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Abstract of the Dissertation
Self-Organization of heteroepitaxial islands during

crystal growth

by

Gajendra Pandey
Doctor of Philosophy

in

Mechanical Engineering
Stony Brook University

2007

Fabrication of regular nanostructures has been investigated for over a
decade with modest progress. Although there are varieties of methods for
fabricating nanostructures but very few of them are cost effective and less
time consuming. One of the commonly used methods is to use the concept of
self-organization which has drawn the attention of researchers over the past
few years. The present work is focused on the fabrication of nanostructures
by using self-organization for the arrangement of strained epitaxial islands de-
posited over a substrate. In isotropic conditions and on a defect free substrate,
deposited islands repel each other and the results in the formation of hexagonal
domains which meet at defects. The goal is to use the anisotropy to organize
the islands such that the defects developed in the isotropic case are reduced.
The focus is on in-plane anisotropies in surface stress and lattice mismatch
between the film and substrate materials. Starting from a configuration where
island sizes and position are random, evolution towards equilibrium through
mass transport via condensation/evaporation is simulated. An efficient nu-
merical method is obtained by reducing a model of square monolayer islands
of finite size to point dipoles that interact through their elastic fields. Models
for both the kinetics and energetics of the system are obtained by this reduc-
tion. It is found that the point source model is accurate for island separations
larger than about 3 times the width of an island. Anisotropy introduces orien-
tational preferences which enhance organization in cases of modest anisotropy
and cause islands to form into zigzagged lines in cases of high anisotropy. To
get control over the position of islands some defects in the form of disloca-
tions are introduced into the substrate. It is found that the dislocations field
modulates the elastic field of the system and hence induces the preferred lo-
cations for islands. The effect of selective area epitaxy is also studied. A
square-shaped region was selected in this work. The islands interact with the
elastic field of other islands and with itself and arrange into low energy or
stable configuration. Through this analysis some preferred positions of islands
is obtained.
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Chapter 1

Introduction

Self-assembly is a widely researched phenomenon for fabricating nano-scale

devices. The idea behind this approach is to allow physical processes to spon-

taneously build a device. A particular form of self-assembly that is suitable

for electronic and optoelectronic devices occurs when one crystalline material

is deposited epitaxially onto another. Growth occurs epitaxially when the de-

posited material uses the lattice of the substrate as a template for growth,

thus achieving a coherent interface between the two materials. In the case of a

lattice mismatch between the film and the substrate materials, the constraint

of epitaxy gives rise to residual stress. It is this stress that drives self-assembly

in these systems. The basic self-assembled unit is a cluster of atoms on the

substrate, called an island. Islands serve as building blocks for larger devices.

For example, islands of uniform size and random position can be used in op-

tical devices while systems with greater uniformity in island size as well as

position are required for many applications in the electronics industry. Other

devices require islands in a specific configuration, such as a square cell with

islands at the corners for use in quantum dot cellular automata. The main

challenge here is to obtain islands or quantum dots of desired size and orga-

nization. There are various methods available for positioning quantum dots.

Some researched methods include the manipulation of surface stress, elastic
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anisotropies, or defects to guide organization. Positioning of quantum dots can

also be controlled by introducing a pattern onto the substrate by using lithog-

raphy and ion-etching. The current investigation focuses on such methods for

the organization of epitaxial islands grown on a substrate.

1.1 Fabrication processes of nanostructures

The ongoing trend towards miniaturization has resulted in the development

of novel devices with exceptional characteristics and has established a large

research effort towards further miniaturization and, in particular, for the de-

velopment of reliable and cost-effective techniques to fabricate nanoscale struc-

tures. The quest for miniaturization has lead to tools such as the atomic force

microscope (AFM) and the scanning tunneling microscope (STM). Combined

with well-established fabrication processes such as electron beam lithography,

these instruments allow us to deliberately manipulate and manufacture nanos-

tructures on solid surface [1–3]. To provide the necessary background for un-

derstanding novel fabrication methods through self-assembly, direct methods

for micro-and nano-fabrication are first discussed.

1.1.1 Direct methods for fabrication of nanostructures

In the fabrication process of nanostructures using lithography (as shown schemat-

ically in Figure 1.1), a resist film, polymethylmethacrylate (PMMA), is first

spun onto a substrate (typically silicon). A high resolution electron beam

lithography system is used to expose patterns in the PMMA. The exposed

PMMA is developed in a cellosolve and methanol solution to form a resist

template on the substrate. The PMMA template is then used to selectively

etch nanostructures into the substrate. Besides etching, pattern can also be

formed using either a lift-off or electroplating process. In a lift-off process, a

metal film is first deposited onto the entire sample. The sample is then im-
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Figure 1.1: Schematic of a typical process for fabricating nanostructures using
ut and related technologies reproduced from Chou et al [1].

mersed in acetone that dissolves the PMMA template and lifts off the metal

on the PMMA surface, but not the metal on the substrate. In an electroplat-

ing process, a thin metal plating base is placed between the PMMA and the

substrate, and the PMMA template is removed after plating.

Drodofsky et al [2] generated various two-dimensional patterns by us-

ing a technique called atom lithography. In atom lithography, nanometer-scale

structures are generated on a surface by using optical elements for neutral

atomic beams. In contrast to conventional fabrication methods, where a re-

sist is exposed to radiation of charged particles or photons, atom lithography

directly deposits the structure on the surface. With optical lithography, the

resolution is limited by the wavelength of the light due to diffraction, however

atom lithography has a potentially higher resolution as atoms with thermal

kinetic energy typically have a de Broglie wavelength in the picometer range.

Unfortunately, this method takes an exceptionally long time due to its serial

nature.

A parallel technique is interference lithography. Nguyen et al [4] demon-

strated interference lithography to fabricate large-area, two-dimensional arrays
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of identical submicron metallic wires with high aspect ratios. These nanowire

arrays are grown by electrodeposition into nanochannel glass (NCG). They

controlled the geometric patterns and packing densities of the NCG-based ar-

rays as well as the shapes, sizes, and aspect ratios of the individual wires to

a high degree. Using NCG templates they have also fabricated metallic nan-

otubes by electroplating and electroless deposition onto the glass walls of the

channels in the nanochannel glass wafers. Though the parallel lithography

techniques takes shorter time than serial lithography technique but they still

take exceptionally long time to fabricate the nanostructure.

The drawback of lithography techniques can be overcome by using a

nanoimprinting technique, wherein a nano-patterned mold (fabricated via elec-

tron beam lithography) is pressed into a polymer film to transfer the nanos-

tructures onto the substrate [5]. In the fabrication process used by Chou et

al [5] a mold is pressed into a thin thermoplastic polymer film on a substrate

that is heated above its glass transition temperature. Above that tempera-

ture the polymer behaves as a viscous liquid and can flow under a pressure,

thereby conforming to the mold. The mold can be made of metals, dielectrics,

or semiconductors. Figure 1.2 shows the SEM image of 25 nm diameter dots

with a 120 nm period imprinted into a PMMA film. Chou and Krauss [6] have

also fabricated nanoscale photodetectors, silicon quantum-dot, quantum-wire,

and ring transistors by using nanoimprint lithography and have demonstrated

structures on the order of 10 nm with vertical and smooth sidewalls. Though

this process takes less time than lithographic methods, it is very expensive and

the feature size imprinted is limited by the mold size. Clearly this method can-

not be used to fabricate the mold. Another technique such as one previously

discussed could be used. The cost of the mold is directly related to the cost

of the fabrication process. Hence for this technique to be viable, a low cost

method would be necessary for making molds, as molds with nanoscale fea-
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Figure 1.2: SEM micrograph by Chou et al [5]. A dot pattern imprinted into
PMMA. The dots have a 25 nm diameter and 120 nm period.

tures would be prone to undergo morphology transformations, fracture, and

other types of failure.

Another method to create nanostructures on a surface is based on mod-

ern scanning probe microscopy (SPM). In this technique nanostructures down

to an atomic scale are achieved by using the SPM tip as a stylus to “write”

nanoscale structures. Kent et al [7] investigated the growth of nanometer-

scale iron deposits with a combination of Chemical Vapor Deposition (CVD)

and STM techniques. They controlled depositions on either the substrate or

the tip by varying the growth conditions and produced high aspect ratio iron

filaments with diameters less than 10 nm and aspect ratios greater than 80.

They also showed that either the amorphous or the crystalline material can be

formed by varying the bias condition and precursor pressure. In their exper-

iments, filaments are directly deposited on the apex of a silicon tip, which is

part of a microfabricated silicon cantilever used in scanning force microscopy.

Extensive work has been done over the last decade to develop nanostructures

of different material combinations using this technique. Though this tech-
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(a) (b) (c)

Figure 1.3: Classification of heteroepitaxial growth: (a) layer-by-layer growth
(Frank-van der Merwe), (b) island growth (Volmer-Weber) and (c) layer-plus-
island growth (Stranski-Krastanov).

nique is less expensive than other techniques, it is time consuming because of

its serial nature.

1.1.2 Fabrication of nanostructures via self-assembly

An alternative to the above direct methods of fabricating nanoscale structures

is to manipulate natural processes in order to self-assemble a device. Consider

a film deposited epitaxially onto a substrate. In certain material systems, the

film grows as isolated material clusters or quantum dots. If properly arranged

these dots could be used to form a device or part of a device. Quantum

dot arrays have gained widespread interest because of their application in

electronic and optoelectronic devices.

An epitaxial film may grow in one of three different growth modes de-

pending on various factors including temperature, deposition rate, the presence

of impurities, the lattice-mismatch, and the interfacial energies. The growth

modes are illustrated in Figure 1.3. They are Frank-van der Merve, wherein

the film grows atomic layer by atomic layer, Volmer-Weber, wherein the film

grows as islands directly atop the substrate, and Stranski-Krastanov, wherein

layer-by-layer growth occurs for several monolayers to wet the substrate, fol-

lowed by three-dimensional islands atop the wetting layer.

In lattice-matched systems, the growth mode is primarily governed by

the interface and surface energies. If the sum of the film surface energy γf
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and the interface energy γfs is lower than the energy of the substrate surface,

γf +γfs < γs, the deposited material wets the substrate and there is no driving

force for islands to form (the Frank-van der Merwe growth mode). If the

wetting criterion is not satisfied then the flat wetting layer has a high energy

cost and is not energetically favorable; the deposited material will agglomerate

directly into islands (Volmer-Weber growth) [8].

If there is a difference in lattice constant between the film and the sub-

strate materials then the system will be under strain due to the constraint

of epitaxy. Strain plays an important role in determining the growth mode.

In a lattice-mismatched system, the epitaxial film grows with a lattice spac-

ing that is commensurate with that of the substrate. If the substrate surface

is flat, a thin film of uniform thickness would be strained by the amount

ε0 = (as − af )/af where as and af are respectively the lattice spacings of the

substrate and the undeformed film. For example at a temperature of 5000C a

uniform Ge thin film (af = 5.66Å) on a Si substrate (as = 5.433Å) would have

a compressive strain of 4.2%. The strain energy of an islanded morphology

is always lower than that of a flat strained film of the same volume. When

the wetting criterion is satisfied, the surface energy of a flat film is lower than

that of islanded morphology. The strain energy promotes island growth while

the surface energy favors layer-by-layer growth. There is a competition be-

tween these two energy contributions. The deposited film material first grows

in layer-by-layer fashion to reduce the surface energy. This also results in an

increase in strain energy. After a certain critical film thickness is reached, the

increase in strain energy exceeds the decrease in surface energy and a planar

film becomes morphologically unstable. This instability increases in ampli-

tude, eventually resulting in the formation of isolated islands or nanocrystals

on the substrate, wherein strain is relaxed. Thus the SK growth mode occurs.

The method of pattern formation by self-organization offers less control
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Figure 1.4: Reflection electron micrographs of Ge clusters on Si(111) carried
out by Zinke et al : (a) after deposition of 9 ML of Ge at room temperature
and post-deposit annealing for 10 min to 925 K; (b) after deposition of 13.8
ML during 40 min at 815 K sample temperature [9].

than direct methods over size, shape and organization of nanostructures, but

if these issues can be overcome, self-organization will be a viable and very

cost-effective process. Extensive work has been done to control the size, shape

and relative positions of these islands which is essential in achieving a high

level of device performance.

Early work on self-assembly of epitaxial islands focused on achieving

regular two dimensional arrays with islands of uniform size [8–16]. Zinke et

al [9] investigated the dynamics of clustering of Ge on Si(111) and Si(100)

substrate. They grew their samples in an ultra high vacuum. Samples were

held at room temperature during deposition of Ge for post-deposit annealing

investigations and at 815 K for cluster growth during deposition. Results of

their experiment are presented in Figure 1.4 which shows reflection electron

micrographs of Ge clusters on Si. The micrographs are for different experi-

mental conditions and display the same cluster shape. Also, the cluster shape

is conserved during cluster ripening. They also showed that the late stage of

clustering is well described by ripening mechanics which predicts the time de-

pendence of the growth rate and cluster size distribution. For post-deposition
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Figure 1.5: STM image of “single” hut cluster observed by Mo et al. Scan
area is 400 Å×400 Å and the height of the cluster is 28 Å [10].

annealing Zinke et al [9] found the cluster-volume growth rate to be linear

with time in agreement with an Ostwald-ripening mechanism.

In another study, Mo et al [10] investigated the transition from 2D

(layer-by-layer) to 3D islands growth of Ge on Si(001) with Scanning Tunneling

Microscopy (STM). They have found an intermediate metastable 3D phase

consisting of small hut clusters that have specific facet crystallography and

alignment of their principal axis with respect to the substrate as shown in

Figure 1.5. The clusters consist of four-sided huts with four equivalent {105}
facets.

Floro et al [14,16] observed enhanced organization during an early stage

of growth when islands are small and densely packed and before large scale

coarsening tends to occurs. Several mechanisms by which small nanoscale

islands might resist coarsening have been proposed in the literature [16–18].

A key observation is that island interactions at close range tends to promote

organization [16].

Use of anisotropy in the organization of islands:

There has been an effort to organize epitaxial islands on a substrate by ex-

ploiting material anisotropies. For example, Plass et al [19] describes a self-
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assembled domain pattern of lead deposited at a temperature of 673 K on a

solid surface of copper. Figure 1.6a–g is a sequence of low-energy electron mi-

croscope (LEEM) images shows the evolution of a pattern from circular islands

(average diameter, 67 nm) to stripes and then to circular holes within the lead-

overlayer matrix. This sequence of domain patterns, referred to as droplets,

stripes and inverted droplets, respectively. For both droplets and stripes, the

feature size decreases with increasing temperature. The reason for this is a

reduction in the domain-boundary free energy with increasing temperature.

For droplets and inverted droplets, reducing the temperature also allows im-

provement in the long-range order. Figure 1.6h is a LEEM image showing the

degree of long-range order that Plass et al obtained in the inverted-droplet

phase. Gao et al [20] conducted a theoretical study to understand these pat-

tern formation. They observe similar patterns to those observed by Plass et

al [19] in a binary monolayer on the substrate in the case of anisotropic sur-

face stress. Gao et al [20] calculated the mesophase transition by using an

energy minimization method. When the surface stress tensor is anisotropic,

they found that the stripes can be along or off the principal axis of the sur-

face stress tensor depending on the degree of surface stress anisotropy. The

formation of the off-axis stripes compromises the inplane and antiplane de-

formation. Zhang [21], through the kinetic simulation of surface evolution,

demonstrated that surface energy anisotropy can affect self-organization and

cause shape transitions to occur in epitaxial islands. In his formulation, Zhang

assumed that surface energy is a smooth function of surface orientation and

its anisotropy is of fourfold symmetry on the (001) plane surface. To get the

exact 3D form of surface energy Zhang started with (001), (105), and (103)

surfaces that were found to be thermodynamically stable and accordingly took

their surface energy densities to be local minima. He called these minima ‘first

minimum,’ ‘second minimum,’ and ‘third minimum,’ respectively. He found
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Figure 1.6: Low-energy electron micrographs obtained by Plass et al of the
Cu(111) surface at 673 K with different area fractions of the lead-overlayer
phase (bright) in the surface alloy phase (dark). a-g, Area fractions 0.03, 0.28,
0.35, 0.50, 0.65, 0.73 and 0.95, respectively. The domain pattern evolves from
circular islands (droplets) to stripes, to vacancy islands (inverted droplets)
with increasing lead coverage. h, Ordered droplet configuration at 623 K.
Scale bar, 0.5 µm [19].
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that with weak surface energy anisotropy or without surface energy anisotropy,

islands are unstable and undergo ripening. If the energy barrier between the

second minimum and the third minimum is high, then no island transition

occurs and only square based or elongated square-based islands appear. If

the energy barrier between the second minimum and the third minimum is

intermediately high, then a bi-modal island distribution appears. The islands

can coexist without ripening even when subjected to long-time annealing. If

the energy barrier between the second minimum and the third minimum is

low, then all islands evolve into the third minimum without being trapped in

the second minimum. Through this work Zhang demonstrated that strongly

self-organized and nonripening island arrays may be obtained by choosing cer-

tain surface energy anisotropies by tailoring the material composition and/or

by changing the annealing temperature. The effect of growth rate on the

organization of islands under anisotropic condition is not discussed by Zhang.

