
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Regulation of In Vitro Pre-mRNA 
Splicing by hnRNP A1 
Cooperative Binding 

 
A Dissertation Presented 

 
by 

 

Hazeem L Okunola 
 

to 
 

The Graduate School 
 

in Partial Fulfillment of the 
 

Requirements 
 

of the Degree of 
 

Doctor of Philosophy 
 

in 
 

Physiology and Biophysics 
 

Stony Brook University 
 
 
 

December 2008 
 
 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 

Hazeem L Okunola 
2008 



ii 
 

Stony Brook University 
 

The Graduate School 
 

Hazeem L Okunola 
 
 

We, the dissertation committee for the above candidate for the Doctor of 
Philosophy degree, hereby recommend acceptance of this dissertation. 

 
 

Dr. Adrian R Krainer – Dissertation Advisor 
Professor – Cold Spring Harbor Lab 

 
 

Dr. Raafat El-Maghrabi – Chairperson of Defense 
Associate Professor – Department of Physiology and Biophysics 

 
 

Dr. Nicolas Nassar – Committee Member 
Associate Professor – Department of Physiology and Biophysics 

 
 

Dr. Peter Brink – Committee Member 
Professor and Chairman – Department of Physiology and Biophysics 

 
 

Dr. Wali Karzai – Committee Member 
Associate Professor – Department of Biochemistry and Cell Biology 

 
 
 
 
 

This dissertation is accepted by the Graduate School 
 
 
 
 
 

Lawrence Martin 
Dean of the Graduate School 

 
 

 



iii 
 

Abstract of the Dissertation 
 
Regulation of in Vitro Pre-mRNA Splicing by hnRNP A1 Cooperative 

Binding 
 

by 
 

Hazeem L Okunola 
 

Doctor of Philosophy 
 

in 
 

Physiology and Biophysics 
 

Stony Brook University 
 

2008 

 
 
 

Splicing is defined as the removal of introns and joining together of 
exons from primary transcripts. Splicing, which is essential for eukaryotic 
gene expression, can be constitutive or alternative. In constitutive splicing, 
all the exons are joined together in the same order in which they are 
present along a gene. In alternative splicing, part of an exon or the whole 
exon can be included or skipped in the final, mature mRNA products. 
Alternative splicing is the principal means by which eukaryotes diversify 
the number of proteins expressed from a single gene. Many alternative 
splicing events are regulated by the interplay between ESE (exonic 
splicing enhancer) elements that bind SR proteins (Serine/Arginine-rich 
proteins) and ESS (exonic splicing silencer) elements that bind hnRNPs 
(heterogeneous nuclear ribonucleoproteins), notably hnRNP A1. hnRNP 
A1 inhibits splicing in a cooperative-binding-dependent manner. When 
hnRNP A1 is able to displace bound SR protein from an ESE, the result is 
skipping of the corresponding exon. In contrast, when the SR protein 
binds tightly enough to disrupt hnRNP A1 cooperative binding along the 
exon, the exon is included. I show in Chapter 2 that hnRNP A1 
cooperative binding does not require RNA secondary structure, and that 
this cooperative binding along an RNA can displace a protein tightly bound 
to an RNA hairpin, and unwind the hairpin structure. I also show that 
hnRNP A1 cooperative binding can spread along RNA from 5’ to 3’, in 
addition to the known 3’ to 5’ spreading. This type of binding, similar to 
beads on a string, results in repression of splicing. When hnRNP A1 initial 
binding takes place in the middle of an RNA, spreading proceeds 
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preferentially in a 3’ to 5’ direction. I also show that there is an interaction, 
or cross-talk, between hnRNP A1 bound at two distant sites, through 
cooperative binding. In Chapter three, I describe methods and 
experiments to derive a more accurate hnRNP A1 consensus motif for 
sequence-specific, high-affinity binding. 
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1.1 Pre-mRNA Splicing 
 

1.1.1 Introduction to pre-mRNA Splicing 
 

Pre-mRNA splicing is a required process for proper gene 
expression in unicellular and multicellular eukaryotes. Pre-mRNA splicing 
involves the removal of intervening sequences, known as introns, and the 
joining of the coding sequences, known as exons, from a primary 
transcript to form a mature mRNA product. The introns that are spliced out 
are in the form of lariat-shaped RNA (Grabowski, Padgett & Sharp, 1984; 
Padgett et al., 1986; Ruskin et al., 1984). This process can be in the form 
of constitutive splicing, in which all the exons are joined in the same order 
in which they are present along a gene; or it can be in the form of 
alternative splicing, in which part of an exon or a whole exon is either 
skipped or included from the final mature mRNA product(s). Alternative 
splicing is a means by which eukaryotes diversify the number of protein 
expressed from a single gene. Many alternative splicing events are 
regulated by the interplay between ESE (exonic splicing enhancer) 
elements that bind SR (Serine/Arginine rich) proteins and ESS (exonic 
splicing silencer) elements that binds hnRNPs (heterogeneous nuclear 
ribonucleoproteins). If hnRNP binding prevails over SR protein binding 
and prevents splicing activation via the ESE, the result is skipping of the 
alternative exon; on the other hand, if the SR protein successfully prevents 
hnRNP-mediated repression, the result is inclusion of the alternative exon.  
 
 
 
 
 

1.1.2 Constitutive Splicing 
 

Constitutive splicing is the removal of the introns and joining 
together of the adjacent exons in a manner that ensures that no exon is 
skipped, as shown in Figure 1A. This type of splicing leads to the 
production of a single protein from a single gene; an example is the 
splicing of the three exons of the human beta-globin gene transcripts to 
generate a single beta-globin protein chain (Crick, 1979; Green, 1991; 
Orkin & Kazazian, 1984; Vidaud et al., 1989). 
 
 
 
 
 



3 
 

1.1.3 Alternative Splicing 
 

Alternative splicing is the skipping of an exon or part of an exon 
during the process of removing intervening sequences from the primary 
transcript (Figure 1B). The mature messenger RNA (mRNA) that results 
from this splicing event is then transported to the cytoplasm for translation 
into protein. Since alternative splicing makes differential use of exon-intron 
junctions, many mRNAs may be produced from a single primary transcript. 
This is a way many organisms use to diversify the number of proteins 
produced from a single transcript (Green, 1991). An extreme example of 
this is the Drosophila Dscam gene, in which a single pre-mRNA transcript 
produces up to 38,016 protein isoforms through combinatorial alternative 
splicing events (Graveley, 2005; Kreahling & Graveley, 2005). Another 
example of alternative splicing is sex determination in Drosophila, in which 
a series of alternative splicing events affecting sex-specific transcription 
factors, allows sex differentiation of male and female Drosophila (Bell et 
al., 1991; Boggs et al., 1987; Hedley & Maniatis, 1991; Hoshijima et al., 
1991; Ryner & Baker, 1991). Alternative splicing can in many cases be 
subjected to regulation, for example in a cell-type-specific manner, during 
embryonic development, or in response to signaling pathways. 

 Retroviruses like HIV-1 depend greatly on alternative splicing to 
produce all of the viral proteins from a single primary transcript (Caputi & 
Zahler, 2002). The unspliced transcript is necessary for viral replication, 
packaging into virions, and translation of several proteins, while other viral 
proteins are generated from partially spliced or fully spliced transcripts. 
Special mechanisms allow these incompletely spliced transcripts to be 
exported to the cytoplasm for translation.  

About 50% of point mutations associated with human genetic 
diseases results in defective splicing of the mutant genes (Cartegni, Chew 
& Krainer, 2002; Cartegni et al., 1996). Analysis of the human genome 
indicated that more than 74% of human genes encode at least two 
isoforms by alternative splicing (Johnson et al., 2003; Kan, States & Gish, 
2002; Lander et al., 2001; Okazaki et al., 2002). 
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A. Constitutive pre-mRNA splicing 
 
 

 
 

 
 
 
 

B. Alternative splicing 
 
 
 

 
 
 
 
 
 
 
Figure 1. Diagram of constitutive (A) and alternative (B) pre-mRNA splicing. The colored 

rectangular boxes represent pre-mRNA coding sequences known as exons, and the horizontal 
lines separating the exons are the intervening sequences, known as introns, that are removed 
during splicing. During this type of splicing event, all exons are joined together as all the introns are 
removed. 
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1.1.4 DNA Transcription and RNA Splicing 
 
Within the nucleus are structures known as speckles, which reflect 

the organization of spliceosomes and other splicing factors. The splicing 
factors begin to move to the site of DNA transcription when RNA 
polymerase II transcription activation is detected (Misteli, Caceres & 
Spector, 1997). Movement of the splicing factors to the site of transcription 
activation shows the coupling of DNA transcription and RNA splicing 
(Jimenez-Garcia & Spector, 1993). The primary transcripts newly 
synthesized by RNA polymerase II are covalently modified at both the 5’ 
and the 3’ end. As the elongation of the newly transcribed RNA 
progresses to about 30 nucleotides, the 5’ end of the RNA is capped with 
a methylated guanine nucleotide. The 5’ cap of this newly synthesized 
RNA serves three purposes; the first is to differentiate the RNA newly 
transcribed by polymerase II from other RNAs transcribed by other 
polymerases; the second is to prevent this newly synthesized RNA from 
being degraded by nucleases; and the third is to serve as the initiation 
point for the protein translation machinery in the cytoplasm (Nevins, 1983; 
Proudfoot, 1989; Takagaki, Ryner & Manley, 1988; Wickens, 1990).  

The 3’ end of the RNA newly synthesized by RNA polymerase II is 
polyadenylated by a poly-A-polymerase at a cleavage site located 10 – 30 
nucleotides downstream of the polyadenylation signal AAUAAA. Up to 200 
residues of non-templated adenylic acid (poly-A) may be added to the 
cleaved 3’ end of the RNA by poly-A-polymerase. This polyadenylation of 
the 3’ end of the primary transcript may serve as the recognition of mature 
mRNA for transport into the cytoplasm, and may also be recognized by 
the translation machinery, as well as help stabilize the mRNA in the 
cytoplasm (Jimenez-Garcia & Spector, 1993; Nevins, 1983; Proudfoot, 
1989; Spector, 1993; Spector, Landon & O'Keefe, 1993a; Spector, 
O'Keefe & Jimenez-Garcia, 1993b; Takagaki et al., 1988; Wickens, 1990). 
 
 
 
 
 
 
 

1.1.5 Mature mRNA Export 
 

Mature mRNAs are exported into the cytoplasm at the completion 
of splicing, complexed with proteins, including hnRNPs. Many of these 
proteins are stripped from the mRNA (or exchanged for other proteins) 
upon reaching the cytoplasm, and most of them return to the nucleus 
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(Brown, Plumpton & Beggs, 1992; Green, 1989; Jimenez-Garcia & 
Spector, 1993; Spector, 1993; Spector et al., 1993a; Spector et al., 
1993b). 
 
 
 
 
 
 

1.2 Splicing Machinery 
 
 

1.2.1 Splice Sites 
 

Intron splice sites are chosen or recognized in pairs: the 5’ splice 
site and 3’ splice site, which are characterized in part by highly conserved 
dinucleotides (GU and AG, respectively). The recognition of these splice 
sites depends in part on two types of snRNPs (small nuclear 
ribonucleoprotein particles), U2 and U12 snRNPs. The complex formed 
between small nuclear RNA (snRNA) and proteins makes up a snRNP 
(Roca, Sachidanandam & Krainer, 2003; Roca, Sachidanandam & 
Krainer, 2005; Sheth et al., 2006; Will & Luhrmann, 2001a; Will & 
Luhrmann, 2001b; Will et al., 2001). U2 snRNP-dependent introns have 
termini with dinucleotide configuration of GU – AG, and in some cases GC 
– AG, or AU – AC; U12 snRNP-dependent introns begin and end with AU 
– AC or GU – AG (Roca et al., 2003; Roca et al., 2005; Sheth et al., 
2006). The most common and most conserved intronic pairs of splice sites 
are the ones recognized by U2 snRNP (Roca et al., 2003; Roca et al., 
2005; Sheth et al., 2006). The 5’ splice site, which is also known as the 
donor site, is recognized by the U1 or U11 snRNP through complementary 
base pairing with U1 or U11 snRNA  (Roca et al., 2003; Roca et al., 2005; 
Sheth et al., 2006; Will & Luhrmann, 2001a; Will & Luhrmann, 2001b; Will 
et al., 2001). 
 
