the detailed breakdown of the storage space require-

ments for their data and metadata, when driven by a two-week Harvard EECS trace

from Oct 14 of 2001 to Oct 28 of 2001. The NFS bar corresponds to the vanilla

NFS server configuration. The RFS-I bar represents both RFS-I and RFS-I+, as

RFS-I+’s in-kernel optimization has no effect on these data structures.

Most of the storage requirement for file update logging arises from the need to

store the current and old data. Figure 4.12 shows that the storage requirements of

all four prototypes are similar except that RFS-O and RFS-A have a protected NFS

server, which almost doubles the storage requirement. The amount of historical

data being generated is modest, only 80GB in this two weeks trace. The file system

size of the protected NFS server is about 400GB and file server is more than 90%

full. The total size of data that have been created and updated during these two

weeks is around 25GB. Therefore the storage space cost of doing comprehensive
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versioning is about 3 to 4 times of the size of updated and created data. This case

study represents a huge and slowly-changing file system. For a small but busy file

system the ratio could be higher.

The undo log in RFS-A and RFS-I contains only pointers to old data, and is

only 1.6GB in size, too small to be visible in the figure. The compactness of the

undo log substantiates the claim that file update logging at the NFS command level

is space-efficient.

Although the storage requirement for metadata is relatively small, metadata may

still compete with normal file data for the buffer cache space. The base image is

introduced to reduce the memory consumption of the block map. To demonstrate

the effectiveness of the base image, we also report the storage requirements when

the base image is not used in the two “(no base)” cases. Files in the delete pool

are renamed from the base image. If there is no base image, the delete pool won’t

exist either. Both old and new data would have to be stored in the overwrite pool.

Therefore, the size of the overwrite pool in the “no base” case is equal to the sum

of base image, overwrite pool and delete pool. The size of the block map is propor-

tional to the size of the overwrite pool. It is 87MB in the current design and would

be 1372MB in the “no base” design.

Figure 4.13 shows that the design of the base image greatly reduces the metadata

size. Overall the metadata size of RFS-I is only 22.3% higher than that of a vanilla

NFS server. This overhead is independent of the server size, but may vary with

file size distribution. It slowly increases with the logging window size and/or the

frequency of write and delete requests, both of which require a larger overwrite

pool and delete pool. For example, when the access pattern remains the same and

the logging window is increased to four weeks, this metadata overhead becomes

32.5%.

The analysis above ignores the size of client syscall log. It is not possible to
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get client syscall logs for the existing NFS traces. According to the experiment

that evaluates client-side syscall logging overhead 4.8.2, it is about 4% of the total

storage used by the logging server and it does not use memory space.

To add more workload diversity, we did another simpler experiment (measur-

ing only RFS-O’s storage requirements) using a different NFS trace. The trace is

collected from the graduate student home directory server (over 250 users) in the

Computer Science Department of Stony Brook University, for a period of 8 hours

and 48 minutes that was spread over the last week of the Fall 2001 semester. Dur-

ing this tracing period, there were 1,863,971 NFS requests, and among them 51,313

(2.7%) requests were updates (e.g., write and setattr). We used this trace to

analyze the storage requirement of RFS-O.

The resulting RFS-O’s undo log size for this trace is 259,762,779 bytes, or

around 260 MBytes. The majority of the undo log, 97%, is attributed to the prior

images of file updates. Similar to the first experiment, we cannot get the client-side

syscall log size and assumed it to be 4% of the undo log size in RFS-O. According

this trace, the per-day undo logging requirement is about 709 MBytes. Therefore,

a 40GB disk can be used to maintain a protection window of 8 weeks for a NFS

system of comparable size.

4.8.11 Effectiveness of Packet Interception Optimization

Table 4.4 quantifies the contribution of each of the three optimizations in RFS-I+

that aim to reduce the number of context switches and memory copying operations

associated with each NFS request and reply. We used the default NFS operation

mix of the SPECsfs benchmark as the workload, in which 18% of requests are

read, 9% are write, 11% are readdir, 28% are lookup, and 11% are getattr. We

also assumed the average data payload size for read and write requests to be 6KB,

and the average readdir reply size to be 2KB. In RFS-I, all the NFS packets take
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Path-2, which involves two context switches and two memory copying operations.

With each additional optimization, more packets take the less expensive Path-0 and

Path-1.

Table 4.4) shows that intelligent demultiplexing reduces the context switch over-

head significantly, while in-kernel reply modification and write payload decoupling

greatly reduce the memory copying overhead. When all three optimizations are ap-

plied, the context switch overhead is reduced from a normalized value of 1 to 0.41

and the memory copying overhead is almost completely eliminated (from a normal-

ized value of 1 to 0.07). Note that the memory copying overhead is calculated based

on bytes and not packets because different packets may have significantly different

size. Moreover, when the system is loaded, RFS-I+’s in-kernel packet interception

mechanism can actually deliver several packets to the user-level logging module in

one shot. Consequently the context switch overhead can thus be amortized over

multiple requests and further reduced.

4.9 Conclusion

The RFS project augments existing network file servers in such a way that post-

intrusion or post-error damage repair can be more accurate (because every update

can be rolled back,) and faster (because both determination of the extent of dam-

age and undo of corrupted effects can be automated.) The ability to keep track of

inter-process dependencies represents an important research contribution to intru-

sion tolerant systems design. Through a fullly-operational RFS prototype, we show

that the time to repair a network file server after a malicious attack or an operational

error is reduced to the level of minutes or hours with most of the useful work being

preserved.

From a security standpoint, a major weakness of the RFS architecture is that
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it is vulnerable to denial of service attacks. If an attacker keeps updating even a

single file block, it will eventually fill up the undo log and effectively disable the

protection provided by RFS. One simple solution is to increase the log disk space

and to support early warning to system administrators so that the log disk never

becomes full. A more sophisticated solution is to regulate the undo log disk space

consumption rate from individual users, so that a user can only consume as much

undo log disk space as his/her quota permits, and thus never has a chance to exhaust

the entire undo log disk space.

File update logging is a critical building block for quickly repairing damage

to a file system due to malicious attacks or innocent human errors. So far it has

not been incorporated into mainstream operating systems because of the concern

of additional storage requirements, performance overhead, and the implementation

complexity. Given the dramatic improvements in the cost efficiency of magnetic

disk technology, disk cost is no longer an issue. Measurements on a real-world NFS

trace show that a $200 200GB disk can easily support a one-month logging window

for a large NFS server with 400GB of storage space and an average load of 34

requests/sec. The performance overhead and implementation complexity associated

with file update logging, however, remain significant barriers to its deployment in

practice.

In this paper we experimented with four prototypes with different file update

logging implementations. RFS-O and RFS-A incorporate legacy NFS file servers

for better performance at additional hardware cost. RFS-O is superb in simplicity

but not as good in write performance. In RFS-A and RFS-I we designed a novel

user-level file update logging scheme that is both efficient and portable. We make

comprehensive evaluation regarding their latency, throughput, and CPU usage char-

acteristics using standard benchmarks, NFS traces, and synthetic workloads. Below

is a summary of RFS’s file update logging scheme:
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• Logging at a higher level of abstraction, such as NFS requests and replies,

tends to produce a much more compact log than logging at a lower level of

abstraction, such as disk accesses and responses, and is also more portable

and flexible.

• RFS-O shows a run-time throughput penalty of less than 6% when update

request percentage in the input workload is below 30%.

• RFS-A incurs close to zero latency and throughput penalty compared with

a vanilla NFS server, and is thus the best choice for IT environments where

performance is critical, mirroring the file image is not an issue, and minimum

disruption to the primary NFS server is important.

• As shown in RFS-I, the user-level file update logging, when integrated with

normal NFS processing capabilities, can have comparable throughput as a

vanilla NFS server. It does incur 3∼5 msec of latency penalty when the

update request percentage is above 36%. The update request percentage in

typical NFS workloads, as specified in the SPECsfs benchmark, is less than

12%.

• As shown in RFS-I+, if portability can be slightly compromised, a small ker-

nel module can effectively reduce the context switch and memory copy over-

head associated with the user-level implementation of the file update logging.



Chapter 5

Mariner: A Repairable Storage

System

Mariner is a high performance repairable IP storage system designed to support

continuous snapshotting and replication features for its clients without sacrificing

performance. It provides storage access over iSCSI interface to its clients. The

clients are typically NFS/CIFS servers and DBMS servers. The window for contin-

uous data protection is configurable and depends on the amount of disk space allo-

cated for historical data. Mariner does not require any modifications to its clients

except provisioning of iSCSI drivers. Mariner features several unique innovations:

• 1. Comprehensive block-level versioning techniques that provide access to

old data without significant performance degradation for current data access.

• 2. Integration of the block-level versioning scheme with a track-based disk

logging technique [13] that is able to reduce the end-to-end latency of a syn-

chronous disk write to less than 0.5 msec, the best result ever reported in the

literature, and supports fast crash recovery.

91
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• 3. Transparent reliable link-layer multicasting that exploits the VLAN sup-

port in modern Ethernet switches to perform in-network packet duplication

and remove the bandwidth/latency penalty associated with replication.

• 4. Fault tolerance design that keeps Mariner available upon any single point

of failure. The fault tolerance design is derived from a more generic fault-

tolerance model for a 1-client-N-server system

• 5. User-level versioning file system architecture that provides end users the

ability to navigate through file versions on a repairable storage server using

the standard OS-supported file system interface.

This chapter focuses on the block-level versioning techniques and the fault tol-

erance design of Mariner . We briefly describe the integration with track-based

logging and the transparent reliable link-layer multicast. The complete implemen-

tation details and evaluation results can be found at [42]). The user-level versioning

file system is on-going work. We lay out only the basic design to show how does it

integrate with block-level versioning.

Figure 5.1 shows the system architecture. The client node is a storage client

such as file server or DBMS server. In addition, the client node has a central role in

the fault tolerance design. There are two types of local storage nodes: the primary

node, and the trail node. The primary node supports access to the current data.

It is a standard storage server enhanced with features supporting fault tolerance.

The trail node supports access to the historical data as well as the fault tolerance

protocol. Thus, the trail node is a special storage server that uses own logging and

versioning software.

Mariner handles consistency among multiple storage replicas but not among

multiple storage clients. It assumes no sharing of mutable data among storage

clients; or if they do, it is the upper-level software’s responsibilities (file system
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Figure 5.1: Mariner System Architecture

or DBMS) to handle the consistency issue. Essentially, every client and the stor-

age node that it connects to, constitute an independent 1-client-N-server system.

For the sake of simplicity, we consider only one client in most of the discussions.

Section 5.5.1 shows an overview of such 1-client-N-server system with storage or-

ganization and data flows. However, the advantage of transparent link-layer mul-

ticasting probably shows only in the context of large scale storage systems with

multiple clients.

5.1 Comprehensive block-level versioning

Mariner’s comprehensive block-level versioning is designed to provide storage

snapshot at any point in time within a protection window1. The snapshots, how-

ever, are not directly accessible. They are set up upon user request and torn down

1 A protection window is the time period in which any update is undo-able.
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after the user finishes accessing them. There are certain overheads associated with

setting up a snapshot and there are some resources being used to maintain an acces-

sible snapshot. This usage model is designed to cope with (conceptually) infinite

number of snapshots and to maintain a good performance for current data access.

Mariner does not support version branching. In general snapshots are read-only

although temporary write is supported while a snapshot is set up to be accessible.

This flexibility is very useful because for upper level applications such as file sys-

tem or DBMS, a storage snapshot has only crash consistency, i.e., as if the system

crashed at that particular point in time. To provide useful information at file system

or database level, the file system or DBMS need to perform an fsck-like procedure,

which requires modifying to the snapshot. All temporary updates to an accessi-

ble snapshot are discarded after the snapshot is torn down. Part of the resources

associated with an accessible snapshot are for supporting these temporary writes.

5.1.1 Design Issues

While designing mariner’s comprehensive versioning, we had an ambitious goal

of not only to match but to outperform the standard (non-versioning) storage, es-

pecially on write request latency. We adapted the fast logging techniques from

the original trail [13], including the self-describing log record format and the tech-

niques to detect disk head position. For each write request, a log record is written

to a place close to current disk head. Observing from a large scale, logging disk is

used sequentially in ”rounds”. In each round the log disk head moves from the first

track to the last track, and then wraps back to the first track for another round.

To ensure every write within the protection window is undo-able, we should

either (1) keep the before image data inside each log record together with the pay-

load (current data) with the payload; or (2) make sure that the earlier log record

(R’) - that contains the before-image data in its payload - does not get recycled
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before timestampofR + protectionwindow. With 1, the write performance will

be degraded because of additional before-image read and write. With 2, the log

records containing current data can never be recycled. To prove it, assuming some

current data was recycled at time T and there was an overwrite to the data at T+1,

the before-image for the overwrite is not available and this violates the assumption

of 2. This means that the log storage will be fragmented with current data, which

would make log storage write performance less efficient. It also means the a big

portion of the log storage will be wasted on retaining current data because current

data read is usually better served by current data storage on which sequence logical

blocks translate to sequential physical blocks.

The trade-off between policy 1 and policy 2 applies to both file systems and

storage systems. RFS-O( [75] (Section 4.1.2) used policy 1 and its performance is

much worse than standard (non-versioning) file system. The RFS-A/RFS-I( [76],

Section 4.1.2) used policy 2, their performance matches standard file system. Note

that even when log storage is sub-optimal, log disk still has some advantage in

handling writes because random writes can be converted to sequential or close to

sequential writes.

In mariner, we tried to find a sweet spot between policy 1 and policy 2 to achieve

even better performance. According some trace studies [17], most data in the stor-

age system are cold data, i.e., data that is not likely to be overwritten again or

frequently. Some data are cold data from the beginning (i.e., write once data); some

data was active in the beginning but cooled down over time. If we can identify a

current data warm window, where most overwrites should have happened, if they

are ever going to happen, we can recycle the current data from the log storage after

passing this window. Setting the current data warm window size to 0 is equivalent

to policy 1; setting the size to infinity is equivalent to policy 2. By tuning this win-

dow size properly, we could improve log storage usage without too much overhead
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on before-image read.

We had also considered another alternative to strike a balance. As described in

the beginning of this section, the log disk are used in rounds. We could recycle a

current data block whenever it is scanned in the next round by the block allocation

algorithm. Essentially the current data is recycled upon the needs of free blocks.

This approach definitely guarantees the log disk performance. But it has some other

drawbacks. Firstly there is no guarantee on how long a current data block stays on

the log disk. It could be longer or shorter than the current data warm window. While

it does not hurt to stay longer, staying shorter could cause excessive before-image-

read overhead. Secondly unlike a window size, this approach is less flexible to tune.

We didn’t implement this policy but considered it as one of the hints to help decide

the size of current data warm window. That is, when block allocation algorithm hits

a current data block, quite often the current data block should be recyclable.

Keeping some current data out of the log storage also has other pros and cons.

One advantage is that it reduce the foot print of the versioning metadata that maps

a current data block number to its physical block number on the log storage. One

disadvantage is that if the before-image-read involves contacting another server,

it bring network overhead in addition to the disk overhead; it also brings more

complexity to the fault-tolerance design since the logging server is no longer a

stand-alone server and needs support from another server.

5.1.2 Data Logging and Garbage Collection

Before getting into the details of the versioning techniques, we first clarify three

terms - logical block, physical block and local physical block. These terms are

often used differently in different contexts(e.g. file system, disk geometry). In the

context of block-level versioning, the versioning device is a virtual block device

based on log storage, which consists of multiple log disks with the same capacity.
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The logical block refers to the block number of the versioning device as used in

user’s read/write request. The physical block refers to the block of the log storage.

The local physical block refers to the block on a log disk. We use a simple strip-

mapping between the physical block and the local physical block. Assuming there

are N disks, the local physical block number LPBN on ith log disk corresponds to

the physical block number PBN = LPBN ∗N + i.

The self-describing log record may contain batched multiple requests. Each

request includes sequence id, the logical block number (LBN), size, timestamp,

payload and before-image related information. Given a write request, if the before-

image is still on the log storage (could be a different log disk), the log record will

contain the pointer to those before-image, i.e., the PBN of before-image data. Oth-

erwise, the log record contains the actual before-image data read from current data

storage (maybe on a different server).

A log record is recyclable if all the local physical blocks in all of its re-

quests are recyclable. A local physical block is recyclable if it contains cur-

rent data that is written more than current data warm window ago; or if it con-

tains old data that is overwritten more than protection window ago. For ex-

ample, if a logical block L was written to physical block P1 at time T1, and

later was written to physical block P2 at time T2, and was not written again;

P1 can be recycled at time T2 + protectionwindow, and P2 can be recycled at

T2+ currentdatawarmwindow. Unlike the FIFO-based garbage collection in the

original Trail [13], mariner’s garbage collection cannot guarantee that the physical

blocks under current disk head is always free. Although given proper protection

window, current data warm window, and log disk capacity, the block allocation

need not look too far for free blocks upon each allocation.
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5.1.3 Metadata Organizations

To support historical data access, Mariner maintains a block map that maps <

LBN, timestamp > to < PBN >. This index data structure is organized as

an external B tree. The B tree entry is recycled with the same policy as the physical

block, as described above.

To implement the protection window and the current data warm window, an

allocation map is used to keep track of the block usage indexed by LPBN (local

physical block number). Each entry contains a flag and a timestamp. The flag indi-

cates whether it contains current data or old data. For current data, the timestamp

corresponds to the time of the last write. For old data, the timestamp corresponds to

the time of the overwrite. Given the example in Section 5.1.2. At time T1, the allo-

cation map[P1] has current data flag and timestamp T1. At time T2, the allocation

map[P2] has current data flag and timestamp T2; in the mean time, the allocation

map[P1] is updated with old-data flag and timestamp of T2, As shown in this ex-

ample, each write may cause updates to two allocation map entries. The entry for

new data is returned by block allocation algorithm. The entry for current data can

be found via the block map.

Accessing block map for normal data write has one potential problem. The

block map is organized as external B-tree due to its large size. The access time

could be long due to disk seeks. To speed up the look-up of current data block,

Mariner added another versioning metadata structure called current-block map.

This map contains mapping from LBN to PBN. This map is much smaller because

only current data is included. In fact only the current data that stays on the log

storage are needed. If a look-up didn’t find any entry, the before-image needs to be

read from current data storage. Therefore reducing current data warm window size

could further decrease the size of current-block map. Hopefully the current-block

map will be smaller enough to fit into memory.



5. MARINER: A REPAIRABLE STORAGE SYSTEM 99

100

101
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103

T0: B2 is written to LOG−100

T2: T1 is written to LOG−102

T3: B2 is written to LOG−103

T1: B1 is written to LOG−101

T4: B2 is written to LOG−104

T5: B2 is written to LOG−105

OPERATIONS

<B1, T2, LOG−102>...... <B1, T1, LOG−101>

FREE_FLAG

OLD_FLAG,T2

OLD_FLAG,T3

FREE_FLAG

OLD_FLAG,T4

CURRENT_FLAG,T3

OLD_FLAG,T5

FREE_FLAG

CURRENT_FLAG,T5

T3+Wp

T2+Wp

T4+Wp

T3+Wc

T5+Wp

T5+Wc

ALLOCATION MAP

...

...