Liu et al [22, 23] show that elastic anisotropy can guide the formation

of epitaxial islands into regular arrays. Liu et al [22] used a three-dimensional

finite element method to investigate the effect of growth rate and elastic

anisotropy on surface evolution and island formation. They have shown that

elastic anisotropy strength plays an important role in surface roughening and

island self-assembly. For higher values of anisotropy strength, Liu et al [22]

found that ripples and islands become increasingly aligned along the 〈100〉
directions, the quality of self-assembly of islands improved, and the roughness

wavelength and island spacing are increased. For smaller anisotropy strength

they observed that ripples and islands become increasingly aligned along the

〈110〉 directions, the quality of self-assembly of islands is also enhanced, but

the roughness wavelength and island spacing are decreased. Eggleston and

Voorhees [24] calculated spatially ordered nanocrystals with a nearly monodis-

perse size distribution for systems with highly anisotropic surface energy. They
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used the phase-field model to compute the morphological evolution of growing,

misfitting film.

The use of anisotropy enhances the organization of islands but it offers

limited control over the organization. The ordering of islands can be controlled

more efficiently by the preferential growth of islands over engineered or nat-

urally forming defects present into the substrate. One example is arrays of

dislocations network present beneath the surface of the substrate.

Use of defects in the organization of islands:

Some recent experimental work has suggested that the spatial ordering of is-

lands may be controlled by patterning the substrate with defects that produce

an inhomogeneous strain field which guides islands positioning [25,26]. The ef-

fect of strain patterning on the development of ordered arrays was investigated

by Wise et al [27]. One of the defect sites used for the organization of islands

is arrays of dislocations present beneath the surface of the substrate [28–31].

In the case of a lattice mismatch between the film and substrate materials,

strain energy builds up during growth. Beyond a critical layer thickness the

strain energy is enough to drives the formation of misfit dislocation resulting

in plastic strain relief [32–35]. Directly above the dislocation line the strain

is relieved most efficiently, while the strain relief is not as effective far from

dislocations [29]. This results in the preferred positions directly above the

dislocation line for deposited islands to form.

Chambliss et al [28] observed regular arrays of Ni islands deposited

on Au(111). They found the Ni islands to form 73 Å apart in rows along

[12̄1] with 140 Å between rows. This nucleation is caused by the long-range

herringbone reconstruction of Au(111), which induces periodic “surface-lattice

dislocations”. The effect of dislocation morphology on the arrangement of

islands is not discussed by them.

13



Figure 1.7: The AFM images of the Ge deposition on the surface of a (a) virgin
(001)Si wafer and of (b) prestructured Si1−xGex/Si and (c) Si-cap/Si1−xGex/Si
substrates. (d) A height profile through an island in (c) along the line P-Q is
shown [29].
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Shiryaev et al [29] have shown that strained Si1−xGex/Si systems pos-

sess the ability to control the lateral distribution of Ge islands. The pat-

terned surfaces used in their study were created by a technique which is based

on the properties of the dislocation configurations in compositionally graded

Si1−xGex. Far away from equilibrium, these configurations generate ordered,

long-range coherent patterns of highly-localized plastic and elastic displace-

ments on the surface. They have demonstrated that simply by changing the

dislocation morphology in the underlying substrate one can achieve remark-

able rearrangements in the island patterns as illustrated in Figure 1.7. They

observed the island rows aligned with the dislocation bands in the systems

involving linear graded substrates (the Ge composition varies linearly). The

role of coarsening has not been discussed by Shiryaev et al. Voigtlander et

al [30] considered ordering effects of Ge islands above a dislocation network

with a periodicity of 100 Å. In their experiments, they observed the ordering

of two-dimensional islands on a Ge layer with a periodic strain field at the

surface. They found that the coarsening process enhances the ordering. Due

to repeated detachment from islands, adatoms approach the positions above

the misfit relieving dislocations. Voigtlander et al [30] found that both, kinetic

mechanisms (strain dependent diffusion) and energetic mechanisms (strain de-

pendent binding) lead to ordered growth with respect to an underlying disloca-

tion network. The Ge coverage may have some effect over the organization of

islands. This issue is addressed by Xie et al [31]. They conducted some experi-

ments by using relaxed SiGe thin films as templates to find the efect of growth

temperature as well as Ge coverage over the organization of islands. The ob-

jective of the relaxed template is to create a regularly distributed variation of

the in-plane lattice constant using the misfit dislocation network buried un-

derneath the surface. They observed the absence of islands at locations other

than intersections of misfit dislocations. The island sizes are far from uniform,
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with the tendency of similar sized islands to line up along selected lines. On

reducing the Ge coverage as well as the growth temperature they found a more

narrow distribution of islands and much smaller Ge island sizes.

Island formation is a natural phenomenon and is readily achieved. How-

ever arranging islands into regular arrays or more complex configurations is

a difficult task. One approach to achieving regular arrays of islands is the

stacking of successive layers of islands separated by capping layers of another

material [36], as shown in Figure 1.8. The strain from one layer of islands

helps to determine the position of the islands in overlying layers so that the

spacing in successive layers becomes more uniform. Xie et al [36] deposited

two monolayers of InAs on GaAs (100) substrate at a temperature that en-

courages diffusion. In their experiment, Xie et al [36] obtained an average

island density of ∼ 350/µm2, average height of 35 Å, and an average lateral

size of ∼ 170 Å. However, a large number of layers must be grown to position

the islands with good uniformity [37]. The deposition of numerous layers is

time consuming and produces a thick stack that may make integration with

other devices difficult.

The drawback of having to form a thick stack due to multiple layer

stacking can be overcome by using Si overgrowth on a single layer of Ge islands

grown by chemical vapor deposition on Si(001) [38]. Here the lateral motion

of Ge islands can be diminish by means of Si overgrowth. The deposition

of silicon induces a shape transformation from domes to truncated pyramids

with a larger base, generating an array of closely spaced interacting islands

and resulting in laterally ordered Ge islands. Capellini et al [38] conducted

the study on two sample series through the deposition of variable thickness Si-

capping layers on morphologically identical Ge island layers. In the first series,

both the island layer (∼ 1.5 nm Ge nominal thickness) and the silicon cap layer

were deposited at same temperature, while in the second series, the island layer
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Figure 1.8: TEM pictures reproduced from Xie et al. Typical bright field TEM
pictures along [011] azimuth of the samples with two sets of islands separated
by (a) 46 and (b) 92 ML spacer layers respectively. (c) Dark field TEM picture
for a sample with five sets of islands separated by 36 ML spacer layers [36].
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(∼ 3 nm Ge nominal thickness) was deposited at lower temperature than the

silicon capping layer. They found that the ordering process of Ge(Si) islands

is proportional to the actual coverage of the substrate, even in the case where

the reduced separation between islands are obtained by Si intermixing, via

overgrowth. This method is not very efficient for producing highly organized

quantum dots that is needed for high level of device performance.

Though the defects present beneath the surface of the substrate help to

guide island positioning, they could degrade the device performance. Also the

control over the organization of islands is limited in the case of defects present

in the substrate. One method to overcome this drawback is to use a topo-

graphically surface feature that may occur naturally or might by engineered.

Effect of patterned substrate on the organization of islands:

Pre-patterning a substrate with topographical features can offer better con-

trol over the sites where islands tend to form. Here idea is to use relatively

large scale feature made by standard techniques to guide positioning of self-

assembled nanoscale features. The patterned substrate provides compliant

regions where islands can relax their residual strain. These compliant regions

are possibly preferred positions for the formation of islands. For example, in

the case of a raised mesa or pilar etched into the substrate surface, the bound-

aries are more compliant than inner regions. It is there expected that strained

epitaxial islands are most likely to form at the boundaries.

Lee et al [39] used prepatterned GaAs(100) substrates to fabricate In-

GaAs QDs. The resulting layer of QDs was then used as the seed layer at

the bottom of a vertical stack of ten layers of QDs in order to induce specific

lateral spatial QD patterns in the top layer. The samples were grown by solid

source molecular beam epitaxy on pre-patterned GaAs(100) substrates. The

patterns were prepared by photolithography and were etched in H2SO4. The
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patterns used in their investigation were composed of 1.5 µm wide lines along

both the [011] and [011̄]directions. The lines were typically 5 µm in length

for above (mesa) and below (trench) surface lines and squares with a height

or depth of 35 nm for both line and square structures. Different samples were

prepared by varying the InGaAs ML coverage and consequently the QD den-

sity. They have found that with relatively high ML coverage, QD chains were

formed all over the surface with total disregard for the pre-patterned regions.

However, with reduced coverage a QD density was selected that allowed QD

formation to be substantially influenced by the pre-patterned substrates, as

illustrated in Figure 1.9. As can be observe from the figure that islands prefer

the edges of the mesa.

The effect of mesa width on islands positioning is discussed by Kamins

et al [40]. They discussed the positioning of self-assembled Ge islands adjacent

to features formed by conventional lithography. They form patterns by using

optical lithography in Si(001) wafers which are oriented in either the 〈100〉 or

〈110〉 direction. They observed single rows of islands near the edges of narrow

Si lines and multiple rows of islands on wider Si lines as shown in Figure 1.10.

The islands were approximately 86 nm wide and 15 nm high, with a reasonably

narrow size distribution. The alignment is probably due to favorable nucleation

sites at atomic steps on shallow facets. Therefore, the position of the Ge islands

can be influenced by controlling the shape of the underlying Si surface, allowing

very small islands to be formed and positioned in predetermined locations

using conventional lithography with moderate resolution. While this work delt

only with linear (one dimensional) arrangements of islands, many applications

requires two-dimensional arrangements.

In recent experiments, configurations such as straight lines [41–44] and

circular arrangements [45–48] of islands have been obtained. Kitajima et al [46]

demonstrated the arrangement of Ge islands over Si(001) substrate patterned
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Figure 1.9: AFM images for pre-patterned QD growth observed by Lee et
al :(a) 4 × 4 µm2 area AFM image from a line pattern along [011̄], (b) 6 ×
6 µm2 area AFM image from the line pattern along [011], (c) 8 × 8 µm2

area and (d) 5 × 5 µm2 area are the AFM pictures of upward and downward
squares [39].
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(a)

(b)

Figure 1.10: Experimental results of Kamins et al :(a) the top of the Si line
narrows to a ridge, a single row of Ge islands forms at the top of the ridge, (b)
2D atomic-force micrographs of Ge islands on Si lines of 700 nm and 1.7 µm
wide, showing ordering of several rows of Ge islands along the edges of the Si
line. The central region of 700 nm wide Si line is narrow and contains no Ge
islands while the central region of 1.7 µm Si line is wide, allowing Ge islands
to nucleate randomly [40].
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with square-like mesas. The spacing of features on the substrate surface was

limited to 120nm due to the resolution limits of the lithographic technique.

Material was deposited via molecular beam epitaxy. They found that for

relatively large mesas, islands organize themselves around the edges of the

mesa. On reducing the mesa size Kitajima et al [46] found islands at the

corners of the mesa. On further reducing the mesa size a single island was

observed at the center as shown in Figure 1.11. In another experiment on

the same system, Jin et al [41] observed island formation at the corners of a

square mesa with the base square oriented in the 〈110〉 directions, as shown

in Figure 1.12(a). In contrast to the boundaries, the central region is free of

Ge islands. This is because the central region is like a not preferred sites for

islands and Ge adatoms have a sufficiently long diffusion length to migrate to

the corners. On increasing the nominal Ge thickness, a fifth island forms in

the center of the square mesa, as shown in Figure 1.12(b). They have found

that the central island to be pyramidal with a square base, which is different

from the other four dome-shaped islands at the corners.

Recently, theoretical work has been done to understand this behavior.

Kukta and Kouris [49] investigated the energetic and kinetic mechanisms that

guide the positioning of strained epitaxial islands deposited over sinusoidal

substrate. In another study, Machtay and Kukta [50] calculated minimum

energy configuration of islands deposited atop a raised mesa. Both of these

investigations assumed a two-dimensional (plane strain) model. While these

studies explain certain characteristic behaviors, they miss features inherent to

the three-dimensional nature of real systems. One aspect of this thesis is to

extend their ideas to three-dimensions.
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Figure 1.11: Experimental results by Kitajima et al [46] Atomic force mi-
croscopy images for square mesa dimensions of (a)700nm, (b)500nm, (c)300nm,
and (d)140nm.

1.2 Focus of this Research

The focus of this thesis is understanding the mechanisms of self-assembly of is-

lands deposited epitaxially onto a substrate. The self-assembly addressed here

is driven by in-plane anisotropies in surface stress and lattice mismatch be-

tween the film and substrate materials, defects in the form of dislocation lines

present beneath the surface of the surface, and topographically patterned sub-

strate. The first phase of this work is focused on the use of material anisotropy

in the organization of islands. The main advantage of introducing anisotropy

is that it might suppress defects in quantum dot arrays. In other words,

it encourages the formation of near perfect hexagonal or rectangular arrays,

eliminating irregularities in the arrays. Irregularities tend to degrade device

performance. Control over island positioning beyond arrays is not possible

with the use of anisotropy alone. Toward greater control, we subsequently
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Figure 1.12: Experimental results by Jin et al [41] (a) A 3D AFM image with
four Ge islands located at the corners on a square Si mesa with the base lines
parallel to the 〈110〉 directions. The Ge thickness is 9 ML. (b) A 3D AFM
image with five Ge islands with 10 ML Ge. The fifth pyramidal island is
formed in the central region. The average base size of the islands is about 140
nm.
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study the organization of islands guide by lattice defects. The effect of buried

dislocation networks in the substrate on the relative arrangement of islands

is investigated. While defects provide some control, they are limited by the

arrangement of defect that arise naturally. In interest of further control, the

organization of islands deposited on topographically patterned substrates is

studied. In all these studies our interest is on sub-monolayer growth where

islands are atomically flat raised terraces bounded by steps on the substrate

surface. This is distinguished from Kukta and Kouris [49] and Machtay and

Kukta [50] where large macroscopic islands were considered. Surface steps that

beyond a monolayer island, induce an elastic field in the system through which

they interact with each other. Driven by these interactions, the morphology

evolves by mass transport. The model used for the elastic field of a surface step

follows those of Alerhand et al. [51] and Tersoff et al. [52, 53] which account

for the effects of different surface stresses on the film and substrate surfaces

and a lattice mismatch between the film and substrate materials respectively.

In both cases the elastic field of a step is that of a line distribution of force

applied on the surface of an elastic half space. The magnitude and character

of the force depends on the difference in surface stress, the lattice mismatch,

step height, and step orientation. A model is first constructed for morpholog-

ical transformations through mass transport by the mechanism of condensa-

tion/evaportion. Next, the model of a surface step, including the interaction

energy of two surface steps, is reviewed. Subsequently, the self-energy of a

square island and interaction energy between two islands is calculated. These

are needed to evaluate the driving force for morphological transformations as

an island changes size, shape, or translates in the elastic field induced by other

islands for isotropic as well as anisotropic conditions.
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Chapter 2

Island Evolution during Crystal
Growth

Crystal growth involves the deposition and attachment of atoms onto a sub-

strate. The driving force for crystal growth and the individual processes that

lead to crystal growth is a decrease in the system’s free energy. If energy in-

creases as atoms condense from the vapor onto the substrate, crystal growth

will not occur. Crystal growth is possible only if the result is a net decrease

in energy. On the atomic scale, growth occurs as atoms land on the substrate

surface and adsorb to become adatoms. An adatom belongs neither to the va-

por nor to the bulk crystal – it is at an intermediate state. For an adatom to

become part of the bulk, it must find a stable low-energy site, typically at the

edge of a monolayer island (a stable cluster of atoms). If an adatom does not

find a low-energy site, it will detach from substrate and return to the vapor.

The attachment and detachment of atoms is a local phenomenon that depends

on the local temperature and as well as the local chemical potential. The rates

at which attachment and detachment occur depends on both of these factors.

