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Abstract of the Dissertation

Refraction in Graphics and Medical Imaging

by
Shengying Li

Doctor of Philosophy
in

Computer Science
Stony Brook University

2008

With the fast advancement of computer graphics hardware, the development of vol-
ume graphics in recent years has extented from volume visualization of scientific
data to more general graphics technology. This thesis is to fill vacancy of research
of natural phenomenon associated with the refraction effect on the visualization of
volume data. We have further applied our refraction research to medical imaging to
correct refraction distortion for ultrasound computed tomography technology.

First, we find that refraction imposes significantly higher demands on filters
for interpolation and gradient estimation than illumination and shading. To firmly
support refraction from the perspective of fundamental digital processing, we eval-
uate the family of spline filters as a good alternative to the cubic filters, which so
far served as the gold standard of efficient yet high-quality interpolation filters in
present visualization applications. Then we developed an efficient framework for
the high-quality rendering of discretely sampled surface-based objects with refrac-
tive effects. It combines an accurate estimation of the refraction indices, paired
with efficient and accurate surface detection, space traversal and backdrop image
sampling. Furthermore, we explored in more general rendering field of graphics by
proposing a new concept of geometry field for real-time reflection and refraction us-
ing ray tracing. With the combination of the advantage of light fields and geometry
images, a geometry field can effectively fetch all possible ray/object intersections
with geometry information in fast table lookups. Finally, we applied our research
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of refraction to medical imaging. A significant obstacle in the advancement of Ul-
trasound Computed Tomography has been the lack of efficient and precise methods
for the tracing of the bent rays that result from the interaction of sound with refrac-
tive media. We propose to find the wave frontier by solving the Eikonal equation
which governs the propagation of sound waves. This enables us to determine the
ray path with great accuracy. With GPU acceleration, we perform reconstruction
with high fidelity and accurate geometry in clinically practical time.

iv



For my husband Weidong and sweet angel Lisa.



Contents

List of Figures x

List of Tables xiii

Acknowledgements xiv

Publications xvi

1 Introduction 1
1.1 Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Normal estimation of integration filters . . . . . . . . . . . 4
1.3.2 Post-refraction supersampling . . . . . . . . . . . . . . . . 6
1.3.3 Refraction rendering in volume graphics . . . . . . . . . . . 7
1.3.4 Accurate and fast system named as Geometry Field . . . . . 8
1.3.5 Refraction correction in ultrasound CT(UCT) . . . . . . . . 10
1.3.6 GPU Accelerated UCT Made Computational Practical . . . 12

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 14
2.1 Signal Processing and Filters . . . . . . . . . . . . . . . . . . . . . 14
2.2 Volume Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Computed Tomography and Ultrasound . . . . . . . . . . . . . . . 16
2.5 GPU acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



3 Filter 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Spline Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 General background on filters . . . . . . . . . . . . . . . . 22
3.2.2 Non-interpolating filters . . . . . . . . . . . . . . . . . . . 22
3.2.3 BSpline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Application of Refraction . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Solutions for gradient computation . . . . . . . . . . . . . . 28
3.3.3 Solutions for undersampling . . . . . . . . . . . . . . . . . 29

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Gradient filters . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Post-refraction supersampling . . . . . . . . . . . . . . . . 34

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Fast High-Quality Refraction for Volume Graphics 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Issues related to refraction visualization . . . . . . . . . . . . . . . 40

4.2.1 Gradient estimation . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Super-sampling . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Refraction interface . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Acceleration methods . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 DDA and octree . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Pre-computed cell-classification . . . . . . . . . . . . . . . 44
4.3.3 Post-refraction super-sampling . . . . . . . . . . . . . . . . 51

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Effects of gradient filters and supersampling . . . . . . . . . 53
4.4.2 Acceleration methods . . . . . . . . . . . . . . . . . . . . . 55
4.4.3 Images obtained with refracting objects . . . . . . . . . . . 56

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Geometry Field 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Geometry Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



5.2.1 Construct Geometry Image . . . . . . . . . . . . . . . . . . 67
5.2.2 Construct Geometry Field . . . . . . . . . . . . . . . . . . 68

5.3 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Algorithm Pipeline . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3 Packing Geometry Field . . . . . . . . . . . . . . . . . . . 71
5.3.4 Lookup in Geometry Field . . . . . . . . . . . . . . . . . . 72

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Real Time Rendering . . . . . . . . . . . . . . . . . . . . . 75

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Breast Ultrasound CT Refraction Correction 79
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . 81
6.2.2 Solving the Eikonal Equation with the FMM . . . . . . . . 81
6.2.3 Ultrasound Breast Modeling . . . . . . . . . . . . . . . . . 83

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 88

7 GPU Acceleration for UCT 90
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2.1 How to perform refractive UCT efficiently: general consid-
erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.2 Numerical Eikonal equation solvers and their paralleliza-
tion potential . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.1 Reconstruction quality . . . . . . . . . . . . . . . . . . . . 97
7.3.2 Time performance . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



8 Conclusions 101

Bibliography 105

ix



List of Figures

1 Frequency response of B-Spline related filters . . . . . . . . . . . . 25
2 Poor result obtained with the cubic gradient filter, which is the

derivative of the Catmull- Rom filter [5]. . . . . . . . . . . . . . . . 27
3 Refraction causes undersampling. . . . . . . . . . . . . . . . . . . 28
4 Post-refraction super-sampling . . . . . . . . . . . . . . . . . . . . 30
5 Gradients computed along one circle on the smooth sphere, with

average error angle(up to 360). (a. perfect, b. central difference,
c. trilinear-analytical, d. Catmull-Rom Spline, e. B-Spline 2, f.
B-Spline3-smooth =1, g. B-Spline 3, h. BSpline 4, i. B-Spline 5, j.
B-Spline 6, k-o. B-Spline without prefiltering, order 2 to 6). . . . . 32

6 Gradients computed along one circle on the M-L. dataset, with av-
erage error angle. (a. perfect, b. central difference, c. trilinear-
analytical, d. Catmull-Rom Spline, e. B-Spline 2, f. B-Spline 3, g.
B-Spline 4, h. B-Spline 5, i. B-Spline 6) . . . . . . . . . . . . . . . 33

7 Refraction results of spheres with different filters. . . . . . . . . . . 35
8 Compare refraction result of spheres: (a) traditional super sam-

pling; (b) post-refraction super sampling. . . . . . . . . . . . . . . 36
9 Rendering result of Marschner-Lobb. . . . . . . . . . . . . . . . . . 37

10 Snell’s law for refraction . . . . . . . . . . . . . . . . . . . . . . . 41
11 Illustration of object-dependent backplane sampling. . . . . . . . . 42
12 All colored cells contain effective supporting neighbor points for

the sample point shown, here for a B-Spline of order 2. The darker
the color is, the larger the support. . . . . . . . . . . . . . . . . . . 47

13 Cases for critical point with maximum or minimum value in a cell. . 47

x



14 Sketch of the ACCC method. . . . . . . . . . . . . . . . . . . . . . 48
15 Illustration of the ACCC method with two grid point kernels. . . . . 49
16 Post-refraction super-sampling . . . . . . . . . . . . . . . . . . . . 52
17 Refracted smooth sphere comparing Catmull-Rom Cubic and B-

spline 3 with smooth λ=1 in three different categories. . . . . . . . 54
18 Various volume graphics renderings of refractive glass balls. . . . . 57
19 Multiple layers of refraction in a sphere. . . . . . . . . . . . . . . . 58
20 Refracted results of teapot. . . . . . . . . . . . . . . . . . . . . . . 59
21 Refracted results of CT-head. . . . . . . . . . . . . . . . . . . . . . 60
22 Refracted image results of teapot, smooth sphere, and lobster using

a Smooth-B-Spline 3. . . . . . . . . . . . . . . . . . . . . . . . . . 61

23 Geometry Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
24 The points on the unit cube are sampled and arranged as a two-

dimensional array. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
25 Comparision between the rendering results using nearest neighbor

and 4D linear interpolation to perform lookup in the geometry field. 73
26 Real time rendering results. User can interactively manipulate the

camer position, the relative spactial relations among the geometric
objects in the scene. The inter reflections are rendered in real time. . 74

27 Real time refraction and self-reflection rendering results. Upper
two rows show the refracted image. Lower row represents the self-
reflecting images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

28 Curved-ray (red) and straight ray(yellow)with the FMM . . . . . . . 82
29 Breast anatomy and phantoms. . . . . . . . . . . . . . . . . . . . . 83
30 Ultrasound phantoms. . . . . . . . . . . . . . . . . . . . . . . . . . 86
31 Reconstructed images: (a) straight ray SV image, HAFMM; (b)

nonlinear ray SV with fixed speed, HAFMM; (c) nonlinear ray SV
with relaxed speed, FMM; (d) nonlinear ray SV with relaxed speed,
HAFMM; (e) attenuation image. . . . . . . . . . . . . . . . . . . . 87

xi



32 Speed image:(Left) acoustic breast phantom derived from the Visi-
ble Female dataset and (right) SV reconstructions. First row: slice
close to the center, second row: slice close to the bottom. . . . . . . 98

33 Attenuation image: (left) phantom, (right) reconstructed. . . . . . . 98
34 Fully 3D v.s. 2D slice-based reconstruction image: (left) phantom,

(center) fully-3D, (right) 2D slice-based. . . . . . . . . . . . . . . . 99

xii



List of Tables

1 Time (in secs) required to produce the images of Figure 17, ren-
dered with raytracing at a stepsize of 0.1. . . . . . . . . . . . . . . 55

2 Times (in seconds) for the acceleration of raycast with. DDA vs.
Octree and BMCC vs. ACCC. . . . . . . . . . . . . . . . . . . . . 56

3 Ratio of grid cells tagged to possibly containing the isosurface with
the ACCC vs. BMCC method. . . . . . . . . . . . . . . . . . . . . 58

4 Times (in seconds) for the acceleration with DDA and octree for
different filters. On average, the octree saves about 76% time for
DDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Performance (in sec) of our preprocessing algorithm. . . . . . . . . 75

6 Our phantom’s breast ultrasound properties . . . . . . . . . . . . . 84

7 Breast phantom ultrasound properties. . . . . . . . . . . . . . . . . 97
8 Time (in s) required for one projection (wave propagation) for var-

ious Eikonal solvers and reconstructions. . . . . . . . . . . . . . . . 100

xiii



Acknowledgements

I would like to express my deep and sincere thanks to my dissertation advisor,
Professor Klaus Mueller, for his insightful inspiration and wisdom, and for teaching
me how to do high-quality research. Without his encouragement and guidance, I
cannot imagine myself to finish this thesis. He showed such patience and enthu-
siasm and spent numerous hours to discuss with me, that stimulate my curiosity
and strong interests to dig out the research problems at the best of my ability and
beyond.

I would also like to thank all my dissertation committees, Professor Lawrence
H. Staib, Professor Jerome Zhengrong Liang and Professor David Xianfeng Gu for
their precious time to serve in my committee and their invaluable suggestions.

I would like to acknowledge my collaborators and co-authors in the work for
this dissertation. Many thanks to Zhe Fan and his adviser, Professor Arie Kauf-
man, Xiaotian Yin, Professor David Gu, Professor Marcel Jackowski, Professor
Lawrence Staib and Donald Dione, for their in-depth discussions and collabora-
tions that I have substantially benefited.

All members in Visualization Laboratory at Stony Brook have contributed to
this thesis and I pleasantly thanks the friends and colleagues for sharing with me
good time and helping my daily life in Stony Brook enjoyable in the lab: Fang Xu,
Lujin Wang, Julia Eun Ju Nam, Wei Xu, Supriya Garg, Erin Golub, Ziyi Zheng, Aili
Li, Zhe Fan, Feng Qiu, Susan Frank, Wei Hong, Kyle Hegeman, Miao Jin, Xiaotian
Yin, Xin Li, Hongyu Wang, Wei Zheng, Lei Zhang, Wei Zhang.

I would thank NIH grant, NSF grant for partial support of my thesis work.
I would thank my husband, Weidong Jin, for his love. He always gives me

his full support and instant help on everything I am engaged in. I would like to
thank my parents, Changgui Li and Youfang Hu for their consistent caring and



warm encouragement from the other end of countless international phone calls. I
appreciate my sister, Xiao Li, who accompanies with me to grow up and pursue the
meaning of life. I also appreciate my little daughter, Lisa Jin, whose arrival gives
me strong motivation to create a promising and enjoyable life.



Publications

1. S. Li, K. Mueller, M. Jackowski, L.H. Staib, D. P. Dione, Physical-
Space Refraction-Corrected Transmission Ultrasound Computed Tomogra-
phy Made Computationally Practical, International Conference on Medical
Image Computing and Computer Assisted Intervention, New York, to appear
in Lecture Note of Computer Science, 2008

2. S. Li, Z. Fan, X. Yin, K. Mueller, A. Kaufman, X. Gu, Real-time Reflection
Using Ray Tracing with Geometry Field, in EUROGRAPHICS 2006, Vienna,
pp. 29-32, 2006

3. S. Li, K. Mueller, M. Jackowski, D. P. Dione, L.H. Staib, Fast Marching
Method to Correct for Refraction in Ultrasound Computed Tomography, in
IEEE International Symposium on Biomedical Imaging06, Washington D.
C., pp. 896-899, 2006

4. S. Li, K. Mueller, Spline-Based Gradient Filters For High-Quality Refrac-
tion Computations in Discrete Datasets, in Eurographics/IEEE VGTC Sym-
posium on Visualization, Leeds, United Kingdom, pp. 217-222, 2005

5. S. Li, K. Mueller, Accelerated, High-Quality Refraction Computations for
Volume Graphics, in Volume Graphics, New York, United States, pp. 73-81,
2005

6. S. Li, N. Hatori, Y. Ajima, S. Sakai, H. Tanaka, VLDP Multipath Execution:
Mechanism and Evaluation, Information Processing Society of Japan (IPSJ)
2001-ARC-144, Okinawa, Japan, pp. 105-110, 2001

xvi



Chapter 1

Introduction

1.1 Refraction

Refraction, in physics, stands for the phenomenon of the deflect of a wave on
passing from one medium with a velocity into a second medium with another ve-
locity. In addition to light waves, other forms of waves, such as sound or ultrasound
waves, can be refracted too. Refraction plays important roles in our lives. Serving
for different purposes, such as in a telescope or microscope, a lens relies on refrac-
tion to form images of an object. Our eyes are natural lens. Refraction lets light pass
though and generate images for the brain. Refraction is also imperative for colorful
rainbows. The material in the air acts like a prism, splitting white light into different
spectrum colors. Refraction causes some other interesting optical phenomena and
illusions, such as shimmering, mirages and Fata Morgana.

1.2 Problem Statement

The first fundamental question that arises from refraction in computer simu-
lated processing is how to represent the deflection of waves accurately. In the digital
world of the computer, geometries are represented by discretely sampled subjects,
either with gridded or meshed datasets. Both of them need to perform discrete sig-
nal processing. An integral component in the visualization and graphics of discrete
data are the filters used for interpolation and derivative estimation.

1
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While the interpolation filter determines the geometric accuracy of the object
estimated from the sampled data, the derivative filter affects its perceived accuracy.
The latter is due to the derivative’s involvement in the shading computation, which
appears in its unit-length form as the normal vector. Inaccurate normals will result
in the depiction of false structures and patterns on the rendered object surface.

While the modulation of the normal vectors was exploited to generate ficti-
tious patterns in bump mapping [6], this is clearly not intended in a typical vi-
sualization where one desires to illustrate the truth. In more recent research, the
derivatives have also been used to estimate the geometry itself, by determining the
exact position of an isosurface via locating extreme points in the first derivative and
zero-crossings in the second derivative [35] [36].

Refraction poses especially high demands on the accuracy of gradient estima-
tion, since it relies on the estimation of gradients to decide the path of the refracted
rays. It magnifies any gradient estimation errors by sending the refracted ray along
the wrong path, which can potentially lead to more severe visual artifacts than when
the normal vector is poorly estimated in illumination calculations. Also, while the
gradient is estimated by the density function in the volume, points in the data set are
discrete-valued, which may not be able to represent the continuous density function
strictly. Thus, even if an analytic function has been sampled into the grid, storing
the sample points in the datasets as truncated integers will result in rounding errors.
Finally, real-world data sets, such as medical datasets, may be noisy, which will
also lead to artifacts in the gradient calculation. The refraction process will accen-
tuate any of these imperfections tremendously. Therefore, a good gradient filter
with just the right amount of smoothing and anti-aliasing is strongly recommended
for high-quality refraction.

Imaging with refraction suffer from the under-sampling. Due to the deflection
of rays, the refracted images with few samples may stand for an extraordinary large
area information. When the signal sampling rate is lower than Nyquist sampling
rate, the object cannot be represented accurately and aliasing is visible.

Supersampling is a natural solution to the problem of undersampling. It shoots
a matrix of rays per pixel, possibly with jitter, and averages the result. Its downside
is excessive cost. We propose a new method, named post-refraction supersampling,
to save the largest part of the computational cost for the ray tracing while retaining
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the supersampling quality.
Interpolation filtering with good anti-aliasing characteristics is another poten-

tial approach to attenuate aliasing introduced by a low sampling rate. The goal is
to provide a cutoff frequency that removes unwanted signals from the input signals
and attenuates them to the degree that then will not adversely affect the result. The
key factors of concern are the amount of attenuation in the passband, the rolloff in
the stopband and the steepness in the transition region. An ideal filter has a sharp
”wall” response, with an infinitly small transition region. But real world filters are
not perfect.

Calculating and tracing intersections between rays and rendered objects is very
challenging. In order to render realistic images of refraction in computer graphics,
ray tracing is a commonly used method for its high quality and accuracy. However,
to calculate the illumination distribution at the object surface, refraction intersection
tests between the object and viewing rays is necessary but time-consuming. It is
usually one of the most important bottlenecks for performance. Although there
has been a lot of research on this area with the goal of improving the speed and
keeping the quality using software or hardware, this is still a famous open problem.
In the case of color splitting such as by a prism, original white light is diverted into
several color rays and each of them needs to do intersection tests with the surface.
Applying intersection tests quickly and accurately are the key issues to improve the
speed performance of ray tracing.

Playing an imperatively important role in medical imaging, computational to-
mography reconstructs an object from data collected from different directions ei-
ther by penetrating the object or reflecting from interfaces. Traditional computa-
tional tomography algorithms deal with projections in straight rays, like x-rays, or
”diffracted projection” in phenomena with scattering in practically all directions,
such as ultrasound or microwaves in the case that the object interface is smaller
than the wavelength. But there is a gap left between these two categories: refrac-
tion. Few research efforts are focused on this interesting natural phenomenon. How
to correct the refract effect in computational tomography reconstruction without
diffraction in all directions?

This is a problem which is not answered thoroughly in research yet. This
phenomena is not a rare case and it happens when the wave passes through object
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interfaces with a different velocity while the object’s size is larger than the wave-
length of the wave. Especially in breast ultrasound, the subcutaneously large fat
layer has non-ignorable difference from inside materials, which causes strong re-
fraction and heavy distortion. This problem needs to be solved since breast cancer
is the biggest killer for women nowadays and medical workers use ultrasound as
routinely adjunct to the patient test and treatment. Without a powerful tool to accu-
rately trace the curved ray, the reconstruction result of medical imaging data can be
highly distorted and misleading to doctor’s diagnosis decision.

