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Abstract of the Dissertation

On the Complexity of Real and Complex Functions Defined on the

Two-dimensional Plane

by

Fuxiang Yu

Doctor of Philosophy

in

Computer Science

Stony Brook University

2007

Computational complexity is a central area of theoretical computer science. Corre-

sponding to the objects being studied, there are two categories: continuous complexity

and discrete complexity. Since 1970s, many complexity theories have been developed

on discrete computation, and a number of important results, especially those related

to the P versus NP problem, have been obtained. On the other hand, although

there is significant progress in the continuous side, it is fair to say that, compared

with discrete complexity theory, more work could and should be done in continuous

complexity theory. For instance, a fundamental issue in continuous complexity the-

ory is the lack of a single, universal computational model that all researchers agree

upon. Another major issue is that the computational complexity of many fundamen-

tal problems in computational mathematics is not known or not even attacked at all.

An example is the computational complexity of analytic continuation problem.

The basic computational model we used in this dissertation is the oracle Turing

machine model of Ko and Friedman, in which complexity is measured by the number

of bit operations needed to output an approximation to the results within the required

precision. In this dissertation we study the computational complexity of the following
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fundamental problems in continuous mathematics.

(1) Computing the analytic branches of the logarithm function and the square root

function defined on a two-dimensional Jordan domain (Ko and Yu [45]). The

key result is as follow: When the boundary of the Jordan domain is polynomial-

time computable, then the complexity of computing the analytic branches of

the logarithm function is characterized by the complexity class #P .

(2) Operations on the NC and log-space functions (Yu [82; 83]). We show that

analyticity is critical for the two fundamental operations, integration and dif-

ferentiation, to be closed in NC or log-space, respectively. We also investigate

the problem of finding all zeros of an analytic NC or log-space function in-

side a Jordan curve. In addition, we discuss the expressive powers of different

representations under NC and Log-space.

(3) Convex hulls of two-dimensional sets(Ko and Yu [47]). We show that the convex

hull of a P -computable Jordan domain S is NP -recognizable but not necessarily

polynomial-time recognizable if P �= NP . We also show that the area of the

convex hull of a P -computable Jordan domain S is computable in polynomial

time relative to an oracle function in #P , and the area is a #P real number if

NP = UP .

(4) Circumscribed rectangles and squares(Yu, Chou and Ko [85]). Our main results

are: (a) The minimum-area circumscribed rectangles of a P -computable Jordan

curve are not necessarily computable; (b) The complexity of the minimum area

of all circumscribed rectangles of a P -computable Jordan curve is characterized

by the complexity class ΣP
2 ; and (c) If there exist a unique circumscribed square

of a P -computable Jordan curve, it is computable but can be arbitrarily hard.

(5) The pancake problem (Yu [84]). We study the complexity of finding a straight
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line that bisects simultaneously two bounded sets in the two-dimensional plane.

We characterize its complexity by the complexity class #P , under some thick-

ness assumption and separability assumption on the sets in question. We have

also obtained positive and negative results regarding some related problems

such as the problem of bisecting one set in a given direction.
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Chapter 1

Introduction

1.1 Motivation

This dissertation studies computational complexity of continuous problems. Although

the main focus of computational complexity theory has been on discrete objects,

most mathematical models in physics and engineering are based on the real number

concept, and deal with continuous objects. Complexity theory of real functions is

thus needed in order to understand the nature of computation about continuous data

structures. In fact, Turing, in his classic paper [74], introduced the Turing machine to

deal with integers as well as real numbers, and gave the first definition of computable

real numbers. In the 1950s and 1960s, the basic notions in computable analysis, such

as computable real functions and recursively measurable sets, had been established

(see, for instance, Aberth [2],Lacombe [49], Goodstein [31], Grzegorczyk [33], and

Ceitin [16]). More recently, the study of complexity of continuous problems has been

developed more rapidly and gained much attention (see the monographs of Pour-El

and Richards [63], Ko [40], Weihrauch [78], and Blum et al. [10], and the most recent

expository paper of Braverman and Cook [12]).

This dissertation focuses on the computational complexity of real and complex
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functions on the two-dimensional plane. We study the computational difficulty of

some important fundamental continuous problems under the oracle Turing machine

model of Ko and Friedman [42], which enables us to characterize the complexity of

continuous problems with discrete complexity classes. The overall objective is to

study the computational difficulty of these problems, so that we will gain insights

into continuous complexity and its relation with discrete complexity theory.

1.2 Computational Models

There are many models for continuous computation, for instance, type-2 theory of

effectivity (TTE) [78], the computational model of Blum, Shub and Smale (BSS) [10],

information-based computational model [73], exact geometric computation(EGC) [80].

We will explain these models in details in Chapter 2. Here we briefly describe the

oracle Turing machine model of Ko and Friedman [40; 42], which is the main model

used in this dissertation.

The oracle Turing machine model of Ko and Friedman is based on the Turing ma-

chine and the complexity measure is the number of bit operations. The basic problem

is how difficult, or equivalently how many computational resources (e.g., space and

time) are required, to compute an approximation to a number with a required preci-

sion. To this end, we need to define the notion of feasibly computable real numbers

and real functions. For example, we say a number x ∈ [0, 1] is polynomial-time com-

putable if there exist a polynomial function p and a Turing machine M such that

for any input n ∈ N, M outputs an approximation d to x in time p(n) such that

|x − d| < 2−n, and we identify the mathematical notion of polynomial-time com-

putable real numbers with the intuitive notion of feasibly computable real numbers.

The notion of feasibly computable real functions is more complicated. We use the

notion of polynomial-time oracle Turing machines to capture this concept. A real
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function f : [0, 1]→ R is computable if its values at any point can be approximated

by an oracle Turing machine M . In order to approximate f(x) with a precision

2−n for some x ∈ [0, 1], M takes n as the input and asks an oracle φ to provide

the information about x. The oracle φ can provide approximations to x with any

precision, but different precisions require different amount of computational resources.

In general, in order to compute a more accurate approximation to f(x), a more

accurate approximation to x is needed. The complexity will be measured in terms of

precision n according to the resources used. We delay the technical details till Section

2.4.3.

This model preserves theoretical properties of real numbers and real functions

(e.g., the set of computable real numbers forms a real closed field). It also reflects

the practice in numerical analysis (e.g., it is undecidable in this theory to determine

whether two given real numbers are equal). In addition, it connects discrete com-

plexity theory and continuous computation in a natural way, and allows us to use

notions of discrete complexity theory to study the inherent complexity of continuous

problems.

1.3 Main Topics and Contributions

We focus on a few fundamental mathematical problems in the areas of geometry,

analysis and topology. These problems mainly concern with functions defined on the

two-dimensional plane and are often much more complicated than the one-dimensional

case. We have obtained tight upper and lower complexity bounds, if not the exact

complexity, of most problems. To obtain a tight upper bound, a suitable algorithm is

needed, which involves with the techniques from both algorithm design and numerical

analysis. To obtain a tight lower bound, a suitable construction of reductions from a

discrete problem of known complexity is needed.
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In addition, we point out that computability of these problems or related problems

have also been studied and some results are interesting.

The logarithm and the square root functions [45]. Analytic continuation

is an important operation in computational complex analysis. We focus on a special

case, the problem of computing single-valued, analytic branches of the logarithm and

square root functions defined on a two-dimensional simply connected domain S. This

problem is trivial when we consider the complexity of logarithm and square root

functions defined on the one-dimensional real line. However, for the two-dimensional

case, there is no simple algorithm to achieve this task.

We prove that, if the boundary ∂S of S is a polynomial-time computable Jordan

curve, the complexity of these problems can be characterized by counting classes #P ,

MP (or MidBitP ), and ⊕P : The logarithm problem is polynomial-time solvable

if and only if FP = #P . For the square root problem, it is shown to have the

upper bound PMP and lower bound P⊕P . That is, if P = MP then the square root

problem is polynomial-time solvable, and if P �= ⊕P then the square root problem is

not polynomial-time solvable.

NC and log-space functions defined on R or C [82; 83]. Recall that

NC is the class of problems that can be solved efficiently by parallel computers. If a

function f defined on R or C is NC computable, what is the complexity of computing

the derivative f ′ (if applicable) and the integral
∫
f? What about the problem of

finding zeros of such functions? These are fundamental problems regarding continuous

parallel time complexity. Our results demonstrate that the property of analyticity of

the function f is critical to keep the complexity of these operators within NC .

We show that for NC real functions, differentiation and integration are infeasible,

but analyticity helps to reduce the complexity. For example, the integration of a log-
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space computable real function f is as hard as #P , but if f is an analytic function,

then the integration is log-space computable. As an application, we study the problem

of finding all zeros of an NC analytic function inside a Jordan curve and show that,

under a uniformity condition on the function values of the Jordan curve, the zeros

are all NC computable.

A related question is representations of real numbers in parallel complexity the-

ory. We show that the relations among the representations are more complicated

than those in sequential complexity theory. For example, the Cauchy function rep-

resentation and the general left cut representation are equivalent with respect to

polynomial-time computability, but not equivalent with respect to NC computabil-

ity, unless P = NC .

Convex hulls [47]. There are many nice algorithms to compute the convex hull

of a set S of finite points. In this dissertation we study this problem in the polynomial-

time complexity theory of real functions based on the oracle Turing machine model.

We show that the convex hull of a two-dimensional Jordan domain S is not neces-

sarily recursively recognizable even if S is polynomial-time recognizable. On the other

hand, if the boundary of a Jordan domain S is polynomial-time computable, then the

convex hull of S must be NP -recognizable, and it is not necessarily polynomial-time

recognizable if P �= NP . We also show that the area of the convex hull of a Jordan

domain S with a polynomial-time computable boundary can be computed in polyno-

mial time relative to an oracle function in #P . On the other hand, whether the area

itself is a #P real number depends on the open question of whether NP = UP .

Circumscribed rectangles and squares [85]. We say a rectangle (or a

square) R circumscribes a Jordan curve Γ if (1) every point of Γ is inside or on R;

and (2) every side of R intersects Γ. Assume that Γ is polynomial-time computable.
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We are concerned with the problem of finding the minimum area of circumscribed

rectangles at all angles of Γ, and the similar problem for circumscribed squares.

We show that a bounded domain with a polynomial-time computable Jordan curve

Γ as the boundary may not have a computable minimum-area circumscribed rectangle.

We also show that the problem of finding the minimum area of a circumscribed

rectangle of a polynomial-time computable Jordan curve Γ is equivalent to a discrete

ΣP
2 -complete problem. For the related problem of finding the circumscribed squares

of a Jordan curve Γ, we show that for any polynomial-time computable Jordan curve

Γ, there must exist at least one computable circumscribed square (not necessarily of

the minimum area), but this square may have arbitrarily high complexity.

The pancake problem [84]. The pancake theorem, in the classic form,

states that the areas of two plane sets S1 and S2 can be bisected simultaneously by

a line L. This theorem is fundamental in topology in the sense that it is equivalent

to the Brouwer fixed point theorem. We are interested in the complexity of finding

the bisecting line L. We also study the basic problem of bisecting a set at a given

direction.

Our main results are: (1) the complexity of bisecting a nice (thick) polynomial-

time approximable set at a given direction can be characterized by the counting class

#P ; (2) the complexity of bisecting simultaneously two linearly separable nice (thick)

polynomial-time approximable sets can also be characterized by the counting class

#P ; and (3) for either of these two problems, without the thickness condition and the

linear separability condition (for the two-set case), it is arbitrarily hard to compute

the bisector, even if it is unique.
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Chapter 2

Computational Complexity of

Real-valued Problems

In this chapter, we survey the main methods and models of computational complexity

of real-valued problems. We explain in detail the oracle Turing machine model of Ko

and Friedman, since this is the model we will use. Basic descriptions of the discrete

complexity theory and computability theory are also included.

2.1 Notations

This dissertation involves notions used in both discrete computation and continuous

computation. The basic computational objects in discrete computation are integers

and strings in {0, 1}∗. A language is a subset of {0, 1}∗; we also use sets interchange-

ably with languages when no confusion is caused. The length of a string w is denoted

�(w). We write 〈w1, w2〉 to denote a fixed pairing function on w1 and w2; more pre-

cisely, 〈w1, w2〉 = 0�(w1)1w1w2 for any w1, w2 ∈ {0, 1}∗. We write ||S|| to denote the

number of elements in a (finite) set S, and Sc to denote the complement of S relative

to {0, 1}∗ (i.e., Sc = {0, 1}∗ − S).
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The basic computational objects in continuous computation are dyadic rationals

D = {m/2n : m ∈ Z, n ∈ N}, and we denote Dn = {m/2n : m ∈ Z}. Each dyadic

rational d has infinitely many binary representations with arbitrarily many trailing

zeros. For each such representation s, we write �(s) to denote its length. If the

specific representation of a dyadic rational d is understood (often the shortest binary

representation), then we write �(d) to denote the length of this representation.

We use R to denote the real line (and the class of real numbers) and R2 the 2-

dimensional plane. We will use the complex plane C instead of R2 when dealing with

analytic functions. We often use letters in boldface font, such as z, or two letters in

brackets, such as 〈x, y〉, to represent a point in R2. For any point z ∈ R2 and any

set S ⊆ R
2, we let dist(z, S) be the distance between z and S; that is, dist(z, S) =

inf{|z− z′| : z′ ∈ S}, where | · | denotes the absolute value. The complement of a set

S ⊆ R2 relative to R2 is written as Sc (i.e., here Sc = R2 − S), the closure of a set S

is written as S, and the boundary of a set S is written as ∂S.

2.2 Computability, Turing Machines and Oracle

Turing Machines

Computability theory studies what computers can and cannot do. Introduced by

Allan Turing [75], Turing machines are one of the main abstractions used in com-

putability theory. A Turing machine, in a few words, is a finite-state machine with

an external storage medium such as a tape (see, e.g., Hopcroft and Ullman [38] and Du

and Ko [26]). According to the Church-Turing Thesis, Turing machines are equivalent

to all ordinary computers in terms of theoretical computational power.

Because Turing machines have the ability to back up(i.e., shift to left) in their

input tape, it is possible for a Turing machine to run forever on some inputs. We say
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that a Turing machine can decide a language if it eventually will halt on all inputs and

give an answer. A language that can be so decided is called a recursive language. 1

We can further describe Turing machines that will eventually halt and give an answer

for any input in a language, but which may run forever for input strings which are

not in the language. Such Turing machines could tell us that a given string is in the

language, but we may never be sure based on its behavior that a given string is not in

a language, since it may run forever in such a case. A language which is accepted by

such a Turing machine is called an r.e. (short for recursively enumerable) language.

There exists an r.e. language that is not recursive.

There are both deterministic Turing machines and nondeterministic Turing ma-

chines (see, e.g., Du and Ko [26]). The transition function of a nondeterministic

Turing machine may take multiple values, which means for an input to the machine,

there may be multiple computation paths. As nondeterministic Turing machines can

be simulated by deterministic Turing machines, there is no difference between them

regarding computability. However, as far as complexity is concerned, they may be

quite different.

An oracle Turing machine is an ordinary Turing machine enhanced with a state,

or a black box, called an oracle. The computation of an oracle Turing machine is just

like an ordinary Turing machine, except that at the oracle state, an oracle is queried

to give an answer to proceed. Oracle Turing machines are more powerful than Turing

machines if the oracles are undecidable problems such as the halting problem. In the

theory of computational complexity, often problems of certain complexity are used as

oracles.

A deterministic (function-)oracle Turing machine is a deterministic Turing ma-

chine equipped with an additional query tape and two additional states: the query

state and the answer state. The oracle Turing machine M works as follows: First,

1In the literature, recursive is used interchangeably with computable.
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on input x with oracle function f (which is a total function on {0, 1}∗), it begins the

computation at the initial state and behaves exactly like the ordinary Turing machine

when it is not in any of the special state. The machine is allowed to enter the query

state to make queries to the oracle f , but it is not allowed to enter the answer state

from any ordinary state. Before it enters the query state, machine M needs to pre-

pare the query string y by writing the string y on the query tape. After the machine

enters the query state, the computation is taken over by the oracle f , which will (1)

read the string y on the query tape; (2) replace y with string f(y); and (3) put the

machine into the answer state. Then the machine continues from the answer state

as usual. The actions taken by the oracle count as only one unit of time. We write

Mf (x) to denote the computation of M on input x using oracle f .

A nondeterministic (function-)oracle nondeterministic Turing machine is a nonde-

terministic Turing machine equipped with an additional query tape and two additional

states: the query state and the answer state. The computation of a nondeterministic

oracle Turing machine is similar to that of a deterministic oracle Turing machine, ex-

cept that at each nonquery state a nondeterministic oracle Turing machine can make

a nondeterministic move.

A set-oracle Turing machine is a special kind of function-oracle Turing machine

with the oracle being a set (thus the answer to a query to the oracle is always “yes”

or “no”), since a set can be viewed as a function from {0, 1}∗ to {0, 1}.

2.3 Discrete Complexity Theory

Computational complexity theory studies the resources, or cost, of computation re-

quired to solve a given computational problem. Discrete complexity theory studies

the complexity of discrete computational problems. There are various computational

models in discrete complexity theory, and we mainly use the Turing machine model
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and the circuit model. Here we present the theories based on these two models; for

more details, see any standard computational complexity textbook, such as Du and

Ko [26] and Papadimitriou [59].

2.3.1 NP theory

The Turing machine-based complexity theory plays an important role in computa-

tional complexity theory. Based on the Turing machine model, a number of complex-

ity classes, such as P , NP , #P , PSPACE and LOGSPACE, have been defined,

and their relationship has been widely studied. Among all these relations, the P

versus NP question, i.e., the question of whether P equals NP , is the central issue

of the complexity theory.

We first define complexity classes of languages. The two fundamental complexity

classes are the complexity classes P and NP defined as follows.

P : the class of sets accepted by deterministic polynomial-time Turing machines.

NP : the class of sets accepted by nondeterministic polynomial-time Turing machines.

Then we use oracle Turing machines to define the polynomial-time hierarchy.

Let A be a set and C be a complexity class. We let NPA denote the class of

sets accepted by polynomial-time nondeterministic oracle Turing machines using the

oracle A, and let NP C denote the class of sets accepted by polynomial-time nonde-

terministic oracle Turing machines using an oracle B ∈ C (i.e., NP C =
⋃
B∈C

NPB).

For a complexity class C, we use co-C to denote the complexity class of sets whose

complements are in C, i.e., co-C = {A ⊆ {0, 1}∗ : Ac ∈ C}.

Definition 2.3.1 For integers n ∈ N, complexity classes ΔP
n , ΣP

n , and ΠP
n are defined
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as follows:

ΔP
0 = ΣP

0 = ΠP
0 = P,

ΣP
n+1 = NPΣP

n ,

ΠP
n+1 = co-ΣP

n+1,

ΔP
n+1 = PΣP

n , n ≥ 0.

The class PH is defined as the union of ΣP
n over all n ≥ 0.

Thus, ΣP
1 = NP , ΣP

2 = NPNP , and ΣP
3 = NPNPNP

, and so on.

The above are complexity classes defined based on running time. There are also

complexity classes defined based on space usage.

PSPACE: (or, NPSPACE) is the complexity class of sets accepted by polynomial-

space deterministic (or respectively, nondeterministic) Turing machines.

LOGSPACE: (or, NLOGSPACE) is the complexity class of sets accepted by log-

space deterministic (or respectively, nondeterministic) Turing machines.

It is well known that PSPACE = NPSPACE. We often write L for LOGSPACE

and NL for NLOGSPACE.

Accompanying each complexity class C of languages, there is a corresponding

complexity class FC of functions (mapping strings to strings), which uses the same

amount of resources but the outputs are strings instead of “yes” or “no”. For example,

FP is the class of functions computable by deterministic polynomial-time Turing

machines.

Next we define the counting class #P and some classes related to it (sometimes

we call all these classes counting classes to emphasize the relationship between them).

These classes occur often in complexity theory of real analysis, because the complexity

of integration is closely related to #P (see Ko [40]).

#P : the class of functions that count the number of accepting paths of nondetermin-

istic polynomial-time machines.
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#L: the class of functions that count the number of accepting paths of nondetermin-

istic log-space machines.

#NP : (or, # · NP) 2 the class of functions φ : {0, 1}∗ → N with the following

property: There exist a set B ∈ NP and a polynomial function p such that, for

any w ∈ {0, 1}∗,

φ(w) = ‖{u ∈ {0, 1}∗ : �(u) = p(�(w)), 〈w, u〉 ∈ B}‖.

⊕P : the class of sets A for which there exists a nondeterministic polynomial-time

Turing machine M such that for all x, x ∈ A if and only if there are an odd

number of accepting paths for x in M ; equivalently, a set A is in ⊕P if there

exists a function G ∈ #P such that for all x, x ∈ A if and only if G(x) =

1 (mod 2).

MPb: the class of sets A for which there exist a function G ∈ #P and a function

φ ∈ FP such that for all x, x ∈ A if and only if the φ(x)-th bit in the b-ary

representation of G(x) is not zero, where b is an integer greater than one.

MP : the union of MPb over all b ≥ 2.

We also use the following complexity class UP .

UP : the class of sets that are accepted by nondeterministic polynomial-time Turing

machines that have, on any input, at most one accepting computation.

2In the original paper of Valiant [76], the notation #NP was defined to mean the class #PNP .

Hemaspaandra and Vollmer [34] pointed out that, in view of the characterization of #P of Theorem

2.3.2(c) below, it appears to be more appropriate to define #NP to mean the class we defined here,

and proposed, in a general framework, the notation # ·NP for this class. Here, we use #NP for its

simplicity.
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The relations between the complexity classes defined above have been studied

since 1970s, which we summarize below; for detailed relations and proofs, see for

example, the textbook by Du and Ko [26]. Note that whether any of the inclusions

⊆ below, including P ⊆ NP , is proper, is a major question in the NP theory. It can

be seen that #P is a very powerful class.

Theorem 2.3.2 (a) A set A ⊆ {0, 1}∗ is in NP if and only if there exist a set B ∈ P
and a polynomial function p such that, for any w ∈ {0, 1}∗,

w ∈ A ⇐⇒ (∃u, �(u) = p(�(w))) 〈w, u〉 ∈ B.

(b) A set A ⊆ {0, 1}∗ is in UP if and only if there exist a set B ∈ P and a

polynomial function p such that, for any w ∈ {0, 1}∗,

w ∈ A ⇐⇒ (∃u, �(u) = p(�(w))) 〈w, u〉 ∈ B
⇐⇒ (∃ a unique u, �(u) = p(�(w))) 〈w, u〉 ∈ B.

(c) A function φ : {0, 1}∗ → N is in #P if and only if there exist a set B ∈ P
and a polynomial function p such that, for any w ∈ {0, 1}∗,

φ(w) = ‖{u ∈ {0, 1}∗ : �(u) = p(�(w)), 〈w, u〉 ∈ B}‖.

(d) For all k > 0, ΣP
k ∪ ΠP

k ⊆ ΔP
k+1 ⊆ Σk+1 ∩ΠP

k+1 ⊆ PH ⊆ PSPACE.

(e) L ⊆ P ⊆ PSPACE, L �= PSPACE.

(f) PH ⊆ P#P .

(g) P ⊆ UP ⊆ NP ⊆ P#P .

(h) P = UP iff #P = #NP .

A set T ⊆ {0, 1}∗ is called a tally set if T ⊆ {0}∗. For a complexity class C of

sets of strings in {0, 1}∗, we let C1 denote the complexity class {A ∈ C : A ⊆ {0}∗}.
Similarly, for a complexity class FC of functions from {0, 1}∗ to {0, 1}∗, we let FC1

denote the complexity class {F ∈ FC : the domain of F is {0}∗}. In this dissertation,

we will use complexity classes FP1, P1, #P1, NC 1, L1 and so on.
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2.3.2 Circuit complexity

Circuit complexity is another complexity theory that we will study in this dissertation.

While NP theory focuses on feasible sequential complexity, circuit complexity focuses

on feasible parallel-time complexity.

The model for circuit complexity is the Boolean circuit model. A Boolean circuit

is a directed acyclic graph with leaves being input gates and roots being output gates;

each non-leaf vertex in a Boolean circuit is a Boolean function AND, OR or NOT. For

each n,m ∈ N, a Boolean circuit C with n input gates and m output gates computes

a function from {0, 1}n to {0, 1}m.

For i ≥ 0, we let NC i be the class of languages A ⊆ {0, 1}∗ for which there exists

a family {Cn} of Boolean circuits with the following properties (see, e.g., Du and

Ko [26]):

(a) There exists a Turing machine M that constructs (the encoding of) each Cn in

space O(logn).

(b) For all n > 0, Cn has n input nodes and accepts An = A ∩ {0, 1}n.

(c) There exist a polynomial function p and a constant k > 0, such that for all n,

size(Cn) ≤ p(n) and depth(Cn) ≤ k logi n.

We call {Cn} an NC i circuit family. We let NC be the union of NC i for all i ≥ 0.

Condition (a) above assures that the circuit family {Cn} is log-space uniform.

This condition is very strong. While integer addition and multiplication are easily

seen to be in NC1 and L, integer division and iterated integer multiplication are much

harder, and were proved to be in NC 1 and L only a few years ago (see Cook et al.

[7] and Chiu et al. [17]).

We summarize below the relations between complexity classes L, NC , P and so

on. The interested readers are referred to Du and Ko [26] and Papadimitriou [59] for
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general properties of these complexity classes and to Alvarez and Jenner [4] for that

of #L.

Theorem 2.3.3

NC 1 ⊆ L ⊆ NL ⊆ NC 2 ⊆ NC ⊆ P ⊆ NP

and

#L ⊆ FNC 2 ⊆ FP ⊆ #P .

Whether any of the above inclusions is proper is unknown. Note that P is con-

sidered the class of feasible sequentially solvable questions, and NC is considered the

class of feasible parallelizable questions. Whether NC equals P is another important

question besides the P versus NP question in complexity theory.

2.4 Complexity of Real Numbers and Functions

From different viewpoints, researchers have proposed many models for continuous

computation. We will use the oracle Turing machine model of Ko and Friedman,

because it connects it with the solid Turing machine-based discrete complexity theory

(i.e., NP theory), which makes it easy to gain insights to the world of continuous

computation. In this and next sections, we will explain continuous complexity theory

based on the oracle Turing machine model. Other models, including models also based

on the (discrete) Turing machine model and models based on other computational

devices, will be discussed in the last section of this chapter.

2.4.1 The Oracle Turing Machine Model of Ko and Friedman

The oracle Turing machine model of Ko and Friedman [40; 42] uses the Turing machine

as the basic model of computation. In this model, the complexity of a computable real
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number x is measured as the number of bit operations to find a binary approximation

d to x with a required precision. This extends Turing’s notion of computable real

numbers that a real number x is computable if there exists a Turing machine that

can compute an approximation d to x with any required precision.

We also describe Hoover’s Boolean circuit model [36] for NC real functions, which

is consistent with the model of Ko and Friedman.

Representations of real numbers. A real number has a few basic rep-

resentations. The most basic one is the Cauchy function representation. We say a

function φ : N → D binary converges to a real number x, or is a Cauchy function

representation of (or, simply, represents) x, if (i) for all n ≥ 0, φ(n) ∈ Dn, and (ii)

for all n ≥ 0, |x− φ(n)| ≤ 2−n. Among the set CFx of all Cauchy function represen-

tations of x, there is a unique function bx : N → D that binary converges to x and

satisfies the condition x− 2−n < bx(n) ≤ x for all n ≥ 0. We call this function bx the

standard Cauchy function of x. We say two functions φx, φy : N→ D binary converge

to (or represent) a point z := 〈x, y〉 ∈ R2 if φx and φy binary converge to x and y,

respectively.

For each Cauchy function representation φ : N→ D of a real number x, there is an

associated (general) left cut representation, namely, the set Lφ = {d ∈ Dn : d ≤ φ(n),

n ≥ 1}. Note that the set Lφ also uniquely determines the Cauchy function φ since

φ(n) = max{Dn ∩ Lφ} for all n ≥ 1. In other words, for a real number x, there is an

1-1 correspondence between the set of its Cauchy function representations and the set

of its left cuts. Meanwhile, for a left cut L of a real number x, there exists exactly one

Cauchy function representation φ of x such that Lφ = L; more precisely, the function

φ satisfies φ(n) = max(Dn ∩ L). The (general) left cut of x that is associated with

the standard Cauchy function bx of x is called the standard left cut of x.
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2.4.2 Computable Real Numbers

The computability and complexity of a real number can be defined according to the

computability and complexity of its Cauchy function and left cut representations. It

may be natural to use the Cauchy function representation since a Cauchy function

representation of a real number writes out its approximations directly; however, the

left cut representation is more useful when we consider complexity classes C of sets,

such as NP and ΣP
2 , instead of complexity classes of functions.

Definition 2.4.1 (1) A real number x is said to be computable if it has a computable

left cut.

(2) A real number x is said to be a left C-real number if it has a left cut in C, and

x is a right C-real number if it has a right cut (the complement of a left cut) in C,
where C is a complexity class of sets.

Note that a real number x is computable iff it has a computable Cauchy function

representation. The prefixes left and right in the above definition are necessary since,

for many complexity classes C (e.g., C = NP ), it is still not known whether the

complement co-C of C is identical to C or not. As P = co-P , we can say a number x

is a P -real number, or equivalently, x is polynomial-time computable, if x is a left or

right-P real number. We remark that a real number x is polynomial-time computable

iff it has a polynomial-time computable Cauchy function representation since, from

a polynomial-time computable left cut L of x, we can compute the Cauchy function

φ of x with which L is associated in polynomial time using binary search (recall that

φ(n) = max(Dn ∩ L) for all n ≥ 1).

There are non-computable real numbers. This is because, there are uncountably

many numbers on the real line, but there are only countably many Turing machines

and thus only countably many numbers can be computed. On the other hand, if one
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can describe a number, it often turns out that the number is computable, since the

description often implies an algorithm.

