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Abstract of the Dissertation

Magnetic Component of Strongly Coupled
Quark-Gluon Plasma

by

Jinfeng Liao

Doctor of Philosophy
in
Physics
Stony Brook University
2008

In this dissertation we propose a new view of finite 7'—pu QCD based
on a competition between electrically and magnetically charged
quasiparticles (to be referred to as EQPs and MQPs below). That
is, the QGP has a usual electric component and a magnetic com-
ponent as well: the two components have their properties, like con-
stituent mass/density /couping, changing with T — u, and different
components become dominant in different regions. In particular
we conjecture an equilibrium line between the two components
and show that the strongly coupled quark-gluon plasma (sQGP)
in 1-27,, which covers the equilibrium point at about 1.57,, has an
important magnetic component which is a good liquid. We call it
the magnetic scenario for sQGP.

In Part I, including Chapter 2-5, we present our study of the mag-
netic component of sQGP. In Chapter 2, single monopole motion in
a few physically interesting configurations of electric field is stud-
ied, both classically and quantum mechanically. In Chapter 3, we
report the details of our Molecular Dynamics (MD) simulations for
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a strongly coupled plasma with both electric and magnetic charges
and present MD results for the transport properties. Chapter 4 is
dedicated to investigating the liquid nature of the magnetic com-
ponent by applying our MD results and by analyzing recent lattice
data. Chapter 5 shows how the magnetic scenario we proposed can
help explain the very nontrivial static QQ potentials at T ~ T, as
measured in lattice calculations.

In Part II, including Chapter 6-7, we examine the electric compo-
nent of SQGP. In Chapter 6 we will use the finite 7" potential model
to calculate bound states of quarks and gluons beyond the binary,
i.e. baryons, glueballs and polymer chains in sQGP. In Chapter 7
we use the lattice results of baryonic susceptibilities as a diagnosis
to probe the quark, diquark and baryon contents in sQGP.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics and Quark-Gluon
Plasma

Quantum Chromodynamics (QCD) is the fundamental theory of the strong
interaction. It is a non-Abelian gauge theory, with symmetry group SU(N,)
(N.=3). The matter content includes N; = 6 flavors of quarks, named
u,d, s,c,b,t. The most nontrivial feature of QCD, and of many QCD-like
non-Abelian theories (say theories with different N, Ny from QCD), is the
asymptotic freedom, which in very naive terms says the running coupling be-
comes weak at very high energy scale (or very small space-time distance).
Asymptotic freedom has been firmly established experimentally, and in that
regime perturbative calculations (pQCD) are reliable and successful.
However this feature of the QCD beta function also indicates that at low
enough energy scale, which occurs more often in nature (say in normal nuclei),
the coupling inevitably runs to be strong, leading to very rich nonperturbative
dynamics. One most distinct of these phenomena is that the perturbative
degrees of freedom, i.e. the quarks and gluons in the Lagrangian, actually does
not appear in the physical spectrum of the QCD vacuum. Instead hundreds of
hadrons, normally baryons and mesons, are found experimentally, and these
hadrons could be explained as various bound states of quarks and gluons.
Actually it was clear to physicists from its “infant stage” that the QCD
vacuum is a very complicated condensed matter. In particular the QCD vac-
uum is characterized by two famous phenomena: 1) color confinement, i.e.
colored objects like a single quark or gluon are never observed to propagate
freely in the vacuum and are thus conjectured to be permanently confined
inside color neutral states like hadrons; 2) the spontaneous breaking of (ap-
proximate) chiral symmetry for light quark sector (i.e. u,d quarks). While the



nature of the latter was more or less understood as an instanton effect (e.g.
in the instanton liquid model), the former has been standing as a challenge
for decades and remains mysterious. The difficulty is, as we emphasize, not
only that the coupling is so strong that perturbation theory is not applicable,
but that we are even not so sure what is the relevant degrees of freedom for
the phenomenon (like the instanton for chiral symmetry breaking). Monopoles
are believed to be the “player” for confinement via the dual superconductor
picture and have been studied on the lattice for many years. We will come to
more discussions along this line in the next section.

A very good introduction covering most of the subjects in this section with
further references can be found in e.g.[1].

1.1.1 Quark-Gluon Plasma and the QCD Phase Dia-
gram

Due to these difficulties in understanding the QCD vacuum, physicists started
around the 70’s to think about “violently” exciting the vacuum to such a de-
gree that the QCD fundamental particles, i.e. quarks and gluons, will be the
direct dynamical objects. Theoretically it was first shown by Edward Shuryak
(who also invented the name) [2][3] that the quark-gluon plasma (QGP) is a
high-temperature phase of QCD, in which free color charges are screened by
the medium rather than confined in neutral objects. Furthermore according
to asymptotic freedom for high enough temperature 7' >> Agcp this phase is
expected to become weakly coupled (wQGP), with most of interactions charac-
terized by small coupling a(p ~ T') << 1. In this domain wQGP is essentially
a near-ideal gas of its fundamental constituents, quarks and gluons.

These thoughts have developed into detailed studies of QCD thermody-
namics, i.e. the various properties of QCD matter under given external condi-
tions like temperature T and baryonic density ng or equivalently the baryonic
chemical potential pp. The most important tool for these studies is the lat-
tice QCD, or lattice gauge theory in general. With more than thirty years of
accumulation and with the skyrocketing computer power, lattice calculation
has become a major method, and in many cases the only way, of producing
reliable nonperturbative results. Today QCD thermodynamics at 4 = 0 has
been thoroughly explored by lattice practitioners, while its nonzero 1 domain
became approachable on the lattice only recently.

In QCD thermodynamics, the most interesting questions are related to
possible QCD phase transitions: it is expected that with increasing 7" and /or p,
there should be a deconfinement phase transition as well as a chiral restoration,
with quarks/gluons being librated from hadrons upon the former and with
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Figure 1.1: A schematic QCD phase diagram, the horizontal axis is
quark chemical potential p, = pp/3. (from http://en.wikipedia.org/
wiki/Image:QCD_phase_diagram.png)

light quarks coming back to their current masses (from Lagrangian) rather
than the constituent masses upon the latter. Without explicit reasons, the
two transitions (as shown by lattice calculations) seem to happen about the
same critical temperature T, and/or chemical potential ;.. With two external
parameters T — p one can have a QCD phase diagram, telling what phase
the QCD matter is in at given 7" — pu. Current understanding of QCD phase
diagram can be summarized in Fig.1.1.

1.1.2 Relativistic Heavy Ion Collisions

QGP is experimentally studied via heavy ion collisions, at CERN SPS and last
years at BNL RHIC collider, at temperatures reaching up to about 1" =~ 2T..

Taking RHIC as an example, two beams of gold nuclei are accelerated
to very high energy and then guided to collide with a center-of-mass energy
/s = 200GeV per nucleon. The space-time evolution of RHIC collision is gen-
erally believed to be the following: two high energy nuclei, extremely Lorentz
contracted and in the form of Color Glass Condensate(CGC)[4][5], collide vi-
olently, and after the collision point most leading nucleons fly apart with a
lot of energy deposited in the collision zone, creating a fireball longitudinally



expanding very fast; due to certain mechanism, the fireball reaches thermal
equilibrium at the scale of 1fm, after which pressure develops and transverse
flow starts; due to expansion the system cools down, and the QGP phase (at
T > T.) lasts for about 4 — 5fm, after which a mixed phase at T, ~ 170MeV
starts and again lasts for about 4 — 5fm; finally the system cools into the
hadronic rescattering stage for about 4 — 5fm, experiencing first a chemical
freezeout (a point after which the abundance of each particle specie does not
change anymore) at T a little less than T, and a thermal freezeout (a point
after which the system is so dilute that any scattering stops and particle pr
spectrum does not change further) at 7'~ 120MeV'.

There are four detectors at RHIC, including Phenix, Star, Brahms, and
Phobos. A lot of data have been accumulated and analyzed since 2000. Their
main discoveries are summarized in the RHIC white papers [6][7][8][9].

1.1.3 The Discovery of Strongly Coupled Quark-Gluon
Plasma and Theoretical Developments

It became apparent around 2003 [10][11][12] that the quark-gluon plasma dis-
covered at Relativistic Heavy Ion Collision (RHIC) is the most “perfect lig-
uid” ever known. A new name was given to this strongly coupled quark-gluon
plasma, sQGP. Theorists have since been taking the big challenge to explain
the remarkable properties of sQGP with diverse approaches, ranging from
those borrowed from classical plasmas to AdS/CFT duality: for recent reviews
see [13][14]. Below we briefly summarize the major experimental discovery and
the theoretical developments in understanding the discovery.

The Experimental Discovery of the “Perfect Liquid”

Success of hydrodynamical description [15][16][17][18] of observed collective
flows have indicated, that all dissipative lengths are very short and thus the
produced matter cannot be a weakly coupled gas but rather a near-perfect
(small viscosity) liquid. These features are further complemented by very
high jet losses and robust heavy quark charm (equilibration) observed, well
beyond what pQCD predicted.

Collective flows, related with explosive behavior of hot matter, were ob-
served at RHIC and studied in detail: the conclusion is that they are repro-
duced by the ideal hydrodynamics remarkably well. Indeed, although these
flows affect different secondaries differently, yet their spectra are in quanti-
tative agreement with the data for all of them, from 7 to 7. At non-zero
impact parameter the original excited system is deformed in the transverse



plane, creating the so called elliptic flow described by
va (s, e, My y, b, A) =< cos(2¢) > (1.1)

where ¢ is the azimuthal angle and the others stand for the collision energy,
transverse momentum, particle mass, rapidity, centrality and system size. Hy-
drodynamics explains all of those dependences, for about 99% of the particles!.

Bound States in sQGP

Shuryak and Zahed [19] argued that marginally bound states create resonances
which can strongly enhance transport cross section. Similar phenomenon does
happen for ultracold trapped atoms, due to Feshbach-type resonances at which
the binary scattering length a — oo, which was indeed shown to lead to a near-
perfect liquid. van Hees, Greco and Rapp|20] studied gc resonances, and found
enhancement of charm stopping.

Combining lattice data on quasiparticle masses and interparticle potentials,
one finds a lot of quark and gluon bound states [21][22] which contribute to
thermodynamical quantities and help explain the “pressure puzzle” [21], an
apparent contradiction between heavy quasiparticles near 7, and rather large
pressure.

Classical Molecular Dynamics for non-Abelian plasmas

Another direction, pioneered by Gelman et al [23], is to use experience of
classical strongly coupled electromagnetic plasma. Their model for the de-
scription of strongly interacting quark and gluon quasiparticles as a classical
and non-relativistic Non-Abelian Coulomb gas. The sign and strength of the
inter-particle interactions are fixed by the scalar product of their classical color
vectors subject to Wong’s equations. The EoM for the phase space coordinates
follow from the usual Poisson brackets:

{wan ;= 0" 0asdyy {Qain @by} = F Qi (1.2)

For the color coordinates they are classical analogue of the SU(N..) color com-
mutators, with ¢ the structure constants of the color group. The classical
color vectors are all adjoint vectors with a = 1...(N2?—1). For the non-Abelian
group SU(2) those are 3d vectors on a unit sphere, for SU(3) there are 8

!The remaining ~ 1% residing at larger transverse momenta p; > 2GeV are influenced
by hard processes and jets.



dimensions minus 2 Casimirs=6 d.o.f.2.

This cQGP model was studied using Molecular Dynamics (MD), the equa-
tions of motion were solved numerically for n ~ 100 particles. It also dis-
plays a number of phases as the Coulomb coupling is increased ranging from
a gas, to a liquid, to a crystal with anti-ferromagnetic-like color ordering. The
measured transport properties, when extrapolated to the sQGP parameters
suggest that the phase is liquid-like, with a diffusion constant D ~ 0.1/7T" and
a shear viscosity to entropy density ratio n/s ~ 1/3. The second paper of the
same group|[24] discussed the energy and the screening at I' > 1, finding large
deviations from the Debye theory.

The first study combining classical MD with quantum treatment of the
color degrees of freedom has been attempted by the Budapest group [25].

AdS/CFT

Another approach that has recently attracted much interest is related to the
so called AdS/CFT correspondence between strongly coupled N'=4 super-
symmetric Yang-Mills theory (a relative of QCD) and weakly coupled string
theory in Anti-de-Sitter space (AdS) in the classical SUGRA regime. A few
very interesting transport properties have been calculated via this method,
for example, the shear viscosity, the energy loss drag coefficient, the diffusion
constant, the jet quenching parameter, etc. The suggested values, as borrowed
to QGP, give reasonable estimates for RHIC. While the applicability is under
debate, the progress along this direction is very fast, see e.g. reviews in [13][14].

1.2 The Magnetic Scenario for sQGP

The main goal of this dissertation is to introduce a new view of finite 7" — p
QCD based on a competition between electrically and magnetically charged
quasiparticles (to be referred to as EQPs and MQPs below). That is, the
QGP has a usual electric component and a magnetic component as well: the
two components have their properties, like constituent mass/density /coupling,
changing with 7" — u, and different components become dominant in different
regions. In particular our works to be presented will show that in sSQGP regime
the magnetic component is dominant and liquid-like. We call it the magnetic
scenario for sQGP.

2 Although color EoM does not look like the usual canonical relations between coordinates
and momenta, they actually are pairs of conjugated variables, as can be shown via the so
called Darboux parametrization, see [23] for details.



It is different from the traditional approach, which puts the con finement
phenomenon at the center of the discussion, dividing the temperature regimes
into two basic phases (as shown in Fig.1.1): (i) confined or hadronic phase at
T < T, and (ii) deconfined or quark-gluon plasma (QGP) phase at T' > T..

We, on the other hand, focus on the competition of EQPs and MQPs and
divide the phase diagram differently, into (i) the “magnetically dominated”
region at T < Tg_p and (ii) “electrically dominated” one at T' > Tgr_j;. In
our opinion, the key aspect of the physics involved is the coupling strength of
both interactions. So, a divider is some E-M equilibrium region at intermediate
T-p. Since it does not correspond to a singular line, one can define it in various
ways: the most direct one is to use a condition that electric (e) and magnetic
(g) couplings are equal

e?/dnhe = g* /Amhe = 1 (1.3)
The last equality follows from the celebrated Dirac quantization condition [26]

eg
=1 14
Amhe (1.4)

Besides equal couplings, the equilibrium region is also presumably charac-
terized by comparable densities as well as masses of both electric and magnetic
quasiparticles®.

The “magnetic-dominated” low-T" (and low-u) region (i) can in turn be
subdivided into the con fining part (i-a) in which electric field is confined into
quantized flux tubes surrounded by the condensate of MQPs, forming t’Hooft-
Mandelstam “dual superconductor” [27] [28], and a new “postconfinement”
region (i-b) at T, < T' < Tg—j; in which EQPs are still strongly coupled (cor-
related) and still connected by the electric flux tubes. We believe this picture
better corresponds to a situation in which string-related physics is by no means
terminated at T' = T.: rather it is at its maximum there. Then if leaving this
“magnetic-dominated” region and passing through the equilibrium region by
increase of T and/or u, we enter either the high-T ”electric-dominated” QGP
or a color-electric superconductor at high-u replacing the dual superconductor
(with diquark condensate taking place of monopole condensate).

A new phase diagram explaining this viewpoint pictorially is shown in
Fig.1.2. Below we explain the underlying physical thoughts in more details.

3Let us however remind the reader that the E-M duality is of course not exact, in
particular EQPs are gluons and quarks with spin 1 and 1/2 while MQPs are spherically
symmetric “hedgehogs” without any spin.
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Figure 1.2: (color online) A schematic phase diagram on a (“compactified”)
plane of temperature and baryonic chemical potential 7'— . The (blue) shaded
region shows the “magnetically dominated” region g < e, which includes the
e-confined hadronic phase as well as “postconfined” part of the QGP domain.
The light region includes the “electrically dominated” part of QGP and also
color superconductivity (CS) region, which has e-charged diquark condensates
and therefore obviously m-confined. The dashed line called “e=g line” is
the line of electric-magnetic equilibrium. The solid lines indicate true phase
transitions, while the dash-dotted line is a deconfinement cross-over line.



1.2.1 Electric-magnetic dualities in supersymmetric the-
ories

Progress in supersymmetric (SUSY) Quantum Field Theories was originally
stimulated by a desire to get rid of perturbative divergencies and solve the so
called hierarchy problems. However in the last 2 decades it went much further
than just guesses of possible dynamics at superhigh energies. A fascinating
array of nonperturbative phenomena have been discovered in this context,
making them into an excellent theoretical laboratory. However we think that
their relevance to QCD-like theories are neither understood not explored in a
sufficient depth yet.

Studies of instantons in these theories have resulted in exact beta functions
and other tools, which have allowed Seiberg to get quite complete picture of
the phase structure of N = oo SUSY gauge theories [29].

This was enhanced in the context of N' = 2 SUSY gauge theories by Seiberg
and Witten [30], who were able to show how physical content of the theory
changes as a function of Higgs VeVs (in a “moduli space” of possible vacua).
Singularities in moduli space were identified with the phase transitions, in
which one of the MQPs gets massless. Seiberg and Witten have found a
fascinating set of dualities, explaining where and how a transition from one
language to another (e.g. from “electric” to “magnetic” to “dyonic” ones) can
explain what is happening at the corresponding part of the moduli space, in
the simplest and most natural way.

One lesson from those works, which is most important for us, is what
happens with the strength of electric e and magnetic coupling g near the phase
transition. As e.g. monopoles gets light and even massless at some point, the
“Landau zero charge” in the IR is enforced by the U(1) beta function of the
magnetic QEDs, making them weakly coupled in IR, ¢ << 1. The Dirac
quantization (1.4) therefore demands that the electric coupling must get large
e >> 1, enforcing the “strongly coupled” electric sector in this region.

Since two pillars of this argument — U(1) beta function and Dirac quan-
tization — do not depend on supersymmetry or any other details of the SW
theory, we therefore now propose it to be a generic phenomenon. We thus
conjecture it to be also true near the QCD deconfinement transition 7" ~ T,
explaining why phenomenologically we see a strong coupling regime there.

The high-T" limit, on the other hand, is similar to large-VEV domain of
moduli space: here the SU(N) asymptotic freedom in UV plus screening makes
the electric charge small. Thus here MQPs are heavy and strongly coupled.

4The moduli space is the manifold spanned by the parameters labelling all the possible
degenerate vacua.



1.2.2 Lessons from lattice gauge theory
Static potentials

One of the principal reasons we proposed to change the traditional viewpoint
of putting confinement at the center, can be explained using lattice data on the
T—dependence of the so called “static potentials”. The traditional reasoning
points to the free energy F'(r,T') associated with static quark pair separated by
a distance r, and defines the deconfinement as the disappearance of a (linearly)
growing “string” term in it, so that at 7" > T} there is a finite limit of the free
energy at large distances, F'(0o,T"). This phenomenon has often been referred
to as a “melting of the confining string” at T..

However, as explained by Polyakov nearly 3 decades ago [31], the string
actually should not disappear at T,.: at this point its energy gets instead
compensated by the entropy term so that the free energy F' = U — T'S van-
ishes. As detailed lattice studies revealed, in fact the energy and entropy
associated with a static quark pair are strongly peaked exactly at T' ~ T, see
Fig.1.3. The potential energy is really huge there, reaching about 4 GeV(!),
while the associated entropy reaches the equally impressive value of about 20.
Nothing like that can be explained on the basis of Debye-screened weakly cou-
pled gas of EQPs — the usual picture of QGP until few years ago. We think
that the explanation of such large energy and huge number ~ exp(20) of occu-
pied states can only be obtained if several correlated quasiparticles are bound
to heavy charges, presumably in the form of gluonic chains or “polymers” [22]
conducting the electric flux from one charge to another.

Therefore, the “deconfinement” seen in disappearing linear term in free
energy is actually restricted to static (or adiabatically slowly moving) charges,
while for finite-frequency motion of light or even heavy (charmed) quarks one
still should find mesonic bound states even in the deconfined phase [21]. Lat-
tice studied of light quark and charmonium states [32][33] found that they
indeed persist till T =~ 27,: this conclusion was dramatically confirmed by ex-
perimental discovery that J/v suppression at RHIC is smaller than expected
and is consistent with a new view, that J/v is not melting at RHIC (where
T < 2T).

One set of well-known lattice studies have tried to answer the following
questions: Is a “dual superconductor” picture consistent with what is ob-
served on the lattice? In particular, is the shape and field distribution inside
the confining strings in agreement with that in the Abrikosov flux tube of a su-
perconductor (Abelian Higgs model)? As one can read e.g. in [34], the answer
seems to be a definite yes. Can one define in some way monopoles and their
paths, and are those (in average) consistent with dual Maxwell equations? As

10
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Figure 1.3:  The energy (a) and entropy (b) (as T'Sw (7)) derived from the
free energy of two static quarks separated by large distance, in 2-flavor QCD
(from arXiv:hep-lat/0510094).
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one can read in e.g. [35], the answer seems to be also yes.

Unfortunately, those studies (as reviewed in [36]) were mostly concentrated
in the vacuum 7" = 0, while we are interested in the deconfined plasma T > T,.
Is there any general reason to think that MQPs play an important role here
as well? The most important argument® is the persistence of static magnetic
screening at all T', up to infinitely high 7T'.

Screening

Although static magnetic screening was shown to be absent in perturbative
diagrams [37], it has been conjectured by Polyakov [31] to appear nonpertur-
batively at the “magnetic scale” which at high T is

Ay = e*T (1.5)
The magnetic screening mass and monopole density should thus be

with some numerical constants C';, C,,.

To illustrate current lattice results, we show the T-dependence of the elec-
tric and magnetic screening masses calculated by Nakamura et al [38], see
Fig.1.4. Note that electric mass is larger than magnetic one at high 7', but
vanishes at T, (because here electric objects get too heavy and effectively dis-
appear). The magnetic screening mass however grows toward T., which is
consistent with its scaling estimate

M2, ~ (e2T)? (1.7)

(Another estimate of the magnetic screening can be done in the dual language
as
M3, ~ ¢*ny /T ~ g*(e*T)* /T (1.8)

which is a perturbative (small magnetic coupling ¢) loop: note that it agrees
with the former one due to Dirac condition e ~ 1/g.)

If one uses screening masses to get an idea about density of electric and
magnetic objects, one finds that the point at which electric and magnetic
masses are equal should be close to the E-M equilibrium point we empha-
sized at the beginning of this section. This argument places the equilibrium

5Note a principal difference with all electromagnetic plasmas, which have no magnetic
screening at all. For example, solar magnetic flux tubes are extended for a millions of km,
with unimpeded flux.

12
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Figure 1.4: Temperature dependence of electric and magnetic screening masses
according to Nakamura et al (from hep-lat/0311024). The dotted line is fitted
by the assumption, m, ~ ¢*T. For the electric mass, the dashed and solid
lines represent LOP (leading-order perturbation) and HTL(hard-thermal loop)
resummation results, respectively.

temperature somewhere in the region of

To_p =~ (1.2 — 1.5)T, = 250 — 300 MeV (1.9)

High-T monopoles

The total pressure related to the magnetic (3d) sector of the theory and espe-
cially the spatial string tension are other observable related to MQPs above T,:
for a short recent summary see [39]. Two important points made by Korthals-
Altes are: (i) MQPs must be in the adjoint color representation, to explain
data on k-strings and magnetic pressure; (ii) there seems to be a nontrivial
small “diluteness” parameter of the MQPs ensemble

g1 (N - 1)”M 1

0= ~ ~ — 1.10
Mz SR, S (1.10)

13



The fact that screening takes place at distances smaller than the average
inter-MQP one is a clear indication that screening is not a Debye-type weak
coupling one, but rather the opposite strongly coupled (correlated) screening®.

Dyons

A very special sector of MQPs are particles with both charges. Because they
produce parallel electric and magnetic fields, they have nonzero (EB) and
thus the topological charge. In fact, as shown by Kraan et al [40], finite-T
instantons can be viewed as being made of N, self-dual dyons: for a very nice
AdS/CFT “brane-based” construction leading to the same conclusion, see [41].

Topology is in turn associated with the Dirac zero eigenvalues for fermions,
which can be located and counted on the lattice quite accurately. Furthermore,
a “visualization” of dyons inside lattice gauge field configurations (using vari-
able non-trivial holonomy) has been developed into a very sensitive tool [42],
revealing multi-dyon configurations and their dynamics. One can verify that
they make a rather dilute but highly correlated systems: in fact closed chains
of up to 6 dyons of alternating charges have been seen. The self-dual dyon
density and other properties, as well as their relation to instantons and con-
finement are summarized in a recent paper [43]. It is enough to mention only
that self-dual dyons, like instantons, are electrically screened [3][44] and thus
rapidly disappear into the QGP at T' > T.. Around T, their density can thus
be related to the instanton density

Ndyon ~ Ncninstantons/T ~ Sfm_B (111)
and the mass to the instanton action
Mdyon =T Sinstanton/Nc ~ (3 - 4)T (112)

Both are of the order of the density (and the mass) of the electric (gluon and
quark) quasiparticles at 1.57, confirming a suggested E-M equilibrium in this
region.

61f a reader may have doubts that a correlated screening may produce such a result, here
is an example from the physics of the QCD instantons. The typical inter-instanton distance
n~ Y% ~ 1 fm is 5 times larger than the screening length of the topological charge Riop =
1/M(n') = .2 fm: the corresponding ratio for monopoles seem to be around §=1/% ~ 3. In
both cases we don’t know how exactly the opposite charges are correlated: pairs or chains
are two obvious possibilities.

14



1.2.3 Higgs phenomenon in QGP?

In this subsection we would like to comment, in a brief form, on a number
of questions which are invariably asked in connection with Higgs phenomenon
and monopoles at T' > T..

Naively, there is no simple and direct way to apply the lessons from super-
symmetric theories such as N'=2 Seiberg-Witten theory to QCD-like setting.
The former has scalar fields and flat “moduli space” of possible vacua, while
the latter has neither scalars nor supersymmetry to keep the moduli space flat.

At finite T the role of Higgs field is delegated to temporal component Ay of
the gauge field: and in fact in gluodynamics there is a spontaneous breaking
of the Z(N.) symmetry at 7' > T, because the corresponding effective action
Serp(< Ag >) has N, discrete degenerate minima.

Furthermore, the corresponding effective action gets small near T, and
large fluctuations in “Higgs VEV” < A > are seen in lattice configurations;
so one may think first about a generic case in which it is some (color matrix
valued) constant in each configuration, to be averaged with appropriate weight
exp[—Sesr(< Ag >)] later. Thus one may think about an explicit adjoint Higgs
breaking of the color group, parameterized by N. — 1 real VEVs (e.g. for
SU(3) Tr < ApA® >with Gell-Mann diagonal matrices a=3,8). Such breaking
makes all gluons massive, except the remaining unbroken N, — 1 U(1)’s which
remain massless. These remaining U(1)’s are the Abelian gauge fields which
define magnetic charges of the monopoles and their long-range interactions
(and electric ones, in the case of dyons).

Finally, the last comment about one lesson from SUSY theories which
we don’t think can be transferred into the QCD world: these are the enforced
properties of monopoles (and many other topological objects like branes) which
happen to be “BPS states” with their Coulomb interactions being exactly
cancelled by massless scalar exchanges. As a result, such objects can often
“levitate” in SUSY settings.® In QCD we however do not see or need mass-
less scalars, leaving the usual Coulomb and Lorentz forces dominant at large
distances.

1.2.4 Electric-Magnetic Duality and Running Couplings

Let us begin with comments on some theoretical issues related with situations
in which both “electric” and “magnetic” particles are present at the same
time. For pure gauge fields electric/magnetic duality simply means rewriting

"Fermions will lift this degeneracy, as is well known.
8In non-SUSY theories BPS states in general can have finite mass, but at low velocities
interact weakly with each other.

15



magnetic field B as gradient and electric field E as a curl of a “dual” poten-
tial: however there are nontrivial questions about the sources (and boundary
conditions). The electric objects — quarks — are traditionally present in the
Lagrangian as Noether charges, while monopoles are solitonic solutions carry-
ing topological charges. Can “magnetic” formulation be consistently defined,
interchanging their roles and putting monopoles in the Lagrangian instead?
Can even a situation be found in which both formulations are similar? These
ideas were discussed starting from the paper [45].

