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Setups for outsourcing databases work on the assumption that the hosting server is
trusted. Existing mechanisms require decryption of the database at the server, which
may not be trusted. In this thesis we talk about how trusted hardware can be used to
solve the problem of untrusted service providers. We will achieve this by designing
mechanisms that allow clients to fully access and benefit from an encrypted database
residing on a database controlled by an untrusted admin. A query is divided into
sensitive and non-sensitive components. Sensitive query operations such as evaluation
of join predicates are performed inside a trusted enclosure of the IBM 4764 secure
coprocessor. The untrusted server hardware is relied upon for non-sensitive 1/0 such as
data fetches and database management. A simple wrapper is deployed at the client to
enable standard database operations. Traditional queries are transformed, encrypted
and forwarded to the trusted hardware by the untrusted server. To support the above
design we also cross-compile and deploy additional code for the sCPU including a Java
virtual machine as well as a modified network stack that is able to run over the PCI
system bus to comply with the IBM 4764's security standards (FIPS 140-2 Level 4) and
load classes over HTTP from the untrusted server. Standard cryptographic primitives are
used to ensure the untrusted server does not 'cheat' while passing data between the
client and the sCPU, and back. The elements deployed in this instance are the Kaffe JVM,
the SQLite3 engine and the PostgreSQL client in the sCPU (minimal embedded Linux on
PowerPC-405) and PostgreSQL on the server.
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Chapter 1: Introduction

My effort in the Trusted Hardware / Network Security & Applied Cryptography lab has
been to gain experience and specialize in trusted hardware in general and the IBM 4764
PCI-X Cryptographic Coprocessor in particular with the ultimate goal of enabling for the
first time, custom applications to be written for this platform.

“The IBM 4764 PCI-X Cryptographic Coprocessor is a state-of-the-art secure subsystem
that is supported for use in certain IBM server systems to perform DES and public-key
cryptography in a highly secure environment. You can also load software for highly
sensitive processing, such as the minting of electronic postage, which must perform its
intended function even when under the physical control of a motivated adversary.” [1]

We have achieved our goal and identified key components of the IBM 4764 that allow
us to run custom software. We cross-compiled multiple application environments
including a Java virtual machine and an Sqlite3 engine for the IBM 4764. We next
applied our skills in deploying the IBM 4764 in the outsourced database context in the
presence of an untrusted host. In this scenario, clients wish to access and process
remotely hosted data while not requiring assumptions of trust in their provider.

“Minting of electronic money and electronic postage are examples of critical functions
that must run in a highly trustworthy environment. Using toolkits available from IBM
under custom contract, you can implement your own applications for the coprocessor,
or extend IBM's CCA application. You can make a fast start on your custom application
development when you extend CCA using its flexible access-control system and many
existing services.

IBM will issue you a unique identifier and certify your code-signing key so that you can
sign your own custom coprocessor software. You develop your software using
conventional IBM or Microsoft C-language compilers and use the toolkit-provided
debugging programs. You or your customers can then load coprocessor software in a
normal server environment. Using the PKl-based outbound authentication capabilities
of the coprocessor's control program, you can securely administer the coprocessor
environment, even from remote locations. Auditors can inspect the coprocessor's
digitally signed status response to confirm that the coprocessor remains untampered
and running uniquely identified software.” [2]



1.1 Commercial Outsourced Computation/Storage Providers

A plethora of commercial outsourced computation/service and storage providers exist.
The common adversarial model assumes clients trust the providers. We introduce just a
few.

Traditional out-sourcing: IBM Blue Cloud (www.ibm.com/ibm/cloud)

IBM re-branded its traditional outsourcing paradigm Blue Cloud, added virtualization
functionality based on Linux, Hadoop, Xen, or PowerVM and provides administration
functionality through several third party vendors, including 3Tera.com and
oppsource.net.

Clouds: Amazon AWS (www.aws.amazon.com)

Amazon offers a set of storage and computation outsourcing facilities structured and
deployed as web services. These include a number of additional mechanisms and
information portals such as queuing, website statistics, e-commerce, payments, billing,
structure database, authentication, shipment, as well as a content delivery network
infrastructure. The main computation outsourcing unit is a virtual machine image that is
networked and loaded transparently. Third parties such as rightScale.com provide
access and effective control.

Clouds: Google Apps (www.google.com/apps)

The Google App engine allows the transparent deployment of python applications in its
infrastructure. It features dynamic web serving, persistent storage, load balancing,
authentication and mail apps. Apps run in sandboxed platform-independent
environments.

Clouds: Windows Azure (www.microsoft.com/azure)

Recently, Microsoft has also introduced its version of cloud, dubbed Windows Azure
aimed at hosting .Net apps in managed as well as un-managed modes. It deploys
Windows Server as a base operating system and Hyper-V as a virtualization layer.

Virtually all of the above operate in the trusted model. Clients are offered written
contractual guarantees for the cloud's compliance with certain integrity policies (and
very rarely confidentiality assurances) without any technological safeguards and illicit
behavior detection mechanisms (except, as noted above, traditional security against
outsiders).



The reasons are multiple. In corporate markets, traditional business models result in
companies being often stuck with sizable price tags for the luxury of dedicated
outsourcing and management, provided by large vendors such as IBM. These settings do
not benefit from any of the advantages of the cloud-level economies of scale and
consolidation that make them so promising. Service guarantees rely on mutual non-
disclosure and security policy agreements. Clients often receive dedicated on-site 24-
hour service.

