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Abstract of the Dissertation

Gauge Covariant Actions From Strings

by

Haidong Feng

Doctor of Philosophy

in

Physics

Stony Brook University

2007

We derive Yang-Mills vertex operators for (super)string theory whose BRST
invariance requires only the free gauge-covariant field equation and no gauge
condition. The gauge transformation and conformal transformation of these
vertex operators are studied. Standard conformal field theory methods yield
the three-point vertices directly in gauge-invariant form and S-matrices in
terms of free field strengths for vector states, which allows arbitrary gauge
choices. As examples we give three and four-vector (super)string tree ampli-
tudes in this form, and find the field theory actions that give the first three or-
ders in the slope. Also, on the String Field Theory side, we construct the Zinn-
Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten’s
3-string vertex of the bosonic open string without gauge fixing. Through
canonical transformations, we find the off-shell, local, gauge-covariant action
up to 3-point terms, satisfying the usual field theory gauge transformations.
Perturbatively, it can be extended to higher-point terms. It also gives a new
gauge condition in field theory which corresponds to the Feynman-Siegel gauge
on the world-sheet. Finally, we combine two partons as a vector state on a
random lattice, which is another approach for strings quantization. In the lad-
der approximation, we find propagators of such states (after tuning the mass
to vanish). We also construct some diagrams which are very similar to 3-string
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vertices in string field theory for the first oscillator mode. Attaching 3 such
lattice states to these vertices, we get Yang-Mills and cubic interactions up
to 3-point as from bosonic string (field) theory. This gives another view of
a gauge field as a bound state in a theory whose only fundamental fields are
scalars.
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Chapter 1

Introduction

Strings were first introduced for hadrons and identified as bound states of
gluons and quarks. It is reinterpreted as fundamental strings to include all four
fundamental interactions. These string models can be quantized covariantly
or in the light-cone formalism. The light-cone formalism will be free of ghosts,
though not manifestly covariant. While in the covariant formalism, ghosts are
introduced for the gauge condition. To have right conformal weight, those
vertex operators for external states are not gauge-covariant and correspond to
states with specifical gauges (for instance, the condition k ·ε = 0 is imposed on
the open-string vertex operator ε · ∂Xeik·X for massless vectors) [1]. So they
can’t give YM-gauge-covariant amplitudes while the corresponding effective
theory is supposed to be expressed directly in terms of field strengths. On the
other hand, nonlinear sigma models directly give gauge invariant results, but
only order-by-order in α′, and thus not the complete scattering amplitude [2].

Another interesting feature of four-point amplitudes with four external
gauge fields in both D = 10 superstrings and maximally supersymmetric gauge
theories in D ≤ 10 (and by supersymmetry, arbitrary external massless states)
is that the kinematic factors are identical at the tree and one-loop level [3].
Because lower-point amplitudes vanish in these theories, the one-loop four-
point amplitude consists of one-particle-irreducible graphs in the field theory
case, and is thus expressed directly in terms of field strengths as a contribution
to the effective action in a background-field gauge calculation, as the “non-
field-strength” contributions (from non-spin couplings) exactly cancel [4]. On
the other hand, tree graphs are never expressed in terms of field strengths, so
the identity of these kinematic factors seems somewhat mysterious.

In general field theories, the fact that S-matrices always have external
propagators amputated means that the generating functional for the S-matrix
(as opposed to that for Green functions) can always be expressed in terms
of fields rather than sources [5]. (Consider, e.g., the external vector states
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for the tree amplitude of an electron in an external electromagnetic field.) In
fact, the external line factors of Feynman graphs are (asymptotic) fields, and
satisfy their (free) wave equations and (linear) gauge conditions. However,
the gauge conditions imposed on external states generally do not match those
applied to internal ones, neither for propagators in loops (“quantum gauge”)
nor in attached trees (“background gauge”): Usually the latter two gauges are
some variation of the Fermi-Feynman gauge, while the external states satisfy
a Landau gauge, further restricted to some type of unitary gauge (lightcone
or Coulomb) by the residual gauge invariance. An exception is when external
polarizations are summed over in a cross section, a procedure that is often
more cumbersome because cross sections involve double sums (i.e., over both
amplitudes and their complex conjugates).

The consistency of this procedure follows from the fact that in general three
independent gauges can be chosen in the calculation of an S-matrix element
from Feynman diagrams, corresponding to three steps in the procedure: (1)
First calculate the effective action, using the background field method. The
gauge for the “quantum” fields, which appear inside the loops, is fixed but the
background fields are not gauge-fixed. The resulting effective action, which
depends only on the background fields, is thus gauge invariant, not merely
BRST invariant (and in fact is not a functional of the ghosts). (2) Calculate
the generating functional for the S-matrix from “tree” graphs of the effective
action, treating the full effective action as “classical”, fixing the gauge for the
(background) fields of the effective action. The result can always be expressed
as a functional of linearized, on-shell field strengths only, in a Lorentz and
gauge covariant way. (3) Calculate a specific S-matrix element, choosing a
(linear) unitary gauge condition for the external gauge fields, or expressing
the external field strengths directly in terms of polarizations.

It is the second step that will be the focus of this article. We will also
examine its analog in string and superstring theory. In that case, with the usual
first-quantized methods, the effective action does not appear, so the procedure
reduces to two steps: (1) Calculate the S-matrix in terms of field strengths
by using gauge-covariant vertex operators [6]. (2) Same as step 3 of the field
theory case. The main difference in the string case is that gauge invariance
at the next-to-last step is automatic (although there is still some work to
rearrange the result in terms of field strengths). The advantages of having the
third gauge invariance are similar to those of the other gauge invariances, since
the result (a) can be applied to different gauges (e.g., lightcone or Coulomb),
depending on the application, (b) is generally simpler, since various terms of
various derivatives of gauge fields can be combined into field strengths, (c)
is more unique, simplifying comparison of different contributions, and (d) is
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manifestly Lorentz covariant.
Some of these advantages can also be obtained by instead using a twistor

formalism (“spinor helicity” [7], “spacecone” [8], etc.), but that approach does
not generalize conveniently to higher dimensions. In fact, the two methods
are somewhat related in D = 4. As an example, consider the “maximally
helicity violating” tree amplitudes of Yang-Mills theory [9]: In the usual twistor
notation, these are written as

A =
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉 , 〈kl〉 = λα
kλlα

for an n-point amplitude with i and j labeling the lines whose helicites differ
from the rest. The twistors themselves are “square roots” of the momenta,

pα
α̇ = λαλ̄α̇

so no residue of gauge invariance is visible, but manifestation of Lorentz invari-
ance is possible because in D = 4 the little group is just U(1), as represented
by helicity. On the other hand, a twistor can also be interpreted as the square
root of (the selfdual f or anti-selfdual f̄ part of) an antisymmetric tensor: In
an appropriate normalization for external lines,

fα
β = λαλβ, f̄α̇

β̇ = λ̄α̇λ̄β̇

as follows from Maxwell’s equations. Thus the result can easily be expressed
in terms of field strengths and the usual (helicity-independent) momentum
invariants by completing the denominator of the amplitude to the square of
its absolute value (thus making the usual pole structure obvious): In 2×2
matrix notation,

A =
tr(fifj)tr(pj f̄j+1...f̄nf̄1...f̄i−1p

∗
i )tr(pif̄i+1...f̄j−1p

∗
j)

p1 · p2...pn · p1

In string theory, the gauge-boson vertex operator A(X) · ∂X, expanded in
plane waves as A(X) = εeik·X , is not gauge covariant, and requires the gauge
condition ∂ · A = 0 for worldsheet conformal invariance. To relax this limi-
tation and allow arbitrary gauge choices, we use the BRST operator and the
integrated vertex operator to introduce gauge-covariant vertex operator with
momentum-dependent conformal weights. In following two chapters, we de-
rived gauge-covariant vertex operators for vectors in bosonic string and super-
string [6]. Then standard conformal field theory methods yield the three-point
vertices directly in gauge-invariant form: The result was the the gauge-unfixed
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F 2 Yang-Mills action (and in the bosonic string, also an F 3 term). Also, the
conformal symmetry of the amplitude is studied to show that the result follows
from any 3-string vertex for string field theory [10]. What’s more, we will use
these gauge-covariant vertex operators to compute the gauge-invariant tree
amplitude between 4 gauge bosons [11]. In particular, to our knowledge a
complete, explicit expression for this amplitude (i.e., not simply as a func-
tional derivative of some generating functional) in bosonic string theory has
not appeared previously in the literature. Then we will reproduce the same
amplitudes at order 1, α′, and α′2 from the appropriate F 2, F 3 (for the bosonic
string), and F 4 terms in a field theory action.

Generalizing above formalism to off-shell, ie, String Field Theory (SFT) is
not an easy work. A complete description of interacting strings and string fields
was presented in the light-cone gauge [12] and generalized to the super case
[13]. A covariant, gauge-invariant formulation of the bosonic open string field
theory was given by Witten [14], based on the relation found between gauge
transformations of the fields and first-quantized Becchi-Rouet-Stora-Tyutin
transformations in the free action [15]. It was made more concrete by several
groups: The explicit operator construction of the string field interaction was
presented [16]; string field theory geometry was formulated by writing each
term in the action as an expectation value in the 2D conformal field theory
on the world surface [17]; the tensor constructions were analyzed from first
principles [18]; etc. Because string field action is gauge invariant under the
gauge transformations:

δΨ = QΛ + Ψ ? λ− λ ? Ψ (1.1)

it is helpful to fix the gauge before computation the action. Usually, the
external states are introduced by vertex operators with a gauge condition
b0 = 0, which is called the Feynman-Siegel gauge. Then the antifields in the
string field expansion, which are associated with states that have a ghost zero-
mode c0, are taken to vanish. As we will show in chapter 4, the extra term
in the gauge-covariant vertex operator will be canceled by Nakanishi-Lautrup
field. So the action from the viewpoint of quantum field theory is gauge fixed,
while it is not clear what kind of gauge condition is applied. We can only guess
the action for these states (for example, the origin of the φA2 term is not clear
for the lack of gauge covariance) but are not able to write it down gauge
invariantly. The simplest way to accomplish this is to find the Zinn-Justin-
Batalin-Vilkovisky action [19, 20] with all antifields. The ZJBV formalism was
first developed to deal with the renormalization of gauge theories, but follows
naturally from any field theory action whose kinetic operator is expressed as
the first-quantized BRST operator [21]. It allows the handling of very general
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gauge theories, including those with open or reducible symmetry algebras. The
ZJBV action includes both the usual gauge-invariant action and the definition
of the gauge (BRST) transformations. Here we will start from this ZJBV
action for SFT and, through some canonical transformations (including field
redefinitions and gauge transformations of both fields and antifields), get the
explicit gauge-covariant action (and gauge transformations) for tachyons and
massless vectors up to 3-point terms. We will show for the first time that
it is just usual Yang-Mills coupled to scalars, plus F 3 and φF 2 interactions.
These specific canonical transformations will tell us the gauge condition on
the fields corresponding to Feynman-Siegel gauge on the world-sheet. Another
advantage of this mechanism is that we pushed all nonlocal factors in 3-point
interactions to higher-point interactions and make the 3-point interactions just
the usual local YM form. But, as a price, there will be all possible higher-point
interactions (nonrenormalizable in ordinary field theory).

Following this result, we are able to construct external states and vertices
on the random lattice. It is known that, in nonrelativistic quantum mechanics,
Regge behavior relates the angular momenta and energies of bound states [22].
In relativistic quantum field theory, the high-energy behavior of a scattering
amplitude, F (s, t) ∼ β(s)tα(s) as t → ∞ and s < 0, is also dominated by
Regge poles, with trajectories J = α(s). Here the Bethe-Salpeter equation
[23] takes the place of the Schrödinger equation, which can only be solved in
certain approximations, such as the ladder approximation or a perturbative
Feynman diagram analysis.

Experimental data confirms the existence of families of particles along tra-
jectories J = α(s) which are linear as from the Veneziano model or string
(field) theory. However, in many approximations of conventional field theory
the trajectories rise for a while and then fall back towards negative values of
J for increasing energy. Thus, only a few bound states are produced, as char-
acteristic of a Higgs phase; instead, linearity and an infinite number of bound
states are expected to arise as a consequence of confinement, perhaps due to
some infrared catastrophe. However, such a catastrophe is absent in the usual
calculations, which are always made for massive or off-shell states precisely in
order to avoid infrared divergences.

Originally, strings were introduced for hadrons and later identified as bound
states of “partons”. Unfortunately, a suitable hadronic string theory serving
that purpose hasn’t been constructed. This led to the reinterpretation of the
known strings as fundamental strings describing gluons and quarks, leptons,
gravitons, etc. The target space is 26D for the bosonic theory and 10D for the
super theory, which means compactification is necessary.