In all areas, signal processing, visualization, computer graphics and computa-
tional tomography, high quality and speed are hard to gain at the same time. How
to accelerate the processing while keeping high quality is a typical problem re-
searchers are trying to solve over all of these years? In more detail, how can we
improve the refraction quality while maximally decrease the speed penalty?

1.3 Contributions

To overcome the above difficulties, we have done numerous investigation in
the phenomenon of refraction crossing the area of signal processing, computer
graphics and computational tomography and record them in this dissertation. In
more detail, it includes:

1.3.1 Normal estimation of integration filters

We evaluate the family of spline filters as a good alternative to the Catmull-
Rom cubic filters in refraction, which has dramatically higher demands on gradient
filters than common illumination and shading. Cubic filters are usually treated as
the gold standard of interpolation filters in visualization due to their high-quality
and acceptable time cost. Our research indicates that splines can be superior to
the Catmull-Rom filters, with potentially less computational overhead, and equal or
better quality. Besides, splines provides a powerful and accurate means to adjust
the extent of smoothing, which is imperative to minimize numerical error for digital
signal process in refractive graphics.

Various researchers have disclosed the importance of the accuracy of gradient
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estimation. Gradients estimated with a filter based on a cubic polynomial, such
as the Catmull-Rom spline, have been believed to be the unofficial standard for
high-quality rendering in visualization. This is widely used in illumination and
shading computation. Although higher-order filters tend to generate more accurate
derivatives, they require excessive computational expense. Therefore, the Catmull-
Rom spline is generally perceived to be a good compromise between computational
effort and accuracy, especially when high-quality rendering is the goal.

However, our research indicates that Catmull-Rom spline filters are insufficient
for high-quality rendering of refractive effects since here the error is multiplied
by the length of the redirected ray before it hits an opaque surface. While the
interpolation filter determines the geometric accuracy of the object estimated from
the sampled data, the derivative filter affects its perceived accuracy. The derivative
involved in the shading computation appears in its unit-length form as the normal
vector. In refraction, the normal estimation further dominates the refracted rays
direction and position intersected on the background. With ray proceeding, small
errors of the unit-length normal vector can be accumulated along the refractive path.
Inaccurate normals will result in the depiction of false structures and patterns on the
rendered object surface.

With a thorough understanding of the attributes of normal estimation in refrac-
tive graphics, we have given renewed attention to the topic of derivative estimation.
In our study, the visualization of an object refractive properties was the main goal.
We have demonstrated that the B-Spline filter achieves superior results, compared
to the traditional Catmull-Rom filter, for the estimation of gradients from discrete
data. It does so at the same computational cost for the B-Spline-3, which has the
same support, or at 3/4 of the cost for the B-Spline-2, which has a full spatial sup-
port of 3.0. While B-Splines require the computation of coefficients from the raw
densities, to be used in the interpolation process, this is only required once as long
as the densities are not modified, which is unlikely for pure visualization purposes.
We have also demonstrated that the B-spline allows one to balance smoothing with
grid sample interpolation fidelity. This is beneficial in the presence of noise, round-
off errors, and other artifacts incurred in the sampling of the original data. This is
also very important to keep normals in local areas continuous and coherent, which
results in a clear pattern in the final rendered surface.
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1.3.2 Post-refraction supersampling

We propose a naive method, named as post-refraction supersampling, for ray-
tracing in refractive graphics as a method accurately preserve the refractive image
patterns, effectively increasing the sampling rate and quality of refracted images
while avoid the tremendous computational expense of extra ray tracing for tradi-
tional supersampling methods.

In refraction, even small refractive errors can lead to visible artifacts when the
ray passes through a sufficiently long distance before it hits the textured wall on the
other side. More importantly, refracted rays in a small area can be deviated to quite
departed area. This frequently happens for the rays which intersect with the trans-
parent object around the fridge of the silhouette, where the normal directions have a
dramatic and abrupt diversities and resulted neighboring refractive rays have really
large angles among each other. These in turn cause undersampling of rendering
refractive image.

Traditional super-sampling has the disadvantage of requiring an excessive
amount of time, although it provides good rendering quality. Pixel supersam-
pling [75] is a popular technique to overcome these defects, replacing them by
blur and noise. However, pixel supersampling increases the rendering effort sig-
nificantly, even when pyramidal rays [1] or other object-space ray aggregation or
refinement constructs are employed. In our case, since we seek to gauge refractive
object properties by the way they distort a simple pattern in the background, we can
devise an acceleration techniques that defers the supersampling all the way to the
pattern sampling stage, while preserving at good accuracy the local distortion of the
(virtual) supersampling grid.

Our post-refraction supersampling scheme, on the other hand, helps to over-
come irregular sampling of the background texture in a cost-effective way. It is able
to save the largest part of the computational cost for the ray tracing while retaining
the quality benefits of super sampling. It does not need to trace more rays, and
it only performs the super-sampling on the background texture. Instead, it makes
use of the space coherence of a matrix of neighboring rays. The advantage of this
algorithm is that by tracking the ray’s background position, we know the shape of
a group of neighboring points, which gives us an imprint on to what degree the
refraction has distorted the original background image for display, without the cost
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of the actual supersampling. The use of post-refraction supersampling in place of
the real supersampling improves performance noticeably, especially for larger or
complicated datasets with multiple isosurfaces.

1.3.3 Refraction rendering in volume graphics

We present an efficient framework for the high-quality rendering of discretely
sampled surface-based objects with refractive effects in volume graphics. Our
framework employs a high-quality spline-based filter in conjunction with a novel fil-
tered octree space decomposition with pre-classified cells that is carefully matched
to the filter and voxel neighborhood characteristics. These leads us to achieve an
accurate estimation of the refraction coefficients, an efficient and accurate surface
detection, space traversal, and backdrop image sampling, while keep the system in
the interactive speed.

In the early work of rendering of refractive objects [34] [75], objects were ei-
ther defined as a polygonal mesh or spline patches. Currently, it is still popular in
renders, such as POV-Ray [29] and others. There are much less research going on
the modeling of refraction in discretely sampled objects, such as in volume graph-
ics. In recent years, Rodgman and Chen published a serious work on this topic and
indicated important issues in refraction in discrete datasets. They include the detec-
tion of the exact location of the refractive interface, the amount of noise that may
exist in the volume datasets, and the interpolation filter used to estimate the density
of the materials on both sides of the refractive interface.

We employ high quality filters with accurate smoothing capability for interpo-
lation and gradient (refractive index) calculation. This is very important for trans-
parent object rendering. Violating any of the above constraints, and especially the
first, will cause rays to stray from the correct path, where even a small angular error
can cause a ray to terminate at a location on the backdrop (for example, the popular
checkerboard) vastly remote from the physically correct location. These errors are
amplified by the length of the distance the ray traverses past the refraction location
until it hits the backdrop image.

We strive to present a framework that allows users to design refractive dis-
cretely sampled objects in a near-interactive manner and with a good estimation
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of the refractive effects. Considering that objects represented as a set of sample
points, arranged in a three-dimensional regular grid, in volume graphics, we have
found that once refractive objects are sufficiently complex in shape, or even more
so, if a few refractive objects are embedded into one another, it is very difficult to
predict the visual effects that result from their illumination without actually looking
at the real object or a computer simulation of it. To accelerate the space traversal of
ray tracing, We combines DDA stepping and octree space decomposition. To accu-
rately and quickly search for isosurface in volume, we classify the voxel cells that
may contain the iso-surface in a pre-process, either through a gradient morphologic
method [66] or, better, by a novel scheme that exploits the monotonic decay, by
using non-negativity properties of the B-Spline filter. Our ACCC approach for cell
classification computes a cell mask that tightly fringes the refracting iso-surface,
and consequently requires the testing of much fewer grid cells for iso-surface mem-
bership in the raycasting than previous strategies. With the advantage of a variety of
methods, our framework allows high-quality interpolation mechanisms to be used
without incurring the speed penalties that usually come with these.

1.3.4 Accurate and fast system named as Geometry Field

We proposed a novel concept, geometry field, to deal with rendering effect,
such as reflection and refraction, with high accuracy in real time for complex scene
with objects modeled with polygonal meshes in traditional computer graphics. Real
time rendering with reflection and refraction has always drawn great attention of re-
searchers, but it still remains a challenge, due to the expensive global computational
process, especially for the intersection testing, which is not suitable for graphics
hardware. We developed a real-time system for accurate reflection and refraction
using ray tracing with geometry fields, which combine light fields with geometry
images. A geometry field is a 4D function, which takes a ray as the input and out-
puts the intersection point between the ray and the surface, represented as the uv
coordinates on the geometry image. It makes intersection tests much more effi-
cient by looking-up within a fragment shader and allows other object textures to be
applied, including normal map, to capture geometric subtleties. This method can
be generalized to handle refraction and self-reflection. Most real-time reflection
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methods make assumptions of the geometries of the reflectors or their geometric
relations to the scene. In contrast, the geometry field handles arbitrary surfaces and
scenes without making any assumptions.

Ray tracing is the most well known algorithm for achieving accurate render-
ings. Great efforts have been spent to accelerate ray-tracing by designing special
hardware [77] [11, 53, 74]. Environment mapping [7, 21] is an alternative approach
that provides fast reflection and refraction of the surroundings assuming the scene
elements are infinitely far away from the reflector, so in turn with the difficulties to
deal with objects reflecting in near surfaces.

The light field [20,38] is one of the central concepts in image based rendering,
which maps a ray to the color of the intersection point. It maps rays to the color of
intersection points, which moves a large amount of computational expense to pre-
processing time and therefore achieves interactive speed. Problem for light field is
the lack of accuracy, especially for high-level reflection.

Our geometry field system makes full use of the combination of advantages
of light fields and ray tracing, by mapping rays to the package of position, normal
and texture of intersection points and converts intersection testing in traditional ray
tracing to quick table lookup. It responds to the trend of fast increases in memory
capacities. Besides, we combine the powerful 2D representation power of geometry
image to make the lookup table more efficient and compact. Hence, the computa-
tional power of graphics hardware can be fully utilized. Without sophisticated data
structures and optimizations, our algorithm has demonstrated the capability of real
time rendering of inter-reflections and refraction with convincing results using cur-
rent graphics hardware.

In more detail, the geometry field of a surface S is a map, where the input is an
incident ray, and the output is the texture coordinates of the first intersection point.
Suppose S is represented as a geometry image r(u,v), γ is a ray in R3 intersecting
S. The first intersection point p is r(up,vp). Then the map G : γ → (up,vp) is the
geometry field of surface S. From (up,vp), the position and the normal of p can be
obtained from the geometry image and the normal map.

The geometry field representation has several advantages. First, it effectively
reduces the memory cost. In general, a geometry field is 4 dimensional. If the
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position, normal and color material information are stored for each entry, the stor-
age requirement will be extremely high. Instead, only the texture coordinates are
stored, such that the size of a geometry field is within the memory capacity of cur-
rent hardware. Second, due to the regular structure of a geometry field, it can be
represented as a generalized texture. The whole rendering algorithm can be imple-
mented in common graphics hardware. Third, the time cost is independent of the
geometric complexity of the scene, and only dependent on the size of the geometry
field. Figure 23 illustrates the concept of the geometry field.

1.3.5 Refraction correction in ultrasound CT(UCT)

We apply the wave-based ray propagation models into ultrasound computed
tomography(UCT) to correct the distortion caused by refraction phenomena. Our
innovative framework is inspired from the trajectories determination in images with
fast wave propagation computational techniques. By modeling the wave front
movement governed by Eikonal equation with fast marching method(FMM), the
accurate ray direction for an arbitrary point can be derived by searching for the
minimum path in the wave field between the point and the emitter. Embedding
the FMM into traditional reconstruction algorithm, SART, we demonstrated that
our frame work is a promising one for the efficient and accurate modeling of the
propagation of acoustic waves in a refractive media.

The area of ultrasound imaging has been devoted significant work from re-
searchers in medical school and computer science, because of its benign, noninva-
sive characteristics. The developed system and algorithms not only achieve impres-
sive speed for various kind of medical problems, but also provide a routine diagnos-
tic tool allowing it to compete with or applying with other tomography modalities.
Nevertheless, producing pleasingly clear and accurate image is still challenging
with ultrasound data. Especially, using ultrasound data of the organs that have
strong refraction effects, it is still difficult, if not impossible, to reconstruct image
faithfully, and the alias introduced by bent rays may overwhelm the subtle, yet im-
portant characteristic features in the image. Examples of this type of phenomena
are frequently discovered in the real world. For example, the large subcutaneous fat



11

layer in breast [67] [54] falls into this category, which significantly distorts acous-
tic ray’s direction and eventually causes apparent alias or noise in result images.
The specific difficulty of curved-ray in ultrasound image originates from the strong
refraction effect when acoustic rays pass interfaces between media with different
speed, according to the Snell’s law for refraction. Diffraction is the other possible
issue to cause acoustic rays abbreviation. However, diffraction tomography is often
based on weak scattering assumption [50], which is violated by strongly refracting
fat layers in breast. We focus on correcting the artifacts stemming from refraction.
Previous work has either not modeled bent rays at all or has inadequately elimi-
nated bent ray distortion effects and failed to faithfully reproduce tissue properties
in UCT. Furthermore, prior methods have been computationally expensive, limiting
their extendibility to three dimensions.

With the introduction of curved ray propagation models into ultrasound imag-
ing, our framework is able to improve both the velocity image reconstruction from
time-of-flight data and energy image reconstruction for attenuation data, taking into
account the refraction. We treat the processing of ultrasound emitting from one
sender to all receivers as a processing of wave propagation, tracing the movement
of the wave front using fast marching method with eikonal equation. With the fast
marching method, wave arriving time for each grid point is extracted and accurate
ray directions for arbitrary point is derived by searching the minimum path in the
time field between the point to sender. It provides a uniform solution in finding the
speed trajectory that minimizes the integral of the propagation cost function. Bene-
fiting from its stability, during the last ten years, fast marching method has aroused
from many other application domains, such as computer graphics, computer vi-
sion and semiconductor fabrication. For example, it is used in interface evolution
with the fluid simulation, the shape detection and recognitions in computer vision,
and industrial simulations of etching and deposition processes in semiconductor
manufacturing. To our best knowledge, we are the first ones to apply it into the
acoustical ultrasound image to model the physically realistic ultrasound propaga-
tion directions.
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1.3.6 GPU Accelerated UCT Made Computational Practical

Transmission Ultrasound Computed Tomography (CT) is strongly affected by
the acoustic refraction properties of the imaged tissue, and proper modeling and cor-
rection of these effects is crucial to achieving high-quality image reconstructions.
A method that can account for these refractive effects solves the governing Eikonal
equation within an iterative reconstruction framework, using a wave-front tracking
approach. Excellent results can be obtained, but at considerable computational ex-
pense. It is far more efficient than a full wave equation simulation, we find that it
is still not efficient enough to warrant deployment in a clinical setting. Thus, we
investigate the use of commodity high-performance hardware for parallel program
execution, such as multi-core CPUs, programmable commodity graphics hardware
(GPU), and processor clusters. However, the inherently sequential mechanism of
the FMM method poses certain trade-offs with regards to the architecture used (and
also cost). This thesis works on the acceleration of three Eikonal solvers (Fast
Marching Method (FMM), Fast Sweeping Method (FSM), Fast Iterative Method
(FIM)) on three computational platforms (commodity graphics hardware (GPUs),
multi-core and cluster CPUs), within this refractive Transmission Ultrasound CT
framework. Our efforts provide insight into the capabilities of the various architec-
tures for acoustic wave-front tracking, and they also yield a framework that meets
the interactive demands of clinical practice, without a loss in reconstruction quality.
These considerations and their results are presented in this thesis, with the overall
conclusion being that UCT based on fast wavefront tracking has excellent potential
for real life clinical deployment.

1.4 Thesis Outline

The remainder of the dissertation is organized as follows. In chapter 2 we
briefly review the background of signal processing and previous work for refraction
in the area of volume graphics, traditional graphics, computational tomography. In
chapter 3, we introduce our work in the normal estimation especially for refrac-
tion effect with comparing BSpline family filters with several most popular filters
in visualization. In chapter 4, we show our framework for high-quality refraction
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rendering system for volumetric objects, with a combination of our knowledge of
filters, our proposed post-refract suppersampling and the carefully designed accel-
eration methods for quickly locating the isosurface position. In chapter 5, we de-
scribe the concept and system of geometry field, which is a hardware accelerated
real-time rendering system for reflection and refraction of complex scene with mesh
objects. In chapter 6, we present our ultrasound computational tomography(UCT)
framework with the capability of refraction correction. In chapter 7, we improve the
computational efficiency of UCT to medical clinical requirement with the acceler-
ation of graphics processing unit. Finally we conclude this dissertation and outline
future research work in chapter 8.



Chapter 2

Background

2.1 Signal Processing and Filters

Much work has been done on filter design in volume rendering. Moller et
al. [47] developed a design approach based on a Taylor-series expansion which,
apart from interpolation, also considers derivative estimation, while Bentum et
al. [5] employs the frequency domain to design these filters. Unser et al. [71, 72]
promote the use of B-Splines for the interpolation of discrete data and give a recur-
sive method to estimate, from the native volume data, the coefficients that comprise
the volume data used for interpolation. Li and Mueller [39] propose a frequency-
space approach for resampling, using the FFTW system for fast Fourier transforms.

The importance of the accuracy of gradient estimation, over that of the in-
terpolation process, has been reported in various research papers [5, 47]. There
it was found that gradients estimated with a filter based on a cubic polynomial,
such as the Catmull-Rom spline, achieve satisfactory shading results. While larger,
higher-order filters estimate even more accurate derivatives [47], they tend to incur
excessive computational expense in the rendering process. For these reasons, the
Catmull-Rom spline is generally perceived a good compromise between computa-
tional effort and accuracy, especially when high-quality rendering is the goal. On
the other hand, first-order filters, as embodied by the trilinear function, are used
when rendering speed is the main focus. Its simplicity also enables a general im-
plementation in graphics hardware. The corresponding linear derivative filter is
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popular for the same reasons. Finally, the nonnegativity of trilinear filters also al-
lows an efficient analytic root finding mechanism to determine the exact location of
an iso-surface [51].