 
 
 
 
 
 

1.2.2 Spliceosome assembly 
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The snRNPs associated with the splicing of U2-dependent introns 
are U1, U2, U4, U5, and U6 snRNPs, whereas the ones associated with 
splicing of U12-dependent introns are U11, U12, U4atac, U6atac, and U5 
snRNPs (Sheth et al., 2006). For effective spliceosome assembly on a 
pre-RNA, at least four unique elements are required: the 5’ splice site 
(5’ss), a branch point sequence (BPS), followed by a polypyrimidine tract 
(PPT) and a 3’ splice site (3’ss) (Hastings & Krainer, 2001). Spliceosome 
assembly is organized in a stepwise manner with the formation of 
intermediate complexes called E, A, B and C (Figure 2). The E complex is 
formed when recognition of the 5’ss occurs through U1 snRNA base-
pairing with the 5’ss. In addition, an SR protein that promotes binding of 
the U2 auxiliary factor (U2AF) to the PPT in an ATP-independent manner, 
and U2 snRNP might also be part of the E complex in a way that does not 
yet involve interaction with the BPS (Das, Zhou & Reed, 2000; Hastings & 
Krainer, 2001). Next is the A complex, in which U2 snRNA base pairing 
with the BPS occurs in an ATP-dependent manner. The interaction of the 
tri-snRNP, U4/U6·U5, with the pre-mRNA to form the B complex and the C 
complex occurs when the remodeling of RNA-RNA and protein-RNA of the 
B complex forms a catalytic spliceosome. 

Even though U12-dependent intron splicing represents less than 
1% of all splicing (Burge, Padgett & Sharp, 1998; Konig et al., 2007; 
Levine & Durbin, 2001), the organization of the splicing complexes may be 
similar to the U2-dependent intron splicing, except for the fact that U12 
instead of U2 snRNA base pairs to the BPS and U11 instead of U1 snRNA 
base pairs to the 5’ss. Also, the formation of a catalytic core, U6atac and 
U12/U6atac, can occur without the displacement of U11 from the 5’ss by 
U6atac (Frilander & Steitz, 2001; Will et al., 2001). 
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Spliceosome assembly 
 
 
 

 
 
 
 

Figure 2. Spliceosome assembly. The diagrams show the spliceosome complexes that assemble 

to form a catalytically competent spliceosome (reviewed by Hastings and Krainer, 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Review: Hastings and Krainer, 2001 
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1.3 Regulation of Splicing 
 
 

1.3.1 Cis-acting elements 
 

A. Exonic Splicing Enhancers 
 

Exonic splicing enhancers (ESEs) are regulatory cis acting 
elements found within the exons (Blencowe, 2000), but the short 
nucleotide sequences that constitute an ESE are sometimes found within 
the intronic sequences as well. ESEs were first identified in the 
alternatively spliced Drosophila doublesex (dsx) gene as a purine-rich 
element in exon 4 that controls the inclusion of this female-specific exon 
(Lopez, 1998). ESEs were later identified in higher eukaryotes in 
numerous genes (Huh & Hynes, 1994; Lavigueur et al., 1993; Lynch & 
Maniatis, 1995; Sun, Hampson & Rottman, 1993a; Sun et al., 1993b; 
Watakabe, Tanaka & Shimura, 1993). Purine-rich elements within the 
exon are likely areas to find ESEs, especially if they contain GA or GAA 
repeats (Dirksen et al., 1994; Watakabe et al., 1993). ESEs are known to 
bind the SR-family and SR-related proteins to promote both constitutive 
and alternative splicing (Blencowe, 2000; Graveley, 2000). Another 
function of ESEs is the enhancement of splicing of introns with weak 
splice sites, which otherwise may splice inefficiently or not splice at all, so 
the more ESEs present within an exon, the greater the enhancement of 
splicing of that exon (Hertel & Maniatis, 1998). The function of multisite 
enhancers may be to increase the probability of interaction between SR 
proteins and the splicing machinery, rather than to give increased 
functionality to the ESEs (Graveley, Hertel & Maniatis, 1999). In 
Saccharomyces cerevisiae, functional ESEs and SR proteins are absent 
and almost all the splice sites are very strong and conform mostly to the 
canonical splice-site consensus (Pleiss et al., 2007a; Pleiss et al., 2007b). 
Therefore, enhancement of splicing is not necessary. 
 
 
 
 
 
 
 

B. Exonic Splicing Silencers 
 

Exonic splicing silencers (ESSs) are regulatory cis-acting elements 
found within the exons, and lead to the exclusion of these exons in 
alternative splicing events. Most of the ESSs that have been identified 
(Amendt, Si & Stoltzfus, 1995; Caputi et al., 1994; Chew, Baginsky & 
Eperon, 2000; Del Gatto-Konczak et al., 1999; Zheng et al., 2000) bind 
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heterogeneous nuclear ribonucleoprotein family members (hnRNPs) 
(Amendt et al., 1995; Burd & Dreyfuss, 1994; Del Gatto-Konczak et al., 
1999; Expert-Bezancon et al., 2004; Ma et al., 2002; Min, Chan & Black, 
1995; Nasim et al., 2002; Paradis et al., 2007; Zhu, Mayeda & Krainer, 
2001). The mechanism by which ESSs inhibit pre-mRNA splicing is still 
unclear, but a likely mechanism of inhibition is that the ESSs bind 
repressor proteins to form an inhibitory complex that prevents 
spliceosome assembly (Caputi et al., 1999; Chen, Kobayashi & Helfman, 
1999; Del Gatto-Konczak et al., 1999). Most of the sequences with ESS 
activity can also be found within the introns of many genes as intronic 
splicing silencers (ISSs) which inhibit a particular exon. Examples include 
inhibition of exon 3 of α-tropomyosin (Gooding, Roberts & Smith, 1998), 
exon N1 of c-src (Markovtsov et al., 2000; Min et al., 1995), exon IIIb of 
FGF-R2 (Carstens, McKeehan & Garcia-Blanco, 1998; Carstens, Wagner 
& Garcia-Blanco, 2000), and exon 7B of hnRNP A1 (Simard & Chabot, 
2000). ISSs have also been found to inhibit the splicing of the nearby 
introns (Carstens et al., 2000; Chabot et al., 1997; Min et al., 1995; Simard 
& Chabot, 2000). Another ISS mechanism has been proposed, which 
involves the looping out of an exon between two introns with similar ISS 
that bind the same inhibitory protein (Nasim et al., 2002). 
 
 
 
 
 
 

1.3.2 Trans-acting factors 
 

A. SR proteins 
 

Serine-arginine (SR) proteins are a family of trans-acting factors 
that usually bind to ESEs to activate splicing during constitutive and/or 
alternative splicing events. They recruit other splicing factors and co-
activators of splicing onto pre-mRNA with weak splice sites (Blencowe, 
2000). ESEs are not always necessary for splicing activation by SR 
proteins, such as in Saccharomyces cerevisiae (Pleiss et al., 2007a; 
Pleiss et al., 2007b), which lacks SR proteins. The first SR protein to be 
purified from HeLa cell nuclear extract was SF2/ASF, based on its ability 
to complement S100, a splicing-inactive cytoplasmic extract, in 
constitutive splicing, or to modulate alternative splicing in nuclear extract 
(Ge & Manley, 1990; Krainer, Conway & Kozak, 1990a; Krainer, Conway 
& Kozak, 1990b). Over the years, more SR protein family members have 
been identified (Roth, Zahler & Stolk, 1991; Screaton et al., 1995; Soret et 
al., 1998; Yang et al., 1998; Zahler et al., 1992; Zahler et al., 1993; Zhang 
& Wu, 1996) (Figure 4). All members of the SR protein family share two 
distinct domains: an N-terminal RNA-recognition motif (RRM) and a C-
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terminal arginine/serine-rich (RS) domain (Birney, Kumar & Krainer, 
1993). There is either one or two RRMs in all SR proteins (Figure 3). 

The function of the RRMs is to determine the substrate specificity of 
the SR proteins (Chandler et al., 1997; Mayeda et al., 1999), and there are 
substrates that do not require the RS domain of the SR protein for splicing 
(Shaw et al., 2007; Zhu & Krainer, 2000), even though it is generally 
believed that the RS domain is involved in protein-protein and/or protein-
RNA interactions. Protein-protein interaction between SR proteins was 
first shown in the Drosophila splicing regulators Tra and Tra2 and also in 
the interaction between the SR proteins and RS-like domains in other 
factors, such as U1-70K and U2AF35 (Kohtz et al., 1994; Wu & Maniatis, 
1993). Also, both the RRM and RS domains are interchangeable with their 
homologous domains between SR proteins, indicating that they are 
modular domains (Chandler et al., 1997; Mayeda et al., 1999; Wang, Xiao 
& Manley, 1998b). The RS domain of an SR protein can activate splicing 
when fused with another protein’s RRM or RBD (RNA binding domain); for 
example, an RS domain fused with MS2 coat protein RBD will active 
splicing in a substrate containing an MS2 binding site in place of an ESE 
(Graveley & Maniatis, 1998); however, SR proteins are still required for 
this splicing reaction. 

There are other proteins involved in splicing that are not canonical 
SR proteins, even though they possess an RS domain; these proteins are 
referred to as SR-related proteins (SRPs) (Blencowe et al., 1999; Fu, 
1995). Examples of these SRPs are U2AF (Zamore, Patton & Green, 
1992; Zhang et al., 1992), snRNP U1-70K (Query, Bentley & Keene, 
1989), snRNP U5-100K (Teigelkamp et al., 1997), snRNP U4/U6·U5-27K 
(Fetzer et al., 1997), hLuc7p (Fortes et al., 1999; Nishii et al., 2000), 
SWAP (Denhez & Lafyatis, 1994; Spikes et al., 1994), SRm160/SRm300 
(Blencowe et al., 2000; Blencowe et al., 1998), the RNA helicases hPrp16 
(Zhou & Reed, 1998), HRH1 (Ono, Ohno & Shimura, 1994), Hel 117 
(Sukegawa & Blobel, 1995), and also the protein kinases Clk/Sty1, 2, 3 
(Hanes et al., 1994), and the splicing regulators Tra (Boggs et al., 1987), 
Tra2 (Amrein, Gorman & Nothiger, 1988), hTra2α and hTra2β (Beil, 
Screaton & Stamm, 1997). 

SR proteins can be post-translationally modified, especially on their 
arginine and serine residues. Arginine residues can be methylated and di-
methylated (Ong, Mittler & Mann, 2004)(Sinha and Krainer, unpublished) 
and serine residues may be phosphorylated. Some of the kinases that 
phosphorylate SR proteins have been identified, and include the SR 
protein kinases SRPK1 (Gui et al., 1994) and SRPK2 (Wang et al., 
1998a), Clk/Sty (Colwill et al., 1996), and DNA topoisomerase I (Rossi et 
al., 1996). Dephosphorylation of an SR protein, SRp40, causes it to lose 
its RNA binding activity (Tacke, Chen & Manley, 1997). It has also been 
shown that hyper and hypo-phosphorylation of SR proteins may cause 
loss of splicing function (Kanopka et al., 1998; Prasad et al., 1999; 
Sanford & Bruzik, 1999). Post-translational modification has been shown 
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to be the means by which SR protein activities are strictly controlled during 
early development in Ascaris lumbricoides, sex determination in 
Drosophila, and during adenovirus infection (Du, Melnikova & Gardner, 
1998; Kanopka et al., 1998; Sanford & Bruzik, 1999). Some SR proteins 
cannot be detected in the fully unphosphorylated state in cells or tissues, 
and when unphosphorylated recombinant SR proteins are used in an in 
vitro splicing assay, they become rapidly phosphorylated (Hanamura et 
al., 1998). 