Recycle
Time

Format: <FLAG, timestamp>

T0 ~ T5 Timestamp

B1 ~ B2: Logical Block Number (LBN)

LOG−100 ~ LOG−105: Physical BLock Number(PBN)

Wp: protection window

Wc: current data warm window

...... ......

<B2, T0, LOG−100>

<B1, T4, LOG−104>

<B2, T3, LOG−103>

BLOCK MAP

<B1, T5, LOG−105>

B tree record format: <LBN, Timestamp, Trail PBN>

CURRENT−BLOCK MAP

...

<B1, LOG−105>

<B2, LOG−103>

...

Format: <LBN, Trail PBN>

Figure 5.2: An example to illustrate the versioning metadata.
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All metadata structures are flushed to the disk periodically, together with se-

quence id of the last log record that has been incorporated into these metadata.

5.2 Track-Based Logging

The Trail node plays a key role in Mariner by providing a low-latency and high-

throughput synchronous disk write, which is essential to support both continuous

data protection, and fault-tolerance. The synchronous writes are stored on Trail log

device as trail log records. The Trail log records are self-describing. Upon failures,

Trail can quickly identify the latest log records and use them to recover the data and

metadata consistency among all Mariner nodes. (Section 5.6.1).

The core technique is to accurately estimate the disk head position and log data

to the free space close to that location. The destination of each log record is decided

as late as possible before it is scheduled to disk. To estimate the disk head position,

Trail requires pre-computed on disk geometry and hardware characteristics infor-

mation(e.g. rotation speed). Trail also conducts re-calibration periodically. To

have free space available near the disk head location most of the time, Trail utilizes

the log disk in circular fashion and whenever disk head is idle and current track

has reached high utilization, Trail moves the disk head to the next track to guar-

antee that the disk head is on an empty track and ready for next disk write, hence

the name track-based logging. Trail log device is consists of multiple log disks.

When a log record needs to be stored, usually a log disk which can provide lowest

write latency is selected. The space utilization of different log disks is kept roughly

balanced but not as strict as stripping device. Consequently, each write operation

incurs very little rotational latency and zero seek delay, and can be completed under

500 µsec. The paper [42] contains implementation details and evaluation results.
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Figure 5.3: Skew in location of common data because of dissimilarity in TCP

stream contents. Connection 1 write data gets displaced because of interspersed

READ requests.

5.3 Transparent Reliable Multicast

A Mariner’s client needs to send each disk write to multiple storage servers for

replication and versioning. The client is connected to the storage servers through

iSCSI protocol, which in turn is built on top of TCP. A separate TCP connection

is needed between client and each storage servers. The connection oriented na-

ture of TCP requires that data sent over all the connections be sent independently,

even though the data being transmitted over these connections is largely the same.

Mariner exploits the VLAN support in modern Ethernet switches to build a trans-

parent mirroring and reliable multicast (TRM) mechanism that greatly reduces the

performance overhead of data replication on an Ethernet-based storage area net-

work.

Logically, TRM integrates data replication logic with a software layer that sits

below the TCP/IP stack and constantly look for common payload among TCP con-

nections going to different destinations. When packets from different TCP con-

nections share the same payload, TRM sends that payload as an Ethernet multicast

packet that eventually is delivered to all the associated destination nodes. For ex-

ample, after TRM detects that three packets carrying the same payload are sent to
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Node 1, 2, and 3 over three independent TCP connections, it constructs an Eth-

ernet multicast packet, which consists of the TCP/IP headers of the original three

packets and one copy of the payload, and sends it out over a spanning tree to reach

Node 1, 2, and 3. This spanning tree is constructed through either IGMP snooping

or VLAN set-up [58]. When each receiver node receives the Ethernet multicast

packet, its TRM layer reconstructs the original TCP/IP packet, and forwards it up

through the TCP/IP stack. ACKs for each TCP connection are independently sent

back from the receivers to the sender as unicast Ethernet packets. If for some rea-

sons, the Ethernet multicast packet does not reach a particular receiver node, TCP’s

retransmission mechanism ensures that eventually the corresponding TCP/IP packet

is retransmitted to that receiver via unicast. Essentially TRM relies completely on

TCP for packet transport reliability. By leveraging tree-based link-layer multicast,

TRM is able to reduce the additional latency/bandwidth penalty associated with

data replication to close to zero, because data is actually replicated inside the net-

work.

There are three key operations in TRM: (a) Duplication of data that is sub-

sequently sent over individual TCP connections to mirrored storage devices, (b)

Monitoring TCP connections for duplicate data and constructing multicast packets

by using that data, and (c) Reconstructing the TCP streams based on the data and

metadata received over multicast.

The task of identifying common payload among TCP connections is compli-

cated by the fact that TCP does not preserve packet boundaries. If the amount

of data transmitted over different TCP connections is different, the common data

shared among these TCP connections may appear in different locations within the

packets containing them. For instance, when multiple TCP connections correspond-

ing to different iSCSI sessions carry write as well as read requests, only write
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TRM MUX TRM deMux TRM deMux

Figure 5.4: Architectural decomposition of iSCSI-based TRM. An iSCSI protocol

parser keeps track of each TCP connection corresponding to different iSCSI ses-

sions. The parser provides the description of each packet to the TRM multiplexer,

which splits each TCP stream into multicast and unicast substreams. Each stor-

age node and Trail node in Mariner is augmented with a TRM de-multiplexer that

reconstructs the TCP stream from the received unicast data and multicast data.

data need to be duplicated, but not read requests. Therefore, the set of packets go-

ing through the connections to the primary/secondary storage nodes are quite differ-

ent from those going through the connection to the Trail node. Owing to this skew,

it is impossible to merge all packets containing common data because common data

may appear in very different locations within these packets. Figure 5.3 illustrates

the difficulties in merging packets with skewed common payload.

TRM exploits the semantics of the iSCSI protocol’s to focus only on disk write

payloads, and significantly increases the chance of successful packet merging with-

out requiring complicated comparison logic. In particular, TRM employs an iSCSI

parser to analyze each iSCSI request to pin-point the precise location of the payload
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of each write request. It then passes each packet parsed to a TRM multiplexer

along with a description of the packet. Based on this description, the TRM MUX

identifies the common data and sends it over to the storage/Trail nodes using a sin-

gle multicast packet. Then the TRM MUX sends the connection-specific payload

portion of each packet as a unicast packet to each peer of the TCP connection. Re-

construction of each TCP stream is fairly straightforward. The storage/Trail nodes

are augmented with a TRM deMux layer, which is responsible for receiving the

multicast data and the connection specific unicast data. Using the information em-

bedded in multicast data and the unicast data, the TRM deMux layer reconstructs

the original TCP packets and passes them to the TCP/IP stack for further process-

ing. The software architecture of iSCSI-based TRM is shown in Figure 5.4. For

complete implementation details and evaluation results, please see [40].

5.4 User-Level Versioning File System

Mariner’s block-level versioning provides storage snapshots at any point in time.

While this may be enough for many users, others may also prefer some high level

information such as how many versions a file has within a period of time. So can we

support traditional versioning file system features based on block-level versioning

storage?

One possibility is to modify existing file system to take advantage of the ver-

sioning storage. This approach is probably too intrusive, complex and not portable.

Instead, we propose a user-level versioning file system (UVFS) approach. The

UVFS should be able to work with any block-level versioning storage and standard

file system.

A unique feature of UVFS is that it uses pathname, rather than inode number, to

identify a file or directory. At user level it is difficult to trace through the file system
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metadata structures. In contrast pathname is a much more universal and portable

concept across file systems. This scheme does have a minor drawback - it cannot

continuously trace the modifications to a file after it has been renamed.

Using pathname as identifier leads to several observations. Due to hard links,

one inode can be associated with multiple UVFS objects. If a file is renamed, it

becomes a different UVFS object. A pathname can be created and then deleted

and then created again, corresponding to many incarnations of the UVFS ob-

ject with different inodes. An incarnation is represented by a triple value of

< pathname, Tstart, Tend >. The Tstart and Tend represent one pair of the

creation and deletion time.

In this section, snapshot refers to the object or system image at a point in time;

version refers to a modification of a object as indicated by the last modification

time. The number of snapshots is unlimited but the number of versions is limited.

Both snapshot and version are represented with a tuple value < pathname, T >.

The block-level versioning storage system provides access to snapshots. The

UVFS provides information about versions. The version information is provided

by six closely related operations. Most of the operations are recursive and based on

other operations.

• 1. Access a snapshot of a pathname. To provide snapshot access at file system

level, first we request the versioning storage to create a snapshot device with

certain timestamp. The snapshot device is mounted with the file system. Due

to the crash consistency nature of the snapshot device, an fsck is needed.

Instead of the usual fsck, Mariner implements a customized fast fsck [43].

This fast fsck restores the file system level consistency of the storage snapshot

device before the file system is mounted. Once the file system is mounted, it

can be used to access any pathname at the requested snapshot time.

• 2. List all versions of an incarnation within a time range: UVFS uses last
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modify time attribute to identify different versions of an incarnation. Given

an incarnation < pathname, Tstart, Tend > and a duration < D1, D2 >.

The UVFS first refines the time range to be T1 =< max(D1, T start), T2 =

min(D2, T end) >. The algorithm iterates on the time range, starting from <

pathname, T1, T2 >. The UVFS accesses the snapshot < pathname, T2−
δ >, and retrieves its the last modification time, say T . If T ≥ T1, the

UVFS finds one version < pathname, T > and adds it to the list of versions.

The next iteration continues at pathname, T1, T . If T < T1, we have found

all relevant versions.

• 3. List all incarnations of a pathname within a time range: The cre-

ation or deletion of a pathname modifies its parent directory. Therefore

one can discover incarnations of a pathname from parent directory’s ver-

sion changes. The algorithm does recursion on the pathname. Given a

pathname and a duration < /a/b/c/d, D1, D2 >, UVFS first solve the

problem for < /a/b/c, D1, D2 >. Then for each each incarnation of

< /a/b/c.Tstart, Tend >, we use operation 2 to find all versions of /a/b/c in

the range, such as < /a/b/c, T1 >, < /a/b/c/, T2 >, ... < /a/b/c, Tn >.

By accessing the snapshot of < /a/b/c, T i > and < /a/b/c, T j > and com-

paring their content, we know whether d was created or deleted at time Tj.

The list T1, T2, ... Tn must have contained all the creation time and deletion

time of /a/b/c/d, this way we found all the incarnations of /a/b/c/d from Tstart

to Tend. Combining the results for all incarnations of /a/b/c from D1 to D2,

we got all incarnations of /a/b/c/d from D1 to D2. The recursion stops when

it is reach root directory (”/”), which by definition has only one incarnation

< /,−infinity, infinity >.

• 4. List all versions of a pathname within a time range This operation is based

on operation 2 and operation 3. First we find all the incarnations. Then we
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find all the versions of each incarnation. Finally we sum up all the versions

from all the incarnations. It is possible that the versions of one incarnation

are not logically related to versions of another incarnation. It is up to the user

to decide how to use the output of this operation.

• 5. List all pathnames under a parent pathname within a time range: This

operation is based on all the above operations. The algorithm does a re-

cursion on sub-directories similar to the breadth-first search. Given a path-

name /a/b/c and duration D1, D2. UVFS discovers every version of the in-

put pathname with operation 2, e.g., < /a/b/c, T1 >, < /a/b/c, T2 >, ...

,< /a/b/c, Tn >. From these versions, UVFS discovers all the all pathnames

under /a/b/c during < D1, D2 >, in a way similar to operation 3. The recur-

sion continues for each pathname under /a/b/c. The recursion stops when a

pathname is a file or an empty directory.

• 6. List all versioning information of the whole file system Conceptually this

operation could be simply built upon 4 and 5 - first find all the pathnames

under root directory (operation 5) and then find all the versions of each file

(operation 4). The versions of all directories should have already been found

in step 5. In practice, the implementation should be smarter so that it does

not repeatedly search versions of directories.

Finally we describe the implementation of snapshot access in more detail. Other

operations are pure algorithms using only getattr() and readdir() system call. As-

suming an NFS environment, the NFS server is the Mariner client node. To access

a snapshot, the user on a NFS client specifies a pathname and a timestamp in a

request. The request is sent to the NFS server and then to the storage server with

comprehensive block-level versioning - the Trail node. When the Trail node re-

ceives the request, it creates a virtual device corresponding to the timestamp, does

the fast fsck [43], and adds the virtual device to the list of iSCSI targets. The iSCSI
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initiator on the client node connects to the new target device and generates a new

iSCSI device. The NFS server then mounts this new iSCSI device and and exports

it to the NFS client. Finally, the NFS client creates a local directory and mounts the

NFS server directory. The above procedure involves collaborations of three UVFS

daemons, one on NFS client, one on NFS server, and the third on the Trail node.

They communicate with one another through a proprietary protocol.

To optimize the performance of the proposed user-level versioning file system,

Mariner employs various forms of caching. At the NFS server side, Mariner it

caches the modification times for each file, and uses them to determine which snap-

shots should be used to answer a particular query. In addition, Mariner retains the

mount connections between NFS clients and servers and the virtual devices created

at the Trail node after servicing the corresponding snapshot access query, so as to

reuse them for future queries.
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5.5 Fault Tolerance Model for a 1-Client-N-Server

Storage System

In this section and the next few sections, we are going to describe a fault-tolerance

model for a 1-client-N-server storage system and how to apply this model to

Mariner, including implementation details and evaluation results.

This fault tolerance model is for fail-stop system. The failures being covered

include ”software failure/machine crash”, ”power failure”, ”network failure”, and

”disk failure”. From the failure recovery’s viewpoint, all failures can be classified

into two categories: ”failure with data loss” and ”failure without data loss”. For the

sake of simplicity, we do not step into details of partial data loss.

5.5.1 Overview of the 1-client-N-server system

Before getting into the details of the recovery model, we first describe the character-

istics of the storage system that this model is designed for. As shown in figure 5.5,

the storage system is composed of one storage client and N storage servers. Each

storage server knows the identity (IP address or DNS name) of the client. The client

waits for the server to establish connection. The storage client accepts read and

write request from application and distributes it to N servers. A common example

of such system is an NFS/DBMS server (the storage client) and N back-end replica-

tion storage servers. In the fault tolerance model, the client also acts as the central

management point. It is responsible for admitting servers, detecting/handling fail-

ures and co-ordinating node repair. The storage servers do simple replication to

improve system availability and read performance. All write requests are logged by

some servers. Logs are essential for the fault tolerance model, but they could also

be used for other purposes such as comprehensive versioning and low-latency-write
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Figure 5.5: Overview of the 1-client-N-server system
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(Section 5.1, 5.2).

In our model, a server can have current data storage, which stores current image

of data; and log storage, which stores the combined redo/undo log for recent writes;

or both. A server with only current data storage is called current-data server. A

server with only log storage is called logging server. A server with both kinds of

storage is called combined server. If a server is configured to do logging while

serving read/write request, we state that it is in RDWR-LOG state. If a server

does not need to do logging while serving read/write request, we state that it is

in RDWR state. Obviously not all servers can play all the roles. For example, a

logging server cannot be in the RDWR state and a current-data server cannot be in

the RDWR-LOG state.

Log records are recycled after certain time. Because of this, a logging server

usually does not have complete current data image (unless all data is modified re-

cently). This kind of server is derived from Mariner’s trail server 5.2. Such logging

server needs another RDWR to provide before-image for undo-based logging 5.1.

The RDWR server is called the before-image server of the logging server.

Read requests are dispatched to one of the available RDWR servers. Write re-

quests are replicated to all the available servers through a modified 2-phase-commit

protocol (Figure 5.6). In phase 1 the write request is sent to all servers but only com-

mitted on RDWR-LOG servers. On RDWR servers it is treated as a pre-write. In

phase 2 after receiving confirmation that the write request has been committed to

the log storage, client sends notification to RDWR servers to commit the pre-write.

Each write request bears a unique global sequence number which grows mono-

tonically. Whenever possible, the notification is piggy-backed through subsequent

read or write requests. The modified 2-phase commit protocol has a different goal

as the traditional 2-phase commit protocol (all-or-nothing). That is to guarantee that

a successful write request is logged on at least one log storage before committed to
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Figure 5.6: The modified 2-phase commit protocol



5. MARINER: A REPAIRABLE STORAGE SYSTEM 113

current data storage.

There are other data flows in the system, as shown in Figure 5.5. A logging

server may need to read the before-image, a repairee may need to read repairer’s

current data and log records, a repairer may need to update repairee’s current data

storage and log storage.

5.5.2 Datainfo

Each server’s data status is represented by a datainfo, which is a triple value of

(recyclepoint, syncpoint, snappoint). All the values are some particular global

sequence number. The snappoint represents the last write committed to the current

data storage. The syncpoint represents the last write committed to the log storage.

The recyclepoint represents the most recent log record that has been recycled. All

three points are initialized to -1. The maximum snappoints or syncpoints of all

servers is called system progress point.

The datainfo is normally maintained in memory but the on-disk copy is also

needed in case of failures. There is no extra overhead to maintain the syncpoint

on disk. The global sequence number is stored in each log records, the syncpoint

essentially is the largest global sequence number in the log records on disk. The

snappoint, however, cannot take such free ride to the current data storage. To limit

performance penalty, the snappoint is flushed to disk periodically instead of upon

each write request. Therefore, the on-disk snappoint is not accurate.

The only persistent metadata on client is an active-server-list. Upon each server

node joining and leaving the system, client commits the update to the active-server-

list to disk. If the list is lost due to client disk failure, it is conservatively reset

to include all servers. The reason that client needs this list is because one of the

active servers should have the system progress point. When client fails and restarts,

only after all the active servers has joined, client can compute the system progress



5. MARINER: A REPAIRABLE STORAGE SYSTEM 114

DOWN

NORMAL

repair finish or timeout

based on repair need

SUSPEND−WRITE

all servers on active−server−list joined

server failure

The figure omits the links from each state 
to the DOWN state upon crash failures

Figure 5.7: Client state transition

point and start responding read/write requests. Maintaining an active-server-list to

compute system progress point is a much better choice than maintaining the system

progress point directly. Firstly, the active-server-list changes very rare. The system

progress point changes so often that it is not feasible to maintain it accurately on

disk, just like the snappoint. Moreover, the system progress point on the client

becomes meaningless if some active server had data loss.

The storage system is available for reading if client is up, one of the current-data

server or combined server is up and the server’s snappoint equals system progress

point. The system is available for write if client is up, one of the logging or com-

bined server is up and the server’s syncpoint equals system progress point.
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Figure 5.8: Server state transition

5.5.3 State Transition and Control Messages

In this section we describe the client and server’s state and their transitions as shown

in Figure 5.7 and Figure 5.8. We also describe the control messages passed between

client and server.

Client can be in three possible states:

• DOWN:

DOWN state is for self initialization, mostly to compute the system progress

point. Client enters this state after restarting from crash failures. Initially

client tries to retrieve the active-server-list from disk. Upon disk failure and

data loss, the list is reset to include all the servers. Client then initializes the

listen socket and waits for new connections from the servers. Client waits all

servers on the active-server-list to join with their NODE-INSERT message

and calculates the system progress point. If any server had data loss, the

system progress point is not guaranteed to be found among active servers. In
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that case, the list is also reset to include all servers and client has to wait all

the servers to join.