Hence, even in instances of uniform temperature, crystal growth may occur at

some locations while evaporation is occurring at others. The discriminating

factor is the chemical potential.

Consider the processes of adsorption and desorption as shown in Fig-
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Figure 2.1: A schematic variation of free energy with the state of atoms. Atoms
at the adsorbed state (a) has the lower free energy than that at the desorbed
state (d). The energy barrier an atom has to overcome to jump from state a
to state d is 4Ed, while from state d to state a, 4Ea is required.
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ure 2.1. State a corresponds to an atom adsorbed on the substrate surface and

state d corresponds to a desorbed (vapor) atom. Both states represent local

free energy minima, but the adsorbed state is considered to have the lower

energy – hence a net flux of atoms from the vapor to the surface is expected.

The difference in energy between these states is called the chemical potential

for adsorption χ = Ea −Ed, where Ea and Ed are respectively the energies of

states a and d. Chemical potential χ is the increase in free energy associated

with the adsorption of an atom, and a negative chemical potential implies a

tendency for crystal growth.

Adsorption and desorption do not occur spontaneously, as there are

activation barriers that must be overcome for the processes to occur. Let ∆Ea

be the activation energy for adsorption and ∆Ed be the activation energy for

desorption, as illustrated in Figure 2.1. Also note from Figure 2.1 that

∆Ed −∆Ea = Ed − Ea = −χ (2.1)

According to kinetic theory, the probability of an atom in vapor state reach-

ing the activated state is given by exp(−4Ea/kT ), where k is Boltzmann’s

constant and T is the temperature. The rate at which the transformation

occurs is the attempt frequency times the probability of an atom being in the

activated state, or

ra = Aa e−∆Ea/kT (2.2)

where Aa is the frequency factor for adsorption. Using the analogous rate

equation for desorption, the net rate of adsorption is calculated as

r = ra − rd = Aae
−∆Ea/kT − Ade

−∆Ed/kT (2.3)

Then using (2.1) in this expression, and assuming that χ ¿ ∆Ea, which

applies to systems where the crystal and vapor are close to equilibrium, the
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rate of adsorption becomes

r ≈
[(

Aa

Ad

− 1

)
kT − χ

]
Ad

kT
e−∆Ea/kT (2.4)

Suppose that all of the parameters in (2.4) except χ are independent of posi-

tion on the substrate surface. This implies that temperature is uniform and

the density of adatoms and vapor atoms (i.e. Aa and Ad) are uniform, which

is valid for systems sufficiently close to equilibrium. The activation energy

∆Ea is also assumed to be uniform. This is approximately true only if ad-

sorption/desorption is limited to specific sites, for example at the edges of

monolayer islands or on the surface of a flat substrate; separate site-specific

rate equations would be needed in order to consider both locations. As this

work will focus on heterogenous growth by attachment to islands, it is sufficient

to treat ∆Ea as a constant. Given these assumptions, (2.4) can be rewritten to

reflect two distinct processes, a uniform deposition rate rdep that adds atoms to

the crystal and a mass conserving adsorption/desorption process (generically

called condensation/evaporation),

r ≈ rdep + B(χ̄− χ) (2.5)

where B and χ̄ are constants. The constant χ̄ enforces conservation of mass in

the crystal and is later shown to be average of the chemical potential taken over

the substrate surface. The advantage of (2.5) is that mass conservation can

be enforced simply by setting the deposition rate rdep to zero. This makes it

possible to calculate equilibrium configurations for a fixed amount of deposited

material. When rdep = 0, the system evolves as atoms detach from sites of

high chemical potential (high free energy) and then reattach at sites of low

chemical potential. The net effect is a decrease in the total free energy.

Condensation/evaporation at island edges is a simplified version of the

actual process of crystal growth. In reality, when an atom attaches to the sub-

strate, it has a finite life span as an adatom before it either becomes part of the
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Figure 2.2: Schematic of an island deposited on a substrate. The island is char-
acterized by its projected area AI , centroidal position xI , height hI , perimeter
P I , outward pointing unit normal nI . Its boundary evolves with local normal
velocity of vI

n(s).

growing crystal or detaches back in the vapor. During its lifetime, an adatom

may diffuse along the surface, seeking a low-energy site for it to attach. Like

adsorption and desorption, surface diffusion is a thermally activated process.

Hence the distance an adatom can diffuse before it returns to the vapor, its

diffusion length, depends on the activation energy of diffusion versus that of

desorption. Neglecting surface diffusion is to imply that the activation energy

for desorption is small compared to that of diffusion (i.e. the diffusion length is

small). In cases where the diffusion length is large compared to the size of mor-

phological features, the assumption of evolution by condensation/evaporation

will not capture the transient kinetics. Nevertheless it will suggest the gen-

eral trend of the evolution towards a minimum energy configuration. Surface

diffusion is neglected in this investigation, as solving the diffusion problem is

computational intensive and would severely limit the parameter space that

could be probed.

2.1 Model of the evolution of islands

Consider a substrate with monolayer islands of various sizes. A typical island,

island I, is illustrated in Figure 2.2. It is characterized by its height hI ,
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projected area AI , perimeter P I of its projected area, and the position x̄I of its

centroid. The shape of the island is represented by the outward pointing unit

normal nI to its projected area, which depends on the arclength s measured

from a point along the island’s perimeter. The island changes shape (grows or

shrinks) as atoms are deposited at or removed from the island edge. This is

represented by a normal velocity vI
n of the island edge, which is a function of

position s on the perimeter. Following (2.5), the normal velocity is given by

vI
n(s) = vdep + C

[
χ̄− χI(s)

]
(2.6)

where vdep is a constant growth velocity arising from the incident deposition

flux, χI is the local chemical potential along the island perimeter, and C and

χ̄ are constants.

In the case of no deposition (vdep = 0), the total mass (or volume,

assuming a single species) of the crystal is conserved. Thus for a system with

N islands of height hI = h, conservation of mass implies

N∑
I=1

∫

P I

hIvI
n ds = hC

N∑
I=1

∫

P I

[
χ̄− χI(s)

]
ds = 0 (2.7)

where (2.6) was used to obtain the second expression. Solving this result for

χ̄ yields

χ̄ =

∑N
I=1

∫
P I χI(s) ds∑N
I=1 P I

=

∑N
I=1 χ̄IP I

∑N
I=1 P I

(2.8)

where

χ̄I ≡ 1

P I

∫

P I

χI ds (2.9)

is the average chemical potential taken over the perimeter of island I. Hence

χ̄ is the average of the chemical potential taken over the edges of all islands.

One can verify that evolution by condensation/evaporation decreases

the free energy of the crystal. Recall that the chemical potential χ is defined

as the increase in free energy due to introduction of an atom at a point. Then
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the change in free energy with evolution is given by

Ė =
∑

I

∫

P I

χI

Ω
vI

n h ds (2.10)

where Ω is the atomic volume (volume per atom). Combining equations (2.6)

with vdep = 0 and (2.10) results in

Ė =
∑

I

(
Ch

Ω

∫

P I

χI [χ̄ − χI ] h ds

)

=
Ch

Ω

∑
I

(
χ̄2

∫

P I

ds −
∫

P I

χ2 ds

)
≤ 0 (2.11)

It is noted that deposition vdep will occur such that the total free energy of

the system, the vapor plus the bulk crystal, is reduced. Physically this con-

trolled through temperature and the pressure of the vapor, but for the current

purposes it can be treated as a free parameter of the model.

Supposing that the chemical potential χI is known for each island, the

evolution is completely described by (2.6). Equation (2.6) is a local expression

for the normal velocity at a point on an island. This investigation is less

concerned with the specific shape of individual islands than it is with the sizes

and relative positions of many islands. It is therefore prudent to simplify

the model by restricting the evolution such that islands can grow in size and

change position, but not change shape. The normal velocity of an island is

constrained as

vI
n(s) = V I

n + v̄I
i n

I
i (s) (2.12)

where V I
n is a scalar constant, v̄I

i are components of a vector constant, nI
i are

components of the outward unit normal defined in Figure 2.2. Here and else-

where the summation over repeated indices is implied. V I
n represents a uniform

expansion while v̄I
i represents a translation in the plane of the substrate. The

velocity V I
n is directly related to rate of area change of the island as follows:

ȦI =
d

dt

∫

AI

dA =

∫

P I

vI
n ds = V I

n

∫

P I

ds + v̄I
i

∫

P I

nI
i ds = V I

n P I (2.13)

32



The physical interpretation of the velocity v̄I
i is obtained first by considering

the definition of the centroid x̄I ,

x̄I
i A

I =

∫

AI

xidA (2.14)

Taking the time derivative of this equation and using (2.12), one finds

˙̄xI
i A

I + x̄I
i Ȧ

I =

∫

P I

xiv
I
n ds

= V I
n

∫

P I

xi ds + v̄I
j

∫

P I

xinj ds

= V I
n

∫

P I

xi ds + v̄I
j

∫

AI

δij dA

= V I
n

∫

P I

xi ds + v̄I
i AI (2.15)

Then introducing (2.13) into (2.15) and reorganizing gives

˙̄xI
i A

I = V I
n

∫

P I

(xi − xI
i ) ds + v̄I

i AI

= v̄I
i AI (2.16)

which implies

ẋ
I

i = v̄I
i (2.17)

Hence v̄I
i is the velocity of the island’s centroid.

The evolution equation (2.6) must be constrained according to (2.12).

This implies that separate evolution equations are needed for the growth ve-

locity V I
n and the translation velocity v̄I

i of an island. To obtain the evolution

equation for V I
n , consider (2.13) along with the local evolution equation (2.6),

V I
n P I =

∫

P I

vI
n ds =

∫

P I

[
(vdep + C(χ̄− χI)

]
ds (2.18)

Using (2.9) in this expression, one finds

V I
n = vdep + C(χ̄− χ̄I) (2.19)
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The evolution equation for v̄I
i is obtained by considering the integral

∫

P I

vI
nn

I
i ds =

∫

P I

[
(vdep + C(χ̄− χI)

]
nI

i ds = −C

∫

P I

χInI
i ds = −Cχ̄I

i

(2.20)

where the translation potential χ̄I
i is defined as

χ̄I
i ≡

∫

P I

χInI
i ds (2.21)

Using the constraint (2.12), one finds

∫

P I

vI
nn

I
i ds =

∫

P I

(
V I

n + v̄I
j n

I
j

)
nI

i ds = v̄I
j αji (2.22)

where

αij =

∫

P I

nI
i n

I
j ds (2.23)

is a symmetric tensor that depends on the island’s shape. For example

αij = πrIδij for a circular island of radius rI (2.24)

and

αij = 2LIδij for a square island of width LI (2.25)

where δij the Kronecker delta. By comparing (2.20) and (2.22), the evolution

equation for v̄I
i is found to be

v̄I
i = −Cχ̄I

jα
−1
ji (2.26)

Given the growth potential χ̄ and the translation potential χ̄I
i , the

growth velocity V I
n and the translation velocity v̄I

i are readily evaluated from

(2.19) and (2.26). The difficultly is that evaluations of χ̄ and χ̄I
i from (2.9)

and (2.21) require knowledge of the local chemical potential along an island’s

perimeter, which is difficult to obtain. An alternate method of evaluating χ̄

and χ̄I
i is obtained from the constrained form of the dissipation (2.10). With
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the constraint (2.12), equation (2.10) becomes

Ė =
h

Ω

N∑
I

(
V I

n

∫

LI

χI ds + v̄I
i

∫

LI

χInI
i ds

)

=
h

Ω

N∑
I

(
V I

n LI χ̄I + v̄I
i χ̄

I
i

)
(2.27)

where (2.9) and (2.21) were used to obtain the last expression. Finally, by

introducing the evolution equations (2.13) and (2.17), equation (2.27) can be

rewritten as

Ė =
N∑
I

(
hχ̄I

Ω
ȦI +

hχ̄I
i

Ω
˙̄xI
i

)
(2.28)

which implies
∂E

∂AI
=

hχ̄I

Ω
(2.29)

and
∂E

∂x̄I
i

=
hχ̄I

i

Ω
(2.30)

Equation (2.29) determines an island’s growth potential χ̄I in terms of the

variation in energy with island size and (2.30) determines an island’s transla-

tion potential χ̄I
i in terms of the variation in energy with the location of the

island’s centroid. Using these results, the evolution equations become

V I
n = vdep + C

(
χ̄− Ω

h

∂E

∂AI

)
(2.31)

and

vI
i = −C

Ω

h

∂E

∂xI
j

α−1
ji (2.32)

where χ̄ is given by (2.8) with χ̄I determined from (2.29). Evaluations of

∂E/∂AI and ∂E/∂x̄I
i are discussed in the next section.

2.2 Free energy of a monolayer island

The free energy of a monolayer island consists of a surface excess energy and

the deformational energy. The deformational energy arises from two factors,
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local relaxation of the lattice in the vicinity of step edges and residual elastic

strain associated with a lattice-mismatch between the film and the substrate

materials. The former arises irrespective of the lattice-mismatch. The model

of the elastic field associated with step-edge relaxation and residual elastic

strain are discussed below.

Figure 2.3 is two-dimensional illustration of the elastic field of a mono-

layer island due to an epitaxial mismatch and a remotely applied load. Con-

sider a flat substrate loaded remotely such that it has a uniform stress σr as

shown in Figure 2.3(a). The monolayer island must be elastically strained in

order to achieve epitaxy. Assuming that the elastic constants of the island are

the same as those of the substrate, the requisite strain is obtained by tractions

of magnitude σr +σm distributed over the edges of the island as shown in Fig-

ure 2.3(a). The traction σm adds the mismatch strain and σr adds the strain

associated with the applied load. Imagine gluing the island on the substrate

while maintaining the applied tractions as shown in Figure 2.3(b). The stresses

in the substrate and the island are both uniform. The applied tractions on the

step edge are then removed to enforce the traction-free boundary condition.

This is done by adding the elastic field due to equal but opposite tractions

applied along the step edges as illustrated in Figure 2.3(c). The total elastic

field is the superposition of the fields of Figures 2.3(b) and (c). The field

of Figure 2.3(c) is highly nonuniform and an analytic solution is intractable.

Following Tersoff et al. [52, 53] it can be approximate as the elastic field of

Figure 2.3(d) which is a flat half-space with concentrated forces of magnitude

h(σr + σm). Kukta and Bhattacharya [54] shows that this is a first order ap-

proximation of the elastic field for small values of step height h and obtain the

second order correction.

The elastic field associated with step-edge relaxation was originally

modeled by Marchenko and Parshin [55]. Consider a schematic of a surface
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Figure 2.3: Representation of the elastic field of an island due to the remotely
applied stress σr and the mismatch stress σm, h is the height of the island.
(a) The film of monolayer thickness is stretched by the traction (σm + σr)
uniformly distributed over the edges, (b) the stretched island is then glued to
the substrate, (c) to maintain the traction free surface of the island equal and
opposite traction is applied over its faces, and (d) the approximation of the
elastic field of (c) proposed by Tersoff et al. [52, 53].
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hww tth ht
Figure 2.4: (a) Representation of the elastic field of due to surface stresses
τ on the terraces adjacent to an atomic step and a dilatation couple ω, (b)
equivalent flat surface with a point moment hτ and point dilatation hω where
h is the step height.

step shown in Figure 2.4(a). Forces τ are associated with surface stress on

the upper and lower terraces adjacent to the step and forces ω account for a

dilatational relaxation of atomic positions at the step edge. These forces form

a couple or dipole. It is shown by Kukta and Bhattacharya [54] that the elastic

field of a force dipole applied at the step gives a first order approximation of

the atomic displacements for small values of h/r where h is step height and r

is distance from the step. The elastic field of Figure 2.4(a) cannot determined

analytically. Marchenko and Parshin [55] suggested approximating the field as

that of a point dipole applied on the surface of a half-plane, as illustrated in

Figure 2.4(b). The dipole consists of a moment of magnitude hτ where τ is the

surface stress on the upper and lower terraces, and a dilatation of magnitude

hω where ω can be determined by matching the far-field elastic displacements

to those of an atomistic simulation.