One nonperturbative approach to strings is quantization on a suitable ran-
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dom lattice representing the worldsheet [24]. It expresses the strings as bound
states of underlying partons, and the lattices are identified with Feynman dia-
grams [25]. The two theories are “dual” to each other, and one is perturbative
while the other is nonperturbative. The Feynman diagrams of the particles
underlying this bosonic string were studied and linear Regge trajectories were
reproduced in the ladder approximation [26]. This implies that the only fun-
damental fields are scalars and all others can be represented as composite
fields. In chapter 5, the massless state are constructed as a bound state of
partons, and two simple lattice interaction diagrams are introduced. In the
ladder approximation, we find that such states have 1/p2 propagators. From
the interaction diagrams, we found interactions of those bound states similar
to the usual YM gauge field. The comparison of these 3-state vertices on the
lattice with Witten’s vertex on the continuous worldsheet shows all of them
have the same symmetries, especially twist symmetry, which is absent in the
CSV vertex. The twist symmetry restricted the gauge-fixed interaction to be
proportional to the structure constants of the gauge group, or equivalently, the
interaction term of the gauge condition must be proportional to the structure
constants. That’s the reason the Gervais-Neveu gauge can only be obtained
from the CSV vertex. Anyway, we show here the possibility to bind the scalars
on the lattice to get the massless vector state which behaves like the gauge
field, i.e., the gauge field is no longer a fundamental particle but a compos-
ite state in the field theory. This also provided a new view of the 3-string
coupling in Witten’s bosonic open string field theory. Finally, chapter 6 gives
some conclusions and discussions.
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Chapter 2

Gauge-Covariant Vertex
Operators in Bosonic Strings

In this chapter, a new gauge-covariant unintegrated vertex operator or mass-
less vectors will be constructed for bosonic string. Then the gauge-invariant
amplitude of 3 vectors will be calculated through this operator. Also, the
gauge transformation and conformal transformation of the vertex and ampli-
tude is studied. Moreover, the gauge-covariant S-matrices for 4 vectors are
also computed which leading to new F 4 interactions in the effective action.

2.1 Bosonic vertex for massless vectors

There are two kinds of vertex operators In string theory – an integrated one∮
W and an unintegrated one V . For a gauge vector

W = A(X) · ∂X (2.1)

or in Fourier expansion
W = ε · ∂Xeik·X (2.2)

Then, using the BRST operator “Q”, we can find the unintegrated operator
V [27]:

[Q,
∮

W} = 0 ⇒ [Q,W} = ∂V ⇒ [Q, V } = 0 (2.3)

Then, any amplitude can be computed from these two kinds of operators:

A = 〈V V V
∮

W · · · ∮ W 〉 (2.4)
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For the bosonic string, the BRST operator

Q =

∮
1

2πi
dz(− 1

4α′ c∂X · ∂X + bc∂c) (2.5)

where b, c are world-sheet antighost and ghost. So, the commutator

[Q, ε · ∂Xeik·X ] =

∮
1

2πi
dz′(− 1

4α′ c∂
′X · ∂′X) ε · ∂Xeik·X (2.6)

For the open string, the propagator in the upper-half complex plane between
X’s is −2α′ηµνln|z′− z|, so the commutator above can be found through OPE
(operator product expansion)

[Q, ε · ∂Xeik·X ] = ∂(cε · ∂X)eik·X + c(ε · ∂X)(ik · ∂X)eik·X

+α′[(ε · ∂X)k2∂ceik·X − (ik · ε)∂2ceik·X ] (2.7)

The first two terms come from the two ways to contract a single pair of Xµ(z′)
and Xν(z), while the last two terms from the two ways to contract two pairs.

To find the new unintegrated vertex operator according to (2.3), this com-
mutator has to be written as a total derivative. To accomplish it, we notice
that external states should be on-shell and satisfied the gauge-invariant equa-
tion of motion of the free vector

∂µFµν = 0 or k2εµ − kµ(k · ε) = 0 (2.8)

Then the commutator in (2.6) can be interpreted as a total derivative:

[Q, ε · ∂Xeik·X ] = ∂[cε · ∂Xeik·X − iα′(∂c)(ε · k)eik·X ] (2.9)

This is a BRST-invariant vertex operator for the gauge vector without gauge
fixing:

V = cε · ∂Xeik·X − iα′(∂c)(ε · k)eik·X (2.10)

or V = cA · ∂X − α′(∂c)(∂ · A) (2.11)

∂c is also the vertex operator for the Nakanishi-Lautrup field B [28]: In the
Feynman-Siegel gauge b0 = 0, B = ∂ · A, and the two ∂c terms cancel. We
will study this more in this aspect later.

To see this new operator is gauge invariant, make gauge transformations
of the vectors

δAµ = ∂µλ ⇒ δV = c(∂µλ)(∂Xµ)− α′(∂c)∂µ(∂µλ) (2.12)
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This gauge variation δV can also be written as the commutator between Q
and λ(X)

[Q, λ] =

∮
1

2πi
dz′[− 1

4α′ c∂
′X(z

′) · ∂′X(z′)]λ[X(z)]

= c(∂µλ)(∂Xµ)− α′(∂c)∂µ(∂µλ)

= δV (2.13)

It is easy to see the integrated operator is gauge invariant because the integral
of a total derivative vanishes:

δ

∮
W =

∮
∂XµδAµ =

∮
∂Xµ∂µλ =

∮
∂λ = 0 (2.14)

Then matrix elements are also gauge invariant:

δλ1An = 〈δV1V2V3

∮
W · · · ∮ W 〉 = 〈[Q, λ1]V2V3

∮
W · · · ∮ W 〉 = 0 (2.15)

where the vacuum is BRST invariant, and similarly for the gauge transfor-
mations of V2 and V3. From above, in principle, we are able to compute
gauge-invariant n-point amplitudes for vectors in string theory which can be
comparable to effective actions in field theory. In the following subsection, we
will calculate the simplest case: 3-point amplitudes for bosonic string.

2.2 Bosonic three-point amplitudes

The amplitude between three vectors (V1, V2, V3) is :

A3 = − igY M

2α′ 〈V1V2V3〉

= − igY M

2α′ 〈
3∏

i=1

[c(yi)εi · ∂X(yi)e
iki·X(yi)

︸ ︷︷ ︸
G(yi)

− iα′∂c(yi)(εi · ki)e
iki·X(yi)

︸ ︷︷ ︸
H(yi)

]〉

(2.16)

where the α′ is the Regge slope and gY M the inaction parameter for Yang-Mills
field.

Considering the lowest order of α′ first, only 2 terms in (2.16) contribute:

〈
3∏

i=1

G(yi)〉 and 〈
∏

i6=j

G(yi)H(yj)〉 (2.17)
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Using the correlation between ghosts:

〈c(y1)c(y2)c(y3)〉 = y12y13y23

〈∂y1c(y1)c(y2)c(y3)〉 = ∂y1(y12y13y23), · · · (2.18)

and the propagator between Xµ(z′) and Xν(z), the contracting rules of OPE,
and the gauge-invariant equation of motion of the free vector (2.8), the am-
plitude (2.16) in the lowest order of α′ is:

A(1)
3 = igY M(2π)DδD(Σiki)[(ε1 · ε2)(ε3 · k12) + (ε2 · ε3)(ε1 · k23)

+(ε3 · ε1)(ε2 · k31)] (2.19)

where kij = ki − kj. (To the lowest order in α′, the factor in A3

|y12|2α′k1·k2|y13|2α′k1·k3|y23|2α′k2·k3 → 1 (2.20)

when α′ → 0).The effective action corresponds to this amplitude is the Yang-
mills interaction without gauge fixing:

1
g2

Y M

∫
d26x[−1

4
Tr(F µνFµν)] (2.21)

To the second order in α′, the technology is the same but calculation is
tedious. We notice the contribution from expanding of the factors

|y12|2α′k1·k2|y13|2α′k1·k3|y23|2α′k2·k3 (2.22)

are just zero because

k1 · k2 = 1
2
(k2

3 − k2
1 − k2

2), · · · and

k2
1[(ε1 · ε2)(ε3 · k12) + (ε2 · ε3)(ε1 · k23) + (ε3 · ε1)(ε2 · k31)] = 0, · · · (2.23)

by using only the gauge-covariant equation of motion (2.8) and momentum
conservation k1 + k2 + k3 = 0. Then the amplitude in the second order of α′

is only contributed by

〈G(y1)G(y2)G(y3)〉, 〈G(y1)G(y2)H(y3)〉, · · · , and〈G(y1)H(y2)H(y3)〉, · · ·
(2.24)

and H3 contribution vanishes. We won’t give the detail procedure and the
result is:

A(2)
3 = 2iα′gY M(2π)26δ26(

∑
i

ki)×
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[(ε1 · k2)(ε2 · k3)(ε3 · k1)− (ε1 · k3)(ε2 · k1)(ε3 · k2)] (2.25)

which corresponds to the F 3 interaction of the YM field:

−2iα′
3g2

Y M
Tr(Fµ

νFν
ωFω

µ) (2.26)

With the equation of motion (2.8), all higher terms besides A(1)
3 and A(2)

3

vanish. So the effective action we get here is complete.
Another simple example we give here is the 3-point amplitude between 1

gauge boson and 2 tachyons. Using the vertex operator for tachyons : Vt =
ceik·X , to the lowest order in α′,

− igY M〈V (y1)Vt(y2)Vt(y3)〉 = −igY Mε1 · (k2 − k3)(2π)26δ26(Σiki) (2.27)

with g0 = (2α′)1/2gY M is the coupling constant for tachyons. This corresponds
to the effective action

1
g2

Y M
[−1

2
Tr(DµφDµφ)] with Dµφ = ∂φ− i[Aµ, φ] (2.28)

in quantum field theory.
Beside the gauge invariance, we can observe that the amplitude constructed

by vertices as (2.10) is independent of the conformal map from the world
sheet to the complex plane. It can can be verified by checking the conformal
transformation of the vertex operator:

δV =

∮
λ(z′)T (z′)V (z) (2.29)

The world-sheet energy momentum tensor T (z′) includes two parts: the X
contribution Tm and ghost contributions T g

T (z′) = Tm(z′) + T g(z′) (2.30)

where

Tm(z) = − 1
4α′∂Xµ∂Xµ

T g(z) = (∂b)c− 2∂(bc) (2.31)

Using the equation of motion (2.8),

δV = λ∂V + α′k2(∂λ)V (2.32)

11



So the conformal weight of operator (2.10) is α′k2 instead of zero:

V ′(z′) =
(

dz′
dz

)−α′k2

V (z) (2.33)

In string field theory, an arbitrary 3-point vertex can be defined by

〈V [h1(0)]V [h2(0)]V [h3(0)]〉 = 〈h1[V (0)]h2[V (0)]h3[V (0)]〉 (2.34)

with hi arbitrary maps of z = 0 into the upper complex plane. This differs
from the previous expression only by terms with extra factors of k2

i . By the
previous argument (2.23), such terms vanish by the gauge-invariant equation
of motion.

Till now, our calculation is up to 3-point interactions while there is also
4-point interactions in terms of F 2 and F 3 in field theory. It means at least the
4-point amplitudes in string are necessary to compare with the effect actions.

2.3 Four-point S-matrices

In this section, we will use this gauge-covariant vertex operator in (2.10) to
compute the explicit expression of the gauge-invariant tree amplitude between
4 gauge bosons, which has not appeared previously in the literature. From the
S-matrices, we will find the corresponding gauge-invariant effective actions in
field theory.

For a 4-point amplitude, there are three unintegrated vertex and one inte-
grated vertex:

A4 =
g2

Y M

2α′2 〈V (y1)

∫
dy2W (y2)V (y3)V (y4)〉 (2.35)

Set y1 = 0, y3 = 1, y4 → ∞ and integrate y2 from 0 to 1. When y4 → ∞, the
factor appearing in A4

|y14|2α′k1·k4|y24|2α′k2·k4|y34|2α′k3·k4 → |y4|−2α′k4·k4

. (2.36)

with the momentum conservation k1 + k2 + k3 + k4 = 0. For the convenience,
we also introduce the Mandelstam variables

s = −(k1 + k2)2, t = −(k1 + k4)2, u = −(k1 + k3)2. (2.37)

and the definitions ◦
F i

µν = ki
[µε

i
ν] = ki

µε
i
ν − ki

νε
i
µ

12



The integral in (2.35) gives Euler Beta function:

∫ 1

0

dy ya(1− y)b = Γ(a+1)Γ(b+1)
Γ(a+b+2)

(2.38)

with the Gamma function

Γ(a) =

∫ ∞

0

dt ta−1e−t, Γ(a + 1) = aΓ(a). (2.39)

After using the gauge-invariant equation of motion of the free vector (2.8) to
simplify the expression, the amplitude is

α′2(K0 + α′K1 + α′2stuK2)
Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

(2.40)

where we have factored out the usual coupling constants and momentum con-
servation δ-function, as well as Chan-Paton factors for cyclic ordering. The
kinematic factors are

K0 = (4
◦
F 1ν

µ

◦
F 2σ

ν

◦
F 3ρ

σ

◦
F 4µ

ρ −
◦
F 1ν

µ

◦
F 2µ

ν

◦
F 3ρ

σ

◦
F 4σ

ρ ) + 2 permutations

≡ tµνρσαβγδ
◦
F 1

µν

◦
F 2

ρσ

◦
F 3

αβ

◦
F 4

γδ, (2.41)

K1 = [4(
◦
F 1ν

µ

◦
F 4µ

ν )(k1−k4)τ
◦
F 2σ

τ

◦
F 3λ

σ k4
λ+8

◦
F 1[µ

ν

◦
F 2σ]ν

◦
F 3ρ

σ k4
ρ

◦
F 4τ

µ k1
τ ]+3 permutations

(2.42)

K2 = −2




◦
F 1ν

µ

◦
F 4µ

ν

◦
F 2ρ

σ

◦
F 3σ

ρ

t(1 + α′t)
+

◦
F 1ν

µ

◦
F 2µ

ν

◦
F 3ρ

σ

◦
F 4σ

ρ

s(1 + α′s)
+

◦
F 1ν

µ

◦
F 3µ

ν

◦
F 2ρ

σ

◦
F 4σ

ρ

u(1 + α′u)


 (2.43)

Here, the permutations in K0 are the order 1342 and 1423 which replace the
cyclic order 1234 and the 3 permutations in K1 are the replacing of 1234 by
2341, 3412 and 4123. Notice the K1 term corresponds to the contribution from
an F 3 term in the field theory action, and hence it is absent in the presence of
supersymmetry. The K2 term in (2.40) can be regarded as the contribution of
tachyon poles in the s and t channels, while the apparent u pole is canceled by
the Γ’s. So it will be also absent in the corresponding superstring amplitude
due to the GSO projection. (These amplitudes agree with earlier gauge fixed
results obtained [29].)