In consumer markets on the other hand, where competitive pricing is available, current
revenue and business models are heavily advertisement-driven and require direct
access to client data (emails, documents), access patterns (visited sites, searches, buying
patterns), health (see Google Health), and social networks. The data mining market's
direct and indirect worth (through advertisements) are evalued in the billions and
increasing, with no end in sight. Not too long ago, Google spent over $3 billion to
acquire DoubleClick, a data mining and web-click tracking company among others.

A second related reason for the use of the trusted model in consumer markets is direct
cost, especially in the case of free services. This is illustrated best by the cost-saving
behavior of (email) service providers such as Google and Yahoo, that have been (and still
are) operating for years with no in-transit confidentiality of traffic, mainly to avoid the
significantly increased loads that would ensue due to enabling SSL connections. This led
to the development of simple session hi-jacking tools. Ironically, the un-secured traffic is
preceded by a SSL-secured password authentication step.

Secure Outsourcing

Yet, hundreds of millions of users embrace free insecure web apps. This shows that
today's (mostly personal) cloud clients are willing to trade their privacy for (free) service.
This is not necessarily a bad thing, especially at this critical-mass building stage, yet
raises questions of clouds' viability for commercial, regulatory-compliant deployment,
involving sensitive data and logic. And, from a bottom-line cost-perspective, is it worth
even trying? This is what we aim to understand here.

Additional assurances will come at extra cost, mainly due to the network traffic, storage
requirements and CPU cycles incurred by the security logic. Thus, a first step in
understanding the financial viability of secure outsourcing is to evaluate whether the
overall picture allows for this additional cost, while still resulting in end-to-end cost
benefits.



1.2 Technical Overview of the IBM 4764 Secure Coprocessor

A secure coprocessor is a general-purpose computing environment that withstands
physical attacks and logical attacks. The device must run the programs that it is
supposed to, unmolested. You must be able to (remotely) distinguish between the real
device and application, and a clever impersonator. The coprocessor must remain secure
even if adversaries carry out destructive analysis of one or more devices.

IBM 4764 PCLX Cryptographic Coprocessor

CPU Security
PPC 405 Supervisor

FPGA
€ ’ Data Maovers

A rbitration

Buttenng Contro

HOST System PCI.X Bus Bridge

Figure 1: IBM 4764 sCPU Architecture

Its features include Data Encryption Standard (DES) and Triple-DES encryption, widely
used hashing algorithm, SHA-1, in hardware, common RSA public key infrastructure
algorithms, advanced 2048-bit modular-exponentiation operations, true hardware
random number generation designed to improve performance, Pseudo Random
Number Generation (PRNG), IBM offers a Common Cryptographic Architecture (CCA)
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support program for the PCI-X cryptographic coprocessor. Below are some system
throughput statistics with increasing record sizes.

Function Context IBM 4764 P4 @ 3.4Ghz

RSA sig. 512 bits 4200/s (est.) 1315/s
1024 bits 848/s 261/s
20438 bits 316-470/s 43/s

SHA-1 1KB blk. 1.42 MB/s 80 MB/s
64 KB blk.  18.6 MB/s 120+ MB/s

DMA xfer end-to-end 75-90 MB/s 1+ GB/s

Table 1: IBM 4764 vs. iP4@3.4Ghz/OpenSSL 0.9.7f

The IBM 4764 hardware is basically a 266MHz Motorola PowerPC-405 CPU with a
66MHz PCl bus clock. Our host server used in the project has 4 3.3GHz Intel processors.



Chapter 2: Related Work

Sun S. Chung & Gultekin Ozsoyoglu [4] talk about anti-tamper databases where they
perform queries directly on encrypted databases using homomorphic encryption. But
this type of encryption cannot be applied to complex or nested queries. Einar Mykletun,
Maithili Narasimha & Gene Tsudik [5] talk about authentication and integrity for
outsourced databases. They use cryptographic primitives to ensure query results have
not been tampered with and are authentic. But this is based on the assumption that the
database server is trusted and so, the database itself could be altered, if not the replies
to queries.

Ernesto Damiani, et. Al [6] provide a hash based method for database encryption and
use indexing on encrypted databases. But they return a super-set of the query which the
client has to query again. Hakan H, et. Al [7] talk about executing SQL queries over
encrypted data in the database-service-provider model. These two works are close to
our work, and were published six to seven years ago while our implementation is using
the new IBM 4764 trusted hardware.

George Davida, David Wells & John Kam [8] use the Chinese Remainder Theorem to
generate sub-keys for encryption/decryption of fields within a record. We also use
different keys for each row, and each table. In a 2005 paper by G. Aggarwal et. Al. [9], a
distributed architecture to partition the database is suggested with a reference to
alternately using tamper-proof hardware the way we are. In a 2004 paper, Clifton &
Murat K [10] suggest (in theory) an implementation like ours. S. W. Smith & D. Safford
[11] talk about theoretical performance bottlenecks in practical server privacy with
secure coprocessors. E. Mykletun & G. Tsudik [12] suggest a similar theoretical
framework.

Hakan H, Bala lyer, Chen Li & Sharad Mehrotra [13] talk about having a coarse index at
the server side, next to the encrypted table, and use it to perform the initial join. The
SELECT and decryption portion is then taken care of at the server. However, in their
model, the client assumes integrity of the data stored at the database. In our
implementation, we aim to ensure that the server does not manipulate the database
itself. Also, in their model, they always send entire (encrypted) tables at the client which
could translate into high network costs. We always send entire (encrypted) tables only
to the 4764 through the system bus of the server and the 4764 has the client’s
encryption key.



Chapter 3: Verifying Integrity

Using outbound authentication functions, the 4764 can prove to the client that the
applications running on it have not been tampered with. The 4764 non volatile memory
is partitioned into four segments, each of which can contain program code and sensitive
data. Segment 0 contains a ROM-based BIOS equivalent known as Miniboot. Segment 1
is the FLASH-based portion of the Miniboot. Segment 2 contains the operating system.
Segment 3 contains the application (FLASH-based).

