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Abstract of the Dissertation

High Resolution Photoemission Experiments
on Copper Oxide Superconductors

by

Jonathan David Rameau

Doctor of Philosophy

in

Physics

Stony Brook University

2009

The mechanism for achieving high transition temperatures (Tc)

in copper oxide superconductors and the nature of the mysterious

”pseudogap” phase from which this phenomenon arises are two

of the most pressing issues in solid state physics. High resolu-

tion angle resolved photoemission spectroscopy (ARPES), which

can directly probe the momentum and energy dependence of the

electronic structure of a crystal, is considered one of the foremost

tools for unraveling these mysteries. In this thesis we present work

on both the further development of the ARPES technique itself

and the results of two experiments on the high temperature super-
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conductor Bi2Sr2CaCu2O8+δ (BSCCO) - the drosophila of copper

oxide superconductors - based upon these analytical and experi-

mental advances. On the analytical side we have shown that the

precision of any ARPES experiment can be radically enhanced by

using the Lucy-Richardson method (LRM) of iterative deconvolu-

tion to remove the worst effects of experimental resolution broad-

ening present in all ARPES spectra. On the experimental side we

have constructed a deep ultraviolet laser system capable of increas-

ing our data acquisition rate by more than an order of magnitude

compared to what is possible using traditional synchrotron radia-

tion sources at the same momentum and energy resolutions. Using

the LRM, in conjunction with synchrotron radiation, spectroscopic

evidence was found for the existence of incoherent Cooper pairs in

underdoped BSCCO in the normal pseudogap state (above Tc).

At the same time an asymmetry between the particle and hole

states of BSCCO was found, implying that doped Mott insulators,

of which BSCCO is a primordial example, are characterized by the

presence of a Fermi-Luttinger surface, rather than a Fermi surface,

as would be the case for a simple metal. This study provided the

first spectroscopic evidence for either phenomenon. In our sec-

ond experiment we were able to use the LRM on data acquired

with the laser ARPES system to show the presence in optimally

doped BSCCO, well below Tc, of a previously unobserved electron-

boson interaction. The momentum dependence of this interaction,

which appears as a ”kink” in ARPES spectra, shows that the re-
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sponsible boson is an Einstein phonon. The ARPES data is well

reproduced by a simple theoretical model based on these observa-

tions. After more than two decades of study this result represents

the first unambiguous enumeration of an electron-boson interaction

by ARPES in BSCCO. The identification of this interaction will

require a theoretical reevaluation of the nature of several similar

features long seen in BSCCO, the origins of which remain unknown

and highly controversial to this day.
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Chapter 1

Introduction

High temperature superconductivity in the copper-oxide based doped Mott

insulators has presented the foremost challenge in solid state physics since

the primordial compound, Lanthanum Barium Copper Oxide, (LBCO), was

discovered by Bednorz and Muller in 1986. Angle resolved photoemission

spectroscopy (ARPES) has been one of the foremost tools in the advancement

of our understanding of this phenomenon.

It is the object of this introductory chapter to explain what the above

statement means. In so doing we shall attempt to lay out the jargon common

to the field and used often in the rest of this thesis. This is necessary in

order to not only present the list of methods and results that constitute a

dissertation but to do so in the context of a wider argument about one of

the most pressing problems in modern physics. My intention is that this

work can be read as a self consistent whole by either a seasoned researcher

in the field or by someone approaching either ARPES or high temperature

superconducivity for the first time. Hopefully both types of reader will find
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the work not entirely uninteresting. To that end, I have attempted to adopt

a more colloquial language in the text, where appropriate, than is often found

in volumes such as these. While perhaps unfit for the summary of research

proper to a journal article or other brief communication it is my firm belief

that not only does this respect for language not harm a work of this scope and

size but may even render it somewhat enjoyable. Consider it an experiment

in applied liberal arts. From now on I shall even bend to the scientific heresy

of the royal we!

This thesis is organized as follows.

In the second chapter we shall briefly describe what high temperature su-

perconductivity is. We shall then briefly describe the materials in which the

phenomenon occurs and, most importantly, sketch the generic phase diagram

of the materials that exhibit this property as it is currently understood. We

will then connect this phase diagram to the two properties that decisively

determine the fate of any crystalline material; the crystal structure of copper-

oxide superconductors and the electronic structure that results from it. In the

course of this discussion we shall use as our example a particular family high

temperature superconductor, Bi2Sr2CaCu2O8+δ, known in the field as either

BSCCO (pronounced Bisco) or Bi2212, because it is the material family stud-

ied most often by ARPES. This nomenclature and the reasoning behind using

this material as our primary object of study will become clear shortly.

In Chapter 3 we shall review the photoelectric effect, a.k.a. photoemission,

and describe the theory of photoemission from crystals. It will be shown that

the generalization of the photoelectric effect to account for the anisotropy

of crystalline media results in a photoelectron distribution in emission an-
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gle that reflects the distribution of electrons in the momentum space of the

crystal cathode. This effect allows the use of angle resolved photoemission

spectroscopy, the study of the density of states of emitted photoelectrons as

a function of emission direction and kinetic energy, as a direct probe of the

electronic structure of crystals and through that structure and its details of

the field theoretic propagators that describe the quantum electrodynamics of

the system. Understanding this information gives important insight into the

electronic properties, such as high temperature superconductivity, one expects

a system to display and thus is of paramount importance in the study of con-

densed matter systems. We shall give particular emphasis in this chapter to

the peculiar properties of very low energy photoemission pertinent to a laser

based ARPES system. The construction of this system and its operation were

the primary objective of the dissertation work presented herein.