Expanding above amplitude in orders of 1, α′ and α′2,

K0 + α′K1

st
+ α′2(−π2

6
K0 + uK ′

2), (2.44)
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Figure 2.1: The s- and t-channel diagrams for 4 gauge bosons coupled by F 2

vertices.

K ′
2 = −2




◦
F 1ν

µ

◦
F 2µ

ν

◦
F 3ρ

σ

◦
F 4σ

ρ

s
+

◦
F 1ν

µ

◦
F 4µ

ν

◦
F 2ρ

σ

◦
F 3σ

ρ

t
+

◦
F 1ν

µ

◦
F 3µ

ν

◦
F 2ρ

σ

◦
F 4σ

ρ

u


 (2.45)

Naively, it is hard to see what kind of effective action in field theory should
correspond to the S-matrices in (2.44). From previous section 2.2, the effective
action should include F 2 term (2.21) and F 3 term (2.26), which will contribute
in 4-point amplitude. So, in next section, we will compute the S-matrices from
these actions first.

2.4 Effective Actions

Obviously, the amplitude in O(α′0) in (2.44) corresponds to the 4-point am-
plitude from 3 Feynman diagrams in Yang-Mills action (2.21), as shown in
Fig. 2.1. To the order O(α′), there are 5 Feynman diagrams involving the
cubic interaction (2.26), as shown in Fig. 2.2. The summation of amplitudes
from these 5 diagrams is

− 2α′(K ′
1 + 3 permutations) (2.46)

in which

K ′
1 = pa

p2 (
◦
F 4b

a

◦
F 1τ

b −
◦
F 1b

a

◦
F 4τ

b )[2ε2
τ (ε

3 · k2)− 2ε3
τ (ε

2 · k3) + (k3 − k2)τ (ε
2 · ε3)]

+
◦
F 1b

a

◦
F 2c

b (ε3
cε

4a − ε3aε4
c) (2.47)

and p = −k1 − k4. The 3 permutations are the replacing of 1234 by 2341,
3412 and 4123 in K ′

1. But it is not a explicitly gauge-covariant form as we

14



Figure 2.2: The s- and t-channel diagrams for 4 gauge bosons coupled by one
F 2 vertex and one F 3 vertex.

expected. To make it explicit, apply the gauge transformation

εi
µ → εi

µ − ki
µ

εi · ki+1

ki · ki+1
= −ki+1

ν

◦
F i

µν

ki · ki+1
, (2.48)

where i + 1 → 1 for i = 4. After using the Bianchi identity

k[µ

◦
F νσ] = 0 (2.49)

and the gauge-invariant equation of motion of the free vector (2.8), we get
back the O(α′) order term in the amplitude A4 in (2.44): α′K1

st
.

It is not the whole story because there more terms in order O(α′2) from the
string amplitude (2.44) . It should be contributed by two Feynman diagrams,
as shown in Fig. 2.3, and probably a higher-derivative gauge interaction F 4.
The direct calculation for two Feynman diagrams in Fig. 2.3 gives a explicitly
gauge-covariant amplitude

α′2
(

s− u

t

◦
F 1ν

µ

◦
F 4µ

ν

◦
F 2ρ

σ

◦
F 3σ

ρ +
t− u

s

◦
F 1ν

µ

◦
F 2µ

ν

◦
F 3ρ

σ

◦
F 4σ

ρ

)
(2.50)

The difference between (2.50) and the O(α′2) part of (2.44) corresponds to

15



Figure 2.3: The s- and t-channel diagrams for 4 gauge bosons coupled only by
the F 3 vertex.

higher-derivative interactions, i.e., the F 4 interactions in the effective theory.
The difference is composed of two parts:

B1 = −π2

6
α′2K0, (2.51)

and

B2 = α′2(
◦
F 1ν

µ

◦
F 4µ

ν

◦
F 2ρ

σ

◦
F 3σ

ρ +
◦
F 1ν

µ

◦
F 2µ

ν

◦
F 3ρ

σ

◦
F 4σ

ρ − 2
◦
F 1ν

µ

◦
F 3µ

ν

◦
F 2ρ

σ

◦
F 4σ

ρ ). (2.52)

Replace
◦
F µν by −iFµν and include a factor of 1/4 for the cyclic identity

(as well as the usual overall factor 1/g2
Y M). So, the action from B1 is

− π2α′2
4!g2

Y M
tµνρσαβγδTr(FµνFρσFαβFγδ) (2.53)

and, from B2, the action is

α′2
2g2

Y M
Tr(FµνF

νµFρσF
σρ − FµνFρσF

νµF σρ) (2.54)

As we will see later, action (2.53) also exists in the superstring, while (2.54)
is absent in superstring case. Totally, the low energy limit (2.44) of amplitude
A4 in (2.40) corresponds to the effective action in field theory:

S = 1
g2

Y M

∫
dDx [−1

4
Tr(F µνFµν)− 2iα′

3
Tr(Fµ

νFν
ωFω

µ)

−π2α′2
4!

tµνρσαβγδTr(FµνFρσFαβFγδ)

+α′2
2

Tr(FµνF
νµFρσF

σρ − FµνFρσF
νµF σρ)]. (2.55)
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As shown in this chapter, we have given a general construction for gauge-
covariant vertex operators. It is applied it to the spin 1 vertex in the bosonic
string, which leads to 3-point and 4-point gauge-covariant amplitudes. The
corresponding field effective action is easier to deduce from these amplitudes
for the covariance. This method allows direct calculation of gauge-invariant
results, analogous to nonlinear sigma models, and can also be applied to string
field theory. In the following chapter, we will applied a similar method to NSR
superstring to find gauge-covariant vertex for vectors.
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Chapter 3

Gauge-Covariant Vertex
Operators in NSR Strings

In this chapter, the formalism for bosonic string in chapter 2 will be generalized
to the Neveu-Schwarz string. To simplify the expression, the language of the
“Big Picture” [27] will be introduced in this chapter. After the new vertex
operator is constructed, the amplitude of 3 vectors will be calculated directly,
with the properties of gauge and conformal transformation studied.

3.1 Neveu-Schwarz vertex for massless vector

For superstrings, it is more useful and convenient to interpret superconformal
symmetry through a supermanifold: a world-sheet with one normal complex
coordinate z and a anticommuting one θ. The superderivatives is defined
on this supermanifold as: D ≡ Dθ = ∂θ + θ∂z and D ≡ Dθ = ∂θ + θ∂z.
The action for NSR string in conformal gauge is constructed on the (0, 0)

tenser Xµ(z, θ, θ̃) = xµ(z) + iθψ(z) + iθψ̃(z) + θθF µ and superfields of ghosts
C = c + θγ and B = β + θb (c and b are anticommuting superconformal ghost
and antighost, β and γ are commuting superconformal ghost and antighost):

S = 1
4π

∫
d2zd2θ(DXµDXµ + BDC + BDC) (3.1)

where, to simplify the calculation and expression, we replace x by (α′/2)1/2x
to absorb constants (We also write

√
α′/2 ε as ε and

√
α′/2 k as k and restore

these factors in the final resul). This action in conformal gauge gives the

propagator between X(z, θ, θ̃)’s as

Xµ(z′, θ′)Xν(z, θ) ∼ −4ln|z′ − z − θ′θ|ηµν (3.2)
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and ghosts
B(z1, θ1)C(z2, θ2) ∼ θ1−θ2

z1−z2
, (3.3)

Similarly as in the case of bosonic open string, we start from the integrated
vertex operator

∮
W =

∮
ε · DθXeik·X(Z) with Z = (z, θ): the coordinate on

the open string world-sheet. If the commutator between the BRST operator
and the integrated vertex can be written as total derivative: [Q,W} = DθV ,
V will be the BRST invariant unintegrated operator: [Q, V } = 0.

The BRST operator Q in the NSR string is

Q = 1
2πi

∮
dz′dθ′(CT x + 1

2
CT g) (3.4)

with the contribution of matter fields

T x = − 1
4α′ (Dθ′X

µ)(∂′Xµ) (3.5)

and the contribution of ghosts

T g = 1
2
(Dθ′B)(Dθ′C)− 3

2
B(∂′C)− (∂′B)C (3.6)

Because W contains no ghosts, it is only necessary to compute

[Q, W} = 1
2πi

∮
dz′dθ′(−1

8
)[C(z′, θ′)(Dθ′X

µ)(∂′Xµ)][ε ·DθXeik·X(Z)] (3.7)

Using ∮
dz′dθ′ 1

z′−z−θ′θ [f(z′) + θ′g(z′)] = Dθ[f(z) + θg(z)] (3.8)

∮
dz′dθ′ θ

′−θ
z′−z

[f(z′) + θ′g(z′)] = f(z) + θg(z) (3.9)

and gauge-covariant equation of motion (2.8), we find the BRST invariant
vertex operator for the massless open string vector V is

V = −Dθ[C(ε ·DθX)eik·X(Z)] + 1
2
(DθC)(DθX · ε)eik·X(Z)

−2i(ε · k)(∂C)eik·X(Z)

= G + H (3.10)

or equivalently

V = −Dθ[CAµ(DθXµ)]− 2(∂C)(∂µA
µ) + 1

2
(DθC)Aµ(DθXµ), (3.11)

where G represents the first two terms and H represents the last term.
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The gauge transformation of the vertex operator (3.10) is

δV = −Dθ[C(∂µλ)(DθXµ)]− 2(∂C)[∂µ(∂µλ)] + 1
2
(DθC)(DθXµ)(∂µλ)

= −1
2
(DθC)(DθXµ)∂µλ− 2(∂C) λ + C(∂Xµ)∂µλ

−C(DθXµ)(DθXν)∂
ν∂µλ (3.12)

under A → A + ∂µλ. Obviously, the last term is zero because DθXµ and
DθXν anticommute. Then δV can be written as the commutator of the BRST
operator and the function λ:

[Q, λ(X(z, θ))} = 1
2πi

∮
dz′dθ′ 1

8
C(Z ′)(Dθ′X

µ)(∂′Xµ)λ(X(Z))

= −1
2
Dθ(CDθXµ)∂µλ− 2(∂C) λ + 1

2
C(∂Xµ)∂µλ

(3.13)

So, just as in the bosonic case, the amplitude 〈V V V
∮

W · · · ∮ W 〉 is gauge
invariant

3.2 Three-point amplitude

The vertex operator given in previous section can be used to compute the
3-point amplitude between 3 gauge bosons. The difference between this am-
plitude and previous calculations is that this amplitude is gauge invariant
which corresponds the gauge-invariant effective action in field theory directly.