• NORMAL:

Client enters NORMAL state from DOWN state after the system datainfo is

computed. Client may also enter NORMAL state from SUSPEND-WRITE

state after a repairee has caught up with system progress point, or after client

stayed too long in the SUSPEND-WRITE state.

In this state, client schedules the read/write requests, detects and handles fail-

ures(Section 5.5.6, admits newly recovered servers, schedules repair (Sec-

tion 5.5.5 and assigns roles to each server. Upon receiving any control mes-

sages or detecting any failure, client does system configuration. It examines

each active server’s datainfo. If the datainfo is up to date, client configures its

next state to be RDWR or RDWR-LOG through SET-STATE-RDWR/SET-

STATE-RDWR-LOG messages. If a logging server is configured to RDWR-

LOG state, a before-image server is assigned through SET-BEFOREIMAGE

message. For a server whose datainfo is not up to date, client schedules a

repair through REPAIR or BEINGREPAIRED message.

• SUSPEND-WRITE:

SUSPEND-WRITE state is entered when client stops serving new write re-

quest and waits for a repairee to be brought up to date. Client enters this state

from NORMAL, after an repairee’s datainfo is very close to system progress

point (e.g. < 100 log records missing) or after the client realizes that the

repair speed is not fast enough( e.g. < new write throughput/2). This state

is set so that the repairee can completely catch up system progress point and

start serving read/write request, which is not easy if new write requests con-

stantly comes in during the repair. In this state, client behaves the same as in
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NORMAL state, except that it does not serve write request.

Server can be in one of the following five states:

• DOWN:

DOWN is a state for self-consistency check, mostly to discover its own

datainfo. Server enters this state after restart from crash failures. The de-

tails of self-consistency check is described in Section 5.6.1.

• INIT:

INIT is a state when server waits to join the client. Server enters this state

from the DOWN state after self-consistency check, or from any other states

after client failure is detected. (Section 5.5.6. In this state, server keeps trying

to connect to client and register with NODE-INSERT message.

• CONFIG:

CONFIG is a state where server waits for client’s message regarding next

state or next task. The messages could be SET-STATE-RDWR, SET-STATE-

RDWR-LOG, REPAIR, BEINGREPAIRED, and SET-BEFORE-IMAGE.

Server enters this state from the INIT state after a client has joined it.

• RDWR:

RDWR is a state where server handles read/write request without logging.

A current-data server or combined server may enter this state (from RDWR-

LOG or CONFIG after receiving SET-STATE-RDWR message. The server

sends back SET-STATE-ACK to client to acknowledge that it is ready to serve

read/write requests. In this state, control messages are handled in the same

way as in CONFIG state.

• RDWR-LOG:

RDWR is a state where server handles read/write request with Logging. A
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logging server or combined server may enter this state (from RDWR or CON-

FIG) after receiving SET-STATE-RDWR-LOG message. Upon switching to

this state, a server needs to get prepared to start logging (For example, in

mariner implementation, upon this message a combined server would reset

the log file, recyclepoint, and syncpoint). If the server is a logging server,

after receiving this message it establishes a data channel to read from the

before-image server. After all preparations are done, the server sends back a

SET-STATE-ACK message to the client. In this state, control messages are

handled in the same way as in the CONFIG and RDWR states. If the server

encounters failures in accessing before-image server, a BEFORE-IMAGE-

FAIL message is sent to the client.

Next we describe the control messages passed between client and server. Each

control messages can have some parameters, other than those listed explicitly, there

is a timestamp associated with each message. The messages sent from client to

server include:

• SET-STATE-RDWR:

This message set a current-data server or combined server to RDWR state.

• SET-STATE-RDWR-LOG (before-image-server-id):

This message set a logging server or combined server to RDWR-LOG state.

For logging server, a before-image server id is also provided.

• REPAIR (repairee-id, repairee-datainfo) This message instructs a server to

repair another server. Upon this message, the repairer examines it’s own

datainfo compare it against repairee’s datainfo and tries to remotely update

repairee’s current data storage or log storage. Section 5.5.5 contains more

detailed description. The repair may finish successfully or stop upon repairee
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failures. Regardless, the actual progress is reported to client via REPAIR-

ACK message.

• BEINGREPAIRED (repairer-id) This message is handled almost the same

way as REPAIR. The only difference is that it is initiated by the repairee

rather than the repairer. The repairee tries to access repairer’s current data

storage or log storage remotely to update its own storage.

• SET-BEFOREIMAGE (before image-server-id) This message provides log-

ging node with a new before image server id. It could be triggered if either a

logging server or the client detected failure of the before-image server. Note

that these two failures do not necessarily occur simultaneously due to network

partition problem.

• SET-SERVER-SYNCPOINT (syncpoint) This messages updates a repairee’s

datainfo after client receives an REPAIR-ACK message. The reason that it

is sent by the client rather than the repairer is because we want to conform

to our simple message passing model - control messages are only between

client and server, there is no server-server communication.

The messages sent from server to client include:

• NODE-INSERT (datainfo) This message is for a server node to join the stor-

age system with its own datainfo. This message is sent when a server is in

INIT state.

• SET-STATE-ACK This message acknowledges SET-STATE-RDWR or SET-

STATE-RDWR-LOG message indicating that a server is ready for serving

read/write requests. This acknowledgment is needed because the read/write

requests are sent over data channel in different TCP connections and can be

re-ordered with control messages.
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• REPAIR-ACK (repairee-datainfo) This message acknowledges that REPAIR

message has been processed and the repair operation has finished. The repair

progress is returned via repairee-datainfo parameter.

• BEINGREPAIRED-ACK (repairee-datainfo) This message is similar to

REPAIR-ACK, but acknowledging BEINGREPAIRED message instead.

• BEFOREIMAGE-FAIL (before-image-server-id) This message is sent when

a logging server detects the failure of its before-image server.

5.5.4 Consistent view

Client and server may reach different views regarding each other’s state. An obvi-

ous example is when network is down, all nodes consider themselves alive but other

nodes dead. In this section we prove that (1) eventually client and server come to

consistent view; and (2) the transient inconsistency does not matter. Table 5.2 and

Table 5.1 enumerate all possible views and how do inconsistent views transit to

consistent views.

We skipped client state SUSPEND-WRITE in both tables because SUSPEND-

WRITE is almost same as NORMAL state. The only difference is that write re-

quests are suspended in that state, which is completely a local data channel issue. As

far as client’s view of server and server’s view of client are concerned, SUSPEND-

WRITE state is equivalent to NORMAL state. In other words, the NORMAL state

in this subsection should be understood as ”NORMAL-OR-SUSPEND-WRITE”

state.

For the sake of simplicity, the recovery model assumes when a node dies, it

does not join the system again before a certain duration(for example, 10 seconds)

has passed. The assumption makes sure that by the time a node rejoins the system,

its failure must have been detected by other nodes through the missing heart-beat
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message. In other words, it is not possible for a server to fail and restart quickly

without being noticed.

client state DOWN client state NORMAL

server state DOWN 1 DOWN 6 DOWN→7

server state INIT 2 DOWN 7 DOWN→8

server state CONFIG 3 NORMAL→2 8 NORMAL

server state RDWR 4 NORMAL→2 9 NORMAL

server state RDWR-LOG 5 NORMAL→2 10 NORMAL

Table 5.1: Server’s view of client when client and server are in different states.

Table 5.1 shows a server’s view of a client when the client and the server are

in various states. All the views are numbered. 2, 8, 9 and 10 are consistent with

the client’s state. Views 3, 4, 5 are inconsistent views but they will transition to 2

shortly after the server detects client failure. The inconsistency at 3, 4, 5 indicates a

normal delay between failure occurrence and failure detection. Transition from 6 to

7 is an internal transition after the server finishes self-consistency check. Transition

from 7 to 8 is because the server has re-connected to the client. The inconsistency at

6 and 7 doesn’t matter because it simply means server is trying to rejoin the system.

Table 5.2 shows a client’s view of a server when the client and the server are in

various states. Views 1,3, 10, 12, 16, and 22 are consistent with the server’s state.

Views 2, 4, 5, 6 are inconsistent and eventually transition to 1 or 3 shortly after the

client detects server failure. The inconsistency indicates a normal delay between

failure occurrence and failure detection.

Views 7 and 8 are inconsistent because client does not distinguish between
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server server server server server

state state state state state

DOWN INIT CONFIG RDWR RDWR-

-LOG

client state 1 DOWN 7 DOWN 9 DOWN 13 DOWN 18 DOWN

DOWN →10 →7 →7 →7

client state 2 CONFIG 10 CONFIG

DOWN →1

client state 3 DOWN 8 DOWN 11 DOWN 14 DOWN 19 DOWN

NORMAL →12 →8 →8 →8

client state 4 CONFIG 12 CONFIG 15 CONFIG 20 CONFIG

NORMAL →3 →16 →22

client state 5 RDWR 16 RDWR 21 RDWR

NORMAL →3 →22

client state 6 RDWR- 17 RDWR- 22 RDWR-

NORMAL -LOG→3 -LOG →16 -LOG

Table 5.2: Client’s view of a server when client and the server’s are in various states.

Note that when client is in DOWN state, it still accepts server node to compute the

system syncpoint. But no servers will be configured to RDWR or RDWR-LOG

state. Client does not handle read/write request in DOWN state,
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server’s DOWN or INIT state. Transition from 7 and 8 indicates that eventu-

ally the server connects to the client. Client’s view of server does not include

CONFIG/RDWR/RDWR-LOG while server is in INIT state. The reason is because

we assumed servers will pause for some time before trying to reconnect to clients,

therefore it must have been detected as dead by the client.

Views 9, 13, 18 are inconsistent because client detects a server failure (maybe

network) although the server is not dead. The client stops sending heart beat mes-

sages to the server. Eventually the server will consider the client as dead and tran-

sition to 7. Similar situation exists for 11, 14, and 19.

Views 15, 17, 20, 11 are inconsistent because a server has received a client’s

SET-STATE-RDWR/RDWR-LOG message(upon which server changes its state)

but the client hasn’t received the SET-STATE-ACK (upon which client changes its

view of the server). Since no read/write request are sent during the state change,

the transient inconsistency does not matter.

5.5.5 Repair

In this section, first we show some invariants of server datainfo in Table 5.3. Then

we describe two repair methods and how to apply them. Finally we give a set of

primitives that helps to implement the repair operation.

There are two possible repair methods, full-copy and log-replay. The full-copy

method can be used only to repair current data storage. It simply copies each block

from repairer’s current data storage to the repairee’s current data storage. The log-

replay method can be used to repair both current data storage and log storage. When

it is used to repair log storage, it can bring the repairee’s syncpoint more up to date;

it can also bring repairee’s recyclepoint to earlier time if the repairee has lost some

old log records. Table 5.4 lists the criterion for selecting the repairer.
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logging server syncpoint >= recyclepoint >= -1,

snappoint == -1

current-data server syncpoint == recyclepoint == -1,

snappoint >= -1

combined server syncpoint >= recyclepoint >= -1,

syncpoint >= snappoint >= -1

Table 5.3: Datainfo invariants

repair current data storage repairee snappoint < repairer snappoint

by full-copy

replay current data storage repairer recyclepoint <= repairee snappoint

by log replay < repairer syncpoint

repair log storage by log-replay repairer recyclepoint < repairee recyclepoint

adding older versions of data <= repairer syncpoint

repair log storage by log-replay repairer recyclepoint <= repairee syncpoint

adding newer data updates < repairer syncpoint

Table 5.4: Repairer qualification

One issue that warrants further discussion is the inaccuracy of snappoint. Sec-

tion 5.5.2 has discussed inaccuracy of on-disk snappoint for performance reasons.

Another reason that can cause inaccuracy is the full-copy repair if new write re-

quests are serving while blocks being copied to the repairee. Suppose the repairer’s

snappoint moved from S1 to S2 during the full-copy, the repairee’s snappoint will

be set to S1. The repairee will contain some data between S1 and S2, but not not

necessarily complete or in any order.

Regardless of the reason for inaccuracy, it is always on the conservative side.

That is, all data updates before the snappoint must have been received. Also the



5. MARINER: A REPAIRABLE STORAGE SYSTEM 125

inaccuracy exists only on nodes that needs to be repaired. When a server returns to

RDWR, RDWR-LOG state, the in-memory snappoint is always accurate. To cope

with the snappoint inaccuracy, we require the the repair operation should be idem-

potent. Fortunately data updates to current data storage are naturally idempotent.

The recovery model does not specify the exact policy to select repairer and

repair method. Log storage can only be repaired via log-replay. For current data

storage, full-copy should be preferred upon complete data loss or after a server

missed too many updates. Otherwise, log-replay is usually preferred. Usually the

obsolete current data storage gets repaired, but it is not always necessary to repair

the log storage. Sometimes, it is because the missing historical data is not that

important. Sometimes, it is because the server is reconfigured to be a current data

server.

If a repair operation could not complete because of failures in reading repairer

log or updating repairee storage, the actual progress is notified to client. Eventually

client will arrange another repair operation to bring the repairee up to date, probably

with a different repairer. Table 5.5 summaries the primitives needed to implement

repair operation and being-repaired operation.

Each repair brings repairee’s data more up to date. But the system progress

point could be changing constantly as new write requests being served during the

repair. It may take multiple repair operations to get a repairee up to date. Client

should throttle the bandwidth for new write requests to be lower than the repair

bandwidth. When a repairee is close to system progress point, client suspends new

write requests for a short period of time.

A repair can be initiated by either repairee or repairer. It is called a repair

operation if initiated by repairer and being-repaired operation otherwise. In a being

repaired operation, repairee read repairer’s data remotely and updates its own data.
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used by repair primitive

being-repaired setup data channel to read repairer current data storage

operation

being-repaired setup data channel to read repairer log storage

operation

repair op setup the data channel to update repairee current data storage

repair op setup the data channel to update repairee log storage

log-replay find out all relevant repairer log records according datainfo

log-replay read next repairer log record

log-replay play a log record on repairee

full-copy find out all current data storage blocks

full-copy read next block from repairer’s current data storage

full-copy write a data block to repairee’s current data storage

Table 5.5: Primitives needed for repair operation
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In a repair operation, the repairer reads its own data and updates repairee’s storage

remotely. This design is chosen for its simplicity, not because that it is not possible

to make repair a collaborative effort of both repairee and repairer.

5.5.6 Failure detection and handling

There are five failure detection methods in our recovery model - all of them cannot

distinguish whether the failure is because of software crash, power failure or net-

work partitioning. There is no need for the distinction too because it does not affect

failure handling.

• 1. Before-image read failure. Server detects before-image server failure if

before-image read encounters failure of time-out.

• 2. Repair failure. In repair operation, repairer detects repairee failure if

it encounters error updating repairee’s storage. Similarly in being-repaired

operation, repairee detects repairer failure if it encounters error reading re-

pairer’s storage.

• 3. Control channel failure. If client or server cannot send control message

successfully( TCP error), they consider the other node dead.

• 4. Heart-beat timeout.

• 5. 2-phase-commit failure. A server is considered dead if the write request

sent to that server during 2-phase-commit failed or timed-out, unless it is

because of the before-image reading problem.

The before-image read failure and repair failure are detected by one server re-

garding another server. The fact that a server A reports failure on accessing server B

does not mean that server B must be dead, there could be another server C that can



5. MARINER: A REPAIRABLE STORAGE SYSTEM 128

access server B. The handling of this type of failure is simple: servers reports the

failure through BEFORE-IMAGE-FAIL, REPAIR-ACK, or BEINGREPAIRED-

ACK message; and client reconfigures the before-image server and reschedules

repairer for a repairee during system configuration.

The control channel failure and heart-beat timeout detection methods are used

by both client and server regarding each other. If a server detects client as dead,

it simply tries to reconnect and rejoin the client. If client detects a server is dead,

client closes the control channel and data channel to this server, removes it from the

active-server-list and commit the new active-server-list to the disk.

The 2-phase-commit failure is detected by client. The failure handling also

involves closing control/data channel and update active-server-list. There are some

very subtle issues in the failure handling of this type, which will be discussed in

detail the next subsection.

5.5.7 Subtlety of 2-phase-commit failure handling

If a write request sent to all RDWR-LOG nodes during the first phase of the 2-

phase-commit were failed or timed-out, client aborts the 2-phase-commit for this

request - all RDWR nodes will not receive this write request. The subtlety is that

client does not know whether the aborted write request has been committed on any

RDWR-LOG servers. The failure could have occurred either before the commit or

after the commit but before the reply reached client.

To guarantee that the all storage servers have a consistent image, client injects

an ”undo write request” to cancel any potential effect of the aborted request. The

data in undo write request can be read from RDWR server. The undo write request

bears a new global sequence number. Client reconfigures a new set of RDWR-LOG

servers and send the undo write request to them.

Only after the undo write request is committed to all the new RDWR-LOG
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servers, the dead RDWR-LOG servers are removed from active-server-list and the

change is committed to client’s disk. At this point, the failure handling is complete.

The original aborted write request returns error, and client is ready to handle new

write requests.

Imagine an adverse situation where client crashes during failure handling. After

client restart, the on-disk active-server-list should contain the original dead RDWR-

LOG servers and client needs to wait for all of them joining the system. Depending

on whether the aborted write request has been committed on the old set of RDWR-

LOG servers and the undo write request have been committed on the new set of

RDWR-LOG servers, there can be four scenarios as illustrated in Table 5.6.

aborted request aborted request not

committed on server M committed on any

undo request 1. N repairs M 2. N repairs all other

committed on server N cancels aborted request servers, but the undo

request is a NOP

undo request not 3. M repairs other servers 4. repair goes usual

committed on any aborted request takes effect way, aborted request

has no effect

Table 5.6: Recovery scenarios if there is an aborted write request and the client

crashed while committing corresponding undo write request.

In all four cases all servers will eventually reach consistency. Only in case

(3), the final system state will contain data from the aborted write request. This

is acceptable because when a client crashes the upper I/O level should not have

received any return code from mariner for the aborted write request. The upper I/O

level should time-out and assume that the disk data status is unknown with regards
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to the aborted write request. If client did not crash, when the old set of RDWR-LOG

server recovers, The recovery scenario will be either case 1) or case 2).

Note that case 2 may create a hole in the global sequence number. Sup-

pose the aborted write request has sequence number Seq1, the undo write request

should have sequence Seq1 + 1. In the case 2), Seq1 will be missing from all

server’s log file. This does not impose a big problem for our repair algorithm,

as long as the recyclepoint on the new logging server is set properly. If a server

starts logging from a empty log file, usually the recyclepoint should be set to

firstlogrecord′ssequencenumber − 1. However, if the first log record is a undo

write record, it should be firstlogrecord′ssequencenumber − 2.

5.6 Map the model to Mariner

In this section, we illustrate how this model is tailored for Mariner, what kind of

flexibility an implementation could chose within the framework. We first describe

mariner’s specific server characteristics, storage organization, system configuration

policy, and repair policy. Then we discuss the server self-consistency check in

detail.

Mariner has two types of server nodes: primary server and trail server. Primary

node uses conventional storage device as current data storage and is usually config-

ured as current-data server. It also has some small log storage. The log storage is

only used for fault tolerance purpose and is not organized for providing historical

data. The logging method on primary is simple and not optimized. Only when there

is no trail node available, primary node will be configured as combined node and

perform logging. For the sake of simplicity, primary just uses normal file as log

storage. Primary node, while not doing logging, can act as before-image server.