In chapter 4 we shall briefly review the basic theory of second harmonic

generation and present the results of numerical simulations showing that a

two step harmonic generation process can produce a high brightness, narrow

bandwidth deep ultraviolet (DUV) laser beam useful for photoemission. These

simulations provided the theoretical guide for the construction of a high rep

rate DUV laser system for ARPES. This was done for the following reason;

ARPES requires a light source with a photon energy greater than both the

binding energy of the electrons we wish to observe and the surface energy

barrier, called the work function, of a sample. Successive harmonic generation

steps can yield an ultraviolet laser of energy 6 eV that is both brighter and of

narrower bandwidth than what can be achieved by more traditional methods

such as helium discharge lamps and synchrotron light sources. The relatively
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low energy of the laser light translates into both higher electron momentum

and electron energy resolution.

In Chapter 5 we describe in detail the physical arrangement and construc-

tion of the laser ARPES system and accompanying instrumentation. This

includes, naturally, a description of the laser itself and the setup of optics used

in the successive harmonic generation steps used to produce a 6 eV laser beam.

It also includes details of the construction and operation of a home built imag-

ing spectrometer for DUV beam characterization and the techniques used by

our group to achieve and maintain ultra high vacuum (UHV), safe class four

laser operation in a public space and unconventional magnetic field compen-

sation techniques. Taken together the chapter lays out the key components

for the construction of a high resolution laser ARPES station.

Chapter 6 describes a major development in our ability to analyze ARPES

data that was totally unanticipated as we set out on the laser ARPES project.

In the course of a very demanding experiment using synchrotron radiation it

was found that the best energy resolution we could achieve for the exception-

ally high signal to noise ratio required was not good enough to allow a reliable,

physically meaningful analysis of the data. To save the day and render useful

several months worth of round the clock data collection we adapted an al-

gorithm often used in astronomy, Lucy-Richardson deconvolution, to remove

most effects of the experimentally induced energy and momentum broadening

in our spectra. The application of this technique to ARPES data of any kind

has since become a mainstay of our analytical toolkit.

Lastly, in Chapters 7 and 8 we apply the results obtained in the preceding

chapters to two very different experiments. In the first experiment we ap-
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ply our new resolution deconvolution methods to laser ARPES data to reveal

the presence of what is in many respects a surprisingly conventional signature

of electron-phonon coupling in optimally doped Bi2212 at low temperatures.

While many interactions have been previously observed to affect the electronic

states of Bi2212, none has yet been enumerated without ambiguity and the

rancor of disagreement within the community. The origin of the interaction

revealed for the first time in this thesis on the other hand is entirely unambigu-

ous and therefor provides a rare moment of clarity in the study of a system

that is oftentimes baffling and impenetrable. The second experiment involves

the observation of “unoccupied” states in both the normal and superconduct-

ing states of optimally and over doped Bi2212. The results of this experiment

are found to have profound implications for our understanding of how and why

the normal states of the copper oxide superconductors appears to be different

from all other known materials.

Of course as the first sentence of this work suggests the copper oxide su-

perconductors have been studied a very long time. As one of the most fertile

topics for study in solid state physics this is unlikely to change any time soon.

The field is changing rapidly and has been since it began over twenty years

ago. The work presented herein is literally the state of the art in photoemission

and high temperature superconductivity as it is now. But it is not uncommon

to see a result that forces you to rethink your global view of these materi-

als at least several times a year as well as reevaluate what can be achieved

with the tools of study at our disposal. Nevertheless it is hoped the work

contained within these pages will continue to provide a useful foundation of

understanding for at least some time to come.
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Chapter 2

Copper Oxide High

Temperature Superconductors

2.1 High and Low Temperature Superconduc-

tivity

Superconductivity is first and foremost a macroscopic phenomenon. The

term describes a state of matter in which a material has zero resistance to

the flow of electrical currents and exhibits a perfect diamagnetic response to

the application of an external magnetic field called the Meissner effect. These

effects were first observed to occur in many metallic elements when they were

cooled below a material specific critical transition temperature, Tc, so long as

the magnetic field external to the sample Hc was not too high and the current

flowing through a sample did not also exceed a critical value Jc. Because ele-

mental metals have not been observed under normal circumstances to achieve
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a Tc greater than about 10 Kelvin they are often called low temperature su-

perconductors.

Low temperature superonductivity is well described by the Bardeen-Cooper-

Schrieffer (BCS) theory [5]. Its signal achievement is to explain how the macro-

scopic properties enumerated above emerge from the microscopic organization

of quantum mechanical objects, electrons and phonons, in metals at low tem-

peratures. At the core of the BCS theory of superconductivity is the idea that

at very low temperatures the normal metallic order of states known as a Fermi

liquid, which gives a good description of the properties of metals encountered

in every day life, becomes unstable to a ground state of even lower energy.