We give below a few examples to demonstrate the concepts.

Example 2.4.2 Show that π is computable, polynomial-time computable and log-

space computable.

proof. There are a great number of mathematical methods to compute π, and all of

them can be converted into a proof that π is computable in Definition 2.4.1. We only

need to show that π is log-space computable in order to show π is computable and

polynomial-time computable, since L ⊆ P .

We use the Bailey-Borwein-Plouffe formula [6]:

π =

∞∑
k=0

16−k(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6
).

A log-space algorithm to compute π with a required precision is as follows.

Input: a positive integer n, which means that the required precision is 2−n.

Approximation. We use
∑n

k=0 16−k( 4
8k+1
− 2

8k+4
− 1

8k+5
− 1

8k+6
) to approximate π,

which introduces an error ≤ 16−(n+1). For each k ∈ {0, 1, · · · , n}, a dyadic ap-

proximation ak to the term 16−k( 4
8k+1
− 2

8k+4
− 1

8k+5
− 1

8k+6
) (k ∈ {0, 1, · · · , n})

with error ≤ 16−n can be computed in O(logn) space, since integer addition,

multiplication and division are all log-space computable (see Cook et al. [7]

and Chiu et al. [17]). It takes O(logn) space to find the sum
∑n

k=0 ak. �

Many other “π formulas” lead to log-space algorithms. A further analysis shows

that it takes linear time to compute the n-th bit of π. However, whether there is

a linear algorithm to compute the first n bits of π (in other words, whether π is

computable in real time), remains an open question.
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Many other well-known mathematical constants are also polynomial-time com-

putable or even log-space computable. It is easy to show that the natural loga-

rithm base e = exp(1) is also log-space and polynomial-time computable. The Euler-

Mascheroni constant γ, defined by γ := limn→∞(
∑n

k=1
1
k
− ln(n)), is also log-space

and polynomial-time computable; however, the proof is nontrivial (see, e.g., Gourdon

et al. [32] for a survey of this problem).

Example 2.4.3 Show that there is a real number that is computable in 2O(n) time

but is not polynomial-time computable.

Proof. Let A ∈ {0}∗ be a language that is computable in 2O(n) time but is not

polynomial-time computable (for the existence of such a language, see, e.g., Hopcroft

and Ullman [38]). Note that A must contain infinitely many strings. Let χA be the

characteristic function of A. Define

x =

∞∑
k=0

χA(0k)2−2k.

The number x is computable in 2O(n) time, because for any n ∈ N, we can let

the recognizer of A check in 2O(n) time whether 0k’s (0 ≤ k ≤ n/2) are in A (i.e.,

to compute χA(0k)), and output d =
∑

0≤k≤n/2 χA(0k)2−2k as an approximation to x

with error ≤ 2−n. Next we prove that x is not polynomial-time computable.

Assume, by way of contradiction, that x is polynomial-time computable by a

machine M . To check whether 0n ∈ A, let M compute an approximation d ∈ D2n+1

to x such that |d − x| ≤ 2−(2n+1). Let d′ =
∑

0≤k≤n χA(0k)2−2k. We have d′ ≤ x <

d′ + 2−(2n+1) and d ≥ d′ (because d′ is the minimum possible approximation in D2n+1

to x with the precision 2−(2n+1)). More precisely, d′ ≤ d ≤ d′ + 2−(2n+1). Note that

the (2n+ 1)-st bit of d′ is 0 and thus is no more than the (2n+ 1)-st bit of d. If the

2n-th bit of d is different from that of d′, we must have d − d′ ≥ 2−2n > 2−(2n+1),

which is a contradiction to the fact that d ≤ d′ +2−(2n+1). Therefore, the 2n-th bit of
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d is the same as that of d′, which means that χA(0n) can be extracted from d. This

proves that A is polynomial-time computable, which is a contradiction. �

Suppose C is a complexity class of sets, such as P , NP , and L. We use CR to denote

the class of all C computable real numbers. We remark that the hierarchy of complex-

ity of real numbers is closely related to the hierarchy of discrete complexity classes.

For example, Ko [40, Theorem 3.10] proved that P = NP ⇒ PR = NPR⇒ P1 = NP1.

The exact classification of NP real numbers is left open. We would like to find two

natural discrete complexity classes such that PR = NPR iff these two complexity

classes coincide.

2.4.3 Computable Real Functions

To compute a real-valued function f : [0, 1] → R, we use an oracle Turing machine

as the computational model. Namely, the function f is computable if there exists

a Turing machine M such that for any oracle function φ that binary converges to a

number x ∈ [0, 1] and any integer n ∈ N, M outputs a dyadic number e such that

|e−f(x)| < 2−n; furthermore, we say f is polynomial-time computable if the machine

M that computes f is a polynomial-time machine. Here we still use Mφ(n) to denote

the computation of M on input n with an oracle φ; if φ represents a dyadic number

d, we also write Md(n) for Mφ(n).

Figure 2.1 illustrates the computation of f(x). To compute an approximation to

f(x), the machine M queries the oracle to obtain an approximation d to x, then M

computes an approximation e to f(d), and outputs e as an approximation to f(x).

Since |f(x)− e| ≤ |f(x)− f(d)|+ |f(d)− e|, if the errors |f(x)− f(d)| and |f(d)− e|
are well controlled, so is |f(x)− e|.

We give an equivalent definition for this concept below that does not require the

use of oracle Turing machines. Note that if a function f is computable, then f has
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Figure 2.1: The computation of f(x).

some modulus function m : N → N of continuity in the sense that, for n ∈ N and

x, y ∈ [0, 1], |x − y| ≤ 2−m(n) ⇒ |f(x) − f(y)| ≤ 2−n. This property allows f to be

approximated by its values at dyadic points. The computability and complexity of

f depend on the computability and complexity of m and of approximations to f at

dyadic points.

Proposition 2.4.4 A real function f : [0, 1]→ R is computable if

(a) f has a computable modulus of continuity, and

(b) there exists a computable function ψ : (D ∩ [0, 1]) × N → D such that for all

d ∈ D ∩ [0, 1] and all n ∈ N, |ψ(d, n)− f(d)| ≤ 2−n.

Proposition 2.4.5 A real function f : [0, 1]→ R is polynomial-time computable if

(a) f has a polynomial modulus of continuity, and

(b) the function ψ in Proposition 2.4.4 is computable in time polynomial in p(�(d)+

n).
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We call the integer n in ψ(d, n) above the (output) precision parameter for f .

We use n instead of log n for the complexity measure in Proposition 2.4.5 since we

actually require the error to be within 2−n instead of within n−1.

NC functions can be defined based on the properties in Proposition 2.4.5:

Definition 2.4.6 Suppose i ≥ 0. A function f : [0, 1]→ R is NC i computable if and

only if

(a) f has a polynomial modulus, and

(b) There exists an NC i circuit family {Ck} such that for any integers m,n > 0

and any d ∈ Dm ∩ [0, 1], C〈n,m〉 outputs a dyadic rational number e such that

|e− f(d)| ≤ 2−n.

We remark that computable and polynomial-time computable functions can also

be defined using the left cut representation. For example, a function f : [0, 1] → R

is polynomial-time computable by Proposition 2.4.5, if and only if there exists a

polynomial-time oracle machine M such that for any oracle φ that binary converges

to a real number x ∈ [0, 1], the set {d ∈ D : Mφ(d) accepts} is a general left cut of

f(x). Indeed, it might be more convenient to define functions of higher complexity

(e.g., NP , ΣP
2 ) using the left cut representation, since classes of sets are more common

than classes of functions on these levels.

Definition 2.4.7 A real function f : [0, 1] → R is said to be computable in NP

time, or simply an NP-real function, if there exists a nondeterministic polynomial-

time oracle machine M such that for any oracle φ that binary converges to a real

number x ∈ [0, 1], the set {d ∈ D : Mφ(d) accepts} is a general left cut of f(x).

Example 2.4.8 Show that the function f(x) = exp(x) = ex on [0, 1] is polynomial-

time computable.
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Proof. The proof is similar to that of Example 2.4.2. We expand ex to a power series:

ex =
∞∑
n=0

xk

k!
.

Then to approximate ex with a required precision 2−n, we approximate the first

n terms in the power series and sum them up, and ignore other terms. �

The above definitions are certainly extensible to functions from [0, 1] or [0, 1]2

to R or C, and to other complexity classes. We will present the definitions when

we need them in later chapters. Suppose C is a complexity class such as P ,L and

NC . We use CC[0,1] to denote the class of all C computable real functions defined on

[0, 1]. Complexity classes of real functions have hierarchies similar to that of discrete

complexity classes. For example, Ko [40] proved that P = NP iff PC[0,1] = NPC[0,1],

and Hoover [37] proved that NC = P iff NC C[0,1] = PC[0,1]. Ko [40] gave many

important results on characterization of continuous problems. We present one of

them below as a flavor.

Proposition 2.4.9 (a) A real number x is a left NP-real number if and only if

there is a polynomial-time computable real function f : [0, 1] → R such that x =

max0≤t≤1 f(t).

(b) A real number x is a left ΠP
2 -real number if and only if there is an NP-real

function f : [0, 1]→ R such that x = min0≤t≤1 f(t).

2.5 Computable Sets in R
2

Sets in R2 are an important subject in geometry, as well as real and complex analysis.

The properties of these sets themselves or of functions defined on them are widely

studied, in both mathematics and computer science. The basic questions to be studied

here are the complexity of operations defined on sets which have polynomial-time

computability structures.
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Chou and Ko [18] introduced a few notions of polynomial-time computable sets

in R
2, which we list below.

Given an oracle Turing machine M and a set S ⊆ R2, for n ∈ N, we define an

error set En(M) as the set of all z ∈ R2 having a Cauchy function representation

〈φ, ψ〉 such that Mφ,ψ(n) �= χS(z), where χS(z) is the characteristic function defined

on R2 such that χS(z) = 1 if z ∈ S, and 0 otherwise.

Definition 2.5.1 (a) We say a set S ⊆ R2 is polynomial-time approximable (or

simply P -approximable) if there exists a polynomial-time oracle Turing machine M

such that for any input n, the error set En(M) has size μ∗(En(M)) ≤ 2−n, where μ∗

is the outer Lebesgue measure.

(b) We say a set S ⊆ R2 is polynomial-time recognizable (or simply P -recognizable)

if there exists a polynomial-time oracle Turing machine M such that Mφ,ψ(n) = χS(z)

whenever 〈φ, ψ〉 represents a point z whose distance to ΓS is > 2−n (where ΓS is the

boundary of S); i.e., En(M) ⊆ {z : dist(z,ΓS) ≤ 2−n}.

The above two concepts are not equivalent by Chou and Ko [18]: there exists a set

S that is P -recognizable but not P -approximable; the polynomial-time probabilistic

class BPP will be identical to P if all P -approximable sets are P -recognizable. On the

other hand, while there exists a P -recognizable set S whose measure is not recursive,

the measure of a P -approximable set is polynomial-time computable relative to an

oracle in #P .

Because the Lebesgue measure μ is consistent with area of the traditional sense

(e.g., if S is a rectangle, μ(S) is the area of S), hereafter we use area and the Lebesgue

measure interchangeably. Note that there exists a set S ⊆ R2 that is not measurable.

However, in this dissertation we mainly consider measurable sets S.

In computational complex analysis, there is another basic object: a bounded,

simply connected region; that is, a bounded, connected open set with no holes (or,
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equivalently, whose complement is connected). A particularly interesting class of

simply connected regions are those whose boundaries are Jordan curves, that is, simple

closed curves. In mathematics, a Jordan curve Γ may be represented as the image of

a continuous function f from [0, 1] to R2, where f is 1-1 on [0, 1) and f(0) = f(1).

Note that f is continuous, but not required to be smooth. In our setting, we further

require that f is computable. If f is polynomial-time computable, we say the curve Γ

is polynomial-time computable. A bounded, simply connected region whose boundary

is a polynomial-time computable Jordan curve, called a P-computable Jordan domain,

is often the main object in our studies.

Let S be a P -computable Jordan domain. In order to study functions f defined

on the domain S, we need to define the notion of computability and complexity of

such functions. Intuitively, the computability of a complex function f : S → C can

be defined as follows: f is computable on S if there exists an oracle Turing machine

M such that, given any two oracles φ and ψ that represent a complex number z ∈ S
and an input n ∈ N, M outputs a dyadic point d such that |d − f(z)| ≤ 2−n. This

definition, however, appears too strict. We observe that, in general, the function f

may not have a continuous extension on the boundary ∂S of S, hence the oracle

Turing machine M for f may not halt on some z ∈ ∂S, and, in addition, it may

require extra time to compute the correct value of f(z) when z is very close to the

boundary ∂S.

Our approach to resolve this issue is to be less restrictive and allow the machine

M that computes f to make errors, while the errors are required to be under control.

This notion is a generalization of the notion of polynomial-time recognizable sets

introduced in Chou and Ko [18].

Definition 2.5.2 (a) Let S be a bounded, simply connected domain whose boundary

∂S is a computable Jordan curve. A function f : S → C is computable on domain S if
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there exists an oracle Turing machine M such that for any oracles (φ, ψ) representing

a complex number z ∈ S, |Mφ,ψ(n) − f(z)| ≤ 2−n for all inputs n > 0 whenever

δ(z, ∂S) > 2−n.

(b) Furthermore, f is polynomial-time computable on the domain S if f is com-

putable on S by an oracle Turing machine that operates in polynomial time.

The following definition is the NC version of this approach, which will be used

later.

Definition 2.5.3 Let S ⊆ C be a bounded domain. Suppose i ≥ 0. A complex

function f : S → C is NC i computable if the following conditions hold:

(a) f has a polynomial modulus. More precisely, there exists a polynomial function

p : N → N such that for all m,n ∈ N and all z1, z2 ∈ S, if δ(z1, ∂S) ≥ 2−p(m) and

|z1 − z2| ≤ 2−p(m+n), then |f(z1)− f(z2)| ≤ 2−n.

(b) There exists an NC i circuit family {Cn} such that for any integers m,n, k > 0

and a dyadic point d ∈ S∩D2
m, C〈m,n+k〉 outputs a dyadic point e such that |e−f(d)| ≤

2−n provided that δ(d, ∂S) ≥ 2−p(k), where p is the polynomial in (a).

2.6 Other Models

We briefly explain other computational models for continuous functions here. Some

of these models also use the Turing machine as a basic model; other models are based

on different computational devices, such as the real RAM. Each model aims at a

specific domain of problems.

Turing machine-based Models The Turing machine model is considered the

basic model for computability and complexity theory in the discrete world. Many

models of continuous computation use the Turing machine model as the basic model.
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One of these models is the Type-2 Theory of Effectivity (TTE) (see, e.g., Weihrauch

[77; 78]), which extends the ordinary (Type-1) computability and complexity theory.

The machines used in this model, called Type-2 machines, transfer infinite sequences

to infinite sequences, where infinite sequences (of, e.g., decimal fractions) are used

as names of real numbers. Therefore, a Type-2 machine M is used to compute a

real function f by computing a name v of f(x) when a name u of a real number x

is presented. Type-2 machines, which never halt, are extensions of Turing machines.

This model is widely used in computable analysis by many researchers(see, e.g., [5;

64; 86; 87]). Weihrauch’s book “Computable Analysis” [78] collects many results in

analysis obtained by applying this model. TTE (as well as the model used by Pour-El

and Richards [63]) is essentially equivalent to the oracle Turing machine model in the

sense that the class of computable real functions remains the same in both models.

There is another Turing machine-based model by Papadimitriou [58]. This model

is very close to the oracle Turing machine model. In order to compute a function f(x)

in this model, instead of using a Cauchy function φ of x as an oracle, it sometimes

uses the code of a Turing machine that computes x as the input.

Real-RAM-based models The real-RAM model [55] is a generalization of the

Random Access Machine (RAM) (see, e.g., [22]). The basic objects in a real-RAM

are integers and real numbers. In other words, besides registers for integers, a real-

RAM also contains registers for real numbers. A real-RAM can be viewed as a Turing

machine which can store a real number in each tape cell. In a real-RAM, two real

numbers can be added, multiplied, divided, or compared in one step. This is quite

different from the Turing machine-based models, in which it is undecidable whether

two real numbers are equal (see, e.g., Ko [40, Theorem 2.5]).

It turns out that many fundamental computable functions with respect to the

Turing machine-based models are not computable in the real-RAM model; for exam-
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ple, neither the square root function
√
x nor the exponential function ex on R are

computable in a real-RAM. On the other hand, a real-RAM can also compute some

functions that are incomputable on a Turing machine based model. A computable

function in a Turing machine based model must be continuous, while a computable

function in a real-RAM model can be discontinuous.

Real-RAMs are unrealistic since it is impossible to identify an arbitrary real num-

ber by a finite amount of information and therefore it is impossible to handle such a

number in a finite amount of time or with a finite amount of space by any physical

devices. On the other hand, however, using floating-point numbers the real-RAM

computations can be “approximated” reasonably to some extent. Treating real num-

bers simply as objects also make the real-RAM model “easy to use”. The real-RAM

model is widely used in some theories such as algebraic complexity (see, e.g., [14]).

Information-based complexity theory. Information-based complexity the-

ory, established by Traub et al. [73], is a complexity theory that distinguishes the

notion of information complexity from the notion of computational complexity of a

problem.

Informally speaking, for any given problem with an input function f , a finite

amount of information N = N(f) can be collected. There might be infinitely many

functions g in the domain of the input functions that have the same set of information

N(g) = N . The radius r(N) of N is defined as the radius of the minimum ball that

contains all these functions g, where the measure of the ball depends on the problem.

A basic theorem in this theory is that the information N is strong enough to solve

a problem with an error bounded by ε with respect to all functions in the domain

(disregarding the computational complexity) if and only if r(N) < ε. Using this

theorem, for a specific problem, the optimum and the optimal algorithm with respect

to this optimal information can be computed.
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The computational model used in this theory is close to the real-RAM model but

with some new, non-conventional operations. It can be thought of as an extended

real-RAM model with oracles, where the information N(f) is from the oracles.

BSS model. Blum et al. [10] introduced a new theory of NP -completeness

based on the BSS model, an algebraic computational model close to the real-RAM

model. Just like the real-RAM model, the BSS model is more suitable for algebraic

computational problems. However, this theory differs from the classic algebraic com-

plexity theory with two new features. First, the machine in this theory can prestore

a finite number of fixed real numbers, or in other words, the machine is parameter-

ized. This leads to uncountably many machines since there are uncountably many

real numbers, while in the Turing machine-based theories, there are only a countable

number of machines. Second, a nondeterministic node of a machine in this theory can

guess a real number with infinite precision, while in Turing machine-based theories,

a nondeterministic node can guess only a single-bit. So nondeterministic machines

in this theory cannot be simulated by deterministic machines, since from a nondeter-

ministic node, there can be an uncountable number of guesses.

To be more precise, a (deterministic) machine in this theory is a real-RAM with

arithmetic operations and the compare-and-branch operation that compares two real

numbers and then branches to new instructions according to the comparison result.

Let R
∞ denote the set of all infinite sequences of real numbers with only a finite

number of nonzeros. A sequence x̄ = (x1, x2, · · · ) ∈ R∞ is of size n, denoted �(x̄) = n,

if xn �= 0 and for all k > n, xk = 0. A decision problem A is a subset of R∞. The

complexity class PR (or, NPR) in this theory is the class of decision problems that

are accepted by deterministic (or, respectively, nondeterministic) polynomial-time

machines in this theory, where the running time for deciding whether a sequence

x̄ ∈ R∞ is in a decision problem A is expressed in terms of �(x̄). The question of
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whether PR = NPR in this theory is not known to be equivalent to the classical P

versus NP question. The best known result is P = PSPACE ⇒ PR = NPR [10].

Exact Geometric Computation (EGC). Yap [80; 81] proposed a computa-

tional framework, called the exact geometric computation (EGC for short), in which

the numerical and algebraic worlds can co-exist and complement each other. In other

words, EGC is a framework that merges the Turing machine-based models and real-

RAM-style models, and the computation in EGC is “semi-numerical”. We have seen

that a big difference between the Turing machine-based models and the real-RAM-

based models is their behavior on the zero problem, which asks whether a given real

number equals zero. Namely, this problem is undecidable in the Turing machine-

based model, and is a trivial question in the real-RAM-based models. An important

feature of the EGC theory is that the zero problem in this theory is “partially ap-

proximable” in the sense that for a class of expressions E involving some operators

and integers, whether E = 0 or not can be decided as follows: a zero bound B(E) > 0

can be computed so that if E �= 0, then |E| > B(E); then an approximation Ẽ to E

is computed so that |Ẽ − E| < B(E)/2, and “E = 0” is declared if |Ẽ| < B(E)/2.
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Chapter 3

The Logarithm and Square Root

Functions on a Complex Domain

3.1 Introduction

Finding single-valued, analytic branches of a multi-valued function defined on a simply

connected domain1 S is a fundamental problem in computational complex analysis (cf.

Henrici [35]). Many well-known functions, such as the logarithm function and the

square root function, are multi-valued functions and have (probably infinitely) many

single-valued, analytic branches on certain simply connected domains. For some

domains S (e.g., the complex plane with the positive half real axis removed), it is

easy to find these branches for these functions. However, in general, it is not an easy

task. In particular, the computational complexity of finding single-valued, analytic

branches often depends on the topological structure and complexity of the domain S.

To be more precise, let S and T be two bounded, simply connected domains in

the two-dimensional plane such that S and T are disjoint (i.e., S ∩ T = ∅). The

logarithm function defined on S × T is the multi-valued function log(z − a) that

1Recall that a domain is a nonempty, connected, open subset of the complex plane C.
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satisfies elog (z−a) = z − a for z ∈ S and a ∈ T . It is well known that this function

log (z− a) has infinitely many single-valued, analytic branches. Nevertheless, for a

fixed pair 〈z0, a0〉 ∈ S × T , the value f1(z− a)− f1(z0− a0) remains the same for an

arbitrary single-valued, analytic branch f1 of log (z− a) (cf. Henrici [35]). Therefore,

to compute all single-valued, analytic branches of log (z− a), we only need to compute

f1(z−a)−f1(z0−a0) for an arbitrary single-valued, analytic branch f1 of log (z− a).

The value of f1(z−a)− f1(z0−a0) depends on the relative locations of z and z0 in S

and that of a and a0 in T . For instance, assume that z−a0 and z0−a0 have the same

argument (i.e., there exists an angle θ ∈ [0, 2π) such that z − a0 = |z − a0|eiθ and

z0− a0 = |z0− a0|eiθ). Then, the imaginary part of f1(z− a0)− f1(z0− a0) depends

on how many times a path in S from z0 to z must wind around the point a0. Thus,

the problem of finding single-valued, analytic branches of log (z− a) is closely related

to the problem of computing the winding numbers in a domain S, and is dependent

on the computational complexity of the domain S itself.

In this chapter, we study the problem of finding the single-valued, analytic branches

of the logarithm function log(z−a) and the square root problem
√

z− a, in the con-

text of complexity theory of real functions of Ko and Friedman [42]. In this theory,

we use the oracle Turing machine as the basic computational model, and define the

complexity of a real function in terms of precisions of the output values of the func-

tions under consideration. In particular, we focus on simply connected domains S in

the complex plane C whose boundaries ∂S are polynomial-time computable Jordan

curves, and use notions in discrete complexity theory to characterize the computa-

tional complexity of these functions defined on such a domain.

Note that f1(z−a)−f1(z0−a0) = (f1(z−a)−f1(z0−a))+(f1(z0−a)−f1(z0−a0))

for an arbitrary single-valued, analytic branch f1 of log(z − a), and any method of

computing f1(z− a)− f1(z0 − a) also applies to f1(z0 − a)− f1(z0 − a0). Therefore,
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as far as the computational complexity is concerned, we only need to study how to

compute f1(z− a)− f1(z0 − a), for a fixed z0 ∈ S ∪ ∂S. Under this setting, we can

formally state our problem as follows. (In the following, we let S denote the closure

S ∪ ∂S of S, and let S − a denote the domain {w− a | w ∈ S}.)

Logarithm Problem: Let S be a bounded, simply connected domain

whose boundary ∂S is a polynomial-time computable Jordan curve. Let

z0 be a fixed point in S. Given two points z ∈ S and a ∈ C−S, compute

f1(z− a) − f1(z0 − a), where f1 is an arbitrary single-valued, analytic

branch of log z on domain S − a.

Similarly, the problem of computing single-valued, analytic branches of
√

z− a

can be formulated in the following form.

Square Root Problem: Let S be a bounded, simply connected do-

main whose boundary ∂S is a polynomial-time computable Jordan curve.

Let z0 be a fixed point in S. Given two points z ∈ S and a ∈ C−S, com-

pute f1(z− a)/f1(z0 − a), where f1 is an arbitrary single-valued, analytic

branch of
√

z on domain S − a.

We observe that, in the above two problems, when z or a is on or very close to

the boundary ∂S, the function value, or its approximation, may be incomputable or

very hard to compute. This is because the underlying function cannot, in general, be

extended beyond ∂S, and because the problem of determining whether a point z is

on a computable curve Γ is undecidable [44].

Thus, we follow the approach discussed in Section 2.5 to allow the underlying

oracle Turing machine to have errors when z or a is close to ∂S. More precisely, when

the oracle Turing machine computes the value of a function at z and a up to precision
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2−n, it may make errors if either z or a is close to ∂S within a distance of ≤ 2−n (cf.

Definition 2.5.2).

Based on this less restrictive model, we are able to characterize the computational

complexity of the logarithm problem and the square root problem with the counting

complexity classes #P , ⊕P and MP (also known as MidBitP in literature). (See

Section 2 for the definitions of these complexity classes.) Our main results can be

stated in terms of the relations between class P and these counting complexity classes:

(1) The logarithm problem is polynomial-time solvable if and only if FP = #P .

(2) If P = MP , then the square root problem is polynomial-time solvable.

(3) If P �= ⊕P , then the square root problem is not polynomial-time solvable.

Result (1) reflects the intuition, as discussed earlier, that computing single-valued,

analytic branches of the logarithm function is closely related to the computation of

winding numbers, which is known to have complexity P#P (see Chou and Ko [18]). It

is interesting to point out, though, that the technique of computing winding numbers

by integration along the boundary ∂S, as used in Chou and Ko [18], is not sufficient for

our problem here. Instead, our algorithm for the logarithm and square root problems

is more involved and makes use of many properties of simply connected domains and

Jordan curves. We include a detailed description of this method in Section 2.

3.2 An Algorithm for Continuous Argument Func-

tions

In this section, we will present a method for computing continuous argument func-

tions, which is a critical step for the logarithm problem. Throughout this section, let

S be a bounded, simply connected domain whose boundary ∂S is a polynomial-time
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computable Jordan curve. We assume that ∂S is represented by a polynomial-time

computable function f : [0, 1]→ C and also use f to denote the image of f (i.e., ∂S).

As explained in Section 3.1, the logarithm problem is polynomial-time solvable

if and only if f1(z − a) − f1(z0 − a) is polynomial-time computable, where z0 is a

fixed point in S, z ∈ S, a ∈ C − S and f1 is an arbitrary single-valued, analytic

branch of log z on domain S − a. Furthermore, we note that we may assume that

the second input point a is in a bounded domain T ⊆ C − S. To see this, suppose

all z ∈ S have |z| < m for some m > 0. Then for any point a with |a| ≥ m+ 1, the

imaginary part of f1(z − a) − f1(z0 − a) is a directed angle α ∈ (−π, π) from half

line −→az0 to half line −→az. It follows that f1(z− a)− f1(z0 − a) is trivially polynomial-

time computable. This observation also applies to the square root problem. Thus,

as far as the time complexity is concerned, we may assume that |a| < m + 1; that

is, let T = {a ∈ C − S : |a| < m + 1} and we study the complexity of computing

f1(z−a)− f1(z0−a) for z ∈ S and a ∈ T . In other words, we may assume that both

z and a to the logarithm problem are bounded.

Now we define continuous argument functions. Let arg(z) denote the arguments

of z ∈ C − {〈0, 0〉}; that is, arg is a multi-valued function from C − {〈0, 0〉} to R

such that z = |z|earg(z)i (note that we also treat arg(z) as a set of real numbers). We

define a function hS : S × T → R such that (i) for any fixed point a ∈ T , hS(z, a) is

continuous, (ii) hS(f(0), a) = 0 for any a ∈ T , and (iii) 2π · hS(z, a) equals θ1 − θ2
for some θ1 ∈ arg(z− a) and some θ2 ∈ arg(f(0)− a). We call this function hS the

continuous argument function of S. Let z0 = f(0). It is obvious that the imaginary

part of f1(z − a) − f1(z0 − a) is equal to 2π · hS(z, a), where f1 is an arbitrary

single-valued, analytic branch of log z in the domain S − a.

Lemma 3.2.1 (a) The logarithm problem on S is polynomial-time solvable if and

only if hS(z, a) is polynomial-time computable.
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(b) The square root problem on S is polynomial-time solvable if and only if the

function (hS(z, a) mod 2) is polynomial-time computable.

Proof. Statement (a) holds because for any single-valued, analytic branch f1 of log z

on S − a, f1(z − a) − f1(z0 − a) = log |z− a| − log |z0 − a| + hS(z, a) · 2πi and

log |z− a| − log |z0 − a| is polynomial-time computable.

Statement (b) holds because for any single-valued, analytic branch f1 of
√

z on

S − a, f1(z − a)/f1(z0 − a) = (
√|z− a|/√|z0 − a|)ehS(z,a)πi, and e2πi = 1 and√|z− a|/√|z0 − a| is polynomial-time computable. �

Now we consider how to compute hS(z, a) for z ∈ S and a ∈ T . For a point

z = f(t) on ∂S, we can compute hS(z, a) by computing the integration of 1/(z− a)

over the curve f([0, t]) (note that the indefinite integral of 1/(z−a) is log (z− a)+C),

which is a generalization of Theorem 6.4 in Chou and Ko [18]. We include the details

in Section 3.2.1.