Using the correlation function between superfields of ghosts

〈0|C(z1, θ1)C(z2, θ2)C(z3, θ3)|0〉
= θ1θ2z3(z1 + z2) + θ2θ3z1(z2 + z3) + θ3θ1z2(z3 + z1)

and the propagator between X’s as (3.2), and the gauge-covariant equation of
motion (2.8), we find the 3-point amplitude for 3 gauge bosons, to the lowest
order in α′, as following

A3 = 2gY M

α′2 〈V (z1, θ1)V (z2, θ2)V (z3, θ3)〉
= igY M(2π)DδD(Σiki)[(ε1 · ε2)(ε3 · k12) + (ε2 · ε3)(ε1 · k23)

+(ε3 · ε1)(ε2 · k31)] (3.14)

which corresponds to the 3-particle interaction in the YM theory.
The calculation becomes more complicate to second order in α′. Factors
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like

|yij − θiθj|2α′ki·kj , Dθk
|yij − θiθj|2α′ki·kj , Dθk

Dθl
|yij − θiθj|2α′ki·kj , · · · (3.15)

are involved in the amplitude A3. To lowest order in α′, the first is just one,
the rest zero. But the expansion of 2α′ki · kj contributes to the second order
in α′, as do

〈G(y1)G(y2)G(y3)〉,
〈G(y1)G(y2)H(y3)〉, · · · ,
〈G(y1)H(y2)H(y3)〉, · · · (3.16)

while

〈H(y1)H(y2)H(y3)〉 (3.17)

vanishes because of too many derivatives.
We calculate the expansion of |yij−θiθj|2α′ki·kj and its derivatives Dθk

|yij−
θiθj|2α′ki·kj , etc., using

|y12 − θ1θ2|a|y23 − θ2θ3|b|y31 − θ3θ1|c
= [1− a

y12
θ1θ2 − b

y23
θ2θ3 − c

y31
θ3θ1]|y12|a|y23|b|y31|c

= [Dθ1(|y12|aθ12)][Dθ2(|y23|bθ23)][Dθ3(|y31|cθ31)] (3.18)

to the first order in a, b, c. Then

Dθ1(|y12 − θ1θ2|a|y23 − θ2θ3|b|y31 − θ3θ1|c)
= (∂1|y12|a)|y23|b|y31|cθ12 + |y12|a|y23|b(∂3|y31|c)θ31

+θ1θ2θ3[(∂1|y12|a)∂3(|y23|b|y31|c) + ∂2(|y12|a|y23|b)(∂3|y31|c)] (3.19)

Dθ1Dθ2(|y12 − θ1θ2|a|y23 − θ2θ3|b|y31 − θ3θ1|c) = a
y12

+ a
y2
12

θ1θ2, · · · (3.20)

Combining both contributions without showing all details here, the 3-point
amplitude to the second order in α′ is just zero as expected, which corresponds
to the absence of F 3 terms in SYM. As mentioned in the bosonic case, using the
gauge-covariant equation of motion (2.8), above amplitude (3.14) is complete
and there is no more higher order terms in α′.

This amplitude here is independent of the anticommuting coordinate θ, as
expected. It is also independent of z, as in the bosonic case. It is the result
of conformal invariance of the amplitude, which we are going to prove in the
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following part. The conformal transformation of vertex V in (3.10) is

δV = 1
2πi

∮
dz′dθ′λ(T x + T g)(z′, θ′)V (z, θ) (3.21)

with T x and T g defined in eqs. (3.5-3.6). Using the OPE of superfields of X,
B and C,

δV = (α′k2)(∂λ)V + 1
2
(Dθλ)(DθV ) + λ(∂V ) (3.22)

Under the infinitesimal superconformal transformation λ = 2θη with η(z)
anticommuting,

δV = (2α′k2)(θ∂η)V + ηQθV (3.23)

where Qθ = ∂θ− θ∂z. So the vertex operator in (3.10) has the weight α′k2 and
transforms as

V ′(z′, θ′) = (Dθθ
′)−2α′k2

V (z, θ) (3.24)

which leads to the conformal transformation of the n-point amplitude as

〈V ′(z′1, θ
′
1)V

′(z′2, θ
′
2)V

′(z′3, θ
′
3)

∮
W · · ·

∮
W 〉

= (Dθ1θ
′
1)
−2α′k2

1(Dθ2θ
′
2)
−2α′k2

2(Dθ3θ
′
3)
−2α′k2

3

×〈V (z1, θ1)V (z2, θ2)V (z3, θ3)

∮
W · · ·

∮
W 〉

(3.25)

Using equation of motion F = 0, the expansion of α′k2
i gives nothing than

just one if the amplitude is proportional to the product of field of strengthes.
In the case of 3-point amplitude (3.14), this implies the conformal invariance:

〈V ′(z′1, θ
′
1)V

′(z′2, θ
′
2)V

′(z′3, θ
′
3)〉 = 〈V (z1, θ1)V (z2, θ2)V (z3, θ3)〉 (3.26)

3.3 4-point S-matrices in NS section

In this section, as the case bosonic string, the new vertex operator (3.10)
is used to compute the S-matrices for 4 massless gauge bosons, which will be
explicitly gauge-covariant. The corresponding effective action for gauge bosons
can be deduced from this amplitude directly.

The 4-point amplitude in the superstring is

ANSR
4 = −2g2

Y M

α′2 〈V (Z1)

∫
dz2dθ2W (Z2)V (Z3)V (Z4)〉, (3.27)
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with z1 = 0, z3 = 1, z4 → ∞ and integrating z2 from 0 to 1. To make the
calculation simpler, we will first set θ1, θ3, and θ4 to zero, because the super-
conformal weight of unintegrated vertices ensure the superconformal invariance
of the amplitude. So, as we will see, the S-matrices will be independent from
the choice of θ1 = θ3 = θ4. The vertex operator (3.10) can also be written as

V = −1
2
(DθC)(ε ·DθX)eik·X(Z) + CDθ[(DθX · ε)eik·X(Z)]

−2i(ε · k)(∂C)eik·X(Z). (3.28)

Using the anticommutation relation between C, Dθ, and
∫

dθ, move C, DθC,
and ∂C to the left side of ANSR

4 . To make the calculation simpler, we first set
θ1, θ3, and θ4 to zero. Then we only have to compute the terms independent
of θ1, θ3, and θ4, which is from the parts with two DθC’s and one C or ∂C:

ANSR
4 (θ1 = 0, θ3 = 0, θ4 = 0) = α′2K0

Γ(−α′s)Γ(−α′t)
Γ(1− α′s− α′t)

(3.29)

where K0 is defined by (2.41).
Because operator V has the weight α′k2, through a conformal transforma-

tion θ1 = 0 → θ′1, θ2 = 0 → θ′2 and θ4 = 0 → θ′4, the amplitude (3.29) in
transforms as

〈V ′(z′1, θ
′
1)

∮
WV ′(z′3, θ

′
3)V

′(z′4, θ
′
4)〉

= (Dθ1θ
′
1)
−2α′k2

1(Dθ3θ
′
3)
−2α′k2

3(Dθ4θ
′
4)
−2α′k2

4〈V (z1, θ1)

∮
WV (z3, θ3)V (z4, θ4)〉

= [(Dθ1θ
′
1)
−2α′k2

1(Dθ3θ
′
3)
−2α′k2

3(Dθ4θ
′
4)
−2α′k2

4 ]|θ1=θ3=θ4=0ANSR
4 (0, 0, 0) (3.30)

Using the equation of motion (2.8),

ANSR
4 (θ′1, θ

′
2, θ

′
3) = ANSR

4 (0, 0, 0)

for the amplitude in (3.29) is in form of
◦
F µν . So (3.29) is exactly the 4-point

tree amplitude for arbitrary values of parameters θ1, θ3 and θ4.
What we notice first here is that, Since there is no tachyon in the super-

string, the amplitude doesn’t give the terms associated with tachyon poles in
(2.40) , which is not surprising. Second, expanding the function Γ(−α′s)Γ(−α′t)

Γ(1−α′s−α′t) ,

the leading term corresponds to the quadratic Yang-Mills action (2.21) as in
the bosonic case. For the lacking of F 3 interaction in field side, there is no
terms of O(α′) order and the O(α′2) terms represent the higher-derivative F 4

action directly. As in the bosonic case, replacing
◦
F µν by −iFµν , the complete
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effective action corresponding to (3.29) is

S = 1
g2

Y M

∫
dDx [−1

4
Tr(F µνFµν)− π2α′2

4!
tµνρσαβγδTr(FµνFρσFαβFγδ)]. (3.31)

These actions agree with those obtained from non-gauge-covariant amplitudes
[30].
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Chapter 4

Feynman-Siegel gauge

In previous Chapter 2, we pointed the relation between the vertex operator
in (2.10) to the external state in string field theory (SFT) (Witten’s theory
here). In this chapter, we will study more details. We start from construct-
ing the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons
from Witten’s 3-string vertex of the bosonic open string without gauge fix-
ing. Through canonical transformations, we find the off-shell, local, gauge-
covariant action up to 3-point terms, satisfying the usual field theory gauge
transformations. Perturbatively, it can be extended to higher-point terms. It
also gives the relation between a new gauge condition in field theory and the
Feynman-Siegel gauge on the world-sheet.

4.1 Witten’s 3-string vertex

In string field theory, the 3-string interaction can be interpreted as

〈h1[ϑA]h2[ϑb]h3[ϑc]〉 = 〈V123(|A〉1 ⊗ |B〉2 ⊗ |C〉3) (4.1)

where ϑi is the vertex operator for each external state and hi(z) is the confor-
mal mapping from each string state to the complex plane. In Witten’s bosonic
open string field theory, strings interact by identifying the right half of each
string with the left half of the next one. The conformal mapping for this
interactive world-sheet geometry can be expressed as

h1(z) = ei
2π
3 h(z), h2 = h(z), h3 = e−i

2π
3 h(z) (4.2)

where

h(z) = (1−iz
1+iz

)
2
3 (4.3)
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Then the action is

S = 〈V2|Ψ, QΨ〉+ g
3
〈V3|Ψ, Ψ, Ψ〉 (4.4)

where Q is the usual string theory BRST operator. Using the string oscillation
modes αn of the matter sector and bn, cn of the ghost sector, the two-string
“vertex” is

〈V2| = δD(p1 + p2) (〈0; p1| ⊗ 〈0; p2|) (c
(1)
0 + c

(2)
0 )

× exp

( ∞∑
n=1

(−1)n+1[α(1)
n α(2)

n + c(1)
n b(2)

n + c(2)
n b(1)

n ]

)
(4.5)

and the 3-string vertex associated with the three-string overlap can be written
as

〈V3| = N δD(p1 + p2 + p3)(〈0|c−1c0)
(3))(〈0|c−1c0)

(2))(〈0|c−1c0)
(1))

× exp
( 3∑

r,s=1

∑
n,m≥1

1

2
α(r)

m N rs
mnα(s)

n + p(r)N rs
0mα(s)

m +
1

2
N00

3∑
r=1

(p(r))2
)

× exp
( 3∑

r,s=1

∑
m≥0
n≥1

b(r)
m Xrs

mnnc(s)
n

)
(4.6)

with the normalization factor N = 39/2/26 [31]. Because we will focus on
the fields and antifields up to oscillation modes 1, the only relevant Neumann
coefficients are

N11
11 = N22

11 = N33
11 = − 5

27

N12
11 = N23

11 = N31
11 = 16

27

N12
01 = −N13

01 = N23
01 = −N21

01 = N31
01 = −N32

01 = −2
√

3
9

N11
00 = N22

00 = N33
00 = −1

2
ln(27/16)

N11
01 = N22

01 = N33
01 = 0 (4.7)

for the matter sector and

X11
11 = X22

11 = X33
11 = −11

27

X12
11 = X23

11 = X31
11 = X21

11 = X32
11 = X13

11 = − 8
27

X12
01 = −X13

01 = X23
01 = −X21

01 = X31
01 = −X32

01 = −4
√

3
9

X11
01 = X22

01 = X33
01 = 0 (4.8)
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for the ghost sector.
Usually, the three-string interactions are calculated in the Feynman-Siegel

gauge
b0|Ψ〉 = 0 (4.9)

Then what we get is the gauge-fixed action, and the gauge condition for this
action was never clear. Also we will get some φA2 interactions whose origin
was not obvious due to the lack of gauge covariance. In the next section, we
will construct the ZJBV action from string field theory to study the gauge
condition from the aspect of field theory.

4.2 ZJBV

In the usual Hamiltonian formalism for a phase space (q, p), the Poisson
bracket, which is useful for studying symmetry properties and relates to the
commutator of the quantum theory, can be defined. In gauge field theory,
there is a similar interpretation where the fields (including ghosts) correspond
to q and the antifields (with opposite statistics) to p. In the YM case (in-

cluding scalars), φ, Aµ, C, C̃ are fields and φ∗, A∗
µ, C

∗, C̃∗ are antifields. As a
generalization of the Poisson bracket, the “antibracket” (f(Φ), g(Φ)) = f ◦ g
is introduced [19]:

◦ =

∫
dx(−1)I

( ←−
δ

δφ∗I

δ

φI
+

←−
δ

δφI

δ

φ∗I

)
(4.10)

It has the following useful properties:

(f, ga) = (f, g)a, (af, g) = a(f, g)

(f, g) = −(−1)(f+1)(g+1)(g, f)

(f, gh) = (f, g)h + (−1)(f+1)gg(f, h)

(−1)(f+1)(h+1)(f, (g, h)) + cyc. = 0 (4.11)

The existence of a bracket with these properties allows the definition of a Lie
derivative, LAB ≡ (A,B) and a unitary transformation

S ′ = eLGS = S + LGS + 1
2!
LGLGS + · · · (4.12)

For the example we are going to discuss, the antibrackets for fields and anti-
fields are:

(A∗
µ, Aν) = ηµν , (φ∗, φ) = 1, (C,C∗) = 1, (C̃, C̃∗) = 1 (4.13)
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The general Lagrangian path integral for BRST quantization is

A =

∫
DψIe−iSgf , Sgf = eLΛSZJBV | (4.14)

where Sgf is evaluated at all antifields ψ∗ = 0. Expanding the ZJBV action in
antifields, using ψm and ψnm to indicate all minimal and non-minimal fields,

SZJBV = Sgi + (Qψm)ψ∗m + ψ∗nmψ∗nm, (4.15)

then

Sgf = eLΛSZJBV | = Sgi + (δΛ/δψm)(Qψm) + (δΛ/δψnm)2 (4.16)

where Sgi and Λ depend only on coordinates ψI . Also, the BRST transforma-
tions can be written as δQψI = (SZJBV , ψI). Gauge independence requires

(−1)I δ2SZJBV

δψ∗I δψI + i1
2
(SZJBV , SZJBV ) = 0 (4.17)

which is called the “quantum master equation”. It is the approach to BRST
of Zinn-Justin, Batalin, and Vilkovisky (ZJBV).