That ground state, the superconducting state, is formed when below Tc elec-

trons are bound into pairs of a Bosonic character. These pairs are formed by

electrons that in the normal metallic state would be characterized as having

the complementary states k↑ and −k↓ where k is the crystal momentum and

the subscript arrows denote spin up and spin down states, respectively. The

macroscopic parameters enumerated above are essentially controlled by the

strength of the pairing potential, the amount of energy required to break a

pair into two normal electrons. That pairing potential thus produces a gap in

the spectrum of single particles 2∆ near T = 0 that can be observed in the

superconducting state. It must always be remembered that in the quantum

theory of low temperature superconductivity Cooper pair states are formed

from the correlation of pairs of normal electron states.

Until the discovery of high temperature superconductors in non-metallic

systems [6] the highest Tc achieved was on the order of 20 K. In every case

the mechanism that paired the electrons and yielded a superconducting state
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was the same: the BCS mechanism in which phonons overscreen the electron-

electron interaction, which in turn causes a retarded net attractive ionic po-

tential to arise between electrons of opposite spin and momentum. This is not

thought to be the case for the high transition temperature (high Tc) materials

discovered in the late 1980’s.

High temperature superconductivity in the copper oxides is character-

ized by the same fundamental macroscopic phenomena – zero electrical re-

sistance and the Meissner effect – as elemental BCS superconductivity. There

are several macroscopic differences however. First, the copper oxide materi-

als, or cuprates, are not metals over an appreciable portion of their doping-

temperature phase diagram. Second, the magnitude of the supercurrent that

will flow between an identical cuprates depends on the relative orientation

of their crystal structures; certain orientations will allow no supercurrent at

all to flow between them while others permit the maximum amount. Finally,

the macroscopic critical values for temperature, current density and magnetic

field can be up to two orders of magnitude greater in the cuprates than in any

BCS superconductor. This last fact is the origin of great practical as well as

academic interest in the high Tc cuprates. Finally, as the name implies, high

temperature superconductivity was until last year unknown outside of mate-

rials with copper-oxide layers as their main determining feature. A discussion

of the new materials, the iron pnictides, is beyond the scope of this work and

too poorly understood at this point to even begin to paint a picture.

In what remains of this chapter we shall briefly review what is known

about the microscopic origins of the above listed differences between BCS and

cuprate superconductors. We shall first examine the chemical composition and
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crystal structure of the cuprates. This review is critical as many of the most

important aspects of cuprate physics are tied directly to the complex crystal

structure of the materials. We shall then introduce the temperature-doping

(T − δ) phase diagram of the cuprates and examine what is known about how

the electronic structure of the cuprates evolves across it.

2.2 Crystal Structures and the Families of the

Cuprates

The defining characteristic of the cuprates is the presence in the unit cell

of at at least one and often two or more layers of copper-oxygen planes. The

copper-oxygen planes are formed by lattices of squares made up of alternating

copper and oxygen atoms with the copper atoms at the corners of the squares.

In all cases the cuprates also are comprised of a number of structural com-

ponents separating the planes from each other and forming a scaffolding in

which they can reside easily in two dimensions. These scaffolding components

are insulating and do not contribute to the valence bands of the cuprates as

observed by photoemission. The crystal structures of the one, two and three

layer Bismuth based cuprates [4], of which Bi2212 is the bilayer variety, are

diagrammed in Figure 2.1.

As is well known the undoped cuprates that these structures represent

do not superconduct. They are in fact antiferromagnetic charge transfer

insulators[1]. In the literature they are often referred to as Mott insulators

for short and we shall often do the same in this text. That is because while a
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Figure 2.1: Primitive unit cells of the Bismuth based cuprates.

10



simple counting argument would show these materials to be metals with half

filled bands, corresponding to one free electron per copper-oxygen plane per

unit cell, strong on site Coulomb repulsion causes extreme electron localization

and thus induces an insulating character. One must add additional holes or

electrons to the half filled band before these materials do anything useful. Thus

the doped materials are often referred to as doped Mott insulators. Doping

is accomplished through chemical alteration of the crystal. In several families

this doping is accomplished by chemical substitution. In Laδ(Ba,Sr)2−δCuO4

(LBCO and LSCO) for example, where δ is the doping fraction, the full range

of hole doping levels can be achieved by substituting a fraction of Ba or Sr

atoms for La atoms in the undoped compound. In other families of hole doped

cuprates such as YBa2Cu3O6+δ (YBCO) and Bi2Sr2CaCu2O8+δ (BSCCO or

Bi2212), the hole doping is accomplished by adding extra oxygen atoms to the

crystal. The doping of YBCO from the undoped parent compound, and the

overdoping of the as-grown optimally doped BSCCO is performed by enclosing

the samples in high pressure cells of liquid oxygen. Underdoping of BSCCO,

the removal of extra oxygen, is accomplished by annealing a sample to sev-

eral hundred degrees Celsius in a vacuum for a day or two. (For the record,

optimal doping refers to the doping concentration with the highest Tc.) In

BSCCO the dopant oxygen ions reside above and below the planes interstitial

in the lattice. YBCO is more complicated.

The astute reader will no doubt have noticed the lack of any mention so

far of the electron doped cuprates. That topic will be touched on below in the

context of the cuprate phase diagram but they are for the most part beyond

the scope of this work. There is no consensus at this time how they are related
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to the hole doped cuprates beyond the presence of doped copper oxygen planes.

2.3 The Cuprate and BSCCO Phase Diagrams

There is a phase diagram generic to the cuprates as a whole and there

are more detailed phase diagrams for individual families of cuprates [1]. This

breakdown is useful because the several families often exhibit behavior with

respect to doping pathological to themselves with explanations one might call

local rather than global. The presence of a layer of CuO chains in YBCO in

addition to two planes introduces its own peculiar physics into the problem.