2.2 Volume Graphics

Refraction has been the subject of much interest even early on in computer
graphics, where Kay [34] was the first to apply Snell’s law to model this optical
effect. Soon after, Whitted [75] produced the now famous image of floating trans-
parent balls over a checkerboard to show off his recursive ray tracing framework.
Amanatides [1] developed the concept of cone tracing, where slender cone rays ex-
tend from each pixel, with an initial diameter the size of the pixel. These cone rays
are then distorted at refractive and reflective surfaces. As mentioned above, Rodg-
man and Chen [56], in their pioneering work, discussed the subject of refraction in
volumetric datasets at great detail. They use a discrete ray tracing approach, and in
that context they discuss three measures designed to provide the material densities
on both sides of a material interface required by Snell’s law in order to compute the
refraction angle. First, in order to locate a material interface itself, they use a small
ray step size, much less than unity, Then, they describe four methods designed to
ensure proper positions to sample these two materials, and they mention the difficul-
ties associated with correctly separating two subdomains to estimate the refraction
index. In another paper [57], the same authors employed regularized anisotropic
nonlinear diffusion to quantify distortion and improve image quality. Their method
bears some similarity to the non-linear raytracing approach described by Grller et
al. [22], which illustrates the effects of continuous dynamically and chaotic fields
by visualizing the way in which they bend the light rays traversing it. This approach
was later extended by Weiskopf et al. [74] using a GPU-based implementation to
compute the refraction of rays subject to a space-filling analytical medium, such as
the relativistic field of a black hole. There, the step size of the rays is adaptively
adjusted to conform to their local curvature.
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2.3 Computer Graphics

Researchers have spent great efforts to accelerate ray-tracing rendering by de-
signing special hardware [77]. With the increase of computational power and pro-
grammability, ray tracing has been implemented on GPUs [11, 53, 74]. More re-
cently, acceleration data structures such as Kd-tree in [19] are also sophisticatedly
implemented on GPUs.

Environment mapping is introduced in [7, 21] to simulate reflection of the
scene, where the enviroment is infinitely distant from the object. The rendering
result is inaccurate if the reflected object is close or in motion. Szirmay-Kalos et al.
have presented a method in [62] to localize the enviroment map to obtain approxi-
mated ray hits on the objects in the scene.

In image-based modeling and rendering, light field and lumigraph are intro-
duced in [20,38] to represent the flow of light through unobstructed space in a static
scene. Reflections have been rendered using light field [81], layered light field and
layered depth images [42], or surface light fields [76]. Hendrich et al. [28] used two
light fields to simulate accurate reflections, and Masselus et al. [45] uses precap-
tured light fields to relight objects. Light field mapping [12] models the outgoing
radiance function as a light field to allow object motion.

Geometry image was first introduce in [23], which captures geometry as a sim-
ple 2D array of quantized points. Surface signals like normals and colors are stored
in similar 2D arrays. Geometry images are generalized to multi-chart geometry
images [58], smooth geometry images [43].

2.4 Computed Tomography and Ultrasound

Starting from the late 70s and early 80s, experimental work in UCT has been
driven by the need for real-time data acquisition and display. While recent work by
Duric [18] shows promise and discusses the effect, that a scatter field with reflection
and refraction properties has, the reconstruction algorithms discussed there are still
limited to the straight-ray assumption.

To solve the problems associated with bent rays, Meyer [46] proposed a
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method to correct for the multi-path errors using a parametric multi-path model-
ing and estimation scheme, while Pan and Liu [49] proposed methods to correct
for refractive errors by scanning a small area around the straight line-of-sight and
then using the maximum, sum or average of the area to measure the attenuation.
Several researchers [3] [48] explored the use of raytracing, via ray-linking, in an it-
erative reconstruction framework to improve the UCT image quality. Andersen [3]
proposed a ray rebinning method to generate new projection data, while Denis [14]
compared several methods for ray-tracing, showing that substantial improvement
over straight ray methods can be achieved for moderately refracting fields. There
still remains a need for further improvement, especially in terms of computational
speed and accuracy.

2.5 GPU acceleration

Refraction in computer graphics has been a subject related to ray tracing [75]
since the 1980’s. Ray tracing is well known for excellent quality but suffers from
excessive computation. Increasing computational power through parallelism in a
graphics processing units(GPU) allows interactive speed with ray or path tracing
approximation mechanisms [73]. GPU uses rasterization to generate images and
some basic refraction [69] [59] has been implemented using hardware-assisted ap-
proximation.

Kruger [37] proposed a reflection and refraction algorithm on GPU by raster-
izing photon paths into a texture in multi-passes. Szirmay-Kalos [63] approximate
ray tracing on a GPU by creating a distance impostor around a refractive object
and a iterative algorithm to approximate the distance of a ray traveling in an ob-
ject. Diefenbach and Badler [15] uses a GPU multi-pass algorithm to handle planar
reflection, refraction and shadow. Guy and Soler [25] rendered simple convex and
faceted objects with a plane-based refraction. They rendered gemstones with com-
plex lighting behavior by calculating refracted vertices and updating the facet tree
each frame using shaders. Hakura and Snyder [26] combine environment mapping
for distant reflection and ray tracing for refraction and reflection in close-ups. Hu
and Qin [30] present a algorithm to use binary search to determine ray-object in-
tersections with a depth map. Wyman [78] uses a two-pass image-space approach
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to approximate two-interface refractions on GPU. His following work [79] added
another additional pass to render nearby geometry to texture. Recently, Davis and
Wyman [13] present an algorithm to approximate refraction using a ray-depth map
intersection technique.



Chapter 3

Filter

Based on the finding that refraction imposes significantly higher demands onto
gradient filters than illumination and shading, we evaluate the family of spline fil-
ters as a good alternative to the cubic filters, which so far have served as the gold
standard of efficient yet high-quality interpolation filters in present visualization ap-
plications. Using a regular background texture to visualize the refractive properties
of the volumetric object, we also describe an efficient scheme to achieve the effects
of supersampling without incurring any extra raycasting overhead. Our results in-
dicate that splines can be superior to the Catmull-Rom filter, with potentially less
computational overhead, also offering a convenient means to adjust the extent of
lowpassing and smoothing.

3.1 Introduction

An integral component in the visualization of discrete data are the filters used
for interpolation and derivative estimation. While the interpolation filter determines
the geometric accuracy of the object estimated from the sampled data, the derivative
filter affects its perceived accuracy. The latter is due to the derivative’s involvement
in the shading computation, which appears in its unit-length form as the normal
vector. Inaccurate normals will result in the depiction of false structures and pat-
terns on the rendered object surface. While the modulation of the normal vectors
was exploited to generate fictitious patterns in bump mapping [6], this is clearly not
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intended in a typical visualization where one desires to illustrate the truth. In more
recent research, the derivatives have also been used to estimate the geometry itself,
by determining the exact position of an isosurface via locating extreme points in the
first derivative and zero-crossings in the second derivative [35] [36].

The importance of the accuracy of gradient estimation, over that of the in-
terpolation process, has been reported in various research papers [5] [47]. There
it was found that gradients estimated with a filter based on a cubic polynomial,
such as the Catmull-Rom spline, achieve satisfactory shading results. While larger,
higher-order filters estimate even more accurate derivatives [47], they tend to incur
excessive computational expense in the rendering process. For these reasons, the
Catmull-Rom spline is generally perceived a good compromise between computa-
tional effort and accuracy, especially when high-quality rendering is the goal. On
the other hand, first-order filters, as embodied by the trilinear function, are used
when rendering speed is the main focus. Its simplicity also enables a general im-
plementation in graphics hardware. The corresponding linear derivative filter is
popular for the same reasons. Finally, the non-negativity of trilinear filters also al-
lows an efficient analytic root finding mechanism to determine the exact location of
an iso-surface [51].

The Catmull-Rom spline, a member of the family of cubic convolution filters,
is the unofficial standard for high-quality rendering in visualization. This is well
justified if one is only interested in illumination and shading effects. However, our
research indicates that Catmull-Rom spline filters are insufficient for high-quality
rendering of refractive effects since here the error is multiplied by the length of the
redirected ray before it hits an opaque surface. For example, while the refraction
of a ray within a thin lens is less sensitive to the quality of the gradient estimation,
due to its small path length in the refractive medium, these adverse effects are much
more dramatic when the refracted ray passes through a full sphere.

For this reason, we have given renewed attention to the topic of derivative es-
timation, but with a second goal to preserve computational efficiency. In our study,
the visualization of an object’s refractive properties was the main goal, since these
cannot be visualized by shading alone. While curvature can be depicted using non-
photorealistic techniques [31], these techniques do not apply to depict refractive
properties in the general case. Instead, we chose to visualize an object’s refractive
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properties by the way in which they distort the image of a known regular pattern
placed on the other side, such as a flat plane textured with a checkerboard.

While the Marschner-Lobb (ML) function is an excellent means to assess and
visually convey the quality of filters, it is nevertheless a rather artificial function in
the sense that even dramatic error images obtained with the ML function do not nec-
essarily lead to poor results in practical shading scenarios. Refraction, on the other
hand, is a much more demanding task in that regard, exposing even small filter infi-
delities at no mercy. For this reason, we conducted our filter study using refraction
to highlight the effects of various gradient filters. To that end, we find that filters
based on quadratic and cubic B-splines, which, so far, have received little atten-
tion in the domain of visualization research, show superior results to Catmull-Rom
spline filters, with the added benefits of smaller or equal computational cost. A
secondary effect is that they allow a means to control the amount of data smoothing
before the densities and gradients are estimated. This is done by prior computa-
tion of a coefficient volume, which, however, only has to be done once, unless the
volume densities themselves are modified.

But even small refractive errors can lead to visible artifacts when the ray passes
through a sufficiently long distance before it hits the textured wall on the other side.
Pixel supersampling [75] is a popular technique to overcome these defects, replac-
ing them by blur and noise. However, pixel supersampling increases the rendering
effort significantly, even when pyramidal rays [1] or other object-space ray aggre-
gation or refinement constructs are employed. In our case, since we seek to gauge
refractive object properties by the way they distort a simple pattern in the back-
ground, we can devise an acceleration techniques that defers the supersampling all
the way to the pattern sampling stage, while preserving at good accuracy the local
distortion of the (virtual)supersampling grid. This chapter is structured as follows.
First, section 2 presents theory related to splines and their properties. In Section 3,
we discuss the different aspects of our approach and its study. Finally, Section 4
reports on results, and Section 5 ends with conclusions.
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3.2 Spline Filters

3.2.1 General background on filters

Discrete datasets represent scalar data on grids and interpolation filters must
be employed to obtain samples at off-grid positions or to calculate gradients there.
The simplest filter for gradient estimation is the central difference filter. The main
advantage of this filter is its computational simplicity, but it may produce inferior
reconstruction quality. The Catmull-Rom spline is more complex and is commonly
used as a high-quality, yet sufficiently efficient, interpolation filter. However, as we
shall see, it still fails to generate satisfactory results when employed in applications
with extremely high requirements, such as refraction, in which a highly accurate
gradient filters is needed to determine the exact direction of refracted rays.

To interpolate a value f (x) at some arbitrary coordinate x ∈ Rq, we can use a
linear combination of coefficients ck.

f (x) =
∑

k

ckΦ(x− k) (1)

The implementation is called interpolating if ck is always equal to the grid value fk

when evaluated at the point k ∈ Zq. On the other hand, the implementation is called
noninterpolating, if ck does not have to be equal to the grid value fk. For interpo-
lating filters, to satisfy the requirement of exact interpolation at the grid points, the
basis function for interpolating filter must vanish for all integer arguments, except
at the origin, where it must assume a unit value. Both the trilinear and the Catmull-
Rom spline filter fall into this category. In the case of noninterpolating filters, we
do not need to put constraints onto the basis functions, which gives us more free-
dom in their design. Instead, to enable exact interpolation at the grid points, the
non-interpolating filters determine the coefficients in a prefiltering step. One of the
most widely used non-interpolating basis function is the B-spline.

3.2.2 Non-interpolating filters

With well-behaved basis functions, prefiltering for coefficients establishes
a one-to-one correspondence between fk and the sequence of coefficients, ck.
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From these coefficients, the desired value fk can be determined. Further, non-
interpolating filter functions can be transformed to their equivalent interpolating
functions, which builds a bridge between interpolating and non-interpolating func-
tions in the same domain. For the multi-dimensional case, we assume that the basis
function Φ is separable, that is, the data can be processed in a separable fashion,
row-by-row, column-by-column, etc.

3.2.2.1 Determining the coefficients

In the non-interpolating case, to ensure an exact interpolation of the sample
points,

fk0 =
∑

k∈Zq

ckbk0−k (2)

where bk = Φ(k). Given the basis function, this constraint gives rise to a linear
system of equations of unknown coefficients ck. One can solve this problem with
any efficient solver of a linear system of equations [66] [65] [70]. Another way to
look at the constraint equation is to realize its equivalence to discrete convolution:

fk0 = (c∗b)k0 (3)

Therefore, the sequences of coefficients ck can be obtained by convolution of the
sequences fk with the convolution-inverse b−1,

ck0 = (b−1 ∗ f )k0. (4)

3.2.2.2 Cardinal representation

We can write interpolating functions by expressing non-interpolating basis
functions in terms of their equivalent interpolating basis functions:

f (x) =
∞∑
−∞

ckΦ(x− k) =
∞∑
−∞

fkΦint(x− k) (5)

As derived in [71], the equivalent interpolating basis functions are given by:

Φint(x) =
∞∑
−∞

b−1
k Φ(x− k) (6)
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3.2.3 BSpline

The B-spline is one of the most widely used non-interpolating filters and has
numerous advantages over popular interpolating filters. It derives from the well-
known property that any polynomial spline can be represented as a weighted sum
of shifted B-spline basis functions and is therefore characterized by the discrete
sequences of its B-spline coefficients. There is a whole family of basis functions
created from B-splines βn, in order of n.

βn(x) =
(n+1)∑

j=0

(−1) j

n!
(n+1 j)(x+

n+1
2

− j)nµ(x+
n+1

2
− j) (7)

where µ(x) is the unit step function

µ(x) =





0, i f (x < 0)

1, i f (x≥ 0)
(8)

The cubic B-Spline, which has a continuous second derivative, is often used in
practice. Its expression is given by:

β3(x) =





1
2 |x|3−|x|2 + 2

3 , i f (0≤ |x|< 1)

−1
6 |x|6 + |x|2−2|x|+ 4

3 , i f (1≤ |x|< 2)

0, i f (|x| ≥ 2)

(9)

The cardinal representation of the cubic B-spline has a decaying oscillation that
looks similar to the (optimal) sinc function (the dotted lines in Figure 1). Comparing
the frequency response (see (a) in Figure 1) of the cubic convolution filter embodied
by the Catmull-Rom spline and the cubic B-spline (n=3), it is clear that the cubic B-
spline has a much better pass-band and stop-band behavior and is therefore superior
to Catmull-Rom spline.

For signals that are corrupted by noise, an exact B-spline interpolation does
not necessarily yield the most adequate continuous signal approximation. In this
case, a more favorable approach is to employ the smoothing B-spline in place of
the regular B-spline [71] [72] (see (a) in Figure 1 for the frequency response of a
cubic smoothing B-Spline). The global smoothness of the interpolating function
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(a) B-Spline

(b) B-Spline 3 and smooth B-Spline 3

(c) derivative B-Spline.

Figure 1: Frequency response of B-Spline related filters
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can so be controlled. The coefficients are determined such that the sum of interpo-
lating errors at the sample points and the penalty imposed by the non-smoothness of
the interpolating function is minimized. A free parameter, λ,is available to control
the relative importance of the two, and thus can be used to determine the amount
of lowpassing. The method establishes a compromise between the desire for an ap-
proximation that is reasonably close to the data and the requirement on the function
to be sufficiently smooth. The choice of λ depends on which of these two conflict-
ing goals is given the greater importance. The same recursive technique can also
here be implemented to compute the coefficients, with as few as four operations
per sample value. (b) in Figure 1 shows the frequency response of a few smooth-
ing cubic spline filters for various λ. We observe, as λ increases, the pass band is
reduced and pushed towards lower frequencies, effectively smoothing the interpo-
lation. The curves denoted Prefiltering and No-prefiltering in (b) in Figure 1 denote
the frequency responses of the cubic B-spline filter with and without prefiltering
the data, respectively (i.e., with and without replacing the original data points by
the coefficients computed by Equation 4). Not surprisingly, the pass band for the
filter without prefiltering is also reduced to a level between the smoothing spline
with λ=0.1 and λ=1. This explains why using a cubic spline without prefiltering
smooths or blurs the data, which has been reported by a number of authors. In fact,
the prefiltering is necessary to reach the sharp transition at the Nyquist rate in the
frequency response.

3.3 Application of Refraction

Refraction is the bending of a light ray as it passes across the boundary of two
media. Snell’s law is the most commonly used refraction equation to represent the
bending:

ni sinθi = nr sinθr (10)

where θi is the angle of incidence, θr is the angle of refraction, ni is the refraction
index of the incident medium and nr is the refraction index of the refractive medium.

As mentioned in the introduction, refraction poses special challenges on the
visualization of discrete datasets. In the following we analyze the problems at suf-
ficient detail and devise solutions.
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3.3.1 Problem description

Figure 2: Poor result obtained with the cubic gradient filter, which is the derivative of the
Catmull- Rom filter [5].

Figure 2 shows a refracting glass sphere in front of a checkerboard pattern.
When light passes across this sphere, it bends its direction due to refraction. Al-
though we use Brent’s root-finding function [10] to determine the accurate position
of the isosurface, there is still a considerable amount of aliasing in the result. There
are two main reasons for this, as is explained next. First, refraction is very sensitive
to gradient calculation. Even a minor error in the computed angle of gradient direc-
tion will cause the refracted light to stray far away from the correct location in the
background image. The gradient is estimated by the density function in the volume,
however, points in the data set are discrete-valued sampling points, which may not
be able to represent the continuous density function strictly. Thus, even if an an-
alytic function was sampled into the grid, storing the sample points in the dataset
as truncated integers will result in rounding errors. On the other hand, real-world
data sets, such as medical datasets, may be noisy, which will also lead to artifacts
in the gradient calculation. The refraction process will accentuate any of these im-
perfections tremendously. Thus, a good gradient filter with just the right amount of
smoothing and anti-aliasing is much desirable for high-quality refraction.Secondly,
part of the aliasing stems from the sampling of the background texture at a rate
lower than the Nyquist frequency requirement.
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Figure 3: Refraction causes undersampling.

Figure 3 shows a one-dimensional analysis of this process. For this, we slice
one plane along the x-y plane and view it from the vertical z-direction. Obviously,
at the two ends of the line, the rays bent at a much larger angle than the rays in
the middle of the line. This leads to the background image being sampled below
the Nyquist rate at these locations. One way to overcome this problem is to use su-
persampling to increase the sampling rate. But this slows ray tracing considerably,
since one needs to shoot more rays per pixel and compute the average.

3.3.2 Solutions for gradient computation

In refraction, the gradient filter puts special importance on the smoothness
of the interpolated function. A smoothly interpolated function can ensure that
gradients evaluated at two very close points on the isosurface are close in value.
Therefore two parallel rays interacting with the isosurface on these two neighboring
points, after refraction, can still follow near-parallel paths. This will effectively lead
to a smooth image of the background texture, as seen through the refracting object.
(a) in Figure 1 shows the frequency responses for the cardinal Catmull-Rom spline
filter and several B-spline filters. Although the B-Spline requires a calculation of
the coefficients first, this is just a one time procedure, whose outcome can be used
epeatedly. We observe, based on the frequency response, that even the quadratic
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B-Spline (B-Spline 2) has a better frequency response than the Catmull-Rom spline
filter, although cubic Catmull-Rom spline is more expensive than B-Spline 2 (due
to its wider extent), both for interpolation and for gradient calculation. With in-
creasing order, the B-Spline becomes increasingly close to the ideal low-pass filter,
the box at f =0.5. (c) in Figure 1 shows the frequency responses for the gradi-
ent (derivative) filters based on the Catmull-Rom spline and B-Spline. From these
plots, we can draw the same conclusions than those been drawn from interpolation
counter parts shown in (a) in Figure 1. The most interesting filter in this figure, at
least for our purposes, is the smoothing B-Spline. It is a filter that fits well for the
application of refraction, since here we require a good filter that also has tunable
smoothing and anti-aliasing capabilities. We mentioned before that the B-Spline
without precalculating the coefficients is usually thought of as erroneous, since it
blurs the images. But we find that in the case of refraction, which is extremely sensi-
tive to variations in the gradient, the smoothing effect of non-prefiltering is actually
a positive aspect. (b) in Figure 1 compares the B-Spline with and without prefilter-
ing. Globally, the B-Spline with prefiltering is much closer to the ideal low-pass
filter. However, in the stop band, the B-Spline without prefiltering will suppress the
aliases to the largest degree, since it smooths the image and begins to decrease ear-
lier. This means that the B-Spline without prefiltering will curb noise, smooth the
data and decrease the aliasing to a minimal level. Therefore, both the B-spline with
smoothing and the B-Spline without prefiltering constitute good gradient filters for
refraction calculations. The latter represents an efficient choice since it does not
require the calculating of coefficients.

