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Given a smooth oriented closed surface of genus zero, possible with 
boundary, we first fixed a G-cover of this surface where G is a fixed finite 
group. To understand this, we break down this G cover into several pieces 
and each piece is identified with a G cover of sphere with certain number of 
holes. We called G cover of sphere with holes a “standard blocks”.  Given a 
G cover of a surface, there are many different ways to identify this G cover 
with gluing of one or several “standard blocks”. We give a description of all 
the ways in which a given G cover can be obtain by such a gluing process. In 
the case when G is a trivial group, this kind of gluing process is called “Lego-
Teichmuller game”. We extend t his notion of “Lego-Teichmuller game” in 
more general situation when G is a finite group. First, we consider a complex 
where each vertex is such an identification. Then we define some simple 
moves and relations which will turn this complex into a connected and simply 
connected complex. This will be used in the future paper to construct G-
equivariant modular functor. This G-equivariant modular functor will be an 
extension of the usual modular functor. 
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1. Introduction

This paper can be thought of as an extension of the paper “On
the Lego-Teichmüller Game” by Bojko Bakalov and Alexander Kir-
illov Jr [BK]. In the paper [BK], authors gave the description of how
to represent a given smooth, compact, oriented surface, possibly with
boundary by gluing of several “simple pieces”. Here “simple pieces” are
just sphere with n holes. One application of this is the construction
of modular functor; it suffices to define the vector spaces associated
with sphere with n holes; actually we can just take n ≤ 3. Then since
the behavior of modular functor under gluing is known, this defines
a unique vector space associated to any surface. Of course, there are
many different ways to represent a given surface as a result of gluing
several spheres with n holes, here n can vary. So some natural questions
arise; like how one can describe different ways of gluing “simple pieces”
that give the same surface? Let M(Σ) be the set of all such way of
getting the surface Σ from the “simple pieces”. In the paper [BK], they
described some simple moves or edges and some relations among them
which turned M(Σ) into a connected and simply-connected complex.

This definition of modular functor can be extended. Let G be a fi-
nite group. And let Σ̃ −→ Σ be a given G-cover of Σ. It is possible
to extend the definition of modular functor from the surface, Σ, to the
G-covers of surface, Σ̃ −→ Σ.This idea will be formalized in later pa-
per. This extended modular functor will also satisfy a similar gluing
axiom, just like the regular modular functor, but now we are gluing
G-covers of surface and not just surface. Thus if we know the value
of the extended modular functor on the “simple pieces”, of course we
need to know what are these “simple pieces” in this case, then this
will be enough to define Extended modular functor to any G-cover.
Since any G-cover can be constructed from the gluing of these “simple
pieces” and the behavior of the extended modular functor under gluing
is known, this will define a unique value for a given G-cover.

As in the paper of [BK], we are faced with similar questions. Let
M(Σ̃, Σ) denote the set of all possible way of gluing together “simple
pieces” to construct the given G-cover, Σ̃ −→ Σ. Is it possible to define
some simple moves to go from one parameterization to the other? Is
is possible to define all the relation between these moves? ie describe
when a sequence of moves applied to a given parameterization yields
the same parameterization? In other word, we are trying to define
some simple moves and relations similar to the paper [BK], which will
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turn M(Σ̃, Σ) into a connected and simply-connected complex. This
paper runs side by side with the paper [BK], although there are some
differences. It is recommended that readers first read the paper [BK]
before reading this one. This paper only deals with the case when the
base surface, Σ, has genus zero. The case of positive genus will be
considered in the subsequent papers.

2. Some basic definition

Let us start with some basic definitions.

2.1. Extended Surface.

Definition 1. An extended surface is a compact, smooth, oriented,
closed surface, Σ, possibly with boundary and also comes with a choice
of distinguished or marked points on each of its boundary component.

We denote by A(Σ), the set of the boundary components. So an
extended surface will be denoted by (Σ, {pa}a∈A(Σ)) where pa is the
choice of marked point on the ath boundary component.
Sometimes we will also denote a boundary circle by a Greek letter.

2.2. G-cover of Extended surface . G will always denote a finite
group, which is given and fixed throughout the whole paper. Let
(Σ, {pa}a∈A(Σ)) be an extended surface.

Definition 2. By a G cover of (Σ, {pa}a∈A(Σ)), we mean (π : Σ̃ −→
Σ, {p̃a}) where (π : Σ̃ −→ Σ) is a principal G-cover and {p̃a} are choice
of points on the fiber of pa. In other word, p̃a ∈ π−1(pa) for all a ∈
A(Σ).

2.3. Morphism between G-cover of extended surfaces.

Definition 3. Given two G covers of (Σ, {pa}) say (π̃ : Σ̃ −→ Σ, {p̃a})
and (π̂ : Σ̂ −→ Σ, {p̂a}), by a morphism between them we mean a

homeomorphism f : Σ̃ → Σ̂ so that the following conditions are satis-
fied:

i) f(p̃a) = p̂a for all a ∈ A(Σ)
ii) π̂f = f∗π̃, here f∗ : Σ → Σ is the homeomorphism we get by
restriction of f to Σ
iii) f preserves the action of G on each fiber.

See the diagram below:
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Σ̃

π̃

��

f // Σ̂

π̂

��
Σ

f∗
// Σ

Remark 1. Sometimes, we require f∗ : Σ → Σ to be the identity.

Although in this definition, we leave the base space fixed, there is no
need to do this. We can easily defined morphism between two G covers
where the base space is not fixed.

Definition 4. Let (π̃ : Σ̃ −→ Σ, {p̃a}) be a G cover of (Σ, {pa}) and

let (π̂ : Σ̂ −→ Σ′, {p̂a}) be a G cover of (Σ′, {p′a}). By a morphism be-

tween them, we mean a homeomorphism f : Σ̃ → Σ̂ so that it satisfies
the following condition:
i) f(p̃a) = p̂a for all p̃a

ii) f commutes with the action of G.

Because of the second condition, it is easily seen that f descends to a
homeomorphism on the base surface by f∗ : Σ → Σ′ where we defined
f∗(b) = π̂f(b̃) where b̃ ∈ π̃−1(b) . It is easily seen that f∗ does not

depend on the choice of b̃. Also π̂f = f∗π̃.
In other words the diagram below is commutative:

Σ̃
f //

π̃

��

Σ̂

π̂
��

Σ
f∗ // Σ′

Remark 2. Here we introduce the notation, MorΣ(Σ̃, Σ̃) to denote all
the morphisms between the G-cover Σ̃ and Σ̃ so that the induced map
on Σ is identity. Also we use the notation Mor(Σ̃, Σ̂) to denote all

morphism between G-cover Σ̃ and Σ̂ where the induced map on the
base surface can be anything.

2.4. Orientation of the boundary circle. The orientation of the ex-
tended surface, Σ, naturally induces orientation on the boundary circle.
We want to explain this in a little detail. Let D = {z ∈ C||z| < 1}.
First, we fix an orientation on the complement of D. This orientation
is given by the choice of the basis, {1, i},on C, and the counterclockwise
orientation on the unit circle. See the figure 1. Now for each boundary
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1

i

counterclockwise
orientation of unit
circle.

Figure 1. orientation on the complement of the unit disk

circle of Σ, we choose a small neighborhood around the circle. This
neighborhood is homeomorphic to E = {z ∈ C|1 ≤ |z| ≤ 1 + ε} for
some ε. For any such homeomorphism which preserve the orientation
of the surface, there is an unique choice of orientation of the boundary
circle of Σ so that the map also preserve the orientation on the bound-
ary. This gives an orientation to each boundary component of Σ.

2.5. Monodromy .

2.5.1. Definition of Monodromy. Monodromy will be an important tool
to describe G-cover. In fact soon we will prove that two G-covers of a
surface of genus 0 are isomorphic iff their monodromy is same.

Definition 5. Let (π : Σ̃ −→ Σ, {p̃a}) be a G-cover of (Σ, {pa}a∈A(Σ)).
Consider the a th boundary circle, S, where the base point on S is
pa and the point on the fiber above is p̃a. This S has an orientation
which comes from the orientation of the surface. Let α : [0, 1] → S be
a parameterization of the boundary circle S which also preserves the
orientation of S. We also assume that α(0) = α(1) = pa. Then there
is a unique lifting of α to the G-cover, say α̃ : [0, 1] → Σ̃ such that
α̃(0) = p̃a. We define the monodromy, m ∈ G, of this a th boundary
circle to be that unique element of G such that

(1) mα̃(0) = α̃(1)

Lemma 1. Monodromy does not depend on the choice of parameteri-
zation
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Proof. This is not hard to see. From the definition, we see that the
monodromy only depends on the starting point of the lifting; if we
know the starting point of the lifting, everything else is determined by
the cover, including the end point of the lifting. And monodromy only
depends on the starting point and the ending point of the lifting. The
details are left for the reader. �

2.5.2. Relation Between Monodromy and Lifting of a Map. Given two
G-covers and a map between their base surfaces, we want to know under
what condition this map can be lifted to the covers. Monodromy helps
us to partially answer this question. We have the following lemma.

Lemma 2. Let (π̃ : Σ̃ −→ Σ, {p̃a}) be a G cover of (Σ, {pa}) and let

(π̂ : Σ̂ −→ Σ′, {p̂a}) be a G cover of (Σ′, {p′a}). Here we also assume
the base surfaces to be connected. Let f : Σ → Σ′ be a homeomorphism
of the base surfaces which maps marked points to marked points, that
is f(pa) = p′a. See the diagram below:

Σ̃
f̃ //

π̃

��

Σ̂

π̂
��

Σ
f // Σ′

Then

(1) The lifting of f to G-covers Σ̃ −→ Σ̂ is unique, if it exists at
all.

(2) If in addition, we assume that the genus of both base surfaces
are 0, then f can be lifted iff monodromy of the two G-covers
match. That is

m((∂Σ)i) = m(f(∂Σ)i)

where m((∂Σ)i) = monodromy of (∂Σ)i boundary circle of Σ.
and m(f(∂Σ)i) = monodromy of f(∂Σ)i boundary circle of Σ′.
Note that the homeomorphism, f : Σ → Σ′, maps the boundary
components of Σ to the boundary components of Σ′.

Proof. (1) is obvious. To be more specific, let f1 and f2 be two lifting
of f . From the definition of lifting and morphism of G covers (see 2.3),
f1 and f2 must satisfy

π̂f1 = π̂f2 = fπ̃

So if x ∈ Σ then both f1 and f2 maps the fiber above the x to the fiber
above the f(x). Moreover from the definition of morphism between
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G-cover we must have f1(p̃a) = f2(p̃a) = p̂a

Also both f1 and f2 commute with the action of G. This information
guarantees that they must agree on all the fibers of same connected
component. But since our base surfaces are connected they must agree
everywhere. So f1 = f2.

For (2), we will use the following standard proposition of G cover:

Proposition 1. Let π̃ : Σ̃ → Σ and π̂ : Σ̂ → Σ′ be two G covers and
f : Σ → Σ′ be a map between the base surface. Then this map, f can be
lifted to the G cover if and only if the monodromy of every loop, α, in
π̃ : Σ̃ → Σ is equal to the monodromy of the corresponding loop, f(α),

in π̂ : Σ̂ → Σ′. And in the case that both of the base surfaces, Σ and
Σ′, have genus zero, then f can be lifted to the G covers if and only if
the monodromy of the corresponding boundary circles match.

Proof. A proof of this or some equivalent statements can be found
in many standard books on topology. For example see section 1.3 of
[AH]. �

From the above proposition, the statement 2 of our lemma easily
followed.

�

2.6. Gluing of two G-covers of extended surfaces.

Definition 6. Let (π̃ : Σ̃ −→ Σ, {p̃a}) be a G cover of (Σ, {pa}) and let

(π̂ : Σ̂ −→ Σ′, {p̂a}) be a G cover of (Σ′, {p′a}). Let si,j : (∂Σ)i → (∂Σ′)j

be an orientation reversing map of the ith boundary circle of Σ to the
j th boundary circle of Σ′ so that si,j(pi) = p′j. Then we define the
gluing of these two G covers under si,j to be the following G cover:

π̃
⊔
si,j

π̂ : Σ̃
⊔
si,j

Σ̂ −→ Σ
⊔
si,j

Σ′

where Σ
⊔

si,j
Σ′ is the surface obtained by identifying points on (∂Σ)i

to the points on (∂Σ′)j through the map si,j. And Σ̃
⊔

si,j
Σ̂ is the G

cover obtained by identifing a point (t, g), where t ∈ (∂Σ)i and g ∈ G,
to the point (si,j(t), g).