SR proteins assist in the early stages of spliceosome assembly, 
especially during the formation of the E complex (Jamison et al., 1995; 
Kohtz et al., 1994; Staknis & Reed, 1994; Wu & Maniatis, 1993) through 
RS domain protein-protein interactions. For example, SR proteins 
simultaneously interact with both snRNP U1-70K and U2AF35 through the 
RS domain (Wu & Maniatis, 1993). SR proteins also help in recruitment of 
the tri-snRNP U4/U6·U5 (Roscigno & Garcia-Blanco, 1995; Tarn & Steitz, 
1995) perhaps through interaction between the RS domain of the SR 
protein and the RS domain of snRNP U4/U6·U5-27K, although the precise 
mechanism is unknown. SR proteins binding to ESEs can also enhance 
the second catalytic step of splicing (Chew et al., 1999), and SR proteins 
also function to regulate alternative splice-site selection (Caceres et al., 
1994; Ge & Manley, 1990; Krainer et al., 1990a). SF2/ASF was recently 
shown to be a proto-oncogene that can fully transform immortal cells 
(Karni et al., 2007). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 
 

SR proteins 
 
 

 
 
 
Figure 3. SR proteins. The diagrams show a list of some SR proteins and features common to all 

SR proteins. The red ovals represent the RNA-recognition motif (RRM) and the green rectangles 
represent the arginine/serine (RS) domain. 
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B. hnRNP proteins 
 

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are trans-
acting factors that bind to ESSs or ISSs, usually to inhibit splicing during 
regulated splicing events. There are some instances in which hnRNP 
proteins promote splicing instead of inhibiting it (Caputi & Zahler, 2002; 
Mayeda, Helfman & Krainer, 1993; Paradis et al., 2007). The most 
common features of the hnRNP proteins is that they all have two or more 
RNA-binding domains and an auxiliary domain believed to be responsible 
for protein-protein, RNA-protein, and single-stranded DNA-protein 
interactions. Most of these hnRNPs can also form homophilic interactions 
and heterophilic interactions with other hnRNPs (Cartegni et al., 1996; 
Cobianchi et al., 1988; Nadler et al., 1991). 

Heterogeneous nuclear ribonucleoproteins were first discovered by 
a nuclear sub-fractionation technique that removes about 99% of the 
associated chromatin as a part of the hnRNA complex, a major group of 
chromatin-associated RNA-binding proteins (Herman, Weymouth & 
Penman, 1978). hnRNP proteins are some of the most abundant nuclear 
proteins, and one of the most abundant of them has about 60 million 
molecules per HeLa cell nucleus (Dreyfuss et al., 1993; Hanamura et al., 
1998). hnRNPs associate with the RNA during transcription, and some of 
them remain with it by the time the RNA is exported to the cytoplasm 
(Dreyfuss et al., 1993). These hnRNPs, which shuttle between the nucleus 
and the cytoplasm have nuclear export sequences (NESs) (Dreyfuss et 
al., 1993). Also, those hnRNPs that do not shuttle have nuclear retention 
sequences (NRS) within their auxiliary domain, and are restricted to the 
nucleus. This, perhaps, is to prevent unprocessed and partially processed 
RNA from being translated in the cytoplasm, which could be detrimental to 
the cell (Nakielny & Dreyfuss, 1996). 

There are other roles that hnRNP proteins play in gene expression. 
For instance, hnRNP A1 binds single-stranded DNA telomere repeats and 
regulates telomere length through stimulation of telomerase activity 
(Ishikawa et al., 1993; LaBranche et al., 1998; McKay & Cooke, 1992; 
Zhang et al., 2006). hnRNP K has been shown to interact with the 
transcription machinery and to regulate transcription (Du et al., 1998; 
Michelotti et al., 1996). Also, mRNA 3’-end formation, maintenance and 
polyadenylation have been linked to several hnRNP proteins, including 
hnRNP I, hnRNP H, and hnRNP Nab4p (Bagga, Arhin & Wilusz, 1998; 
Castelo-Branco et al., 2004; Kessler et al., 1997; Moreira et al., 1998). 
There is increased expression of hnRNP A1 and SR proteins in tumors 
and tumor cell lines (Karni et al., 2007). 
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1.4 Antagonism between positive and negative regulators 
 

Antagonism between positive regulators (the SR proteins) and 
negative regulators (the hnRNP proteins) usually determines whether the 
splicing pattern of a particular gene is constitutive or alternative, 
depending on which splicing regulator prevails. If the positive regulator 
prevails, the splicing pattern is constitutive, and if it is the negative 
regulator that prevails, then the splicing partern is alternative. The positive 
regulators, the SR proteins, are trans-acting factors that usually bind to 
cis-acting elements, ESEs, and the negative regulators, the hnRNP 
proteins, usually bind to other cis-acting elements, ESSs. An example of 
this antagonism between positive and negative regulators can be seen in 
HIV-1 tat exon 3 between an SR protein, SC35, and hnRNP A1. This 
antagonism determines the exclusion or the inclusion of that particular 
exon. In this case, if hnRNP A1 prevail over SC35, exon 3 is skipped, but 
if another SR protein, SF2/ASF, replaces SC35; SF2/ASF will prevail over 
hnRNP A1 causing the inclusion of exon 3 (Zhu et al., 2001). 
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2.1 Abstract 

 

hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 

binding to an exonic splicing silencer (ESS) at the 3‟ end of HIV-1 tat exon 

3, which is a high-affinity site, is followed by cooperative spreading in a 3‟ 

to 5‟ direction. As it propagates towards the 5‟ end of the exon, hnRNP A1 

antagonizes binding of a serine/arginine (SR) protein to an exonic splicing 

enhancer (ESE), thereby inhibiting splicing at that exon‟s alternative 3‟ 

splice site. Tat exon 3 and the preceding intron of HIV-1 pre-mRNA can 

fold into an elaborate RNA secondary structure, which could potentially 

influence hnRNP A1 binding. We report here that hnRNP A1 binding to 

RNA and splicing repression can occur on an unstructured RNA. 

Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding. 

We further show that hnRNP A1 can also spread in a 5‟ to 3‟ direction, 

although when initial binding takes place in the middle of an RNA, 

spreading proceeds preferentially in a 3‟ to 5‟ direction. Finally, when two 

distant high-affinity sites are present, they can facilitate cooperative 

spreading of hnRNP A1 between the two sites. 

 

 

 

 

 

 

2.2 Introduction 

 

Splicing can be subdivided into constitutive and alternative. 

Constitutive splicing is the removal of introns by joining together all the 

adjacent exons in the order of their arrangement, without skipping any 

exon. In constitutive splicing, a single protein is produced from a single 

pre-mRNA, regardless of where and when the gene is expressed. In 

alternative splicing, variable use of splice sites allows two or more mature 

mRNAs to be generated from the same pre-mRNA. For example, an entire 
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exon or part of an exon can be included or skipped in different spliced 

mRNAs. Alternative splicing is a prevalent way by which many eukaryotes 

diversify the number of proteins produced from a single pre-mRNA 

transcript (Smith, Query & Konarska, 2008; Wang & Burge, 2008). 

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are trans-

acting factors that bind to ESSs or ISSs, usually to inhibit splicing during 

regulated splicing events. There are some instances in which hnRNP 

proteins promote splicing instead of inhibiting it (Caputi & Zahler, 2002; 

Mayeda, Helfman & Krainer, 1993; Paradis et al., 2007). The most 

common feature of hnRNP proteins is the presence of two or more RNA-

binding domains and an auxiliary domain believed to be responsible for 

protein-protein, RNA-protein, and single-stranded DNA-protein 

interactions. Most of these hnRNPs can also form homophilic interactions 

and heterophilic interactions with other hnRNPs (Cartegni et al., 1996; 

Cobianchi et al., 1988; Nadler et al., 1991). One of the most abundant 

hnRNPs is hnRNP A1 (Dreyfuss et al., 1993; Hanamura et al., 1998). 

hnRNP A1 has been implicated in many alternative splicing events in 

human and several other eukaryotes (Abdul-Manan & Williams, 1996; 

Amendt, Si & Stoltzfus, 1995; Blanchette & Chabot, 1999; Burd & 

Dreyfuss, 1994; Caputi et al., 1999; Hua et al., 2008; Mayeda & Krainer, 

1992; Zhu, Mayeda & Krainer, 2001). Human hnRNP A1 is a 320-amino-

acid protein, of which the 196-amino-acid N-terminal domain comprises 

two RNA-recognition motifs (RRMs) (Figure 4) (Maris, Dominguez & 

Allain, 2005). The 124-amino-acid C-terminal domain is glycine-rich 

(Figure 4) and is believed to be responsible for cooperative binding, 

leading to repression of splicing (Ding et al., 1999b; Shamoo et al., 1997). 

At present, there are no available structures of intact hnRNP A1, but there 

are crystal structures of its N-terminal domain spanning RRM1 and RRM2, 

which is known as UP1 (unwinding protein 1) (Figure 4) (Ding et al., 

1999b; Shamoo et al., 1997; Vitali et al., 2002; Xu et al., 1997). 
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Figure 4 Structure of hnRNP A1showing the domains. UP1 is a proteolytic cleavage of hnRNP A1 

(as indicated). 

The manner in which hnRNP A1 controls alternative splicing is still 

not fully understood. A study from our lab about splicing of exon 3 of the 

HIV-1 tat pre-mRNA showed an antagonistic effect of an exonic splicing 

silencer element, ESS3, mediated by hnRNP A1, vis-à-vis another cis-

acting splicing regulatory element, known as an exonic splicing enhancer 

(ESE) (Zhu et al., 2001). ESEs enhance splicing or promote inclusion of a 

particular exon through the binding of one or more activator proteins, such 

as members of the serine/arginine (SR) family, which in turn recruit other 

components of the splicing machinery to the 5‟ and 3‟ splice sites (Huang 

& Steitz, 2005; Lin & Fu, 2007). SR proteins have one or two RRMs at 

their N-terminus, which interact with the RNA (Krainer, Conway & Kozak, 

1990; Mayeda & Krainer, 1992; Tange & Kjems, 2001; Zhu & Krainer, 

2000). The C-terminal domain of each SR protein comprises a highly 

conserved serine/arginine-rich (RS) domain (Krainer et al., 1990; Mayeda 

& Krainer, 1992; Tange & Kjems, 2001; Zhu & Krainer, 2000; Zhu et al., 

2001); however, this domain is not always necessary for splicing (Shaw et 

al., 2007; Zhu & Krainer, 2000). SR proteins are important for the 

recognition of splice sites, and act at the earliest stages of spliceosome 

assembly, as well as at later stages of splicing (Krainer et al., 1990; 

Mayeda & Krainer, 1992; Tange & Kjems, 2001; Zhu et al., 2001). SR 

proteins have other functions in splicing and gene expression, besides 

binding to ESEs, and they are essential for constitutive splicing (Huang & 

Steitz, 2005). Even in the case of introns with strong splice sites, in which 

an ESE might not be required, SR proteins are essential for recognition of 

the splice sites and recruitment of the splicing machinery (Eperon et al., 

2000; Huang & Steitz, 2005; Lin & Fu, 2007; Tange & Kjems, 2001; Zhu & 

Krainer, 2000). 

