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Abstract of the Dissertation

A Shape Mapping Framework for Graphics and Visual Computing

by
Xin Li

Doctor of Philosophy
in

Computer Science
Stony Brook University

2008

With the rapid advancement of 3D surface scanning technologies and medical
modalities, high-fidelity surface models and volumetric data sets of huge size have
been routinely acquired through hardware devices. This dissertation concentrates
on the challenging research issue of how to build the best possible (surface and
volume) mapping between different objects of arbitrarily complicated topological
types. Inter-shape mapping, or more specifically, finding meaningful, low distortion
correspondence between two given objects is an enabling tool for various applica-
tions in digital entertainment, modeling and simulation, shape analysis and retrieval,
material synthesis, visualization, etc.

This dissertation research seeks accurate and efficient solutions to this funda-
mental and important problem. Based on modern geometry, especially differential
geometry, algebraic topology and Riemannian Geometry, we have articulated and
developed a general and powerful shape mapping paradigm for objects in different
dimensions with arbitrary topologies: in the 1D curve case, we devise the conformal
invariants as curve signatures; in the 2D surface case, we exploit techniques of topo-
logical decomposition and conformal mapping; and in the 3D volumetric case, we
focus on harmonic map based on Green function theory. Consequently, compared
with all the existing surface and volumetric mapping techniques, our work offers
a better and integrated solution to the inter-object mapping problem. The great
potential of our shape mapping framework will be highlighted through many valu-
able applications such as shape analysis, deformation editing, animation morphing,
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information transfer, re-meshing, texture synthesis, and physics-based modeling.
Furthermore, we envision broader application scopes including computer vision,
shape database and content-driven information retrieval, digital medicine, virtual
environments, etc.
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Chapter 1

Introduction

During the past decades, proliferation of 3D digital photographic/scanning de-
vices and shape modeling techniques boosts the number of available high quality
3D geometric digital data. More and more digital objects have been captured or cre-
ated, and stored in databases. As a result, the need to the ability of making good use
of existing models has gained the prominence. A key concern of computer graphics
and shape modeling research is shifting to effectively understanding, retrieving, an-
alyzing and reusing models in databases. Inter-shape mapping is a powerful tool for
all these applications because it provides one-to-one correspondence between two
given objects. Such correspondence, also called shape registration, is a necessary
and important step for these applications.

Inter-shape matching research could arise from the necessity of shape regis-
tration. In order to precisely measure and analyze differences between two exist-
ing digital models point-by-point, people need to compute registration from one
given object to another. Rigorously speaking, this is to find globally continuous
one-to-one correspondence between two shapes. However, with the exploration of
inter-shape matching techniques, much more other potential has been found be-
sides shape registration and alignment. Shape mapping becomes a very useful tool
in broader research fields and serves for many valuable applications in graphics,
vision, visualization, animation, and modeling fields. My dissertation research fo-
cuses on this fundamental and important problem as well as its various applications.

Figure 1 illustrates the conceptual hierarchy of my dissertation research (we
focus on mapping surface and volumetric data because they are most commonly

1
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Figure 1: Hierarchy of this Dissertation Research: Key difficulties in current surface and
volumetric computation (upper row), our integrated work (middle row), and utilized map-
ping applications (bottom row).

used in our surrounding physical world). This framework integrated a few projects
(the middle row), targeting on key challenging problems in current surface and vol-
umetric mapping computation (the upper row). By solving these key difficulties, we
have improved the effectiveness and efficiency of shape mapping computation, and
are able to utilize this framework for various applications of surface and volumetric
data (the bottom row).

1.1 Problem Statement

1.1.1 Surface Mapping

Rigorously speaking, a surface mapping is a continuous one-to-one function f
from one surface M1 to the second surface M2. Many existing surface mapping tech-
niques primarily target on surfaces with trivial topology (also called genus-zero
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surfaces), in which case satisfactory inter-surface maps can be composed with the
help of many well-established surface parameterization techniques, through some
canonical uniform shape domains (such as spheres or disks).

When the input surfaces are general, i.e., with nontrivial topology, there is
no canonical domain such as the sphere or plane. Therefore, directly computing the
global surface mapping becomes much more difficult (please check Chapter 2 and
Chapter 5 for details from technical aspects). We can classify current approaches
for general surfaces mapping computation into two categories: one is the local
approach, also called the piecewise mapping method (segmentation + local opti-
mization); and the other is the global approach (global optimization without seg-
mentation).

Piecewise Mapping

Most state-of-the-art techniques for general surface mapping follow the direc-
tion of local approach. They firstly partition two surfaces into two consistent sets
of sub-regions with simple topology, and then compute locally optimized mapping
between corresponding sub-regions. These local results are finally composed to a
global continuous map.

The key technical challenge in piecewise mapping computation is how to ef-
fectively generate consistent partitioning on two or more input surfaces. Specifi-
cally, the partitioning should have the same number of sub-regions, and these sub-
regions should have the same adjacency relationship. To generate such consistent
partitioning, current surface mapping methods usually use the following two ways:

• The straightforward approach for consistent partitioning generation is by
manual design [18, 35, 132]. The user needs to sketch the partitioning graph
(also called the base mesh) on both surfaces consistently and indicates the
correspondence between pairs of subregions. The limitations of this approach
include first, it is quite labor intensive, second, the user has to possess deep
domain knowledge for the design, and finally, when the input surfaces are
with high genus or complicated geometry, consistent base mesh could be too
complicated to design manually.
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• Recent work has been trying to seek more automatic methods in consis-
tent partitioning generation. This approach is based on user-provided fea-
ture points [73, 78, 99, 106]. The user firstly labels feature constraint points
on two surfaces with corresponding indices. Then some tracing algorithm
is conducted by the system to connect these markers in consistent ways, and
generate consistent partitioning, with all markers becoming endpoints of con-
necting paths. These methods can greatly relieve the effort of manually de-
signing the base mesh, but they still have a few limitations. First, when input
surfaces are with high genus or are not geometrically similar, heuristic trac-
ing algorithms are often error prone; second, large amount of markers may be
necessary in these schemes for tracing unambiguous partitioning graphs on
high-genus surfaces (for example, in [73], at least four markers are necessary
for each topological handle), which still cost a lot of labor.

The limitation of above existing methods pushes us to consider the following
issues for surface mapping:

• How to analyze segmentation on different surfaces?
• How to design a more automatic and robust scheme to generate consis-

tent partitioning on different surfaces, with arbitrary topological types?

Globally Smooth Mapping

Piecewise methods simplify the computation of the one-to-one continuous
mapping between two given surfaces. However, this “partitioning + local map-
ping” paradigm has difficulties in controlling the global mapping smoothness and
distortions. First, the mapping results heavily depend on the initial partitioning;
second, the mapping along the sub-regions boundaries is only C0 continuous; third,
many current techniques judge distortion of their mapping functions only by visual
effects, without rigorous mathematical foundation and analysis.

On the other hand, mapping quality directly dictates its end effect of its en-
abling applications. Many applications such as shape comparison, morphing, scien-
tific computation, spline construction, etc. require a globally low-distorted surface
mapping. It is worthwhile to study the surface mapping from a global point of view.
Two critical issues are:
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• How can we rigorously measure the entire distortion of mapping between
two surfaces?

• What type of distortion criteria should we use?

In this dissertation, we choose harmonicity as the criterion to measure qual-
ity of both surface and volumetric mapping, because harmonicity is a physically
natural way to measure stretching (angular distortion) of a mapping between two
shapes. The formulated energy that characterizes the harmonicity of a map is called
the harmonic energy. It has already been widely used as a criterion to measure the
quality of surface parameterizations. In many well-established surface parameteri-
zation techniques [24,96], harmonic map has already been efficiently computed and
used. Unfortunately, unlike the surface parameterization, in the surface mapping
case, the complicated geometric shape of the target surface will almost inevitably
cause the direct computation of the harmonic map between two surfaces (especially
with complicated topology) to fail and get stuck at local minima.

• Whether there is a way that the numerical estimation of the mapping
distortion can guide the improvement of surface mapping quality, so that
we can reach the globally stretching-minimized mapping?

1.1.2 Volumetric Mapping

Surface mapping does not consider whether objects are with solid interior re-
gions. And naturally we shall consider the generalization of surface mapping to 3D
volumetric case because these interior regions of objects oftentimes carry impor-
tant information. The physically natural criterion of surface mapping, harmonicity
is also defined for 3D volumetric mapping. A harmonic volumetric map is a smooth
one-to-one mapping between a solid object M1 and the other solid M2, given their
surface mapping ~f ′ : ∂M1 → ∂M2 (∂M1 and ∂M1 represent boundaries of M1 and
M2 correspondingly).

This can be rigorously formalized as a 3D vector function ~f ∈ R
3, such that

{
∆~f (p) = 0 p ∈M1,

~f (p) = ~f ′(p) p ∈ ∂M1.
(1)
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where the ∆ is defined continuously in 3D as

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 , (2)

As shown in the above equation 1, first, ~f bijectively maps points in M1 to
points in M2; second, it has to be harmonic, meaning, the 3D Laplacian operator, as
defined in the equation 2, acting on f is zero everywhere; third, it must satisfy the
boundary condition, mapping source surface points onto the target surface.

Due to the huge complexity of volumetric grids, direct computation is compu-
tationally challenging. The existing harmonic volumetric mapping technique such
as [42] discretizes the volume space by a tetrahedral mesh, and then iteratively re-
duces the discretized tetrahedral harmonic energy. This kind of approach has some
limitations. First, the generation of a tetrahedralization of the given solid object is
nontrivial and sometimes error-prone; second, when the resolution of the tetrahe-
dral mesh is high, the computation is still very costly. Therefore, it is necessary for
us to further explore on this problem and study:

• How to reduce the computation complexity of volumetric mapping?
• How to compute the volumetric mapping more robustly?
• How to analyze or restrict the mapping distortion?

1.2 Contribution

This dissertation consists of the following contributions.

1. In one-dimensional data case, we study spacial simple closed curves embed-
ded in genus-0 surfaces, and find a conformal invariant that characterizes how
a simple closed curve partitions its embedded surface. We use such conformal
invariant functions as signatures for curves-on-surface; these signatures pro-
vide a classification for all curves-on-surfaces, meaning signatures and curves
correspond uniquely. Furthermore, this curve signature is used to study seg-
mentation of different given surfaces, more specifically, it can be utilized for
segmentation matching and segmentation transfer. Based on this, we design
a semi-automatic piecewise surface mapping framework. This work is based
on complex analysis and conformal mapping theory. (Chapter 3)
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2. In two-dimensional data case, we study the surface mapping computation
problem. Our work on curve signature provides a semi-automatic piecewise
surface mapping framework; however, it is not fully satisfactory in terms
of surface mapping. The reason is first, the consistent segmentation is not
solved automatically: even we can transfer segmentation consistently among
different surfaces, we need the segmentation to be generated on at least one
surface; second, this framework only works for input surfaces with the same
topology (specifically, currently only genus-0 surfaces, although we believe
this framework can be generalized to high-genus-surface cases), which is not
enough for general surface mapping purpose. (Chapter 3)

3. Therefore, for two-dimensional manifolds (surfaces), we design a decom-
position scheme called “canonical pants decomposition” that applies on dif-
ferent surfaces automatically. With this decomposition, we are able to get
the consistent segmentation on surfaces with complicated topology with least
user involvement. This framework also handles mapping computation be-
tween surfaces with different topology, which is called topological evolu-
tion. Under our framework, the user can easily manipulate topological evolu-
tion with only a fewest intuitive operations. This piecewise surface mapping
framework is automatic and robust, and also easily integrates feature align-
ment from users for possible semantics purpose. (Chapter 4)

4. We also study the globally optimal mapping between two surfaces with com-
plicated topology. To our best knowledge, this is the first presented algorithm
for computing surface mapping with the least global stretching energy, with
both experimental and rigorous theoretic proof for its optimism, uniqueness
and convergence. (Chapter 5)

5. Towards three-dimensional data, we further extend our surface mapping
framework to solid models. Using our surface mapping as a boundary condi-
tion, we compute the harmonic volumetric mapping between two given solid
objects. We bring into graphics and modeling field the so called method of
fundamental solution, which greatly improves the efficiency and robustness
of the volumetric mapping computation. To our best knowledge, this is the
first investigation for mapping solid objects with nontrivial topology. (Chap-
ter 6)
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6. Besides the theoretical contribution on the above shape mapping in one, two
and three dimensional data, we also demonstrate the usefulness and power
of shape mapping by applying surface and volumetric mappings in various
applications in modeling, graphics, and visualization fields. We will address
this in the following sections. (Also see Chapter 7 and Chapter 8)

1.3 Motivating Applications

Both surface mapping and volumetric mapping have various valuable applica-
tions in a wide research fields including geometric modeling, geometric processing,
computer graphics, visualization, vision, and medical imaging.

Surface Mapping Applications

1.3.1 Morphing

Shape mapping can be used to generate the morphing sequence between two
meshes for animation. With a one-to-one mapping between two given surfaces,
each point on the source surface has a unique corresponding point on the target sur-
face, therefore, we can simply conduct linear interpolation between corresponding
points and get a morphing trajectory from first object to the second object. On the
other hand, different interpolation techniques can be applied for different morphing
effects.

1.3.2 Surface Registration/Comparison, Shape Retrieval

With low distortion one-to-one mapping between two surfaces, we naturally
get registration between the surfaces; then based on either curvature or some other
property, we can compute their difference point-by-point for comparison purpose,
and design a metric to measure distance (difference) between surfaces. This fur-
thermore leads to the application of shape retrieval.
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1.3.3 Cross-Surface Parameterization

Geometric processing and computation usually require heavy computation on
surfaces with complicated geometry or topology. For example, to perform phys-
ically based simulation on convoluted surface data is very time consuming. With
surface mapping, we can convert these computations into some canonical domains,
where the computation efficiency and accuracy may be greatly improved. Examples
include physically-based simulation based on surface mapping, and spline construc-
tion through canonical shape mapping such as polycube mapping, etc.

1.3.4 Texture/Information Transfer

One-to-one correspondence provides a tool to correlate information between
two objects. Properties such as color, texture, density, or even strain/stress tensor
can all be transplanted from one object to its corresponding region in the second
object. An application in graphics is texture transfer, which transplants texture
from the source object to the target object.

1.3.5 Spline Construction

Spline construction, although we list it separately, is an application of cross-
surface parameterization (Section 1.3.3). Tensor product splines are usually built
upon planar domains. With mapping from original surfaces to polycubes, we get the
canonical rectangular domain (faces for the polycube) for the spline construction.

Volumetric Mapping Applications

1.3.6 Solid Object Comparison

Similar to surface registration, volumetric mapping can be used to align solid
objects. Based on the physically-natural harmonic volumetric mapping, we are able
to precisely compute the deformation energy required to deform the first object
into the second one, as well as illustrate at each point where the stretching energy
concentrates.
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1.3.7 Tetrahedral Remeshing

As triangle meshes are used to represent surfaces, tetrahedral meshes can be
used to represent solid objects. Given an input solid object, how to generate a
regular tetrahedralization (or hexahedralization) is an interesting topic for mechan-
ical engineering research, because the regular structure provides better efficiency
and accuracy in physically based computation and geometric operation. Regular
tetrahedralization (or hexahedralization) can be easily generated on regular solid
domains such as solid polycubes; then with the volumetric mapping, such a regular
structure can be transferred onto the given object with complicated geometry. We
call this application “tetrahedral remeshing”.

1.3.8 Solid Texture Synthesis

For visualization and virtual reality, people want to synthesize natural interior
solid texture of a given object based on its boundary surface texture. Based on our
volumetric mapping algorithm, we can generate smooth and natural-looking solid
texture in real time.

1.3.9 Data Fusion

Volumetric mapping, as a shape registration tool, can be used for fusing med-
ical data from different modalities. With the correspondence provided by domain
experts, how to merge medical data obtained from different scanning devices is an
important research direction for medical imaging. Our shape mapping naturally
provides a powerful tool for this purpose.

1.3.10 Deformation Transfer

To reuse dynamic modeling data is an interesting topic in the geometric mod-
eling field. Much research has been conducted based on surface data. Transferring
the deformation among solid data also has important applications for reusing se-
quential volumetric data and is natural when the interior region of the solid data
is anisotropic. When we have a deformation sequence, and a target object, we can
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map the starting source object to the target object, and then transfer all the deforma-
tion gradient tensors sequentially. Then we may be able to integrate the deforming
sequence on the target object by integrating these gradient tensors while imposing
some constraints.

1.4 Dissertation Organization

This chapter (Chapter 1) presents the motivation, central problems and the con-
tribution of this dissertation. The remainder of this document is organized as fol-
lows. Chapter 2 reviews previous related work in shape mapping computation. In
the following three chapters, we explain our three projects in surface mapping com-
putation (in Chapter 3, Chapter 4, and Chapter 5 respectively). Chapter 6 focuses on
our work for volumetric mapping computation. Chapter 7 illustrates the results and
power of surface mapping through various applications. Chapter 8 shows the appli-
cations for volumetric mapping. Chapter 9 concludes our work and discusses both
our contribution in shape mapping and limitations of our current methods. Future
research directions are also elaborated in Chapter 9.



Chapter 2

Background and Related Work
Review

This chapter reviews the background and work related to shape mapping re-
search. It has been composed into three main parts dealing with data from 1D
manifolds (curves), 2D manifolds (surfaces), to 3D manifolds (solid).

Surface mapping computation has deep roots in surface segmentation (Sec-
tion 2.1) and surface parameterization (Section 2.2). We will briefly recap most
related literatures in these two fields before we go into the review of existing piece-
wise surface mapping methods (Section 2.3, Section 2.4) and globally smooth map-
ping techniques (Section 2.5). In 3D cases, our volumetric mapping computation
algorithm has better effectiveness and efficiency over existing volumetric mapping
methods (Section 2.6), because it is based on a boundary method that we brought
into the graphics and modeling community, called the Method of Fundamental So-
lution (MFS) (Section 2.7).

2.1 Curve Comparison and Surface Segmentation

Analysis of the one-dimensional manifold, curves on the plane has been a
widely studied problem in the computer vision fields. Effective curve match-
ing and comparison methods have focused on properties of the planar curve it-
self [6, 7, 16, 30, 53, 88, 95, 107, 117, 129]. Because of the different application

12
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purposes, very little work has been conducted to specifically study curves defined
on surfaces so that people can use them to study the segmentation of embedded sur-
faces, and to aid in surface matching. Recent research on conformal geometry of-
fers a new way to study curve in this direction. [108] modeled planar simple closed
smooth curves by diffeomorphisms from a circle to itself via conformal mapping
and proved the space of all such curves modulo scaling and transformation is iso-
morphic to the diffeomorphism group of the circle quotient Möbius transformations
group restricted on the circle. Our work in Chapter 3 follows the same philosophy
and generalizes this idea from planar curves to curves embedded on 2D manifolds,
so that we can study the segmentation of given surfaces by studying curves.

2.2 Surface Parameterization

In order to build up a one-to-one mapping from one surface to another, we can
use a straightforward yet effective method that uses a regular domain as the bridge.
A common domain for surfaces is the plane. Mappings from a surface to a suitable
planar domain is usually called surface parameterization. Surface parameterization
itself has been extensively studied, and have been playing an important role in the
modern graphics, modeling and geometric processing pipeline.

Surface parameterization can be treated as a special case of inter-surface map-
ping (in the sense that one of the surface is the plane). Despite surface mapping’s
connection with surface parameterization over canonical domains, techniques for
computing an mapping between general surfaces are different and seems more chal-
lenging (please see Section 5.1 for more technical details). Therefore, a thorough
review of surface parameterization is beyond the scope of this work. In the follow-
ing, we only briefly summarize the most related work, and refer the reader to [29]
and [111], which provide extensive surveys of state-of-the-art techniques in the field
of surface parameterization.

The most developed and important parameterization task is to map a surface
M ⊂ R

3 of disk topology into the plane. The early driving force for the develop-
ment of planar parametrization techniques mainly came from the need for texture
mapping in Computer Graphics.

Floater [27] addressed that a valid parameterization of a disk-topology mesh
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M is any planar triangulation which is isomorphic to M . More specifically, each
vertex of the mesh is mapped to a point in R

2; each edge is mapped to a straight
line segment in R

2 and the edges only intersect at their common endpoints. In
other words, the planar parameterization is valid when there are no intersections
among the edges in the planar domain. This means that, locally, no triangle flip or
degeneracy exists. Global degeneracy, however, might still occur.

One of the earliest methods for parameterizing an open genus-0 surface into
the plane was first introduced to the graphics community by Eck et al. [24]. Pinkall
and Polthier derived the discrete Dirichlet energy earlier in [96] for the computation
of discrete minimal surface. The main advantage of the above method for comput-
ing discrete harmonic mapping is that it is a quadratic minimization problem and
therefore reduces to solving a sparse linear equation system.

However, discrete harmonic maps in general do not always guarantee injectiv-
ity. Floater [27] describes a generic method, which is called the convex combination
map, to map a 3D mesh into the plane without foldovers. Floater’s method is a gen-
eralization of Tutte’s method [123] for planar graph embedding in the 60’s. Floater
observed that the ‘barycentric mapping’ method used by Tutte can be made much
more general by allowing each interior vertex to be any convex combination of its
neighbors and he also provided an algorithm for choosing the convex combinations
so that the mapping locally preserves the shape of the given surface.

By discretizing the discrete Dirichlet energy defined in [96], Desbrun et al. [21]
constructed free-boundary harmonic maps.

When input surfaces are closed genus-zero surfaces, a sphere is a natural pa-
rameterization domain. An important point for spherical parameterization is that
according to Gu and Yau [43], harmonic maps from a closed genus zero surface
to the unit sphere are conformal, i.e. harmonic and conformal maps are the same
when the surfaces are topological spheres. Haker et al. [48] first mapped the given
surface into the plane and then uses stereographic projection to subsequently map
to the sphere. Gu and Yau [44] proposed an iterative method to approximate a
harmonic spherical map. Gotsman et al. computed a spherical mapping that guar-
antees the one-to-one property in [34]. The angle flattening method of Shefer and de
Sturler [109] for disk-like surfaces had been generalized to spherical case by Shef-
fer, Gotsman, and Dyn [110]. The stretch metric approach of Sander et al. [102]
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had been generalized to spherical case by Praun and Hoppe [98].
As a criterion of surface parameterization, angle preservation is typically ad-

dressed in these above work either from the harmonic point of view (Dirichlet en-
ergy) [21, 24, 96] or from the conformal point of view (Cauchy-Riemann equa-
tion) [21, 79]. Conformal geometry has been studied for conformal surface param-
eterization [44, 101].

More recently, the hyperbolic structure of Riemannian surfaces has been in-
troduced to surface parameterization. Thurston firstly introduced circle packing
in [122]. An effective algorithm and implementation is presented by Stephenson
in [113]. Circle packing has also been generalized to circle patterns [10] and used
for surface parameterization in [70]. Hamilton first introduced Ricci flow on sur-
faces in [49]. Theoretical results of combinatorial Ricci flow are later generalized
in [14], and applied in surface parameterization and mapping fields in [57] and [81].

2.3 Mapping between Genus-0 Surfaces

To compute surface mapping between genus-zero surfaces, people widely use
the sphere (for closed surfaces) and the plane (for open surfaces) as intermediate
domains. Existing planar parameterization of spherical parameterization techniques
can be used to flatten surfaces onto above canonical domains.

Kent et al. [69] mapped star-shaped surfaces onto spheres, and merged them
by clipping one sphere to the other. Kanai et al. [62] used harmonic maps to build
correspondence from surfaces to the unit disk domain, therefore not only the star-
shaped surfaces, but also all genus-zero closed or open surfaces can be mapped eas-
ily. However, it only allowed one constraint point from users. Alexa [1] proposed
to match multiple feature points between genus-0 surfaces. His work wrapped two
surfaces onto a unit sphere by minimizing a distance function, and feature points
on the surface were aligned and the resultant embedding was used for the surface
mapping. They started to aim for matching multiple feature points. However, its
limitation is that no bijectivity is guaranteed and hard constraints may not be fully
enforced. More recently, Asirvatham et al. [4] used their constrained spherical pa-
rameterization to map genus-zero surfaces onto the sphere, the progressive mesh
was used to get a simple base mesh and to enforce constraints at certain positions
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on the sphere. This method allows multiple hard constraint points between genus-0
surfaces.

2.4 Piecewise Mapping between General Surfaces

For surfaces with more general topology, common canonical domains such
as disks and spheres become unavailable. Directly solving intra-surface mapping
usually fails. Most techniques follow the direction of piecewise surface mapping.
First, they segment the surfaces with complicated topology into a consistent set
of sub-regions, then, they compose or refine the global result from the mapping
between the sub-regions.

DeCarlo and Gallier [18] designed a surface mapping framework based on
user-specified base meshes. When base meshes are carefully designed, the frame-
work is flexible, and mapping between surfaces with different topology can be com-
puted. However, deep domain knowledge in topological surgery may be required
to manually design consistent base meshes; and when the surface has high genus,
the design are usually quite complicated. Only examples up to genus-2 were pro-
vided in their work. Gregory et al. [35] and Zöckler et al. [132] also used the base
mesh approach. When the consistent “base mesh” have been manually designed,
harmonic or barycentric mappings are used to correspond these sub-regions accord-
ingly. More earlier surface mapping work for morphing applications can be found
in the survey [77].