The primary log file is exported through NFS to repairees.
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Trail node is a special logging server which supports high performance redo-

undo logging. The log records are kept for relatively long time to support historical

data access. Trail logging needs before-image server. Trail server does not have

current data storage, it uses block device as log storage. The structure of trail log

storage is more complicated and not exported. In our implementation, when a pri-

mary node needs to be repaired with trail log, trail node takes initiative.

Mariner uses simple system configuration policies and repair policies following

the general requirements (Section 5.5.1, 5.5.5). Trail node with current datainfo

is configured as RDWR-LOG node. Primary node with current datainfo is config-

ured to be RDWR node unless there is no trail node in RDWR-LOG state. In that

case one primary node will be configured as RDWR-LOG node. The before-image

server for trail node should be a primary node in RDWR state.

Repairs are never scheduled in parallel. At most one server is being repaired at a

time. Repairs are not intentionally delayed. First server that needs to be repaired is

repaired by the first qualified server. We implemented only primary-trail and trail-

primary repair, both are initiated by trail node. We did not implement trail-trail

repair or primary-primary repair.

5.6.1 Self-consistency check

The first task of a failed server after restart is to conduct self-consistency check.

The goal is to find out the datainfo and maintain the consistency between data and

metadata. The steps are:

• 1 Check whether the server storage has been corrupted. For the sake of sim-

plicity, we only examine the superblock signature to decide where a server’s

storage been corrupted. The decision could be overridden manually for more

flexibility. Upon storage corruption, the datainfo is reset to -1, -1, -1.
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• 2 If the storage has not been corrupted, check whether the server has been

shutdown cleanly with all metadata flushed to the disk. This is checked by

reading a crash bit in the log disk superblock. This bit is set and flushed to

disk when a server is started and ready to accept write request. This bit got

cleaned on disk when a server is shutdown cleanly. Unless with scheduled

system shutdown, this bit should always been set on the disk.

• 3 If the storage has not been shutdown cleanly, check where are the latest log

records that have not been incorporated into the on-disk metadata and update

metadata with information from these log records. For this step, Primary

and trail server have very different algorithm due to their individual logging

scheme and metadata organization. Next we will describe them in detail.

Logging on the primary node is simple: each write request is logged in a sepa-

rate record, which includes both before-image and current image. The log record is

appended to a log file. The metadata on the primary node is also very simple. The

only important information is datainfo located in the beginning of the log file. The

self-consistency check is simple. The snap point cannot be accurate and does not

need to be accurate(Section 5.5.5). Recyclepoint and syncpoint could be refreshed

according the first and last log records in the log file.

The reason that we can simply look at the beginning and the end of the primary

log for the first and last log record is because a new log file is created whenever the

primary server is configured to RDWR-LOG state. The log records in the log file

never got recycled individually. This strategy is applicable because in primary log-

ging is only considered a temporary backup logging when trail node is not available.

It is not used as long-term logging to support historical data access.

Trail logging is much more complex and so is its self-consistency check al-

gorithm. Trail log records are chained backwards. The versioning metadata are
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periodically flushed to disk. During the self-consistency check first we identify the

last log record committed to the disk. Then with the backward chain, we can find

all the log records up to the point of last metadata sync. Finally we replay these log

records from the oldest to the newest to bring the metadata up to date. During log

record replay, the versioning metadata is updated in a similar way as during normal

write request, except that it does not need to run block allocation algorithm.

5.6.2 Identifying the last log record on trail

Identifying the last log record is a relatively complex component in trail’s self-

consistency check. Before stepping into its details, we first discussed another

strongly related topic - the block allocation.

Free blocks are identified according the garbage collection policy (Sec-

tion 5.1.2) using allocation map (Section 5.1.3). The block allocation follows a set

of rules to limit the number of blocks and bytes that self-consistency check needs

to look at.

• 1 Each log disk is used in rounds. Within each round, trail only looks for-

wards (from low block number to high block number) for free blocks and

never look back. After it reached the end of physical log disk, the block allo-

cation will wrap around and start looking from the beginning of the log disk

again.

• 2 Upon trail finishes one round and starts a new round, trail flushes the posi-

tion of last log record to the disk.

• 3 When allocating for a log record, there is a limit (FREE-STRIPS-SKIP-

LIMIT) on how many big-enough free block strips can be skipped from last

log record’s position.
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Figure 5.9: Finding the last log record on a trail log disk
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• 4 There is a limit(LOG-RECORD-SIZE-LIMIT) on the log record size.

• 5 A log record is aligned with disk block boundary. Each log record starts

with a header that has a unique signature, which can be guaranteed not to

appear in data payload( [13]). This allows us to easily identify whether a

block contains a valid log record.

A pseudo binary search algorithm is used to identify the last log record on each

log disk. The final result is the latest one among the results from all log disks. On

each log disk, first the superblock is read to identify the information about the last

round. The search for last log record starts from a middle position, read in blocks

and look for two signs to reduce the range in the next iteration.

• sign-A A valid log record in the last round. This is easy to identify given the

header signature, header sequence number and the last round information.

• sign-B A range of blocks with enough (FREE-STRIPS-SKIP-LIMIT) of large

freespace strips but without any valid log records in the last round. By

large strip, we mean that its size should be larger than LOG-RECORD-SIZE-

LIMIT. According block allocation constraints 3 and 4, this indicates that we

have found the end of the log disk i.e., no more newer log record beyond this

point.

Upon sign-A the next iteration will move to the right half of the range. Upon

sign-B the next iteration will move to the left half of the range. To confirm sign-

A, we need only information from the one block. But to confirm sign-B we need

to keep some states, including the number of large freespace strips that have been

encountered(num-large-free-strips), and the size of current freespace strip (free-

strip-current-size). We also remembers the position of last valid log record in

last-log-record-position.
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While searching for sign-B, the self-consistency check actually emulates the

behavior of block allocation algorithm. While checking whether a log record has

expired, the ”current time” should be the time when the block allocation exam-

ines the block, which is not known to the self-consistency check algorithm. But

we could have an estimation. The time should fall between ”last known valid log

record’s timestamp” and ”server fail time”. Compared to a log record’s life span,

the difference between the lower and upper bounds should be relatively small.

Given an iteration range [R1, R2], we start examining blocks from the middle

(R1 + R2)/2 until we identified sign-A or sign-B or we reached R2. If we reached

R2, it is equivalent as we found sign-B. For the ease of discussion, we assume a

block that is being examined has block number K; and if it contains a log record

header, the log record length is L. There could be several possibilities:

• Block K contains a header of last round, i.e., sign-A is confirmed. This iter-

ation ends and next iteration starts for [K + L, E]. The internal states num-

large-free-strips and free-strip-current-size is reset to 0. The free-strip-start is

reset to K + L + 1. K is assigned to the last-log-record-position.

• Block K contains a header from previous round and it has not expired. We

skip this log record and continue current iteration at block K + L. Since we

found some non-free blocks, the free-strip-current-size is reset to 0.

• Block K contains a header from previous round and we are not sure whether

it has expired. The self-consistency enters an special uncertain state. To be

conservative, the L blocks will not be counted into freespace strips. The free-

strip-current-size is reset to 0. Since these blocks could also be expired, we

cannot skip the next L-1 blocks. Current iteration continues at block K + 1.

If we do encounter another valid header within next L-1 blocks, the uncertain

state stops immediately. Otherwise the uncertain state automatically stops
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after L-1 blocks.

• BLOCK K contains no valid header. If we are not in the uncertain state, it is

considered a free block. We increment free-strip-current-size. If it reaches

LOG-RECORD-SIZE-LIMIT, we increment the num-large-free-strips and

reset the free-strip-current-size to 0. Current iteration continues at block

K + 1.

• BLOCK K contains an expired header. If we are in the uncertain state, the

uncertain state stops. We increment the free-strip-current-size. If it reached

LOG-RECORD-SIZE-LIMIT, we increment num-large-free-strips and reset

the free-strip-current-size to 0. Current iteration continues at block K + 1.

The final output of the binary search is the last log record position. Figure 5.9 shows

an example of the pseudo binary search. There are five rounds.

5.7 Implementation of the fault-tolerance model

Figure 5.10 shows the software architecture of Mariner’s fault-tolerance implemen-

tation, it shows each software components and its interactions. The client dae-

mon and the server daemon are the user level daemons that implement the generic

1-client-N-server recovery model. The server daemon on the trail nodes and the

server daemon on the primary nodes are the same. Control messages(Section 5.5.3

are passed between these daemons through TCP.

Each server exports a virtual block device to client through iSCSI protocol.

The modified 2-phase commit protocol is implemented based on UNH-ISCSI [51].

The virtual device on primary node may also be exported to trail through iSCSI

for before-image read and repair. The virtual block device is implemented by
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Figure 5.10: Fault tolerance implementation

trail kernel module on trail, and by primary kernel module on primary, for dif-

ferent read/write/logging schemes. The trail recovery patch and the primary

recovery patch handles self-consistency check, repair, communication with the

user level daemons, and communication with the modified 2-phase-commit pro-

tocol(Section 5.5.1). These server kernel modules and patches are mostly mariner

specific. The client kernel module handles communication with client daemon and

with the 2-phase-commit protocol. The initiator recovery patch and the target re-

covery patch are added to the UNH-ISCSI implementation to implement the the

modified two-phase commit protocol. All server nodes run the same iSCSI target

and the recovery patch. The additional vanilla iSCSI-initiator on trail is needed for

before-image read and repair.

Note that client can see many iSCSI devices, one for each iSCSI target. Ideally

the application should see only one device offered by mariner storage system and

the client kernel module could have implemented another layer of virtual device
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to distribute the read/write to the corresponding iSCSI devices. In practice for the

sake of transparent reliable multicast (as explained in Section 5.3), the request dis-

patching and duplication is implemented inside iSCSI initiator. We did not provide

the virtual block device on client. device on client. The read or write to any of the

iSCSI devices are treated in the same way by the initiator kernel patch.

Sever daemons communicates with server kernel patches through IOCTLs on

the virtual block devices. To make the communication interface uniform, client

kernel module also implements a virtual device (/dev/mariner-client) just for the

sake of of issuing ioctl. The set of IOCTLs are the same for all server nodes but

different for client. The mariner kernel module and iSCSI module interacts through

a data structure called mariner super. It is owned by mariner kernel module but

exported to iSCSI module through EXPORT SYMBOL. The mariner super con-

tains all fault tolerance related information. It has a copy in both user and kernel

space. Some of the IOCTLs are dedicated to keep the two copies consistent.

5.8 Evaluation of mariner’s fault-tolerance imple-

mentation

In this section, we describe the evaluation of the fault tolerance implementation

by testing failure of each node in our system. Each failure could be due to various

reasons. Table 5.7 shows the possible combinations of failure scenarios. It is tedious

to enumerate all cases. We select five representative tests as marked on the table.

In experiment 1) to 4), we start the mariner system and a testing flow. Then we

induce failure manually, and show the recovery sequence until the whole system is

back to normal. The testing flow consists of continuous write request (4K size) with

10ms sleeping time after each request. Experiment 5) uses file system commands
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trail primary1 primary2 client

network failure 3

reboot or death of control daemons 1 4

power off or system crash 5

with unsynced metadata

disk failure with data loss 2

Table 5.7: This table shows the possible combinations of failure scenarios and the

test cases that are used in the evaluation section

(mkfs, cp) to verify trail self-consistency check algorithm(Section 5.6.1).

This evaluation plan included only single failure scenarios. The fault tolerance

model has been designed with single failure in mind. Although the model tries to be

generic and in fact can handle many multiple failure cases, it probably needs some

work to handle arbitrary multiple failure scenarios. The mariner implementation

and the testbed setup also pose restrictions to exercising multiple failure cases. For

example, we did not implement trail-trail repair and primary-primary repair; the

testbed is configured with only one trail node.

The focus of the evaluation is not about read/write throughput and latency. Con-

sequently the hardware/software setup is not tuned for performance. On trail node,

the two log disks are actually two physical disk partitions. The trail kernel module

used an old prototype. In the recently two years, other mariner team members have

made significant improvement to trail logging performance ( [42]).

5.8.1 System setup and failure induction method

Our evaluation testbed consists of one client node, one trail node and two identical

primary nodes: primary1 and primary2. All of the four nodes are Dell PowerEdge
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SC1450 machines with 2.8GHz CPU and 1GB memory. The hard disks used in the

testbed are 250GB Maxtor 7L250S0 SATA disks. Each server node has two disks,

one as the system disk and another as data disk. Trail is configured with two log

disks with two partitions on the data disk. Each log disk is of size 200MB. The

primary node’s current storage size is also configured to be 200MB. Therefore the

mariner storage system provides 200MB of current data storage and 200 400 MB

of historical data storage.

All machines run Fedora 3 with Linux kernel 2.6.11. We use UNH iSCSI im-

plementation (version 1.6.0) [51] as the base for iSCSI initiator and iSCSI target.

Each node is equipped with two network cards. The eth0 (130.245.134.xxx) is used

for external network communication. The eth3 (169.254.0.xxx) is used for inter-

nal network communication among the four mariner nodes. Both mariner control

messages and iSCSI communication uses the internal network interface eth3.

The network failure and recovery is induced with ifconfig eth3 down and ifcon-

fig eth3 up. All the nodes are powered by a remote controlled power switch. Each

node’s power can be turned on and off through a web interface. Complete disk data

loss is emulated by writing 0 to the current data storage and the log storage.

5.8.2 Normal case

As a baseline for comparison we first shows the normal situation without fail-

ure. Figure 5.11 shows the throughput of the testing flow, which is about

150KBytes/Second. This is not the highest throughput we can get from the testbed

because there is 10ms sleep time between each 4KBytes write request. In each

second there are about 36 write requests and 360ms of sleeping time.

The reason that we keep this 10ms gap between requests is because of some

issues in the implementation. The modified 2-phase commit protocol is initially

implemented without full consideration of fault tolerance. Moreover, it is mixed
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Figure 5.11: Throughput of testing flow in the absence of failure
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with other modifications that are added to support TRM(Section 5.3). The error

handling of the the 2-phase-commit protocol, of TRM, and of iSCSI are not cor-

rectly integrated. It is a well known problem that the interaction of error handling

from different storage system components is often incorrect [31]. Unfortunately

mariner seems suffers the problem too. For the system to function properly, mariner

needs to detect a failure and close the corresponding iSCSI connection before the

iSCSI’s original error handling get triggered. Without fully understanding all the

intricacies, one way to get around the issue is to reduce the testing load by adding

the 10ms sleeping time.

Before the first write request is issued, the client daemon admits all server

nodes. Trail nodes is assigned as RDWR-LOG node. Primary1 and primary2 is

assigned as RDWR nodes. Primary1 is also assigned as trail’s before-image server.

The client daemon informs the client kernel module regarding each server’s state

through IOCTLs. Upon each write request, the initiator recovery patch consults the

client kernel module regarding each server’s state and use this information in the

modified 2-phase commit protocol.

5.8.3 Primary2 fail recovery

Primary2 has the simplest role in the mariner system and its failure has least impact

to the system. Figure 5.12 shows throughput change of the testing flow as well as

the time line of failure detection, handling and recovery.

From left to right, the first vertical line represents failure detection and handling.

The heart-beat interval is 5 seconds. Client detects primary2’s failure few seconds

after we turn off the power. The client daemon calls an IOCTL to inform the client

kernel module that primary2 is down. Client also tears down the iSCSI connection

to primary2, which takes about 1 to 2 seconds.

The second vertical line represents the beginning of recovery. It starts from
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Figure 5.12: Primary2’s recovery after crash failure
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client receiving NODE-INSERT message until first repair is scheduled. On pri-

mary2, after it reboots, the primary kernel module is installed and does self-

consistency check. The server daemon sends NODE-INSERT to client and client

establishes a new iSCSI connection. Then client checks that the primary2’s data

is out of date. A REPAIR message is sent to trail node to repair primary2. Af-

ter trail receives the REPAIR message, it establishes an iSCSI connection to the

repairee (primary2). With the iSCSI management commands iscsi config up and

iscsi config down, it takes 2 to 4 seconds to establish and tear down the iSCSI

connection. This sets a lower time limit on a repair operation. In the first repair

operation, trail node took 3.4 seconds to establish the iSCSI connection. In the

next 41 seconds, the repair operation found 11814 log records to be replayed and

updated primary2’s current data storage through the iSCSI connection. The repair

throughput is 1091KBytes/Second. In the mean time, the write throughput of the

testing flow dropped drastically to 7KBytes due to resource competition

The third vertical line represents the end of first repair and beginning of second

repair. When client receives trail’s REPAIR-FINISH message, it shows primary2’s

datainfo is still not up to date because of there are new write requests being served

during the repair. However, the difference is small, only 79 write requests were

missing, less than a pre-defined threshold (100). Therefore client enters SUSPEND-

WRITE state. It schedules the second repair while suspending new write requests.

Hopefully the second repair does not take long and the system can go back normal

as soon as possible. Originally we had considered to let trail take more control over

multiple repairs. In the end, it turns out that client is in a much better position to

coordinate.

The testing flow’s throughput dropped close to 0 during second repair because

the write requests were suspended. It didn’t completely go to 0 because of the way

throughput is computed. The application tries to computes it once a second, but
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when write request is suspended the application does not get to run. The second

repair took 3.6 seconds with 79 log records being replayed. The repair throughput

is much lower than the first repair because most time were spent on setting up and

tearing down the iSCSI connection. A small optimization could be to not tearing

down in the first repair and then setting it up again in the second repair.

The fourth vertical line represents the end of second repair. The client goes back

to NORMAL state. The primary2 is assigned RDWR node. The state updates are

send to kernel via IOCTLs and the system is back to normal. The testing flow’s

throughput goes back to 136KBytes/Second, still lower than the initial throughput

of 156KBytes/Second. This is similar to the normal case as we have discussed in

Section 5.8.2.

5.8.4 Primary1 fail recovery with complete data loss

The primary1’s fail scenario (Figure 5.13 shares many common aspect as pri-

mary2’s fail scenario. In this section, we will focus on the differences.

First differences is that this failure involves complete data loss. This is rec-

ognized by the self-consistency check because of missing superblock signature.

As a result, the datainfo is reset to -1. During the repair, much more log records

need to be replayed, both from the data loss and from the down time. First re-

pair took 109.7 seconds and replayed 30526 log records. The repair throughput

is 1139KBytes/Second, slightly higher than the first repair operation in primary2’s

recovery, because the cost of establishing iSCSI connection is amortized over more

log records.

Second difference is that there are three repair operations instead of two. This

is because that the first repair operation took longer and missed more new write

requests. When client receives the REPAIR-FINISH message for the first repair,

the repairee’s datainfo indicates 315 log records missing, which is not close enough
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Figure 5.13: Primary recovery after power failure with complete data loss
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for client to enter SUSPEND-WRITE state (need to be less than 100). When client

receives the REPAIR-FINISH from the second repair, only 3 log records are miss-

ing, therefore client entered SUSPEND-WRITE state and scheduled the last (third)

repair operation. We can imagine that if the initial number of missing log record is

very big, it could take more than 3 rounds of repair. But since the repair through-

put (>1000 KBytes/Second) is much higher than the new write throughput (<10

KBytes/Second), it is fairly easy for the repairee to catch up and the number of

repairs cannot be very big.