For points z ∈ S, the situation is more complicated. Intuitively, we can compute

hS(z, a) as follows (see Figure 3.1 shown in Section 3.2):

(a) Let L be the half line starting from z going in the direction from a to z. Then,

find a real number t0 ∈ [0, 1] such that f(t0) lies on L, and the line segment

zf(t0) lies entirely in S.

(b) Compute hS(f(t0), a) by integration; then let hS(z, a) = hS(f(t0), a).

However, we observe that, in general, Step (a) is hard to implement, since, in

general, the point t0 may be a nonrecursive real number2. Therefore, we cannot

2For instance, let g : [0, 1] → R be a polynomial-time computable function such that g(x) ≥ 0

for all x ∈ [0, 1] and all roots of g are nonrecursive (cf. Corollary 4.3 of Ko [40]). Assume that

f : [0, 1] → C defines a Jordan curve and f(t) = 〈2t, g(2t)〉 when 0 ≤ t ≤ 1/2, then all intersection

points of f and the half line
−−−−−−−−→〈−1, 0〉〈1, 0〉 are nonrecursive.
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follow Step (a) directly. On the other hand, what we really need is just the value of

hS(f(t0), a) instead of the value of t0. We will present, in Section 3.2.2, an algorithm

that explores the curve ∂S to find some candidates t for t0, and uses these candidate

points to find the correct value of hS(f(t0), a).

Before we describe our algorithm for hS, we observe that to compute hS(z, a),

we only need to focus on dyadic points z and a in D2. Let z1, z2 be two points in

S and a1, a2 two points in C − S such that δ(z1, ∂S) > 2−n, |z2 − z1| < 2−(n+1),

δ(a1, ∂S) > 2−n and |a2 − a1| < 2−(n+1). Then,

|hS(z1, a1)− hS(z2, a2)| ≤ |hS(z1, a1)− hS(z1, a2)|+ |hS(z1, a2)− hS(z2, a2)|

< 1/6 + 1/6 = 1/3,

i.e.,

hS(z1, a1)− 1/3 < hS(z2, a2) < hS(z1, a1) + 1/3.

Thus, we can compute hS(z2, a2) easily from any values of arg(z2, a2) and arg(f(0), a2)

and the value of hS(z1, a1). It follows that, as far as polynomial-time computability

is concerned, we only need to make sure that the machine M that computes hS works

for all dyadic points z and a.

3.2.1 A Simple Case

In this subsection, we present an algorithm for hS(z, a) for the special case where

z = f(t) for some t ∈ [0, 1] (which is given as an input). The algorithm is based on

the integration technique, which has been used by Chou and Ko [18] in the study of

winding numbers.

We will consider a more general problem that does not require the closed curve

∂S to be simple. Let f : [0, 1] → C be a polynomial-time computable function that

represents a closed curve Γ (not necessarily simple). Then, there is a continuous
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function gf : [0, 1]× (C− Γ) → R, called a continuous argument function through a

curve, that satisfies two conditions:

(1) gf(0, a) = 0 for all a ∈ C− Γ.

(2) gf(t, a) · 2π ∈ {θ1− θ0 : θ1 ∈ arg(f(t), a), θ0 ∈ arg(f(0), a)} for all t ∈ [0, 1] and

a ∈ C− Γ.

Note that gf(1, a) is just the winding number3 of a with respect to Γ; that is, gf

is an extension of the notion of winding numbers. In addition, in the case that Γ is

simple and S is the interior of Γ, gf(t, a) = hS(f(t), a) for a ∈ C− S.

Lemma 3.2.2 (Chou and Ko [18]) Let f : [0, 1] → C be a polynomial-time com-

putable function that represents an arc Γ, and d a dyadic point in C − Γ. Assume

that there exists an ε > 0 such that δ(d,Γ) > ε. Then there exists a polynomial-time

oracle Turing machine that computes the function gf(β,d) − gf(α,d), whenever α

and β satisfy the condition that for all t1, t2 ∈ [α, β] (⊆ [0, 1]), |f(t1)− f(t2)| < ε.

The proof of Lemma 3.2.2 uses the following fact: Based on the conditions given

in the lemma, the curve f([α, β]) and the line segment f(α)f(β) are homotopic with

respect to C − {d}. Therefore, the integrals of any analytic function on C − {d}
over the curve f([α, β]) and the line segment f(α)f(β) are equal to each other (See

Cauchy’s theorem in Chapter 4 of Henrici [35]). In other words, the closed curve

consisting of f([α, β]) and f(β)f(α) does not circle around the point d.

Theorem 3.2.3 Let f : [0, 1] → C be a polynomial-time computable function that

represents a closed curve Γ. Then there exists an oracle Turing machine that computes

gf in polynomial time using a function G in #P as an oracle.

3Informally, the winding number of a closed curve Λ around a point w not on Λ is the number

of times the curve Λ circles around w.
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Proof. This is a slight generalization of Theorem 6.4 in Chou and Ko [18]. The inputs

are t ∈ [0, 1], a ∈ C− Γ and an integer n. By the earlier discussion, we may assume

that a is a dyadic point and t is a dyadic rational. Then, we need to construct a

polynomial-time oracle Turing machine that, on these inputs and an oracle G ∈ #P ,

outputs a number d ∈ Dn that satisfies |d− gf(t, a)| ≤ 2−n whenever δ(a,Γ) > 2−n.

Assume that f has a polynomial modulus function p. That is, |f(t1)−f(t2)| ≤ 2−n

for any two numbers t1, t2 ∈ [0, 1] satisfying |t1−t2| ≤ 2−p(n). From Lemma 3.2.2, there

exists a polynomial-time Turing machine M that, on inputs a, α, β, n, k, computes an

approximation to gf(β, a)− gf(α, a) within error 2−k, whenever 0 ≤ β − α ≤ 2−p(n)

and δ(a,Γ) > 2−n.

We now define a polynomial-time computable function F : {0, 1}∗× (D∩ [0, 1])×
((C − Γ) ∩ D2) → N as follows: For any string w ∈ {0, 1}∗ with �(w) = p(n), let iw

be the nonnegative integer ≤ 2p(n)− 1 whose p(n)-bit binary representation is w. For

any integer i ≤ 2p(n), let si = i · 2−p(n). Let F (w, t, a) be the function computed by

the following algorithm:

(1) If �(w) �= p(n) for any n ≥ 0, then output 0.

(2) If �(w) = p(n) and siw ≥ t, then output 0.

(3) If �(w) = p(n) and siw+1 < t then simulate M on input (a, siw , siw+1, n, n+p(n))

to get a dyadic rational ew ∈ Dp(n)+n such that |ew−(gf (siw+1, a)−gf (siw , a))| ≤
2−(p(n)+n), and output jw = (ew + 1) · 2p(n)+n.

(4) If �(w) = p(n) and siw < t ≤ siw+1 then simulate M on input (a, siw , t, n, n +

p(n)) to get a dyadic rational ew ∈ Dp(n)+n such that |ew−(gf(t, a)−gf (siw , a))| ≤
2−(p(n)+n), and output jw = (ew + 1) · 2p(n)+n.

We note that ew must satisfy −1/4 ≤ ew ≤ 1/4, and so ew + 1 > 0. Thus,

F (w, t, a) is always nonnegative.
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Figure 3.1: L and ∂S have an odd number of intersections.

Now, define G(0m, t, a) =
∑

�(w)=m F (w, t, a). Then, by Theorem 2.3.2 (c), G is a

function in #P , since F is polynomial-time computable. Furthermore, G(0p(n), t, a) ·
2−(p(n)+n) − �t · 2p(n)� is an approximation to gf(t, a) with an error ≤ 2−n, where �x�
is the ceiling function. Therefore, gf is polynomial-time computable relative to the

oracle G ∈ #P . �

3.2.2 The Algorithm

Let L be the half line starting from z going in the direction from a to z. We say

L and ∂S intersect non-degenerately if (1)L ∩ ∂S contains only finitely many points,

and (2) if f(t) is in L ∩ ∂S, then ∂S actually crosses L at f(t). It is easy to see

that, if L and ∂S intersect non-degenerately, then L∩ ∂S contains an odd number of

points f(t0), f(t1), . . . , f(t2m) (see Figure 3.1). Furthermore, the values gf(ti, a) can

be canceled out in the following sense.

Proposition 3.2.4 Let f(t0), f(t1), · · · , f(t2m), where m ≥ 0, be all points in L∩∂S
in the order of their distances away from z, with f(t0) being the closest one to z. Then,

they satisfy the following properties:

(1) For any 1 ≤ i ≤ m, f(t2i−1)f(t2i) lies entirely in S, and gf(t2i−1, a) = gf(t2i, a).
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(2) For any 1 ≤ i ≤ m, f crosses L from opposite directions at points f(t2i−1) and

f(t2i).

(3) hS(z, a) = gf(t0, a).

Our basic idea of computing hS(z, a) is as follows. Assume that L and ∂S intersect

non-degenerately. Then, we can get values gf(ti, a), for all 0 ≤ i ≤ 2m, by applying

the integration algorithm over the curve in Section 3.2.1 to compute gf(t, a) over all

points f(t) at which f crosses L. Note that, in the above computation, we will get all

values of t0, t1, . . . , t2m, but cannot tell which one is t0 (because the distance between

f(t0) and f(t1) could be too small for us to tell which one is closer to z). However,

we can still obtain the value of hS(z, a) as follows:

(1) Let Δ be an integer such that gf(ti, a) + Δ ≥ 0 for all 0 ≤ i ≤ 2m.

(2) For each 0 ≤ i ≤ 2m, let sgni be 1 or −1 according to the direction in which f

crosses L at f(ti) (e.g., +1 if f crosses L counterclockwise, and −1 if f crosses

L clockwise).

(3) Let hS(z, a) =
∣∣∣∑2m

i=0(sgni · (gf(ti, a) + Δ))
∣∣∣−Δ.

That is, we use the factor sgni to cancel out the values of gf(t2i−1, a) + Δ and

gf(t2i, a) + Δ in the summation of (3), and the only one left is gf(t0, a) + Δ (yet

we do not know what the value t0 is). We use the extra term Δ so that gf(t0, a)

can be extracted from the absolute value of sgn0 · (gf(t0, a) + Δ); that is, because

gf(t0, a) + Δ ≥ 0,

gf(t0, a) = |gf(t0, a) + Δ| −Δ = |sgn0 · (gf(t0, a) + Δ)| −Δ.

There are some technical problems with these ideas. First, since we can only

approximate ∂S, we may not be able to compute the intersections of L and ∂S
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correctly. Second, L and ∂S may not intersect non-degenerately. That is, one of the

following situations may occur:

(1) L∩∂S contains infinitely many points (e.g., the curve ∂S may cross L infinitely

many times); or

(2) f(t) is in L ∩ ∂S for some t ∈ [0, 1], but f does not cross L at f(t).

In the following, we describe a method to approximate intersections of ∂S and L

that will solve the above problems. The main idea is to use a piecewise linear curve fn

that approximates f and apply the integration method on fn. By a careful analysis,

we can show that this computation is still correct.

First, based on the discussion in the beginning of this section, we assume that

z and a are dyadic points. (Thus, we can tell whether a dyadic point lies on L or

not.) Next, let M be an oracle Turing machine that computes f in time p for some

polynomial p. It follows that p is a modulus function of f . Let n be an integer such

that δ(z, ∂S) > 2−n and δ(a, ∂S) > 2−n. For each 0 ≤ i ≤ 2p(2n), let si = i · 2−p(2n)

and zi = Msi(2n). Then, for any 0 ≤ i ≤ 2p(2n) − 1 and any t ∈ [si, si+1], we

have |f(t) − zi| ≤ 2−2n. Let fn be the piecewise linear function with breakpoints

fn(si) = zi, for i = 0, . . . , 2p(2n), and Γn be the image of fn on [0, 1]. Then, Γn is an

approximation of ∂S within an error 2−2n. Note that Γn is not necessarily simple.

We now define a function sgnfn which assigns value +1, −1 or 0 to each directed

line segment of Γn according to whether it crosses L counterclockwise, or crosses L

clockwise, or does not cross L, respectively. More precisely, let L′ be the straight-line

that contains L. Then, L′ divides the plane into two half planes, the one on the

left of L is denoted S1, and the other half plane plus L′ is denoted S2. We define
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Figure 3.2: The function sgnfn (points z6 and z9 lie on L).

sgnfn : {1, 2, . . . , 2p(2n)} → {−1, 0, 1} as follows (see Figure 3.2):

sgnfn(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if zi−1 ∈ S2 and zi ∈ S1 and zi−1zi ∩ L �= ∅,
−1, if zi−1 ∈ S1 and zi ∈ S2 and zi−1zi ∩ L �= ∅,
0, otherwise.

When sgnfn(i) is not zero, there is a unique s′i ∈ [si−1, si] such that z′i := fn(s
′
i) ∈

zi−1zi ∩ L; we call z′i an intersection point of fn([si−1, si]) and L, while if sgnfn(j) =

0 (including the case fn([sj−1, sj]) ⊂ L), we say there is no intersection point of

fn([sj−1, sj]) and L. Note that the points z′i’s may overlap each other but s′i’s may

not.

Lemma 3.2.5 Assume that ∂S is polynomial-time computable. Then the functions

φ1(n, i) = sgnfn(i), φ2(n, i) = s′i and φ3(n, i) = z′i (if they exist) are polynomial-time

computable.

Proof. We note that all points a, z and zi are dyadic points. Thus, sgnfn(i) can

be computed by exact arithmetic. When sgnfn(i) �= 0, s′i and z′i are not necessarily

dyadic but must be rational. We can compute, for any k ≥ p(2n), a dyadic dk ∈ Dk,

such that |dk − s′i| ≤ 2−k, which implies that |fn(dk)− fn(s′i)| ≤ 2−(2n+k−p(2n)). �

For simplicity, we may assume that fn(0) = f(0) (this can be achieved by, for

example, transforming the whole plane so that f(0) becomes the origin).
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Theorem 3.2.6 Assume hereafter s′i = si if sgnfn(i) = 0. Then we have

|hs(z, a)| =
∣∣∣

2p(2n)∑
i=1

sgnfn(i) · gfn(s′i, a)
∣∣∣ = |gfn(s′i0, a)|, (3.1)

where 1 ≤ i0 ≤ 2p(2n), |sgnfn(i0)| = 1 and the number of line segments fn([si−1, si])

(1 ≤ i ≤ 2p(2n)) with sgnfn(i) = sgnfn(i0) is exactly one more than those with

sgnfn(i) = −sgnfn(i0).

To prove Theorem 3.2.6, we need to show that

(1) In the sum of the middle term of equation (3.1), all values but one of gfn(s′i, a)

are canceled out. (Since the curve Γn is only an approximation to ∂S, it is not

necessarily a simple curve and hence this fact does not follow from Proposi-

tion 3.2.4 immediately.)

(2) The remaining term after cancellation is ±hS(z, a).

To do this, we divide the interval [0, 1] into a finite number of subintervals, and

examine each subinterval separately. First, define w1 ∈ S1, w2 ∈ S2 to be the two

points which have distance 2−(2n−1) from z such that z lies on the line segment w1w2

and w1w2 is perpendicular to L (see Figure 3.3). For each i = 1, 2, define a half line

Li that starts at wi and runs parallel to L. Call the domain between the two half

lines L1 and L2 and the line segment w1w2 (including the boundary) the crossing

zone. We let Z denote the crossing zone.

Without loss of generality, assume that z0 = f(0) and the crossing zone Z are on

different sides of line ←−−→w1w2.
4 We call an interval [b, c] ⊆ [0, 1] a crossing interval if

[b, c] is a maximal interval with the following properties: (i) f(b) ∈ Li and f(c) ∈ L3−i

for i = 1 or 2, and (ii) f([b, c]) lies entirely in the crossing zone Z. (By “maximal”

4If it is not the case, we can pick a point s ∈ [0, 1] such that f(s) and the crossing zone Z are on

different sides of line ←−−→w1w2, and use the function f1(t) = f(s + t mod 1) on [0, 1] to represent ∂S.
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Figure 3.3: Curve ∂S on three different types of intervals.

we mean that all intervals [b′, c′] that properly contain [b, c] do not satisfy both (i)

and (ii).) We call an interval [b, c] a non-crossing interval if (1) f(b) ∈ L1 ∪ L2

or b = 0, and f(c) ∈ L1 ∪ L2 or c = 1, and (2) f((b, c)) lies entirely outside of

the crossing zone Z and intersects the line ←−−→w1w2. Note that there are only a finite

number of crossing intervals and non-crossing intervals since, due to the definitions

and the facts that ∂S has a modulus of continuity, the length of each such interval

is bounded below. If we remove all crossing intervals and non-crossing intervals from

[0, 1], the remainder is the union of a finite number of intervals. We call each such

interval a semi-crossing interval. A semi-crossing interval [b, c] satisfies the following

conditions: (i) both f(b) and f(c) are in Li for i = 1 or 2, (ii) if f(b) ∈ Li for i = 1 or

2, then f([b, c])∩L3−i = ∅, and (iii) f([b, c]) does not intersect line ←−−→w1w2. Figure 3.3

shows the curve ∂S on these intervals, where [b0, c0] and [b1, c1] are two non-crossing

intervals, [b2, c2] is a semi-crossing interval, and [b3, c3] is a crossing interval.

Lemma 3.2.7 Let z1, z2 be two points in S ∩L. Assume that there is a path π from

z1 to z2 that lies in S ∩ Z. Then, hS(z1, a) = hS(z2, a).

Proof. We note that if π ⊆ Z, then it cannot go around the point a, and so hS(z1, a) =

hS(z2, a). �
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Lemma 3.2.8 Let [b, c] be a non-crossing interval. Then, sgnfn(i) = 0 for all si ∈
[b, c], and so

∑
si∈[b,c] sgnfn(i) · gfn(s′i, a) = 0.

Proof. We note that the distance between L1 and L (and the distance between L2

and L) is 2−(2n−1), and that our approximation fn and f has distance at most 2−2n.

Therefore, fn([b, c]) cannot touch the half line L. �

Lemma 3.2.9 Let [b, c] be a semi-crossing interval. Then, there are an even number

of intersection points fn(r1), fn(r2), · · · , fn(r2m) in fn([b, c])∩L, and gfn has the same

value gfn(r1, a) at all ri’s. These values all cancel out after considering the crossing

directions; that is,
∑

si∈[b,c] sgnfn(i) · gfn(s′i, a) = 0.

Proof. Without loss of generality, assume that f(b) ∈ L1. Then, f([b, c]) ∩ L2 = ∅.
Since the curve f([b, c]) does not intersect the line ←−−→w1w2, f([b, c]) cannot “circle

around” the point a. Furthermore, since a is at least 2 · 2−n away from the line←−−→w1w2

and the curve fn([b, c]) is a 2−2n approximation to f([b, c]), fn([b, c]) cannot circle

around the point a either. Thus, the values gfn(rj, a) are all equal.

Now, assume that there are k such intersection points fn(r1), fn(r2), . . . , fn(rk),

with b < r1 < r2 < · · · < rk < c. Then, we observe that fn at r1 must go from S1

to S2, because f(b) ∈ L1. Since f([b, c]) cannot cross L2, fn([b, c]) cannot go back to

domain S1 without passing through L (i.e., it cannot go around point a). Therefore,

fn at r2 must go from S2 to S1. From this observation, we see that there must be an

even number of intersection points (i.e., k = 2m for some m ≥ 0), and the crossing

direction of fn at r2j−1 is the opposite of that of fn at r2j , for each j = 1, . . . , m. �

For each crossing interval [b, c], define sgn[b,c] = +1 if f(b) ∈ L2 and f(c) ∈ L1;

and sgn[b,c] = −1 otherwise.

Lemma 3.2.10 Let [b, c] be a crossing interval.
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(a) There exists at least one point t ∈ [b, c] such that f(t) ∈ L. For any two such

numbers t1, t2 ∈ [b, c] with f(t1), f(t2) ∈ L, gf(t1, a) = gf(t2, a).

(b) There are an odd number of intersection points fn(r0), fn(r1), . . . , fn(r2m) in

fn([b, c])∩L, and they all have the same value gfn(ri, a) as gf(t, a). All but one of these

values cancel out after considering the crossing directions; that is,
∑

si∈[b,c] sgnfn(i) ·
gfn(si, a) = sgn[b,c]gf(t, a).

Proof. (a): Similar to the proof of Lemma 3.2.9, the curve f([b, c]) cannot go around

the point a, and so the values gf(t, a) at all intersection points are the same. This fact

can also be proved by Lemma 3.2.7: The curve f([b, c]) lies entirely in the crossing zone

Z, and so it is a path connecting all these intersection points. So, by Lemma 3.2.7,

they all have the same value gf(t, a).

(b): The proof for this part is similar to that of Lemma 3.2.9. That is, if fn(r0),

fn(r1), . . . , fn(rk) are all the intersection points with b < r0 < r1 < · · · < rk < c, then

gfn(rj , a) must all have the same value as gf(t, a), and they must cross L alternately in

opposite directions; for example, if f(b) ∈ L1, then fn at r0 goes from S1 to S2, and fn

at r1 goes from S2 to S1, etc. It follows that there are an odd number of intersection

points. Thus, all terms, except the first one, in the sum
∑

si∈[b,c] sgnfn · gfn(si, a)

cancel out. The remaining one has the same direction as sgn[b,c] and the same value

as gf(t, a). �

Now we can prove Theorem 3.2.6.

Proof. Let C denote the collection of all crossing intervals. For each interval [b, c] ∈ C,
choose a representative tb,c ∈ [b, c] with f(tb,c) ∈ L. From the above three lemmas,

we see that
2p(2n)∑
i=1

sgnfn(i) · gfn(s′i, a) =
∑

[b,c]∈C
sgn[b,c]gf (tb,c, a).

It remains to show that the above sum cancels to a single term which equals ±hS(z, a).
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Figure 3.4: Connecting points z, f(t0), f(t1) and f(t2) within Z.

We first observe that, since f is a simple curve, any two curves defined by f on

any two crossing intervals do not cross each other. In other words, we can arrange

all crossing intervals I0 = [b0, c0], I1 = [b1, c1], . . . , Ik = [bk, ck] according to the

distances of f(Ij) from z (0 ≤ j ≤ k), with f(I0) being the closest one to z. For each

j = 0, . . . , k, let tj be the representative of intersection points in f([bj , cj]) ∩ L; i.e.,

tj = tbj ,cj .

Now, since [b0, c0] is the closest crossing interval to z, there is a path π0 from z to

f(t0) that lies entirely in S ∩ Z. By Lemma 3.2.7, we have gf(t0, a) = hS(f(t0), a) =

hS(z, a) (see Figure 3.4).

If k = 0, we are done. If k ≥ 1, then there is a path π1 from f(t0) to f(t1) that

does not touch ∂S (except at f(t0) and f(t1)) and lies in Z. Since π0 lies in S, we

see that π1 lies in C − S. Thus, if we go from f(t1) and cross the curve f([b1, c1]),

we must enter domain S. This means that there must be a third crossing interval

[b2, c2], and there is a path π2 from f(t1) to f(t2) that does not touch ∂S (except at

f(t1) and f(t2)) and lies in Z. This path π2 is in S ∩ Z, and so, by Lemma 3.2.7,

gf(t1, a) = gf(t2, a).

Furthermore, we claim that sgn[b1,c1] = −sgn[b2,c2]. To see this, we first assume

that b1 < c1 < b2 < c2. We note that π2 divides S into two simply connected domains.

One of them has the boundary f([0, t1]) ∪ π2 ∪ f([t2, 1]), which contains the points

f(b1) and f(c2). This means that f(b1) and f(c2) must be in the same half line Li
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for i = 1 or 2, and so sgn[b1,c1] must equal −sgn[b2,c2]. Similarly, if b2 < c2 < b1 < c1,

then we can see that both f(b2) and f(c1) must be in the same half line Li for some

i = 1 or 2, and it also holds that sgn[b1,c1] = −sgn[b2,c2].

Repeating the above argument, we see that there are an odd number of crossing

intervals (that is, k = 2m for some integer m ≥ 0), and sgn[b2i−1,c2i−1]gf (t2i−1, a) =

−sgn[b2i,c2i]gf(t2i, a). We conclude that
∑2p(2n)

i=1 sgnfn(i)·gfn(s′i, a) = sgn[b0,c0]gf(t0, a) =

±hS(z, a). �

Based on Theorem 3.2.6, we can design an algorithm to compute hS(z, a).

We first define a polynomial-time computable function F : (S ∩D2)× (T ∩D2)×
{0, 1}∗ → N (recall that T = {z ∈ C − S : |z| < m + 1}). Let M be a polynomial-

time Turing machine that, on input (a, α, β, n) computes gfn(β, a) − gfn(α, a), as

given in Lemma 3.2.2. Let K = 22p(2n)+n+1. (Note that K is not exactly the extra

parameter Δ discussed in the beginning of this subsection; instead, we let Δ = 2p(2n)

and keep its role implicit in the following proof.) We also use the same notations as

defined earlier, including iw and si. We let F (z, a, w) be the function computed by

the following algorithm.

(1) If �(w) �= 2p(2n) for any n > 0, then output 0.

(2) If �(w) = 2p(2n) for some n > 0, let w = uv with �(u) = �(v).

(2.1) If iv > iu, then let ev := 0.

(2.2) If iv < iu, then simulate M on input (a, siv , siv+1, n) to get a dyadic rational

ev ∈ D2p(2n)+n+1 such that |ev−(gfn(siv+1, a)−gfn(siv , a))| ≤ 2−(2p(2n)+n+1).

(2.3) If iv = iu, then compute a dyadic rational du ∈ D2p(2n) such that |du −
s′iu| ≤ 2−2p(2n). Simulate M on input (a, siu , du, n) to get a dyadic rational

ev ∈ D2p(2n)+n+1 such that |ev − (gfn(du, a)− gfn(siu, a))| ≤ 2−(2p(2n)+n+1).
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(3) Output sgnfn(iu) · (ev + 1)K + 2K.

It is clear that F is polynomial-time computable. Furthermore, we note that, for

any v, −1/4 < ev < 1/4, and so ev + 1 < 2. It follows that F (z, a, w) is always

nonnegative.

Note that for any u of length p(2n),∑
�(v)=p(2n)

F (z, a, uv) = sgnfn(iu) ·K ·
∑

�(v)=p(2n)

(ev + 1) +K · 2p(2n)+1

= sgnfn(iu) ·K ·
∑

�(v)=p(2n)

ev + sgnfn(iu) ·K · 2p(2n) +K · 2p(2n)+1.

We can verify that, for a fixed u,
∑

�(v)=p(2n) ev is a good approximation to

gfn(s′iu , a).

For iv < iu, let εv = ev−((gfn(siv+1, a)−gfn(siv , a)). Also let εu = eu−(gfn(du, a)−
gfn(siu , a)), and ε′u = gfn(s′iu , a)− gfn(du, a).

By the proof of Lemma 3.2.5, |fn(du)−fn(s′iu)| ≤ 2−(2n+2p(2n)−p(2n)) = 2−(p(2n)+2n).

Furthermore, note that fn(s
′
iu) is in the crossing zone Z, we have δ(a, fn(s

′
iu)) ≥

δ(a, Z) = δ(a, z) ≥ δ(a, ∂S)+δ(z, ∂S) ≥ 2·2−n, and so |ε′u| < 2−(p(2n)+n+2). Therefore,

∑
�(v)=p(2n)

ev = gfn(s′iu , a) +
∑
iv≤iu

εv + ε′u,

with the error∣∣∣∣
∑
iv≤iu

εv + ε′u

∣∣∣∣ ≤ 2p(2n) · 2−(2p(2n)+n+1) + 2−(p(2n)+n+2) < 2−(p(2n)+n).

It follows that∣∣∣∣
( ∑
�(v)=p(2n)

F (z, a, uv)−K ·2p(2n)+1
)
/K−sgnfn(iu)(gfn(s′iu , a)+2p(2n))

∣∣∣∣ < 2−(p(2n)+n).

Now, we define a function G : (S ∩ D2)× (T ∩ D2)× {0}∗ → N by G(z, a, 0m) =∑
�(w)=m F (z, a, w). Then, G is in #P . Moreover, we have∣∣∣∣(G(z, a, 02p(2n))− K · 22p(2n)+1)/K −

∑
�(u)=p(2n)

sgnfn(iu)(gfn(s′iu , a) + 2p(2n))

∣∣∣∣

< 2p(2n) · 2−(p(2n)+n) = 2−n.
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From Theorem 3.2.6, we know that

∑
�(u)=p(2n)

sgnfn(iu)(gfn(s′iu , a) + 2p(2n))

cancel out to have only one term left. This remaining term is equal to ±(hS(z, a) +

2p(2n)). Since f has a modulus function p(n), and since δ(a, ∂S) > 2−n, we know that

|hS(z, a)| < 2p(2n) and thus hS(z, a) = |hS(z, a) + 2p(2n)| − 2p(2n) (here 2p(2n) serves as

Δ).

So, we can find an approximation of hS(z, a) with an error ≤ 2−n as follows:

(1) Ask oracle G to get G(z, a, 02p(2n)).

(2) Let e := |(G(z, a, 02p(2n))−K · 22p(2n)+1)/K|; output e− 2p(2n).

We just completed the proof of the following theorem:

Theorem 3.2.11 Let S be a bounded, simply connected domain whose boundary ∂S

is a polynomial-time computable Jordan curve. Then there exists an oracle Turing

machine that computes hS(z, a) in polynomial time using a function G in #P as an

oracle.

Corollary 3.2.12 If FP = #P , then the continuous argument function problem and

the logarithm problem are polynomial-time solvable.