The above-mentioned study showed that initial high-affinity binding 

of hnRNP A1 to ESS3 is followed by its cooperative spreading along tat 
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exon 3, which allows hnRNP A1 to displace the SR protein SC35 from its 

cognate ESE, thereby preventing splicing of tat exon 3 (Zhu et al., 2001). 

This same study also showed that when another SR protein, SF2/ASF, 

binds to its cognate ESE, hnRNP A1 cannot effectively displace it, and 

therefore, there is inclusion of tat exon 3 (Zhu et al., 2001). The net effect 

depends in part on the strength of the SR protein interaction with its 

cognate ESE, and presumably on the nuclear abundance of particular SR 

proteins and hnRNP A1 in a given cell type. 

There is increased expression of hnRNP A1 or SR proteins in some 

tumors and tumor cell lines, as compared to normal cells and tissues 

(Ghigna et al., 1998; Karni et al., 2007; Perrotti & Neviani, 2007). Putting 

all this information together presents a strong case for studying how 

cooperative binding of hnRNP A1 leads to alternative splicing of a specific 

exon. Understanding cooperative binding of hnRNP A1 in the context of 

HIV-tat and other model substrates is expected to shed light on the 

mechanisms of alternative splicing in general. 

The present study addresses the mechanism of hnRNP A1 

cooperative binding. We show that hnRNP A1 cooperative binding results 

in unwinding of RNA secondary structure. After binding to a high-affinity 

site, hnRNP A1 spreads preferentially, though not exclusively, in a 3‟ to 5‟ 

direction, and can displace other bound proteins from the RNA to repress 

splicing. 

 

 

 

 

 

 

2.3 Results 

2.3.1 Cooperative binding of hnRNP A1 does not require RNA 

secondary structure. 
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Inhibition of splicing of exon 3 of an HIV-1 Tat23 mini-gene occurs 

through cooperative binding of hnRNP A1, such that multiple molecules 

bind by spreading from a high-affinity binding site (ESS3) at the 3‟ end of 

the RNA towards the 5‟ end (Zhu et al., 2001). The tat pre-mRNA can 

adopt an intricate secondary structure in solution (Damgaard, Tange & 

Kjems, 2002; Marchand et al., 2002), and it has been proposed that 

hnRNP A1 binding and silencing involves cooperative binding to these 

structured regions, rather than spreading along single-stranded RNA 

(Damgaard et al., 2002; Marchand et al., 2002). However, UP1 (unwinding 

protein 1), as its name indicates, can unwind RNA or DNA secondary 

structures (Herrick & Alberts, 1976; Zhang et al., 2006); hnRNP A1 

facilitates annealing of complementary nucleic acid strands below their Tm 

(melting temperature); on the other hand, when hnRNP A1 binds to duplex 

DNA, it lowers the Tm of the duplex, thereby facilitating its unwinding; and 

at a temperature above the new Tm, hnRNP A1 can also maintain an 

equilibrium between single- and double-stranded DNA (Pontius & Berg, 

1990; Pontius & Berg, 1992). However, hnRNP A1 had not been shown to 

be capable of unwinding RNA secondary structure. 

To address the potential involvement of RNA secondary structure in 

hnRNP A1 cooperative binding, we generated by in vitro transcription RNA 

comprised mainly of oligo U tracts, with 32P-labeled C at every fifth 

nucleotide position. We chose this nucleotide composition because, 

hnRNP A1 has low affinity for poly U and poly C (Abdul-Manan & Williams, 

1996). Near the 3‟ end of the RNA, we placed a high-affinity hnRNP A1 

binding site, UAGGGU, as determined by SELEX (Burd & Dreyfuss, 1994) 

(Figure 5A). Based on its composition and sequence, this RNA cannot 

form secondary structures, at least by conventional base pairing. To 

reduce other potential higher-order structures, the RNA was denatured at 

95 oC and rapidly cooled before incubation with recombinant hnRNP A1 at 

different concentrations. The complex formed between this RNA and 

hnRNP A1 was subjected to UV cross-linking, followed by digestion with 

ribonucleases A and T1, separation by SDS-PAGE, and detection by 

autoradiography (Figure 5B). The transfer of label to hnRNP A1 can be 

detected after nuclease digestion, because the protein spreads along the 

RNA from the high-affinity site (Zhu et al., 2001). This was confirmed by 

the reduction in labeled hnRNP A1 when the high-affinity site was mutated 

at a single nucleotide, from UAGGGU (WT) to UUGGGU (MUT). We 

conclude that unstructured RNA is compatible with cooperative binding of 

hnRNP A1. 
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To verify that the SELEX winner UAGGGU can act as an exonic 

splicing silencer (ESS), we constructed a β-globin minigene, Nβ2, 

comprising the last 101 nucleotides of exon 1 and the first 101 nucleotides 

of exon 2, and inserted UAGGGU at the 3‟ end of exon 2, followed by a 

BamH1 site (Figure 5C). A similar control minigene, Nβ3, has a single 

point mutation changing UAGGGU to UCGGGU, which abrogates hnRNP 

A1 binding (as does UUGGGU; see Figure 5B and Discussion). Finally, 

Nβ1 is the parental minigene without an inserted hexamer. Labeled pre-

mRNAs transcribed from these minigenes were spliced in HeLa cell 

cytoplasmic extract (S100) complemented with recombinant SC35, in the 

presence or absence of recombinant hnRNP A1 (which is limiting in S100 

extract; ref. 57) (Figure 5D). The results show that splicing repression 

requires an intact ESS (cf. lanes 1-3, right panel) and a sufficient amount 

of hnRNP A1 (cf. lanes 2 in right and left panels). Moreover, the A to C 

point mutation at position 2 of the ESS is sufficient to abolish splicing 

silencing (cf. lanes 2 and 3, right panel), and another mutation in the ESS, 

position 2 A to U, also abolishes hnRNP A1 cooperative binding (Figure 

5B).  
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Figure 5. hnRNP A1 cooperative binding does not require RNA secondary structure. (A) 

Sequences of wild-type (WT) and mutant (MUT) RNAs for UV-crosslinking experiments. The 

underlined hexanucleotide is a high-affinity hnRNP A1 binding site: UAGGGU is the wild-type 

version, and UUGGGU is the inactive, mutant version, with the mutated nucleotide shown in italics. 

The radiolabeled cytidines incorporated by in vitro transcription are indicated in bold italics. (B) UV 

crosslinking with WT and MUT RNAs from (A) in the presence of increasing concentration of 

recombinant hnRNP A1. The crosslinked products were digested with RNases A and T1, separated 

by SDS-PAGE, and detected by autoradiography. Band intensities were measured on a 
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phosphorimager, and normalized values relative to the lowest band intensity are shown below the 

gel. (C) β-globin minigene transcripts for in vitro splicing assays. The pre-mRNAs comprise 108-nt 

of exon 1, the 130-nt first intron, and 108-nt of exon 2. Nβ2 has an additional 6-nt ESS at the 3‟ 

end; Nβ3 has a mutant version of the ESS (ESSm). (D) Splicing of the pre-mRNAs from (C) in 

HeLa S100 extract complemented with SC35, in the presence or absence of 7.5 pmol of hnRNP 

A1. Splicing efficiency (mRNA/(pre-mRNA+mRNA)x100%) is shown below the autoradiogram. 

Quantitation of the data is based on each representative experiment shown in the figure; consistent 

trends were observed in repeat experiments (3 times for panel B and 10 times for panel D). 

 

 

 

 

 

 

2.3.2 hnRNP A1 unwinds RNA secondary structure. 

 

To further test whether or not cooperative binding of hnRNP A1 

involves RNA secondary structure, we took advantage of an RNA with 

known secondary structure, namely a natural hairpin that binds 

bacteriophage MS2 coat protein (Graveley & Maniatis, 1998; LeCuyer, 

Behlen & Uhlenbeck, 1995). We inserted the MS2 hairpin in the middle of 

exon 2 of the β-globin minigene and included the ESS at the 3‟ end. As a 

control, we inserted a hairpin with deletion of a single bulged nucleotide, to 

abolish MS2 protein binding (Graveley & Maniatis, 1998) (constructs MS2 

and MS2* in Figure 6A). We expected that tight binding by MS2 to the 

wild-type construct, but not to the mutant construct, would block hnRNP 

A1 propagation along the exon, and therefore prevent splicing repression. 

In addition, omitting the MS2 coat protein should allow us to determine 

whether both hairpins would block the spreading of hnRNP A1. 

The results we obtained were unexpected: we observed inhibition 

of splicing in the construct with the MS2 hairpin loop and the ESS, in the 

presence of MS2 coat protein (Figure 6B, cf. lanes 14 and 15 with lanes 

17 and 18). There are several possible explanations for this result: first, 

RNA secondary structure may actually facilitate cooperative binding of 

hnRNP A1 (Damgaard et al., 2002; Marchand et al., 2002) despite the 

presence of bound MS2 coat protein; second, hnRNP A1 may unwind the 
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hairpin, displacing the tightly bound MS2 coat protein and cooperatively 

spread along the exon to repress splicing; third, bound MS2 coat protein 

permits or perhaps facilitates cooperative binding of hnRNP A1, although 

this seems improbable; and fourth, in spreading along the exon, hnRNP 

A1 may somehow bypass the hairpin with bound MS2 coat protein. The 

splicing assay in this section was done at least seven times with very 

similar results, and the gel shown represents the best of the seven trials 

without any statistical values. 

To distinguish among these possibilities, we used GST pulldowns 

to measure whether MS2 coat protein is displaced by hnRNP A1 

cooperative binding. We made four artificial RNA transcripts composed 

mainly of oligo-U with 32P-labeled C every fifth nucleotide, with an MS2 

hairpin in the middle and a high-affinity hnRNP A1 binding site at the 3‟ 

end (Figure 6C). Each construct is either 90 or 91 nucleotides long, 

depending on whether it has an MS2 or MS2* version of the hairpin. Each 

RNA construct was denatured at 95 oC and allowed to refold at room 

temperature before adding GST-MS2 protein. The results shown in Figure 

6D clearly demonstrate that hnRNP A1 displaces bound GST-MS2 

protein, presumably by unwinding the stem-loop and/or by physical 

displacement (Figure 6D, left panel). 

As the amount of hnRNP A1 protein increases, the amount of GST-

MS2 protein displaced increases, and this effect largely depends on the 

initial binding of hnRNP A1 to the high-affinity site (cf. the first five lanes 

(PUMS2ESS) WT with the last five lanes (PUMS2ESSm) in which a single 

point mutation abrogates the high-affinity hnRNP A1 binding site). The 

control RNA with the MS2* hairpin failed to bind MS2 coat protein, as 

expected (data not shown). A similar experiment was done with the same 

four RNA constructs and UP1 protein, which cannot undergo cooperative 

binding (Zhu et al., 2001). As expected, UP1 was unable to displace GST-

MS2 protein (Figure 6D, right panel). 
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Figure 6. Unwinding of RNA secondary structure and splicing inhibition by hnRNP A1. (A) β-globin 

minigenes with or without MS2 or MS2 mutant (MS2*) hairpins. (B) In vitro splicing of the Nβ-globin 

minigene transcripts in S100 extract complemented with SC35, in the presence of GST-MS2 coat 

protein, and with or without 7.5 pmol of hnRNP A1. (C) Poly-U MS2 constructs to test the 

unwinding activity of hnRNP A1 as it binds cooperatively. The sequences and secondary structures 

of MS2 and MS2* are shown next to the construct diagrams (Figure C) (D) GST-MS2 pull-downs. 

Labeled RNA was first incubated with GST-MS2 protein, followed by incubation with increasing 

concentration of recombinant hnRNP A1, and then incubation with GST-agarose beads. After 

washing, bound RNA was eluted, separated by denaturing PAGE, and detected by 

autoradiography. Band intensities were measured on a phosphorimager, and normalized values 

relative to the lowest band intensity are shown below the gel. Quantitation of the data is based on 

each representative experiment shown in the figure; consistent trends were observed in repeat 

experiments (7 times for panel B and 2 times for panel D). 