Another subtle difference is that compared to Figure 5.12, the testing flow shows

bigger write throughput drop around the first and last vertical line. This is because

that there are before-image server re-assignment in the case of primary failure. Af-

ter client detected the failure of primary1, primary2 is assigned as trail’s before-

image server. When primary1 is back to normal, primary1 is re-assigned as before-

image server. Trail reads before-image through iSCSI. For each new before-image

server assignment, trail tears down the iSCSI connection to the old server and set

up the iSCSI connection to the new server. This could take seconds as described in

Section 5.8.2 and causes disturbance to the write throughput. Not all write requests

requires reading before-image. If some request does require before-image read dur-

ing the before-image server transition, trail returns failure and let upper level retry

mechanism steps in.

5.8.5 Trail fail recovery

Figure 5.14 shows the trail fail scenario. Although the basic vertical lines shows

similar steps of failure detection, recovery and repair, the duration of each step

aren’t quite consistent with previous two figures(Figure 5.13, 5.12). In addition,

the write throughput of the testing flow looks very different.
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Figure 5.14: Trail recovery after network failure
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5.8.5.1 Write throughput drop around failure detection

First difference is that the write throughput dropped to 1KBytes/Second around first

vertical line, which is much more prominent compared to previous figures. The

reason is that RDWR-LOG server is in a critical position in the 2-phase commit

protocol. The system cannot handle any write request from the time that a RDWR-

LOG server failed until the failure is detected and a new RDWR-LOG server is

assigned. Any other server failure (RDWR server, before-image server) may not

block the progress completely.

5.8.5.2 Write throughput increase during trail down time

Second difference is about the write throughput increased to 340KBytes during the

trail down time, where primary1 is assigned as RDWR-LOG server. In this exper-

iment the RDWR-LOG server’s performance determines the system performance.

This shows that that primary node has better logging performance than trail, which

is contrary to our claim about trail’s super logging performance(Section 5.2).

The contradiction is caused by implementation issues both on the trail side and

on the primary side. On the trail side, as mentioned in the beginning of Section 5.8,

we used an early trail implementation prototype which includes the complicated

versioning algorithm but not any performance tune up as described in [42]. Espe-

cially it did not incorporate the track-based logging techniques. On the primary

side, the primary uses log files rather than log disks. That means each log write

may not be committed to the disk when it returns. Therefore it is not fair to com-

pare trail’s synchronous logging performance with primary’s asynchronous logging

performance. Initially we used log file instead of log disk on primary node for the

ease of implementation. We hoped that by opening the log file with O DIRECT

flag, each file write will become synchronous write. Later we realized that the
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O DIRECT flag is not supported by the Linux-2.6.11. Hence the primary logging

is still not synchronous logging. However this does not pose big threat to mariner’s

correctness under single failure situation. Presumably, the primary node only does

logging when the trail node is failed. Therefore the primary node should will not

fail again while doing logging.

5.8.5.3 High write throughput and low repair throughput during first repair

During the first being-repaired operation, the write throughput is 200 250KBytes,

much better than the 7KBytes in Figure 5.13. In the mean time, trail was discon-

nected from the network for only 40 seconds, missed only 3260 log records, yet the

first being-repaired operation took 49 seconds. The repair throughput is 260KBytes,

much worse than primary’s failure case. This difference is mainly caused by the

same reason that trail logging performance is not as good as primary logging per-

formance. The fact that both repair and being-repaired operation are conducted by

trail further increases trail’s load.

During being-repaired operation, various trail versioning data structures needs

to be updated, the repair throughput should be comparable to the trail logging

throughput. The repair throughput is actually a little higher because there is no

10ms gap between each log records and there is no need to read before-image. Trail

node reads log records sequentially from the primary’s log file mounted through

NFS. Since the trail’s being-repaired throughput is limited by trail’s own logging

performance and the sequential read is very efficient with file system pre-fetch, the

primary node still has enough bandwidth left to serve new write requests.

During repair operation(Figure 5.13, 5.12), the repair can be done faster be-

cause there are no versioning metadata updates. The repair involves only reading

log records from the log disk and updating primary node’s current data storage.

With current implementation of trail logging and repair, the repair naturally gets



5. MARINER: A REPAIRABLE STORAGE SYSTEM 152

higher priority over serving new write requests. Therefore the repair throughput is

relatively high and the write throughput is very low.

5.8.5.4 Write throughput drops to 0 during second repair

While the high write throughput may be desirable for application, it also means long

repair time. For mariner system, each write request served during the node failure

and repair time costs more system resources than that served during normal status.

We needs a good balance between system throughput during repair and the overall

system throughput. Ideally there should be a mechanism to explicitly control the

resources used for repair and for serving new requests. Right now we only use

a very simple method. Whenever client discovers that the repair throughput is not

significantly (>200%) higher than than the write throughput, the client will suspend

new write request to let the repair finish as soon as possible.

This explains why the write throughput dropped to 0 during second repair. In

fact, due to some implementation limitations, in this experiment we actually kill

the testing flow process and restart the iSCSI initiator. The client re-admit all server

nodes and then schedule the second repair. The whole procedure takes about 3

seconds. Therefore the third vertical line is not quite vertical.

5.8.6 Client fail recovery

Figure 5.15 shows the client failure scenario. The testing flow stopped when we

turns off the power and manually restarted when client node is back to normal.

This clearly matches the the write throughput line.

A less obvious observation is that the client recovery involves two repairs. The

first repair is on primary1 and the second on primary2. If client crashed in the mid-

dle of the modified 2-phase commit protocol, it is possible that trail has committed
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Figure 5.16: Binary search to find last log record on trail

the last request, but the acknowledgment has not reached client; or that the ac-

knowledgment has reached client but has not been forwarded to the primary nodes.

Therefore the pre-write request on primary1 and primary2 could not get committed.

When primary1 and primary2 rejoins client, client schedules two repairs to replay

the last write request on both primary nodes.

5.8.7 Trail self-consistency check

Previous evaluations focused on the interaction between different nodes. Note that

previous trail failure is network failure. The trail node didn’t crash and the self-

consistency check(Section 5.6.1 is not exercised. In the section we examine the

correctness and performance of trail’s self-consistency check with file system level
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commands. We skip the self-consistency check of primary node and client node

because they are very simple. Trail’s periodic metadata flush is turned off for the

ease of experiment.

We create an ext3 file system on the 200MB mariner device and mount the

file system on /mnt/mariner. Then we copy a testing directory from /root/test into

/mnt/mariner/test. The testing directory has 2 sub-directories and 52 files, with a

total size of 360KBytes. In total, it took 45 seconds. We then power-cycle the

trail node. After trail node reboots, the trail kernel module is installed and the self-

consistency check is done.

Figure 5.16 shows the binary search to find the last log record on log disk 0. The

search on log disk 1 is similar. If a valid log record is found, the range start point

increases. If end of log disk is found, the range end point decreases. The start point

and end point merge after 18 iterations. 244 sectors were read on log disk 0 and 233

sectors read on log disk 1. The total time spent to find last log record is about one

second. On average the time should be logarithmic to the size of log disk. In the

worse case it could be linear if the log disks have too much unexpired log records.

The second step is to find all log records which has not been incorporated in

the versioning metadata on disk. Starting from the last log record and following the

backward chain, the second steps read 6401 sectors, found and stored the position

of the 6401 log records to be replayed. The second step took 9 seconds.

The third and last step is to replay the log records to update the versioning

metadata and flush them to the disk, which takes about 0.6 second. After the self

consistency check and other initializations of the trail kernel module, we mount

the mariner device again and use ”diff /mnt/mariner/test /root/test” to verify the

correctness of the self-consistency check.
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5.8.8 Summary

We evaluated the fault-tolerance model and mariner’s implementation with com-

prehensive single failure scenarios. The failed node gets repaired and the system

always returns to a consistent state. The system remains available except for a short

period of 10 seconds upon trail node’s recovery. These experiments illustrated the

complexity and the effectiveness of the fault-tolerance model. In the mean time,

they also exposed the implementation limitations and several places where perfor-

mance and system availability could be improved.

5.9 Lessons

5.9.1 Lessons on Mariner’s overall design

The most important experience that we learned from Mariner project is that re-

pairability can be seamlessly integrated with many desired features of a storage

system. If designed properly, it does not necessarily come with much extra cost in

performance or complexity.

At the core of Mariner’s design is a fast and self-describing trail logging method.

To fulfill the promise of a a repairable system, the logging method is extended with a

more sophisticated block allocation algorithm to ensure certain protection window.

We also introduced another concept of current data warm window to separate hot

data and cold data to improve logging performance. The block level versioning

metadata is build on top of the log record to provide access of any point-in-time

image. A user level versioning file system is build on top of the versioning storage

to provide the historical versions at file system level. It can be used either directly

by user or by the repair program. Mariner shares same client syscall logging and

dependency analysis scheme with RFS. There is a small difference in server side
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file update logging. With mariner, the file update logging have neither real data

(like in RFS-O) or data pointer (like in RFS-A/RFS-I/RFS-I+). With actual data

being maintained by the versioning storage, the file update log is only used for

dependency analysis and metadata (directory/attribute) repair.

In addition to repairability, the core logging technique also provides good sup-

port for the recoverability 1. The system can tolerate arbitrary hard failures 1 with

high level of availability. Because trail logging is very fast, we can afford to put

it in the critical path of write request handling. Therefore we do not need another

simple logging just for the sake of fault tolerance, which is a common practice. One

example is the journaling file system. Another example is Veritas’s comprehensive

versioning product RTP [66] which uses a dirty block logging to record recent mod-

ifications. Because trail logging is self-describing, it is the only data structure that

needs to be written to disk synchronously. All other metadata structures can be

flushed to disk in a delayed manner to reduce the impact to system performance.

When hard failures occur, trail’s self consistency check could restore metadata from

the information in the log record.

5.9.2 Lessons on Mariner’s fault tolerance design

Other than conveniently taking advantage of the trail logging techniques, Mariner’s

fault tolerance design focuses on simplicity, uniformity, flexibility, and extensibility.

5.9.2.1 Simplicity

First simplification is that the basic model is built for a 1 client N server system

instead of the M client N server system as Mariner actually is. This is because we

assume no data sharing among multiple clients. Even though they might share data

servers, separate partitions are used by each client. This greatly simplified the fault
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tolerance design.

Second simplification is that we decided not to use a separate manager node to

take care of failure detection, node insertion, node deletion, and repair etc. Instead

we let the storage client taking care of the management duty. This approach re-

moved the issue of manager node failure and the need of manager-client communi-

cation. It also brings convenience for the fault tolerance design to be integrated with

the 2-phase commit protocol. Client can conveniently suspend data flows while per-

forming certain management tasks. There are probably some minor disadvantages

such as when client node is down, server node cannot be repaired. But they are

rarely needed and can be fixed by the collaboration of multiple clients.

5.9.2.2 Uniformity

Same failure handling and node repair schemes are used for all types of fail-

ures(network failure, power failure, node crash, disk failure with and without data

loss). The failure detection methods for different types of failures are not com-

pletely the same but still share many common components. Therefore the fault

tolerance model is extensible to new failure types. In fact, it has now covered all

hard failure types.

Another uniformity shows in the control channel communication pattern. All

the control messages are passed between client and server. There is no server-

server communication. While this may occasionally increases the number of control

messages passed around, it is consistent with our principle of keeping client as the

central controlling point; and it greatly simplifies the control channel connection

establishment and the failure detection/handling.
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5.9.2.3 Flexibility

Mariner’s recovery model has two layers - a generic model and some system-

specific components. The generic model works for a 1-client-N-server storage

system which have some server nodes that support self-describing logging. The

system-specific components decide the exact node configuration policies, repair

policies, logging schemes and self-consistency check algorithms. There is a clear

interface between the two layers.

The system-specific components are either individual modules for a certain

functionality or pure policies geared towards particular storage system character-

istics. For example, the trail node and the primary node have very different log-

ging and self consistency check schemes. But they share the same control daemon

(which belongs to the generic model). The only difference that client cares about

regarding trail node and primary node is that trail node is the preferred logging node

and repair node.

These system-specific components do not change node state and do not involve

control message communications. Therefore they do not have global impact to the

correctness of the fault tolerance model. It is easy to change the system-specific

components according different storage system characteristics or different work-

loads.

5.9.2.4 Extensibility

Other than the flexibility provided by the system-specific components, we also try

to make the generic model itself extensible. In the original design, high availability

wasn’t a goal. Similar to the RFS, the system stops responding to new write request

during repair time. Later we extended the model so that the system is available for

write even at repair time. This extension is made possible because in general we try
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to have modular design and make less assumptions. This is especially true for the

repair operation:

In the repair operation, a repairer replays some log records (or copies data

blocks) to bring repairee’s data status more up to date. The repairer itself does

not need to have most current data - it only needs to be more up to date than the

repairee. The repair operation does not need to finish successfully as originally

planned. If it fails in the middle, the progress is recorded and the repair can be

resumed with same or different repairer at a later time. The basic repair unit (re-

playing one log record/copying one data block) is idempotent. The data status of

neither repairee nor repairer needs to be accurate - it just needs to be conservative.

Without any modification, the original model will just keep scheduling repair

operations to handle the new write requests. It can only stop if there is some quiet

time without write requests coming. The system performance will surely suffer. To

make the system works better, we only need two adjustments. One is for client to

suspend write request when repair is close to finish. Another is for client to limit the

write request bandwidth when repair speed is slower than new write request. There

is no modification needed on the repair operation itself.

Another possible extension of the fault tolerance model is to handle multiple

failures. Current model already can handle many multiple failure scenarios and

has only few places assuming single failure. We still need careful examination to

ensure the extended model works for arbitrary multiple failure scenarios. But we

do believe that it is doable with reasonable adjustments.

5.9.3 Implementation Complexity and Limitations

Our fault tolerance model itself is simple and efficient. It has been analyzed and

evaluated with comprehensive single failure scenarios. The failed node all gets re-

paired and the system always returns to a consistent state. However we encountered
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extra implementation complexities and limitations when the fault tolerance model

needs to be integrated with existing software layers such iSCSI and TRM(the trans-

parent reliable multicast protocol).

One example of the limitation is that at operating system command interface it

takes up to two seconds to setup or tear down an iSCSI connection. This definitely

reduces the high-availability promise that the fault tolerance model could deliver.

One example of the complexity is how to get error handling right. It is a well

known fact that in a storage system it difficult to get error handling right. What is

even harder is to make the error handling of different layers of software working

correctly and consistently for one goal (fault tolerance of the whole system). Be-

cause that we don’t have enough time to fully investigate and integrate the error

handling of iSCSI and TRM, the current implementation has several limitations as

discussed in Section 5.8.2 and Section 5.8.5.4.



Chapter 6

TBBT: A Scalable Trace Replay for

File Server Evaluation

File system traces are used to characterize and model workloads, to study new

file/storage management algorithms and heuristics, and to identify interesting ac-

cess patterns suitable for performance optimization. Surprisingly, however, they

are rarely used to evaluate the performance of actual file servers. The reason is that

a tool that can accurately replay file access traces against a live file server is rela-

tively challenging to build. This chapter describes the design, implementation, and

our evaluation of the Trace-Based file system Benchmarking Tool (TBBT), the first

comprehensive NFS trace replay tool [74].

TBBT automatically detects and repairs missing operations in an NFS trace,

derives a file system image required to successfully replay the trace, ages the file

system image appropriately, and initializes the file server under test with that image.

TBBT then drives the file server with a workload that is derived from replaying the

trace according to user-specified parameters. TBBT can scale a trace temporally or

162
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spatially to meet the needs of simulations and it can do so without violating depen-

dencies among file system operations. Empirical experiments using a large NFS

trace show that TBBT can produce qualitatively different throughput and latency

results than SPECsfs, a widely used industrial-strength file system benchmark.

6.1 Introduction

Modern file systems are typically optimized to take advantage of the workload char-

acteristics they are designed to serve. Accordingly, the performance of a file system

must be evaluated with respect to its target workload. The ideal benchmarking

workload should represent the way that actual applications use the file system. It

should also be effective in predicting system performance in the target environ-

ment, scalable so as to simulate the system under different loads, easy to generate,

and reproducible.

At present, the most common workloads for file system evaluation are syn-

thetic benchmarks. These benchmarks are designed to re-create the characteristics

of particular environments. Many synthetic benchmarks are parameterized, mak-

ing it possible to tailor the resulting workload to specific requirements. In recent

years synthetic benchmarks have improved significantly in terms of realism and

the degree to which they can be tailored to a specific application. Yet synthetic

benchmarks cannot always mimic file access traces collected from real-world en-

vironments. Many time-varying and site-specific factors are difficult, if not impos-

sible, for a synthetic benchmark to capture. For example, recent file access trace

analysis showed that modern file servers handle a variety of workloads with widely

divergent characteristics [17, 54, 69]. An additional barrier is the time required to

develop a high-quality benchmark, which is often months or years. As a result, syn-

thetic benchmarks may not keep pace with changes in the workloads of their target
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environments.

In contrast to synthetic benchmarks, replay traces - those extracted from the

system being evaluated – are by definition representative of that system’s workload.

Given that disk, network, and web access traces have been used extensively to eval-

uate storage systems, network protocols, and web servers respectively, we see no

reason why design engineers cannot usefully employ file access traces to evaluate

file systems. Indeed, we believe that trace replay may constitute a better basis for

file system workload generation and thereby performance evaluation.

Replaying an NFS trace against a live file system/server is non-trivial:

• Because a file system is stateful, a trace replay tool must be context sensitive.

The context for each request in the trace must be properly set up in the file

system under test prior to the trace replay. For example, a file open request

can be successfully replayed only if the associated file already exists.

• The disk layout of a file system significantly impacts the performance of the

file system. For example, how to properly “age” a file system [60] to accu-

rately reflect the performance degradation of real-world file systems due to

disk space fragmentation remains problematic.

• Because a trace could be collected on a file system whose performance di-

verges widely from that of the target file system, a trace replay tool must be

capable of scaling the dispatch rate of trace requests to meet specific bench-

marking requirements. This scaling up or down must occur without violating

any inter-request dependencies.

In this paper we present the design, implementation, and evaluation of a novel

NFS trace player, TBBT, and how it addresses each of these three issues. TBBT

can infer the directory hierarchy of the file system underlying the trace, construct a
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file system image with the same hierarchy, replay the trace at a user-specified rate,

and gather performance measurements. Because traces do not carry physical layout

information, it is impossible for TBBT to incorporate the actual aging effects in

the construction of the initial file system image. However, TBBT does support an

artificial method that allows users to incorporate a degree of file aging into the initial

file system image used in their simulation. TBBT also allows its users to scale up

the trace to simulate additional clients and/or higher-speed clients without violating

the dependencies among file access requests in the trace. Finally, TBBT has a robust

error-tracing capability: it can automatically detect and repair inconsistencies from

incomplete traces.

Although designed to overcome the limitations of synthetic benchmarks, TBBT

has its own limitations (Section 6.6). In fact, TBBT is not designed to replace

synthetic benchmarks, but instead to complement them.