Recent work has been trying to seek more automatic methods to consistently
generating the base mesh. Lee et al. [78] used their MAPS algorithm to hierar-
chically map fine meshes onto a common base mesh. Praun et al. [99] introduced
a graph tracing algorithm to transfer the coarse base mesh from one surface to an-
other with the same topology. Kraevoy and Sheffer [73] designed another algorithm
to trace out base meshes consistently on different surfaces. To build up the base
meshes, many feature points have to be provided by users for high genus surfaces.
For example, at least four points are required for each topological handle to proceed
the base mesh tracing algorithm. Schreiner et al. [106] first traced original surfaces
into a corresponding set of triangular patches, with feature points as path endpoints,
and created original surfaces’ progressive mesh representations. Then they created
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a trivial map onto the base mesh, and iteratively refined the map back to the original
surfaces.

Base mesh constructions (consistent segmentations) could consume a large
amount of human labor. To improve this, a direction of recent research is the auto-
matic generation of surface maps. This automation becomes very challenging when
surfaces are with complicated topology, where far less work has been explored. Fur-
thermore, when given surfaces with different topologies are present, it is even more
difficult. Manual base mesh design [18] requires large effort and strong expertise
from the user. This motivates us to seek an automatic method for consistent shape
segmentation for surfaces with complicated topology.

2.5 Globally Smooth Mapping for General Surfaces

The common drawbacks of the above piecewise surface matching using afore-
mentioned techniques are that constructing the patch layout oftentimes involves a
number of fragile heuristic algorithms. Furthermore, the mappings are generally
only C0 continuous across the patch boundaries. In applications such as building
domains for splines, a global continuity is critical. The work of [71] addresses the
continuity problem by taking into account linear transition functions across patch
boundaries. The manifold concept in mapping is introduced in [36], which pri-
marily focuses on topology instead of geometry, thus it is difficult for designing
optimization algorithms.

2.6 Volumetric Mapping

Similar to the harmonicity extensively studied in the literature of surface map-
ping, harmonicity in the volumetric sense is also addressed from the point of view
of minimizing Dirichlet Energy. Therefore, people try to compute a function in R

3

with the vanishing Laplacian, representing the smoothness of the mapping func-
tion. Due to its computational complexity, much fewer work has been conducted
in the graphics and modeling fields. Gu et al. [42] studied the formula of har-
monic energy defined on tetrahedral mesh and computed the discrete volumetric
harmonic maps by a variational procedure. Ju et al. [61] generalized the mean value
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coordinates [28] from surfaces to volumes and built a smooth volumetric interpo-
lation. More recently, Joshi et al. [59] presented harmonic coordinates for volu-
metric interpolation and deformation purposes, their method guaranteed to provide
non-negative weights and therefore in concave regions, and led to a more pleasing
interpolation result, compared to [61]. However, the technique introduced in [59]
lacked the closed form expression for a given interior point, which increases the
computational burden and reduces numerical accuracy. A latest work from Martin
et. al. [83] presented a volumetric parameterization method for genus-zero tetrahe-
dral mesh and generated trivariate B-spline based on it.

2.7 Boundary Method and Method of Fundamental
Solution

The partial differential equations we try to solve are nonlinear and therefore
can only be solved numerically. The numerical methods for solving PDEs can
be classified into domain discretization methods and boundary discretization
methods(also called boundary element methods). The most popular domain dis-
cretization methods include the Finite Difference Method(FDM) and the Finite El-
ement Method(FEM). These methods reduce the continuous space and infinite de-
grees of freedoms to a finite set by discretizing the interior domain as well as the
boundaries, which thus leads to large computation complexity. In the Boundary
Element Method(BEM), only the boundary of the domain needs to be discretized
and thus leads to a reduction of the problem dimension by one, saving substantial
computational time and storage. BEM is of less general applicability than the do-
main discretization methods. But for some problems that it can be applied to, it has
been proved to be more effective.

BEM have two different formulated ways. One is the direct formulation, in-
cluding many existing work, where the functions appearing in the integral equations
are the actual physical variables of the problem. The other approach is the indirect
formulation, the solution is approximated by a function that satisfies the governing
equation but has unknown source densities. The Method of Fundamental Solution
(MFS) falls into this category.
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MFS was first proposed by Kupradze and Aleksidze [75], and employed by
Mathon and Johnston [84] for solving Dirichlet problems. Later it has been widely
used in the mathematical physics and mechanical engineering fields. It was first
used in potential problems, including Mathon and Johnston’s work in the 2D
case [84], and easily extended to 3D problems, e.g. [58] solved the computation
of dipole fields. The MFS with fixed singularities has been also applied to several
problems in elastostatics [97] and acoustics [74]. MFS methods were also devel-
oped for biharmonic problems [63]. There are more general operators that MFS
can be applied to, as long as the fundamental solution of the differential equation
governing the problem in question is available.

The harmonic volumetric mapping can be computed with the method of fun-
damental solution (MFS). Notable work among boundary methods for solving el-
liptic partial differential equations (PDEs) includes the classical boundary integral
equation and boundary element method (BIE/BEM), which has been widely used
in many engineering applications [5], and was introduced into computer graphics
for the simulation of deformable objects in [56]. One of the major advantages of
the BIE/BEM over the traditional finite element method (FEM) and finite differ-
ence method (FDM) is that only boundary discretization is usually required rather
than the entire domain discretization needed for solving the PDEs numerically. The
boundary method already reduces the original volume problem into the boundary
surface scale, yet its algorithm efficiency might be able to further improved us-
ing the Fast Multipole Expansion techniques [13]. A comprehensive review of the
MFS and kernel functions for solving many elliptic PDE problems was documented
in [26]. Compared with the BIE/BEM approach, the MFS uses only the fundamen-
tal solution in the construction of the solution of a problem, without using any in-
tegrals over boundary elements. Furthermore, the MFS is a true meshless method,
since only boundary nodes are necessary for all the computation.

“Meshless” has the advantage of simplicity since neither domain nor mesh
connectivity is required for storage and computation; so it becomes very attractive
in scientific computing and modeling especially in fracture simulation when the
underlying topology is frequently updated. Several meshless methods have been
reported in the literature, for example, the smooth particle hydrodynamics (SPH)
method [87], the element-free Galerkin (EFG) method [8], etc. Meshless method
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was introduced into the physically-based graphical modeling by Desbrun and Cani
in [19]. Later they applied Smoothed Particle Hydrodynamics (SPH) to simulate
highly deformable bodies [20]. Müller et al. [90] presented a method for modeling
and animating elastic, plastic, and melting volumetric objects based on the Moving
Least Squares (MLS) approximation of the displacement field. Most recently, they
presented a geometrically motivated approach in [89] for simulating deformable
point-based objects. Pauly et al. [94] simulated volumetric meshless fracture with
a highly dynamic surface and volume sampling method that affords complex frac-
ture patterns of interacting and branching cracks. Guo et al. [47] applied meshless
method to physically-based thin-shell simulation based on point-based global con-
formal parameterization of the surfaces.

2.8 Applications of Shape Matching

Shape mapping can be directly applied as a registration tool for shape matching
and comparison. Unlike other comparison techniques (please see [55, 80, 118] for
thorough surveys), for example, descriptors based on histogram ( [3, 64–66, 92,
93]), descriptors based on spatial decomposition ( [67, 68, 91, 103, 125, 126]), and
descriptors based on spatial graphs or skeletons ( [52, 115]),the comparison based
on pointwise registration [131] provides us not just a distance value but also the
intuitive error distribution for afterward effective analysis.

Surface mapping and surface parameterization are also widely used in many
applications of graphics, modeling and vision fields, including texture map-
ping [34, 48, 98], shape classification [45], medical data matching [40, 41], surface
and volumetric remeshing [23, 83], digital data reconstruction [2] and compres-
sion [37, 54], spline construction [38, 39, 127, 128] and so on.



Chapter 3

Curves-on-Surfaces Classification
and Surface Matching

Surface segmentation can be studied through the curves that partition the given
surface. In this chapter, we introduce a conformal invariant function to describe and
analyze simple closed curves on surfaces. Such a function, also called the curve
signature, provides a classification for all simple closed curves on surfaces, and can
be utilized for segmentation matching and segmentation transfer.

3.1 Introduction

Our surface matching computation framework starts from an easier perspective
(1D) by considering all the closed curves on a surface. Since surface segmentation
plays an important role in piecewise surface mapping computation, and under any
segmentation, boundaries of sub-regions are simple closed curves.

We define the set of all closed curves on surface M as curve space and denote
it as Ω(M). The curve space on surfaces contains the relevant geometric informa-
tion of the surface and is easy to process. This philosophy of analyzing shapes via
their associated curve space has a technically sound foundation in algebraic topol-
ogy, infinite dimensional Morse theory and Teichmüller space theory in complex
geometry. Milnor [86] pointed out that Ω(M) is an infinite dimensional manifold,
the length of curves on a surface is a Morse function, and its critical points are

21
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geodesics. Morse theory is used to analyze the topology of Ω(M), which deter-
mines the topology of M. From the point of view of differential geometry, we know
that the local surface shape is completely determined by all the curves defined in
its neighborhood. Motivated by the above technical advances, our research in this
chapter naturally follows the same methodology, and is specifically based on Te-
ichmüller space theory.

M1

Ω(M2)

M2

Ω(M1)

Di f f (S2)Di f f (S1)

Ψ2Ψ1

φ̄

φ∗

φ
Ψ+

Ψ−

Γ+

Γ

Γ−

Ψ

∆− ∆+

∂∆+∂∆−

(a)Methodology Diagram (b)Closed, genus zero surface

∆+

∂∆−

∂2∆+

∂1∆+

Γ

Γ−

Γ+

Ψ

Ψ+

∆−
Ψ−

id = identity map

Ψ−

−∂Γ−

−∂∆−

id ∂Γ+

∂∆+

Ψ
Ψ+

(c)Open, genus zero surface (d)Curve signature

Figure 2: Theory foundation of curve signatures

Consider two surfaces M1 and M2 (Fig 2(a)), φ : M1→M2 is a diffeomorphism
between them, any curve (By curve, we mean closed curve in the remainder of this
chapter.) Γ1 ∈ Ω(M1) will be mapped to a curve in Ω(M2) under this mapping:
Γ2 = φ◦Γ1. Therefore, φ induces a one-to-one mapping φ∗ from Ω(M1) to Ω(M2)

by φ∗ : Ω(M1)→Ω(M2). The intrinsic relations between surfaces can be analyzed
by studying φ∗ instead of φ.

Furthermore, we map the curve space Ω(M) to a canonical Lie group
Di f f (S1), where Di f f (S1) denotes the group of all diffeomorphisms from the
unit circle S1 to itself. We denote this map as gi : Ω(Mi) → Di f f (S1). Con-
sequently, φ∗ : Ω(M1) → Ω(M2) induces a mapping from Di f f (S1) to itself by
φ̄ := g2 ◦φ∗ ◦g−1

1 .

The diagram in Fig 2(a) conveys our methodology in a graphical means: three
mappings φ,φ∗, φ̄ are closely related; any one of them determines the remaining
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two. In another word, for the purpose of studying surfaces M1,M2 and the maps
φ between them, we can study their curve space Ω(M1),Ω(M2), signatures of the
curves Di f f (S1), and the mappings φ∗, φ̄. We propose the following theoretic re-
sults to further re-enforce the above geometric intuition.

Theorem 1 If M is a metric oriented genus zero surface, then the curve space
Ω(M) and Di f f (S1) are equipped with L2 metric, the map Ψ from its curve space
Ω(M) to Di f f (S1) is a homeomorphism.

Therefore, in order to measure the distance between two curves on a surface, it is
sufficient to measure the distance between two signatures defined in Di f f (S1).

Theorem 2 M1 and M2 are two oriented metric surfaces, φ is a conformal map if
and only if φ̄ is the identity map of Di f f (S1).

We also believe that, the mapping from φ to φ̄, F : φ → φ̄ reveals a lot of
geometric information about M1 and M2. By choosing appropriate metrics, F is
continuous. The kernel of F is all the conformal mappings between M1 and M2.

3.2 Signatures in Curve Space

This section outlines our theoretical results on how to compute curve signa-
tures for curves defined on a surface.

3.2.1 Theory and Algorithm Overview

Given a simple closed curve Γ on genus zero surface M, the central idea to
compute its signature is illustrated in Fig 2(b), (c), (d).

Case 1: If M is closed, as shown in Fig 2(b), then Γ partitions M into two compo-
nents Γ+,Γ−, both are topological disks and can be conformally mapped onto
planar unit disks ∆+,∆− by Ψ+, Ψ−. Γ is the boundary of Γ+ and Γ−, de-
noted by ∂Γ+ = Γ and ∂Γ− =−Γ, and is mapped to the disk boundary, which
are unit circles ∆ = ∂∆+ = −∂∆−. The mapping induced by Ψ+ and Ψ− on
the boundaries ∂∆+ and ∂∆− is a diffeomorphism (differentiable and has a



CHAPTER 3. Curves-on-Surfaces Classification and Surface Matching 24

differentiable inverse). This diffeomorphism Ψ : ∂∆+→ ∂∆− is the signature
of Γ.

Case 2: If M is open, as shown in Fig 2(c), then Γ partitions M into a topological
disk Γ− and a topological annulus Γ+. Γ− can be conformally mapped onto
a unit disk ∆−, while Γ+ can be conformally mapped onto an annulus ∆+

with unit inner radius. We denote such an annulus with unit inner radius
as the canonical annulus, the inner boundary of ∆+ as ∂1∆+, and use the
diffeomorphism Ψ : ∂∆−→ ∂1∆+ as the signature of Γ.

In [108], Sharon and Mumford used Teichmüller theory to prove that any sim-
ple closed planar curve can be represented with such a diffeomorphism from a unit
circle to itself uniquely up to scaling and translation. In this work, we generalize
this idea to arbitrary genus zero surfaces using Riemann surface theory.

In technical essence, we compute the conformal mapping for each component
segmented by the curve, and take the boundary mappings Ψ as shown in Fig 2(d) as
the signature. Some landmarks and constraints are used to eliminate the so-called
Möbius ambiguity.

3.2.2 Conformal Map from an Open Genus-zero Surface to a
Disk

We seek a conformal map Φ from a disk-like surface M to a unit disk. The map
does exist according to Riemann mapping theory. Extensive relevant work has been
done on finding a good parameterization for disk-like surfaces. However, complete
conformality is usually not guaranteed. Based on the fact that the harmonic map
from a closed genus zero surface to a sphere is also conformal, we use the double
covering technique [45] to convert an open surface to a closed one, and reduce
computing Φ to computing a harmonic map from a double covering of M onto a
sphere.

For an open surface M, we compute the double covering of M and then com-
pute its harmonic mapping onto a sphere. Due to the exact symmetric property of
double covering, the boundary ∂M is harmonically mapped onto the equator of the
sphere and M is conformally mapped onto a hemisphere. Then we compose a stereo
graphic projection to get a conformal map from M to the unit disk.



CHAPTER 3. Curves-on-Surfaces Classification and Surface Matching 25

3.2.3 Conformal Map from a Closed Genus-zero Surface to a
Sphere

To compute a conformal map Φ from a closed genus-zero surface M to a
sphere, we initiate a map between them and minimize the harmonic energy by dif-
fusing the heat-flow on the sphere surface. This process is introduced and proved
to converge to a harmonic/conformal map [41].

The process is given in the following algorithm of spherical harmonic map-
ping:

3.2.4 Conformal Map from a Topological Annulus to a Canoni-
cal Annulus

For curves on an open genus-zero surface, we need to compute a conformal
map Φ from a topological annulus M (with ∂M = Γ1−Γ2, where Γ1 and Γ2 are two
boundaries) to a canonical planar annulus. First, we double-cover the surface to get
a closed genus-one surface; next we compute a conformal map from a closed genus-
one surface onto a rectangle planar domain by integrating a holomorphic 1-form
[45] which describes two vector fields perpendicular to each other everywhere on
surface; finally, we compose the conformal map from the rectangle to the canonical
annulus using e

2π
b z to get the Φ.

The algorithmic flow to map a topological annulus to a canonical planar annu-
lus is detailed as follows:

3.2.5 Eliminating the Möbius Ambiguity

Conformal mappings between surfaces are not unique; e.g., all conformal map-
pings from a unit disk D2 to itself form a Möbius group, with the form:

τ : z→ w,w = eiθ z− z0

1− z̄0z
,z,z0 ∈ C,θ ∈ [0,2π),

where z0 is a constant point, θ is a constant angle. All such τ form a 3 real di-
mensional group. Two mappings from a topological disk to a unit disk differ by a
Möbius transformation, this ambiguity affects the signature and has to be eliminated
via certain extra constraints.
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Spherical Harmonic Mapping
In: Closed genus-0 surface M.

Out: Harmonic mapping Φ from M to unit sphere s2.
1. Compute the normal vector for each triangle face. For each vertex, compute

its normal~n(v) as the weighed sum of normals on the adjacent faces weighed
by their areas. Then set the initial map as the Gauss map: Φ(v) =~n(v).

2. Compute the Laplace-Beltrami operator at each vertex:

∆(v) =
∑

[u,v]∈M

wu,v(Φ(v)−Φ(u)),

the weight wu,v associated with edge [u,v] is the well known harmonic weight,
calculated as

wu,v =
1
2
(cot(αu,v)+ cot(βu,v)),

where αu,v and βu,v are two angles opposite to the edge [u,v] in the two trian-
gles sharing the edge.

3. Project Laplacian ∆(v) onto the tangent space of Φ(v),

∆s2(v) = ∆(v)− (∆(v) ·Φ(v))Φ(v).

4. Update the map Φ, Φ(v) = Φ(v)− ε∆S2(v) where ε is a small constant to
assure the numerical stability. In our experiment we set ε = 0.1.

5. Normalize the map Φ by

Φ(v) =
Φ(v)− c
|Φ(v)− c|

,

where c is the weighted mass center:

c =

∑
v kvΦ(v)∑

v kv
,

where kv is the summation of the areas of all faces adjacent to vertex v.
6. Repeat step 2 through 5 until it converges.
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Mapping a Topological Annulus to a Canonical Planar Annulus.
In: Topological annulus M

Out: Conformal map Φ from M to canonical planar annulus.
1. Double-cover M to a closed genus one surface M̄.
2. Compute a holomorphic 1-form basis of M̄ by using the method introduced

in [44]. Denote the basis as ω̄.
3. For an arbitrary path τ connecting Γ0 and Γ1, compute a holomorphic 1-form

ω such that
∫

Γ0
ω = 1,ω = 1∫

Γ0
ω̄ω̄.

4. Trace a vertical trajectory r of ω, such that r is an integration curve of ω along
imaginary direction. Namely, r is iso-u in the (u,v) domain.

5. Slice M along r to get a fundamental domain M̃, by integrating ω, where M̃
is conformally mapped to a rectangle on the plane.

6. Conformally map the rectangle to an annulus with unit inner radius by e
2π
b z.

For closed genus-zero surfaces, we first fix a marker point p on the surface and
define a tangent direction~tp going out from p. A closed curve Γ separates M into
two disk-topology patches, the patch containing p is denoted as Γ+. We require
that Ψ+ maps p onto the origin, and~tp onto the positive x-axis direction. These
constraints uniquely determine Ψ+.

For open genus-zero surfaces, we fix the marker p on the boundary. Ψ+ maps
Γ+ to ∆+, where ∆+ is a canonical annulus with unit inner radius. The outer radius
of ∆+ is denoted as R, which is uniquely determined by the surface Γ+. Further-
more, we require that Ψ+(p) = R. Such Ψ+ uniquely exists.

Through the above construction pipeline, every closed curve Γ ∈Ω(M) corre-
sponds to a diffeomorphism Ψ∈Di f f (S1). Γ corresponds to two signatures Ψ1,Ψ2

if and only if there exists a Möbius transformation τ : D2 → D2, such that

Ψ2 ◦Ψ−1
1 = τ|∂D2 . (3)

The above equation defines an equivalence relation ∼ in Di f f (S1). We claim
that the mapping

Ψ : Ω(M)→ Di f f (S1)/∼

is a one-to-one map. With appropriate metrics on Ω(M) and Di f f (S1), it is
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a homeomorphism. In another word, each closed curve on M corresponds to an
equivalence class of diffeomorphisms from the unit circle to itself.

In some scenarios, we might want to completely eliminate the ambiguity of
signatures. For this purpose, we can further eliminate the Möbius ambiguity using
more markers. To uniquely reconstruct a curve, Ψ and three markers are sufficient
for the closed genus-zero surfaces while for the open genus-zero surfaces, Ψ and
two markers are sufficient.

3.2.6 Distances between Curves

(1) (2)

(3)

Figure 3: The stability of curve signatures under isometry, perturbation and bending of
embedded surfaces.
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For a genus-zero surface M, we create signatures for curves defined on M.
The deviation between two curves can be measured by the distance between their
signatures using Weil-Peterson metric on Di f f (S1) as introduced in [108].

If surfaces M1 and M2 are with similar Riemannian geometries in R
3, then

there exists a diffeomorphism φ : M1 →M2 close to an isometry, the induced map
φ̄ between the signatures is close to the identity map from Di f f (S1) to itself. In
another word, if the curve Γ1 ⊂M1 corresponds to Γ2 ⊂M2 with Γ2 = φ(Γ1), then
Γ1 and Γ2 have similar signatures. Hence, the signatures of curves have a prop-
erty of strong stability under the Riemannian metric perturbation of their embedded
surfaces and can be used to analyze curves on different surfaces as a robust tool.

Fig 3 demonstrates the stability of the signatures. All the curves and their
corresponding signatures are drawn in the same color. Note that the signature is a
diffeomorphism from a circle to itself, thus it can be considered as a periodic real
function from [0,2π) to [0,2π), and only one period is shown in our figures. In (1),
a planar rectangle is isometrically deformed to a cylinder, our computation shows
that the corresponding curves have exactly the same signatures. In (2), the planar
rectangle is perturbed about 6% in z direction, and about 1% in x,y directions,
signatures of the corresponding curves are very close to each other. In (3), the
planar surface in (a) is simulated as cloth and deforms as shown in (b), namely, it
allows large bending but little stretching, the signatures of the corresponding curves
are also almost identical(i.e., undistinguishable); also, the curve on surface in (a) is
perturbed a little and shown in red curve in (c), the signature perturbs little.

Therefore, curves on different surfaces, which are close to each other in terms
of geometry or differ by a near-isometric mapping, can be robustly and accurately
compared and analyzed using their signatures.

3.3 Surface Matching

Based on analysis of curve space, we design our surface matching framework
for curve alignment, surface registration, and shape comparison.
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3.3.1 Feature Alignment for Surface Segmentation and Match-
ing

We decompose the entire surface matching problem into two steps:

1. segmenting a surface via a set of feature curves and their alignments;

2. matching boundary curves and surface patch interiors.

The general framework is as follows.
Assume M1 and M2 are the two surfaces to be matched, if they share similar

Riemannian geometries, meaning there exists a mapping φ : M1 →M2 close to an
isometry, then the following algorithm can be used for matching.

Surface Matching Pipeline.
1. Extract the feature curves set {Γ1

1,Γ
1
2, · · · ,Γ

1
n} on M1, which can be either

marked by users as certain meaningful features, or automatically computed
based on geometric information of M1 such as the extremals of the principal
curvatures along the corresponding principal directions.

2. Compute the curve signature of each Γ1
i on M1 and get the signature set

{Ψ1,Ψ2, · · · ,Ψn}.
3. Compute the curve set {Γ2

1,Γ
2
2, · · · ,Γ

2
n} on M2, such that the curve signature

of Γ2
i equals to Ψi.

4. The curve set {Γk
i } segments Mk to several connected components

{ck
1,c

k
2 · · · ,c

k
m}, k = 1,2, such that the boundaries of c1

i correspond to the
boundaries of c2

i . Match c1
i with c2

i pairwise on the planar domain.

If in the step 3 above, users may prefer to label the meaningful feature curve
set on M2, we can change this step accordingly so that we compute, compare their
signatures, and find the nearest one-to-one matching between these two sets of fea-
ture curves.

3.3.2 Surface Comparison in 2D Planar Canonical Domains

When all feature curves are matched, we segment the surfaces into several
patches, each of which can be matched on the planar domain with many existing
surface parameterization techniques [29].
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A possible technique is to use the conformal representation [40], which con-
sists of two functions λ(u,v),H(u,v) defined on canonical domains. λ is called
conformal factor, representing the area stretching of the mapping from the original
surface to the planar domain and H is the mean curvature implying the bending in-
formation of the surface. In our experiments, we normalize the original surface and
then compute its conformal factor at each vertex by dividing its one-ring-neighbor
area on the surface by its counterpart on the planar domain. The conformal rep-
resentation is complete, stable, and also convenient to compute in our framework.
The matching energy E between two corresponding surface patches M0 and M1 is
defined on their common canonical planar domains D by

E =

∫

(u,v)∈D
||λ0(u,v)−λ1(u,v)||2dudv+

∫

(u,v)∈D
||H0(u,v)−H1(u,v)||2dudv.

We can visualize the matching result by color-coding the difference distribu-
tion measured with this term. These three reasons that we use conformal represen-
tation are specialized as follows.

First, the conformal representation is complete in the sense that it allows us to
fully reconstruct the original surface from the representation according to [40].

Theorem 3 (Conformal Representation) If a surface S(u,v) is parameterized by
some conformal parameter (u,v) on a domain D, then the conformal factor function
λ(u,v) and mean curvature function H(u,v) defined on D satisfy the Gauss and Co-
dazzi equation. If λ(u,v) and H(u,v) are given, along with the boundary condition
S(u,v)|∂D, then S(u,v) can be uniquely reconstructed.

Second, according to [40], conformal representation stably represents the ge-
ometry distance between surfaces in R

3; the perturbation in geometry leads to stable
and continuous perturbation in their conformal representations.