3.3.3 Solutions for undersampling

Supersampling is a natural solution to the problem of undersampling. It shoots
a matrix of rays per pixel, possibly with jitter, and averages the result. Its downside
is excessive cost. We propose a new method, named post-refraction supersampling,
to save the largest part of the computational cost for the ray tracing while retaining
the supersampling quality. Our method does not need to trace more rays, and it
only performs the supersampling on the background texture. The key idea is to
use space coherence of a group of neighboring points. Once we know the shape of
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Figure 4: Post-refraction super-sampling

the refracted picture, we can do the supersamping on this known pattern. Figure 4
illustrates the steps of post-refraction supersampling. The algorithm keeps a record
of each pixel’s background position in an intermediate image A, which is of the
same size than the original image. Then for each point p, we take the closest 8
points in A, get their positions which maps them to the background mapped image
B. The number of 8 can be increased in case a higher sampling rate is needed.
This tells us the refracted shape of the nine original points. This shape gives us the
structure of the refraction-distorted pattern, which is what we really like to know.
Finally, based on this intermediate image, we sample it by taking the intermediate
points between the 8 neighbors and the center point, p. Following we do a low-
pass filter convolution among the center point and the intermediate points. The
result will be the supersampled density for p. The advantage of this algorithm is
that by tracking the ray’s background position, we know the shape of a group of
neighboring points. This gives us an imprint on how far the refraction distorted the
original background image, without the cost of the actual supersampling.

3.4 Experiments

To locate the exact location of the iso-surface for low order filters, such as cen-
tral difference and trilinear, we use the analytical methods described in [51]. For
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the Catmull-Rom Spline and B-Spline filters on the other hand, we use Brent’s iter-
ative root finding method [10] since at these higher function order no analytic root
can be found. Brent’s method works most efficiently for B-splines due to the non-
negativity property of the B-spline basis function. The B-Spline is implemented
on the method by Unser et al. [72], who gives an efficient recursive algorithm for
the prefiltering of the coefficients, in Equation 4. Its computational load for the
cubic B-spline only consists of two additions and multiplications per produced co-
efficient. Next, we will compare the central difference filter, the analytical gradient
estimator based on a trilinear filter [51], and the gradient (i.e., derivative) filters [5]
based on the Catmull-Rom spline and the B-Splines of order 2 to 6, respectively.

3.4.1 Gradient filters

To evaluate the different 3D gradient filters, we examined two datasets, a trans-
parent smooth sphere with the background set to a checkerboard, and the standard
filter testbed, the Marschner-Lobb dataset, described in [44]. We used a constant-
valued sphere with a Gaussian fringe.

Because the Gaussian filter equation and the Marschner-Lobb function are well
known, for both of the experiments, the difference between the ideal gradient and
the estimated gradient by the filters can be accurately compared and investigated. In
the smooth Gaussian sphere, we slice it with a plane and then choose 180 points on a
circle uniformly, that is, there is one point for every two degrees. In the Marschner-
Lobb experiment, we slice the dataset along a plane which is parallel to the z-axis
and pick points on a circle in the same way than in the sphere experiment.

Since for both of the testbeds, the density on the chosen circle is decided only
by the distance between the point and the center of the circle, the shape of the ideal
x, y gradients is either a sine or a cosine curve (see a in Figure 5). In Figure 5
b-o, all such sine-shaped curves are due to the estimated gradients, while the plots
immediately above each such curve show the angular error between the computed
and accurate normals, and the number indicates the average error.

Since refraction requires a smoother gradient, due to the reasons discussed
in Section 4.1, we also add the smooth B-Spline 3 (Figure 5f) and several B-
Splines without prefiltering (Figure 5k-o). We observe, for the sphere dataset, that
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Figure 5: Gradients computed along one circle on the smooth sphere, with average error
angle(up to 360). (a. perfect, b. central difference, c. trilinear-analytical, d. Catmull-Rom
Spline, e. B-Spline 2, f. B-Spline3-smooth =1, g. B-Spline 3, h. BSpline 4, i. B-Spline 5,
j. B-Spline 6, k-o. B-Spline without prefiltering, order 2 to 6).
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the Catmull-Rom spline produces actually worse gradient results than the trilinear-
analytical estimator as well as central differencing, and the B-Spline 2 to 6 (with
pre-filtering) do not improve the gradient either. This is reasonable since the data
have (round-off error) noise, and the better the filter the lesser is smoothed out (see
Figure 1a). On the other hand, without pre-filtering, the B-Spline produces much
better gradients since it has better smoothing properties (see Figure 1a), which we
require in this case. The smooth-BSpline 3 offers the best results - in Figure 5f
the curve of the smooth B-Spline 3 with λ=l almost matches the analytical curve,
with an angular error of less than 0.01. Finally, Figure 7 presents the actual sphere
refraction images, obtained with the different gradient filters. Here the smooth-B-
Spline-3 shows the cleanest results, but the B-Spline without prefiltering is also able
to produce a clear depiction of the distorted background.

Figure 6: Gradients computed along one circle on the M-L. dataset, with average error
angle. (a. perfect, b. central difference, c. trilinear-analytical, d. Catmull-Rom Spline, e.
B-Spline 2, f. B-Spline 3, g. B-Spline 4, h. B-Spline 5, i. B-Spline 6)

The Marschner-Lobb test dataset, on the other hand, since it has a lot of high
frequency information, requires a gradient filter that faithfully preserves the high
frequency information inside the dataset. Here, no smoothing is required. As Fig-
ure 6 shows, the Catmull-Rom spline filter exhibits almost the same error than cen-
tral differencing and trilinear-analytical, and the average error angle is around 6.10.
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But for the B-Spline, with the order increasing from 2 to 6, the produced gradi-
ent more and more matches the ideal analytical gradient curve. The average error
angle decreases from 3.69 to less than 0.01. Finally, the rendered results of the
Marschner-Lobb dataset are shown in Figure 9. We observe that even the B-Spline
2 yields better renderings than the Catmull-Rom spline filter.

3.4.2 Post-refraction supersampling

Although in Figure 7, with a smooth gradient filter, the distorted background
of the sphere is close to ideal, there are still some jaggies along the edges of the
distorted checkerboard, especially in the sphere’s periphery. Post-refraction super-
sampling can overcome this problem. In Figure 8, we compare the images obtained
with traditional supersampling and with our fast post-refraction supersampling. The
runtimes are also shown, with speedups nearly the degree of supersampling.

3.5 Conclusions

We have demonstrated, using refraction as a showcase, that the B-Spline filter
achieves superior results, compared to the traditional Catmull-Rom filter, for the
estimation of gradients from discrete data. It does so at the same computational
cost for the B-Spline-3, which has the same support, or at 3/4 of the cost for the
B-Spline-2, which has a full spatial support of 3.0. While B-Splines do require the
computation of coefficients from the raw densities, to be used in the interpolation
process instead, this is only required once as long as the densities are not modi-
fied, which is unlikely for pure visualization purposes. We have also demonstrated
that the B-spline allows one to balance smoothing with grid sample interpolation
fidelity. This is beneficial in the presence of noise, round-of errors, and other arti-
facts incurred in the sampling of the original data. We verified these findings using
the rigorous analytical Marschner-Lobb dataset, where smoothing is not required.
Our post-refraction supersampling scheme, on the other hand, helps to overcome
irregular sampling of the background texture in a cost-effective way.
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Analytic Central-Difference

Trilinear Cubic

B-Spline 3 B-Spline 6

B-Spline 3 w/o prefilt. B-Spline 6 w/o prefilt.

Smooth B-Spline 3, λ=1 Smooth B-Spline 3, λ=0.1

Figure 7: Refraction results of spheres with different filters.
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(a) Traditional super sampling

Central Difference, 9.9 ms Catmull-Rom spline, 11.5 ms

B-Spline 3, no prefiltering, 10.5 ms Smooth B-Spline 3, 10.5 ms

(b) Post-refraction super sampling

Central Difference, 2.3 ms Catmull-Rom spline, 2.8 ms

B-Spline 3, no prefiltering, 2.6 ms Smooth B-Spline 3, 2.6 ms

Figure 8: Compare refraction result of spheres: (a) traditional super sampling; (b) post-
refraction super sampling.
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Catmull-Rom spline B-Spline 2

B-Spline 3 B-Spline 6

Figure 9: Rendering result of Marschner-Lobb.



Chapter 4

Fast High-Quality Refraction for
Volume Graphics

We present an efficient framework for the high-quality rendering of discretely
sampled surface-based objects with refractive effects. This requires an accurate
estimation of the refraction indices, paired with efficient and accurate surface de-
tection, space traversal, and backdrop image sampling. Our framework achieves
these goals, by employing a high-quality spline-based filter in conjunction with a
novel filtered octree space decomposition that is carefully matched to the filter char-
acteristics. Finally, we describe an innovative scheme that achieves the high quality
of pixel supersampling on a flat backdrop plane without the overhead of tracing the
actual rays across the refractive object.

4.1 Introduction

The rendering of refractive objects has fascinated researchers from the early
days of computer graphics [34] [75]. In that pioneering work, the objects were
either defined implicitly or described as a polygonal mesh or spline patches, and
this still is the representation of choice in current popular renderers, such as pov-
ray [29] and others. On the other hand, the modeling of refraction in discretely
sampled objects, as constituted by volumetric datasets, has been studied much later
by Rodgman and Chen [56] at great depth. In that work it became apparent that

38
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refraction in discrete datasets is extremely sensitive to: (i) the detection of the ex-
act location of the refractive interface, (ii) the amount of noise that may exist in
the volume dataset, and (iii) the interpolation filter used to estimate the density of
the materials on both sides of the refractive interface. Violating any of these con-
straints, but especially the first, will cause rays to stray from the correct path, where
a small angular error can cause a ray to terminate at a location on the backdrop (for
example, the popular checkerboard) vastly remote from the physically correct loca-
tion. These errors are amplified by the length of the distance the ray traverses past
the refraction location, until it hits the backdrop image. This is a prime reason why
the quality of the filter used for interpolation and gradient (refractive index) calcu-
lation is so important, and the previous chapter of this thesis has addressed these
filter aspects in detail. In that work, refraction was only used as a way to illustrate
our new insights into filter design, since its sensitivity to filter quality represents an
excellent means for a visual presentation of these quality issues. In this paper, we
will only summarize these insights in order to justify some of the choices we have
made.

In the work presented here, we focus on the computational aspects of refrac-
tion, in the context of volume visualization and volume graphics. More concretely,
we strive to present a framework that allows users to design refractive objects, in
a near-interactive manner and with a good estimation of the refractive effects. We
have found that once refractive objects are sufficiently complex in shape, or even
more so, if a few refractive objects are embedded into one another, it is very dif-
ficult to predict the visual effects that result from their illumination without actu-
ally looking at the real object or a computer simulation of it. In that respect, our
paper is somewhat related to a recent paper on the computer modeling of gem-
stones [25], which employed Heckbert’s beam-tracing [27] approach to manage the
rays refracted at the polygonal surface that modeled the many facets of the dia-
mond. In contrast, our paper does not target polygonally-meshed surfaces. Rather,
it considers objects as being represented as a set of sample points, arranged into a
three-dimensional regular grid.

This volumetric representation, when interpolated with a suitable filter, allows
the modeling of arbitrarily smooth objects, where the degree of smoothness is deter-
mined by the interpolation filter and the level of available detail is determined by the
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resolution of the grid. This, in fact, can be considered a strong point of a volumetric
object representation and the field of volume graphics as a whole, but it poses cer-
tain demands on the filters used for object reconstruction. Another key issue is the
rendering speed, as intersection calculations typically required for spline-based ob-
ject rendering are now replaced by grid interpolation calculations. In this paper, we
offer an elegant method based on a filtered octree to identify a refractive iso-surface
quickly, while employing high-quality interpolation filters. These two meathods
combined allow a near-interactive design of refractive objects with high-quality vi-
sual feedback. The structure of our paper is as follows. Section 2 addresses the
theoretical aspects of this work and outlines present problems. Section 3 describes
our actual implementation, and Section 4 and 5 present results and conclusions,
respectively.

4.2 Issues related to refraction visualization

Refraction describes the bending of a light ray as it passes across the bound-
ary of two media. Snell’s law is the most commonly used refraction equation to
represent the light’s bending:

nisin(θi) = nrsin(θr) (11)

where θi is the angle of incidence, θr is the angle of refraction, ni is the refrac-
tion index of the incident medium and nr is the refraction index of the refractive
medium (see Figure 10).

When applied in the context of volume graphics, refraction poses special chal-
lenges in the visualization of these discrete datasets, because it causes obvious alias-
ing artifacts in the presence of curved surfaces. In previous chapter, we analyzed
these problems in detail and we also discussed the theory of proper solutions in
depth. We shall now summarize these results briefly, in order to give a good idea of
the problems and their solutions.
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Figure 10: Snell’s law for refraction

4.2.1 Gradient estimation

Refraction poses especially high demands on the accuracy of gradient estima-
tion, since it relies on the estimation of gradients to decide the path of the refracted
rays. Besides, it magnifies any gradient estimation errors by sending the refracted
ray along the wrong path, which can potentially lead to more severe visual arti-
facts than when the normal vector is poorly estimated in illumination calculations.
Also, while the gradient is estimated by the density function in the volume, points
in the data set are discrete-valued, which may not be able to represent the contin-
uous density function strictly. Thus, even if an analytic function has been sampled
into the grid, storing the sample points in the datasets as truncated integers will re-
sult in rounding errors. Finally, real-world data sets, such as medical datasets, may
be noisy, which will also lead to artifacts in the gradient calculation. The refraction
process will accentuate any of these imperfections tremendously. Therefore, a good
gradient filter with just the right amount of smoothing and anti-aliasing is strongly
recommended for high-quality refraction.

In [40] we compared interpolation filters, such as the traditional cubic Catmull-
Rom (or cubic convolution, CC) filter, and found that non-interpolating filters tend
to give more freedom in filter design, since we do not need to put constraints onto
the basis function. The B-Spline family filters, a widely used non-interpolating
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basis function, estimate the function and its gradient much more accurately than
CC filters. Although the B-Spline requires a pre-filtering of the data first [71], this
is just a onetime procedure, whose outcome can be used repeatedly. For signals that
are corrupted by noise, an exact B-spline interpolation not necessarily results in the
most adequate continuous signal approximation. In this case, a more favorable
approach is to employ the smoothing B-spline in place of the regular B-spline [71]
[72]. Ideally, when the pass-band becomes closer to the sinc-rectangle, the image
will be less smooth, while when the stop-band decreases more sharply, the aliasing
will decrease. The smooth B-Spline with a free parameter, λ, is able to adjust the
degree of smoothing.

4.2.2 Super-sampling

Figure 11: Illustration of object-dependent backplane sampling.

Part of the aliasing stems from sampling the background texture at a rate lower
than the Nyquist frequency requirement. Figure 11 shows the effect of under-
sampling, when illuminating an irregular glass sphere filled with heterogenous ma-
terials passing through by refracted light rays. Here we observe, that at some area
in the background the rays bend at much larger angle than other places. This leads
to the background image being sampled below the Nyquist rate at these locations.
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One way to overcome this problem is to use super-sampling to increase this sam-
pling rate, that is, send more rays per image pixel. A common practice is to shoot a
matrix of rays per pixel, possibly with jitter, and then average the result. However, a
major downside of super-sampling is the excessive cost incurred by having to send
these many more rays across the object.

4.2.3 Refraction interface

An additional challenge comes from the need to determine where the refrac-
tion interfaces lie inside the discretely sampled datasets. We use iso-surfaces to
represent the refraction interface. Here, each interpolation filter will obviously give
rise to a (slightly, but crucial for refraction) different iso-surface shape, as smooth-
ness increases with higher-order filters. To locate the exact location of the iso-
surface for traditional low-order filters, such as central difference and trilinear, we
use the analytical methods described in [51]. For the higher-order filters, such as
cubic convolution and B-Spline, we use Brentś iterative root finding method [10]
since at these higher function orders no analytic root can be found. Brentś method
works efficiently for B-splines due to the nonnegativity property of the B-spline
basis function.

4.3 Acceleration methods

In order to get accurate and pleasing images, refraction is usually done with
raytracing, but along with this comes extensive computational cost. Although a
great deal of work has been done on the acceleration of raytracing for main stream
computer graphics, much less work has focused on accelerating the raytracing of
sampled objects interpolated with spline-based filters. Next we describe our contri-
butions in this regard.

4.3.1 DDA and octree

The 3D-DDA algorithm, such as Bresenhamś algorithm, is a very fast line
drawing algorithm. If we combine it with the previously mentioned root-finding
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methods, we can guarantee that no isosurface is missed. We use 3DDDA to step
from cell to cell, and when the potential for an iso-surface exists, we perform further
checks. This approach eliminates the need for high ray stepping rates (on the order
of 0.1 to 0.01) of [56] and therefore provides for faster rendering.

However, the speed can still be improved by spacedecomposition techniques,
such as an octree. The octree allows us to check and skip the space that does not
contain an isosurface quickly. The approaches for octree traversal fall into bottom-
up and top-down. Usually, bottom-up approaches start at and work entirely on
leaf nodes, while top-down approaches start from the root and work down towards
leaves. In order to identify large spaces with or without iso-surfaces as early as
possible, we choose the top-down approach.

4.3.2 Pre-computed cell-classification

One useful property of the Spline-based filters is that the basis functions are
always non-negative. This makes it possible to achieve acceleration by classifying
the voxel cells that may contain the iso-surface in a pre-process, either through a
gradient morphologic method [66] or, better, by a novel scheme that exploits the
monotonicdecay and non-negativity properties of the B-Spline filter. Both of these
methods are described next.

4.3.2.1 Binary morphologic cell-classification (BMCC)

In [66] a method using binary morphology in the preprocessing stage was pro-
posed for an acceleration that employs traditional binary dilation and erosion oper-
ators to filter out (tag) all cells that cannot contain the iso-surface. Here, a cell is
a 23 grid point neighborhood. This leads to a considerable reduction of cells that
have to be inspected for containing the isosurface at runtime.