A less clear distinction can be made, for example, regarding the static stripe

order seen in cuprates at the famous 1/8 doping level as in LBCO and to

a lesser extent LSCO. Bi2212 is marked as being a particularly anisotropic

material with resistivity ratios between the ab plane and the c axis ρab/ρc on

the order of 1000 suggesting it is a highly two dimensional material. After

the global phase diagram we will be most concerned with the Bi2212 phase

diagram.

A global phase diagram is shown in Figure 2.2. The salient feature on either

side of the zero doping line is the presence of the charge transfer/antiferromagnetic

(CT/AFM) insulating state. To get a sense of the energies involved, the tem-

perature scale of this magnetic order at zero doping is on the order of several

hundred degrees Celsius. On the hole doped side the CT/AFM is suppressed

rapidly by doping. At even very low dopings, up to a few percent, it yields to

the ”normal pseudogap” state below a temperature T ∗, above the Néel temper-

ature TN and a “bad metal” or “marginal Fermi liquid” state above T ∗. The
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Figure 2.2: Generic phase diagram of the electron and hole doped cuprates
adapted from reference [1].

quotation marks are emblematic of our understanding of either of these phases.

There is no known counterpart to the pseudogap phase for the electron doped

cuprates. On both sides, with sufficient doping, a Tc “dome” appears. On the

hole doped side this occurs around 5 percent doping (δ=.05). The doping at

which the maximum Tc occurs is said to be “optimal”, about 16 percent for

the hole doped cuprates. Dopings closer to the zero of the doping axis are said

to be underdoped, dopings further away are said to be overdoped. For both

hole and electron doped systems the overdoped ends of the phase diagram

are characterized by normal state properties approaching those of a normal

metallic Fermi liquid with the T ∗ line either zero or coinciding with the Tc line

as it goes to zero on the hole doped side. In addition to the apparent lack of

a pseudogap and the extended AFM phase, the electron doped cuprates tend

to have much lower maximum Tc.

The current phase diagram of Bi2212 is shown in Figure 2.3 [7]. It rep-
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Figure 2.3: Temperature vs. doping δ phase diagram of Bi2212 as it is currently
understood.
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resents a point of view based on what is known at this time. While it looks

complex, Bi2212 actually has a relatively straightforward phase diagram com-

pared to many other cuprates. Tmax
c of Bi2212 is 91 K, at which point T ∗ is

about 140 K. The line Tν represents the temperature below which the Nernst

effect detects the presence of magnetic flux flow indicating the presence of

diamagnetic superconducting fluctuations in the normal pseudogap state [8].

It is not a true phase but nevertheless represents an experimentally important

energy scale. It is not certain if T ∗, the temperature at which the psuedogap is

observed to close, represents a real phase transition or some other phenomenon.

It is often referred to as a “crossover” temperature.

2.4 The “Ideal” Electronic Structure of Bi2212

A Mott insulator is a material that is predicted on the basis of band theory

to be a metal with the valence band half filled but is in fact an insulator.

Insulating behavior arises on the square lattice of the cuprates because when

there is one electron per copper atom the repulsive electron-electron Coulomb

potential U is poorly screened. The repulsive potential U introduces a large

energy barrier for an electron to hop from one site on the square lattice to a

neighboring site. This barrier corresponds to an insulating gap in the electronic

structure equal to U . Antiferromagnetism sets in because the ground state of

the system of localized electrons on the square lattice is is reached by letting

the z component of nearest neighbor spins align antiparallel with respect to

nearest neighbors. The electrons in this case are said to be strongly correlated.

This correlation represents a failure of the single electron picture of metals.
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This order is shown on schematically in Figure 2.4a. The cuprates from this

point of view are considered doped Mott insulators. By adding extra holes to

the square lattice previously localized electrons gain mobility. Because of the

underlying antiferromagnetic order, electron hopping to next-nearest neighbor

sites is preferred at low to moderate dopings as depicted in Figure 2.4b. In

this regime the system has been likened to a disordered spin liquid in which

conduction is better described by a spin moving though a sea of spins than

a charge moving through a sea of like charges as in a traditional metal [9].

At high enough hole concentrations the underlying AFM order is broken up

enough, and the Coulomb repulsion U is screened well enough for the system

to attain a more metal-like state. Such a state is observed in heavily over

doped cuprates. The exact nature of the ground state of the underdoped

Mott insulator is in this sense the main theoretical problem of the cuprates.

Curiously enough, as more and more holes are doped into the system, the

electronic states that arise inside this U gap [10] begin to resemble more closely

the naive LDA band structure described below and so its usefulness as a tool

is not completely lost.

LDA picture is still spoiled by the presence of, among other things, the

pseudogap state. This violation is most grossly manifested by the absence of

a Fermi surface in the system as defined by the zero energy surface traced out

by the bands in k space. Thus Luttinger’s theorem, which relates the volume

(or in two dimensions the area) of the Brillouin zone enclosed by the Fermi

surface to the number of free carriers in the system, also fails. Very overdoped

cuprates, upon approaching a Fermi liquid like state, are thought to be well

described by LDA but we shall not delve too deeply into this question as it
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Figure 2.4: Simplified, schematic representation of a) the AFM/Mott insulat-
ing state on the copper oxide square lattice. Copper atoms are orange; oxygen
atoms are green. Arrows indicate the relative spin orientation. b) upon dop-
ing the AFM/Mott insulator nodal conductivity becomes preferred. Hopping
along the bond direction is still suppressed by the on site Coulomb repulsion
U .
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is not settled and will not be addressed much further in this work. While we

shall provide some insight into these problems near the end of this thesis it

suffices for now to explain the terminology and phenomenology, as currently

known, that is used to describe the electronic structure of the cuprates. This

is especially important here as ARPES is above all else a tool for the study of

electronic structure.