 

 

 

 

2.3.3 Cooperative binding of hnRNP A1 can also proceed from 5’ to 3’ 

to inhibit splicing. 
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Previous studies of hnRNP A1 cooperative binding focused on 

oligomerization in a 3‟ to 5‟ direction, after initial binding to an ESS at the 

3‟ end of a pre-mRNA (Damgaard et al., 2002; Del Gatto-Konczak et al., 

1999; Marchand et al., 2002; Zhu et al., 2001). To determine if hnRNP A1 

can also spread in a 5‟ to 3‟ direction, we generated an artificial RNA 

comprising mainly oligo U tracts, with labeled 32P C at every fifth position, 

and a high-affinity hnRNP A1 SELEX winner sequence UAGGGU (Burd & 

Dreyfuss, 1994), at the 5‟ end (Figure 7A). We also made a control RNA 

with a mutated hnRNP A1 binding sequence, UUGGGU. UV cross-linking 

(Zhu et al., 2001) of these RNAs after incubation with increasing 

concentration of recombinant hnRNP A1 was followed by RNase 

digestion, SDS-PAGE, and autoradiography (Figure 7B). This experiment 

shows that cooperative binding of hnRNP A1 can proceed in a 5‟ to 3‟ 

direction. 

To test the effect of 5‟ to 3‟ hnRNP A1 cooperative binding on 

splicing, we designed short β-globin-derived minigene constructs with a 

64-nt exon 1 and a 109-nt exon 2. We engineered a high-affinity hnRNP 

A1 binding sequence, UAGGGU (ESS) at the 5‟ of exon 1 by PCR; 

controls including a mutant hnRNP A1 motif, UCGGGU (ESSm), and a 

construct without the hnRNP A1 binding site were similarly made by PCR 

(Figure 7C). In vitro splicing of pre-mRNA transcribed from these 

constructs in S100 extract complemented with SC35, with or without 

addition of hnRNP A1, is shown in Figure 7D. Cooperative binding of 

hnRNP A1 propagating in a 5‟ to 3‟ direction in exon 1 inhibited splicing 

(cf. lanes 4 to 5, right panel and lanes 4 and 5, left panel).  
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Figure 7. hnRNP A1 cooperative binding spreading from the 5‟ end to the 3‟ end of exon 1 inhibits 

splicing. (A) Sequences of synthetic wild-type (WT) and mutant (MUT) RNAs for UV-crosslinking 

experiments. The underlined hexanucleotide is a high-affinity hnRNP A1 binding site: UAGGGU is 

the wild-type version, and UUGGGU is the inactive, mutant version, with the mutated nucleotide 

shown in italics. The radiolabeled cytidines are indicated in bold italics. (B) UV crosslinking with WT 

and MUT RNAs from (A) in the presence of increasing concentration of recombinant hnRNP A1. 

Detection and quantitation of the crosslinked products was as in Figure 1B. (C) NSβ-globin 

minigene transcripts for in vitro splicing assays. The pre-mRNAs comprise 58-nt of exon 1, the 130-

nt first intron, and 108-nt exon 2. NSβ2, 3, 4, and 5 have in addition a 6-nt ESS or mutant ESSm at 

either the 5‟ end of exon 1 or the 3‟ end of exon 2; NSβ6 has the 6-nt ESS at both the 5‟ end of 

exon 1 and the 3‟ end of exon 2. (D) In vitro splicing of pre-mRNAs from (C) in S100 extract 

complemented with SC35, in the presence or absence of 7.5 pmol of hnRNP A1. Splicing efficiency 

(calculated as in Figure 5D) is shown below the autoradiogram. Quantitation of the data is based 

on each representative experiment shown in the figure; consistent trends were observed in repeat 

experiments (3 times for panel B and 4 times for panel D). 

 

 

 

 

 

 

2.3.4 hnRNP A1 preferentially spreads in a 3’ to 5’ direction. 
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We next sought to determine whether hnRNP A1 can undergo 

cooperative binding with bidirectional spreading. To this end, we 

generated two RNAs with an hnRNP A1 high-affinity binding site in the 

middle (Figure 8A). In the first construct, four nucleotides (cytosines) at 

every fifth position 3‟ of the hnRNP A1 binding site were radiolabeled, 

whereas the sequences 5‟ of the binding site were unlabeled. In the 

second construct, the labeled and unlabeled regions were reversed. 

Control substrates with a mutant hnRNP A1 binding site were also 

generated. UV crosslinking, RNase digestion, and SDS-PAGE analysis 

were carried out as in Figure 1. The ratio of WT over MUT intensities was 

greater for the 3‟ to 5‟ substrate (Figure 8C) than for the 5‟ to 3‟ substrate 

(Figure 8B), indicating preferential spreading of hnRNP A1 towards the 5‟ 

end.  
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Figure 8. Directionality of hnRNP A1 cooperative spreading. (A) Sequences of synthetic RNA 

transcripts for UV-crosslinking experiments. The radiolabeled cytidines are indicated in bold italics. 

The underlined hexanucleotide is a high-affinity hnRNP A1 binding site (ESS). The top transcript (5‟ 

to 3‟ Binding), has radiolabeled cytidines to the right of the ESS, whereas the bottom transcript (3‟ 

to 5‟ Binding), has them to the left of the ESS. (B) UV crosslinking with WT transcript (5‟ to 3‟ 

Binding) and its ESSm (MUT) version in the presence of increasing recombinant hnRNP A1. 

Detection and quantitation of the crosslinked products was as in Figure 5B. (C) As in panel B but 

with 3‟ to 5‟ Binding WT and MUT transcripts. Quantitation of the data is based on each 

representative experiment shown in the figure; consistent trends were observed in repeat 

experiments (3 times for panel B and 3 times for panel C). 
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2.3.5 Determining the extent of spreading of hnRNP A1 along the 

RNA. 

 

The pre-mRNA we used to test for hnRNP A1 oligomerization by 

UV crosslinking has six labeled C nucleotides (Figure 5A). To determine 

more precisely how far hnRNP A1 spreads from the site of initial binding, 

we generated transcripts for crosslinking with fewer labeled Cs placed at 

different positions, to see if we could still detect label transfer, reflecting 

cooperative binding (Figure 9A). When the first two labeled Cs upstream 

of the high-affinity binding site were substituted with unlabeled Gs, we still 

detected label transfer to hnRNP A1 (Figure 9B, left panel) indicating that 

cooperative binding extends beyond ~20 nucleotides. Similarly, when the 

next two labeled C nucleotides were also substituted by unlabeled Gs, we 

continued to detect a signal (Figure 9B, right panel), indicating cooperative 

binding beyond ~30 nucleotides. Finally, we prepared a substrate by 32P 

5‟-end-labeling an otherwise unlabeled RNA transcript (Figure 9C), and 

again, we detected cooperative binding by comparing the wild type (WT) 

with the mutant (MUT1 or MUT2) transcripts (Figure 9D, top and bottom 

panels). As expected, the signals became progressively weaker as 

transcripts with fewer labeled nucleotides were analyzed. We conclude 

that multiple molecules of hnRNP A1 bind consecutively along the RNA, 

all the way to its 5‟ end. 

To address the cooperative spreading of hnRNP A1 using a 

different technique, we carried out hydroxyl-radical footprinting using the 

first two 32P 5‟-end-labeled RNAs in Figure 9C. Figure 9E, left panel, 

shows the footprinting results. With increasing recombinant hnRNP A1, 

the region protected by hnRNP A1 increased (cf. WT on lanes 2 to 5 with 

MUT on lanes 6 to 9). Figure 9E, right panel, shows RNase A footprinting, 

which gives consistent results (cf. WT on lanes 2 to 5 with MUT on lanes 7 

to 10). Both footprinting methods show that the entire length of the 5‟ 
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labeled WT RNA is protected by cooperative binding of hnRNP A1. These 

results indicate that cooperative binding of hnRNP A1 to RNA resembles 

„beads on a string‟, and does not require RNA secondary structure. As 

shown above, such structures, when present, can actually be unwound by 

hnRNP A1.  
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Figure 9. Mapping the extent of hnRNP A1 cooperative spreading along the RNA. (A) Sequences 

of synthetic RNA transcripts for UV-crosslinking experiments. The radiolabeled cytidines are 

indicated in bold italics. (B) UV crosslinking of RNA transcripts in (A) and the corresponding ESSm 

controls, in the presence of increasing recombinant hnRNP A1. Left panel: crosslinked products 

after RNAase digestion, of the top transcript in (A) and its ESSm counterpart. Right panel: Idem for 

the bottom transcript in (A) and its ESSm counterpart. Band intensities were measured on a 

phosphorimager, and normalized values are shown below the gel. (C) Sequences of 5‟-end labeled 

synthetic RNA transcripts for UV-crosslinking and footprinting experiments. The underlined 

hexanucleotide is a high-affinity hnRNP A1 binding site: UAGGGU is the wild-type version (WT), 
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UUGGGU is the inactive, mutant version 1 (MUT1), and UUUGGU is the inactive, mutant version 2 

(MUT2), with the mutated nucleotide shown in italics. (D) UV crosslinking with WT and MUT1 and 

MUT2 RNAs from (C) in the presence of increasing concentration of recombinant hnRNP A1. 

Detection and quantitation of the crosslinked products was as in Figure 5B. (E) Footprinting assays 

with the first two RNA transcripts in C (WT and MUT1); the left panel shows a hydroxyl-radical 

footprinting assay in the presence of increasing recombinant hnRNP A1, and the right panel is an 

RNase A footprinting assay. (M: molecular weight markers). Quantitation of the data is based on 

each representative experiment shown in the figure; consistent trends were observed in repeat 

experiments (3 times for panels B and D, and 2 times for panel E). 

 

 

 

 

2.3.6 “Cross-talk” between hnRNP A1 molecules bound at distant 

sites. 

 

Finally, we investigated whether distant high-affinity hnRNP A1 

binding sites can influence how hnRNP A1 binds to each site and 

subsequently spreads. Relevant to this, hnRNP A1 was reported to 

dimerize upon binding to distant sites, apparently looping out the RNA 

between the two sites (Nasim et al., 2002). We generated five RNA 

constructs (Figure 10). First, we placed two identical ESSs at different 

positions along the RNA constructs (Figure 10A): the first construct, XT1, 

has the two ESSs juxtaposed, separated by only two nucleotides, and 

placed at the 3‟ end of the RNA; the second construct, XT2, has one ESS 

at the 3‟ end and the other in the middle of the RNA; the third construct, 

XT3, has one ESS at the 3‟ end and the other at the 5‟ end of the RNA; 

the fourth construct, XT3m1, has a mutant ESS (ESSm) at the 5‟ end of 

the RNA (Figure 10C); and the fifth construct, XT3m2, has a mutant ESS 

(ESSm) at the 3‟ end (Figure 10C). UV cross-linking of each of these 

constructs in the presence of increasing amounts of recombinant hnRNP 

A1 was compared with that of an RNA with a single ESS at the 3‟ end 

(WT) (see Figure 5A). 

When the two binding sites were separated by only two nucleotides, there 

was no apparent cross-talk between the two sites, i.e., no additive or 

synergistic effect compared to the control WT RNA (Figure 10B, left panel, 

cf. WT with XT1). When the distance separating the two high-affinity 



44 

 

binding sites was greater, the signal relative to the WT RNA increased 

(Figure 10B, middle panel, cf. WT with XT2), indicating synergy, or cross-

talk, between the sites. With the ESS at both ends of the RNA, the signal 

increased even further (Figure 10B, right panel, cf. WT with XT3). When 

the ESS at either end of the RNA construct was inactivated by a point 

mutation (Figure 10C), cooperative-binding-dependent cross-talk was lost 

(Figure 6D, cf. XT3 with XT3m1, and also XT3 with XT3m2). 

