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Abstract of the Thesis 
 

Computational Study of protein-Ligand Interaction  

with Application in Drug Discovery 
by 
 

Yuanqing Guo 
 

Master of Science 
 

In 
 

Chemistry 
 

Stony Brook University 
 

2007 
 
 
 
 
 

Protein-ligand binding is a critical issue in uncovering fundamental mechanism of 
biological systems and in developing lead compounds to new drugs in practice. It has 
attracted much interest from scientists within the last decade. There are two crucial 
factors in determining a binding process. One is affinity and the other is specificity. In 
previous studies, only affinity has been fully taken into account by specialists in this field.  
However, high affinity cannot always guarantee high specificity. Therefore, it is 
necessary to apply the other equivalent critical factor, specificity, together with affinity to 
make a new two dimensional drug screening criterion. In this study, first of all, a new 
measurement of specificity, intrinsic specificity ratio (ISR), is deduced from energy 
landscape theory. Secondly, a series experiments to a biological system, FKBP12, are 
carried out to quantify ISR as a potential complement to affinity in the drug screening. In 
addition, a few new drug candidates for SmpB were predicted by applying this new two 
dimensional drug screening criterion. 
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Chapter 1 Introduction 
 
 
 
 
 
 
1.1 Protein –Ligand Binding 

Protein-ligand binding is a process to find the “best” fit between proteins and 
ligands. It is controlled by noncovalent bonds and can be completely understood by 
considering thermodynamic, kinetic and structural aspects [2].  Scientists have invested 
tremendous efforts and made great progresses in this field due to its potential applications 
in pharmaceutical industry. With the advances in development of computational 
chemistry [3], it is feasible to understand and predict protein-ligand binding by theoretical 
methods.  

In computational scheme binding problems, also referred to as docking problems, 
apply structure-based strategies based on assumption that significant structural and 
chemical complementarity must be present between ligands and their target receptors [4]. 
Structure-based approach falls into two categories: receptor-based and ligand-based. 
Compared to sufficient structural information of small ligands, there is deficient 
knowledge about large receptors. Therefore, ligand-based approach is always adopted.  

There are two current challenges in docking problem, which include efficient 
search algorithm and accurate scoring function [5]. In the search algorithm, searching 
space, flexibility and binding site are three issues to be addressed. Regarding to search 
space there also exists Levinthal paradox [6] in docking problem: docking process occurs 
in a biological time scale while searching all possible conformational space costs a 
cosmological time [1]. Therefore, a robust algorithm is critical for docking problem, which 
searches only certain space rather than the entire possible states and can find native 
structure in an affordable computational time. Native structure is defined as the structure 
of a molecule in its X-ray crystallography structure or NMR structure.  

Because two docking partners can be able to change their conformations upon 
docking, it can definitely enhance the chance to find native structure of a complex by 
including conformational flexibility of both ligand and receptor. However, it is 
computationally expensive and therefore it becomes an important issue to be addressed. 
There are three levels of complication regarding to the extent of flexibility of docking 
partners included into the algorithm [5]:  

(1) Rigid docking--- both ligand and receptor are treated as rigid bodies;  
(2) Semi-flexible docking--- only small ligand is regarded as flexible while relative 

large receptor is rigid; 
(3) Flexible docking--- both ligand and receptor are considered flexible. However, 

there are still some limitations such as only side chains are set flexible while backbone is 
rigid. 

The third issue in search algorithm is the location of binding site. Based on 
availability of binding sites, there are two kinds of docking jobs: “bound” docking and 
“unbound” docking”.  In “bound” docking, the ligand is extracted from its co-crystal 
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structure of the receptor and the ligand, and reconstruction of the complex is followed. 
Nonetheless, “unbound” docking, also referred to as “blind” docking, is more challenging 
and more time-consuming without any information about binding sites [7]. Several 
possible predictions about the location of binding sites must be made first and a series of 
computational comparison based on sophisticated algorithm are followed to select most 
probable binding site. 