To see the equivalence of the ZJBV combination of the gauge-invariant
action with the BRST operator to ordinary BRST, here is an example, pure
Yang-Mills theory. The ZJBV action in YM can be written as

SZJBV = −FµνF
µν − 2(C̃∗)2 − 2i[Oµ, C]A∗µ + C2C∗

We have the usual BRST transformations of fields from Qψ = (S, ψ):

QAµ = −2i[Oµ, C], QC = −C2, QC̃ = 4C̃∗, QC̃∗ = 0 (4.18)

Taking

Λ = tr

∫
1
4
C̃f(A), (4.19)

we find the usual gauge fixed action

Sgf = Sgi − 1
4
f(A)2 − i

2
C̃ ∂f

∂A
· [O, C] (4.20)

as from the usual BRST formalism.
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4.3 The gauge covariant action

In this section, we will use Witten’s 3-string vertex to get the interactions
for tachyons and vectors without the Feynman-Siegel gauge. The action will
be in the ZJBV formalism including fields and antifields. From this ZJBV
action, through some canonical transformations, we can get the gauge invariant
action back. Observing the forms of these transformations, we will be able to
tell which gauge condition in field theory corresponds to the Feynman-Siegel
gauge in Witten’s string field theory.

First, let see if we can generalize the on-shell bosonic vertex to off-shell
case. In string field theory, the general external state (without b0 = 0) is

|ψ〉 = (C + φc1 + A · a−1c1 + C̃c−1c1 + C̃∗c0

+φ∗c0c1 + A∗ · a−1c0c1 + C∗c−1c0c1 + · · ·)|0, k〉 (4.21)

Now we try to generalize the on-shell vertex in (2.10)

V = cA · ∂X − α′(∂c)(∂ · A) (4.22)

to off-shell. The first term corresponds to A · a−1c1 in (4.21). For the second
term, (∂c) is i

2α′ c0 in string field theory. Then

− α′(∂c)(∂ · A) → − i
2
(∂ · A)c0 (4.23)

Thus, the external state is modified to

|ψ〉 = [C + φc1 + A · a−1c1 + C̃c−1c1 + (C̃∗ − i
2
∂ · A)c0

+φ∗c0c1 + A∗ · a−1c0c1 + C∗c−1c0c1 + · · ·]|0, k〉 (4.24)

It seems different but once the Feynman-Siegel gauge b0 = 0 is imposed, C̃∗ =
i
2
∂ ·A and all other antifield vanish. It gets back to usual external state under

Feynman-Siegel gauge. So, in following, we will start from most general state
(4.21) to get ZJBV action which will help us to get the gauge covariant action
in field theory.

Apply (4.21) to string field action (4.4), it gives the free terms and 3-
point interactions for tachyons, YM gauge bosons, ghosts, antighosts, and
their antifields. The free part is

SZJBV
2 = 〈V2|Ψ, QΨ〉

= −1
2
φ( + 2)φ− 1

2
Aµ Aµ + C̃ C − 2i(∂µC)A∗µ

−2(C̃∗)2 − 2i(∂ · A)C̃∗ (4.25)
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and the interaction part is

SZJBV
3 = g

3
〈V3|Ψ, Ψ, Ψ〉 = S

(0)
3 + S

(1)
3 + S

(2)
3 + S

(3)
3 (4.26)

where (to lowest order in Regge slope for those nonlocal factors e
1
2

Nrr
00 (P 2

i +m2
i );

we will discuss them in the next section)

S
(0)
3 = 1

3
φ3 + φA2 + (C̃∗)2φ− 1

2
[C̃, C]φ + 1

2
{C̃, C}C̃∗

+{C, φ∗}φ + C2C∗ + [φ∗, C]C̃∗ + [Aµ, C]A∗µ (4.27)

S
(1)
3 = i

2
∂µφ[Aµ, φ] + i

4
(∂µAν − ∂νAµ)[Aµ, Aν ]

+ i
2
[C̃∗, ∂µC̃

∗]Aµ + i
4
C̃[Aµ, ∂

µC]− i
4
∂µC̃[Aµ, C]

+ i
2
φ∗({∂µC,Aµ}+ ∂µ{C, Aµ})

+ i
2
A∗

µ([C, ∂µC̃∗]− [∂µC, C̃∗])

+ i
2
A∗

µ({C, ∂µφ]− [∂µC, φ]) (4.28)

S
(2)
3 = φ(∂µAν)(∂

νAµ) + 1
2
φ{∂µ(∂ · A), Aµ}+ 1

4
φ(∂ · A)2

+(1
2
[∂νC, ∂µA

ν ]− 1
2
[∂µ∂νC, Aν ]

+1
4
[C, ∂µ(∂ · A)]− 1

4
[∂µC, (∂ · A)])A∗µ (4.29)

S
(3)
3 = i

6
(∂µ∂νAλ)[Aµ, ∂

λAν ] + i
24

∂µ(∂ · A)[∂νAµ, Aν ] (4.30)

This gives the gauge fixed action after setting antifields to zero. Before
setting them to zero, it is related to the usual ZJBV action by a canonical (with
respect to the antibracket) transformation. Since such transformations can mix
fields and antifields, the transformation itself (followed by setting antifields to
zero) is one way to define the gauge-fixing procedure in this formalism. So,
one way to find the gauge invariant action is to undo this transformation.

Another way is to take this action with antifields, drop all fields with non-
vanishing ghost number, and then eliminate the remaining zero-ghost-number
antifields (Nakanishi-Lautrup fields) by their equations of motion. However,
the resulting action is kind of messy and has unusual gauge transformations.

The advantage of working with the entire ZJBV action is that it con-
tains both the gauge invariant action and the gauge (BRST) transformations.
Furthermore, canonical transformations perform field redefinitions (including
antifield redefinitions that define the gauge fixing) in a way that preserves the
(anti)bracket (as in ordinary quantum mechanics). Thus, we look for canoni-
cal transformations that produce the standard form for gauge transformations
of the fields, a well as eliminate terms in the action that could normally be
ignored “on shell”.
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Notice there are antifield-independent terms from gauge fixing in the ZJBV
action of (4.25) and (4.26). So we have to find transformations to “undo” the

gauge fixing. For example, the gauge transformation generated by − i
2
(∂ ·A)C̃

will cancel the gauge fixing term C̃ C because (− i
2
(∂ ·A)C̃,−2i(∂µC)A∗µ) =

−C̃ C. Also notice that the ZJBV actions of (4.25) and (4.26) don’t give the
usual gauge transformations (from terms linear in antifields), so we also look for

transformations to give them the usual form. For instance, the term [φ∗, C]C̃∗

will give unusual contributions for gauge transformations of φ and C̃, but it
can be canceled through the field redefinition generated by 1

4
[φ∗, C]C̃. We

also look for terms that generate field redefinitions that cancel cubic antifield-
independent terms that are proportional to the linearized field equations. For
example, 1

2
A2φ∗ will generate the counter term −φA2 − 1

2
( φ)A2, which con-

verts φA2 into −1
2
( φ)A2, which will be part of the covariant interaction

φFµνF
µν .

The calculation is straightforward, but to find the complete transformation
we need more steps, because some transformations applied to cancel terms we
don’t want will have byproducts to be canceled by further transformations.
The complete transformation is given as follows: First, make the transforma-
tion generated by

Gg = − i
2
(∂ ·A)C̃+ 1

16
C̃[ Aµ+∂µ(∂ ·A), Aµ]+ 1

8
C̃2C+ 1

16
(∂µC̃)2C− i

8
C̃{∂ ·A, φ}

(4.31)
to “undo” the gauge fixing. It is independent of antifields, and so can be
identified with gauge fixing. Then we make the transformation

G0 = 1
4
[φ∗, C]C̃ + 1

2
A2φ∗ + 1

4
{C, φ}C∗ + 1

8
{φ, C̃∗}C̃ − 1

2
{φ,A∗

µ}Aµ

− i
4
A∗

ν [∂
νAµ, Aµ] + i

8
{C,A∗

µ}(∂µC̃)− i
8
[C̃∗, Aµ](∂µC̃) (4.32)

This generator is linear in antifields, and so can be identified with a field
redefinition. (However, there is some subtlety in that the Nakanishi-Lautrup

fields in this form of ZJBV appear as antifields C̃∗.) As the result of the above
transformations, the action (up to 3-point terms and lowest order in Regge
slope) can be written as

S = S2 + S3

= 1
2
[∇µ, φ][∇µ, φ]− φ2 − FµνF

µν − 2i[Oµ, C]A∗µ − 2(C̃∗)2 + {C, φ∗}φ
+C2C∗ + 1

3
φ3 + 2φFµνF

µν − 4
3
F ν

µ F λ
ν F µ

λ (4.33)

with Oµ = ∂µ + i
2
Aµ. Now it is explicitly gauge covariant (to this order)

even off-shell! Thus the F 3 interaction appears explicitly (which was done
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only on shell before), and a new gauge invariant interaction term φF 2 is
found. Furthermore, the YM gauge condition corresponding to the world-
sheet Feynman-Siegel gauge is now known: The usual gauge-fixing function
∂ · A of the Fermi-Feynman gauge is modified to

∂·A+ i
8
[ Aµ+∂µ(∂·A), Aµ]+ 1

4
{∂·A, φ}+ i

8
{C̃, C}− i

16
{ C̃, C}− i

16
{∂µC̃, ∂µC}

(4.34)
The additional gauge fixing terms simplify the F 3 and φF 2 interactions, and
make the gauge fixed action symmetric in ghosts and antighosts [32].

4.4 High orders of Regge slope

This is not the end of the story, because we only made the action manifestly
gauge invariant to lowest order in the Regge slope expanded from the nonlocal
factors. Remember, in the 3-string vertex in (4.6), the Neumann coefficients
1
2
N rr

00 = −λ will contribute nonlocal factors to interactions. That means the
full interaction will have the form of replacing each (anti)field ψi in (4.26) by
e−λ(p2

i +m2
i )ψi. But the above canonical transformations can be performed in

the same way except that the (anti)fields ψi in Gg and G0 are replaced by
eλ( i−m2

i )ψi. Then we will get the full action as in (4.33) while attaching the
factor eλ( i−m2

i ) to each (anti)field ψi in the interaction part:

Sfull
2 = −1

2
φ( + 2)φ + 1

4
∂[µAν]∂

[µAν] − 2i(∂µC)A∗µ − 2(C̃∗)2 (4.35)

Sfull
3 (λ) = i

2
∂µφ̂[Âµ, φ̂] + i

4
F̂µν [Â

µ, Âν ] + 1
3
φ̂3 + [Âµ, Ĉ]Â∗µ + {Ĉ, φ̂∗}φ̂

+Ĉ2Ĉ∗ + 2φ̂F̂µνF̂
µν − 4

3
F̂ ν

µ F̂ λ
ν F̂ µ

λ (4.36)

where
F̂µν = ∂[µÂν] (4.37)

and

φ̂ = eλ( +2)φ, φ̂∗ = eλ( +2)φ∗, Â = eλ A, Â∗ = eλ A∗

Ĉ = eλ C, Ĉ∗ = eλ C∗, ˆ̃
C = eλ C̃,

ˆ̃
C
∗

= eλ C̃∗ (4.38)

We now perform more field redefinitions to push these nonlocal factors into
higher-point interactions and restore the usual gauge invariant action up to
3-point terms. Let’s first expand the exponential factor eλ( i−m2

i ) to the first
order. Then there are extra terms like φ2[λ( +2)φ] from 1

3
φ3 to be absorbed.

The naive guess is making the field redefinition through G = λφ2φ∗, which
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will give a counter term through the antibracket:

δS3 = (G, S2) = (λφ2φ∗,−1
2
φ( + 2)φ) = −λφ2[( + 2)φ] (4.39)

where we use S2 to represent the free part and S3 the interaction part in (4.33)
(to lowest order in Regge slope).