3.3 The Logarithm Problem

We have shown, in the last section, that P#P is an upper bound for the complexity

of computing the continuous argument functions, and hence the logarithm problem.

In this section, we show that P#P is also a lower bound for the logarithm problem.
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Theorem 3.3.1 For any G ∈ #P , there exist a bounded, simply connected domain

S whose boundary ∂S is a Jordan curve represented by a polynomial-time computable

function f : [0, 1]→ C, and three polynomial-time computable functions φi : {0, 1}∗ →
D2, i = 1, 2, 3, such that for any n > 0 and any w ∈ {0, 1}n,

(a) δ(φi(w), ∂S) > 2−p(n) for some polynomial function p, i = 1, 2, 3.

(b) φ1(w) /∈ S and φ2(w), φ3(w) ∈ S.

(c) G(w) = hS(φ3(w), φ1(w))− hS(φ2(w), φ1(w)).

Proof. The construction of the Jordan curve is similar to that for the winding number

problem in Chou and Ko [18]. We first describe a basic construction that will be used

later. For any n > 0 and any set B ⊆ {0, 1}n, we construct a simply connected domain

SB as, roughly, the interior of a rectangle with a strip of width ε > 0 removed. This

strip “winds” around a point z for ‖B‖ times. Thus, the cardinality ‖B‖ of set B

can be found from the continuous argument function about point z.

We first define a function gB : [0, 3/4] → C that represents a curve ΓB which

winds around a point aB for ‖B‖ times. For each integer k, 0 ≤ k ≤ 2n − 1, we let

uk denote the n-bit binary representation of k.

(1) gB is linear on [0, 1/4], with gB(0) = 〈−2, 0〉 and gB(1/4) = 〈−1− 2−n−1, 0〉.

(2) For each k such that 0 ≤ k ≤ 2n − 1, let tk = 1/4 + k · 2−n−1. If uk /∈ B, then

gB is linear on [tk, tk+1] with gB(tk) = 〈−1 + (k − 2) · 2−n, 0〉 and gB(tk+1) =

〈−1 + (k − 1) · 2−n, 0〉.

(3) For each k such that 0 ≤ k ≤ 2n − 1, if uk ∈ B, then gB is piecewise linear on

[tk, tk+1]: It divides [tk, tk+1] into 5 subintervals of equal length and maps them
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B

aB

zB,0 z

Γ′′
B

ΓB

〈2, 2〉

〈−2,−2〉 〈2,−2〉

〈−2, 2〉

Figure 3.5: The domain SB for set B = {00, 10, 11}.

to the 5 consecutive line segments defined by the following breakpoints:

〈−1 + (k − 2) · 2−n, 0〉, 〈−1 + (k − 2) · 2−n, 1− (k − 2) · 2−n〉,
〈1− (k − 2) · 2−n, 1− (k − 2) · 2−n〉, 〈1− (k − 2) · 2−n,−1 + (k − 2) · 2−n〉,
〈−1 + (k − 1) · 2−n,−1 + (k − 2) · 2−n〉, 〈−1 + (k − 1) · 2−n, 0〉.

Next, we define a curve Γ′
B that is the piecewise linear curve surrounding ΓB, with

distance 2−(n+2) from it, plus the following two line segments: 〈−2,−2〉, 〈−2,−2−(n+2)〉
and 〈−2, 2−(n+2)〉, 〈−2, 2〉. Let Γ′′

B be the curve Γ′
B plus the three line segments con-

necting the points 〈−2, 2〉, 〈2, 2〉, 〈2,−2〉 and 〈−2,−2〉. Then,Γ′′
B is a Jordan curve.

Figure 3.5 shows the curves ΓB and Γ′′
B for set B = {00, 10, 11} (the dotted curve

denotes ΓB and the solid curve denotes Γ′′
B). Let SB be the interior of Γ′′

B.

Define aB = 〈−2−(n−1), 0〉 = gB(3/4), zB, 0 = 〈−2−(n−1) + 2−(n+1), 0〉, and zB =

〈1 + 2−(n−1) + 2−(n+1), 0〉. Then, it is easy to verify that aB /∈ SB, zB, 0, zB ∈ SB,

δ(aB,Γ
′′
B) = δ(zB, 0,Γ

′′
B) = δ(zB,Γ

′′
B) = 2−(n+2). Furthermore, ||B|| = hSB

(zB, aB) −
hSB

(zB, 0, aB).
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It is also easy to see that the function gB is polynomial-time computable if B

is given as an oracle. Therefore, we can define a function fB : [0, 1] → C (with

fB(1) = 〈−2, 2〉) which is computable in polynomial time with B as an oracle, and

whose image is Γ′
B. In particular, we note that fB has a linear modulus function:

qB(k) = n+ k + c for some constant c > 0.

Now we define a function f that computes the boundary ∂S of domain S. For

convenience, we will define f on [0, 2] instead of on [0, 1]. For any string w ∈ {0, 1}n,
let iw be the integer whose n-bit binary representation is w. Let an = 1 − 2−(n−1)

and xw = an + iw · 2−2n. Note that if u is the lexicographic successor of w, then

xw +2−2n = xu. Since G ∈ #P , there exist a set A ∈ P and a polynomial q such that

for all w ∈ {0, 1}∗, G(w) = ||Bw||, where Bw = {u : �(u) = q(�(w)), 〈w, u〉 ∈ A}.
For each w ∈ {0, 1}∗, �(w) = n, we define the function f on the subinterval

[xw, xw + 2−2n] to be a linear transformation of fBw on [0, 1]. Let f1, f2 : [0, 1] → R

be such that fBw(t) = 〈f1(t), f2(t)〉. Suppose �(w) = n, then f on [xw, xw + 2−2n] can

be defined as follows:

f(t) = 〈2−(2n+2)f1(2
2n(t− xw)) + 2−(2n+1), 2−(2n+2)f2(2

2n(t− xw)) + xw + 2−(2n+1)〉.

Now we define f on [1, 2] to be a piecewise linear function mapping the interval

[1, 2] to three line segments connecting the following four points: 〈0, 1〉, 〈1, 1〉, 〈1, 0〉
and 〈0, 0〉. It is also easy to see that f on [0, 2] represents a Jordan curve Λ. More

precisely, let Λw be the image of f on [xw, xw + 2−2n]. Then, Λw is a linear trans-

formation of Γ′
Bw

. Note that all Λw’s are connected together with Λw and Λu having

exactly one common point, if u is the lexicographic successor of w. Figure 3.6 shows

the curve Λ.

We define φ1(w) to be the images of aBw
, φ2(w) the image of zBw, 0, and φ3(w)

the image of zBw
, under the above linear transformation. Let S be the interior of

the Jordan curve Λ. Then, according to the properties of aBw
, zBw, 0 and zBw

and the
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Λw

〈0, 0〉

〈0, 1〉

〈0, xw + 2−2n〉 = 〈0, xu〉

〈1, 1〉

〈1, 0〉

(Curves for strings of length < n)

(Curves for strings of length > n)

〈0, xw〉

〈0, xu + 2−2n〉

Λu

Figure 3.6: Function f and the Jordan curve Λ.

definition of f , properties (a), (b) and (c) of the theorem hold.

It remains to show that f is polynomial-time computable. By Proposition 2.4.5,

we just need to show f has a polynomial modulus of continuity. Recall that fBw has

a modulus function qBw(k) = �(w) + k + c.

Claim: If t1, t2 ∈ [0, 2] and 0 ≤ t2 − t1 ≤ 2−(5k+6+c), then |f(t1) − f(t2)| ≤ 2−k.

(Note that if �(w) ≤ k + 2, then 5k + 6 + c ≥ qBw(k) + 3k + 4.)

We prove the claim by the following case analysis:

Case 1. t1, t2 ∈ [1, 2]. It is obvious that |f(t1)− f(t2)| ≤ 3 · 2−(5k+6+c).

Case 2. t1, t2 ∈ [ak+2, 1]. Then we must have |f(ti) − 〈0, 1〉| ≤ 2−(k+1) for both

i = 1, 2. Thus |f(t1)− f(t2)| ≤ 2−k.

Case 3. t1 ∈ [ak+2, 1], t2 ∈ (1, 2]. We have |f(t1) − 〈0, 1〉| ≤ 2−(k+1) and |f(t2) −
〈0, 1〉| ≤ 3 · 2−(5k+6+c). Thus |f(t1)− f(t2)| ≤ 2−k.
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Case 4. t1, t2 ∈ [xw, xw + 2−2n] for some w of length n ≤ k + 2. Then, |t′1 − t′2| ≤
2−(qBw (k)+3k+4−2n) ≤ 2−(qBw (k)+k), where t′i = 22n(ti − xw) for i = 1, 2. Therefore,

|fBw(t′1)− fBw(t′2)| ≤ 2−k. If follows that |f(t1)− f(t2)| ≤ 2−(2n+k) < 2−(k+1).

Case 5. t1 < xw ≤ t2 for some w of length n ≤ k + 2. Then t1 must be in

[xu, xu +2−2�(u)], where u is the lexicographic predecessor of w and xu +2−2�(u) = xw.

Then, applying Case 4 to t1 and xw, xw and t2, we get

|f(t1)− f(t2)| ≤ |f(t1)− f(xw)|+ |f(xw)− f(t2)| ≤ 2−k.

This completes the proof of Claim and hence the proof of the theorem. �

Corollary 3.3.2 The following are equivalent:

(a) FP = #P .

(b) For every bounded, simply connected domain S whose boundary is a polynomial-

time computable Jordan curve, the logarithm problem on S is polynomial-time com-

putable.

3.4 The Square Root Problem

According to Lemma 3.2.1, the square root problem is polynomial-time computable

if and only if the function (hS(z, a) mod 2) is polynomial-time computable. Theo-

rem 3.2.11 shows that hS is polynomial-time computable using a function in #P as

an oracle. Since we only need the value of (hS(z, a) mod 2), we actually do not need,

as an oracle, the full power of a #P function. In fact, we can modify the algorithm

for hS of Section 3.2.2 and use only a single bit from the oracle function G to compute

(hS(z, a) mod 2). Thus, the complexity of the square root problem actually can be

characterized by the complexity class MP .

Theorem 3.4.1 Let S be a bounded, simply connected domain whose boundary ∂S

is a polynomial-time computable Jordan curve. Then, the square root problem is
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polynomial-time solvable using a function G1 in #P as an oracle. In addition, the

oracle machine that solves the square root problem needs only to ask the oracle for a

single bit of a value of G1.

Proof. By Lemma 3.2.1, it suffices to show that (hS(z, a) mod 2) is polynomial-time

computable with an oracle in MP . According to the relationship between hS and

the multi-valued function arg(z), the fractional part of (hS(z, a) mod 2), denoted by

hfrac(z, a), is polynomial-time computable. Therefore, we only need to show that the

integral part of (hS(z, a) mod 2) is polynomial-time computable with an oracle in

MP .

Let’s check the algorithm in Section 3.2.2. We designed a #P function G, and let

e = |(G(z, a, 02p(2n))−K · 22p(2n)+1)/K|, where K = 22p(2n)+n+1, then e− 2p(2n) is an

approximation to hS(z, a) with an error ≤ 2−n. Thus ((e−2p(2n)) mod 2) = (e mod 2)

is an approximation to (hS(z, a) mod 2) with an error ≤ 2−n. Now we can roughly

see why the integral part of (hS(z, a) mod 2) is polynomial-time computable with an

oracle in MP , since e is polynomial-time computable with an oracle in #P . However,

because of the absolute value operator | · | in the expression for e, we may need, in

order to compute (e mod 2), to ask for two bits from the oracle G(z, a, 02p(2n)).

In the following, we use two tricks to solve the problem: (1) we modify function

G to another #P function G1 so that G1 only carries information of the integral part

of hS(z, a), and (2) we remove the operator | · | because (|k| mod 2) = (k mod 2) for

any integer k.

We first compute a number φ ∈ Dp(2n)+n+1 such that |φ−hfrac(z, a)| ≤ 2−(p(2n)+n+1).

We then replace each ev used in the definition of the function F with e′v := ev − φ ·
2−p(2n), and define a function F1 similar to function F except that its output is

F1(z, a, w) = sgnfn(iu) · (e′v + 1)K + 2K when w = uv and �(u) = �(v) = p(2n).
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Now we define a function G1 : (S ∩D2)× (T ∩D2)× {0}∗ → N by G1(z, a, 0
m) =∑

�(w)=m F1(z, a, w) + 2m+2. Following the error analysis in Section 3.2, we see that

|(G1(z, a, 0
2p(2n))− 22p(2n)+2 −K · 22p(2n)+1)/K|

is an approximation to hS(z, a)−hfrac(z, a)+2p(2n) with an error 2−n+|φ−hfrac(z, a)| <
2−(n−1).

We note that hS(z, a)−hfrac(z, a)+2p(2n) is an integer, denoted k. Therefore, for

some sgn ∈ {+1,−1}, we have

sgn · k− 2−(n−1) < (G1(z, a, 0
2p(2n))− 22p(2n)+2 −K · 22p(2n)+1)/K < sgn · k+ 2−(n−1),

and so

sgn · k + 22p(2n)+1 < G1(z, a, 0
2p(2n))/K < sgn · k + 22p(2n)+1 + 2−(n−2)

(recall that K = 22p(2n)+n+1). It implies that the integral part of G1(z, a, 0
2p(2n))/K

is equal to sgn · k + 22p(2n)+1 (when n > 1). Because

(hS(z, a)−hfrac(z, a)) mod 2 = k mod 2 = (sgn·k) mod 2 = (sgn·k+22p(2n)+1) mod 2,

the integral part of (hS(z, a) mod 2) equals that of (G1(z, a, 0
2p(2n))/K) mod 2, which

is exactly the (2p(2n)+n+2)-th least significant bit of G1(z, a, 0
2p(2n)). So, the square

root problem can be solved by asking for only a single bit of the oracle G1. �

Corollary 3.4.2 If P = MP , then the square root problem is solvable in polynomial

time.

Remark. It is interesting to point out that our algorithm for the square root problem

does not seem to require the full power of MP . Indeed, the function G1(z, a, 0
2p(2n))

has the special property that G1(z, a, 0
2p(2n))/K is very close to an integer g, and

all we need is the least significant bit of the integer g. This seems to suggest that
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the square root problem might actually be in a weaker complexity class than PMP .

Whether it can be solved in P⊕P (e.g., whether the integer g can be expressed as the

output of a #P function) remains an open question.

Next we prove P⊕P is a lower bound of the square root problem. Note that the

complexity class ⊕P is closely related to #P : a set B is in ⊕P iff there exists a

function G in #P such that B = {w ∈ {0, 1}∗ : G(w) = 1 (mod 2)}. Thus, we can

use below the same construction as in the proof of Theorem 3.3.1.

Corollary 3.4.3 For any A ∈ ⊕P , there exist a bounded, simply connected domain

S whose boundary ∂S is a Jordan curve represented by a polynomial-time computable

function f : [0, 1]→ C, and three polynomial-time computable functions φi : N→ D2,

i = 1, 2, 3, such that for any n > 0 and any w ∈ {0, 1}n,

(a) δ(φi(w), ∂S) > 2−p(n) for some polynomial function p, i = 1, 2, 3.

(b) φ1(w) /∈ S and φ2(w), φ3(w) ∈ S.

(c) w ∈ A if and only if (hS(φ3(w), φ1(w)) mod 2) and (hS(φ2(w), φ1(w)) mod 2)

differ by 1.

Proof. Since A ∈ ⊕P , there exists a set B ∈ P and a polynomial q such that for all

w,

w ∈ A⇔ ||{u : �(u) = q(�(w)), 〈w, u〉 ∈ B}|| is odd.

We define a function G : {0, 1}∗ → N as G(w) = ||{u : �(u) = q(�(w)), 〈w, u〉 ∈
B}||. By Theorem 2.3.2 (c), G is in #P ; we further have w ∈ A iff G(w) is odd. We

define the set S and φi, for i = 1, 2, 3, exactly as those in the proof of Theorem 3.3.1.

Then, they satisfy conditions (a) and (b). Furthermore, condition (c) is also satisfied
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since, from the proof of Theorem 3.3.1, we have

w ∈ A⇔ G(w) is odd.

⇔ hS(φ3(w), φ1(w))− hS(φ2(w), φ1(w)) is odd.

⇔ (hS(φ3(w), φ1(w)) mod 2) and (hS(φ2(w), φ1(w)) mod 2) differ by 1.

�

Corollary 3.4.4 If P �= ⊕P , then there exists a bounded, simply connected domain

S whose boundary ∂S is a polynomial-time computable Jordan curve such that the

square root problem on S is not polynomial-time solvable.
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Chapter 4

Complexity Theory of NC and

Log-space Analytic Functions

4.1 Introduction

We are interested in the parallel-time complexity of analytic functions defined on R or

C. The sequential-time complexity of analytic functions has been studied by Ko [40]

and Müller [53]. The parallel-time complexity of real functions has been studied by

Hoover [36; 37], who introduced the notion of NC computable real functions. NC

denotes the class of decision problems solvable by a family of Boolean circuits with

polynomial size and polylog depth. In this chapter, by NC we mean uniform NC ,

which requires the Boolean circuit family to be constructed by a log-space Turing

machine. It is well known that L ⊆ NC ⊆ P , where L and P denote the classes of

decision problems solvable by log-space Turing machines and polynomial-time Turing

machines, respectively. In this chapter, we extend Ko’s and Hoover’s studies to NC

analytic functions.

We first investigate the complexity of derivatives and integration of NC real func-

tions. It is known that the derivatives of polynomial-time computable real func-
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tions may have arbitrarily high complexity, and that the complexity of integration of

polynomial-time computable real functions may be as high as a #P -complete discrete

function (see Ko [40]). We show that these negative results also hold for NC real func-

tions. In fact, we show that the integration of log-space computable real functions

may be as hard as the integration of polynomial-time computable real functions, that

is, the complexity is still #P .

For analytic functions defined on the complex plane, it is known that if f is

a polynomial-time computable, analytic function on a neighborhood containing the

origin 0, then the sequence {f (n)(0)/n!} is polynomial-time uniformly computable

(Ko [40]). We extend this result toNC and log-space analytic functions: If f is an NC

or log-space computable, analytic function defined on a neighborhood containing the

origin 0, then the sequence {f (n)(0)/n!} of derivatives is NC or log-space uniformly

computable, respectively. This is a nontrivial extension. We achieve these results

through detailed analysis of parallel computation of the derivatives. For example, we

use Newton interpolation to approximate the derivatives; for the log-space case, we use

the recently proved result that integer division is NC 1 computable. As a consequence,

the integral
∫
f(t)dt of an NC or log-space computable analytic function is also NC

or log-space computable, respectively.

One of the fundamental algorithmic problems in complex analysis is to find the

zeros of an analytic function inside a Jordan curve (see, e.g., Henrici [35]). This

problem has been attempted by various methods and algorithms, namely, (1) methods

based on the bisection algorithm, which keep searching zeros in subdivided squares

using the principle of the argument [35] (see, e.g., Yakoubsohn [79] and Meylan et

al. [52]); (2) simultaneous iterative methods based on Newton’s method, which require

to make a good guess at the initial step (see, e.g., Petkovic et al. [60; 61]); and (3)

the quadrature methods based on numerical evaluation of integrals, which turn the

problem into that of finding all zeros of the associated polynomial function (see,
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e.g., Kravanja et al. [48] and Delves et al. [23]). We study this problem from the

complexity-theoretic point of view. We study the complexity of finding all zeros of

an NC analytic function inside a given Jordan curve. We give a careful complexity

analysis of the quadrature method and demonstrate that the zeros of an NC analytic

function f inside an NC Jordan curve Γ are all NC computable if (i) f is analytic

on a simply connected domain that covers Γ, and (ii) there is an absolute constant

c > 0 such that |f(z)| > c for all z on or near Γ.

4.2 Complexity of Derivatives and Integration of

NC Functions

In this section we first study the complexity of computing derivatives and integrals

of NC real functions, then restrict ourselves to NC analytic functions and show how

analyticity affects the complexity. These results may be viewed as the NC versions

of those in Ko [40].

4.2.1 Differentiation and Integration of NC Real Functions

Before we ask the complexity of finding the derivatives of an NC real function, the

first question is whether they exist.

Theorem 4.2.1 There exists an NC1 function f : [0, 1]→ R such that f is nowhere

differentiable.

Proof. The construction is essentially identical to that of Theorem 6.1 of Ko [40]. We

omit it here. �

In the following, Ck[0, 1] denotes the set of functions f : [0, 1] → R that has

continuous k-th derivative f (k) and C∞[0, 1] denotes the set of infinitely differentiable

functions f : [0, 1]→ R.
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Theorem 4.2.2 Let f : [0, 1]→ R be an NC function and have a continuous deriva-

tive on [0, 1]. Then f ′ is NC computable on [0, 1] iff f ′ has a polynomial modulus of

continuity on [0, 1]. If, furthermore, f ∈ Ck[0, 1] for some k > 0, then f (i) is NC

computable for i < k; if f ∈ C∞[0, 1], then f (i) is NC computable for all i > 0.

Proof. The proof is essentially identical to that of Theorem 6.2 of Ko [40]. We omit

it here. �

Theorem 4.2.3 There exists an NC function f : [0, 1] → R whose derivative f ′

exists everywhere but f ′(d) is not a computable real number for all d ∈ D ∩ [0, 1].

Proof. The construction is essentially identical to that of Theorem 6.4 of Ko [40]. We

omit it here. �

Now we consider the complexity of integration. As integration is in some sense

a summation, it is not surprising that it is related to counting classes. As pointed

out by Ko [40], the complexity of integration of polynomial-time computable real

functions is characterized by the counting class #P . Now our question is: what is

the complexity of integration of NC real functions?

Theorem 4.2.4 Let C be one of complexity classes {L,NC, P}, and FC be the cor-

responding class of functions. The following are equivalent:

(a) Let f : [0, 1]→ R be a C function. Then, h(x) =
∫ x

0
f(t)dt is a C function.

(b) Let f : [0, 1]→ R be a C function in C∞[0, 1]. Then, h(x) =
∫ x

0
f(t)dt is a C

function.

(c) FC = #P.

Proof. We first define a class ∃C of languages A such that there exist a language

B ∈ C and a polynomial function p such that for all w ∈ {0, 1}∗,

w ∈ A⇔ (∃v ∈ {0, 1}p(�(w)))〈w, v〉 ∈ B.
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Then we define a class #̃C of functions g such that there exist a language B ∈ C and

a polynomial function p such that for all w ∈ {0, 1}∗,

g(w) = ||{u : �(u) = p(�(w)) and 〈w, u〉 ∈ B}||.

It is obvious that ∃P = NP and #̃P = #P (see, e.g., Du and Ko [26]). However,

we do not know whether ∃L = NL or #̃L = #L. In fact, it is not hard to prove that

∃L = ∃NC = NP and #̃L = #̃NC = #P , and so it is most likely that #̃L �= #L

(recall that #L ⊆ FNC2 ⊆ FP ).

The proof of Theorem 5.33 in Ko [40] can now be adapted to prove (a)⇔ (b)⇔
FC = #̃C, and the theorem follows the fact that #̃L = #̃NC = #P . �

4.2.2 Differentiation and Integration of NC Analytic Func-

tions

In Section 4.2.1, we showed that, for a given NC function f ∈ C∞[0, 1], the sequence

{f (n)} is NC computable, but we remark here that it is not necessarily NC uniformly

computable (see Bläser [9]). For integration, we have shown that it has higher com-

plexity #P than FNC, with the assumption that #P �= FNC. In this section, we

study the same problems for functions f that are analytic. We consider complex

analytic functions instead of real analytic functions, but the results still hold for the

real analytic case.

Let S be a domain. A function f : S → C is called an analytic function if

for every point z ∈ S, f ′(z) exists, or equivalently, if there is a power series that

converges to f at a neighborhood of z for every point z ∈ S. It is obvious that if

f is analytic, then it is infinitely differentiable. If an interval [a, b] ⊆ S is on the

real line R and {f (n)(a)} are all real numbers, we say f is real analytic on [a, b].

Analyticity is a stronger property than continuity and infinite differentiability, and
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thus the complexity of operations on analytic functions are sometimes lower than that

on more general functions.

We first recall the concepts of uniform computability (see Ko [40]). Let C be one of

the complexity classes {L,NC , P}. By an L, NC or P machine, we mean a log-space

Turing machine, NC circuit family or polynomial-time Turing machine, respectively.

Definition 4.2.5 A sequence {xn} of real (or complex) numbers is C uniformly com-

putable if there exists a C machine M that for all n, k ≥ 0, M approximates xn with

an error ≤ 2−k with the complexity of C, where the complexity is measured in terms

of n and k. For example, {xn} is NC uniformly computable1 if there exists an NC i

circuit family {Cn} for some i ≥ 0 such that for any n, k > 0, C〈n,k〉 outputs a dyadic

number d such that |d − xn| ≤ 2−k. In other words, {C〈n,k〉}∞k=0 computes xn. (We

also say {xn} is NC i uniformly computable in order to specify the circuit depth.)

Similar to the above definition, we can further define C uniformly computable se-

quences {fn} of real functions by modifying definitions such as Definition 2.5.3. For

example, “{fn} has a uniform polynomial modulus” means that there exists a poly-

nomial function p such that for any n, k > 0 and any x1, x2 ∈ [0, 1], |x1 − x2| ≤
2−p(n+k) ⇒ |fn(x1)− fn(x2)| ≤ 2−k.

Theorem 4.2.6 Suppose f is an analytic function defined on a domain that contains

the closed unit disk, and C is one of the complexity classes P, L or NC i, i ≥ 1. If f

is C computable, then

(a) {f (n)(0)/n!} is a C uniformly computable sequence.

(b)
∫
[0,x]

f(t)dt is C computable.

1The word “uniformly” here refers to the uniform computation of the sequence {xn}, and is

not to be confused with the uniform computation of the Boolean circuit family in the definition of

“uniform NC”.
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Proof. Note that the case C = P has been proved in Ko [40]. We give a sketch of the

proof for the case C = NC i (and the case C = L follows from the case C = NC 1 easily).

We assume that f is real analytic on [0, 1] in order to simplify the presentation (or

we can write f = f1 + if2 for two real analytic functions f1 and f2).

For (a), let an = f (n)(0)/n!, n ∈ N. Assume that we want to compute approximate

values of a1, a2, · · · , an, with error ≤ 2−n. We use the method of Newton Interpola-

tion. Let M be an upper bound of |f | on the closed unit disk. Let b = 2−cn for some

constant c such that bM(n+1) ≤ 2−(n+2) and (1− b)n+2 ≥ 1/2. Let xk = k · 2−(c+1)n,

0 ≤ k ≤ n, then 0 = x0 < x1 < · · · < xn ≤ b = 2nx1. Let

a′k =

∑k
j=0(−1)j

(
k
j

)
f(xk−j)

k!xk1
, 1 ≤ k ≤ n.

It is known that a′k = f (k)(ξk)/k! for some ξk ∈ [0, xk] ⊆ [0, b] (see, e.g., Burden et

al. [13])2, so

|a′k − ak| =
∣∣∣
∫
[0,ξk]

f (k+1)(t)dt

k!

∣∣∣ ≤ b max
t∈[0,b]

|f (k+1)(t)|/k!.

Note that f (k+1)(t) = (k+1)!
2πi

∫
|z−t|=1−b

f(z)
(z−t)k+2dz (Cauchy’s Integral formula [35]). There-

fore,

max
t∈[0,b]

|f (k+1)(t)| ≤ M(k + 1)!

(1− b)k+2
,

and

|a′k − ak| ≤
bM(k + 1)

(1− b)k+2
≤ bM(n + 1)

(1− b)n+2
≤ 2−(n+1).

Next we design a circuit C〈k,n〉 of four layers to approximate a′k with error ≤
2−(n+1).

1. The top layer is a division circuit that approximates
∑k

j=0(−1)j
(
k
j

)
f(xk−j)/(k!xk1)

with error 2−(n+2).

2This is the only place where we need the assumption of the real analyticity of f . Formula

a′
k = f (k)(ξk)/k! does not hold for the case that f is complex analytic.
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2. The second layer has two circuits: one is an addition circuit that computes∑k
j=0(−1)j

(
k
j

)
f(xk−j), the other is a multiplication circuit that computes k!xk1

(since xk1 = 2−k(c+1)n, this circuit is actually a shift).

3. The third layer contains k+1 multiplication circuits to compute (−1)j
(
k
j

)
f(xk−j)

for 0 ≤ j ≤ k, and a circuit to compute k!.

4. The fourth layer contains k+1 circuits to compute (−1)j
(
k
j

)
, and k+1 circuits

to approximate f(xk−j) with error ≤ 2−(k+k(c+2)n+2), where 0 ≤ j ≤ k.

The first layer and the fourth layer bring an error ≤ 2−(n+2) each, and so the total

error is bounded by 2−(n+1). The numbers involved are all of length polynomial in

n (for example, n! is represented by a binary string of length O(n logn)). Note that

except the one computing f , all other circuits involved are in NC 1; that is, they are

of size polynomial in n, and of depth linear in logn. In particular, the circuit to

compute
(
k
j

)
is in NC 1, since the iterated product of n n-bit numbers, as well as the

division of two n-bit numbers, is computable in NC 1 (see Chiu et al. [17]). Thus,

the whole circuit is of size polynomial in n and of depth O(depth(f) + logn), where

depth(f) is the depth of the circuit family that computes f . This completes the proof

of (a).