Since both description should describe the same theory serious issues of con-
sistency appear. At the quantum mechanics level the famous Dirac condition
must be held, demanding that while one of them may be small, the other
must necessarily be large. At the level of quantum field theory the Dirac con-
dition elevates into a requirement that two couplings must run in the opposite
directions

Bla)p + Bla)y =0 (1.13)
where the beta functions are 3(a) = 53—2‘ = 20(g)/g for the electric and mag-

netic couplings respectively, with 3(g) = ,ud—i being the usual beta function.
This indeed is what happens in Seiberg-Witten solution, in which electric cou-
pling is weak at large momenta due to asymptotic freedom, and magnetic is
weak at small ones due to U(1) “Landau pole”.

As it is known for 30 years, QGP at very high T can be described perturba-
tively, with e.g. small quark and gluon effective masses M/T ~ \/Cejectric <<
1. The monopoles in this case are heavy composites which play a minor role,
although they are strongly interacting and form an interesting sub-sector in
which perturbative analysis is impossible. However as T' goes down and one
approaches the deconfinement transition 7" — T, the inverse is expected to
happen: electrically charged particles — quarks and gluons — are getting heav-
ier and more strongly coupled. There is strong evidence that both phenomena
do happen: lattice data show that quark (baryon) masses seem to be large in
sQGP near T.[46], while RHIC’s “perfect liquid” supports the idea of strong
coupling.

However at this point one may ask what happens with monopoles: as T' —
T, the same logic suggests that they must become lighter and more important.
At some point their masses (and roles) get comparable to that of the electric
objects, after which the tables are turned and their fortune reversed. Electric
objects gets strongly coupled and complicated while monopoles gets lighter,
proliferate and eventually take over the bulk, expelling electric fields into the
flux tube. As shown in [47], this may happen in the plasma phase, before
confinement transition is reached. Following these thoughts, here are two
questions, on which we will be focused in Chapter 4: (i) Is there evidence that
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the magnetic coupling does run in the opposite direction? (ii) How small does
the magnetic coupling become at T" — T, and is a perturbative description of
magnetic plasma possible? As the reader will see in this Dissertation, we will
answer “yes” to the first and “no” to the second question.

(A digression about the most symmetric N=4 SYM theory which is con-
formal. How do we know that its coupling does not run? One may calculate
the first coefficient of the beta function, and will indeed see that the nega-
tive gauge contribution is nicely cancelled by fermions and scalars. But there
are infinitely many coefficients, and one has to check them all! An elegant
way to prove the case is based on another outstanding feature of the N'=4
SYM: this theory is (nearly) self — dual under electric-magnetic duality. As
we discussed above, the Dirac condition requires the product of electric and
magnetic couplings to be constant. But, as shown by Osborn [48], in Higgs
case the multiplet of (lowest) magnetic objects of the N=4 SYM theory in-
clude 5 scalars, 4 fermions (monopoles plus one gluino zero mode occupied),
plus 1 spin-1 particle (3 polarizations), exactly the same set of states as in the
original electric multiplet (gluon-gluinoes-Higgses). Thus effective magnetic
theory has the same Lagrangian as the original electric formulation and the
same beta function. That would conflict with requirement that both couplings
run in the opposite direction, unless they do not run at all!)

1.3 The Structure of The Dissertation

The rest of this Dissertation is organized as follows.

In Part I, including Chapter 2-5, we present our study of the magnetic
component of sQGP. In Chapter 2, single monopole motion in a few physically
interesting configurations of electric field will be studied, both classically and
quantum mechanically. In Chapter 3, we report the details of our Molecular
Dynamics (MD) simulations for a strongly coupled plasma with both electric
and magnetic charges and present MD results for the transport properties.
Chapter 4 is dedicated to investigating the magnetic component of sQGP by
applying our MD results and by analyzing recent lattice data. Chapter 5 shows
how the magnetic scenario we proposed can help explain the very nontrivial
static QQ potentials at T ~ T, as measured on the lattice.

In Part II, including Chapter 6-7, we examine the electric component of
sQGP. In Chapter 6 we will use the finite T' potential model to calculate
bound states of quarks and gluons beyond the binary, i.e. baryons, glueballs
and polymer chains in sSQGP. In Chapter 7 we will use the lattice results of
baryonic susceptibilities as a diagnosis to probe the quark, diquark and baryon
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contents in sQGP.
Finally we summarize the results and make conclusions in Chapter 8.
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Part 1

The Magnetic Component of
sQGP
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Chapter 2

Classical and Quantum Motion
of Single Monopole

With the ultimate goal of understanding a many-body system of mixed electric
charges and monopoles, I will start with a detailed study of the motion of a
single monopole, both classically and quantum mechanically, in the presence
of various configurations of electrostatic fields. This will manifest the unique
features of monopole motion as driven by the Lorentz-type coupling, which is
very important for our later investigation of the full dynamics in the many-
body setting.

2.1 Monopole Motion in the Field of One Static
Electric Charge

The simplest few-body system with magnetic charge is made of two particles:
one has electric charge and the other has magnetic charge. In a more general
sense we should consider them as two dyons, both with nonzero electric as well
as magnetic charges. This problem has been very well studied for many years
in both classical and quantum mechanics, and it has fascinated the physicists
with many unusual features. See for example [50][51][52].

In such problems one has both electric and magnetic fields. We have the
electric field from an E-charge (at space point r.) to be
e r—r,

E(r) (2.1)

- 4 |r — 7 J?

!The works in the present chapter are based on [49][47].
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Figure 2.1: The trajectory (projected on x-y plane) of a dyon in the field of
an opposite electric charge resting at the origin (in arbitrary unit).

and magnetic field from a M-charge (at space point 7,) to be

g r—T

B(r) (2.2)

- E|r—rg]3

The interaction between one moving dyon (eq, g1) and the other (eq, g2) is given
by the Coulomb and O(v/c) Lorentz forces

e2-e1tg- T
47 73

€201 — g2 €1 V3 r 2/ 2
+ —x =40 2.3
1 - Xr3 (v°/c%) (2.3)

F12:

with » = ro — 1. Here we have used the Lorentz-Heaviside units in which F
and B have the same unit and so are the charges e and g¢.

As early as in 1904, J. J. Thompson found the even two non-moving charges
have a nonzero angular momentum J carried by rotating electromagnetic field
(more precisely the Poynting vector). Indeed, for an E-charge and a M-charge
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(separated by 7) as sources, it is

3 €g .
szeld = /d T X (E X B)/C = 47TCT (24)
This angular momentum depends only on the value of charges, independent
on how far or close they may be. Its direction is radial, pointing from the
E-charge to the M-charge. As a side remark, an alternative way to arrive
at the Dirac quantization condition is by requiring any angular momentum
(including the above J) to be a multiple of half A.

Even earlier, in 1896 Poincare observed that the motion of a monopole
(and generally a dyon) in an electric charge’s Coulomb field is confined on the
surface of a cone (thus called the Poincare Cone), as shown in Fig.2.1. Their
relative motion (angular rotation and radial bouncing ) is always confined
inside a cone simply because of the conservation of total angular momentum
including the relative rotation and the field’s angular momentum (2.4) as well.
When getting closer to each other the two particles are forced to relatively
rotate faster and faster thus experiencing effective repelling which makes them
bouncing radially. Another way to explain the conical motion is to notice that
a magnetic charge is making Larmor circles around the electric field; it shrinks
near the charge because the field gets stronger there.

Quantum mechanics of such two-dyon system has been worked out in great
details since 1970s, especially the many bound states are calculated, see e.g.
[50][51] for reviews and further references.

In the following subsection, we analyze one important issue that was not
studied before: the induced magnetic current from the moving monopole.

2.1.1 The Induced Magnetic Current from the Monopole
Motion

At a distance R from the charge as demonstrated in Fig.2.2, its Coulomb
electric field Er = ﬁf% will stir the magnetic monopole into Larmor motion
with radius r;, on the Poincare cone — a small patch of the whole space
solid angle. The cone angle is determined by (with v, the monopole velocity
transverse to 7)

(ge)/4mc

Muor

The numerator is precisely the field angular momentum of the charge-monopole
pair Lgy = (ge)/4me, while the denominator is the monopole’s kinetic angu-
lar momentum L, = Muvyr with respect to the origin. The above formula,
rewritten as cot @ = Lgy/L,, reflects the interplay between angular momenta

cotf = (2.5)
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Figure 2.2: Demonstration of the induced magnetic current from monopole
motion in the field of an electric charge, see text for details.

of the electromagnetic field and of the particle motion. Though superficially
L, is defined through v, and r, it is actually a conserved quantity uniquely
related to the cone angle 6, see [53] for detailed discussion.

In turn, the monopole forms a loop of magnetic current gL,/Mr on the
cone. Now if we consider many monopoles are running around the static
electric charge e, i.e. it is placed within a neutral gas of monopoles with
mass M and charge +¢g, then the induced magnetic current density will be
Iy = |g|ng L, /Mr with ny, the monopole density. The direction of the current
explains the sign of induced electric dipole?. Using dual Maxwell’s equation
v X E = —%J M, one finds that such electric dipole is opposite to the usual
induced dipoles in dielectric, so in this sense the induced magnetic current from
the moving monopole produces an anti-screening effect. The charge repels such
a dipole: thus the monopoles will fly away from the charge.

To make this statement quantitative, let’s calculate the curl of magnetic
current around R. To do that we need to require that the Larmor circle to
be fairly small, for two important reasons: (i) if it is not small then one has
to take into account the variation of electric field strength which will warp
the circle; (ii) a small Larmor radius enables one to approximate the 57 X Jy

’Note that although monopoles with +g¢ rotate in opposite directions, they produce
currents of the same sign, so it is not necessary to distinguish them.
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by integrating Jj; along the circumference and dividing it by the area of the
circle. Small Larmor radius r;, means small angle 0, i.e. L, << Lgys. Density
of monopoles n;, with angular momentum L, at R, is related to total monopole
density n by np = frn, with f; some function of R and 6. In such case, the
result comes out as:

\gln(Ly/Mr)(27rL) R
2
Ty

= n(c/A}) Er (2.6)

(V XJM)R -

Here A\, = (Mc?/g?n)'/? is defined in the same way as the London penetration
length (which is usually defined only for superconductor). Interestingly enough
one arrives at the second London equation with a modification coefficient

L
77:2fL0089:2fLi%2fL (2.7)

Vo + 12

To end this analysis, we emphasize again its main point: motion of monopoles
in the Coulomb field of the electric charge can produce certain anti-screening
effect similarly to that in the dual superconductor of condensed monopoles,
under the important condition that the field is strong enough, which specifi-
cally means that monopoles” bombarding angular momentum L, is much less
than the field angular momentum Lgy;. The effect discussed here and the
well-known Meissner effect of (dual) superconductor share the same mecha-
nism, namely magnetic particles are scattered by the Lorentz force, inducing
currents which anti-screen the field. On the other hand, there is a big dif-
ference between the two. Meissner effect is only present in superconductors,
which expels arbitrarily weak magnetic field. A thermal plasma of monopoles
does not have it, and thus distributed weak fields can be present in the bulk.
However, strong enough fields can be expelled by the plasma into flux tubes,
which are in principle metastable. Solar plasma (for example) has both weak
diffusive magnetic fields as well as magnetic flux tubes (visible in telescopes
as substructure of the famous solar “dark spots”).

2.2 Monopole Motion in the Field of a Static
Electric Dipole

A very interesting and important few-body problem is a magnetic monopole
moving in the field of a static electric dipole. This is a starting point for
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studying a ”color”-electric dipole(quark-anti-quark) surrounded by a gas of
weakly interacting monopoles which, as we argue, may be very much relevant
for understanding confinement. Also as far as we know, this system seems
never been studied before.

2.2.1 The Classical Motion

In classical mechanics, we have the EoM for the monopole (of mass M and
magnetic charge g) to be the following:

MEL — gE, x & (2.8)

with E; the electrostatic field from the dipole with +e charges sitting at +a

on z axis:
e r—az r+az

E, = (2.9)

dm e —azPP |r +aZl?
It will be much convenient to work in the cylinder coordinate (p, ¢, z). By
running this EoM numerically with various initial conditions, we can directly
obtain real time trajectories of the monopole.

A lot of very complicated and very different motions have been found,
sensitively depending on the initial conditions. Roughly one may divide these
trajectories into two categories: ”"trapping” cases (see Fig.2.3) and ”escaping”
cases (see Fig.2.4). By "trapping” cases we mean the monopole starts with
|r| ~ a and after a relatively long time it still remains within distance ~
a from the dipole, while in ”escaping” cases the monopole begins moving
further and further away from the dipole after a somewhat short time. Due
to limited space we show below only few pictures for both cases. Let’s just
emphasize one particular feature as clearly revealed in Fig.2.3: the monopole
is bouncing back and forth between the two electric charges, because of the
effective repulsion when it is getting close to the charges (as has been explained
in the charge-monopole motion). We have found many such cases which look
like two standing charges playing E-M ”ping-pong” with the monopole. In a
sense the monopole is accurately “guided”, or forced, by Lorentz force to collide
head-on with the charges: here the Lorentz force provides a mechanism for
enhancing the collision rate between particles in a mixture of electric/magnetic
particles. This phenomenon as shown here is dual to the famous “magnetic
bottle”, a device invented for containment of hot electromagnetic plasmas,
provided magnetic coils at its ends are substituting the electric dipole and a
moving monopole replaced by the electric charge.
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2.2.2 The Quantum Effective Potential

Now let’s turn to the quantum mechanics of such system. One can write down
the following Hamiltonian for the monopole:

» (p+gAe/C)2

H= 0o (2.10)

Here A, is the electric vector potential of the dipole electric field, which can
be thought of as a dual to the normal magnetic vector potential of a magnetic
dipole made of monopole-anti-monopole. By symmetry argument we can re-
quire the vector potential as A, = A%(p, z)gg and the monopole wavefunction
as U = v(p, z)e/® with f the z-angular-momentum quantum number. Then
the stationary Schroedinger equation is simplified to be

2 2
P, +D;
BB Vi = By (211)
h? 1 gepA?

2Ma2[p/@ he e

Verr = + ) (2.12)

To go further one has to specify a gauge (which is equivalent to choosing some
particular dual Dirac strings for the charges) so as to explicitly write down
A?. We use the gauge which corresponds to the situation with one Dirac
string going from the positive charge along positive Z axis to +oo and the
other going from the negative charge along negative Z axis to —oo. This gives

us:
e Z—a Z+a

2 —
T i s R o el

To give an idea of the effective potential we show Fig.2.5 where V.sf(p, z, f) =
Verr(v/2? 4+ y2, 2, f) is plotted for the x-y plane with z = 0 and f = 0. From
the plot we can see that there must also be quantum resonance states with
the monopole bounded around the dipole for a long time before eventually
decaying away. Namely one can find states with £ = Aw + " with I’ << hw
and count how many there are.

A=~

(2.13)

2.3 Monopole Motion in the Field of an Elec-
tric Flux Tube

In this section we study the monopole motion in a very special situation,
namely its scattering in the field of an electric flux tube. This can be viewed
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as an idealized version of the electric dipole in the previous section, in the sense
that an electric flux tube is an infinitely separated pair of charges with electric
field lines being compressed into a tube structure. The physical motivation
is to study possible formation of electric flux tube in the post-confinement
regime just above T,., as we already discussed in the Introduction. To that
end, a detailed knowledge of the monopole scattering in the flux tube field
and the induced magnetic currents will be essential.

2.3.1 Classical Scattering of Monopole in the Flux tube
Field

Let us consider an electric flux tube field in the Z direction with monopole
bombarding into it, as demonstrated in Fig.2.6. The monopole from outside
which moves into it will be turned away by Lorentz force and eventually leave
the field region. Although its energy remains unchanged, the momentum is
changed, which means that there could be an effective pressure acting from the
monopole on the tube if one considers there are many monopoles surrounding
the flux tube and getting scattered off it. The situation however is simple only
if the strength of the field in the tube is such that particles penetrate only very
small part of its radius. (One can then further simplify the problem into flat
surface, with effective current floating in wall separating field-free and field
regions, as is the case for magnetic flux tube in solar plasma.) In such case
the induced magnetic current from such scattering will strengthen the original
electric field inside the tube according to one of the dual Maxwell’s equations
v x E = —%J M, similar to what we analyzed in the Section.2.1. If however,
the monopoles can penetrate into the flux tube beyond its center and exit on
the far side, they start generating a counter-rotating current which eventually
may destroy the flux tube field. To further shed light on this point, more
careful analysis of the induced current during scattering of these bombarding
monopoles will help.

The lower panel of Fig.2.6 (transverse projection of the upper) shows a
few trajectories (with different ending points A, B, B’,C,C") in the constant
field E region (within tube radius R), starting from the same initial point /
(at the bottom) with same velocity v (thus curled with same Larmor radius
r, = Muvc/gE), yet with different impact parameter b as they are aiming at
different angles. The impact parameter is related to the monopole’s incoming
angular momentum by L, = £=Mwvb depending on whether the velocity orients
toward left or right at the initial point (noting the positive Z is pointing into
the page in the figure). For example, the red curve(l — A) is for b = 0
and L, = 0, the blue solid/dashed curves is for certain nonzero b and same
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Figure 2.6: Demonstration of the induced magnetic current from monopole
motion in the field of an electric flux tube, see text for details.

|L — v| yet opposite signs (with I — B positive and I — B’ negative), and
the green solid/dashed curves for even larger b and |L,| (with I — C positive
and I — C’ negative).

We now consider the currents J, produced by various trajectories. In par-
ticular let’s examine how the combined current j, of two trajectories with same
b and £|L,| changes with b. The important observation is the following: tra-
jectories with small b or small |L,|, like I — A, contribute counterclockwise
currents, while trajectories with large b or large | L,|, like I — C,C’, contribute
clockwise currents, and there is a critical b or |L,| (which is precisely the solid
blue curve I — B going right through the center of tube) beyond which the
current inversion happens. Some simple algebra leads to the following critical
angular momentum of the current inversion:

|L.| = Mvb = 9%p (2.14)

2mc
with ®p = EwR? the electric flux. By interpreting the right-hand-side as
the electric-magnetic field angular momentum in this cylindrical setting, we
simply have critical momentum |L.| = Ly, which coincides with the analysis
in the previous example. Very importantly, strong electric field means large
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|L.| and stable flux tube, while weak field (with small |L.|) prefers becoming
diffusive in the bulk rather than being expelled into flux tube.

Such current inversion phenomenon is very important. The counterclock-
wise currents (from small L,) strengthen the original field®, while the clock-
wise currents (from large L,) weaken them. Thus the current inversion is like
a ”para/dia-electric” inversion, in macroscopic language, and it kills the flux
tubes.

To summarize the lesson from this classical example, the value of the an-
gular momentum plays essential role in the monopole scattering by the flux
tube. If particles have typical momentum p and the radius of the tube is R the
angular momentum is L ~ pR. When L is small or equivalently the electric
field is strong, the motion is still basically radial and the pressure argument
works. In the opposite limit of large L ~ pR >> Lgy or weak field, the
induced currents have both signs and cancel each other, and there is no reason
for flux tube to exist. Thus there must be some critical value of pR above
which there is no flux tube solution, depending on exact magnitude of currents
induced in channels with different angular momentum, to be evaluated quan-
tum mechanically below. Analysis and detailed calculation along this line will
be continued in Chapter 5.

2.3.2 Quantum Scattering of Monopole in the Flux tube
Field

In this subsection we solve exactly the quantum scattering of monopole in the
flux tube field. The electric field, with flux ®r and size R, is described in
cylindrical coordinate (r, ¢, z) by the following:

B { Erz = @z/(mz) 2 : § Z (2.15)
The corresponding dual vector potential reads:
2p 4 <R
C = C’¢gz5 {i’gggb LSS R (2.16)
The string tension is given by
o= ®%/(2rR?) (2.17)

3Note that in the (dual) superconductor case [54], the Abrikosov vortex is exactly
supported by supercurrent of scattered condensate in lowest possible angular momentum,
namely L, = 0 channel.
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According to Dirac quantization, the flux can be normalized via (9@ g)/(47hc) =
d/2. While the results obtained below can be used for general d, we are par-
ticularly interested in the d = 2 case.*

A monopole with mass M moving in such a field is governed by the following
Hamiltonian: in the non-relativistic case

Hun = (p+ 2C)/(2) (2.18)

while in relativistic case it is

g 2
Hp = (p+zc)c%+M%% (2.19)

The conserved quantities are

1) total energy ¢;

2) longitudinal momentum p,;

3) hence one can use longitudinal energy €, = p?/2M and transverse energy
€; = € — €, to be conserved separately;

4) the angular momentum L, = r (pg + 2C;).

The conservation of both ¢, and L, implies that the monopole is rejected back
(unless L, = 0) when it approaches the center of the tube, due to generic
centrifugal barrier ~ L?/(2Mr?) which dominates at small 7.

Quantum mechanical motion of single monopole is described by wave func-
tion U which is a scattering solution to H¥ = e¥ with H from eq.(2.18).
Making use of conserved quantities, we may decompose the wave function into
U = f(r)e™eif=* with energy’® € = €, + ¢, = (hK.)?/2M + (hk)?/2M and
angular momentum L, = mh. Let’s first introduce several parameters involved
later in the solution, including:

v=m-+d (2.20)
y=1+|m| (2.21)
a = (kR)*/(4d) — m/2 (2.22)

We repeat that d = (¢®g)/(27hc) tells how much flux is going through the
tube. The meaning of v can be explained as follows: it is quantized (integer-
valued) form of a relation between velocity, canonical momentum and dual field

4There are strong evidences from lattice study of high-7' magnetic QCD which supports
the idea that monopoles in QGP have such charges that d = 2 and their total numbers scale
as N2 — 1, see e.g.[39)

SHere we first deal with non-relativistic case, while later the treatment will be generalized
to relativistic case which turns out to be rather straightforward.
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Figure 2.7: The effective potential V. ¢ as a function of r/R for v = 0(red),
v = £2(blue solid/dashing), and v = £5(green solid/dashing).

Mv = p + gC projected (via their cross-product to r) to angular momenta.
Classical path I — A in Fig.2.6 which has velocity at large distances directed
toward the tube center corresponds to v = 0. The m = 0 channel is the one
corresponding to I — B path: it goes through the center because it experiences
no centrifugal barrier ~ m?/r?. As we will see below, this correspondence will
explain the signs of the currents, generated in each partial waves.

The Schrodinger equation can then be reduced to the following cylindrical

radial equation

1d (‘fl_f) [k = Vigg] i =0 (2.23)

rdr

The effective potential takes the form:

= — 2.24
Vers r2x v , >R ( )

5% p+d (/R -1F | r<R
2
Examples of V. ;¢ for several v values are shown in Fig.2.7.
The equation could be exactly solved both inside and outside the tube, as
shown separately below:
i) r < R (inside), the solution is given by confluent hypergeometric function
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1F1[.Z']I

i e, dr? N dr?
1571)/ — Ak,l/ € 2RZ2 (ﬁ) 1F1 |:")//2 — Q, 7, ﬁ:| (225)

ii) r > R (outside), the solution is expressed by two Hankel functions H? [x]
with proper phase shift dy

o B, ,

£ = _g [HP [kr] + % B [kr]] (2.26)

Finally the two functions should be connected smoothly at » = R, which
determines:

the normalization constants A, B satisfying (with J,[z], Y, [x] Bessel functions)

Ak,l/
Rap = Bew

_ i (cos k) Jy[kR] — (sin by, )Y, [kR] (2.97)

e~ 2d02 Fily/2 — a,,d] '
and the phase shift d;,, being
Jy11lkR] — GJ,[kR]
Ok = t 2.28
£, arctan [Y,,H[kR] —GY, [kR] (2:28)

G :[y_<7_1_d)—(1—2a/7).d-ﬁ]/(kR)
F = 1F1[fy/2—a+1,fy+1,d]/1F1[7/2—a,’y,d]

However exceptions to eq.(2.27,2.28) can occur when it so happens that | F;[y/2—
a,v,d] = 0. In such situation the alternative equations are the following:

Rap = gZ”’ (2.29)
_ e (kR) [(cos Ok, ) Jyr1[kR] — (sin )Y, 1 [k R]]
e ¥2d0t2 2a/y — 1)1 Fi[y/2 —a+ 1,7+ 1,d]

dk, = arctan [;]/ZI:%Z—ZH (2.30)

The coefficient By, should be determined by calculating the current at
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r — oo and matching the physical boundary current. To this point, our prob-
lem of finding quantum mechanic solutions (with arbitrary k,r) for monopole
scattering off flux tube have been all set. With these analytical solutions at
hand, a few discussions are in order below.

Scattering Amplitude

Now we discuss the boundary condition and determine the scattering ampli-
tude. As a scattering problem, we expect an incident current described by
transverse plane wave, say e***_ in the cylindrical setup. Thus we write down
the asymptotic wave function as®

eik‘r

NG (2.31)

Up(r — 00) = ™ + ka,,,(qb)

Expanding e’** = q“”" ©s¢ also in terms of ¢™® and comparing the above to the
large r limit of f,gff,) (r) from eq.(2.26), we obtain the normalization constant
B as

By, = ¢™¥/2=d) (2.32)

with the feature | By, |> = 1 independent of k, v values”.
The partial-wave scattering amplitude is determined via phase shift as

Fio(9) = —— [e"®hr=dm) 1] ¢m? (2.33)

This gives the partial-wave scattering cross section, or more precisely trans-
verse cross length”, as

4
Sky = - sin?(0y,, — dm/2) (2.34)
The total cross section is a sum of the above over all v.
Examples of 0, and Sy, as functions of k for several values of v are plotted
in Fig.2.8.

6Here we temporarily normalize the incoming current as just v = hk/M while in later
section additional factor from density n will be included.

"One should keep open mind in that different boundary conditions lead to different
weights By, among partial waves. It is not clear if there could be choices other than the
ones used here which can best describe the thermal monopole scattering by flux tube field.
An extreme example is superconductor which picks only By o with all others vanishing.
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Figure 2.8: (upper) Scattering phase shift 5, and (lower) scattering cross
section Sy, as a function of kR for v = O(red), v = £2(blue solid/dashing),
and v = £5(green solid/dashing).

Before closing this subsection,we’d like to point out that the phase of co-
efficient given in (2.32) is related to the choice of e** as asymptotic incident
state (while its unity amplitude is general). Physically an incident particle can
come in from any direction besides z axis, with equal probability, so an aver-
age over all possible orientation of initial k is called for. This can be achieved
by first doing calculation using (2.32) and averaging over the ¢ dependence
at the end, and the effect of this procedure is simply the entire suppression of
interference terms among different partial waves.

Magnetic Current

The magnetic current generated by single monopole during scattering process
can be calculated by

. igh . a9
Ju = 5y (VY)Y = (VW)W + T (V) C (2.35)
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The nontrivial part is the ¢ component: 8

o0

Taklr) = 3" 5k vlr) (2.36)
:% Z {y—d (1—%) 9[1——] | fewl?

V=—0

with f[z] the unit step function: #[z] = 1 for > 0 and vanishes otherwise.
We may further combine +|v| terms and rewrite it as

TS, (klr) = ]\94— Z (k, v|r) (2.37)
=0

306, 01) = —d- (1= =) - 011 = 2] |fuol?
M\"™ R2 R s
o

Iukvlr) = v ([ fewl® = fil’]

—d- (1—ﬁ) 9[1—_] [ fewl? + [ fr—vl’]

This expression implies two important points: first, significant contribution
to magnetic current comes from small 7 part as is evident from 1/r dependence,
so partial waves with large amplitude at small r (namely small |v| channels)
are important; second, according to jj’\} x v at r > R, partial waves with
m symmetric to d, namely a pair of 4|v| channels, tend to produce opposite
currents which substantially cancel each other. It is worth emphasizing that
only v = 0 partial wave (the one picked by the whole condensate in ANO
vertex case, see e.g. [54]) will benefit from the first point and at the same time
NOT suffer from the second point.

Clearly for each given k the total current J{,(r) should be built up from
summing currents of all partial waves , namely summing jj’&(k, v|r) over quan-
tum numbers v. One is naturally concerned with the convergence of such
infinite summation, which is basically determined by the large |v| behavior.
We can expect that large |v| partial waves contribute very little to the total
current, which bears two simple physical arguments: from energy point of view,
states with |v| experience centrifugal potential V(1) ~ h?|v|?/2Mr? while the
kinetic energy being Ej = h?k?/2M, so if kR < |v| then Ej, < V(r = R) which
means it is very hard for the particle to ”climb” up the potential barrier all the
way into the tube; from the impact parameter perspective, states with |v| and

87 component is zero and 2 component is totally irrelevant and can also be set to zero

by replacing e**=* with real sin, cos functions.
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Figure 2.9: Integrated current Z, as a function of kR for different values of v:
dashed lines are for v = 0(red), v = 1(green), v = 2(blue), while solid lines are
for v = 3(black), v = 4(red), v = 5(green), v = 10(blue), v = 20(magenta),
and v = 30(purple).

k have semiclassical impact parameter b ~ |v|/k, so if kR < |v| then b > R
which means the incident particle will be largely missing the central part and
thus very little scattered, leading to negligible induced currents. This conclu-
sion has been confirmed by extensive numerical calculation and practically for
given kR all partial waves with v > 1.5k R are vanishingly small, as is evident
from Fig.2.9 to be explained in next subsection.