Figure 2.5 illustrates the three-dimensional generalization of the models

in Figure 2.3(d) and Figure 2.4(b). The elastic field induced by a step with

outward point unit normal n to the step face is approximated by a line force

fi = −h(σm
ij + σr

ij) nj (2.33)
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Figure 2.5: Combined three-dimensional representation of the Marchenko and
Parshin model [55] shown in Figure 2.4(b) and the nonuniform field in Figure
2.3(d).

and a line force dipole

dik = −hτijnjmk + hwnink (2.34)

on a half-space with outward unit normal m. The force and dipole are dis-

tributed over a curve that represents the position of the step. The displacement

field is given by

ui(x) =

∫

L

[
Gij(x,y)fj(y) +

∂Gij

∂yk

(x,y)djk(y)

]
dy (2.35)

where the step is represented by a curve L on the half-space and Gij(x,y) is the

elastic half-space Green’s function. The corresponding stress is the solution to

∂σij(x)

∂xj

+

∫

L

[
fi(y)δ(x− y)− dij(y)

∂δ(x− y)

∂xj

]
dy = 0 for all x in V

(2.36)

subjected to the boundary condition

σij(x)mj = 0 for all x on A (2.37)

where δ(x − y) is the Dirac delta, V is the half-space volume and A is the

half-space surface. In this sense, the line force and dipole are considered to
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lie slightly beneath the surface of the half-space. In the case of a straight

and unbounded step, the displacement associated with the line force varies as

ln(h/r) where r is distance from the step. The displacement of the line dipole

varies as h/r. Hence the dipole field is of short-range compared to that of the

line force and is negligible except at distances from the step on the order of

step height h. In this work the dipole term is neglected unless step interact at

close range. At close range the dipole term dominates the interaction between

step and causes them to repel energetically [55]. This repulsion is introduced

to stop steps from merging. The remainder of this chapter neglects the dipole

and deals only with the line force contribution of the elastic field.

2.2.1 Energetic interaction between steps

Consider two step segments A and B on the respective curves LA and LB.

The elastics field of step A (B) is that of a distributed force monopole fA
i

(fB
i ) measured per unit length the step. Step segments A and B may be

located on different islands or may be part of the same island. Let (σA
ij, ε

A
ij, u

A
i )

and (σB
ij , ε

B
ij, u

B
i ) represent the elastic fields induced by segments A and B

respectively, where σij is the stress, εij = 1
2
(ui,j + uj,i) is the infinitesimal

strain, and ui is the displacement. The material is considered to be linearly

elastic. Considering only these two segments, elastic field is given by the

superposition σij = σA
ij + σB

ij , εij = εA
ij + εB

ij and ui = uA
i + uB

i . The strain

energy is

W =
1

2

∫

V

σijεij dV =
1

2

∫

V

σA
ijε

A
ij dV +

1

2

∫

V

σB
ijε

B
ij dV +

∫

V

σA
ijε

B
ij dV (2.38)

where V is the domain of the half-space. The reciprocal theorem was used

to obtain the last term. The first two integrals on the right-hand side are

the elastic self-energies of the step segments. Due to the singular nature of

the elastic fields, these are unbounded and must be regularized in some way.
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Regularization of the self-energies is discussed in the next section. The last

term is the interaction energy between the segments i.e.,

EAB
int =

∫

V

σA
ijε

B
ij dV =

∫

V

σB
ijε

A
ij dV (2.39)

The last expression in (2.39) comes directly from the reciprocal theorem. On

using strain-displacement relation in (2.39), one finds

EAB
int =

∫

V

σA
ij uB

i,j dV

=

∫

V

[(
σA

ij uB
i

)
,j
− σA

ij,j uB
i

]
dV

=

∫

∂V

σA
ij nj uB

i dA −
∫

V

σA
ij,j uB

i dV (2.40)

where the last equality comes from application of the divergence theorem and

∂V is the boundary of V . The boundary ∂V consists of the half-space surface

and the remote boundary. Using (2.37) and noting that σA
iju

B
i vanishes at

the remote boundary (for finite step segments it decays as the inverse cube of

distance from the segments), the first integral in the last equality of (2.40) van-

ishes. Then using (2.36) and the sifting property of the Dirac delta function,

(2.40) becomes

EAB
int =

∫

LA

fA
i (y) uB

i (y) dy =

∫

LB

fB
i (y) uA

i (y) dy (2.41)

Hence, the interaction energy is equal to the work done by the monopole of

one step segment as it acts through the displacement induced by the other.

2.2.2 Self-energy of a step

Equation 2.41 might also be used to evaluated the self-energy of a step segment,

consider A and B to be the same segment. However the result is unbounded

because displacement field is unbounded along the segment. This is an artifact

of linear elasticity which fails at points in the vicinity of the segment. Assuming
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that the linear elastic model is accurate at distances of a0 and further from

the segment, the displacement along the segment (A) might be interpolated as

uA
i (y) ≈ [uA

i (y+a0n)+uA
i (y−a0n)]/2 where y is a point on the segment and

n is the unit normal at that point. The self-energy can then be approximated

EA
self =

1

2

∫

LA

fA(y)
[
uA

i (y + a0n) + uA
i (y − a0n)

]
/2 dy +

∫

LA

ψ dy (2.42)

The last term was added to account for the energy associated with dangling

bonds along the step face and the elastic energy within the core-region near

the segment which is missed by linear elasticity and the regularization. The

quantity ψ is excess energy per unit length of the segment and is taken to be

a constant for simplicity. The elastic cut-off a0 is taken to be on the order

of lattice spacing (or equivalently to the step height of a monolayer island).

It is noted that a similar regularization scheme is commonly used in elastic

dislocation theory [56].

2.2.3 Self-energy of a square-island

The energies evaluated above can be used to construct the energy of an arbi-

trarily shaped island composed of piecewise linear segments and, with use of

an appropriate kinetic relation, the results can be used to investigate shape

transitions of individual islands. As the focus of the current investigation is

on the spatial organization of multiple islands, the analysis is simplified by

constraining the islands to be square such that they may transform only by

changing their sizes and positions. Furthermore it is assumed that the square

islands are aligned with the principle directions of the stress induced by the

lattice mismatch and remotely applied loads. Hence, according to (2.33), the

line force that approximates the elastic field is normal to the steps as shown

in Figure 2.6. Forces f1 = −hσ11 and f2 = −hσ22 where σ11 and σ22 are the

principle stresses of the field σm
ij + σr

ij. The interaction energies between steps

aligned parallel and orthogonal to each other are provided in the Appendix.
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Figure 2.6: Schematic representation of top-view of the square island of width
L bounded by steps on a substrate having distributed force monopole f1 and
f2 acting along its edges.

The self-energy of an island is calculated by summing the energies of

the individual step segments, including segment self-energies (A-4) and step-

step interaction energies (A-2), (A-3). The self-energy of a square island of

size L (Figure 2.6), is calculated as

Eself

(
L, f1, f2

)
= 4ψL +

L

2 π G

[(
f 2

1 + f 2
2

){
(1− 2ν) (4− 2

√
2)

+ k (1− ν) + (1− ν) ln

(
a2

0

L2

)}
+ f1f2 ν

{
4 ( 2−

√
2 )

}]
(2.43)

where k = ln[(1+
√

2)/(−4+4
√

2)]. For the case of a biaxial stress f1 = f2 = f

self-energy (2.43) becomes

Eself

(
L, f, f

)
= 4ψL +

L

π G

[
f 2 (1− ν)

{
ln

(
α a2

0

L2

)}]
(2.44)

where α = exp[k + 4− 2
√

2 ].
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Figure 2.7: Schematic representation of two square islands of size L1 and L2

having distributed force monopole f1 and f2 along their edges. Origin of the
coordinate system is taken at the center of left island. Position vector of center
of island at right is r and its orientation is θ from direction-1.

2.3 Energy of interaction between islands

The self-energy of islands is but one contribution of the total free energy of a

system with many islands. As individual steps interact thorough their elastic

field, islands will also interact. The interaction energy between islands can be

evaluated by adding the interaction energies of the steps of one island with

those of the other. Two interacting island are illustrated in Figure 2.7 along

with the line forces that determine their elastic fields. Using (A-2) and (A-3)

for the step interaction energies and accounting for all combinations of step

pairs, the interaction energy between the islands is found to be function of r,

θ, L1, L2, f1, and f2. As the result is lengthly it is not included here. Fur-

thermore, its length makes it undesirable for use in a large scale computation

with many islands. Computation of the interaction energy can be accelerated

by using an approximation valid for separations r sufficiently larger than the

sizes L1 and L2 of the islands.
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Figure 2.8: In the far-field islands will looks like as illustrated here. Distributed
force monopole acting on an island appears to be point dipole d11 and d22 in
far-field approximation as shown.

Far-field approximation

Under the far-field approximation, islands appear as a point-dipoles on

an elastic half-space. Consider an island centered at point z as illustrated in

Figure 2.8. Following (2.35), the displacement field of the island at a point x

can be written as

ui(x; z) =

∫

P

Gij(x− z,y)fj(y) dy (2.45)

where P is the perimeter of the island and vector y points from the island’s

center to a point on the perimeter. This field can be approximated at points

where |x− z| À |y| by expanding Green’s function about y = 0,

ui(x) = Gij(x− z,0)

∫

P

fj(y) dy +
∂Gij

∂yk

(x− z,0)

∫

P

fjyk dy + . . . . . .(2.46)

In (2.46) first integral is the net force acting on the island, which vanishes.

The approximation becomes

ui(x; z) ≈ ∂Gij

∂yk

(x− z,0) djk (2.47)

with

dij =

∮
fiyj dl (2.48)

where integral is performed over boundary of the island. This is the elastic

field of a point dipole djk on the half-space surface. The corresponding stress
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is the solution to
∂σij(x; z)

∂xj

− dij
∂δ(x− z)

∂xj

= 0 (2.49)

subject to a traction-free boundary condition of the surface.

Now consider two islands I and J and points zI and zJ and char-

acterized by point dipoles dI
ij and dJ

ij respectively. Following (2.40), there

interaction energy is given by

EIJ
int = −

∫

V

σI
ij,ju

J
i dV = −

∫

V

dI
ij

∂δ(x− zI)

∂xj

uJ
i (x) dx (2.50)

Using the sifting property of the Dirac delta function, the interaction energy

becomes.

EIJ
int = − dI

iju
J
i,j(z

I) (2.51)

To evaluate the accuracy of this approximation, consider two islands

of same size L and separated by a distance r, a shown in the inset of Fig-

ure 2.9(b). Figure 2.9(a) compares the exact and approximation interaction

energies versus r/L and Figure 2.9(b) plot the error of the approximation ver-

sus r/L. It is found that for separation distances larger than three times the

size of islands i.e. r/L ≥ 3, the approximation differs by less than 2.5% from

the exact interaction energy. The approximation is found to be sufficient for

the calculations done in this work.

2.4 Total free energy and evolution

The total free energy of a system with N islands, numbered 1 through N is

given by

E = E0 +
N∑

I=1

EI
self +

1

2

N∑
I=1

N∑

J = 1
J 6= I

EIJ
int (2.52)

where E0 is a constant that depends on the amount of material deposited, but

not on the number and configuration of islands, EI
self is the self-energy of I th
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Figure 2.9: The comparison of exact interaction energy with the approximated
interaction energy is shown in this plot. In plot (a) the dimensionless exact
and the dimensionless approximate interaction energy is plotted together, and
plot (b) shows the percentage error 100 × (Eexact − Eapprox)/Eexact. In both
cases dimensionless energy, Eint = (π G Eint)/[f

2 L (1 − ν)]), is plotted with
r/L, where Eint is the interaction energy of islands, r is the distance between
islands shown in the inset of (b) and L is the width of the islands (width of
both islands are same).

island given by (2.44) and EIJ
int is the energy due to the interaction between

I th and J th islands given by (2.51). In the second term on the right of (2.52),

one-half is incorporated to abate the counting of same pair of islands twice.

Given the configuration at time t, the islands sizes AI and positions xI
i at time

t + ∆t are approximated by a forward Euler time step,

AI(t + ∆t) = AI(t) + P IV I
n ∆t

xI
i (t + ∆t) = xI

i (t) + vI
i ∆t (2.53)

where ∆t is the time step, P I is the perimeter of island I, V I
n is the growth

rate as given by (2.31), and vI
i is the translational velocity as given by (2.32).

The time step ∆t is chosen to be small enough for the solution to converge.
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2.5 Periodic boundaries

Periodic boundary conditions are used to approximate growth on a substrate

that is large compared to the simulation cell. The simulation cell is a square

with sides of length S. All of the sides have periodic boundaries conditions

such that the periodic images of an island at x = xI are located at x =

xI +pSe1 + qSe2 where p and q are integers and e1 and e2 form an orthogonal

basis in the plane of the substrate surface. Accordingly, if an island leaves the

simulation cell, an image island (of the same size) enters the simulation cell

on the opposite side.

Interactions between simulation cell islands and periodic image islands

are calculated only for the eight cells that neighbor the simulation cell. This is

a suitable approximation as the interaction energy between islands decay fairly

quickly with separation distance. Calculating the interaction with all periodic

images would have significant computational overhead with negligible gain.
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Chapter 3

Anisotropy-driven island
organization

Consider the earliest stage of film growth on a flat defect-free substrate. As

the surface is uniform and there are no preferred nucleation sites, monolayer

islands will nucleate randomly on the surface. Suppose then that deposition is

stopped and the system is annealed at a temperature high enough to activate

mass transport. The configuration at the start of the anneal is a distribution

of islands with random positions and sizes. On annealing, the system will

evolve towards a configuration of minimum free energy as islands change in

size and position. Under conservation of mass, change in island size may occur

by coarsening, where large islands grow at the expense of smaller islands, or

by a stabilizing mechanism, where small islands grow at the expense of large

ones, leading to size uniformity. The later is favorable for achieving a uniform

array of self-organized islands.

Figure 3.1 shows a simulation of an isotropic system by Liu et al [18].

The domain shown is a single periodic of a bi-periodic configuration, i.e. it

is unbounded in both the horizontal and vertical directions of the page. Fig-

ure 3.1a is the initial configuration of islands and Figure 3.1b is the result of

a long-time anneal with the islands held fixed in their initial positions. Mass

transport occurs only such that the islands may change in size. In this simu-
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(a) (b)

Figure 3.1: Snapshots of simulated island configurations performed by Liu et al
[18]. (a) The initial configuration with random island sizes and positions. (b)
The final converged island configuration from coarsening simulations without
island migration, using the initial configuration of (a).

lation, it is apparent that both coarsening and size stabilization mechanisms

are operative. Very small islands disappear, while large to moderate size is-

lands achieve a uniform size. The reason for this behavior and the conditions

for coarsening versus size stabilization is discussed in the first section of this

chapter.

Suppose that the configuration of Figure 3.1b is allowed to evolve fur-

ther by the translation of islands towards a minimum energy configuration.

The system is isotropic, which implies the force monopoles of a step are inde-

pendent of the step’s orientation, in other words f1 = f2 = f in Figure 2.7.

From (2.48), under isotropic conditions, the elastic field of an square island

of length L is that of a dipole dij = fL2δij where δij is the Kronecker delta.

From (2.51) the interaction energy between two islands I and J is given by

Eint = −fL2uJ
i,i(z

I) = f 2L4π(1− ν)

2Gr3
(3.1)

where r is the distance between the islands. Note first that energy increases

as the separation distance decreases. This implies that the islands tend to

repel each other. Also note that the interaction is independent of the relative
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Figure 3.2: The converged island configuration from coarsening simulations
with island migration using the initial random configuration performed by Liu
et al [18] is shown here. Two hexagons are drawn to illustrate a defect arise
in case of isotropic force distribution around the islands.

orientation of the islands. Hence in the case of isotropy, islands repel each other

uniformly from all directions. Isotropy of the driving force for evolution should

lead to an isotropic configuration of islands, in other words, to an array with

three-fold symmetry—a hexagonal array. As the evolution begins, islands will

locally configure themselves into a hexagonal structure which will then grow

in size as islands are incorporated at the periphery. The process is analogous

to grain growth. As there is no directional preference, hexagonal arrays form

with various orientations over the substrate and a defect, analogous to a grain

boundary, will result where two differently oriented merge. This is illustrated

in Figure 3.2. Several differently oriented domains are apparent. A structure

such as this will either evolve very slowly to decrease the defect density (which

comes with an energy cost) or it will be locked in a metastable state that

represents a local minimum in free energy.

Self organization under isotropic conditions leads to local ordering.

Achieving long-ranged order under isotropic conditions is unlikely as ordered

domains form locally with no directional preference. Introducing a directional

preference in the form of an anisotropy might help to uniformly orient domains
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such that they merge with a defect-free boundary. The effect of anisotropy

on long-ranged order is investigated in this chapter. In the present context,

anisotropy is considered to arise for the epitaxial mismatch strain or from a

remotely applied strain. In order words, the system is anisotropic when the

forces f1 6= f2 in Figure 2.6. For simplicity, elasticity moduli are assumed to

be isotropic.