We note that the type of cross-talk shown in this experiment is 

cooperative-binding-dependent, and differs from the mechanism proposed 

by Nasim et al (Nasim et al., 2002): if the RNA between the two distant 

high-affinity sites is looped out, label transfer would not occur, because all 

the radiolabeled nucleotides were present along the RNA sequences 

between the two ESSs at the ends.  

A

B

C

D

XT1

5‟GGGAGUUUUCUUUUCUUUUCUUUUCUUUUCUUUUCUUUUGUUUUUUAGGGAUUUAGGGUAUGGAUU3 ‟

XT2

5‟GGGAGUUUUCUUUUCUUUUCUUUUCUUUAGGGAUUUUCUUUUCUUUUGUUUUUUAGGGUAUGGAUU3‟

XT3

5‟GGGAUUUAGGGAGUUUUCUUUUCUUUUCUUUUCUUUUCUUUUCUUUUGUUUUUUAGGGUAUGGAUU3‟

XT3m1

5‟GGGAUUUUGGGAGUUUUCUUUUCUUUUCUUUUCUUUUCUUUUCUUUUGUUUUUUAGGGUAUGGAUU3 ‟

XT3m2

5‟GGGAUUUAGGGAGUUUUCUUUUCUUUUCUUUUCUUUUCUUUUCUUUUGUUUUUUUGGGUAUGGAUU3‟

1 3 5 131331

0.030.05 0.1 0.2 0.030.05 0.1 0.2

5

WT XT1

µM

hnRNPA1

14 18 25 4515521

0.03 0.05 0.1 0.2 0.03 0.05 0.1 0.2

XT3
WT

3 8 15 351621

0.03 0.05 0.1 0.2 0.030.05 0.1 0.2

5

WT XT2

Relative
Intensity

µM

h n R N P A 1

Relative
Intensity1 2 3 65 13 071

0 .0 5 0 .1 0 .2 0 .4 0 .0 5 0 .1 0 .2 0 .4

U A G G G U

*X T 3 X T 3 m 1

U U G G G U

1 14 1931 2 6

0 .0 5 0 .1 0 .2 0 .4 0 .0 5 0 .1 0 .2 0 .4

U U G G G UU A G G G U

*X T 3 X T 3 m 2

 

Figure 10. “Cross-talk” between hnRNP A1 molecules bound at distant sites. (A) Sequences of 

synthetic RNA transcripts for UV-crosslinking experiments. The radiolabeled cytidines are indicated 

in bold italics. The underlined hexanucleotide is a high-affinity hnRNP A1 binding site (ESS). (B) 
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UV crosslinking with RNA transcripts from (A) and WT control from Figure 1A, in the presence of 

increasing recombinant hnRNP A1. Detection and quantitation of the crosslinked products was as 

in Figure 1B. The position of the ESS in each of the RNAs is indicated by a dark line. (C) 

Sequences of synthetic RNA transcripts for UV-crosslinking experiments. The radiolabeled 

cytidines are indicated in bold italics. The underlined hexanucleotide is a high-affinity hnRNP A1 

binding site: UAGGGU is the wild-type version, and UUGGGU is the inactive, mutant version, with 

the mutated nucleotide shown in italics. (D) UV crosslinking with RNA transcripts from (C) and the 

XT3 control from (A), in the presence of increasing recombinant hnRNP A1. Detection and 

quantitation of the crosslinked products was as in Figure 5B. The position of the ESS in each of the 

RNAs is indicated by a dark line; a mutant ESS is indicated by an *. Quantitation of the data is 

based on each representative experiment shown in the figure; consistent trends were observed in 

repeat experiments (2 times for panel B and 2 times for panel D). 

 

 

 

 

 

2.4 Discussion 

 

We have demonstrated that RNA secondary structure is not 

required for hnRNP A1 cooperative binding to RNA, in contrast to 

suggestions from previous studies of hnRNP A1 binding to the HIV-1 tat 

pre-mRNA, which is highly structured in solution (Damgaard et al., 2002; 

Marchand et al., 2002). We found that hnRNP A1 can unwind RNA 

secondary structure in a cooperative-binding-dependent manner (Figure 

6D). This result is consistent with hnRNP A1‟s established properties as a 

single-stranded RNA/DNA binding protein that can coat the entire length 

of a polynucleotide (Cartegni et al., 1996; Cobianchi et al., 1988; Ding et 

al., 1999a). In vivo, this type of binding could play a multitude of roles in 

co-transcriptional and post-transcriptional RNA processing, including 

splice-site recognition, alternative splicing regulation, mRNA susceptibility 

to ribonucleases, nuclear export of mature mRNA, etc., as well as in 

telomere-length regulation (LaBranche et al., 1998; Zhang et al., 2006). 

We showed that displacement of GST-MS2 protein bound to a 

hairpin and unwinding of this hairpin structure by hnRNP A1 require 

cooperative binding. Thus, UP1 had little or no activity in the GST-MS2-

displacement and hairpin-unwinding assays (Figure 6D). This is consistent 
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with UP1 lacking the C-terminal glycine-rich domain, which is necessary 

for cooperative binding and splicing silencing (Ding et al., 1999b; Mayeda 

et al., 1994; Zhu et al., 2001). In addition, when we prevented the initial 

binding of hnRNP A1 by a point mutation in the high-affinity binding site, 

the protein could no longer displace bound GST-MS2 protein or unwind a 

hairpin. 

We further showed that a 6-nt hnRNP A1 SELEX winner sequence 

(UAGGGU) has ESS activity, and that a single point mutation in this 

sequence is enough to disrupt hnRNP A1 cooperative binding and splicing 

silencing (Figure 5B and D). Note that we used two different hnRNP A1 

binding site mutants, UUGGGU and UCGGGU; the latter disrupted 

hnRNP A1 binding to a greater extent than the former (data not shown). 

However, we used UUGGGU for binding and crosslinking experiments to 

avoid introducing a labeled C nucleotide into the hnRNP A1 binding site. 

On the other hand, because this was not a consideration for the splicing 

experiments, we used the more disruptive UCGGGU mutation for the 

splicing assays. Additional mutations we tested that also effectively 

disrupted the hnRNP A1 binding site were UACGGU and UAUGGU (data 

not shown). 

Cooperative binding by hnRNP A1 was shown by our lab to spread 

from the 3‟ end of an HIV-1 RNA towards the 5‟ end of the exon, and to 

inhibit splicing by blocking an SC35-dependent ESE (Zhu et al., 2001). 

However, it was not known whether cooperative binding of hnRNP A1 can 

also proceed in a 5‟ to 3‟ direction and likewise inhibit splicing. Here, we 

observed that 5‟ to 3‟ cooperative spreading does occur, but appears to be 

considerably weaker than 3‟ to 5‟ spreading (Figure 7). We generated β-

globin minigene derivatives with two exons of the same length (101 nt), 

and with the identical 6-nt ESS at the 5‟ end of exon 1 in one construct, 

and at the 3‟ end of exon 2 in the other construct. Using these pre-

mRNAs, we observed strong inhibition of splicing in vitro for the pre-

mRNA with the ESS at the 3‟ end of exon 2 (Figure 8D), whereas splicing 

of the pre-mRNA with the ESS at the 5‟ end of exon 1 was unaffected 

(data not shown). However, when we reduced the size of exon 1 with the 

ESS at the 5‟ end to 64 nt, splicing was strongly inhibited (Figure 7D). This 

inhibition of splicing can be attributed to hnRNP A1 cooperative binding, 

as strong splicing inhibition depended on addition of  recombinant hnRNP 

A1 (Figure 7D). 
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We also investigated whether cooperative binding of hnRNP A1 

could proceed simultaneously in both directions. To this end, we placed 

the high-affinity binding site in the middle of an exon, and found that 

hnRNP A1 spreading proceeded preferentially from 3‟ to 5‟ (Figure 8B and 

C). A two-fold reduction in the concentration of RNA and protein was 

enough to abrogate 5‟ to 3‟ cooperative binding (data not shown). In light 

of this evidence, we conclude that hnRNP A1 5‟ to 3‟ cooperative binding 

is weaker than 3‟ to 5‟ binding. 

Figure 11 shows our model for hnRNP A1 cooperative binding. 

hnRNP A1 can displace a protein bound to a secondary structure that 

interrupts the path of hnRNP A1 spreading. Moreover, hnRNP A1 unwinds 

the structure to then spread further and displace bound SC35 from an 

ESE. In a similar experiment, hnRNP A1 cooperative binding was unable 

to displace SF2/ASF from its ESE to inhibit splicing (data not shown); this 

is consistent with the tighter binding of SF2/ASF to its cognate ESE, 

compared to SC35 (Zhu et al., 2001). 

A form of cross-talk or communication between two hnRNP A1 

molecules bound at distant sites has been described (Nasim et al., 2002). 

This cross-talk allows the skipping of an exon between the two flanking 

intronic binding sites, through protein-protein interaction between hnRNP 

A1 molecules bound at these sites causing the exon to loop out. A similar 

looping out may also occur within a long intron, thereby increasing the 

efficiency of splicing between two distant splice sites (Nasim et al., 2002). 

Here we also investigated if there is cross-talk between two molecules of 

hnRNP A1 bound at distant high-affinity sites. Our results are consistent 

with a kind of cross-talk that does not involve looping out of the RNA. We 

found that when two high-affinity hnRNP A1 binding sites are juxtaposed, 

the extent of hnRNP A1 cooperative spreading towards the 5‟ end of the 

RNA is similar to that observed with a single site (Figure 10). In contrast, 

as the distance between the two sites increases, the extent of cooperative 

binding increases and is maximal when the two high-affinity sites are 

placed at both ends of the RNA (Figure 10). We did not observe looping 

out of the RNA between the two high-affinity sites; in the context of our 

experiments, looping out would not have resulted in label transfer to 

hnRNP A1, as all the labeled nucleotides were placed between the two 

high-affinity sites. 

We termed the kind of interaction between two hnRNP A1 sites 

observed here cooperative-binding-dependent cross-talk. With the two 
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hnRNP A1 binding sites placed at the 5‟ and 3‟ ends of the RNA 

respectively, hnRNP A1 binding initially at the 5‟ site would spread 

towards the 3‟ end, and simultaneously, hnRNP A1 binding initially at the 

3‟ end would spread towards the 5‟ end. Convergent spreading would 

increase the rate at which the gap between the two binding sites is filled 

with hnRNP A1 molecules, compared to a single initial binding site (Figure 

10b, right panel). The looping model (Nasim et al., 2002) and the cross-

talk model reported here may each apply in different situations, although 

what pre-mRNA contexts or cellular conditions determine one or the other 

mode of binding remains unknown. 

The results presented here indicate that hnRNP A1 can unwind an 

RNA hairpin, even when the hairpin is protected by a tightly bound protein. 

However, it is possible that more extensive secondary/tertiary structures 

and/or very tightly bound proteins could be more effective at blocking 

hnRNP A1 propagation, compared with the MS2 hairpin with or without 

bound MS2 coat protein. 

In short, we have described the features of hnRNP A1 cooperative 

binding. This cooperative binding, as shown in Figure 11, unwinds RNA 

secondary structure, and preferentially spreads in a 3‟ to 5‟ direction to 

displace SR proteins bound at an ESE, thereby inhibiting splicing. 5‟ to 3‟ 

cooperative spreading of hnRNP A1 appears to be less robust, but within 

certain distance constraints, it may also be sufficient to unwind RNA 

secondary structure, displace bound SR proteins, and/or displace U1 

snRNP from a 5‟ splice site to inhibit splicing. 
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2.5 Methods and Materials 

 

2.5.1 Transcripts 

 

All pre-mRNA transcripts for in vitro splicing were 5‟ capped and 

labeled by in vitro transcription in the presence of [α-32P]-UTP from PCR 

templates with a T7 phage promoter (Mayeda & Krainer, 1999a). The PCR 

primers to generate transcription templates for all constructs used for in 

vitro splicing are listed in Table 1. The template for PCR was the 

Figure 11. Model of hnRNP A1 

cooperative binding. (1) hnRNP A1 

binds to the ESS, MS2 coat protein 

binds to the MS2 hairpin, and SC35 

binds to the ESE. (2) and (3) 

hnRNP A1 cooperative spreading 

displaces bound MS2 coat protein. 