During manufacture, the 4764 generates a random RSA keypair (Device Keypair), puts
the public key in a certificate, signs it with IBM’s private key (IBM Class Root Keypair).
The coprocessor saves this certificate and another certificate containing the IBM Class
Root public key (which is also signed by IBM’s private key). Using these certificates, a
chain of trust is built in regards to updating higher memory segments (for example, to
load new applications on the 3™ segment). Thus, an adversary cannot do much unless
he gets access to either the IBM Cass Root private key (assumed impossible since only
IBM possesses this) or the private key part of the Device Keypair (assumed impossible
because of the tamper-proof model of the 4764).

3.1 Verifying Integrity of the IBM 4764 Coprocessor

The 4764 has its own public-private RSA device key pair. The private key is retained
within the 4764 and IBM ships certificates for each coprocessor while the private key is
hard-coded in the Coprocessor Load Utility (CLU). The public exponent and modulus of
this pair is published on the IBM website [3]. It is possible to determine that a
coprocessor is a legitimate untampered IBM 4764 using a validation command via the
CLU.

3.2 Verifying Integrity of the Card Application

For the application code running inside the 4764, we use another public-private key
pair. When the client wishes to talk to the 4764 code (aka send an SQL query etc.), it is
encrypted with the public key of the card application. When the card sends replies back
out, it can certify and sign them with its private key that can then be verified by the
client using the conventional certification mechanisms. The 4764’s public key is
published.



Chapter 4: Design

We divide our model into three main components, the client, the main CPU (where the
database, web server and Java classes reside) and the secure CPU (the IBM 4764 is
plugged into the motherboard of the main CPU via the PCI-X slot).

4.1 Client Infrastructure
4.1.1 Database Driver Integration

The client runs a Java application which contains standard code to connect to a
database server using JDBC or other similar database drivers. Instead of connecting to
the actual database server, we require the application to connect to localhost with the
same authentication credentials that would be used to connect to the actual database.
The localhost acts as a proxy/protocol wrapper for the remote database. In theory, this
step is equivalent to simply submitting the query and presenting the result. This is
achieved by using a standard SQL client binary and having it connect to the actual
database server instead.

4.1.2 The Server-like Proxy

When the JDBC driver tries to connect locally to the database, the server-like proxy
pretends to be the actual server, takes the authentication credentials, verifies them
from the actual database server and upon success, further takes the SQL query from the
application via the JDBC driver. When the proxy receives any results after query
processing, it also returns them to the JDBC driver following the standard reply protocol.
Alternately, if the client is using the SQL client binary, we require the use of our
modified SQL client that catches the input query and passes it to the cryptographic
module, and listens for results from the cryptographic module instead of listening for
the actual server to reply back.

4.1.3 Cryptographic Module

Upon receiving a query from the proxy, it is encrypted with the IBM 4764 secure
coprocessor’s public key. Now the encrypted query is ready to be sent over to the
server. Upon receiving a signed result from the server, it is verified with the
coprocessor’s public key and decrypted with the client’s private key and passed back to
the proxy.



4.1.4 Optimization of Data Transfer

When the resulting data set of the TagID-JOIN attribute pairs gets large, it might be
more efficient to fetch the SELECT attributes from the main CPU by the client directly
rather than going through the secure CPU. We deploy another Sqglite3 engine as part of
the client wrapper and use it for the same purpose as is the one inside the secure CPU
used for.

4.2 Server Infrastructure
4.2.1 Forwarder

The forwarder listens for encrypted queries sent by the client and transfers them to the
secure coprocessor. The forwarder listens for encrypted results sent by the secure
coprocessor and transfers them to the client. Thus, we ensure that this untrusted server
is not able to learn anything.

4.2.2 Database Repository

The main database is stored on the server and the tuples and attribute names are
encrypted by the client’s private key. In each table of the database, we introduce an
additional attribute that serves simply as an un-encrypted row number. This ‘TagID’ is
encoded: each row of a table will have a different key derived from the root private key,
and this is used in generating a unique TaglD for each row.

4.2.3 Java Class Repository

The server also hosts Java class files for any Java application that is run inside the IBM
4764 secure coprocessor. This is more so intended for future use when we would be
using pre-written Java apps for optimizations, somewhat parallel to the concept of
stored procedures in SQL.

4.2.4 Ethernet Simulation Logic

Communication between the server/main CPU (host) and the IBM 4764 secure
coprocessor (card) take place over TCP/Ethernet. A LAN cable plugs into the IBM 4764.
This mechanism is not is permitted for a production environment. Therefore in order to
comply with the IBM 4764’s security standards (FIPS 140-2 Level 4) it is required that all
card-host communication takes place over the system bus. We modify standard network
calls to route data over the bus instead of the network [Credit to Peter Williams].
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4.3 Secure Coprocessor Infrastructure
4.3.1 Cryptographic Module (incoming/outgoing)

i. This module decrypts queries received from the client via the server. Since the queries
were encrypted with the IBM 4764’s public key, this decryption is trivial with the
private-public key pair. The module also encrypts outgoing data (query results) to the
client via the server using the client’s public key.

ii. This module decrypts the tuples corresponding to the JOIN attributes in the received
qguery based on knowledge of the client’s private key. This is needed to be able to
identify the qualifying TaglID values for a pair of tables on which the JOIN operation is
being performed.