The B-Spline of order n is a filter with an effective support of (n+1). There-
fore, in 3D for a specific sample point, only a neighborhood of (n+1)3 grid points
will affect it. We call these points the effective supporting neighbors (see Figure 12).

In the binary morphologic cell classification (BMCC) method, after the spline
coefficients have been computed (via pre-filtering), the iso-value is subtracted from
these coefficients and a binary coefficient representation is generated, setting 1 for
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a subtracted coefficient larger than zero and otherwise 0. Then the morphological
gradient (dilation subtracting erosion) is applied to the binary coefficients and only
those cells with effective supporting neighbors that have a mix of 0s and 1s in their
binary coefficients are flagged with 1. These are the cells that potentially contain
an isosurface since the local density field generated by their effective neighbors
may transition from 0 to 1, and vice versa. Effectively, dilation expands the out-
side boundary of the object, and erosion removes the inside volume. After dilation
subtracting erosion, a thick binary fringe that lines the iso-surface is left.

Although effective, the membership requirement of the binary morphological
method is too conservative, leaving the remaining fringe too wide. This is because
the method does not take into account the relative importance of neighboring points
as a function of distance (which maps directly to the weighting with the interpola-
tion filter), as well as their values, in the determination of their contribution to the
interpolated value at an arbitrary sampling point x. Every neighbor which can affect
the value of x has been given the same influence on x, which inflates the number
of iso-surface candidates, and in turn causes a unnecessary large number of false
alarms when searching for the iso-surface as a ray traverses the grid. Consider the
case in which all neighboring points have a value below the iso-value, except one
point that is relatively far away and of a value slightly greater than the iso-value. In
that case, it is almost certain that the interpolated value of this point will be below
the iso-value. However, the binary morphologic cell-classification just presented
will flag this cell as a possible isosurface cell and will prompt more expensive fur-
ther tests when encountered by a traversing ray. Next, we describe a new non-binary
scheme that is more sensitive to these issues.

4.3.2.2 Continuous cell-classification (CCC)

Determining the maximum and minimum possible value inside a cell is an
optimization problem for maximizing and minimizing the interpolating function:

f (x) =
∑

k

ckΦ(x− k),(i≤ x≤ i+1),k, i ∈ Zq (12)

Here, ck are the coefficients for each grid point while Φ(x) is the basis function.
For the quadratic and cubic B-spline, this optimization problem can be solved



46

as follows. First, we find the set of stationary points by solving the first partial
derivatives set to zero. Then for each such stationary point, we determine its eigen-
values by ways of the Hessian matrix which is based on the second partials. If the
eigenvalues of a stationary point are all positive, then the point is a local minimum
point, while if the eigenvalues are all negative, it is a local maximum. These max-
ima and minima points form critical points, and an interpolation at these will yield
the minimum-maximum value range of the cell.

However, this calculation is quite time-consuming. The method needs to solve
this optimization problem in each cell of a volume. Furthermore, due to the bound-
edness to the cell, there are several different special cases, which require additional
computations. The critical point may not fall into a cell, but may appear on faces,
edges or vertices, as shown in Figure 13. The optimization problem needs to be
solved for each of these. Finally, for a B-spline of order larger than 3, the high
order first and second partial derivatives are difficult or impossible to solve. We
therefore decided to employ an approximate method, as is described next.

4.3.2.3 Approximate CCC (ACCC)

In light of these arguments, we propose a novel method we call approximate
continuous cell-classification (ACCC). It is not as analytic as CCC, but it consider-
ably tightens the iso-surface candidate requirement of BMCC, taking into account
both the grid point values and the underlying B-Spline interpolation filter, but avoid-
ing the excessive computational cost of CCC.

Figure 14 sketches the idea in 1D. For any point between grid point i and i+1,
its value is always within the range Sum(MINj) and Sum(MAXj), where MAXj
and MINj are the maximum and minimum values, respectively, of the voxel-scaled
bases functions on grid point i and i+1, with kernel j traversing across grid cell (i,
i+1). To accomplish the cell-tag volume, one can simply splat each voxel into a cell
grid, weighted by its value and the basis function values at the cell boundaries (to
contribute to the MIN and MAX sums, as further explained in the caption). The
aggregation of all such splats will then determine if the cell is likely to participate
in the iso-surface or not. It will if the value range (called the approximate range)
contains the iso-value (or crosses zero if this process follows the subtraction mech-
anism mentioned in Section 4.2.1).
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Figure 12: All colored cells contain effective supporting neighbor points for the sample
point shown, here for a B-Spline of order 2. The darker the color is, the larger the support.

(a) inside a cell (b) on a face (c) on an edge (d) on a vertex

Figure 13: Cases for critical point with maximum or minimum value in a cell.
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(a) Both grid points are positive

(b) One grid point is negative

Figure 14: Sketch of the ACCC method.
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Figure 15 illustrate ACCC method with two kernels. The kernel for any sample
point between grid point 3 and 4 is within the narrow band of the kernels on grid
point of 3 and 4. More formally, when the absolute distance between a grid point
and an arbitrary sample point x is within i and (i+1)(i ∈ Z, i > 0), the interpolated
value at x is:

f (x) =
∑

k

ckΦ(x− k) = fiso +
∑

k

(ck− fiso)Φ(x− k) (13)

where fiso is the iso-value, φ is the (monotonically decreasing, non-negative) kernel
function, and k ∈ Zq.

Figure 15: Illustration of the ACCC method with two grid point kernels.

Now consider x to be located between i and i+1. Then we know that the upper
bound of the interpolation value that x can take is given by:

Max( f (x)) = fiso +Max(
∑

k

(ck− fiso)Φ(x− k))

= fiso +
∑

k

(ck− fiso)





MaxΦ(x− k), i f (ck− fiso)≥ 0

MinΦ(x− k), i f (ck− fiso) < 0

(14)

where

MaxΦ(x− k) = Φ(i), where(i≤ |x− k|< i+1),

MinΦ(x− k) = Φ(i+1), where(i≤ |x− k|< i+1),k, i ∈ Zq
(15)
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Likewise, the lower bound of the interpolation value for x is given by:

Min( f (x)) = fiso +Min(
∑

k

(ck− fiso)Φ(x− k))

= fiso +
∑

k

(ck− fiso)





MinΦ(x− k), i f (ck− fiso)≥ 0

MaxΦ(x− k), i f (ck− fiso) < 0

(16)

Therefore, by computing the lower and upper bound of the interpolation value
that x, located between discrete point i and i + 1, can take, we can give a good
estimate whether the region between i and i+1 contains the iso-value or not.

This logic can be easily extended to 3-D interpolation, taking advantage of the
fact that the interpolating function is separable:

f (x) =
∑

i, j,k

ci, j,kΦ(x− i)Φ(x− j)Φ(x− k)

=
∑

i, j,k

(ci, j,k− fiso)Φ(x− i)Φ(x− j)Φ(x− k)+ fiso
(17)

Therefore the upper bound for the interpolation value of an arbitrary point x
location, located in the cell (i, j,k)− (i+1, j +1,k +1), is given by in equation 18
below. The lower bound can be derived similarly.

Max( f (x)) = fiso +Max(
∑

i, j,k

(ci jk− fiso)Φ(x− i)Φ(x− j)Φ(x− k))

= fiso +
∑

i, j,k

(ci jk− fiso)





MaxΦ(x− i)MaxΦ(x− j)MaxΦ(x− k), i f (ci jk− fiso ≥ 0)

MinΦ(x− i)MinΦ(x− j)MinΦ(x− k), i f (ci jk− fiso < 0)
(18)

4.3.2.4 Discussion

In [66], Thevenaz and Unser proposed a voxel pruning scheme to improve
their binary morphologic method and reduce the number of voxels that are flagged
as possibly containing the iso-surface. For this, they use the multiresolution space
embedding property of splines. They revisit each relevant voxel and compute finer
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level results. However, the relevant coefficient numbers can grow extremely large
and each finer level results in a doubling of the number of coefficients along each
dimension, which grows very quickly as the finer level depth increases.

Comparing ours to this voxel pruning method, we note that the cost of our
method is very small. One positive aspect of our ACCC method is that we only
consider the coefficients and weights of the filter at the integral grid points of the
dataset. This leads to at least two advantages: First, we do not need to increase the
number of coefficients – our calculations are only based on the original coefficients.
Second, we do not require a calculation of the spline filter values at each grid point.
Since we only need (n + 1) integer point weights for a spline of order n in one
dimension, we can implemented this as a small lookup table of size (n+1). In cubic
splines, for which each voxel that was flagged as 1 in the binary gradient process,
we only need to perform four multiplies and four additions in one dimension.

ACCC tightens the range of cells which possibly contain the iso-surface. For
example, in a smooth sphere of size of 64x64x64, after the tagging step the number
of cells that are assigned an iso-surface membership is reduced by around 35% for
the B-Spline 2 (quadratic BSpline), by 60% for the B-Spline 3 (cubic B-Spline) and
by 70% for the B-Spline 6 (B-Spline of order 6).

We may make the value range of cells even tighter by dividing one cell into
several sub-cells, employing the ACCC method to each sub-cells separately. We
would then obtain a tighter value range within each sub-cell due to the smaller
weight range for filter, and combine the value range of the whole cell from those
sub-cells. The subdivision depth could be controlled by the local variation of the
density field for better efficiency. Similar to the voxel pruning scheme of [66],
this progressive refinement strategy would trade computational efficiency for higher
accuracy.

4.3.3 Post-refraction super-sampling

Traditional super-sampling has the disadvantage of requiring an excessive
amount of time, although it provides good rendering quality. Here, we propose a
new method, named post-refraction super-sampling (PRSS), to save the largest part
of the computational cost for the ray tracing while retaining the quality benefits of
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super sampling. Our method does not need to trace more rays, and it only performs
the super-sampling on the background texture. We should note at this point that our
method assumes a planar background texture, and it also assumes that there are no
textured objects with extensive shading effects along the ray path. With the current
framework, it could be extended to handle non-planar background objects, by ways
of a warping procedure. We find, however, that for testing the refractive proper-
ties of an object, a flat background object is in fact most useful since then the only
distortion comes from the object under evaluation.

Figure 16: Post-refraction super-sampling

Our PRSS method makes use of the space coherence of a matrix of neighbor-
ing rays. Once we obtain each rays position on the background plane, we know
the shape of this refracted ray matrix and the super-sampling can be done based on
the known ray matrix arrangement. Figure 16 explains the individual steps of our
postrefraction supersampling. The algorithm keeps a record of each pixel’s back-
ground position in an intermediate image A, which is of the same size than the
original image. Then for each point p, we take the closest 8 points in this image
A, get their positions, which we then conceptually map to the background image.
Here, the number of 8 can be increased if a higher sampling rate is needed. The re-
sulting pattern (the distorted background image in Figure 16) tells us the structure
of the refraction-distorted local image pixel grid, which is what we really like to
know. Based on this pattern, we sample A and take the intermediate points between
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the 8 neighbors and the center point p. Then we do a low-pass filtering along the
center point and the intermediate points. The result yields the supersampled den-
sity for the center point p. The advantage of this algorithm is that by tracking the
ray’s background position, we know the shape of a group of neighboring points,
which gives us an imprint on to what degree the refraction has distorted the original
background image for display, without the cost of the actual supersampling.

The use of post-refraction supersampling in place of the real supersampling
improves performance noticeably, especially for larger or complicated datasets with
multiple isosurfaces.

4.4 Experiments

This section presents results we have obtained with the methods just described.
All results were generated on a Pentium(R) processor running at 1.5GHz with
768MB of RAM. We did not use the GPU other than for display.

4.4.1 Effects of gradient filters and supersampling

The assessment of different gradient filters and sampling rate for the task of
refraction was first performed using a simple transparent smooth sphere (constant-
valued sphere with a Gaussian fringe, of size of 643) with the background set to a
checkerboard.

Figure 17 shows the sphere refraction images, comparing the smooth B-spline
3 with the traditional Catmull-Rom cubic convolution filter using three different
sampling methods: without supersampling, traditional supersampling, and our post-
refraction supersampling. We observe that the smooth B-Spline 3 achieves much
clearer pictures of the distorted background than the traditional Catmull- Rom cubic
convolution, while both have nearly the same run time (See Table 1). The better
image quality comes from the smoothing capability of the B-Spline, which removes
much of the noise caused by integer rounding and also reduces the corresponding
aliases.

The same figure compares the volume rendering results of our post-refraction
super-sampling (PRSS) with those obtained with traditional super-sampling (real
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Cubic convolution B-Spline 3, with λ=1

(a) Without using supersampling.

(b) Traditional super-sampling.

(c) Post refraction super-sampling.

Figure 17: Refracted smooth sphere comparing Catmull-Rom Cubic and B-spline 3 with
smooth λ=1 in three different categories.
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SS) and without super-sampling. We observe that without supersampling some jag-
gies along the edges of the distorted checkerboard remain, especially in the spheres
periphery. On the other hand, PRSS preserves the quality of the traditional method,
but requires much less time and space. We find that the speedup factor of PRSS is
nearly equal the degree of super-sampling.

The rendering experiments reported in Figure 17 and Table 1 were performed
with raytracing at a small stepsize of 0.1 (to make sure that no silhouette iso-surface
point is missed). These experiments indicate that PRSS incurs a time penalty of less
than 2% compared to a rendering without supersampling, while traditional super-
sampling incurs a time penalty of over 300% compared to nonsupersampled ren-
dering (see Table 1). More dramatic speed-ups can be expected for larger datasets.
We should note, however, that the method is only an approximation and may not
be stable enough for sharply changing refraction patterns in a small local neighbor-
hood on the object. However, we have found that it has worked surprisingly well
for the objects we have rendered (see below).

4.4.2 Acceleration methods

Based on the initial version of our ray tracer with PRSS and the gradient filter
as B-spline 3, we applied several acceleration methods, BMCC, ACCC, DDA, and
octree.

The ACCC method gives much more accurate information and decreases the
number of isosurface-containing voxel candidates to around half for spline 3. This
helps in the octree-guided ray acceleration to quickly detect the cells containing the
iso-surface. Table 2 compares the time required for ray casting (with stepsize 0.1) to
DDA and our octree methods with two cell-classification method respectively, BCC

Method Without SS Real SS PR SS
C.C. 7.63 28.02 7.72
B-Spline 3 6.65 26.83 6.71

Table 1: Time (in secs) required to produce the images of Figure 17, rendered with raytrac-
ing at a stepsize of 0.1.
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and ACCC, using PRSS and B-spline 3, as well as Brent method to compute the
isosurface penetration exactly. On average, DDA increases the speed dramatically
compared to stepped raycasting by a factor of around 7, while the octree improves
matters by another factor of 3, compared to DDA. As for the cell-classification
methods, ACCC saves 50% of the time-cost of BMCC. Further data for the success
of the ACCC method (over BMCC) is given in Table 3. There, we can see that the
higher order the filter, the more savings can be obtained (as mentioned before in
Section 4.2.4).

We describe the acceleration of DDA and octree for different filters in Table 4.
On average, the octree saves about 76% of the time. One interesting point is that
all BSplines, even B-Spline 6, run much faster than the cubic convolution filter.
This is because the latter cannot take advantage of the acceleration via our cell
classification scheme since its basis function has a negative lobe, which violates the
condition for this acceleration. The linear filter leads in the octree acceleration, but
is closely followed by the much more accurate B-Spline filters.

4.4.3 Images obtained with refracting objects

Using the artificial smooth sphere produced from the Gaussian function, we
shall now have a look at the scenario of refraction at multiple interfaces. For this,
instead of just one layer of Gaussian fringe, we added one or two smooth holes
into the original sphere (see Figure 18 and Figure 19). The resulting images also
illustrate the complexity that can result once there are chains of refractive surfaces.

Raycast BMCC ACCC
step=0.1 DDA Octree DDA Octree

Sphere 6.65 0.84 0.29 0.69 0.15
CT-head 40.7 8.89 3.30 4.57 1.11
Lobster 83.86 14.62 6.81 8.25 2.39
Teapot 287.43 41.61 17.71 12.16 2.42

Table 2: Times (in seconds) for the acceleration of raycast with. DDA vs. Octree and
BMCC vs. ACCC.
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A ball with no air holes A ball with one air hole

A ball with two air holes A ball with different backdrops

Figure 18: Various volume graphics renderings of refractive glass balls.
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Figure 19: Multiple layers of refraction in a sphere.

For example, in Figure 19 (b) and (c), the small spheres are originally in opposite
positions inside the big sphere, while the refraction image places them both in the
lowerleft part of the image plane. In fact, this is reasonable since the two inner
spheres are both on the route of the same input rays, considering the fact that rays
are crossing inside the sphere in the diagonal direction. The difference between the
inner and outer refraction layers of (b) and (c) causes different curve directions of
the distorted checkerboard.

Finally, Figure 20 represents the refraction results obtained with a volumetric
teapot, while Figure 21 shows a refraction image for the CT-Head. In these two
cases of medical volumes, the smoothed B-Spline illustrates the clearest shape of
the background, while best suppressing the noise. More refraction images are pre-
sented in Figure 22, now using a photograph as the background image to act as an

Data Size B-Spline 2 B-Spline 3
Sphere 64x64x64 67.1% 37.5%
CT-head 128x128x128 75.2% 52.3%
Lobster 320x320x34 62.3% 60.6%
Teapot 256x256x178 77.1% 51.4%

Table 3: Ratio of grid cells tagged to possibly containing the isosurface with the ACCC vs.
BMCC method.
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Rendered Result Cubic Convolution

B-Spline 2 without prefiltering Smooth B-Spline 3, λ=1

Figure 20: Refracted results of teapot.
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imposter for a real scene.

Rendered Result Cubic Convolution

Figure 21: Refracted results of CT-head.

4.5 Conclusions

Obtaining high-quality refraction effects at reasonable rendering speeds has
been so far a challenging task for volume graphics applications. In this paper, we
have introduced a variety of methods that allow high-quality interpolation mech-
anisms to be used without incurring the speed penalties that usually come with
these. For this, we have described a novel octree-based ray acceleration method
which specifically takes advantage of the nonnegativity property of B-spline ker-
nels. These in turn produce results superior to the ones obtained with the more

DDA Octree Save
Linear C.C. B-Spline 2 B-Spline 3 B-Spline 6 Linear C.C. B-Spline 2 B-Spline 3 B-Spline 6

Sphere 0.93 1.79 0.67 0.69 0.89 0.09 0.42 0.14 0.15 0.34 75.2%
CT-head 5.98 7.50 3.66 4.57 10.34 0.56 2.69 1.00 1.11 1.91 76.9%
Lobster 7.44 12.46 6.33 8.25 29.10 1.48 6.49 2.32 2.39 4.07 69.7%
Teapot 30.26 34.92 8.23 12.16 21.99 1.96 5.91 2.22 2.42 3.99 82.2%

Table 4: Times (in seconds) for the acceleration with DDA and octree for different filters.
On average, the octree saves about 76% time for DDA.
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Teapot

Smooth sphere

Lobster

Figure 22: Refracted image results of teapot, smooth sphere, and lobster using a Smooth-
B-Spline 3.
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popular Catmull-Rom spline (which also does have this property). Our ACCC ap-
proach for cell classification computes a cell mask that tightly fringes the refracting
iso-surface, and consequently requires the testing of much fewer grid cells for iso-
surface membership in the raycasting than previous strategies. Further, we have
described a heuristic, yet effective method that defers supersampling to a post-
rendering process, achieving results of very similar rendering quality than tradi-
tional supersampling, for a good variety of volume graphics objects.