Third, as a by-product, the computation process of curve signatures has already
computed conformal maps from most 3D patches to the planar domains, so the
surface matching based on these mappings can be done without further computation
cost.

Figure 4 shows an example on how to make use of conformal representation
for surface comparison. A unit disk planar surface M0 as shown in (a) is com-
pared with a center-bulb surface M1 shown in (b). The conformal factor and mean
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(a) (b) (c)

(d) (e) (f)

Figure 4: Conformal representation. (a) and (b) are surfaces to be compared, (c) is the
color scheme we use in this work, (d) and (e) are conformal factor and mean curvature of (b)
drawn in 2D planar domain, and (f) is the conformal representation difference distribution
between (a) and (b).

curvature of planar surface is constant everywhere; the conformal factor and mean
curvature of surface (b) in 2D planar domain are color coded and shown in (d) and
(e); the deviation d(u,v) = (λ0(u,v)−λ1(u,v))2 +(H0(u,v)−H1(u,v))2 between
the matched surfaces are color-coded in surface M0 and shown in (f).

3.4 Experimental Results

3.4.1 Human Faces

To illustrate our framework, we firstly use a human face matching example.
Two human faces( f0(female) and f1(male) as shown in Fig 5 (a) and (b)) are com-
pared by aligning feature curves enclosing eyes, noses and mouths. Assuming that
the geometries of human faces are similar, namely, there exist mappings Φ : f0→ f1

that are close to isometry, we manually label on each face four feature curves and
compute their signatures. The curves and their signatures are highlighted with the
same color. For example, curves enclosing the right eyes and their signatures are
colored in red. As shown in Fig 5 (c), signatures with the same color are quite
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(a) f0 (b) f1 (c)

(d) (e)

Figure 5: Curves on faces((a),(b)), their signatures(c), and the segmentations for the match-
ing purpose((d),(e)).

similar to each other.
The experiment shows that similar feature curves on two faces have similar

signatures, while different feature curves on the faces have dramatic different sig-
natures. Therefore, the curve signature is a reliable tool to align the same features
across different faces. The faces can then be segmented and mapped onto common
canonical planar domains for subsequent registration and comparison, as shown in
Fig 5 (d) and (e).

3.4.2 Brain Cortex Analysis

Another example is brain cortex comparison, we locate feature curves seg-
menting the whole surface into disks and annuli. These features are functional
“landmarks” given by users. Our practical example is for medical imaging: The two
cortex surface data are reconstructed using MRI images of one paralytic acquired
at different times. The feature curves are manually labeled by the clinical doctor
who is monitoring the recovery of this patient’s brain. It is desirable to compare
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(e) Three curves on (f) Signatures of (g) Three curves on (h) Signatures of
first brain curves on 1st brain second brain curves on 2nd brain

Figure 6: Surface match on brains using curve features similarity comparison. The first
two rows show the first and second brain from four different view directions. The third
row show the mapping results from four different subregions of the first brain to canonical
domains. The last row shows the curves on two brains and their signatures.

the cortex surfaces such that the corresponding curves and regions are matched.
Noted here although these two brains are similar in terms of Riemannian metric,
they cannot be matched simply via a rigid transformation. 1

We apply our matching procedure as explained above. The feature curves for
the first and the second brain are shown separately by the first row and the second
row in figure 6 from different view directions. Feature curves and their correspond-
ing signatures are shown in (e),(f) and (g),(h). By comparing their signatures, each
curve on the first brain is mapped to the curve on the second brain with the same
color. The curves segment the cortex surfaces to four components, each of which is

1Because the cortex surfaces are highly convoluted, two points on the surface with small Eu-
clidean distance in R

3 may have huge geodesic distance on the surface.
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either a topological disk or an annulus; the segmentation is color encoded as shown
in the first two rows in Figure 6.

Each component on the cortex surface is conformally mapped to either the unit
disk or the canonical planar annulus. Figure 6 (a)-(d) show the conformal mappings
for the 4 components of the first cortex surface. Similarly, the components on the
second cortex surface are conformally mapped to the unit disks or canonical annuli.
By matching these canonical planar domains, the map between two cortex surfaces
can be easily induced using the existing method such as [40].

3.4.3 Elephant Gallop
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Figure 7: Feature curves and their signatures on two elephant models with different pos-
tures. The first row shows one geometric configuration of the elephant from different view
directions; the second row shows another model from different view directions; the third
row shows the signatures. Note that, each column shows a special curve on two models
and their signatures, and the curve is depicted with the same color as its signature. In each
column, the red and blue signatures are almost identical so that they overlap and are not
distinguishable.

We use an elephant gallop example to further evaluate our curve signatures
and our surface comparison framework. As shown in Figure 7, there are two mod-
els of one elephant in different postures. Suppose we want to compare these two
models, we first label feature curves which segment the elephants into several parts.
We compute signatures for all curves on both surfaces, as shown in the third row.
Every signature of curve on one surface is matched to the most similar signature
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Figure 8: Segmented parts from the elephant model and their color-coded function distri-
butions, highlighting their intrinsic differences. The first row shows the conformal factor
function distributions mapped on the original surface of the first model; the second row
shows the conformal factor distributions of the second model; the third row shows the
mean curvature distributions of the first model; the fourth row shows the mean curvature
distributions of the second model; the last row color-codes the difference of conformal rep-
resentation between two models.

of curve on another surface. The matched pairs are all placed in the same column,
and each feature curve and its corresponding signature are drawn in the same color.
The experiment results demonstrate that the correct matching can be induced auto-
matically without human intervention. This attractive property on curve signatures
results from the fact that the signatures for corresponding curves are very similar,
and underlying reason of this fact is that the skin deformation is very close to isom-
etry because the stretch of skin under these kinds of deformation is relatively small.

Once the corresponding feature curves are matched, the surfaces are seg-
mented into several parts with explicit correspondence established by the segment-
ing curves. These parts are then considered separately on their own canonical planar
domains, as shown in Figure 8. On each domain, we use the stretching and bending
functions to compare their differences. The conformal factor and mean curvature
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are computed and colorized in the original surface to show the function value distri-
butions. We color-code the conformal factor of the first model in the first row, and
color-code this model’s mean curvature in the second row; similarly we color-code
the conformal factor and the mean curvature of the second pose in the third and
fourth row. The matching difference between two surfaces based on the functions
on 2D domains are color-coded on the first pose and shown in the last row. The
color-code scheme is the same as in the previous example (Figure 4 (c)), where red
represents the max value while blue is for the min value. Note that, the last column
is color coded in one uniform scheme. And the results shows that largest stretching
and bending differences locate on leg joints and ankles.

3.4.4 The Collapsing Horse
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Figure 9: The first row views feature curves on the standing-horse model; the second row
shows their corresponding signatures; the third row displays the accordingly reconstructed
curves on the collapsed-horse model.

The next experiment is to compare a horse and its collapsed pose. Users first
mark feature curves on one pose. With the signatures we could reconstruct the
curves on the second surface. Techniques introduced in [108] can be used to recon-
struct the curve on the complex domain, which corresponds to a unique curve on
the spherical domain. Combined with three predefined markers introduced in sec-
tion 3.2.5 and the mapping from the original surface to the sphere, the unique curve
on the original surface can be reconstructed. With this process, feature curves can
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(a) (b) (c) (d) (e)

Figure 10: The first and the second row color-code conformal factor λ and mean curvature
H of the standing horse model; the third and fourth rows are of the collapsed horse model;
the last row shows the final matching results between the standing model (a) and the col-
lapsed model (b), with (c)-(e) color-coding differences on conformal representation, λ, and
H respectively. (Mesh size: 17k Triangles)

be transferred onto the second object as shown in Fig 9. The original feature curves
on rest pose, their signatures, and the transferred curves are shown in the three rows
in Fig 9 respectively.

The conformal factor and the mean curvature distributions of all parts are com-
puted and color-coded in the first four rows of Fig 10 (the first two rows are for the
standing pose, while the third and fourth rows are for the collapsed pose).

The surface comparison framework can be interactively controlled by chang-
ing weights of the two terms in our matching energy. For example, if isometry-
invariant comparison is preferred, only stretching factor needs to be considered. So
by ignoring the mean curvature, a metric invariant under bending is designed, which
naturally leads to a bend-invariant or pose-invariant result. The conformal represen-
tation difference between the two horse models (a) and (b) is color-coded on the
first model as shown in Fig 10 (c) and the difference ignoring the bending term is
shown in Fig 10 (d); also, the difference with only the bending term is color-coded
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in (e). As shown in the above examples, our matching algorithm finds between
two complicated objects a difference distribution which can be flexibly adjusted for
different goals such as the bending-invariant purpose. Since it can determine the
difference on the metric ignoring the embedding of the surface in R

3, it becomes
a useful tool for non-rigid matching applications. One example is colon match-
ing and analysis in medical imaging. People with different poses under CT scans
might have large bending differences on their colons with little changes in metric,
in which case such a bending-invariant matching is ideal for the analysis purpose.

3.5 Chapter Summary

We have designed a metric space for simple closed curves on genus-zero sur-
faces via conformal mappings. Curves on surfaces are represented by equivalence
classes of diffeomorphisms of the unit circle to itself. The proposed curve signature
corresponds uniquely to the curve defined on a surface. It also includes informa-
tion of both the curve’s shape and its embedding on the surface, which are invariant
under isometry and stable under near-isometric transformation of surfaces, thus
enables a powerful practical tool for the effective analysis of curves and surfaces
among geometrically similar objects.

Besides the above theoretical results, we develop a framework for shape regis-
tration and comparison guided by feature curves alignments. After curves with the
most similar signatures are correctly identified and aligned, genus-zero surfaces are
then segmented into several parts and registered separately. This automatic process
accurately forces the alignment of feature curves and alleviates the difficulties of 3D
surface matching by reducing it to the simple comparison of functions defined on
canonical planar domains. Also, the algorithm can be flexibly adjusted to provide a
pose-invariant shape descriptor.

Constructing shape space of curves on surfaces with arbitrary topology is
promising and challenging. We plan to explore further along these directions.

The shape mapping framework based on our curve signatures is semi-
automatic and far from perfect. Even segmentation can be consistently transferred
from one surface to another, we will need segmentation to be provided on one sur-
face at least. We will discuss this in the next chapter, where we present a more
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automatic and flexible framework that generates consistent segmentation on differ-
ent surfaces canonically.



Chapter 4

Canonical Pants Decomposition for
Piecewise Surface Mapping

In Chapter 3, we studied curves on surfaces so that segmentation among dif-
ferent surfaces can be consistently matched or transferred. In this chapter, we
present an automatic decomposition scheme so that segmentation on different sur-
faces with complicated topology can be consistently generated.

4.1 Introduction

As we discussed in Chapter 2 and Chapter 3, current state-of-the-art surface
mapping techniques (including the method we presented in Chapter 3) are far from
adequate and perfect. A more desirable and powerful surface mapping method is
needed and should have the following properties.

The first one is generality. The mapping methodology should be general,
i.e., it should be able to handle surfaces with arbitrary topology, with or without
boundaries. The generality also includes another important issue – being capa-
ble of accommodating topology changes. We can see the importance of topology
change in surface mapping from its applications. When we use surface mapping
for shape comparison and difference analysis, the data to be registered could eas-
ily have different topologies due to shape variations and accompanying noise (e.g.,
small boundaries and tiny handles). Moreover, when we use surface mapping to

41
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drive the animation of a morphing sequence, we usually transform one object to an-
other based on their intrinsic semantics, regardless of whether they have the same
topology or not (see Fig. 20(a)).

Many existing surface mapping techniques primarily focus on genus-zero sur-
faces, most recent works start to aim at general surfaces, and much fewer techniques
have been devised to flexibly work for arbitrary topological changes. In this work,
we aim at a general framework that can handle arbitrary mesh inputs.

The second property is automation. Most current surface mapping techniques
heavily rely upon a large amount of user intervention. Although in many applica-
tions, the requirements of object semantics forbid us from entirely ignoring user in-
tentions. The primary reason for the lack of fully automatic methods in this research
field still stems from technical difficulties. Real-world shapes could be complex in
both topology and geometry. To our best knowledge, if the given surfaces are topo-
logically non-trivial (neither sphere-like nor disk-like), even with the same topol-
ogy, no existing techniques are able to compute the mapping in a fully automatic
way. A key difficulty stems from that, although most current mapping methods
depend on a preprocessing stage of mesh segmentation, few surface segmentation
techniques have been devised for automatically providing consistent segmentation
on different surfaces.

When mapping is used in applications dealing with large amount of data, such
as analysis and comparison on shapes in database, user involvement on every regis-
tration trial could not be practical. Therefore, we definitely need a surface mapping
technique that works for general inputs, yet is as automatic as possible.

The third property is controllability. Although automation makes the map-
ping process much less labor-intensive, in real applications where the semantics
plays a critical role, such as morphing (requiring feature points matching), auto-
matic methods based on pure topology and geometry inevitably fail. We must have
a new mechanism that can provide an easy way to let the user manage the behav-
ior according to semantics-specific requirements. Indeed, current surface mapping
techniques oftentimes provide limited control to the user; but for surfaces with com-
plicated topology, they either require a large number of markers [73] or need user’s
great efforts to design the base mesh as a good starting point [18], [35]. In princi-
ple, a good mapping framework should provide an intuitive and easy-to-use human
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computer interaction.
Fourth, it is also important to emphasize rigorousness. The global continuity

is typically required for the underlying mapping. However, between given surfaces,
there may exist many continuous yet topologically different mappings, i.e., map-
pings could have different homotopy types (see Fig. 24). Two surface mappings
belong to the same homotopy type if and only if they can continuously deform to
each other without degeneracy. Among so many legitimate choices, there are no
viable ways to select the best ones from all candidates, since different homotopy
may represent different semantics. In such a case, being able to let user easily and
intuitively determine arbitrary topological type of a mapping not only demonstrates
the rigorousness of the mapping algorithm, but also has practical importance.

In this chapter, we present a piecewise surface mapping framework in order to
unify the above four properties. We conduct our experiments on several challenging
examples to demonstrate the power and potential of our method. Our contributions
are as follows.

1. Our framework efficiently handles surfaces with arbitrary topology, with or
without boundaries. It also handles surface mapping with topology changes.

2. Our framework has great automation. Our pants decomposition can automat-
ically compute consistent segmentation on a set of surfaces with same but
complicated topology. Besides the selection towards the semantics purposes
at the preprocessing stage, the afterward framework can proceed without any
user intervention, and therefore provides canonical decomposition for auto-
matic matching among a large number of acquired or synthetic datasets.

3. When user interaction is necessary for any semantics reasons, our framework
coherently aligns constraint points or curves to enforce constraints, and pro-
vides users a simple and intuitive mechanism to control the mapping behavior.

4. In practice, our framework generates and enumerates any different homotopy
types of mappings. It shows not only the flexibility but also the rigorousness
and completeness of our mapping framework from the mathematical point of
view.

5. Our algorithm is simple and efficient. As we will elaborate later, the tech-
nical core of the decomposition algorithm primarily relies on the Dijkstra
algorithm, and only the triangular metric of given surfaces is employed.
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The remainder of this chapter is organized as follows. In Section 4.2, we in-
troduce theoretic background as well as the terms and definitions necessary for this
work. The fundamental idea of our framework is illustrated in Section 4.3, which
is a two-step pipeline, as discussed in Section 4.4 and Section 4.5, respectively.
Finally, we demonstrate our experimental results in Section 4.6.

4.2 Theoretical Foundation

4.2.1 Definition of Pants Decomposition

We briefly introduce the related background in topology and geometry and
make necessary definitions in this section.

A surface M is a topological Hausdorff space in which each point has a neigh-
borhood homeomorphic to either the plane or the closed half-plane. Points with
closed half-plane neighborhood are defined as the boundary of M.

A path is a continuous map p : [0,1]→ M. A loop (cycle) is a closed path,
meaning that the endpoints p(0) and p(1) coincide. The concatenation of two paths
p and q, with p(1) = q(0) is the path p◦q defined by

(p◦q)(t) =

{
p(2t), t ≤ 1/2;

q(2t−1), t ≥ 1/2.

When we say two paths are homotopic, it means one path can continuously
evolve to the other one through a family of paths on the surface. Rigorously speak-
ing, a homotopy between paths p and q is a continuous map h : [0,1]× [0,1]→M
s.t. h(0, ·) = p, h(1, ·) = q, h(·,0) = a, h(·,1) = b, where a and b are two paths
joining p(0) with q(0) and p(1) with q(1), respectively. We denote the homotopy
equivalence class of path p as [p].

All homotopy classes under the product [p]◦ [q] = [p◦q] form a group called
the fundamental group, denoted as π1(M). Suppose f : M → M′ is a continuous
map, p is a loop on M, then f ◦ p is a loop on M′. f maps the homotopy class [p] to
the homotopy class [ f ◦ p], and f induces a homomorphism f∗ : π1(M)→ π1(M′).
Suppose f 1, f 2 : M →M′ are two continuous maps between M and M′, we say f1

and f2 are homotopic, if and only if they induce the same homomorphism between
the fundamental groups f 1

∗ = f 2
∗ .
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A pair of pants is a genus-0 surface with 3 boundaries. A pants decomposition
of M is an ordered set of simple, pairwise disjoint cycles that splits M into pairs
of pants. Every compact orientable surface, except the sphere, disk, cylinder, and
torus, admits pants decomposition. If M is of genus G and has B boundaries, a
pants decomposition is made of 3G + B− 3 cycles [50]. In this work, we present
an automatic decomposition algorithm to cut surface apart iteratively along certain
non-trivial loops. The 3G+B−3 cycles segment the given surface M apart to 2G−
2+B pairs of pants (M0, . . . ,M2G−2+B−1). Each pair of pants Mi (for simplicity, we
also call such a surface patch a pants patch in the remaining part of this document)
has three boundaries, which are denoted as the waist Γ0

i , and two legs Γ1
i ,Γ2

i . Two
pants Mi and M j are adjacent if they share boundaries.

4.2.2 Handle and Tunnel Loops

Suppose a closed embedded surface M ⊂

R
3 separates R

3 into a bounded space I and an
unbounded space O. Handle and tunnel loops
of M can be defined as follows (see also [22]).
A loop bi is a handle if it spans a disk in the
bounded space I; if one cuts M along bi and fills
the boundary with that disk, one eliminates a
handle. A loop ai is a tunnel if it spans a disk in
the unbounded space O; and its removal elim-
inates a tunnel. The handle and tunnel loops
characterize important topological information
of the surface, and we use them to determine the homotopy types of our mappings.
An intuitive illustration is shown in the above figure. Red curves represent the han-
dle loops while the green ones are tunnel loops. More details about handle and
tunnel loops as well as their automatic computation algorithm can be found in [22].
All handle loops form a basis of π1(I), and all tunnel loops form a basis of π1(O).
The union of their homology classes form a basis of π1(M). Tunnel loops and
handle loops can be effectively computed using techniques presented in [22]. Our
algorithm takes surfaces, their handle and tunnel loops as input.
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4.3 Overview of Key Ideas

The core of our mapping framework is consistent pants decomposition. Given
an arbitrary genus-G surface with B boundaries, pants decomposition provides a
canonical segmentation, partitioning this surface into 2G+B−2 pants patches (see
the followings for more detail). Given a set of arbitrary surfaces of the same topol-
ogy, our pants decomposition scheme can automatically segment all of them into
consistent sets of patches with “pants” topology.

Decomposing a Surface. The first step of our surface mapping is pants de-
composition. It segments the given surface into a set of pants. This decomposition
can process canonically in an automatic way, i.e., once the indexed handle and
tunnel loops (ai,bi,0 ≤ i < G) are provided in a preprocessing stage, then the de-
composition is unique and we will obtain an ordered set of pants.

(a) (b) (c)

Figure 11: Pants Decomposition Pipeline. (a) Find and remove “waists” of handles. (b)
and (c) Decompose the base patch and handle patches.

� � �� � �� � �� � � � � �� � �� � �
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(a) (b) (c) (d)

Figure 12: Pants Decomposition on Surfaces with Simple Topology. (a) A genus-2 surface
has 2 handle patches, no base patch. (b) A closed genus-1 surface (χ = 0) needs one punch.
(c) A topological disk (χ = 1) needs two punches. (d) A topological sphere (χ = 2) needs
three punches.
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To give an intuitive overview, we start from a closed genus-G (G≥ 2) surface
M. In Fig. 11, a genus-4 torus example is used to illustrate key steps of our pipeline.
First, we remove G handle patches from M (a), and get a set of genus-one surfaces
Mi,(0 ≤ i < G) with one boundary and (if G ≥ 3), a topological sphere M ′ with G
boundaries. We call M′ the base patch and these boundaries waists. Second, we
decompose the base patch M′ and all the handle patches Mi into pants patches ((b)
and (c)). For genus-2 surfaces, no base patch exists, 2 handle patches M0 and M1

compose the segmentation (Fig. 12(a)).
When surfaces have high genus (G≥ 2) with boundaries, we leave boundaries

on the base patch M′, treat them as usual “waists”, and apply base patch decompo-
sition similarly.

We can also decompose surface M with easier topology (G < 2) with some
extra “holes”. The basic idea is, the Euler number of a pair of pants is −1, so if
M’s Euler number χ = 2− 2G−B is negative (for example, G ≥ 2 will guarantee
χ < 0), M can be decomposed directly. Otherwise, we punch holes on M until M
gets a negative Euler number. One punch decreases the Euler number by 1, and
since the Euler number of a surface can not exceed +2, we at most need 3 punches.

More specifically, if M is genus-1 and has a boundary, χM =−1, it is directly
processed as a handle patch Mi. If the surface M is genus-1 and closed (Fig. 12(b)),
χM = 0, one marker is required from the user. We punch a hole on the marker, get
a boundary and make χM = −1 so that it can also be decomposed like Mi. If M is
a genus-0 mesh with a boundary (Fig. 12(c)), like a disk, then χM = 1. We already
have one “waist”, and need two more punches as “legs”. If the surface is a closed
genus-0 mesh (Fig. 12(a)), three markers are required to form a pair of pants.

When a genus-zero or genus-one surface has more than one boundary, simi-
larly we compute its Euler number and check whether extra punches are necessary.
As we will discuss in the later part of this chapter, these markers can be used as
feature points in the surface mapping because their exact correspondence is guar-
anteed.

Pants Mapping. When surfaces are decomposed into a set of sub-regions,
each with “pants” topology, the mapping computation becomes easier. To make
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P5

Q1 Q0

Q5

Q4
Q3
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Q1
Q0

Q5

Q4 Q3

Q2

Q1 Q0

Q5

Q4
Q3

Q2

P1

P3 P4

P5P2

P0

Figure 13: Mapping Two Pants Patches. Each pair of pants is decomposed into two topo-
logical hexagon patches. Harmonic maps from these patches to regular hexagons are used
to compose the pants mapping.
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sure the map has global continuity and bijectivity, boundary mappings on neighbor-
ing sub-regions have to be consistent. Many mapping techniques with fixed bound-
ary conditions, such as harmonic map [24], mean value coordinate map [28] and
so on can all be the choice for pants mapping. Free boundary mapping techniques
are not preferred for sub-regions mapping here because if we cannot control the
boundary mapping behavior, it will fail to satisfy continuity and bijectivity along
the sub-regions’ boundaries.

In this work, we use the harmonic map, because it is physically natural and
can be computed efficiently. Like other fixed boundary mapping techniques, the
shape of the target regions should be convex to guarantee the map’s existence and
validity. Such a direct convex domain for shapes with pants-topology does not exist;
therefore, we simply decompose the pants into two patches with disk-like topology
to make the mapping computation stable. As illustrated in Fig. 13, each pants patch
is decomposed into two topological hexagons, and each hexagon is harmonically
mapped to a regular hexagon. The pants mapping is then composed through these
hexagonal domains.

4.4 Consistent Pants Decomposition

This section introduces our algorithm and implementation of the consistent
pants decomposition on surfaces. The algorithm pipelines are introduced in Sec-
tion 4.4.1, Section 4.4.2, and Section 4.4.3, respectively. To allow topology changes
in mapping, surgery points are introduced in our decomposition framework (Sec-
tion 4.4.4). Users can control the mapping by setting feature points or curves, we
describe the related issues in Section 4.4.5 and Section 4.4.6. Our decomposition
process is very robust, as addressed in Section 4.4.8.

4.4.1 Removing Handles

The first step of the pipeline is to remove handle patches from a given surface
M. We iteratively trace a special shortest cycle and slice M along it to separate
a handle patch (which becomes a pants patch Mi later) from M. We denote such
shortest cycle as wi, indicating it is the “waist” of Mi.
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Suppose the handle loop and tunnel loop of the current handle are denoted as
ai and bi, then the cycle wi is homotopic to ci = a1

i ◦b1
i ◦a−1

i ◦b−1
i . The computation

of wi is not trivial, we illustrate it using the following example.

ai

bi

wi ∼ ci

���
�

��

P
−1

i

P
1

i

bi

(a) (b)

��������

 !"�""�"#�##�#
b−1

i

P
−1,−1

i

P
1,1
i

b1

i

P
−1,1
i

P
1,−1

i ci = a
1

i
◦ b

1

i
◦ a

−1

i
◦ b

−1

i

(c) (d)

Figure 14: Computing ci of the handle i. (a) wi is the waist, but we need to compute ci first.
(b) Slice ai apart, get P1

i and P−1
i . (c) Slice bi apart, P1

i and P−1
i split to P1,1

i , P1,−1
i , P−1,1

i
and P−1,−1

i separately. (d) The newly generated boundary is ci.