(4) and (5) hnRNP A1 unwinds MS2 

hairpin and continues cooperative 

spreading. (6) and (7) hnRNP A1 

cooperative spreading displaces 

bound SC35 from the ESE and 

inhibits splicing. 
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linearized plasmid pSP64-Hβ∆6 (Krainer et al., 1984) except for constructs 

NβMS2ESS, NβMS2ESSm, NβMS2*ESS, and NβMS2*ESSm, whose 

PCR templates were NβMS2∆ESS and NβMS2*∆ESS respectively. All the 

model RNA transcripts were transcribed in the presence of [α-32P]-CTP 

from the corresponding antisense oligonucleotides with a T7 phage 

promoter annealed with a T7 sense oligonucleotide as described (Milligan 

& Uhlenbeck, 1989). All unlabeled model RNA transcripts were similarly 

transcribed from synthetic oligonucleotide templates, using a T7-

MEGAshortscript kit (Ambion catalog #1354), followed by 5‟ end labeling 

with [γ-32P]-ATP (Romaniuk & Uhlenbeck, 1983). For antisense 

oligonucleotides corresponding to Figure 2C, see Table 2. 

 

Table 1. List of DNA primers used to generate transcription templates by PCR. 

Names Forward Primers Reverse Primers

Nβ1

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTATGAGCCTTCACCT

TAGG

Nβ2

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTACCCTAATGAGCC

TTCACCTTAGG

Nβ3

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTACCCGAATGAGCC

TTCACCTTAGG

NβMS2∆ESS

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGTACCGTGATCGTGTACGACCTTA

GGGTTGCCCAT

NβMS2ESS

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTACCCTAATGAGCC

TTCCGTACCGTGATCG

NβMS2ESSm

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTACCCGAATGAGCC

TTCCGTACCGTGATCG

NβMS2*∆ESS

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGTACCGTGATCGGTACGACCTTA

GGGTTGCCCAT

NβMS2*ESS

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTACCCTAATGAGCC

TTCCGTACCGTGATCG

NβMS2*ESSm

GAATACAAGCTTGTAATACGACTCACTA

TAGGCAGACACCATGGTGCACC

CGCGGATCCGTACCCGAATGAGCC

TTCCGTACCGTGATCG

NSβ1

GAATACAAGCTTGTAATACGACTCACTA

TAGGCTGTGGGGCAAG

CGCGGATCCGTATGAGCCTTCACCT

TAGG

NSβ2

GAATACAAGCTTGTAATACGACTCACTA

TAGGCTGTGGGGCAAG

CGCGGATCCGTACCCTAATGAGCC

TTCACCTTAGG

NSβ3

GAATACAAGCTTGTAATACGACTCACTA

TAGGCTGTGGGGCAAG

CGTACCGTGATCGTGTACGACCTTA

GGGTTGCCCAT

NSβ4

GAATACAAGCTTGTAATACGACTCACTA

TAGGTAGGGTCTGTGGGGCAAG

CGCGGATCCGTATGAGCCTTCACCT

TAGG

NSβ5

GAATACAAGCTTGTAATACGACTCACTA

TAGGTTGGGTCTGTGGGGCAAG

CGCGGATCCGTATGAGCCTTCACCT

TAGG

NSβ6

GAATACAAGCTTGTAATACGACTCACTA

TAGGTAGGGTCTGTGGGGCAAG

CGCGGATCCGTACCCTAATGAGCC

TTCACCTTAGG  

Table 2. List of antisense oligonucleotides used as transcription templates to generate the RNA 

transcripts showed in Figure 2C. (Underlined sequence: MS2 or MS* hairpin) 

Names Anti-sense Oligos

PUMS2ESS

GATCCGTACCCTAAAAAGAAAAGAAAAGAAA

AGAAAAACGTACCGTGATCGTGTACGAAAAG

AAAAGAAAAGAAAAGAAAACTCCCTATAGTG

AGTCGTATTAC

PUMS2ESSm

GATCCGTACCCGAAAAAGAAAAGAAAAGAA

AAGAAAAACGTACCGTGATCGTGTACGAAAA

GAAAAGAAAAGAAAAGAAAACTCCCTATAGT

GAGTCGTATTAC

PUMS2*ESS

GATCCGTACCCTAAAAAGAAAAGAAAAGAAA

AGAAAAACGTACCGTGATCGGTACGAAAAGA

AAAGAAAAGAAAAGAAAACTCCCTATAGTGA

GTCGTATTAC  
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2.5.2 Recombinant Proteins 

 

Untagged human hnRNP A1 was expressed in E. coli and purified 

as described (Mayeda et al., 1994). Purified GST-MS2 protein expressed 

in E. coli was a gift from Zuo Zhang. Purified human SC35 expressed in 

baculovirus was a gift from Michelle Hastings. Purified UP1 expressed in 

E. coli was a gift from Qingshuo Zhang. 

 

 

 

 

 

 

2.5.3 In Vitro Splicing Assays 

 

S100 extract from HeLa cells was prepared as described (Mayeda 

& Krainer, 1999b). In vitro splicing reactions were carried out in a final 

volume of 12.5 µl with 15 fmol (1.15 nM) of 32P-labeled, 7CH3-GpppG-

capped T7 RNA transcripts, 35% (v/v) S100 extract, with a final 

concentration of 0.4 µM SC35, in the presence or absence of hnRNP A1 

at a final concentration of 0.6 µM, and in the presence or absence of GST-

MS2. All the 32P-labeled RNAs in Figure 6A were first incubated with GST-

MS2 at a final concentration of 1.73 µM in standard splicing buffer 

(Mayeda & Krainer, 1999a) for 15 min at room temperature or at 30 oC 

before the addition of extract mix with or without hnRNP A1, and further 

incubation at 30 oC for 2 hr as described (Mayeda & Krainer, 1999a). 
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2.5.4 UV Crosslinking 

 

All UV crosslinking assays were performed in a Spectronics 

XL1000 instrument at 0.48 J/cm2 under splicing-reaction conditions as 

described (Zhu & Krainer, 2000; Zhu et al., 2001) except that the buffer 

was slightly modified by addition of final concentrations of 1 mg/ml 

heparin, 0.16 mg/ml yeast tRNA, and 0.11 mg/ml BSA with 8-32 nM 32P-

labeled RNA. Before the UV crosslinking, binding of hnRNP A1 to RNA 

was done as follows: (1) 0.5 µL of 40 mM MgCl2, 0.1 µL of 20 mg/ml 

tRNA, 0.25 µL of 50 mg/mL heparin, 1.0 µL of 100-400 nM 32P-labeled 

RNA and 1.9 µL of RNase-free H2O were first incubated together at 95 oC 

for 5 minutes to unwind the RNA, and then placed on ice immediately, 

followed by addition of 0.132 µL of 10 mg/ml BSA, 0.625 µL of 40 mM 

Hepes-KOH pH 7.3 and 0.5 µL of 12.5 mM ATP/0.5 M creatine phosphate 

mix; (2) The extract mix contained variable concentration of hnRNP A1 in 

Buffer D with 100 mM KCl. Finally, 5 µL of Buffer mix was incubated 

together with 7.5 µl of Extract mix at 30 oC for 20 minutes. The 

concentration  of each component in the final reaction volume was: 1.6 

mM MgCl2, 0.16 mg/mL tRNA, 1 mg/mL heparin, 8-32 nM of 32P-labeled 

RNA, 0.11 mg/mL BSA, 2 mM Hepes-KOH pH 7.3, 0.5 mM ATP/20 mM 

creatine phosphate, and 60 mM KCl. 

 

 

 

 

 

2.5.5 GST-MS2 Pulldowns 
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32P-labeled RNAs used in the GST-MS2 pulldowns were first 

incubated at 95 oC for 3-5 min and then allowed to refold at room 

temperature for 1-2 min in crosslinking buffer as described above. 

Renatured RNAs were then allowed to form complexes with GST-MS2 at 

1.5 µM final concentration at 30 oC for 20 min, after which increasing 

amounts (0.2, 0.3, 0.7, and 1.3 µM) of hnRNP A1 or UP1 were added, with 

further incubation for 20 min at 30 oC. Glutathione-agarose beads were 

added and incubated at 4 oC for 1 hr, followed by washing the beads and 

elution and extraction of the RNA as described (Mayeda & Krainer, 1999a; 

Zhang & Krainer, 2007). 

 

 

 

 

 

 

2.5.6 RNA Footprinting 

 

Hydroxyl radical and RNase A footprinting experiments were done 

as described (Clarke, 1999) with 16 nM final concentration of 5‟ 32P-

labeled RNA, and 1, 2, 4, and 8 pmol (0.05, 0.1, 0.2, and 0.4 µM) of 

recombinant hnRNP A1. Binding of hnRNP A1 to RNA before incubation 

with hydroxyl radical or RNase A was done as described in section 2.5.4. 
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Chapter 3 
 
 

Consensus Sequences for hnRNP A1 
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3.1 Abstract 
 

One of the most abundant nuclear proteins is hnRNP A1, which 
binds to single-stranded RNA and regulates alternative splicing. A robust 
consensus motif for hnRNP A1 recognition is still lacking, although 
sequences to which hnRNP A1 binds have been reported, as well as 
mutations in these sequences that abolish hnRNP A1 binding. Here, we 
derive an hnRNP A1 consensus motif based on functional in vitro splicing 
assays. Approximately 200 hexamers that may or may not bind hnRNP A1 
were engineered into the 3’ end of exon 2 of a β-globin minigene, and 
binding assays were carried out using competitive UV cross-linking of 50 
randomly picked hexamers that did or did not repress splicing. 
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3.2 Introduction 
 

Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is one of 
the most abundant nuclear proteins (Dreyfuss et al., 1993; Hanamura et 
al., 1998) and acts as a splicing factor, binding to cis-acting regulatory 
elements, such as exonic or intronic splicing silencers (ESS or ISS) to 
repress splicing in the context of alternative splicing events (Amendt, Si & 
Stoltzfus, 1995; Burd & Dreyfuss, 1994; Caputi et al., 1994; Chabot et al., 
1997; Chew, Baginsky & Eperon, 2000; Del Gatto-Konczak et al., 1999; 
Expert-Bezancon et al., 2004; Ma et al., 2002; Min, Chan & Black, 1995; 
Nasim et al., 2002; Paradis et al., 2007; Zheng et al., 2000; Zhu, Mayeda 
& Krainer, 2001). hnRNP A1 shares features with many other hnRNP 
proteins, namely two RRMs and an auxiliary domain believed to be 
responsible for protein-protein, RNA-protein, and single-stranded DNA-
protein interactions. hnRNP A1 can also form homophilic interactions in 
solution and heterophilic interactions with other hnRNPs (Cartegni et al., 
1996; Cobianchi et al., 1988; Nadler et al., 1991). hnRNP A1 undergoes 
cooperative binding to RNA, which is initiated at a high-affinity binding site, 
or ESS, and spreads along an exon to inhibit splicing (Zhu et al., 2001). 
hnRNP A1 has antagonistic effects on SR proteins binding to nearby 
ESEs (Cartegni et al., 1996; Expert-Bezancon et al., 2004; Zhu et al., 
2001). The prevalence of hnRNP A1 over SR proteins depends on 
whether or not hnRNP A1 can displace the bound SR proteins from the 
ESEs. If hnRNP A1 prevails, there is splicing repression, and if the SR 
proteins block hnRNP A1 cooperative binding from spreading, splicing can 
take place (Zhu et al., 2001). Even though a high-affinity binding site 
consensus motif for hnRNP A1 was discovered through conventional 
SELEX (Burd & Dreyfuss, 1994), hnRNP A1 can bind to a variety of other 
sequences, perhaps because all of its domains contribute to binding 
affinity (Cartegni et al., 1996; Ding et al., 1999). There have been previous 
attempts to derive a consensus sequence for hnRNP A1 binding (Cartegni 
et al., 2006; Nielsen et al., 2007); however, the approach employed 
involved only gathering and analysis of some of the reported hnRNP A1 
binding sites. The approach we used also involved an analysis of most of 
the previously reported hnRNP A1 binding sites, but then used the results 
of this analysis to construct about 200 beta-globin minigenes for functional 
assays, to see how each hnRNP A1 binding site represses splicing in 
S100 extract complemented with SC35. The results obtained from this 
functional assay can be used to design ribo-oligonucleotides for binding 
assays. 
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3.3 Results 
 