The rest of this section is organized as follows. Section 6.2 reviews related

work in synthetic benchmarks, file system trace collection, simulation, and trace

replay. Section 6.3 describes the design issues of the various components of TBBT

and discusses the challenges in file system trace replay. Section 6.4 discusses the

implementation details of TBBT. Section 6.5 presents the results of an evaluation

study of the TBBT prototype. Section 6 concludes the paper with a summary of

this research and directions for future work.

6.2 Related Work

In this section, we describe related work in file system trace research, file system

trace replay, synthetic benchmarks, and file system aging. We also describe a disk

trace player that has a remarkable technique for issuing requests with accurate tim-

ing.
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Ousterhout’s file system trace analysis [52] and the Sprite trace analysis [7]

motivated many research efforts in log-structured file systems, journaling, and dis-

tributed file systems. More recent trace studies have demonstrated that file system

workloads vary widely depending on the applications they serve, continue to evolve

historically, and consequently raise new issues for researchers to address: Roselli

et al. measured a range of workloads and showed that, in contrast to findings from

earlier studies, file sizes have become larger and that large files are often accessed

randomly [54]. Vogels showed that workloads on personal computers differ from

most previously studied workloads [69]. More recently, Mesnier et al. demon-

strated a strong relationship between file names and other file attributes and the

lifespan, size and access patterns of files [49].

Gibson et al. used a trace replay approach to evaluate two network storage

architectures: Networked SCSI disks and NASD [27]. Two traces were used: one

was a week-long NFS trace from University of California, Berkeley [15] and the

other was a month-long AFS trace from Carnegie Mellon University. The traces

were decomposed into many client-minutes, each of which represented one minute

of activity from a client. Specific client-minutes were selected, mixed, and scaled

to represent different workloads. Their paper did not reveal how they initialized the

file system or how they handled dependency issues. Rather than implementing a

full-fledged and accurate trace replay mechanism, their trace play tool was limited

to the functionality required by their research.

There are two types of synthetic benchmarks. The first type generates a work-

load by using real applications. Examples include the Andrew Benchmark [33],

SSH-Build [57], and SDET [26]. The advantage of such benchmarks is that they

capture application dependencies between file system operations as well as the ap-

plication think-time. The disadvantage is that the benchmark sample size is usually

relatively small and does not represent the workload of a large, general purpose
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networked file server.

The second type of synthetic benchmark directly generates a workload through

the system-call interface or the network file system protocol. Examples include

SPECsfs [62] and Postmark [36]. These benchmarks are easy to scale and fairly

general-purpose, but have difficulty simulating a diverse and changing workload,

operational dependencies at the application-level, and think-time. Recent research

on file system benchmarking focuses on building flexible synthetic benchmarks to

give users control over the workload patterns or building more complex models

to emulate dependencies among file system operations (hBench [12], Fstress [5],

FileBench [45]).

This paper compares our trace replay work with SPECsfs, a widely-used

general-purpose benchmark for NFS servers [62]. Both SPECsfs and TBBT by-

pass the NFS client and access the server directly. However, SPECsfs attempts to

re-create a typical workload based on characterization of real traces. Unfortunately,

the results do not resemble any NFS workload we have observed. Furthermore,

we question whether a typical workload actually exists – each NFS trace we have

examined has unique characteristics.

Smith developed an artificial aging technique to create an aged file system image

by running a workload designed to simulate the aging process [60]. This workload

is created from file system snapshots and traces. File systems that have been aged

using this technique exhibit more realistic aging effects but are not closely related

to the benchmark run. The only relevant factor is that the file system is relatively

full and the free space is fragmented. This technique can be used for benchmarks

that have a relatively small data set and do not have a dedicated initialization phase.

Usually these benchmarks are micro-benchmarks or small macro-benchmarks such

as SSH-Build. This technique is not applicable for benchmarks that take full control

of a logical partition and has its own initialization procedure, such as SPECsfs.
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Smith’s aging technique requires writing 80 GB of data (which requires several

hours of run time) to age a 1 GB file system for the equivalent of seven months.

This makes this method impractical for large file systems. TBBT’s aging technique

is less realistic, but runs two orders of magnitude more quickly.

Buttress developed a disk I/O generation tool specifically designed to issue re-

quests with accurate timing [6]. In benchmarking disk I/O systems, it is important to

generate I/O accesses that meet exactly the timing requirements. However, timing

accuracy (issuing I/Os at the desired time) at high I/O rates are difficult to achieve

on stock operating systems. TBBT suffers the same problem when a timestamp-

based timing policy (as described in Section 6.3.4) is used to generate file sys-

tem requests. Buttress generated I/O workloads with microsecond accuracy at I/O

throughputs comparable to those of high-end enterprise storage arrays. Buttress’s

timing control technique is flexible, portable, and provides a simple interface for

load generation. TBBT could incorporate Buttress’s technique to improve the tim-

ing accuracy of its request dispatching procedure. Like other disk-level benchmarks

(such as IObench [71], Bonnie [9], and lmbench [47]), Buttress does not need to

handle the complications arising from dependencies among file system operations.

6.3 Design Issues

TBBT translates an NFS trace to a standard format, corrects omissions in the trace,

and calculates the initial file system image required for successful replay. It then

creates the initial file system image according to user-configurable aging parame-

ters, and replays NFS requests in the trace against the file server being tested. In

this section, we discuss each of these steps in more detail.
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6.3.1 Trace Transformation

Field Description

callTime Timestamp of the call

respTime Timestamp of the response

opType NFS operation type

opParams Request parameters (specific to

the opType)

opReturn Values returned by the operation

Table 6.1: Each TBBT trace record contains the time at which an NFS request

is made, the time of the corresponding response, the type of NFS operation in the

request, the request’s input parameters, and the associated return values.

TBBT uses a trace format that consists of a pair of request and reply

- <callTime, respTime, opType, opParams, opReturn>. These

are described in Table 6.1. The call and response are paired through an RPC mes-

sage exchange ID. The opType is equivalent to the NFS procedure number in the

original trace. The opParams and opReturn are similar to the corresponding

NFS procedure parameters and return values. TBBT currently handles NFSv2 and

NFSv3 but may be extended to handle NFSv4 and other network storage protocols

in the future.

An important aspect of the TBBT trace format is the creation of the TBBT trace.

This operation requires more than simply reformatting the original trace. Consider

the way that TBBT rewrites each NFS filehandle. In the NFS protocol, a filehandle

is used to identify a specific file or directory. However, it is possible for a single

object to have more than one filehandle (because many implementations embed

information such as the object version number and file system mount point inside
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the filehandle). To make matters worse, some NFS operations (such as create,

lookup, and remove) use a name to identify a file instead of using a filehandle.

For example, in the case of create or mkdir, the filehandle is not known to the

client because the file or directory does not yet exist. To avoid any potential for

ambiguity, TBBT assigns TBBT-IDs to all of the files and directories that appear in

the trace. The NFS server might use a different filehandle for a particular file every

time the trace is replayed, but the TBBT-ID will never change.

TBBT also inserts additional information into the trace records to facilitate trace

replay. For example, neither a remove request nor a remove reply contains the

filehandle of the removed file, which is needed for file system dependency analysis

during trace replay (as discussed in Section 6.3.4). The same problem exists for

rmdir and rename. For all three operations, TBBT infers the TBBT-ID of the

object in question from the parent’s TBBT-ID, the object name and the file system

image, and inserts it into the associated trace record.

TBBT trace rewriting also handles errors or omissions in the original trace. The

most common error is packet loss. The traces we use for our experiments are re-

portedly missing as many as 10% of the NFS calls and responses during periods of

burst traffic [17]. The number of lost calls and responses can be estimated by ana-

lyzing the progression of RPC exchange IDs (XIDs), which are typically generated

by using a simple counter. This, however, does nothing to tell us what was lost.

In many cases, the contents of missing calls may be inferred – although not

always with complete certainty. For example, if we observe the request sequence

remove A; remove A and each of these requests has a successful reply, then

it is clear that there must be a create, rename, symlink, or link request

between the two remove requests – during the interval when file “A” is removed

the first and second times, another file named “A” must have appeared – but this

event is missing from the trace. If we simply replayed the trace without correcting
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this problem, then a second remove A would fail instead of succeed. Such a

discrepancy is called a replay failure. The correction is to insert NFS operations to

replace the missed packets. Note that it is also a replay failure if the replay of an

operation returns successfully while the original trace recorded failure, or if both

original and replay return failure but for different reasons.

We use a table-driven heuristic approach to select corrective operations and in-

sert them into the replay stream. Enumerating all possible combinations of opera-

tions, trace return codes, and replay return codes would require an enormous table.

In practice, however, the combinations we have actually encountered all fall into ap-

proximately thirty distinct cases. Table 6.2 illustrates a small number of unexpected

replay failures and the rules we use to resolve them.

Op Replay error Corrective Op(s)

create file already exists remove

remove file does not exist create

rmdir directory not empty remove and/or rmdir

getattr permission denied setattr

Table 6.2: Examples of trace corrections. In these examples, the operation was

observed to succeed in the trace, but would fail during replay. To prevent the failure,

corrective operations are are added to replay to ensure that the observed operation

will succeed.

Note that there is frequently more than one way to augment the trace in order

to prevent the problem. For example, if a file cannot be created because it already

exists in the file system, we could either rename the file or remove it. We cannot

determine which of these two operations are missing (or whether there are addi-

tional operations that we missed as well) but we can observe that removes are
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almost always more frequent than renames and therefore always choose to cor-

rect this problem via a remove.

A similar problem is that we can not accurately determine the correct timestamp

for each corrective operation. Therefore the inserted operations might not perfectly

recreate the action of the missing packets. There are also lost packets which do not

lead to replay failures and therefore cannot be detected. Since the overall number

of lost RPC messages is small (approaching 10% only in extreme situations, and

typically much smaller) the total number of corrective operations is always much

smaller than the operations taken verbatim from the original trace.

Potential replay failures are detected and corrected through a simulated pre-

play. The pre-play executes the trace requests one-by-one in a synchronous fashion.

Replay failures are detected by comparing the return value of original request in the

trace and the return value of the pre-play. The corrective operations are generated

in accordance with the rules shown in the trace correction table. Corrections are

then inserted into the trace with appropriate timestamps.

6.3.2 Creating the Initial File System Image

To replay calls from a file access trace, the tested server must be initialized with a

file system image similar to that of the traced server so that it can respond correctly

to the trace requests. There are two factors to be considered while creating the

initial file system image: the logical file system hierarchy and the physical disk

layout. While the former is essential for correct trace replay, the latter is crucial

to the performance characteristics of the file system. Ideally, one could take a file

system snapshot of the traced server before a trace is collected. In practice, however,

this is often impractical because it may cause service degradation. Moreover, most

file system snapshotting tools capture only the file system hierarchy but not the

physical layout. TBBT approximates the traced server’s file system image using
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information from the NFS trace. It then constructs (and ages) the image through

the native file system of the tested server.

The idea of extracting the file system hierarchy from an NFS trace is not new

[8, 19]. However, because earlier tools were developed mainly for the purpose of

trace studies, the extracted file system hierarchy may not be sufficiently complete

to permit trace replay. For example, if operations such as symlink, link and

rename are not handled properly, the dynamic changes to the file system hierarchy

during tracing cannot be properly captured.

TBBT’s file system hierarchy extraction tool produces a hierarchy map. Each

entry in the hierarchy map contains the following fields: TBBT-ID, path, create-

Time, deleteTime, size, and type. Each hierarchy map entry corresponds to one file

system object under one path. File system objects with multiple hardlinks have

multiple paths and may appear in multiple hierarchy map entries, but have the same

TBBT-ID in each entry. If a path exists before trace collection starts, its createTime

is set to 0 (to indicate that TBBT must create this object before the trace replay

begins), and the size field gives the object’s size at the time when the trace began.

The type field indicates whether the file is a regular file, a directory, or a symbolic

link.

The file system hierarchy extracted from an NFS trace is not necessarily a com-

plete snapshot of the traced file system because only files that are referenced in the

trace appear in the TBBT hierarchy map and many workloads are highly localized.

In traces gathered from our own systems, we observed that in many cases only a

small fraction of a file system is actually accessed during the course of a day (or

even a month). The fact that only active files appear in the TBBT hierarchy map

may have a serious effect on the locality of the resulting file system. To alleviate

this problem, TBBT augments the extracted file system hierarchy with additional

files. Details about how these objects are created are given in Section 3.3.2.
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TBBT populates the target server file system by traversing the hierarchy map

in a breadth-first or depth-first order, creating each file, directory, or link as it is

encountered. This approach yields a nearly ideal physical disk layout for the file

system hierarchy: free space is contiguous, data blocks of each file are allocated

together and therefore likely to be physically contiguous, data is close to the cor-

responding metadata, and files under the same directory are grouped together. As

a result, the real world effects of concurrent access and file system aging are not

captured. TBBT’s artificial aging technique is designed to emulate these effects.

6.3.3 Artificially Aging a File System

The effect of aging centers on fragmented free space, fragmented files, and declus-

tered objects (objects which are often accessed together but are located far from

each other on the disk). TBBT’s aging mechanism is purely synthetic and is not

meant to emulate the actual file system aging process (as emulated in Keith Smith’s

work [60]) It focuses on emulating the fragmentation of file blocks and free space,

but the mechanism is extensible to include declustering effects among related file

system objects. .

An important design constraint is that TBBT must be capable applying aging

effects to any file system without resorting to a raw disk interface. Using only

the standard system call interface makes it easier to integrate a file system aging

mechanism into other file system benchmarking tools.

Aging is related to file system block allocation algorithms. Some of our analysis

assume a FFS-like block allocation policy. This policy divides a file partition into

multiple cylinder groups, each of which has a fixed number of free inodes and free

blocks. Files under the same directory are preferably clustered in one group.

File System Aging Metrics
To the best of our knowledge, there are no standard metrics to quantify the effect
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of aging on a file system. Before presenting our file system aging metrics, we define

several basic terms that we use.

A file system object is a regular file, directory, symbolic link, or a special de-

vice. The free space object is an abstract object that contains all of the free blocks

in the file system. A fragment is a contiguous range of blocks within an object.

The fragment size is the number of blocks within a fragment, and the fragment dis-

tance is the number of physical blocks between two adjacent fragments of the same

object. The block distance is the number of physical blocks between two adjacent

logical blocks in an object. The inode distance is the number of physical blocks be-

tween an object’s inode and its first block and the parent distance is the number of

physical blocks between the first block of an object and that of its parent directory.

The block used in these definitions is file system block(4K by default).

If we assume that the policy goal for file block allocation is to have sequential

physical blocks, then the effect of file system aging (in terms of the fragmentation

it causes) can be quantified in terms of the physical distance between consecutive

blocks of a file. Average fragment distance, average block distance and average

fragment size are calculated over all fragments/blocks that belong to each file within

a file system partition, and are related to one another as follows: average fragment

distance = average block distance×average fragment size. Because the calculation

of these metrics is averaged over the number of blocks or segments in a file, files

of different sizes are weighted accordingly. Average block distance describes the

overall degree of file fragmentation. Either of the other two metrics helps further

distinguish between the following two types of fragmentation: a large number of

small fragments that are located relatively close to each other, or a small number of

large fragments that are located far away from each other. Average inode distance

can be considered as a special case of average block distance because it measures

the distance between a file’s inode and its first block.
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In an aged file system, both free space and allocated space are fragmented.

The average fragment size of the special free space object reflects how fragmented

the free space portion of a file partition is. The file system aging effect can also

be quantified by the degree of clustering among related files, e.g., files within the

same directory. The average parent distance is meant to capture the proximity of

a directory and the files it contains and, indirectly, the proximity of files within the

same directory. Alternatively, one can compute average sibling distance between

each pair of files within the same directory.

These metrics provide a simplistic model; they do not capture the fact that log-

ical block distances do not equate to physical seek time nor do they reflect the

non-commutative nature of rotational delays. (The latter explains the differences in

time that may be required to move the disk head from position A to position B than

from B to A.) This simplistic model does have several benefits, however: it is both

device and file-system independent, and does provide intuition for the performance

of the file system.

File System Aging Techniques
File deletions account for most free space fragmentation. Fragmented files, in

contrast, are caused by two reasons: 1) when a file grows in a context of free space

fragmentation and the absence of contiguous free blocks to allocate, and 2) when

the interleaving of append operations to several files causes blocks associated with

these different files to be interleaved as well. There are techniques that mitigate

the fragmentation effect of interleaved appends. These include dividing a logical

partition into cylinder groups and then placing files in different cylinder groups

[46]. Another technique is to preallocate contiguous blocks when a file is opened

for writing. Despite these optimizations, file fragmentation may still materialize if

interleaved appends occur within the same group or if the file size is more than the

pre-allocated size.
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The aging effects become more pronounced when inode and block utilization

between cylinder groups are not balanced. To reduce the declustering effect, an

FFS-like policy tries to place files under the same directory in one group, and to

allocate one file’s inode and data blocks in the same group. But this policy also tries

to keep balanced utilizations among different cylinder groups. Once the utilization

of a group is too high, allocation switches to another cylinder group, if available.

The imbalanced usage is usually caused by a highly skewed directory tree where

some directory has many small files or files of very large size.

TBBT relies on interleaved appending as the primary file system aging tech-

nique, and uses file deletion only to fragment the free space. TBBT’s initialization

procedure populates a file system partition with the initial hierarchy derived from

the input trace and additional synthetic objects to fill all available space. These

synthetic objects are used both to populate the incomplete file system hierarchy and

to occupy free space. All of the objects get fragmented because of interleaved ap-

pending. At the end of the initialization, the synthetic objects that occupy the free

space are deleted to make fragmented free space available. To initialize a 1GB file

system partition with 0.1GB of free space, we write exactly 1GB of data and then

delete 0.1GB of data. In contrast, Smith’s aging technique writes around 80GB of

data, and deletes around 79GB of data.1

To determine the set of synthetic objects to be added to a file system and to

generate a complete TBBT hierarchy map, TBBT takes four parameters. The first

two parameters are file size distribution and directory/file ratio, which are similar to

1Note that our choice of terminology and examples in this discussion assume that the underlying

file system uses an FFS-like strategy for block allocation. Our methodology works just as well with

other strategies, such as LFS, although for LFS instead of fragmenting the free space, we create dead

blocks for the cleaner to find and reorganize.
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SPECsfs’s file system initialization parameters. The third parameter is the distor-

tion factor, which determines the degree of imbalance among directories in terms

of directory fan-out and the file size distribution within each directory. The fourth

parameter is the merge factor, which specifies how extensively synthetic objects are

commingled with the initial file system image. A low merge factor means that most

directories are dominated by either synthetic objects or extracted objects, but not

both.

To create fragmentation, TBBT interleaves the append operations to a set of

files, and in each append operation adds a certain number of blocks to the asso-

ciated file. To counter the file pre-allocation optimization technique, each append

operation is performed in a separate open-close session. File blocks written in an

append operation are likely to reside in contiguous disk blocks. However, blocks

that are written in one append operation to a file may be far away from those blocks

that are written in another append operation to the same file. The expected distance

between consecutive fragments of the same file increases with the total size of files

that are appended concurrently. By controlling the interleaving scope - the total

size of files involved in interleaved appending – and the number of blocks in each

append operation, TBBT can control the average block distance and average frag-

ment size of the resulting file system. We assume that large files tend to be written

in larger chunks. Instead of directly using the number of blocks in each append

operation to tune average fragment size, we use append operations per file, which

specifies the number of appending operations used to initialize one file. The min-

imum size of each fragment is 1 block. Usually the average file size is around 10

blocks. Therefore, a very large value for append operations per file may only affect

some large files.