Step One: Compute ci.
Fig. 14 shows a surface patch near the handle and illustrates the idea. In this step,
we compute the curve ci = a1

i ◦b1
i ◦a−1

i ◦b−1
i which is homotopic to wi. As (b) and

(c) show, we slice ai and bi apart along their intersection point, and get the resultant
green boundary in (d): ci = P1,1

i → P1,−1
i → P−1,−1

i → P−1,1
i → P1,1

i .
Step Two: Shrink ci to the “Waist” wi.

As shown in Fig. 15, in step one, we sliced apart M ((a)) and get all its ci ((b)).
Now, we iteratively shrink each ci to its shortest homotopic cycle wi. It is computed
through the following algorithm 4.4.1:

When we get w0 from c0, we remove the sub-region bounded by c0 and w0

from M, and denote it as M0. We go on processing the above algorithm on other
ci, i = 1 . . .G−1 on the new M, only substituting c0 by w0 as shown in (d).
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a2

b2
b0

b1

b3

a1

a0

a3

c0

c3

c2

c1

c23

c12

(a) (b)

c
′

i

ci

P

P̃

c3

c2

c1

w0

(c) (d)

Figure 15: Computing the “Waist”. (a) Slice M apart along its handle/tunnel loops, get
boundaries ci. (b) Connect all other boundaries j,( j 6= i) to a large boundary c′i, and get
a topological cylinder. (c) Slice apart γ (green) connecting ci and c′i; get a topological
“trapezoid”; compute wi (blue) as the shortest path connecting boundary point pairs. (d)
Continue the process on other handles.

This process ends after G steps, and we get G handle patches M0 . . .MG−1.
Each waist wi is the shortest cycle on M\∪i−1

j=0 M j, making the segmentation ge-
ometrically optimal under this order. We also get a leftover patch M, which is a
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Shrink ci to wi.
In: Surface M, ci.

Out: The shortest loop wi homotopic to ci.
1. Connect all existing boundaries except ci together using shortest paths

(dashed green curves in Fig. 15(b)).
2. Slice these paths apart, we get one new large boundary c′i (Fig. 15(c)). M

becomes a topological cylinder.
3. Compute the shortest path γ (green curve in Fig. 15(c)) connecting the cylin-

der’s two boundaries.
4. (The shortest cycle wi at least intersects once with γ) Slice γ apart, every point

p∈ γ splits to a pair (P, P̃). Find the point pair (P, P̃) having the minimal length
of shortest connecting path. This shortest path is wi (blue curve in Fig. 15(c)).

topological sphere with G holes, denoted as the base patch M ′. We further decom-
pose M′ and all the Mi into pants in the following sections.

4.4.2 Decomposing the Base Patch

w1

w3

w2

w4

w0

w
′

0

w3

w
′

0

w2

w
′

1

w4

(a) (b)

Figure 16: Decomposing the Base Patch. (a) Slice w′0, get a new pair of pants. Boundary
number decreases by 1. (b) Set w′0 as a new boundary, go on to compute w′1.

The base patch M′ is a topological sphere with G+B holes (G is the genus, B
is the number of original boundaries on surface M). As we mentioned previously,
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when there are less than 3 boundaries (for example, G < 3,B = 0), there is no base
patch. In those cases, this step is skipped. Fig. 16 illustrates an example of our base
patch decomposition, the algorithm is as follows.

Base Patch Decomposition.
In: Base Patch M′ and all the waists wi=0...G+B.

Out: G+B−2 pants patches.
0. Put all boundaries wi of M′ into a queue Q.
1. If Q has ≤ 3 boundaries, end; else goto Step 2.
2. Compute a shortest loop w′ homotopic to wi ◦w j. (Red curves in Fig. 16(a)

and (b))
3. w′, wi and w j bound a pair of pants, remove it from M′. Remove wi and w j

from Q. Put w′ to Q. Goto Step 1.

During each iteration, we decrease the number of boundaries on M ′ by 1 be-
cause two boundaries wi and w j are removed, one new boundary w′ is created.
Therefore, this algorithm will process for G+B−3 iterations, and we get G+B−2
pants patches (G+B−3 from iterations, and base patch becomes the last one).

In step 2, we need to trace a shortest loop w′ homotopic to wi ◦w j. The com-
putation follows the idea of the previous algorithm of shrinking waists (Fig. 15(b)
and (c)).

Compute Shortest Loop w′ Homotopic to wi ◦w j.
In: Surface M′ and two waists wi, w j on it.

Out: Shortest (under the given metric) loop w′ homotopic to wi ◦w j.
1. Connect wi and w j together by a shortest path wi j.
2. Connect all other loops in Q together with shortest paths without intersecting

wi j. These loops together form a new big boundary w′
i j

3. wi j and w′
i j bound a cylinder (same as in Fig. 15(c)). Compute the shortest

cycle w′ using the same idea of step 3 and step 4. in Algorithm 4.4.1.

4.4.3 Decomposing Handles Patches

After we find each waist wi in the pipeline’s step one, we remove the handle
patches Mi from M, each of which is a genus-1 surface with one boundary. We can
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wi

ai

ai

ãi

wi

P̃P

(a) (b)

Figure 17: Decomposing a Handle Patch. (a) Slice ai apart. (b) Slice the green curve that
connects two outer boundaries. Then find the shortest path (red) connecting corresponding
point pairs on the green curve.

simply find a shortest cycle homotopic to the handle loop ai and slice it apart to
make Mi a pants patch.

The idea is illustrated in Fig. 17. We first slice ai to get a cylinder with an inner
boundary wi; then we find the shortest path γ (green curve in (b)) connecting two
outer boundaries. Then we slice γ, and find the shortest “shortest paths” connecting
P and P̃, P ∈ γ, P̃ ∈ γ̃. Now we make Mi a pants patch by slicing this shortest cycle
(red cycle in (b)).

4.4.4 Topological Surgery and Evolution

The pipeline introduced in the above sections provides a canonical (therefore
consistent) decomposition for surfaces with the same topology. When the given
surfaces are with different topologies, our framework can also flexibly handle it.
The user only needs to provide some marker points (denoted as surgery points).

As shown in Fig. 18(a), when we want to evolve a region to a handle. For
example, we want to match the bottom area of the left torus to the bottom handle
on 2-torus. We easily pick a pair of points, and punch two holes there. Their
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(a) (b)

Figure 18: Consistent Decomposition for Surface with Different Topologies. (a) User
specifies a pair of markers to correspond to a handle. (b) Each pair of markers generate a
new pants patch, which is matched with a handle patch from the second surface.

one-ring neighbors become boundaries c1 and c2. Then similar to the previous
process introduced in Algorithm 4.4.2, we find a cycle c3 homotopic to c1 ◦ c2,
these three curves bound a pants patch (as shown in (b)), which is matched with
the corresponding handle patch on the second surface. Many real examples using
surgery points to handle topology change in surface mapping will be presented in
the experimental section later.

4.4.5 Matching Feature Points

When the semantics need to be considered during surface mapping, users usu-
ally set up corresponding feature points or curves on both surfaces and require them
to be matched exactly. To enforce the feature points correspondence as hard con-
straints, on each feature point, we also punch a hole, and make its 1-ring neighbor
a boundary. During the decomposition, we treat these boundaries generated from
feature points as usual boundaries. As we will discuss in Section 4.5, since all the
boundaries in the pants set are consistently matched, hard constraints are guar-
anteed. We can easily cut feature curves into boundaries, and guarantee their hard
constraints in the same way.
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4.4.6 User-Guided Segmentation

Our pants decomposition follows a topological consistency and all the seg-
mentation paths are determined by geometry (shortest paths) of the surface. Taking
semantics into account is sometimes important in segmentation. We therefore also
allow users to easily sketch some curve segments to guide decomposition.

Decomposition should be topologically correct to assure validity and consis-
tency of segmentation. Therefore, our system takes user’s sketches as soft con-
straints, and tries to follow the guidance while at the same time guarantee the
newly traced cycles are homotopic to the original ones. This can ease user’s opera-
tions, eliminate the necessity of user’s expertise, and greatly improve our system’s
robustness.

Users can sketch some guiding curves on the mesh for a specific handle or
boundary. When we compute the waist of this handle or boundary, we use a special
metric mM to attract the shortest cycle towards the guiding curves. To design the
metric, we first compute each vertex’s distance from the guiding curves. A scaling
function is defined according to such a distance. The smaller this distance is, the
smaller the scale is. Intuitively speaking, regions close to guiding curves shrink
while the metric of the distant area preserves or even expands. Under such a metric,
the shortest paths will be attracted towards the guiding curve segments:

4.4.7 Decomposition Sequence

The correspondence of handle patches between two surfaces is determined by
indexing of handle/tunnel loops. Our system generates a default index sequence for
handle and tunnel loops on one surface for its canonical decomposition. The user
can reorder the indexing to change the handle correspondence when necessary.

By default, when M and all its handle/tunnel loops (homology group bases)
are given as input. We simply project the object onto a plane (e.g. X −Y plane);
for each basis (a pair of handle and tunnel loops), we compute their “center” on
this plane; then we enumerate the index for each basis according to its center’s
slope on this plane. As we will show later, an arbitrary indexing order determines
a homotopy type of decomposition (and mapping). Users can easily change this
order through the interface of our system.
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Compute the Guiding Metric.
In: Surface mesh M, threshold D, parameter α.

Out: Guiding metric mM defined on each edge of M.
1. Set an initial metric, mM(e) = 1 for all edges. Set all vertices on guiding

curves as starting points.
2. Perform the Dijkstra algorithm, using mM(e) as the edge length of the graph.

We get the hop distance d(v) from all vertices to the guiding curves.
3. Set the weight function:

w(vi) =

{
1, d(vi) > D;

(d(vi)
D )α, o/w.

,

where D is a hop distance threshold, α is a parameter to control the strength
of the attraction.

4. Set

mM(ei j) = (
w(vi)+w(v j)

2
)∗ |ei j|,

where |ei j| is the original edge length of ei j.

The second issue is the sequence used to decompose the base patch. The
default sequence is to decompose waists from small indices to large ones. Users
can also provide their decomposition sequence script, if desired. Under a specific
base patch decomposition sequence, all the pants adjacency relationship can be
deduced easily. For a surface with G topological handles (including virtual handles
introduced by surgery points) and B boundaries, we can get 2G− 2 + B pairs of
pants, and totally 6G−6+2B adjacency relations.

4.4.8 Robust Shortest Path Tracing

We always generate pants by tracing shortest cycles. To assure that the pants do
not become degenerate, we should prevent shortest cycles from intersecting bound-
aries. Therefore, here we slightly update the Dijkstra algorithm so that it prevents
the shortest paths from reaching boundaries (or from reaching specified curves).

In the Dijkstra algorithm, when a vertex v is visited, we enqueue it and relax its
neighbors ( [17], page 595). Now if v is on a boundary (or on some specific curves
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(a) (b) (c)

Figure 19: Adaptive Edge-Split. (a) Two waists (thick red curves) are close to each other.
No path can cross through the upper left region. (b) Edge-split on base patch before tracing.
(c) Shortest cycles pass through successfully.

we want to circumvent), we do not enqueue v nor update its neighbors. Using this
updated algorithm, shortest cycles’ intersection with boundaries will be prevented.

The original Dijkstra algorithm guarantees to trace a shortest path for an ar-
bitrary vertex on a connected mesh. Our modified algorithm only fails when two
boundaries are too close to each other. An example is illustrated in Fig. 19. (a)
shows a three-hole torus with a boundary, and its waists w0 and w1 (thick red curves)
are close to each other, therefore the upper left region is error-prone: there are some
edges spanning these two boundaries. So although topologically a path should be
able to go through this region between two boundaries without any intersections,
a real go-through path will inevitably intersect boundaries under the current mesh
connectivity. We call this kind of spanning edges dangerous edges. We perform the
edge split on all dangerous edges before computing shortest cycles/paths, as shown
in (b). This then robustly guarantees the success of our path tracing (c).

There is another technical issue here. Usually we are not only satisfied with
the correct topology, but also want the cycles to be apart from boundaries so that the
pants will not be too skinny. We may also need to handle similar situation around
surgery/feature points and boundaries on the base patch, so that degenerate pants
will not be created. Therefore, we also apply a modified metric (as discussed above
in Section 4.4.6) to push shortest paths away from boundaries or some specific
curves.
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4.5 Matching Pants Patches

After we perform consistent pants decomposition on two surfaces M and M ′

respectively, we get two consistent pants sets Mi,(i = 0 . . .n) and M′
i,(i = 0 . . .n).

In this section, we map each corresponding pairs of pants patches: fi(Mi)→M′
i .

To assure global continuity, mappings across the pants’ boundaries should be
consistent. Rigorously speaking, if a curve segment γ is on two adjacent pants Mi

and M j: γ ⊂ ∂Mi,γ ⊂ ∂M j, then we should have fi(γ) = f j(γ). Therefore, as we
discussed in Section 4.3, we slice a pair of pants into two patches and compute their
boundary-fixed harmonic maps.

As shown in Fig. 13, slicing a pants patch Mi into two hexagons needs 3
curves connecting Mi’s boundaries. We simply use the shortest paths to connect
each boundaries pair. Then these three paths slice Mi into two patches. The 6 inter-
section points among these curves and pants’ boundaries are mapped to 6 corners
of the regular hexagon. To assure the mapping is continuous across the boundary,
when corners of Mi have been determined, its adjacent pants’ corners on their shared
boundary should be consistently determined. The following algorithm computes all
corners on a set of pants consistently.

Computing Corners for Pants Set Mi, i = 0 . . .n.
In: A set of pants patches Mi.

Out: All corners on each of Mi.
1. For handle patches M0 . . .MG−1:

(1.1) Connect shortest cycles between legs, we get corners P3, P4 (the index
follows Fig. 13).
(1.2) Set P2 as the point on Γ1

i farthest from P3. The farthest point on Γ2
i from

P4 is P5.
(1.3) Trace the shortest path from P5 to Γ0

i ; its end point on Γ0
i is P0. The

farthest point on Γ0
i from P0 is P1.

2. Propagate existing corners to adjacent pants: check every Mi’s adjacent pants
M j; if corners on M j’s shared boundaries have not been determined, fix them.

3. For each newly propagated M j, if M j’s corners on Γ0
j have not been decided.

Use Step (1.3) above to fix them.
4. Stop if all corners have been fixed, otherwise GOTO Step 2.
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We first go through all handle patches because their corners are freely deter-
mined. Then we propagate their corners to the adjacent pants. Each step of the
base patch decomposition combines two waists to generate a new pants patch, so
the above propagation will not get stuck, and it ends within several iterations with
all corners consistently fixed.

Now each pants patch Mi can be sliced into two patches M0
i and M1

i , as Fig. 13
shows. We compute their harmonic maps to the regular hexagon H , h j(M

j
i ) →

H ,( j = 0,1) with the following boundary conditions: set each patch’s 6 corners’
UV coordinates to the regular hexagon’s corners; for other boundary points between
each pair of corners, interpolate their UV coordinates using the arc-length ratio.
Each harmonic map is computed after solving a sparse linear system [24]. On the
pants M′

i , the same harmonic maps h′j(M
′ j
i )→ H ,( j = 0,1) are computed. Then

we can immediately get the final composed patch mapping f (M j
i ) = h′−1

j ◦ h j by
barycentric point locations. Mapping on boundaries across neighboring patches
and pants is consistent. Because each boundary point’s image is determined by the
corners and corresponding arc length ratios, and both neighboring regions arrive at
the same result.

4.6 Experimental Results

We demonstrate our mapping framework using several examples. The gener-
ated surface morphing sequences can be found in our accompanying video.

Automatic Mapping Genus-9 Mechanical Parts. Consistent pants decom-
position is automatically performed on three genus-9 mechanical parts. As shown
in Fig. 23, although all models in this example have very complicated topology
and geometry, once their homotopy group bases are indexed, all the following de-
composition is performed in a canonical way without any user involvement. This
demonstrates the great automation capability of our framework, and it shows our
consistent decomposition is a powerful tool for registering complicated objects.
Two morphing sequences generated using our mapping are shown.

Deforming Hands: “Five” to “Okay”. In this example, we map a human
hand (Fig. 20(a) (left)) to another hand (right). This example shows that how se-
mantics are well handled in our framework with intuitive user intervention.
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(a) Src/Trg Models (b) Surgery Points

(c) Feature Points (d) 50% Morph (no features)

(e) (f) 33% Morph (g) 67% Morph

Figure 20: Mapping Hands: “Five” to “Okay”. (a) Source and target surfaces. (b) Two
surgery points are the least requirements due to the topological difference. (c) Users define
more feature points for semantics purpose. (d) Without feature points in (c), 3 fingers are
not matched, the morphing is not satisfactory semantically. (e) The refined decomposition
results (with feature points). (f) and (g) show the newly generated morphing.
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(a) Src/Trg Surfaces (b) Surgery Points (c) Feature Points

(d) (e) (f) Guiding Curves

(g) (h) 25% (i) 50% (j)75%

Figure 21: Mapping the Greek Sculpture to David. (a) Two surfaces and their homotopy
group bases. (b) Two surgery points (matched with the lower right green handle on the
Greek). (c) Base patches of both models, and two feature points to assure correspondence
on head regions. (d) The decomposition result without further user involvements. (e) Ge-
ometrically optimal decomposition may have poor semantics effect (yellow regions). (f)
Users sketch some guiding curves. (g) The new decomposition result with guided segmen-
tation. (h)-(j) A more visually natural morphing sequence.
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Figure 22: Mapping two Dragons. Feature/surgery points are placed on both dragons (red
and green markers on the head and legs). The morphing sequence is generated.

(a) (b)

Figure 23: Mapping Genus-9 Mechanical Parts. The initial homotopy group bases on each
models are color-encoded in (a). (b) illustrates the canonical decomposition result. The
next two rows visualize mappings through morphing sequences.
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(a) (b)

(c) 25% (d) 50% (e) 75% (f) 100%

(g) 25% (h) 50% (i) 75% (j) 100%

Figure 24: Design Surface Mapping with Arbitrary Homotopy Types. (a) The source sur-
face and its canonical decomposition. (b) User chooses different homotopy types by chang-
ing the index of handle/tunnel loops. (c)-(f) First homotopy type: the “green” handle goes
up. (g)-(j) Second homotopy type: the “blue” handle goes up.
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(a) Src/Trg Models (b) Area Stretch (c) Mean Curvature Difference

(d) Decomposition (e) 25% Morphing

(f) 50% Morphing (g) 75% Morphing (h) 100% Morphing

Figure 25: Vase vs. Teapot. (a) Surfaces with handle/tunnel loops and surgery/feature
points. The matching’s area stretching (b) and mean curvature difference (c) are color-
coded. (d) Pants Decomposition Result. (e)-(h) Morphing.
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The source hand is an open genus-0 surface, while the target hand is genus-1
with a boundary (red curves are its handle/tunnel loops). To achieve the topological
evolution, at least a pair of surgery points is required on the first hand. Naturally,
we can set them on tips of the indexing finger and the thumb (Red points in (b)).
If we do not provide any other feature points, each hand is decomposed into one
pair of pants. The direct mapping between them can be easily computed. However,
such a mapping may not follow shape semantics, which can be visualized using
a linearly-interpolated morphing sequence generated from this mapping, as shown
in (d): three fingers shrink while three new fingers come out from some places
elsewhere. This means those fingers are not matched to each other properly. Our
framework allows users to set a few corresponding markers in order to match these
fingers, as shown in (c). This results in a finer decomposition as shown in (e).
The new mapping is computed using this decomposition result, and guarantees the
matching between regions of corresponding fingers; therefore, it generates a more
natural morphing sequence as illustrated in (f) and (g).

Genus-4 Greek Model to Genus-3 David Model. In Fig. 21, we map a genus-
4 Greek model to a genus-3 David model. The original surfaces and their homotopy
group basis correspondence are shown in (a) (each curve’s color indicates its index).
A pair of surgery points is set on the target model (b), corresponding to the small
handle in the lower right part of the Greek sculpture. In (c), when all the handle
patches are removed, we get the base patch of both models. Also, we want to
semantically guarantee correspondence between head regions, two feature points
are placed on each model. We show the canonical decomposition result in (d).
From the semantics aspect, we do not like the segmentation around the right hand
(blue patch) of the Greek because the shortest cycle goes through his wrist. The
segmentation of the left arm (yellow patch) is even worse; it cuts through the elbow.
An unnatural morph mapping the forearm of the Greek to the whole arm of David
is shown in (e). This can be easily remedied if users sketch two short guiding curve
segments on the Greek model as shown in (f). The new decomposition result is
shown in (g), where we get a morph with much better visual effects as shown in
(h)-(j).

Morphing Dragons. In Fig. 22, we perform decomposition on two dragons.
Several surgery points and feature points are used to guide the mapping, as depicted



CHAPTER 4. Canonical Pants Decomposition for Piecewise Surface Mapping 67

on the source and target models. The morphing sequence is shown to demonstrate
the mapping effect.

Surface Mappings with Different Homotopy Types. This example demon-
strates the rigourousness and completeness of our mapping framework. As shown
in Fig. 24, different homotopy classes can be chosen arbitrarily by users, they only
need to switch the indexing of the homotopy group basis (as shown in (b)). The
morphing sequences from the source surface (a) to the target surface based on dif-
ferent mappings are illustrated in the next two rows. They are both reasonably good,
and it is up to the user to select which one they really want. Our framework provides
a rigorous way for users to decide an arbitrary homotopy type of the mapping.

Shape Matching and Error Analysis. With one-to-one correspondence be-
tween two matched surfaces, we can measure at each point the shape difference
using some geometric properties, and color-code the error distribution, which is
potentially useful for shape comparison and visual analysis.

Fig. 25 illustrates our mapping from a genus-2 vase model to a genus-1 teapot
model. (a) shows the models and their handle/tunnel loops; and user-provided
surgery/feature points are also depicted. The decomposition results are shown in
(d). (e)-(h) show the morphing sequence generated by our mapping.

In (b) and (c), we color-code the shape matching error distribution. We use two
terms, one is the area stretching ratio while the other is mean curvature difference.
In (b), we compute total area of one-ring triangles around each point on the vase
model; when the vase is mapped onto the teapot, we also compute each point’s
corresponding one-ring area. The ratio of these two areas represents the stretching
of the mapping, and it is color-coded on the surface: red represents the maximum
while blue represents the minimum. From this figure, we can see that the cap, the
left handle, the tips of handles, and the bottom of the vase have larger stretching
values, because these regions shrink to a relatively small area on the teapot model.
In (c), we color-code the mean curvature difference on every point: the regions
with large curvature difference (for example, left handle, the rim of the cap) are
red. Integration of these two terms over the whole surface has been proved ( [41])
that it provides an intrinsic energy for measuring the shape difference. Therefore,
our surface mapping/registration can be used for automatic shape comparison and
shape analysis. Before applying our mapping for registering models in a database,
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Model Topology # of Vertices Run Time # of Pants Patches
Hand-1 G = 0,B = 1 19832 24.5s 7
Hand-2 G = 1,B = 1 21055 26.1s 7
Teapot G = 1,B = 0 22012 27.0s 4
Vase G = 2,B = 0 10014 10.1s 4

4-Torus G = 4,B = 0 7994 6.3s 6
David G = 3,B = 0 26138 140.3s 8
Greek G = 4,B = 0 43177 380.5s 8

Asian Dragon G = 0,B = 0 26562 110.1s 10
Casting G = 9,B = 0 34116 423.4s 16

Table 1: Canonical Decomposition Performance for Consistent Surface Segmentation.

each model should go through a preprocessing procedure. For each model, first,
its handle and tunnel loops are automatically computed and indexed; second, if
necessary for any semantic reason, user can simply reorder indexing of these loops.
After this preprocessing, all the follow-up shape comparison and retrieval can be
performed automatically.

The complexity of our algorithm is very low, and the performance of our algo-
rithm on most real examples presented here is given in table 1.

4.7 Chapter Summary

We have developed a consistent pants decomposition framework for matching
surfaces with arbitrary topology. The consistent generation of sets of pants is a
key component to ensure the subsequent high quality surface mapping. Our novel
mapping framework has been demonstrated to be efficient, robust, and powerful
on examples with arbitrary types of surfaces. Also, the mapping framework si-
multaneously provides great automation and accommodates intuitive user control.
Therefore, our new modeling framework can serve as an enabling tool for many
visual computing tasks.

Besides surface mapping, we believe our pants decomposition framework has
many other potential applications. First, pants decomposition provides a piecewise
representation for any given surface. When we have the semantically meaningful
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patch segmented from the original surface, we can easily perform the “cut-and-
paste” operation from a “part” database ( [31]) to produce more meaningful shapes
from examples. Since all our segmented patches are pants-like shapes, we could
streamline many modeling and simulation tasks. Also, pants decomposition can be
extended to a consistent segmentation of volumetric data. Compared with directly
computing harmonic maps between volumetric shapes with complicated topology
and geometry [82], this decomposition should make the process more robust and
general, and it will also provide more semantics control.



Chapter 5

Globally Optimal Surface Mapping

In Chapter 3 and Chapter 4, we presented two works in piecewise surface
mapping, which improve the efficiency and effectiveness of the piecewise mapping
computation. As we will address in Section 5.1, piecewise mapping has its advan-
tages; however, in many applications, globally continuous and optimized mapping
is more desirable. This chapter reveals the key challenges that prevents most exist-
ing techniques from conducting the global optimization directly, and introduces our
algorithm that computes the globally optimal surface mapping.

5.1 Introduction

Piecewise Mapping has the following advantages:

1. Segmenting surfaces makes the surface mapping computation simpler and
more efficient. After segmentation, subregions matching with simple topol-
ogy can be easily and efficiently mapped through planar domain.

2. Its behavior can be easily controlled, users can control the mapping behavior,
for example, homotopy type, or subregion matching can be easily achieved.