3.1 Island coarsening versus size stabilization

Coarsening occurs as large islands grow at the expense of smaller ones, produc-

ing a progressively smaller number of islands of increasing size. This processes

acts against the formation of a regular array, as the system is driven towards

that of a single large island. In order to achieve a self organized array, there

must be a mechanism that inhibits coarsening.

The free-energy of an island consists of its step-edge energy and an

elastic energy arising from distortion of the crystal lattice in the vicinity of

the island. For the moment, suppose the elastic energy is negligible and step-

edge energy ψ, measured per unit length, is the only contribution to the free

energy. The energy of a square island of area A is 4ψ
√

A. Now consider two

islands of area A and suppose that a small amount of material of area ∆A is

transferred from one island to the other. The free energy is

E = 4ψ
√

A−∆A + 4ψ
√

A + ∆A ≈ 8ψ
√

A− ψ(∆A)2/A3/2 (3.2)

Noting that the last term on the right-hand size is negative, it is apparent that

the energy decreases for small values of ∆A. Hence two islands of the same

size are unstable; one island will grow and the other will shrink and ultimately

vanish. This demonstrates that if there is in fact a mechanism that stabilizes

islands, it must arise from the elastic energy.

Including the elastic energy, the free energy of a square island is given
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by (2.44). Again considering two islands, one of area A + ∆A and the other

of area A−∆A, the total free energy is

E = 4ψ
√

A−∆A +
f 2(1− ν)

√
A−∆A

πG
ln

(
α a2

0

A−∆A

)

+ 4ψ
√

A + ∆A +
f 2(1− ν)

√
A + ∆A

πG
ln

(
α a2

0

A + ∆A

)

where α ≈ 4.7022. For small ∆A the total energy is approximately

E ≈ 8ψ
√

A +
2f 2(1− ν)

√
A

πG
ln

(
α a2

0

A

)

− (∆A)2

A3/2

[
ψ +

f 2(1− ν)

4πG
ln

(
α a2

0

A

)]
(3.3)

According to (3.3), it is evident that if

ψ +
f 2(1− ν)

4πG
ln

(
α a2

0

A

)
< 0 (3.4)

the free energy increases as mass is transferred from one island to the other.

Equation (3.4) defines a critical size of islands which resist coarsening, that is,

islands of size
√

A > Lcr = a0α
1/2 exp

(
2πGψ

f 2(1− ν)

)
(3.5)

are stabile against coarsening. In the case of no lattice mismatch and no

remotely applied load (f = 0), the critical size becomes unbounded, which

is consistent with the observation of (3.2). The critical size decreases as the

lattice mismatch or applied load is increases. Consider for example a GexSi1−x

film on Si where the lattice mismatch varies from εm = 0% to −4% as the

Ge fraction x varies from 0 to 1. Step excess energies are on the order of

0.1 eV/atom [57, 58], or ψ ∼ (0.1/a0) eV where a0 is the lattice spacing.

Taking this value for ψ, a0 = 5.65 Å, shear modulus G = 40 GPa, Poisson ratio

ν = 0.25, step height h = a0/2 and force monopole f = 2hεmG(1+ ν)/(1− ν),

the critical size is calculated as Lcr = 80.12 nm for εm = −0.04 and Lcr =

2.07 µm for εm = −0.03. Over a modest range of lattice mismatches, the
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L r

Figure 3.3: A square array of islands of size L separated by distance r on a
substrate is shown.

critical size of an island varies from a few nanometer to several microns. In

the case of multiple islands of various sizes, whether an island grow or shrinks

depends on its chemical potential relative to the average chemical and not

necessarily on the critical size. It is not the case that islands larger than the

critical size grow while small one shrink. The critical size does, nevertheless,

establish a minimum density of stable islands for a given amount of deposited

material. Let Θ be the fractional coverage of film atoms on the substrate, and

consider a square array of island of size L and separation distance r as shown

in Figure 3.3. The fractional coverage is Θ = L2/r2. By (3.5), the condition

for the array to be stable is L = r
√

Θ > Lcr, or

r > Lcr/
√

Θ = a0

( α

Θ

)1/2

exp

(
2πGψ

f 2(1− ν)

)
(3.6)

For GeSi on Si with ε0 = −0.04, the minimum separation distance is 801.2 nm

for a coverage Θ = 0.01 and 179.2 nm for a coverage Θ = 0.2. Hence engi-

neering of the coverage and the lattice mismatch could be used to manipulate
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the configuration of an island array and furthermore a wide range of stable

configurations are possible.

Finally, it is noted that island interaction were omitted in this calcula-

tion. Island interactions where found to very weakly favor coarsening, but the

effect was found to be negligible compared to the self-energy of the islands.

3.2 Effect of anisotropy on driving forces

As noted previously, an isotropic non-coarsening system will tend to evolve

to locally ordered domains of hexagonal island arrays, separated by grain-

boundary-like defects. Anisotropy introduces orientation dependence that

could give rise to long-range order, as desired for many device applications.

Anisotropy implies that the force monopole of a step depends on its orienta-

tion. According to (2.33) this implies that the principle stresses associated

with the lattice mismatch and/or remote loading differ. An anisotropy in the

mismatch can arise when the crystal structure of either the island or substrate

is tetragonal.

It was shown that under isotropic conditions islands repel each other

uniformly from all directions. Consider the interaction between two islands

under anisotropic conditions. The islands are taken to square and of the same

size L. Their sides are aligned with the principle directions of the residual

stress (mismatch plus remote). Hence the force monopoles f1 and f2 of an

islands are normal to its steps as shown in Figure 2.7. From (2.48) the elastic

field of each island is approximated by a dipole d11 = f1L
2, d22 = f2L

2, and

d12 = d21 = 0. The ratio ζ = d11/d22 (= f1/f2) characterizes the anisotropy.

An anisotropy ratio ζ = 1 corresponds to the isotropic case. Large values of ζ

or 1/ζ implies large anisotropies. Using (2.47) in (3.4), the interaction energy
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Figure 3.4: Plots of normalized interaction energy, Eint = EintGr3/d2
22 of two

islands (given by equation 3.7) versus orientation defined in the inset for several
anisotropy values (ζ) is presented. G is shear modulus, d22 is the dipole acting
on islands, r is the distance between islands and Poisson’s ratio ν = 0.3.

between the islands is calculated as

Eint =
d2

22

16πGr3

{
4(1 + ζ2)− ν[3 + ζ(2 + 3ζ)]− 12(1− ν)(1− ζ2) cos 2θ

+ 15ν(1− ζ)2 cos 4θ
}

(3.7)

where r is the separation distance and θ is the relative orientation of the

islands as shown in the inset of Figure 3.4. In (3.7), G is shear modulus

and ν is Poisson ratio. Observe that interaction depends on the orientation

of the islands. The character of the interaction depends on the factor in {}
in Equation (3.7) while is plotted in Figure 3.4 for various anisotopies. If the

factor is positive, the energy decreases with separation distance and the islands

repel. If the factor is negative, the energy decrease as separation distance

decreases and the islands attract. As shown in Figure 3.4, whether the island
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attract or repel depends on both the anisotropy and their orientation. Note

also that for isotropy (ζ = 1) the island repel uniformly for all orientations.

Figure 3.4 also illustrates the tendency for the orientation to change. Consider

for example ζ = 1.6 with an initial orientation of θ = π/4. Energy decreases

as θ increases towards π/2, which is the stable equilibrium orientation of this

anisotropy. The orientation θ = 0 correspond to an unstable stationary state

where the orientation will change in either the clockwise or counterclockwise

sense. It is also observed from Figure 3.4 in the anisotropic case (ζ 6= 1) there is

either one or two stable equilibrium orientations. When two stable orientations

exists, they are generally nonorthogonal. They are orthogonal only for the case

of ζ = −1. The strength by which the islands are driven to reorient is scales

with the slope of curves in Figure 3.4. It is noted that orientational driving

force is small when the islands are near a stationary orientation. The tendency

for island to reorient also decreases as the anisotropy approaches ζ = 1.

The tendency for the two-island system to evolve can be understood in

terms of repulsive and orientational driving forces

dr = −∂Eint

∂r
and dθ = −∂Eint

∂θ
(3.8)

respectively. If dr > 0 (dr < 0) the island tend to repel (attract) each other

and if dθ > 0 (dθ < 0) the islands tend to reorient with increasing (decreas-

ing) θ. Stationary states correspond to dr = dθ = 0. Figure 3.5 plots the

character if the interaction is a function of θ and ζ. Shaded regions denote at-

tractive configurations and unshaded regions denote repulsion. The solid and

dashed line plot stationary orientations (dθ = 0). Solid line represent stable

orientations when dashed lines represent unstable orientations. Note that by

symmetry, a system of anisotropy ζ = a is equivalent to one of anisotropy

ζ = 1/a. They differ only by a 90◦ rotation. Hence further discussion will be

limited to anistropies −1 ≥ ζ ≥ 1 which includes all possible systems. Phys-
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Figure 3.5: Plot of interaction between two islands with orientation θ. The
solid lines plot stable equilibrium orientations θ versus anisotropy ζ. The
dashed lines plot unstable stationary states. Shaded regions denote states
where the islands attract each other while unshaded region denote state where
they repel. The inset shows the orientation of the radial (dr) and orientational
(dθ) driving forces on an island. The Poisson’s ratio is ν = 0.3.

ically speaking, the anisotropy increases from ζ = 1 to ζ = −1. Changing ζ

from -1 to −∞ is equivalent to changing it from -1 to 0. Likewise changing ζ

from 1 to ∞ is equivalent to changing it from 1 to 0. The apparent jump in

the character of the interaction from ζ = 1 − ε to 1 + ε is misleading. While

the stable orientation abruptly changes from vertical (θ = ±90◦) to horizontal

θ = 0, the driving force dθ changes continuously with ζ; it vanishes at ζ = 0.

The abrupt change in character is accompany by a very small driving force.

Hence a significant difference is not expected between an isotropic system and

one with a small level of anisotropy.

As anisotropy is increased (ζ < 1) from the isotropic case, a single
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orientation becomes stable while the strength of the orientational driving

force (not discernable from Figure 3.5) increases from zero. For anisotropies

ζ > ν +
√

(1− ν)(1− 2ν)/2 (ζ > 0.67 for ν = 0.3), the islands tend to repel

at their stable orientations. There is a bifurcation at ζ = (6ν − 1)/(1 + 4ν)

(ζ = 0.36 for ν = 0.3), where for larger anisotropies two generally nonorthog-

onal orientations become stable. The islands tend to attract at both of these

orientations. It is noted that a behavior similar to that of Figure 3.5 has been

reported by Kukta et al. in the case of adatoms under anisotropic conditions.

The evolution of two islands from an arbitrary starting configuration

can be quite rich in behavior. Consider for example the case of ζ = 0 which

islands oriented at θ ≈ 89◦. At this state the island will simultaneously grow

in separate and reorient with decreasing θ. As the islands separate, the driv-

ing forces for both separation and reorientation decrease, hence their velocities

will decrease. Once the orientation angle θ reaches a critical value, the islands

will begin to attract. As separation distance decreases both components of the

driving force will increase and the islands will accelerate towards their stable

orientation. Recall that the model is valid only for islands that are sufficiently

far appear for the dipole approximation to hold. Furthermore repulsive sur-

face step dipoles that dominate close-range interactions between steps were

omitted in the model. Hence the model cannot predict if the islands merge or

begin to repeal at close distances to ultimately achieve an equilibrium separa-

tion. Calculations have been done on shape transitions of a single rectangular

island under anisotropic conditions by Li et al. [59]. They find that square is-

lands are stable for small levels of anisotropy, while for large anisotropies they

transform to a rectangular shape. Hence whether or not the islands merge, the

resulting structure will be an elongated mass, consisting of either two slightly

separated islands or a single elongated island. To avoid complexities associated

with the close-ranged interaction, a near-field repulsion is introduced to stop
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the islands from combining. This achieves a configuration representative of

an elongated mass without having to depart from the constraint of square is-

lands. Furthermore, without adding the near-field repulsion, the driving force

becomes singular as the separation between islands vanishes. This behavior is

nonphysical and certainly cannot be handled numerically.

3.3 Evolution of Many-Island Systems

Evolutions of multiple island systems with various anisotropies are considered

in this section. Simulations are done as described in Chapter 2. The initial

configuration is taken to be a random distribution of islands—island sizes and

positions are both random. The systems are annealed, such that evolution oc-

curs under the constraint of fix mass of the islands. Simulations were carried

out until equilibrium was achieved. Results are shown in Figure 3.6. Fig-

ures 3.6(b)-3.6(f) respectively are the resulting equilibrium configurations for

anisotropies ζ = 1 (isotropic), ζ = 0.8, ζ = 0.5, ζ = 0, and ζ = −0.25 where

ζ = f1/f2. The initial configuration for each of these simulations is as shown

in Figure 3.6(a). In terms of dimensionless parameters, each of the simulations

shown correspond to the case of

2πψG

f 2
2 (1− ν)

= 0.8354 (3.9)

with S/h = 2000 where S is the simulation cell size, a0/h = 2 where a0 is

the cut-off radius, coverage Θ = 0.02, island sizes vary from 5h to 50h, and

Poisson ratio ν = 0.3. Using these values in (3.5) the critical islands size for

coarsening is Lcr = 10h. Hence islands larger than this value will tend to resist

coarsening.

The isotropic case, Figure 3.6(b), is similar to the result obtained by

Liu et al [18] (compare Figure 3.2). As island interactions are independent of

orientation, the minimum energy configuration is a hexagonal array of islands.
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Figure 3.6: (a) Initial size and positions of all islands are shown. Also the
equilibrium configurations of different force distribution (b) ζ = 1.0, (c) ζ =
0.8, (d) ζ = 0.5, (e) ζ = 0.0, and (f) ζ = −0.25 are shown.
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Domains of various orientations form locally and expand to meet at grain-

boundary-like defects. Once the hexagonal domains are established a process

analogous to grain growth occurs as islands on the boundaries jump from one

domain to another. This occurs until the entire system becomes either a sin-

gle hexagonal array or a metastable state with multiple hexagonal domains.

The equilibrium configuration and in particular the number of hexagonal do-

mains remaining at equilibrium, is largely dependent on the initial conditions.

In practice, the initial condition cannot be controlled as island nucleation is

largely a random process. Hence, if a single uniform array is desired, growth

under isotropic conditions would be ineffective. It is noted that uniform arrays

are less likely to form in practice than they do in these simulations because

the finite size of the periodic simulation cell limits the number of differently

oriented hexagonal domain that initially form.

For the case of ζ = 0.8, Figure 3.6(c), islands are driven to align along a

single direction. It is apparent from the Figure 3.5 that for ζ = 0.8 the islands

have only one orientation preference, at θ = 0 so the islands aligned vertically.

The Figure 3.5 also indicates that the islands repel each other in all directions

which is reflected in the snapshots of the progress of the evolution shown in

Figure 3.7(a). As the evolution begins the islands align themselves in their

preferred orientations. While the islands move towards their stable locations

they repel other islands. The repulsion between islands increase as they come

closer by addition of other islands in a column already formed. This repulsive

character of islands limits the separation between two islands. Once the sep-

aration between the islands reached this limit further addition of islands are

not allowed. This phenomenon results in the formation of many columns of

islands. The islands in consecutive columns do not align in horizontal direc-

tion which results the configuration into a domain of rectangular arrays with

different orientations. A modest anisotropy, as in this simulation, provides a
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unidirectional arrangement of islands and eliminates the grain-boundary-like

defects observed in the isotropic case.

For the case of ζ = 0.5, Figure 3.5 shows that islands have one pre-

ferred orientation at θ = 0 but they attract each other at this orientation.

As mentioned earlier a near-field repulsion is introduced to keep the islands

from merging, thus obtaining an elongated structure without departing for the

constraint of the islands being square. The repulsion is set to keep the islands

a small distance apart as compared to the step height. The result of the sim-

ulation for ζ = 0.5 is shown in Figure 3.6(d). It is apparent from the plot of

Figure 3.5 that the islands attract each other over a range of orientations (i.e.

from −31.1◦ to 31.1◦ for ν = 0.3) including their preferred orientation. This

behavior is also observed in the snapshots of progress of the simulation, Fig-

ure 3.7(b). First snapshot shows the initial random configuration of islands.

It is observed that when the evolution starts the islands that are close to other

islands begin to align in a vertical line. This behavior is shown in the fourth

snapshot of the Figure 3.7(b). These small groups of islands then align with

the nearest group as time proceeds. This behavior continues till all islands

align along vertical lines. This tendency is shown in the consecutive snapshot

in the Figure 3.7(b).