4.3.2 Parser

The parser determines the JOIN attributes that are to be involved. Towards this, it
examines the WHERE clause of the query (after decryption). This information is then
relayed to the pSQL client. Later it examines the SELECT attributes to create final query
results.

4.3.3 Performance Evaluation Logic

It would be inefficient to transfer n*2 rows when say a large number of attributes are
requested as part of the SELECT clause and say the JOIN of two n-sized tables results in
an n”2 sized result. In such cases, we send the resultant TaglD’s to the client and latter
part of the protocol takes place at the client end. For smaller results, we process within
the sCPU as per the protocol. We are also considering an alternate mechanism where
we simply save the resultant ‘interesting TagIDs’ as a temporary (or even permanent, so
that subsequent SQL sessions can access it) table to eliminate the need to send the
‘interesting TaglIDs’ to the client or back to the 4764.

4.3.4 Secure JOIN Logic

The requested JOIN attributes with their entire set of values is fetched from the
database server, along with the TaglD’s. This is done for every table (and every JOIN
attribute) that is in the WHERE clause of the initial query from the client. Note the
names of the JOIN attributes are encrypted, and so are the tuple values, each row being
encrypted with a different key. Therefore, the sCPU must know the logic used in
generating the keys for each row from the root key.

10



4.3.5 Sqlite3 Engine

This is a light implementation of an SQL engine written entirely in C [14]. We deploy this
in the sCPU to import the fetched tables from the main CPU into a small database inside
the secure CPU and to perform the JOIN operation and get the resultant TaglID’s for the
tables involved in the initial query. The result can then either be used to fetch the
SELECT attributes specified in the query or just be forwarded at the client end via the
main CPU so the client may fetch the SELECT attributes based on the resultant TagID’s
itself. This decision is made by the performance evaluation module.

4.3.6 pSQL Client

We deploy a standard pSQL client binary inside the secure CPU that will be used to
connect to the main database and fetch the SELECT attributes from it after knowing the
TaglD’s needed to be looked at for the tables that are part of the JOIN. Note, these
fetched results are encrypted with the client’s private key.

4.3.7 Secure Java Application

We modified a standard open source Java Virtual Machine to be able to run Java
applications from inside the secure CPU. Due to memory constraints inside the IBM
4764, we fetch the class files from the main CPU over HTTP.

4.3.8 Ethernet Simulation Logic

Peter Williams in the NSAC Lab also developed a custom TCP stack that allows
communication with the IBM 4764 over the PCI-X bus transparently. Despite certain
development crypto cards from IBM also featuring Ethernet ports, such methods of
connection are not permitted in production environments. Therefore in order to comply
with the IBM 4764’s security standards (FIPS 140-2 Level 4) it is required that all card-
host communication takes place over the system bus. We modify standard network calls
to route data over the bus instead of the network.

11



Chapter 5: Implementation

5.1 Information Flow

First we initialize a receptor script in the 4764, a forwarder script at the server and a
proxy script at the client. The Java application at the client end tries to connect locally to
the (remote in reality) database. The proxy script receives the connection string and
uses these credentials to authenticate to the remote database. Alternately, the client
connects to the remote database using a modified pSQL client binary which after
authentication, fetches the SQL query and sends it to the proxy instead of letting it go to
the remote database server.

Once the proxy receives a query, it encrypts it using the 4764’s public key and sends it to
the forwarder on the server. The forwarder is designed to do nothing but send data
from the client to the 4764 and vice versa. Thus even if a malicious server administrator
deploys his own code at this point, he would be unable to decipher any of the incoming
gueries and outgoing results. The receptor script inside the 4764 receives this encrypted
query and decrypts it with the 4764’s private key. This private key is hardcoded in the
application. In a production environment, a malicious system administrator would not
have access to the (third) memory segment of the 4764 where our application bundle
resides.

The decrypted query is sent to a parser script [Credit to Rajarshi Agnihotri] that fetches
the WHERE clause of the query. For example for the query, “SELECT tablel.name,
table2.dept FROM tablel, table2 WHERE tablel.ssn=table2.ssn;” we know that we need
to work on tablel and table2 inside the 4764. The parser then asks the pSQL client
inside the 4764 to fetch these tables into the 4764. The entire table is not fetched: only
the JOIN attributes along with the ‘TaglD’ are fetched.

When the encrypted database is submitted to the server, the client adds an additional
attribute ‘TaglD’ in each table. This acts as an un-encrypted primary key for each table.
The tuples in each row are encrypted based on a different key for each row, which in
turn is derived from the client’s root private key. The database server thus returns the
requested tables containing the JOIN attributes and ‘TaglID’ to the 4764. Since the JOIN
attribute tuples are encrypted, a malicious administrator does not gain any knowledge
by this transfer.

12



Upon receiving these tables inside the 4764, a cryptographic module takes the client’s
primary key to decrypt the tuples. Since each row was encrypted using a different key,
two similar (plain text) values would have different resultant cipher texts when they are
present on different rows in the two tables on which we are performing the JOIN
operation. Thus the decryption is essential. The client’s primary key is cached in the
4764 flash file system at the start of the protocol. To ensure the malicious administrator
does not find out the client’s primary key, the client sends this over to the 4764 via the
‘forwarder’ after encrypting it with the 4764’s public key.