3. Feature alignment can be conveniently implemented. By segmenting surfaces
while preserving the feature points or curves on the boundary, the feature
alignment can be guaranteed in an easier way.

However, piecewise mapping also has its limitations:

70
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1. The mapping result is heavily determined by the initial segmentation. Intu-
itively speaking, regions that are close to each other may be mapped sepa-
rately only because they are partitioned into different sub-patches.

2. The smoothness along the cutting boundaries is usually not guaranteed. C0

continuity can usually be achieved, but higher order smoothness are not nec-
essary near these regions.

3. Global distortion can not be measured and controlled. Unless we consider the
mapping entirely, we cannot design a numerical way to measure the global
distortion of the map.

In many applications such as scientific computation/simulation, surface com-
parison, spline construction, remeshing and so on, greater global smoothness and
lower global distortion are usually more desirable. Therefore we need to consider
the globally smooth surface mapping through some global approaches.

We start from the definition of the distortion of surface mappings. Numerous
applications such as shape registration, matching and comparison, shape morphing,
and texture/attribute/motion transfer all benefit from such a bijective correspon-
dence between two given surfaces. Researchers usually measure the mapping qual-
ity using angular or area distortions, because such criteria dictate the end effect of
the enabling applications (e.g., texture mapping). Given two surfaces with different
geometry, distortions are usually inevitable; we naturally want to seek the mapping
that can minimize distortions as much as possible. However, if two given surfaces
are not isometric to each other, there does not exist a mapping that can eliminate
the angle and area distortion simultaneously.

In this work, we choose the harmonicity (measuring angular distortion) as
the criterion because it is most physically meaningful. If we assume surfaces are
made of elastic materials; then when surfaces deform and are mapped to others, the
stretching energy caused by the elastic distortion can be formulated as harmonic
energy. Among all possible mappings, a harmonic map minimizes the stretching
energy and has a direct physical meaning. Also, the harmonic map minimizes an-
gular distortions. For example, conformal mappings are harmonic, and are free of
angular distortion.

Besides the physical intuition, harmonicity and conformal mapping have other
merits that are critical for real-world applications. First, the dimension of conformal
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mappings between two given surfaces is finite; by fixing the images of finite points,
the mapping can be uniquely determined. Therefore, these kinds of mapping are
easy to control. Second, conformal mappings can transform arbitrary surfaces to
several canonical domains, and convert all geometric processing into these domains.
This greatly simplifies the complexity of these geometric processing algorithms.
Third, the theoretic foundation and algorithms of conformal mappings are relatively
mature.

In contrast, area-preserving mappings lack physical meaning, lack analytic
methodology, as well as practical computation algorithms, and are hard to control.
Therefore, in our current work, we use harmonic maps and try to minimize the
angular distortion.

The criteria of mapping quality on angular distortions have been analyzed and
optimized in the aforementioned surface parameterization research area. Surface
parameterization aims to find a bijective map between surfaces and planes (or other
simple canonical domains such as spheres), thus it can be treated as a special case of
surface mapping since its target surface is usually just a plane or a sphere. Param-
eterization arises from texture mapping and synthesis, where the angular distortion
is the most critical factor when quantifying the mapping quality.

Despite its earlier connection with surface parameterization over canonical do-
mains, finding a minimally-distorted surface mapping between two general surfaces
is much more technically challenging. There are three key reasons as follows.

First, there are topological differences. Surface parameterization usually “flat-
tens” a surface onto the plane, specifically, the surface is sliced apart into a topo-
logical disk, and the parameterization refers to a map from that disk to the plane, so
it has only one topological type. For mapping between general surfaces especially
with high genus, which handle of one surface is mapped to which handle of the
second surface needs to be considered. This topological factor has to be explicitly
determined and it gives rise to the mapping complexity for shapes with nontrivial
topology. Rigorously speaking, mappings between two given surfaces are classified
into infinite homotopy classes [12]. Two maps are isotopic to each other, i.e., be-
longing to a same homotopy class, only if one can deform to another smoothly. A
rigorous surface mapping framework should be able to handle an arbitrarily given
homotopy type. On the other hand, only topologically equivalent mappings can



CHAPTER 5. Globally Optimal Surface Mapping 73

be compared together; mappings from different classes should be considered sepa-
rately since a best mapping may exist in each class. In the following discussion, we
shall consider maps that are within the same homotopy class.

Second, due to the topological inequivalence between closed surfaces and the
plane, as we mentioned above, parameterizing surfaces onto planer domains cuts
the surface along a boundary. The simplified target canonical shape not only leads
to some well-established numerical solving techniques, but also unavoidably pushes
distortions towards its cutting boundary or a collection of some singularity points.
In contrast, mappings between surfaces with same topology should prohibit the
cutting, and find a “seamless” result. Therefore, we are not pursuing a map from
a topological disk to the plane, but a continuous map between two surfaces with
complicated topology.

Third, the most important reason for the lack of globally optimized surface
mapping techniques is the complex geometry of the general target surfaces. The
non-smoothness of the target shape actually leads to a technical obstacle in find-
ing the global optimum among all possible mappings. A natural way is to follow
ideas in surface parameterization: we can optimize the map between surfaces by
simply constructing an initial map, and then locally adjusting it using a variational
procedure until the distortion energy is reduced to the minimum. We can call this
technique “the naive method”. When the target surfaces are genus zero (e.g., pa-
rameterization onto the sphere or plane), this approach can reach a globally op-
timized result. However, for mapping surfaces with non-trivial topology, due to
the nonexistence of a canonical target domain (see Section 5.2.3), any local opti-
mization process will inevitably get stuck at a local minimum. This is the primary
reason that other state-of-the-art methods use base meshes or hierarchical structure
to circumvent this problem, while giving up searching for the global optimum.

Our Novel Solution

In this work, we introduce a novel computational framework to tackle the
aforementioned challenging problems. Our method, based on the theories of Rie-
mannian uniformization and harmonic maps, is both theoretically rigorous and
practically efficient.
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Considering two general surfaces with nontrivial topology, under their induced
Euclidean metric, the target shape may have complicated geometry, and the har-
monic maps are usually not globally unique. Some harmonic maps are local minima
of the stretching energy.

To globally reduce the stretching distortion without getting stuck locally, we
propose to use the so-called uniformization metric. Under their uniformization met-
ric, surfaces with nontrivial topology have constant non-positive Gaussian curvature
everywhere, so that the harmonic map becomes globally unique [105]. (Please re-
fer to Section 5.2.1 and the Appendix for more theoretic details and Section 5.6.4
for experimental demonstrations). Uniformization theory states that for all surfaces,
such a uniformization metric does exist; and we can compute this metric efficiently
by using existing techniques.

Under surfaces’ uniformization metric, we conduct our optimization process.
It is guaranteed to converge to unique global harmonicity under surfaces’ uni-
formization metric. Specifically, our algorithm has the following important merits.

• Optimality. Harmonicity under uniformization metric can be globally opti-
mized without worrying about any local optima. The resultant map minimizes
the stretching energy and distortion.

• Uniqueness. The global harmonic map in hyperbolic space is unique; our al-
gorithm converges to the same result starting from arbitrarily different initial
mappings, as long as they belong to the same homotopy class.

• Conformality. For genus-zero surfaces, an arbitrary harmonic map is free of
angle distortions. In the genus-one case, our optimized map minimizes the
angle distortion among all possible maps. Between two general surfaces, if
there exists an angle-distortion-free map between them, our method is guar-
anteed to find such a conformal map.

• Efficiency. Harmonicity relaxation under the uniformization metric is per-
formed in 2D, which is much more efficient and robust compared with any
other iterative methods directly conducted over curved surfaces.

The main contributions of this work are:
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1. We propose and articulate a novel approach to computing a globally opti-
mal map that minimizes distortions between two surfaces with the same non-
trivial topology. This process is fully automatic and requires no user inter-
action. To the best of our knowledge, this is the first attempt to compute
a surface mapping with globally minimized energy for arbitrary high genus
(g≥ 1) models.

2. Using the intrinsic geometric structure of surfaces, the convergence of our
algorithm is guaranteed. We quantitatively evaluate its performance, and then
design toolkits to clearly visualize the mappings, as well as analyze their
converging effects.

3. We use our surface mapping as a powerful tool for data and texture trans-
fer, shape morphing, cross-surface parameterization onto canonical shape
domains, shape matching, and shape comparison. Our globally optimized
mapping demonstrates its efficacy in these graphics and visualization appli-
cations, with potentials in a broader scope of applications.

The remainder of this chapter is organized as follows. In Section 5.2, we
introduce the theory and algorithm of our method. Our algorithm proceeds in three
main steps, as discussed in Section 5.3, Section 5.4 and Section 5.5, respectively.
We then discuss our mapping performance and properties in Section 5.6. Finally,
we conclude this chapter in Section 5.8. In the appendix of this thesis, we prove the
existence, global uniqueness, and the one-to-one property of the harmonic map and
we also show our algorithm will converge to such an optimized map uniquely.

5.2 Theory and Algorithm

5.2.1 Uniformization Metric

On a surface, a metric, or Riemannian metric is a tensor that defines the inner
product on the tangent plane at each point. With the metric, the length of a tan-
gent vector can be determined, and the angle between two tangent vectors can be
explicitly computed.

Suppose S is a smooth surface embedded in R
3; it has the induced Euclidean

metric g. We denote the surface S together with its equipped metric g as (S,g).
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If λ : S → R is a scalar function defined on the surface, then ḡ = e2λg is another
metric on S. Any angles on the surface measured by g equal to those measured by
ḡ, therefore, we say ḡ is conformal to g, meaning that changing between these two
metrics is angle-preserving.

Given two surfaces S1 and S2, the uniqueness of the harmonic map from S1 to
S2, as we will discuss in the upcoming section, is determined by the distribution of
the Gaussian curvature K of S2. It is important to note that K is fully determined
by the equipped metric of the surface. The relation between the curvatures K and K̄
under g and ḡ is K̄ = e2λ(−∆λ+K).

Riemann uniformization states that for an arbitrary closed surface, there exists
a unique λ such that e2λg induces constant Gaussian curvature. Furthermore, the
constant is one of the three choices {+1,0,−1} for surfaces with zero, one, and
higher genus, respectively. Such a metric, e2λg, is called the uniformization metric
of the surface. The uniformization metric can be computed using the Ricci flow
method (see Section 5.4).

5.2.2 Euclidean Harmonic Map and Conformal Map

Given two surfaces embedded in R
3 with the induced Euclidean metrics

(S1,g1) and (S2,g2), f : S1 → S2 is a map between them, the harmonic energy
(stretching energy) is defined as

E( f ) =

∫

S1

|∇ f |2dA1, (4)

where ∇ f is the gradient of the map. A harmonic map is a critical point of the
harmonic energy. Harmonic maps depend on the Riemannian metrics. However, if
f : (S1,g1)→ (S2,g2) is a harmonic map, then f : (S1,e2λg1)→ (S2,g2) is also a
harmonic map.

If a map preserves angles, then the map is called a conformal map. Analyt-
ically, if the pull back metric f ∗g2 on S1 is conformal to g1, e2λg1 = f ∗g2, then
f is conformal. A conformal map must be harmonic. For closed genus-zero sur-
faces, harmonic maps are also conformal. In the general case, if S1 and S2 are with
complicated topology, then there may not exist a conformal map. But there is a
special map, which minimizes the maximum of the angle distortion; such a map is
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called the extremal quasi-conformal map. For the genus-one case, such an extremal
quasi-conformal map is the harmonic map under uniformization metric. Therefore,
if the given surfaces are genus-one, our algorithm converges to the extremal quasi-
conformal map.

5.2.3 Uniqueness of Harmonic Maps

The uniqueness of harmonic maps between surfaces is determined by the shape
of the target objects. For genus-zero surfaces, there are infinite harmonic (confor-
mal) maps, all with zero angular-distortion. Each two of these maps differ by a
möbius transformation on the sphere domain.

Harmonic maps between surfaces with non-trivial topology are also not unique
if the Gaussian curvature of the target surface is positive somewhere. However, if
the target surface has non-positive Gaussian curvature everywhere, then the har-
monic map exists and is unique. For example, if the Euler number χ(Si) < 0, i =

1,2, and we apply uniformization metric g2 on S2, then harmonic map f exists and
is unique, with its energy E( f ) reaching the global minimum.

Therefore, between two arbitrary surfaces with genus ≥ 2, there uniquely ex-
ists such a stretching-minimized harmonic map. For genus-one surfaces, χ = 0,
under uniformization metric, the harmonic maps are not unique, but only differ by
rigid translations on the R

2 universal covering space, and we can use one feature
point to uniquely determine it.

5.2.4 Poincaré Disk Model and its Harmonic Maps

If the given surfaces are with higher genus, their uniformization metrics can
only be embedded in hyperbolic space. We have to carry out our computation in
this space, which can be modeled by the Poincaré disk as follows.

The Poincaré disk is the unit disk on the complex plane zz̄ ≤ 1, with the Rie-
mannian metric ds2 = 4dzdz̄

(1−zz̄)2 . Our goal is to compute a map f : (S1,g1)→ (S2,g2).
We use their uniformization metrics and compute a harmonic map f̄ : (S1, ḡ1)→

(S2, ḡ2). The computational algorithm of hyperbolic harmonic maps is based on
theoretic results in [104].
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Figure 26: (Left) The yellow patch represents a chart on the two-hole torus model; (Middle)
Embed the two-hole torus model in the Poincaré disk; (Right) A möbius transformation
moves the chart to the center of the Poincaré disk.

We denote the parameters of S1 on the Poincaré disk as (x,y), the parameter
of S2 as (u,v), then the map f̄ is represented as f̄ (x,y) = (u(x,y),v(x,y)). The
harmonic energy is

E( f̄ ) =

∫

S1

4
|∇u|2 + |∇v|2

(1−u2− v2)2 dxdy, (5)

where ∇u is (∂u
∂x ,

∂u
∂y ) and ∇v is (∂v

∂x ,
∂v
∂y).

The harmonic energy in hyperbolic space (5) has a more complicated form
compared to harmonic energy in Euclidean space (4). We simplify the problem
using the following two merits of hyperbolic harmonic energy:

1. In a small neighborhood of the origin u2 +v2 < ε, since (1−u2−v2)−2 → 1,
the hyperbolic metric is close to the Euclidean metric, the hyperbolic har-
monic energy is close to the Euclidean harmonic energy. We can optimize
the hyperbolic energy by minimizing the Euclidean energy.

2. If φ is a Möbius transformation of the Poincaré disk, then the composition
φ ◦ f̄ and f̄ have the same hyperbolic harmonic energy. This is because the
Möbius transformation is the rigid motion in the hyperbolic space, and the
harmonic energy is invariant under such isometries of the target surface.

We describe our computational methodology for hyperbolic harmonic maps as
follows.

1. The surfaces are tessellated into many small triangular patches, S1 =
⋃

i Ti,
where Ti is a triangular patch, then the harmonic energy is decomposed into
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the summation of the energy of the map restricted on these patches, the sub-
maps, E( f̄ ) =

∑
i E( f̄i), f̄i : Ti →H

2.

2. Each sub-map f̄i is composed with a Möbius transformation φi, such that the
image φi ◦ f̄i(Ti) is in the neighborhood of the origin.

3. If the tessellation is refined enough, Ti is small, and the diameter of its image
under the corresponding sub-map is within an ε-threshold, the hyperbolic en-
ergy can be approximated by Euclidean harmonic energy with high accuracy.

Therefore, computing the harmonic map under the hyperbolic metric, which is
equivalent to minimizing the hyperbolic harmonic energy, is now converted to op-
timizing a collection of Euclidean harmonic energies of sub-maps. We can use the
mean value property of the harmonic function to minimize the Euclidean harmonic
energy.

5.2.5 Discrete Algorithm

We summarize our approach as the following discrete algorithm:

Global Optimal Surface Mapping.
In: Source surface S1, target surface S2.

Out: Harmonic map f under the uniformization metric of S2.
1. Construct an initial map f̃ : S1 → S2 (See Section 5.3).
2. Compute the conformal deformation (uniformization metric) of S2 using the

technique introduced in [57], then embed S2 in the canonical domain C or
H

2, φ2 : S2 → C or φ2 : S2 →H
2. (See Section 5.4)

3. Compose the f̃ and φ2 to get ω : S1 → C or ω : S1 → H
2, and apply heat

diffusion on dynamic charts to minimize the harmonic energy:

dω
dt

=−∆ω. (6)

(See Section 5.5)
4. When ω converges to the global minimum, let f1H = ω and get the final map

f = φ−1
2 ◦ f1H .
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5.3 Initial Mapping

We first build up an initial mapping between the given surfaces. The initial
mappings determine the homotopy class of the resultant surface mapping (which
will be discussed later in Section 5.6.2). Our pipeline for creating the initial map
has two steps: (1) we unfold both surfaces to disks through a cut graph called the
system of loops (See Section 5.3.1); (2) we map two surfaces via the disk domain
(See Section 5.3.2).

5.3.1 Cutting a Surface into a Topological Disk

An orientable closed surface of genus g,(g≥ 1) can be cut into a single topo-
logical disk by removing a so-called cut graph. Computing a special case of cut
graphs which passes through a common given base point, called systems of loops,
is studied in computational geometry. One of the state-of-the-art techniques, [25],
uses an efficient greedy algorithm to get an optimal cutting loop. We refine their
algorithm for our surface cutting.

We first briefly describe their algorithm for computing a system of loops L on
the given mesh S and the base point x:

1. Compute the shortest paths tree T of S from x.
2. For each edge e ∈ S\T (i.e. e /∈ T ), compute the shortest loop that contains e,

denoted as σ(e), which consists of two shortest paths from x to the endpoints
of e plus the e itself.

3. Compute the dual graph of S\T , denoted as (S\T )∗. Compute its maximum
spanning tree T ∗, where the weight of each dual edge e∗ is σ(e).

4. Get the set E ′ which contains every edge that is neither in T nor crossed by
T ∗.

5. E ′ has 2g edges e1,e2, · · · ,e2g. Compute shortest loop σ′(ei) containing each
ei. These loops constitute the system loop L.

In [25], they assumed that all the shortest paths from each point on the cut
path to the base point only intersect at the common base point. This assumption
holds in the smooth case but often fails for triangular mesh representations. Thus
in step (5), shortest paths on triangle meshes may intersect each other, especially
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Figure 27: Local Refinement on the System of Loops Computation. When the blue cut
path intersect with the existing red path in V2, we apply a local refinement. The intersected
path [V1,V2,V3] segment is replaced by the new green path. Yellow segments are new edges
inserted during edge splits in the refinement.

Figure 28: Refinement on the System of Loops Computation.

for high genus surfaces. For example, on a genus-six surface, 12 loops will go
through the base point, meaning that the valence of the base point should at least
be 24 to prevent the paths’ intersections outside the base point. Such high density
connectivity is hardly satisfied in ordinary mesh data. Therefore, a robust algorithm
has to adaptively change the connectivity.

As shown in Figure 27, locally, if a cut path (blue) intersects with an existing
path (red) in one point. We apply the following algorithm on the blue curve to make
it bypass the red one:

After applying this algorithm, we replace the intersected path [V1,V2,V3] seg-
ment by the new path (as shown in green). The yellow segments are edges newly
inserted onto the mesh during the edge split procedure.

In general, if the intersected parts have more than one point, we apply the adap-
tive bypassing algorithm iteratively on each intersected vertex. Figure 28 illustrates
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Adaptive Bypassing Algorithm:
1. Spin around the intersected vertex V2, enqueue all faces between [V1,V2] and

[V2,V3](For example, f1, f2, f3, f4 here).
2. Set V1 as the current point p.
3. Pop face f out from the head of queue. If [V2,V3] is in f , add edge [p,V3] to

the new path and STOP; else GOTO 4.
4. Split the edge opposite to the current vertex p. The new split point is denoted

as q. Add the edge [p,q] into the new path, move to q: set p := q. GOTO 3.

this. In the small picture (upper left), a cut path (blue) passes through an existed cut
path (red). We apply the following algorithm on the intersected segments:

Refinement Algorithm:
1. Find out the point right before the intersection (Vh) and the first point right

after this intersection (Vt). Push all vertices on the current path between Vh
and Vt into a queue Q.

2. Pop each vertex in Q, and apply adaptive bypassing algorithm on it.

Intersections usually happen near the base point because cutting paths are
dense in this region. The Vt in such case is the base point, and the same refine-
ment process is applied.

5.3.2 Initial Mapping via 4g-gon

With the system of loops, we slice each surface onto a topological disk. For
a genus g surface, the cut graph passes through the base point 4g times, making
the disk a topological 4g-gon. We map two given surfaces via this 4g-gon, as the
procedure illustrated in the Figure 29. The following is the algorithm.

By the above algorithm, we get an initial mapping from S1 to S2. This initial
mapping is only used to determine the homotopy type. In the following sections,
we will prove and demonstrate that if two initial cuts induce two maps belonging to
the same homotopy class, then the final results are identical.
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Figure 29: Slice both meshes open and map them to a canonical 4g-gon; compose these
two maps; get the initial mapping. Mappings of different (color-coded) regions are shown
respectively with different colors.

Initial Mapping via 4g-gon:
In: Source surface S1, target surface S2, and their systems of loops.

Out: Initial mapping from S1 to S2.
1. Slice each surface along its system of loops to open it up onto the 4g-gon.
2. Flatten each sliced surface to the canonical 4g-gon, using the harmonic map

with fixed boundaries.
3. On the canonical planar parameter domain, map S1 to S2 via barycentric co-

ordinates. Unlike [12], we do not extract a meta-mesh by overlaying the two
planar domains. Instead, we use an approximation mesh S′

2 with only the
connectivity of S1 (though its shape is like S2), and we may later employ
an adaptive remeshing procedure (Section 5.6.5) for mapping refinement in
areas where under-sampling occurs.

4. Stitch the topological disk S′2 along the original cutting boundary back to the
closed surfaces.
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Figure 30: Side-by-side Comparison between Distortions of Initial Map (left) and Opti-
mized Map (right).

5.4 Computing the Uniformization Metric

According to our previous discussion, given a surface S ⊂ R
3 and its induced

Euclidean metric (represented by its first fundamental form g), let u : S → R be a
globally defined function on S, then e2ug is another Riemannian metric on S, which
is a conformal metric to the original induced Euclidean metric.

Riemann uniformization theorem [60] states that for any S, there exists a
unique conformal metric, such that it induces constant Gaussian curvature K and
zero geodesic curvature,

K =





+1 χ(S) > 0
0 χ(S) = 0
−1 χ(S) < 0

,
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where χ is the Euler characteristic. Such a metric is called the uniformization met-
ric.

We compute the uniformization metric e2ug using the Ricci flow method [49].
Ricci flow is defined as

du(t)
dt

=−2K(t), (7)

where K(t) is the Gaussian curvature induced by the metric e2u(t)g, under the area
preserving constraint ∫

S
dσ =

∫

S
e2u(t)dσ.

In practice, all surfaces are represented as triangular meshes. Basically, for a
triangular face ABC on the mesh with edge lengths a,b,c, we do not treat it as a
planar triangle in the Euclidean space, but rather a triangle in Hyperbolic space.
All the angles in the triangle can then be calculated using hyperbolic cosine law, and
the discrete Gaussian curvature on each vertex is defined as the difference between
2π and the summation of all the corner angles surrounding the vertex.

We associate each vertex vi with a circle of radius γi. Two circles centered
at the end vertices of an edge ei j intersect at an angle Φi j. The edge length of ei j

equals li j =
√

γ2
i + γ2

j +2cosΦi j.
Conformal maps transform infinitesimal circles to infinitesimal circles and pre-

serve the intersection angles among the circles. Therefore, we only modify the
circle radii γi and keep the intersection angles Φi j. Let

ui =

{
lnγi χ(S) = 0
ln tanh γi

2 χ(S) < 0
,

The discrete Ricci flow is similar to the continuous Ricci flow in the form:

dui

dt
=−Ki,

where Ki is the Gaussian curvature at vi.
The Ricci flow will converge [57], such that all discrete Gaussian curvatures

are constant, and the edge lengths approximate the uniformization metric.
If the surface S is equipped with the uniformization metric, then S can be

isometrically and periodically embedded in the following three canonical spaces,
the unit sphere for χ(S) > 0, the plane for χ(S) = 0, and the hyperbolic space χ(S) <
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0. When χ(S) = 0 the metric is called flat metric since curvature is zero everywhere,
and when χ(S) < 0, it is called the hyperbolic metric. In Figure 26, we demonstrate
the hyperbolic embedding of the two-hole torus model.

We use the Poincaré hyperbolic disk model to represent the hyperbolic space
H

2. The Poincaré hyperbolic disk is a two-dimensional space defined in the unit
disk {z ∈ C : |z| < 1} on the complex plane C with hyperbolic metric. The hyper-
bolic metric is defined as

ds2 =
dzdz̄

(1− z̄z)2 .

The geodesics (hyperbolic lines) in the Poincaré disk are Euclidean circular arcs
perpendicular to the boundary |z| = 1. The rigid motions in the hyperbolic plane
are the Möbius transformations z→ w,z ∈ C with the form

w = eiθ z− z0

1− z̄0
, (8)

where z0 is an arbitrary point inside the unit disk, and θ is a rotation angle. This
formula rigidly transforms the hyperbolic disk so that the point z0 is moved to the
origin (the middle and right in Figure 26).

5.5 Map Optimization

With the uniformization metric defined on the target mesh S2, we can perform
the heat diffusion procedure to optimize the initial map. Because of the constant
curvature distribution under the uniformization metric, our relaxation will not get
stuck in local minima. An arbitrary initial map can be used as the start of our
optimization procedure; it can be stretched and distorted, or even contain local flip-
overs. Our optimization procedure (Section 5.5.2) converges to a unique bijective
global optimum robustly; more discussion about this will be given in Section 5.6.4,
and the rigorous proof is given in the Appendix.