In cases of larger levels of anisotropy, (ζ = 0 and ζ = −0.25 are consid-

ered), two preferred orientations are observed—one at an orientation between

−π/2 and 0 and the other at an orientation between 0 and π/2. In the case of

ζ = −0.25 orientations are −36.8◦ and 36.8◦. Also the islands attract as well

as repel each other over non-equilibrium orientations. The islands attract at

orientations from 15.5◦ to 53.7◦ and −15.5◦ to −53.7◦ while they repel else-

where. Under the influence of two preferred orientations the islands will form

several zigzag lines and the angle between adjacent lines will be either 73.6◦ or

106.4◦. The snapshots of progress of the simulation for ζ = −0.25 is shown in
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the Figure 3.7(c). The islands are found to organize in a zigzag pattern, such

that rows of islands shift in orientation between the two stable orientations.

Similar patterns were observed in recent experiments [60–62]. Zigzag patterns

were also observed by Gao et al. [20] in simulations of phase segregation in bi-

nary thin films. Within a zigzag row, pairs of islands on either side of the shift

in orientation interact at orientations that are not of minimum free energy.

Hence the zigzag pattern comes with an energy cost, and it is expected that

islands aligned in a single orientation are of lower energy. However there is

an energy barrier for a zigzag row to transform into a straight row, as islands

must translate through high-energy orientations. This intuition applies only

to a single line of islands. The elastic interaction between adjacent lines will

favor the zigzag pattern, as a larger number of islands that lie on different lines

will be along a low energy orientation than in the case of a colony of straight

lines. If the separation between adjacent lines is small compared the size of

the zigzag pattern of a single line, the colony of zigzag lines may have lower

energy than the colony of straight lines. Gao et al [20] found this to occur

in the case of a binary monolayer. However they do address the individual

energy contributions to say that it is the interaction between adjacent lines

that make zigzag lines in a herringbone pattern energetically favorable.

This investigation shows that the elastic energy of islands introduces

a mechanism that stabilizes the islands from coarsening and helps them to

achieve a uniform array. More importantly this investigation demonstrates

that by introducing the anisotropy it is possible to obtain strongly selforga-

nized island arrays. It is shown that the anisotropy, which may be changed

by the change in epitaxial system and the remote load, plays an important

role in the self-organization, and stability of epitaxial islands. By the proper

selection of these parameters it is possible to achieve a range of anisotropies

which could lead to varieties of arrangement from straight arrays to zigzag
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Figure 3.7: The Snapshots of the simulation for (a) ζ = 0.8, (b) ζ = 0.5, and
(c) ζ = −0.25 with the advancement of time is shown. The first and the last
snapshots shows the initial and the final configurations.

lines at any desired angle. The devices in microelectronic and optoelectronic

applications requires a uniform and regular arrangement of quantum dot ar-

rays. The anisotropy may have potential application in the manufacturing of

these devices.
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Chapter 4

Effect of Dislocations on the
Organization of Islands

Anisotropy influences the relative positions of islands on a substrate but it

does not control the absolute positions. Islands may form a particular pattern

but the pattern can be located anywhere on the substrate. Furthermore, the

variety of patterns possible by exploiting anisotropy is rather limited. Forma-

tion of wider range of patterns and positioning of islands at specific sites can

be achieved by introducing some inhomogeneity in the substrate. This chapter

addresses organization controlled by natural inhomogeneities and in particular

lattice dislocations within the substrate.

The type of inhomogeneity of interest is one that produces a nonuniform

strain field on the surface of the substrate. Consider the interaction energy

between an island I and a nonuniform strain field caused by a defect D within

the substrate. Following (2.40), the interaction energy is given by

EID
int = −

∫

V

σI
ij,ju

D
i dV (4.1)

where superscripts I and D refer to the elastic fields of the island and defect

respectively. Introducing (2.49) for the elastic field of the island yields

EID
int = −dI

iju
D
i,j(z

I) (4.2)
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where dI
ij is the island’s dipole and zI is the island’s position. From (4.2) it

is clear that if the defect field uD
i depends on position, the interaction energy

also depends on position. It is also observed that the energy is reduced if the

island moves in the direction of the energetic driving force

dID
k = −∂EID

int

∂zI
k

= dI
iju

D
i,jk(z

I) (4.3)

The preferred minimum energy site of the island is determined by the uD
i .

Consider the case dI
ij = fL2δij. Equation (4.3) becomes

dID
k = fL2uD

i,ik(z
I) = fL2εD

ii,k(z
I) (4.4)

where εD
ij is the strain field of the defect and εD

ii is the dilatational strain on

the substrate surface. The case f > 0, corresponds to the situation where the

island is compressed onto the substrate to achieve a coherent interface (see

Figures 2.3 and 2.6); the island behaves as a dilatational dipole. According

to (4.4), such an island is driven to move from regions of low dilatational

strain to regions of higher dilatational strain. Physically, the island wants

to move to a site where the lattice of the substrate is expanded to a level

closer to its undeformed lattice. The island will come to rest at a site where

the defect’s dilatational strain is maximum. The chemical potential at such

a site is generally lower than sites of low dilatational strain. Hence once the

island comes to rest, it will tend to grow at the expense of islands at high-

energy sites. Conversely for the case of f < 0, where the island is stretched

onto the substrate, the island will come to rest at a site where the defect’s

dilatational strain is minimum. It is noted that f is assumed to be a constant,

in other words independent of the islands position. In light of (2.33), one

might consider it to change in response to the defect’s elastic field according

to fi = −h(σD
ij + σm

ij + σr
ij)nj where σD

ij is the defect’s stress field. If the

defect’s field scales with lattice spacing (for example the Burger’s vector of a
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dislocation), the correction is on the order of the square of lattice spacing or

equivalently h2. As the island’s elastic field is approximated to first order in

h, this correction should be omitted for consistency. The physical limitation

of the model is that the strain field on the surface that is produced by the

defect should be much smaller than that of the lattice mismatch plus remote

loading.

Defects provide locations for preferential growth of the islands by mod-

ulating the strain field over the substrate. One such defect is a dislocation

buried underneath the surface. Arrays of these dislocation lines are readily

achieved in lattice mismatched epitaxial systems. Consider a film of material

A grown on a substrate of material B and suppose the film grows layer-by-

layer to a fairly large thickness. In the case of a lattice mismatch, strain

energy builds in the system as film thickness increases. It is well-known and

understood theoretically that once the film reaches some critical thickness, it

becomes energetically favorable for the film-substrate interface to loose reg-

istry along discrete lines, call misfit dislocations [32–35]. Misfit dislocations

relax an amount of the mismatch strain stored in the system. Directly above

the dislocation line the strain is relieved most efficiently, while the strain re-

lief is not as effective far from dislocations [29]. Systems where the critical

thickness is exceeded by a sufficient amount tend to exhibit dislocation net-

works, often in the form of two sets of parallel lines oriented orthogonal to

each other, appearing as a rectangular grid. With a network of dislocations at

the interface between the film A and substrate B, the film surface will become

nonuniformly strained due the elastic fields of the indivdual dislocations. If

the film is then used as a substrate to grow another material C, there will be

preferred sites for islands to form. Ordering of islands on a substrate having

a buried dislocation network has been observed in metal epitaxy [28] as well

as in the semiconductor epitaxy [29–31,63].
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4.1 Misfit dislocations

In an epitaxial system where the lattice parameter of the film differs from

that of the substrate by a modest amount, the film grows with the extensional

strain that is required in the plane of the interface to retain perfect atomic

registry of the film with the substrate. After certain thickness of film deposi-

tion the film-substrate interface looses the atomic registry at some locations

thus form misfit dislocations. A misfit dislocation is a linear crystallographic

defect, or irregularity, along the film-substrate interface. Misfit dislocations

compensate for differences in the lattice constants by concentrating the misfit

in one-dimensional regions – the dislocation lines. Between the dislocation

lines the interface is coherent. Generally speaking, the formation of misfit dis-

location rows at interphase boundaries is either desirable or deleterious, from

an applications viewpoint, depending on the roles of the films and interphase

boundaries in applications of heteroepitaxial systems. The formation of misfit

dislocations may be desirable as it results in a (partial) compensation for misfit

stresses in the film. If the properties of an interphase boundary are exploited,

the formation of misfit dislocation rows commonly is undesirable, since the

misfit dislocation cores formed violate the pre-existing ideal (coherent) struc-

ture of the interphase boundary. This investigation focus on the properties of

film so the formation of misfit dislocation is desirable for this investigation.

The misfit dislocations are more or less lattice dislocations of the crystals and

it can be visualized as the termination of a plane of atoms in the middle of a

crystal, as shown in Figure 4.1. Misfit dislocations can be characterized by the

Burgers vector which gives information about the orientation and magnitude

of the dislocation.

The Burgers vector of a misfit dislocation vector, specified by Miller

indices, that quantifies the difference between the distorted lattice around the

69



Film

Substrate Misfit Dislocation
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Figure 4.1: Representation of misfit dislocation develop during an epitaxial
growth.

dislocation and the perfect lattice. Equivalently, the Burgers vector denotes

the direction and magnitude of the atomic displacement that occurs when

a dislocation moves. The Burgers vector of a misfit dislocation can be deter-

mined as follows: trace around the end of the dislocation plane to form a closed

loop (Figure 4.2(a)). Record the number of lattice vectors traveled along each

side of the loop (shown here by the numbers in corresponding direction). In

a perfect lattice (Figure 4.2(b)), trace out the same path, moving the same

number of lattice vectors along each direction as before. This loop will not be

complete, and the closure failure is the Burgers vector.

4.2 Elastic field of a misfit dislocation

Island nucleation may be influenced by the strain field of a misfit dislocation

network of a relaxed SixGe1−x layer. The misfit associated with these dislo-

cations extends into the epitaxial layer and induces a regular variation in the

lattice constant at the surface. The residual strain, albeit small, is sufficient

to cause preferential nucleation of the Ge dots along the misfit dislocation.

Each dislocation has an associated strain field which translate into a lattice

constant variation on the surface.
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Figure 4.2: Two-dimensional primitive square lattice (a) with dislocation and
(b) without dislocation is shown here.

Consider an edge dislocation with Burgers vector b having components

bx and by in an unbounded homogeneous and isotropic elastic solid. The plane

strain field is considered here. The origin of the coordinate system is taken to

coincide with the location of the core of the dislocation. The elastic field of

this system can be expressed in term of complex variables, according to which

the stress components and displacement components are represented in terms

of two functions ϕ and φ of ζ = x + iy, which are analytic over the region of

the body, except at isolated points or lines, as

1

2
(σxx + σyy) = 2 Re[ϕ ′(ζ)]

1

2
(σyy − σxx) + iσxy = ζ̄ ϕ ′′(ζ) + φ ′(ζ) (4.5)

The overbar denotes complex conjugate. The values of functions ϕ and φ for
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(bx, by)

hd
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y

Figure 4.3: An edge dislocation whose Burgers vector is having components
bx and by and located at the depth of hd in a traction-free half space.

the dislocation located at x = 0, y = −hd are

ϕ ′(ζ) =
ibG

4 π (1 − ν) (ζ + ihd)

φ ′(ζ) = − G

4 π (1 − ν)

[
ib̄

(ζ + ihd)
+

b hd

(ζ + ihd)2

]
(4.6)

where G is the shear modulus and ν is the Poisson’s ratio.

For an edge dislocation in a half-space, as shown in Figure 4.3, the

elastic field can be obtained from the field represented by (4.6) by adding

the appropriate nonsingular elastic field to ensure the traction free boundary

condition on the surface y = 0. The corresponding complex function [64]

becomes

ϕ ′(ζ) =
G

4 π (1 − ν)

[
ib

ζ + ihd

− ib̄ (ζ + ihd)

(ζ − ihd)2
− i(b − b̄)

ζ − ihd

]
(4.7)

The expression for φ′(ζ) is not calculated here because ϕ(ζ) and φ(ζ) are

uniquely related throughout the elastic half-space [65]. As a result, all com-

ponents of stress and displacement can be represented in terms of a single

analytic function of ζ throughout the half-space according to

σyy − σxx = ϕ ′(ζ) − ϕ ′(ζ̄) + (ζ − ζ̄) ϕ ′′(ζ)

σxx + σyy = ϕ ′(ζ) + ϕ ′(ζ̄) + 2 ¯ϕ ′(ζ) − (ζ − ζ̄) ϕ ′′(ζ) (4.8)
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Figure 4.4: Plot of strain against the normalized distance along x-direction, x̄
along the substrate surface. The distance is normalized with magnitude of the
Burgers vector i.e, x̄ = x/b. The Burgers vector of the dislocation is parallel
to the substrate surface and is located at origin O at the normalized depth,
hd = hd/b of 20. The Poisson’s ratio is ν = 0.3 and the Burgers vector are
taken to be of the order of lattice spacing.

The elastic field of a dislocation is completely defined by (4.8) and (4.7).

If there are more than one dislocation then the resulting field can be obtained

by superposing the elastic field of individual dislocation.

4.2.1 Strain Variation on the Substrate Surface

The effect of dislocation present beneath the surface of a substrate on the

organization of monolayer islands deposited on the substrate is presented here.

Recall that the presence of dislocation modifies the elastic field in the substrate.

The elastic field of the dislocation can be obtained from (4.7) and (4.8). The

strain filed along the substrate surface due to the presence of a dislocation

in the substrate whose Burgers vector is parallel to the substrate surface is

plotted in the Figure 4.4. As can be observed from the plot that the strain is

tensile at all other locations being maximum in the vicinity of the dislocation.

For the film in tension i.e, if the lattice spacing of the film is smaller than that

of the substrate, the islands should move towards the region of the highest

compressive strain or at the lowest tensile strain; in the present context at
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Figure 4.5: Plot of strain against the normalized distance along x-direction
along the substrate surface. The Burgers vector of the dislocation is aligned
at 450 to the substrate surface and is located at origin O at the normalized
depth, hd = hd/b of 20. The Poisson’s ratio is ν = 0.3 and the Burgers vector
are taken to be of the order of lattice spacing.

point O in Figure 4.4. Similarly, if the film is under compression then the

islands should moves to the region of the highest tensile strain, at A and B in

the Figure 4.4 and along the thickness of the substrate which is normal to the

plane of the paper. For the case of an oblique dislocation i.e, for the dislocation

whose Burgers vector is at some inclination to the substrate surface, there is

only one region of maximum tensile strain as shown by point B in the strain

plot of dislocation of 45◦ in Figure 4.5. If the film is under compression then

the islands should move towards B, while for the case of the film under tension

the islands should move towards A.

For the case of more than one dislocation, the resultant elastic field

can be obtained by superimposing the elastic field of individual dislocation.

One such case is shown in Figure 4.6 which represents the strain variation

of two dislocations having Burgers vector parallel to the substrate. Here the

dislocations are at C and D. The islands under compression should prefers the

region intermediate of the two dislocations (at O) which is the maximum tensile

region. But when the separation between the dislocations is large then the
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Figure 4.6: Plot of strain against the normalized distance along x-direction
along the substrate surface of two dislocations. The Burgers vector of dislo-
cations is parallel to the substrate surface and is located at C and D and at
the normalized depth, hd = hd/b of 20. The Poisson’s ratio is ν = 0.3 and the
Burgers vector are taken to be of the order of lattice spacing.

maximum tensile strain region shifts from O and, instead of single maximum

tensile strain zone two zones of maximum tensile strain appears, as shown in

the Figure 4.7. This is because the elastic field of dislocation is of short ranged

i.e, it varies as (x2 + (hd + y)2)−1. Hence the elastic field of dislocations get

affected for smaller separation between dislocations, while for larger separation

the effect on the elastic field is small as can be observe by comparing Figures

4.4 and 4.7.