2.6.1. How to glue two G-covers. Such a gluing not always exists, but
if it exists, it is unique. So we have the following lemma.

Lemma 3. Let (π̃ : Σ̃ −→ Σ, {p̃a}) be a G cover of (Σ, {pa}) and let

(π̂ : Σ̂ −→ Σ′, {p̂a}) be a G cover of (Σ′, {p′a}). Take b ∈ A(Σ) and
6



pb p′
c

Fiber of
pb

Fiber of
p′

c

Want to glue these
two G covers

Also need to glue
base surface where
pb glued with p′

c

Figure 2. Fiber of the two boundary circles we want to glue

c ∈ A(Σ′). We want to glue (∂Σ)b and (∂Σ′)c. Then :

(1) If the gluing exists, there is a unique way, up to isomorphism
of G covers, to glue these G-covers

(2) Gluing is possible iff the monodromy, mb, of (∂Σ)b and the
monodromy, mc of (∂Σ′)c are inverse of each other. That is
mbmc = 1.

Proof. Not only we need to glue (∂Σ)b and (∂Σ′)c but we also need
to glue the cover above it. See the diagram on figure 2. We identify
pb ∈ (∂Σ)b with p′c ∈ (∂Σ′)c and this will basically tells us how to glue
(∂Σ)b with (∂Σ′)c since, first of all the orientation of the boundary circle
comes from the orientation of the surface, and the set of all orientation
preserving homeomorphisms from (∂Σ)b to (∂Σ′)c which map pb to p′c
is homotopic to each other. This is how we glue (∂Σ)b with (∂Σ′)c

. Now what about the cover? Let us take a small neighborhood of
pb and p′c on the circle (∂Σ)b and (∂Σ′)c so that the fiber above these
neighborhoods of circles break up into disjoint pieces and each piece
maps homeomorphically by π̃ and π̂ to these neighborhoods of circle.
see the diagram on figure 3
One of the pieces on the left contains p̃b and one of the piece on the

right contains p̂c. Also G acts simply transitively on these pieces. By
definition, we require the piece containing p̃b to be glued with the piece
containing p̂c so that the action of G commutes with the gluing. This
fixes how the pieces of G-cover containing p̃b will be glued to the pieces

7



pb p′
c

The neighbor-
hood
of pb

The neighborhood
of p′

c

p̃b p̂c

piece contain-
ing
p̃b

piece
containing
p̂c

Each
piece
maps
homeo-
morphi-
cally
by π̃ to
the
neigh-
borhood
of pb

Each piece
maps homeo-
morphically
by π̂ to
the neighbor-
hood
of p′

c

Figure 3. Neighborhood of distinguished points and
the fiber above it

of G-cover containing p̂c. Now we move around the circle and repeat
the same process until we cover the whole circle, (∂Σ)b and (∂Σ′)c.

This tells us that there is at most one way to glue. Note that not
always we can glue two G- covers. For example take |G| = 2. Take one
G-cover to be the trivial G-cover of the circle and the other G-cover to
be the double cover of the circle. These two G-covers can not be glued.

The second part of the lemma is left to the reader. Basically one
sees that as we moved around the whole circle and then glue or we first
glue and then move around the whole circle, in either case we arrived
at the same point since the monodromy are inverse of each other. So
we don’t have any problem to glue. Readers can supply the detail. �
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p1 p2 p3 p4

1 2 3 4

Figure 4. A standard sphere with four holes where the
marked points are denoted by p1, ...p4

3. Standard block

3.1. Standard sphere, Sn. For every n ≥ 0, we define the standard
sphere, Sn, to be the Reimann sphere C with n disks |z − k| < 1

3
re-

moved and with the marked points being k− i
3
, here k = 1, 2, 3, ...n. Of

course, we could replace these n disks with any other n non-overlapping
disks with centers on the real line and with marked points in the lower
half plane. Any two such spheres are homeomorphic and the homeo-
morphism can be chosen canonically up to homotopy. Note that the set
of boundary components of the standard sphere is naturally indexed
by numbers 1, 2, ...n. The standard sphere, S4, with four holes is shown
on figure 4

3.2. Standard blocks, Sn(g1, ..., gn; h1, ..., hn). In the paper [BK], where
|G| = 1, standard blocks are just these standard spheres,Sn, n = 1.2....
So we need to extend this definition to the general case where G is a
finite group. To do this we start with the following construction. Let
us start with a standard sphere with n holes, Sn and 2n elements from
G where we denote these 2n elements as {g1, ..., gn} and {h1, ..., hn}
and we also required that g1...gn = 1. First we make the cuts on Sn as
in figure 5. Here the point q ∈ Sn in figure 5 is the point at ∞. In fact
q can be chosen to be any point on the upper hemisphere as long as it
does not belong to the boundary circles. Then one can easily sees that
Sn\cuts is simply connected. So G-cover of Sn\cuts is trivial. In other
word, G-cover of Sn\cuts looks like

9



p1 p2 p3 pn

choice of points on
the base surface.

cuts
q

Figure 5. Cuts on Sn

Sn\ cuts ×G

��
Sn\ cuts

Although there is only one G cover of Sn\cuts up to isomorphism, there
are a total of |G| many way to identify G cover of Sn\cuts with G, but
the important thing here to notice is that any such identification is iso-
morphic. So we chose one such identification. Now consider the ith cut.
We want to glue the fiber on the left hand side of the ith cut with the
fiber on the right hand side of the ith cut. This identification must pre-
serve the action of the group G. Thus the identification can be given by
a multiplication on the right by some element of the group G. We chose
this element to be gi ∈ G. That is we glued along the ith cut by mul-
tiplication of the right by gi. See figure 6. Now we choose p̃i = (pi, hi)
as the choice of point in the fiber of pi. Thus we end up with a G cover
of Sn. The reason we require that g1...gn = 1 is easy to see. Consider
a point (t, x), where x ∈ G, on the G-cover. As we moved along each
cut, we multiply on the right by gi. After moving along all the cut, we
end up with ( some point on of the base surface , xg1g2...gn), but then
we must have x = xg1g2...gn or equivalently g1...gn = 1. Thus from the
data g1, ..., gn and h1, ..., hn where g1...gn = 1, we have constructed a
G cover of Sn.

10



The point
x, glued
with point
xgi

gluing along i th cut

x xgi

Figure 6. A point x on the left hand side of the fiber
of the ith cut is glued to xgi on the right hand side

Definition 7. The G cover of Sn constructed above is called standard
block and will be denoted by Sn(g1, g2...., gn; h1, h2...., hn) where we
always assume that g1g2...gn = 1 although we do not always write this
explicitly.

3.3. When two standard blocks are isomorphic. Given two G-
covers of Sn, we want to know when they are isomorphic, hence the
following lemma:

Lemma 4. Let Sn(g1, ....gn; h1, ...hn) and Sn(g′1, ....g
′
n; h′

1...h
′
n) be two

standard blocks. Then they are isomorphic iff ∃x ∈ G so that xgix
−1 =

g′i and hix
−1 = h′

i for i = 1...n. We denote the isomorphism, Sn(g,h) →
Sn(g′,h′) by φx.

Proof. First assume Sn(g1, ....gn; h1, ...hn) and Sn(g′1, ....g
′
n; h′

1...h
′
n) are

isomorphic. This means there exist an isomorphism of G-cover which
by definition (see section 2.3 on page 2) maps (pi, hi) −→ (pi, h

′
i) and

preserve the G-action. So on the fiber, this isomorphism is just the
right multiplication by some element x−1 ∈ G. Also the following con-
dition must satisfy along the cut:

11



First glue and then apply isomorphism = First apply isomorphism and
then glue.
In other word, if t is a point on the fiber above the ith cut, then we
must have

tgix
−1 = tx−1g′i

or g′i = xgix
−1 for i = 1...n

And of course we must have hix
−1 = h′

i from the definition of isomor-
phism of two G-cover.
The other direction is easier to show. We define the isomorphism on
each fiber through the multiplication on the right by x−1. This can be
easily seen to satisfy all the required property of isomorphism. �

3.4. Monodromy of a Standard Block. The next natural question
is to ask what is the monodromy of the standard block, Sn(g1, g2...gn; h1, h2...hn).
So we have the following lemma:

Lemma 5. Let Sn(g1, ....gn; h1, ...hn) be a G-cover of Sn. Here we
assume the orientation of the boundary circles induces by the outward
normal vector according to the right hand rule. See section 2.4 on
page 3 for the discussion of how the orientation of the surface induces
orientation on the boundary. See the picture on figure 7. Then the
monodromy mi ∈ G around the ith boundary circle is given by:

mi = hig
−1
i h−1

i

Proof. Given a parameterization α : [0,1] −→ ith boundary circle of Sn,
we lift this path starting from (pi, hi), and as we cross the cut labeled
by gi from right to left, we end up with (∗, hig

−1
i ). See the picture on

figure 8.
And as we continue all the way, at the end we arrive at the point

(pi, hig
−1
i ). So from the definition of monodromy, the ith monodromy

mi ∈ G is given by

mihi = hig
−1
i so

mi = hig
−1
i h−1

i

�
12



p1 p2 p3 pn

choice of points on
the base surface.

cuts

(g1, h1)

(g2, h2) (g3, h3)
(gn, hn)

Figure 7. observe the orientation of the boundary circles

(pi, hi)

(∗, hi)(∗, hig
−1
i )

(pi, hig
−1
i )

We need to glue along
this cut, labeled by
(gi, hi)

∗ represents a point
on the base surface

(gi, hi) (gi, hi)

They both belong to the
fiber of pi

Figure 8. Finding Monodromy of a standard block

3.5. Gluing of two standard blocks. Let the standard block Sn(g1, ..., gn; h1, ..., hn)
and Sm(u1, ..., um; v1, ..., vm) are given. We want to know when we
can glue these two standard blocks along the i th boundary circle of
Sn(g1, ..., gn; h1, ..., hn) to the j th boundary circle of Sm(u1, ..., um; v1, ..., vm).
Hence we have the following lemma:

13



Lemma 6. i th boundary circle of Sn(g1, ..., gn; h1, ..., hn) can be glued
to the j th boundary circle of Sm(u1, ..., um; v1, ..., vm) iff hig

−1
i h−1

i =
[vju

−1
j v−1

j ]−1.

Proof. According to lemma 5 on page 12, monodromy of the i th bound-
ary circle of Sn(g1, ..., gn; h1, ..., hn) is given by hig

−1
i h−1

i and the mon-
odromy of the j th boundary circle of Sm(u1, ..., um; v1, ..., vm) is given
by vju

−1
j v−1

j . Now according to the lemma 3 on page 6, such a gluing
exist if and only if these two monodromy are inverse of each other, that
is hig

−1
i h−1

i = [vju
−1
j v−1

j ]−1. �

Remark 3. We will use the notation

Sn(g1, ..., gn; h1, ..., hn)
⊔

c,hi,vj

Sm(u1, ..., um; v1, ..., vm)

to indicate that the ith boundary of the left standard block is glued
along the cut c to the jth boundary of the right standard block.

3.6. Groupoid.

Definition 8. A category is called a groupoid if all of its morphism is
invertible.

We list two important examples of groupoid which will be needed
later.

Example 1. For a fixed Sn, consider the category, Yn, defined in the
following way:
obj(Yn)= G-covers of Sn

mor(Yn)= isomorphisms of G-covers which are trivial on Sn.
Since only morphisms are isomorphisms, this is obviously a groupoid.

Example 2. We define the category Tn in the following way:
obj(Tn) = {standard blocks} = {Sn(g1, g2, ....gn; h1, h2...hn)|gi ∈ G and hi ∈
G for i = 1...n and g1g2...gn = 1}
According to lemma in 3.3 on page 11 all the isomorphism between two
standard block can be defined in the following way:
mor(Sn(g1, g2, ....gn; h1, h2...hn), Sn(g

′
1, g

′
2, ....g

′
n; h

′
1, h

′
2...h

′
n))={x ∈ G|xgix

−1 =
g
′
i and hix

−1 = h
′
i for i = 1...n}. Since given a morphism x ∈ G in this

category the inverse morphism is x−1 ∈ G, every morphism is invert-
ible. So the category Tn is in fact a groupoid.

We have the following important lemma:

14



Lemma 7. The groupoid Yn is equivalent to the groupoid Tn. See
example 1 and 2 above for the description of Yn and Tn.