Another bottleneck in docking problem is scoring function, also referred to as 
energy function or potential function, which can be used to identify the “true” docking 
mode of a given ligand and also to be able to rank one ligand relative to another. However, 
in most time scoring function cannot work so effectively. And hence it is inevitable to 
optimize the scoring function and make it more reliable to predict the performance of 
docking job. One of approaches to solve the above-mentioned problem is to involve more 
descriptors and weigh them properly. The following descriptors are always used in 
scoring function: geometric complementarity, intramolecular and intermolecular overlap, 
hydrogen bonds, contact area, pairwise amino acid and atom-atom contacts, electrostatic 
interactions, solvation energy and binding site information [5].  Another popular 
approach is consensus scoring [8], which allows combining different docking programs 
with a variety of scoring functions [9].      

 
 
 
 
 
 

1.2 Intrinsic Speficity Ratio (ISR) 
 

In the stage of drug screening of virtual ligand database in pharmaceutical industry, 
there are two equivalently crucial factors underlying a docking process. One is affinity 
which measures the stability of associating two molecules together. The other is 
specificity which measures the ability to distinguish among “good” native binding state 
from “bad” non-native states even if they have roughly the same affinity. In previous 
studies, only affinity has been fully taken into account by specialists in this field.  
However, high affinity cannot always guarantee high specificity. Some of drugs produced 
by the criterion of only affinity can cause serious side effects to patients. Therefore, it is 
urgent to apply the other specificity together with affinity to make a new two dimensional 
drug screening criterion. 

 Affinity is measured by the free energy difference (∆G) in the process of 
association of two docking partners; while conventionally specificity is measured as the 
affinity difference (∆∆G) between two different receptors bound with the same ligand. 
However, the affinity-based measurement for specificity is not suitable to be a criterion 
for determining the docking process. First of all, binding affinity estimates are strongly 
restricted by limitations of computational approaches for docking [10]. The conventional 
definition of specificity is derived from affinity and therefore is not accurate either.  
Secondly, even the affinity is accurate, it still cannot always guarantee specificity. 
Because many different binding modes can have the same binding affinity and only one 
or none of them can distinguish or discriminate different protein receptors. In addition, 
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from practical point of view, it is not easy to find receptor’s competitors with similar 
binding site to be used as a specificity marker. Furthermore, much great binding affinity, 
which leads to very tight association, does not favor signal transduction, gene expression 
and other cellular activities. Therefore, the conventional measurement of specificity is not 
proper and a new and precise measurement of specificity is on demand. 

To resolve the above problem, intrinsic specific ratio (ISR) is proposed to be a 
quantitative measurement for specificity or selectivity based on energy landscape theory. 
Binding can be viewed as a similar process of folding and they represent intermolecular 
and intramolecular recognition respectively. The presence or absence of the chain 
connectivity is the main difference between them [6]. Previous studies indicates that 
hydrophobic interactions are the key driving forces during these processes while  
electrostatic forces are long-range and play an important role in  guiding and steering 
docking partners together. Similar to folding, the resulting binding energy landscape is 
also funnel-shaped which is crucial in successful structure prediction (Figure1.1) [1].  

In principle, three thermodynamic phases exist in the process of binding: 
(1)  native state--- it is unique and corresponds to global minimum 
(2)  non-native states--- they are non-native binding modes  
(3)   glass or trapping phase--- it corresponds to local minimum with multiple 

  meta-stable states  
The definition of intrinsic specificity ration (ISR) is the ratio of the energy gap (δE) 

between the native state and the average of non-native state versus the dispersion or 
variance of the non-native states (∆E). And hence, ISR =δE/∆E and maximized ISR 
becomes a novel criterion for the specificity of binding [1] process in order to optimize the 
binding process. Furthermore, based on the Bolzman weight P~ e-βE, large ISR prefers the 
thermodynamic stable binding modes to be dominant in population and distincts or 
discriminates from the rest of the binding modes. Therefore, the specificity is realized by 
maximized ISR. The new measurement of specificity is based on structural matching or 
fit compared with conventional measurement of specificity based on affinity.  

 
 
 
 
 
 

1.3 AutoDock Software 
 

AutoDock 3.0.5 is the latest version of AutoDock and have significant strengths 
compared with other docking packages in the following aspects:     

(1) AutoDock takes into account the factors of Van der Waal forces, hydrogen 
bonding, electrostatic, desolvation and torsions in its scoring function as follows: 

∆Gbinding = ∆Gvdw + ∆Gelec + ∆Ghbond + ∆Gdesolv + ∆Gtors 
The improved scoring function is believed to be able to discriminate positive and 

false positive solutions. 
(2) AutoDock 3.0.5 is semi-rigid docking which can automatically dock flexible 

ligand to rigid protein in contrast to other docking software which only deals with rigid 
docking.  And hence it significantly increases the accuracy of the docking job and 
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hopefully can handle flexible docking in its higher version---AutoDock 4.0. 
       Degrees of Freedom (DOF) are defined as the sum of degrees of position or 

translation, degrees of orientation or quaternion and degrees of rotatable bonds or 
torsions. AutoDock 3.0.5 can deal with flexible ligands with larger number of DOF. 