As future work, we seek to further explore the power of volume graphics rep-
resentations to approximate continuous objects at high quality, using the B-spline
filters studied in this paper. In particular, we would like to compare the directly
interpolated results obtained with volume graphics methods with those generated
when rendering an intermediate triangulation of the discrete object, both in terms
of image quality and rendering speed.

Finally, we also believe that by porting our methods to GPUs truly interactive
speeds can be reached, and this is also subject to future research.



Chapter 5

Geometry Field

Geometry Field is a new method for real-time reflection and refraction using
ray tracing. It combines light fields with geometry images. A geometry field ef-
fectively represents all possible ray/object intersections with geometry information,
such as position, normal, material and texture coordinates, such that straightforward
table look-ups replace time-consuming intersection calculations. The method is ef-
ficient, general, and easily implemented on the GPU. Our system contains multi-
reflection, self-reflection and refraction. The power of this method is demonstrated
by our experiments on real time reflection rendering for complex scenes using a
standard GPU.

5.1 Introduction

Light reflection on mirror objects has always been of great interest in the com-
puter graphics community. Currently developed algorithms can achieve magnificent
rendering results for various kinds of materials and environments. Nevertheless,
handling reflection in real time with pleasing quality remains a challenge. Further-
more photo-realistic global illumination is still very difficult if not impossible in real
time due to its extraordinary complex global computational process. The specific
difficulty of gaining speed in high accuracy rendering originates from the global and
nonlinear computational process, such as intersection testing and visibility testing,
both of which are not suitable for graphics hardware.

63
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(a) Original surface in R3 (b) Texture parameter domain (u,v)

(c) Geometry image r(u,v) (d) Normal map n(u,v)

Figure 23: Geometry Field.
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Ray tracing is a well known and widely used algorithm for achieving accurate
images. However, it suffers from slow speeds since the algorithm is not suitable for
graphics hardware. Environment mapping is an alternative approach that provides
fast reflection of the surroundings. However, an implicit assumption in environ-
ment mapping is that all the scene elements are located infinitely far away from the
reflecting surface. When environment objects are relatively close to the reflectors,
the result of environment mapping becomes inaccurate.

Inspired by the concepts of light fields and geometry images, we have de-
veloped the novel concept of geometry fields, which converts intersection testing
to table lookup. Hence, the rapidly increasing computational power of graphics
hardware can be fully utilized. Without using any carefully designed, sophisticated
data structures and optimizations, our simple concept-proval algorithm has demon-
strated the capbility of real time rendering of inter-reflections.

A light field is one of the central concepts in image based rendering. Suppose
S is a surface in the Euclidean space R3. Any incident ray γ will intersect S at
several points, assume the closest one to the view point is p ∈ S. Suppose the local
color at p is cp. A light field is a map L : γ→ cp from the incident ray to the color at
the first intersection point. Light fields of general meshes can be constructed easily
using conventional ray-tracing.

A geometry image represents a surface with an image. The color c = (r,g,b)
at a pixel with texture coordinates (u,v) represents the position vector of the surface
r(u,v) = (x(u,v),y(u,v),z(u,v)). Similarly, a normal map represents the normals
of a surface by an image and the color c(u,v) represents the normal n(u,v). General
meshes can be converted to geometry images using parameterization methods.

A geometry field of a surface S is a map similar to a light field, where the inputs
are incident rays, but the output is the texture coordinates of the first intersection
point. Suppose S is represented as a geometry image r(u,v), a ray γ is in R3 inter-
sects S. The first intersection point p is r(up,vp). Then the map G : γ → (up,vp)
is called a geometry field of surface S. From (up,vp), the position and the normal
of p can be obtained from the geometry image and the normal map. In general a
geometry field is 4 dimensional. Only texture coordinates are stored in each entry.
Therefore the size of a geometry field is manageable for current hardware. Figure
23 illustrates the concept of geometry field. A ray γ in R3 intersects a surface S̃ at a
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point p on S̃ as shown in (a). C̃ is the bounding box of the surface, s and t are the
intersection points of γ with C̃. p has a unique texture coordinates (u,v) as shown
in (b). The position of p and the normal at p can be obtained from the geometry
image (c) and (d), using the texture coordinates (u,v). A geometry field of a surface
S̃ is map, the input is a ray γ in R3, the output is the texture coordinates (u,v) of the
intersection point p between γ and S̃.

A surface and its geometry field are equivalent in the sense that the surface can
be reconstructed from its geometry field, and the geometry field can be computed
from the surface. By using a geometry field, real time ray tracing becomes a reality,
because conventional expensive intersection testings are replaced by trivial table
lookup operations. Our method makes contribution to conventional ray tracing with
the combination of the advantage of rich precomputed information of light field and
the regularity of geometry image.

Geometry field representation has several advantages. First, it effectively re-
duces the memory cost. The storage requirement will be extremely high, if the
position, normal and color material information are stored for each entry. Instead,
only the texture coordinates are stored, such that the size of a geometry field is
within the memory capacity of current hardware. Second, due to the regular struc-
ture of a geometry field, it can be represented as a generalized texture. The whole
rendering algorithm can be implemented in common graphics hardware. The time
cost is independent of the geometric complexity of the scene, but dependent of the
size of the geometry field.

Most real-time reflection methods make assumptions of the geometries of the
relfectors or their relations with the scence, in contrast, geometry field handles ar-
bitrary surfaces and the scences without any assumption. Furthermore, it offers ray
surface intersections much more accurate than other algorithms. In experiments,
we constructed geometry fields for complicated surfaces, such as Michelangelo’s
David head model with 100K faces. The inter reflections are computed using the
GPU at frame rates as high as 60 FPS. The method can also be generalized for
self-reflection and refraction also. To the best of our knowledge, our method is the
first non-approximate method to achieve real time inter-reflection for surfaces with
complex geometries and motions on general graphics hardware.

In the following section 2, we first provide detailed algorithms for constructing
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geometry fields. Section 3 then shows how our system is implemented based on the
recent advances of graphics hardware. After presenting and discussing our results
in Section 4, we conclude and describe future research in Section 5.

5.2 Geometry Field

Although traditional ray tracing has the capability to achieve convincingly
good quality, it suffers from lack of speed. A great deal of current researches have
been targeted at improving its speed.

The common methods usually fall into several categories:

1. Improve the efficiency of all intersection tests.

2. Exploit temporal and spacial coherence.

3. Make use of high parallelism.

Our method adapts the same philosophy. The geometry field pushes all intersection
tests into precomputation time and maximally reduces cost of intersection testing
by table lookup at run time. The regularity of geometry images leads to large spa-
tial coherence. The implementation on the latest programmable graphics hardware
achieves the high parallelism.

This section explains the algorithms for constructing geometry fields from gen-
eral meshes in detail. GPU implementation will be elaborated in the next section.

5.2.1 Construct Geometry Image

In our framework, all surfaces are represented as geometry images. First, tri-
angular meshes are parameterized to a planar rectangle, then uniformly sampled on
the planar domain to form a 2D array.

During the parameterization, distortions are unavoidably introduced. Geomet-
ric details will be lost if the parameterization schedule is not appropriate. In order
to control the parameterization quality and determine the sample rate, we adapt the
method of conformal parameterization.

Conformal parameterization preserves angles, and only area distortions are
introduced. We determine the sample rate using the following algorithm.
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1. Normalize the input mesh to be inside the unit cube.

2. Conformally parameterize the triangle mesh to a planar rectangle, using al-
gorithms described in [23] and [24].

3. Super sample the original mesh on the planar domain to form a high resolu-
tion geometry image GF0.

4. Subsample GF0, and measure the geometric error using the algorithm in [23].

5. Repeat step 4, until the error exceeds the prescribed threshold.

6. Generate the normal map from the resultant.

Figure 23 demonstrates the geometry image of the David head surface, it is
clear that all the geometric details and subtleties, such as the curly hair, are well
preserved. Comparing the normal map on the texture domain, it is obvious that the
geometry image is angle distortion free.

5.2.2 Construct Geometry Field

In general, a ray γ in R3 can be specified by the starting point and the ray
direction, which is a unit vector, therefore the total ray space is 5 dimensional.
Considering the limit of GPU texture memory, we represent a ray with (in, out) two
points. Hence, the geometry field is a 4 dimensional subspace.

1. Outer-geometry-field
To perform inter reflecting, we build a outer-geometry-field, which stands for
the reflected ray directions using (in, out) on a unit bounding cube of the
object. By default, we call outer-geometry-field as geometry field due to its
broad usage. First, we construct a bounding box of the geometry image, then
compute the intersection points of those rays that intersect the bounding box.
Each such ray has two intersection points with the box, the entrance s and the
exit t. We parameterize those rays using the point pair (s, t). We compute the
intersection point of the ray with the geometry image closest to s and record
the texture coordinates of the intersection point.

2. Inner-geometry-field
To perform intra reflecting and refraction, we need a new geometry field,
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which records the intersection point on the surface of outgoing ray directions
either by reflection or refraction, using two intersects (in, out) on the object
surface. First, we compute the intersection points of those rays that intersect
the object surface. Each such ray has two intersection points with the surface,
the entrance s and the first-meet intersect t. We parameterize those rays using
the point pair (s, t). Since we compute the intersection point of the ray with
the inner-geometry-field closest to s and record the texture coordinates of
the intersection point, rays can be traced with multiple intra-reflection by
repeated lookup in the inner-geometry-field.

In order to speed up the intersection calculation, we use the octree structure to
subdivide the cube. All the computations are carried out in the local coordinates of
the geometry image. The result is a 4D lookup table and the internal representation
on the GPU is described in the next implementation section.

5.3 Rendering

The geometry fields and geometry images are generated offline in software.
The run time rendering algorithms are implemented on NVidia’s GeForce Quadro
FX 4500 graphics card.

5.3.1 Data Structures

Each geometric object Oi is represented as a geometry field GFi and a ge-
ometry image GIi, which incorporates the position, normal, material and texture
information.

Furthermore, each geometric object is normalized in the unit cube of bounding
box. Points on the 6 surfaces of unit cube are sampled and enumerated in 1D. So,
the 4D geometry field is stored as a 2D texture, with (i, j) representing the indices
for the in and out points on the unit cube.

In our implementation, all the data structures are loaded in the texture memory.
Specifically, each normal map, position map in the geometry image are stored as
two textures, and each geometry field as a single 2D texture.
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One geometric object may have multiple instantiations, where different in-
stances share the same data structures. Each instance has its own local frame and
transformation matrices which transforms between the local frame and the world
frame.

5.3.2 Algorithm Pipeline

Non-reflective or refractive surfaces are simply rendered using conventional
OpenGL fixed pipeline functionalities. Reflective or refractive surfaces are raster-
ized with our geometry field based vertex shader and fragment shader. The vertex
shader is conventional. Our fragment shader is capable of computing inter reflection
accurately.

inter-reflection algorithm is as follows:

1. Calculate the eye ray in world coordinates.

2. Calculate the reflection ray γ in world coordinates.

3. Calculate the local shading c of the reflector surface.

4. Trace ray γ in outer-geometry-field to get reflected color cr, blend it with the
local shading c.

intra-reflection algorithm is as follows, which only differs from inter-reflection
with Trace ray:

1. Calculate the eye ray in world coordinates.

2. Calculate the reflection ray γ in world coordinates.

3. Calculate the local shading c of the reflector surface.

4. Trace ray γ in inner-geometry-field to get inner reflected color cri.

5. Trace ray γ in outer-geometry-field to get reflected color cr

6. Blend cr, cri with the local shading c.

refraction algorithm is as follows,

1. Calculate the eye ray in world coordinates.

2. Calculate the refracted ray γ in world coordinates.

3. Calculate the local shading c of the reflector surface.

4. Trace ray γ in inner-geometry-field to get the first refraction position cpi.
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5. Trace ray γ in inner-geometry-field to get the second refractive ray direction
cpi2 and get the color for refracted image cr.

6. Blend cr with the local shading c.

The algorithm for tracing a ray is as follows,
Color TraceRay( Ray γ, ObjectId i, int depth)

1. For each object O j, i 6= j in the scene,

1. Transform the incoming ray starting point and the ray direction from the
world coordinates to the local frame of O j.

2. Check if the ray hits the bounding box of O j (the unit cube).
3. If the ray hits the box at points s and t, convert s and t to the indices of

the geometry field GFj.
4. Lookup the geometry field GFj to obtain the texture coordinates (u j,v j)

of the intersection point.
5. If (u j,v j) is valid, lookup the position from the geometry image GFj,

compute the depth d j. Otherwise, set d j = ∞.

6. Choose the nearest (uk,vk),k = min j{d j}. If (uk,vk) is valid, look for the po-
sition, color, normal of the intersection point from GIk, compute the shading
and blend it to the local color c, compute the next level reflected ray γr.

7. If the recursion depth exceeds the limit, return c else call TraceRay( γr, k,
depth+1 ) to get the reflected color c′r.

8. Blend c and cr. Return the blended color.

In current graphics hardware, recursive functions are expended by the Cg com-
piler, the recursion depth is limited by the upper bound of fragment program length.
In our implementation, the recursion depth is 2.

5.3.3 Packing Geometry Field

Each ray γ intersecting the unit cube can be represented by the two intersection
points, denoted as s and t, where s is the entrance, t is the exit.

The points on the unit cube are sampled and arranged as a two-dimensional
array. Figure 24 illustrates our method for indexing the samples on the cube. Sup-
pose the sample rate is n along each dimension, the 6-face is ordered and rearranged
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Figure 24: The points on the unit cube are sampled and arranged as a two-dimensional
array.

to form a big rectangle of size 6n× n. Suppose the entrance point s is on face
k ∈ {0,1, · · · ,5}, the coordinates of s on the face is (x,y), then the indices (x0,x1)
of s are calculated as (x+ kn,y).

Similarly, we calculate the indices for the exit point e, denoted as (x2,x3).
Then we use (x0,x1,x2,x3) as the indices of the ray to lookup the geometry field.

In our implementation, the geometry field is represented as a 2D texture. Ray
coordinates (x0,x1,x2,x3) are converted to the texture indices (6nx1 +x0,6nx3 +x2).

5.3.4 Lookup in Geometry Field

In current hardware, the largest 2D texture size is 4K×4K, and the total sample
points on the bounding box should be no more than 4K. Assume the sample rate
along each dimension is n, then the total samples 6n2 should be no more than 4K.
The upper bound of the size along each dimension is 24.

The rays are sparsely sampled, motivating us to develop a 4 dimensional in-
terpolation scheme to remove artifacts. With speed in mind, we adapt simple con-
volution kernels (currently linear) for interpolation. Given a ray in the ray space
with coordinates (x0,x1,x2,x3), we define x0

i = f loor(xi) and x1
i = ceil(xi) and the

weights w0
i = x1

i −xi, w1
i = xi−x0

i , then the interpolation of a function f defined on
the ray space is defined as
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1∑
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In our implementation, function f is the (u,v) texture coordinates. Figure 25
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(a) Nearest neighbor sampling (b) 4D linear interpolation

Figure 25: Comparision between the rendering results using nearest neighbor and 4D linear
interpolation to perform lookup in the geometry field.

demonstrates the rendering quality difference between different lookup methods
using nearest neighbor and linear interpolation schemes.

5.4 Experimental Results

This section demonstrates the experimental results for our real time inter re-
flection algorithm based on geometry fields.

5.4.1 Preprocessing

In our experiments, we tested our algorithms on several triangular meshes. The
geometric complexity is from several thousand faces to tens of thousands of faces.
The complexity information and the performance of our algorithms are detailed in
Table 5. The experiments are applied on the Windows platform with a 3.6GHz CPU
and 3G RAM. All geometry fields are of size of (24×24×6).



74

Figure 26: Real time rendering results. User can interactively manipulate the camer po-
sition, the relative spactial relations among the geometric objects in the scene. The inter
reflections are rendered in real time.
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5.4.2 Real Time Rendering

Figure 26 demonstrates our real time rendering inter reflection results.
In the first row, there is a reflective sphere and two instances of the David head

surface. The background is rendered using a environment map.
The view point, the relative positions of the David head surfaces and the mirror

ball are changed interactively by user inputs. The mirror images of the David head
on the mirror ball retain all geometric details. The distortions of the mirror images
are calculated accurately without any approximation. The frame rate varies from
50 to 60 frames per second.

In the second row, the scenary is replaced by a more complicated torus surface.
The camera is moved close to the torus, so the mirror images of the David head
surfaces can be examined in detail. The complex geometric features of the hair
in the mirror are rendered with high fidelity. Although the reflector surface itself
contains more complicated geometry, the frame rate is still kept at the same level.
This demonstrates the fact that the cost for table lookup of the geometry fields is
determined by the size of the geometry fields, and is independent of the geometric
complexity of the surface.

Inter-surface reflections between two mirror balls are illustrated in the third
rows of the Figure 26. From the snapshots, the mirror image of the red sphere is
shown on the blue sphere. In the center area of the mirror image, the mirror image
of the blue ball on the red ball is also recognizable. This demonstrates the second
level inter reflection. Although the ray tracing depth is increased, the frame rate is
still around 60 FPS.

Table 5: Performance (in sec) of our preprocessing algorithm.

Surface Triangular Parame- Geom. Geom.
Faces terization Image Field

Sphere 1,922 15 0.8 420
Torus 7,938 34 2.2 420
Female Face 50,000 130 9.5 432
Male Face 80,072 200 16 504
David Head 101,144 250 20 672
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The last row demonstrates the inter reflection between the sphere and the David
head surface. The geometric complexity of the David head surface doesn’t affect
the performance.

Figure 27 shows our real time rendering results for refraction and intra reflec-
tion results.

The first row shows a single refraction result with a sphere on the background
of the Nvidia lobby and a transparent kitten floating in a yard with green trees in the
background. In the second row, full refraction rendering results are illustrated. With
full refraction on both surfaces of the sphere, visual image result shows background
upside down. The frame rate for refraction is about 50 FPS.

In the third row, self-reflection rendering results are shown. In order to
closely watch the subtle difference made by self-reflection, we show only the intra-
reflection result of a kitten and a sphere in the left image. Obviously, the kitten
has self reflection between its head and back, while the convex sphere has no intra-
reflection. In the right image, it demonstrates the rendering results combining with
the intra and inter object reflection. The frame rates keeps above 50 FPS.

The experimental results convince us that the real time rendering method based
on the geometry field is capable of simulating inter-surface reflection, refraction and
intra-surface reflection.

5.5 Conclusions

In this chapter a novel framework for real-time inter reflection by ray tracing
based on the geometry field was proposed. A geometry field is a combination of a
light field with a geometry image, and represents the intersection point of a surface
with an arbitrary ray as a 4D lookup table.

Conventional intersection testing in ray tracing is replaced by a look-up in a
geometry field, such that real time inter-surface reflection is achieved on current
graphics hardware. The method is efficient, accurate and simple. Experiments
have shown the high quality of reflection results and fast rendering speed in several
examples.