Proof. To prove this lemma, we will use a well known theorem from
category theory.

Theorem 1. Let A and B be two categories, and F : A → B is a
covariant functor, so that the following two conditions hold:

(1) For any two objects, X, Y ∈ Obj (A), the map Mor A(X, Y ) −→
Mor B(F (X), F (Y )), induced by F , is bijective.

(2) The map F is essentially surjective. That is given any object,
V ∈ Obj (B), there exist an object, U ∈ Obj (A) so that
F (U) ∼= V . Here the symbol ∼= means isomorphic.

Then F is in fact an equivalence of categories.

Proof. For a proof of this theorem, see any standard book on category
theory, for example “Categories for the working Mathematician” by
Mac Lane, see [C]. �

Now let us come back to the proof of our lemma. We will con-
struct a functor V : Tn → Yn so that V satisfies the two conditions
of Theorem 1. Then this V will define the equivalence between Tn

and Yn. Given a standard block, Sn(g1, g2, ....gn; h1, h2...hn) where gi ∈
G and hi ∈ G for i = 1...n and g1g2...gn = 1, this standard block, in
particular, a G cover of Sn. That is

V (Sn(g1, g2, ....gn; h1, h2...hn)) = the G cover of Sn corresponding to the standard block

Similarly, if φx : Sn(g1, g2, ....gn; h1, h2...hn) → Sn(g′1, g
′
2, ....g

′
n; h′

1, h
′
2...h

′
n)

is a morphism between two standard blocks, then V (φx) is the same
morphism between the G covers.

To show, this functor V satisfies the condition 1 of the above theo-
rem, we just refer to the lemma 4 on page 11. First note that, by this
lemma, given any two standard blocks, either there exist an unique
morphism, φx, between them or there is no morphism between them.
In either case, the condition 1 is obviously satisfied.

For condition 2, let π : S̃n → Sn be a G-cover of Sn. First, we
make the same cuts on Sn as figure 5 on page 10. Then the G-cover
of Sn\cuts is trivial. In other word, the G-cover of Sn\cuts can be
identified with

15



The point
x, glued
with point
xgi

gluing along i th cut

x xgi

Figure 9. Gluing the ith cut

Sn\ cuts ×G

��
Sn\ cuts

Now we need to identify the components of Sn\ cuts × G with the
group G. Here we have choice. So we make some choice, it does
not matter how we want to do this. Now we basically repeat the
same construction when we describe standard blocks, namely, from
this trivial cover, to get the original cover we started with, we need
to glue the cover along the cuts. See the picture on figure 9. This
gluing must preserve the action of G on the fiber. So to glue along
the i-th cut, there must exist gi ∈ G so that the point t on one side of
the cut must glued with the point tgi from the other side of the cut.
Thus for a total of n-cut we get {g1, g2...gn ∈ G}. Also to start with,
our G-cover comes with a point (pi, hi) on the fiber above pi. This
gives us {h1, h2...hn ∈ G}. To show g1...gn = 1 is easy. Consider a
point (t, x), where x ∈ G, on the G-cover. As we moved along each
cut, we multiply on the right by gi. After moving along all the cut, we
end up with ( some point on of the base surface , xg1g2...gn), but then

16



c1

c2

c3 c4

Here the cut system, C = {c1, c2, c3, c4}

Figure 10. An example of a cut system

we must have x = xg1g2...gn or equivalently g1...gn = 1. Thus the G
cover S̃n is isomorphic to the standard block Sn(g1, ...gn; h1, ...hn). This
shows that the functor V satisfies the second requirement of the above
theorem. �

Remark 4. In particular, the above theorem shows that every G cover
of Sn is isomorphic to a standard block.

3.7. Review of the parameterization for the case |G| = 1. For
the readers convenience, we will review the concept of parameterization
for the trivial case, |G| = 1, from [BK]. We begin with some definitions.

Definition 9. Let Σ be an extended surface. A cut system, C, on Σ is
a finite collection of smooth, simple closed non-intersecting curves on
Σ such that each connected component of the complement, Σ\C, is a
surface of genus zero. In this paper, we will always assume the surface
Σ has genus 0. So in this case, the requirement that each connected
component of the complement, Σ\C, is a surface of genus zero is always
satisfied.

An example of a cut system is given in figure 10.

Definition 10. Let Σ be an extended surface with genus zero. A
parameterization without cuts of Σ is a homotopy equivalence class of
homeomorphisms φ : Σ ' Sn, where Sn is the standard sphere with n
holes.

Definition 11. Let Σ be a an extended surface. A parameterization,
P , of Σ is a collection (C, {φa}), where C is a cut system on Σ and φa are

17



1 2 3 4 5

Figure 11. Standard marking on S5, sphere with 5 holes

parameterization without cuts of the connected components Σa of Σ\C,
i.e. homotopy equivalence class of homeomorphisms φa : Σa ' Sna .

Definition 12. Let Sn be the standard sphere with n holes. We let
m0 be the graph on it, shown in figure 11, for n = 5. This graph has a
distinguished edge- one which connected to the boundary component
labeled by 1. This distinguished edge has been marked by an arrow.
We call m0, the standard marking without cuts on Sn.

Let Σ be an extended surface with genus zero. A marking without
cuts of Σ is a graph, m, on Σ with one distinguish or marked edge such
that m = φ−1(m0) for some homeomorphism φ : Σ → Sn. The graphs
are considered up to isotopy of Σ.

Definition 13. Let Σ be an extended surface. A marking, M of Σ is a
pair, (C, m), where C is a cut system on Σ and m is a graph on Σ with
some distinguished edges such that it gives a marking without cuts on
each of the connected component of Σ\C. We will denote the set of all
marking of a surface Σ modulo isotopy by M(Σ). A marked surface is
an extended surface, Σ, together with a marking, M on it.

An example of a marked surface is shown on figure 12. Sometimes,
for the convenience of drawing, we drop the surface from the picture
and just draw the marked graph if no confusion arise. So for example,
the marked surface on figure 12 may be just drawn as in figure 13.

18



c1
c2

c3
c4

Here the cut system, C = {c1, c2, c3, c4} and the
marking M is as shown on the figure.

Figure 12. An example of a marked surface

c1

c2

c3
c4

Here the cut system, C = {c1, c2, c3, c4} and they
are placed on the vertices corresponding to the
cut.

Figure 13. Marked graph without the surface

3.8. Parameterization in the general case. In this paper we will
only consider G cover of extended surface for which the base surface is
connected and has genus zero. But this definition makes sense in the
general case also.

Definition 14. Let Σ̃ → Σ be a G cover of an extended surface, Σ. A
parameterization of Σ̃ is an isomorphism of this G-cover with one or
gluing of several standard blocks. We have defined what we meant by
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gluing of G-cover (see section 2.6.1 on page 6). That is if f is a pa-
rameterization of the G-cover Σ̃ then f is just an isomorphism which
looks like :

f : Σ̃ −→ Sn1(g
1
1, ...g

1
n1

; h1
1, ...h

1
n1

)
⊔

ci,h1
p,h2

q

.....
⊔

cj ,hk−1
t ,hk

l

Snk
(gk

1 , ...g
k
nk

; hk
1, ...h

k
nk

)

For the explanation of the above notation see the remark on section
3.5 on page 13.

3.9. Visualizing parameterization. We need some kind of graphical
way to represent parameterization of G-cover of extended surface just
as in the case of |G| = 1 which is described in the subsection 3.7 on page
17. So we need a similar kind of machinery in this general case. The
lemma 7 gives us a way to visualize G-covers of extended surface. Given
a G-cover of an extended surface,Σ̃ → Σ, first we marked the base
surface, Σ. In other word, we identify the base surface, Σ, with one or
gluing of several standard spheres. For details about the marking of an
extended surface see the subsection 3.7 on page 17. This marked base
surface gives the parameterization of the base surface, Σ, with one or
gluing of several Sn where n may vary. Let C be the cut system of this
marking. If we restrict the G cover, Σ̃, to each connected component
of Σ\C, then the whole G cover can be realized as a gluing of all this
restriction. Each such restriction is isomorphic to one of the standard
block, Sn(g1, ..., gn; h1, ..., hn), where n may vary for each restriction. So
the whole G cover, Σ̃ → Σ, can be identify with the gluing of several
standard blocks (one for each restriction). We can include all this data
into the surface, Σ as follows:
We label each edge of our marking graph with a pair (gi, hi) which
comes from the identification of the restriction of Σ̃ to the component
containing the edge. See the proof of the lemma in section 7 to see
how to assign (gi, hi) to each edge. See a typical picture on figure 14.
sometimes, we drop the picture of the surface and just draw the graph
for simplicity, if no confusion arise. So for example, we will usually
draw the picture on figure 14 as a simple figure in 15

This gives a visual presentation of the parameterization of our G-
cover of extended surface with one or gluing of several standard blocks.

4. Moves

At this point, we want to remind our readers about our main goal
of this paper. we will eventually define a 2-dimensional CW complex
M(Σ̃, Σ), which has the set of all parameterization of Σ̃ as the set of
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(g1, h1)

(g2, h2)

(x, y) (z, w)

(g3, h3)

(g4, h4)

(g5, h5)

glued along the cut c. We must have yx−1y−1 =
[wz−1w−1]−1 for this gluing to exist. See lemma 6 for detail.

cut c

Figure 14. Visualization of the parameterization of
G-cover with the gluing of S3(g1, g2, x; h1, h2, y) and
S4(x

−1, g3, g4, g5; y, h3, h4, h5)

(g1, h1)

(g2, h2)

(x, y) (z, w)

(g3, h3)

(g4, h4)

(g5, h5)

cut c

Figure 15. We usually do not draw surface and just
draw the graph

vertices. The edges of M(Σ̃, Σ) will be directed; we call them moves.
It is convenient to look at M(Σ̃, Σ) as a groupoid with objects—all ver-
tices and morphisms between two vertices—the set of homotopy classes
of paths on the edges of M(Σ̃, Σ) from the first vertex to the second
one (going along an edge in the direction opposite to its orientation
is allowed). We will use group notation writing a path composed of
edges E1, E2, . . . as a product E1 . . . Ek, and we will write E−1 if the
edge E is traveled in the opposite direction. Then the 2-cells are in-
terpreted as relations among the moves: we will write E1 · · ·Ek = id
if the closed loop formed by the edges E1, . . . , Ek is contractible in
M(Σ̃, Σ); if we want to specify the base point for the loop, we will
write E1 · · ·Ek(M) = id(M). We will write E : M → M ′ if the edge E
goes from M to M ′.
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β α β α

here the boundary circle α is
connected to the distinguished
edge.

here the boundary circle β is con-
nected to the distinguished edge.

after applying the map z

Figure 16. A pictorial description of z map for n = 4

Our Main Theorems state that the complex M(Σ̃, Σ) is connected
and simply-connected. This main theorem will be described in detail
after we describe the moves or edges in this section.

4.1. Standard Morphism. Before describing our moves, we need to
define some standard morphisms between our standard blocks. These
are described in terms of lifting of certain morphisms between base
surfaces Sn. These are:

z : Sn −→ Sn

b : S3 −→ S3

αk,l : Sk+1 t Sl+1 −→ Sk+l

For a more elaborate description of these morphism, see the paper [BK].
Here we will just give a quick description.

1: z is the rotation of the sphere which cyclically permutes the
boundary circles. That is if m is a marking on Sn then z(m)
will be the same marking (of course up to homotopy) on Sn

but with a different distinguished edge. See the figure 16 where
n = 4.

2: Now we will describe briefly the braiding, b, see [BK] for detail.
If we label the boundary circles of S3 by α, β, γ, then sometimes
we will denote by bα,β the braiding of the α and β component
of S3. Let m is the graph on S3 shown on the left hand side of
figure 17. Then we define the bα,β by figure 17.