        (3) AutoDock uses grid maps to sample force field for macromolecules. The entire 
binding site is covered by grid maps and each ligand atom type has each corresponding 
map by putting a probe atom into the grid map. By the means of this, computational time 
can be saved more than 100 times.  

(4) AutoDock 3.0.5 has a novel algorithm for sampling. In any docking scheme, a 
tradeoff must exist between accurate prediction and reasonable computational time. There 
is no exception for AutoDock that has to adopt stochastic search with much iteration to 
enhance the chance to success rather than systematic and exhaustive search of all possible 
configuration states. There are quite a lot algorithm can be used such as Monte Carlo 
Simulated Annealing (SA), genetic algorithm including genetic algorithm (GA) and 
evolutionary programming (EP) or local search Solis and Wets (SW) and pseudo-Solis 
and Wets (pSW) to search configuration states for flexible ligands. 

In AutoDock 3.0.5, a new hybrid global –local algorithm, referred to as 
Lamarckian Genetic Algorithm (LGA), is included. LGA is a hybrid of GA and SW, and 
possesses the advantages of both global search algorithm and local algorithm. GA starts 
with a random population and performs 2- point crossover (two parents give two children) 
and random mutation (each individual gives one mutant child). It automatically decides 
the number of individuals in a population which can be survived into next generation. It 
also works as a series of cycles and stops when total energy evaluations or maximum 
generations reached [11]. SW and pSW belong to local search algorithm and the main 
difference is fixed or flexible variances they use.  

AutoDock also has its weakness and is not suitable when no 3 dimensional 
structures available, too flexible protein or ligands with too many atoms, types and 
torsions. However, basically AutoDock is one of the best docking tools for study of 
protein-ligand docking so far. 
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1.4 Tables and Figures 

 

 

 

 

Figure 1.1 Funneled Energy Landscape of Biomolecular Binding 
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Chapter 2: Qualification of ISR in Drug Discovery 
 
 
 
 
 
 
2.1 Introduction of FKBP12 
 

Natural products---FK506 [12] [13] and rapamycin [14] [15] [16] are potent 
immunosuppressive drugs, which can dampen T cell activation and growth by interfering 
with signal transduction pathways required by T cell.  FK506, rapamycin and their 
analogs have provided a promising future prospect for the treatment of stroke sequelae, 
central and peripheral nerve injury and neutron degenerative disorders such as 
Alzheimer’s disease and Parkinson’s disease [17]. 

Previous studies showed that FK506 and rapamycin play an important role as 
“molecular glue inhibitors” to simultaneously bind to two different proteins. The portion 
of FK506 which interacts with FKBP12 [18] (FK506 binding protein) is defined as” 
binding domain” and the other portion is defined as “effector domain”. The”binding 
domain” of rapamycin is similar as FKBP12 but its “effector domain” is different. FK506 
and rapamycin function by forming complexes with FKBP12 and other proteins 
simultaneously. Both of FK506 and rapamycin can bind to FKBP12 while 
FK506–FKBP12 complex and rapamycin–FKBP12 complex can bind to different 
proteins. The FKBP12-FK506 complex interacts with calcineurin (CaN), which inhibits 
the production of the cytokine interleukin (IL)-2.  The FKBP12-rapamycin complex 
specially binds and inhibits mTOR (mammalian target of rapamycin), which inhibits the 
cell’s response to IL-2. Approximately the binding site of FKBP12 is occupied by half of 
the whole FK506 or rapamycin molecule while the other half is penetrated into the 
binding site of CaN or mTOR. 

The binding site of FKBP12 constitutes Tyr82, Ile92, Phe36, Phe99, Tyr26, Phe46, 
Phe48, Val55, Ile56, and Trp59, and can only accommodate a ring with five-member or 
six –member [17]. As seen from graphs above (Figure2.1 and Figure2.2), FK506 and 
rapamycin have similar “binding” domain to FKBP12 and both of them have a 
pipecolinyl moiety (Figure2.3) which contains a six-membered ring in their binding 
domains. 