Applications of geometry fields include refraction, reflection between objects
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Figure 27: Real time refraction and self-reflection rendering results. Upper two rows show
the refracted image. Lower row represents the self-reflecting images.
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and self-reflection. We have implemented a full-featured ray-tracing based on ge-
ometry fields in real time. Geometry fields also have great potential to improve the
efficiency for other sophisticated global illumination methods to real time.



Chapter 6

Breast Ultrasound CT Refraction
Correction

A significant obstacle in the advancement of Ultrasound Computed Tomogra-
phy has been the lack of efficient and precise methods for the tracing of the bent
rays that result from the interaction of sound with refractive media. In this chap-
ter, we propose the use of the Fast Marching Method (FMM) to solve the Eikonal
equation which governs the propagation of sound waves. The FMM enables us
to determine with great accuracy and ease the distorted paths that the sound rays
take from an emitter to the receivers. We show that knowledge of the accurate path
proves crucial for an object reconstruction at high fidelity and accurate geometry.
We employ a two-phase approach with an iterative method, SART, to faithfully
reconstruct two tissue properties relevant in clinical diagnosis, such as mammogra-
phy: speed of sound and sound attenuation. We demonstrate our results by ways of
a newly designed analytical ultrasound breast phantom.

6.1 Introduction

Ultrasound computed tomography (UCT) has a long history and particular
promise in the imaging of the breast. However, the reconstruction of these im-
ages poses significant challenges. UCT is susceptible to refraction effects, making
it difficult to reconstruct images faithfully. The acoustic ray direction is bent when

79
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ultrasound passes from one medium to another medium with a change in the acous-
tic index of refraction, according to Snell’s law for refraction. For example, the
large subcutaneous fat layer in the breast [67] [54] causes a refractive effect that
can significantly distort the ultrasound ray direction and eventually cause spatial
distortion and intensity artifacts in the resulting images. Diffraction is another com-
plication typically addressed by diffraction tomography methods [33] but it is based
on the weak scattering assumption [50], which is violated by the strongly refracting
fat layers in the breast. In this work, we focus on correcting the artifacts stemming
from refraction. Previous work has either not modeled bent rays at all or has in-
adequately eliminated bent ray distortion effects and failed to faithfully reproduce
tissue properties in UCT. Furthermore, prior methods have been computationally
expensive, limiting their extendibility to three dimensions.

To advance the state of the art in these respects, we introduce the concept
of wave-based ray propagation models into UCT imaging, accurately taking into
account the refractive phenomena. For this, we model the eikonal equation, which
governs the movement of a wave front from emitters to receivers, using the Fast
Marching Method (FMM), described by Sethian [61]. With this method, the wave
arrival time for each grid point can be extracted, and the accurate ray direction
for an arbitrary point can be derived by searching for the minimum path in the
Time-Of- Flight field between the point and the emitter. The FMM has become
quite popular in recent years in computer graphics and computer vision, enabling
accurate distance transforms, segmentation shape recognition, and others. In this
chapter, we demonstrate that the FMM also represents a promising method for the
efficient and accurate modeling of the propagation of acoustic waves in a refractive
media.

This chapter is structured as follows. In Section 2, we provide the theoretical
background on the models we propose and Section 3 describes the implementation
details of our algorithm for the modeling of nonlinear rays for the reconstruction.
Section 4 then presents and discusses our experimental results. Finally, we conclude
and describe future directions of research in Section 5.
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6.2 Theoretical Background

6.2.1 Reconstruction Algorithm

Classical tomography reconstruction algorithms using Filtered Backprojection
are based on the Radon theorem and can not take into account bent rays. Therefore,
similar to other UCT researchers, we employ an algebraic reconstruction approach,
SART [2]. Given the projection data pi, SART updates a pixel v j in iteration k
according to the following equation:

vk
j = vk−1

j +λ
∑

pi∈PΦ
ciwi j∑

pi∈PΦ
wi j

;ci =
pi−

∑N
i=1 wilvk−1

l∑N
l=1 wil

(1)

Here the w-terms relate the pixels to the data and are determined by the inter-
polation function. The correction/update factor ci is computed by subtracting the
result of a discrete ray integration (within the grid constructed at iteration (k-1))
from the physical integration acquired at receiver i. In our case, due to the refrac-
tion effects, the rays are non-linear. SART is a block-based algorithm, i.e., a grid
update occurs after all rays for a given source (emitter) have been traced and the
correction factors computed.

6.2.2 Solving the Eikonal Equation with the FMM

As discussed above, our approach advocates an alternative way to solve the
bent-ray problem by directly simulating the acoustic sound wave propagation. Bent
rays can be computed by solving the eikonal equation [61]:

(
δt
δx

)2 +(
δt
δy

)2 +(
δt
δz

)2 =
1

F2(x,y,z)
(2)

on a discretized grid of points. Traditionally, equations such as equation 2 are
solved by iterative methods, which can be computationally expensive. To solve the
eikonal equation more efficiently, we employ the Fast Marching Method (FMM),
originally proposed by Tsitsiklis [68]. The FMM is related to Dijkstra’s method
[16], which is a classical algorithm for identifying the shortest path in a network of
links. The FMM is a single-pass, upwind finite difference scheme, which produces
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the correct viscosity solution to the eikonal equation. It depends on a causality
condition based on the ordering of the upwinding [61].

In equation 2, F is called the speed term and is a measure of the local sound
conductance properties. The FMM computes for every voxel (x,y,z) the time
T (x,y,z) at which the wave has traversed it. As the wave front proceeds across
the grid, the FMM selects the voxel (x,y,z) in the narrow band of voxels (situated
immediately upwind from the current wave boundary) which minimizes the time
increment, given the values of its neighbors and their speed values. The result of
the FMM is the Time Of Flight (TOF) image. There is one such image for each
emitter.

The original FMM solves the eikonal equation by using only first-order finite
difference. This will lead to inaccuracies at high curvature boundaries. For a more
accurate approximation of equation 2, we use the High Accuracy Fast Marching
Method (HAFMM) [4] . It employs a second-order approximation to the partial
derivative in equation 2, such as

δt
δx

=
3t(x,y,z)−4t(x−1,y,z)+ t(x−2,y,z)

2
(3)

but it also requires accurate second-order estimates for initialization around the
propagation seed points (emitter locations).

Figure 28: Curved-ray (red) and straight ray(yellow)with the FMM

Once the propagation is complete, we use the resulting TOF image to calculate
the path of the rays from the receivers back to the emitter. The TOF image allows
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us to locally compute the ray direction vectors, given by the TOF image gradients,
ensuring that a given ray will not miss the emitter. Our method thus eliminates the
need for the ray linking and path assembly of earlier approaches. Figure 28 shows
the acoustic ray paths from 31 receivers, which are distorted when passing through
the object. White curves represent the wave front at different times. The yellow
lines are the straight rays between emitter and receiver and the red lines represent
the curved-rays obtained via HAFMM.

6.2.3 Ultrasound Breast Modeling

In the area of computational tomography, there are a number of existing breast
phantoms [8] [64]. However, they are usually too complex, and some of the struc-
tures are not perceptibly differentiated in UCT image. Therefore, a simple, numeric
UCT breast phantom is proposed, as shown in Figure 29.

(a) anatomy(from info.med.yale.edu)

(b) phantom(left:vertical slice; right:horizontal slice.)

Figure 29: Breast anatomy and phantoms.

Our UCT breast phantom is modeled using a half ellipse, and is composed of
two main layers: an outer thick layer of fat and an inner layer of tissue. In the
inner layer of the tissue, several lesions are shown as small ellipses, and smaller
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abnormalities modeled as tiny spheres are inserted. Keeping the shape unchanged
and adjusting the values of the phantoms, we can simulate a sound velocity (sound
conductance) phantom and an attenuation phantom separately. See Table 6 for the
clinical values used in the phantoms. Both the sound velocity and the attenuation
properties of tissue provide valuable diagnostic information. The analytical geo-
metric description of the elliptical primitives allows for easy analytical modeling of
refracted ray paths and their path integration in the simulation of projection data.
We have not used real data at this time, in order to isolate the aliasing and distor-
tion effects purely due to the non-linear, refracted rays (as opposed to higher-order
scattering noise).

6.3 Methodology

Our novel contribution is to combine SART with FMM to find the accurate ray
directions by wave propagation. In this way, we can avoid the complicated bent-
ray computations that previous UCT reconstruction algorithms had to deal with,
replacing them with the simple and linear computations embodied by the FMM.

In this research, we implemented both FMM and HAFMM. We use a binary
heap to quickly find the voxel with the smallest postulated wave arrival time in the
narrow band of the advancing wave front. The wave arrival value of this voxel
is then written to the Time-Of-Flight (TOF) image, its neighbors and their arrival
times are updated in the heap. Note that a translation table with double pointers, as
is further described in [61] [4] is used in order to quickly map the spatial domain
voxels to the heap voxels.

Our framework itself can be decomposed into a two-phase algorithm. In phase
1, we iteratively reconstruct the sound velocity (SV) image from the TOF data col-
lected at the receivers, and in phase 2, we use this SV image to guide the non-linear

Table 6: Our phantom’s breast ultrasound properties
Ultrasound Properties Tissue Fat Large Lesions Small Lesions
Velocity 1475m/s 1375m/s 1560m/s 1530m/s
Attenuation 50 15 60or30 70
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rays for the iterative reconstruction of the sound attenuation (SA) image from the
attenuation data collected at the receivers. Both phases use SART as the iterative
reconstruction engine. Note that the SA image is easy to reconstruct once an ac-
curate SV image is available to guide the distorted rays, provided the gradients are
faithfully reconstructed using good interpolation filters. Our algorithm proceeds as
follows:

For the SV update step, we use the relationship v = d/t. Here, d is the diameter
of a spherical pixels (we assume spherical pixel to achieve direction independence
and use d = 1). The following equation is employed:

SV k+1 =
d

d
SV k +

∑
rays ∆TOF

(4)

One SART iteration completes after all emitters have been processed once,
and the iterations continue until the difference between the TOF image at the re-
ceiver positions and the collected TOF data there becomes smaller than a threshold.
Usually, this requires 3 to 4 iterations. The reconstruction of SA image is similar,
only now the SV image remains constant and with it the ray paths and their lengths.
Note, the algorithm requires the estimation of good gradients. For this, we employ
B-splines, which have previously shown to work well in refractive media [14] [40].

The velocity of a grid point, stored in the SV image and used in the wave
propagation step of the reconstruction, depends heavily on the reconstructed value
at that point obtained from the previous iterations. To obtain the accurate speed
value, we investigated two different approaches: fixed speed update and data-driven
speed update.

Fixed speed update means that the speed update is applied directly to the pixel,
without further scaling.

F = kSV (5)

Data-driven speed update means that the speed update is normalized in the
following equation:

F = k(Fmin +
SV −SVcur−min

SVcur−max−SVcur−min
(Fmax−Fmin)) (6)

In equations 5 and 6, k is a constant scale factor, SVcur−min and SVcur−max are
the speed extrema of the current iteration, Fmin and Fmax are the inherent speed
extrema of the object, and F is the resulting propagation speed.
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The fixed speed update strategy is intuitive, considering the fact that the values
in the SV image represent material properties, and acoustic rays always have the
same speed in a specific material. However, it can suffer from the problem that
the shape of the organ is distorted by the first few iterations speed value, when the
correct value has not been constructed yet.

Data-driven speed update is introduced to solve this problem in the iterative
reconstruction algorithm. In this method, we assume that in the initial iterations the
pixel’s absolute value may not be accurate but the overall geometric information
has been quickly formed and recorded in the grid point’s relative values. The nor-
malization ensures a fast ascent of the solution at early iterations when SV values
are small.

For the construction of the SA image, the TOF image can either be computed
beforehand, or on the fly when storage is excessive, using the FMM on the recon-
structed SV image. The input data are now the collected attenuation data, one set
for each emitter, and SART proceeds as usual for each randomly chosen emitter
position, using the rays guided by the corresponding TOF image, but now updating
the attenuation volume.

6.4 Experiments and Results

(a) velocity (b) attenuation

Figure 30: Ultrasound phantoms.

Our experiments are based on a simulated computer phantom with a matrix
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(a) (b)

(c) (d)

(e)

Figure 31: Reconstructed images: (a) straight ray SV image, HAFMM; (b) nonlinear ray
SV with fixed speed, HAFMM; (c) nonlinear ray SV with relaxed speed, FMM; (d) nonlin-
ear ray SV with relaxed speed, HAFMM; (e) attenuation image.
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size of 128x128, and the quantitative parameters are given in Table 6. The phan-
toms are shown in Figure 30, holding lesions with diameters from 2 to 8 pixels.
The ultrasound TOF and attenuation phantoms share the same geometry. Our sim-
ulation assumes a spherically radiating sound emission, using 256 emitter/receiver
positions in a circle. The resolution of the reconstructed image matches the size of
the phantom images. More emitter/receiver pairs enable higher resolution. Recon-
struction costs about 60 seconds for 3 iterations using a 2.8GHz Pentium 4.

For the velocity phantom, the reconstruction results are given in Figure 31(a)-
(d). With HAFMM, the reconstructed image obtained with linear rays is shown in
(a) and non-linear rays in (b) and (d). For the non-linear ray reconstruction, we
further compare the results obtained for the different speed strategies: fixed speed
in (b) and data-driven speed in (d). We calculate the error as the average absolute
intensity difference for all grid points between the reconstructed image and the
original phantoms. The use of only straight rays distorts the image with an error
of 25%. Because refraction is ignored, the size of the phantom’s regions grows or
shrinks dramatically. When correcting for refraction, the speed strategy has a large
impact on the resulting image accuracy. The data-driven relaxed speed results in a
better estimation of the original image (error of 3%), while the fixed speed strategy
overcorrects for refraction with an error of 19%.

The image achieved using FMM is shown in Figure 31(c), with the error of
10%. HAFMM in (d) is more accurate than FMM in (c), since the HAFMM in-
cludes second-order curvature information when solving the eikonal equation. This
means that boundaries where refraction occurs are better determined.

Finally, the attenuation phantom reconstruction results are presented in Fig-
ure 31(e). It is based on the nonlinear ray paths determined in the SV phantom
reconstruction shown in Figure 31(d), using the HAFMM. The attenuation image
recovers both intensity and shape accurately with an error of less than 7%.

6.5 Conclusions and Future Work

In this paper, a new method for UCT image reconstruction taking into account
refraction was proposed. The key observation behind this method is that the up-
winding Fast Marching Method (FMM) can determine the first-arriving phase in a
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continuous medium. It also provides computational efficiency in determining the
accurate paths of the non-linear rays. We proposed two speed mechanisms for the
FMM to trace the refractive rays: fixed speed and datadriven relaxed speed. Our
method is applicable in any UCT imaging situation in a moderate refractive media.
UCT simulations, using a synthetic breast phantom, have demonstrated that the
continuous wave propagation in HAFMM with data-driven relaxed speed achieves
an accurate determination of the non-linear ray paths and provides much better
fidelity in the image reconstruction. The reconstructed image quality improves by
an order of magnitude compared to the pure straight ray method.



Chapter 7

GPU Acceleration for UCT

7.1 Introduction

Compared to traditional X-ray breast mammography, ultrasound has the im-
portant advantage that no radiation dose is delivered to the patient. In addition, to-
mographic methods, as opposed to single projections of a compressed breast, have
the advantage that lesions can be better localized in space. A modality combin-
ing all of these advantages is transmission ultrasound CT (UCT). Here, the patient
submerges the breast into a water bath (which is far more convenient than the com-
pression needed for X-ray breast mammography) and a ring transducer array (with
100s of elements) axially positioned around the breast acquires the time-of-flight
and attenuation data used for CT reconstruction, one set of receiver data for each
emitter position. For 3D reconstruction, one may either use a multi-ring device, or
one may axially translate or spiral the ring and repeat acquisition. Such systems
have been described [17].

The fact that acoustic rays suffer from severe refraction effects in the imaged
tissue has hampered the direct use of traditional analytical back-projection or iter-
ative projection/back-projection frameworks to achieve a practical UCT solution.
Existing approaches so far have been unable to model the resulting curved rays
efficiently and accurately, and this has limited the image resolution that can be
achieved. While recent work in iterative UCT [18] shows promise and discusses re-
flection and refraction effects, the reconstruction algorithms discussed there are still

90
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limited to the straight-ray assumption. In earlier work, several researchers (e.g. [3]
have explored the use of general ray-tracing, via ray-linking and ray rebinning, in
P/BP UCT to improve the image quality. Denis [14] compared several methods for
ray-tracing, showing that substantial improvement over straight ray methods can
be achieved for moderately refracting fields. Yet, the more recent work typically
avoids the expensive direct ray simulation. For example, Quan [55] reports that a
simulation of 256 detectors would take weeks to complete on a desktop PC, requir-
ing supercomputers for UCT reconstruction. They therefore use a sparse matrix
solver to accomplish the reconstruction in reasonable time. Finally, an alternative
method for UCT is diffraction tomography [50]. It is based on the weak scattering
assumption, which, however, is violated in case of the breast, due to its strongly
refracting fat layers.

Essentially, sparse matrix solver-based and Fourier-space methods do not
model the ray physics in a direct manner, but through some intermediate repre-
sentation, which cannot easily capture the local interactions of the ray with the
medium. On the other hand, a complete simulation of the wave equation is pro-
hibitively expensive. Yet, we [41] have shown in Chapter 6 fast wave-front prop-
agation methods, such as the Fast Marching Method (FMM) [61], can model the
governing Eikonal equation well, taking into account refraction effects and allow-
ing the resulting curved rays to be accurately modeled for both speed and attenua-
tion in their native physical domain. We aim to resolve lesions of single pixel-size
( data resolution), various shapes (speculated, lobulated, sharp, circumscribed), and
a pixel-level distance among lesion clusters. At an US frequency of 7.5MHz one
can reach depths of 16cm, exceeding the requirements for breast imaging, allowing
a sub-mm resolution of less than 0.3mm.

While the FMM-based approach is far more efficient than a full wave equation
simulation, we find that it is still not efficient enough to warrant deployment in a
clinical setting. Thus, we look into the use of commodity high-performance hard-
ware for parallel program execution, such as multi-core CPUs, programmable com-
modity graphics hardware (GPU), and processor clusters. However, the inherently
sequential mechanism of the FMM method poses certain trade-offs with regards to
the architecture used (and also cost), which we will show can be balanced by use
of other equivalent fast wave front tracking algorithms, such as the Fast Sweeping
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Method (FSM) [9] and the Fast Iterative Method (FIM) [32]. These considerations
and their results are the topic of this Chapter, with the overall conclusion being that
UCT based on fast wave-front tracking has excellent potential for real life clinical
deployment

7.2 Methods

The algorithm put forward in Chapter 6 uses SART (Simultaneous Algebraic
Reconstruction Technique) [2] as the basis of the UCT reconstruction algorithm:
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The propagation of the US wave front in 3D is modeled by the Eikonal equa-
tion:
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Here, the speed term F is a measure of the local sound conductance proper-
ties. To solve the equation for F one must find the speed trajectory for each ray
that minimizes the time cost function from the source. This is iteratively solved
using the SART. The forward projection computes for every voxel (x,y,z) the time
T (x,y,z) at which the sound wave, originating from the emitter, has traversed it. We
call this the time-of-flight (TOF) image, which includes the TOF estimates of the
receivers them-selves (used to correct the grid corrections). This TOF image allows
a local computation of the ray direction vectors from all receivers back to the single
emitter using the TOF image gradients, estimated via a high-quality filter. This cru-
cial step ensures that a given curved ray will not miss the emitter, eliminating the
path assembly overhead of earlier approaches. More formally, this Eikonal-SART
algorithm is described as follows:

1. Construct the TOF field as described above.

2. Compute the corrections ci by subtracting the Eikonal-computed TOF field
at the receivers from the true TOF data. Calculate the normalization weight
by tracing curved rays back to the emitter using the TOF image and a field of
unit voxels.
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3. Update the speed terms of the voxels vi j by the reciprocal of the ci, again
using the TOF image to determine the curved ray paths.