3: αk,l is the identification of the result of gluing Sk+1 and Sl+1

(along the (k + 1) th boundary component of the first one with
the 1 st boundary component of the last one) with, Sk+l, the
standard sphere with (k + l) hole. For more detail description
see [BK].
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α β γ α β γ

b = bα,β

Figure 17. Visual description of b map

Lemma 8. Each of the above defined morphisms between Sn (n = 3 in
the case of b) can be uniquely lifted to the G-cover of Sn, Sn(g1, ....gn; h1, ...hn),
described by:

z̃ : Sn(g1...gn; h1...hn) −→ Sn(gn, g1...gn−1; hn, h1...hn−1)

b̃ : S3(g1, g2, g3; h1, h2, h3) −→ S3(g1g2g
−1
1 , g1, g3; h2g

−1
1 , h1, h3)

α̃k,l : Sk+1(g,h) t Sl+1(g
′,h′) −→ Sk+l(g

′′,h′′)

where

g = (g1...gk+1)

h = (h1...hk+1)

g′ = (g′1, ...g
′
l+1)

h′ = (h′
1, ...h

′
l+1)

So that hk+1g
−1
k+1h

−1
k+1 = [h′

1g
′−1
1 h′−1

1 ]−1; hk+1 = h′
1

And

g′′ = (g1...gk, g
′
2...g

′
l+1)

h′′ = (h1...hk, h
′
2...h

′
l+1)

Remark 5. Notice that we need hk+1g
−1
k+1h

−1
k+1 = [h′

1g
′−1
1 h′−1

1 ]−1 so that
it is possible to glue the (k + 1) th boundary circle of Sk+1 with 1st
boundary circle of Sl+1. This is to make sure that the monodromy (see
2.6.1 on page 6) of (k + 1) th boundary circle of Sk+1 is inverse of the
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monodromy of 1st boundary circle of Sl+1 (recall that the orientation
of two boundary circles must be opposite for glue to exist). The second
equality, hk+1 = h′

1, is an extra one which is not needed for the gluing
to exist but we assume this extra condition whenever we want to apply
α̃k,l.

Proof. First consider the G-covers,Sn(g1...gn; h1...hn) and Sn(gn, g1...gn−1; hn, h1...hn−1),
and the map z : Sn −→ Sn. Our base surface, Sn has genus zero and
the map z preserves the monodromy which can be easily checked by
hand. So according to lemma 2 (see 2 on page 5), this map z can be
uniquely lifted to the G-cover. Similarly, in all the other cases, all we
have to check that the maps b : S3 −→ S3 and αk,l : Sk+1tSl+1 −→ Sk+l

preserve the monodromy. This can be easily checked by hand, using
the lemma 6. �

4.1.1. The standard morphism, φx, x ∈ G. This is just a reminder to
the reader. We have already defined φx move before. This is the
morphism between standard blocks defined by
φx : Sn(g1...gn; h1...hn) −→ Sn(xg1x

−1...xgnx
−1; h1x

−1...hnx
−1). See

lemma 4 on page 11.

4.2. Z, B ,and F Move. For |G| = 1, these moves are described in
the paper [BK]. Readers might want to read this first before continue.
We again want to remind our readers that our base surface will always
have genus 0, unless otherwise specified. We will first have three moves
similar to the Z, B and F moves of the paper [BK]. These moves
will be called Z-move, B-move and F-move respectively. Note that we
use boldface letter to denote these three moves so that it does not get
confused with the Z, B, and F moves of the paper [BK]. Then we will
have two extra moves which do not have any correspondence to the
paper [BK]. So again Z, B and F will denote the moves in the case
of |G| = 1 and Z, B ,and F will denote the moves in the general case.
Each move will take a parameterization to another parameterization.
So let us start describing these moves in more detail:

4.2.1. Z move. Given a G-cover (π̃ : Σ̃ −→ Σ, {p̃a}) of (Σ, {pa}), and
a parameterization of this G-cover with a standard block. This means
we have an isomorphism, f , of this G-cover with one of the standard
block say Sn(g1...gn; h1...hn). Z move takes this parameterization f
to the parameterization z̃ ◦ f where z̃ is the standard morphism de-
fined in the lemma 5. This new parameterization identify the original
G-cover with Sn(gn, g1...gn−1; hn, h1...hn−1). Look at the diagram below
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Original G-cover
f // Sn(g1...gn; h1...hn)

z̃// Sn(gn, g1...gn−1; hn, h1...hn−1)︸ ︷︷ ︸
z̃◦f=Z(f), Z move applied to f

4.2.2. B move. Given a G-cover (π̃ : Σ̃ −→ Σ, {p̃a}) of (Σ, {pa}), and
a parameterization of this G-cover with a standard block, S3(g1, g2, g3; h1, h2, h3).
This means we have an isomorphism,f , of this G-cover with S3(g1, g2, g3; h1, h2, h3).

B move takes this parameterization f to the parameterization b̃ ◦ f
where b̃ is the standard morphism defined in the lemma 8. This new pa-
rameterization identify the original G-cover with S3(g1g2g

−1
1 , g1, g3; h2g

−1
1 , h1, h3).

4.2.3. F move. Here the setup is a little different from the above two
moves. Fist, let Σ be an extended surface of genus 0 with one cut {c}.
This cut {c} divides Σ into two pieces. Say, G-cover of one piece is
parameterized with Sk+1(g,h) and the other with Sl+1(g

′
,h

′
). That is

the parameterization, f , is given by:

f : Σ̃ −→ Sk+1(g,h)
⊔

c,hk+1

Sl+1(g
′
,h

′
)

where

g = (g1...gk+1)

h = (h1...hk+1)

g′ = (g′1, ...g
′
l+1)

h′ = (h′
1, ...h

′
l+1)

And also hk+1g
−1
k+1h

−1
k+1 = [h′

1g
′−1
1 h′−1

1 ]−1; hk+1 = h′
1

Thus the parameterization of the whole G-cover, f , identifies the G-
cover with the result of gluing these two standard blocks along the
k + 1 st boundary circle of one side with the 1st boundary circle of the
other. See the picture on figure 18 for more detail. Now by applying F
move to f , we get a new parameterization α̃k.l ◦f . Note that, α̃k.l ◦f is
a parameterization of G-cover of Σ with no cuts with Sk+l(g

′′,h′′) where

g′′ = (g1...gk, g
′
2...g

′
l+1)

h′′ = (h1...hk, h
′
2...h

′
l+1).

See the figure 19.
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k of
them

l of
them

The
cut

Visualization of the parameteriza-
tion with Sk+1

Visualization of the parameteri-
zation with Sl+1

Glued along the cut

(g1, h1)

(gk, hk)

(gk+1, hk+1) (g′
1, h

′
1)

(g′
2, h

′
2)

(g′
l+1, h

′
l+1)

(g2, h2)

Figure 18. Visual description of the parameterization
of f

k of
them

l of
them

(g1, h1)

(gk, hk)

(g′
2, h

′
2)

(g′
l+1, h

′
l+1)

(g2, h2)

The cut is gone when we apply F move to the
parameterization f

Figure 19. Visualization of the parameterization F(f)
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(x, y) (x−1, y)

The cut c

Figure 20. Remark with F move

Remark 6. If two components are glued along a cut where the edges
corresponding to this cut are labeled by (x, y) and (z, w), then for this
gluing to exist, we must have

xy−1x−1 = [zw−1z−1]−1

See subsection 3.5 on page 13 for more detail explanation. Now to
apply F move to this cut, we also required the extra condition that
y = w. This will imply that xz = 1. The requirement, y = w, is not
necessary for gluing to exist but we only require this whenever we want
to apply F move to a cut.

A remark about notation: Note that by applying a F move, we
are removing a cut. If the cut for one component is labeled by (x, y)
then the cut for the other component must be labeled by (x−1, y) for F
move to apply. See the picture on figure 20. This x ∈ G is completely
determined by the label of all the other cuts since they all must multi-
plied to 1 ∈ G. But for the second component y, we have a choice. So
it is better to encode the cut c and the label y in the notation. From
now on, a F move will always be denoted by Fc,y to emphasize the cut,
c, and the choice of point, y.

4.3. Px-move where x ∈ G. Beside Z, B and F move, we need one
more move which we will denote by Px where x ∈ G. This Px-move is
defined in the following way:
Given a G-cover (π̃ : Σ̃ −→ Σ, {p̃a}) of (Σ, {pa}), and a parameteri-
zation of this G-cover with a standard block. This means we have an
isomorphism, f , of this G-cover with one of the standard block say
Sn(g1...gn; h1...hn). Px move takes this parameterization f to the pa-
rameterization φx ◦ f where φx is the morphism defined by
φx : Sn(g1...gn; h1...hn) −→ Sn(xg1x

−1...xgnx
−1; h1x

−1...hnx
−1). See

the lemma 4 for the description of φ(x). See the diagram below:

Σ̃
f→ Sn(g1....gn; h1...hn)

φx→ Sn(xg1x
−1...xgnx

−1; h1x
−1...hnx

−1)

φx ◦ f = Px(f)
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4.4. Tc
z,y move. Say we have the following parameterization, f , of our

G-cover:

f : Σ̃ −→ Sn(g1...gn−1, x; h1...hn−1, y)
⊔
c,y

Sm(x−1, u1...um−1; y, v1...vm−1)

c is the cut where we glue the two components. Note that all conditions
are satisfied so that the gluing make sense. Here x is determine by all
the other element, namely, x = (g1...gn−1)

−1 = (u1...um−1)
−1, but y is

not determine; we can choose y freely. By definition, Tci
z,y(f) is the

following parameterization:

Tc
z,y(f) : Σ̃ → Sn(g1..gn−1, x; h1..hn−1, z)

⊔
c,y

Sm(x−1, u1..um−1; z, v1..vm−1)

Where we replace the choice of “y” with the choice of “z”.

Remark 7. Although we introduce this new move, Tc
z,y, this can in fact

be thought of as composition of two F move. Namely Tc
z,y = F−1

c,zFc,y.
The move, Fc,y, will remove the cut, c, with the choice of point y,
while the move F−1

c,z will replace the cut, c, but this time with the
choice of point z. The reason for introducing such an extra move will
be clear later, but introducing this new move Tc

z,y and adding the

relation Tc
z,y = F−1

c,zFc,y will not do any harm, since one can easily sees

that the complex M(Σ̃, Σ) without the Tc
z,y move and Tc

z,y = F−1
c,zFc,y

relation is connected and simply-connected iff the complex M(Σ̃, Σ)
with the Tc

z,y move and Tc
z,y = F−1

c,zFc,y relation is connected and
simply-connected.

See the picture on figure 21 for a visual description of T move.

4.5. Moves, when more than one standard blocks are glued
together. Let Σ̃ be a G cover of Σ. Also let f be a parameterization
of this G cover with gluing of several standard blocks. In other word,

f : Σ̃ → Sn1(g1,h1)
⊔

glued

Sn2(g2,h2)
⊔

glued

.....
⊔

glued

Snk
(gk,hk)

This parameterization of f , by the restriction on each component, can
be realized as a gluing of k parameterization. That is f = f1tf2t.....t
fk. Let E be one of the above five moves, that is E ∈ Z,B,F,Px,T.
Then by the move id t id t .... t E t ... t id(f), where E appears
in the ith component, we mean that we only apply E move to the
fi parameterization and identity to all others. An example of such a
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(x, y) (x−1, y)

The cut c

Visualization of f , where we only draw the c cut and the edges
connected to c cut. Because all the other edges and cuts are left
unchanged by the move Tc

z,y.

Tc
z,y(f)

(x, z) (x−1, z)

The cut c
Visualization of Tc

z,y(f), where we only draw the c cut and the
edges connected to c cut. Because all the other edges and cuts are
left unchanged by the move Tc

z,y.

Figure 21. The sequence of diagram describing T move

move is shown on figure 22. For simplicity of the picture, we take three
components.

4.6. Bi move. The B move is very restricted; it is only defined for
n = 3. So we need a little flexibility. This Bi move will be a braiding
of i and i + 1 boundary circles. This is in fact not a new move but a
composition of previously defined moves. This will be used many times
from now on when we will describe the other moves and relation. So it
is important to do this right now. Let f be a parameterization of a G
cover, Σ̃, with a standard block say Sn(g1, ..., gn; h1, ..., hn). Then Bi is
the composition of the moves described in the figure 23. Here we only
draw pictures for n = 6 for convenience but readers are clear of what
should be done for other n. If

Σ̃
f→ Sn(g1, ..., gn; h1, ..., hn)

Then

Σ̃
Bi(f)→ Sn(g1, .., gi−1, gigi+1g

−1
i , gi, ..., gn; h1, .., hi−1, hi+1g

−1
i , hi, .., hn)
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(g1, h1)

(g2, h2)

(t, y) (t−1, y)

(g3, h3)

(g4, h4)

(u, v) (u−1, v)

(g5, h5)

(g6, h6)

Parameterization f , where f identify the G cover with a gluing of three standrd
blocks. We denote the two cuts by c1 and c2. Also we assume that all the condition
for gluing satisfy.