While the tight binding band structure calculations are, strictly speaking,

wrong they are “close enough” around optimal doping to provide a road map

by which to orient one’s self in the Brillouin zone. Throughout this text we

shall adopt the language most commonly used in the ARPES literature to

describe the electronic states of the cuprates. A common parametrization of

the 2D cuprate band structure found in the copper oxygen planes is given by

the dispersion relation [11]

εk = −2t(cos(kxa)+cos(kyb))+4t′ cos(kxa)cos(kyb)−2t′′(cos(2kxa)+cos(2kyb))−µ

(2.1)

where µ is the chemical potential, a and b are the in plane lattice constants

and t = .34, t′ = .22t and t′′ = .1t are the nearest, next nearest and next-next

nearest neighbor hopping energies. kx and ky are the crystal momenta along

the a and b axes of the copper-oxygen planes. A term proportional to ±t⊥, the

interlayer coupling, can be added to account for the bilayer splitting in bilayer

and trilayer cuprates. The single band picture is often used diagramatically

because over most of the Brillouin zone the bilayer split bands are nearly

degenerate. For optimal doping (δ ∼ .16) µ ∼ .24 eV for this parametrization

of the band structure. The band structure generated by this dispersion is
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shown in Figure 2.5. In the cuprates it is common to normalize momentum

axes to π so the points (kxa, 0) and (0, kyb) are called the (π, 0) and (0, π)

points, respectively. In crystallographic notation they are also called the M

points, being the point half way along each square face of the Brillouin zone.

The corner point (kxa, kyb)is called X or Y and denoted (π, π). X and Y are

identical in tetragonal cuprates and different in orthorhombic cuprates. The

salient features of the gross band structure are the saddle points, often below

the chemical potential, at the M points and the high velocity dispersion along

the zone diagonals. Cuts through the full dispersion along the high symmetry

lines ΓM −MX − XΓ are plotted in 2.6. This model is qualitatively useful

as it captures, for example, the saddle point around M and the nearly linear

node crossing the chemical potential just off of (π/2, π/2). Clearly however

all the physics related to electron dressing interactions, superconductivity and

the pseudogap, described below, are left out.

The Fermi surface, the locus of electronic momentum states at zero energy

in a crystal, is often a far more useful tool for visualizing what part of the band

structure is under discussion than the full 3D band structure plotted above.

The metallic LDA Fermi surface is shown in Figure 2.7. The Fermi surface

crossing on the (0, 0) to (π, π) high symmetry line is called the nodal point.

The (π, 0) and (0, π) points are called the antinodes. The states in the vicinity

of these points are generally grouped into the nodal and antinodal regions of

the Brillouin zone, respectively. Taken altogether the band structure described

here gives the impression that the cuprates are technically metals, which they

are not. Moving the chemical potential in the above model to a level consistent

with half filling of the band will give no indication of the insulating state that
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Figure 2.5: Single LDA band approximating the dispersion of the Cu-O pdσ
band on the square lattice.
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Figure 2.7: LDA Fermi surface of Bi2212 in the single band approximation
from Eq. 2.1.

in fact results from electron correlations.

2.5 Gaps and Arcs in the Hole Doped Cuprates

There are many reasons the cuprates are special. We shall focus on three:

the presence of the normal pseudogap state below T ∗, almost metallic conduc-

tion in the absence of a true Fermi surface in this state and high temperature

superconductivity with a d-wave order parameter. We shall briefly review how

these phenomena manifest themselves in the band structure as determined by

ARPES. Our aim is to be more phenomenological than explanatory at this

stage.

Bi2212 samples with Tc’s that are underdoped, optimally doped and even

slightly overdoped exhibit a pseudogap in the normal state below the T ∗ scale
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Figure 2.8: a) Normal state Fermi surface of a heavily overdoped cuprate.
b) and c) the Fermi arcs for progressively more underdoped cuprates in the
normal psuedogap state. d) nodal points in the d-wave superconducting state.

[12]. The pseudogap is observed in ARPES as a depletion in the electronic

density of states around the Fermi level in the antinodal region of the Brillouin

zone. This depletion, or gap, has an energy scale on the order of T ∗, 30 meV

at (π, 0) in optimally doped Bi2212. The magnitude of this gap at the antin-

ode and its extent in the Brillouin zone increase with decreasing doping. This

behavior runs counter to the trend expected for a superconducting gap which

should increase with increasing doping up to Tmax
c . At the moment it is not

clear if the pseudogap and superconducting gap scales cross or merge on the

overdoped side of the Bi2212 phase diagram. This is not a question we shall

address in this work; we shall be mostly concerned with the phenomenology

of optimally doped and underdoped Bi2212. The pseudogap is postulated to

result either from the formation of tightly bound, localized, phase incoherent

Cooper pairs above Tc, called pre-formed pairs, or from an alternative ordered

ground state in competition with or that occurs in some complicated relation-

ship to high temperature superconductivity. We shall present evidence at the

end of this thesis in favor of the former scenario which is also supported by
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the presence of a strong diamagnetism observed in the normal pseudogap state