The Total Current

Now we perform the radial integration of the current JJ‘@ over r which will be
needed in Chapter 5:

R [e's)
o gp— 90 _gh
/0 Jipdr = S7T(kR) = 7 ;Iy(kR) (2.38)

T,(kR) /0 dr 5% (k. v|r) /7
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Integrated Total Current

Figure 2.10: Integrated total current Z as a function of kR for different values
of summation cut v.,: dashed lines are for v., = 0(red), v = 1(green),
Vewr = 2(blue), while solid lines are for v, = 5(red), ve, = 10(green), ve, =
20(blue), and v.,; = 30(black).

In Fig.2.9 we plot Z, versus kR for various v. The interesting observa-
tion is that the integrated current is negative for v < 2, positive for v > 2,
while for v = 2 partially positive (at small kR) and negative (at large kR).
This result from quantum mechanics perfectly agrees with our conclusion from
classical treatment in the Introduction part, not only qualitatively but even
quantitatively: the critical angular momentum for current inversion observed
here L. = v.h with v, = 2 coincides with that predicted by eq.(2.14) once our
flux g®p = d27he with d = 2 is plugged in.

Now we perform the final step: namely summing Z, over v to obtain the
integrated total current Z. This is done numerically, with summation cut
v < vqy applied, see Fig.2.10 for results for various v.,;. As can be seen, for
the displayed regime kR < 20 the summation is converged enough as soon as
Veur > 20, as the curves with v.,; = 20 and v.,; = 30 coincide on top of each
other and are hardly distinguishable. It is this numerically evaluated function
Z(kR)(with our highest cut v, = 30) that will be used in subsequent sections.

The behavior of this function Z(kR) has rather nontrivial wiggle structure:
the general trend is oscillatory, with a modest negative part at small kR < 1.42
(basically from negative contribution from v = 0, 1) followed by a rather high
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positive peak (dominantly from v = 2) between 1.42 — 2.24. These first two
structures, first negative then positive, basically cover the interesting region
of kR(see discussion in next paragraph). Suppose there is a flux tube with
certain R, then at low temperature the typical k is small and kR falls within
negative region which supports the flux tube, while at high temperature the
larger k brings kR beyond the negative region into the tremendous positive
region which will kill the flux tube. So there is a transition with the border
at kR = 1.42: beyond this point higher partial waves with v > 1.5 x 1.42 =
2.13 (which is also close to the classical critical value v, = 2) will become
dominant. By Comparison of this curve with the red dashed one (only v = 0),
which corresponds to what superconductor can do, one understands why a
condensate does much better in confining a flux tube than a normal thermal
ensemble can do. The first negative peak, actually the best point® for flux
tube formation, locates at

kmR =1.076 with I(knR)= —0.140 (2.39)

Partial Wave with v = d and Possible Resonance

The effective potential V,.¢; with v = d or equivalently m = 0 is special in
that it vanishes at the center r» = 0, while for all other v # d states there will
be diverging term ~ (v — d)*h?/2Mr?. The shape of it (see Fig.2.7) actually
indicates possibility for resonance to occur. Whether there could be resonance
solution or not depends on the competition of the localization energy and the
potential barrier whose peak value is E, = d*h*/2MR? at r = R. To settle
this one can look at the condition for the wave function (2.25) to be zero right
upon r = R (which is very close to the resonance situation and gives estimate
of kinetic energy). This yields the series of particular values of k: koR = 2.576,
kiR = 5.632, ko R = 8.729, ksR = 11.847, ... Thus clearly to have one reso-
nance level, one needs at least E, > h*k%/2M namely d > 2.576. Indeed by
fine search for resonance structure in scattering phase shift we identified one
resonance in the case of d = 4, see Fig.2.11, with k., ~ 2.77 very close to
the above ko and narrow width I'y ~ 0.1/R. Nothing similar was found in
d = 2. With large enough d the occurrence of resonance should be a general

90ne might argue that there will be an even larger negative peak at kR = 2.77, however
to reach that point one requires much larger k& which usually means broader distribution over
k around k, and that will easily make the total contribution rather small after cancellation
with the adjacent large positive peak.

40



0.25 J
Sl
~0.25 f_'
-0.5
24 26 28 3 3.2
kR

1.5
1.25
o 1
0.75
v 0.5
0.25
0
24 26 28 3 3.2

kR

Figure 2.11: (Upper) Phase shift and (lower) scattering cross section as func-
tions of kR for v = d = 4 which show resonance structure, see text.

phenomenon and the induced current produced by these resonance states ac-
tually will spoil the original flux tube field as monopole in such state stays in
the center of tube and ”pushes” field outward rather than inward: remember
the large positive peak in Z(kR) (black curve in Fig.2.10) is precisely due to
the contribution from v = d partial waves.

Quantum Mechanical Motion of Single Relativistic Monopole

In this subsection we generalize the obtained solutions to relativistic case. Now
one has to solve Klein-Gordon equation (since monopoles are scalar particles)
instead of Schrodinger equation:

2
|:€2 — M*c — (p + %C’) 621 U =0 (2.40)

Fortunately it turns out that by again writing eigenstate of energy € as U =
frw(r)em?eif=% one recovers exactly the same radial equation as eq.(2.23) ex-
cept for changing k = \/(2Me¢)/h? — K2 to the following

k=+/(e — M2c*)/(he)? — K2 (2.41)

z
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So all the exact wave functions obtained in non-relativistic case are still so-
lutions to the Klein-Gordon equation after the above replacement of k in
eq.(2.25)(2.26). This change of k should be done for all the relevant formulae
above.

Another important change is for the current equation (2.36): due to rela-
tivistic effect the mass M should be replaced by €/c* |, namely

b T gyt )
ey |70 ) = gl el (2.42)

The same replacement should also be applied to integration over current in
eq.(2.38). All other aspects remain pretty much the same as in non-relativistic
case and we skip further discussion.

Tk, vlr) =

The quantum mechanic results obtained here will be used in Chapter 5 to
calculate the stability condition for flux tube formation.
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Chapter 3

Molecular Dynamics Study of
Strongly Coupled Plasma with
Electric and Magnetic Charges

In this chapter, we deal with the many-body system containing dynamically
both electric and magnetic charges. In particular we study the transport
properties of such a classical system.

Molecular Dynamics (MD) simulations are proved to be powerful tools
widely used for studying the conventional EM plasma, especially in the strongly
coupled regime when the analytic approaches are difficult. It provides de-
tailed microscopic real time information about correlation functions and trans-
port properties. It has been recently been employed to simulate sQGP in
23][24][49][25]. The classical Coulomb plasma parameter is usually character-
ized by a key parameter I, i.e. the ratio of the potential energy (interaction)
to the thermal kinetic energy; thus a weakly coupled plasma has I' << 1.
Plasmas with I' > 1 are known as strongly coupled, and for I' < few10 it is
in the liquid regime, for I' > I', ~ 100 it is solid, with less precisely defined
“glassy” regime in between.'

In the following, we will implement the first (as far as we know) molecular
dynamics (MD) simulations for a strongly coupled plasma with both electric
and magnetic charges. This study, as we already said in the Introduction, is
motivated by the magnetic scenario for sQGP. In this chapter we concentrate
on the MD setup and the transport properties measured directly from the
simulation, while the application of our MD results to sQGP system will be

ITo define an analog I for a relativistic quantum system is ambiguous due to effect such
as saturation.
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presented in the next chapter.?

3.1 Molecular dynamics without periodic boxes

Molecular dynamics (MD) provides a straightforward way to study the various
dynamical properties of a classical many-body system. The system we are
interested in is a plasma containing both electric and magnetic (and both
positive and negative) charges. So in the normal convention used by plasma
physics community, this is a four-component-plasma(FCP). We however would
rather name it as 2E-2M-plasma to explicitly show its content. More widely
speaking we may even include one more type of particles, namely dyons with
both electric and magnetic charges for individual particles, making a 2E-2M-
4D-plasma. In this paper we will report our results for 2E-2M-plasma with
three different contents: pure electric (which reduces to normal TCP) plasma,
plasma with about one quarter of particles as magnetic charges, and plasma
with about half of particles as magnetic charges, labelled throughout this paper
as MO0, M25, M50 respectively. Comparison among them is expected to give
indications about the role of magnetic charges, especially in the transport
properties. The microscopic dynamics is classical EM, given by Newton’s
second law together with electric Coulomb force (between two E-charges),
magnetic Coulomb force (between two M-charges) and O(v) Lorentz force
(between one E-charge and one M-charge).

The routine MD method (as used in GSZ[23][24] and most MD study of
usual plasma) is to put desired number of particles in a cubic box and then
include as many periodical image boxes (in all three directions) as allowed by
computing capacity. The summation over images is very much time consuming
especially for cases with Coulomb type long range forces. Also energy conser-
vation is not very well preserved after long-time run because of the ”kick”
on particles leaving one truncation boundary and entering periodically on the
opposite boundary which will gradually heat up the system.

Here it should be emphasized that we have used an alternative approach
without any periodic boxes. What we have done is to simply give all par-
ticles certain initial conditions and then let them go. It turns out there are
two different regimes which we deal with separately: 1) “plasma in cup” at
medium /weak coupling regime, in which case we place a sharply rising large ra-
dial potential barrier at certain radial distance to hold the particles inside this
“cup”; 2) “self-holding drop” at very strongly coupled regime, which means

2The works in the present chapter are based on [49].
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the particles don’t fall apart into small pieces but behave like a little raindrop
and so there is no need for a “cup”. In this way we are able to perform MD
easily with thousand particles and can conserve energy for less than percent
even after really long-time run. We will give more technical details about our
simulations in the second subsection while present basic formulae, units and
physical parameters in the first subsection .

3.1.1 Formulae,units and physical parameters

For our 2E-2M-plasma, each particle has either electric charge or magnetic
charge. The E-charges are assigned as e;e with e; randomly and equally given
+1 (e; = 0 for M-charges) and the M-charges are assigned as g¢;g with g;
randomly and equally given +1 (g; = 0 for E-charges) too. For a pair of
particles their mutual force involves three combinations of their charges: e;; =
€ "€, 9ij = 9i * 9j, and an important new one Kij = €; - gj — gi - €;. In present
study we use the same mass m for both types of charges.
The equation of motion for the ¢th component particle is given by:

d?r; C e e .
m = E —Tii . T
dt? pEATE Tyt

J# =
2
g” Gij . ge Kij; dr; N
4 ry; ! dmr; cdt / (3.1)
where r;; = r; — r;. The first term on RHS is the well-known necessary

repulsive core without which all classical plasma will collapse sooner or later
since no quantum effect arises at small distance to prevent positive charges
falling onto negative partners. We choose K = 9 in our MD, which is the
same as some previous work[23][24][55]. There is no particular meaning for
K =9 except that we want a large value of n which leads to relatively small
correction (~ 1/K) to potential energy between +e and —e at and beyond the
equilibrium distance.

To set the units in our numerical study, we use the following scaling for
length and time (the unit of mass is naturally set by particle mass m)

1
—1

=r/rg with ro = (C/e?)

=t/T with 7= (mrj/e?)

TH
[ I x

(3.2)
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which leads to the dimensionless equation of motion

d*7; I Cij .
=D il T = T
dt T T

J#i ij ij

9.29ij . 97"0/7' Rij dr; .
+H=)" =+ (5 - = i
(e) rfj J (e c )Tfj dt J

(3.3)
With these setting, we have for example: Length = # xrg, Time = # X7,
Frequency = # x%, Velocity = # x2, Energy = # x%, etc. All numbers
obtained from numerics are subjected to association with proper dimensional
factors in our units.

Now we still have two dimensionless physical parameters which controls in
the above the magnetic-related coupling strength:
1. g =2 : this parameter characterizes the relative coupling strength of mag-
netic to electric sector. In principle there is no limitation for it from classical
physics. Since we want to focus on the parametric regime which may be rel-
evant to sQGP problem near T, (where electric sector gets strongly coupled
while magnetic sector gets weak), the parameter § is expected to be small, so
we will use g = 0.1 in the MD calculation. Naively suppose one has a quantum

problem with same § = g/e, then by combination with the minimum Dirac

eg e?

condition 2 = f—ig =1, one gets @ = < = 1/§ ~ 10 which is indeed very
strongly coupled.

2. B = % =4/ % . this parameter tells us how relativistic the particles’
motion will typically be. The importance of this parameter lies in that it con-
trols the strength of Lorentz force (5 - g) between E-M charges. An important
observation here is that compared to the Lorentz coupling of a pure electric
plasma (which is 3% from electric current-current) our Lorentz force has only
the first power of the small parameter # and is thus enhanced because of the
existence of magnetic charges. Since we are doing non-relativistic molecular
dynamics, a small value of 3 should be chosen. In the sQGP the typical speed
is estimated to be about 1/3 of ¢, in present calculation we however will choose
f = 0.1 which on one hand is not far from 1/3 and yet on the other hand limits
the relativistic corrections to be not more than few percent.

One more physical parameter we should mention here is the so called
plasma parameter I defined as the ratio of average potential kinetic energy
(neglecting the sign)

<U >
< FE, >

= (3.4)

_|<U/N>
| 3kpT/2
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This definition looks a little different from others[23][24][55] where usual MD

study with periodic boxes defines I' = ZQB—/; with a = (3/47n)Y/3. They use this
conveniently because in their approach the density is fixed as desired, while
in our case there is no boxes any more and we use the direct ratio which is
essentially meaning the same thing. The difference and relation between the
two I' values will be further discussed in section 4.1.1.

The plasma parameter I' is important in that:
1. it distinguishes strongly coupled plasma I' >> 1 and weakly coupled plasma
I'<<< 1;
2. it roughly distinguishes a gas phase I' < 1, a liquid phase I' ~ 10 and a
solid (or solid-like) phase I' > 100 ;
3. different types of plasma with the same value of I' could be compared in
order to reveal the dependence of macroscopic properties on plasma contents
and microscopic dynamics, and so we will measure properties as a function of
r.

A particular issue here is that in principle one can define two independent
I' values for the electric and magnetic components: we however choose to
call them differently. As electric component is assumed to be near-dominant,
with magnetic component imbedded into it: so we don’t treat the latter as
a separate plasma. We basically use electric I', plus a separate parameter
g = g/e giving the ratio of magnetic to electric couplings, and also another
parameter, the relative concentration of monopoles (25%, 50% etc determining
the densities). A combination of these can be formed into a magnetic I" as I'

scales with coupling and density (under given temperature) like gzp}\f’.

3.1.2 Details of MD simulations

In our MD simulations, 1000 particles are initially placed on the sites of a
10x10x 10 cubic lattice with lattice spacing a = 1.2ry 3. They are given electric
charges £1 in an alternating way in all 3 directions, meaning that the numbers
of positive and negative electric charges exactly equal each other. Then for
the M25 (M50) plasma, we randomly pick out 25% (50%) of the particles
and replace their electric charges with magnetic charges which are assigned
+ subsequently, thus making total magnetic charges be at most 1. The
charge neutrality of our system is preserved to o(1/N) ~ 1/1000. Then all the
particles are randomly given initial velocity (for each of the three component)
v} 93t = 0) =V« (RANDOM#) (RANDOM# is between [0,1]). In this

way it is very likely that the system’s total momentum is nonzero and moves

3This value is very close to a = 1.18ry which is calculated to be the equilibrium value
of NaCl-like structure under our repulsive core.
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as a whole, which is very inconvenient for simulation and measurements, so we
subtract 1/N-th part of the total momentum from each particle to make the
center of mass stay at rest.* For each type of plasma, changing the value of V
can eventually lead to different equilibrated system after certain time. Roughly
the larger V is, the smaller (lower) the plasma parameter I' (temperature T')
will be. The total running time is 2000At with At = 0.17 (which is actually
our output time step). In general it takes tiperm ~ 20 — 307 to equilibrate
the system and we start measurements at ¢ = 507. The iteration step and
accuracy in EoM subroutine is so chosen that the energy could be conserved
to less than few percent at the end of run. As mentioned before, we have two
different regimes which we will discuss the details separately in the following.

Plasma in cup

Numerically we found that for about I' < 25, the little drop we created couldn’t
hold itself and after some running time it will break into a few much smaller
pieces, which means the surface tension is not large enough to maintain the
original “big” drop. To confine the particles in a finite volume and make them
mix up sufficiently, we put a radial potential barrier at some cut-distance R,
to make a container holding such plasma:

V = [B*(r — Rew)|* % 0(r — Rew) (3.5)

By choosing B = 5 and L = 11 we make the edge of our “cup” a really steep
one, thus keeping as many particles inside the “cup” as possible at all time
because only very energetic particles are able to climb up the edge a little
and will soon be reflected back. In our simulations we have used R.,; = 11rg.
In real time of course the number of particles confined within the R, is
always fluctuating, so are other macroscopic quantities like energy etc. So
this system is like a grand-canonical ensemble. For this plasma in cup, all
the measurements are made for particles inside the cup only (namely with
r < Rewt)-

By looking at the histogram of total number of particles at different time
points in Fig.3.1, one see that the system has very good distribution with well-
defined average N ~ 950 and v/N ~ 30 fluctuation width®. Another important

1Selection of global “quantum” numbers like total charge or momentum leads to o(1/N)
corrections (which vanish only in thermodynamic limit) when we go to canonical observable:
this is not a problem at all as compared to other corrections like surface effect o(1/N1/3).

5This v/ N estimate is supposed to be exact only for an ideal gas while our system is
more like a non-ideal-gas/liquid, so one expects certain coefficient times V/N, with its value
depending on the EoS.
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Figure 3.1:  (color online) Histogram of total number of particles inside R,
at 1500 different time points. This is an example for M25 plasma at I' = 0.99.

check is to see if the system is really homogeneous. In Fig.3.2 we have plotted
the radial particle density n(r) versus radial volume V(r) = r347/3 with bin
size AV = 100-47/3 = 419. The time-averaged curve (solid) is rather flat, with
standard deviation bound(orange dashed) close (yet not equal) to simple v N
deviation bound(violet dashed). Also densities at five particular time points
(from early to very late time) are shown, basically fluctuating around average
within the deviation. From this plot it is clear that the density distribution
is homogeneous and stable enough, with fluctuations expected for a non-idea-
gas/liquid behavior. One can also see that near our cutting edge (R = 11)
the particle density quickly drops down as we want. These observations are
true in all of our runs, and the number density of our cupped plasma at
different I is controlled all at n ~ 0.17 with negligible variation. These have
shown that our simulations for cupped plasma is reliable.

It is also important to check the fluctuation in energy. In Fig.3.3 we show
a typical histogram of fluctuation in kinetic and potential energy at all time
points. Clearly both distributions make complete sense and so are other macro-
scopic variables which we skip because of limited space. The relative fluctua-
tions of kinetic and potential energy are larger than that of the particle number
(as expected) because of extra broadening due to conversion between kinetic
and potential energy. Again these justify our ”plasma-in-cup” approach.
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Figure 3.2: (color online) Radial particle density plotted versus radial volume
V(r) = r347 /3 with bin size AV = 100 - 47/3 = 419. The central thick brown
solid line is the average over all time points, with the up/down orange dashed
lines showing standard deviation and the up/down violet dashed lines given
by v/ N deviation, and the five types of symbols are densities taken from five
different time points. The vertical dash-dotted line indicates the cutting edge
position R.,. This is an example for M25 plasma at I' = 0.99.
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(color online) Histogram of total kinetic(blue square) and po-

tential(red circle)energy inside R, at 1500 different time points. This is an
example for M25 plasma at I' = 0.99.
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The results to be reported in Section IV. and V. are all obtained with this
method, which cover the I' value about 0.3 — 14. We want to focus on this
region because it is most relevant to the sQGP.

Self-holding drop

For about I' > 25 we have found our little drop can, amazingly, hold itself
despite the possible expansion and shrinking with considerable amplitude. By
mapping the particles’ coordinates at the end of run we found the particles
more or less staying around their original positions. This very strongly coupled
system behaves more like a crystal, especially for I' — 100. In this regime,
we have found very good collective modes which are shown to manifest them-
selves in the dynamical correlation functions in a profound way. These results
will be reported in section VI. It should be pointed out that the self-holding
region is reached only for pure electric plasma (our MO0 plasma). For our
M25/M50 plasma, with present method the largest I' that can be achieved
(after ”cooling” and equilibrating scheme) and maintained in a stable way is
up to ~ 25. The "cooling” method, namely turning on a braking force propor-
tional to particle velocity for some time and then turning it off, can bring the
M25/M50 system down to some instant I' ~ 1000 but then the system kinetic
energy slowly but steadily keeps increasing with potential energy getting more
negative, the overall effect of which eventually increases I' back down to few
tens. It seems indicating the mixture plasma refuses to become solidified even
at classical level because of Lorentz type force (different from permanent liquid
Helium which is due to quantum effect). We will leave this issue for future
investigation.

3.2 Equation of state

Before showing the data, we once again emphasize that the goal is to compare
three types of plasma (MO0, M25, and M50) with different E-charges and M-
charge concentration, and all the comparison will be made by plotting certain
macroscopic properties as a function of plasma parameter I'.

The first quantity we want to look at is the temperature® dependence on
I' which is sort of equation of state for plasma.” In Fig.3.4 the EoS for M00,

6By temperature T we actually mean kT (with the dimension of energy in our units)
throughout this paper.
"Remember in this classical statistical system the average kinetic energy per particle is
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Figure 3.4: Temperature T calculated at different plasma parameter I' in
log-log plot for M0O(triangle), M25(square), and M50(diamond) plasma re-
spectively, with the three lines from linear fitting (see text).

M25, and M50 are compared in log-log plots. Data for all three show a linear
relation with similar slopes but different intercepts. By simple linear fitting
we get the following parameterized EoS for them:

MO0 : T =0.257/0%%%
M25 : T =0.191/10°%8%
M50 : T =0.125/1°%™ (3.6)

So already from the EoS we’ve seen considerable difference among the three
plasma. Since EoS is important for dynamical processes, we proceed to study
correlation functions and transport coefficients in next section, expecting to
see more differences.

given by Ej, = 3T'/2 and total energy per particle is £ = (1 — I') x E}, so the temperature
dependence on I' also gives all information on energy. To determine Ej} we simply sum
up the kinetic energy (3°, mv?/2) of each particle then divide it by the total number of
particles.
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3.3 Correlation functions and transport coef-
ficients

Study of transport coefficients is very important in order to understand the
experimental discoveries about sQGP, such as the very low viscosity and the
diffusion of heavy quarks. In this section the transport coefficients of our
three different plasma will be calculated and compared in order to see the
influence of magnetic charges on the transport properties. To do that, we
will first measure certain correlation functions and then relate them to the
corresponding transport coefficients through the Kubo-type formulae, as is
usually done in MD works.

3.3.1 Velocity autocorrelation and diffusion constant

The first correlation function we will study is the velocity autocorrelation
which is defined as:

D(r) = 3LN <Y wlr) vi(0) > (3.7)

Here 7 is the correlation time, v; denotes the velocity of the ith particles and
the sum is over all particles. The average is over thermal ensemble which is
done in numerical program by average over all time points® (with the number
typically of order ~ few 1000).

In Fig.3.5 we show typical curves for velocity autocorrelation function in
MO0, M25, and M50 plasma respectively. A fast damping behavior at small
correlation time is observed, followed by small fluctuation from random noise
at longer correlation time.

The corresponding transport coefficient, namely diffusion constant, is cal-
culated by the following Kubo formula

D = /00 D(T)dr (3.8)

In Fig.3.6 we plot LogD as a function of Logl' for M00,M25 and M50
plasma. Approximate linear relation is seen for all three, but with visible
difference in slopes and intercepts. A linear fit gives the following approximate

8The time average essentially provides ensemble average.
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Figure 3.5: (color online) Velocity autocorrelation functions D(7) for (from
top down at zero time) MOO(black curve), M25(green curve) and M50(red
curve) plasma, taken at I' = 1.01,0.99, 1.00 respectively.

functions D(I'):

MO0 : D =0.396/1%"72
M25 : D =0.342/T7°%77
M50 : D =0.273/1°%6% (3.9)

At small ' < 1 there are considerable differences of the three lines. In
the physically interesting region I' ~ 1 — 10 the three plasma have visible but
not too much difference in diffusion constants. The three lines will cross at
about I' ~ 10 and after that deviation from each other again grows quickly.
The important feature common to all three types of plasma as well as to
cQGP model in [23][24] is the power-law dropping of diffusion constant with
increasing coupling strength. We see the diffusion constant can become few
orders of magnitude smaller when one changes from weakly coupled gaseous
regime into strongly coupled liquid regime. This qualitative scaling in coupling
is also found from AdS/CFT calculation by Casalderrey-Solana and Teaney
in [56].

Interestingly if one combines (3.9) and (3.6), the dependence of D on T is
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Figure 3.6: Diffusion constant D calculated at different plasma parameter
I' in log-log plot for M0O(triangle), M25(square), and M50(diamond) plasma
respectively, with the three lines from linear fitting (see text).

then obtained:

MO0 : D=136T""
M25 : D=146T°%
M50 : D=152T%% (3.10)

3.3.2 Stress tensor autocorrelation and shear viscosity

It is of particular interest to study the shear viscosity of our three plasma,
as the low viscosity is one of the most important discoveries for sQGP from
RHIC experiments. For this purpose, one can measure the autocorrelation of
the off-diagonal elements of stress tensor, namely

1,2,3
L2
n(r) = 5o < ;Zk(T)Zk(()) > (3.11)
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with the stress tensor off-diagonal elements

T = Em(m)z(vi)k - % ;(rzj)l(Fz‘j)k

= > mui()s+ Y m(ria (3.12)

i=1 i=1

In the above equations i, j refer to particles while [, k refer to components of
three-vectors like separation, velocity and force. r;; and F;; are the sepa-
ration and force from particle ¢ to particle j respectively, while r;, v;, a; are
the position, velocity, acceloration of particle . The equivalence of the two
expressions in the second equation is discussed in great details in [57]. The
V in the first equation is the system volume. In Fig.3.7 typical plots of n(7)
for three plasma are shown. Again the relaxation of real correlation is pretty
quick and noises dominate the later time. With these correlation functions at
hand the Kubo formula then leads to the following shear viscosity n:

n= /000 n(t)dr (3.13)

In general shear viscosity is a complicated property of many-body systems,
the value of which depends on many factors in a nontrivial way. Roughly, a
system with either very small T" (like a gas) or very large I" (like a solid) will
have large viscosity while a system in between (like a liquid) will have low
viscosity with a minimum usually in I' = 1 ~ 10(see for example [23][58]). A
qualitative explanation is that both the particles in a gas and the phonons in a
solid can propagate very far (having a large mean-free-path) and transfer mo-
menta between well-separated parts, thus producing a large viscosity, while in
a liquid neither particles nor collective modes could go far between subsequent
scattering, thus making momenta transfer very much localized and leading to
a low viscosity.

Now turning to our plasma with magnetic charges, since we have a rela-
tively weakly-coupled magnetic sector, one may wonder if the magnetic parti-
cles will contribute more to large-distance momenta transfer and hence increase
the viscosity significantly. We however argue that in the opposite, the Lorentz
force induced by the existence of magnetic charges will somehow confuse parti-
cles and collective modes, thus helping keep the viscosity to be low. Indeed, as
shown in Fig.3.8, the viscosity goes down as increasing concentration of mag-
netic charges. At small I' < 1 (in the gas phase) the three curves are getting
close to each other, but when I' increases into the liquid region > 1 there is a
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Figure 3.7: (color online) Stress tensor autocorrelation functions n(7) for (from
top down at zero time) MOO(black curve), M25(green curve) and M50(red
curve) plasma, taken at I' = 1.01,0.99, 1.00 respectively.

considerable decrease of viscosity in M25 and even more in M50 plasma. The
M50 with E-charges and M-charges to be 50%-50%), has the values of viscosity
about half of the pure electric MO0 plasma at the same I'. So, we conclude that
the existence of magnetic charges may help us to understand the extremely
low viscosity of SQGP. A rough parametrization of the data gives the following
viscosity dependence on I' in the plotted region:

MO0 : 5 =0.002/T%*+0.168 /103
M25 : n=0.013/T"% +0.105 /7%
M50 : n=0.096/T%%+0.001 - T2 (3.14)

In all of them the first term is most dominant at very small I" while the second
term becomes important at relatively large I". We noticed that for M50 there
is already positive power term of I', which is in accord with the expected
qualitative feature. Similar terms will appear in two other plasma when we
will be able to include in the fitting more points from large I'. At larger I'
we expect growing viscosity, as other MD calculations (like GSZ) in the past
reported. We do not report results for such values of I' in the paper precisely
because in this case collective modes (eg. the non-diagonal quadruple one) is
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Figure 3.8: Shear viscosity n calculated at different plasma parameter I' for
MO00(circle), M25(square), and M50(diamond) plasma respectively.

so persistent that during our observation time it does not decay well enough to
get reliable integral of the appropriate correlation function in Kubo formula:
this point will be demonstrated in details in the next section. Since however
we are motivated by QGP physics in general, the transport coefficients of the
I’ region shown in Fig.3.6,3.8 are most interesting.