(g1, h1)

(g2, h2)

(t, y) (xt−1x−1, yx−1)

(xg3x
−1, h3x

−1)

(xg4x
−1, h4x

−1)

(xux−1, vx−1)

(u−1, v)

(g5, h5)

(g6, h6)

Note that we apply the Px move to the middle component leaving the other two com-
ponent unchanged

id tPx t id(f)

c1
c2

c1
c2

Figure 22. An example of a move when having more
than one component.

5. The Complex

5.1. Definition of the complex M(Σ̃, Σ). We are given a fixed G-
cover, Π : Σ̃ −→ Σ, where Σ will always denote an extended surface
which is compact, orientable, closed surface of genus zero unless oth-
erwise specified. We will first define the 1-skeleton of the complex,
M(Σ̃, Σ), that is the vertex and the edges.
{The set of vertex of M(Σ̃, Σ)} = {The set of parameterization of the
G-cover Π : Σ̃ −→ Σ}
A vertex, α, is connected to vertex β, directed from α to β, if β can be
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(g1, h1)

(g2, h2)

(g3, h3)
(g4, h4)(g5, h5)

(g6, h6)

(g1, h1)

(g2, h2)

(x, y)
(g5, h5)

(g6, h6)

(x−1, y)

(g3, h3) (g4, h4)

(g1, h1)

(g2, h2)
(g5, h5)

(g6, h6)

(x, y)

(x−1, y)

(g3g4g
−1
3 , h4g

−1
3 ) (g3, h3)

(g1, h1)

(g2, h2) (g3g4g
−1
3 , h4g

−1
3 )

(g3, h3)
(g5, h5)

(g6, h6)

Parameterization f

parameterization
F−1

c,y(f).

parameterization (id t B)(F−1
c,y(f))

where id is applied to the componenet
n = 5 and B is applied to the compo-
nent n = 3.

parameterization of Fc,y applied to the
previous one.

F−1
c,y(f)

(id tB)(F−1
c,y(f))

Fc,y applied
to the previous
one.

Bi = composition of the
above three moves.

Figure 23. description of Bi move as a composition of
previously defined move

obtained from α by applying one of the following moves:
Z,Z−1,Bi,B

−1
i ,F,F−1,Px,P

−1
x ,Tc

z,y, (T
c
z,y)−1 in one of the compo-

nents. Having defined the vertex and edges of the complex M(Σ̃, Σ) ,
now we need to define the relations or 2-cells of M(Σ̃, Σ). We define
the relations in the next section.

5.2. The Statement Of the Main Theorem.

Main Theorem. The complex, M(Σ̃, Σ), with the above defined edges
and relations (which will be described in the next section), is connected
and simply connected.

6. Relations

Now it is time to define all the relations between these moves. These
relation will be described in the following subsections:

6.1. Obvious Relation.

EE−1 = E−1E = 1

Where E is one of the five moves, that is E ∈ {Z,Bi,F,Px,T
c
z,y}
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(t, y) (t−1, y)

(xtx−1, yx−1) (xt−1x−1, yx−1)

Px tPx

Fc,yx−1

Fc,y

Px

c

c

Figure 24. Visual description of the third Px relation

6.2. Px Relation. Px move commutes with all the other moves. More
precisely for all x, y ∈ G and all cuts, c, we have the following relations:

(1) PxZ = ZPx

(2) PxBi = BiPx

(3) PxFc,y = Fc,yx−1(Px tPx). See figure 24.
(4) PxPy = Pxy

Remark 8. Note the change of indices for F. Why we need to change
the indices is clear from figure 24. Here we only label the edges corre-
sponding to the cut c.

Remark 9. The last relation shows that whatever relation satisfied by
the elements of G, the same relation hold for Px. So in particular this
implies (Px)

−1 = Px−1 .

6.3. P− F relation. Let f be a parameterization having two compo-
nent glued to a cut c where one edge of the cut labeled by (x, y) and
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c

(x, y) (z, w)
c

(x, y) (x−1, y)

c

(z−1, w) (z, w)

id tPt−1

Pt t id

Fc,w

Fc,y

Figure 25. Visual description of P− F relation

the other edge of the cut labeled by (z, w). For this glue to exist, we
must have yx−1y−1 = [wz−1w−1]−1, see the subsection 3.5 on page 13.
Let t = w−1y. Then one can easily check that txt−1 = z−1, yt−1 = w,
t−1zt = x−1 and wt = y. Then P− F relation is the following relation:

Fc,w(Pt t id) = Fc,y(id tPt−1)

See the figure 25 for a visual description of this relation.

6.4. Z Relation. Z commutes with all the other moves. More pre-
cisely, let a parameterization, f , identifies a G cover,Σ̃, with the stan-
dard block Sn(g1, ..., gn; h1, ..., hn). Then we have the following relation:

ZBi = Bi+1Z

See figure 26 for a visual description of this relation.

Also let a parameterization, f , identifies a G cover, Σ̃, with gluing
of two standard blocks along a cut c.

f : Σ̃ → Sn(g1, ..., gn−1, x; h1, ..., hn−1, y)
⊔
c,y

Sm(x−1, g′1, ..., g
′
m−1; y, h′

1, ..., h
′
m−1)

Then we have the following relation:

(id t Z)Tc
z,y = Tc

z,y(id t Z)

See figure 27 for a visual description of this relation.
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(g1, h1)

(g2, h2) (gi, hi) (gi+1, hi+1)

(gn, hn)
(g1, h1)

(g2, h2)
(gigi+1g

−1
i , hi+1g

−1
i )

(gi, hi)

(gn, hn)

(gn, hn)

(g1, h1)
(gigi+1g

−1
i , hi+1g

−1
i )

(gi, hi)

(gn−1, hn−1)

(gn, hn)

(g1, h1) (gi, hi) (gi+1, hi+1)

(gn−1, hn−1)

Bi

ZZ

Bi+1

Figure 26. Notice the change of indices for B.

(g1, h1)

(g2, h2)

(g3, h3)

(x, y) (x−1, y)

(g′1, h
′
1)

(g′2, h
′
2)

(g1, h1)

(g2, h2)

(g3, h3)

(x, z) (x−1, z)

(g′1, h
′
1)

(g′2, h
′
2)

Tc
z,y

(id t Z)
(id t Z)

(x, y) (x−1, y)

(g′1, h
′
1)

(g′2, h
′
2)

(g1, h1)

(g2, h2)

(g3, h3)

(x, z) (x−1, z)

(g′1, h
′
1)

(g′2, h
′
2)

Tc
z,y

(g1, h1)

(g2, h2)

(g3, h3)

Here for simplicity of the picture, we take n = 4 and m = 3

Figure 27. The commutativity of Z and T moves
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(g1, h1)

(g2, h2)

(g3, h3)

(x, y) (x−1, y)

(g′1, h
′
1)

(g′2, h
′
2)

(x−1g′1x, h′1x)

(g1, h1)

(g2, h2)

(g3, h3)

(x, y)
(x−1, y)

(g′2, h
′
2)

(g1, h1)

(g2, h2)

(g3, h3)

(x, z) (x−1, z)

(g′1, h
′
1)

(g′2, h
′
2)

(x−1g′1x, h′1x)

(g1, h1)

(g2, h2)

(g3, h3)

(x, z)
(x−1, z)

(g′2, h
′
2)

Tc
z,y

Tc
z,y

(id tB)
(id tB)

Figure 28. The commutativity of B and T moves

6.5. B Relation. From above relations, we already know that B move
commutes with Z and Px move. But we have more–B also commutes
with the T move. More precisely, let a parameterization, f , identifies a
G cover,Σ̃, with gluing of two standard blocks where one of the standard
blocks has three boundary circles.

f : Σ̃ → Sn(g1, ..., gn−1, x; h1, ..., hn−1, y)
⊔
c,y

S3(x
−1, g′1, g

′
2; y, h′

1, h
′
2)

Here c denotes the cut where these two standard blocks are glued to-
gether. Then we have the following relation:

(id tB)Tc
z,y = Tc

z,y(id tB)

See figure 28 where for simplicity we take n = 4.

6.6. Tc
z,y relation. This is simply the relation Tc

z,y = F−1
c,zFc,y which

is expected.

6.7. Rotation axiom. Let f : Σ̃ −→ Sn(g1...gn; h1...hn) be a param-
eterization of the G-cover, Σ̃. Then the rotation axiom says that if we
apply Z move n times to the parameterization, f , we get back the same
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α

β

γ

γ

α

β

β

γ

α

Z(f)

Z2(f)

Z3(f)

Visualization
of
f

(g1, h1) (g2, h2)

(g3, h3)

(g3, h3)
(g2, h2)

(g1, h1)

(g1, h1)

(g2, h2)

(g3, h3)

For simplicity of the picture, we take n = 3.

Figure 29. The 2-cell of Z relation, for n = 3

parameterization, f . That is Znf = f or Zn = 1. See the diagram on
figure 29.

6.8. Commutativity of Disjoint Union. Let Σ = Σ1

⊔
Σ2. Then

by restriction, the G-cover Σ̃ −→ Σ can be broken down into two
pieces, say,
Σ̃1 −→ Σ1 and Σ̃2 −→ Σ2.
Thus a parameterization of Σ̃ −→ Σ can be realized as disjoint union of
two parameterization, one for Σ̃1 −→ Σ1, and the other for Σ̃2 −→ Σ2.
We can reformulate this statement in the language of complex. In this
case, it means that if A is a vertex of the complex M(Σ̃, Σ), then A
can be written as A = (A1, A2) where A1 is a vertex of M(Σ̃1, Σ1) and
A2 is a vertex of M(Σ̃2, Σ2). Let Ei be an edge of M(Σ̃i, Σi) directed
from Ai to A′

i, here i = 1, 2. Then the commutativity of disjoint union
is the following relation:

(id
⊔

E2)(E1

⊔
id) = (E1

⊔
id)(id

⊔
E2)

See the diagram on figure 30 for a visual presentation.

6.9. Symmetry of F Move. Let f be the following parameterization
of the G-cover, Σ̃,

f : Σ̃ −→ Sk+1(g1, ...gk+1; h1, ...hk+1)
⊔

c,hk+1

Sl+1(g
′
1, ...g

′
l+1; h

′
1, ...h

′
l+1)
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A = (A1, A2)

(A′
1, A2)

(A′
1, A

′
2)

(A1, A
′
2)

E1 t id

id tE2

id tE2

E1 t id

Here Ei is an edge from Ai to A′
i, and i = 1, 2

Figure 30. The 2-cell of commutativity of disjoint union

Here the symbol, ⊔
c,hk+1

means that we glued along the cut c where the edges of the cut are
labeled by (t, hk+1) and (t−1, hk+1). This t is completely determined by
all the other labels. More precisely we have the following:
The boundary component labeled by gk+1 of the standard block,
Sk+1(g1, ...gk+1; h1, ...hk+1) is glued with the boundary component la-
beled by g′1 of the standard block Sl+1(g

′
1, ...g

′
l+1; h

′
1, ...h

′
l+1). of course

we must have hk+1 = h′
1 and gk+1 = (g′1)

−1 for gluing to exist. From
this parameterization, f , we can get an another parameterization, j,
where

j : Σ̃ −→ Sl+1(g
′
2, ..., g

′
l+1, g

′
1; h

′
2, ..., h

′
l+1, h

′
1)

⊔
c,h′1

Sk+1(gk+1, g1, ..., gk; hk+1, h1, ..., hk)

This is done by first interchange the component Sk+1(g1, ...gk+1; h1, ...hk+1)
and Sl+1(g

′
1, ..., g

′
l+1; h

′
1, ..., h

′
l+1) and then we apply z̃−1 to Sl+1(g

′
1, ..., g

′
l+1; h

′
1, ..., h

′
l+1)

and z̃ to Sk+1(g1, ..., gk+1; h1, ..., hk+1) so that the boundary component
labeled by g′1 becomes the last component of Sl+1(g

′
1, ...g

′
l+1; h

′
1, ...h

′
l+1)

and the boundary component labeled by gk+1 becomes the first com-
ponent of Sk+1(g1, ...gk+1; h1, ...hk+1). See Lemma 7 for the description
of z̃
Now the symmetry of F move is the following relation:

ZlFc,hk+1
(f) = Fc,h

′
1
(j)
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Or in short, we can just say

ZlFc,hk+1
= Fc,h

′
1

Here c is the cut where we glue the G-cover. For the notation, Fc,hk+1
,

see the remark on sec 6.2.3. In word, this relation just says that, we
can first interchange the component, apply Z and Z−1 move to the
components and then apply F move or we can just first apply the F
move and then apply some appropriate power of Z move.