by Nernst effect measurements on underdoped cuprates. The extent of this

diamagnetic signal is illustrated by the Tν line in the Bi2212 phase diagram in

Figure 2.3. The pseudogap has a profound impact on the normal state band

structure of the cuprates in that it is responsible for the lack of a Fermi sur-

face in the normal state. The increase in extent as well as magnitude of the

pseudogap with underdoping on the Fermi surface is illustrated schematically

in Figure 2.8, panels a through c. The residual pieces of Fermi surface in the

nodal region of the zone are referred to as Fermi arcs. An extension of the

Fermi arc phenomenology and a subsequent interpretation of these arcs as the

visible part of a unique kind of “Fermi pocket” will be presented in Chapter

8. For now it suffices to point out that these arcs are responsible for the quasi

metallic conductivity of the underdoped and optimally doped cuprates. Both

these phenomena, the pseudogap and the Fermi arcs, are unique characteristics

of the hole doped cuprates.

The last phenomenological point to be covered here is the presence of high

temperature d-wave superconductivity in the cuprates. The origin of d-wave

superconductivity at elevated temperatures in the cuprates remains in dispute

and is one of the great unsolved problems in solid state physics. Here d-wave

refers to the symmetry of the superconducting order parameter and describes

how both the magnitude of the superconducting gap and the phase of the

Cooper pair condensate evolves in reciprocal and real space. For comparison

we sketch generic s-wave, p-wave and d-wave order parameters in Figure 2.9.

BCS superconductors such as elemental metals all exhibit s-wave superconduc-

tivity. Recently it has been shown that the Fe pnictide superconductors likely
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Figure 2.9: Schematic representations of the s-wave, p-wave and d-wave order
parameters. The + and - labels denote relative phases between lobes of p- and
d-wave type superconductors. The distance from the origin in all three cases
denotes relative gap magnitudes.

also exhibit a peculiar form of s-wave symmetry, though the pairing mecha-

nism is more likely magnetic in origin than due to the BCS phonon interaction.

The only known p-wave superconductor is SrRuO4 which with a Tmax
c of about

1.5 K for the undoped compound is difficult to study with ARPES below Tc.

The known d-wave superconductors include the heavy fermion systems and

the cuprates. Both p- and d-wave superconductors exhibit points of zero gap

magnitude called nodes. In cuprates these nodes occur at the nodal point

of the ideal Fermi surface along the (0, 0) to (π, π) symmetry lines which in

real space are aligned along the diagonals of the Copper-Oxide plane plaque-

ttes. This is illustrated in panel d of Figure 2.8. The gap maximum occurs

in the anti-nodal direction and implies the pairing in the cuprates is strongest

along the copper-oxygen bonding direction in real space. The main difference

between the p-wave and d-wave order parameters is the relative phases exhib-

ited by the different lobes of the order parameter. This phase pattern causes
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p-wave superconductors to break time reversal invariance whereas d-wave su-

perconductors are thought to preserve this symmetry. There exist other, more

exotic types of order parameter but no firm evidence of their existence in a real

material has been decisively confirmed. Note that photoemission can probe

the magnitude of the superconducting gap but not the phase of the Cooper

pair condensate.

Because the ideal cuprate Fermi surface is in most cases well approximated

by a circle centered at (π, π) the location of a point on this surface is often

parameterized by an angle, the Fermi surface angle, φ. φ is set to zero either

at the node or the antinode depending upon which parametrization is more

convenient for a given context. In terms of φ the magnitude of the ideal d-wave

gap is takes the form

∆(φ) = ∆0| sin(2φ)| (2.2)

where φ, which lies in the range −π/4 < φ < π/4, is taken to be zero

at the node and ∆0 is the gap maximum at the antinode. This form gives

the gap over one quarter of the Brillouin zone. While there is accumulating

evidence[13] that the superconducting condensate that carries a supercurrent

is formed by the pairing of electrons appearing only on the Fermi arc in the

normal pseudogap state the order parameter is well settled and this physics

is easily captured, if true, by a trivial redefinition of ∆0 and the range of

φ. In the simplest case where we assume the order parameter extends to the

antinodes of the Brillouin zone this gap function appears as plotted in Figure

2.10 for a ∆0 of 25 meV. Much debate in recent years has centered on whether
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Figure 2.10: Ideal d-wave superconducting gap as a function of Fermi surface
angle φ from Eq. 2.2. Here we take the node as the zero angle.

or not the gap near the node takes the “v” shape characteristic of the pure d-

wave shown in the figure or contains additonal angular harmonics that would

indicate the presence of, for example, more than one pairing channel. Such

additional physics is thought to give more of a “u” shape to the gap function

near the node.

27



2.6 Electron-Boson Interactions

No discussion of the phenomenology of the electronic structure of the

cuprates would be complete without reference to the deviations from the LDA

dispersion observed in the band structure of Bi2212. These deviations from

simple linear or parabolic dispersion appear as “kinks” in the band struc-

ture. Where the study of Fermi surfaces and related phenomena is colloquially

called “Fermiology” the study of these band structure anomalies can be called

“kinkology”. Since the inception of high momentum resolution photoemission

in the mid 1990’s a veritable zoo of kinks have been observed in the band

structure of Bi2212. These kinks exhibit a variety of temperature, doping and

momentum dependences. The causes and occasionally the very existence of

these kinks are often disputed. The identification and examination of a pre-

viously unobserved dispersion kink in optimally doped Bi2212 will form the

subject of much of Chapter 7. What, then, is a kink and why do we care

about whether and how kinks manifest themselves in the electronic structure

of Bi2212?