4. Normalize the vi j by the weights (also accumulated in step 3).

5. Randomly select another (unused in this iteration) emitter and return to step
1.

In Chapter 6, we also described a data-driven relaxation factor to control the voxel
updates, which yields superior results over the fixed relaxation factor λ typically
used in SART. In fact, our UCT reconstructs two tissue properties, which gives
non-redundant information. Once the sound velocity (SV) image is reconstructed
it is utilized to guide the non-linear rays for reconstructing the sound attenuation
image using attenuation data.

7.2.1 How to perform refractive UCT efficiently: general con-
siderations

Each iteration of Eikonal-SART is performed for each of the M emitters: (i)
one forward wave propagation across a lattice of N3 voxels, and (ii) one back-
ward projection delivering the updates to the N3 voxels via M− 1 non-linear rays
which are guided by the TOF field computed in step (i). Let us assume we use
M = N2, that is, N transducers for each of the N rings (we shall neglect for now that
the reduced axial dimension of the breast would allow far less rings to be used in
practice). This makes for a slightly undetermined equation system which has been
shown to be sufficient in iterative reconstruction scenarios. For the raytracing in
the back-projection step, we have N2 rays of length O(N) each, but the traversal
involves only local and independent computations at each step, at low computa-
tional overhead. Thus the overall complexity for one back-projection is O(N3).
The wave-front tracking in the forward projection also updates N3 voxels to yield
the TOF image (and advances the front), but the selection of the advance-voxel has
complexity O(N3) since one must consider all voxels within the wave-front’s nar-
row band (which may be arbitrarily complex). Thus the complexity for wave front
tracking is O(N6). Raytracing is quite amenable to parallel implementation and
speedups on the order of 1−2 magnitudes can be obtained on various parallel plat-
forms, such as GPUs (e.g. [52]). The independence of the individual rays affords
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a relatively fine-grained parallelism. In contrast, the wave front tracking does not
exhibit much parallelism, since it is an inherently sequential algorithm where the
selection of a voxel into the front depends on all previous selections. One method to
reduce the wave front tracking overhead per emitter is to divide the 3D grid into N
2D slices. This strategy gives good parallelism on a coarse-grained level, due to the
independence among slices. There is no communication overhead between slices,
no need for data distribution as each slice can reside on a separate processor, and
no synchronization delay because each computation proceeds independently. While
the 2D slice-based reconstruction may lead to errors due to out-of-plane wave prop-
agation, our experiments indicate (see Section 3) that the reconstructions using the
2D slice decomposition are quite similar to the corresponding fully-3D reconstruc-
tion, but can be obtained at much higher speeds. But even with this decomposition
there are vast differences in the level of speedup obtained with different Eikonal
equation solvers (all using physical-space wave front tracking), also as a function
of computing platform, as is discussed next.

7.2.2 Numerical Eikonal equation solvers and their paralleliza-
tion potential

The Fast Marching Algorithm (FMM) algorithm [61] solves the Eikonal equa-
tions in one pass, tracking the evolution of an expanding front. A key observation of
FMM is that the solution of Eq. (2) at each grid point depends only on the smaller
values of neighboring points. Thus the solution of the equation can be built in the
order of increasing arrival time of points. Here it is essential to quickly locate the
voxel with the smallest value in the active ”narrow-band” of n voxels. Typically a
heap is used for this, with an update (insertion) time of O(logn). Sapiro [80] pro-
posed a faster algorithm using an untidy priority queue, which replaces the heap’s
tree by a table, reducing the update complexity to O(1). This, however, also in-
troduces extra errors caused by misorderings inside the queue. We employed the
(min-)heap data structure for accuracy, using double-linking between th lattice and
heap for speed. The FMM is not naturally accelerated on fine-grained parallel sys-
tems. Neither the min-heap data structure nor the priority queue, which enables
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fast speeds on the CPU, encourages parallelism, since they all sequentialize com-
putations and make them globally dependent. The slice decomposition described
in Section 2.1 favors coarse-grained parallelism, assigning projections of different
slices to different threads or processors and running them concurrently. GPUs, pro-
grammed with CUDA, are well suited to compute this type of problem, but one
must be aware of the large cache memory requirements of the fast min-heap opera-
tions. Section 3 shows that this poses a limiting factor for GPUs, where the register,
cache and global memory are limited.

The Fast Sweeping Method (FSM) algorithm [82] applies Gauss-Seidel itera-
tions with alternating sweep orderings. The key is to follow the solution character-
istics and update points in that order, i.e., the sweeping direction should fit the real
information propagation. In two dimensions, the sweep order is according to these
four loops:

1. i : 1..nx, j : 1..ny

2. i : nx..1, j : 1..ny

3. i : nx..1, j : ny..1

4. i : 1..nx, j : ny..1

where i and j are the sweeping point positions in the x- and y-directions, re-
spectively, and nx and ny are the number of points in the x-direction and y-direction,
respectively. The FSM is amenable to parallelization, since it follows the causal-
ity along the solution characteristics in a parallel manner. It can compute multiple
sweeping directions simultaneously. In addition, it can divide the whole domain
into subdomains and execute sub-domain computations in parallel. It is well suited
for multi-processor CPU systems or clusters. However, since in each sweep thread
in a subdomain the computation is sequential, it is not easy to achieve fine-grained
parallelism.

The Fast Iterative Method (FIM) algorithm [32] solves PDEs of H-J
(Hamilton-Jacobi) equations on parallel architectures. The Eikonal equation is a
special case of the H-J equation. It uses Godunov upwind discretization of the
Hamiltonian [60] and updates the value on a narrow band iteratively. The FIM al-
lows multiple updates per point, by re-inserting points into the narrow band, called
the active list (AL). The FIM gives values of zero to the source and inf to all other
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points. All neighbors of the source points form the AL. In the update loop, the
FIM calculates the Godunov Hamiltonian for all AL points and updates their dis-
tance values if the newly calculated value is less than the current. If an AL point
has converged, it is removed from the AL. All neighbors of the AL points will also
update and if their value is less than the current, they will be added to the AL. This
continues until the AL is empty. This algorithm maps well onto GPUs with parallel
SIMD processors due to its fine-grained level parallelism, updating all AL points
in parallel. In order to fully use the coherent memory access and control flow, our
GPU implementation uses data-grouping as the primitive execution unit. Each point
inside a data-group is executed as a thread, all threads for the same data-group com-
bine into a block, and all blocks combine into the CUDA computational domain as
a grid. The CPU-algorithm AL becomes the Active Block List (ABL) on the GPU.
In each iteration all active blocks are updated and converged blocks are removed
from the ABL. Neighbor blocks are also updated. Further, since points inside a
data-group share the same CUDA block, they use shared memory simultaneously.
Shared memory is on-chip memory at CPU register-speed and is much faster than
global memory. In order to fully exploit fast shared memory access, we coalesced
the memory by assigning points in the same data-group (a 2D block of 88 slice
pixels) next to neighboring points in memory.

7.3 Result

All reported results use the Eikonal-SART reconstruction scheme presented
above. All quality assessments are based on the global L2 RMS error (ultrasound
phantom vs. re-constructed densities). We created a physically-based human breast
ultrasound phantom, based on the cryosection color images of the NIH Visible
Female dataset (htt p : //www.nlm.nih.gov/research/visible/visiblehuman.html).
Hue was used to identify the basic tissues and their acoustical mapping was ob-
tained by consulting biophysics tables (see Table 7). Lesions of varying size were
also added. The phantom size is 1282*40 and the smallest lesion is a sphere of a
two-voxel diameter.
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7.3.1 Reconstruction quality

We employed a high-quality wave equation solver to generate the projection
data. Reconstructions (with 256 detectors per slice) were per-formed with the three
numerical Eikonal equation solvers presented above (FMM, FSM, and FIM). All
achieved nearly the same quality (0.03− 0.04 RMSE). This is a vast improve-
ment over a straight-ray reconstruction (0.25 RMSE) and demonstrates that accu-
rate refraction modeling within a physically-based ray-tracing scheme enables re-
constructions at high fidelity and accurate geometry. Fig. 32 gives visual evidence
(for sound velocity SV) that the results are in excellent agreement with the original
(acoustically mapped) phantom, with small detail being recovered well. Fig. 33
shows the attenuation reconstruction result (0.075 RMSE). Fig. 34 demonstrates
that the 2D slice-by-slice reconstruction (right, RMSE 0.036) can reach nearly the
same quality than a fully-3D reconstruction (center, RMSE 0.034). Here we ob-
serve that the smallest lesions (of two-voxel diameter close to the center) can be
clearly identified in both reconstructions. Experiments with noisy data show that
even with SNR= 10 (considered challenging) the inner lesions/structures remain
very visible and distinguishable.

7.3.2 Time performance

With FMM we were able to reconstruct a 1282 image from 256 transducers in
about 60 seconds (3 iterations) on a 2.8GHz Pentium 4. For the 3D case, on a 1283

grid, it takes 9.76 sec for a single wave propagation from one emitter. A full recon-
struction with 256*128 transducers would then take about 533 hours. In contrast,
the 2D slice decomposition approach would finish in 125 min, since the time per
2D wave tracking decreases to 0.03 sec. But this is still too slow for practical use.

Property Tissue Fat Lesions (LG) Lesions(SM) Skin
Velocity 1475m/s 1375m/s 1560m/s 1530m/s 1650m/s
Attenuation 50 15 60/30 70 58

Table 7: Breast phantom ultrasound properties.
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Figure 32: Speed image:(Left) acoustic breast phantom derived from the Visible Female
dataset and (right) SV reconstructions. First row: slice close to the center, second row: slice
close to the bottom.

Figure 33: Attenuation image: (left) phantom, (right) reconstructed.
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Figure 34: Fully 3D v.s. 2D slice-based reconstruction image: (left) phantom, (center)
fully-3D, (right) 2D slice-based.

We then implemented FMM in CUDA, using an NVIDIA 8800 GTX GPU with
768 MB RAM and an NVIDIA Tesla with 1.5 GB RAM. To make full use of the
GPU multiprocessors, it is essential to run a large number of concurrent threads.
However, we were unable to beat CPU performance, even with a large number of
concurrent threads. One reason is slow global memory access. Different threads
do not share memory, and every thread requires frequent (and expensive) access to
global memory. Another reason is that each thread kernel uses 28 registers (total
is 8,192) for the narrow band variables. This impeded the allocation of a suffi-
cient number of threads, yielding a mere 0.33 multiprocessor occupancy. For the
FSM, our CPU implementation took 0.031s (0.18s) for one projection (wave front
tracking) of a 1282 (2562) image. When run on a quad-core computer, a 3.5-fold
speedup is achieved. On a distributed memory computer cluster with 8 nodes and
4 sub-domains and parallel sweep directions, we gained a 5-times speed up. Our
FIM-implementation on CPU required 0.04s (0.19s) for one projection of a 1282

(2562) image. The small-grain parallelism of the FIM favors an extension to multi-
core, multi-processor, and GPU-SIMD configurations. The GPU implementation
required only 0.002 sec for one projection of a 2562 image, which is about 80 times
faster than the fastest algorithm on the CPU (the FMM). Thus, for an object of size
2562*44 and 512 transducers in each ring, it requires less than 5 minutes to recon-
struct an object, which is a time that can easily satisfy real-life clinical scenarios.



100

Task Grid size FMM FSM FIM
CPU CPU Cluster- CPU GPU (NVIDIA)

8 nodes 8086GTX Tesla
Projection 1282 0.025 0.031 0.007 0.038 0.00082 0.00072
Projection 2562 0.097 0.180 0.039 0.189 0.0023 0.0022
Reconstr. 128240 2400 2649 506 3316 37.8 30.9
Reconstr. 256244 19200 32732 6393 37221 286.2 225.76

Table 8: Time (in s) required for one projection (wave propagation) for various Eikonal
solvers and reconstructions.

The first two rows of Table 8 compare the time required for a single projection
(wave front tracking) for two grid sizes and the second two rows compare the time
required for 3D reconstruction using these three methods. We see that on the CPU,
the one-pass approach of the FMM has the best performance, aided by the min-heap
data structure. The FSM works well for multi-core and multiprocessor clusters (8
for projections and for reconstruction) since it can be computed in parallel, with
little data communication. But clusters are expensive - an 8-node state-of-the-art
computer cluster might cost thousands of US dollars. The GPU provides a good
balance of price and performance. The FIM performs best on the GPU due its fine-
grained parallelism. A NVIDIA Tesla costs only 600 U.S. dollars, yet it achieves
about an 80-fold speedup over the fastest CPU FMM implementation.

7.4 Conclusions

We have demonstrated that iterative 3D UCT reconstruction with proper re-
fraction physics, modeled directly in the object domain via wave front tracking can
be accomplished at clinical rates. The reconstructions obtained from realistic phan-
toms resolve fine details well.



Chapter 8

Conclusions

To render volumetric datasets or traditional computer graphics objects like
meshes accurately requires the simulation of materials. Current researches have
improved largely in both accuracy and speed, but have mostly neglected a ubiq-
uitous natural phenomenon, refraction. The material alteration in objects on the
way of ray light can bend the light’s direction, which leads to many cooperating
components, including special high requirements on its filter and gradient filters,
more burden on rendering due to the incoherence caused by direction changing,
more time-consuming intersect computation when ray tracing is used, and more
distortion and aliasing when reconstructing real medical imaging data. Obtaining
high-quality refraction effects at reasonable rendering speeds has been so far a chal-
lenging task.

This thesis has demonstrated that in refraction gradient filters play an impor-
tant factor in rendering quality, and the B-Spline filter achieves superior results,
compared to the traditional Catmull-Rom filter, for the estimation of gradients from
data. It does so at the same computational cost for the B-Spline-3, which has the
same support, or at 3/4 of the cost for the B-Spline-2, which has a full spatial sup-
port of 3.0. We have also demonstrated that the B-spline allows one to balance
smoothing with grid sample interpolation fidelity. This is beneficial in the presence
of noise, round-off errors, and other artifacts incurred in the sampling of the original
data.
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In addition, we have implemented a refraction rendering system for a volu-
metric dataset, which introduced a variety of methods that allow high-quality inter-
polation mechanisms to be used without incurring the speed penalties that usually
come with these. For this, we have described a novel octree-based ray acceleration
method which specifically takes advantage of the nonnegativity property of B-spline
kernels. These in turn produce results superior to the ones obtained with the more
popular Catmull-Rom spline. Our approach for cell classification computes a cell
mask that tightly fringes the refracting iso-surface, and consequently requires the
testing of much fewer grid cells for iso-surface membership in the raycasting than
previous strategies. Further, we have described a heuristic, yet effective method that
defers super-sampling to a post-rendering process, achieving results of very simi-
lar rendering quality than traditional super-sampling, for a good variety of volume
graphics objects.

Besides, for general graphics rendering, we proposed a novel framework for
real-time inter reflection and refraction by ray tracing based on the geometry field.
It combines a light field with a geometry image, and represents the intersection
point of a surface with an arbitrary ray as a 4D lookup table. Conventional intersec-
tion testing in ray tracing is replaced by looking up in a geometry field, such that
real time inter-surface reflection is achieved on current graphics hardware. Geome-
try field representation has several advantages in efficiency and simplicity. First, it
reduces the memory cost from a common light field. In general, the storage require-
ment will be extremely high, if the position, normal and color material information
are stored for each entry. Instead, only the texture coordinates are stored, such that
the size of a geometry field is within the memory capacity of current hardware. Sec-
ond, the geometry field can be represented as a generalized texture due to its regular
structure, which fits to the design of common graphics hardware. Finally, the time
cost is independent of the geometric complexity of the scene, and only dependent
of the size of the geometry field. Application of the geometry field can be easily
generalized for computing refractions and self reflection.

Further, for medical imaging data, we implemented a new method to cor-
rect the refraction in ultrasound computational tomography reconstruction. The
key observation behind this method is that the up-winding Eikonal-equation-based
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wave propagation method, Fast Marching Method (FMM), can determine the first-
arriving phase in a continuous medium, which fits to the first-arrival signal mea-
surement in ultrasound wave propagation. It also provides computational efficiency
in determining the accurate paths of the non-linear rays caused by refraction dis-
tortion, which is ubiquitous phenomenon in breast ultrasound. We proposed two
speed mechanisms for the FMM to trace the refractive rays: fixed speed and data
driven relaxed speed. Our method is applicable in any UCT imaging situation in a
moderately refractive media. UCT simulations, using a synthetic breast phantom,
have demonstrated that the continuous wave propagation in HAFMM with data-
driven relaxed speed achieves an accurate determination of the non-linear ray paths
and provides much better fidelity in the image reconstruction. The reconstructed
image quality improves by an order of magnitude compared to the pure straight ray
method.

Finally, we have demonstrated that iterative 3D UCT reconstruction with
proper refraction physics, modeled directly in the object domain via wave front
tracking can be accomplished at clinical rates. FMM method replies on a heap data
structure, which includes nodes from the entire wavefront. The computation for
the next node of the wave front propagation at each step is sequential and globally
dependent. We investigated the acceleration of three Eikonal solvers (Fast March-
ing Method (FMM), Fast Sweeping Method (FSM), Fast Iterative Method (FIM))
on three computational platforms (commodity graphics hardware (GPUs), multi-
core CPUs, cluster computers), within our refractive Transmission Ultrasound CT
framework. Our efforts provide insight into the capabilities of the various architec-
tures for acoustic wave-front tracking, and they also yield a framework that meets
the interactive demands of clinical practice, without a loss in reconstruction qual-
ity. The best algorithm for our accleration is FIM, which take full advantage of
GPU acceleration. It maps well onto GPUs with parallel SIMD (Same Instruction
Multiple Data) processors because of its fine-grained level parallelism, updating all
AL points in parallel. In order to fully use the coherent memory access and control
flow, our GPU implementation is based on a data-grouping scheme. Each point
inside a data-group is executed as a thread, all threads for the same data-group in
the AL combine into a block, and all blocks combine into a CUDA grid. Further,
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since points inside a data-group share the same CUDA block, we use shared mem-
ory simultaneously, which is much faster than global memory. In order to fully
exploit the fast shared memory access, we reorganized (coalesced) the memory by
assigning points in the same data-group (we use a 2D block of 88 slice pixels or
voxels) next to neighboring points in memory. A NVIDIA Tesla costs only 600
U. S. dollars, yet it achieves about an 80-fold speedup over the fastest CPU FMM
implementation. The reconstructions obtained from realistic phantoms resolve fine
details well.
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