6.10. Associativity of Cuts. Let f be the following parameteriza-
tion of the G-cover Σ̃

f : Σ̃ → Sk+1(g1, ..gk+1; h1, ..hk+1)
⊔

c1,hk+1

Sl+1(g
′
1, ..g

′
l+1; h

′
1, ..h

′
l+1)⊔

c2,h′l+1

Sn+1(g
′′
1 , ..g

′′
n+1; h

′′
1, ..h

′′
n+1)

For the description of the notation,⊔
c1,hk+1

and
⊔

c2,h′l+1

see the relation“Symmetry of F move”. Here c1 denote the first cut
and c2 denote the second cut of the gluing. Of course, we assume that
all the conditions are satisfied for gluing to exist. More specifically, we
assume the following conditions:
hk+1 = h′

1 , h′
l+1 = h′′

1 , gk+1g
′
1 = 1 , g′l+1g

′′
1 = 1

Now the “associativity of cuts” is the following relation:

Fc2,h′l+1
Fc1,hk+1

(f) = Fc1,hk+1
Fc2,h′l+1

(f)

or in short, we can just say

Fc2,h′l+1
Fc1,hk+1

= Fc1,hk+1
Fc2,h′l+1

In word, this just says that, given two distinct cuts, it does not matter
in which order we apply the F move.

6.11. Cylinder Axiom. We consider the standard cylinder (S2) with
the standard marking. See the picture on figure 31. Let f : Ω̃ −→
S2(x, x−1; y, z) be a parameterization of a G-cover, Ω̃ → Ω. Also let j
be the following parameterization of G-cover, Σ̃ → Σ:

j : Σ̃ −→ Sk+1(g1, ..., gk, x
−1; h1, ..., hk, y)
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(x, y)

(x−1, z)

α

β

Figure 31. Standard marking on S2

Note that, here we choose all the elements of G in such a way that
we can glue the G-cover Ω̃ and Σ̃. So after this gluing, we get a new
parameterization of the G-cover

Σ̃
⊔

glued

Ω̃

Let us denote this parameterization by j t f . That is

j t f : Σ̃
⊔

glued

Ω̃ → Sk+1(g1, ..., gk, x
−1; h1, ..., hk, y)

⊔
x−1,x

S2(x, x−1; y, z)

Finally let E be a move which can be applied to the parameterization
j. In the language of complex this just means that E is one of the edges
of the complex M(Σ̃, Σ) starting from the vertex j. Here of course, E
must be one of the following edges
Z,Z−1,Bi,Bi−1,F,F−1,Tc

z,y, (T
c
z,y)−1,Px or P−1

x . Then the cylinder
axiom is the following relation or 2-cell:

EF(j t f) = F(E t id)(j t f)

Or in short, we can just say

EF = F(E t id)

6.12. Braiding Axiom. Before we define the braiding axiom, we need
the following two definition:
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(g, h) (g′, h′)

The cut c

Figure 32. Requirement for F move

6.12.1. Generalized F move. We know that before we can apply F
move to a parameterization, there are some assumption we must sat-
isfy. More precisely, if (g, h) is the label for the last boundary circle of
one component, Σ1, and (g′, h′) is the label for the first boundary circle
of the other component, Σ2, then to apply F move we must satisfy:
gg′ = 1 and h = h′

See the picture on figure 32. If to start with the boundary circle asso-
ciated with (g, h) is not the last one and the boundary circle associated
with (g′, h′) is not the first one, we can apply appropriate Z move to
Σ1 and Σ2 to get what we want. In other word, the generalized F move
is the composition of the following moves:

−−→
Fc,h = Fc,h(Za t Zb)

Note that we used an arrow above the generalized F move to distin-
guish it from the usual F move. Sometimes if there is no confusion, we
will just use the notation Fc,h to denote a generalized F move. Here
“a” and “b” is chosen appropriately so that (g, h)-boundary circle of
Σ1 becomes the last one and (g′, h′)-boundary circle of Σ2 becomes the
first one.

Remark 10. In the case a = b = 0, the generalized
−−→
Fc,h move becomes

the usual Fc,h move. So we can think the usual Fc,h move as a special

case of generalized
−−→
Fc,h move.

6.12.2. generalized Braiding move. Let f be the following parameteri-
zation of the G-cover, Σ̃,

f : Σ̃ → S(k+l+n+m)(g1, ..., gk+l+n+m; h1, ...hk+l+n+m)

We also let
I1 = {the set of boundary circle associated with (g1, ...gk)}
I2 = {the set of boundary circle associated with (gk+1, ...gk+l)}
I3 = {the set of boundary circle associated with (gk+l+1, ...gk+l+n)}
I4 = {the set of boundary circle associated with (gk+l+n+1, ...gk+l+n+m)}
We want to define the generalized B move denoted by BI2,I3 . The best
way to explain this is through an example. For simplicity, we take
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(g1, h1)

(g2, h2)

(g3, h3)
(g4, h4)

(g5, h5)

(g6, h6)

Figure 33. Visualization of f

|I1| = 1, |I2| = 2, |I3| = 2, |I4| = 1, but readers easily see that it works
in general. Now without further delay, we define the generalized BI2,I3

as the composition of the following moves:
First of all we are given:
f : Σ̃ → S6( g1︸︷︷︸

I1

, g2, g3︸ ︷︷ ︸
I2

, g4, g5︸ ︷︷ ︸
I3

, g6︸︷︷︸
I4

; h1, h2, h3, h4, h5, h6). See figure 33

for the visualization of f . In what follows, all the F and the F−1 move

will be generalized
−−−→
Fc,h and (

−−→
Fc,h)−1 move, but we do not put arrow

sign on top to make the picture simple. we apply F−1
c3,wF−1

c2,vF
−1
c1,y to

the parameterization f to get the following parameterization of Σ̃

F−1
c3,wF−1

c2,vF
−1
c1,y(f) : Σ̃ −→ S3(g1, x, g6; h1, y, h6)

⊔
(c1,y)

S3(x
−1, z, u; y, w, v)

⊔
(c2,v)

S3(u
−1, g4, g5; v, h4, h5)

⊔
(c3,w)

S3(z
−1, g2, g3; w, h2, h3)

For simplicity of writing things down let us denote
q = F−1

c3,wF−1
c2,vF

−1
c1,y(f). See figure 34. Now to the parameterization q,

we apply the move idt (the usual B move on the edge labeled by (u, v)
and (z, w))tPz t id
Recall that Pz means the P move for the element z ∈ G. See section
6.3 for detail.
let us denote by r the parameterization {idt (the usual B move on the
edge labeled by (u, v) and (z, w))tPz t id}(q)
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(g1, h1) (g6, h6)

(g4, h4)

(g5, h5)

(g2, h2)
(g3, h3)

(x, y)

(x−1, y)

(u, v)

(u−1, v)
(z, w)

(z−1, w)

cut c1

cut c2

cut c3

Figure 34. Visualization of q = F−1
c3,wF−1

c2,vF
−1
c1,y(f)

Here

r : Σ̃ −→ S3(g1, x, g6; h1, y, h6)
⊔

(c1,y)

S3(x
−1, zuz−1, z; y, vz−1, w)

⊔
c2,vz−1

S3(zu
−1z−1, zg4z

−1, zg5z
−1; vz−1, h4z

−1, h5z
−1)

⊔
c3,w

S3(z
−1, g2, g3; w, h2, h3)

See the diagram on figure 35. Finally, to get rid off all the cuts, c1, c2, c3,
that have been artificially created, we apply the move, Fc3,vz−1Fc2,wFc1,y,
to r. Thus

Fc3,vz−1Fc2,wFc1,y(r) : Σ̃ −→ S6(g1, zg4z
−1, zg5z

−1, g2, g3, g6; h1, h4z
−1, h5z

−1, h2, h3, h6)

See the figure 36. This is the end of the generalized BI2,I3 move. If we
put everything together, we have the following composition for BI2,I3

move:
BI2,I3(f) = Fc3,vz−1Fc2,wFc1,y{id t (the usual B move on the edge la-
beled by (u, v) and (z, w))tPz t id}F−1

c3,wF−1
c2,vF

−1
c1,y(f)
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(g1, h1)
(g6, h6)

(g3, h3)

(g2, h2)

(zg5z
−1, h5z

−1)

(zg4z
−1, h4z

−1)

(zu−1z−1, vz−1)

(zuz−1, vz−1)

(x, y)

(x−1, y)

(z, w)

(z−1, w)

cut c1

cut c3

cut c2

Figure 35. Visualization of r

(g1, h1)

(g6, h6)

(g3, h3)

(g2, h2)(zg5z
−1, h5z

−1)

(zg4z
−1, h4z

−1)

Figure 36. Visualization of Fc3,vz−1Fc2,wFc1,y(r)

Remark 11. Note that we did not use any parenthesis to denote the
move Fc3,vz−1Fc2,wFc1,y or F−1

c3,wF−1
c2,vF

−1
c1,y since by the ”associativity

of cuts”, it does not matter on which order we add or remove cuts.
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Remark 12. We might wonder, what is z that appear on the general-
ized B move above? We can in fact calculate the value of z quite easily.
xg6g1 = 1 ⇒ x = g−1

1 g−1
6

ux−1g2g3 = 1 ⇒ u = g−1
3 g−1

2 g−1
1 g−1

6

zux−1 = 1 ⇒ z = xu−1 = g−1
1 g−1

6 g6g1g2g3 = g2g3

So z = g2g3 In general z = multiplication of all g’s in I2.

Remark 13. The generalized braiding move agree with the usual braid-
ing move in the case when |I2| = |I3| = 1.

6.12.3. Braiding Axiom. Now it is time to describe the braiding axiom.
We start with the following parameterization of our G-cover:
f : Σ̃ −→ S4(g1, g2, g3, g4; h1, h2, h3, h4) where we name the boundary
circle δ, α, β, γ, in the increasing order; that is δ is the boundary circle
associated with (g1, h1) and γ is the boundary circle associated with
(g4, h4).
Then the Braiding axiom is the following two relation:

Bα,γBα,β(f) = B{α},{β,γ}(f)

and

Bα,γBβ,γ(f) = B{α β},{γ}(f)

Here Bα,γ etc denote the usual B move and B{α},{β,γ} etc denote the
generalized B move.
We will describe step by step move for the first relation of Braiding
Axiom since the description of the other relation is similar.

Bα,β(f) : Σ̃ −→ S6(g1, g2g3g
−1
2 , g2, g4; h1, h3g

−1
2 , h2, h4)

Bα,γBα,β(f) : Σ̃ −→ S6(g1, g2g3g
−1
2 , g2g4g

−1
2 , g2; h1, h3g

−1
2 , h4g

−1
2 , h2)

Look at the definition of B move above. On the other hand

B{α},{β,γ}(f) : Σ̃ −→ S6(g1, g2g3g
−1
2 , g2g4g

−1
2 , g2; h1, h3g

−1
2 , h4g

−1
2 , h2)

See the diagram on figure 37 for a visual presentation.

6.13. Dehn Twist Axiom. Say, we are given a Standard Cylinder
(S2) with the standard graph (see the picture below) where we denote
by α, the first boundary component and by β, the second boundary
component. Also let f be a parameterization of our G-cover, Σ̃, given
by
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δ

α β

γ

(g1, h1)

(g2, h2)
(g3, h3)

(g4, h4)

δ

β α

γ

(g1, h1)

(g2g3g
−1
2 , h3g

−1
2 ) (g2, h2)

(g4, h4)

δ

β γ

α

(g1, h1)

(g2g3g
−1
2 , h3g

−1
2 )

(g2g4g
−1
2 , h4g

−1
2 )

(g2, h2)

Bα,β(f)

B{α},{β,γ}(f)

Bα,γBα,β(f)

Figure 37. 2-cell or relation of braiding axiom

f : Σ̃ −→ S2(g, g−1; h1, h2)
Then the dehn twist axiom is the following relation:

ZBα,β(f) = PgBβ,αZ(f)

Here Bα,β denote the usual B move and Pg denote the P move for the
element g ∈ G. For a detail description of these moves, see section 6.
For a better understanding, we breakdown this relation piece by piece:

Bα,β(f) : Σ̃ −→ S2(gg−1g−1, g; h2g
−1, h1) = S2(g

−1, g; h2g
−1, h1)

ZBα,β(f) : Σ̃ −→ S2(g, g−1; h1, h2g
−1)

On the other hand

Z(f) : Σ̃ −→ S2(g
−1, g; h2, h1)

Bβ,αZ(f) : Σ̃ −→ S2(g
−1gg, g−1; h1g, h2) = S2(g, g−1; h1g, h2)

PgBβ,αZ(f) : Σ̃ −→ S2(ggg−1, gg−1g−1; h1gg−1, h2g
−1) = S2(g, g−1; h1, h2g

−1)

See the diagram on figure 38 for a visual description of the Dehn Twist
Axiom.