The pipecolinyl moiety is critical in the docking process for FK506 and rapamycin 
to FKBP12 and is referred to as “core structure”, “motif” or “molecular anchor”, which is 
intolerant to any mutation or substitution. The active site of FKBP12 can be divided into 
two portions: one is relatively rigid and cannot be induced. Core structure specially binds 
to that portion and provides major specificity and part of affinity. The other portion is 
relatively flexible and the remainders of the ligand bind to that portion and confer main 
affinity [19] [20]. Based on this assumption, in this study the core structure of FK506 and 
rapamycin, pipecolinyl moiety, was first docked into the binding site of FKBP12. 
Subsequently, the NCI (National Cancer Institute)-Diversity-Database was screened to 
obtain statistical data to analyze the specificity of the small ligands bound to FKBP12.  

Many new potential FKBP12 inhibitors are designed with the starting point of 
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pipecolinyl moiety due to its essentiality in the docking event [17] [21]. A series of FKBP12 
inhibitors, FK506, rapamycin, GPI (Figure2.4), 107(Figure2.5), and 308 (Figure2.6), are 
studied by energy landscape theory, which all possess pipecolinyl moiety or other similar 
core structure. 

 
 
 
 
 
 

2.2 Experimental Section 
 

The Protein Data Bank (PDB) provides the coordinates of X-ray crystal structure 
for binding complex. The protein and ligand pdb files can be extracted from complex file 
downloaded from PDB. For macromolecules, polar hydrogen, Kollman charge and 
solvation parameters are assigned by AutoDock Tool (ADT). For ligands, hydrogen, 
partial charge, root and rotatable bonds are generated by PRODRG 2 sever [22]. 

To use AutoGrid to generate grid map for macromolecules, three key parameters [23] 

[24] [25] need adjustment: box size, spacing and grid center. In this study box size is altered 
from (40, 40, 40) to (120,120,120) and spacing is changed from 0.375Å to 0.55 Å 
considering the relatively large size of ligand under investigation. And grid center is set 
as the center of protein. In general, grid center can be set as the center of ligand or by 
selecting any atom of ligand. 

Docking parameter file for ligands is made by using AutoDock and Lamarckian 
Genetic algorithm is chosen in AutoDock 3.0.5. In this stage three important parameters 
are used as default value: popsize is 50, evaluation numbers is 250000 and generation 
numbers is 27000 while number of run in a job is altered from 10 to 100. The other two 
parameters, crossover rate and mutation rate, are not critical [23] and set as default value as 
0.8 and 0.02 respectively. 

The semi-flexible docking was performed on RAM workstation and 
NCI-Diversity-Database was screened. Binding affinity and specificity for each small 
ligand were measured and a series of analysis were made based on those data. 

 
 
 
 
 

   
2.3 Results and Discussion 
 
2.3.1 Reproduction of Binding Process 
 

From data in table 2.1, we can see AutoDock can reproduce the docking process to 
form FKBP12-ligand complexes with low RMSD value less than 1 Å except for GPI. All 
entries except entry for GPI in the table have six-membered ring in core structure while 
the core structure of GPI is a five-membered ring (Figure2.7). I think the difference in 
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RMSD value is due to the difference in core structure. And from the data the 
six-membered ring is assumed to be the better core structure than five-membered rings.  

The specificity is quite significant with large ISR, which can be seen from their 
energy spectra with obvious energy gap (Figure2.8). The pipecolinyl moiety possesses 
similar ISR to FK506, rapamycin, 107 and 308. With regard to affinity, pipecolinyl 
moiety provides less affinity than inhibitors containing it. These results are consistent 
with the idea [20] that core structure provides main specificity and part of affinity while the 
periphery groups in the ligands only contribute to affinity. This can also quality the ISR 
as a good measurement of specificity in a binding process. 