3.3.3 Electric current autocorrelation and conductivity

The last transport property we study in this paper is the electric current
autocorrelation and the electric conductivity. This analysis is only done for
pure electric MOO plasma since the comparison among M00, M25 and M50
(which already have different E-charge concentrations) doesn’t make much
sense. The electric current autocorrelation is given by

o(7) _3VT Zelvl -(Zei'vi(O))> (3.15)
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Figure 3.9: (color online) Electric current autocorrelation functions o(r) for
pure electric MOO plasma taken at (from top down at zero time) I' = 6.33(red
curve) and I' = 14.53(black curve).

with e; the electric charge of the ith particle. And the electric conductivity is
obtained from Kubo formula as

o — /0 " o(r)dr (3.16)

In Fig.3.9 we show the typical o(7) as a function of 7 for two values of I
For this correlation function we do notice that even for I' not large, the late
time correlation is not purely noise but still has small oscillation. This is not
unreasonable since related collective modes like plasmon may develop even for
a gas. After integration it turns out in the region I' ~ 0.3 — 15 the conduc-
tivity is scattered between o = 0.101 — 0.141 without clear tendency, which
may indicate the electric current dissipation is not sensitive to I' in this region.
It is very interesting to see what will happen to the color-electric conductiv-
ity (giving information about color charge transport) in a Non-Abelian plasma.
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3.4 Collective excitations at very strongly cou-
pled regime

In this section we will report interesting results for collective excitations found
at very strongly coupled regime (I' greater than a few tens) of the pure elec-
tric (M00) plasma®. The signals of these excitations are extraordinarily clear
when I' goes to ~ 100 or larger. We came to notice these very good modes
not in a straight forward way. Instead, these modes have revealed themselves
dramatically in some unusual structures of the dynamical correlation func-
tions and their fourier spectra, which we measured first. Only after thinking
about possible source of these structures we turned to systematic and direct
measurements for certain collective modes, which are found to coincide with
correlation functions’ structures in a distinct manner. As mentioned before,
in this regime our plasma is like a ”self-holding drop” which has very different
collective motions from a plasma in periodic boxes: the latter has the famil-
iar phonon modes while the former is really like a raindrop, having vibration
modes like monopole modes, dipole modes, quadruple modes, etc correspond-
ing to different components of density distribution’s spherical harmonics. We
will discuss these modes respectively in more details in the following.

3.4.1 Monopole modes

Let’s start with the velocity autocorrelation function (3.7) which is supposed
to almost vanish (except a little random noise) at large correlation time and
give convergent integral to yield diffusion constant, as seen in previous section.
However when measured in the very strongly coupled regime, this correlation
function is found to have robust oscillating behavior even for very large time
which of course couldn’t be considered as noise, see Fig.3.10. By looking at
the fourier spectrum of it, one immediately sees a large and narrow peak at
wP = 0.35 very clearly on top of a very broad shoulder structure, as shown in
Fig.3.11. These behaviors are true for I' down to about 50.

Now the question is why there will be such peaks in velocity autocorre-
lation. The answer lies in the monopole modes, which can be directly mea-
sured through simply the time dependence of average particle radial position,
namely:

R(t) = ~ i 7i(0)| (3.17)
N “4

9Though this section is not very much related to the main theme of the thesis, it shows
the power of our MD approach and obtains results of their own interest.
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Figure 3.10: (color online) Velocity autocorrelation function taken at I' =
116.91.
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Figure 3.11: (color online) Fourier transformed spectrum of velocity autocor-
relation function taken at I' = 116.91.
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Figure 3.12: (color online) Average monopole moment R(t) (see text) as a
function of time. taken at I' = 116.91.
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Figure 3.13: (color online) Fourier transformed spectrum of average monopole
moment R(t)(see text), taken at I' = 116.91.
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Figure 3.14: (color online) Stress tensor autocorrelation function taken at
' =116.91.
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Figure 3.15:  (color online) Fourier transformed spectrum of stress tensor
autocorrelation function taken at I' = 116.91.
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Figure 3.16: (color online) Average off-diagonal quadruple moment Qo3(t)
(see text) as a function of time, taken at I' = 116.91.
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Figure 3.17:  (color online) Fourier transformed spectrum of average off-
diagonal quadruple moment Qa3(t) (see text), taken at I' = 116.91.
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In Fig.3.12 one sees really nice oscillations lasting for near hundred revolu-
tions. In a small movie showing the positions of particles at several subsequent
time points the ”drop” in monopole mode looks like a beating heat. This os-
cillation amplitude decreases slowly indicating a nonzero but small width of
this monopole mode. Again the fourier spectrum gives important information
such as the characteristic frequency and width of collective mode. In Fig.3.13
we can see one major narrow peak at wi! = 0.35 together with a few roughly
visible but much smaller lumps at w = 0.22,0.46,0.70. w = 0.70 structure
may be a secondary harmonics of the major peak, and seemingly the 0.22 and
0.46 may also be in the same series of harmonics with different ranks.

The important finding we want to point out is the coincidence of w here
with the peak w? from velocity autocorrelation function. This result tells us
the monopole mode, in a form of radial vibration, has nontrivial influence on
velocity autocorrelation and consequently on particle diffusion.

3.4.2 Quadruple modes

The study of stress tensor autocorrelation in the strongly coupled plasma gives
us even more interesting correspondence between correlation functions and
collective modes. In Fig.3.14 we plot the stress tensor autocorrelation (3.11)
as a function of time, and in Fig.3.15 its fourier spectrum, in which three clear
and narrow peaks can be seen at wi = 0.20, wg = 0.40, and wi = 0.45. The
0.40 peak, which is the smallest one, may be a secondary harmonics of the
remarkable 0.20 peak. At I' as small as about 25, the 0.20 peak is still alive
in this correlation function. Because of the existence of these, the correlation
function has significant oscillations with large amplitude even for very large
correlation time.

To find the source of these, we directly measured the off-diagonal quadruple
modes by the following probe:

Qult) = 3 S rON(r()e  Lk=123, 1£k (19

i=1

We have three independent of them, say (12, @23, @31. In Fig.3.16 we show
one of them as a function of time with similar results for the other two. From
the figure we can see that at the very beginning there is almost no quadruple
mode but its amplitude grows significantly in a time interval 0 — 200 during
which the monopole mode decays down (see Fig.3.12). Then after that they
persist for long time. This indicates that these off-diagonal quadruple modes
are very robust and somehow ”cheap” to excite and the energy initially in the
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monopole modes is preferably transferred into the quadruple modes.

Now when we plot the fourier spectrum of the off-diagonal quadruple modes
in Fig.3.17, amazingly three very clear peaks appear at w? = 0.20, w;‘g = 0.40,
and w? = 0.45, which are exactly the same frequencies found in the stress
tensor autocorrelation. The relative amplitudes among the three peaks are
also similar in two cases. This is a profound correspondence which means the
stress tensor correlation and the related transport property, namely viscosity,
are especially dominated by the off-diagonal quadruple modes of the system.
This type of connection may be universal and one may find certain collective
excitations for each dynamical correlation function.

Before closing this subsection, let’s also mention the diagonal quadruple
modes which we also studied. This part of quadruples could be probed by the
following quantity:

1 N
Qll = N Z |rl<t)|2} ’ [ = 1a 273

=1

(3.19)

It has similar behavior as the off-diagonal modes (to save space we skip to
show the plots) , with peaks in spectrum at wf = 0.12 and w5Q = 0.25 which
presumably are different ranks in the same harmonic series. These peaks how-
ever are not seen in the stress tensor autocorrelation, which is understandable
since the stress tensor autocorrelation we study is actually the correlation of
stress tensor’s off-diagonal parts which is related to shear viscosity. We think
these peaks of diagonal quadruple modes must be seen in the diagonal parts
of stress tensor correlation which is related to the bulk viscosity.

3.4.3 Plasmon modes

It is clear that our "drop” won’t have dipole (or any odd-multiple) excitation
according to symmetric setting. But there can be another type of dipole
excitations, namely the electric dipole modes, or in a more common notion
the plasmon modes. These can be probed by

1
:—E [=1,2 2
( NZ:1 l ) 773 (3 0)

The corresponding correlation function should be the electric current auto-
correlation (3.15). To clearly reveal these modes we shift our positive charges
and negative charges with small displacement in opposite directions at the
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Figure 3.18: (color online) Electric current autocorrelation function taken at
I' = 184.00.
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Figure 3.19: (color online) Fourier transformed spectrum of electric current
autocorrelation function taken at I' = 184.00.
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Figure 3.20: (color online) Average electric dipole moment eR(t) (see text)
as a function of time, taken at I' = 184.00.
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Figure 3.21: (color online) Fourier transformed spectrum of average electric
dipole moment eR(t) (see text), taken at I' = 184.00.
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initial time which introduces zero dipole but nonzero electric dipole. We then
plot the electric current autocorrelation (Fig.3.18) and its fourier spectrum
(Fig.3.19), and the direct electric dipole (Fig.3.20) and its fourier spectrum
(Fig.3.21) as well.

Again one see similar behavior in both and find similar peak structure at
w’ = wF = 2.0 in both spectra. These peaks are large but broad and have
some fluctuation, as compared with previous peaks, which is understandable as
the plasmon modes usually have bigger width (larger dissipation) than sound

modes. These modes seem to be present even if the system has only I' ~ 10.

If one calculate the plasmon frequency using the simple formula w, = w/‘l’;nﬁ

for our drop (with n = 1/a®, a = 1.18)\) we then get w, = 2.7. This is not
far from the observed 2.0 and the discrepancy must be there because the size
of our system is only about 10 times the microscopic scale and the positive
and negative charges in the middle are not entirely screening each other as
assumed when deriving the formula.

3.4.4 Size scaling of the collective modes

Since the monopole and quadruple modes should be sound modes, it is in-
teresting to see how their frequencies scale with the system size. For a large
enough system one expects the sound modes dispersion to be w = ¢k — %Fst,
namely the mode frequency itself scales linearly in k while the width scales
quadratically. What we did is to change system size to be 10 x 10 x 10,
8X8X8,6x6x6,and 4 x4 x4, and then look at the change of peaks in those
monopole and quadruple modes (picking the major peaks wi, le and w?)
As demonstrated in Fig.3.22 where these frequencies are shown as function
of 2w /L with L the system size, the linear scaling is very well observed. We
obtain the following linear fitting for the three modes:

Monopole cwM =0.610 - k
Quadruple D : w? =0404 - k
Quadruple N — D : w® =0.329 - k (3.21)

The two quadruple modes have similar slope (with the diagonal one a little
larger) which means they have close propagation velocity, while the monopole
modes have a slope or propagation velocity larger by a factor about 1.5 — 2.
This is reasonable, just like in usual solid the longitudinal sound waves have
larger velocity than the transverse ones. The lines show remarkable consistency
with the fact that sound modes with infinitely large wavelength should have
zero frequency. For the width however we didn’t unambiguously see a regular
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Figure 3.22: Peak frequency as a function of 2w/L (with L the system
size) for monopole modes(circle), diagonal quadruple modes(diamond), and
off-diagonal quadruple modes(square) respectively, with the three lines from
linear fitting (see text).

dependence on L, which indicates our systems are not macroscopic enough
since the width is more sensitive than frequency itself to the dissipation effect
related to system size.

The last result to mention is about the dependence of plasmon modes on
system size. Actually we found for all four sizes, the plasmon frequencies
roughly stay around w? = 2.0 without changing, only with the peak struc-
ture getting worse. Again this is expected since the usual plasmon dispersion

displays a plateau at w, = \/% for k not large.
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Chapter 4

Magnetic Component of sQGP
Is a Good Liquid

In this chapter, we present the main results that have supported our magnetic
scenario for sQGP. These come from several different aspects: 1) by comparing
MD predictions of shear viscosity and diffusion constant for sQGP with the
empirical data from RHIC experiments; 2) by exploring the “magnetic bottle”
effect which is shown capable of leading to liquid-type transport properties; 3)
by analyzing the monopole-anti-monopole equal-time spatial correlation func-
tions obtained both from our MD results and from the dedicated lattice data;
4) by studying the magnetic running coupling and the multi-body plasma pa-
rameter of the magnetic sector. A coherent and natural integration of all these
has led us to the conclusion that magnetic component of sQGP is a good lig-
uid.!

4.1 MD predictions for sQGP

4.1.1 Mapping between MD systems and sQGP

With the MD-obtained empirical formulae for diffusion and viscosity, it is of
great interest to see what they predict for the parameter region corresponding
to the sQGP experimentally created at RHIC. To do this mapping, one has to
identify the corresponding physical values of basic units (namely mass, length
and time) in the destination system and then combine dimensionless numbers
and relations from MD with proper dimensions. Also the plasma parameter
I' should be determined for the destination system such that we pick up the

!The works in the present chapter are based on [49][59].
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MD-predicted values of interesting quantities (say, diffusion constant and shear
viscosity) at exactly the same I" value.

Following similar estimates as in [23], we summarize below the relevant
quantities of sQGP around 1.57.:
1. Quasiparticle (quarks and gluons) mass can be estimated as m ~ 3.07;
2. The typical length scale is simply estimated from quantum localization to
be ro ~ 1/m ~ 1/(3.07);
3. The electric coupling strength, after averaging over different EQPs(quarks
and gluons) with their respective Casimir, is roughly < a,C' >~ 1;
4. The particle density is roughly given, under the light that lattice results have
shown the sQGP pressure and entropy to reach about 0.8 of Stefan-Boltzmann
limit, by n & 0.8(0.122 x 2 x 8 + 0.091 x 2 x 2 x N, X N;)T? ~ 4.2T3;
5. This density estimation leads to the Wigner-Seitz radius aws = (:2-)'/% =
1/(2.6T) =~ 1.1ry;
6. We then get the time scale as the inverse of plasmon frequency 7, = 1/w, =
(=) ~ 1/(4.27);

4mnasC
7. The entropy density is estimated from Stefan-Boltzmann limit as s =~

0.8 x 4T[2 x 8 4 (7/8) x 2 x 2 x N, x Ny|T* ~ 16T,

Now let’s discuss the value of I'. As already mentioned, the I' given in our
MD is the actual ratio of potential to kinetc energy, which is measured during
the simulation. The usually quoted one, defined as I' = W;T)’ could be
considered as a pre-determined ’superficial Gamma’. Unfortunately it is not
clear how to estimate the actual Gamma I' of sQGP while the superficial
Gamma I is obtainable for sQGP, which is ' &~ 2.6 < a,C >~ 2.6. So we
should try to figure out the superficial Gamma in our MD and map the results
accordingly. The two are different though, they are monotonously related to
each other, namely when one is large(small) so is the other. Since our MD has
been done with nA\3 = 0.17, the (aws)yp ~ 1.12X which means in our MD
I' = 0.89/T, which after combination with (3.6) will give us the conversion
formula between the two Gamma’s. Similar conversion relation could also
be obtained for cQGP in [23] from their Fig.8 though in their case they use
superficial Gamma as basic parameter and measure potential energy from
simulation.

With all the above ingredients we are at place to do the mapping for inter-
esting transport coefficients D and 1 between our MD systems and the sQGP.
The mapping is a two-way business: one may map the experimentally sug-
gested values back into corresponding MD numbers, as is done and shown in

2This 7, has subtle difference in time scale used in our MD, namely the MD time unit
7 is related to inverse of plasmon frequency by 7 = 7, x (47nA*)'/2 a 1.467, which should
be taken into account for mapping.
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Figure 4.1: Plots of Log[1/n] v.s. Log[1/D] for three different plasmas. The
shaded region is mapped back from experimental values, see text.

Fig.4.1; or one can use the MD-obtained relations to predict the correspond-
ing relations of sQGP after conversion of units, as is shown in Fig.4.2 and
discussed in the summary part. Here let’s focus on MD systems in Fig.4.1
where a Log[1/n] v.s. Log[1/D] 3 is plotted: data points for all three plasmas
fall on a universal unit-slope straight line on the left lower part, indicating a
small I' gas limit with diffusion and viscosity both proportional to mean free
path; all three curves soon deviate from gas limit at larger I" (strong coupling)
and become flat in the liquid region; the shaded oval is obtained by mapping
back the following experimental values: n/s ~ 0.1 —0.3, 277D ~ 1 — 5, which
is clearly not close to gas region but near the liquid region, especially the one
of the M50 curve. More about comparison will be given in the next subsection.

3The reasons to plot n and D in this way are: 1) from right lower corner to the upper left
corner we go from weakly coupled (small I') to strongly coupled (large I') regime; 2) a weakly
interacting gas will show a linear behavior on this plot which will be easy to distinguish,
while deviation from such behavior will signal the emerging liquid regime.

73



4.1.2 A Transport Summary for sQGP

Now we would like to compare our MD predictions of shear viscosity and
diffusion constant for sQGP with the results extracted from the RHIC experi-
mental data. Experimentally the shear viscosity could be extracted by fitting
viscous hydrodynamical calculation (with shear viscosity as a given input) to
the measured v, spectra (see e.g. [16]), while information about diffusion could
be extracted by fitting the hydro+Langevin (with diffusion as a given input)
simulations with measured heavy quark R4 and vs (see e.g. [60]). We want
also to compare our results with the predictions from calculations using the
AdS/CFT correspondence. AdS/CFT provides a unique way of doing non-
perturbative calculations in a particular gauge theory, and the application of
AdS/CFT for RHIC-motivated calculations has recently become very popu-
lar. All the results are summarized in Fig.4.2, as a log-log plot of properly
normalized dimensionless (heavy quark) diffusion constant and viscosity.

The dashed curve in the left lower corner is for A’=4 SUSY YM theory
in weak coupling, where viscosity is from [61] and diffusion constant from[62].
The curve has a slope of one on this plot, as in weak coupling both quantities
are proportional to the same mean free path. As one can easily see, weak
coupling results are quite far from empirical data from RHIC, shown by a gray
oval in the right upper corner. Viscosity estimates follow from deviations of
the elliptic flow at large p; from hydro predictions [16], and diffusion constants
are estimated from Ra4 and vy of charm [60].

The curve for strong-coupling AdS/CFT results (viscosity according to
[63] with O(A=3/2) correction, diffusion constant from [56]), shown by upper
dashed line, is on the other hand going right through the empirical region. At
infinite coupling this curve reaches s/n = 4w which is conjectured to be the
ever possible upper bound.

Our results — three solid lines on the right — correspond to our calculations
with different electric/magnetic charges’ ratios. They are very close to the
empirical region, especially the version with equal mixture of the two types of
charges.

Let us end with a warning, that the empirical data, the mapping from
classical system to sQGP and the relation between QCD and the NV =4 SUSY
YM used in AdS/CFT will only become quantitative with time: this figure is
just the first attempt to get together all three ingredients of the broad picture.
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4.2 Microscopic Origin for the “Good Liquid”

The results in the previous section we showed that by maximally mixing elec-
tric/magnetic charges (i.e. our M50 plasma as compared with the M00 and
M25) one achieves the best liquid behavior with lower viscosity and smaller
diffusion, which indicate that the effective mean free path (if one wants to use
such term) of the constituent particles is the shortest.

One may ask about the microscopic origin of such transport properties in
our mixture plasma. As among the three plasmas the only difference comes
from the E/M ratio, the Lorentz force between the two types of particles is
most likely the microscopic origin. We suggest an explanation based on the
“magnetic bottle” effect which was originally invented by G.Budker in 1950’s
and routinely used in confined plasma fusion experiments. The essence of
this effect is that electrons will be bounced back from the surrounding strong
magnetic field by Lorentz force when they try to exit the confining zone. In
our study of single monopole motion in Chapter 2, we already saw the dual
effect happening. In particular we demonstrated by the dipole example that
the monopole is “forced” by the Lorentz force to collide head-on with the
standing charges.

Coming to the mixture plasma with electric/magnetic charges, we found
that each charge can be trapped for long time bouncing between the surround-
ing charges of the other kind. As as the fields are always becoming stronger
and stronger close to the charges, the Lorentz force leads to curling of the
trajectory with decreasing radius, forcing charges and monopoles collide more
often than in the plasma made of only one type of particles, thus explaining
the transport properties of the “good liquid”.

Below we use a “Gedanken experiment” to further elucidate such effect as
the microscopic origin for the “good liquid”.

4.2.1 Monopole Motion in the Field of a “Grain of Salt”

We consider an idealized situation: a monopole is put at the center of a “grain
of salt” which has eight static electric charges (with alternating signs) sitting
at the corners, and then the monopole gets a random “kick” and blasts off
with random direction and magnitude of initial velocity, see Fig.4.3 upper
panel. We can repeat this “Gedanken experiment” as many times as we want,
and what we are interested to learn will be: 1) what would the trajectory (as
determined by classical equation of motion) be looking like; 2) how long it will
typically take for the monopole to escape to the outside of the cube.

Naively, one may suspect in most cases the monopole will simply head
toward one of the surfaces and escape the cube with its trajectory being slightly
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Figure 4.3: (upper) The Gedanken experiment setup: a monopole blasts off
with randomly given initial velocity from the center of a cube with eight electric
charges (with alternating signs) sitting at the corners, like a “grain of salt”;
(lower) An example of the monopole trajectory (projected on 2D coordinates
x-y), which starts from the center and exits the cube near one of the right-side
face center, with several visible Poincare-cone like structures near the corners.
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bent due to possible collision with the nearest electric charge. It turns out
most of the trajectories are highly complicated: a typical example is shown in
Fig.4.3 lower panel. The trajectory shows rather nontrivial features. First of
all, the monopole experiences far more than one collisions before it finally finds
the “door” out, as is clear from the multiply-folded trajectories; second, the
collisions are very strong, this could be seen from the facts that the monopoles
are often completely bounced back instead of only being mildly refracted, and
many parts of the trajectories are highly curled within small space; finally it
is impossible to escape our eyes that there are several visible Poincare-cone
like structures near the corners (where the electric charges are), and those
are precisely where the strong collisions happen. From these observations,
we may conclude that the monopole is, instead of encountering the electric
charges at corners by chance, rather being forced to rotate on the Poincare-
cone, blast all the way to the charge and then be bounced back, only to
be forced toward another corner for the next strong collision. If we replace
the monopole with an electric charge and do the same experiment, no such
nontrivial phenomenon happens. The Lorentz force here provides a unique
way of enhancing the collision rates and trapping the monopole for long time
(not permanent though): thus we may call it a Lorentz trapping effect.

One may ask how sensitive the above phenomenon is to the direction and
magnitude of the initial velocity of the monopole. The direction actually does
not matter at all, while the magnitude of the velocity does matter: basically
the smaller the velocity is, the longer and more complicated the trajectory
will be. We will quantitatively address this issue in the next subsection. In
the rest of this subsection we answer another related question: is such Lorentz
trapping effect also present in the quantum mechanical context? The answer
is positive, see below.

The Quantum Effective Potential

Similarly to the dipole problem we studied in Section 2.2.2., we can write
down the quantum mechanical Hamiltonian (2.10) for the monopole in the
external electric field of the eight charges sitting at (+a, +a, +a). The vector
potential A can be obtained by considering the eight charges as four pairs
of electric dipoles and superposing up their respective Agpoe with the latter
given by (2.13) after proper shift of the dipole center coordinates. Then from
the Schroedinger equation one can read off the quantum effective potential.
The main part of it is Vip(z,y,2) ~ g>A*/2Mc?. In Fig.4.4 we show the
effective potential on the x-y plane at three values of z, i.e. V.ff(z,y,z =
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Figure 4.4: The quantum effective potential for a monopole inside the cube
of electric charges on the x-y plain at z = 0,a/2, a from top down, see text.
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0),Voff(z,y,2 =a/2) and V.f f(x,y,2 = a). * Geometrically these are three
planes (parallel to the x-y surface) across the center, halfway from the center to
the surface, and right on the surface. For z = 0, the potential grows to be quite
high when approaching the four corners (the four edges of the 3D cube), with
only the zones near the four surface centers having flat valley; going upward
to z = a/2 the potential becomes stronger and stronger with all four sides
becoming high barriers; finally when going to z = a, the potential really makes
a quantum “cage” for the monopole such that it has vanishing probability to
penetrate the four “thick walls” surrounding it. The only thin tunnels for
the monopole to escape with ease are those near-face-center zones where the
potential is flat. So we see that in the quantum context, the Lorentz-type
coupling produces effective potential that is capable of trapping the monopole
while not really binding it permanently, which is a quantum version of the
Lorentz trapping effect we uncovered classically in the preceding part.

4.2.2 Lorentz Trapping Effect Makes the Good Liquid

In the present subsection, we will quantify the Lorentz trapping effect and show
how it may ultimately affect the transport properties of a mixture plasma with
both electric and magnetic charges.

Coming to back to our classical “Gedanken” experiment, for each repeated
trial, we register the total trajectory length Lg,. before it escapes the cube,
or equivalently the total trapping time 7gs.. = Lpsc /vo before its escaping. As
we already mentioned, the effect is sensitive to the monopole’s initial velocity
magnitude vg. So we choose several different values of vy, and for each v
we repeat the experiment with random initial directions for 10° times and
obtain a histogram for various Lgs. /a: the results are shown in Fig.4.5 for
vo = 0.1,0.3, 0.5 respectively.® The plots show that Lz, becomes much flatter,
i.e. with more probability to be trapped with longer time, with smaller vj.
The explanation is simple: monopole with smaller velocity will be more easily
curled (under fixed electric field strength) with smaller Larmor circle, thus
more often be forced to collide with the charges. As a comparison we also did
the same experiment for an electric charge released at the center with those
values of vy, yet it turns out the electric charges almost always exit immediately
and never get bounced back, see the three indistinguishable curves on top of
each other close to the left axis. So this study demonstrates that Lorentz force,
the unique mutual interaction between electric and magnetic charges only in

4Note that the potential has cyclic symmetry of x,y, z as well as various mirror symme-
tries so the three selected planes already tell a lot info about the potential
5The unit system is set in similar way as in the MD simulation.
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Figure 4.6: The collision number C' as a function of plasma parameter I' on
a log-log plot, see text.
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a mixture plasma, does provide a quite efficient mechanism that very much
enhances collision rates and traps particles locally for time scale much longer
than normal time scale for microscopic motion, i.e. Tgge. >> a/vp.

We can define an average effective collision number for the monopole with
each given vy by averaging out the histogram for Lg.: C =< Lgs.(v0)/(2a) >.
Further more the kinetic energy of the monopole is KE o< v2. If we “pretend”
the monopole is taken as a representative of a plasma with parameter I' =
PE/KE, then vy oc 1/T''/2. In this way we schematically obtain a plot showing
how the so-defined C' changes with I', see Fig.4.6. It shows a linear relation in
the Log-Log plot, which can be nicely fitted by C' oc I'%47. For such a monopole,
its mean free path Ly pp o 1/C o 1/T%47. One may image that there is
a whole crystal with periodically repeating electric cube and the monopole
is jumping from the original cube to the neighboring cubes and eventually
diffuses to far away distance. In a hand-waving manner we may argue that
the diffusion constant for such a monopole would be D oc Lypp oc 1/1047
which (probably by chance) is close to the power law both obtained from our
MD and from the AdS/CFT calculation.

Finally we extend the above argument into a dynamical mixture plasma: in
such a plasma, each electric charges are surrounded by neighboring monopoles
and vice versa, so by the Lorentz trapping effect they could be spatially in-
terlocked for certain time that is much longer than microscopic motion time
scale, but eventually on the even longer time scale they could diffuse away
from the original places. This microscopic picture explains, as we believe, why
the maximally mixed M50 plasma is such a good liquid.