Remark 14. Note that, here this dehn twist axiom differs from the dehn
twist axiom of the paper [BK] (the case when |G| = 1), because of this
extra Pg move appearing in the relation.
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α β

β α

α β

α β

β α(g, h1) (g−1, h2)

(gg−1g−1, h2g
−1) = (g−1, h2g

−1) (g, h1)

(g, h1) (g−1, h2g
−1)

(g−1gg, h1g) = (g, h1g) (g−1, h2)

(g−1, h2) (g, h1)

Bα,β(f)

ZBα,β(f)
PgBβ,αZ(f)

Bβ,αZ(f)

Z(f)

Figure 38. 2-cell or relation of Dehn twist axiom

We conclude this section with the following lemma

Lemma 9. All the relations describe above make sense. In other word,
all the relation describe closed loop in our complex, M(Σ̃, Σ).

Proof. This is basically done when we explained the relation above. We
can review each relation one by one and infact see that they are closed
loop in our complex. The detail are left to the reader. �

7. Proving the Main Result

The rest of the paper is devoted to prove our main theorem.

7.1. A general Theorem about Complexes.

Theorem 2. We will use this result to prove our main theorem. Let
A and B be two 2-dim complex. Let Π : B[1] −→ A[1] be a map of their
1-skeleton(vertices and edges), which is surjective both on vertices and
edges. Also suppose the following condition is satisfied:

(1) A is connected and simply-connected
(2) For every vertex a ∈ A, Π−1(a) is connected and simply-connected.

That is every loop, completely lie in Π−1(a), is contractable in
B.

46



(3) Let

b
′

1

f
′

→ b
′

2

and

b
′′

1

f
′′

→ b
′′

2

be two lifting of

a1
f→ a2

Then there is a path e1, starting from b
′′
1 and end with b

′
1, and

completely lie in Π−1(a1) and a path e2, starting from b
′′
2 and

end with b
′
2, and completely lie in Π−1(a2), so that the following

relation hold:

e2f
′′

= f
′
e1

In other word, the following diagram commute:

b
′′
1

f
′′

→ b
′′
2

e1 ↓ ↓ e2

b
′
1

f
′

→ b
′
2

(4) Every loop in A can be lifted to a contractible loop in B.

Then the complex B is connected and simply-connected.

Proof. Not hard and we will leave the proof to the reader. �

7.2. Proof Of the Main Theorem. Recall that the main theorem
says that the complex M(Σ̃, Σ) is connected and simply-connected. To
use the previous theorem, we let
A = M(Σ):= (as defined in the paper [BK].)

• Vertex of M(Σ) = Marking with cuts
• Edges of M(Σ) = Z,B, F move described in the paper [BK]
• Relation = Described in the paper [BK]

We also let B = M(Σ̃, Σ) := see section 7 for the definition of this
complex.

7.2.1. Description of Π : M(Σ̃, Σ)[1] → M(Σ)[1]. We first describe the
map of 1-skeleton. If v is a vertex in M(Σ̃, Σ), then v is given by
marked graph, with (gi, hi) in each cut. Π just take this vertex v to the
marked graph, forgetting about (gi, hi). This marked graph without
(gi, hi) is a vertex in M(Σ)
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If E is an edge in M(Σ̃, Σ), where E is one of Z,Bi or F move,
then Π(E) is the corresponding Z,Bi and F move in M(Σ). Since
a Pg, g ∈ G and Tc

z,y move does not change the underling marked
graph, Π(Pg) = Π(Tc

z,y) = empty edge. This conclude the description
of Π. Note that Π is obviously surjective both on the vertex and edges.

Lemma 10. The above map of complex, Π : M(Σ̃, Σ) → M(Σ) make
sense. In other word, Π does define a map of complex.

Proof. obvious. �

7.2.2. Description of a typical fiber. Let a ∈ vertex (M(Σ)). We want
to describe Π−1(a). Hence the following lemma:

Lemma 11. Let b and b
′ ∈ Π−1(a). Then b and b

′
is connected by a

sequence of moves of the form F−1
ci,z

Fci,y := Tci
z,y and Px. See section 6

for the description of these moves and the notation. Here ci is the i-th
cut and z, y, x ∈ G. Also conversely, only move that takes a vertex of
a fiber to the same fiber, is the move Tci

z,y and Px.

Proof. Let the vertex a ∈ M(Σ) be parameterized by k cuts. That is

Σ = Σ1

⊔
glued

Σ2

⊔
glued

......
⊔

glued

Σk

Then the corresponding G-cover can also be break down as a gluing of
k G-cover. That is

Σ̃ = Σ̃1

⊔
glued

Σ̃2

⊔
glued

......
⊔

glued

Σ̃k

Then the parameterization, b and b
′

can be realized as a gluing of k
parameterization; each one coming from the parameterization of Σ̃i −→
Σi which we will denote by bi and b

′
i. So in short hand notation we can

write b = b1 t b2 t ...t bk and b
′
= b

′
1 t b2 t ...t b

′

k . Here i = 1...k. Let

b : Σ̃ −→ Sn1(g
1
1, ...g

1
n1

; h1
1, ...h

1
n1

)
⊔

c1,h1
n1

.....
⊔

ck,hk−1
nk−1

Snk
(gk

1 , ...g
k
nk

; hk
1, ...h

k
nk

)

and let

b
′
: Σ̃ −→ Sn1(p

1
1, ...p

1
n1

; q1
1, ...q

1
n1

)
⊔

c1,q1
n1

.....
⊔

ck,qk−1
nk−1

Snk
(pk

1, ...p
k
nk

; qk
1 , ...q

k
nk

)

consider the parameterization

b1 : Σ̃1 −→ Sn1(g
1
1, ...g

1
n1

; h1
1, ...h

1
n1

)
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and
b
′

1 : Σ̃1 −→ Sn1(p
1
1, ...p

1
n1

; q1
1, ...q

1
n1

)

Then

b1
′b−1

1 : Sn1(g
1
1, ...g

1
n1

; h1
1, ...h

1
n1

) −→ Sn1(p
1
1, ...p

1
n1

; q1
1, ...q

1
n1

)

is an isomorphism of G-cover. So from lemma 3, we know that there
exist an x1 ∈ G so that Sn1(x1g

1
1x

−1
1 , ...x1g

1
n1

x−1
1 ; h1

1x
−1
1 , ...h1

n1
x−1

1 ) =
Sn1(p

1
1, ...p

1
n1

; q1
1, ...q

1
n1

)

Similarly we can find x2, x3, ...xk so that xig
i
jx

−1
i = pi

j and hi
jx

−1
i = qi

j

for i = 2...k. Now let us apply the Px1 t .... tPxk
move to b, Then

Px1 t .... tPxk
(b) : Σ̃ −→ Sn1(x1g

1
1x

−1
1 , ...x1g

1
n1

x−1
1 ; h1

1x
−1
1 , ...h1

n1
x−1

1 )⊔
c1,h1

n1
x−1
1

.....
⊔

ck,hk−1
nk−1

x−1
k−1

Snk
(xkg

k
1x

−1
k , ...xkg

k
nk

x−1
k ; hk

1x
−1
k , ...hk

nk
x−1

k )

By the choice of x1, x2, ..., xk, we must have, xig
j
i x

−1
i = pj

i and hi
jx

−1
i =

qi
j as j = 1...k and i = 1...nj.

In other word, Px1 t .... tPxk
(b) = b′.

Now conversely, let b ∈ Π−1(a) and E is a move in M(Σ̃, Σ), so
that E(b) ∈ Π−1(a). At first site, of course, all possibilities for E are
Z,Z−1B,B−1F,F−1 P,P−1,T and T−1. But the move Z,Z−1B,B−1F,F−1

will take the vertex, b, outside the fiber Π−1(a). So the only possible
value for E is Px and Tc

z,ymove and their inverses. But P−1
x = Px−1

and (Tc
z,y)−1 = (F−1

c,zFc,y)−1 = F−1
c,yFc,z = Tc

y,z. So the inverse of P,T
move are another P,T move. �

Remark : This lemma shows in particular that the fiber Π−1(a) is
connected.

7.2.3. The fiber Π−1(a) is simply-connected.

Lemma 12. The fiber Π−1(a) is simply-connected. That is given any
loop, where each vertex of the loop belong to Π−1(a), is contractable
using the 2-cell or relations of M(Σ̃, Σ).

Proof. We divide the proof in three cases.
case 1: no cuts and no boundary circle
Here the base surface, Σ, is isomorphic to S0, the sphere, and the G-
cover of Σ is trivial that is Σ×G. This case must be treated separately.
Although there is only one G-cover of Σ up to isomorphism, there are a
total of |G| many parameterization of this G-cover. To see this, recall

49



that a parameterization, f , of our G-cover Σ×G is just an isomorphism
from the G-cover Σ×G to the G-cover S0 ×G. of course this f must
maps a component of Σ×G isomorphically to a component of S0×G.
Let say that

f(Σ× 1, where 1 ∈ G) = S0 × h, where h ∈ G

Then this information will determine f completely since f must preserve
the action of G on the fiber. More precisely we have:

f(Σ× x, where x ∈ G) = S0 × xh

So a parameterization is completely determine by an element of h ∈ G.
So in this way, we can identify the set of parameterization of our G-
cover to the group G. That is, in this case, vertex (M(Σ̃, Σ)) = G
What about the moves and relations? None of the moves, Z,Bi,Fc,y,PxT

c
z,y,

make sense in this case since we do not have any cuts. But nevertheless,
it is possible to define moves. Recall that in general, given a parame-
terization, f , of our G-cover, applying a move to f means we compose
f with some standard automorphism of our “Standard Block”, G-cover
of Sn. In this case, the standard block is justS0×G. So what are all the
automorphism of the S0 × G? Again by the same argument as above
we can identify the set of automorphism of S0×G with G. So moves of
M(Σ̃, Σ) = G. More precisely we connect x to yx by an edge directed
from x to yx. only relation here is precisely the relation satisfied by
the group. Trivially this complex is connected and simply-connected
(any closed loop starting from vertex x has the form g1g2...gkx = x but
then g1g2...gk = 1 which is a relation of our complex).
case 2: no cuts but at least one boundary circle
In this case, the base surface, Σ, is still simply-connected (remember
that we always assume Σ has genus 0). So the G-cover of this is again
Σ × G. So all the argument above goes through and we see that ver-
tex (M(Σ̃, Σ)) = G and the edges of M(Σ̃, Σ) = G. And the complex
M(Σ̃, Σ) is connected and simply-connected.
case 3: at least one cut
This is the general situation. First recall the Px relation:

(1) PxZ = ZPx

(2) PxBi = BiPx

(3) PxFc,y = Fc,yx−1(Px tPx)
(4) PxPy = Pxy

and also the relation Tc
z,y = F−1

c,zFc,y.