Fortunately, it turns out this is almost the right guess. To the first order
in Regge slope, the redefinition should come through

G = λ(φ∗, S3)φ
∗+λ(A∗

µ, S3)A
∗
µ+λ(C∗, S3)(− i

2
)(∂·A)+λ(∂·A, S3)(

i
2
C∗) (4.40)

Then

(λ(φ∗, S3)φ
∗, S2) = λ(φ∗, S3)(φ

∗, S2) + λφ∗((φ∗, S3), S2)

= −λ(φ∗, S3)( + 2)φ + λφ∗(S2, (φ
∗, S3)) (4.41)

Using the properties of antibrackets in (4.11) and the gauge invariant condition
(S3, S2) = 0,

−(S2, (φ
∗, S3)) + (φ∗, (S3, S2)) + (S3, (S2, φ

∗)) = 0

⇒ (S2, (φ
∗, S3)) = (S3, (S2, φ

∗)) = (S3, ( + 2)φ)

= (−[C, φ]φ∗, ( + 2)φ) = −[C, φ]( + 2) (4.42)

Thus (4.41) gives

(λ(φ∗, S3)φ
∗, S2) = −λ(φ∗, S3)( + 2)φ− λ{C, ( + 2)φ∗}φ (4.43)

which will cancel the additional terms from the first-order expansions of eλ( −m2)

for φ’s and φ∗’s in the 3-point interactions. Similar calculations show that G
in (4.40) does cancel all additional terms from the first-order expansions of

eλ( i−m2
i ) for all (anti)fields: φ, φ∗, Aµ, A

∗
µ, C, C∗, C̃, C̃∗ in Sfull

3 .
Basically, we can do it order by order, and here is the field redefinition for

all orders:

G = (φ∗,
∫ λ

0

dαSfull
3 (α))φ∗ + (A∗

µ,

∫ λ

0

dαSfull
3 (α))(A∗)µ

+(C∗,
∫ λ

0

dαSfull
3 (α))(− i

2
)(∂ · A)

+(∂ · A,

∫ λ

0

dαSfull
3 (α))( i

2
C∗) (4.44)
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The integral is easy to perform:

∫ λ

0

dαSfull
3 (α) = 1

( 1−m2
1)+( 2−m2

2)+( 3−m2
3)

(eλ( 1−m2
1)+λ( 2−m2

2)+λ( 3−m2
3) − 1)S3

(4.45)
where the indices 1, 2, 3 indicate the three fields in each term of S3. The proof
is very similar to the first-order case and we won’t bother to give the details
here.

Then we will have N-point interactions for any big N just from a 3-string
interaction in SFT. This is because in the above calculation we only accounted
for corrections up to 3-point, while the full transformed action should be

eLGS = S + (G,S) + 1
2!
(G, (G,S)) + · · · (4.46)

Essentially, we can perform this mechanism perturbatively in higher-point
interactions. We have not studied whether the nonlocal interactions can be
eliminated at any finite order of perturbation, or whether this procedure is
consistent nonperturbatively.
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Chapter 5

Random lattice

In chapter 4, we clarified the Yang-Mills gauge condition corresponding to
Feynman-Siegel gauge on the world-sheet. In this chapter, we will construct
similar interactions as the Witten’s string field theory on a random lattice.
We combine two partons on a random lattice as a vector state. In the ladder
approximation, we find that such states have 1/p2 propagators (after tuning
the mass to vanish). We also construct some diagrams which are very similar
to 3-string vertices in string field theory for the first oscillator mode. Attaching
3 such lattice states to these vertices, we get Yang-Mills and F 3 interactions
up to 3-point as from bosonic string (field) theory. This gives another view of
a gauge field as a bound state in a theory whose only fundamental fields are
scalars.

5.1 Regge theory

As suggested by Regge, Regge poles might be relevant to the analysis of high-
energy scattering. Many results about poles’ locations and properties were
obtained on the basis of analyticity assumptions, mostly in φ3 theory [33].
A simpler consideration is to examine the high-energy behavior of scattering
amplitudes directly by summing suitable sets of Feynman diagrams [34].

The two-particle elastic scattering amplitude A(s, t) for an appropriate set
of Feynman diagrams (e.g., ladders) can be of the form:

A(s, t) =

∫
d4ki

∏
a

1
p2

a+m2 ∼
∫

d4ki

∫ ∞

0

∏
a

dβae
−βa(p2

a+m2)/2 (5.1)

where ki are independent loop momenta, βa are Schwinger parameters to ex-
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ponentiate the propagators and the Mandelstam variables are

s = −(q1 + q2)
2 = −(q3 + q4)

2, t = −(q1 − q3)
2 (5.2)

As we will see, the only difference between an ordinary field theory and lattice
string theory is the integration over the parameters βa. In the lattice string
case reviewed in the next section, they are fixed at βa = α′.

Integrating out Gaussian loop momenta,

A(s, t) ∼
∫ ∞

0

∏
a

dβa
N(β)

[C(β)]2
e−g(β)t−d(s,β) (5.3)

When t → ∞, it is dominated by the region near g(β) = 0. So to make
the coefficient of t vanish, one can set those β’s to zero everywhere except in
g(β), which shortcircuits the diagram to eliminate the t dependence. Then
the integration can be carried out to obtain the asymptotic behavior as t → 0.
For ladder graphs, the ladder with n rungs has an expression of the form:

An(s, t) ∼ g2 1
t
[g2K(s) ln t]n−1 (5.4)

where K(s) is just a self-energy diagram evaluated from a bubble in 2 fewer
dimensions. So the asymptotic behavior comes from the sum of ladder dia-
grams: ∑

An(s, t)/(n− 1)! = g2tα(s), α(s) = −1 + g2K(s) (5.5)

which is the result associated with the Regge trajectory.

5.2 Bosonic lattice string review

The main difference between the lattice and continuum approaches to the
string is that a lattice requires a scale, while conformal invariance of the con-
tinuum string includes scale invariance. To break the conformal invariance of
the worldsheet, a term proportional to the area (the simplest scale-variant and
coordinate-invariant property of the worldsheet) with coefficient (cosmological
constant) µ is added to the string action. Furthermore, to describe the string
interaction, the string coupling constant, which is counted by the integral of
the worldsheet curvature R, should be included. So totally, the action is

S =

∮
d2σ

2π

√−g
[

1
α′ g

mn 1
2
(∂mX · ∂nX) + µ + (ln κ)1

2
R

]
(5.6)
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On the random lattice, this action can be written as

S1 = 1
α̃′

∑

〈ij〉

1
2
(xi − xj)

2 + µ
∑

i

1 + ln κ


∑

i

1−
∑

〈ij〉
+

∑
J

1


 (5.7)

where j are vertices, 〈ij〉 the links (edges), and J the plaquets (faces, planar
loops) of the lattice. The functional integration over the worldsheet metric
in usual string theory is repalced by a sum over Feynman diagrams. The
positions of vertices are integrated (except external vertices; alternatively, ex-
ternal states will be introduced to calculate the full amplitudes, as shown in
later sections):

A =
∑ ∫ ∏

dx e−S1 =
∑

e−µ
∑

i 1

∫
dx

∏
ij

e−
1

2α̃′ (xi−xj)
2

(5.8)

Now, by identifying the lattice with a position-space Feynman diagram,
we can find the underlying field theory as follows: Vertices of the lattice cor-
respond to those of Feynman diagram and links to propagators; the 1/N ex-
pansion is associated with the faces of the worldsheet polyhedra with U(N)
indices. Thus, the area term (counting the number of vertices) in the lat-
tice action (5.7) gives the coupling constant factor for each vertex in the field
action, and the worldsheet curvature term gives the string coupling 1/N of
the topological expansion [35]. Explicitly, the action of an n-point-interaction
scalar-field action is

S2 = N tr

∫
dDx

(2πα̃′)D/2

(
1
2
φe−α̃′ /2φ−G 1

n
φn

)
(5.9)

with
G = e−µ, 1

N
= κ (5.10)

The interaction φn can be chosen arbitrarily; restrictions may come from con-
sistency of the worldsheet continuum limit [36]. In this paper, we will focus on
the minimum coupled lattice, φ3 theory, but the calculation for a φ4 interaction
is pretty much the same.

5.3 Ladder graphs and Regge trajectories

In this section we review the ladder graphs responsible for a Regge trajectory
α(s), and compare with those done in the early days of Regge theory. Since
somewhat similar procedures will be used in following sections, we give details
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Figure 5.1: Ladder diagrams

in this section.
Consider 4-point functions in the parton theory with Gaussian propagators

and cubic interaction φ3 with coupling constant λ. The amplitude is evalu-
ated by solving the Bethe-Salpeter equation in the ladder approximation with
two incoming particles of momenta q1 and q2 and two outgoing particles of
momenta q3 and q4, as depicted in Fig. 5.1.

The two-particle propagator ∆ satisfies the Bethe-Salpeter equation in D
dimentions

∆ = 1 + e−H∆ (5.11)

where e−H sticks an extra rung on the sum of ladders (as in Fig. 1). Explicitly,
it can be written as

e−H = (rung propagator)× (two “side” propagators) (5.12)

with integration over either loop momentum or positions of vertices. The
propagator is given by

∆ =
1

1− e−H
=

∑
(e−H)n (5.13)

Here, we will replace integrals with operator expressions as in usual string
theory. Thus, adding the two sides followed by adding the rung in (5.12) is
performed by the operator

e−H = e−(x1−x2)2/2e−(p2
1+p2

2)/2 (5.14)

where the p’s and x’s are now the operators for the two particles. Separating
p’s and x’s into average and relative coordinates,

p1,2 = P ± p, x1,2 = 1
2
X ± 1

2
x (5.15)
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(5.14) is then

e−H = e−x2/2e−P 2+p2

= e−x2/2e−p2

es/4 (5.16)

where
P 2 = −1

4
(q1 + q2)

2 = −1
4
(q3 + q4)

2 = −s/4

By a similarity transformation, we can put half of one exponential on each
side,

e−H → es/4e−x2/4e−p2

e−x2/4 or es/4e−p2/2e−x2/2e−p2/2 (5.17)

To write H as a manifestly Hermitian expression, we apply the Baker-Campbell-
Haussdorf theorem to combine the exponentials into a single one. Because the
exponents, 1

2
x2, 1

2
p2, satisfy the commutation relations of raising and lowering

operators and the Baker-Campbell-Haussdorf theorem requires only commu-
tators, we can use the representation

1
2
x2 →

(
0 1
0 0

)
, 1

2
p2 →

(
0 0
1 0

)
, i1

2
{x, p} →

(
1 0
0 −1

)
(5.18)

So, in general,

e−αp2/2e−βx2/2e−αp2/2 → e−( 0
α

0
0)e−( 0

0
β
0 )e−( 0

α
0
0)

=

(
1 0
−α 1

)(
1 −β
0 1

)(
1 0
−α 1

)
=

(
1 + αβ −β

−α(2 + αβ) 1 + αβ

)

= e−( 0
b

a
0 ) = cosh(

√
ab)− sinh(

√
ab)√

ab

(
0 a
b 0

)
(5.19)

Then, H in (5.17) becomes the hamiltonian of a harmonic oscillator

H = −1
4
s− lnλ2 + ω(mω 1

2
x2 + 1

mω
1
2
p2)

= −1
4
s− lnλ2 + ω

2
D + ωa† · a (5.20)

with λ restored. If we work in coordinate space, as in the following sections,

α = 1
2
, β = 2 ⇒ ω = ln(2 +

√
3), mω =

√
3

2
(5.21)

we can find the Regge trajectory from the spectrum of this harmonic oscillator.
The harmonic oscillators (a D-vector) can be interpreted as the oscillators in
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the usual string theory (but only one such vector) as follows: The positions of
the two partons in the Bethe-Salpeter equation are two adjacent points on the
random lattice, and the relative coordinate represents the first order derivative
of x(σ) corresponding to the first oscillator. (A similar model was considered
in [37].)

Taking (D/2)ω as the ground-state energy and integer excitation J as
the (maximum) spin of the D oscillators (acting with J vector oscillators on
the vacuum), the “energy” of the harmonic oscillator Hamiltonian mω2 1

2
x2 +

(1/m)1
2
p2 can be identified as (J + D/2)ω. Since the Bethe-Salpeter equa-

tion corresponds to perturbatively solving a Schrödinger equation with free
Hamiltonian 1, potential e−H and vanishing total energy e−H − 1 = 0, it gives
H = 2πin,

2πin = −1
4
s− ln(λ2) + ω(J + 1

2
D) (5.22)

So we have the trajectory J = α(s)

α(s) = −1
2
D +

1

ω
[1
4
s + ln(λ2) + 2πin] (5.23)

The real part of (5.23)

α(s) = −1
2
D +

1

ω
[1
4
s + ln(λ2)] (5.24)

is linear with positive slope. The real pole gave us the asymptotic behavior,
while complex poles do not affect the Regge trajectory, as shown in [26]. We
require the vertical intercept of this Regge trajectory, which is given by s = 0,
to be J = 1, so the corresponding spin-one particle is massless. Thus α(0) = 1
gives

e−ω(D+2)λ4 = 1 (5.25)

(In the usual continuum approach, this constraint, as well as D = 26, are found
perturbatively, but in the lattice approach they would be nonperturbative, so
we impose them by hand.)

There are several ways to interpret the group theory of this state: (1) We
can examine only color-singlet states (the partons are N by N matrices of U(N)
color); then we should take the color trace of this vector, which would make
it Abelian. (2) If we examine color-nonsinglets, the vector is in the adjoint
representation, and so represents a Reggeized bound-state gauge field of color,
and thus not a true string state. (3) If we introduce a second type of scalar
parton which is in the fundamental representation of both color and a second,
“flavor” symmetry, we can consider ladders where these scalar “quarks” run
along the outside, giving an open string instead of a closed one [35]. Then the
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vector is the gauge field of this flavor symmetry. It is really only in this last
case that string theory implies the state is massless.

5.4 External vertex operator for gauge field

Now we are ready to introduce the ground state and first excited state for the
harmonic oscillator in ladders (5.20):

eik·(xi+xj)/2|0〉 and ε · (xi − xj)e
ik·(xi+xj)/2|0〉

They are the very same as the vertex operators eik·X and ε · ∂Xeik·X in the
bosonic string, except latticized.