For (b), we have a proof similar to that in Ko [40] (pages 208–209), namely, we

write f(t) = Σ∞
n=0ant

n, and to approximate
∫
[0,x]

f(t)dt with error ≤ 2−n, we only

need the first cn terms of the power series, where c > 0 is a constant. We can throw

other terms out because |ak| ≤M/rk for some r > 1 and all k (which makes the terms

ak very small if k > cn), since f is analytic in a domain that contains the closed unit

disk. We still do the integration term by term and then sum up, except that we use

circuits to compute ak’s and to add the integrals
∫
[0,x]

akt
kdt = akx

k+1/(k+ 1) up for

0 ≤ k ≤ cn. �
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4.2.3 Integration of Meromorphic Functions

Now we extend the results on integration of NC analytic functions to integration of

meromorphic functions along Jordan curves.

For a given domain S, a meromorphic function f : S → C is a function that is

analytic in all but possibly a discrete subset of S, and at those singularities it must

go to infinity like a polynomial (i.e., these exceptional points must be poles and not

essential singularities).

First note that, for a meromorphic function f : S → C and a Jordan curve Γ ⊆ S,

the integral
∫
Γ
f of f along Γ is definable, provided that f has no poles on Γ. To see

this, we observe that f has only a finite number of poles z1, · · · , zm (m ≥ 0) inside

Γ, and so it can be written as

f =

m∑
i=1

ni∑
j=1

aij
(z− zi)j

+ f1,

where ni ∈ N (1 ≤ i ≤ m) is the degree of the pole zi of f , and f1 is an analytic

function. Then, for any piecewise linear closed curve Γ′ ⊆ S such that f has no poles

on Γ′ and f has exactly m poles z1, · · · , zm inside Γ′,
∫
Γ′ f is defined and by the

residue theory (See, e.g., Henrici [35]),
∫
Γ′ f = 2πi

∑m
i=1 ai1. Therefore, we can define∫

Γ
f =

∫
Γ′ f = 2πi

∑m
i=1 ai1.

We say a Jordan curve Γ is NC computable if there exists an NC function f :

[0, 1]→ C such that f([0, 1]) = Γ, f is 1-1 on [0, 1) and f(0) = f(1). If p is a modulus

function of f , we also say it is a modulus function of Γ.

From the above discussion, and Theorem 4.2.6, we obtain the following result.

Theorem 4.2.7 Let Γ be an NC computable Jordan curve and S be a simply con-

nected domain that contains Γ. Let f be a meromorphic function on S that has no

poles on Γ. Assume that n0 is a positive integer such that

(a) For all z ∈ Γ, δ(z, ∂S) ≥ 2−n0,
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(b) The function f has no poles in S1 = {z : δ(z,Γ) < 2−n0}, and

(c) f is NC computable in S1.

Then
∫
Γ
f is NC computable, with the complexity measured in terms of 2p(n0+1) + n,

where p is the modulus function of Γ and n is the precision parameter. Furthermore,

if Γ is log-space computable and f is log-space computable in S1, then
∫
Γ
f is log-space

computable.

4.3 Finding All Zeros of an Analytic Function In-

side a Jordan Curve

We consider in this section the following problem: given a simply connected domain

S that contains a Jordan curve Γ and an NC function f that is analytic in S, find

all zeros of f inside Γ.

We assume that the function f has no zeros on Γ, because it is, in general, un-

decidable whether a zero of f is on Γ. This is equivalent to assume that the mini-

mum modulus minz∈Γ |f(z)| of f on Γ is greater than zero. Intuitively, the smaller

minz∈Γ |f(z)| is, the harder it is to compute the zeros of f inside Γ.

A quadrature method of computing all zeros of an analytic function f inside a

Jordan curve Γ can be stated as follows.

(a) Computing the number of zeros. Compute the number of zeros

n = 1
2πi

∫
Γ
f ′(z)
f(z)

dz (by principle of the argument, see, e.g., Henrici [35]).

(b)Computing Newton sums. Let z1, · · · , zn be all zeros of f inside Γ. The p-

th Newton sum sp is defined as sp := zp1 + · · · + zpn. We can compute sp =

1
2πi

∫
Γ
zp f

′(z)
f(z)

dz (see, e.g., Henrici [35]).
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(c)Computing the associated polynomial. Compute the associated polynomial

pn(z) for zeros of f in Γ, where pn(z) := Πn
i=1(z− zi) =: zn + σ1z

n−1 + · · ·+ σn.

The coefficients σ1, · · · , σn can be computed using Newton’s Identities (see,

e.g., Carpentier and Dos Santos [15]):

s1 + σ1 = 0

s2 + s1σ1 + 2σ2 = 0

·
·
·
sn + sn−1σ1 + · · ·+ s1σn−1 + nσn = 0

(4.1)

(d) Solving the associated polynomial. Compute the zeros of pn(z).

Our main theorem for this problem is as follows:

Theorem 4.3.1 Let S be a simply connected domain that contains an NC computable

Jordan curve Γ. Let f be an analytic function in S. Assume that there exist two

constants n0, n1 ∈ N such that

(a) For all z ∈ Γ, δ(z, ∂S) ≥ 2−n0,

(b) |f(z)| > 2−n1 for all z ∈ S1 = {z ∈ C : δ(z,Γ) ≤ 2−n0}, and

(c) f(z) is NC computable in S1.

Also assume that f has at most m zeros inside Γ, m ≥ 0. Then the problem of

finding all zeros of f inside Γ is NC solvable, with the complexity measured in terms

of 2p(n0+1) + m + n + n1, where n is the precision parameter and p is the modulus

function of Γ.

Proof. We check that each of the four steps above is in NC . Note that f ′/f is NC

computable with the complexity measured in terms of n1 + n. Then the first two
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steps are NC computable by Theorem 4.2.7. Step (c) involves the computation of

the inverse of a lower triangular matrix, which is NC 2 computable (see, e.g., Bovet

et al. [11]). Step (d) was proved to be in NC by Neff [54]. (The known results for

steps (c) and (d) need to be adapted to our model. ) �

We remark that when f and Γ are log-space computable, so are the first two steps

of the above quadrature method. However, we do not know whether step (c) can be

done in log-space, and Neff’s NC algorithm of computing all zeros of a polynomial

is of depth log3 n. Thus, it is still open whether the problem is log-space solvable for

this case.

In addition, the constant 2p(n0+1) in the complexity measure appears large, but it

is possible that m = Ω(2p(n0+1)), which makes 2p(n0+1) less significant in the measure.

Moreover, for a fixed function f and a fixed Jordan curve Γ, 2p(n0+1) is also fixed and

the larger n becomes, the less significant 2p(n0+1) is in the measure.

4.4 Discussions: Representations of Real Numbers

in Parallel Time Complexity

We mentioned in Chapter 2 that there are two representations of real numbers which

are used to define the complexity of real numbers, namely, the Cauchy function

representation and the general left cut representation. These two representations are

equivalent to each other within P . However, as to be shown next, they are actually

different in NC and L respectively, unless NC = P or L = P , respectively.

We consider four representations: Standard left cut, general left cut, binary ex-

pansion and Cauchy function representation. More precisely, for the complexity class

NC , we define the following classes of real numbers.

NC SLC: the class of real numbers whose standard left cuts are NC computable.
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NCBE: the class of real numbers whose standard Cauchy functions are NC com-

putable.

NCGLC: the class of real numbers x such that there exists a general left cut of x that

is NC computable.

NC CF : the class of real numbers x such that there exists a Cauchy function of x that

is NC computable.

Similarly for L, we define LSLC , LBE , LGLC , LCF , and for P , we define PSLC, PBE ,

PGLC , PCF .

Ko [40] showed that

PSLC = PBE
⊂
�= PGLC = PCF .

Our results show that it is more complicated in the parallel time world.

4.4.1 Absolute results

We first present some absolute results, which do not rely on assumptions on the

complexity classes such as P1 �= L1. Note that we can obtain trivial results LBE ⊆
NCBE ⊆ PBE and so on, since L ⊆ NC ⊆ P . We omit such results.

Theorem 4.4.1 NCBE ⊆ NC CF , LBE ⊆ LCF .

Proof. This is obvious since the standard Cauchy function bx of a real number x is a

Cauchy function of x. �

Theorem 4.4.2 NCBE ⊆ NC SLC, LBE ⊆ LSLC.

Proof. For any number x ∈ NCBE , we have that bx is in NC . If x ∈ D, then

x ∈ NC SLC . Assume that x /∈ D. For any n ∈ N and d ∈ Dn, it is in NC to compare
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bx(n) and d. Because x /∈ D, d ≤ bx(n) implies that d < x, and d > bx(n) implies

that d > x. This completes the proof for NCBE ⊆ NC SLC. Similarly, we can prove

that LBE ⊆ LSLC . �

The following theorem extends Theorem 2.8 of Ko [40].

Theorem 4.4.3 There exists a real number x ∈ LCF −PSLC. Thus, LCF −LSLC �= ∅
and NC CF −NC SLC �= ∅.

Proof. We first define a function T (n) inductively: T (1) = 1, and T (n+1) = 2222
T (n)

.

By a simple diagonalization, we can find a set A ⊆ {0}∗ such that A is computable

in space T (n) but not in space log T (n) (see, for example, Aho et al. [3]). Without

loss of generality, let 0 ∈ A. Define

x =

∞∑
i=1

(2 · χA(0i)− 1)2−2T (i)

.

First we show that x ∈ LCF . We can compute, for each n, a dyadic rational φ(n)

as follows:

(1) find the integer k such that T (k) ≤ log n < T (k + 1).

(2) compute φ(n) =
∑k

i=1(2 · χA(0i)− 1)2−2T (i)
.

It is clear that the value φ(n) computed above differs from x by at most 2−(2T (k+1)−1)

≤ 2−n. So the above procedure computes a function φ ∈ CFx. Furthermore, since

T (k) ≤ logn, the computation of φ(n) can be done in space O(logn). Thus, x ∈ LCF .

Next we show that x /∈ PSLC . Assume, by way of contradiction, that SLCx is

computable in polynomial time. We will find a Turing machine M computing χA(0n)

in space log T (n).

Let Ma be a Turing machine that computes χA in space T (n). The new machine

for χA(0n) works as follows. First, it simulates MA on inputs 0, 02, · · · , 0n−1 and
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computes d =
∑n−1

i=1 (2χA(0i)− 1)2−2T (i)
. Then it determines whether d ∈ SLCx and

concludes that χA(0n) = 1 iff d ∈ SLCx.
It is clear that the above machine M indeed computes χA. Assume that LCx

is computable in time p(n) and hence in space 2p(n). Then the space usage of the

machine M is bounded by O(
∑n−1

i=1 T (i))+2p(2
T (n−1)) < 222T (n−1)

= log T (n) for almost

all n, which contradicts to the fact that A is not computable in space logT (n).

In the above we have constructed a number x ∈ LCF − PSLC . As LCF ⊆ NCCF

and LSLC ⊆ NC SLC ⊆ PSLC , we have LCF − LSLC �= ∅ and NC CF −NC SLC �= ∅. �

Next we consider general left cuts.

Theorem 4.4.4 NC CF ⊆ NCGLC, LCF ⊆ LGLC .

Proof. For a number x ∈ NC CF , let φ ∈ CFx be in NC . Note that the general left

cut Lφ of x associated with φ is {d ∈ Dn : n ∈ N, d ≤ φ(n)}. Similar to the proof of

Theorem 4.4.2, it is in NC to compare a dyadic number d and φ(n). �

4.4.2 Results under assumptions P1 �= L1 and P1 �= NC 1

We use a specific coding system for the instantaneous descriptions (IDs) of the com-

putation of a time-bounded Turing machine so that we can discuss the simulation

of the machine (see Ko [40]). We assume that our machine M works on two tape

symbols: 0 and 1 (and a special blank symbol), has k states q1, · · · , qk, uses a single

tape, and has a time bound ψ. For each string s ∈ {0, 1}∗ of length �(s) = n, each ID

of the computation of M(s) is encoded by a string in {0, 1}∗ of length 2ψ(n)+2k+4:

we encode type symbols 0 and 1 by 01 and 10, respectively, and the blank symbol

by 00, and the state symbol qi by 11(01)i(10)k−i11, where the state symbol appears

just to the left of the tape symbol that is currently scanned by the tape head. (To

see this in another way, at any moment, there are at most ψ(n) symbols (of 0, 1 and
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the blank) in the computation, whose length is at most 2ψ(n) in our encoding, and

the state is of length 2k + 4.) Thus, for any input s of length n, the computation of

M(s) is encoded by a (ψ(n) + 1) · (2ψ(n) + 2k+ 4)-bit string α0α1 · · ·αψ(n), where αi

is the code of the i-th ID in the computation of M(s). Note that we fix the length

of the codes for IDs to be exactly 2ψ(n) + 2k + 4, and fix the number of IDs in the

computation to be exactly ψ(n) + 1.

We say a function φ : N→ N is log-space computable if it is log-space computable

when both inputs and outputs are written in the binary form. Note that if φ is log-

space computable, then it is also log-space computable when both inputs and outputs

are written in the unary form.

We use the following lemma (Lemma 4.15 of Ko [40]).

Lemma 4.4.5 Let M be a Turing machine having k states and having a time bound

ψ, which is log-space computable. Then for any input st of length �(s) = �(t) =

ψ(n) + 2k + 4 such that s is an ID of M(u) for some string u of length n, we can

determine, in log space, whether t is the successor of s in the computation of M(u),

or t is less than the successor ID, or t is larger than the successor ID. Furthermore,

we can compute, in log space, the maximum m such that the first m bits of t agree

with those of the successor ID of s.

Theorem 4.4.6 If P1 �= L1, then LSLC − LCF �= ∅.

Proof.

Let T ∈ P1 − L1 be computed by a deterministic Turing machine M in time

p(n). Assume that p is log-space computable. We use the encoding system described

above. Assume that M has k states and so on input 0n, an ID of M(0n) is of length

2ψ(n)+2k+4. We let sn,i, 0 ≤ i ≤ p(n), be the i-th ID of the computation of M(0n).

Define a real number x whose binary expansion is
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x = 0.01τ(s1,0)τ(s1,1) · · · τ(s1,p(1))τ(s2,0) · · · τ(s2,p(2)) · · · ,

where τ is the local translation function defined by τ(0) = 01, τ(1) = 10, and

τ(ab) = τ(a)τ(b) for all a, b ∈ {0, 1}+.

We first show that x ∈ PCF − LCF . Let q(n) = 2p(n) + 2k + 4 and r(n) =∑n
i=1 2q(i) · (p(i) + 1). From T ∈ P1, it is easy to see that x ∈ PCF . Furthermore,

note that for each 0n, we need only τ(sn,p(n)), or, from the (r(n)−2q(n)+3)-rd bit to

the r(n)+2 bit of the binary expansion of x, to determine whether 0n ∈ T . Therefore,

if x ∈ LCF , then we can compute, in log space, an approximation value d to x such

that |d− x| ≤ 2r(n)+4, and by our coding system, the first r(n) + 2 bits of d must be

identical to those of x and so we can determine whether 0n ∈ T in log space, which

contradicts to the assumption of T ∈ P1 − L1.

Next we show that x ∈ LSLC , that is, SLCx = {d ∈ D : d < x} is in L. We only

need to consider dyadic numbers of even lengths, because for a dyadic number d of

an odd length, we can add a trailing zero to d. For a dyadic number d ∈ D2n, we

can tell whether d < x or d > x in log space (note that since x /∈ LCF , x /∈ D and

d �= x). We achieve this by generating the initial IDs si,0 and applying Lemma 4.4.5

successively to each substring uv of d, where u is already been verified to be equal to

τ(si,j) for some j and �(v) = �(u); furthermore, we check whether v > τ(w), v = τ(w)

or v < τ(w), where w is the next ID of u. If v > τ(w), d > x; if v < τ(w), d < x; if

v = τ(w), we continue with the process. If all bits of d agree with the first 2n bits of

x, d < x. �

Corollary 4.4.7 If P1 �= NC 1, then NC SLC − NC CF �= ∅.

Proof. The proof is the same as that of Theorem 4.4.6, except that we let T ∈
P1 −NC 1 and the constructed number x ∈ LSLC ⊆ NC SLC . �

Corollary 4.4.8 If P1 �= L1, then LBE
⊂
�= LSLC.
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Proof. Because we have LBE ⊆ LCF , LBE ⊆ LSLC and LSLC − LCF �= ∅. �

Corollary 4.4.9 (a) If P1 �= L1, then LCF and LSLC are incomparable.

(b) If P1 �= NC 1, then NC CF and NC SLC are incomparable.

Proof. Statement (a) follows Theorems 4.4.6 and 4.4.3. Statement (b) follows Corol-

lary 4.4.7 and Theorem 4.4.3. �

Corollary 4.4.10 (a) If P1 �= L1, then LCF
⊂
�= LGLC .

(b) If P1 �= NC 1, then NC CF
⊂
�= NCGLC.

GLC

L

L

L

L

SLC

BE

CF

Figure 4.1: Assuming P1 �= L1.

In summary, if P1 �= L1, then LSLC , LBE , LGLC and LCF are four distinct classes

(see Figure 4.1). If P1 �= NC 1, then NC SLC, NCBE , NCGLC and NC CF are four

distinct classes. The converse also holds, since Ko [40] has shown that PCF = LCF ⇔
P1 = L1 and PCF = NC CF ⇔ P1 = NC 1. We state it as a theorem.

Theorem 4.4.11 The following are equivalent:

(a) P1 �= L1.

(b) LSLC, LBE, LGLC and LCF are four distinct classes.
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Similar results hold for NC real numbers.

The following corollary is an absolute result.

Corollary 4.4.12 LCF �= LSLC, NCCF �= NC SLC.

Proof. If LCF = LSLC , then from Theorem 4.4.11, P1 = L1, and from Ko’s results,

LCF = PCF , which implies LSLC = PCF and furthermore PSLC = PCF . However,

from Theorem 2.8 of Ko [40], PSLC
⊂
�= PCF . Therefore, LCF �= LSLC . We can prove

in a similar way that NCCF �= NC SLC . �
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Chapter 5

Convex Hulls

5.1 Introduction

The convex hull of a set S of the two-dimensional plane is the smallest convex set

CH(S) that contains S. It is a fundamental concept in mathematics and in com-

putational geometry. For polygons and sets of finite points, there are a number of

efficient algorithms to compute their convex hulls (see, for instance, O’Rourke [57]

and de Berg et al. [8]). In general, however, no efficient algorithms are known to

work for all subsets of the two-dimensional plane. In fact, for some set S, its convex

hull could be very complicated and defies a simple algorithm.

In this chapter, we study the complexity of computing the convex hull of a given

set S ⊆ R
2. In particular, we study two problems about the convex hull CH(S) of a

polynomial-time computable set S ⊆ R2:

Membership Problem: For a polynomial-time computable set S and a

given point z, determine whether z is inside CH(S).

Area Problem: For a polynomial-time computable set S, compute the

two-dimensional measure of the convex hull of S.
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In this chapter, we use the notions of polynomial-time computable Jordan do-

mains, polynomial-time recognizable sets and strongly polynomial-time recognizable

sets to study these two problems. (See Section 2.5 for the formal definitions of these

notions.) Our main results can be summarized as follows:

(1) There exists a Jordan domain S ⊆ R
2 which is polynomial-time recognizable

such that its convex hull is not even recursively recognizable.

(2) If a set S ⊆ R2 is a Jordan domain and its boundary is polynomial-time

computable, or if S is strongly polynomial-time recognizable, then its convex hull

CH(S) is strongly nondeterministic polynomial-time recognizable.

(3) If P �= NP , then there exists a Jordan domain S ⊆ R2 whose boundary is

polynomial-time computable such that its convex hull CH(S) is not polynomial-time

recognizable.

(4) If a set S ⊆ R2 is a Jordan domain and its boundary is polynomial-time

computable, or if S is strongly polynomial-time recognizable, then the area of its

convex hull CH(S) is computable in polynomial-time with the help of an oracle

function in #P .

(5) If FP1 �= #P1, then there exists a Jordan domain S ⊆ R
2 whose boundary

is polynomial-time computable such that the area of its convex hull CH(S) is not a

polynomial-time computable real number.

5.2 Convex hull of a P -recognizable set

P -recognizability is the most general concept of polynomial-time computability for

two-dimensional sets, but some of the important properties of a set are not retained

in this formulation. For instance, Chou and Ko [20] pointed out that the distance

function δS(z) = dist(z, ∂S) is not necessarily computable even if S is P -recognizable.

It is not hard to see that this is also true for the notion of convex hulls. As a
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simple example, suppose S consists of four corners of a square [0, x]× [0, x] where x

is an incomputable real number. Then, S is P -recognizable since all its points are

on the boundary ∂S and so a trivial oracle TM M that always outputs 0 computes

χS correctly for all points away from the boundary. On the other hand, we note

that CH(S) is exactly the square R = [0, x] × [0, x]. It is not hard to see that R is

recursively recognizable if and only if x is a computable real number.

In the following, we show that, even if S is a Jordan domain and is P -recognizable,

its convex hull CH(S) is not necessarily recursively recognizable.

Theorem 5.2.1 There exists a P -recognizable Jordan domain S of which the convex

hull CH(S) is not recursively recognizable.

Proof. Let K ⊆ N be an r.e., nonrecursive set of integers. Then, there exists a TM

MK that enumerates the integers in K. That is, MK prints, on input 0, integers on its

output tape one by one such that (i) it prints only integers in K, and (ii) every integer

in K is eventually printed. For n ∈ K, let t(n) be the number of moves MK takes to

print integer n on input 0. Without loss of generality, we assume that t(n) ≥ 2n+ 1.

Let O denote the origin 〈0, 0〉 of R2 and C denote the unit circle, i.e., the cir-

cle with center O and radius 1. For any n > 0, let an = 1/4 − 2−(n+1), Zn =

〈cos(2πan), sin(2πan)〉, and Cn be the chord of C connecting the points Zn and Zn+1.

We now define a function f : [0, 1] → R2 whose image is a Jordan curve Γ. On

[1/4, 1], the image of f is the circle C on the second, third, and fourth quadrants;

i.e., f(t) = 〈cos(2tπ), sin(2tπ)〉, for t ∈ [1/4, 1]. Next, for each n > 0, if n �∈ K,

then f is linear on [an, an+1], with f(an) = Zn and f(an+1) = Zn+1; i.e., f maps

[an, an+1] linearly to the chord Cn. If n > 0 and n ∈ K, then f maps [an, an+1]

to the chord Cn with a bump in the middle, where the bump has width 2−t(n) and

height hn = 1 − cos(2−(n+2)π). To be more precise, let X ′
n be the middle point

of the chord Cn, and Xn the intersection point of the circle C and the half line
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Figure 5.1: The curve ∂S between Zn and Zn+1

−−→
OX. Define Pn and Qn to be the two points on Cn with distance 2−t(n)−1 from X ′

n

(with Pn closer to Zn and Qn closer to Zn+1).
1 The function f is piecewise linear on

[an, an+1] with f(an) = Zn, f((an+an+1)/2−2−t(n)−n−3) = Pn, f((an+an+1)/2 = Xn,

f((an+an+1)/2+2−t(n)−n−3) = Qn, and f(an+1) = Zn+1. (Figure 5.1 shows the curve

Γ between Zn and Zn+1.) This completes the definition of function f . Note that f is

a continuous function but is not computable.

Let S be the interior of the Jordan curve Γ. We claim that S is P -recognizable.

First, it is easy to see that the set S0 that is enclosed by the curve f [1/4, 1] plus all

chords Cn, for n > 0, is P -recognizable. Next let Bk be the area enclosed by the

chord Cn and the circle C from Zn to Zn+1, and let Sk = S ∩ Bk. If k �∈ K, then

Sk = ∅; and if k ∈ K, then Sk is a small bump of width 2−t(n) and height hn. Now,

1Note that t(n) ≥ 2n + 1 implies that 2−t(n)−1 ≤ 2−2n−2, and the distance between Zn and X ′
n

is sin(2−n−2π) > 2−n−2. Therefore, Pn and Qn are between Zn and Zn+1.
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consider the following algorithm for the membership problem of S:

Oracles: 〈φ1, φ2〉 representing a point z ∈ R2.

Input: n > 0.

(1) Ask the oracles to get a dyadic point w ∈ D
2
n+1 with |w− z| < 2−(n+1).

(2) If w ∈ S0, then answer yes;

(3) Else if w �∈ Bk for any k ≤ n, then answer no;

(4) Else if w ∈ Bk for some k ≤ n, then simulate TM MK for n moves, and

answer yes if and only if MK prints k within n moves and w ∈ Sk.

To see that the above algorithm solves the membership problem of S correctly,

assume that z is a point in R2 with dist(z,Γ) > 2−n. Then, if z ∈ S0 or if z lies

outside C, then the answer given by the algorithm is correct. Next, suppose z ∈ Bk

for some k > 0. If k �∈ K, or if k ∈ K and t(k) ≤ n, then again the answer is correct.

Finally, suppose z ∈ Bk with k ∈ K and t(k) > n. Then, Sk is a small bump of width

2−t(k) < 2−n, and so all points in Sk have distance at most 2−(n+1) from the boundary

Γ. Thus, the answer no is correct for z if it has distance > 2−n from Γ.

Next, we verify that this algorithm works in polynomial time. It is apparent that

steps (1)—(3) and the first half of step (4) can be done in time polynomial in n.

For the second half of step (4), we note that if t(k) > n, then we can simulate Mk

for n steps and answer no. Otherwise, if t(k) ≤ n, then we can calculate t(k) in

O(n) moves, and compute points Xn, Pn, Qn correctly within error 2−(n+1) in time

polynomial in n. From these points, we can then determine whether w ∈ Sk if w has

distance > 2−(n+1) from the line segments PnXn, XnQn. This completes the proof

that S is P -recognizable.

Now, let us consider the convex hull CH(S) of set S. For each n > 0, let Tn =

CH(S) ∩ Bn. Note that the curve Γ lies completely within C and it includes all
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points Zn. Therefore, Tn depends only on the curve Γ between Zn and Zn+1. That

is, for n �∈ K, Tn = ∅; and for n ∈ K, Tn is equal to ΔZnXnZn+1, the triangle with

the vertices Zn, Xn and Zn+1. Now, suppose that CH(S) is recursively recognizable.

Then, we can determine whether n ∈ K as follows:

Let Yn be the middle point in X ′
nXn, and determine whether Yn is inside

CH(S) with error ≤ 2−2n−6. Answer n ∈ K if and only if Yn ∈ CH(S).

Note that hn = 1−cos(2−(n+2)π) ≥ 2−2n−4, and the length of Cn is 2 sin(2−(n+2)π) ≥
2−n−2.2 Now, it is not hard to see that the distance between Yn and the boundary

of CH(S) is greater than hn/4, no matter whether n ∈ K (or, equivalently, whether

Yn ∈ CH(S)). Thus, the above algorithm determines whether n ∈ K correctly. This

is a contradiction to the assumption that K is not a recursive set. �

5.3 Convex hull of a P -computable Jordan domain

In this section, we consider the complexity of convex hulls of P -computable Jordan

domains. In order to characterize the complexity of convex hulls, we need to extend

the notion of P -recognizable sets to NP -recognizable sets.

Definition 5.3.1 (a) A set T ⊆ R
2 is NP -recognizable if there exists a polynomial-

time nondeterministic oracle TM M such that, on oracles 〈φ1, φ2〉 representing a point

z ∈ R2, and on input n > 0,

(i) For z ∈ T with dist(z, ∂T) > 2−n, Mφ1,φ2(n) contains at least one accepting

path, and

(ii) For z �∈ T with dist(z, ∂T) > 2−n, Mφ1,φ2(n) has no accepting paths.

2By the Taylor expansion of the functions cos and sin, we know that for small t, 1 − cos t ≥
t2/2− t4/24 ≥ t2/4, and 2 sin t ≥ 2(t− t3/6) ≥ t.
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(b) A set T ⊆ R2 is strongly NP -recognizable if it is NP-recognizable and the

nondeterministic oracle TM M also satisfies the following stronger condition

(i ′) For all z ∈ T , Mφ1,φ2(n) contains at least one accepting path.

Theorem 5.3.2 Assume that S ⊆ [0, 1]2 is a Jordan domain whose boundary ∂S is

P -computable. Then, its convex hull CH(S) is strongly NP-recognizable.

Proof. Let Sc� denote the closure of S; i.e., Sc� = S ∪ ∂S. We note that, as S is

a Jordan domain, CH(Sc�) = CH(S) ∪ CH(S)c�. Since the notion of P - and NP -

recognizable sets allows the machine to have errors near the boundary of the set,

CH(S) and CH(Sc�) have the same complexity as far as we are only concerned with

these complexity notions. So, in the following, we will work directly with the convex

hull CH(Sc�) of the closed set Sc�.

We note that a point z belongs to CH(Sc�) if and only if there exist three points

on the boundary ∂S such that z lies in the triangle D formed by these three points.

The following algorithm for the membership problem of CH(S) is based on this idea.

Assume that the function f : [0, 1]→ R2 represents the boundary ∂S, and that f

is computable in time p(n) for some polynomial p.

Oracles: 〈φ1, φ2〉 representing a point z ∈ R2.

Input: n > 0.

(1) Ask oracles 〈φ1, φ2〉 to get a dyadic point w ∈ Dn+3
2 such that |w− z| ≤

2−(n+2).

(2) Nondeterministically guess three dyadic numbers d1, d2, d3 ∈ Dp(n+3).

(3) Compute three dyadic points x1,x2,x3 ∈ Dn+4
2 such that |xi − f(di)| ≤

2−(n+3) for i = 1, 2, 3.

(4) Let D be the triangle whose three vertices are x1,x2 and x3. Accept z if

w is inside D or has distance ≤ 2−(n+1) from the boundary ∂D of D.
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It is clear that the above algorithm works in polynomial time. To see that the

above algorithm strongly recognizes CH(Sc�), we first assume that z ∈ CH(Sc�).

Then, there must be three numbers t1, t2, t3 ∈ [0, 1] such that z lies in the triangle D0

formed by three vertices f(t1), f(t2) and f(t3).