(_IBM_Pri KEY ) IEM Pub_KEY )

Forvarder

Etho simulation

C_Sym_KEY through PCI-X bus
C Pub KEY
C_Pri KEY

Proxzv

{ psoL Client

Sgliteld
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TaglD
:i _Cryp to
™ PostgreSQlL
Tablel Tahlez
Join Attrib | TaglD TaglD Ioinattrib
TaelD's cfe#iEp  |1x 1y RO#IFFwi
Encrypted Adg ded 1&GPOCT |2 2y tBRESIR
Tuples g h*2FiS I D2 *uRN
T

—H Performance? l

IBM 4764 sCPU

Figure 2: Model Design

The decrypted tables containing the JOIN attribute and ‘TagID’ are now sent to an
Sqlite3 Engine in the 4764. This is a standard light weight implementation of an SQL
server with basic capabilities. The decrypted tables are imported into an Sqlite3
compatible database, and the actual JOIN occurs here. For our simplistic query, “SELECT
tablel.name, table2.dept FROM tablel, table2 WHERE tablel.ssn=table2.ssn;”, the
Sqlite3 now performs a “SELECT table1.TagID,table2.TaglD from tablel,table2 WHERE
tablel.ssn=table2.ssn;”. Thus we attain the ‘TaglD’ attributes for both the tables that are
the ‘interesting’ tuples resulting after the actual JOIN.
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These are saved as temporary tables at the main database. Now the pSQL client (either
from the client end or from the 4764) needs to know the SELECT attributes of the initial
guery that the ‘parser’ received. The pSQL client now basically just does a PROJECT like
operation. It tells the database, “SELECT tablel.name,table2.dept FROM
tablel,table2,temp_table WHERE table1.TaglD=temp_table.TagID_1 AND
table2.TaglD=temp_table.TaglD_2;” where temp_table.TaglD 1 and
temp_table.TagID_2 are the ‘interesting TaglIDs’ returned by the Sqlite3 JOIN operation
previously.

The results are sent to the cryptographic module so they can be encrypted with the
client’s public key, and are finally signed by the 4764’s private key and sent to the
forwarder. The forwarder simply sends these to the proxy at the client. Note once again,
that a malicious administrator is not able to gain knowledge about these results. Once
the result is received at the proxy it is either sent to the modified pSQL client or
returned to the JDBC driver that initiated the connection.

5.2 Performance Module for Optimizing Data Transfer

For large datasets, it is possible to send sufficient information about the result back to
the client that enables it to fetch the remaining attribute data from the server itself.
Thus we deploy a performance decision module in the 4764 that makes the decision
between either sending back the final result through the 4764 or sending only the
‘interesting TaglDs’ to the client.

In the case when the partial result is going to be processed at the client, once the Sqlite3
Engine determines the ‘interesting TagIDs’ for the two tables of the JOIN attributes, the
pSQL client creates the temporary tables in the main database as before. Now the pSQL
client at the client end requests a query such as “SELECT tablel.name,table2.dept FROM
tablel,table2,temp_table WHERE tablel.TaglD=temp_table.TagID 1 AND
table2.TagID=temp_table.TagID_2;” where temp_table.TagID_1 and
temp_table.TagID_2 are the ‘interesting TaglIDs’ returned by the Sqlite3 JOIN operation.
When it arrives at the proxy, it is decrypted with the client’s private key and verified etc.
After decryption by the cryptographic module at the client, the result is returned to the
JDBC driver.

Depending on the common workload, the branching decision threshold can be adjusted.
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5.3 Ethernet Simulation

As mentioned before, to comply with the FIPS security standard, IBM does not permit
the secure coprocessor to be hooked to Ethernet ports in production environments. In
the NSAC Lab, Peter Williams wrote a full TCP stack replacement for the network socket
calls and deployed logic at the server and in the secure coprocessor to simulate network
data transfer over the system bus. Williams wrote a socketoverride library and we
require all applications inside the secure coprocessor to link to it and modify their
network calls to use our functions instead (the convention used is to append call_ to the
standard socket calls. This is just a simple rename operation (example, connect() would
now be called call_connect() and so on). This is typically done for the JVM, the ‘receptor’
code, the pSQL client residing on the secure coprocessor and any secure Java application
that runs inside the sCPU that needs network access to communicate to the main
server.

5.4 JVM Cross-Port

To enable client driven Java logic to be run inside the IBM 4764, we also modified and
cross-compiled the JVM source to load the class files over HTTP: the database server on
the main CPU is also configured as a web server to host the class files for any Java
programs that are needed to run from the secure coprocessor. While it appears to the
JVM that the class files need be loaded over Ethernet, we also hack the network calls
and have data transfer take place over the system bus. While this was needed to stick to
security standards in production environments, it also enhances throughput.

We first tried to cross-compile a JVM called JamVM on the PowerPC-405 that the IBM
4764 runs on. Unfortunately we realized (after around 3 weeks) that the PowerPC-405
does not support floating point operations, and the native code in JamVM required this.
There are hacks to emulate this in software through GCC flags etc., but we did not
succeed. We then explored another JVM called Kaffe and managed to cross-compile it
with the GCC floating point emulation.

5.5 Sub-key & TagID Encoding

In our prototype implementation, the TaglIDs are uniquely generated integers per data
tuple. It is generated as a function of the primary key attribute of the corresponding
tuple, the table name and a client secret. The client’s private key next must be used to
generate different sub-keys for all the tables in the database. This is important because
if two tables have the same cell values for the same attribute, at the same row numbers,
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they must lead to different cipher texts after encryption. Similarly within the same table,
each row needs to have a unique row key. Thus, we break down the root private key
into unique table keys, and further breakdown a table key into unique row keys. The
cryptographic modules at the client proxy and the secure coprocessor’s ‘receptor’ are
made aware of the (same) sub-key generation logic.