Defining

x = xi − xj =
√

1
2mω

(a + a†)

where a, a† are creation and annihilation operators of the harmonic oscillator
in ladders, the first excitation can also be written as

√
1

2mω
ε · a†|0, k〉 (5.26)

with
|0, k〉 = eik·(xi+xj)/2|0〉 (5.27)

As in usual string or string field theory, this first excited state should be a
massless state and the propagator should have a massless pole. To check it,
let’s consider the amplitude for one incoming and one outgoing state with
momenta k and k′ respectively. In the ladder approximation as reviewed in
the last section, we have to evaluate the amplitude depicted in Fig. 5.1:

A = − 1
2mω

〈0, k|(ε1 · a)∆(ε2 · a†)|0, k′〉 (5.28)

with the definitions k = q1 +q2 and k′ = q3 +q4. The calculation is pretty sim-
ilar to the previous section. The two-particle propagator ∆ = 1

1−e−H satisfying
the Bethe-Salpeter equation as in (5.11) and H is expressed by annihilation
(creation) operators as in (5.20).

In such ladder approximations, the propagator should be written as a sum-
mation of all ladders

∆ = 1
1−e−H =

∑
(e−H)n (5.29)

Thus, using the commutator [aµ, a
†
ν ] = δµ,ν and integrating out X’s, the am-
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plitude in (5.28) is

A = − 1
2mω

〈0, k|(ε1 · a) 1
1−e−H (ε2 · a†)|0, k′〉

= − 1
2mω

ε1·ε2
1−es/4λ2e−ω(1+D/2) δ

D(k + k′) (5.30)

As given in (5.25), the real Regge trajectory α(0) = 1 gives e−ω(D+2)λ4 = 1.
Then (5.30)

A = − 1
2mω

ε1·ε2
1−e−k2/4

δD(k + k′) (5.31)

= − 2
mω

1
k2 ε1 · ε2 , k2 → 0 (5.32)

has a massless pole.
This result can also be seen from the ladder integration if we rewrite (5.28)

as

A = − 1
2mω

∑
n

〈0, k|(ε1 · a)(e−H)n(ε2 · a†)|0, k′〉

= − 1
2mω

∑
n

An (5.33)

Here An is the amplitude for a single ladder with n loops (including external
loops)

An =

∫
(

n∏
i=0

dDxid
Dyi)〈0, k|(ε1 · a)|x0, y0〉[

n∏
i=1

(e−Hi)]〈xn, yn|(ε2 · a†)|0, k′〉

(5.34)

with

〈0, k|(ε1 · a)|x0, y0〉 = ε1 · (x0 − y0)e
−mω

2
(x0−y0)2eik· (x0+y0)

2

〈xn, yn|(ε2 · a†)|0, k′〉 = ε2 · (xn − yn)e−
mω
2

(xn−yn)2eik′· (xn+yn)
2 (5.35)

according to the definition of the ground state of the harmonic oscillator, and

Hi = 〈xi−1, yi−1|H|xi, yi〉
= ln(λ−2) + 1

4
s + 1

4
(xi−1 − yi−1)

2 + 1
2
(xi−1 − xi)

2

+1
2
(yi−1 − yi)

2 + 1
4
(xi − yi)

2 (5.36)
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Doing the Gaussian integrals for xi’s and yi’s, (5.34) becomes

An = − ε1·ε2
2mω

[λ2e−k2/4e−ω(1+D/2)]nδD(k + k′) (5.37)

which gives the same massless pole as in (5.30).
This massless pole means the first excited state (5.26) is a massless state,

and has the same propagator as the YM gauge field in Feynman gauge. We
will discuss in the following sections how this generalizes to interactions.

5.5 The 3-string vertex

To get the 3-point gauge interaction in YM fields, we have to find a way to
join three states. One analogue is Witten’s open string field theory, in which
stings interact by identifying the right half of each string with the left half
of the next one. On the lattice we need to sum over an infinite number of
diagrams representing this situation, each giving a result very similar to the
3-vector vertex in string field theory. Here we will give the 2 simplest examples
to show that they give the same interaction as the usual YM field.

Similarly to string field theory (SFT), the 3-state interaction can be written
as

A(0)
3 = (〈0|1 ⊗ 〈0|2 ⊗ 〈0|3)|V1V2V3F̂ |0〉 (5.38)

Using the definitions

x1 + x2 = X , x1 − x2 = x;

y1 + y2 = Y , y1 − y2 = y;

z1 + z2 = Z , z1 − z2 = z; (5.39)

V1 = ε1 · xeik·X/2, V2 = ε2 · yeik·Y/2 and V3 = ε3 · zeik·Y/2

are the external vertex operators for massless fields as considered in the pre-
vious section. In the operator formulation,

x =
√

1
2mω

(a + a†), y =
√

1
2mω

(b + b†), z =
√

1
2mω

(c + c†)

where a(a†), b(b†), c(c†) are annihilation (creation) operators for three inde-
pendent harmonic oscillators in the ladder approximation.

The simplest figure for the 3-string lattice vertex is shown in Fig. 5.2. Then
the 3-state vertex can be constructed with annihilation (creation) operators of
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Figure 5.2: The interaction lattice of order λ0 with the vertex given by F̂ .

ladders after integrating out X,Y, Z

F̂ =

∫
dDXdDY dDZe−

1
2
[x1−z2)2+(y1−x2)2+(z1−y2)2]+

i
2
(k1·X+k2·Y +k3·Z)

= e−
1
6
(x+y+z)2− i

6
(x·k23+y·k31+z·k12) (5.40)

where x, y, z can be expressed with annihilation (creation) operators a(a†),
b(b†),c(c†) and kij = ki − kj.

Thus the amplitude in (5.38) can be evaluated using commutators of 3
annihilation (creation) operators and the Baker-Campbell-Haussdorf theorem.
First we write

− 1
6
(x+y+z)2 = −1

6
1

2mω
[(a†+b†+c†)2+(a+b+c)2+{a+b+c, a†+b†+c†}] (5.41)

It is noticed that the ingredients of exponents satisfy the commutation rela-
tions of raising and lowering operators of SU(1,1). We use the representation

i
6
(a + b + c)2 →

(
0 1
0 0

)
, i

6
(a† + b† + c†)2 →

(
0 0
1 0

)
,

−1
6
{a + b + c, a† + b† + c†} →

(
1 0
0 −1

)
(5.42)

to calculate the commutators when we apply the Baker-Campbell-Haussdorf
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theorem. Then

e−
1
6
(x+y+z)2 = e




1
2mω

1
2mω

i
2mω−1
2mω




=

(
1 + 1

2mω
i

2mω
i

2mω
1− 1

2mω

)

= e(
0
α

0
0)e−(β

0
0
−β )e−( 0

0
α
0 )

=

(
1 0
α 1

)(
eβ 0
0 e−β

)(
1 α
0 1

)
=

(
eβ αeβ

αeβ α2eβ + e−β

)

(5.43)

which gives
α = i

1+2mω
, β = ln(1 + 1

2mω
) (5.44)

Thus,

e−
1
6
(x+y+z)2|0〉 = eα

i
6
(a†+b†+c†)2e−

β
6
{a+b+c,a†+b†+c†}eα

i
6
(a+b+c)2|0〉

= eα
i
6
(a†+b†+c†)2e−

D
2

β|0〉 (5.45)

for D-dimensional spacetime. Finally, using the Baker-Campbell-Haussdorf
theorem again to write

e
− i

6
√

2mω
(a+a†)·k23

= e
− i

6
√

2mω
a†·k23

e
− i

6
√

2mω
a·k23

e
1
2
(− i

6
√

2mω
)2k2

23 , etc., (5.46)

we find the 3-state interaction for the above massless state as

A(0)
3 = ( 1

2mω
)3/2e−

D
2

β〈0|(ε1 · a)(ε2 · b)(ε3 · c)

×e
− i

6
√

2mω
[(a+a†)·k23+(b+b†)·k31+(c+c†)·k12]

eα
i
6
(a†+b†+c†)2|0〉

= κ{−
i

6
√

2mω
α

3
i[(ε1 · ε2)(ε3 · k12) + permutations]

+(− i
6
√

2mω
)3(ε1 · k23)(ε2 · k31)(ε3 · k12)} (5.47)

where

κ = ( 1
2mω

)3/2e−
D
2

βe
1
2
(− i

6
√

2mω
)2(k2

23+k2
31+k2

12)

= ( 1
2mω

)3/2e−
D
2

βe−
1

48mω
(k2

1+k2
2+k2

3) (5.48)

The result is the very same as the usual YM and F 3 3-point interactions
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as obtained from bosonic open string field theory in Feynman-Siegel gauge,
except for the different ratio between the coefficients of the F 2 term and the
F 3 term. Also, (5.47) has nonlocal coupling factors κ as in bosonic open string
field theory.

Also, instead of using the operators of harmonic oscillators, direct Gaussian
integration gives exactly same result as above for the diagram in Fig. 5.2.
(5.38) can be written as

A(0)
3 =

∫
dDxdDydDz〈0|V1V2V3|x, y, z〉〈x, y, z|F̂ |0〉 (5.49)

Substituting (5.35) into it and integrating out all x1, x2, y1, y2, z1 and z2, we
get the same 3-point vertex for gauge bosons as (5.47).

Another 3-string lattice vertex is shown in Fig. 5.3, which is order λ4 in
the lattice coupling. Then the 3-point amplitude is the same as in (5.38) with

Figure 5.3: The interaction lattice of order λ4 with the vertex given by Ĝ.

different 3-state vertex

Ĝ =

∫
dDXdDY dDZdDt0d

Dt1d
Dt2d

Dt3e
−1

2
[(t1−t0)2+(t2−t0)2+(t3−t0)2]

×e−
1
2
[(x1−t1)2+(x2−t2)2+(y1−t2)2+(y2−t3)2+(z1−t3)2+(z2−t1)2]e

i
2
(k1·X+k2·Y +k3·Z)

= e−
1
10

(x2+y2+z2)− 1
20

(x+y+z)2− i
10

(x·k23+y·k31+z·k12) (5.50)

With the same external massless state of section 5.4, the 3-state interaction is

A(1)
3 = λ4(〈0|1 ⊗ 〈0|2 ⊗ 〈0|3)|V1V2V3Ĝ|0〉 (5.51)

In the operator formalism, the computation ofA(1)
3 is a little trickier. Introduce
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three new variables through an orthogonal rotation:

x′ = 1√
3
(x + y + z)

y′ = 1√
2
(x− y) (5.52)

z′ = 1√
6
(x + y − 2z)

Thus

e−
1
10

(x2+y2+z2)− 1
20

(x+y+z)2 = e−
1
4

x′2− 1
10

(y′2+z′2) (5.53)

Also, 3 pairs of new annihilation (creation) operators

a′ = 1√
3
(a + b + c) , a′† = 1√

3
(a† + b† + c†)

b′ = 1√
2
(a− b) , b′† = 1√

2
(a† − b†) (5.54)

c′ = 1√
6
(a + b− 2c) , c′† = 1√

6
(a† + b† − 2c†)

are introduced, which are independent of each other because [a′, b′†] = [a′, c′†] =
0, etc. Then

e−
1
4

x′2 = e−
1
4

1
2mω

(a′2+a′†2+{a′,a′†})

e−
1
10

y′2 = e−
1
10

1
2mω

(b′2+b′†2+{b′,b′†})

e−
1
10

x′2 = e−
1
10

1
2mω

(c′2+c′†2+{c′,c′†}) (5.55)

The ingredients of each exponent satisfy the commutation relations of raising
and lowering operators for SU(1,1), We use the same representation as in
(5.42):

i
2
(a′)2 →

(
0 1
0 0

)
, i

2
(a′†)2 →

(
0 0
1 0

)
,

−1
2
{a′, a′†} →

(
1 0
0 −1

)
(5.56)

and, with the same procedure, find

e−
1
4

x′2 = e−
1
4

1
2mω

(a′2+a′†2+{a′,a′†}) = eα1
i
2

a′†2e−α2
1
2
{a′,a′†}eα1

i
2

a′2 (5.57)

Similarly,

e−
1
10

y′2 = e−
1
10

1
2mω

(b′2+b′†2+{b′,b′†}) = eβ1
i
2

b′†2e−β2
1
2
{b′,b′†}eβ1

i
2

b′2 (5.58)
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e−
1
10

z′2 = e−
1
10

1
2mω

(c′2+c′†2+{c′,c′†}) = eβ1
i
2

c′†2e−β2
1
2
{c′,c′†}eβ1

i
2

c′2 (5.59)

Here α1, α2, β1, β2 are defined as:

α1 = i
1+2(2mω)

, α2 = ln[1 + 1
2(2mω)

]

β1 = i
1+5(2mω)

, β2 = ln[1 + 1
5(2mω)

] (5.60)

Obviously, annihilation operators a′, b′, c′ also annihilate the vacuum |0〉 and

e−
1
10

(x2+y2+z2)− 1
20

(x+y+z)2|0〉 = Cei
α1

6
(a+b+c)2+i

β1

3
(a†2+b†2+c†2−a†·b†−b†·c†−c†·a†|0〉

C = e−
α2

2
D−β2

2
D−β2

2
D (5.61)

Finally, using the Baker-Campbell-Haussdorf theorem directly, up to a con-
stant,

A(1)
3 = λ4〈0|V1V2V3Ĝ|0〉

∝ κ′{4+40mω
1+4mω

[(ε1 · ε2)(ε3 · k12) + permutations] + (ε1 · k23)(ε2 · k31)(ε3 · k12)}
(5.62)

with

κ′ = iλ4e
− 3

40
1

1+10mω
(k2

1+k2
2+k2

3)
(5.63)

The exponents of k2
i ’s in κ′ will vanish if it is on-shell but will make coupling

factors nonlocal off-shell. Again, this result can be obtained by Gaussian
integration directly, as in (5.49). We won’t go through the details.