From the data of screening the NCI-Diversity database, the statistical distribution 
of free energy binding spectrum or density of states for each molecule with FKBP12 was 
calculated. Figure2.9 shows a plot of the energy spectrum, as well as the underlying 
binding energy landscape and the corresponding structures of three representative small 
molecules binding to FKBP12 with high, medium and low ISR. The molecule with a high 
ISR value of 4.11 shows pipecolinyl moiety essential for selective inhibition of FKBP12. 
The medium and low ISR compounds do not contain such a pipecolinyl moiety and thus 
are not expected to be specific inhibitors of FKBP12. The high ISR compound 
corresponds to a smooth energy landscape where the energy gap, which measures the 
steepness of the funnel towards the native state, is significantly larger than the spread of 
the spectrum. It effectively discriminates the native state from the rest of the local 
minimum. The medium ISR compound corresponds to rougher energy landscape where 
the energy gap is not significantly larger than the spread of the spectrum. The small ISR 
compound corresponds to very rough binding energy landscape where the energy gap is 
comparable to the spread of the spectrum. Therefore, the compounds with small or 
medium ISR are hard to discriminate the native state from the local minima. Only the 
compounds with high ISR can specifically bind to certain protein.                               

In figure2.10, energy spectra and corresponding structures are made for different 
small molecules with high ISR. Those three small molecules all present similar core 
structure. These data confirmed ISR as a reliable measurement for specificity in drug 
screening again. 

Figure2.11 is the plot between affinity and ISR for 1773 small molecules in the 
NCI-Diversity-Database and shows no significant correlation between them. From the 
graph, we can see the high affinity region, the ISR spread from 1.25 to 4.5. That means 
only affinity cannot always guarantee the specificity. At the meanwhile, in the high 
specificity region, there is also a distribution for affinity from -5.5 to -9.7 kcal/mol. That 
proves that only specificity cannot ensure affinity either. Therefore in order to do a 
complete drug screening we need to consider both dimensions of affinity and specificity. 

 
 
 

2.3.2 Distributions of affinity and specificity 
 

The distribution of the physical variables obtained is in general universally 
revealing the common features among different bio-molecular binding complexes. It 
helps the understanding of the evolution and function. The values of the parameters in the 
distribution charactering the properties of the underlying energy landscape may be 
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different for different receptor-ligand complexes. They can be inferred from the 
experiments.  

Experiments on random sequence protein folding and protein design have implied 
the statistical distributions of physical observable. Experimental and computational 
studies on bio-molecular binding have also shown evidences of distribution of physical 
relevant quantities. Since Log K is proportional to the free energy difference between the 
native and non-native states termed the stability or affinity, this infers the free energy also 
has a distribution. In the free energy distribution, the native (strong) binding state should 
appear in the low end of the tails where the density of these binding free energies 
becomes discrete. In parallel to protein folding, one therefore expects the similar physical 
principles underline the protein folding should also be responsible for binding. Different 
sequences of ligands or small molecules will have different specificity for binding with a 
specific receptor. So the specificity should also have a statistical distribution. The 
distribution of specificity should be the same as the one of free energy. This reflects 
different degrees of binding specificity. There is a small group of high specificity ligands 
among all the available ones. This is rare and lies in the high end tail of the distribution of 
the specificity. These are obviously the targets we are looking for. Characterizing their 
properties will be important to unravel the underlying functions.  

The theoretical studies on the exact functional form of the statistical distributions 
of the physical variables to uncover the properties of the underlying binding free energy 
landscape are currently unexplored. Thus it is the purpose of this study to fill the gap. 

 
External Distribution 
 

From the data of screening the NCI-Diversity database, the statistical distribution 
of the affinity of 1773 small molecules with FKBP12 was calculated. Figure 2.12 and 
figure 2.13 show a distribution of affinity. As easily seen, near the center or the mean, the 
distribution can be fitted well with a Gaussian. Near the tail, the distribution of the 
affinity can be fitted well with exponential. This confirms the analytical we discussed 
above.  Most of the ligands are with relatively small affinity with a receptor. A small 
number of the ligands have high affinity to a receptor and they are crucial for the 
biological function. 

In figure 2.14 and figure 2.15, we show the statistical distribution of specificity 
characterized by ISR. We also see that the distribution of the specificity (ISR) can be 
fitted well with Gaussian distribution near the mean and can be fitted well with the 
exponential distribution at the tails. This means most of the ligands bind with a receptor 
non-specifically with low specificity. A few ligands bind with a receptor specifically with 
high specificity. They are at the high end tail of the specificity distribution. 