The declustering effect is described by average inode distance and average par-

ent/sibling distance. To create this effect, TBBT may add a zero-sized synthetic
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object to create a skewed directory hierarchy and then provoke imbalanced usage

among cylinder groups. To increase the average parent/sibling distance, rather than

select files randomly, TBBT interleaves files from different directories.

In summary, given a TBBT hierarchy map, TBBT’s file system aging mecha-

nism tries to tune: average block distance and average fragment size of a normal

file, average fragment size of the special free space object, average inode distance

and average parent/sibling distance. Average block distance is tuned via the inter-

leaving scope. Average fragment size is tuned via the append operations per file.

Different aging effects could be specified for different files, including the special

free space object. We have not implemented controls for average inode distance

and average parent/sibling distance in the current TBBT prototype. Randomiza-

tion is used whenever possible to avoid regular patterns. TBBT’s aging technique

can be used to initialize the file system image for both trace-based and synthetic

workload-based benchmarking.

6.3.4 Trace Replay

When replaying requests in an input trace, TBBT respects the semantics of the NFS

protocol. Sending requests in strict, timestamped sequence is not always feasible.

For example, given sequence1 in Table 6.3, if the create reply comes at time 3 dur-

ing the replay, it is impossible to send the write request at time 2. TBBT’s trace

player provides flexible policies to handle request timing issues. For SPECsfs-like

synthetic benchmarks, multiple processes are used to generate requests against mul-

tiple disjointed directories, and in each process requests are executed synchronously

without any concurrency. As a result, the SPECsfs load generation policy is much

simpler.

Workload scaling is a common feature in synthetic benchmarks. It is also de-

sirable for the TBBT trace player so that one trace can be used to evaluate file
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systems/servers with a wide range of performance, or to combine different traces.

However, there is no absolute guarantee regarding workload fidelity after scaling it

artificially.

Ordering and Timing Policy
TBBT’s trace player provides two ordering policies to determine the relative or-

der among requests: conservative order and FS dependency order. Both guarantee

the replay can proceed to completion, and both apply the same modifications to the

initial file system hierarchy at the end of trace play. TBBT’s trace player also pro-

vides two timing policies: full speed and timestamp-based, to determine the exact

time at which requests are issued. In the full speed policy, requests are dispatched

as quickly as possible, as long as the chosen ordering policy is obeyed. In the times-

tamp based policy, requests are dispatched as close to their timestamps as possible

without violating the ordering policy.

When the conservative order policy is used, a request is issued only after all

prior requests (e.g., requests with earlier timestamps) have been issued and all prior

replies have been received. The conservative order captures some of the concur-

rency inherent in the trace although it will not generate a workload with higher con-

currency. In contrast, there is no concurrency in the workload generated by each

process of SPECsfs’s load generator. Because of differences in the traced server

and tested server, it is impossible to guarantee that the order of replies in the trace

replay is exactly the same as that in the trace. The disadvantage of conservative

order is that processing latency variations in the tested server may inadvertently

affect its throughput. For example, in sequence2 of Table 6.3, if the create latency

during replay is three times higher than the latency in the original trace, the request

issue ordering becomes sequence3, which has a lower throughput than sequence2.
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T sequence1 sequence2 sequence3 sequence4

0 creat A req creat A req creat A req creat A req

1 creat A ack creat A ack write B req

2 write A req write B req write B ack

3 write A ack write B ack creat A ack creat A ack

4 write B req

5 write B ack

Table 6.3: Examples illustrating the ordering issue in trace replay. The first col-

umn represents normalized time. Other columns represent NFS request sequence

examples. The create latency is 1 on the traced server and 3 on the tested server.

In Sequence1 there is an FS-level dependency because both operations involve the

same file. Sequence2 has no FS-level dependency but may have an application-level

dependency. Sequence3 is the result of replaying sequence2 by conservative order.

Sequence4 is the result of playing sequence2 by FS dependency order.
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The FS dependency order policy uses a read/write serialization algorithm to dis-

cover the dependencies of each request on other earlier requests and replies in the

trace. Accordingly, the request issue ordering for sequence2 in Table 6.3 becomes

sequence4, which results in higher throughput than sequence3. Conceptually, the

file system hierarchy is viewed as a shared data structure and each NFS request is

a read or write operation on one or more parts of this structure. If an NFS opera-

tion modifies some part of the structure that is accessed by a later operation in the

trace, then the latter operation cannot be started until the first one has finished. For

example, it is dangerous to overlap a request to create a file and a request to write

some data to that file; if the write request arrives too soon, it may fail because the

file does not yet exist. In many cases it is not necessary to wait for the response, but

instead to ensure that the requests are made in the correct order. The exceptions are

replies from create, mkdir, symlink, and mknod. These replies are regarded

as write operations to the newly created object and therefore must be properly seri-

alized with respect to subsequent accesses to these newly created objects. Table 6.4

summarizes the file system objects that are read or written by each type of request

and reply. Because concurrent access to the same file system object is infrequent

in real NFS traces, the granularity of TBBT’s dependency analysis is an individual

file system object. For finer-granularity dependency analysis, inode attributes and

each file block could be considered separately.

The FS dependency order may be too aggressive because it only captures the

dependencies detectable through the shared file system data structure but does not

discover application-level dependencies. For example, in Table 6.3, if the appli-

cation logic is to write some debugging information to the log file B after each

successful create A operation, then the write operation indeed depends on the

create operation and should be sent after receiving the create request’s reply. In this
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case, ordering requests based on FS-level dependencies is not sufficient. In gen-

eral, conservative order should be used when FS dependency order cannot properly

account for many application-level dependencies.

request/reply shared data type

structure set

REQ : read/readdir/ obj ’read’

getattr/readlink obj

REQ : write/setattr/commit obj obj ’write’

REQ : lookup parent, name([obj]) parent, [obj] ’read’

REQ : create/mkdir parent, name parent ’write’

REPLY: create/mkdir obj obj ’write’

REQ : remove/rmdir parent, name([obj]) parent, [obj] ’write’

REQ : symlink parent, name, path parent ’write’

REPLY: symlink [obj] [obj] ’write’

REQ : rename parent1, name1, parent1, parent2, ’write’

parent2, name2([obj2]) [obj2]

all other replies empty -

Table 6.4: The file system objects that are read or written by different requests and

replies. The notation [obj] means that the object may not exist and therefore the

associated operation might return a failure.

Workload Scaling
TBBT can scale traces up or down, spatially or temporally. To spatially scale

up a trace, the trace and its initial file system image are cloned several times, and

then each cloned trace is replayed against a separate copy of the initial image. A

spatial scale-up is analogous to the way that synthetic benchmarks run multiple
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load-generation processes. To spatially scale down, the trace is decomposed into

multiple sub-traces, where each sub-trace accesses only a proper subset of the initial

file system image. Not all traces can be easily decomposed into such sub-traces, but

it is typically not a problem for traces collected from file servers that support a large

number of clients and users.

Temporally scaling up or down a trace is implemented by issuing the requests

in the trace according the scaled timestamp and observing the chosen ordering pol-

icy. An ordering policy from above bounds the temporal scaling of a given trace.

The two scaling approaches can be combined to scale a trace. For example, if the

required speed-up factor is 12, it can be achieved by a spatial scale-up factor of 4

and a temporal scale-up factor of 3.

6.4 Implementation

Trace transformation and initial file hierarchy extraction are implemented in Perl.

Trace replay is implemented in C. Each trace is processed in three passes. The first

pass transforms the collected trace into TBBT’s trace format, with the exception

that, in replies to remove, rmdir, and rename, the TBBT-ID field is not avail-

able in the first pass. The second pass corrects trace errors by a pre-play of the trace.

The third pass extracts the hierarchy map and adds the TBBT-ID to the replies to

remove, rmdir, rename. Each successful or failed directory operation may

contain information about a <parent, child> relationship from which the hierarchy

map is built. Hierarchy extraction consumes a great deal of CPU and memory, es-

pecially for large traces. An incremental version of hierarchy extraction is possible

and will greatly improve its efficiency.

Similar to SPECsfs [62], TBBT’s trace player bypasses the NFS client and sends

NFS requests directly to the tested file server via user-level RPC. The software
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Client−1 Client−M

ProcessN

sendreceive

next reqcompute

Process1 Process1 ProcessN

... ... ...

... ......
File Server

Working
Directory

requestreply

SPECsfs Load Generators

Figure 6.1: SPECsfs uses multiple independent processes to generate requests tar-

geted at disjointed directories.

architecture of TBBT player, however, is different from that of SPECsfs. As shown

in Figure 6.1, the workload generator of SPECsfs on each client machine uses a

multi-process software architecture, with each process dispatching NFS requests

using synchronous RPC. In contrast, TBBT uses a 3-thread software structure, as

shown in Figure 6.2, which is more efficient because it reduces context switching

and scheduling overhead. The I/O thread continuously reads trace records into the

operation queue, a cyclic memory buffer. The send thread and receive thread send

NFS requests to and receive replies from the tested NFS server using asynchronous

RPC. The operation queue is also known as the look-ahead window. The size of

look-ahead window should be several times larger than the theoretical concurrency

bound of the input trace to ensure that the send thread is always able to find enough

concurrent requests at run time.

The send thread determines whether an NFS request in the input trace is ready

for dispatch by checking whether (1) it follows the ordering policy; (2) the request’s
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Figure 6.2: TBBT uses a three-thread process to read and replay traces stored on

disk.
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timestamp is larger than the current time-stamp, and (3) the number of outstanding

requests to a given server exceeds the given threshold. The second check is only for

the timestamp-based policy. The third is to avoid overloading the test file server. If

a file server is overloaded, performance degrades. The first check is straightforward

in the case of conservative order. For FS dependency order, we use object locking

as illustrated in Figure 6.2. Before dispatching an NFS request, the send thread

acquires the read/write lock(s) on all the object(s) associated with the request (and

sometimes the reply). Some locks are released after the request is dispatched, other

locks are released after the reply is received. Since all locks are acquired by the

sending thread and there is only one sending thread, lock contention and atomicity

issues are avoided. Each lock is not a real operating system lock, but instead a flag

associated with a file system object.

During trace replay, requests are pre-determined rather than computed on the

fly according to current replay status as in some synthetic benchmarks. This means

that a robust trace player must react to transient server errors or failures in ways

that sustain trace playing for as long as possible. This requires the trace player 1) to

identify subsequent requests in the trace that are affected by a failed request, directly

or indirectly, and then skipping them, and 2) to contain the side effects of various

run-time errors. For example, because a create request is important for a trace

replay to continue, it will be re-tried multiple times if the request fails; however, a

failed read request will not be retried so as not to disrupt the trace replay process.

6.5 Evaluation

In this section, we examine the validity of the trace-based file system benchmark-

ing methodology, analyze to what extent we may scale the workload, explore the

difference between the evaluation results from TBBT and SPECsfs and conclude
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with a measure of the run-time cost of our TBBT prototype.

The NFS traces used in this study were collected from the EECS NFS server

(EECS) and the central computing facility (CAMPUS) at Harvard over a period of

two months in 2001 [17]. The EECS workload is dominated by metadata requests

and has a read/write ratio of less than 1.0. The CAMPUS workload consists almost

entirely of email and is dominated by reads. The EECS trace and the CAMPUS

trace grow by 2 GBytes and 8 GBytes per day, respectively. Most of the Harvard

traces have a packet loss ratio of between 0.1-10%.

We used TBBT to drive two NFS servers. The first is the Linux NFSv3 and the

second is a repairable file system called RFS. RFS augments a generic NFS server

with fast repairability and without modifying the NFS protocol or the network

file access path [75]. The same machine configuration is used for post-collection

trace processing, hosting the test file systems, and running TBBT trace player and

SPECsfs benchmark. The machine has a 1.5-GHz Pentium 4 CPU, 512-MBytes of

memory, and one 40-GByte ST340016A ATA disk drive with 2MB on-disk cache.

The operating system is RedHat 7.1.2 with Linux kernel 2.4.7.

6.5.1 Validity of Trace-Based Evaluation

An ideal trace analysis and replay tool should be able to faithfully recreate the ini-

tial file system image and its disk layout and replay the requests in the trace with

accurate timing. In this section, we evaluate how successful TBBT is in approxi-

mating this ideal. Because the Buttress project has already solved the trace replay

timing problem, this issue is omitted here.

Extraction of File System Hierarchy
To understand how different the extracted file system hierarchy is from the ac-

tual file system hierarchy, we measured the number of disjointed directory subtrees,

the number of directories, the number of files, and the total file system size of the
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derived file system hierarchy. Figure 6.3 shows the results for the EECS trace from

10/15/2001 to 10/29/2001. The Y-axis is in logarithmic scale. The total file system

size on the EECS server is 400 GB, but only 42 GB are revealed by this 14-day

trace (especially during the first several days). We expect the rate will slow further

if additional weeks are added. Even at a rate of 7GB per week, however, we would

only discover about 84 GB at the end of two months, or about 21% of the total

file system size. This indicates that when the initial file system hierarchy is not

available, the hierarchy extracted from the trace may be only a small fraction of the

real hierarchy. It is therefore essential to introduce artificial file objects to achieve

a comparable disk layout.

Effectiveness of Artificial Aging Techniques
In the following experiments, both file system and disk prefetch were enabled,

and the file system aging metrics were calculated using disk layout information

obtained from the debugfs utility available for the ext2 and ext3 file systems. We

applied our aging technique to two test file systems. The first is a researcher’s home

directory (which has been in continuous use for more than 1.5 years) and the second

is the initial file system image generated by the SPECsfs benchmark.

From the researcher home directory, we selected two subdirectories, dir1 and

dir2. For each subdirectory, we created three different versions of the disk image.

The first version is a naturally aged version, which we obtained by copying the

original subdirectory’s disk image using dd. The second version is a synthetically

aged version, which we obtained by applying our aging technique to the original

subdirectory. The third version represents a linearized version of the original sub-

directory’s disk image using cp -r and thus also corresponds to the optimal disk

image without any aging effect. The file system buffer cache was purged before

each test. For the three versions of each subdirectory, we measured the elapsed

time of the grep -r, which is a disk-intensive command that typically spends at
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least 90% of its execution time waiting for the disk. Therefore aging was expected

to have a direct effect on the execution time of the grep command.
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Figure 6.3: The total size of file system hierarchy discovered over time. Longer

traces provide more information about the file system hierarchy, but with rapidly

diminishing returns.

Figures 6.4 and 6.5 show that the proposed aging technique has the anticipated

impact on the performance of grep for dir1 and dir2: more interleaving and finer-

grained appends result in more fragmentation in the disk image, which leads to

lower performance.

Moreover, with proper aging parameter settings, it is actually possible to pro-

duce a synthetically aged file system whose grep performance is the same as that

of the original naturally aged file system. For Figure 6.4, the <interleaving scope,

append operations per file> pairs that correspond to these cross-over points are

<2,8>, <4,2>, and <16,1>. For Figure 6.5, the <interleaving scope, append
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Figure 6.4: The elapsed time to complete the command grep -r on dir1 (a

research project directory) consistently increases with the interleaving scope and

the append operations per file parameter. Different curves correspond to different

values of the append operations per file parameter. For example, “A = 8” means

the append operations per file is 8. The lines for the naturally aged and linearized

image are flat because no synthetic aging is applied to these two cases.



6. TBBT: A SCALABLE TRACE REPLAY FOR FILE SERVER EVALUATION192

1 4 16 64 256 1024 4096 16384 65536

interleaving scope (number of files)

150

200

250

300

350

400

tim
e 

to
 g

re
p 

th
e 

4G
B

 d
ir

ec
to

ry
 (

se
co

nd
s)

synthetically aged image: A = 16
synthetically aged image: A = 8
synthetically aged image: A = 4
synthetically aged image: A = 2
synthetically aged image: A = 1
naturally aged image
linearized image

Figure 6.5: This figure shows the results of conducting an experiment similar

to that shown in Figure 6.4 on a much larger research project directory. The two

figures show that the aging parameters create qualitatively similar but quantitatively

different aging effects on different file system data.
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operations per file> pairs that correspond to these cross-over points are <4,16>,

<16,8>, <64, 4>, <256, 2>, and <4096, 1>. These results demonstrate that the

proposed aging technique can indeed produce a realistically aged file system image.

However, the question of how to determine aging parameters automatically remains

open.

Figures 6.4 and 6.5 also show that the grep performance of the original

naturally-aged image is not very different from that of the linearized image; the

impact of natural aging is not more than 20%. TBBT’s aging technique can gen-

erate much more dramatic effects, but it is not clear whether such aging occurs in

practice.

To show that the proposed aging technique can be used together with a syn-

thetic benchmark such as SPECsfs, we ran the SPECsfs benchmark on the image

initialized by SPECsfs itself and the image initialized by the aging technique with

different parameters. We used an append operations per file value of 4 and varied

the interleaving scope value. We then measured the average read latency and the

initial image creation time. The results are shown in Table 6.5. As expected, the

average read latency increased as the initial file system image aged more drastically.

The difference (before and after running SPECsfs) in average block distance shows

the aging effect produced by the run itself. Finally, the time required to create an

initial file system image in general increased with the degree of aging introduced.

SPECsfs takes more time to create the initial image even though the net aging effect

is much smaller. The reason is because SPECsfs uses multiple processes to initial-

ize the file system image therefore its disk access pattern during the initialization is

not as sequential as TBBT.
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Figure 6.6: The impact of the look-ahead window size on the concurrency and

thus the throughput of the workload that TBBT can generate from the EECS and

CAMPUS trace.
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SPECsfs scope scope scope

initialization =512 =8192 =65536

average block distance 2 20 2180 6230

before SPECsfs run

average block distance 817 828 2641 6510

after SPECsfs run

average read latency 3.24 msec 3.24 msec 3.31 msec 4.45 msec

time to create 683 sec 330 sec 574 sec 668 sec

initial image

Table 6.5: Results of applying the proposed file system aging techniques to

SPECsfs. First column gives result of using SPECsfs’s own initialization proce-

dure. Other three columns show the result of using TBBT’s aging technique to

create SPECsfs run’s initial file system image.

6.5.2 Workload Scaling

To study the maximum concurrency available in a trace, we conducted a simulation

study. The simulation assumed that the reply for each request always comes back

successfully after a pre-configured latency. The throughput result is given in Figure

6.6. In this simulation, there were two factors that limited the maximum concur-

rency: the look-ahead window in which future requests are examined during the

simulation, and the per-request latency at the server. For per-request latency, we

used the latency numbers in Table 6.6. Figure 6.6 shows the correlation between

the maximum throughput that can be generated and the look-ahead window size.

The simulation results show that even for a lightly loaded workload such as the

EECS trace (30 requests/sec) and a modest look-ahead window size (4000), there

is enough concurrency to drive a file server with a performance target of 37000
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requests/sec using temporal scaling.