In Figure 30, we visualize the distortion of the initial mapping from the am-
phora model to the vase model by texture mapping and displaying the connectivity.
The checkerboard texture mapped is distorted (irregular pattern as shown in the top
left image) by this initial mapping. This initial mapping, like all methods based on
cutting, induces great distortions near the boundary. By relaxing each vertex on the
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dynamic charts discussed in the following section, we alleviate the distortions all
over the mesh and reach a global minimum.

5.5.1 Chart Construction

In order to smooth the mapping between S1 and S2, we need to redistribute
vertices of S1 on the domain of S2 following the heat diffusion flow. We can ei-
ther embed the whole S2 onto C (genus one) or H

2 (higher genus) and perform the
redistribution globally; or directly flow over local charts equipped with uniformiza-
tion metric. In this work, we use the second method: dynamically constructing a
set of overlapping local charts on S2 and perform relaxation within these charts.
Compared with using one global patch, the dynamical local charts method has two
important advantages:

• The vertices may need to flow across the cutting boundary to relax the energy.
On one parameter patch domain, it is difficult to perform the relaxation across
the boundary.

• Globally embedding the target mesh onto a large patch is numerically less
accurate, especially for hyperbolic metric. The local embedding of small
charts is more precise.

For each vertex v1 on S1, we create at least one chart on S2 that covers the
images of its 1-ring on S1, meaning that the chart contains all faces onto which the
v1’s 1-ring are mapped.

As shown in Figure 31, to construct a covering chart for the 1-ring of a vertex
on S1, we first map the vertices of the 1-ring to S2. Each vertex in this 1-ring is
mapped to a face on S2. Given this set of faces, we find a patch on S2 that con-
tains these faces and is homeomorphic to a disk. We first compute an approximate
geodesic distance from the ‘center’ face (red) to all other faces. Then we add the
faces to the chart through Breadth First Search (BFS) while maintaining disk topol-
ogy. Faces which are closer to the ‘center’ face are given higher priority during the
BFS. After the chart has been constructed, we tile it in C (or H

2, according to the
genus of the mesh). In this way, we get a locally constructed, yet globally pa-
rameterized chart, extracted as a small subset of the continuous global parameter
domain. During the relaxation, the mapping of vertices and their 1-ring can change,
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Figure 31: The Dynamic Covering Chart on S2. Given a vertex V and its one-ring on S1,
the left figure shows a covering chart on S2: the vertex V is mapped to the red face; its
one-ring neighbors are mapped to the yellow faces. The right figure shows the domain of
the chart. The white arrow indicates the gradient direction of the harmonic energy.

Figure 32: Local Parameterization VS Global Uniformization Metric (Map the Torus to
the Rocker Arm). Top row: side-by-side comparison between local approach and global
approach. Bottom row: temporal statistics of convergence performance.

new charts are dynamically created when necessary; old charts which are unused
for a user-specified amount of time are removed from memory on the fly.
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This is Not Local Parameterization. Note that chart-based approaches have
been used in local-parameterization-based remeshing [116,124]. And our approach
is fundamentally different from them in that we are not locally parameterizing
these one-ring charts, but directly embedding the pre-computed uniformization met-
ric. Local parameterization computes the flattening of charts every time separately,
while we use the global metric so that a globally consistent covering is achieved.
With the uniformization metric, we trivially get the flattening of each local chart
by tiling it in a proper local patch domain (Figure 26). In other words, the pre-
computed metric already defines all the edge lengths in the mesh of the given chart;
we only conduct a tiling of this triangular mesh.

The relaxation result demonstrates the key difference between local param-
eterization and our approach: relaxation based on local parameterization will get
stuck locally, while using a globally consistent uniformization metric guarantees
the global convergence. To demonstrate this, we perform experiments as shown in
Figure 32. Compared with the relaxation on the uniformization metric (right), the
relaxation using local parameterization1 (left) will get stuck in some local optimum,
and cannot produce the desirable result.

5.5.2 Relaxation

We let the skin ‘flow’ on the target planar domain so that the harmonic en-
ergy is minimized. This is performed via an iterative heat diffusion (relaxation)
procedure. The discrete harmonic energy of a map f is defined as

E( f ) =
∑

i

E( f ) =
∑

i, j

wi j| f (v j)− f (vi)|
2,

where | · | is the norm with respect to Euclidean metric and wi j’s are the discrete
harmonic cotangent weights. We use the gradient descent method to minimize the
harmonic energy. In each single relaxation step, a vertex is moved in the domain
following the gradient of harmonic energy by the Laplacian operator, which is de-
fined as

∆ f =
∑

j∈Ni

wi j( f (v j)− f (vi)),

1Local parameterization of the charts onto circular disks
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where Ni is the index of neighboring vertices and f = ω is the composed map as
given in Equation 6. Therefore, the vertex in the domain is moving towards the new
position:

f ′(vi) = f (vi)+∆ f .

During the iteration procedure, the harmonic energy (from the source mesh to the
target domain) monotonically decreases. For genus one meshes, which are embed-
ded in C under uniformization metric, these operators can be used directly. For
higher genus meshes embedded in H

2, we still use this Euclidean Laplacian opera-
tor to relieve the harmonic energy after an isometric transformation in H

2, which is
also called the Möbius transformation. The reason that we can approximate hyper-
bolic Laplacian operators using Euclidean Laplacian operators had been discussed
in the previous Section 5.2.4. With the Möbius transformation we rigidly transform
the domain of the local chart so that the parameterization of the vertex being re-
laxed coincides with the center of the Poincarè disk(Figure 26). Near the origin, the
hyperbolic metric ds = 2|dz|

1−|z|2 only differs by a constant factor from the Euclidean
metric and thus our Euclidean Laplacian operator is a linear approximation to the
Hyperbolic Laplacian operator in this relaxation region. (The local chart is usually
small, so the approximation has high precision.) For numerical issue, we change
the f value on each vertex to the target using a step size 0.5, i.e. f ′(vi) = f (vi)+

∆ f
2 .

5.6 Discussions on Mapping Performance and Prop-
erty

5.6.1 Mapping Quality Measurement

Harmonic energy is a natural energy to measure the stretching energy induced
by the mapping. A physically meaningful mapping in reality ought to minimize the
harmonic energy.

When the conformal mapping from S1 to S2 does not exist, the quasi-conformal
mapping f maps circular regions around a local point into ellipses. The ratio of the
major to the minor axis is called the dilatation D at this point. We use a discrete



CHAPTER 5. Globally Optimal Surface Mapping 91

variance D′ to measure the conformality of this mapping. The definition is as fol-
lows.

Given a local triangle (q1,q2,q3),qi = (xi,yi,zi) of the original mesh mapped
onto a triangle (p1, p2, p3), pi =(ui,vi) on 2D. The interior discrete mapping S(p)=

S(u,v) = q is represented by

S(p) = (〈p, p2, p3〉q1 + 〈p, p3, p1〉q2 + 〈p, p1, p2〉q3)/〈p1, p2, p3〉,

where 〈a,b,c〉 denotes the area of triangle abc. The partial derivatives of the Jaco-
bian are

Su = (q1(v2− v3)+q2(v3− v1)+q3(v1− v2))/(2〈p1, p2, p3〉).

and
Sv = (q1(u3−u2)+q2(u1−u3)+q3(u2−u1))/(2〈p1, p2, p3〉).

The larger singular value Γ and smaller singular value γ of the Jacobian are given
respectively [102]:

Γ,γ =

√
E +G±

√
(E−G)2 +4F2

2
,

where E,F,G are terms for the first fundamental form.
We compute D′ on each triangle using D′ = Γ

γ . The maximal value of D′ of
the mapping on the surfaces is determined by their geometry. As we mentioned
above, in the genus one case, the harmonic map we get is the extremal quasi-
conformal map that minimizes the angular distortion. We test our mapping perfor-
mance against the theoretical bound using the following experiment. Given two tori
T1 and T2; T1 has minor and major radii 0.5 and 2 respectively, while T2 has these
radii 0.5 and 1.5. T1 and T2 can be conformally mapped onto two 2D rectangles
R1(a1,b2) and R2(a2,b2), where (ai,bi) are the width and length of the rectangle.
The extremal quasi-conformal mapping between T1 and T2 has the lowest theoreti-
cal bound given by the modules ratio of T1 and T2. In our setting above, these two
modules are 0.3531 and 0.5762, meaning the theoretically optimal D′ bound be-
tween T1 and T2 is 1.632. We plot the performance of our mapping in Figure 34(c)
(red curve). The x-direction shows the iteration numbers and the y-direction shows
the global quasi-conformal distortions.
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5.6.2 Homotopy Classes of Initial Mappings

When an arbitrary initial mapping is built up, the homotopy class of the map-
ping is determined. The subsequent optimization procedure (Section 5.5) reaches a
unique optimized result in this same class. The slicing order of loops in the two sys-
tems of loops decides the homotopy class of the mapping. Usually, if we arbitrarily
pick an order, an optimized result will be reached in that corresponding homotopy
class; but this kind of arbitrary surface mapping may not be what we intuitively
want. We naturally want handles mapped to handles consistently. To get consistent
slicing orders of systems of loops, first, we can compute the canonical handle and
tunnel loops using the method of [22]; second, with these handle and tunnel loops,
we can decide the homotopy class of each closed loop in the system of loops, this
pair loops in two systems of loops, providing the consistent slicing orders in two
systems of loops. In this way, we correspond handles in the source surface with
handles in the target surface. For two genus g surfaces, there will be g-factorial
consistent mappings, any of them is visually reasonable.

Furthermore, in many applications, users may want more precise controls on
the mapping. For example, sometimes handles of the source surface need to be
mapped to some specific handles of the target surface. Also, users may require
some feature points to be mapped. Both of these can be easily implemented in our
framework as follows.

5.6.3 Constraints and User Controls

To assure the handle-correspondence, users only need to pick up a correspond-
ing slicing order of two systems of loops, on the 4g-gon disk, users can easily set
up this order once the systems of loops are computed.

In order to have constraints on the feature points, existing parameteriza-
tion techniques for topological disk surfaces with constraint points, for example,
MAPS [78] can be applied for the initial map. Also, many existing surface map-
ping frameworks [12, 73, 78, 85, 99, 106] allow feature point correspondence, and
they can be applied as the initial map. In our work, since we use Carner et al.’s
method [12] to generate the initial map, we also apply their method for the initial
feature registration.
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Starting from the initial mapping with feature points matched correspondingly,
we can perform the optimization without relaxing the feature points and prevent any
neighboring vertices’ movements that violate the validity of the triangular mesh
during the relaxation.

The insertion of landmarks definitely may cause larger distortion in the neigh-
borhood, because now the relaxation cannot be performed freely and the resulting
mapping is not globally optimized. The detailed discussion about feature corre-
spondence is beyond the focus of this work. We will explore along this direction in
our future work.

5.6.4 Global Convergence and Performance

Figure 33: Global Uniqueness of the Optimized Map in the same Homotopy Class.

Our surface mapping optimization converges robustly. Under the same ho-
motopy class, different initial cuttings/mappings reach the same global optimized
result. A rigorous proof is given in the appendix. We also perform experiments
and visualize this in Figure 33: from left to right, the first column shows the origi-
nal Amphora model and its texture; the second column are two different initial cut
paths. In the third column, we transfer the Amphora’s textures onto the target vase
model using the corresponding initial maps. Their angular distortion distributions
(average D′) are color-coded in the fourth column. Transferred textures on the Vase
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model using the final maps are illustrated in the fifth column. Their final maps are
almost the same and have the final distortion color-coded in the rightmost column.
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Figure 34: Mapping Performance. (a) Harmonic energy during iterations. (b) and (c)
Global quasi-conformal distortion (average of D′) during iterations.

We plot more experimental performances on computations of our mappings in
Figure 34: (a) and (b) show the harmonic energy and quasi-conformal distortion
convergence during the iteration, respectively. In (c), we perform experiments on
genus-1 tori to further quantatively test the robustness and validity of our mapping.
The mapping from T1 to T2 discussed in the previous Section 5.6.1 with a different
initial cutting converges to the same result (green). The mapping from a torus T ′

1

(different resolution with T1) to T2 is plotted in the blue curve. The inverse mapping
(T2 → T1, which has the same quasi-conformality bound in optimum) is plotted in
brown.

5.6.5 Connectivity Refinement

Since we only use the connectivity of the source mesh S1, geometry loss
may happen in some areas due to under sampling, most likely in high curva-
ture (e.g. sharp feature) areas on S2. In order to capture such geometric de-
tails, we simply apply an adaptive remeshing algorithm similar to [73]. We lo-
cally modify the connectivity of the mesh using edge splits, guided by the fol-
lowing two simple error terms which capture the geometric proximity between S′

2

and S2: Elength(ei j) = |φ(vi)−φ(v j)|, and Enorm(ei j) = [1−N(vi) ·N(v j)]/2, where
φ : S1 → S2 and N(v) is the normal of vertex v. The first term measures the length
of an edge on S′2: longer edges are more likely to miss geometric details and we
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Figure 35: Connectivity Refinement. Left column: the initial mapping from Star model to
Rocker-Arm model; Right column: the refined connectivity.

prefer splitting them early. The second term measures the normal deviation of the
two vertices of the edge: a greater value implies that the edge crosses a more curved
region or a region with sharp features. We iteratively split edges with large com-
bined error. The new vertex generated by the edge split is then mapped back to the
surface of the target mesh via the parameterized chart that covers this edge.

In Figure 35, we can see that the model created by mapping the ‘Star’ to the
‘Rocker Arm’, after being refined for 10 iterations, approximates the geometry of
the target mesh much better: the left column is the initial mapping while the right
column shows the refined connectivity. The number of vertices only increases by a
fraction of 11.04%. Our simple error metric is easy to implement as we do not have
to maintain the inverse map from S2 to S1 in this case.

5.7 Experimental Results

We need an effective way to clearly visualize a mapping between two surfaces
because showing region correspondence as well as the distortion are challenging.
We use a texture with the color band marks embedded in coordinate lines to aid in
this visualization. The texture is first mapped onto the source model, each vertex
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Figure 36: Visualization of Surface Mapping between a Teapot Model and a Cup Model.

on the source surface has its “UV” coordinates. When vertices are mapped to the
target surface, their “UV” coordinates are carried. In this way, texture mapping
on the source surface is transferred onto the target surface, the color bands on the
target surface visualize the region correspondence, and the perpendicularity of the
checker board or coordinate lines shows the angular distortion. Figure 36 visualizes
mapping effect from genus-2 a teapot model to a cup model. This idea is used for
surfaces texture transfer in Chapter 7.

5.7.1 Algorithm Performance

Our optimization is an iterative algorithm; the total number of iteration steps
is controlled by a user-defined threshold. In Figure 34, we set the threshold of
quasi-conformality to be 1e− 6; in real applications, we can use lower precisions.
We perform our algorithm on a MS Windows XP PC with dual Intel Xeon 2.6GHz
CPUs, 2GB RAM. The one-iteration running time for most real examples we pre-
sented in this chapter are shown in table 2.
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Models(S1/S2) Genus Number of Vertices Running Time (Seconds)
2-Torus/Vase 2 3.5k/5k 0.31

Amphora/Vase 2 10k/5k 1.4
RockerArm/Torus 1 15k/14.4k 6.88

Teapot/Cup 2 7.5k/10k 0.95
Polycube/Sculpture 3 3.5k/7k 0.49

Greek/4-Torus 4 14.8k/10k 5.07
Polycube/Buddha 6 18k/13.3k 10.23

Table 2: Running Time for Each Iteration of Globally Optimal Surface Mapping.

5.8 Chapter Summary

Comparison with Existing Work. Compared with other state-of-the-art tech-
niques, our approach has several key improvements.

First, our surface mapping framework is based on rigorous mathematical foun-
dation and analysis, unlike most current methods that only guarantee to reach local
optima, our method globally minimizes the stretching and converges to a unique
result.

Second, since the existing methods follow the general principle of slicing the
surface open into subregions, the initial segmentation directly determines the map-
ping result. In contrast, our method, because of its global uniqueness, is not con-
trolled by the quality of initial mappings; therefore, it is much more general than
other existing techniques.

Third, existing work primarily focuses on low genus surfaces and few take the
homotopy types into account. Carner et al. [12] also targeted high genus surfaces,
and they studied the mapping with different homotopy classes. However, topol-
ogy information is the primary information they used for mapping computation and
therefore their stretching energy is not optimized. In our current work, the com-
parison between initial and final mapping shows a great improvement between the
initial mapping generated by their method and our globally optimized result. This
can be easily visualized through our optimization procedure in the accompanying
video.

This chapter has documented our new method for computing a globally op-
timal map between surfaces of non-trivial topology. Based on the mathematical
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advances in computing the uniformization metric using intrinsic geometric struc-
ture, we can globally perform heat diffusion to alleviate the stretching and the av-
erage angle distortion of the map as much as possible. As we discussed above, our
algorithm has many key advantages over existing work.

Our mapping algorithm can also serve as a ubiquitous tool for a wider range
of applications such as shape registration, morphing, matching, comparison, cross-
surface parameterization for spline construction or efficient physically based simu-
lation over regular domains. These applications will be shown in Chapter 7.



Chapter 6

Harmonic Volumetric Mapping using
Method of Fundamental Solution

In previous chapters, we extensively studied the limitation of current surface
mapping computation techniques, and presented both local and global approaches
for surface mapping which contributes to surface mapping computation. In this
chapter, we generalize our shape mapping framework from surface data to volu-
metric data.

Such a generalization is natural. Many scanned data in our surrounding phys-
ical world have abundant interior information which could be valuable in many ap-
plications. For example, MRI data for clinical analysis are volumetric ones. There-
fore, surface mapping which only considers data by their boundary shell is certainly
not enough, we often need to compute mappings between volumetric data.

As we introduced in Chapter 2, compared to surface mapping, volumetric map-
ping is less studied due to its technical challenge, especially the computational
complexity. Most existing work lacks efficiency and robustness. In this chapter,
we introduce a new meshless boundary method called the Method of Fundamental
Solution (MFS), which is simple, robust, and efficient.

99
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6.1 Introduction

Despite the necessity of surface mapping techniques, interior volume data car-
ries abundant information including material, density, texture, etc. (beyond pure
geometric information). Therefore, not only the thin-shell of the object but the en-
tire solid model should be taken into account in many cases of solid modeling, shape
analysis, and physically-based computation. For example, most of the physically-
based deformation techniques are volume-driven. Volumetric mapping between
objects instead of surface mapping, serves as an enabling and more accurate tool
for this task. In spite of this strong need, due to its technical challenges and com-
putational complexity, much less work has been actually carried out in volumetric
mapping compared with the surface case. In this work, we aim to pursue a robust,
efficient, and accurate algorithm to compute the harmonic volumetric mapping be-
tween two solid objects. We make use of the boundary method, in which the behav-
ior of the interior region of the volumetric object is determined only by its surface
boundary, thus naturally reducing this volumetric problem to that of its boundary
surface scale. The harmonicity of the mapping is guaranteed by the method of
fundamental solution.

Harmonicity of a mapping characterizes smoothness, which is a natural phe-
nomenon that depicts the minimized physical stretching energy configuration that
arises from the difference between two shapes. In the surface case, harmonic map-
ping tries to achieve this by vanishing on the source surface the Laplace-Beltrami
operator. Intuitively speaking, finding a harmonic mapping between two surfaces
with a fixed boundary correspondence is like computing the final deformation of a
rubber membrane. The membrane has the source surface as its relaxed shape con-
figuration, and is wrapped onto the target shape with certain fixed boundary con-
straints. The final mapping that leads to the physically-natural deformation should
minimize the harmonic energy and is what the algorithm aims to achieve. Similarly,
for harmonic volumetric mapping, we fix the boundary mapping, which is now a
surface mapping between shells of the two given solid objects. Then we seek a
smooth interior region mapping by enforcing the 3D Laplacian everywhere to be
zero. This is equivalent to computing the final stable configuration of a solid rubber
subject to its boundary shape constraints.
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Unlike the surface case, the variational procedure that minimizes a predefined
energy needs to adjust a much larger number of points, which usually results in an
intolerable computation complexity. According to the maximum principle of har-
monic functions, the interior value of a smooth field is determined by its boundary
setting. Therefore, we can use a boundary method called the method of fundamental
solution (MFS) to solve this problem, hence reducing the volumetric solid problem
to just the boundary surface scale. To our best knowledge, this is the first work in
the computer graphics area that has employed MFS to solve the volumetric mapping
problem.

Our specific contributions in volumetric mapping computation are two-fold:

1. We develop a simple and efficient algorithm that can robustly and automati-
cally compute the harmonic volumetric mapping from one volumetric object
to another.

2. To the best of our knowledge, this is the first attempt to bring the method of
fundamental solution into the graphics and solid modeling community. The
technique is an efficient meshless boundary method with great potential. Ear-
lier work provides some theoretical analysis from the point of view of mathe-
matics and mechanical engineering, but it lacks experimental validation. We
conduct experiments on the problem of computing harmonic volumetric map-
ping using this method; and we provide some valuable suggestions for using
this method in the modeling field.

We introduce the theory and algorithm of our method in Section 6.2, followed
by Section 6.3 with some implementation details and property discussions. Finally,
we show our experimental results in Section 6.4 and summarize this chapter in
Section 6.5.

6.2 Theory and Algorithm

We pursue a volumetric map ~f from a given solid object M1 to another object
M2, this is equivalent to building up a smooth one-to-one correspondence between
M1 and M2. The boundary constraint is a surface mapping ~f ′ from the boundary
surface of M1, denoted as ∂M1, to the boundary surface of M2, ∂M2.
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We focus on objects embedded in R
3. So the mapping ~f (p) = q (p ∈M1, and

q ∈ M2) can be decomposed into three separate components for three axes direc-
tions, i.e., ~f = ( f 0, f 1, f 2). In each direction, f i maps the point p to q’s correspond-
ing component qi. This problem is then reduced to the computation of three separate
f i(i = 0,1,2), with the given boundary mapping constraints ~f ′ = ( f ′0, f ′1, f ′2).

6.2.1 An Intuitive Explanation of Our Idea

We first introduce our idea in an intuitive way through the electrostatics point
of view. In each direction, our target is the harmonic function f i. The harmonicity,
or smoothness, can be simulated using an electric field. Suppose we have lots of
electronic particles, if we can place them in R

3 as we like, and set arbitrary charge
amount on each of them, then we can flexibly control the electric field we get. An
important fact is that the potential of electric fields is guaranteed to be harmonic.
Therefore, once the electric field generated by this particle system simulates the
boundary condition, in other words, the potential on each boundary point p ∈ ∂M1

satisfies the boundary constraint f ′i(p), then we can use the potential of this particle
system to simulate the mapping component f i in the interior region.

Electric fields provide a correct simulation for harmonicity because its poten-
tial satisfies the vanishing Laplacian operator everywhere, except for the positions
of those particles, where the potential is infinite. Therefore, we call these parti-
cles singularity points or source points; and in order to make the potential valid
everywhere in the interior region of M1, we should place them outside of M1.

Since we know the harmonicity is guaranteed, we are only left to enforce the
boundary conditions f ′i. We fix positions of all particles, and the charge amount
carried on each particle provides the freedom we have for enforcing the boundary
constraints. This fitting process, as we will show in the coming Section 6.2.2, leads
to a linear system. We place many estimation points on the boundary ∂M1, and
compute the charge amount distribution which can result in the desired potential
given by f ′i. By solving a linear system, we obtain the best fit charge amount
distribution, and get the simulation of f i.

Intuitively, if we have dense enough particles placed outside of M1, the smooth
boundary condition can always be well approximated, only with exceptions in
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some extremely discontinuous boundary regions. For more details, we refer readers
to [32].

This section gives an intuitive explanation and pipeline of our idea. In the com-
ing section, we will rigorously formulate our algorithm, and address its theoretical
foundation.

6.2.2 Formulations

We rigorously formulate our volumetric mapping problem as follows:
Given a one-to-one mapping ~f ′ between boundary surfaces ∂M1 and ∂M2:

~f ′(p) = q, p ∈ ∂M1,q ∈ ∂M2, our goal is to compute a mapping ~f : M1 → M2

such that

{
∆~f (p) = 0 p ∈M1,

~f (p) = ~f ′(p) p ∈ ∂M1.

where the operator ∆ is defined continuously in 3D as

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ,

and ∆~f = 0 for ~f = ( f 0, f 1, f 2) is equivalent to ∆ f i = 0 for all i = 0,1,2.
Harmonicity and Kernel Function. Since ∆ is a linear self-adjoint differen-

tial operator, we can compute its Green Function. We denote gi(x) = ∆ f i(x), and
denote ∆−1 as the inverse of the operator ∆, so that ∆∆−1 = I where I is the identity
operator; then we can write the solution as f i(x) = ∆−1gi(x).

Note that f i(x) = ∆−1gi(x) = ∆−1 ∫ δ(x−x′)gi(x′)dx′, where δ is the Dirac
function. If we make a kernel function K(x,x′) that satisfies ∆K(x,x′) = δ(x−x′).
We can rewrite the solution to f i following the above equation in terms of the Kernel
function as

f i(x) =

∫
K(x,x′)gi(x′)dx′.