4.3 Monopole-Anti-Monopole Equal-Time Spa-
tial Correlation Functions

In this section, we study another important property that can also distinguish
Coulomb systems in gaseous, liquid or solid regimes, namely the particle-
particle equal-time spatial correlation functions. It is defined as a function of
the distance r between two species of particles:

< Doim1N, Zj:l,Nb o(|r — "'Jb‘ —r)>
NyNydnr? |V

Gab(r) (41)

where a, b denotes the two species of particles with total numbers N,, N, in a
volume V.
It is well known that what makes a liquid so difficult to study as compared
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Figure 4.7: Monopole-anti-monopole equal-time spatial correlation function
from MD simulations. The gray boxes are data points and the red curve is
statistically smoothened.

with a gas or solid is that it can not be statistically described by any single
particle (or quasi-particle, say phonon or other collective excitations in solid)
distribution. This failure of Boltzmann-type description for liquid is precisely
encoded in its very strong two-particle correlation functions.

Since we are particularly interested in the magnetic component of sSQGP, a
very instructive diagnosis for that purpose would be the G;;;;, the monopole-
anti-monopole equal-time spatial correlation function, which will tell how
strongly the monopoles are correlated. Below we present results for G
from our MD simulations and from recent accurate lattice data as well.

MD Results

The MD result is shown in Fig.4.7, for the 50%-50% electric-magnetic sym-
metric plasma with I' = 2.3. We choose this example because it has the
closest properties to the sSQGP (as probed by RHIC) according to the trans-
port summary presented in the first section. The plot features a considerable
nearest-neighbor peak, reaching around 1.25, with hints to small secondary
correlations: a typical liquid behavior. The same correlation function for a
weakly coupled gas would have a very small peak only barely above 1, while
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Figure 4.8: Monopole-anti-monopole equal-time spatial correlation function:
the points are lattice data from [Nucl. Phys. B799:241-254, 2008], the dashed
lines are our fits.

a solid will have visible multiple peaks/valleys. The reader shall recall that
we do not consider here the usual Coulomb plasma due to presence of equal
number of electric particles in our mixture — with which monopoles interacts
with a strong Lorentz force, leading to very complicated motion — so the result
is far from trivial.

Lattice Data

Lattice studies of monopoles have a long history which we would not even
attempt to summarize here. We will also not discuss here either the properties
of these monopoles (masses) or their interaction with other main players in
sQGP — gluonic quasiparticles and the Polyakov loop or “Higgs field” Ay. We
will focus entirely on one aspect of these data, related with monopole-anti-
monopole equal-time spatial correlation function (4.1) just discussed. Those
have been derived on lattice recently by D’Alessandro and D’Elia[64], for SU(2)
pure gauge theory. Fig.4.8 shows two sets of their data corresponding to the
smallest and highest temperatures, T' = 1.17, and T" = 3.87,. Both shapes
are very similar to the one in our MD studies shown above, in their shapes
and in the magnitude of the peaks. These data, together with our MD results,
provide firm and direct evidences that the magnetic component of sQGP is
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indeed a liquid.

Another qualitative feature apparent from this plot is that the correlation
gets stronger at the higher T, confirming our expectation that the magnetic
component of sSQGP gets stronger coupled at high T, oppositely to the electric
component. This important point will be discussed in the next section.

4.4 The Coupling of the Magnetic Component

In this section, we focus on one of the main subjects of our magnetic scenario
— the monopole mutual interactions. Before coming to that, we’d like to very
briefly repeat some of the relevant theoretical issues already discussed in the
Introduction. The most important basis for pursuing a magnetic description
comes from the famous Dirac condition, demanding basically that when one
of the two couplings — electric and magnetic — may be small, the other must
necessarily be large. At the level of quantum field theory the Dirac condition
elevates into a requirement that the electric/magnetic couplings must run in
the opposite directions.

Specifically for the QGP system, we know what happens to the electric
component: at high T it can be described perturbatively, with e.g. small
quark and gluon effective masses M /T ~ \/@cjectric << 1; as T goes down and
one approaches the deconfinement transition 7' — T, the electrically charged
particles — quarks and gluons — are getting heavier and more strongly coupled,
as shown by lattice data as well as RHIC results. To summarize, from high to
low T the electric coupling runs from small to large values while the electric
particles change from being light and abundant to being heavy and statistically
irrelevant.

For the magnetic component, we also know that at high T" we know the
monopoles in this case are heavy composites which play a minor role, although
they are strongly interacting and form an interesting sub-sector in which per-
turbative analysis is impossible. However at this point one may ask what
happens with monopoles: as T" — T, the same logic suggests that they must
become lighter and more important. At some point their masses (and roles)
get comparable to that of the electric objects, after which the tables are turned
and their fortune reversed.

Here are the two questions we already proposed in the Introduction part:
(i) Is there evidence that the magnetic coupling does run in the opposite
direction to that of the electric coupling? (ii) How small does the magnetic
coupling become at T" — T., and is a perturbative description of magnetic
plasma possible? As the reader will see, we will answer “yes” to the first and
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Figure 4.9: Open squares show the temperature dependence (in 7, units) of
the magnetic coupling constant «y, from the fit to lattice data. Closed circles
are their inverse, the corresponding electric coupling from the Dirac condition,
together with an asymptotic freedom (dashed) curve (see text).

“no” to the second question.

The Monopole-Anti-Monopole Coupling

To get a more quantitative measure of the monopole-anti-monopole mutual
interaction, we have fitted their equal-time spatial correlation function (shown
in Fig.4.8) by the Debye formula in the region where deviation from 1 is small

—r/Rq
%] (4.2)

G () ~ cap|

in which aj, is the magnetic coupling, and the Ry is magnetic screening ra-
dius. See the dashed curves in Fig.4.8. Some details about the fitting at each
temperature: we exclude the last few points that are very close to but lower
than 1 as the fitting formula approaches 1 only from above; the rule to de-
termine how many points from large r toward the peaks to be included is to
make x?/d.o.f as close to 1 as possible; the x?/d.o.f’s for the eight T’s are
1.16,1.96,1.17,0.46,0.82,0.16, 1.16, 1.23 respectively.

The resulting monopole-anti-monopole coupling from the fitting for all
available temperatures is shown in Fig.4.9: as expected it is getting weaker at
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Figure 4.10: Effective magnetic plasma parameter I"; at various temperatures.

low T and stronger at high T'. Inverting these values (because of the Dirac con-
dition (?7)) one gets the respective electric couplings, which we compare to the
dashed green curve corresponding to the pure gauge SU(2) one-loop asymp-
totic frf:edom expression ap R @ Ln%g*(T B with the coefﬁci‘ent C =54
determined from the last point at 7' = 3.87.. The one-loop running becomes
much slower as T" decreases, which is normal and shall be cured by higher order
loops and more importantly by non-perturbative corrections such as instanton,

see [65] for more discussions.

The Plasma Parameter for the Magnetic Component

In the many-body setting, two-body interaction alone is not sufficient to deter-
mine how strongly the whole system is coupled, e.g. in the gas, liquid or solid
regime. For that purpose one should examine the the key classical Coulomb
plasma parameter I" defined by

ac / ()"

T

r

(4.3)

with a¢ the Coulomb coupling between charges, ) = E or M, and n the
density of the corresponding charges. Again tt roughly means the ratio of the
potential energy (interaction) to the thermal kinetic energy; thus a weakly
coupled plasma has [' << 1. Plasmas with [' > 1 are known as strongly cou-
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pled, and for I' < few10 it is in the liquid regime, for I' > I'. ~ 100 it is solid,
with less precisely defined “glassy” regime in between. The electric parameter
in sQGP is believed to be 'y ~ 3 at T' = (1 — 2)T, [23], so it corresponds to
a liquid. The value of the magnetic component’s plasma parameter 'y, is the
subject here.

In Fig.4.10 we combine the data on the magnetic coupling and the monopole
density from the same lattice work [64] to get the dimensionless magnetic
plasma parameter (4.3) in the studied temperature range T~ 1 — 47,. We
use a formula n(T)/T? = 0.557/[Ln(2.69 « T/T.)]? from [64] which was found
to nicely fit the monopole density data. As one can see, magnetic component
of QGP never gets to be a weakly coupled gas, as ['y; > 1 at all T" even close
to T.. On the other hand, even at the highest T' the value of I'j; does not
reach large values > 10 at which liquids are known to become glass-like and
viscosity starts growing. So the magnetic component not only is a liquid, but
also a good liquid in 1 — 47!
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Chapter 5

Electric QQ Potentials at T ~ T,
and the Magnetic Component of
sQGP

In this Chapter, we show one important application of the proposed magnetic
scenario for sQGP: to explain the nontrival T-dependence and the unusual
linear rising of the static QQ potentials found on the lattice, especially at
T ~ T.. The key idea is that the very dense magnetic liquid at 7"~ T, from
the vaporizing monopole condensate in the dual superconductor vacuum can
actually create a postconfinement regime, and in particular is capable of hold-
ing electric flux tube between static Q@ pair, thus leading to linear potential.
In the first section we extend our discussion on this key idea, then in the next
two sections we develop a finite-separation flux bag model and explain the
potential based on the magnetic component of sQGP. In the last section we
study a separate, idealized question related to the mechanical stability of an
infinitely long electric flux tube in a magnetic plasma, deriving a condition for
flux tube formation. *

5.1 A Discussion on the Potential Problem

5.1.1 Overview

The interaction potential between heavy quark and anti-quark is a traditional
observable, by means of which quark confinement in Non-Abelian gauge the-
ories was established. It was originally inferred from heavy meson spectrum

!The works in the present chapter are based on [47][66].
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and Regge trajectories, and then studied in great detail numerically, through
Wilson/Polyakov lines using lattice gauge theories, for review see e.g. [67][68].
Its vacuum (T=0) form is well known is usually represented as a sum of a
Coulomb part V' ~ 1/r, dominant at small distances, and a linear part V' = or
dominant at large r. The latter, related with existence of electric flux tubes,
is a manifestation of quark confinement. The string tension in the vacuum
(T = 0) has been consistently determined by different methods to be about

Tvae = (426MeV)? = 0.92GeV/ fm (5.1)

With current RHIC and future LHC experimental programs exploring ex-
cited hadronic matter and quark-gluon plasma (QGP) at increasing T, lattice
studies of the static QQ potential have been extended to finite 7', see e.g. re-
sults of the Bielefeld-BNL group[69][70][71][72][73] [74][75][76]. At the critical
temperature T' = T, disappearance of the linear term in the corresponding free
energy F'(T,r) — the string tension o — is the signal of deconfinement.

The internal /potential energy and entropy associated with the static QQ
pair are defined via

V(T,r) = F(T,r) — TdF/dT = F(T,r) + TS(T,r) (5.2)

Remarkable features of these results (see e.g. Fig.1-4 in [76] and also Fig.5.1(a))
include:

(1) nonzero tension oy (the coefficient of the linear part of V(T',r) as function
of r at given T') till about 7" = 1.3T,, with the peak values at T, about 5 times
(1) the vacuum tension o,,., with similar behavior in entropy while cancelling
in the free energy;

(ii) Finite values of the potentials at large distances reach very large mag-
nitude, V(T,00) ~ 4GeV at T.. The corresponding entropy S(7.,00) ~ 20
implies huge number of states involved, ~ exp(20).

The consequence of these features for survival of heavy quark mesons at
finite T" are hotly debated. Quasiparticle bound states in the deconfined plasma
were in particular discussed in [21][22]. Baryonic states seem to be needed to
understand baryonic susceptibilities[77][46]. These potentials are of course
also important in many-body aspects of QGP: in particular, they enter the so-
called plasma parameter I', defined as average potential energy over the average
kinetic energy. Its value in sQGP has been estimated to be above one (about
3) leading to the important conclusion that QGP at RHIC is a liquid (see
for example [23][49]), in qualitative agreement with the transport properties
observed at RHIC. These findings, together with many other theoretic and
experimental results, led to the paradigm shift to view QGP in 1-27, region
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as a strongly coupled many body system, now referred to as sQGP[11][13].

The origin of large energy/entropy associated with the static QQ pair near
T. remains mysterious, despite early attempts to explain it[78][79][? ]. In
this paper we will provide our explanation in the framework of the magnetic
scenario of sQGP [49] featuring the “struggle” for dominance between the
electric and magnetic sector, fuelled by the opposite running of electric and
magnetic coupling constants[59], basically confirmed by several subsequent
lattice works, see [80][81][82][64]. A novel plasma made of a mixture of electric
and magnetic quasiparticles has been shown [49] to explain small viscosity
and diffusion constant — “the perfect liquid” behavior observed at RHIC. Brief
summaries of the most recent developments in the magnetic scenario can be
found in [14][83].

More specifically, in this paper we focus on the “tensions” (coefficients of
the linear term in distance) in the free and potential energies. Like in our
previous work [47], we relate them with electric flux tubes. We further relate
those tensions with both the magnetic supercurrent (induced by condensed
monopoles) and the usual current (induced by “normal” monopole liquid).
This will allow us to extract very important information about the finite-
T QCD medium, such as “normal” monopole density, and compare it with
lattice observations.

We also provide new analytic solution for “elliptic bags” which allows to
get the potentials correctly interpolating between Coulomb and linear behav-
ior. We however leave discussion of “screening” behavior at large distances to
further studies.

This Chapter is structured as follows. In Section 5.2 we will develop an
analytic “flux bag” model of two static charges by solving the Laplace equation
for electric field. The model will then be used in section 5.3 to determine
the free and potential energies and relate the extracted op and oy with the
condensate energy density and the thermal monopole density respectively.

5.1.2  Free v.s. Potential Energy and Slow v.s. Fast
Probes

Let’s start by examining the physical difference between the free energy and
the potential energy. We already introduced effective string tensions op(T)
and oy (T) as the slopes of linear parts in F'(T,r) and V (T, r) respectively, and
emphasized their quite different T-dependencies shown in Fig.5.1(a). While
or vanishes at T' > T, oy survives to at least 1.37,.. While o monotonously
decreases with T, oy peaks at T, to a maximal value of 5 times the vacuum
string tension 0,,.. What is the difference in the meaning of F' and V, and
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why do they have such T-dependence?

It was emphasized in [21] that free and potential energies correspond to
slow and fast motion of the charges, respectively. Let us explain this idea in
more detail.

To understand why it is so one should consider “level crossing” phenomena,
occurring while the separation of charges changes. Suppose a pair of static
charges (held by external “hands”) are moving in thermal medium, so that
their separation L(t) is changing with a certain speed v = L. The energies
of multiple states of the media, defined at fixed L, are crossing each other,
and at each level crossing there is a certain probability to jump from one level
to another. In thermodynamical context this process leads to entropy/heat
generation, but the issue exist in pure quantum mechanical context at zero T as
well. Perhaps the oldest is the so called Landau-Zener problem [84] of electron
dynamics, following vibrational motion of two nucleus in a diatomic molecule.
Specific electron quantum states v, (L) are defined at fixed L with the energies
E,(L). The issue is the probability of the transition during crossings of two
levels, e.g. with Ei(L) =~ o1L + C} and FEy(L) = 0oL + C5. When the two
nuclei approach the crossing adiabatically slowly v = L — 0, the electrons
always proceed from one state to another selecting the lowest state at any L.
More quantitatively, Landau-Zener showed that the probability to remain in
the original state is exponentially small at small v

2m|Hsl* ] (5.3)

Premain =exrp| —
v|oy — 09|

where Hip, is the non-diagonal transition matrix element of the Hamiltonian.

In our problem the adiabatic limit corresponds to the free energy F (T, L)
measured on the lattice, with static quarks. The “potential energy” V(T L) is
different from it by subtracting the entropy term: it means that no entropy is
generated. This corresponds to motion in which possible transitions from the
original pure state into multiple other states via level crossing do not occur:
thus we identify it with the fast (large v) limit.

The positivity of the entropy implies that V' > F' always. Thus a state
created by a fast probe, with energy V', can relax in time into the equilibrium
configuration with the free energy F'.

Which potential should then be used, e.g. in charmonium (or other bound
states) problem? From the discussions above, it is clear that this depends on
the relation between pertinent time scales involved, as the names “slow/fast
probe” themselves indicate: the “probe time” 74, and the medium relaxation
time 7,;.. Suppose we separate the charges to L in a time 7, , and ap-
proximately identify the Landau-Zener parameters as: |Hio| &= 1/7per. (Trer.
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the medium relaxation time), vis & L/Tsp, and |03 — oo = |op — oy|.
This leads to the criterion distinguishing the slow v.s. fast separation, i.e.
Teep. >> T2 |oF — ov|L/2T V.S, Teep. << T2, |0F — 0oy|L/2m. As an estimation
if we takes 7,¢. &= 1fm, |op —oy| =~ 1 —5GeV/fm, and L ~ 1fm, then the
critical separation time is 72, |op — oy|L/27 & 0.8 — 4.0 fm.

5.1.3 Stable and Metastable Flux Tubes

We now turn to the possible origin of the two potentials. The starting point
is a “dual superconductor” picture of confinement introduced by t’Hooft-
Mandelstam. In it some “magnetically charged” condensate expels the electric
flux between QQ into a flux tube. The vacuum string tension is thus identi-
fied with energy per unit length of the corresponding Abrikosov-Nielsen-Olesen
(ANO) solution, for review and further references see e.g. [54][67][68][85][86].
The disappearance of o at T, is naturally identified with “melting” of the
condensate: similar phenomena is known for the usual superconductor.

Now, where the tension oy comes from? The answer proposed in [49] relates
it to “normal” monopole liquid, which also expels the electric flux. Specific
condition for the persistence of the flux tubes in the plasma (deconfined) phase
was further developed in [47], for infinitely long flux tubes. It has been found
in that paper that “normal” monopoles are much less effective for this task,
thus quite high density of them is required, to form the magnetic current
strong enough to contain the electric flux. However there we have considered
conditions of only mechanical stability of the flux tube, leaving the mechanism
of its dynamical formation and decay for further works.

Now we propose a dynamical explanation of why large energy, growing
approximately linearly with length, appears in a magnetic plasma when the
two charges are separating with some finite speed v, see sketch of the setting
in Fig.5.1(b). The answer lies in the Maxwell equations, which is convenient
to cast in form of the dual Faraday’s law, which relate the circulation of
the magnetic field [ Bdl over some contour with the change of electric flux
through it. As electric charge moves through the loop, rotating magnetic
field in monopole plasma leads to solenoidal magnetic current (a “magnetic
coil”). In the confined phase T" < T, this current, after relaxation, becomes
the persistent supercurrent, remaining forever without losses: thus the free
energy F' has a linear term for 7" < T,.. In a deconfined plasma phase T" > T
this is impossible, thus or = 0: the solenoidal “magnetic coil” created in the
fast process has only normal current, with losses, which eventually disappear.
Yet it is still generated: thus oy — op is nonzero.

This means that monopoles can induce new mechanism of jet energy loss,
as they are accelerated solenoidally by B field due to a fast moving electric jet,
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Dual Faraday’s Law
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Figure 5.1:  (a)(upper) Effective string tensions in the free energy op(7)
and the potential energy oy (7). (b)(lower left) Schematic demonstration of
magnetic solenoidal by Dural Faraday’s law, see text. (c)(lower right) The
ellipsoidal shapes we use for solving the electric field equations, see Section.II
for detailed explanations.
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active mostly at T" =~ T.. While these monopoles are subsequently colliding
with the bulk thermal matter, their energy becomes certain amount of heat
TS, which with time is transferred away by heat conductivity. This possibly
is the beginning of “conical flow” process suggested in [87].

Here it is important to emphasize different roles of the super-component
and a normal-component: the former does not distinguish the slow /fast pro-
cesses (as their 7, — 0) thus not contribute to the splitting, while the latter
have finite relaxation time and do feel the different processes, thus fully re-
sponsible for the splitting. In short, the o tells us about the condensate only,
while the difference oy — o tells us about the normal component. Bearing
this in mind and looking at the non-trivial T-dependence of or and oy in
Fig.5.1(a), one has a picture of an evolving magnetic medium: with in-
creasing T' the monopole ensembles changes from a dense monopole condensate
to equally dense normal component of thermally excited monopoles at T' ~ T,
which emerges out of the condensate and becomes dominant in 0.8 — 1.37,
after which they start yielding to the regular electric quasiparticles (quarks)
at large T

5.2 Electric Field in the Ellipsoidal Bag

In this section we will solve the equation for electric field induced by two
static charges separated by L = 2a along z axis (+Q). sitting at FaZz), with
the special “tangent boundary condition” (T.B.C.) on the boundary surface
by B, i.e.

V20(r) = Q.[0%(r — az) — 8 (r +az)] , V- fiy,|s, =0 (5.4)

The physical picture is an old idea known as the Bag Model used for hadrons
[88] in the vacuum, now generalized to magnetic medium at finite temperature.

A simplification we use is that the boundary ¥p is approximated by a
rotational ellipsoid with the two charges at its focal points. This bound-
ary shape can be specified by a single parameter &g, the ellipticity. Such
boundary g is very conveniently parameterized in terms of the parabolic
coordinates system (&,7,¢), which we use: see the appended part at the
end of this section for necessary formulae related to it. In Fig.5.1(c) we
showed a few ellipsoidal shapes with parameters (from inside to outside) (L, {p)
to be (0.1,6.62),(1,1.68),(2,1.29),(3,1.16) respectively, the dashed lines in-
dicate constant-n curves (for L = 3 case) with (from top to bottom) n =
0.8,0.5,0.2,—0.2, —0.5, —0.8, the solid/empty circles indicate the positions of
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positive /negative charges, and the arrows indicate the tangent electric fields
on the boundary.

We follow standard method in electrostatics, see for example [52]. First,
we rewrite (5.4) in (€, 7, ¢) coordinates assuming ® = ®(&, n) independent of

angle ¢
5[ acp} 5, {(1 acb} QeH(E—1)

@-0%|+ o |a-m%| = LD s -1 - s+ 1)

> —Qe‘sgfL_ 1)(2u+1)PV(I57]5)

v=1,3,5,...

The second step is by expanding the n-dependence in terms of Legendre func-
tions P,[n] in the interval n € [—1, 1], in which the P, functions are orthogonal
and complete. Similarly, we do the expansion ®¢, = ZV:1,375,~~ %(QV +
1) P, [n], thus simplifying the equation to be the equations for f,[¢] in a domain
€€ (1,00):

d dfy
dé dg

with the boundary condition f’[§ = g| = 0. The solutions are given in terms
of the Legendre functions of the first and second kinds:

[( _ey ¥ }+u<v+1>fy=—a<£—1> (5.6)

Q€8] EQu[EB] — Qu1[€B]
v et _kBPV _ u , k‘VB — — = — .
=B Pl = €uPoleal — Posleal 7
So the full electrostatic potential is
O(r|l.&s) = - 422 > Br+RE(K A+ Q)
v=1,35,...
_ Qe 2 (_Qe) 2 Qe

v=1,35,...

We've used the Neumann expansion of Legendre functions (see e.g. [89]) to
write down the second equality: in there the first two terms are nothing but the
usual Coulomb potentials by the £@). charges, while the last summation term
reflects the nontrivial boundary contribution. At very large v the summed
term goes asymptotically like v€” /€512 so it is guaranteed to converge as
1 < & < &p. The electric field E = — <7 @ is calculated using (5.14) for which
we skip displaying the lengthy results.

The volume occupied by the electric field (i.e. the ellipsoid within £g) is
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given by

éB 1 2w 3
Velgo) = [ de [ an [ aoe i, = e -1 (69)

And the total electric field energy in this volume is given by

£B 1 21 . X @ ,
bnaLos) = [ de [ an [ aotrer,m, XS e ey
1 —1 0
Q? 1 Q? 1
gself = +
ArL(E+n) —0 4nL(E—n)—0
Q| Q: 5_ Q ;
— __Fe 4 Te 4 = 1
vy Ry ,,:;5 8+ )k, = TEp(Es) (5.10)

The & ¢ is the familiar self-interaction of the two charges which we discard.
The “real” interactional energy &g consists (again) a Coulomb piece and a
boundary modification.

We conclude this section by one remark: so far the two key variables L and
¢p remain free parameters: they will be related in the next section

The Parabolic Coordinates

In this appended part we briefly list the parabolic coordinates formulae needed
for the calculation in Sec.2.

The coordinates we use are (£,7,¢) with two focal points at +az, which
are related to cylindrical coordinates (p, ¢, z) by

p=a/(E—-1)(1-n) , ¢=¢ , z=aly (5.11)

The variables are valued as £ € (1,00), n € [-1,1], ¢ € [0,27). Writing
ds? = Hgdfz + Hgdn2 + H;dgbz, we have

He=aYVEZW g NETT g @)

21 ’ 1_772

(5.12)
The Laplacian is given by

o ﬁ{% {(5%1)% o [(1—772%] * {52 T —1772} (%213})
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Finally the gradient is given by

L0 D g0
V= SHoe T THon T Y H00

(5.14)

For more details one could consult books such as [? |.

5.3 The Free and Potential Energy of Two
Charges

With the solutions of electric field from preceding section, we now examine
the balance between the electric field energy and the surrounding magnetic
medium in two settings: slow and fast separation of the two charges to a finite
distance L with the outcome being respectively the free and potential energy
associated with them.

5.3.1 Free Energy from Slow Separation

As we discussed in the introduction, when the two charges are separated in
an adiabatically slow way, the super component of the magnetic medium i.e.
the monopole condensate will be expelled (in an idealized picture) entirely
out of the volume Vg occupied by electric field. Suppose the condensate has a
negative energy density —&¢ (thus a positive pressure), then the overall change
in energy brought about by separating the charges will be

AE = Ep(L,&p) + Ec(T)Vi(L, £5) (5.15)

Now for given charge separation L and bulk temperature 7', we determine the
physical size of flux bag €2 by minimizing the above AE, i.e. the physical
boundary €2%(L, T) satisfies:

0AFE
23%

=0 (5.16)

_¢phy
§B—£B

Combining the above with Eq.(5.9,5.10) we then obtain

1 dS_E] (L >4
s == 5.17
|:3§% -1 déB ngnghy lC ( )
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Here we introduced a length scale lc = (6 ap/7Ec)* with ap = Q?/4n. This
equation could be solved easily by numerics. For each L with the above de-
termined 5%]”’, we obtain via (5.15) the free energy associated with the static
dipole as a function of separation L, as shown in Fig.5.2(a). It turns out to
be Coulomb at short distance(see the magenta dashed curve) plus linear at
large distance(see the blue dashed line). The occurrence of a linear part is
due to the physical effect that for large L the medium pressure (with which
the electric field has to balance) limits the transverse size of flux bag (where
the field gets weak as L increases) to saturate rather than grow forever: thus
the bag shape approaches a cylinder. Mathematically, as . — oo one finds

P 1 but L-4/(Y9Y)2 =1 — finite. In Fig.5.1(c) the four bag shapes
are at growing L with {g determined as in the above, which clearly shows the
shape becomes more and more cylindrical at large L.

By fitting the dimensionless slop of the linear part in Fig.5.2(a) we obtain
the free energy string tension or to be

Vor =232 x ayt x g* (5.18)

Inversely, since we know op(7T) from lattice as shown in Fig.5.1, from the
above formula we can obtain the 7T-dependence of Eq: see Fig.5.2(b). The
two curves are for ap being 0.5(upper) and 1(lower) respectively. In both
cases, ¢ decreases and in particular drops very quickly when approaching T..
The interpretation is natural: toward 7, the monopole condensate becomes
less and less due to increasing thermal excitations and eventually dies out at
deconfinement transition.