4.3 Influence of misfit dislocation

The evolutions of initially random configuration of islands are simulated for

different configuration of the edge dislocations present beneath the substrate

surface. In terms of dimensionless parameters, each of the simulations shown

correspond to the case of

4πψG

f 2
2 (1− ν)

= 0.408 (4.9)
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Figure 4.7: Plot of strain against the normalized distance along x-direction
along the substrate surface of two dislocations located far from each other.
The Burgers vector of dislocations is parallel to the substrate surface and is
located at C and D and at the normalized depth, hd = hd/b of 20. The
Poisson’s ratio is ν = 0.3 and the Burgers vector are taken to be of the order
of lattice spacing.

x

z

Figure 4.8: Initial random configuration of islands used to simulate the evo-
lution under the influence of dislocation present beneath the surface of the
substrate is shown.
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where ψ is the step excess energy and G is the shear molulus. Other parameters

are S/h = 300 where S is the simulation cell size and h is the island height,

a0/h = 1/2 where a0 is the cut-off radius, coverage Θ = 0.08, b/h = 1/2

where b is the Burgers vector, depth of the dislocation is hd = 20b and Poisson

ratio ν = 0.3. Initial sizes of the islands are in between 4h and 8h. Figure

4.8 shows the initial configuration of islands. In simulation the dislocation

lines are along the z-direction and the deposited film is considered to be under

compression. Once islands comes at their preferred location under the influence

of dislocations (i.e, along the z-direction), they repel each other and try to

leave the simulation boundary. So the region is bounded along z-direction

while in the x-direction the region remains unbounded. Figure 4.9(a) − 4.9(d)

shows the snapshots of advancement of the evolution of islands when one

dislocation with Burgers vector parallel to the substrate surface is present

beneath the substrate surface. The line at O in each snapshot represents

the dislocation line while lines A and B are same as of strain plot in Figure

4.4. As the evolution starts, some islands evaporate quickly (simulation starts

with 40 islands and as observed in Figure 4.9(a) that 30 islands are left). As

evolution advances the islands move towards the lines A and B (shown in

Figures 4.9(b) and 4.9(c)) which are the preferred positions of islands for the

present configuration of dislocation. The snapshot after considerable amount

of time, Figure 4.9(d) shows arrangement of islands along the maximum tensile

zone i.e, along A and B. Apart from the preferred positions, the islands are

also observed at other places. The existence of islands at these locations are

due to the balance between various forces (repulsive forces between islands

and attractive force between the island and the dislocation line) acting on

the islands. Figure 4.10(a) − 4.10(d) shows different stages of the evolution

of islands when one dislocation with Burgers vector inclined at 450 to the

substrate surface is present. It is found that the preferable positions for islands
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are at B which is the zone of maximum tensile strain as can be observed from

the Figure 4.5. Simulation results for two dislocations are presented in Figures

4.11(a) − 4.11(d) and Figures 4.12(a) − 4.12(d). In both these simulations the

dislocations are located at C and D (represented by the solid lines). The dashed

lines in these snapshots shows the zone of tensile strain peak of corresponding

stain plot in Figure 4.6 and Figure 4.7.

It is found from these simulations that the unidirectional arrangements

of the islands can readily be achieve in the presence of edge dislocation under-

neath the substrate. Similar results were observed by Shiryaev et. al, [63] for

arrays of dislocation network beneath the substrate surface, shown in Figure

4.13. The epitaxial system used in their study is Si1−xGex/Si. They have

found that simply by changing the dislocation morphology in the underlying

substrate one can achieve remarkable rearrangements in the island patterns

as illustrated in Figure 4.13. They observed the island rows aligned with the

dislocation bands.
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Dislocation Line(a) (b)

(c) (d)A O BA O B

A O B A O B

Figure 4.9: Advancement of the evolution of islands when one dislocation
whose Burgers vector is parallel to the surface of the substrate is presented.
The dislocation is along the line O. (a) early stage of evolution (b) and (c)
is the intermediate stage and (d) evolution after considerable amount of time
are shown. Lines A, O and B are same as in Figure 4.4.
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Dislocation Line(a) (b)

(c) (d)O BO B

O B O B

Figure 4.10: Different stage of the evolution of islands when one dislocation
whose Burgers vector is inclined at 450 to the surface of the substrate is pre-
sented. The dislocation is along the line O. (a) early stage of evolution (b)
and (c) is the intermediate stage and (d) evolution after considerable amount
of time are shown. Lines O and B are same as in Figure 4.5.
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Figure 4.11: Stages of evolution when two dislocations present beneath the
surface of the substrate whose Burgers vector is parallel to the substrate surface
are presented here. The dislocations are along the lines C and D. The early
stage of evolution (a), the intermediate stage (b) and (c) and, evolution after
considerable amount of time (d) are shown here. Lines A, O and B are lines
of the strain peak and are same as in Figure 4.6.
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Figure 4.12: Stages of evolution when two dislocations present beneath the
surface of the substrate whose Burgers vector is parallel to the substrate surface
are presented here. The dislocations are along the lines C and D. The early
stage of evolution (a), the intermediate stage (b) and (c) and, evolution after
considerable amount of time (d) are shown here. Lines A, E, O, F and B are
lines of the strain peak and are same as in Figure 4.7.
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Figure 4.13: AFM images (7.7 × 7.7µm2) of Ge islands on the surface of
dislocation pre-structured substrates obtained by Shiryaev et, al. [63]. The
nominal thickness of the Ge overlayer is 1 nm for both images. The layer
structure consists of a 2 µm thick graded layer with a Ge gradient of 1% Ge
per micrometer, a top uniform Si0.80Ge0.20 layer with a 10 nm thick Si cap (a)
and without the Si cap (b). The height scales (black to white) are (a) 61 nm
and (b) 75 nm.
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Chapter 5

Use of Selective Area Epitaxy
for the Organization of Islands

Dislocations and other natural features be used to guide dot placement but

site-specific control is limited. Hence organization via natural features is not

suitable for most applications. The intrinsic random fluctuation in dislocation

line spacing in relaxed epitaxial layers will result in a distribution of Ge islands

on an irregular square grid and thus have limited accuracy in positioning.

Furthermore misfit dislocations are terminated by threading dislocations which

in most cases adversely affect the optical and/or electrical properties of a device

structure.

The placement of islands at specific sites can be achieved by the combi-

nation of self-assembly and pre-patterning of the surface. The pre-patterning

is most often done by lithography, etching and partial overgrowth of the sub-

strate, forming trenches or holes, as well as ridges or mesas at the surface

with preferential nucleation sites for dot formation [66–68]. Highly ordered

arrays of Ge islands could be obtained on templates grown by a combination

of pre-patterning and subsequent deposition of a strained-layer GexSi1−x /Si

superlattice [69]. These features can be of any topography. A pattern used

often in experiments is a square shaped raised pattern, or mesa. Arranging of

islands by using periodic array of mesas developed on a substrate has drawn
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attention experimentally [41, 46] as well as theoretically [49, 50] in past few

years. These works demonstrate that islands deposited on a mesa organize at

the well defined configurations (corners or center of the mesa) which depend

on the geometrical and physical properties of the epitaxial system. Kitajima

et al [46] investigated the effect of mesa size on the organization of Ge islands

on a Si mesa. For large mesas Kitajima et al found that nucleation occurred at

the mesa edges and corners, and also at random locations across the top of the

substrate mesa. For smaller mesas, the edge and corner location were found

to be preferred nucleation sites over other interior locations. For yet smaller

mesas, only a single island was found to form on the mesa top, either centered

on the mesa, or offset to one side. It is speculated that the preference of the

mesa edges and corners for certain systems is due to the lateral compliance of

those locations due to the reduced constraint of the substrate which allows for

a reduction in strain relative to other potential nucleation sites. Also the mesa

tops admit lower strain levels in general, and surface diffusion is expected to fa-

vor the relocation of deposited material from more constrained (geometrically

stiff) locations of the substrate topology to the mesa top. In another study on

the same system, Jin et al [41] found the islands to form preferentially at the

four mesa corner locations. With further deposition a fifth island was found

to form at the mesa center. A possible mechanism for the formation of this

central island is offered by Jin et al as the result of islands strain field inter-

action which in turn alters the energy distribution on the mesa top, resulting

in a shift in the relative favorability of sites within the substrate topology.

Some theoretical work [49, 50], that has also been done recently, focuses on

the organization of islands on the mesa but their model is two-dimensional so

they may misses some feature due to three-dimensional nature of the system.

This work address the organization of islands deposited on a selective region

of the substrate while retaining the three-dimensional nature of the system.
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The effect of the epitaxial system and the deposit amount of the film material

on the stable configuration of islands is discussed. Followed by the effect of

nucleation rate of islands on their stable configuration is discussed.

5.1 Effect of system’s parameters on the sta-

ble configurations of islands

Consider a system with islands on a square region of a substrate. The islands

may evolve, but are constrained to remain inside this region. The system

evolves such that the total energy of the system is reduced. Here the evolution

is governed by the elastic interaction between islands and self energy of islands.

Since island repel each other, the evolution proceeds such that the separation

between islands tends to increase. The system evolves until it reaches a stable

equilibrium. The stable configuration of islands depends on the physical and

the geometrical properties of the epitaxial system and the amount of film ma-

terial deposited. Depending on these parameters the system will evolve to one

of may possible stable configurations with one island, two islands, three islands

or more. To understand the effect of system parameters on the stable configu-

ration of islands, relations between system parameters and deposit amount of

the film material is obtained for different stable configurations and is plotted

as shown in Figure 5.1. Parameters involved in these calculations are (a) phys-

ical properties of the epitaxial system: mismatch between film and substrate

material εm, Poisson ratio ν, sheer modulus G, excess energy per unit length

ψ and cutoff a0, (b) geometrical properties of the system: square region of size

S and (c) deposit fraction Θ which is defined as the ratio of deposit volume to

the volume of the selected region. The height of the islands are kept constant

as one atomic distance. The physical and geometrical properties are combined

into a single parameter α = (1− ν)ψ/(4(1 + ν)2Gh2ε2
m)− (1/π) ln(S/a0). The

energy of the system consists of self energy and interaction energy of the is-
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Figure 5.1: The effect of properties of an epitaxial system and deposit amount
of the film material on the stable configurations is shown. Size of all islands
in a particular stable configurations is considered to be the same. The α is
a parameter that depends on the physical (mismatch strain εm, excess energy
per unit length ψ, sheer modulus G and Poisson ratio ν) as well as geometrical
properties (size of the region S) of the system, α = (1−ν)ψ/(4(1+ν)2Gh2ε2

m)−
(1/π) ln(S/a0). The Θ is the deposit fraction of the film material defined as
the ratio of deposit volume to the volume of the selected region.
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lands. To simplify the calculation, the shape of the islands are considered to

be circular. The self energy of a circular island of radius R can be evaluated

by following (2.42) as

Eself =
2f 2R(1− ν)

G

[
2 + ln

( a0

8R

)]
+ 2πRψ (5.1)

and the interaction energy of two circular islands of same radius R and sepa-

ration distance L can be evaluated by using (2.51) as

Eint =
πf 2R4(1− ν)

2GL3
(5.2)

It is observed from above equations that only the interaction energy of islands

varies with the separation distance as 1/L3. This indicates that for a given

number of islands the total energy of the system will be minimum when the

interaction energy of the islands is minimum. In the case of a raise mesa the

self energy of an island would also depend on position, but mesas are not con-

sidered here. Hence for a given islands density, minimum interaction energy

configurations represent stable configurations. The focus is to find the depen-

dence of stable configuration of islands on the properties of the system and

the deposit amount. The analysis is done in the following manner. For a given

number of islands the stable configuration and the corresponding energy is cal-

culated. Only the configurations starting from one island up to five islands are

considered in this analysis. The size of all islands in a given configuration is

assumed to be the same, with radius R =
√

Θ/(πn), where n is the number of

islands and Θ is the deposit fraction. For the case of one island, the energy of

the system is independent of the position of the island. The general configura-

tion of two islands in the region is shown in Figure 5.2(a). The corresponding

interaction energy of the islands Eint ∝ 1/(1 + m2)3/2 is minimum at m = 1.

This indicates that in the stable configuration the islands settle at opposite

corners of the region. For three islands, shown in Figure 5.2(b), the interaction
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Figure 5.2: Schematic representation of two islands (a), three islands (b) and
five islands (c) inside the square region of unit width. The size of all islands
are same.

energy Eint ∝ 1 + 1/(1 + m2)3/2 + 1/(1 + (1 −m)2)3/2 is minimum at m = 0

or 1 i.e., the islands settle at corners of the region. The minimum energy con-

figuration of four islands is the one in which all islands settle at the corners of

the region. The interaction energy of 5 islands configuration shown in Figure

5.2(c) Eint ∝ 2/((1/2)2 + m2)3/2 + 2/((1/2)2 + (1 − m)2)3/2. The energy of

this system is minimum at m = 1/2 i.e., four islands at corners and one at

center of the region minimizes the energy of the system. After evaluating the

stable configuration and the corresponding minimum energy, transition states

where the minimum energy configuration changes (for example five islands to

four islands, four islands to three islands and so on) are evaluated. This gives

α as a function of Θ along the transition curves, which are plotted in Figure

5.1. As shown in the plot, the stable configuration depend on α as well as Θ.

By controlling either α or Θ one can achieve a particular stable configuration.

The α can be changed either by changing the epitaxial system (εm, ψ, G and

ν) or by changing the size of the region or by changing both. It is evident

from the plot that for a particular epitaxial system the number of islands in

the stable configuration increases with increasing the deposit amount Θ. For

a fixed deposit the number of islands increase with increasing α, which implies
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an increase in ψ or S or a decrease in εm. Consider for example GexSi1−x/Si

where the lattice mismatch varies from εm = 0% to −4% as the Ge fraction x

varies from 0 to 1. Step excess energies are on the order of 0.1 eV/atom [57,58],

or ψ ∼ (0.1/a0) eV where a0 is the lattice spacing. Taking this value for ψ,

a0 = 5.65 Å, shear modulus G = 40 GPa, Poisson ratio ν = 0.3, step height

h = a0/2, force monopole f = 2hεmG(1 + ν)/(1− ν), mismatch εm = 4% and

size of the region S/a0 = 200 the α is calculated as -1.11. For this system,

before Θ = 0.036 the stable configuration consists of only one island. On in-

creasing Θ up to 0.10, island density increases from one island to five islands

in the stable configuration. After Θ = 0.10 the stable configuration consists

of 6 or more islands. It is also evident from the plot that for α > −1.05 and

Θ > 0.135 configuration of five islands is not favorable and on reducing Θ

below 0.135 at α = −1.05 or increasing α beyond -1.05 at Θ = 0.135, from six

or more islands configuration one can observe four islands configuration. Also,

for Θ < 0.52 and α > −0.75 configuration of three islands is not favorable.

Similarly, for Θ < 0.64 and α > −0.71 configuration of two islands is not

favorable.

The above calculation is done on the basis of equilibrium without regard

to kinetics. These configurations can be achieved if the system does not evolve

to one of many possible metastable states. In experiment, many islands are

nucleated over the region and as time proceeds some islands disappear due

to coarsening. It is likely that the complex kinetic evolution from an initially

random state will produce a metastable configuration. In order to understand

the behavior of such system dynamic analysis has been done and discussed in

the next section.
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5.2 Evolution of islands during epitaxy on a

selective area

Evolution of multiple islands on a selective area of the substrate is considered in

this section. Islands are deposited randomly at periodic intervals on the area.

The initial diameter of a deposited island is taken to be 5 atomic spacings

which is roughly the size of a stable nucleus. The systems are annealed, such

that evolution occurs under the constraint of fixed mass of all islands. The

islands are constrained to remain inside the selected area. This is done by

adjusting the driving force on an island lying at boundary such that it will

not cross the boundary. Simulations were carried out until equilibrium was

achieved. Results are presented as: (a) the epitaxial system and the deposit

amount varies while the size of the region is fixed, shown in Figure 5.3 and 5.6

to 5.9, and (b) the deposit amount and the size of the region varies while α is

fixed, shown in Figure 5.10. These results are discussed below.

Effect of deposit amount on the stable configuration of islands:

The effect of deposit amount and epitaxial system on the stable configuration

of the islands for fixed size of the region is presented. In Figure 5.3 the size of

the region is S/a0 = 200 and the Poisson ratio is 0.3, and the simulations start

from a fixed amount of deposited material. The simulations were carried out

for deposit fractions ranging from 0.04 to 0.34. In the initial random configura-

tion, islands are separated by at least one atomic distance. The initial random

configuration with deposit fraction Θ > 0.34 is difficult to achieve because the

entire region becomes populated with islands. For a given Θ the simulations

are done by changing α such that the desired configuration of islands (from 5

islands to 1 island) is achieved. It is observed that the resulting configuration

differs on different runs for the same parameters. For example, lets consider a

system with α = −0.85 and the deposit amount Θ = 0.10. The system equili-
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brates to 5 or 6 islands depending on the initial random state (see Figure 5.3).