Suppose that, for each i = 1, 2, 3, we have a dyadic number di ∈ Dp(n+4) and

dyadic point xi ∈ Dn+4
2 such that |di − ti| ≤ 2−p(n+3), and |xi − f(di)| ≤ 2−(n+3).

Then, |xi−f(ti)| ≤ 2−(n+2). Let D be the triangle with x1,x2,x3 as the three vertices.

Then, the Hausdorff distance between D0 and D is ≤ 2−(n+2). Therefore, z either lies

inside D or has distance ≤ 2−(n+2) from ∂Q. It follows that w either lies inside D or

has distance ≤ 2−(n+1) from ∂Q. Therefore, the computation path of the algorithm

that guesses the numbers d1, d2, d3 will accept z.

Conversely, assume that the above algorithm accepts z, with the guesses d1, d2, d3 ∈
Dp(n+3). Then, the algorithm found a triangle D such that w is either inside D or

has distance ≤ 2−(n+1) from ∂D. Let D1 be the triangle with the three vertices

f(d1), f(d2) and f(d3). Then, the Hausdorff distance between D and D1 is ≤ 2−(n+3).

It follows that w is either inside D1 or within distance 2−(n+1) + 2−(n+3) from ∂D1.

Since |w−z| ≤ 2−(n+2), and since D1 ⊆ CH(Sc�), the point z is either inside CH(Sc�)

or within distance 2−n from the boundary of CH(Sc�). This shows that the acceptance

of the algorithm is correct. �

Corollary 5.3.3 Assume that S ⊆ [0, 1]2 is strongly P -recognizable. Then, its convex

hull CH(S) is strongly NP-recognizable.

Proof. Assume that an oracle TM M strongly P -recognizes S in time p(n). We

modify the algorithm of Theorem 5.3.2 by replacing steps (2) and (3) with

(2′) Guess three points x1,x2,x3 ∈ D2
n+3, and verify that Mxi(n + 3) = 1 for

i = 1, 2, 3,
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where Mxi(n) denotes the computation of M on input n with the standard Cauchy

functions of xi as the oracles. Then, this new nondeterministic oracle TM strongly

accepts CH(Sc). �

Next, we show that the result of strong NP -recognizability of the convex hulls

cannot be improved to P -recognizability, unless P = NP .

Lemma 5.3.4 For any set A ∈ NP, there exist a P -computable Jordan domain S, a

P -computable (discrete) function g : {0, 1}∗ → D, and a polynomial function q, such

that, for any w ∈ {0, 1}∗,

(i) The distance between g(w) and the boundary of CH(S) is at least 2−q(�(w)),

and

(ii) w ∈ A if and only if g(w) ∈ CH(S).

Proof. Let A ∈ NP . Then there exist a polynomial function p and a set B ∈ P such

that, for all w ∈ {0, 1}∗,

w ∈ A⇐⇒ (∃u, �(u) = p(�(w)))〈w, u〉 ∈ B.

For any w ∈ {0, 1}∗, we let iw be the integer between 0 and 2�(w)−1 whose �(w)-bit

binary representation (with possible leading zeros) is equal to w. Also let w′ denote

the successor of w in the lexicographic ordering. Now, suppose �(w) = n > 0, we

define a dyadic rational number in [0, 1/4]: xw = (1− 2−(n−1) + iw · 2−2n)/4, and an

interval: Iw = [xw, xw′]. Note that Iw has length 2−2�(w)−2.

Next, for each u ∈ {0, 1}p(n), we define two dyadic rationals and two subintervals

of Iw as follows:

xw,u = xw + 2−2n−4 + iu · 2−p(n)−2n−4,

x′w,u = xw + 2−2n−3 + iu · 2−p(n)−2n−4 = xw,u + 2−2n−4,

Iw,u = [xw,u, xw,u + 2−p(n)−2n−4],

I ′w,u = [x′w,u, x
′
w,u + 2−p(n)−2n−4].

89



Now, we describe the boundary ∂S of the desired Jordan domain S. Let O be

the origin, and C the unit circle with center O and radius 1. For each w ∈ {0, 1}∗

of length n, let Zw = 〈cos(2πxw), sin(2πxw)〉, and Cw the chord connecting Zw and

Zw′. Then, length of Cw is equal to 2 sin(2−2n−2π). We denote it by leng(Cw). Let

Xw be the middle point on the arc of C between Zw and Zw′, and hn be the distance

between Xw and the chord Cw; that is, hn = 1 − cos(2−2n−2π). Let Bw denote the

area between the chord Cw and the arc of C from Zw through Xw to Zw′.

We now divide each chord Cw into four line segments of equal length, and further

divide each of the two middle segments into 2p(n) subsegments, each corresponding to

a string u ∈ {0, 1}p(n). That is, let Vw, V ′
w, and V ′′

w be the points on Cw of distance

(1/4)leng(Cw), (1/2)leng(Cw), and (3/4)leng(Cw) from Zw, respectively. Also let

Pw,u be the point on Cw of distance (iu · 2−p(n)−2 · leng(Cw)) from Vw, and P ′
w,u the

point on Cw of distance (iu · 2−p(n)−2 · leng(Cw)) from V ′
w. Finally, let Qw,u be the

point in Bw that is of equal distance from Pw,u and Pw,u′ and has distance hn/2 from

the chord Cw, and Q′
w,u the point in Bw that is of equal distance from P ′

w,u and P ′
w,u′

and has distance hn/2 from the chord Cw (see Figure 5.2).

Now, we are ready to define the function f : [0, 1] → R
2 that computes the

boundary ∂S of the desired Jordan domain S. First, f maps [1/4, 1] to the unit circle

C on the second, third, and fourth quadrants; i.e., f(t) = 〈cos(2tπ), sin(2tπ)〉, for

t ∈ [1/4, 1]. Next, on each interval Iw = [xw, xw′ ], f maps [xw, xw + 2−2n−4] linearly

to the line segment ZwVw, and maps [xw + 3 · 2−2n−4, xw′] linearly to the line segment

V ′′
wZw′. For each u ∈ {0, 1}p(n), if 〈w, u〉 �∈ B, then f maps Iw,u linearly to the line

segment Pw,uPw,u′, and maps I ′w,u linearly to the line segment P ′
w,uP

′
w,u′. If 〈w, u〉 ∈ B,

then f maps Iw,u piecewise linearly to two line segments: Pw,uQw,u and Qw,uPw,u′,

and maps I ′w,u piecewise linearly to two line segments P ′
w,uQ

′
w,u and Q′

w,uP
′
w,u′. This

completes the definition of f . Finally, we let g(w) be the point Yw between O and

Xw that has distance 3 · hn/4 from Xw. Figure 5.2 shows the curve ∂S in the area
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Figure 5.2: The curve ∂S around Cw

Bw.

It is not hard to see that the function f and g are polynomial-time computable.

We omit the details of the proof.

We now check that the domain S satisfies the required conditions. As we argued

in the proof of Theorem 5.2.1, our design of the curve ∂S guarantees that the part

of the convex hull CH(S) within Bw depends only on the curve ∂S between Zw and

Zw′. More precisely, if w �∈ A, then CH(S) ∩ Bw = ∅, and Yw �∈ CH(S). On the

other hand, if w ∈ A, then S ∩ Bw contains at least two bumps which lie to the two

sides of Yw, and so Yw ∈ CH(S). Furthermore, we claim that, no matter whether

Yw ∈ CH(S), the distance between Yw and the boundary of CH(S) is greater than

2−p(n)−4n−5.

For the case of Yw �∈ CH(S), we know that the chord Cw is part of the boundary

of CH(S), and dist(Yw,Cw) = hn/4. For the case of Yw ∈ CH(S), let us assume
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that ∂S passes through two points Qw,u and Q′
w,u. Then, the line segment Qw,uQ′

w,u

forms part of the boundary of the convex hull CH(S), and Yw has distance hn/4 from

this boundary. In addition, we know that both Qw,u and Q′
w,u have distance at least

(2−p(n)−3 · leng(Cw)) away from the line OXw. It implies that Yw has distance at least

(2−p(n)−3 · leng(Cw)) from other parts of the boundary of CH(S). That is, no matter

whether Yw ∈ CH(S), dist(Yw, ∂S) ≥ min{hn/4, 2
−p(n)−3 · leng(Cw)}.

Note that hn = 1 − cos(2−2n−2π) ≥ 2−4n−3, and leng(Cw) = 2 sin(2−2n−2π) ≥
2−2n−2. Therefore, dist(Yw, ∂S) ≥ 2−p(n)−4n−5. This completes the proof of the claim.

The proof of the lemma is also complete by setting q(n) = p(n) + 4n + 5. �

Theorem 5.3.5 Assume that P �= NP. Then, there exists a Jordan domain S ⊆
R2 whose boundary ∂S is P -computable but whose convex hull CH(S) is not P -

recognizable.

Proof. Assume that the convex hull CH(S) of the set S constructed in Lemma 5.3.4

is P -recognizable. Then, we can determine whether w ∈ A by asking whether g(w)

is in CH(S), with error bound < 2−q(n). �

Corollary 5.3.6 Assume that P �= NP. Then, there exists a Jordan domain S ⊆ R2

which is strongly P -recognizable but whose convex hull CH(S) is not P -recognizable.

5.4 Areas of Convex Hulls

In this section, we consider the complexity of computing the area of the convex hull

CH(S) of a P-computable Jordan domain S. We first recall the results about the

complexity of computing the area of a set T in the two-dimensional plane.

Proposition 5.4.1 (a) If T ⊆ [0, 1]2 is P-approximable, then area of T is a real

number in #PR.
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(b) If T ⊆ [0, 1]2 is a P-recognizable Jordan domain with a rectifiable boundary,

then area of T is in #PR.

(c) If FP1 �= #P1, then there exists a convex set T ⊆ [0, 1]2 that is P-approximable

but its area is not in PR.

Remarks. (1) Friedman [29] proved that the integral
∫ 1

0
f of a P -computable

function f : [0, 1] → R is a real number in #PR. Parts (a) and (b) of Proposition

5.4.1 are due to Chou and Ko [18], in which the result of Friedman [29] was extended

to the measure of two-dimensional P -approximable and P -recognizable sets.

(2) Friedman [29] also showed that, if FP �= #P , then the integral
∫ 1

0
f of some

P -computable function f : [0, 1] → R is not in PR. Du and Ko [25] and Chou and

Ko [18] extended this result to two-dimensional, P -approximable, convex sets.

We note that a convex Jordan domain T must have a rectifiable boundary. There-

fore, if the convex hull CH(S) of a Jordan domain is P -recognizable, then its area is

a real number in #PR. This observation can be easily extended to NP -recognizable

convex hulls.

We let #NP R denote the class of real numbers x which have a Cauchy function

representation φ : {0}∗ → D such that the function φ′(0n) = φ(n) · 2n is a function in

#NP .

Theorem 5.4.2 Assume that S is a P -computable Jordan domain. Then, the area

of CH(S) is a real number in #NP R.

Proof. Without loss of generality, assume that S ⊆ [0, 1]2. Also assume that the

boundary of CH(S) has length bounded by a. Assume that M is a nondeterministic

polynomial-time oracle TM that strongly NP -recognizes CH(S), as given in Theorem

5.3.2. For any n > 0, let

B = {〈0n, d1, d2〉 | d1, d2,∈ Dn,M
d1,d2(n) accepts},
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where Md1,d2 denotes the computation of the machine M using the standard Cauchy

functions for d1 and d2 as the oracles. It is clear that B ∈ NP . Furthermore, the

function

φ(0n) = ‖{〈d1, d2〉 | d1, d2 ∈ Dn, 〈0n, d1, d2〉 ∈ B}‖

is a function in #NP such that the function ψ(0n) = φ(0n) · 2−2n converges to the

area of CH(S) with error |ψ(0n)− area(CH(S))| ≤ a · 2−2n+2. �

Next, we study whether CH(S) is actually a real number in #PR. For this ques-

tion, we need to review more results about the relations between counting complexity

classes in discrete complexity theory.

In his celebrated paper about counting complexity classes, Toda [70] showed that

PP PH ⊆ P#P [1]; that is, if a set is computable in probabilistic polynomial time

relative to a set in the polynomial-time hierarchy, then it is computable in polynomial-

time with a single query to an oracle function in #P .3 Toda and Watanabe [71] further

extended this result to the function classes and showed that #P PH ⊆ FP#P [1]. Since

#NP is a subclass of #P PH , the following result is immediate.

Proposition 5.4.3 #NP ⊆ FP#P [1].

Combining Propositions 5.4.1 and 5.4.3, we obtain the following results about the

area of CH(S).

Corollary 5.4.4 Assume that S ⊆ R
2 is a P-computable Jordan domain. Then, the

area of CH(S) is a real number in P#P
R

.

Corollary 5.4.5 The following are equivalent:

(a) For any P-computable Jordan domain S ⊆ R2, the area of CH(S) is in PR.

(b) FP1 = #P1.

3Here, PP denotes the class of sets accepted by polynomial-time probabilistic TMs with accepting

probability greater than 1/2. For more details, see Du and Ko [26].
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Corollary 5.4.4 leaves it open whether the area of CH(S) is actually in #PR.

This question is clearly related to the question of whether the discrete classes #P

and #NP are equal. The following corollary follows Theorem 2.3.2 (f), which states

NP = UP if and only if #P = #NP .

Corollary 5.4.6 If UP = NP, then area of the convex hull CH(S) of a P-computable

Jordan domain S is in #PR.

Whether the converse of the above holds remains open. We note that Theo-

rem 2.3.2(f) implies that if UP �= NP then there exists some function ψ in #NP that

is not in #P . However, this function ψ constructed in the proof in Hemaspaandra

and Vollmer [34] is a simple, characteristic function of a set A ∈ NP −UP . It seems

difficult to construct a P-computable Jordan curve S of which the area of CH(S) is

related to such a function ψ. It would be interesting to find out whether a stronger

condition of separating some discrete classes implies that the area of CH(S) is not in

#PR.
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Chapter 6

Circumscribed Rectangles and

Squares for a Two-Dimensional

Domain

6.1 Introduction

Let S ⊆ R2 be a bounded, connected domain in the two-dimensional plane. How do we

find a circumscribed rectangle of S with the minimum area? This is a basic problem

in computational geometry with applications in computer graphics and robotics (see,

e.g., Schneider and Eberly [66], Freeman and Shapiro [28] and Toussaint [72]). In this

chapter, we investigate this problem from the viewpoint of computational complexity.

More precisely, we assume that the boundary of set S is a polynomial-time computable

Jordan curve Γ (i.e., Γ has a polynomial-time representation f : [0, 1]→ R2), and ask

what the complexity is of the minimum-area circumscribed rectangle of S.1

Let Γ be a Jordan curve on the two-dimensional plane R2. For any line Lα that

1In the rest of the chapter, we write “the minimum circumscribed rectangle” to mean “the

minimum-area circumscribed rectangle”.
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forms an angle α with the x-axis, there is a unique rectangle Rα that circumscribes

the curve Γ and has two of its four sides parallel to Lα. Thus, the minimum cir-

cumscribed rectangle problem may be viewed as the problem of finding an angle α

that minimizes the area of Rα. This problem is similar to the general minimization

problem studied in Ko [40], which asks for the minimum value of a polynomial-time

computable real function. The main difference here is that the underlying function

mapping α to rectangle Rα is not necessarily polynomial-time computable. Our main

results, following this direction, can be summarized as follows:

(1) For a fixed polynomial-time computable angle α, we can always find the cir-

cumscribed rectangle Rα of a polynomial-time computable Jordan curve Γ in poly-

nomial time if and only if P = NP .

(2) There exists a polynomial-time computable Jordan curve Γ such that it has

an uncountable number of minimum circumscribed rectangles, but none of them is

computable (cf. the result on roots in Specker [67]).

(3) If a Jordan curve Γ is polynomial-time computable, then the area V of the

minimum circumscribed rectangle Rα of Γ is a right ΣP
2 -real number (See Section 2

for the definition).

(4) There exists a polynomial-time computable Jordan curve Γ such that the

problem of finding the area Va,b of the minimum circumscribed rectangle Rα of Γ,

with the restriction of a ≤ α ≤ b, is ΣP
2 -hard.

In addition to these results, we also study the problem of finding the minimum

circumscribed square of a Jordan curve Γ. It is interesting to point out that this

problem is not quite the same as the problem of finding the minimum circumscribed

rectangle of Γ. In fact, a minimum square that encloses a Jordan curve Γ is not nec-

essarily a circumscribed square of Γ. In addition to the extension of result (2) above

for the minimum circumscribed squares, we also show that for any polynomial-time

computable Jordan curve Γ, there must exist at least one computable circumscribed
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Figure 6.1: A circumscribed rectangle of a Jordan curve

square (not necessarily of the minimum area), but this square may have arbitrarily

high complexity.

6.2 Minimum Circumscribed Rectangles

We first give a formal definition of circumscribed polygons of a Jordan curve.

Definition 6.2.1 We say a polygon T circumscribes a Jordan curve Γ if (1) Γ in-

tersects every side of T ; and (2) every point of Γ lies in the interior of T or on

T .

As pointed out in Section 1, for a Jordan curve Γ and a fixed angle α ∈ [0, π/2),

there is a unique rectangle Rα that circumscribes the curve Γ and has two of its four

sides forming angle α with the x-axis (see Figure 6.1); we call Rα the circumscribed

rectangle of Γ at angle α. We first consider the computational complexity of the

rectangle Rα, when α is a fixed polynomial-time computable real number. We say

a rectangle R is polynomial-time computable if its four corners are polynomial-time

computable complex numbers.

Without loss of generality, we may assume that the circumscribed rectangle under

consideration is rectangle R0 at angle α = 0, which has two horizontal and two
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vertical sides. We note that the top horizontal side of this rectangle R0 is y = u,

where u is the maximum y-value of the curve Γ, and the bottom horizontal line of

R0 is y = b, where b is the minimum y-value of the curve Γ. Since the curve Γ is

polynomial-time computable, the values u and b are just the maximum and minimum

values of a polynomial-time computable function, respectively.

From the above observation, the characterization of maximum and minimum val-

ues of Proposition 2.4.9 can be applied to the complexity of the rectangle R0.

Theorem 6.2.2 (a) Let Γ be a polynomial-time computable Jordan curve, and R0

the circumscribed rectangle of Γ at angle α = 0. Let the four sides of the rectangle

R0 be y = u, y = b, x = � and x = r, with u > b and r > �. Then, u and r are left

NP-real numbers, and b and � are right NP-real numbers.

(b) For any left NP-real number u, there is a polynomial-time computable Jordan

curve Γ such that the top horizontal side of its circumscribed rectangle R0 at angle

α = 0 is y = u.

Proof. (a) Let f be a polynomial-time computable function that represents a Jordan

curve Γ, and fx(t), fy(t) be two functions mapping [0, 1] to R such that f(t) =

〈fx(t), fy(t)〉 for t ∈ [0, 1]. Then, both fx and fy are polynomial-time computable.

It is clear that the top side of R0 is y = maxt∈[0,1] fy(t), and the bottom side of

R0 is y = mint∈[0,1] fy(t). Similarly, the right side of R0 is x = maxt∈[0,1] fx(t), and

the left side of R0 is x = mint∈[0,1] fx(t). Note that, for any function g : [0, 1] → R,

mint∈[0,1] g(t) = −maxt∈[0,1](−g(t)). Also note that, for any left cut L of a real number

x, the set {−d | d ∈ L} is a right cut of −x. Thus, part (a) of the theorem follows

from Proposition 2.4.9.

(b) Assume that u > 0. Let g : [0, 1] → R be a polynomial-time computable

function with maxt∈[0,1] g(t) = u, as given by Proposition 2.4.9. Without loss of

generality, we may assume that (a) g(0) = g(1) = 0, and (b) g(t) > 0 for all t ∈ (0, 1).
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Define a function f : [0, 1]→ R2 as follows: f on [0, 1/2] is the line segment from

the point 〈1, 0〉 to the point 〈0, 0〉; and f(t) = 〈2t − 1, g(2t − 1)〉 for t ∈ (1/2, 1].

Then, it is clear that f defines a polynomial-time computable Jordan curve Γ and

the circumscribed rectangle R0 of Γ at angle α = 0 is formed by the following four

lines: y = u, y = 0, x = 1, and x = 0. �

A set A ⊆ {0}∗ of strings formed by a singleton alphabet is called a tally set. Let

P1 and NP1 denote the class of tally sets in P and NP, respectively. It is known that

if P1 �= NP1 then there exists a left NP-real number which is not polynomial-time

computable (see Ko [40]).

Corollary 6.2.3 In the following, (a)⇒(b)⇒(c):

(a) P = NP .

(b) For every polynomial-time computable Jordan curve, its circumscribed rectan-

gle R0 at angle α = 0 is polynomial-time computable.

(c) P1 = NP1.

Corollary 6.2.4 (a) For any polynomial-time computable Jordan curve Γ and any

polynomial-time computable real number α ∈ [0, π/2), the height, width, and area of

the circumscribed rectangle Rα of Γ at angle α are left NP-real numbers.

(b) If P1 �= NP1, then there exists a polynomial-time computable Jordan curve Γ

such that the area of its circumscribed rectangle R0 at angle α = 0 is not polynomial-

time computable.

Proof. We note that the sum of two left NP-real numbers is still a left NP-real number,

and the product of two positive left NP-real numbers is still a left NP-real number.

�

We are interested in the minimum circumscribed rectangle of a Jordan curve Γ.

Since the curve Γ has a unique circumscribed rectangle Rα at each angle α ∈ [0, π/2),
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this is essentially the problem of finding the angle α that minimizes the area of Rα.

Ko [40] pointed out that the computability of the maximum points of a computable

function g : [0, 1]→ R is very similar to the computability of its roots. In particular,

the result of Specker [67] about roots also holds for the maximum points; that is, there

exists a computable function g : [0, 1] → R such that it has an uncountable number

of maximum points but none of them is computable. Furthermore, this result holds

even if g is required to be polynomial-time computable.

Theorem 6.2.5 There exists a polynomial-time computable Jordan curve Γ such that

Γ has an uncountable number of minimum circumscribed rectangles but none of them

is computable.

Sketch of Proof. Since the proof follows the idea of Specker’s theorem, we only present

a sketch of the construction. We first let Γ0 be the unit circle. That is, Γ0 is the

image of f0(α) = 〈cosα, sinα〉 on [0, 2π]. Note that all circumscribed rectangles of

Γ0 have the same area 4.

Now, let {xn}∞n=0 be a recursive enumeration of all computable real numbers in

[0, π/2]. For each n ≥ 0, we add to the circle Γ0 a small Λ-shaped bump at angle

xn, of the same width and height hn = 2−k(n+t(n)), where k ≥ 2 and t(n) is the time

required to enumerate the n-th number xn (see Figure 6.2). Let Γ be the resulting

curve. Since the height hn of the bump is smaller than 2−t(n), the curve Γ remains

polynomial-time computable.

Let δn = arccos(1/(1 + hn)). Then, the area of a circumscribed rectangle Rα of Γ

at angle α ∈ (xn − δn, xn + δn) is greater than 4. By choosing a sufficiently large k,

we can ensure that the sum
∑

n≥0 2δn is less than π/2. Therefore, the set

T = [0, π/2]−
⋃
n≥0

(xn − δn, xn + δn)

is nonempty and has a positive measure. In addition, for each β ∈ T , the circum-

scribed rectangle Rβ of Γ at angle β remains the same with area 4. Finally, for
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Figure 6.2: The construction of Theorem 6.2.5

each β ∈ T , one of the vertices of the circumscribed rectangle Rβ at angle β is

〈√2 · cos(β − π/4),
√

2 · sin(β − π/4)〉, and so Rβ is not a computable rectangle. �

Now we consider the problem of finding the minimum area of a circumscribed

rectangle of a polynomial-time computable Jordan curve. First note that Theorem

6.2.2(a) can be extended so that the area v(α) of the circumscribed rectangle Rα

of a polynomial-time computable Jordan curve at an angle α is actually an NP-real

function. Thus, the problem of finding the minimum area of a circumscribed rectangle

of Γ is just to find the minimum value of an NP-real function. Proposition 2.4.9(b)

suggests that the complexity of the minimum area v(α) is a right ΣP
2 -real number

(i.e., a left ΠP
2 -real number).

Theorem 6.2.6 Let Γ be a polynomial-time computable Jordan curve. Then, for

any dyadic rational numbers 0 ≤ a < b ≤ π/2, the minimum area of a circumscribed

rectangle Rα of Γ at angle α ∈ [a, b] is a right ΣP
2 real number.

Proof. Assume that Γ is computed by a real function f : [0, 1]→ R2 in time p(n) for

some polynomial p. Let Rα be a minimum-area circumscribed rectangle of Γ at angle

α, and v(α) be its area. Without loss of generality, assume that Rα ⊆ [0, 1]2. Suppose

d is a dyadic rational in Dn which is greater than or equal to v(α). Let e be a dyadic

rational in Dn+4 such that |α − e| ≤ 2−(n+4). Then, the area of the circumscribed
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rectangle Re of Γ at angle e is less than v(α) + 4 · 2−(n+4). Let Se be a rectangle that

is parallel to and encloses the rectangle Re, with the following properties:

(a) The upper right corner of Se is a dyadic rational point z in (Dn+5)
2,

(b) The height dh and width dw of Se are two dyadic rationals in Dn+5, and

(c) The distance between the corresponding sides of Re and Se is between 2−(n+5)

and 2−(n+4).

Then, the area Se is dh · dw ≤ area(Re) + 4 · 2−(n+4) < d+ 2−(n+1).

We now design a ΣP
2 machine (a polynomial-time nondeterministic oracle machine

using a discrete oracle set A ∈ NP as the oracle) M to accept a right cut of v(α)

based on the properties of rectangle Se:

Input: d ∈ Dn.

The machine M first nondeterministically guesses a dyadic rational point

z in (Dn+5)
2, a dyadic rational e ∈ Dn+4 and two dyadic rationals dh, dw in

Dn+5. Then, M forms the rectangle Se from z, e, dh, dw as discussed above,

and verifies that the curve Γ is inside Se. More precisely, the verification

can be done as follows: For every t ∈ [0, 1] ∩ Dp(n+5), get a dyadic point

yt that is within distance 2−(n+5) of the point f(t), and verify that yt

lies inside the rectangle Se (note that f(t) ∈ Re ⇒ yt ∈ Se if property

(c) above holds). In other words, M uses the set A = {〈z, e, , dh, dw〉 :

(∃t ∈ Dp(n+5)) yt /∈ Se} as an oracle, and accepts d if 〈z, e, dh, dw〉 �∈ A and

dhdw < d+ 2−(n+1).

It is clear that the rectangle Se is uniquely defined by z, e, dh and dw, and it can

be determined in polynomial time whether a dyadic point x is in Se or not. Thus,

set A is in NP, and M is a ΣP
2 machine.
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The analysis given above shows that this ΣP
2 machine accepts d if d ≥ v(α). In

addition, if M accepts d, then there must be a rectangle Se of area dhdw < d+2−(n+1)

such that all points in Γ are either inside Se or within distance 2−(n+5) of the boundary

of Se. So, the minimum area v(α) is less than d+2−(n+1) +4 ·2−(n+5) < d+2−n. This

means that if d ≤ v(α) − 2−n, then M rejects it. It follows that M accepts a right

cut of v(α). �

Next we consider the converse of the above theorem. Let Γ be a polynomial-time

computable Jordan curve. We will show that the general question of finding the

minimum area of a circumscribed rectangle of Γ at an angle between a given range

[a, b] is ΣP
2 -hard.

Recall that a set A ⊆ {0, 1}∗ is in ΣP
2 if and only if there exist a polynomial

function p and a polynomial-time computable predicate Q such that, for all w ∈
{0, 1}∗,

w ∈ A⇔ (∃u, �(u) = p(�(w)))(∀v, �(v) = p(�(w)))Q(w, u, v). (3.1)

For any w ∈ {0, 1}+, we define a dyadic rational number xw ∈ [0, 1] as follows:

Suppose �(w) = n, let iw be the integer whose n-bit binary representation is equal to

w, and let xw = 1− 2−(n−1) + iw · 2−2n. In addition, we let w′ denote the successor of

w in the lexicographic order. Note that the interval [xw, xw′] has length 2−2�(w).

Theorem 6.2.7 Assume that A ⊆ {0, 1}∗ is a set in ΣP
2 , and satisfies (3.1). Let

hn = cos(2−(p(n)+2n+2)π) for n ∈ N, and for each w ∈ {0, 1}+, let αw = xwπ/2. Then,

there exists a polynomial-time computable Jordan curve Γ such that, for all n ∈ N

and w ∈ {0, 1}n, the following holds:

(a) If w ∈ A then min
αw≤α≤αw′

v(α) = 2 + 2hn, and

(b) If w �∈ A then min
αw≤α≤αw′

v(α) ≥ 2 + 2hn(1 + δn),

where v(t) is the area of the circumscribed rectangle Rt of Γ at angle t, and δn = 2−q(n)

for some polynomial function q.
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Figure 6.3: Points on the chord Cw,u.

Proof. The Jordan curve Γ is to be constructed from a unit circle Γ0 with center

O = 〈0, 0〉 and radius 1. The curve Γ is identical to Γ0 on the second, third and

fourth quadrants. That is, we will define a function f : [0, 1] → R2 to represent the

curve Γ, and for t ∈ [1/4, 1], f(t) = 〈cos(2tπ), sin(2tπ)〉.
Now we define f on [0, 1/4]. For any n ∈ N and w ∈ {0, 1}n, divide equally the

interval Iw = [xw/4, xw′/4] into 2p(n) subintervals, with each one corresponding to a

string u ∈ {0, 1}p(n) (following the lexicographic order), denoted Iw,u. So the length of

the interval Iw,u is 2−(p(n)+2n+2). Similarly, divide Iw,u into 2p(n) subintervals of equal

length, with each one corresponding to a string v ∈ {0, 1}p(n) and denoted Iw,u,v. So

the length of an interval Iw,u,v is 2−(2p(n)+2n+2). Let xw,u = xw/4+ iu ·2−(p(n)+2n+2) and

xw,u,v = xw,u + iv · 2−(2p(n)+2n+2), then Iw,u = [xw,u, xw,u′] and Iw,u,v = [xw,u,v, xw,u,v′].