A connection can be made between our result (5.18) and the dual super-
conductor model (also known as Abelian Higgs model) of vacuum confinement
[54]. In that model, a quadratic Higgs potential leads to a Higgs conden-
sate (the prototype of postulated monopole condensate) ¢q (with dimension
of mass). By solving ANO flux tube a string tension is obtained in the form
Vo = c1¢¢ with the coefficient determined by gauge and Higgs coupling con-
stants A\, g. On the other hand the Higgs potential tells that the condensate
has a negative energy density —E&c = —A¢3/2, thus one has /o = ;&4 with
the coefficient to be determined numerically with given )\, g, see discussions
e.g. in [90]. While their model works only at 7" = 0, our model for o extends
to T..
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Figure 5.2: (a)(left) free energy F' (in unit of ag/l¢) versus separation L/l¢;
(b)(Right) monopole condensate energy density £/4 in unit of |/Gyqe, the two
curves are for ap being 0.5(upper) and 1(lower) respectively.
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Figure 5.3: (a)(left) potential energy V' (in unit of ag/lys) versus separation
L/lyr; (b)(Right) thermal monopole density ny/T°, the two curves across
boxes are for ap being 0.5(upper) and 1(lower) respectively, and green curve
across diamonds shows lattice data for T" > 1.37T..
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5.3.2 Potential Energy from Fast Separation

Now we study the case of separating the two charges to a finite distance L
within a time much smaller than the relaxation time of the normal component,
the thermal monopoles. In particular we focus on the region about 0.8 —1.37,
as this is the place where thermal monopoles are substantial and dominant.
During such fast process, each monopole originally in the volume to be
occupied by the electric filed (i.e. the ellipsoidal bag) will get a "kick” due
to the dual Faraday effect but have no time to release this energy into the
surrounding medium. Consider the charges move from z = C to z = C' + §z
in 0t, then the electric flux penetrating the plane z = C changes from 0 to
Q., thus generating a magnetic dynamical voltage @)./dt. For a monopole
at p from Z axis, the force is Q,,(Q./dt)/(2mp), thus it gets the "kick” and
obtains a momentum dp = @Q,,Q./(27p), forming strong non-thermal normal
currents. For a bag (L,{p) formed after separation, the total kinetic energy
passed to the monopoles is obtained by integration over the bag volume (with

D =Q,Q./4m = 1):

&8 ! 2 4TLMD 7T2DTLM 2 2 1
AK)y = d d d¢ H.H, H, = L —1)1/2
wm ) o RGENEI N <5£1§> |

We emphasize in the above only the monopole density ny(7") enters as a
property of the medium depending on 7', while other properties shall not be
"felt” in such fast process.

Now the total energy change should be AE = Eg(L, ) +EcVE+AK (L, ER)
with the new term causing the splitting between free/potential energy. Since
the condensate term E- Vg is small close to T, (as we showed in previous sub-
section) and vanishes above T., we neglect it here for simplicity, i.e. AE ~
Ex(L,E) + AKy (L, Eg). To obtain the physical value 2" we need to mini-
mize AF according to {g, which leads to

OAE

5, -0 (5.20)

Ep ="

L 3
=—|— 5.21
Ep=€n" <lM) ( )

Here we introduced a different length scale I3y = (2 ag/m2Dnys)3. Not sur-
prisingly we find the potential energy, shown in Fig.5.3(a), to be a Coulomb at

This can be written as

{E@}

265 — 1 dép
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short distance(see the magenta dashed curve) plus linear at large distance(see
the blue dashed line).
But now the string tension is given by a different formula:

Vor = 3.88 x ap® x n)? (5.22)

Since we know oy from lattice data in the 0.8 — 1.37, region, by the above
formula we can convert them into data of thermal monopole density n,,(T)
in the same region: see the two curves across boxes for ag being 0.5(upper)
and 1(lower) respectively in Fig.5.3(b). The green diamonds and the dashed
curve in Fig.5.3(b) represent recent lattice data for monopole density above
1.3, from [64]. Thus our estimates for the monopole density agree well with
what was seen directly, by identifying monopoles on the lattice.

A few comments are in order: (i) for 0.8 — 17, the density quickly grows
toward T, while results in previous subsection show ceasing of condensate
in that region, which are all well consistent with the notion that close to
T. monopole condensate is substantially excited into thermal monopoles; (ii)
around 1.37, we see our results connect well to the higher T lattice data; (iii)
cooling down to 7T, we find the monopole density blows up indicating they
become light and dominant in the plasma and presumably reach condensation
point at T¢; (iv) the strongly increasing density also suggests rapid increase of
magnetic screening toward T,, which is agreement with lattice results [38].

A hard question is to understand why the density ny;/T? increases roughly
by one order of magnitude from 1.3T to T, definitely going beyond simple gas
model with tunable mass M (7). It is clear that near T, the monopoles must
become very light and a large number of monopole-anti-monopole pairs will
pop out with little energy cost. On the other hand one wonders what is the
mechanism to stop the pair creation at some point. A possible explanation
is that the monopoles have finite size cores thus as soon as they are dense
enough to touch the neighbors’ cores the pair creation has to be stopped as the
energy cost now will be enormous. In short, the very dense monopole plasma
near T, seems to be a densely packed ensemble of “hard spheres”. From
the monopole-monopole and monopole-anti-monopole equal-time correlators
published in [64] we had evidence for a core size about Repe ~ 0.25fm: in
their unit it amounts to a density Ln[n/T?] ~ Ln[l/(47R3,./3)/T?] ~ 1.5
in the densely-packed limit. Furthermore if one takes the 't Hooft-Polyakov
monopole’s size formula R.,.. = 1/ev (with e the electric coupling and v the
Higgs vev), then a densely-packed density n ~ (ev): the rapid growth by a
factor ~ 10 as T goes from 1.37. — T, will indicate growth in e by a factor 2
which is reasonable.
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5.3.3 Summary

A general outcome of our results is further confirmation of the “magnetic
scenario” [49][80] for sQGP, according to which in the temperature region
1.3T. — T, the monopole plasma is extremely densely-packed liquid.

We showed how the nontrivial T-dependence of the static QQ free energy
F(r,T) and potential energy V(r,T) could be related to the “elliptical bags”
becoming flux tubes. We identified them with slow /fast processes respectively
(i.e. the process of separating Q@ to a finite separation L). The supercurrent
due to condensed monopoles which has no dissipation remains even for slow
process, while that due to “normal” monopoles are produced in fast process
and are dissipated after some finite relaxation time. The letter are responsible
for the difference between the free/potential energy tells important informa-
tion about the thermal monopoles at T" ~ T,. At T = T, from below the
monopole condensate dies out, as signaled by vanishing o, while the contri-
bution of “normal” monopoles with density n); explains oy — o, including
its large peak around 7,.. An analytic flux bag model was developed as a good
tool to describe the linear potentials by which we were able to relate op to the
condensate energy density & in (5.18) and relate oy to the thermal monopole
density ny, in (5.22). The obtained ny(7') agrees well with the recent lattice
observations of monopole at higher 7.

5.4 Electric Flux Tube in a Magnetic Plasma

In this section we study a separate, idealized question: can an infinitely long
flux tube be formed in a magnetic plasma? Though this is not directly related
to the potential problem, it was motivated by the linear part of potential
even above T, which indicates the existence of flux tube in the plasma phase.
Two different approaches will be taken: one is a macroscopic electrodynamics
calculation which found solutions to a modified-London equation that might
be valid in a magnetic plasma; the other is a microscopic, quantum mechanical
calculation, in which we statistically sum the induced magnetic current from
each single monopole’s quantum scattering on the flux tube and derive a self-
consistent condition by using the dual Maxwell’s equation.

5.4.1 Electric Flux Tube: Macroscopic approach

Borrowing wisdom from electrodynamics of a superconductor and being moti-
vated by the “modified London” relation (2.6) we discussed above, we find in
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this section solutions to macroscopic electrodynamics equations of London’s

type.
Our generalized (dual) version of the second London equation reads:

C
)\anrn

AV BVEES (5.23)
Any constant coefficient could be absorbed in a re-definition of \. When
combined with one of the (dual) Maxwell’s equations 7 x E = —1J, it
yields the equation for the electric field

B 1
o )\Q—HZTH

V' E

(5.24)

Macroscopic parameter s characterizes how the electric field gets modified
by the magnetic medium. k£ = 0 is the London limit (appropriate for the
medium being a dual superconductor in extremely type-I regime), while k = 1
corresponds to the classical monopole gas (as discussed in preceding section).
Intermediate values of k are suggested as an interpolation between the two lim-
its, say to describe a medium having both Bose condensed and non-condensed
components.

Our setup corresponds to cylindrical flux tube, with E = FE(r)Z in coordi-
nates (r, ¢, z). The total electric flux is @5 = [;° E(r)2mrdr.

The solution for any x < 2 is given by?

— Kk A
fo  =1/[2—r)ERT2/2 - )]

with Ky[z],['[x] being the Bessel and Euler Gamma functions. If a function
Fy[r/A] is a solution to London eq.(5.24) with x = 0, then the function F,[r] o«
Fy[5%(r/A)#7%/2] is a solution to the modified eq.(5.24) with any x. The
normalization constant follows from the total flux value.

At large distance, r — oo, the electric field

B =g 2 K| (e (5.29

E ~exp| — (r/ X)) /(1 — 5/2)]/(7'/)\)(2””)/4 (5.26)

vanishes quicker than exponential, leaving most of the flux within » ~ few A.
The smaller is x, the thinner is the flux tube.
For this flux tube solutions the ”string tension” — the energy per unit length

2For k > 2 the boundary condition couldn’t be satisfied.
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along 2 is

2 T2
T —Jr / [2(6—@/(2—@ (2 = )T

© @ 2 (I)2
Ox :/ ﬁ27?7"dr = LT (5.27)
0

L[(6 — k)/(4 = 2k)] - T[2/(2 = K))*

7. is a rapidly decreasing function of x, and in particular 7,—¢/7,—; = 3 which
means that (for fixed \) a quantum condensate expels the electric flux into
a flux tube with the tension three times larger than a classical monopole gas
does.

Let’s summarize the physical picture as well as limitations of the estab-
lished solution. Any magnetic medium generically expels the electric field, as
monopoles are back-scattered off it, so there is possibility for flux tube for-
mation. But different media do this job with distinct efficiencies, leading to
flux tube (if there is any) with different tensions. The electric flux tube solu-
tions are rather simple: they describe the problem in terms of two macroscopic
properties of magnetic medium, namely x and A. There is however an impor-
tant limitation. The macroscopic approach is suitable only if the electric field
strength (or the electric flux here) is large, as the detailed analysis in the intro-
ductory examples has shown: we repeat that strong field makes small Larmor
radius of monopoles, thus the flux tube is a ”macroscopic” object and scatter-
ing of monopoles happens basically on the surface. If it is not so, the validity
of eqn.(5.23,5.24) upon which the solution is based is no longer justified. The
intermediate case between diffusive weak field and macroscopically strong flux
tube requires a microscopic approach, to be discussed in the following sections.

5.4.2 The Microscopic Approach

Starting here we will pursue a fully quantum mechanical microscopic approach.
Let us first describe our strategy and approximations made in this section. The
main one is that mutual interaction among monopoles will be neglected, as it
has been argued that magnetic sector of sSQGP at just above T, is very weakly
coupled, see [49] for more details. What’s more, if one assumes the monopoles
are of 't Hooft-Polyakov, the Coulomb interaction between monopoles may be
largely cancelled (and exactly cancelled in the BPS limit for static monopoles)
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by scalar/Higgs exchange. But the Lorentz force from electric field® cannot
be cancelled and this is the only interaction of monopoles relevant to our
approach. The single monopole scattering on a flux tube will be treated quan-
tum mechanically. Both non-relativistic and relativistic cases will be analyzed:
there are evidences that monopoles in sSQGP are semi-relativistic, e.g. with
M ~ 2T. The monopoles we consider have no spin: although the classical 't
Hooft-Polyakov solutions may not appear exactly spherically symmetric, any
change induced by their rotation can be compensated by a gauge transforma-
tion. (In other words, the only thing violating spherical symmetry is the Dirac
string which is unphysical by itself, see e.g. discussions in [53].)

In the following sections we will go through the three steps below: i) first
assume existing flux tube of certain size R, ii) then figure out in great details
how individual monopole from medium will be scattered off it and generate
some magnetic current, and iii) finally use the dual Maxwell’s equation relating
the electric field and magnetic current to obtain a self-consistent equation
determining the value of R (and thus string tension o) as a function of medium
parameters T, n, M. Below we extend the description of strategy a bit more
step by step. The first two steps are already done in Section.2.3.2., we now
discuss the final step.

The dual Maxwell equation, 7 x E = —%J M, in cylindrical setup being
dE(r) 1 ,
—=-J 5.28
dr c M ( )

can be integrated in r
R
E(r=0)—E(r=R) = ——/ J dr (5.29)
0

The flux tube may presumably be approximated by a constant E inside certain
radius r < R_ and zero outside » > R, with smooth interpolation in between.
As an approximation in step(i) we have used step-like electric field, neglecting
the difference between R.. The advantage is that monopole motion in such
field can be calculated (step (ii)). This shouldn’t be a serious issue as we
expect Ry — R_ << R. Thus we take E(r = 0) as the constant field strength
E; = &5 /(7 R?) within tube and send E(r = R) to zero, obtaining the equation

3Although the monopoles in sQGP are built out of non-Abelian fields Ay, each type
of monopoles only interacts with electric field projected into their corresponding U(1) (see

e.g.[53][54]), so the Maxwellian field description still holds.
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to be used in later section:

R
E; = &p/(rR?) = —% / Jrdr (5.30)
0

Now we will self-consistently determine the size R of the electric flux tube
carrying flux @5 = d x (2whc)/g in an ensemble of monopoles with tempera-
ture T" and density n, by using the integrated* magnetic current obtained in
Section2.3.2.

At this stage the issue is to average the integrated total current Z(kR)
over proper thermal distribution n(k|7) (through which the medium property
comes into play) satisfying n = [;° dkn(k|T). We have

1 R 5 gh 0o
- Jydr = — dkn(k|T)Z(kR) (5.31)
0 Mec Jg

C

Note in relativistic case we have to replace the mass M by €(k)/c? and move
it inside the integration over k. Below we deal with non-relativistic gas, rela-
tivistic gas, and optimally correlated ensemble separately.

Non-Relativistic Gas

In non-relativistic(NR) gas with Mc?/kgT large, the kinetics are simplified, yet
in principle one still needs to take into account the quantum statistics, namely
using the Bose-Einstein(BE) distributions. Only in the non-degenerate limit
(with monopole gas being not dense) one recovers the Boltzmann limit. So we
use the BE distribution 1/(271e¢ — 1) normalized to density n by

n—sx ( 21«;; ) x Lis|2] (5.32)
e 2

In the above s is the degeneracy due to internal degrees of freedom, fugacity
2z = eM*8T ig related to chemical potential and valued as 0 < z < 1 in NR case,
and Ligs[2] is the polylogarithm function. We then have the n(k|T") given by
(after integrating out the Z momentum)

MEgT
2w h?2

3/2
n(k|T)dk = s x ( ) x Liy [z e_yQ} 2y dy (5.33)

4Since we are not interested in details of the flux tube shape, we refrain from doing
more complicated local matching of the current and the <7 x E, as local form of Maxwell
equation demands.
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with the variable y = hk/(2MkgT).
Now by combining eq.(5.30)(5.31)(5.33) we obtain the self-consistent equa-
tion for flux tube size R:

by ghn h? R

E p—y p—t u _——_—_— — - T

TR T Me C RMEsT 1T R kT
(5.34)

with the last term U from integration over x = kR
o0 Lii[z e~ /2q°]

Ulg = — d 2 7z 5.35
= —[ @ PER (5.3)

The self-consistent equation can be further rewritten in an elegant way:

2d AL >2 [ R }
T (/\dB 1 B (5:36)

with A\, = (Mc?/g*n)"/? and \gp = (h?/mMkgT)'/2. So for given parameters
one uniquely determines the flux tube size R from the above equation.
The NR Boltzmann limit, satisfying scale hierarchy 1/n'/? >> h//MkgT >>

Liy[z e~ /247

h/(Mec), can be achieved by simply replace —2 Lig[d]

Ulq] by e ™/ Mathematically this follows from taking the z — 0 limit
(with only linear terms left) of both polylogarithm functions.

The results from solving eq.(5.36) are plotted in Fig.5.4. Numerically we
didn’t see much difference between z — 0(blue curve) and z — 1(red curve)
limits. As Ap/Agp o< (T/n)/2, the right end of the horizontal axis corre-
sponds to high-density /low-temperature regime while the left end represents
low-density /high-temperature regime.

in the integration of

The distinguished feature is the existence of critical point for A\j/Asp be-
yond which there will be no self-consistent solution: this occurs at roughly the
same value for both displayed curves and we obtain the following condition for
the existence of flux tube

A M22kgT\ ?
Ad; - (” hQngnB ) <0.13 (5.37)

Physically the above result is very appealing: it demonstrates the mech-
anism of how a flux tube which exists in the medium at low 7" is eventually
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Figure 5.4: R/A\ip versus Ar/Agsp from solution of eq.(5.36). The blue curve
is for Boltzmann limit (z — 0) while the red for z = 0.999, see text.

gone as the medium is heated up; on the other hand, for a medium with given
T it sets up a lower bound of monopole density that is required to support the
existence of flux tube.

Another feature is that for each given A,/A\gp smaller than the critical
value, there are actually two solutions, one with small R/\;p (typically smaller
than 1, see solid curves) and the other with large R/\yp (typically greater than
1, see dashed curves). This is understandable according to the complicated
wiggle structure of Z(kR). The solution with smaller radius is the stable one:
it is much thinner and thus has stronger electric field (E ~ ®g/r?), which
reflects monopoles more sharply near the boundary. The other solution with
larger R/\gp is unstable and should be discarded.

Relativistic Gas

In relativistic gas the important scale is set by temperature, so let’s introduce
the following dimensionless variables:

R Mc?
_ _ 5.38
T he/ksT 0 T ksT (5.38)
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The fugacity z, now in range 0 < z < e, is related to density by
B kT\°® [ ¢dt/(2n?)
n =sx he 0 Z—levuz-‘rt2 —1

3
=5 X (kgT> x C (5.39)

C

with the number s the degeneracy due to internal degrees of freedom. C serves
as normalization constant to momentum distribution (after scaling momenta
by kgT/c).

The distribution over k is given by

kdk dI, [ (472)
o —1ee(k,K.)/kpT _ |

n(k|T)dkdK, = s x (5.40)

with e(k, K,) = /M?c* + h?k?c®> + k2 K2¢?. Similarly combining the above
with eq.(5.30)(5.31) one obtains the relativistic version of the self-consistent
equation

Op gn

=k = T < U (5.41)

E;

with UJw] given by the following integral

Uw] = ! oodxxI(wx)

-5 0
(e8] 1/ U,2 + I2 + y2
X d 5.42
| Bva (5.42)

We can further rewrite the self-consistent equation as

<\ 2
A
sr2d x | == | = w*U[wlu, 2] (5.43)
AdB
with the newly introduced relativistic parameters A\, = (kgT/¢*n)'/? and

Xap = he/kgT.

For given sets of parameters M,n,T (or equivalently u, z,T) one can eas-
ily find the flux tube size R from the above equations by direct numerics.
The situation is quite similar to the non-relativistic gas which we skip further
discussion.
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Optimally Correlated Ensemble

Finally let’s discuss ensemble beyond an ideal gas. Clearly with significant in-
terparticle correlations the ensemble may even not be easily describable by any
distribution, however a typical momentum kp can still be invoked. A special
situation which we call optimally correlated ensemble is that monopoles from
such ensemble are largely carrying momenta within very narrow region around
kr. On the contrary if the ensemble particles’ momenta are very diffusive in
momentum space, it can hardly support flux tube.

In the optimally correlated ensemble, we approximate eq.(5.31) as (assum-
ing NR formulae)

1 /B nh__ -
- o dar = "1k 44
C/O Jiadr = 5 T(kr R) (5.44)

and the self-consistent equation is then given by

P gnh

1= = 0 X [~Z(krR)] (5.45)

We limit the value of kpR within 0 — 1.42 beyond which there won’t be flux
tube solution, as discussed in Section.IV C.
The above can be re-organized into

2d x (E‘T . /\L)2 = (];‘TR)2 X [—I(%TR)] (546)

The best situation occurs (roughly) around the negative peak in Z(kR) given
by (2.39). From this we set a bound similar to eq.(5.37)

- M2k2\ /2
kT.)\L:< ¢ T) <0.20 (5.47)

g*n

5.4.3 Disappearance of Flux Tubes in sQGP

Results from previous subsection is general in nature and applicable to a vari-
ety of plasma physics problems. The present subsection, on the other hand, is
dedicated to possible application of our results to the physics of SQGP. From
now on we switch to natural units and systematically put h,c, kg = 1.

The existence of string/flux tubes in the QCD confined phase 7' < T, is
rather thoroughly investigated on lattice, via measurements of static heavy
quark potentials. Static free energy potentials F'(T,r) as a function of r are
only studied for N, = 3 but for number of quark flavors Ny = 0,2 as well as
physical QCD, see [76]. Those can be used to extract the entropy and potential
energy separately: the peaks of these quantities (see e.g. Fig.2 of [76]) happen
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to be exactly at T" = T, and then decrease toward larger T". The presence of
the quasi-linear part of the energy and entropy at intermediate r leads to a
conclusion that flux tubes still exist at 7" > T.. Fig.5.5 from [76] shows how
both the internal energy and entropy look like at 1" = 1.37,. Unlike in the free
energy (open squares in the upper plot, in which cancellation takes place), the
internal energy (closed circles) still show at intermediate r = (.3 — .7) fm a
part linearly dependent on r, while at T" > 1.37, it very quickly disappears.

Why are flux tubes disappearing at large T It can in principle be due to
two different changes in QGP happening as T grows above T, to be called
(i) electric screening and (ii) magnetic penetration. The simplest mechanism
(i) is that as T grows beyond T,, the density of electrically charged quasi-
particles — gluons and quarks — is growing and eventually it becomes large
enough to screen heavy quarks. The reason for this density growth is the de-
crease in effective masses of electric excitations, which are lattice observables
by themselves®. At very large T >> T., in weak (electric) coupling domain,
the screening of the potential is expected to be described by the Debye theory.
However Debye theory does not describe entropy and internal energy associ-
ated with static quarks at T'= (1 — 1.3)7,, even at large distances, as can be
seen e.g. from calculations of Antonov et al [78].

Another effect (ii), discussed for the first time in this work, is the pene-
tration of magnetically charged quasiparticles (MQPs) inside the flux tubes,
which destroys them. Indeed, the key parameter kR increases with 7 and
reaches the critical value eq.(5.47) for whether flux tube can exist or not. This
imposes the following condition

2 T 2

g° . n kr\~ M

—(=)>20(=] — A4
47T(T3)_ 0<T) T (5.48)

Changing T from T, upward the monopoles gets heavier and their dimension-
less magnetic density n/T® keeps decreasing: eventually this will violate the
flux tube condition. We thus identify the equality in (5.48) with the temper-
ature T' ~ 1.3T, at which local dissolution of the flux tubes takes place.
Furthermore, at T ~ 1.3T, we expect ¢g?/4m ~ 1 [49]. An independent
consideration fixes conditions for monopole Bose condensation which demands
that around 7. the monopole mass over temperature M /T ~ 1 ~ 1.2.
Combining these estimates with our critical condition for tube dissolution

°See a related discussion of various color-electric objects’ effective masses in [46]. There
we showed the masses are still rather large and their densities rather small at 1-1.57,
limiting the screening.
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Figure 5.5: (a) The singlet internal energy, U;(r,T") (filled circles), calcu-
lated from renormalized singlet free energy, Fi(r,T) (open squares), at fixed
T ~ 1.3T, in 2-flavor lattice QCD compared to V(r,7 = 0) (line) . (b) The
corresponding color singlet quark anti-quark entropy, T'S;(r, T ~ 1.3T.), as
function of distance calculated from renormalized free energies.
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we obtain the density of magnetic quasiparticles at 1.37T, to be

~ 2~3 (5.49)

T=1.3T,

n
nyQrs = <ﬁ>

which is within nygps = (4.4 — 6.6) fm ™3 in absolute units.

Can the density of magnetic objects really be of that magnitude (which
superficially looks rather high)? This estimated density includes in principle
contributions from all types of magnetically charged objects in sQGP, i.e. not
only pure adjoint monopoles but also self-dual dyons and also dyons containing
quarks®.

Let us compare the numbers with whatever is mentioned in literature. We
don’t know any studies of fermionic objects mentioned above.

llgenfritz et al [43] determined their dyon estimate by the caloron density,
which is reliably calculated from the topological susceptibility. After multi-
plying by 3/2 their result for SU(2) we obtain density of self-dual dyons to be
Ndyons ~ 3 fm™3. Chernodub and Zakharov [80] mentioned the monopole den-
sity which is directly estimated from lattice configurations by following gauge-
fixed monopoles along their trajectories. Their estimate is about n,,0n0 =
3.5fm~3. The sum of the two is consistent with the upper end of our estimate
of what is needed for formation/dissolution of the flux tube.

Independent comparison can also be made with the vacuum (7' = 0)
monopole density. Bali [34] has measured London penetration length by fit-
ting lattice result with Abelian Higgs model. From that one can infer the
monopole density to be as large as 10fm ™. Bornyakov et al [91] gave the
vacuum monopole density to be about 7.5fm™3. All these results are well
above our estimates for the density at T' = 1.37, “dissolution point”.

We believe all these numbers are consistent and suggest a coherent picture,
of very dense monopole condensate in vacuum, tightly confining electric flux
into very narrow tubes. When heated slightly above 7, the monopole conden-
sate changes into a non-condensed ensemble of monopoles, which is roughly
twice less dense. Yet it is still capable of supporting flux tubes survived from
vacuum, and only around T = 1.3T, the density of monopoles drops so low that
there won’t be flux tube any more. At higher T the electric sector becomes
more and more dominant till eventually small number of heavy monopoles
become embedded in the perturbative electric plasma.

SWe recall that monopoles have fermionic zero modes and states made of fermions
travelling on top of a monopole have to be included as well. In supersymmetric theories
those form spin-1/2 and even 1 magnetic objects, which are needed by supersymmetry to
produced appropriate supermultiplets including the usual scalar monopoles.
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5.4.4 Summary and Discussions

In this Section we have studied mechanical stability of the electric flux tube
in a monopole plasma. Already classical analysis hints on the existence of
a critical angular momentum dividing the scattered magnetic currents which
support/dissolve the flux tube. This finding is quantitatively confirmed by
quantum mechanic calculation, in which we use the exact scattering solutions
to Schrodinger/Klein-Gordon equation in non-relativisitic/relativistic situa-
tions. These solutions allowed us to calculate the magnetic current produced,
which is then averaged over the monopole ensemble and used in self-consistent
determination of the flux tube size. The exact critical condition has been es-
tablished, and applied to electric flux tube dissolution in sQGP system which
interests us most. This leads to an estimate of total density of magnetic
quasiparticles nyops ~ 4.4 ~ 6.6fm™3 at T ~ 1.3T,, where lattice potentials
indicate flux tube dissolution. These numbers are consistent with other studies
using alternative ways to estimate magnetic density.

As mentioned in the introduction, this work is partly methodical in nature,
ignoring electric quasiparticles which would lead to screening and termination
of flux tubes. The next step we plan to do is obviously inclusion of both
components and calculation of the static potentials. Hopefully, when one
would consider an appropriate mixture of electric and magnetic quasiparticles,
the lattice data on static potentials between electric and magnetic’ charges
would be explained.

In principle, one should go beyond that and calculate field distributions
around static charges as well. Lattice studies can be extended to measure
directly electric/magnetic fields at 7' ~ T,: in fact the field profiles have been
measured for flux tubes in vacuum before (see e.g. [34]).

Let us end with the following intriguing question. We focused above on
electric flux in magnetic media, ignoring electric quasiparticles and possible
dual phenomenon — a magnetic flux tube in an electric plasma. (We only
mentioned their existence at low T' high density regime, in a color supercon-
ductor.) Now, may somewhere along the electric-magnetic equilibrium line
there be conditions supporting stable flux tubes of both types at the same
time? It is known that confinement of both is impossible, but in a uncon-
densed plasma regime it may still be the case. A natural place to look for
a QGP with intertwined electric and magnetic flux tubes is at 7" less or of
the order of T, close to the place where three major phases — hadronic, color
superconductor and QGP — meet. Although it is quite challenging task to get
into this region using lattice gauge methods, the task is not hopeless.

"Those are given by the expectation value of the so called 't Hooft loop: we have not
discussed them in this work.
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Part 11

The Electric Component of
sQGP
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Chapter 6
Bound States in sQGP

In the present and next Chapters, we will conduct a more careful examination
of the more usually discussed degrees of freedom in 1—27,, i.e. the quarks and
gluons which we consider as the electric component of SQGP. These studies
complement our investigation of the magnetic component in Part.I. to give a
full picture of sQGP.