Such a kernel function K is known as the Green’s function associated with the
3D Laplacian operator ∆, and has the formula: K(x,x′) = 1

4π
1

|x−x′| , where |x− x′|
denotes the distance between the points x and x′.
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Since f i in the interior region is fully determined by the boundary values,
we discretely solve it using Method of Fundamental Solution (MFS) [26] with the
above kernel. The linear nature of the Laplacian operator indicates that a boundary-
based method such as MFS is most suitable since the interior harmonicity is now
represented in an exact manner; we only need to enforce the given boundary condi-
tion function ~f ′, i.e., f ′i for each f i. The MFS approximation equation to evaluate
f i on an interior or boundary point p is

f i(~wi,~Q;p) =

Ns∑

n=1

wi
n ·K(p,Qn),p ∈M1. (9)

In this above equation, ~Q is a 3Ns-dimensional vector concatenating posi-
tions of all Ns three-dimensional source points. ~wi = (wi

1,w
i
2, · · · ,w

i
Ns

)T is the
Ns-dimensional vector representing the charge amount distribution on these source
points. It is firstly unknown and is what we want to solve.

Note that source points Qn ∈ R
3,n = 1, · · · ,Ns should lie outside of M1, in

other words, they are located on the boundary ∂M̃1 of a region M̃1 containing M1

(i.e. M1 ⊂ M̃1). Once no source points are inside M1, an arbitrary charge distribu-
tion ~w can guarantee in an exact manner the vanishing Laplacian operator on f i in
the interior region of M1, only violating the boundary conditions.

Boundary Fitting. To enforce the boundary conditions, we pursue a special
set of charge amounts ~w, such that the images of points on ∂M1 satisfy the boundary
map ~f ′. This boundary fitting process is performed as follows, we sample a set
of estimation points on the M1’s boundary surface ∂M1. These points are called
constraint points or collocation points. Unlike the aforementioned source points
which are electronic particles and will be used for estimating electric potentials in
interior region of the solid object, collocation points are different types of points;
the configuration of source points does not affect the configuration of collocation
points and vice versa.

Boundary conditions are represented by enforcing collocation points to be
mapped to the boundary of the target model ∂M2. Their images are given
with ~f ′. For example, for Nc number of collocation points P1,P2, · · · ,PNc: in
each axis direction, we denote their image vector as ~bi = {bi

1,bi
2, · · · ,bi

Nc}
T =

{ f ′i(P1), f ′i(P2), · · · , f ′i(PNc)}
T . According to Equation 9, this vector ~bi can
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be represented by A~wi, where A is called the coefficient matrix, whose element
Auv = K(Pu,Qv) (Pu is a collocation point while Qv is a source point). These im-
ages should satisfy the boundary condition, i.e., equal to ~bi. Therefore, the above
fitting process reduces to a linear system on each axis direction:

A~wi = ~bi.

We solve three linear systems in three different axis directions separately. The
resulting vectors (w0, w1, w2) corresponding to the three different charge distribu-
tions are used to compose our final harmonic volumetric mapping.

6.2.3 Algorithm

With the discussion above, we can formulate our algorithm. The input are two
given solid objects M1, M2 and their boundary surface mapping ~f ′ : ∂M1 → ∂M2.
The output is a harmonic volumetric mapping ~f : M1→M2 s.t. on boundary ~f (p) =
~f ′(p),p ∈ ∂M1 and in the interior region: ∂2~f

∂x2 + ∂2~f
∂y2 + ∂2~f

∂z2 = 0. ~f is decomposed to
( f 0, f 1, f 2), and we solve each f i separately as follows.

Harmonic Volumetric Mapping.
In: M1, M2, ~f ′.

Out: f i for i = 0,1,2.
1. Place the source points and the collocation points. (Section 6.3.1 and Sec-

tion 6.3.7).
2. Compute the coefficient matrix A. Its element Auv takes the value of the

kernel function K on the collocation point Pu and the source point Qv.
3. Decompose the coefficient matrix using Singular Value Decomposition. (Sec-

tion 6.3.2 and Section 6.3.6).
4. Solve this linear system under the given boundary mapping constraints f ′i

using the decomposition result from Step 3, and get f i represented by ~wi in
the form of Equation 9.

The resulting volumetric mapping is harmonic, guaranteed by the kernel func-
tion. It minimizes the harmonic energy, which will be discussed in Section 6.3.3.
We assume the boundary surface mapping ~f ′ is given as an input, and in Sec-
tion 6.3.4, we briefly discuss how to obtain this surface mapping with existing
techniques.
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6.3 Implementation and Discussion

(a) (c)

(b) (d) (e)

Figure 37: Volumetric harmonic mapping from the solid Igea model to the solid sphere
model. (a) shows the source and target objects. As shown in (b), source points are placed
on an offset surface. The harmonic energy distribution of the mapping is color-coded and
illustrated on two different cross-sections ((c) and (d)), and the deformation energy distri-
bution is illustrated over a cross-section ((e)).

6.3.1 Source Points and Collocation Points Placement

In the first step of our algorithm, we place source points uniformly on an offset
surface ∂M̃1 outside the boundary surface ∂M1, as shown in Figure 37(b). The
following procedure is a robust way to create such a sampling.

We place collocation points by sampling boundary points p ∈ ∂M1 uniformly.
The reason that we conduct the source and collocation points placement in this way
will be discussed in Section 6.3.7.



CHAPTER 6. Harmonic Volumetric Mapping using Method of Fundamental Solution 107

Offset Surface Generating Algorithm.
In: M1

Out: A uniform sampling on the offset surface ∂M̃1.
1. Compute the implicit distance field in R

3 with respect to the given object
boundary surface ∂M1 using technique introduced in [76]. We get a distance
evaluation function dist(p) so that the signed distance from any point p ∈R

3

to ∂M1 can be computed efficiently.
2. Build an offset surface ∂M̃1 using Bloomenthal’s polygonization method [9].

The Bloomenthal’s polygonization method takes an implicit distance eval-
uation function dist2(p) defined in R

3 as the input. Therefore, to build
the offset surface ∂M̃1 with distance d to ∂M1, we set such input function
dist2(p) = dist(p)+d.

3. Uniformly sample n points on mesh ∂M̃1. We use the uniform sampling tech-
nique introduced in [93].

6.3.2 Solving the Linear System

As discussed in Section 6.2.2, we want to solve the linear system A~wi = ~bi.
The element in the coefficient matrix A is the value of the kernel function on each
collocation point, which is almost never zero, making the matrix quite dense. The
matrix may be ill-conditioned [100], in which case, regular linear system solvers
such as Gaussian elimination or LU decompositions usually fail to produce a stable
solution. We use Singular Value Decomposition (SVD) because it approaches ac-
curate and stable results even when the coefficient matrix is highly ill-conditioned.
Another advantage of using SVD is that once we have decomposed the matrix, we
can reuse the result for the rapid re-computation of new mappings whenever bound-
ary conditions change. This efficiency also arises from the boundary method, and
a detailed discussion about this aspect will be given in Section 6.3.6. More advan-
tages of using SVD in MFS are discussed in [100].

6.3.3 Energy of Volumetric Mapping

Harmonic Energy. Harmonic Energy measures the smoothness of the map-
ping. It is measured by the integration of the square of the gradient over the entire
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interior region domain M1. Both the source and the target models should be nor-
malized to unit size in volume before computing the harmonic energy. The total
harmonic energy of this mapping is

∫

M1

< ∇~f ,∇~f > dx. (10)

We built a volumetric grid structure and compute the gradient of the mapping
on each grid point, then use the following formula to approximate the energy:

∑

pu,v,w∈M1

||∇~f (pu,v,w)||2 · vol(pu,v,w), (11)

where vol(pu,v,w) is the interior volume on grid point pu,v,w, and vol(pu,v,w) equals
the volume of the intersection of M1 and the small grid cube Cubepu,v,w centered
at pu,v,w. Here, the edge length of Cubepu,v,w is the distance between two adjacent
grids. We can use the volume of Cubepu,v,w to approximate vol(pu,v,w). With the
increase of the grid sampling density, the value of Equation (11) is asymptotic to
Equation (10). We use the simple volume grid data structure because it is easy
to implement and efficient in tracing function values on neighboring grid points:
the gradient of the harmonic mapping on each grid point can be represented by
three vectors: ∇~f = (∇ f 0,∇ f 1,∇ f 2), so ||∇~f (pu,v,w)||2 = ||∇ f 0||2 + ||∇ f 1||2 +

||∇ f 2||2. In the example of Figure 37, the harmonic energy distribution of the
volumetric mapping is colorized in (c) and (d) over two different cross-sections.
The color-coding scheme in this chapter is shown in the bar in (c): red represents
the maximum while blue represents the minimum.

Deformation Energy. Once a correspondence between two solid objects is
created, deformation around each interior voxel point can be estimated easily. This
provides us a formal mechanism to compute the energy required to deform one
object to another. In Chapter 8 we will use this energy to measure the difference
between two shapes.

To compute the deformation energy, we start from the classical strain and stress
tensor analysis. Green’s strain tensor ε is used to quantify the local strain under-
going a 3-dimensional deformation. If an interior point p is mapped to q, then the
3×3 tensor ε has its elements εi j represented by

εi j =
∂q
∂pi

·
∂q
∂p j

−δi j,
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where 0≤ i, j ≤ 2 are indices in axis directions, δi j is the Kronecker delta:

δi j =

{
1 : i = j
0 : i 6= j

.

According to differential geometry, this strain tensor is invariant under rigid
transformation and vanishes under identity mapping. The stress tensor represents
the information of the internal forces under the deformation. A simplified linear
form of elastic stress with the assumption of isotropy is defined as

σi j =
3∑

k=1

λεkkδi j +2µεi j,

where λ and µ are two Lamé constants of material, respectively, representing rigid-
ity and resistance to volume dilation change. For example, in most of our experi-
ments, we make use of the parameter of rubber, i.e., λ = 0.0335,µ = 0.0224. Fi-
nally, the elastic potential density η on this point p is measured by

η(p) =
1
2

3∑

i=1

3∑

i=1

σi jεi j,

representing the internal elastic energy under the shape change. Similar to Equation
(11), the total deformation energy of this volumetric mapping is computed by

∑

pu,v,w∈M1

η(pu,v,w) · vol(pu,v,w). (12)

Figure 37(e) color-codes the deformation energy distribution of the volumetric map-
ping from the solid Igea model to the solid sphere.

6.3.4 Boundary Conditions

The boundary condition of our harmonic volumetric mapping is a surface map-
ping between ∂M1 and ∂M2. We assume that it is provided as an input. Existing
surface mapping techniques [62, 73, 78, 85, 99, 106, 130] can be used to create the
boundary surface mapping. On one hand, the efficiency of the surface mapping
is important. Given the boundary map, our following algorithm is fast and fully
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automatic; therefore, to make the entire volumetric mapping pipeline efficient and
automatic, we hope this surface mapping creation is simple and automatic as well.
On the other hand, surface mapping with relatively low distortion is preferred. As
we know, the quality of a harmonic mapping depends on the boundary condition.
How to generate a suitable boundary surface mapping and how the quality of this
mapping affects the volume mapping are worthy of more comprehensive research
studies. Since the detailed discussion goes beyond the scope of this work, we will
only briefly explain how we get a relatively good initial surface mapping. We con-
sider mapping between solid objects with the same topology, that is, the objects
have pairs of corresponding boundary surfaces. Consider the mapping between
each surface pair: (1) If the boundary surfaces are closed genus-0 surfaces, the
conformal surface mapping suffices. This mapping can be computed/combined
through a common sphere domain, similar to techniques in [41] and [62]. (2) If
the surfaces are of higher genus, we prefer a globally smooth mapping. In this
work, we compute their quasi-conformal mapping as the initial boundary condition
using techniques introduced in Chapter 5( [81]).

To demonstrate the different volumetric mappings results from different
boundary surface mappings, we perform experiments and show results in Fig 38.
The harmonic volumetric mappings from the solid Teapot model to the solid Cup
model have different harmonicity under two different boundary surface mappings
(as shown in (a)). We render the mesh connectivity for the points on the target
boundary surfaces to better visualize the differences ((c) and (e)). The second
boundary mapping (e) is smoother than the first one (c); it leads to a volumetric
mapping (f) with smaller harmonic energy. The harmonic energy distributions for
two volumetric mappings are visualized on the Teapot model from the same cross-
section. The color-coding scheme for (d) and (f) is depicted in (b).

In the future work, we plan to examine the technical issue of how the surface
mapping and the volumetric mapping are related in a quantitative way, and how
one mapping guides the computation of the other. By adjusting the surface bound-
ary mapping condition accordingly, we will pursue the free boundary volumetric
mapping with minimum harmonic energy.
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6.3.5 Comparison with Previous Work

We compare our mapping results with the method introduced in [42]. In their
work, the discretized harmonic energy is defined on the tetrahedral mesh to guide
their variational procedure. Once we compute our mapping, we can evaluate the
mapping on any interior point using Equation (9). We tetrahedralize our volume
data (in our work we produce the tetrahedralization using [112]), then compare our
results with Gu et al.’s work in [42]. As shown in Figure 39, the volumetric map-
ping from the solid Igea model (a) to a solid sphere can be visualized by transfer-
ring the tetrahedral mesh of the Igea to the solid sphere. Our resulting tetrahedral
mesh on sphere (b) appears to be smoother than the mesh produced in [42] (c).
This smoothness is visualized from the distributions of the discretized harmonic
energy [42] of volumetric mappings, which are color-coded in (b) and (c) using a
uniform scheme (d).

Another important advantage of our algorithm is the meshless property. The
discretization accuracy and the computational cost of [42] depend heavily on the
tetrahedralization quality of the source object: dense tetrahedralization necessarily
results in high computational complexity; and irregular tetrahedralization leads to
large numerical error in approximating discretized harmonic energy. In contrast,
our algorithm is independent of the connectivity, and thus is more flexible and can
be adapted to any volumetric data set with spatial-varying resolution.

6.3.6 Computational Efficiency

The computation cost of our algorithm is equivalent to solving three linear
systems. More importantly, since we decompose the coefficient matrix A from the
MFS using Singular Value Decomposition (Section 6.3.2), only one decomposition
is necessary. Furthermore, it is very efficient to recompute the volumetric mapping
under different boundary conditions.

Given a new boundary configuration ~b′, the corresponding ~w′ for the new vol-
umetric mapping can be computed directly from A−1~b′. With the decomposition
results, A−1 = VW−1UT , where the matrix W−1 is a diagonal matrix that can be
computed directly from W . Therefore, under a new boundary condition, the de-
composition matrix results can be reused, only a multiplication operation between
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A−1 and ~b′ is required.
This shows one more advantage of the boundary method over variational meth-

ods which apply iterations on the entire volume whenever the boundary condition
is given. Under a new boundary condition, variational methods can not avoid a
time-consuming re-computation. In our applications shown later in Chapter 8, we
take full advantage of our computational efficiency to compute a large number of
sequential volumetric mappings in a temporal deformation sequence, by decompos-
ing A only once.

6.3.7 Source, Collocation Points, and Mapping Efficiency

One important issue that we have to address is how many source points we
need to use and where to place them. Using our electric field model, imagine that
we want to refine our control of the electric field behavior, the more particles (i.e.,
source points) we have, naturally the more refined result we should be able to get
with increasing computational complexity. On the other hand, numerically, their
positions also matter. If all source points are placed in one position, there would
be no way that we can achieve more satisfactory results with more source points.
The positions of these source points actually determine the behavior of the coef-
ficient matrix A, which can be highly ill-conditioned [72]. The condition number
of the matrix generally increases as the distance from M̃1 to M1 increases, though
the accuracy of the MFS approximation increases under this situation [33]. That
is to say, distant source points give a smoother approximation, but unavoidably in-
troduce larger numerical error. Theoretically optimal results of source positions
are unknown at present; current literatures either suggest placing source points uni-
formly on a sphere within three times the diameter of M1 [33] [11] or on an offset
surface of M1 [119]. Real-world computations in the mechanical engineering field
usually choose the source and collocation points in a trial-and-error manner or with
the help of human experiences. Inspired by the above pioneering work, we use ex-
perimental results to find a suitable setting rule for our mapping problem, and guide
the source and collocation points’ placement in order to bridge the gap between
theoretical results and practical common senses.
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We conduct experiments in the following three aspects to find a suitable con-
figuration for our volumetric mapping problem:
(1) the shape of the surface M̃1 (source points are sampled on an offset surface or a
sphere);
(2) the distance from M1 to M̃1;
(3) the number of the source points and collocation points.

The experimental results are shown in charts plotted in Figure 41. In this
figure, Chart (a) plots the boundary constraint error when source points are placed
on a sphere (see Figure 40(a)), while Chart (b) shows the case when source points
are on an offset surface (see Figure 40(b)). In Chart (a), the x-axis is the radius of
the sphere, denoted as R-Ratio, represented by the ratio of the sphere radius over the
object size, and y-axis shows the boundary constraint error, denoted as C-Error. C-
Error is computed using:

∑
p || f

′(p)− f (p)||2 for all collocation points p. C-Error
measures the total fitting error of our volumetric mapping to the given boundary
constraints. Therefore, we use its value to measure the quality of our mapping.
Chart (b) shows the case that source points are placed on the offset surface; the
x-axis is the distance from ∂M̃1 to ∂M1; its value, denoted as O-Distance, is the
ratio of the distance over the source model size. Their corresponding C-Errors are
plotted in y-axis. Chart (c) shows the harmonic energy values (y-axis) under the
different offset surface settings (x-axis).

Our statistical data demonstrates that: (1) The closer to the model boundary
source points are placed, the smaller the boundary constraint error can be achieved.
(2) Placing source points on the sphere is not as good as on an offset surface. Be-
cause we require that the object be totally inside the interior of the sphere, the radius
of the sphere needs to be large enough and the average distance will be much larger
compared with the offset surface placement. (3) If source points are placed on an
offset surface that is too close to the model, the approximation for the fundamental
solution is becoming unstable, which is shown from the values of their harmonic
energies (Chart (c)). Therefore, in our experiments and applications, we usually
place source points on an offset surface with 0.1 O-Distance.

Chart (d) further shows how the numbers of source points and constraint points
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affect the boundary constraint errors. We define two ratios cRatio and sRatio, re-
spectively. The cRatio is defined as the number of collocation points over the num-
ber of boundary points. The sRatio is defined as the number of source points over
the number of boundary points. The x-axis is the sRatio, and the y-axis shows
the boundary constraint error. Different curves show the cases using different cRa-
tio. We can clearly see from this chart: the larger these ratios are, the smaller the
boundary constraint error will be. On the other hand, fewer source points create an
over-constrained system which will be solved in a much shorter time. In our exper-
iments, we usually set cRatio larger than 0.8 but sRatio around 0.6 for an efficient
but well-fitted result for large models.

Unlike fixing the source/collocation points as discussed above, the positions
of source points and collocation points can also be considered as unknowns in an
optimization procedure, in which case they have to be computed along with the
unknown weights during the optimization procedure. This necessarily complicates
the entire solver and makes the computation procedure highly non-linear.

Near a boundary region whose target shape is seriously wrinkled, the har-
monic mapping may map interior points to the outside of the target object if the
source/collocation points nearby are not dense enough. Such a situation can be
effectively remedied by increasing the density of source/collocation points around
this region adaptively.

6.4 Experimental Results

We first show some experimental results of harmonic volumetric mappings
in Figure 42, Figure 43, and Figure 44. In Figure 42, a solid Pierrot model (a) is
mapped to a solid sphere (b). The mapping result can be visualized using (c) and (d).
In (c), the distance field of the interior region of the solid sphere is color-coded using
the scheme shown in Figure 37(c). Here in Figure 42(d), each volume point p in
solid Pierrot model (a) is mapped to an interior point q in solid sphere model (b). We
transfer the color of q to the position of p. This color-coded distance field on source
model transferred from the target model provides an intuitive way to visualize the
volumetric mapping result. We call this visualization method Color-coded Distance
Field Transfer. Another mapping example from the solid Buddha model (e) to
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the solid sphere (b) is computed and visualized in the same way as shown in (f).
One more example, mapping from the solid Max-Planck model (g) to the solid
sphere is visualized similarly in (h). We also use another method, tetrahedral mesh,
to visualize volumetric maps. In (i), a tetrahedralization of the solid Max-Planck
model (g) is illustrated in one cross-section. Under the volumetric mapping, each
vertex of the tetrahedral mesh is mapped to a new position inside the solid sphere.
Its corresponding tetrahedral mesh cross-section is shown in (j).

In Figure 43, we visualize the volumetric mapping from a solid polycube
model (a) to a solid Buddha model (e). We color-code the distance field of the
interior region of Buddha and show it from three cross-sections in (b), (c) and (d);
(f), (g) and (h) correspondingly show the Transferred Color-coded Distance Field.
Figure 44 shows another high genus volumetric mapping example from a Sculp-
ture model (a) to the polycube model (b). (c) color-codes the distance field of the
polycube while (d) shows the Transferred Color-coded Distance Field.

6.5 Chapter Summary

Based on the method of fundamental solution (MFS), we design a simple,
robust, and fully automatic meshless algorithm to compute harmonic volumetric
maps. To the best of our knowledge, it is the first attempt to bring this method into
graphics and geometric modeling community. We conduct experiments to evaluate
the performance of the method of fundamental solution on the harmonic volumetric
mapping problem in this chapter; accordingly, we suggest the practical rules and
develop the effective algorithm on the MFS settings.

Building a correspondence between solid models and canonical/regular objects
provides a natural mechanism to facilitate scientific computations and graphical
simulations. If we exploit the regular structure of mapped volumetric domains (such
as polycubes) and utilize graphics hardware acceleration, physically-based simu-
lations (such as simulating volumetric solid deformations or fluids in deformable
bodies) can be efficiently performed.

As discussed in Section 6.3.4, our current harmonic volumetric map depends
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on the boundary surface mapping. In Figure 38, we show that the volumetric map-
ping and its boundary surface mapping are closely related to each other. The har-
monic energy of the volumetric map keeps decreasing with boundary surface map-
ping getting more smooth. In the future work, we plan to use the harmonic vol-
umetric mapping to guide the variational process of surface mapping towards the
global energy optimization (both for boundaries and solid interiors). Another possi-
ble extension is not to fix the positions of source points and collocation points. We
can treat them as unknown variables in the MFS procedure. Although this results
in a nonlinear optimization process, it may also lead to a free-boundary volumetric
mapping procedure for better mapping results.
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(a) (b)

(c) (d)

(e) (f)

Figure 38: Different boundary conditions lead to different volumetric mapping results even
for the same target object. Volumetric mappings from the solid Teapot model to the solid
Cup model (a) under two different boundary conditions ((c) and (e)) have different har-
monicity as shown in (d) and (f) (energy distributions depicted on the Teapot model, re-
spectively). (c) and (e) highlight different surface mappings with magnified views.
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(a) (b) (c) (d)

Figure 39: Comparison with previous work. The initial tetrahedralization of the solid Igea
model is shown in (a). In (b), the tetrahedral mesh on the solid sphere is transferred from
the Igea model using our volumetric mapping algorithm. The result computed using Wang
et al.’s variational technique is shown in (c). The harmonic energy distributions of two
volumetric mappings are color-coded on resultant tetrahedral mesh using a uniform color-
coding scheme as shown in (d).

(a) (b)

Figure 40: Placement of Source Points. Source points are sampled either on a bounding
sphere (a) or on an offset surface of the given model (b).
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Figure 41: Volumetric mappings under different source/collocation point configurations.
(a) shows the boundary constraint error (C-Error) under different R-Ratio when source
points are placed on spheres. (b) and (c) plot the constraint error (b) and harmonic energy (c)
respectively under different O-Distance when source points are placed on offset surfaces.
In (d), constraint error under different numbers of source points and collocation points are
compared. The x-axis is the sRatio. The y-axis shows the constraint error. Different curves
show the cases under different cRatio.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 42: Volumetric mappings to the canonical sphere. The Pierrot model (a) is mapped
to the solid sphere (b); (c) shows the color-coded distance field in the sphere. (d) visualizes
the volumetric mapping: each point p in the original model of (a) is mapped to a point
q inside the solid sphere; the target position q’s color (as shown in (c)) is transferred and
depicted on the corresponding p position (as shown in (d)). Similar examples of mapping
from genus-0 Buddha model (e) and the Max-Planck model (g) to the sphere (b) are visual-
ized in (f) and (h) by this same color-coded distance field transfer method. The tetrahedral
mesh on the Max-Planck model (i) is mapped onto the solid sphere (j). Their corresponding
cross-sections are visualized.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 43: Harmonic volumetric mapping from a solid polycube model (a) to the solid
Buddha model (e). (f), (g) and (h) show the color-coded distance field of the Buddha, from
three cross-sections respectively. This color-coded distance field is transferred from the
Buddha to the PolyCube model as shown in (b), (c) and (d) correspondingly.
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(a) (b) (c) (d)

Figure 44: Harmonic volumetric mapping from the solid Sculpture model (a) to a solid
polycube model (b). (c) color-codes the distance field of the polycube. In (d), the transferred
color-coded distance field is visualized on the Sculpture model.
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Surface Mapping Applications

7.1 Texture Transfer

Figure 45: Texture Transfer using the Global Optimized Surface Mapping.

As we shown in 5.7, we use the texture transferring method to effectively vi-
sualize the mapping behavior and its distortion. Such texture as well as material
transfer is straightforward as an application of our mapping. We show an exam-
ple in Figure 45, which transfers the texture from the amphora model to the vase
model. Since our globally optimized mapping has minimized distortions and global

123
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smoothness, such a transplant is physically natural, which potentially provides a
powerful tool for reusing or transferring information such as material properties,
BRDF, etc. between models towards information integration.