Let Pw,u denote the point 〈cos(2xw,uπ), sin(2xw,uπ)〉. Let Cw,u be the chord connecting

the points Pw,u and Pw,u′.

Also let Lw,u,v be the half-line from the origin 〈0, 0〉 of angle 2xw,u,vπ, and L′
w,u,v the

half-line from the origin of angle (xw,u,v + xw,u,v′)π. Let Pw,u,v denote the intersection

point of the half-line Lw,u,v and the chord Cw,u, and P ′
w,u,v the intersection point of

the half-line L′
w,u,v and the chord Cw,u. Finally, let P ′′

w,u,v be the point on the half-
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Figure 6.4: The function f on Iw,u

line L′
w,u,v with distance to the origin equal to the maximum of length(OPw,u,v) and

length(OPw,u,v′) (see Figure 6.3).

We claim that the distance between P ′
w.u.v and P ′′

w,u,v is at least hn · 2−q(n) for

some polynomial function q. To see this, let us assume that length(OPw,u,v) >

length(OPw,u,v′). Then, length(OP ′′
w,u,v) equals length(OPw,u,v), which is at least

length(OP ′
w,u,v)/ cos(2−(2p(n)+2n+2)π). The claim follows now from the observation

that length(OP ′
w,u,v) > hn and 1/ cosα− 1 ≥ α2/2 when α ∈ [0, π/2).

Now, we define function f on Iw,u,v = [xw,u,v, xw,u,v′] as follows (see Figure 6.4):

(1) If Q(w, u, v),then function f is linear on Iw,u,v with f(xw,u,v) = Pw,u,v and

f(xw,u,v′) = Pw,u,v′.

(2) If ¬Q(w, u, v), then function f is piecewise linear on Iw,u,v with three break-

points f(xw,u,v) = Pw,u,v, f(xw,u,v′) = Pw,u,v′, and f((xw,u,v + xw,u,v′)/2) =

〈m cosβ,m sinβ〉 = P ′′
w,u,v, where m = max{length(OPw,u,v), length(OPw,u,v′)},

and β = (xw,u,v + xw,u,v′)π.

It is not hard to see that f has a polynomial modulus function and is polynomial-

time computable. We omit the details.
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Figure 6.5: Proof of condition (b)

We now check conditions (a) and (b). First, we note that the bumps of Γ all lie

within the unit circle Γ0. Therefore, the circumscribed rectangle of Γ at an angle α

in [xw,u, xw,u′] must touch a point of Γ in this angle.

(a) If w ∈ {0, 1}n ∩ A, then (∃u, �(u) = p(n))(∀v, �(v) = p(n))Q(w, u, v). Ac-

cording to the definition of function f , f on Iw,u is a line segment with a distance of

cos(2−(p(n)+2n+2)π) = hn from the origin (see Figure 6.4). Therefore, the minimum

area v(α) for α ∈ [αw, αw′] is 2(1 + hn) = 2 + 2hn.

(b) If w ∈ {0, 1}n − A, then (∀u, �(u) = p(n))(∃v, �(v) = p(n))¬Q(w, u, v). Thus,

on each Iw,u, f has at least a bump at Iw,u,v (see Figure 6.4), with the tip of the

bump of distance at least hn · 2−q(n) to P ′
w,u,v. This implies that, for any line tangent

to the portion of Γ between Pw,u and Pw,u′, its distance to the origin is at least

hn(1 + 2−(q(n)+2)). This can be seen from Figure 6.5: Let B denote P ′
w,u,v and C

denote P ′′
w,u,v. Suppose the line segment BC has length ε, then length(EF ) ≥ 1/2 ·

length(BD) ≥ 1/4 · length(BC) = ε/4. Therefore, the line CPw,u has distance at

least length(OA) + ε/4 = hn + ε/4 to the origin. �

Corollary 6.2.8 Assume that NP �= coNP . Then, there exists a polynomial-time

computable Jordan curve Γ, such that the function v(a, b) = mina≤α≤bv(α) is not com-
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putable by an NP oracle Turing machine, where v(α) is the area of the circumscribed

rectangle of Γ at angle α.

In the above construction, we embedded each question of whether w ∈ A for

a given A ∈ ΣP
2 in a different angle of the curve Γ. It remains open whether we

can embed them at a single angle. That is, the question of whether every right

ΣP
2 -real number is equal to the minimum area of a circumscribed rectangle Rα of a

polynomial-time computable Jordan curve Γ (without any restriction on the angle α)

is left open.

6.3 Circumscribed Squares

It is not hard to see that the problem of computing the minimum area of a square

enclosing a polynomial-time computable Jordan curve Γ is similar to that of a rectan-

gle. Namely, we can guess the corners of a square and verify that they form a square

and that every point of Γ is within the square. Therefore, the minimum area of an

enclosing square of Γ is a right ΣP
2 -real number. In addition, with a construction that

is only slightly different from that in the proof of Theorem 6.2.7, we can get results

similar to Theorem 6.2.7 and Corollary 6.2.8.

It is important, however, to point out that this minimum square does not neces-

sarily circumscribe the curve Γ. In fact, the mapping from a Jordan curve Γ to the

area of its minimum enclosing square is a continuous function (with respect to the

hausdorff distance between Jordan curves). However, the mapping from a curve Γ

to its minimum circumscribed square is not a continuous function. This can be seen

from the following simple example: The minimum circumscribed square of a square

is itself, but the minimum circumscribed square of a rectangle of unequal sides is the

square that forms a 45-degree angle with the rectangle (see Figure 6.6).
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Thus, finding the minimum circumscribed square of a Jordan curve is a different

question. Indeed, it is not immediately clear whether a Jordan curve must have a

circumscribed square at all. It turns out that this question has an affirmative answer.

Indeed, we can prove, by the intermediate value theorem that, for every Jordan curve

Γ, there must exist at least one circumscribed square: For each α ∈ [0, π/2], let Rα

denote the circumscribed rectangle of Γ at angle α, and let a be the length of the side

of the angle α with the x-axis, and b the length of one of its neighboring side, and let

g(α) = a−b. Then, it is clear that g is continuous on [0, π/2] and g(0) = −g(π/2). So,

by the intermediate value theorem, there exists an α in [0, π/2) such that g(α) = 0,

and Rα is a circumscribed square of Γ.

It is well known that the intermediate value theorem has an effective proof.

Namely, for any computable function f : [0, 1] → R with f(0) < 0 < f(1), there

exists at least one computable point x ∈ (0, 1) such that f(x) = 0.

Since the above function g is a computable function (actually, the difference of

two NP real functions), it must have a computable root.

Proposition 6.3.1 Every polynomial-time computable Jordan curve Γ on R
2 has at

least one computable circumscribed square.

For the complexity of the minimum circumscribed square, we first note that the

minimum circumscribed rectangles of the curve Γ constructed in the proof of Theorem

Figure 6.6: The minimum enclosing square and minimum circumscribed square of
a rectangle of uneven sides
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6.2.5 are actually all squares. Therefore, we see that a polynomial-time computable

Jordan curve may not have a computable minimum circumscribed square.

On the other hand, we note that if the curve Γ has a unique circumscribed square

then, by Proposition 6.3.1, it must be computable. In this case, what is the complexity

of the square? We can answer this question again by way of the intermediate value

theorem. We recall the following theorem about the complexity of the intermediate

value theorem.

Proposition 6.3.2 ([40, Theorem 4.4]) For any recursive real number x ∈ [0, 1],

there exists a strictly increasing, polynomial-time computable function h : [0, 1]→ R

such that x is the unique root of h in [0, 1].

A similar result holds for the unique circumscribed squares.

Theorem 6.3.3 For any recursive real number α ∈ [0, π/2], there exists a polynomial-

time computable Jordan curve Γ such that its circumscribed rectangle Rα at angle α

is its unique circumscribed square.

Sketch of Proof. Without loss of generality, we assume that α ∈ (π/8, π/4). Let Γ0

be the circle with center 〈0, 0〉 and radius 1. We construct the Jordan curve Γ from

Γ0 by shrinking the portion of Γ0 in the first quadrant to the right of angle α inward,

and enlarging the portion of Γ0 in the first quadrant to the left of angle α (see Figure

6.7).

More precisely, we first construct, as in the proof of Proposition 6.3.2, a polynomial-

time computable, piecewise linear function h : [0, π/2]→ R with the following prop-

erties:

(i) h is strictly increasing on [0, π/2].

(ii) |h(x)| ≤ 1 for all x ∈ [0, π/2].
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Figure 6.7: The function f

(iii) α is the unique root of h on [0, π/2].

(iv) h(x) ≤ 1/ cos(x− α)− 1 for all x ∈ [0, π/2], and h(π/2) ≤ 1/ cos(α)− 1.

We then define a function f : [0, 2π]→ R2 (as the representation of Γ) as follows:

(i) For x ∈ [0, π/2], f(x) = 〈(1 + h(x)) cos x, (1 + h(x)) sin x〉 (i.e., on the first

quadrant, Γ differs from Γ0 by the amount of h(x)).

(ii) f is linear on [π/2, 5π/8] with f(π/2) = 〈0, 1+h(1)〉 and f(5π/8) = 〈cos(5π/8),

sin(5π/8)〉.

(iii) For x ∈ [5π/8, 7π/4], f(t) = 〈cosx, sin x〉 (i.e., Γ is identical to Γ0 on interval

[5π/8, 7π/4]).

(iv) f is linear on [7π/4, 2π] with f(7π/4) = 〈cos(7π/4), sin(7π/4)〉 and f(2π) =

〈1 + h(0), 0〉.

This design makes all circumscribed rectangles Rβ of Γ at an angle β < α have

negative g(β) values, and those Rβ with β > α have positive g(β) values, where g
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is the difference between two neighboring sides of Rβ as defined earlier. Note that

property (iv) of function h ensures that Rα is a square. Thus, Rα is the unique

circumscribed square of Γ. �

We say a function t(n) is a fully-time constructible function if there exists a Turing

machine M that halts on input n in exactly t(n) moves. Most familiar time bounds,

such as n2, 2n, are fully-time constructible (see, e.g., Du and Ko [26]).

Corollary 6.3.4 For any fully time-constructible function t(n), there exists a P-

computable Jordan curve Γ which has a unique circumscribed square S but S is not

computable in time t(n).

6.4 Remarks

In this chapter, we studied the computational complexity of finding, from a given

polynomial-time computable Jordan curve, the circumscribed rectangles and squares

of the minimum area. We applied the proof techniques for the general minimization

problem to the minimum circumscribed rectangle problem, and showed results similar

to the general minimization problem. In particular, we characterized the complexity

of the area of the minimum circumscribed rectangle by the discrete complexity class

ΣP
2 .

We note that, however, the known results about the general minimization problem

cannot apply to our problem directly. Since we are dealing with geometric objects, the

constructions have more constraints. In fact, for the minimum area of a circumscribed

rectangle, there is a small gap between our upper bound (Theorem 6.2.6) and lower

bound (Theorem 6.2.7). This is, as pointed out at the end of Section 3, because the

extra constraints seem to interfere each other, we are not able to put the constructions

around a single angle.
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Furthermore, we remark that the results in Section 3 can be adapted to two other

important concepts in computational geometry, namely, the minimum-perimeter cir-

cumscribed rectangles of a Jordan curve (see DePano[24] and Pirzadeh [62]) and the

least width of a Jordan curve (see Houle and Toussaint [39] and Pirzadeh [62]).2 We

note that the perimeter and the width of a circumscribed rectangle Rα at a fixed

angle α are, like the area of Rα, left NP-real numbers. So, all the results from Corol-

lary 6.2.4 to Corollary 6.2.8 also hold for these two concepts. It is interesting to point

out that the maximum width of Γ, which is equal to the diameter of Γ,3 is a left

NP-real number, and hence has lower complexity than the least width of Γ, assuming

that NP �= coNP .

Finally, we discuss the differences between our results with those in computational

geometry. Toussaint [1983] has shown that it takes O(n) time to compute a minimum-

area circumscribed rectangle of an n-sided polygon, while we have proved that the

problem of finding minimum-area circumscribed rectangles of a polynomial-time com-

putable Jordan curve is undecidable, and the problem of finding the minimum area

of circumscribed rectangles of a polynomial-time computable Jordan curve is in ΣP
2 .

This difference stems from the different computational models and complexity mea-

sures used in the two approaches. In the computational geometry approach, the

curves to be studied are restricted to be polygons, and the input n-sided polygons are

presented to the algorithm with the n vertices given explicitly. In addition, the time

complexity of the algorithm is measured against the size n of the input polygon. In

our approach, the algorithm needs to work on all polynomial-time computable curves,

not just polygons, and the time complexity is measured with respect to the output

2The width of a Jordan curve Γ at a given angle α is the distance of two parallel lines L1 and L2

at angle α such that every point of Γ is between L1 and L2 or on L1 ∪ L2; the least and greatest

widths are the minimum and maximum of widths over all angles, respectively.
3The diameter of Γ is the maximum length of line segments AB over all pairs A, B ∈ Γ.
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precision of the circumscribed rectangle. We note that although the curve Γ in our

model may be approximated by polygons, an approximate polygon with error ≤ 2−n

would have 2p(n) vertices for some polynomial p. When it is applied to this approx-

imate polygon, Toussaint’s algorithm would take exponential time (with respect to

the precision n). In other words, our approach considers a wider range of problems,

and the results are consistent with the results from computational geometry.
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Chapter 7

The Pancake Problem

7.1 Introduction

Given two Lebesgue measurable sets of arbitrary shapes in the two-dimensional plane

R2, there exists a line that simultaneously bisects them (i.e., the line cuts each set

into two parts of equal area). This is the famous Pancake Theorem, or, the two-

dimensional version of a more general Ham Sandwich Theorem. These theorems are

related to two fundamental theorems, the Brouwer Fixed Point Theorem and the

Borsuk-Ulam Theorem, in topology (see, e.g., Fulton [30]).

The Pancake Theorem leads to a computational problem, called the pancake prob-

lem, of finding the line, called the bisector (or pancake/ham sandwich cut in the liter-

ature), that simultaneously bisects two given regions. In this chapter, we study the

computational complexity of the pancake problem. It has been well studied for the

cases where the sets in question are polygons (see, e.g., [1; 68]), or are composed of

a finite number of points (in this case, the measure is the number of points instead

of the area; see, e.g., [27; 50; 51]). Here, we consider the general cases where the sets

may be subsets of the plane R2 of more complicated shapes and apply the model of

Turing-machine based complexity theory of real functions to this problem.
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We also consider two related problems: (1) for a fixed angle α ∈ [0, π) (e.g.,

α = π/2), computing the bisector L of a set S such that the angle from the positive

x-axis to L is α; and (2) computing two lines that are perpendicular to each other and

divide a set S into four parts of equal area. Our main results use discrete complexity

class #P and other related classes to characterize the complexity of the bisectors.

They can be summarized as follows:

(1) These problems are all solvable if the sets in question are polynomial-time

approximable and there exists a unique bisector (or a unique pair of lines for the

problem of dividing a set into four parts). However, there are no fixed complexity

bounds even if the sets have sufficient polynomial-time representations. For example,

it can be arbitrarily hard to compute two lines that are perpendicular to each other

and divide a polynomial-time approximable set S into four parts of equal area, even

if S is also polynomial-time recognizable and convex, and has a polynomial-time

computable Jordan curve as the boundary.

(2) The complexity of finding the vertical bisector L of a polynomial-time approx-

imable set S has a lower bound of P#P1[1] and an upper bound of P#P , provided that

S is sufficiently thick around L. Here P#P is the class of languages A such that A is

polynomial-time decidable with a #P function as an oracle, #P1 is the unary version

of #P , and the notation [1] in P#P1[1] means that the oracle is only queried once.

(3) The complexity of finding the bisector L that bisects two P -approximable sets

S1 and S2 has a lower bound of P#P1[1] and an upper bound of P#P , provided that

S1 and S2 are linearly separable (i.e., S1 and S2 are on different sides of some line)

and both S1 and S2 are sufficiently thick around their own bisectors at all angles.

116



7.2 Bisecting One Set

From now on, unless specified otherwise, by “bisecting” a set we mean “dividing” a

subset of R2 into two parts of equal area using a line, and by “bisector” of a set we

mean a line that bisects the set. The Pancake Theorem states that two bounded sets

have a common bisector. We first study the complexity of bisecting one set.

Let S be a bounded set in R2. Fix an angle α ∈ [0, π). If the angle from the

positive x-axis to a line L is α, we say that L is at angle α. It is easy to see that there

exists a bisector L of S at each angle α. It is possible that there is another bisector

L′ of S at the same angle α. In this case, the area of the part of S between L and

L′ is zero, and any line between L and L′ that is parallel to L is a bisector of S at

angle α. Then, the complexity of some bisector can be very high. We assume that

this does not happen and assume that there exists a unique bisector of S at any fixed

angle α.

Definition 7.2.1 Let S be a bounded set in R2. A line L defined by x = a divides S

into two parts, with the left part denoted Sx≤a and the right part Sx≥a. We define the

thickness of S at L, denoted thkS(L), as the greatest lower limit of the area change

of Sx≤a when moving L parallelly, that is,

thkS(L) = lim inf
δ→0

area(Sx≤a+δ)− area(Sx≤a)
δ

.

For a line L at an angle α ∈ [0, π), we can also define thkS(L) in a similar way.

More precisely, we rotate S and L about the origin by an angle π/2− α to obtain S ′

and L′, respectively, and define thkS(L) = thkS′(L′).

It is obvious that for any line L at any angle α ∈ [0, π), thkS(L) is nonnegative.

If S is a convex Jordan domain, then thkS(L) is the length of the chord L∩S. If L is

a bisector of S at angle α such that thkS(L) > 0, then L is the unique bisector of S
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at angle α. Note that it is possible that thkS(L) > 0, but for any ε > 0, there exists

a line L′ such that L′ is parallel to L and dist(L,L′) < ε, but thkS(L
′) = 0. We say

S has a positive thickness around a line L if there exist two positive real numbers ε

and δ, such that if L′ is a line parallel to L with dist(L,L′) < ε, then thkS(L
′) > δ.

If for a set S and an angle α, there are two bisectors L and L′, then thkS(L) =

thkS(L
′) = 0. However, it is possible that there exists a unique bisector L of S at

angle α even if thkS(L) = 0. Below we show that the complexity of finding such a

bisector can be arbitrarily hard, while a positive thickness around a bisector reduces

the complexity (see Theorem 7.2.3).

Theorem 7.2.2 Let b ∈ (0, 1) be a computable number. There exists a P -appro

-ximable/recognizable set S ⊆ [0, 1]2 such that the line L defined by x = b is the unique

bisector of S at angle π/2; furthermore, thkS(L) = 0 and for any line L′ defined by

x = b′, where b′ ∈ (0, 1)− {b}, thkS(L′) > 0.

Proof. We construct a P -approximable/recognizable set S such that (1) the boundary

of S is the union of line segment {〈x, 0〉 : x ∈ [0, 1]} and the image of a polynomial-

time computable function f , and is of a finite length; and (2) the set S is “symmetric”

with respect to the bisector.

We assume that b is not a dyadic since, if b is a dyadic, it is very easy to construct

a polygon whose vertical bisector is defined by x = b. Let φ be a computable Cauchy

function in CFb and let t : N → N be a computable function which bounds the

runtime of the function φ. We assume that t(k) ≥ 2k for all k ∈ N. We inductively

define two sequences {dk} and {dk} of dyadic numbers in [0, 1]:

d1 = 0; d1 = 1;

dk = max{dk−1, φ(k)− 2−k},
dk = min{dk−1, φ(k) + 2−k}, k ≥ 2.
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We observe that for any k ≥ 2,

0 = d1 ≤ d2 ≤ dk ≤ dk+1 < b < dk+1 ≤ dk ≤ d2 ≤ d1 = 1,

and that dk and dk are computable in time O(s(k)), where s(k) =
∑k

i=1 t(i) ≥ k2 +k.

Let I1 ⊆ N be a set of indices such that i ∈ I1 if and only if di+1 > di; in

other words, {di}i∈I1 is the largest strictly increasing subsequence of the increasing

subsequence {di}i∈N. Similarly, let I2 ⊆ N be a set of indices such that i ∈ I2 if and

only if di+1 < di. Note that since b is not a dyadic, both I1 and I2 contain infinitely

many elements. Let am,n be the n-th smallest number in Im, where m ∈ {1, 2} and

n ∈ N. For any n ∈ N, let i denote a1,n and j denote a1,n+1, h1 = max(a1,n+1, a2,n+1)

and h2 = max(a1,n+2, a2,n+2). We note that dj − di ≥ 2−j since dj − di is a positive

dyadic in Dj . We call [di, dj] the n-th interval of the first kind. The part of set S

between two lines x = di and x = dj is a pentagon of area 2−(2s(h1+1)+1); more precisely,

the five vertices of the pentagon are 〈di, 0〉, 〈di, 2−2s(h1+1)〉, 〈(di+dj)/2, 2−2s(h1+1)/(dj−
di)− (2−2s(h1+1) + 2−2s(h2+1))/2〉, 〈dj , 2−2s(h2+1)〉, and 〈dj , 0〉; we denote this pentagon

Pi,j,h1,h2. Similarly we define the other parts of S according to I2 (e.g., we will have

the n-th interval of the second kind).

b
of 2nd kind

n−th intervaln−th interval
of 1st kind

ddi j

...... ............ ......

Figure 7.1: The set S consisting of pentagons.

We can see that the line x = b is the unique bisector of S at angle π/2, since

from the construction of S, for any n ∈ N, the pentagon associated with the n-th
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interval of the first kind and that associated with the n-th interval of the second kind

are of the same area. Note that the boundary of S is the union of the unit interval

[0, 1] on the x-axis and the set {〈x, f(x)〉 : x ∈ [0, 1]}, where the function f is easy

to obtain from the construction of S above. We first show that f is polynomial-time

computable by proving that f satisfies both conditions in Proposition 2.4.5. Indeed,

it is easy to see that f has a linear modulus of continuity since, for each n ∈ N, let

i = a1,n, j = a1,n+1, h1 = max(a1,n+1, a2,n+1) and h2 = max(a1,n+2, a2,n+2), then we

have s(h1 + 1) ≥ h2
1 + 1 ≥ j, |dj − di| ≥ 2−j ≥ 2−s(h1+1) and

2−2s(h1+1)/(dj−di)

(dj−di)/2
< 2,

which implies that the derivative (which exists almost everywhere) of f is between

−2 and 2; furthermore, we can see that the boundary of S is of a finite length. Next

we show that for any two integers m,n ∈ N and any dyadic d ∈ Dm ∩ [0, 1], a dyadic

e can be computed in time O(m + n) such that |e − f(d)| < 2−n by the following

algorithm:

(1) Compute in time O(n) an integer k such that k = max{i : s(i) ≤ n} by

simulating a machine M with time bound t that computes φ as follows: Let

M compute one by one φ(1), φ(2), · · · , and halt after n moves, now k is the

maximum number such that φ(k) is computed in this process. (Note that the

simulation may have started to compute φ(k + 1) but it is not finished since it

is terminated after n moves. In this case s(k) ≤ n < s(k + 1). )

(2) Compute in time O(n) the (multi)set {di, di : i ≤ k}, I ′1 := I1∩{1, 2, · · · , k−1},
and I ′2 := I2 ∩ {1, 2, · · · , k − 1}. (Note that it may take more than n moves to

decide whether k ∈ I1 (or k ∈ I2), but we do not need this result. This step can

be combined with step (1).)

(3) Compute in time O(k2) three integers q = min(||I ′1||, ||I ′2||), i0 = a1,q and j0 =

a2,q. Check in time O(m + k) whether d ∈ [di0 , dj0 ], d < di0, or d > dj0: if

120



d ∈ [di0, dj0], let e = 0 and halt; if d < di0, go to step (4); if d > dj0 , go to step

(5).

(4) Compute in time O(k2 + m) = O(n + m) three integers � < q, i = a1,� and

j = a1,�+1 such that d ∈ [di, dj ]. There are two sub cases:

(4.1) � = q − 1. Compute in time O(k2) an integer h1 = max(a1,q, a2,q). We

have h2 := max(a1,q+1, a2,q+1) > k (we do not compute h2 now) and

s(h2) > n. The quadrangle P ′
i,j,h1

with vertices 〈di, 0〉, 〈di, 2−2s(h1+1)〉,
〈(di + dj)/2, 2

−2s(h1+1)/(dj − di) − 2−2s(h1+1)/2〉 and 〈dj , 0〉 is an approx-

imation to the pentagon Pi,j,h1,h2 with error ≤ 2−2s(h2+1) < 2−2n. Do an

interpolation in time O(m + n + j + s(h1 + 1)) = O(m + n) on P ′
i,j,h1

to

obtain an approximation e to f(d) such that |e− f(d)| < 2−n and halt.

(4.2) � < q − 1. Compute in time O(k2) two integers h1 = max(a1,�+1, a2,�+1)

and h2 := max(a1,�+2, a2,�+2). (Now the pentagon Pi,j,h1,h2 is exactly the

part of S between lines x = di and x = dj.) Do an interpolation in time

O(m+ n+ j + s(h1 + 1) + s(h2 + 1)) = O(m+ n) on Pi,j,h1,h2 to obtain an

approximation e to f(d) such that |e− f(d)| < 2−n and halt.

(5) (It is similar to step (4) and is omitted.)

We can see that the above algorithm takes time O(m + n) since each step takes

time O(m + n). Also from the algorithm, for the cases of d < di0 and d > dj0 , an

approximation e to f(d) with an error ≤ 2−n is obtained. We need to show that

if d ∈ [di0 , dj0], e = 0 is an approximation to f(d) with an error < 2−n, that is,

|f(d)| < 2−n. Without loss of generality, assume that d ∈ [di0, b), then there exists an

integer � ≥ q such that d ∈ [di, dj], where i = a1,�, j = a1,�+1; that is, d is in the �-th

interval of the first kind. Let h1 = max(a1,�+1, a2,�+1) and h2 = max(a1,�+2, a2,�+2).

From the definition of q, h2 > h1 ≥ k. Then f(d) is decided by the pentagon
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Pi,j,h1,h2. Since h1 ≥ k, s(h2 + 1) > s(h1 + 1) ≥ s(k + 1) > n, and |f((di, dj)/2)| =
2−2s(h1+1)/(dj − di) − (2−2s(h1+1) + 2−2s(h2+1))/2 < 2−n, we have |f(d)| < 2−n, which

completes the proof that f is polynomial-time computable.

In order to check whether a point 〈x, y〉 is in S, we check whether 0 < y < f(x).

As f is polynomial-time computable, S is P -recognizable. Note that f(b) = 0, and the

boundary of S is the union of two Jordan curves and of a finite length, it follows that S

is also P -approximable (Chou and Ko [18]). It is also easy to check that thkS(L) = 0

and for any line L′ defined by x = b′, where b′ ∈ (0, 1) − {b}, thkS(L′) > 0: f is

continuous, thus for any line Lr defined by x = r, where r ∈ (0, 1), thkS(Lr) = f(r);

furthermore, f(r) > 0 iff r �= b. �

Theorem 7.2.2 is a negative result for the case where the thickness of the set S at

a bisector is zero. Next we prove a positive result for the case where S has a positive

thickness around a bisector.

Let S be a P -approximable set with a positive thickness around a bisector Lα at

an angle α. Without loss of generality, we consider the case α = π/2.

Theorem 7.2.3 In the following, (a)⇒ (b)⇒ (c):

(a) FP = #P .

(b) For any P -approximable set S ⊆ [0, 1]2 that has a positive thickness W > 0

around the unique vertical bisector L defined by x = b, the real number b is polynomial-

time computable.

(c) FP1 = #P1.

Proof. (a) ⇒(b). We define a function g : [0, 1]→ R2 such that g(t) = area(Sx≤t)−
area(Sx>t), where Sx≤t = {〈x, y〉 ∈ S : x ≤ t} and Sx>t = S − Sx≤t. Then b is

the root of g(x). We will show that the function g is polynomial-time computable

under the condition FP = #P . The function g is increasing and furthermore, since

S has a positive thickness around the vertical bisector L, we have |area(Sx≤b+δ) −
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area(Sx≤b)| ≥ |δ| · thkS(L)/2 when δ is sufficiently small, which means that g has a

polynomial inverse modulus near b. According to Corollary 4.7 of Ko [40], the root b

of g(x) can be computed in polynomial time by binary search.

Now we show how to compute g in polynomial time. First, g has a linear modulus

of continuity, because S ⊆ [0, 1]2 and by the definition of g, |g(t1)−g(t2)| ≤ |t1−t2| for

t1, t2 ∈ [0, 1]. Then by Proposition 2.4.5, we only need to show that the values of g at

dyadic points can be approximated in polynomial time. Since S is P -approximable,

there exists a polynomial-time oracle Turing machine M such that for any input n,

the error set En(M) has size μ∗(En(M)) ≤ 2−n. Let p be a polynomial function that

bounds M . Without loss of generality, assume that p(n) > n.

For n ∈ N and t ∈ Dn ∩ [0, 1], consider the following two sets:

A(n, t) = {〈d1, d2〉 ∈ D
2
p(n) : d1 < t,Md1,d2(n) = 1};

B(n, t) = (Dp(n) ∩ [0, t))× (Dp(n) ∩ [0, 1])−A(n, t).