5.6 (Existing) Libraries Used

We use PostgreSQL (libpg 8.3) and Sqlite3 (libsqlite 3.6.13) API’s for C directly in our
code to connect to the database server/engine and for sending/receiving
queries/results. This proves to be more efficient than using the standard client
interfaces that ship with these packages. For cryptographic operations inside the secure
coprocessor, we use the card side APl (xcrypto) since that allows us to perform
conventional crypto operations using the hardware accelerators build on the IBM 4764.
For the crypto operations at the client end we use the industry standard (openssl 0.9.8).
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Chapter 6: IBM 4764 Setup/Installation/Quick Overview

As part of this work, we also compiled a quick setup procedure for writing custom
applications for the crypto card. In the following, we will highlight some of the problems
we faced that are not directly mentioned on the IBM 4764 manuals available online.

6.1 Outline

0. Order hardware with PCI-X compatible motherboard
Download Novell’s SUSE Linux (Enterprise Server 9)
1. CCA Support Program (for coding using verbs, not used), API Developer’s Toolkit
and Device Drivers (for custom programming)
Install cross linker, cross compiler
3. Writing applications
a. Host side and card side code
b. Compiling, making JFFS2 image etc.
4. Configure card for custom program loading
a. Remove CCA Support program (not documented anywhere!)
5. Loading and running custom applications
6. Bandwidth testing

In a nutshell, the following steps are required to build and load applications:

1. Write the host and card-side toolkit applications that you want in C, using the
Developer’s Toolkit headers as necessary

2. Compile the host-side code using one of the supported native compilers.

3. Link the host-side code using one of the supported native linkers.

4. Compile the card-side code using a cross compiler.

5. Link the card-side program using the linker shipped with the cross compiler.

6. Use mkfs.jffs2, along with the Makefile and other files provided in
xctk/<version>/build to create a /user0 JFFS2 image.

7. Load the JFFS2 filesystem image into the coprocessor using DRUID.

6.2 CCA API Developer’s Toolkit, Device Drivers

- Release 3.25a of the software comes with a straightforward binary executable
setup4764_3.25.0_date.bin which installs without any complications.

- Run /opt/IBM/4764/clu/./csulcu next. This is the coprocessor load utility, the
basic interface used for most actions such as loading code onto the processor.

- Load CCA Support Program onto Segment 3 using the clu.
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- Run the ST command to obtain segment ownership details. They would be:
Segment 2: Runnable, Owner2: 2
Segment3: Runnable, Owner3: 2

- Validate the coprocessor segment contents using the provided key file:
VA 12r8565v.clu

The CCA Support Program provides an API in the form of ‘verbs’ for all crypto
operations that can be included in typical C style programming. Thus, this limits you
to run only the support program on the card on Segment 3, while allows easier
coding on the host side program. If you wish to run arbitrary code on the card side
as well, you must remove the support program from Segment 3 and load your own
code instead. This code is linked with a number of available libraries (listed later).

6.3 Install cross linker, cross compiler

This must be done manually. There is a utility called ‘crosstools’
[http://www.kegel.com/crosstool] for building ‘gcc’ and ‘Id” across other architectures.
We need one to support the PowerPC 405. Please follow the procedure mentioned on
the crosstools documentation, it is straightforward except for a couple of dependencies
that must be installed manually. You should see the following message upon successful
completion of the build process that takes a couple of hours:

) she - Kensoie e e P = 15

Session Edit View Bookmarks Settings Help

+ cd tmp +
+ test x T1=" x

+ cat

+ [/optrorosstool /gecc—3 .3 3—glibc—2.3 2 /powerpc—405- I inux—gnu/bin/powerpc-405-1in
ux—gnu—gce —static hello.c -o powerpc-405-1linux—gnu-hello-static

+ |soptrecrosstool gec-3.3.3-glibe-2.3 . 2-poverpc-405- 1l inux—gnu/bin/poverpc-405-1in
ux—gnu—gcc hello.c —o powerpc—405-1inux-gnu-hello

+ test —x coptrsorosstoolsgec-3.3.3-glibe-2.3.2/powerpc—405-1inux—gnu-bin/powerpc
-405-1 inux-gnu-g++

+ cat

+ |soptrsorosstoolsgec-3.3.3-glibe-2.3 . 2-poverpc-405- 1l inux—gnu/bin/powerpc-405-1in
ux—gnu—g++ —static helloZ.cc —o powerpc-405-1inux—gnu-helloZ-static

+ |soptrcrosstool gec-3.3.3-glibe-2.3 . 2/poverpc-405- 1l inux—gnu/bin/powerpc-405-1in
ux—gnu—g++ helloZ.cc —o powerpc-405-1inux-gnu-helloZ

+ lecho testhello: C compiler can in fact build a trivial program.

testhello: C compiler can in fact build a trivial program.

+ [test
+ test 77
+ test 77
+ test 1 =°
+ echo Done.

Dome .

ashish@linux:”/crosstool-0.42> vi testhello.sh
ashish@linux:” crosstool-0.42> ||

Ab | ] shen

o n
R

win

Figure 3: Successful Crosstools Build

Note: You must specify the paths used here in the makefile of your custom application.
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6.4 Writing Applications

A card side program runs in Segment 3 over Linux running inside the coprocessor in
Segment 2. It must be compiled using the cross compiler for the PowerPC 405. A host
side program runs on the machine like conventional C programs.

Library files which may be linked with a card-side application:

xctk/<version>/lib/card/gcc/libxccomapi_stub.so: If the application will
communicate with the host

- xctk/<version>/lib/card/gcc/libxcmgrapi_stub.so: If the application will use
configuration functions

- xctk/<version>/lib/card/gcc/libxcoa_stub.so: If the application will use Outbound
Authentication functions

- xctk/<version>/lib/card/gcc/libxcrandom_stub.so: If the application will use the
random number generator, or will generate DES or RSA keys

- xctk/<version>/lib/card/gcc/libxcrsalnx_stub.so: If the application will use Large
Integer Modular Math, or RSA or DSA functions

- xctk/<version>/lib/card/gcc/libxcskch_stub.so: If the application will use DSE or
Hashing functions

The development process requires the creation of a JFFS2 filesystem image that can be
loaded into the coprocessor using DRUID. Use the makefile provided in
/xctk/<version>/build , edit it to copy the desired application to the build directory, and
make changes in init.sh required for the application (such as file names, paths etc.).