In sum we have confirmed the analytical form of the distribution functions with 
1773 diversified small molecules binding with a specific receptor, FKBP12. This 
statistical methodology and approach based on energy landscape theory is quite general, 
one expects to apply not only to protein-protein binding, but also protein-RNA, 
protein-DNA and RNA-DNA bindings. 
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Internal Distribution 
 

We have performed the investigation of the significance and implications of 
flexible docking of ligands with receptor target FKBP12. Initially a diverse set of 1773 
small molecules were selected from the NCI-Diversity database. All conformers of each 
of the 1773 selected molecules were docked with FKBP12 using AutoDock to generate a 
binding energy spectrum for each. From this data, the statistical distribution of free 
energy binding spectrum or density of states for each molecule with FKBP12 was 
calculated. Figure2.16 shows energy spectra corresponding to high, medium and low ISR 
cases. We can see that only high ISR spectrum with large energy gap can effectively 
discriminate the native state from the rest of local minimum.         

The distributions of the free energy corresponding to the three different cases are 
shown. They are all Gaussian distributed at the center (Figure 2.17, 2.18, 2.19) and 
exponentially distributed at the tail (Figure 2.20, 2.21, 2.22). This is quite consistent with 
the results from analytical studies above.  

The gaps between native and average as well as widths for the distributions are 
different for different ligands as shown in figure2.23 and figure2.24. We can see that the 
width of the distribution however is different for each case. For high specific binding 
(ISR), the width of the distribution is small relative to the gap; while for low specific 
binding specificity (ISR), the width of the distribution is more spread and comparable to 
the energy gap. The width of the distribution is a measure of the roughness of the binding 
free energy landscape. Rougher energy landscape has a larger width or variance in 
binding free energy.  

In sum we have confirmed the distribution of free energy spectrum corresponding 
to the three different cases is universally Gaussian distributed near the mean and 
exponentially distributed near the tail. In this work, to the first order approximation, we 
have ignored correlations between different cases. It is expected that the correlations will 
influence the tail properties of the statistical distribution of the physical relevant variables 
quantitatively. It will be interesting to extend the current study to incorporate this effect. 
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2.4 Tables and Figures 

 

 

Figure 2.1 Structure of FK506 

 

 

Figure 2.2 Structure of Rapamycin 
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Figure 2.3 Structure of pipecolinyl moiety 

 

 

 

 

Figure 2.4 Structure of GPI 
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Figure 2.5 Structure of 107 

 

 

 

Figure 2.6 Structure of 308 
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Compound 

Calculated Binding 

Affinity ( kcal/mol) 

Intrinsic Specificity 

Ratio (ISR) 

 

RMSD(Å) 

pipecolinyl 

moiety 

-5.66 4.31 0.59 

FK506 -10.18 4.21 0.67 

rapamycin -12.55 4.30 0.48 

GPI -6.00 3.08 1.26 

107 -7.03 4.04 0.76 

308 -6.31 4.26 0.76 

   

 

 

Table 2.1 Affinity, ISR and RMSD for FKBP12 Inhibitors  

with Similar Core Structure  
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Figure 2.7 Core structure for FK506 and GPI 

 

 

Figure 2.8 Energy Spectra for different inhibitors   
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ISR=4.11 
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  Figure 2.9 Energy Spectra for small molecules with different ISR 
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Figure 2.10 Energy Spectra for small molecules with high ISR 
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Figure 2.11 Affinity versus ISR 
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Figure 2.12 External Affinity Distribution of FKBP12 
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Figure 2.13 External Affinity Tail Distribution of FKBP12 
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              Figure 2.14 External Specificity Distribution of FKBP12 
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         Figure 2.15 External Specificity Tail Distribution of FKBP12 
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             Figure 2.16   Energy Spectra of FKBP12 for Three Cases 
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          Figure 2.17 Internal Affinity Distribution of FKBP12 (ISR=4.50) 
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Figure 2.18 Internal Affinity Distribution of FKBP12 (ISR=2.51) 
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         Figure 2.19 Internal Affinity Distribution of FKBP12 (ISR=1.48)  
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        Figure 2.20 Internal Affinity Tail Distribution of FKBP12 (ISR=4.50) 
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         Figure 2.21 Internal Affinity Tail Distribution of FKBP12 (ISR=2.51) 
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Figure 2.22 Internal Affinity Tail Distribution of FKBP12 (ISR=1.48) 
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   Figure 2.23 Comparison of Width of Internal Distribution for Three Cases 
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             Figure 2.24 Comparison of Energy Gap for Three Cases 
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Chapter 3:  New Inhibitors Prediction for SmpB  
 