As we already demonstrated in the Introduction, in order to explain all
the unusual features of QGP in 1 — 27, as exposed by RHIC discoveries and
lattice results, a radically new picture of QGP at such temperatures has been
developed, i.e. the strongly coupled QGP, or sQGP. It has been in particular
pointed out in [19] that the interaction is strong enough to preserve the meson-
like bound states up to about 7" = 27, ~ 300 MeV, (the temperature range
corresponding to QGP created at RHIC), although in a strongly modified form.
It was then pointed out in [21] that also multiple binary colored bound states
should exist in the same T domain. Since QGP is a deconfined phase, there is
nothing wrong with that, and the forces between say singlet gg and octet qg
quasiparticle pairs are about the same!. Some of those states (charmonium)
were observed on the lattice [32][33] at 7" up to about 2.57, while existence
of most of these states, especially colored, still has to be checked.

In this chapter we report the first step toward the understanding of the
multibody bound states 2.

1For potential-like forces the Casimir scaling gives 9/8 ratio, for string-like ones the ratio
is just 1.
2The works in the present chapter are based on [22].

117



A Discussion Regarding the Binary Potential Used for Bound State
Calculations

Apparently the binary potential is crucial for questions such as whether there
would be bound states and how far they stay unmelted into the high T phase.
For definiteness, we will use similar parameterized lattice-based interactions
as in [21]. Below we discuss some of the details about the potential.

In the QCD vacuum, the potential for two color charges is traditionally
written as a sum of a Coulomb and linear potential, dominating small and
large distances, respectively. At T' > T, by definition of the deconfined phase,
the effective string tension vanishes and the potentials go to a constant at
r — o0o. But that does not mean that string-like field configurations of color
field disappear right at T.: as explained by Polyakov long ago [31], the string
tension which vanishes at T = T, should be understood as the free energy,
F =V —TS, while the string energy V' and its entropy (related to the number
of configurations) S are finite but cancelling each other. This picture of the
deconfinement suggests by itself that the “mixed phase”, at T" = T,., contains
a lot of very long strings. It is natural to think then, that strong (although
finite-range) interaction between the charges at 7" > T, is also related with
strings.

Application of lattice-based binary potentials (actually free energy) derived
for static quarks can be justified for near-zero binding states, in which motion
is parametrically slow. This allows one to ignore magnetic and spin-related
effects.

Still, in any application of such potentials to multi-body problems one has
to decide the following fundamental question: what part of this interaction
is (i) of a “potential-type” or (ii) of a “string-type”. In the former case the
potential energy of a many-body state is the sum over all pairs of particles,
while in the latter only some pre-defined partners, “connected by a string” are
allowed to interact. The issue is well known and was discussed in literature
for baryons for decades. In Fig.6.1(upper) we show how two pictures look like,
with strings in (a) ending at a string junction and in (b) connecting each pair
of quarks directly.

The discussion above motivates us to consider interaction to be string-like
in this sense. An additional reason for that is the especially simple multi-
particle states appear, namely the polymeric chains made of repeated gluons
with ¢ and ¢ at the ends, see Fig.6.1(c). (Recall that gluons have 2 color indices
and can be viewed as 2 different color charges connected to two strings.)

Fortunately, in the case of colorless 3-quark states (baryons) it turns out
that the string-based picture (a) and potential one (b) (with the Casimir fac-
tor 1/2 compared with meson potential) give very close results. This is also
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Figure 6.1: (upper) The interaction in baryons for “string-like” interaction (a)
versus the “potential-like” interaction (b). The double circles with different
colors (online) in (c¢) represent gluons, and it is an example of 4-chain Gggq.
(lower) Dependence of the binding energy on the Debye screening mass for the
simple exponential trial functions. The units are explained in the text. Two
diamond points indicate positions of the exact solutions.
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the case in vacuum, as pointed out long ago in [92]. Also, this is supported
by recent lattice study of free energy of static three quark systems[93] which
found that the connected part of qqg-singlet free energies above T, are decom-
posable into three qq-triplet (diquark) free energies for all distances. We will
not discuss more complicated possible structures, like “polymerized” baryons
with extra gluons or a network of chains, connected by color junctions.

6.1 The Coordinates and the Variational Pro-
cedure

We will denote particle coordinates by x;,2 = 1,n where the vector means
a 3-d space and the index is for the particle number. Since the center of
mass coordinate does not appear in the potential energy, the corresponding
momentum is conserved and can be put to zero. It is a standard procedure to
use some redefined coordinates which reduce the n-body problem to the (n-1)
one: those coordinates would be denoted by r;,i = 1,n. Other notations we
will use are
o o

- D= — 1
8= D= o (61)

related by 8; = D;M;; where M is the coordinate matrix r = Mz (namely
r; = M;x;).

For reference and further comparison, let us give explicit form of the kinetic
energy for (3-body) Jacobi coordinates

T =X — Ty Ty = (—1/2)xy + (—1/2)x2 + X3;
r3 = (1/3)(z1 + @2 + x3) (6.2)

(0 lssecon = 517 (2D} + B/AD3+(1/3)DY) (63

Note that it is a diagonal form avoiding coordinate mixing.
However for the polymer problem we found that more useful coordinates
are “chain coordinates” defined by the following set of n coordinates

1
T ==Xy — L1;.Th_ 1 =Ly — Lp_1;Tp = ﬁ(ml + ...+ x,)
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The corresponding kinetic energies for N-chains is

1

1
m(ai)2|N—chain = _(QD% + 2D§ R 2D?\[,1 + (64)

2M
N-2
(1/N)D% —23 " DiDi.y)

i=1

Although it is not diagonal, it is very simple instead, with the same “reduced
mass” in each diagonal term® . Furthermore, in “string-like” approach the
potential energy is very simple, just a sum over all “bonds” along the chain

Epot = V(T‘l) + ...+ V(Tn—l) (65)

Note that we dropped vector notation here: it means that only the lengths
of these coordinates matter. Furthermore, all angular variables would not be
important for the ground s-wave states to be discussed. If so, the wave function

factorizes
n—1

U(ry.m) =[] e(r) (6.6)
i=1
and as a result the average value of the non-diagonal terms in the kinetic

energy would vanish
< DZD] > |i7éj =0 (67)

Finally, as the diagonal terms have the same reduced mass as a 2-body prob-
lem, the problem obviously splits into (n-1) Schroedinger equations. This
completes the proof that there is the same binding energy per bond (not per
particle) as for mesonic states.. The binding per particle of course grows,
doubling the binding in binary states as the length of the chain grows?*.

6.2 Mesons and Polymers in a Variational Ap-
proach

Since the 2-body problem and (as shown above) polymer chains can be easily
solved numerically for any potential, and for relevant lattice-based potential it
was already done in [21], the reader may be surprised why we discuss it here.
We however found it instructive to start with a simple example, for which all

3This of course requires that all involved quasiparticles, the quark and the gluon ones,
have the same mass, which is however approximately fulfilled by available lattice data.

4We again remind the reader that it only happened because in string-like approach one
can ignore all the interactions between non-next-neighbors along the chains.
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calculations and integrals are simple and can be done analytically
Let the potential be just a screened Coulomb (or Yukawa) potential

—MDT‘
V= —% (6.8)

and the trial function be as simple as possible, namely an exponential function
Y = e A" (6.9)
The average energy is

<H> = < (=1/2/M)+«D*— (1/r/M)*D+V(r) >  (6.10)
A? 4% o x A3

— 1/ _ 7"
230~ (b + 247

and it can be easily minimized in respect to parameter A. The results (for
a=1,M =1/2) as a function of Mp are plotted in Fig.6.1(lower).

Note that the simple exponential trial function we use is exact for a Coulomb
problem (Mp = 0 case), but of course is not so for a screened potential. Al-
though the energy may seem to be quite close to exact ones, obtained from
numerical solution of the Schroedinger equation, true wave function is not
particularly well reproduced by it as Mp grows. In particular, the curve in
Fig.6.1(lower) crosses zero at its endpoint in a wrong manner: in fact the curve
must have a horizontal tangent at the endpoint. Moreover, the critical value
for the level disappearance predicted by exponential trial function

aM
zerobinding — 1 6.11
MD’ binding ( )

is not at all accurate, as a comparison to exact behavior (indicated by two
points in the right upper corner of Fig.6.1)(lower) changes the r.h.s. of (6.11)
to a smaller value, 5/6.

One may ask whether it is possible to test the quality of the trial wave
function without a knowledge of the exact result (as would be the case in
multi-dimensional problems to be addressed in subsequent section). A well
known observable for that is the so called “energy dispersion” variable, defined
by

d=< H?> — < H >? (6.12)

If the trial wave function is an eigenvector, d=0, otherwise it characterizes the
quality of the approximation. In Fig.6.2(upper) we show how it depends on
Mp. As expected, it is zero for pure Coulomb problem (Mp = 0) but strongly
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grows with Mp, indicating loss of quality of the approximation. Nevertheless,
we emphasize that while this energy dispersion is quite sensitive to how close
the trial function is to true solution, the energy itself is much less sensitive to
the details of the wave function shape.

Now we turn to a realistic variational approach for the two-body bonds in
mesons and polymers, using a parameterized temperature-dependent potential
extracted from lattice data [? |

4 8T e 2T AT e 21T
—+ ) (6.13)
3r 3 log(1+3T)r(1+3T) (log(1+3T))?

V(T,r)= — (

Note that we have scaled all dimensional quantities with proper powers of
T., namely T gives T'/T., r means rT,, and so on. We will keep these units
throughout present paper. Plots of the potential at different temperatures
are shown in Fig.6.2(lower). At very short distance this potential goes as a
Coulomb (as expected from short-range one-gluon exchange interaction) while
at very large distance it is a screened Coulomb potential which damps so fast
as if it is almost vanishing. The log term is simplified compared to the original
form in [21] where it was log(1/r + 3T'), the parameterization consistent with
the asymptotic freedom at small r.

Note that this is basically for color singlet ¢ — ¢ ( and for color octet g — g
approximately), so we need to add appropriate overall coefficients for other
channels like diquark.

According to the features of the above potential, we employ a trial wave
function as following (with = the 2-body relative coordinate)

C?r? 1
(ZS(’I") = el‘p—A’)“ — m(B — A)T — §l0g(027"2 + 1) (614)
It has the asymptotic forms to be
efBr
r—0:¢—elr—oo: ¢p— o (6.15)

Here the parameter C' controls the interpolation between the short distance
Coulomb behavior and the long distance free particle solution. All the three
parameters have the same unit for which we use 7.

With the (temperature-dependent) potential and trial function at hand, we
then find the binding energy at different temperature by minimizing energy
(kinetic plus potential energy) according to the three variational parameters
A, B,C. A non-relativistic form for kinetic part is used, since the color-charged
quasiparticles, both quarks and gluons, are found by lattice simulations to be
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Figure 6.2: (upper) Dependence of the “energy dispersion” variable d on the
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curves from right to left.

124



0 @ "
0 variational results o «
—0.2 | & exact results o
L]
-0.4 [
]
, 06
- ]
~
2 -0.8
Ll
o
-1t
]
-1.2
-14 |
*®
1 1.2 1.4 1.6 1.8 2
T/Te
0 o
o variational results -
—0.02 | ® exact results
-0.04 |
 —0.06
-
o
W _o.08 L
-0.1
-0.12
o ‘ ‘ ‘ ‘
1 1.1 1.2 1.3 14
T/Te

Figure 6.3: Dependence of the meson (upper) and diquark (lower) binding
energy on the temperature. The units are in 7.

125



rather heavy at temperatures not so high from 7, for which we use the same
constant value m* = 800MeV in our calculation for simplicity. We employed
the well-known Metropolis Monte Carlo[94] to evaluate the energy. The re-
sults are shown in Fig.6.3(upper). We also plot the exact energies obtained
by numerically solving the Schroedinger equations for comparison. As can
be seen, the variational results coincide perfectly with the exact results. The
energy dispersions are of order 0.01 (not vanishingly small), but as we empha-
sized before and shown here, the energy itself could still be very accurately
evaluated. For the optimal values of wave function parameters, A decreases
from 3.125 to 2.25 and B from 3.125 to 0.5 with increasing temperature, and
C keeps between 0.5-1 to which the energies are less sensitive.

The binding energy FEj, is greater than temperature for 1-1.1 7T, and com-
parable with temperature up to 1.6 T.(|Ey|/T about 0.26, and €*%6 = 1.3).
Naively following a e=#»/T (at T, as high as 4.3) factor argument we may say
the formation of meson-like bonds in this T-region is quite favored. Now re-
calling the proof in previous section, a polymer chain with N elements will
have a binding energy (N — 1)E, (E, per bond), and further more, the long
chains have much more statistical degeneracies (according to vast options ar-
ranging intermediate gluons’ quantum numbers), so we expect abundance of
polymer chains at temperatures just above T.. And this, as we will suggest,
may dramatically contribute to jet quenching as well as transport properties.

6.3 Baryons at 7' >Tc

After consideration of meson-like structures, it is of course natural and in-
teresting to address the question of possible baryonic bound states above T..
While lattice calculation found mesonic bound states above T.[32][33], there
is no available information about baryon up till now. Also it is very impor-
tant to see the role of baryons in the deconfined phase of QCD. For example,
baryons carry conserved quantum numbers like B, S which may be combined
to give useful experimental/lattice signal[95] and contribute more to study of
thermodynamics at non-zero chemical potential[77][46]. So in this section we
conduct a variational approach for baryons in similar way as was used in the
past to study baryons in vacuum[92].

We consider baryons(anti-baryons) as closed 3-chains of quarks(anti-quarks),
which contains 3 pairs of diquarks(anti-diquarks). Thus to study baryons, we
first start with diquarks at 7" > T,. Diquarks in the deconfined phase of QCD
are of their own importance also. For the diquark channel, the mutual in-
teraction coupling should be one half the quark-anti-quark channel, thus we
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adjust the potential (6.13) by a coefficient C/Cy, = 1/2 to use it for diquark
bound states. We use the same trial function (6.14) as in meson case, and then
minimize energy according to A, B,C. In Fig.6.3(lower) we plot the diquark
binding energy as a function of temperature. The exact numeric results are
also presented to compare and justify our variational approach. Diquark states
are much more shallowly bound than meson and thus more easily melted.

For baryons, we construct the trial wave function on the basis of the three
diquark pairs. Since we’re only interested in the ground state, it is reason-
able to use a totally symmetric s-wave spatial configuration. The color wave
function should still be the singlet (then antisymmetric among the 3 quarks)
to guarantee the attractive interaction, but for spin and flavor part, the only
constraint is to be symmetric and there are a lot of ways to arrange it (in-
creasing statistical degeneracies). Particularly, we want emphasize that very
different from constructing baryon in vacuum, now s quark is more or less the
same as u, d quarks, since its current mass, of the order of T, is much less than
quasiparticle mass and the current mass splitting is now unimportant. So we
write down the following

U(@1, T2, @3) = G(r12)P(r23)P(r31) (6.16)

Here ¢(r) is from (6.14) which has been used for meson and diquark states,
and r;; = x; — x;. Again we minimize energy according to the variational
parameters A, B,C. Note now for this 3-body object, we have two kinetic
energy terms according to the first two in (6.3) (one term with reduced mass
factor 1/2 and the other 2/3), while for potential energy we need count for
each pair of quarks, namely three potential energy terms. Hence we expect
that baryons are more compact and deeply bound than diquarks both because
of heavier reduced mass and due to more potential energy, as can be seen in
Fig.6.4(upper). The binding energy is slightly greater than temperature at
T. and comparable up to 1.3 T, which means the baryons (and anti-baryons)
should play some role for temperatures not too high above T.. As far as we
know, this point is noticed and demonstrated for the first time.

Having studied baryons, we go a step further and include the simplest
closed 3-chain structure above 7., namely ggg, a color-singlet channel in which
the three gluons mutually interact in similar way as three quarks in a baryon.
In a string picture, there is a string between each pair, so the potential should
be the same as in a meson (twice that for diquarks). Again we use the 3-body
trial wave-function (6.16) and minimize energy according to A, B,C. The
results are shown in Fig.6.4(lower). It is bound up to rather high temperature
of about 2.6 T,. The binding energy at 7T, is as high as 7.64 T, and the size
shrinks to only about 0.3 fm. Since we only use static potentials, without any
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relativistic corrections, we warn the reader that close to T, the ggg binding (the
only one!) becomes too large to be reliably evaluated inside the approximations
made®.

6.4 Summary and Discussion

To sum up, three multi-body bound states have been studied via variational
approach: (i) “polymer chains” of the type Ggg..gq; (ii) baryons (qqq); (iii)
closed (3-)chains of gluons (ggg). For the chains (i) we have proved that they
have the same binding energy per bond as mesonic states and thus form in the
same temperature range as mesonic states. We have established the binding
energies and survival T-ranges for all these three structures. All the results are
summarized in Fig.6.5 and Table.6.1. We conclude that between temperature
region 1-1.5 T, the existence of all these multi-body bound states is not only
possible but very robust.

Before we go forward with a general discussion, let us try to summarize the
proposed scenario as a single picture, see Fig.6.6. From relatively short string-
like configuration of color fields at low T, fig (a), one moves to longer strings
(b) at the critical point [31]. New is picture (c¢) which depicts “polymeric

50On top of relativistic effects we ignored, the simplification of the potential log(1/r +
3T) — log(1 + 3T) used above also affects binding close to 7.
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Table 6.1: Summary of different bound states at T' > T studied in this paper.
The column C/Cy, gives the relative potential strengths used in calculation,
Ej, means the binding energy, and T), refers to the melting temperatures for
different structures.

structure -body C/Cy Ep/T.at T, T,
aq 2 1 145 21
q9 - - 99
(polymer chain) N 1 -1.45%(N-1) 2.1
999
(closed chain) 3 1 -7.64 2.6
qq / 3 2 1/2 013 14
499 / 499
(closed chain) 3 1/2 -1.10 1.6

chains” considered in this work, significant at 7' = (1 — 1.5)7.. Eventually, at
high T, one goes into (d) with independent quark and gluon quasiparticles,
neutralized by isotropic Debye clouds.

We have not studied in this work neither more complicated states, such
as a hybrid of baryons and polymers or a network of chains connected by
color junctions, nor have we attempted to evaluate the possible role of poly-
mers/baryons in thermodynamical® and transport properties of sQGP (to be
done elsewhere).

The contribution of polymers into partition function can be easily evalu-
ated via a geometric series: the resulting enhancement factor, correcting the
contribution of the ¢ mesonic states to those with any number of intermediate

gluons ¢g...gq, is

1
Frotymers = 77 Geap[([0E] — M,)/T]

(6.17)

where 6 is the color and spin degeneracy added by each link. If one takes
literally the bond binding we found, up to 1.47, and the effective gluon mass

6The only calculation we have done in [46] deals with baryonic susceptibilities — up to the
6-th derivatives over chemical potential — studied recently on the lattice by the UK-Bielefeld
collaboration [77].
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Figure 6.6: A schematic picture of the distribution of color fields, at different
temperatures. Single color circles are quarks, bi-colored ovals are gluons.
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we used, one finds that even at T" = T, this factor only reaches about 1.2,
and rapidly decreases at higher T'. The corresponding enhancement factor for
baryons is a cube of that, but baryons themselves are a small effect. So, the
multi-body states we discussed above provide a few percent corrections into
thermal properties of sSQGP 7.

The reader may thus ask why had we studied those states at all. One
reason is the baryons dominate the high density QGP, at large checmical po-
tential. Another reason is we hope “polymers” may be important for transport
properties such as jet quenching, which we will study in the future.

"However if some missing effects would increase this binding by about a factor of two,
the zero in the denominator can be reached, forcing total “polymerization” of matter. We
think it is unlikely to happen.
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Chapter 7

Quarks, Diquarks and Baryons
in sQGP as Diagnosed by
Baryonic Susceptibilities

In this Chapter, we examine one particular thermodynamical observable that
has been accurately determined recently on lattice: the baryonic susceptibil-
ities. In particular, we extract from these lattice data important information
about the baryon-number-carrying states in the 1 — 2, namely the quarks,
diquarks and baryons in sQGP 1.

To put the discussion below into proper perspective, we repeat one argu-
ment from [21] which says that there should be 3 categories of bound states, in
decreasing robustness: (i) glueballs, (ii) (¢g)3 and mesons ¢q; and (iii) (¢g)s,
diquarks and baryons. If the strength of the effective potential in gq states is
counted as 1, the relative color Casimirs for categories (i),(ii) and (iii) are 9/4,
9/8 ~ 1 and ~ 1/2, respectively. In the previous Chapter we have extended
the same approach to some many-body states. We found new 3-gluon config-
uration ggg belonging to category (i), the polymeric chains G.g.g...gq of the
category (ii) and diquarks and baryons in category (iii).

The last two are the baryon number carrying states we will discuss in this
Chapter. Since these states belong to the third, most weakly bound category,
they are naturally most vulnerable to uncertainties of the potential and their
existence can be questioned. Besides, these states are relatively heavy: such
states have not been included in [21] in the calculation of thermodynamic
pressure.

The reason we will discuss them now is because they are more important at
increasing baryonic chemical potential u. Alternative way to look at the same

!The works in the present chapter are based on [46].
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thing is to consider higher derivatives over p at u = 0: this way the role of
such states is enhanced due to powers of their baryon number. At some point
the diquarks and baryons should become noticeable in these quantities even if
their role in pressure is small: and this is precisely what we think happened
in the lattice data of the UK-Bielefeld collaboration (UKB) [77], especially in
susceptibilities with 4 and 6 derivatives.

Definition of the Baryonic Susceptibilities and its Values below T,

From now on we will concentrate on the so called baryonic susceptibilities part
of the free energy, which can be singled out via derivatives over quark chemical
potentials p1; = (pu + f1a)/2 and pr = (p, — pta)/2 calculated recently by the
UKB. They use it in a context of Taylor expansion of the thermodynamical
quantities in powers of baryonic chemical potential 1/T? up to the order O(u5)
of 2-flavor QCD, but we will not discuss this expansion per se and concentrate
on (T-dependent) susceptibilities of the kind?:
n 4
g,y = 2w/

/Ty = nle,(T) (7.1)

u=0

for n = 2,4,6. (The odd ones vanish at ¢ = 0 by symmetry.) These data
are shown in Fig.7.1 and also below. The UKB also studied what they called
isospin susceptibilities defined as

9" (p/T*)
w/T)=20(pur/T)?

and in a flavor diagonal-non-diagonal language there are

= nlcl(T) (7.2)

p=pr=0

4(T) = 5

dyt = (dy +dy) /4, dyt = (dy — dy) /4 . (7.3)

Let us also mention another recent independent lattice studies on susceptibil-
ities of 2-flavor QCD in [96], where they defined so-called nonlinear suscepti-
bilities(NLS)

a(nu+nd)p

=< 4
Opig Opuy 4)

Xnunag

2We follow notations used in this work where j is the chemical potential per quark, not
per baryon. Thus the associated charge is B = 1 for a quark, B = 2 for a diquark and
B = 3 for a baryon.

3Since we would not discuss any Taylor series in this work, we would prefer to leave out
the factorials and thus discuss susceptibilities d,, defined without them, not c,.
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and evaluated their values on lattice. To see the connection between these two
approaches, we give the following relations

n—2
dyt =171 Z Ch_o[Xir2m—1-2 + Xin-1]/2 (7.5)
1=0
and
n—2
it =T " Ch Xirinaio - (7.6)
1=0

While the two approaches are very closely related, their numerical results,
however, are not quantitatively comparable, partly because they have used
very different mass setup in the lattice calculation. We nevertheless emphasize
that in a qualitative view both of them have found very similar and interesting
patterns in those susceptibilities, especially for the 4th and the 6th, which are
the central issues to be addressed in this paper.

To set the stage, we start with the hadronic phase below T.. Here the rele-
vant states are only the baryons with the baryon number (per quark) 3. Their
spectrum is known at 7" = 0 experimentally, and thus an obvious question is:
Can a simple resonance gas of known baryons explain the behavior of these
susceptibilities below 7.7 Indeed it is the case, as shown by the dotted curves
in Fig.7.1 (obtained by including contributions of nucleon states from N(940)
to N(1675) and A states from A(1232) to A(1700), for two-flavor theory one
should not include strange baryons). No T'— or u— dependence of these masses
is assumed, nor do we take into account the fact that lattice is dealing with
non-massive quarks*: tuning these will shift the curves down a bit, making the
agreement even better. So the susceptibilities in the hadronic phase, T' < T,
can be described by the usual resonance gas of baryons.

A Discussion about Naive Free Gas Model of Quark Quasiparticles

The main issue to be discussed is what these lattice data actually tell us about
the nature of baryonic states above T,, and whether one can describe them with
sQGP model or as well with some other model.

Before we proceed to the argumentation in literature, let us remind stan-
dard thermodynamical expressions for massive fermions, which can be put in

4In fact the input quark mass in these calculations is 0.47.
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Figure 7.1: The dotted lines correspond to a gas of baryonic resonances, the
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data (after removal of factorials in o 4).
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the following well known form

p M? & (_)HI IBu/T
ﬁ:N%?T?Z[ 2 G

=1

+e BHTY Ko (IM)T) (7.7)

where B, M is the baryon number of the corresponding particle and its mass,
N is the statistical weight and K5 is the Bessel function.® This form is very
convenient for taking derivatives over p, for example the first derivative, the
baryon density is

np M? G (_)ZH IBu/T
TR EpS { e
—e BHTYRL(IM)T)
= NBNI[Bu/T,M/T] (7.8)

where the function Nz, y] is defined by these series. Note at this point we
don’t really consider mass as depending on p so no extra derivatives against
M appear.

In a number of talks Karsch (and also a paper [97]) has presented what we
would refer to as a “naive” argument: the subsequent ratios

dpio/d, =< B* > (7.9)

are directly related to the squared baryon number of the constituents. The
argument goes as follows: (a) For massive particles with M >> T one can
use the so called Boltzmann approximation, keeping only the first term in
the sum above; (b) after that the y— dependence factorizes, and thus each
two derivatives over u restore the same expression, modulo the factor B?. In
the matter dominated by quark quasiparticles, or gg bound states, the r.h.s.
would be 1, but it would instead be 4 or 9 for matter dominated by diquarks
or baryons, respectively. The measured ratio dy/ds is ~ 10 at T' < T, but at
T > T, it rapidly drops and becomes close to 1. Comparing it to the formula
above Karsch concluded that at T' > T, matter is a gas of some B = 1 objects,
while the contribution of the B = 2 diquarks is strongly restricted.

5If there are more than one species of particle we then sum over different species. Yet
there will be particular concern when dealing with quasiparticles instead of particles where
some background term may arise in the pressure, as will be discussed in later section.
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But if one looks closer at this argument, one finds it missing a lot of effects
that should be there as well. For example, the next similar ratio dg/ds above
T, is nowhere close to 1 but is in fact a large negative number ~ —10 which
cannot be interpreted as a B? of anything.

Furthermore, the idea that one can keep only the main term in the sum
so that the ¢ and T dependence can factorize, must be wrong by itself. The
T-dependence of do(T'), dy(T) and dg(T') is not at all similar: while do(7T)
resembles the behavior of the pressure itself and can easily be interpreted as a
transition from hadron to quark gas, the next one d4(7) has a sharp maximum
near 1., with even more complicated “wiggle” in the dg(T).

Another perspective on that issue can be made if one converts baryon
number and isospin susceptibilities into flavor-diagonal (uu or dd) and fla-
vor non-diagonal ud susceptibilities. The lattice data show that the second
flavor-mixing derivatives are small® d4¢/dy* << 1, but similar ratios for higher
derivatives n=4,6 are not small d"¢/d** ~ 1/2.

Does it imply that the quark gas model is also inadequate and should be

excluded as well as the “bound state” gas? Or, if the argument is wrong, what
exactly is missing?
(i) Even if the Boltzmann approximation (keeping the first term in sum in
(7.7)) may be good for pressure, it still fails for higher susceptibilities because
the [-th term has [p in the exponent, and subsequent differentiation their role
grows as [". By the time one comes to the sixth derivative, these terms start
canceling each other. In physics terms, this is a form of Fermi blocking effect
not included in the simple Boltzmann approximation.

(ii) The second to recognize is the fact that quasiparticles are not particles
and their effective masses depend on matter parameters, such as 7" and espe-
cially p. Subsequent differentiation of this effective mass over p would add
powers of derivatives like

0?M

Ml/ —
ou?

(T, p=0) (7.10)

to susceptibilities and to their ratios such as (7.9). Provided those are large
enough, they may completely invalidate the naive interpretation of those ratios
as baryon number squared. This was already pointed out by Bluhm, Kempfer
and Soff [98], and we will refer to it below as the “BKS effect”. The same is
true for bound states such as baryons, and similar derivatives of their masses
MZ(T) would play an important role below.

(iii) the contribution of diquarks has been grossly overestimated, while the

6This is also the main point of the paper [95].
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contribution of baryons was not discussed at all. We will show below that it
may naturally explain the features seen in higher derivatives.