7.2 Shape Morphing

Morphing, as an application had been addressed and shown in section 4.6.
It is also another intuitive way to visualize mapping and to evaluate its distortion
since the behavior of the morph can provide an intuitive visual judgement of the
mapping quality. Mapping with lower distortion usually leads to better morphing
effect. Figure 46 shows an example. The initial mapping is created by the technique
of [12]. Based on the initial map, we can conduct linear interpolation and generate
the morph as shown in the left column. The generated sequence is obviously not
attractive. We then optimize the surface map, and regenerate the morph. As shown
in the right column, the new morph sequence demonstrates symmetric deformation
and is visually much more smooth and pleasing.

Rigorously speaking, the morphing sequence generated by mapping with
lower distortions means that the deformation sequence is closer to the ‘geodesic’
in the space of shapes, minimizes unnecessary distortion during the interpolation of
shapes, and thus provides better visualization results.

In graphics applications, shape morphing is widely studied as a direct appli-
cation for surface mapping. Users usually want to have control of the morphing
via feature or constraint points. To achieve this goal, as we previously showed in
Section 4.6 and indicated in Section 5.6.3, we can use the existing techniques for
feature alignments during the initial mapping process; then we should keep this
correspondence during the optimization afterward.

7.3 Cross Surface Parameterization

This chapter introduce our application of surface mapping in cross surface
parameterization, or more specifically, in generating canonical mappings from sur-
faces to simplified domains. Our method conveniently creates canonical mappings
from arbitrary surfaces to simplified domains with globally optimized distortions.
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(a) Source Surface

(b) Initial: 50% Morph (d) Optimized: 50% Morph

(c) Initial: Target (e) Optimized: Target

Figure 46: Optimized Mapping for more Natural Morph. The source surface is shown in
(a). If the initial map is used, the Morph generated is depicted in the left column: (b) shows
the 50% morph, (c) shows the map on the target surface. When the surface map is optimized
using our algorithm, the result is shown in the right column ((d) and (e)).

The canonical domain can be polycubes [120], so that graphics processing such
as parameterization with lower distortion, polycube spline generation, etc. can be
applied based on our mapping. The domain can also be some canonical N-hole
tori [36], so that topologically equivalent shapes can be processed or analyzed on
this smooth common domain.
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Figure 47: Mapping from a Polycube to the Happy Buddha Model. From left to right, we
visualize the texture on the Polycube, the transferred texture on the Buddha by the initial
mapping, and the transferred texture by the final mapping.

Figure 48: Optimized Surface Mapping from the Greek Model to the 4-Torus. The left col-
umn shows the front and back of the Greek model with its texture; the right column shows
the front and back of the target surface (4-Torus), respectively, with texture transferred by
our mapping; the middle column shows the 50% morph from the Greek to the 4-Torus under
our mapping.

In Figure 47, we visualize the polycube map for the genus-6 Buddha model.
Our method successfully deforms arbitrarily built initial maps with severe distor-
tions to a global optimum. In Figure 48, we show our mapping from the genus-4
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Figure 49: Conformal surface mapping and meshless simulation of the explosion of Iphi-
genie.

Greek model to a canonical 4-torus.
Our method has an important advantage over direct projection methods for

computing polycube map such as [120] in that our method is intrinsic. Therefore
it is more robust, invariant with models’ spatial positions and sizes. Furthermore,
when shapes are with complicated topology and geometry, or the source surface is
greatly different than the target surface (for example, Greek and Torus as shown
above), direct projection method is highly error-prone, but our method can robustly
handle it.

7.3.1 Physically Based Simulation based on Point Cloud Map-
ping

Surface mapping also benefits physically based simulation. In [47], we confor-
mally map point cloud surface data onto some regular planar domain, and conduct
thin-shell simulation such as physically based deformation and cracking on the do-
main directly. Partial differential equations can be solved more efficiently on the
planar domain. Figure 49 shows an example, we conformally map the Iphigenie
surface model onto a planar rectangle. The iso-u, iso-v, and the u-v planar parame-
ter are color-coded and visualized in the left three figures, respectively. The fourth
figure shows the traced integral curve connecting two boundaries in the parameteri-
zation step. The right most figure shows the crack pattern of the parametric domain
in the first (top) and final (bottom) step of the simulation. Further technical details
for this work is beyond the scope of this dissertation, the author recommends the
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(a) Polycube map (b) Polycube T-spline (c) T-junctions on (d) Close-up of
polycube spline control points

Figure 50: Polycube spline for the Isidore Horse model.

interested readers to our paper [47] for more deduction and implementation issues.

7.3.2 Spline Construction based on Polycube Maps

A special canonical domain shape is called polycube. Mapping a surface with
complicated geometry onto polycubes was first addressed by Tarini et al. in [120].
It has many applications in geometric processing and modeling research. With
our globally optimized surface mapping, polycube mapping with lower distortion
than [120] can be computed, and we use the polycube as a domain to construct
T-spline. Such a least distorted polycube mapping leads to a precise “one-piece”
shape representation without any cutting and gluing. Figure 50 shows an example
of the polycube spline for the Isidore Horse model. The conformal polycube map,
visualized in (a), serves as the parametric domain for the spline. The T-splines
obtained via affine structure induced by the polycube map are shown in (b) and (c).
The red curves on the spline surface in (c) highlight the T-junctions. The close-up of
the spline model overlaid with the control points is illustrated in (d). This polycube
T-spline contains 12158 control points. The original model contains 150K vertices.
The root-mean-square error is 0.07% of the diagonal of the model. Technical details
for polycube map and spline will not be addressed in this document, but can be
found in our paper [127].
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(a) (b) (c) (d)

Figure 51: Surface Registration for Matching (Torus vs Rocker Arm model). (a) Mean
curvature distributions of Rocker Arm (red represents the maximum while blue represents
the minimum); (2) Mean curvature distributions of Torus; (c) Mean curvature difference
distributions, visualized on Torus; (d) Conformal stretching factor, visualized on Torus.

1 2 3 4 5 6 7
2 0 3.59 22.72 20.81 59.70 19.43
3 0 21.99 21.29 59.38 18.72
4 0 10.98 39.66 19.65
5 0 44.45 16.91
6 0 32.89
7 0

Figure 52: Shape Comparison using Conformal Representation. The first rows show all
shapes to be compared. The second row and the first left column are their indices. The
table has the symmetry property, and the numbers measure the distance between models in
a pairwise manner.

7.4 Shape Matching and Comparison

Our optimal surface mapping creates global, low angular-distortion correspon-
dence between two models. With such a non-rigid registration, we can easily match
two shapes and clearly visualize their difference distributions for potential subse-
quent analysis purposes.

Conformal Representation. A natural way to characterize the matching be-
tween two surfaces is called conformal representation [41]. According to [41],
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when a surface is mapped onto a target surface, if the resulting conformal repre-
sentation is fixed, the original source surface is rigidly determined. The conformal
representation contains two terms: mean curvature H, and conformal factor λ. The
conformal factor λ of a point p under a mapping f represents the local area change,
i.e., the stretching of the map. Discretely, if we denote the area of the one ring neigh-
bor of p as A(p), and the area of one ring neighbor of f (p) on the target surface as
A( f (p)). λ(p) can be approximated by the ratio of A( f (p)) over A(p). In our work,
although our surface map is not fully angular-distortion-free (according to Rieman-
nian geometry, between most high genus models, these kinds of conformal maps do
not exist), our global optimization aims to best relieve angle distortions. Thus the
(H,λ) defined on our map is a well approximated and meaningful representation.

Shape Matching. In Figure 51, we visualize our surface matching between
a torus and a Rocker Arm model using the above conformal representation. (a)

and (b) color-code the mean curvature distributions of Rocker Arm and Torus, re-
spectively. We color-code the mean curvature difference in (c) and the stretching
factor distribution in (d). The color-coding of two terms of conformal representa-
tion shows us where and how much the two surfaces are intrinsically different in a
visually meaningful way. Since the globally integrated matching energy is smaller
when the mapping is with lower stretching/distortions, our optimized surface map-
ping provides a great registration for the above mechanism. On the other hand, the
registration by our mapping, with global smoothness and low distortion properties,
can be used as a preprocessing step for various other matching techniques. It serves
as a general shape registration and visualization tool.

Shape Comparison and Retrieval. Given many shapes in a database, we can
match and compare them via canonical domains. This provides an efficient and
geometrically meaningful way to measure their differences. Here we perform an
experiment on a database containing 6 different genus-2 geometric shapes: Vase,
Amphora, Teapot, Cup, Feline, and Cube. We use a two-hole torus as the canoni-
cal domain for all these genus two surfaces. We first compute mappings between
these surfaces and the 2-torus domain, and then in a pairwise fashion compare these
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surfaces via the domain using the matching energy defined by the conformal repre-
sentation:

E(S1,S2) =

∫

p∈T
||λ1(p)−λ2(p)||2 +β||H1(p)−H2(p)||2d p,

where S1 and S2 are two shapes being compared, T is the canonical torus domain,
λ is the conformal factor, and H is the mean curvature. In Figure 52, we can see the
models in the first row. The matching energies, used as their distance, are shown in
the table. Since the symmetry of the distance is obviously preserved, we only show
the upper-right part of the table.
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Volumetric Mapping Applications

8.1 Information Transfer

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 53: Volumetric harmonic mapping for information reuse. The material on the solid
Moai model is preserved when it deforms during the animation ((a)-(e)). (f)-(j) show this
consistency (via one corresponding cross-section) on the original tetrahedral mesh and the
mapped meshes during its morphing procedure.

Once the correspondence between two volume models has been established,
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we can easily transfer information from one object to the other. The previous Color-
coded Distance Field Transfer method already demonstrates this. The information
being transferred can be all kinds of volumetric functions, and not just limited to
color; it can be material, solid texture, density, and even more complicated ones
such as gradient or strain/stress tensors. Therefore, it has potential applications in
a larger scope. Figure 53 shows another example. When the Moai model deforms,
the material information on the original model is transferred and preserved by the
deformed model during the deformation. In the second row, we also show the corre-
sponding tetrahedral mesh from the same corresponding cross-section to visualize
this transfer. We believe harmonic volumetric mapping will provide automatic in-
terior region registration on real temporal or deforming data in the future.

8.2 Shape Matching and Analysis

Figure 54: Energy analysis of deformation sequences. The horse model is deformed in
a sequence. The deformation energies are calculated (red circles). The distribution of
the deformation energy required for each model in the sequence can be illustrated on the
reference model.

A direct application of mapping is registration. Based on a good registra-
tion, we can easily measure the difference between two objects in a quantitative
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way and perform both qualitative and quantitative analysis. We use an example to
demonstrate the usage of volumetric mappings on shape matching and analysis. In
this experiment, we analyze a horse-gallop deformation sequence. We use the ver-
tex correspondence provided in the deformation sequence as the boundary surface
mapping. Then we compute the volumetric harmonic mappings from the refer-
enced, static-standing horse model to all the deformed poses in a sequence. With
the mapping, we can compute their deformation energies. This energy naturally
measures the distance from the deformed shape to the reference model. Since we
have mappings between objects, we can get not only a numerical distance value,
but also the precise error distribution between two shapes. This distribution can be
clearly visualized under this deformation, where stretching and bending concentrate
over the shape. Note that, as we discussed in Section 6.3.6, this procedure, with the
computation of a large number of volumetric mappings, is performed efficiently by
reusing one decomposition result.

The deformation energies of the horse gallop sequence are shown in Figure 54.
We can easily see from the energy chart that there are four running cycles in the
data-set of the deformation sequence. And with the deformation energy, we nat-
urally measure how different each model is from the reference model. The distri-
butions of the deformation energy between the reference model and the deformed
model are color-coded and illustrated. Given a sampled model in the deformation
sequence, which regions have high deformation energy concentration can be clearly
visualized from the color-coded distribution of the deformation energy, as we de-
picted on the original model with cross-sections. Without this correspondence, this
kind of visualization and analysis is impossible.

8.3 Tetrahedral Remeshing

Regular tetrahedral mesh structure is highly desirable for finite element analy-
sis and physically-based deformations or simulations. This is because regular tetra-
hedralization provides great precision and efficiency for geometry processing and
physically-based computation [121]. With our volumetric mapping, we can easily
transfer the tetrahedralization of an object to another object. We call this tetrahedral
remeshing. As shown in Figure 55, we use the regular tetrahedral mesh of a solid
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(a) (b) (c)

(d) (e) (f)

Figure 55: Harmonic Volumetric Mapping for Tetrahedral Remeshing. (a), (b) and (c)
show the tetrahedral mesh of the polycube model in Figure 43(a) from three cross-sections.
It is utilized to remesh the solid Buddha model (Figure 43(e)); and the results are visualized
with corresponding cross-sections in (d), (e) and (f).
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polycube model (Figure 43(a)) to remesh the solid Buddha model (Figure 43(e)).
(a), (b) and (c) show the tetrahedral mesh on the polycube from three cross-sections;
(d), (e) and (f) show the remeshed solid Buddha model. Tetrahedralization for reg-
ular shapes like polycubes can be easily created as shown in this example. So using
our mapping, we can generate regular tetrahedral structure for complicated objects.

8.4 Volume Texture Synthesis

We can also synthesize volumetric texture using our method. As shown in
Figure 56, given a 2D texture image, we get the surface texture mapping, then the
texture applied on the surface can be smoothly propagated to the interior regions of
solid objects. To synthesize the interior texture, we only need to make a change on
the boundary condition; instead of using the target boundary points positions, we
use the texture (u,v) coordinates. Figure 56(a) shows an solid Igea model; and we
map a 2D image texture onto its surface as shown in (c). This texture is smoothly
extrapolated into the interior region using our method. (e) illustrates the synthesized
solid texture. (b), (d) and (f) show another example on the Pensatore model. From
the given 2D image, we can synthesize the volumetric texture to decorate the solid
interior for graphics applications.



CHAPTER 8. Volumetric Mapping Applications 137

(a) (b)

(c) (d)

(e) (f)

Figure 56: Solid texture synthesis. In the first column, the solid Igea model and a cor-
responding 2D image texture are shown in (a). The surface texture is firstly mapped to
the Igea as illustrated in (c). We synthesize the interior solid texture and illustrate a cross-
section view in (e). Similarly, in the second column, the solid Pensatore model and its 2D
texture are shown in (b), the surface texture mapping and the synthesized solid textures are
visualized in (d) and (f).
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Conclusion and Future Work

In this dissertation, we have document our recent research results, ongoing re-
search and future research directions of our shape matching framework. Our frame-
work contributes to the study on curves comparison, surface matching, and vol-
ume data mapping. Theoretically, it provides fundamental progress in understand-
ing, analysis, and computational algorithms on shape mapping problems. From the
perspectives of its applications, we also demonstrate the great potential of shape
mapping by utilizing our mapping result into many valuable applications.

9.1 Contribution Summary

The contributions of our shape mapping framework are summarized in this
section.

By studying curves on surfaces:

1.1 We design an elegant signature to describe curves embedded on surfaces.
This signature provides a classification of all simple closed curves, measuring
how they segment the surface.

1.2 We apply the signature to surface segmentation, and use it for segmentation
matching and segmentation transfer.

1.3 Based on this, we present a semi-automatic surface matching framework,
which is currently applied on genus zero surfaces but we believe can be gen-
eralized to surfaces with higher genus.
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This above framework is not fully automatic and seems inadequate for surface
mapping purpose. By further studying surface segmentation:

2.1 We present a surface decomposition scheme, called canonical pants decom-
position, applicable for surfaces with arbitrary topology types. With our de-
composition method, different surfaces with complicated but same topology
can be decomposed into consistent sets of sub-regions for further piecewise
mapping, with great automation.

2.2 We design a surface mapping framework, based on the canonical decompo-
sition scheme, that can flexibly handle the topological surgery (mapping be-
tween surfaces with different topologies) and feature alignment, through the
least and intuitive user involvement.

Piecewise surface mapping has several advantages (intuition, efficiency, and
feature alignment), but it lacks global smoothness and global distortion control.
Therefore, globally optimal surface mapping is worthy of research, and

3.1 We present a rigorous global computation algorithm that computes the opti-
mal mapping between surfaces with nontrivial topology.

3.2 We prove both theoretically and experimentally the global optimality and
uniqueness of our mapping result as well as the global convergence of our
algorithm.

By generalizing our surface mapping computation to volumetric data:

4.1 We introduce a meshless method (called method of fundamental solution)
into computer graphics community. The method is simple and robust, and
greatly improves the efficiency of the volumetric mapping computation.

4.2 We demonstrate that our method works for solid objects in R
3 with bound-

ary surfaces of arbitrary topology types, and can be generalized to data with
feature points or layer alignments.
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9.2 Limitations of Our Work and Future Improve-
ment

There are also limitations of our current methods, and we plan to work on them
in the future.

1. The signatures for curves on surfaces currently only work on genus-0 sur-
faces, however, we believe it can be generalized to higher genus cases, and
we will pursue that in the future.

2. Our global optimization of surface mapping currently relies on gradient de-
scent iterations, which takes a long time to converge to the global optimal. In
the future, we will work on other more efficient iterative numerical methods,
or use GPU or parallel computing techniques to improve its efficiency.

3. Our harmonic volumetric mapping results rely on the boundary surface map-
pings, and we have not yet integrated the feature points/layer alignment. In
the future, we will studied how the boundary surface map affects the volumet-
ric mapping result and try to compute the harmonic volumetric mapping with
the best harmonicity. We will also integrate feature alignment for different
application requirements.

4. Our current shape mapping framework only considers purely geometric in-
formation. Taking into account other information such as material, domain
knowledge etc is meaningful. In the future, we will explore along this direc-
tion, especially for volumetric mapping.

9.3 Future Work

Besides the above directions that aims to improve our current computation
algorithms, there are many more immediate and valuable research topics based on
our current framework. We plan to explore along two directions. One is to find more
applications of our shape mapping framework; while another is to further explore
shape mapping computation methodologies.
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9.3.1 Exploring Mapping Applications

As we have seen in Chapter 7 and Chapter 8, shape mapping has already shown
its great potential in many graphics and modeling applications. We can easily see
many immediate and direct applications on shape mapping.

Medical Data Registration and Data Fusion. We would like to utilize map-
ping as a registration tool with real medical data for clinical analysis. In our pre-
vious work [51], we use spherical mapping to register the deforming brain cortex
surfaces, and visualize the displacement of the evolving cortex surface. Since now
we have more advanced techniques for mapping surfaces with complicated topol-
ogy, and techniques for mapping volumetric data. We would like to generalize the
medical data set to others such as lungs or hearts (could be either surface or volu-
metric data).

Virtual Surgical Simulation. Virtual surgical simulation can be very useful
for surgeon training and surgery rehearsal. Physically based simulation usually pro-
vides real effects but costs lots of computational efforts. As our previous work [47],
this simulation can be converted onto some regular domain with mapping (param-
eterization) techniques, for great efficiency improvement. We plan to follow the
same philosophy, and compute the surgical simulation on canonical domains. In a
long run, this could be further combined with haptic environments and technologies
to lead to a virtual reality system aiming for surgeon training.

Deformation Transfer. An interesting application in the modeling field is to
effectively reuse the deforming sequence [114]. This deformation sequence of a
given model can be obtained by motion capture devices, many research works have
been conducted on effectively transplanting this sequence onto another object. With
volumetric mapping, we can transplant the interior deformation gradient tensors,
and integrate them to compute the deformed sequence on the second object.

Shape Retrieval. The number of virtual digital models is exploding nowadays
on the internet, and shape retrieval is becoming a hot topic in graphics and mod-
eling fields. With the shape mapping as registration, objects can be compared and
retrieved from database. In order to utilize our mapping algorithm for real retrieval
applications, we may need to integrate learning techniques for possible semantics
effects. Also, to improve the registration, comparison, and retrieval efficiency, we
plan to find/generate regular shapes to classify shapes in a database into groups, and
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further apply some clustering algorithms.
Geometric Data Compression. Techniques such as geometry image [37, 54]

can be used for mesh compression. Via cross surface parameterization, we can
also re-sample (and get rid of mesh connectivity) surfaces on canonical domains
without cutting. Without tearing surfaces apart, compression and reconstruction
could be more effective.

9.3.2 Improving Mapping Computation Methodologies

In terms of computation methodology, I would also like to investigate both
theory and algorithmic aspects. I would like to further improve the effectiveness
and efficiency of our mapping computation.

Volumetric Pants Decomposition. The idea of pants decomposition is also
generalizable to volumetric data in the sense of solid “pants”. Decomposing volu-
metric data [15] help simplify the complexity of the computation; also, we should
be able to better control the local behavior of volumetric mapping, and improve the
efficiency and accuracy of the computation.

Free-boundary Harmonic Volumetric Mapping. The harmonic volumetric
mapping is determined by its boundary condition. Whether the globally optimized
surface mapping leads to the volumetric mapping with smallest harmonic energy is
not clear (and seems unnecessary). We would like to study the relationship between
the volumetric map and its boundary map, and try to compute the volumetric map
with best harmonicity, which leads to the most natural deformation energy compu-
tation between two objects.

Equiareal Mapping. In medical imaging, surface mapping with preserved
area distortion is useful for clinical analysis. However, a pure area-preserving map
is hard to control and lacks mature computation techniques because it has infinite
dimensions. We are working towards this goal by mapping surfaces with the com-
bination of angle and area preservation.

Shape Mapping Relied on More Than Geometry. Our current mapping
framework only considers pure geometry. It may be necessary to integrate more
information such as domain knowledge, or other techniques such as machine learn-
ing. We will explore along this direction as well.
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9.4 Concluding Remarks

These directions for future work, and the many other open problems that exist,
are sure to encourage interesting and exciting research in shape mapping for years
to come. As technical difficulties are overcome, and existing computational algo-
rithms are improved, the applications of shape mapping will increase in variety and
number. We are pleased to have taken the first step in uncovering the heretofore
untapped potential of shape mapping by presenting our framework to the graphics
and visual computing. It is our hope that this integrated approach and demonstrated
mapping applications will foster continued interest and research in this area. We
look forward to the continued exploration of shape mapping and predict a success-
ful future for it.
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morphing. In Proc. SIGGRAPH, pages 343–350, 1999.
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[101] N. Ray, W. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic global parameter-
ization. ACM Trans. Graph., 25(4):1460–1485, 2006.

[102] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping pro-
gressive meshes. In SIGGRAPH ’01, pages 409–416, 2001.
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Appendix
Convergence, One-to-one, and Uniqueness of
Our Globally Optimal Surface Mapping

In this appendix, we show our surface global optimization algorithm converges
to a globally unique one-to-one map with the minimal harmonic energy under the
uniformization metric. The pipeline is: (1) we demonstrate the existence of the
harmonic map between given surfaces S1 and S2 with same topology; (2) we show
if the final map we get is harmonic, then it is one-to-one, and globally unique; (3)
we will show our algorithm does converge to such a unique mapping with minimal
harmonic energy under uniformization metric.

Existence

Given two high genus surfaces S1 and S2 with same non-trivial topology. The
existence of the harmonic map is guaranteed by the following theorem

Theorem 4 Suppose that S1 and S2 are compact surfaces without boundary and
that h : S1 → S2 is a diffeomorphism. Then there exists a harmonic diffeomorphism
f : S1 → S2 isotopic to h. Furthermore, f is of least energy among all diffeomor-
phisms isotopic to h.

Detailed proof can be found in [60], page 176. Since our initial map is constructed
as a diffeomorphism between S1 and S2, the existence of harmonic map is guaran-
teed.

One-to-one and uniqueness

We show if the final map is harmonic, then it is a diffeomorphism (one-to-one
and differentiable) and has the global uniqueness. We prove in the third step that
we do reach a harmonic map. The following theorem guarantees the harmonic map
calculated in our algorithm is a diffeomorphism.
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Theorem 5 Let f : S1 → S2 be a harmonic map between closed oriented surfaces
of the same genus with degree equals±1. And KS2 ≤ 0, then f is a diffeomorphism.

Detailed proof can be found in [60], page 187, or [105], page 15. In our algorithm,
the initial map is constructed by matching the fundamental polygons of S1 and S2.
Therefore, each point on S2 has a unique pre-image on S1, hence, the degree of
the initial map is 1. The Gaussian curvature of the target surface is 0 (for genus-
1 surfaces) or −1 (for high genus surfaces), therefore if f is harmonic, then f is
one-to-one and differentiable.

The following theorem postulates the uniqueness of the map.

Corollary 6 Let u1,u2 be harmonic maps M → N of degree one between compact
surfaces without boundaries, with genus greater than one, where KN ≡ −1. If u1

and u2 are homotopic to each other, then u1 = u2.

The detailed proof can be found in [46], page 144 and [105], page 16. In our
algorithm, the homotopy class of the map is determined by the way to match the
fundamental polygons. The map is harmonic, the curvature on the target surface is
−1, therefore, the harmonic map is unique.

For genus-one surfaces, their uniformization metric is flat, which can be lifted
to its universal covering space. The universal cover can be embedded on the plane
isometrically. The fundamental polygons are parallelograms. A harmonic map
between two genus-one surfaces with their flat uniformization metrics induces a
map between their universal covering spaces, which is an affine transformation from
the plane to itself. The affine transformation maps the fundamental polygon of
the source surface to that of the target surface. Therefore, harmonic maps in a
homotopy class only differ by a translation. Each one is the equally optimal result.

Convergence

We prove our algorithm converge to a harmonic map. Harmonic energy of
a surface map is non-negative, namely, it has lower bound. Our relaxation process
reduces harmonic energy monotonically; therefore, it converges to a critical point of
the harmonic energy, which by definition is a harmonic map. As the aforementioned
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theorems show, there is no local minimum, and this critical point is globally unique.
Therefore, our method converges to the global unique harmonic map, and it is one-
to-one and differentiable.

For genus-one surfaces, this convergence proof also applies, and all the minima
are globally equal and globally optimal. Our minimization process will converge to
one of them.
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