The issue faced here was that mkfs.jffs2 isn't part of default 2.6 kernel (support was
removed). Now if you try to build mtd-utils which includes this application, it says you
need a newer version of GLIBC_2.4 but default SUSE Linux 9 ES comes with GLIBC_2.3 so
you need to rebuild glibc which is a long process. So instead | found a ready to run
binary at:

http://www.mirrorservice.org/sites/sources.redhat.com/pub/jffs2/mkfs.jffs2
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6.5 Configure coprocessor for custom program loading

These files are provided by IBM and must be used in the right sequence to make things
work:

- CR1rrrss.CLU, which loads release rrr revision ss of IBM’s system software into a
coprocessor. CR1rrrss.CLU can only be loaded into an xCrypto card in the factory-
fresh state

- CElrrrss.CLU, which updates the system software in a coprocessor

- TDVrrrss.CLU, which prepares a coprocessor for use as a development platform.
TDVrrrss.CLU can only be loaded into an xCrypto card that contains release rrr
revision ss of IBM’s system software

- TE3rrrss.CLU, which enables a coprocessor to accept coprocessor applications
downloaded by the DRUID utility. TE3rrrss.CLU can only be loaded into an
xCrypto card that has been prepared for use as a development platform using
TDVrrrss.CLU

- TL3rrrss.CLU, which clears any state an application under development has
saved in nonvolatile memory (so that the application will start next time with a
clean slate). TL3rrrss.CLU also loads the “reverse-then-echo” application into the
coprocessor. TL3rrrss.CLU can only be loaded into an IBM 4764 PCI-X that has
been prepared for use as a development platform using DVrrrss.CLU and which
has been prepared to accept downloaded applications using TE3rrrss.CLU

- TR3rrrss.CLU, which reloads the “reverse-then-echo” application into the
coprocessor. TR3rrrss.CLU can only be loaded into an xCrypto card that has been
prepared for use as a development platform using TDVrrrss.CLU and which has
been prepared to accept downloaded applications using TE3rrrss.CLU and
TL3rrrss.CLU

- TRSrrrss.CLU, which prepares an xCrypto card that has been used for
development to be used in a production setting. TRSrrrss.CLU essentially
restores the coprocessor to the state it is in immediately after CR1rrrss.CLU or
CE1rrrss.CLU has been loaded. TRSrrrss.CLU can only be loaded into an xCrypto
card that has been prepared for use as a development platform using
TDVrrrss.CLU

- ESTOWN2.E2T, EMBURN2.L2T, REMBURN2.R2T, and SUROWN2.S2T, which are
used to generate a version of an application suitable for release

- tdvRRRLL.I2t is the Toolkit EMBURN2 unpackaged CLU file. This file should only
be used when segment2 has ownerID = 3 but is not reliable. In rare instances,
such as a power or system failure during a load of tdvRRRLL.clu, it is possible for
the card to have segment2 as owned, but unreliable. This file performs an
EMBURN2 command on segment 2 with segment 2 ownerID = 3 which restores
the card to a usable state after a failed toolkit CLU load for segment 2
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Check the ownership identifiers now. The goal is to have ‘3’ for Segment 2 and ‘6’ for
Segment 3 in order to run a custom application. By default, these were both ‘2. Here’s
what we tried initially:

1. Loaded ce132500.clu - updates the system software in segment 1.

2. tdv32500.clu - loads production version of coprocessor operating system into
segment 2. (Error 844000dc: ownership of this segment 2 was already established)

3. te332500.clu - sets owner identifier for segment 3 which makes it possible to load s/w
in segment 3. (Error 844000dd: for 3 also, already established)

4. t1332500.clu - sets public key associated with segment 3 and loads reverse/echo
application. (Error 844000b1 - no message)

5. trs32500.clu - surrenders ownership of segment 2 (Error 84400eba - no message)

6. cex32500.clu - reloads segments 2 and 3. (Reload segment 2 successful but didn’t
change ownership identifiers)

It turned out that the .clu file to be used to first remove the CCA Support Program from
Segment 3 was not listed in the manual. Here’s the sequence of commands to issue to
fix this:

crs32500.clu (Remove CCA)

tdv32500.clu (Load production version in segment 2)
te332500.clu (Set ownership id for segment 3)
t1332500.clu (Clear state and load sample application)

PwnNpE

After this, any new application can be loaded using the PL command in the CLU once an
image file has been created for the same.

6.6 Loading and running custom applications
Once a JFFS2 filesystem containing the image of the application has been generated, the

filesystem may be downloaded to the coprocessor using DRUID. It prompts you for the
binary file and the coprocessor adapter number (default 0 if only 1 present).
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The issue we faced here was the following error:
ERROR: DRUID not permitted: seqg2 not owned by development

If you encounter this, make sure to follow the exact sequence of .clu files mentioned in
the configuration section.Return to the coprocessor load utility after this to reboot the
card, after which the loaded application automatically runs on Segment 3.