This behavior indicates that the system is evolving to different metastable

configurations. The plot of Figure 5.3 is obtained by performing 5 to 6 sets

of simulations for the same parameters, and from the resulting configurations

the configuration is chosen which has maximum number of occurrences. Each

dot represents a result of the simulation. Diamonds represents the 5-island

configuration, unfilled square represents 4-island, triangle represents 3-island,

unfilled circle represents 2-island and filled square represents 1-island config-

urations. In the resulting configurations, islands located symmetrically are of

the same diameter. This means in the 3-island configuration islands located

at the opposite corners are of same diameter while the third island is smaller

than the other two islands. Similarly, in 5-island configuration all 4 islands

at the corners are of same diameter while the islands sitting at the center is

smaller than remaining four islands. It is evident from Figure 5.3 that for a

fixed system the island density increases with increasing the deposit amount.

For a fixed deposit amount the islands density increases with decreasing α.

This behavior is similar to the one observed in the plot of minimum energy

configurations, Figure 5.1. For a given system and deposit amount the plot of

Figure 5.3 gives a higher island density than the minimum energy state (Figure

5.1). To illustrate that the kinetically determined configurations are in fact

metastable, consider an epitaxial system with α = −0.86. For such system it

can be observed from the Figure 5.3 that for Θ = 0.10 the resulting configu-

ration consists of 5 islands. The normalized energy E = EG/(f 2(1 − ν)) of

this system for different configurations is plotted as shown in Figure 5.4. The

energy is calculated by changing the size of the islands for configurations from

5-island to 1-island. In 5-island configuration the size of the center island is

changed by transferring equal mass to/from all corner islands; the size of the

corner islands remain equal. In the 4-island configuration mass is transferred
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Figure 5.3: Effect of the deposit amount Θ and the properties of the epitaxial
system α on the stable configuration of islands is presented. The size of the
region is fixed as S/a0 = 200, size of all islands is same as 5 atomic distance,
height of the islands is taken as 1 atomic distance the deposition rate of islands
is infinite and Poisson ratio ν = 0.3.

from one corner island to the others, in the 3-island configuration mass is trans-

ferred from the asymmetric island to the others and in 2-island configuration

it is transferred from one island to the other. Energies along these transition

paths are plotted in Figure 5.5. The plot shows that the energy increases with

either increasing or decreasing the size of the island, which indicates that each

of these states are metastable. The minimum energy configuration for this

system is that of a single island configuration, as shown in Figure 5.1.

To probe the relationship between deposition rate and the most likely

metastable state, instead of depositing all islands together and letting them

evolve (which mimics very fast deposition rate followed by an anneal), the
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Figure 5.4: The energy of the system form 5-island to 1-island configuration is
shown for α = −0.86, ν = 0.3 and S/a0 = 200, deposit fraction Θ = 0.10. The
energy changes by changing the configuration and in particular it decreases by
reducing the island density.
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Figure 5.5: The variation of energy of the system of Figure 5.4 by changing
the size of the islands is shown. In 5-island configuration (a) the size of the
center island is changed by transferring equal mass from all corner islands. At
any instant the size of all corner islands is same. In 4-island configuration (b)
bottom left corner island, in 3-island configuration (c) the island located at
top right corner and in 2-island configuration (d) bottom right corner island
is picked. The energy increases with either increasing or decreasing the size of
the island.
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islands are now deposited at various rates. Simulations start from 1 island of

diameter 5 atomic spacings. Subsequent islands are randomly deposited at a

regular intervals until the required amount of deposit is achieved. The system

is then annealed to equilibrium. The results are shown in Figures 5.6 to 5.9

for different deposition rates of the islands. The size of the area is fixed at

S/a0 = 200 and the Poisson ratio is 0.3. From Figure 5.6 through 5.9 the

deposition rate is progressively slower. The deposition rates of Figures 5.7,

5.8 and 5.9 are respectively 0.5, 0.3 and 0.27 times that of Figure 5.6. The

trend of island density on the epitaxial system and deposit amount is same as

observed for minimum energy configurations (Figure 5.1) and in the case of

infinite deposition rate (Figure 5.3), i.e., the islands density increases either

by increasing Θ for fixed α or by decreasing α for fixed Θ. Quantitatively,

the results of the fastest deposition rate (Figure 5.6) are most similar to the

result for minimum energy configurations (Figure 5.1). Nevertheless, marked

differences are apparent and it is likely that any similarities are nothing but

coincidence. As deposition rate is decreased from Figures 5.6 to 5.8, the

number of islands in the final stable configuration decreases for a given system.

The reason for this is clear considering that large islands tend to grow at the

expense of smaller islands and the small islands of similar size are subject

to coarsening according to Eqn (3.5). Consider a very slow deposition rate.

Early in the growth, two critical nuclei of similar size lie on the substrate. If

their size is less than the critical size required to resist coarsening (Eqn 3.5),

mass will be transferred from one island to the other. If the deposition rate

is slow enough compared to the rate of mass transfer, this process results in

a single larger island before a third island is nucleated. The third island will

then be absorbed into the larger island before a fourth nucleates and so on

until the result is a single large island. Faster deposition rates suppress this

effect resulting in two or more islands of size greater than the critical size to
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resist coarsening. While multiple islands of similar size may have lower free

energy, there is an activation barrier that must be overcome in order for a

single large island to break up on the smaller ones. Hence the results should

contain an explicit temperature dependence in addition the implicit one related

to the ratio of mass transfer rate to deposition rate. The activation barrier has

not been estimated and hence the current simulations do allow this process

to occur. Additional work will be necessary to understand this effect on the

assembly process.

Effect of area size on the stable configuration of islands:

According to the minimum energy analysis (Figure 5.1), the effect of selective

area size S is completely contained in the parameter α. In the above results,

obtained via kinetic simulation, the area size was fixed, which implies that α

characterizes the epitaxial system, and not necessarily the area size. It is likely

that for the kinetic case the effect of size S = S/a0 is not completely contained

in the parameter α. This is because the results ought also to depend on the

size of the initial nuclei as compared to S. To test this likelihood, the area

size S = S/a0 is varied for fixed α; the result is shown in Figure 5.10. The

deposition rate is same as that in Figure 5.9 and α = −1.11. It is evident from

these plots that the effect of S is not completely contained within α in the

kinetic case. In order to test that the reason is the size of the critical nuclei

relative to S, a similar plot would be needed, but holding the ratio rnuc/S fixed

where rnuc is the nuclei size. Furthermore, as S is contained in α, the plot

of Figure 5.10 can not be used to understand the effect of S on the resulting

configurations. To obtain such an understanding, plots of ψ/Gh2ε2 versus Θ

are needed.

This investigation shows that by the use of selective area epitaxy it is

possible to obtain well defined islands configuration. It is shown that the mate-
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rial properties, deposit amount, the size of the region and deposition rate plays

an important role in the arrangement of islands. By the proper selection of

these parameters it is possible to achieve a range of islands configuration. The

devices in microelectronic and optoelectronic applications requires a uniform

and regular arrangement of quantum dot at specific locations. The selective

area epitaxy may have potential application in the manufacturing of these

devices.
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Figure 5.6: Effect of the deposit amount Θ and the properties of the epitaxial
system α on the stable configuration of islands is presented. The size of the
region is fixed as S/a0 = 200, height of the islands is taken as 1 atomic distance
and Poisson ratio ν = 0.3. A deposition rate is introduced in these simulations.
Size of all deposited islands is same as 5 atomic distance. Simulation starts
with 1 island then after some interval second island is deposited at a random
location inside the region. After the same interval another island is deposited
and this process of deposition continues until the desired deposit amount is
achieved.
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Figure 5.7: Plot illustrate the dependence of the stable configuration on the
deposit amount Θ and the properties of the epitaxial system α. The size of
the region is fixed as S/a0 = 200, height of the islands is taken as 1 atomic
distance and Poisson ratio ν = 0.3. An intermediate deposition rate (0.5 times
than that in Figure 5.6) is chosen.
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Figure 5.8: The effect of the deposit amount Θ and the properties of the
epitaxial system α on the stable configuration of islands is illustrated. The
deposition rate of the islands is considered to be slow (0.3 times than that in
Figure 5.6). The size of the region is fixed as S/a0 = 200, height of the islands
is taken as 1 atomic distance and Poisson ratio ν = 0.3.
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Figure 5.9: The dependence of stable configuration of islands on the deposit
amount Θ and the properties of the epitaxial system α is illustrated. The
deposition rate of the islands is considered to be slow (0.27 times than that in
Figure 5.6). The size of the region is fixed as S/a0 = 200, height of the islands
is taken as 1 atomic distance and Poisson ratio ν = 0.3.
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and size of the region S = S/a0 on the stable configuration is illustrated. The
height of the islands is taken as 1 atomic distance, α = −1.11 and Poisson
ratio ν = 0.3. The deposition rate is slow which is same as in Figure 5.9.
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Chapter 6

Conclusion

The self-organization of strained epitaxial islands deposited on a substrate is

discussed in this work. Arrangements of islands by using anisotropy in surface

stress and/or in lattice mismatch, by introducing dislocation into the substrate

and by using selective area epitaxy are considered. First, a model is developed

for the evolution by condensation/evaporation of islands. Followed by elastic

interaction of an island with itself and with other islands is presented. It is

shown that the elastic energy of islands introduce a mechanism that stabilizes

the islands from coarsening and helps them to achieve a uniform array. For

the isotropic case their is no preferred orientation so islands repel each other.

This results in hexagonal domains that meet at grain-boundary-like defects.

In order to reduce these defects anisotropy is introduced. Anisotropy intro-

duces an orientational preference and changes the repulsion into attraction at

certain orientations. It was shown that anisotropy can reduce the occurrence

of defects relative to the isotropic case. Simulation results demonstrate that

the anisotropy, which may be tailored though choice of the epitaxial system

and the application of an remote load, plays an important role in the self-

organization, and the stability of epitaxial islands. By the proper selection of

these parameters it is possible to achieve a range of anisotropies which could

lead to a variety of arrangements. Both for small levels of anisotropy (Fig-
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ure 3.6b) and large levels of anisotropy (Figures 3.6e and 3.6f), islands tend

not to self-organize into regular patterns, but into metastable states character-

ized by a high defect density. The best case for self-organization is a modest

level anisotropy (Figure 3.6c). Long-ranged self-organization is enhanced by

both the repulsion between islands and tendency for islands to align in a par-

ticular direction. Small anisotropies provide the required repulsion but not

a strong enough tendency for islands to align in particular directions. Large

anisotropies provide the necessary strength for alignment but cause islands to

attract.

Controlled positioning of islands can be achieved by naturally forming

defects and other sources of residual strain. The example of organization in

the vicinity of subsurface lattice dislocations was simulated. It was shown that

the resulting configuration of islands is directly related to the strain field on

the substrate surface. Locations where islands preferentially form depends on

the nature of the mismatch between the islands and the substrate. If an island

must be compressed (stretched) onto the surface in order to achieve epitaxy, it

will preferentially form at locations of low residual compressive (tensile) strain

or more favorably at location of high residual tensile (compressive) strains.

Such locations reduce an island’s chemical potential and thus reduce the total

free energy over less favorable sites.

Selective area epitaxy was also considered as a method to control the

arrangement of islands. Here the configuration of islands depends on various

parameters such as the epitaxial system, amount of deposited material and,

size of the region. The configurations of interest were those of a single island in

the region, 2 islands at corners of the region, 3 islands at the corners, 4 islands

at the corners, and 5 islands–4 at corners and 1 at the center. It was shown that

by changing the epitaxial system, deposit amount or the size of the region it

is possible to achieve each of the different configurations. For a fixed epitaxial
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system and size of the region, it is found that on increasing the deposit amount

the density of islands in stable configuration increases. Also for a fixed deposit

amount and the epitaxial system, the density of islands increases by decreasing

the size of the region. It was found that kinetics play an important role in

the stable configuration of islands and that the resulting configuration is likely

to be metastable. Deposition rate was found to have a strong effect on the

resulting stable configuration of islands. Temperature effects were implicitly

contained in the relative rates of mass transfer to deposition. However, as

metastable state configurations were found to be common, additional effects

should be included in order to completely characterize the self-organization

process. Primarily, a temperature dependent mechanism must be included, by

which a single island can separate into two smaller islands. This can be done

by determining the activation energy for the process and a stochastic model

for the event to occur.
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APPENDIX

Green’s function for an elastic half-space (Cer-

rutti’s problem)

The expression for the Green’s function Gij(x,y) can be expressed as:

Gij =
δij

rp
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rm

+
4(1− ν)(1− 2ν)δij

rp + x3 + y3

+
2x3y3δij

r3
p

+
rirj

r3
m

+
rirj(3− 4ν)

r3
p

− 6rirjx3y3

r5
p

− 4rirj(1− ν)(1− 2ν)

rp(rp + x3 + y3)2

G13 =
r1(x3 − y3)

r3
m

+
r1(3− 4ν)(x3 − y3)

r3
p

+
6r1x3y3(x3 + y3)

r5
p

−4r1(1− ν)(1− 2ν)

rp(rp + x3 + y3)

G23 =
r2(x3 − y3)

r3
m

+
r2(3− 4ν)(x3 − y3)

r3
p

+
6r2x3y3(x3 + y3)

r5
p

−4r2(1− ν)(1− 2ν)

rp(rp + x3 + y3)

G31 =
r1(x3 − y3)

r3
m

+
r1(3− 4ν)(x3 − y3)

r3
p

− 6r1x3y3(x3 + y3)

r5
p

+
4r1(1− ν)(1− 2ν)

rp(rp + x3 + y3)

G32 =
r2(x3 − y3)

r3
m

+
r2(3− 4ν)(x3 − y3)

r3
p

− 6r2x3y3(x3 + y3)

r5
p

+
4r2(1− ν)(1− 2ν)

rp(rp + x3 + y3)

G33 =
(x3 − y3)

2

r3
m

+
(3− 4ν)x2

3 + 4(1− 2ν)x3y3 + (3− 4ν)y2
3

r3
p

+
6x3y3(x3 + y3)

2

r5
p

+
3− 4ν

rm

+
5 + 4ν(−3 + 2ν)

rp

(A-1)

107



1

2

A

B

L

d

Ay1

x1

1

2

A

y1

x1

(a) (b)

B

f A

f B

f B

f A

LB

LB

LA

Figure A-1: Two types of step orientations with respect to each other are
shown. Steps A and B of lengths LA and LB, and force distribution of fA

and fB are oriented (a) parallel to each other, and (b) perpendicular to each
other.

where i and j = 1, 2 and r1 = x1−y1, r2 = x2−y2, rm =
√

r2
1 + r2

2 + (x3 − y3)2)

and rp =
√

r2
1 + r2

2 + (x3 + y3)2.

Interaction energies of steps

Self-interaction of an island is calculated as the sum of the self-energies of

individual steps of the island and the interaction energy between steps of the

island. Energy of interaction of steps aligned parallel to each other, shown

schematically in Figure A-1(a), can be calculated by using (2.41). Here two

parallel steps A and B are considered, shown in Figure A-1(a). The steps are

located at y1 and x1 from the axis-2 with separation d between them. The

sizes of steps are LA and LB. The complete expression for their interaction

108



energy is

EAB
int

(
x1, y1, d, LA, LB, fA, fB

)
=

fA fB

4 π G

[
(1− 2 ν)

{ √
d2 + (LA − k)2

−
√

d2 + k2 +
√

d2 + (LB + k)2 +
√

d2 + (LA − LB − k)2
}

+ (1− ν)
{

(LA − k) ln
(− LA + k +

√
d2 + (LA − k)2

)

− (LA − LB − k) ln
(− LA + LB + k +

√
d2 + (LA − LB − k)2

)

− (LB + k) ln
(
LB + k +

√
d2 + (LB + k)2

)

+ k ln
(
k +

√
d2 + k2

) } ]
(A-2)

where k = x1 − y1, fA and fB are the distributed forces acting on respective

steps, ν is poisson’s ratio, and G is modulus of rigidity of the material. Cor-

respondingly, the interaction between steps aligned orthogonal to each other,

shown in Figure A-1(b), can also be evaluated by using (2.41) as

EAB
int

(
x1, y1, L

A, LB, fA, fB
)

=
fA fB ν

4 π G

[ √
x2

1 + y2
1

−
√

(LB + x1)2 + y2
1 −

√
x2

1 + (LA + y1)2

+
√

(LB + x1)2 + (LA + y1)2

]
(A-3)

Besides the interaction with other steps, step also interacts with its

own elastic-field. Energy of self-interaction of a step of length LA and having

distributed force fA can be calculated by using (2.42) as

EA
self

(
LA, fA

)
= LA ψ +

LA
(
fA − 2 fA ν

) (
2 fA + fA ln

(
a2
0

4 (LA)2

))

4 π G
(A-4)

where a0 is the cut-off of the order of surface lattice constant and ψ is the

excess energy per unit length of the step.
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