For x, y, d ∈ R with d > 0, let N(〈x, y〉; d) denote the set {〈x′, y′〉 ∈ R2 : |x′−x| <
d, |y′ − y| < d}. Suppose that a dyadic point d = 〈d1, d2〉 is in A(n, t), then for any

z ∈ N(d; 2−(p(n)+1)), since z has an oracle representation 〈φ, ψ〉 such that φ(i) = bd1(i)

and ψ(i) = bd2(i) for all i ≤ p(n), the computation Mφ,ψ(n) works exactly the same

as that of Md1,d2(n), and hence it outputs 1. That means that either z ∈ Sx≤t or

z ∈ En(M); in other words, N(d; 2−(p(n)+1)) ⊆ Sx≤t∪En(M). Similarly, if d ∈ B(n, t),

then N(d; 2−(p(n)+1)) ⊆ Sx≥t ∪ En(M). Note that the small squares N(d; 2−(p(n)+1)),

where d ∈ (Dp(n) ∩ [0, t))× (Dp(n) ∩ [0, 1]), do not overlap each other and the union

of them cover the rectangle [−2−(p(n)+1), t − 2−(p(n)+1)] × [−2−(p(n)+1), 1 + 2−(p(n)+1)]

(except a finite number of line segments whose area is zero). Now it is easy to

see that 2−2p(n) · ||A(n, t)|| is close to the area of Sx≤t, with an error bounded by

μ∗(En(M)) + 4 · 2−(p(n)+1) < 2−(n−1). We define a function G : N× (D ∩ [0, 1]) → N

such that G(n, t) = ||A(n, t′)|| for all (n, t) ∈ N × (D ∩ [0, 1]), where t′ = max{x ∈
Dn : x ≤ t}. Note that A(n, t′) is the number of elements 〈d1, d2〉 ∈ D2

p(n) that satisfy
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the polynomial-time computable predicate d1 < t′ ∧Md1,d2(n) = 1, thus according to

Theorem 2.3.2 (c), G is in #P . Therefore, if #P = FP , then the area of Sx≤t can

be computed in polynomial time. The same conclusion holds for Sx>t. Therefore, g

is polynomial time computable if #P = FP .

0
x=b

S’

x=c
Figure 7.2: The domain S for (b)⇒ (c) of Theorem 7.2.3.

(b)⇒ (c). Chou and Ko [18] constructed a P -approximable set S ′ ⊆ [0, 1]2 such

that the area of S ′ is polynomial time computable if and only if #P1 = FP1. We

construct a domain S such that the left part of S is a large rectangle [0, c] × [0, 1],

and the right part of S is a copy of S ′ (see Figure 7.2). Then, because the problem

of computing b is equivalent to decide the area of S ′ (i.e., area(S ′) = 2b − c), the

theorem is proved. �

In other words, Theorem 7.2.3 shows that the complexity of computing the bisec-

tor at a given angle of a P -approximable bounded set with a positive thickness around

the bisector is between P#P and P#P1 (more precisely, P#P1[1], since to compute an

approximation to the area of S ′, the #P1 oracle will only be queried once; for details,

see Chou and Ko [18]). Whether P#P = P#P1 is still an open question in discrete

complexity theory (see, e.g., Ogihara et al. [56]).

We present a pure mathematical result below that any Jordan domain has a

positive thickness around any bisector; furthermore, the thickness is always greater

than a positive constant (i.e., bounded below).

124



Lemma 7.2.4 Let S be a Jordan domain and Γ the boundary of S. Then there exists

a real number Δ > 0, such that for any line L that divides S into two parts S1 and S2

with |area(S1)− area(S2)| < area(S)/3, there is a point Q in the intersection L ∩ S
of L and S such that dist(Q,Γ) > Δ. It follows that S has a positive thickness around

all bisectors.

Proof. Let f : [0, 1] → R2 be a continuous function such that f is 1-1 on [0, 1),

f(0) = f(1) and the image of f is Γ. Let {t} denote the distance of real number t

and integer points (e.g., {0.6} = 0.4, {1} = 0). Let K > 0 be a real number such

that πK2 < area(S)/3 and K < area(S)/(6R), where R is the radius of a disk that

covers S. Then there exists a real number H > 0 such that for any t1, t2 ∈ [0, 1],

{t1 − t2} < H ⇒ |f(t1)− f(t2)| < K.

Let A = {(t1, t2) ∈ [0, 1]2 : t1 < t2, |f(t1) − f(t2)| ≥ 3K}. It is clear that A is

closed. From the assumption of K < area(S)/(6R), A is nonempty, for otherwise,

all Γ is contained in a rectangle of dimensions 3K × 2R < area(S), which is a

contradiction. Now we define a function g on A as follows. Let (t1, t2) ∈ A. If γ is a

path from f(t1) to f(t2) such that γ ⊆ S, we let γK denote the portion of γ whose

distance to f(t1) and f(t2) is no less thanK, i.e., γK = {Q ∈ γ : dist(Q, f(ti)) ≥ K, i =

1, 2}. From the definition of A, γK is nonempty. g(t1, t2) is the least upper bound of

the distances dist(γK,Γ) over all paths γ ⊆ S from f(t1) to f(t2). Roughly speaking,

there is a tube that connects f(t1) and f(t2) such that the tube is of width≥ 2g(t1, t2)

in the middle. We have g(t1, t2) > 0 since there exists a path γ ⊆ S from f(t1) to

f(t2) such that γK is strictly inside Γ, which implies that g(t1, t2) ≥ dist(γK,Γ) > 0.

It is an interesting problem to prove that g is continuous. For any real number

ε > 0, there exists a real number δ > 0 such that for any t1, t2 ∈ [0, 1], {t1 −
t2} < δ ⇒ |f(t1) − f(t2)| < ε/2. For any two pairs (t1, t2), (t

′
1, t

′
2) ∈ A such that

|ti − t′i| < δ for i = 1, 2, let γ be a path from f(t1) to f(t2) such that dist(γK,Γ) ≥
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g(t1, t2) − ε/2. Assume that t1 < t′1 and t2 < t′2. Let γ′ be the path consisting

of γ, f([t1, t
′
1]) and f([t2, t

′
2]) (removing any repeated portion). Then g(t′1, t

′
2) ≥

dist(γ′K,Γ) ≥ dist(γK,Γ)−max(|f(t1)− f(t′1)|, |f(t2)− f(t′2)|) > (g(t1, t2)− ε/2)− ε/2 =

g(t1, t2)−ε. Symmetrically, g(t1, t2) > g(t′1, t
′
2)−ε. Therefore, |g(t1, t2)−g(t′1, t′2)| < ε.

Thus, g is continuous.

Since g is continuous on a bounded closed set, g assumes its minimum at some

points. That is, there exists a real number Δ > 0 such that g(t1, t2) ≥ 2Δ for any

(t1, t2) ∈ A.

Now we prove the lemma. From the assumption ofK, there exist t1, t2 ∈ [0, 1] such

that f(t1) and f(t2) are on different sides of L and are the furthest points away from

L among all points of Γ on two sides of L, respectively. Then dist(f(ti),L) > K for

i = 1, 2 and |f(t1)−f(t2)| > 3K. Assume t1 < t2, then (t1, t2) ∈ A and g(t1, t2) ≥ 2Δ.

Then there exists a path γ ⊆ S from f(t1) to f(t2) such that dist(γK,Γ) ≥ g(t1, t2)−
Δ ≥ 2Δ − Δ = Δ. The curve γK must intersect L, since f(t1) and f(t2) are on

different sides of L and dist(f(ti),L) > K for i = 1, 2. Pick any point Q in γK ∩L, we

have dist(Q,Γ) ≥ Δ. �

Remark: In the proof above, we can show further that g(t1, t2) = dist(γK,Γ) for

some path γ ⊆ S from f(t1) to f(t2), but this requires the Arzela-Ascoli Theorem in

real analysis (see, e.g., Rudin [65]), which complicates the proof unnecessarily.

Note that by Lemma 7.2.4, any Jordan domain has a thickness W around any

bisector such that W is greater than a positive constant 2Δ. Then we have the

following corollary from Theorem 7.2.3.

Corollary 7.2.5 In the following, (a)⇒ (b)⇒ (c):

(a) FP = #P .

(b) For any P -approximable Jordan domain S, the bisector of S at any polynomial-

time computable angle α ∈ [0, π) is polynomial-time computable.1

1Note that the bisector is defined by y = tan(α)x + b if α �= π/2 and x = b if α = π/2, for some
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(c) FP1 = #P1.

There is also another version of bisecting a single set S: the bisector is through a

fixed point Q, instead of forming a fixed angle with the positive x-axis. If the fixed

point Q is away from the set S in the sense that Q and S are on different sides of

a line (i.e., Q and S are linearly separable), and S has a positive thickness around a

bisector L of S that goes through Q, then L is the unique such bisector. Note that

here thickness around a line L is more naturally defined as the rate of area change

over angle change. More precisely, suppose Q and S are separated by a horizontal

line and Q is below S. For an angle α ∈ [0, π), let Lα be the half line through Q at

angle α, and Sangle<α be the part of S on the right of Lα. Now the thickness of S at

line Lα (or we may say the thickness of S at angle α with respect to Q) is defined as

lim inf
δ→0

area(Sangle<α+δ)− area(Sangle<α)
δ

,

and similarly we can define positive thickness around a line (or angle). We remark

that this definition is consistent with the previous one in the sense that if S has a

positive thickness around a line Lα by the previous definition, Definition 7.2.1, then

by the current definition S still has a positive thickness around angle α with respect

to a point Q on Lα that is linearly separable from S. (However, the exact thickness

values under these two definitions are not the same.)

Theorem 7.2.6 In the following, (a)⇒ (b)⇒ (c):

(a) FP = #P .

(b) Let S be a P -approximable set such that the origin O and S are linearly sep-

arated by a horizontal line with O below S. If a line Lα (α ∈ [0, π)) through O is a

bisector of S and S has a positive thickness around angle α with respect to O, then

Lα is the unique such bisector of S and α is polynomial-time computable.

(c) FP1 = #P1.

real number b, and the problem is to compute b in polynomial time.
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Proof. The proof is similar to that of Theorem 7.2.3 and thus is omitted. Note that

for the part (b) ⇒ (c), we still use the domain S shown in Figure 7.2, and we can

make the bisector Lα only intersect the left part of S, i.e., the rectangle, then the

problem of finding Lα is equivalent to decide the area of S. �

On the other hand, if the fixed pointQ can be inside S, there is no fixed complexity

bound for finding the bisector of S through Q.

Theorem 7.2.7 Suppose α ∈ [0, π) is a computable number. Then there exists a

P -approximable/recognizable convex Jordan domain S, such that the unique bisector

of S through the origin O is at angle α.

Proof. The idea of the construction of S is similar to that in the proof of Theo-

rem 7.2.2. The boundary of S is the image of a function f : [0, 2π] → R2 such that

for any β ∈ [0, 2π], f(β) = g(β)〈cos(β), sin(β)〉, where g : [0, 2π] → R is a function

whose values are always positive. It suffices to just describe the boundary of S in

order to explain what f is.

Without loss of generality, we assume that α ∈ (1/4, 1/2). We follow the notations

of the proof of Theorem 7.2.2, and define two sequences {dn} and {dn} that binary

converge to α from below and upper, function s(n), sets I1 and I2, the intervals of

the first and second kinds, and let am,n be the n-th smallest number in Im, where

m ∈ {1, 2}.
For any n ∈ N, let i = a1,n and j = a1,n+1 and h = max(a1,n+1, a2,n+1). We

have dj − di ≥ 2−s(h). Then on the n-th interval [di, dj ] of the first kind, the image

of f is identical to the part of the unit circle at the sector between angles di and

dj, except that there is a bump on [di, di + 2−s(h)]; more precisely, the image of f on

[di, di+2−s(h)] is the union of two tangents: that is, on [di, di+2−s(h)], the image of f is

a piecewise linear curve with breakpoints 〈cos(di), sin(di)〉, 〈cos(di+2−(s(h)+1)), sin(di+

2−(s(h)+1))〉/ cos(2−(s(k)+1))〉 and 〈cos(di+2−s(h)), sin(di+2−s(h))〉. Similarly, we define
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f on the intervals of the second kind. The image of f on [0, 2π]− [1/4, 1/2] is identical

to the unit circle on the same domain.

O
α

B

A
C

X

Figure 7.3: The domain S for (b) Theorem 7.2.7.

Figure 7.3 illustrates the domain S: the lines OA, OB and OC are at angles

α, 1/2, 1/4 respectively; the bumps on different sides of OA can be paired up such

that the two bumps in each pair are of the same area. We can check that S is a

P -approximable/recognizable Jordan domain similar to the proof of Theorem 7.2.2.

Also, S is convex, since its boundary ∂S consists of circular arcs and tangents. (The

domain S does not look convex in the figure because we want to emphasize the bumps

in a small region.) As shown in the figure, the area of bumps in the sector AOB is

the same as the area of bumps in the sector AOC, so OA is a bisector of S that goes

through the origin O. There are no other such bisectors because for any line OD

other than OA, on one side of OD, there are only a finite number of bumps, while

on the other side, there are infinitely many bumps. �

7.3 Bisecting Two Sets Simultaneously

Mathematically, the Pancake Theorem follows the intermediate value theorem and the

Borsuk-Ulam Theorem (see, e.g., Fulton [30]). For completeness, we show how the
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intermediate value theorem implies the Borsuk-Ulam Theorem and how the Borsuk-

Ulam Theorem implies the Pancake Theorem on the two-dimensional plane (see, e.g.,

Fulton [30]).

Let C be the unit circle with its center at the origin. For α ∈ [0, 2π], we use zα

to denote a point 〈cosα, sinα〉. The Borsuk-Ulam Theorem on the two-dimensional

plane states that any continuous function f : C → R must map a pair of antipodal

points zα0 and zα0+π to the same value. To see this, let g : C → R be the function

defined by g(zα) = f(zα) − f(zα+π). Then g is a continuous function satisfying

g(z0) = −g(zπ). From the intermediate value theorem, there must exists a number

α0 ∈ [0, π] such that g(zα0) = 0, i.e., f(zα0) = f(zα0+π).

Now we show how the Borsuk-Ulam Theorem implies the Pancake Theorem. For

simplicity, we only consider two Jordan domains S and S ′. We assume that S and

S ′ are both inside the unit circle. Now we define a function f : C → R as follows:

for any zα ∈ C, let Lα+π/2 be the bisector of S at angle α + π/2, which divides S ′

into two parts S ′
1 and S ′

2 with S ′
1 closer to zα, and f(zα) is the area of S ′

1. The

function f is continuous because, when zα and zα′ are close to each other, inside the

unit circle the bisectors Lα+π/2 and Lα′+π/2 should be close to each other too, since

S has a positive thickness ≥ 2Δ around any bisector (Lemma 7.2.4). Then from the

Borsuk-Ulam theorem, there exists a number α0 ∈ [0, π] such that f(zα0) = f(zα0+π),

which implies that Lα0+π/2 bisects S ′ too.

Next we present some results on the computability and complexity of the inter-

mediate value theorem and the Borsuk-Ulam Theorem.

Theorem 7.3.1 (a) Let f : [0, 1]→ R be a computable function such that f(0)f(1) <

0. Then there exists a computable number r ∈ (0, 1) such that f(r) = 0.

(b) (Ko [40, Theorem 4.4]) For any computable number r ∈ (0, 1), there exists

a polynomial-time computable function f : [0, 1] → R such that (1) f is strictly
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increasing; (2) f(0)f(1) < 0; and (3) f(r) = 0.

Part (a) of Theorem 7.3.1 provides a positive result that every computable function

that changes sign has a computable zero, while part (b) shows a negative result that

it is arbitrarily hard to compute it even if there is only one zero and the function

is polynomial-time computable. As pointed out in Ko [40], if the function f has a

polynomial inverse modulus, the unique zero of f is polynomial-time computable.

In the following, we prove a negative result about the complexity of the Borsuk-

Ulam Theorem.

Theorem 7.3.2 Let α ∈ [0, π) be a computable real number. Then there exists a

polynomial-time computable function f : C → R such that (zα, zα+π) is the only pair

of antipodal points that satisfies f(zα) = f(zα+π).

Proof.Proof (Ideas) Without loss of generality, suppose α ∈ (π/3, 2π/3). We can

construct a function g : [0, 2π]→ R such that

(1) g is strictly increasing on [0, π] with g(α) = 1.

(2) g is piecewise-linear on [π, 2π] with g(4π/3) = 1, g(5π/3) = 1 and g(2π) = g(0).

The construction of (1) follows that of part (b) of Theorem 7.3.1. It is obvious

that g(α) = g(α + π)(= 1). To prove that (α, α + π) is the only such pair, we note

that for β ∈ [0, π/3], g(β) < 1 and g(β + π) ≥ 1; for β ∈ [2π/3, π], g(β) > 1 and

g(β + π) ≤ 1; for β ∈ [π/3, 2π/3], g(β + π) = 1 but g(β) �= 1 if β �= α.

Let f(zβ) = g(β) for any β ∈ [0, 2π]. From the above discussion, it is clear that

(zα, zα+π) is the only pair of antipodal points that satisfies f(zα) = f(zα+π). �

Now we consider the Pancake Theorem. Again the computability problem has an

affirmative answer and we omit its proof. Our results below show that in general it

is arbitrarily hard to compute the common bisector of two P -approximable sets even

if (1) each of these sets has a positive thickness around any bisector; and (2) there
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is exactly one common bisector. However, if the two sets are linearly separable, the

complexity of the problem is characterized by counting classes #P and #P1.

Note that we only need to compute the angle α from the positive x-axis to the

common bisector L, since once α is known, the common bisector can be computed.

Theorem 7.3.3 Let α ∈ [0, π) be a computable number. Then there exist two convex

P -approximable/recognizable Jordan domains S and S ′ that have only one common

bisector L, and the angle from the positive x-axis to L is α.

Proof. The domain S is the same as in Theorem 7.2.7, and S ′ is the unit disk. �

There is another version of the Pancake theorem, which states that for any

bounded set S ⊆ R
2, there exist two lines that are perpendicular to each other

and divide S into four parts of equal area.

Theorem 7.3.4 Let α ∈ [0, π) be a computable number. Then there exists a convex

P -approximable/recognizable Jordan domain S whose boundary is polynomial-time

computable, such that the following properties are satisfied: (1) there exist exactly two

lines L1 and L2 that are perpendicular to each other and divide S into four parts of

equal area; (2) the angle from the positive x-axis to L1 is α; and (3) both lines L1 and

L2 pass through the origin.

Proof. The domain S is similar to the one constructed in the proof of Theorem 7.2.7,

except that we remove some parts from S in intervals [α + 3π/2, 2α + 3π/2 − 1/4]

and [2α + π/2 − 1/2, α + π/2], with the area in each removed part equals what is

added to S (compared to the unit disk) in the interval [1/4, α] (and in the interval

[α, 1/2]). Then the area of S is the same as the unit disk, that is, area(S) = π. See

Figure 7.4(a) for an illustration of S. It is easy to check that the two lines L1 and L2

satisfying conditions (2) and (3) divide S into four parts of equal area.

132



****

**
*

*
*

C
A

B

O X XO

A

E

L’2

L’1

L2

L1

E

D

L2

L1

α α

Figure 7.4: (a) The domain S for Theorem 7.3.4, (b) Divisions with two lines.

It remains to show that L1 and L2 are the only pair of lines that can do so.

Suppose that two lines L′
1 and L′

2 are perpendicular to each other and divide S into

four parts of equal area area(S)/4 = π/4, as in Figure 7.4(b). There are two cases.

Case (a): Both L′
1 and L′

2 contain the origin O. It is easy to check that {L1, L2} =

{L′
1, L

′
2}.

Case (b): Not the above case. Without loss of generality, assume that L′
1 does not

contain the origin O. L′
1 must intersect the arc from D through A to E of

the boundary of S, for otherwise L′
1 divides S into two parts, with the area

of one of them less than area(S)/2 = π/2, since it is smaller than a half unit

disk. Without loss of generality, assume that L′
1 intersects the arc from D to A

(see Figure 7.4(b)). Then D and O are on the same side of L′
1, for otherwise

L′
1 divides S into two parts, with the area of the part containing D less than

area(S)/2. Then D and O must be on the same side of L′
2, for otherwise the

part of S divided by L′
1 and L′

2 that contains O is larger than 1/4 of a unit disk.

Now the part of S divided by L′
1 and L′

2 that contains E (i.e., the part marked

with ∗’s in Figure 7.4(b)) is of area < area(S)/4, which is a contradiction. �

Recall that we say two sets S and S ′ are linearly separable if they are on different
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sides of some line. If the two sets S and S ′ are linearly separable and each of them has

a positive thickness around all its bisectors, there exists exactly one common bisector

of S and S ′.

Theorem 7.3.5 In the following, (a)⇒ (b)⇒ (c):

(a) FP = #P .

(b) For any two linearly separable bounded P -approximable sets S and S ′ with

positive thickness around all bisectors, the unique line L that bisects simultaneously

the two sets is polynomial-time computable.

(c) FP1 = #P1.

Proof. The spirits of the proof are quite similar to the proof of Theorem 7.2.3.

For the proof of (a)⇒ (b), suppose that S and S ′ are separated by a vertical line

L(see Figure 7.5). For any line L′ that intersects L, we define its direction as from a

point on L′ lying on the left of L to a point on L′ lying on the right of L. Then we

can say the angles of such lines with respect to the positive x-axis are from −π/2 to

π/2.

We define a function g : (−π/2, π/2) → R as follows: for any α ∈ (−π/2, π/2),

there exists uniquely a line Lα that bisects S at angle α. Lα will divide S ′ into two

parts S1 and S2, with S1 on the right of Lα (recall that Lα has a direction). Let

g(α) = area(S1) − area(S2). Function g has only one root α0, with Lα0 being the

unique common bisector of S and S ′. Next we will show that under condition (a),

α0 is polynomial-time computable, which further implies that Lα0 is polynomial-time

computable by Theorem 7.2.3.

First g(α) has a linear inverse modulus when α is close to the root α0 of g: as

in Figure 7.5, for two angles α, β ∈ (−π/2, π/2) with α < β, S ′ and the intersection

of Lα and Lβ must be on different sides of L, which implies that g(α) < g(β); more

precisely, g(β)− g(α) is twice the area of the intersection of S ′ and a sector region of
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angle β−α, and from the thickness condition of S ′, g(β)− g(α) > m(β−α) for some

m > 0, provided that α and β are sufficiently close to α0. Therefore, by Corollary

4.7 of Ko [40], the root α0 of g is polynomial-time computable if g is polynomial-time

computable. According to Theorem 7.2.3, g is polynomial-time computable under

condition (a), thus the proof is completed.

α

S
S

S

S

’

1

2L
L
Lβ

Figure 7.5: The domains S and S ′ for (a)⇒ (b) of Theorem 7.3.5.

For the proof of (b)⇒ (c), we let S be a domain similar to the one in the proof of

(b)⇒(c) of Theorem 7.2.3 and S ′ a disk lying below S. Then the common bisector

of S and S ′ must go through the center of S ′. The proof is completed by following

(b)⇒ (c) of Theorem 7.2.6. �
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Chapter 8

Conclusion and Open Problems

In this thesis we have studied the computational complexity of a few fundamental

problems in continuous mathematics. These results show that there are natural prob-

lems in continuous mathematics that are characterized by standard complexity classes

of discrete complexity theory. We have gained some insights into the nature of con-

tinuous complexity theory and into the relationship between continuous complexity

theory and discrete complexity theory.

The logarithm and square root problems and their generalization: analytic

continuation. We have shown that the logarithm and square root problems

have an upper bound #P . In addition, we showed tight lower bounds #P and ⊕P for

them, respectively. Both of these problems are special examples of the more general

analytic continuation problem, which can be stated as follows.

Let S be a bounded, simply connected domain with a polynomial-time

computable boundary ∂S. Suppose z0 is a fixed point in S and f : S → C

is an analytic function such that f is polynomial-time computable in a

neighborhood of z0. Compute f(z) for any point z ∈ S.
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We point out that, for general analytic continuation problems, the integration

method may not work. Recall that we achieved the upper bound P#P using the

method of integration along the curve ∂S. We can do this because the derivative of

log (z− a) with respect to z is simply 1/(z−a), which is independent of the shape of S

and also enables the trick of cancellation to work. In general, however, the complexity

of computing the derivative f ′ of f might be as high as computing f itself; in addition,

f ′ is not necessarily of a simple form, and the integral of f ′ on the boundary curve

may not exist and, even if it exists, the complexity of computing the integral may be

higher. One possible solution to this is to consider analytic continuation on a path

that lies entirely inside the domain S. Chou and Ko [19; 21] have investigated the

complexity issues of finding a path inside a domain. A recent study of Ko and Yu [46]

provided an upper bound of exponential space if the boundary of the domain has a

polynomial inverse modulus of continuity.

Recall that we say a function f : [0, 1]→ R2 represents a Jordan curve if (i) f is

one-to-one on [0, 1) and f(0) = f(1), and (ii) the image of [0, 1] under f is the curve

Γ. Note that if f represents a Jordan curve and f is polynomial-time computable,

then f has a polynomial modulus of continuity; that is, there is a polynomial p such

that, for all n > 0, δ(s, t) ≤ 2−p(n) implies f(s, t) ≤ 2−n.

We say a function m : N → N is an inverse modulus of continuity of a function

f : [0, 1]→ R2 if there is a polynomial function p : N→ N and an integer n0 such that

the following holds for all n > n0: For any two points s, t ∈ [0, 1] |f(s)−f(t)| > 2−p(n)

whenever δ(s, t) > 2−n. We say a Jordan curve Γ is polynomial-time computable

and has a polynomial inverse modulus of continuity if there is a polynomial-time

computable function f representing Γ which has a polynomial inverse modulus of

continuity.

Jordan curves that are polynomial-time computable and have polynomial inverse

moduli of continuity are quite common, and even include some fractal curves(see
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Ko [41] and Ko and Weihrauch [43]). With this extra condition, the upper bounds of

quite a few problems, including the membership problem and the path problem, are

reduced. For details, see [46].

Here we only point out, with the polynomial inverse modulus condition, we can

obtain an upper bound of exponential space for the general analytic continuation

problem.

Theorem 8.0.6 Assume that S is a simply connected domain on the two-dimensional

plane whose boundary Γ is represented by a polynomial-time computable function

which has a polynomial inverse modulus of continuity, and that z0 is a point in Int(Γ)

with dist(z0,Γ) = 2−n0. Also assume that function g is analytic on S, and that the

power series of g at z0 ∈ Int(Γ) is polynomial-time computable. Then, there exists

a polynomial q(n) such that for any integer n ≥ n0 and any point z ∈ Int(Γ) with

dist(z,Γ) ≥ 2−n, the power series of G at z is computable using at most 2q(n+k) cells.

This provides us with an EXPSPACE upper bound for the general analytic contin-

uation problem, when we add the polynomial inverse modulus of continuity condition

to the boundary ∂S of S. Whether the gap between this upper bound and the lower

bound #P can be further narrowed, possibly with additional constraints on the do-

main S is an interesting open question.

NC and Log-space analytic functions. We studied some fundamental

problems in parallel time complexity theory of continuous mathematics. We showed

that the common operators, such as integration and differentiation, on NC and Log-

space functions are not necessarily closed in NC or Log-space, respectively, unless

P collapses to NC or Log-space, respectively. On the other hand, analyticity helps,

just like in the polynomial-time complexity theory, to reduce the complexity and

keep it closed in NC or Log-space for these operators. The complexity of finding all
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zeros of an analytic function inside a Jordan curve is also proved to be closed in NC .

However, the question of whether it is closed in Log-space (that is, if all settings are

in Log-space, whether the complexity of finding these zeros is still Log-space) is still

open.

Related to this question, the representations of real numbers in complexity classes

NC and Log-space do not relate to each other the same way as those in the class P .

It is worth further study to understand the exact effect of these somewhat surprising

relations, and to find out which representations are more suitable for NC and Log-

space functions and operators.

Topology and geometry problems. In Chapters 5 to 7, we studied the

complexity issues of some geometry problems. These include the convex hull prob-

lem, the circumscribed rectangle problem and the pancake problem. By studying

them in the computable analysis setting, we extended the scope of the objects from

polygons or finite sets of points to polynomial-time computable Jordan domains. Our

results complement the results in computational geometry about these problems, and

provide different insights into the inherent difficulties of these problems. Namely, we

showed that the convex hull problem, which has a number of simple algorithms in

the computational geometry setting, is as hard to solve as any discrete NP -complete

problem. While the circumscribed rectangle problem and the pancake problem both

have linear time algorithm in the computational geometry setting, the algorithms are

considerably more complicated. We showed, in the computable analysis setting, that

they have higher complexity than the convex hull problem: The circumscribed rect-

angle problem has complexity ΣP
2 , the second level of the polynomial-time hierarchy,

and the pancake problem has even higher complexity of #P , essentially requiring the

computation of integrals.

There are a number of open questions concerning these problems. First, for the
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convex hull problem, we showed that if a domain has a P -computable, finite-length

Jordan curve as the boundary, then the area of its convex hull must be a #NP real

number. However, the exact complexity of the class #NPR of #NP real numbers,

particularly its relation with #PR, the class of #P real numbers, is not clear, and

should be clarified.

For the circumscribed rectangle and square problem, we would like to point out

a related, and very interesting question of finding the inscribed square problem: does

any Jordan curve contain four vertices of a square? Mathematicians still do not know

whether the answer is affirmative or not, although it is for sufficiently smooth Jordan

curve [69]. Some interesting questions would arise: what about the computability and

complexity of the inscribed square problem provided that there exists one inscribed

square for the given Jordan curve? Are there (computable) inscribed squares for

computable Jordan curves?

Finally, for the pancake problem, we have used a reasonable thickness condition

to characterize the complexity of bisecting a set in the given direction. It would be

interesting to find out whether there are other natural conditions on the domains

under which the complexity #P can be reduced.
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