The mass of quasielectrons in a given band of a crystal’s electronic struc-

ture is associated with the curvature of that band. A sudden change in that

dispersion over some limited energy range thus corresponds to a modification

of that curvature and thus the effective mass m∗ of the carriers associated

with that band [14]. There are a variety of possible physical causes for such

an effect, the primary one being the onset at a specific energy and possibly

momentum of a coupling between band electrons and a bosonic mode, e.g.

phonons and magnons, of a well defined energy. Physically, one pictures the
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bosons participating in such an electron-boson interaction as “dressing” the

electron by introducing new scattering channels excitable above the thresh-

old energy for the interaction. Mathematically the interaction introduces new

Feynman diagrams into the calculation of the electron self energy. The appear-

ance of a new scattering channel decreases the lifetime of electrons of sufficient

energy to excite the bosonic mode causing a sudden change in the scattering

rate. The scattering rate, which is twice the imaginary part of the self energy

Σk(ω), is causally related to the real part of the self energy which describes

the dispersion εk. Thus a change in the scattering rate also renormalizes the

dispersion, producing a “kink” in the band at the mode energy. The most

famous example of this phenomenon in Bi2212 is the kink around 70 meV

[15] [16] binding energy in the nodal region of the Brillouin zone. An early

accounting of the temperature and momentum dependence of this features is

given by Figure 2.11 as adapted from reference [17].

In addition to the 70 meV nodal kink, dubbed here the “classic” kink,

there are thought to be at least one [18] [19] and possibly more [20] kinks at

higher binding energy in the nodal region as well as a kink around 40 meV

in the antinodal region. This is in addition to the newly discovered 8 meV

kink in the nodal region discussed in this thesis. We shall argue that while the

assignment of a cause for these various kinks is not clear the 8 meV assignment

to a particular optical phonon mode for the first time is. The overall situation

of nodal kinks is diagrammed in Figure 2.12.

There exist a few methods for examining kink physics. The “direct”

method as illustrated above involves measuring the imaginary part of the self

energy, i.e. the scattering rate, while simultaneously extracting the real part
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Figure 2.11: The classic kink in Bi2212. Panels a)-c) show the nodal spectrum
of under doped, optimally doped and over doped Bi2212, respectively, with Tc

indicated. Lower panels show the MDC derived dispersions above and below
Tc.
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Figure 2.12: Historical evolution of the nodal kinkology of Bi2212. In all panels
the dashed line denotes the supposed unrenormalized, or bare, LDA-type band
used to directly extract the change in the real part of the self energy induced by
the interaction. a) the picture used in the analysis of Figure 2.11 b) the same
picture modified after observations proposing the existence of a “big” kink at
350 meV. c) the same picture now including the 8 meV kink discussed in this
thesis. d) Generic anatomy of a kink showing the deviation of dispersion from
the bare band with the subsequent broadening of the electron lifetime above
the kink energy. Note that the existence of the big kink remains a topic of
debate.
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by calculating the change in band dispersion observed relative to a theoreti-

cally derived bare band dispersion. In practice if there is only one kink and the

band appears unperturbed far from the kink energy one simply draws a line of

the type shown in Figures 2.12 and 2.11 (in the lower panels) as dashed lines

for the bare band and extracts Re Σ as the difference in binding energies be-

tween the measured and bare bands. If this procedure is justified the real and

imaginary parts of the self energy thus extracted should be causally related by

Kramers-Kronig (KK) relations [21]. Because the bare band is something of a

fiction in the best case and for correlated electron systems like Bi2212 probably

a total fabrication (in the sense there is no such thing as a bare electron) it is

often preferable to only measure the imaginary part of the self energy and then

use the KK relations to calculate the real part. This method suffers somewhat

from the ambiguous location of the ultraviolet cutoff of this integral but this

ambiguity is often less dire than that involving a postulated bare band. Either

way the reason for extracting the real part of the self energy is that it can be

directly related to the electron-boson coupling constant embodied by the mass

enhancement factor λ such that [15]

− ∂Re Σ

∂ω
= λ (2.3)

close to the Fermi level. This interpretation of λ in the high energy, multiple

kink picture presented in Figure 2.12c clearly has some conceptual problems.

Alternatively λ can be calculated in the Migdal-Eliashberg formalism if one

knows both the boson density of states F (ω) and the electron-boson coupling

α2. (Migdal-Eliashberg equations involve integrals over α2F (ω).) While in
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principle this information can be garnered from an inversion of the ARPES

derived scattering rates (Im Σ) this is in general a very difficult problem in

itself. Because the 8 meV kink discussed later can be reasonably assigned to

single mode it is a straightforward matter to derive the relevant part of α2F (ω)

and thus λ and Re Σ from the measurement.

The main imperative for identifying the origin of these interactions in

Bi2212 lies in their supposed relevance to high temperature superconductivity.