This Chapter is organized as follows. In section 7.1 we will start with
an “unconstrained” quark gas model, and will use the lattice data to extract
the quasiparticle mass together with its dependence on matter, M (T, ). We
would not need to rely on perturbative arguments used by BKS [98] (since
even their own fit leads to rather strong coupling at 7' ~ T.). Furthermore,
we will conjecture possible relation between the T'— and p— dependences due
to known shape of the phase boundary on the phase diagram. In section 7.2
we will further impose a number of constraints on quark mass, from other lat-
tice data and also from confinement, a condition that there should not be any
colored degrees of freedom at T' < T,.. We will conclude that these constraints
basically make it impossible to ascribe the observed features of the data to the
BKS effect. After that we will proceed to section 7.3 in which we will discuss
the contribution of diquark and baryons: here we will find good fits to the
data satisfying all the needed constraints and nicely joining the baryon gas
picture below T..

7.1 Model I: A Quark Gas with an Uncon-
strained Mass M (T, )

The idea to use thermodynamical quantities calculated on the lattice to fit the
mass parameters of quasiparticles is by itself quite old. For example, Levai
and Heinz [99] have used the data on p(7") for determination of quark and
gluon effective masses M(T)".

One well known problem with quasiparticle gas models is that the deriva-
tives over T" and p upset thermodynamical consistency between gas-like ex-
pressions for different thermodynamical quantities. Only one of them can be
assumed to have a simple additive form over quasiparticles: then there is no
freedom left and all other quantities can be calculated from it by thermody-
namics. Thus only one “primary” expression can be additive, while others will
have extra “derivative” terms complementing simple gas formulae.

Following conventions of the BKS paper, we will use as such “primary”
expression that for the baryon number density (7.8). The expressions for
pressure and energy density would then be corrected by some 7', u-dependent

"It was not as direct as our approach below, because one cannot get 2 functions out of
one without assumptions.
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“bag terms”. Higher derivatives terms d,, will be calculated by differentiating
(7.8) n — 1 times. To be more specific, we explicitly give the baryon number
density for this quark gas model

= G = o [dertulF(e—nn) - Fletnp)] ()

Here g = Ny* N+ Ny = 12 is the degeneracy factor for quarks in the two-flavor
case, n is the baryon quantum number of quark which is defined here to be
n = 1 by setting p to be the quark chemical potential. i = p/T is made
to be dimensionless, and € = V22 +m with m = M /T. And finally we have
introduced Fermi distribution function F(y) = Starting from (7.11) the
explicit formulae for ds, dy, dg are given to be:

A(np/T°)
op

y+1

d2:

272

2
= ——g/dx:v2 n*FW (ey) (7.12)

u=0

dy

2
R {n4F(3)(eo)

+3n? F<2>(60) — ( i \H o) (7.13)

L (g:;‘u N )} (7.14)
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In the above equations we have used €y = /22 + mig* and mg(T) = M(T, =
0)/T, and also F(®(y) means the ith derivative of the function F(y).

The model used in the BKS paper assumes some Hard Thermal Loop
based perturbative form for the T', y-dependent mass with the coupling ¢*(T', 1)
running in a complicated fashion fitted to reproduce the susceptibilities we
discuss in this work. However, we do not see why any assumptions about the
mass dependence are actually needed® at this point.

We thus suggest a generalization of what was done in [98]. Assuming a
simple ideal gas model of quark quasiparticles, one has their mass to be the
only input needed. With the lattice data on dy(7T'), dy(T") and dg(T") used as
input, one can simply solve for the three functions of 7' which would ideally
fit them: we have chosen those to be: (i) the quark mass M (T, = 0); and

its two lowest non-zero? derivatives over u (i) M” = %2:\24 (T, = 0) and (iii)
4 .
M"" = %/f\f (T, = 0). With these at hand, of course, we are able to develop

the Taylor’s expansion for quark mass as a function of |4 < 1:

ny_ _ LPM gy (2
1 0*M Mg
T e CVEICO M)

The procedure is iterative: First we used c»(7") data to solve for the mass

mg as unknown. Then we go to ¢4, the equation of which includes both mg and
247 . ~

om but since we have already solved my from ¢y now the only unknown

8;12 ;U':O’
term is ‘?;T”; 0 which could be solved out from lattice results of ¢4. finally
we can obtain %%? p=0 from cg with mg and %QT”} =0 already being solved from

¢y and ¢4. The results for these three functions are shown in Fig.7.2. (The

error bars in mg are determined from uncertainty in c;. While for 8827”} =0
the errors should come from both ¢4 and mg, the error bars in the figure only
include those from ¢4, and also for %47’? =0 the error bars solely include that
originated from cg.)

As an independent check, we have also extracted the same three quantities,
M(T, = 0), %(T, p = 0) and %AITAZI(T,,M = 0) from the lattice data set for
c3(T), ci(T) and ci(T) from [77] by the same strategy (but starting with isospin
densities).

8There is of course no reason to trust any perturbative formula near 7, at all, where the
coupling becomes as strong as it was found by BKS themselves.

9The quasiparticle masses and other quantities obviously can depends only quadratically
on p because of y — —u symmetry based on CP invariance.
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Figure 7.2: Quark quasiparticle mass and its second and fourth derivatives
over i as a function of temperature T, extracted from lattice data for suscep-
tibilities. There are two sets of points in each figure that are obtained from
Ca, c4, ¢ and from ¢l el ¢k respectively. In the top figure for quark mass, we
also plotted the two points with error bars measured by lattice via propagator,
and the mass given by (7.20) as well. (the dashed line).
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The results are shown in Fig.7.2. As can be seen, two sets of parameters we
extracted from both data sets are well consistent with each other at 7' > T,
while for T" < T, they do not agree. It is a good feature, as the quark gas
model is not supposed to work there, in the domain of the baryon resonance
gas.

Let us summarize these results. The most important lessons are: (i) the
mass M (T) strongly increases when cooling down toward the critical point Tp;
(ii) Large and negative B;TAf(T, p = 0) close to T¢; (iii) The 4-th derivative is
positive: so this decrease of the mass due to the 2nd derivative will stop at
about u/T ~ 1, see (7.15).

The first two points are the trends already emphasized by BKS [98]. In
their approach these two features are related with each other because of the
assumed perturbative origin of the effective quark mass:

1
_ 2 2 2
M =g (T, )T (1 + N;/6+ 9272 Ef ,uf> (7.16)

where the sum runs over all flavors f. Ignoring for a moment a (rather compli-
cated) running of the coupling, the BKS mass is thus constant at the particular
ellipsoids in the T' — p plane, thus the derivatives over 1" and u are related.

We would like to propose another reasoning that leads to similar effect, but
is free from perturbative assumptions. Its idea can be described as follows:
the quark mass should be getting large not only near the critical point T —
T., n = 0, but near the whole critical line, at all u. It is needed to ensure that
quark degrees of freedom do not contribute in the confined phase, at any p.

The critical line at nonzero p is schematically shown in Fig.7.3, its shape at
not-too-large 11/T" can be described by an ellipsoid, or an unit circle, if the units
are chosen appropriately. One may further think that the mass dependence
on the radial coordinate R on such a plot is much more important than on the
angular one ¢ since the “lines of constant mass” should be nearly parallel to
the critical line, at least in its vicinity where the discussed effect takes place.

So, the proposed extension of the T-dependence of the mass to its u-
dependence is based on a substitution

M(T, p = 0) — M(R(T, ) (7.17)
T2 Iu2
R? = = + 2 (7.18)

We have introduced here a new parameter p.: its value can be readily obtained
from the experimental freezeout curve measured in heavy ion collisions at small
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1 W

Figure 7.3: In the plane of temperature T-baryonic chemical potential y, both
appropriately normalized, the phase boundary looks like a part of a circle. (At
least for the part marked by the solid line, studied well at SPS and RHIC, with
quite well established chemical freezout. The dashed line is a continuation of
the freezout line where its association with the critical line is questionable.)
The polar coordinates to be used are the radial distance R and the angle ¢.

1, believed to represent the critical line. If so, the value of this parameter is
pe/Te = 1.7 (7.19)

which is quite different from the value given by “perturbative scaling” (7.16):

(1+ %)ﬂ ~ 3.63 which is not supposed to work in the non-perturbative
regime near 7.

7.2 Model II: the constrained quark gas

The “unconstrained Model I” discussed above, although consistent with both
data sets d,(T),d.(T), is unfortunately unacceptable, for two main reasons:
(i) It contradicts direct lattice measurements of the quasiparticle masses ; (ii)
It implies that quark degrees of freedom still significantly contribute in the
confining phase at T' < T,. In this section we will show what happens if one
tries to modify the unconstrained model to make it compatible with both.
One feature of the Model I is the relatively light quark mass M (T, u = 0)
in region 1 — 27, ranging from about 1.77, to 2.27,.. Such mass conflicts with
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another lattice data about quark quasiparticle mass at 1.57, and 37, see [100]
which are m,/T = 3.9£0.2 and m,/T = 1.7£0.1, respectively, and are shown
in Fig.2 by two crosses with the error bars. Although these results are based
on only one paper and have not been systematically studied by other lattice
groups so far, they nevertheless represent direct measurements from the quark
propagators. Furthermore, such large masses correspond to the inter-particle
potentials at large distances measured in separate lattice study [72].

Although the mass extracted via the Model I grows toward T, this effect
is still not robust enough to make quark contribution near-zero (or negligible)
at T = T.. (In fact, BKS proceeded to fit equally well some region below
T..) This is unacceptable, since we know that there are no propagating quark
degrees of freedom in the confining phase.

Both these reasons force us to reconsider Model I, basically by increasing
the quark mass significantly to meet both constraints. This can be achieved
by a quark mass formula similar to that used in [21]

M(T) = % +3.45+ 04T (7.20)
with all units in proper powers of T, (This and subsequent mass formula would
then be generalized to finite p according to (7.17) . The coefficients are chosen
so that the curve goes through the two lattice-measured points for quark mass
at T'=1.5,3.07,, see the dashed line in Fig.7.2.

We show what happens then to the susceptibilities, see the medium-thickness
solid lines in Fig.7.7. In short, good description of c3(T) is definitely ruined
The issue is the same as for pressure in [21], and perhaps can be cured by qg
and other bound states. But this is not the only problem of the constrained
model: although it can produce a peak in dy(7) and a “wiggle” in dg(T"), given
large enough derivatives over pu, those get displaced toward larger 7' as com-
pared to the data. It is an inevitable consequence of the second constraint,
insisting that quark effect be effectively zero at 7T,.*°

Completing our discussion of purely quark models, we now proceed to the
possible role of their bound states, diquarks and baryons.

0The very heavy mass due to the constraints significantly decrease quark contribution
to thermodynamics and hence disfavor quark-only model, yet on the other hand, it strongly
favors the formation of bound states.
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Table 7.1: Summary of states with baryon number at 1" > T, studied in this

Chapter.

state spin flavor color multiplicity

q 2 2 3 12

(¢9)s 4 2 3 24

(99)s 4 2 6 48

(aq)3~=" 1 1 3 3

(@)=~ 3 3 3 27

N 2 2 1 4

A 4 4 1 16

7.3 The effect of diquarks and baryons

We will now proceed to contributions of the bound states to the baryonic
susceptibilities. Let us remind the reader that the particular reason to focus
on diquarks and especially baryons is that the role of diquarks and baryons
relative to quarks grows with p because of their larger baryon charges. Alter-
natively, their contribution to the susceptibility d, grows exponentially with
n: by the factors 2" for the diquarks and and 3™ for baryons. For example, the
contribution of N, A is enhanced by a factor 81 for dy and 729 for dg relative
to pressure: with estimates of pressure given above one may then expect to
see their contribution there. On the other hand, for lower derivative dy we
expect quark-gluon bound states, which are more numerous and more tightly
bound, to contribute significantly. We summarized all bound states, together
with their multiplicities, in the Table.7.1.

(In passing, let us comment about the numbers in the real world with
strangeness, Ny = 3. The number of diquark flavor states is increased to
be 3 times larger, for baryons the total spin-flavor multiplicity increases from
44+16=20 to 56(an octet J = 1/2 and a decuplet J = 3/2) which is roughly
enhanced by 3 times, so the numbers both diquarks and baryons states are
increased by the factor 3. The quark number increases as 3/2, so the overall
enhancement of the ratios we will discuss below from Ny = 2 to Ny = 3 is the
factor 2.)

Quark-gluon bound states: Before we proceed to actual calculation, let
us make simple estimates of the relative weighing in pressure of quark-gluon
bound states. The 2-body states qg are thermodynamically suppressed by
additional Boltzmann factor, exp(—M/T) ~ 0.02 — 0.04 (by including their
considerable binding). However, due to their relatively large multiplicity (6
times the number of the quark states) they contribute to the pressure and
susceptibilities at the level of about 1/10 or more.
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Figure 7.4: Comparison of susceptibilities from quark-gluon states with two
limiting case, zero-binding (ds46) and ”full-compensation” binding (Ds46).

To get more quantitative answer one has to know the binding energy of
these states. While the binding of the category three states (qg)s can be
reasonably neglected, the category two (gg)s states have considerable binding
at the same order as meson states. The potential model calculations in [22]
lead to (qg)s binding up to |0E|/T ~ 1.4 at T = T,, which means their
contribution increases relative to simple estimate above by extra factor 2-3.

However there are many reason to doubt that close to T, this calculation
can be trusted quantitatively. In particular, the potential used is measured on
the lattice for static charges only, and the corresponding calculations are sup-
posed to be reliable only when the binding is small: near T, more complicated
dynamics beyond the potential model will contribute as well.

Let us thus just suggest an upper limit for the qg states’ contribution. Since
the gg states are colored, they should gets infinitely heavy at T, together with
all other colored states. Furthermore, as (the more tightly bound) ggs states
have the total charge of one quark, their mass should not be smaller than that
of one charge [0F| < M (T =~ T.). So we expect M (qg) to interpolate between
M,+ M, ~ 2M, at zero binding to a a single M, at T" ~ T,). The contribution
of these states to susceptibilities in the two limiting cases, namely the zero-
binding case (labeled in figure by d;) and ”full-compensation” binding case
(labeled by D;), are shown in Fig.7.4. We conclude that large uncertainty, of
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the order of factor 3, remains in the contributions of such states.

(These results are calculated with (¢g)e always having twice quark mass and
melting at 1.47, while with (¢g)s having twice quark mass in the former case
and the same mass as quark in the latter, both melting at 2.17,.. The actual
contribution of quark-gluon bound states should be somewhere in between,
near to D; around T, while rapidly decreasing to d; for higher temperature.)

One may also ask what is the contribution of the various polymer-like qg
states qg, q99, qggg, - - - which, according to [22], has the same binding energy
per bond. The effect of these states can be easily evaluated via a geometric
series: the resulting enhancement factor is

1
fpolymeT‘S - 1— 6exp[(’(5E| - MQ)/T]

(7.21)

where 6 is the color and spin degeneracy added by each link. For small binding
this is just a few percent correction, but if it may get to be strong enough to
drive the denominator toward zero, a total “polymerization” of sQGP would
occur.

Diquarks: for Ny = 2 gauge theory corresponding to the UKB data at
hand there is only one attractive diquark channel, the antisymmetric color
triplet (¢q)s. Because of Fermi statistics, it means that the product of spin and
flavor should be symmetric, and thus there are two options: (i) spin-0 isospin-
0 ud diquark (qq)3='=°, and (ii) spin-1 isospin-1 one (gqq)7='='. These are
the diquarks which are familiar in hadronic spectroscopy, the former appears
inside the N, the latter inside A (octet and decuplet members, for 3 flavors).
The lesson from this spectroscopy (at T=0, of course) is that while the former
is well bound, by about 300 MeV, the latter is not. In view of the rather
marginal character of diquark binding, we expect only the former one able to
be seriously considered as bound state above T,.. Nevertheless to confirm the
point that diquarks will not play any role in all susceptibilities measured, we
include both of them in calculation of Fig.7.7. If we only use antisymmetric
states, then the contribution will be reduced to only 1/10 of that.

The diquark-to-quark pressure ratio can be estimated as following:

(qq)s 3+27 pw—M+|0F]|
~ exrp

p T ( = )23/2 (7.22)

where the binding |0 F| is negligible (actually only the 3 (qq)3='=° states are

very likely bound)!!. At small y where the data under consideration are cal-

"The last factor comes from M3/2 in the pre-exponent, originated from momentum
integral.
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Figure 7.5: Masses of various states studied in this work. The thin solid
line is for quark and the dashed line is twice quark mass which is roughly for
quark-gluon and diquark. The lower thick solid line is for nucleon states and
the upper one for A states. These masses are used for calculation of Fig.7.7.

culated, M/T =~ 5 and their contribution is at few percent level, negligible
compared to uncertainties.

Baryons: as we found in [22] they are bound till about 7" = 1.67.. In
the 2-flavor theory they are the N, A 3-quark states. Only the s-wave basic
states survive above T, while all other resonances (used in the first section at
T < T.) which are orbital or radial excitations of N, A families are “melted”.

The baryons are also numerous (20) but the suppression factor due to mass

is much smaller
(g99) 20  2p—2M +[0FE]
—— =~ eap(
q 12 T
Near the “endpoint” of baryons with zero binding (which according to [22]
is at T' = 1.6Tc) their mass is 3M,, expected to be in the range of 2.5- 3
GeV. As it is an order of magnitude larger than 7', one would not expected to
contribute to pressure etc.

However, unlike the quark, quark-gluon and diquarks (which after all are
colored objects existing only above T.), N, A baryons are colorless and thus
survive on both sides of the boundary of (a continuous) phase transition (a
crossover, more accurately), thus the masses of baryons at 7' — T'c¢ are ex-

)33/2 (7.23)
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pected to join continuously to their known values at lower T'. This of course
implies that the binding energy near 7. gets very large due to some deeper
yet poorly-known mechanism, and the potential model used in [22] to eval-
uate this binding will not be applicable. The situation is basically the same
as with mesons: as emphasized in [21] the pion mass must (by definition of
chiral breaking) vanish (in the chiral limit) at 7" — T'c, which potential model
also cannot reproduce. we will use below the following parameterization (in
T, units)

My =954 4.6 x tanh[3.8 x (T — 1.4)] (7.24)

M = 10.25 4 3.85  tanh[3.8 (T — 1.4)] (7.25)

interpolating between the nucleon and A vacuum masses at low 7', while ap-
proaching the same value 3M, at high temperatures. We plot it in Fig.7.5,
together with the masses of various other states to be used in later in Fig.7.7
for susceptibilities. The main feature is fundamentally again enforcing con-
finement: when going from QGP side toward 7T, all colored degrees of freedom
get extremely heavy and drop out from system, while all colorless degrees of
freedom get more tightly bound and eventually dominate.

We now approach the central point of the paper: the baryon contribution
provides a natural interpretation of the structures observed in susceptibilities
measured on the lattice, the large peak near T, in dy(T) and a more compli-
cated "wiggle” structure is seen in dg(7"). This happens because the expected
mass dependence of baryons on 7', u, shown in Fig.7.5, should have a char-
acteristic shape with an inflection point, separating the region in which the
second derivative M7, is negative (above T.) and positive (below T.). That is
why the contributions of the baryons to dg show a “wiggle” as seen from the
corresponding curves in Fig.7.7. Note also, that there is a less pronounced
wiggle of the same origin in baryonic dy: we think its negative part is the
reason why the gg and gq contributions above 7T, can get compensated and by
coincidence the dy/ds ratio gets close to 1 there.

One additional argument for baryonic nature of the structures seen in dy, dg
is the following one. Each derivative over p, leads to factor 3, so 2 of them
give 9. If instead one has two derivatives over u; the factor obtained is (213)?,
which is 1 for p,n, AT, A® and 9 for AT, A=, As a result, if one ignores the
mass difference between these states, one finds that baryonic contribution to
both should have the ratio d! /d, = (1/9) % (4/20) + (1 + 1/9)(8/20) = .467,
while this ratio should be 1 for ideal quark gas. The actual ratio of these
quantities according to UKB data are shown in Fig.7.6. We see near T, the
data obviously favor the existence of baryons, especially for d./dg, and the
quark asymptotic end is arrived at about 1.47T, for d}/d, while only after 1.8T,
for df/ds. These evidences strengthen the necessity of baryonic interpretation
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Figure 7.6: The susceptibilities ratios d/dy (the thin solid) and df/ds (the
thick solid). The dashed lines correspond to ideal quark gas (upper) and ideal
baryonic gas (lower).

of the higher susceptibilities.

Taking everything together, including quarks, quark-gluons, diquarks
and baryons, we arrived at summary plots shown in Fig.7.7. We repeat that
all masses used are as shown in Fig.7.5 and their y—dependence is introduced
in the same way according to (7.17).

( The bound states’ "endpoints” are set to be 2.17.. for (qg)s quark-gluons,
14T, for (qg)g, 1.4T, for diquarks, and 1.67, for baryons, according to [22].
The gradual removal near melting point is done by similar means as in [21].
The results are shown in Fig.7.7, where the overall values as well as the con-
tributions of each kind of states are all present.)

Let’s focus on the T > T, side. The conclusions are:

(i) as expected the diquark contribution is negligible for all three quantities
even after including the suspect (gq)3='=' states, but it is clearly growing as
getting to higher derivatives;

(ii)For dy quark provides main contribution, and we emphasize the fitting will
be much better if we include the large binding of qg states near T.. We have
shown above that large uncertainty in its binding, including polymers, would
allow for a good fit here, which we decided not to do.
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(iii) In dy it is precisely the baryons that produce the desired large peak near
T till about 1.37,. where quarks become important;
(iv) The baryons’ contribution extremely dominant the behavior of dg, espe-
cially the "wiggle” shape.

We conclude that two prominent structures, a peak in dy(7") and a “wiggle”
in dg(7T") are naturally reproduced by baryons.

7.4 Summary

In one sentence, the main lessons from the UKB susceptibilities is that the
baryons NA do survive the QCD phase transition, but are rapidly becoming
quite heavy across it.

More generally, the discussed data set on the baryonic and isospin suscep-
tibilities at 7" > T can be described in two different scenarios. (i) The first is
a quark quasiparticle gas, with the effective mass which is strongly decreasing
near the phase boundary into the QGP phase; (ii) the second is a picture in-
cluding baryons with the mass rapidly increasing across the phase boundary
toward QGP, to about 3M,.

The first scenario was already pointed out by BKS [98], while our discus-
sion makes it a bit more general. Its attractive features notwithstanding, it
suggests the values of the mass not large enough to accommodate the existing
constraints from other lattice measurements. We also think it is not possible
to have quark degrees of freedom in hadronic phase. Thus we conclude that
success of such scenario is unlikely.

The second scenario, based on baryons, can provide another explanation
of the main features of the data, namely the observed peak in dy(7") and
a “wiggle” in dg(T). It also naturally explains the flavor-changing d%4, d%4,
which are not small relative to flavor-diagonal ones. Last but not least, this
scenario provides a desired continuity to the baryon resonance gas picture at
T <T,.

Although the susceptibilities d,,(T") we used in this work are highly sensitive
tools, they are quite indirect. Thermodynamical observable in general cannot
tell the difference between “melting” baryons (getting unbound) and baryons
remaining well bound but just getting too heavy: in both cases all one finds is
that their contribution to thermodynamics effectively disappears. Besides, the
ideal gas models used in these studies are probably too naive to claim really
quantitative description of the data. One should instead study directly the
spectral densities of the correlators of the appropriate baryonic currents (qqq)
and see if there are baryonic peaks there, like what has been done for charmo-
nium and light mesonic channels. Only such direct measurements would tell
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Figure 7.7: The contributions of different states to (a) dq, (b) d4 and (c) dg,
as well as the summed total values. The thickest solid lines are for taking
all together, while the medium solid lines for quark, the thin solid lines for
baryon, the dotted lines for quark-gluon, and the dashed lines for diquark,
respectively.
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us which scenario is the correct one.

Speaking about experimental confirmation of the “bound state” scenario,
we think the best chance could be observation of the vector mesons. As de-
scribed in detail in [101], vector mesons p,w, ¢ are expected to become heavy
near their disappearence point, like the baryons discussed above, reaching the
mass ~ 2M, = 1.5 — 2GeV. The next generation of RHIC dilepton experi-
ments have a chance to see if this is indeed what is happening in QGP.
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Chapter 8

Conclusions

In this dissertation, we have proposed to view finite-7" QCD as a competi-
tion between electrically charged quasiparticles (EQPs) and the magnetically
charged (MQPs). The high-7"/high density limit is known to be perturbative
QGP, which is electric-dominated. This implies that EQPs are more numerous,
with density ~ N?T3, while the density of MPQs is ~ N2T?/log*(T/Agcp).
In this case the electric coupling is weaker than the magnetic e < g. We
have conjectured, based on a few lattice results, that at some intermediate
T ~ 300 MeV both sectors’ couplings and densities are similar, and below
it T < 300 MeV the roles are reversed, with dominant MQPs and elec-
tric coupling being stronger than magnetic e > ¢g. One of the important
consequences of this picture is “postconfinement” phenomena and (electri-
cally) strongly coupled QGP right above the deconfinement phase transition
T = (200 — 300) MeV'.

Using these ideas as a motivation, we have started a program of studies
aimed at understanding the many-body aspects of matter composed of both
electrically and magnetically charged quasiparticles.

We began in Chapter 2 with single monopole motion in the presence of
certain electric field configurations, i.e. a static electric dipole and an electric
flux tube. By studying the dipole case, we demonstrated how the monopole
could be trapped locally for a long time and bounced back and forth between
the two standing charges, an effect that later has been shown to be crucial for
the transport properties. The monopole scattering on an electric flux tube has
been solved exactly and the induced magnetic current calculated.

We have then used molecular dynamics in Chapter 3 to do the first sys-
tematic study of a plasma with both electric and magnetic charges. The
correlation functions and the transport coefficients have been evaluated and
compared among plasmas with different magnetic contents. Most interestingly
we found that by increasing the concentration of magnetic charges to about

155



50% we get a factor 2 down for viscosity, which is particularly important in
view of explaining the surprisingly low viscosity of sSQGP as observed at RHIC.

In Chapter 4, by applying the results of our MD simulations to the sQGP
system, we have concluded that the transport properties of the “perfect liquid”
created at RHIC could be mimicked by our 50%-50% mixture with I’ ~ 3.
We have then further elucidated the microscopic mechanism, i.e. the Lorentz
trapping effect, which makes the mixture plasma a good liquid. Separately the
analysis of the monopole-anti-monopole equal-time spatial correlation function
has confirmed the monopoles indeed form a liquid. Further investigation of
the accurate lattice data of this correlation function has helped us to extract
important information about the magnetic coupling, which again suggests that
the magnetic component in 1 — 47, is a good liquid.

As an application of the above magnetic scenario, in Chapter 5 we have
developed a model for the static QQ potential energy at 7'~ T,. In particular
we have argued that the fast separation of the two charges will dynamically
excite the dense magnetic medium and create meta-stable elongated flux bag
which leads to the linear part in the potential with effective tension as large as
about 5 times the vacuum string tension. Based on our model we have derived
a formula which relates the effective tension of the linear part in the potential
energy to the monopole density: by our formula consistency has been achieved
between the lattice data for the tension and the independent lattice data for
the monopole density.

Finally in Chapter 6 and 7 we have re-examined the electric component
of sQGP, especially the roles of quark quasiparticles and their possible bound
states. Using a potential model calculation we have shown that multiple-
body bound states, e.g. baryons and polymer chains, could survive up to
1.6 — 2T,.. Using the accurate lattice data of baryonic susceptibilities as a
powerful diagnostic tool, we have been able to show that quark quasiparticles
have to become rather heavy, at least about 47", when going close to 7., and
thus thermodynamically play a minor role, while the diquarks and baryons
(heavy too but carrying more baryonic numbers) have to be included in order
to explain the nontrivial structures in the higher-order susceptibilities. This
study also indirectly supports our idea that the magnetic component is the
most dominant degrees of freedom close to T..

To sum up in one sentence, the works presented in this dissertation have
laid down the foundation toward a final and deep theoretical understanding
of the strongly coupled quark-gluon plasma based on generic electric-magnetic
duality. We believe as time evolves, with more and more dedicated and ac-
curate lattice results coming out, and with more and more RHIC data and
related phenomenological studies converging, the magnetic scenario for sQGP
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which we suggest will gain more and more success, and the values of the many
parameters characterizing the magnetic component (and the electric compo-
nent as well) of sSQGP will be more and more precisely determined.
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