3.3.1 Nβ-globin constructs 
 

About 200 hexamers that were randomly generated, some of them 
are collections of known hexamer from the literatures, of these collections, 
some are known to bind hnRNP A1 or other hnRNPs while others may not 
bind hnRNP A1. These hexamers were engineered into the 3’ end of exon 
2 of the Nβ-globin construct, as described (Chapter 2) (see Figure 12). 
Three controls were used: C1, Nβ-globin without the hnRNP A1 binding 
hexamer; C2, containing a high-affinity hnRNP A1 binding hexamer 
(UAGGGU) as defined by SELEX (Burd & Dreyfuss, 1994); and C3, 
containing a binding-defective hexamer mutant (UCGGGU) in which the A 
at the second position was mutated to C (Chapter 2). 
 
 
 

 
 

Figure 12. Nβ-globin constructs. 
β-globin minigene transcripts for in vitro splicing assays. The pre-mRNAs comprise 108-nt of exon 
1, the 130-nt first intron, and 108-nt of exon 2. NβESS and NβESSm have an additional 6-nt ESS 
or ESSm, respectively, at the 3’ end. The red bar represents the ESS hexamer; the green bar 
represents the ESS mutant hexamer (ESSm). 
 
 
 
 
 
 
 
 

UAGGGU 

UCGGGU 

Exon 1 Exon 2 
Intron 1 
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3.3.2 Splicing assay results 
 

All splicing reactions were carried out in a splicing inactive 
cytoplasmic extract (S100) complemented with a recombinant SR protein 
(SC35) and recombinant hnRNP A1. For the controls, recombinant hnRNP 
A1 was omitted (cf. Figures 13 and 14). The splicing reactions were 
divided into four pools and the results for each pool and pool control are 
shown in Figures 13 through 20; summaries of the results for each pool 
are shown in Tables 3 through 6. Percentage relative splicing shown in 
each table is calculated with respect to the controls (mRNA/pre-
mRNA)/(mRNA control/pre-mRNA control)x100%. 
 

 
 

Figure 13. Splicing assay results. Pool 1 

Splicing of the pre-mRNAs from Figure 12, in which ESS represents 32 different hexamers, in S100 
extract complemented with SC35, in the presence of 7.5 pmol of hnRNP A1. Pu represents the 
insertion of a purine before the high affinity hnRNP A1 binding hexamer. C1 is a Nβ control that 

lacks an ESS, and C3 is a mutant control with a high-affinity hnRNP A1 binding site. The relative 
splicing efficiency (mRNA/pre-mRNA)/(mRNA control/pre-mRNA control)x100% is shown on Table 
3. 
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Figure 14. Splicing assay results. Pool 1 Control 

Splicing assays in S100 extract complemented with SC35 in the absence of recombinant hnRNP 
A1 are the splicing assay controls for Figure 13. 
 
 

Table 3. Splicing assay results Pool 1. 

Relative percentage is calculated as (mRNA/pre-mRNA)/(mRNA control/pre-mRNA control)x100%. 
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Figure 15. Splicing assay results. Pool 2 

Splicing of the pre-mRNAs from Figure 12, in which the ESS consists of 44 different hexamers, in 
S100 extract complemented with SC35, in the presence of 7.5 pmol of hnRNP A1. Relative splicing 
efficiency is shown on Table 4. 
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Figure 16. Splicing assay results. Pool 2 Control. 

The splicing assays in S100 complemented with SC35 in the absence of recombinant hnRNP A1 
are the splicing assay controls for Figure 15. 
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Table 4. Splicing assay results Pool 2. 

Relative percentage is calculated as (mRNA/pre-mRNA)/(mRNA control/pre-mRNA control)x100%. 
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Figure 17. Splicing assay results. Pool 3 

Splicing of the pre-mRNAs from Figure 12, in which the ESS consists of 52 different hexamers, in 
S100 extract complemented with SC35, in the presence of 7.5 pmol of hnRNP A1. Relative splicing 
efficiency is shown on Table 5. 
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Figure 18. Splicing assay results. Pool 3 Control. 

The splicing assays in S100 complemented with SC35 in the absence of recombinant hnRNP A1 
are the splicing assay controls for Figure 17. 
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Table 5. Splicing assay results Pool 3. 

Relative percentage is calculated as (mRNA/pre-mRNA)/(mRNA control/pre-mRNA control)x100%. 
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Figure 19. Splicing assay results. Pool 4 

Splicing of the pre-mRNAs from Figure 12, in which the ESS consists of 32 different hexamers, in 
S100 extract complemented with SC35, in the presence of 7.5 pmol of hnRNP A1. C1 (Nβ) lacks 
the high-affinity hnRNP A1 binding site. The ESS control, C2, has a high-affinity hnRNP A1 binding 
site as the ESS. C3 is a mutant control with a known high-affinity hnRNP A1 binding site. Relative 
splicing efficiency is shown on Table 6. 
 
 

 
 

Figure 20. Splicing assay results. Pool 4 Control 

The splicing assays in S100 complemented with SC35 in the absence of recombinant hnRNP A1 
are the splicing assay controls for Figure 19. 
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Table 6. Splicing assay results Pool 4. 

Relative percentage is calculated as (mRNA/pre-mRNA)/(mRNA control/pre-mRNA control)x100%. 

 
 
 
 

 
 

3.3.3 Matrix and the consensus sequences for hnRNP A1 
 

The position weight matrix and the consensus sequences generated as 
shown in Figure 21 are based on the splicing assays summarized in 
Tables 3 through 6, and have yet to be confirmed by binding experiments. 
To construct a position weight matrix, a frequency matrix fi(a) was first 
calculated from the alignment (i is the position of nucleotide a). Given a 
background frequency for the set of sequences, p(a), the scoring matrix is 

defined by the following formula:  

 

where i = (1, 2, ..., L), a = (A, C, G, U), and ϵ = 0.5 is the Bayesian prior 
parameter (Lawrence et al., 1993; Liu, Zhang & Krainer, 1998). A motif 
score is equal to the sum of the scores at each position. Motifs may be 
ranked by their scores. The top three scores in each sequence using 
different scoring matrices were calculated as described (Liu et al., 1998). 
The sequence scores were consistent semiquantitatively with the 
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percentage splicing inhibition data when the sequence-scores for hnRNP 
A1 were defined as described (Liu et al., 1998). 
 
Matrix and the consensus sequences for hnRNP A1 

 
 
 
Figure 21. Matrix representing hnRNP A1 binding consensus sequences. 

This position weight matrix and the hnRNP A1 consensus sequences generated are based on the 
results presented in Tables 3 to 6. 

 
 
 
 
 
 

3.4 Discussion 
 
 

Even though we generated the consensus sequences based on the 
splicing assays alone, we feel that this experiment is not complete until we 
confirm and extend our results with an appropriate binding assay, which is 
currently under way. 
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3.5 Methods and Materials 
 

3.5.1 Transcripts 
 

All the pre-mRNA transcripts for in vitro splicing were capped, and 
32P labeled by in vitro transcription in the presence of [α-32P]-UTP from 
PCR templates with a T7 phage promoter (Mayeda & Krainer, 1999). The 
PCR primers for all the transcription templates of all constructs used for 
the in vitro splicing experiments are available upon request. The template 
for PCR to generate all the constructs was the the linearized product of 
Hind III restriction digest of plasmid pSP64-Hβ∆6 (Krainer et al., 1984; 
Mayeda et al., 1999). 
 
 
 
 
 
 
 

3.5.2 Recombinant Proteins 
 

Untagged human hnRNP A1 was expressed in E. coli and purified 
as described (Mayeda et al., 1994). Purified human SC35 expressed in 
baculovirus was a gift from Michelle Hastings. 
 
 
 
 
 
 
 

3.5.3 In vitro splicing Assays 
 

S100 extract from HeLa cells was prepared as described (Caputi et 
al., 1999). In vitro splicing reactions were carried out in a final volume of 
12.5 µl with 15 fmol (1.15 nM) of 32P-labeled, 7CH3-GpppG-capped T7 
RNA transcripts, 35% (v/v) S100 extract, with a final concentration of 0.4 
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µM SC35, in the presence or absence of hnRNP A1 at a final 
concentration of 0.6 µM. 
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4.1 Summary 
 
The previous two chapters focused on hnRNP A1 and the 

mechanism by which it represses splicing. In chaper two, we showed that 
hnRNP A1 binding to RNA and splicing repression can occur on an 
unstructured RNA. Moreover, hnRNP A1 can effectively unwind RNA 
hairpins upon binding. We also showed that hnRNP A1 can spread in a 5’ 
to 3’ direction, although when initial binding takes place in the middle of an 
RNA, spreading proceeds preferentially in a 3’ to 5’ direction. Finally, 
when two distant high-affinity sites are present, they can facilitate 
cooperative spreading of hnRNP A1 between the two sites. In Chapter 3, 
we derive an hnRNP A1 consensus motif based on functional in vitro 
splicing assays. There are other hnRNP proteins that also have inhibitory 
effects on splicing. . One of them is hnRNP I/PTB (polypyrimidine-tract 
binding protein) whose mechanism of inhibition has been extensively 
studied (Bonderoff, Larey & Lloyd, 2008; Grover, Ray & Das, 2008; 
Kuwahata et al., 2008; Lewis, Gagnon & Mowry, 2008; Paradis et al., 
2007; Radzimanowski et al., 2008; Sawicka et al., 2008; Wang et al., 
2008). However, it is unknown whether PTB can undergo cooperative 
binding or cooperative interactions with hnRNP A1 to inhibit splicing 
(Bolanos-Garcia, 2005; Borg & Margolis, 1998; Fred, Tillmar & Welsh, 
2006; Margolis, 1996; Sawicka et al., 2008; Shoelson, 1997). At the 
beginning of my study, when I was looking for sequences other than the 
hexamer at the 3’ end of exon 3 of HIV-1 tat 23 that might bind hnRNP A1 
better, one of the sequences that I tested was a polypyrimidine tract; this 
sequence inhibited splicing of tat 23 better than the tat 23 natural hnRNP 
A1 binding site but it did it in the absence of hnRNP A1 recombinant 
protein. The manner of inhibition of splicing by PTB on this tat 23 mutant 
was very similar to that of hnRNP A1, so that it might be possible that the 
mechanism of inhibition of splicing by PTB or any other inhibitory hnRNP 
proteins could also be cooperative spreading like hnRNP A1. It is also 
possible that some of these hnRNPs can act cooperatively in conjunction 
with hnRNP A1 to inhibit splicing. If I had more time, I would like to have 
categorized the interactions between hnRNP A1 and the other hnRNPs. I 
would also have liked to study some of these hnRNPs in cooperative 
binding studies similar to the one described in Chapter 2. 
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