NFS 10/21/01 original scale-up peak load

benchmark S T S T S T

throughput 33 30 189 180 1231 1807

getattr 5.1 0.6 0.9 1.5 2.1 0.7

lookup 2.9 0.9 0.8 2.0 2.0 1.2

read 9.6 3.1 5.3 4.8 5.4 4.7

write 9.7 2.2 4.4 3.8 4.6 2.5

create 0.5 0.7 0.7 0.9 17.3 0.7

Table 6.6: Per-operation latency and overall throughput comparison between

TBBT and SPECsfs for an NFS server using the EECS 10/21/2001 trace. “T” means

TBBT, “S” means SPECsfs.

6.5.3 Comparison of Evaluation Results

We conducted experiments to evaluate two file servers, NFS and RFS, using both

TBBT and the synthetic benchmark SPECsfs. In these experiments, the tested file

system was properly warmed up before performance measurements were taken. We

first played the EECS trace of 10/21/2001, and tried to tune the parameters of the

SPECsfs benchmark so that they matched the trace’s characteristics as closely as

possible. We also changed the source code of SPECsfs so that its file size distri-

bution matched the file size distribution in the 10/21/2001 trace. The maximum

throughput of the Linux NFS server under SPECsfs is 1231 requests/sec, and is

1807 requests/sec under TBBT. The difference is a non-trivial 31.8%. In terms of

per-operation latency, Table 6.6 shows the latency of five different operations under
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the original load (30 requests/sec), under a temporally scaled load with a speed-up

factor of 6, and under the peak load. The per-operation latency numbers for TBBT

and for SPECsfs were qualitatively different in most cases.

RFS 10/21/01 original scale-up peak load

benchmark S T S T S T

throughput 32 30 187 180 619 1395

getattr 4.0 0.7 2.2 1.2 3.2 0.8

lookup 4.4 0.7 2.8 1.3 2.6 1.0

read 10.8 3.3 8.4 4.1 18.1 4.9

write 11.6 5.4 7.4 4.0 11.1 2.8

create 0.7 1.0 5.1 1.3 16.3 1.2

Table 6.7: Performance results for RFS server using EECS 10/21/2001 trace.

NFS 10/22/01 original scale-up peak load

benchmark S T S T S T

Throughput 16 15 191 187 2596 4125

getattr 4.7 0.5 0.7 0.7 1.02 0.7

lookup 2.8 0.6 0.5 0.8 1.01 0.6

read 10.3 2.1 19.7 3.1 7.4 4.2

write 7 1.0 6.3 1.2 3.8 3.0

create 0.5 0.9 1.2 0.5 7.9 0.7

Table 6.8: Performance results for NFS server using EECS 10/22/2001 trace.

The same experiment, using RFS instead of the default Linux NFS server, is
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shown in Table 6.7. The maximum throughput of the RFS server was 619 re-

quests/sec for SPECsfs versus 1385 requests/sec for TBBT – a difference of more

than a factor of two. Again there was no obvious relationship between the average

per-operation latency for SPECsfs and TBBT.

To determine whether these differences are consistent across traces taken from

different days, we ran the 10/22/2001 EECS trace against the LINUX NFS server.

The 10/22/2001 trace was dominated by metadata operation (80%) while the

10/21/2001 trace had substantial read/write operations (60%). The SPECsfs config-

uration was again tuned to match the access characteristics of the 10/22/2001 trace.

The results in Table 6.8 show that the difference between TBBT and SPECsfs in

throughput and per-operation latency is still quite noticeable.

In all the trace replay experiments, the percentage of failed requests, i.e., those

that return a different value that that in the original trace, is less than 1%. This

means that TBBT can successfully replay traces recorded from one server against

other servers. The fact that the latency and throughput measurements from TBBT

deviated substantially from those from SPECsfs for different file servers and for

different traces suggests that the trace-based file system/server evaluation method-

ology is indeed a valuable tool in gauging the performance of file servers under

site-specific workloads.

6.5.4 Implementation Efficiency

TBBT’s post-collection trace processing algorithm can process 2.5 MBytes of trace

or 5000 requests per second. TBBT’s initialization time increases with the total

file system size as well as with the degree of file system aging. This is because the

more drastic the aging effect TBBT, the less the disk access locality in its file system

population process. Table 6.5 shows TBBT’s initialization time is also affected by

average block distance level. Overall TBBT’s aging techniques are very efficient.
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The initialization speed is more than two orders of magnitude faster than Smith’s

aging technique.

The run-time efficiency of TBBT’s trace replay is mainly determined by disk I/O

and CPU requirements. Each trace entry is represented by fewer than 100 bytes.

The disk bandwidth requirement of TBBT’s trace replay is fairly small, and the

disk access pattern is large sequential read from the single I/O thread. Therefore

the local disk is unlikely to be a bottleneck.

The CPU load of TBBT comprised of the send thread, receive thread, and the

network subsystem inside the OS. When the Linux NFS server runs under a trace

at peak throughput (1807 requests/sec), the measured CPU utilization and network

bandwidth consumption for TBBT’s trace player are 15% and 60.5 Mbps, respec-

tively. When the same Linux NFS server runs under a SPECsfs benchmark at peak

throughput (1231 requests/sec), the measured CPU utilization and network band-

width consumption for the SPECsfs workload generator are 11% and 37.9 Mbps,

respectively. These results suggest that TBBT’s trace player is actually more ef-

ficient than SPECsfs’s workload generator (in terms of CPU utilization per NFS

operation) despite the fact that TBBT requires additional disk I/O for trace reads

and incurs additional CPU overhead for dependency detection and error handling.

TBBT out-performs SPECsfs because TBBT’s trace player uses only three threads,

whereas SPECsfs uses multiple processes and thus incurs excessive context switch-

ing and process scheduling overhead.

6.6 Limitations

There are several limitations associated with the proposed trace-driven approach

to file system evaluation. First, for a given input workload, TBBT assumes the

trace gathered from one file system is similar to that from the file system under



6. TBBT: A SCALABLE TRACE REPLAY FOR FILE SERVER EVALUATION200

test. Unfortunately, this assumption does not always hold because even under the

same client workload, different file servers based on the same protocol may produce

very different traces. For example, file mount parameters such as read/write/readdir

transfer sizes could have a substantial impact on the actual requests seen by an NFS

server. Second, there is no guarantee that the heuristics used to scale up a trace

actually make sense in practice. For example, if the bottleneck of a trace is accesses

to a single file or directory, then identifying and cloning these accesses when re-

playing the trace is not feasible. Thirdly, it is generally not possible to deduce the

entire file system hierarchy or its on-disk layout by passive tracing. Therefore the

best one can do is to estimate the size distribution of those files that are never ac-

cessed during the tracing period and to apply synthetic aging techniques to derive a

more realistic initial file system image. Again the file aging techniques proposed in

this paper are not meant to reproduce the actual aging characteristics of the trace’s

target file system, but instead to provide users the flexibility to incorporate some

file aging effects into their evaluations. Finally, trace-based evaluations are not as

flexible as those based on synthetic benchmarks when it comes to exploring the en-

tire workload space. Consequently, TBBT should be used to complement synthetic

benchmarks rather than replace them.

6.7 Conclusion

The prevailing practice of evaluating the performance of a file system/server is

based on synthetic benchmarks. Modern synthetic benchmarks do incorporate im-

portant characteristics of real file access traces and are capable of generating file

access workloads that are representative of their target operating environments.

However, they rarely fully capture the time-varying and often subtle characteris-

tics of a specific site’s workload. In this paper, we advocated a complementary
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trace-driven file system evaluation methodology that compare the performance of a

file system/server on a site by driving it with file access traces collected from that

site. To support this methodology, we developed TBBT, the first comprehensive

NFS trace analysis and replay tool. TBBT is a turn-key system that can take an

NFS trace, properly initialize the target file server, drive it with a scaled version of

the trace, and report latency and throughput numbers. TBBT addresses most, if not

all, of the trace-driven workload generation problems, including correcting tracing

errors, automatic derivation of initial file system from a trace, aging the file system

to a configurable extent, preserving the dependencies among trace requests during

replay, scaling a trace to a replay rate that can be higher or lower than the speed at

which the trace is collected, and gracefully handling trace collection errors and im-

plementation bugs in the test file system/server. Finally, we showed that all of these

features can be implemented efficiently such that a single trace replay machine can

stress a file server with state-of-the-art performance.

Our experiments demonstrated TBBT’s usefulness for file system researchers.

TBBT’s most promising application, however, may be as a site-specific benchmark-

ing tool for comparing competing file servers that use the same protocol. One could

use TBBT to compare two or more file servers for a particular site by first collecting

traces on the site, and then testing the performance of each of the file servers using

the collected traces. Assuming traces collected on a site are indeed representative

of that site’s workload, comparing file servers using such a procedure may well be

the best possible approach.

As for future work, we plan to extend TBBT to other network file access proto-

cols. Although the current TBBT prototype can only replay NFS traces, its internal

trace format is sufficiently generic to support traces collected on SMB, CIFS, and

AFS servers. We plan to develop a converter that can translate CIFS traces col-

lected from a SAMBA server into TBBT’s internal format, and then use TBBT to



6. TBBT: A SCALABLE TRACE REPLAY FOR FILE SERVER EVALUATION202

play back the resulting trace against a Windows-based CIFS server.

TBBT has been used by file system researchers from Harvard, CMU, Florida

State University, Umass-Amherst and Texas A&M University. It is available at

http://www.ecsl.cs.sunysb.edu/TBBT.



Chapter 7

Conclusions

In this chapter we first summarize the repairable system with a focus on the compar-

ison of the repairable file system and the repairable storage system. Then we high-

light the contributions of this dissertation, including both the repairable file/storage

system and the traced-based file system benchmarking tool(Chapter 6). Finally we

outline future research directions.

7.1 Summary of the repairable file and storage sys-

tem

In this dissertation we expanded the horizon of traditional fault tolerance study by

raising and addressing the issue of ”soft failures” - the data loss and recovery time

caused by human mistakes, malicious attacks and untrusted software. The main

approach to protecting against soft failures is to add versioning. This is in contrast

to many hard failures addressed by traditional fault tolerance research in which the

protection approach is to add redundancy. As the price of hardware drops quickly,

soft failures play a larger and larger role in the cost of ownership.

203
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To address soft failures, we proposed a repairable system framework. It consists

of 1) comprehensive versioning techniques to keep all the data available during a

protection window, and 2) dependency tracking/repair schemes to quickly identify

the changes to be made and remove the damage to the system.

There are three aspects which are vital for the success of a repairable system:

the accuracy of dependency tracking, the performance for current data access, and

the integration with other fault tolerance techniques. While most of this dissertation

effort has focused on the last two aspects, there has been excellent work by others

- inspired by our original dependency tracking scheme - that strives to improve

dependency tracking accuracy.

We developed two repairable systems. RFS is a repairable file system based

on NFS protocol but with most of its functionalities implemented at the user level.

In the process of optimizing system performance, we developed novel file system

versioning techniques and built four prototypes: RFS-O, RFS-A, RFS-I and RFS-

I+. Thorough evaluations were conducted on versioning techniques, dependency

tracking schemes, and repairs with benchmarks, traces and adversaries. The result

proves that a repairable system can match the performance of traditional file/storage

system without much hardware cost. It also shows that NFS protocol is a very good

interface to implement the functionality of a repairable system for both efficiency

reasons and portability reasons.

Mariner is a repairable storage system based on iSCSI protocol and integrated

with many other advanced features. From the perspective of comprehensive ver-

sioning, the storage block interface is much simpler than the file system interface.

Therefore we could afford to implement it inside the kernel and integrate with

Trail’s fast logging techniques. The performance goal is not only to match but

to exceed that of standard storage systems. At the core of Mariner is an efficient

disk logging scheme. While we have performed some analysis with traces and have
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found promising initial empirical results, more solid evaluations are still needed for

the logging scheme.

Rather than focusing mainly on the performance aspects (as in the RFS project)

of Mariner, we conducted more research on the integration of repairability and re-

coverability so that the system tolerates well both soft and hard failures. We discov-

ered that the logging scheme used in a repairable system can greatly facilitate the

tolerance of hard failures(true for both RFS and Mariner) and that recoverability can

be obtained without performance cost. But due to the versioning metadata struc-

tures, there are additional complexities in the recoverability design. We proposed

a generic fault tolerance model for 1-client-N-server storage system and applied

this model to Mariner. Evaluation results show that Mariner can tolerate any single

hard failure. The system remains available for both read and write requests during

failure and recovery time. Overall the integration experience is natural, smooth, but

requires careful thinking.

To connect Mariner’s block level versioning ability to the proposed dependency

tracking framework, we need a versioning file system on top of the versioning stor-

age system. We have proposed a simple user-level versioning file system that serves

this purpose. It has been implemented by other colleagues and is now under evalu-

ation.

Having summarized both RFS and Mariner, let’s now examine the essential

commonalities and differences between the repairable file system and the repairable

storage system. In addition to sharing the repairable system framework, RFS and

Mariner use the same principle to solve one of the key issues in the design of a

comprehensive versioning system: the size of versioning metadata, especially if

that metadata must persist in memory. One technique often used is to increase

the block (also known as ”extent”) size. Other techniques include delicate data

structures, combining snapshotting and journaling, etc. In RFS and Mariner, the
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metadata footprint is greatly reduced by separating cold data and warm data. RFS

uses a base image, Mariner uses a beforeimage server. The implementation details

are absolutely different but they share the same spirit.

As to the differences, the basic fact is of course that one functions at the file

system level and the other at the storage system level. Many other differences nat-

urally follow. A key issue that we’d like to point out is whether logging can be

accomplished without an extra disk seek for each update request. It is important

because of the strong performance requirement of a repairable system. Combining

logging and the update request is relatively easy on the repairable storage system

because of the simple update interface. There is only fully-aligned block write. The

write data can be stored in the log record and the current data block map is used to

keep track of the location of each logical block. The file system update interface

is much more complex. There are directory and attribute updates in addition to the

file data write. The file data write itself is also more complex because of the align-

ment issues. The complexity of the file system update interface makes it unfeasible

to fully integrate the update request into the log record. But we also do not want

to spend an extra synchronous disk write to commit the log record. Therefore, in

RFS, the log record is committed in a delayed and batched fashion so that the cost

is amortized. However, this does make RFS’s recovery from hard failures less ideal.

The last few writes could be lost because of unflushed log records.

The main lesson that we learned from this dissertation is that repairability is

ready to be integrated into mainstream file and storage systems. The versioning

functionality can be added at different interfaces; the NFS and block device inter-

faces are two good candidates. The repairable storage system is a simpler and more

general solution that can protect more than just the NFS server. The repairable file

system has a better connection to dependency tracking, it could be faster to repair,

and it could perform better with file-system-metadata-update intensive workloads.
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7.2 Dissertation Contributions

The research contributions of this dissertation are:

• Repairable System Framework

We proposed a repairable file and storage system framework that can repair

a system quickly with most of the useful work preserved after malicious at-

taches, honest human errors, or untrusted software. In the mean time the

additional repairability should not degrade the system performance during

normal time.

• RFS

RFS is the first known repairable file system that can selectively undo unde-

sirable side effects due to an attack or operator error. The time to repair a

network file server after a malicious attack or an operational error is reduced

to the level of minutes or hours with most of the useful work being preserved.

The performance overhead (for the repairability capability) is less than 10%.

• Mariner

Mariner is a repairable storage system based on SAN and iSCSI. In Mariner

the repairability is seamlessly integrated with many other advanced features

including low-latency write, reliable multicast, and fault tolerance. The sys-

tem is expected to not only match but outperform standard iSCSI based SAN

storage systems. We have evaluated Mariner’s fault tolerance implementation

with comprehensive single-failure scenarios. The system is available for read

and write upon any single point of failure. The failed nodes all get repaired

and the system always returns to a consistent state.

• TBBT: Trace-driven file system Benchmarking Toolkit

TBBT is the first comprehensive NFS trace analysis and replay tool. TBBT
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addresses most, if not all, of the trace-driven workload generation problems,

including correcting tracing errors, automatic derivation of initial file system

from a trace, aging the file system to a configurable extent, preserving the de-

pendencies among trace requests during replay, scaling a trace to a replay rate

that can be higher or lower than the original speed, and gracefully handling

trace collection errors and implementation bugs in the test file system/server.

7.3 Directions for Future Research

The current research on repairable system is far from complete. As a short term

goal we need to address the system scaling issue. For the soft failures that the

repairable file and storage system is designed for, the appropriate protection should

be on the level of hours and days if not weeks. Our current evaluation workloads

have been around minutes and hours. Some of the system strategies such as the

separation of warm data and cold data, has not been adequately evaluated due to the

small scale of the test. To scale the system for workload 10 times higher, we may

need to further optimize the versioning metadata organization to reduce its memory

footprint ; we also need to scale up the TBBT trace player so that longer traces

can be used for evaluation. After the system is scaled up, we could then study the

relationship between protection window, current data warm window and system

performance. This kind of long duration workload study is missing in most of the

research on comprehensive versioning systems. It may expose system design issues

which have caused the failure of many CDP startups.

More work could be done for tolerating arbitrary failure scenarios in both re-

pairable file system and repairable storage system. One extension is to handle mul-

tiple failures, as discussed in Section 5.9. Another extension is to address ”site

failure” - which can only be protected with remote replications. We performed
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some rudimentary investigation and found that we probably can borrow from the

Seneca remote replication protocol [34].

One future research topic is to enable a smooth transition of the versioning fre-

quency to expand the protective power of a repairable file or storage system. As

time goes by, the probability of undetected errors and intrusions decreases - such

is the importance of frequent versioning. The current protection window represents

a setting where the versioning frequency is either ”as much as possible” (within

the window) or 0 (outside the window). For example, we could store every ver-

sion within a day, then every minute within a week, every hour within a month,

etc. Such smooth transitioning may speed up the access time to very old data. It

also enhances the protective power of the system. We have mentioned that the pro-

tection provided by repairable system is complementary to that provided by the

archival system, backup system, or periodic checkpointing system such as Netapp’s

NFS Filer. However, it is not straightforward how to combine and integrate the

protection from all these systems. If the versioning frequency can be adjusted to

function smoothly over time and if the adjustments are automatic, versioning fre-

quency could make the repairable system a complete solution for data protection.

In the area of dependency tracking, how to track application level dependen-

cies and maintain application level consistencies in the face of failures remain as

challenging topics, and they are becoming increasingly

important, especially in the context of federated applications.

Conceptually the repairable storage system can be used to protect DBMS

servers. But there are also existing techniques that directly protect DBMS servers

such as [53]. In this dissertation, we have compared the pro and cons of imple-

menting versioning at the file system level vs. the storage system level. Similarly

it is worthwhile to investigate and compare versioning at the database level vs the

storage level.
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There are many ways the current repairable system framework can be extended.

Two promising paths: 1) extend the repairable file system to work with other net-

work file access protocols such as CIFS; 2)extend the repairable storage system to

work with other SAN protocols such as Fiber Channel.

As for future roles for the file system trace play tool TBBT, we plan to extend

it to other network file access protocols. Although the current TBBT prototype can

only replay NFS traces, its internal trace format is sufficiently generic to support

traces collected on SMB, CIFS, and AFS servers. We plan to develop a converter

that can translate CIFS traces collected from a SAMBA server into TBBT’s internal

format, and then use TBBT to playback the resulting trace against a Windows-based

CIFS server.
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