Now given a loop completely lie inside the fiber Π−1(a), we know from
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lemma 10 that this loop consist entirely of moves of the form Px and
F−1

ci,z
Fci,y = Tci

z,y. First we translate all the move of the form Px to the
right and combine all the P move together to create a single P move.
This can be done by the above three Px-relation. So we may assume
that the loop looks like :

Tc1
z1,1,y1,1

Tc1
z1,2,y1,2

....Tc1
z1,n1 ,y1,n1

......Tck
zk,1,yk,1

Tck
zk,2,yk,2

....Tck
zk,nk

,yk,nk

Px tPx t .... tPx(b)

Here we choose b to be the starting vertex for our loop. Note that the
indices for the P move are all same, which we denote by x. This must
be the case for T move to make sense. Note also that that we gather all
T move associated to a given cut c. This can be done since first of all,
the associativity of cuts says that Fcj,yFci,z = Fci,zFcj,y whenever i is

different from j. From this it follows that Tci
z1,y1

T
cj
z2,y2 = T

cj
z2,y2T

ci
z1,y1

whenever i is different from j. Thus we can bring all T move as-
sociated to a given cut in one place. Now consider the ith cut, ci.
What can we say about Tci

zi,1,yi,1
Tci

zi,2,yi,2
.....Tci

zi,ni
,yi,ni

? We use the re-

lation Tc
z,y = F−1

c,zFc,y to conclude that Tci
zi,1,yi,1

Tci
zi,2,yi,2

.....Tci
zi,ni

,yi,ni
=

F−1
ci,zi,1

Fci,yi,ni
. All the middle part will be FF−1 = 1. So now our loop

has the form

F−1
c1,z1,1

Fc1,y1,n1
F−1

c2,z2,1
Fc2,y2,n2

....F−1
ck,zk,1

Fck,yk,nk
Px tPx t .... tPx(b)

or
Tc1

z1,1,y1,n1
Tc2

z2,1,y2,n2
....Tck

zk,1,yk,nk
Px tPx t .... tPx(b)

Now consider the ith cut, ci. Say this cut is labeled by (ui, yi,ni
) for

one component and by (u−1
i , yi,ni

) for the other component. When
we apply Px tPx t .... tPx move to b, this cut will be relabeled
by (xuix

−1, yi,ni
x−1) and (xu−1

i x−1, yi,ni
x−1) respectively. See how we

change the label for Px move in section[7]. Then we apply Tci
zi,1,yi,ni

move to get the label (xuix
−1, zi,1) and (xu−1

i x−1, zi,1). See the se-
quence of picture on figure 39 for a visual description. But since it is
a closed loop, we must have

xuix
−1 = ui and zi,1 = yi,ni

as i = 1...k Now we go back to the beginning and rewrite our original
loop but this time we will move Px tPx t .... tPx to all the way left.
Recall the relation PxFc,y = Fc,yx−1(Px tPx). This will imply the
following two relation:

PxFc,yx = Fc,y(Px tPx) and PxF
−1
c,yx = F−1

c,y(Px tPx)
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(ui, yi,ni) (u−1
i , yi,ni)

The ith
cut ci

After applying Px move

(xuix
−1, yi,nix

−1) (xu−1x−1
i , yi,nix

−1)

After applying Tci
zi,1,yi,ni

move

(xuix
−1, zi,1) (xu−1x−1

i , zi,1)

Figure 39. To show fiber is simply connected

c c

c
c

(t, yx) (t−1, yx) (t, zx) (t−1, zx)

(xtx−1, z) (xt−1x−1, z)
(xtx−1, y) (xt−1x−1, y)

Tc
zx,yx

(Px tPx)(Px tPx)

Tc
z,y

Figure 40. Visual description of what happens when
we interchange T and P moves

These above two relation together with Tc
z,y = F−1

c,zFc,y will imply the
following:

Tc
z,y(Px tPx) = (Px tPx)T

c
zx,yx

See the figure 40 for a visual description of the above relation. So when
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we move (Px tPx... tPx) to the left, our loop will look like:

Px tPx t .... tPxF
−1
c1,z1,1x

Fc1,y1,n1xF
−1
c2,z2,1x

Fc2,y2,n2x....F
−1
ck,zk,1x

Fck,yk,nk
x(b)

or

Px tPx t .... tPxT
c1
z1,1x,y1,n1xT

c2
z2,1x,y2,n2x....T

ck
zk,1x,yk,nk

x(b)

Similarly as before, we consider the ith cut, ci, and label it with
(ui, yi,ni

x) for one component and (u−1
i , yi,ni

x) for the other compo-
nent. Now we apply Tci

zi,1x,yi,ni
x move first to get the label (ui, zi,1x)

and (u−1
i , zi,1x) respectively. Now we need to apply Px tPx t .... tPx

move, and this will give us the label (xuix
−1, zi,1) and (xu−1

i x−1, zi,1).
Since this is a closed loop, in particular this will imply zi,1 = yi,ni

x as
i = 1..k. But we already know from above that zi,1 = yi,ni

. So this
means x = 1. That is Px = P1 = identity or empty edge. Now our
loops look like

F−1
c1,z1,1

Fc1,y1,n1
F−1

c2,z2,1
Fc2,y2,n2

....F−1
ck,zk,1

Fck,yk,nk
(b)

But since we already found out that zi,1 = yi,ni
as i = 1..k. So each

F−1
ci,zi,1

Fci,yi,ni
= 1. So our loop is contractable. �

7.2.4. The complex M(Σ).

Lemma 13. The complex M(Σ) is connected and simply-connected.
Here the edges of the complex are Z,B, F , define on the [BK]. Also the
relation is defined on the same paper.

Proof. This is exactly the [BK] is all about. So this paper is heavily
depend on this paper. We will not repeat the proof here. Interested
readers are referred to the paper [BK].

�

7.2.5. Proving part 3 of sec 9.1. Let

b′1
f ′→ b′2

and

b′′1
f ′′→ b′′2

be two lifting of

a1
f→ a2

Then we need to show that there is a path e1, starting from b′′1 and end
with b′1, and completely lie in Π−1(a1) and a path e2, starting from b′′2
and end with b′2, and completely lie in Π−1(a2), so that the following
relation hold:
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e2f
′′(b′′1) = f ′e1(b

′′
1)

We know from lemma 8 that the vertex b′′1 and b′1 is connected by a se-
quence of move of the form Tc

z,y and Px and their inverses. We choose
such a path from b′′1 to b′1. Let us say the path is

(Px1 tPx2 t .... tPxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
(b′′1)

For later reference, we will denote (Px1 tPx2 t .... tPxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
=

L. So this path from b′′1 to b′1 is just L(b′′1). Note that this path L(b′′1)
completely lie inside the fiber Π−1(a1). So we get our e1 which is just
L(b′′1). Now depending on what kind of path the f is, we will have a
different construction for the path e2.

case 1: f = Z. In this case, we choose e2 = L(b′′2) more precisely,
the path from b′′2 to b′2 is

e2 = L(b′′2) = (Px1 tPx2 t .... tPxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
(b′′2)

Since in this case, both f ′ and f ′′ is the Z move, the commutativity
that we want to show is

LZ(b′′1) = ZL(b′′1)

Recall (Px1 tPx2 t .... tPxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
= L. But the Z

move commute with all the moves, so in particular, this means LZ =
ZL and we are done.

case 2: f = B. In this case, again we choose e2 = L(b′′2) more
precisely, the path from b′′2 to b′2 is

e2 = L(b′′2) = (Px1 tPx2 t .... tPxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
(b′′2)

Since in this case, both f ′ and f ′′ is the B move, the commutativity
that we want to show is

LB(b′′1) = BL(b′′1)

here we suppress the indices for B since it is not important. Again
recall

(Px1 tPx2 t .... tPxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
= L

But the B move also commute with the T and P moves (see the B
relation). So in particular, this means LB = BL and we are done.

case 3: f = F . This situation is little bit different from the above
two. Here the F move for M(Σ) and the F move for M(Σ̃, Σ), both
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will remove a cut, say the i-th cut. Then we choose

e2 = (Px1 tPx2 t ... t P̂xi
t ... tPxk

) Tc1
z1,y1

Tc2
z2,y2

....Tck
zk,yk

(b′′2)︸ ︷︷ ︸
but we do not include T

ci
zi,yi

Here P̂xi
means we do not include Pxi

. then the commutativity that
we want show is:

F(Px1 t ...Pxk
)Tc1

z1,y1
Tc2

z2,y2
....Tck

zk,yk
=

(Px1 t ... t P̂xi
t ... tPxk

) Tc1
z1,y1

Tc2
z2,y2

....Tck
zk,yk

F︸ ︷︷ ︸
but we do not include T

ci
zi,yi

This is very easy to show. We will give the argument anyway for
completeness. We consider each cut one at a time. First consider the i
th cut, the cut removed by F. The left hand side of the above equation
will apply a bunch of T and a Px move to this cut first. But it does not
matter, since at the end the F move will remove this cut. And the right
hand side of the above euation will apply F move first and remove this
i-th cut. Now consider the j-th cut where i and j are different. In this
case, the F move does not have any effect (does not change the label)
on the j-th cut. So both side of the above equation give rise to the
same label on this j-th cut (we can just forget about the F move from
both side since it does not have any effect). This finishes the proof.

7.2.6. Proving part 4 of sec 9.1. We need to show that Every loop in
M(Σ) can be lifted to a contractable loop in M(Σ̃, Σ). First note that,
it is enough to prove this for 2-cell or relations in M(Σ). Because, then
any loop in M(Σ) can be break down to several 2-cell in M(Σ), since
M(Σ) is simply-connected. We then lift each 2-cell to a contractable
loop in M(Σ̃, Σ). Then finally, we use part 3 of section 9.1, to arrive
at our answer.
Now we will show that every 2-cell in M(Σ) can be lifted to a con-
tractable loop in M(Σ̃, Σ). We first observe that all the 2-cell in M(Σ),
consist of Z,B and F move. And each 2-cell has a corresponding
exact 2-cell in M(Σ̃, Σ). For example, consider rotation axiom, the
2-cell in M(Σ) is Zn = 1 and the corresponding 2-cell in M(Σ̃, Σ)
is Zn = 1. Similarly for the braiding axiom, the 2-cell of M(Σ) is
Bα,γBα,β = B{α},{β,γ} and Bα,γBβ,γ = B{α β},{γ} and the corresponding

2-cell of M(Σ̃, Σ) is Bα,γBα,β = B{α},{β,γ} and Bα,γBβ,γ = B{α β},{γ}.
The only exception to this rule is the dehn twist axiom. Dehn twist
axiom for M(Σ) is ZBα,β = Bβ,αZ and the corresponding dehn twist

55



α

β

γ

γ

α

β

β

γ

α

Z(a)

Z2(a)

Z3(a)

Here, a ∈ M(Σ) Visualization
of
a

α

β

γ

γ

α

β

β

γ

α

Z(b)

Z2(b)

Z3(b)

Here,
b ∈ M(Σ̃,Σ)
and
b ∈ Π−1(a)
It does not
matter
what point we
choose
for b ∈ Π−1(a)

Visualization
of
a

(g1, h1) (g2, h2)

(g3, h3)

(g3, h3)
(g2, h2)

(g1, h1)

(g1, h1)

(g2, h2)

(g3, h3)

the
2-
cell
Z3 =
1
in
M(Σ)

the
lift-
ing
of
2-
cell
Z3 =
1
in
M(Σ̃,Σ)

Figure 41. Here we take n = 3 for simplicity of drawing diagram

axiom for M(Σ̃, Σ) is ZBα,β = PgBβ,αZ, we have this extra Pg move

appearing in the case of M(Σ̃, Σ). But this will not be a problem. more
precisely, we do the following:
If L is a 2-cell in M(Σ), say starting at the vertex a, then we first pick
any point on the fiber of a. Say b ∈ Π−1(a), it does not matter which
point on the fiber we choose. Then we apply the corresponding 2-cell
move of M(Σ̃, Σ) to b and this will give a contractable loop in M(Σ̃, Σ).
For example if we have the 2-cell Zn(a) in M(Σ) then a lifting of this
2-cell which is contractable is going to be Zn(b) in M(Σ̃, Σ). Look at
the diagram on figure 41. For the dehn twist, it is not a big difference.
If ZBα,β = Bβ,αZ(a) is the 2-cell in M(Σ) then ZBα,β = PgBβ,αZ(b)
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α β

β α

α β

α β

β α(g, h1) (g−1, h2)

(g−1, h2g
−1)

(g, h1)

(g, h1) (g−1, h2g
−1)

(g, h1g) (g−1, h2)

(g−1, h2) (g, h1)

Bα,β(f)

ZBα,β(f) PgBβ,αZ(f)

Bβ,αZ(f)

Z(f)

α β

α β

α β

α β

Bα,β(a) ZBα,β(a)

Z(a)
Bβ,αZ(a)

2-cell of dehn twist axiom
in M(Σ)

Lifting of dehn twist
axiom of M(Σ) to the
2-cell of dehn wist ax-
iom of M(Σ̃,Σ)

vertex a
in M(Σ)

vertex b in
M(Σ̃,Σ)
where
b ∈ Π−1(a)

Figure 42. Lifting of Dehn-twist axiom

will be the corresponding lifting in M(Σ̃, Σ) which is of course con-
tractible for the simple reason that ZBα,β = PgBβ,αZ is a 2-cell in

M(Σ̃, Σ). See the diagram on figure 42. For all the other 2-cell, the
lifting is similar; so we leave those to the readers. So we satisfy all the
condition of sec 9.1. This finishes the proof of our main theorem.
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