It is easy to notice that both vertices F̂ in (5.40) and Ĝ in (5.50) give some
gauge-fixed interactions for the massless state constructed from partons, as in
Witten’s bosonic open string field theory, which will be discussed in the next
section. Their comparison will be interesting because it will give another view
of string field theory, from the lattice.

5.6 Comparison to string field theory

In this section, we will compare the two 3-state vertices mentioned in the
last section and the 3-state coupling from them with those in SFT. As we
will notice, if all oscillator modes but the zeroth and first are truncated, the
structure of 3-state vertices F̂ in (5.40) and Ĝ in (5.50) seem similar to the 3-
string vertex from Witten’s interaction in SFT, except for different coefficients.

In above sections, the scale of the lattice was set to 1, which leads to the
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slope of the Regge trajectory 1
4ω

. So before comparing with string field theory,
we have to restore the scale of the lattice to match the slope with the Regge
slope from usual string theory (or string field theory).

We use the lattice actions (5.7), with the lattice scale α̃′. The calculations
in previous sections are unchanged except for rescaling the momenta by

ki →
√

α̃′ki (5.64)

and renormalizing the lattice coupling by

λ → λ′ (5.65)

Then the real Regge trajectory is

α(s) = −1
2
D +

1

ω
[ α̃′

4
s + ln(λ′2)] (5.66)

with the slope α̃′
4ω

. Setting it to be the same as the Regge slope from string
theory, which is α′, we need the lattice scale

α̃′ = 4ωα′

The intercept condition will be the same as (5.25) but replacing λ by λ′.
It is easy to see the propagator (5.28) for the gauge boson in the lattice

string still has a massless pole. Also, the lattice rescaling did nothing to
either 3-string vertex but change the scale of momenta and so change the ratio
between coefficients of F 2 terms and F 3 terms in 3-point amplitudes.

In string field theory, the general 3-string interaction can be interpreted as

〈h1[ϑA]h2[ϑb]h3[ϑc]〉 = (〈A|1 ⊗ 〈B|2 ⊗ 〈C|3)|V123〉 (5.67)

where ϑi is the vertex operator for each external state and hi(z) is the con-
formal mapping from each string strip to the complex plane [17]. In Witten’s
theory, the strings couple by overlapping the right half of each string with
the left half of the next [14]. Because there is only one oscillator mode in
our ladder approximation for the lattice, here only the zeroth and first level
oscillator modes will be considered in SFT aspect. After truncating oscillator
modes and ignoring ghost contributions (there is no worldsheet gauge fixing
on the lattice), the 3-string vertex in the oscillator approach is [16]:

|V123〉 = N δD(k1 + k2 + k3) exp
(
−1

2

3∑
I,J=1

[aI
−1N

IJ
−1,−1a

J
−1 + 2aI

−1N
IJ
−1,0p

J
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+pIN IJ
00 pJ ]

)
|0〉1 ⊗ |0〉2 ⊗ |0〉3(5.68)

The Neumann coefficients N IJ
mn depend on the choice of the conformal map-

pings. It was shown that the different conformal mappings correspond to
different formulations of string field theory that are equivalent to each other.
The most widely used open string field theory is Witten’s theory. The action
in Witten’s open string field theory is

S = +1
2
〈V2|Ψ, QΨ〉+ g

3
〈V3|Ψ, Ψ, Ψ〉 . (5.69)

in which the first part gives the free term and the second part gives the inter-
actions. The Neumann coefficients read

N11
−1,−1 = N22

−1,−1 = N33
−1,−1 = 5

27
(5.70)

N12
−1,−1 = N23

−1,−1 = N31
−1,−1 = −16

27
(5.71)

N12
−1,0 = −N13

−1,0 = N23
−1,0 = −N21

−1,0 = N31
−1,0 = −N32

−1,0 = 2
√

6α′
9

(5.72)

N11
00 = N22

00 = N33
00 = α′ ln(27/16) (5.73)

and zero for others [31]. With the Feynman-Siegel gauge b0 = 0, for tachyon
and massless states and up to 3-point interactions, we will get the gauge-fixed
action from the gauge-invariant action

S = 1
2
[∇µ, φ][∇µ, φ]− φ2 − FµνF

µν + 1
3
φ3 + 2φFµνF

µν − 4
3
F ν

µ F λ
ν F µ

λ (5.74)

with a particular gauge as we discussed in chapter 4. Here we focus on only
the massless state and set

〈ψi| = 〈0, ki|IA(ki) · aI
1 (5.75)

It gives the 3-point gauge interactions

A3 = g
3
〈V3|Ψ, Ψ, Ψ〉

∝ ige−
1
2

N11
00 (k2

1+k2
2+k2

3){[(A1 · A2)(A3 · k12) + permutations]

+α′
2
(A1 · k23)(A2 · k31)(A3 · k12)} (5.76)

after α′ is restored.
From the previous section, in the oscillator approach, the 3-state vertices in

(5.40) or (5.50) give the same form as (5.68) except for some different Neumann
coefficients.
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For (5.40),
N11
−1,−1 = N22

−1,−1 = N33
−1,−1 = 1

3
1

1+2mω
(5.77)

N12
−1,−1 = N23

−1,−1 = N31
−1,−1 = 1

3
1

1+2mω
(5.78)

N12
−1,0 = −N13

−1,0 = N23
−1,0 = −N21

−1,0 = N31
−1,0 = −N32

−1,0 =
√

α̃′
3
√

2m
(5.79)

N11
00 = N22

00 = N33
00 = α̃′

6m
(5.80)

and zero for others. This gives a 3-point interaction for massless bosons as in
(5.47) with the ratio of F 3 and F 2 coefficients

α̃′ 1+2mω
6m

= α′ 1+2mω
3m

ω (5.81)

instead of the ratio α′/2 from Witten’s vettex.
For (5.50),

N11
−1,−1 = N22

−1,−1 = N33
−1,−1 = 1

3
1

1+4mω
+ 2

3
1

1+10mω
(5.82)

N12
−1,−1 = N23

−1,−1 = N31
−1,−1 = 1

3
[ 1
1+4mω

− 1
1+10mω

] (5.83)

N12
−1,0 = −N13

−1,0 = N23
−1,0 = −N21

−1,0 = N31
−1,0 = −N32

−1,0 =
√

α̃′
√

2mω
1+10mω

(5.84)

N11
00 = N22

00 = N33
00 = 3

5
α̃′ ω

1+10mω
(5.85)

and zero for others. Again, the 3-point interaction for the massless state is the
same as in (5.62) with a ratio of F 3 and F 2 coefficients of

α̃′ 1+4mω
1+10mω

ω = 4α′ 1+4mω
1+10mω

ω2 (5.86)

As Witten’s theory in Feynman-Siegel gauge, both (5.40) and (5.50) give
gauge-fixed 3-point interactions with nonlocal eτ factors. The mismatch of
F 2 and F 3 coefficients may be due to the fact we only considered the two
simplest interacting lattice diagrams. In principle, all interaction diagrams
should be summed, which may give the same interaction as from usual string
theory (on-shell) or Witten’s string field theory (off-shell). But it does show
that the massless state given in the beginning of section 5.4 can have the same
interactions as the usual YM field. So this will be an interesting start to view
the YM gauge field as the bound state of an underlying scalar field instead of
as a fundamental field.

Another similarity between vertices (5.40) or (5.50) and Witten’s vertex
is that they all have the same symmetries. First, there is a cyclic symmetry
under I → J, J → K,K → I, which corresponds to cyclic symmetry of each
interaction diagram. Second, there is a symmetry for Neumann coefficients
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under I ↔ J,m ↔ n. Finally, there is a twist symmetry under N IJ
nm =

(−1)m+nNJI
nm associated with twisting of the lattices (strings). It is nontrivial

and restricts the group structure of the gauge-fixed action. For the case here,
we only consider the first excited state |ψi〉 in (5.75), which is a twist-odd state
under the twist operator Ω: Ω|ψi〉 = −|ψi〉. Then the twist invariance requires
the gauge-fixed interaction to be proportional to the structure constants fabc

because

Ω〈Ψ1, Ψ2 ∗Ψ3〉 = 〈(ΩΨ1), (ΩΨ3) ∗ (ΩΨ2)〉 = −〈Ψ1, Ψ3 ∗Ψ2〉 (5.87)

as shown in Fig 5.4. There, diagram I gives the term ∝ Tr(TaTbTc) while
diagram II gives the term ∝ −Tr(TcTbTa) and their sum gives an interaction
term ∝ fabc. Because the gauge-invariant YM action can always be written as

I

a b

c

II

c b

a

Figure 5.4: The twist symmetry in Witten’s vertex: I ∝ Tr(TaTbTc) ; II ∝
−Tr(TcTbTa)

a function of structure constants, the gauge condition in this case should also
be expressed in terms of fabc, which excludes the Gervais-Neveu gauge. These
symmetries apply not only to massless states but also to general states (but
with the usual extra sign factors in the twist). Obviously, both Fig. 5.2 and
Fig. 5.3 are similar to the diagram of joining three open strings in Witten’s
theory except they are on a discrete lattice while Witten’s vertex is on a
continuous worldsheet.

Another 3-string vertex in SFT we will mention here is the CSV vertex,
which is equivalent to Witten’s vertex on-shell. Here we only review the coef-
ficients for zero-modes and first excited modes:

N11
−1,−1 = N22

−1,−1 = N33
−1,−1 = 0 (5.88)

N12
−1,−1 = N23

−1,−1 = N31
−1,−1 = 1 (5.89)
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N12
−1,0 = N23

−1,0 = N31
−1,0 =

√
2α′ (5.90)

N21
−1,0 = N32

−1,0 = N13
−1,0 = 0 (5.91)

and all N IJ
00 vanish. Comparing to the above vertices, the CSV vertex lacks

twist symmetry. So, as has been shown previously, it corresponds to the well-
known Gervais-Neveu gauge without nonlocal coupling factors.
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Chapter 6

Conclusion and Discussion

In this thesis, we have given a general construction for gauge-covariant vertex
operators, and applied it to the YM vertex in the string and superstring in
3-point amplitudes. This method allows direct calculation of gauge-invariant
results, analogous to nonlinear sigma models. We also computed the gauge-
invariant tree amplitude between 4 gauge bosons, whose explicit expression in
bosonic string theory has not appeared previously in the literature. The results
reproduce the same amplitudes at order 1, α′, and α′2 from the appropriate
F 2, F 3 (for the bosonic string), and F 4 terms in a field theory action.

On the bosonic string field theory side, as the Feynman-Siegel gauge is
imposed, the action is a Yang-Mills gauge fixed one. We computed the ZJBV
action for Witten’s open string field theory for tachyons and massless vectors,
including all ghosts and antifields. We find after some canonical transforma-
tions that the action up to 3-point terms is just the usual Yang-Mills one plus
φF 2 and F 3 interactions , which is explicitly gauge invariant now. The gauge
condition in field theory which corresponds to the Feynman-Siegel gauge on
the world-sheet is also known. Furthermore, there are no nonlocal interactions
in the action up to 3-point terms. (A higher-point analysis would require an-
alyzing the massive fields, since redefinitions of massive fields appearing in
propagators, in 4-point and higher diagrams, will produce new local terms for
massless fields on external lines.) We pushed these nonlocal factors in 3-point
interactions to higher-point interactions. It may be possible that all such ex-
plicit factors can be eliminated in the complete action, so that all “nonlocality”
can be attributed to the presence of higher-spin fields.

At the end, we followed another approach of string quantization: replace
the world-sheet by the random lattice, where the random nature reflects the
arbitrariness of the world-sheet metric. From the bosonic lattice string, we
constructed the massless state as a bound state of partons, and two simple
lattice interaction diagrams. Using such interaction diagrams, we found in-
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teractions of those bound states similar to the usual YM gauge field. The
comparison of these 3-state vertices on the lattice with Witten’s vertex on
the continuous worldsheet shows all of them have the same symmetries, espe-
cially twist symmetry, which is absent in the CSV vertex. The twist symmetry
restricted the gauge-fixed interaction to be proportional to the structure con-
stants of the gauge group, or equivalently, the interaction term of the gauge
condition must be proportional to the structure constants. That’s the reason
the Gervais-Neveu gauge can only be obtained from the CSV vertex. Anyway,
we show here the possibility to bind the scalars on the lattice to get the mass-
less vector state which behaves like the gauge field, i.e., the gauge field is no
longer a fundamental particle but a composite state in the field theory. This
also provided a new view of the 3-string coupling in Witten’s bosonic open
string field theory.
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