6.7 Bandwidth Testing

Used the echo/reverse application that sends packets of specified maximum buffer size
to the card and the card sends them back to the host for measuring the bandwidth. The
observed bandwidth of this link averaged to ~43 MB/sec varying between 38 — 47
MB/sec.
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Chapter 7: Performance Evaluation

We clock timings for worst case joins, implying that two tables having n rows each
would result in a join result having n rows as well. The total time taken is clocked at the
client end. Network and bus costs include time to send the query to the server, send the
result to the client, miscellaneous trigger messages between the client, server and the
sCPU. Other costs include time taken to parse the query and for other internal
processing insude the sCPU. The other major cost incurred is the time taken to fetch the
TaglD and join attributes from the server into the sCPU. Then there is a cost for
performing the initial join and the final join.

size (kh) | Rows | Total Time (s} |Misc. Time {s)| Fetch Time (5] {Join time (s}
0.14 10 0464216 0,413012973 0.046043 0.005126
1.4 100 0.581063( 0.4275346155 0127042 0.026445
7 500 1.152257 0.4300471 0619162 0,142979
14 1000 1.889178| 0.3143559218 1.289532 0,285114
17.5 1250 2546543 0.493302614 1.660557 0.330459
21 1500 2966557 0.519147475 1.969331 0,477823
28 2000 2774773 0.568858291 2,587984 0617778
0 5000 9.319711( 0.9323454898 6. 728803 1.651994
112 aoon 15066032 1.4595591148 10.6559347 2,947101
140 10000 19.365546( 1.872648298 13.844471 3.647962

Table 2: Protocol Timing Details

In this prototype we exclude the time for encryption and decryption of the query and
results. We also exclude bus costs: the sCPU and main server are talking over the
network.

We expect performance to get better after integrating the Ethernet simulation logic
since it will be faster to communicate over the PCI-X bus than over the network.

The query used was “SELECT tablel.name,table2.climit FROM tablel,table2 WHERE
tablel.ssn=table2.ssn;”. Tablel and Table2 were generated to have the same number of
rows and the JOIN result would result in the same number of rows as well since each
key attribute in one table would match one in the other.
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As evident, the bottleneck is in fetching the TaglID and join attributes from the server to
the sCPU. Due to this, the prototype scales for join results under 5000 rows. It takes 19
seconds end-to-end with two 10,000 row tables.

End-to-end Runtimes and Table Fetches
20

Table Fetches ——
Runtimes —-»—- |

Time (s)

10 100 1000 10000
JOIN Result (rows)

Figure 4: End-to-end Runtimes and Table Fetches

Additional Overhead Costs
100

Time (%)

0 1 1

10 100 1000 10000
JOIN Result (rows)

Figure 5: Additional Overhead Costs

When the tables have under 500 rows we observe that over 35% of the total time taken
to produce results goes in tasks other than fetching information in the sCPU and
performing the initial join. This includes network costs and the cost of performing the

final query by the sCPU. Therefore the prototype does not scale for tables whose join
results are under 500 rows.
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Observe some numbers on the times taken to perform the initial joins in the sCPU using
Sqlite3 (see Table2 — Join Times). As before, both tables consisted of n rows having
unique primary key attributes and thus their join resulted in n rows too. The time to
perform the same joins outside the IBM 4764 on a regular server will, of course, be
lesser because of much more processing power on conventional servers.

We also present a comparison between server and sCPU performance with respect to
performing joins in SQLITE3 independent of our framework. We clocked the times taken
to process two 10,000 and two 100,000 row tables and compute a join. We observe that
it is 35-45 times slower to do the same join inside the sCPU. This is attributed primarily
to differences in CPU speed: 266MHz on the sCPU vs. 3.3GHz on the server. Then there
are differences due to architectures. Whilst the sCPU runs on RISC based PowerPC-405,
the server runs on Intel. The memory buses, the cache sizes, RAM etc. are also lesser on
the sCPU.

We argue that it is still economical to deploy the outsourcing framework since we could
use more than one secure coprocessor to try and make up for these trade-offs.
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Chapter 8: Conclusions & Future Work

In terms of scalability, we argue that our model finds applications that may involve
numerous tables and where joins would result in medium sized results. Because of the
general overhead of the framework that wouldn’t be there in an ordinary query-
response scenario, we do not recommend the use of this model for very small databases
where joins would always result in less than 100 rows.

The first prototype supports multithreading at the server side of the code. We need to
extend this to inside the sCPU. While multiple clients can connect to the system and
issue queries, the processing inside the sCPU can only handle one query at a time. We
need to add code to handle this.

We propose to replace the forwarder with a stored procedure running on the server
integrated with a psql client on the server. This will make the mechanism even more
transparent: the client would submit an encrypted query directly though its psql
interface (or the proxy in case of JDBC connections). This would also eliminate the need
to open new connections as we do now (twice), for processing a single query.

Secondly, we need to get rid of the main bottleneck being encountered in our
prototype: the time taken to transfer join attributes and TagIDs from the server into the
sCPU. In our current implementation we are performing file 1/0 for this purpose in the
form of the following query:

./psql -h server_ip -p server_port -U postgres -c "COPY some_table(tagid,join_attribute)
TO STDOUT WITH CSV" some_db > some_file

With the implementation of our stored procedure we should be able to complete the
same task in memory without redirecting output to a file. This should lead to a more
efficient approach.

One other thing to find out is how much faster transferring information on the bus is
versus the network. In theory transferring over the bus is indeed faster than network
transfers. In Section 6.7 we show the throughput during bus transfer as well. But since
the main server and the sCPU reside under the same network per say, with no other
hosts interfering in communication and since our Ethernet simulation code aims to keep
intact the basic network socket calls used in the code, we need to figure out if transfers
over the bus will be largely faster or not. In the worst case, they will be the same if not
faster no doubt, but we need to quantify this difference.
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