 
 
 
 
 
3.1 Introduction of SmpB 
 

Small protein B (SmpB) is an essential component of SsrA.SmpB system which is 
highly conserved in all bacteria and vital for bacterial survival. SsrA is a remarkable RNA 
molecule, also known as SsrcRNA, tmRNA, or 10SaRNA, and functions as both a 
transfer RNA (tRNA) and a messenger RNA (mRNA). The tRNA-like domain of SsrA is 
proposed to be the site of SmpB binding. Upon SmpB bound to SsrA with high affinity, 
dual biological functions of releasing stalled ribosome from damaged messenger RNAs 
and targeting incompletely synthesized protein fragments for degradation [26], [27], [28], and 

[29]. 
Since the SmpB is significantly involved into the survival of bacterial, it has 

become a hot target for drug discovery and design. Unfortunately, by now there is no 
drug with significant affinity and specificity to SmpB to block its function. Recently, 
Professor Wali Karzai’s group found that the hotspot in SmpB is the pocket composed by 
E26, L86, H88, K89 and K119. It really provides the most useful information for binding 
site and therefore makes feasible the docking job by virtual screening. 

 
 
 
 
 
 

3.2 Experimental Section 
 

The Protein Data Bank (PDB) provides the coordinates of X-ray crystal structure 
for binding complex (1P6V). The protein and ligand pdb files are extracted from complex 
file downloaded from PDB. For macromolecules, polar hydrogen, Kollman charge and 
solvation parameters are assigned by AutoDock Tool (ADT). For ligands, hydrogen, 
partial charge, root and rotatable bonds are generated by PRODRG 2 sever. 

The three key parameters in the stage of AutoGrid are: box size (120,120,120), 
spacing (0.55 Å) and grid center (the center of protein).  In the next stage of AutoDock, 
all important parameters are used as default value: pop size is 50, evaluation numbers is 
250000, generation numbers is 27000, number of run in a job is 100, crossover rate and 
mutation rate are 0.8 and 0.02 respectively. 

After the successful reproduction of the protein-ligand complex, the set of 
parameters are adopted to screen the NCI-Diversity-Database on RAM workstation. After 
screening the databases and using the two dimensional drug screening criterion, the top 
25 binders in the NCI-Diversity-Database were selected and visually inspected via the 
VMD software to ensure that they are right inside the hotspot of SmpB. 
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3.3 Results and Discussion  
 

In the top 25 binders, 2 of them are inside the hotspot of SmpB and selected as 
potential lead compounds.  Figure 3.1 and figure 3.2 show the chemical structures of 
two compounds for experimental testing. We can see both of them present high affinity 
and high specificity. Figure3.3 and figure3.4 show their relative position in the binding 
pocket of SmpB.  From the graphs, we can see clearly that two small molecule penetrate 
deeply inside the expected binding pocket. All these experiment results suggest that these 
two small molecules are likely to be potential lead compounds to SmpB. 

However, the number of potential lead compounds is too little due to the relative 
small size of the database. We expect more potential molecules to find some common 
properties from chemical structures. Now another database ZINC which contains about 2 
million molecules is screening against SmpB with exactly the same parameter set as 
NCI-Diversity-Database on RAM workstation. If we can find more potential lead 
compounds, we may identify some common properties from them. Furthermore we can 
improve their affinity, specificity, solubility and etc. as needs and even design some new 
ones base on those common properties. After we select the most possible small molecules, 
we can carry out a series of in vitro experiments by the cooperation with Professor Wali 
Karzai’s group.  
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3.4 Tables and Figures  
 
NCI-Diversity-Database ID: Diversity0465 
Binding Energy: -10.28 kcal/mol,    ISR=3.54 
Formula: C28H38N2O 
 
 
 

N

N

HO

 

               Figure 3.1 Structure for Diversity0465 

 

 
NCI-Diversity-Database ID: Diversity1117 
Binding Energy: -11.05 kcal/mol,    ISR=2.91 
Formula: C42H52N2 

 

 
 

N N

 

Figure 3.2 Structure for Diversity1117 
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Figure 3.3 Diversity0465 in the binding pocket of SmpB 

 

     

       Figure 3.4 Diversity1117 in the binding pocket of SmpB 
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