The reasoning goes that if a strong electron-phonon interaction in BCS super-

conductors is the mechanism responsible for electron pairing in those materi-

als then an analogous electron-boson interaction may produce high Tc’s in the

cuprates. The universal appearance of the 70 meV in all hole doped cuprates,

for example, may result from that interaction and, so the hypethesis goes, the

study of this or other such kinks may eventually yield the boson, if any, and

thus the pairing mechanism responsible for high temperature superconductiv-

ity. Thus if superconductivity in the cuprates is driven by an electron-boson

interaction analogous to the electron-phonon interaction of BCS theory finding

and then identifying electron-boson interactions in the cuprates is potentially

of paramount importance in the problem of the high Tc’s. Though the pos-

sibility of such a mechanism for high Tc superconductivity in the cuprates is

thought likely by only a minority of the community it has yet to be ruled out

entirely and thus anything further that can be learned about these processes

provides a valuable addition to our ability to ultimately discern the correct

theory of high Tc.

33



Chapter 3

Photoemission Spectroscopy

This chapter is devoted to a description of the kinematic and quantum

theories of ARPES as it is currently understood. A discussion of the particular

experimental methods required to perform a laser ARPES experiment will be

presented in a later chapter. While the treatment here is essentially canonical,

being thoroughly covered in several well known texts [22][1], special attention

will be paid to the ramifications of using “low energy” light, especially lasers,

as photoemission excitation sources. As we shall see, while the use of lasers

offers many potential benefits for ARPES on certain condensed matter systems

of great interest, even under the best of circumstances the interpretation of

the resulting data must be treated with great care.

3.1 Kinematics of Photoemission

ARPES is the modern application of the photoelectric effect famous to all

students of physics as the subject of Einstein’s Nobel Prize winning use of
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the then new quantum theory of matter and energy. It was discovered at the

end of the 19th century that a clean metal surface in a vacuum vessel emit-

ted electrons when light was shone upon it. The energy of electrons escaping

the surface of the metal depended not upon the intensity of the light (which

only governed the number of electrons emitted) but upon the wavelength or

frequency of the light. The number of electrons was determined by measuring

the (photo)current between the photocathode and the anode target and the

kinetic energy of the emitted electrons was measured by finding the reverse

bias voltage applied between the anode and cathode required to drive the

photocurrent to zero. A schematic of this early type of photoemission exper-

iment is shown in Fig. 3.1. The relationship between this stopping potential

(and therefore the electron kinetic energy) and photon wavelength forms the

fundamental kinematic relation for photoemission,

eV = hν − φ =
1

2
mv2 (3.1)

where e is the electric charge, h is Planck’s constant, ν is the photon frequency

and φ is the work function of the sample surface, about which we shall have

more to say shortly. Historically this experiment was meant to yield only a

measurement of Planck’s constant, h, and show that it is a universal constant.

While this version of photoemission implied a great deal about the quan-

tum nature of electrons and their interaction with light it does not tell us

much about the metal used as the photocathode other than to say each metal

has a unique work function, φ. Eventually it was realized that one could use
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Figure 3.1: Schematic of the original photoelectric effect experiment. Light
with sufficient energy hν ejects electrons from a cathode. The work function
φ is determined from the stopping potential V applied between the anode and
cathode.

the photoelectric effect as a tool to probe the electronic structure of the pho-

tocathode. This early version of the technique, PhotoEmission Spectroscopy

(PES), was designed in most cases to measure the photocurrent for a fixed

photon energy as a function electron kinetic energy. This measurement yields

a number proportional to the density of occupied electronic states in the sam-

ple as a function of binding energy. In a modern notation this is expressed

as,

I(KE) ∝ N(EB)f(EB) (3.2)

where I(KE) is the photocurrent as a function of the kinetic energy KE of the

photoelectrons, f(EB) is the Fermi-Dirac distribution function and N(EB) is

the joint density of electronic states in the sample as a function binding energy

EB measured relative to the chemical potential of the sample (µ). This quan-

tity is similar to the joint density of states probed in tunneling experiments
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such as STM/STS and optical conductivity. The essential difference lies in the

nature of the final states probed in the two types of experiment. Because in

solid state physics the chemical potential is almost always equal to the Fermi

energy level EF , and because the Fermi levels of all systems in electrical con-

tact must align, it is the natural zero reference for the binding energy scale of

solids. Thus the fundamental kinematic relation of photoemission is usually

expressed as

KE = hν − φ− EF + EB (3.3)

where, following standard practice in the literature, we have chosen EB to

be negative for state below the Fermi level (the occupied side) and positive

for states above the Fermi level (unoccupied side) so that the Fermi factor is

written,

f(EB) =
1

1 + e
EB

kBT

(3.4)

where kB is Boltzmann’s constant and T is the sample temperature in Kelvin.

Note that while the Fermi function enforces the fact that ARPES can only

probe occupied electronic states, at finite temperatures this cutoff between

states above and below the Fermi level is not necessarily sharp, a fact we

shall exploit later to apply photoemission to the measurement of low lying

“unoccupied” states.

A measurement of the density of states as a function of binding energy is

called an Energy Distribution Curve, or EDC. The kinematics of the simple

photoemission process are diagrammed in Fig. 3.2. In the modern formalism of

quantum mechanics it is clear that the work function φ is the minimum energy

an electron requires to escape the influence of the sample into the continuum of
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final states in the vacuum. This vacuum level, denoted Ev, is a material specific

property. Because φ is an immutable property of materials themselves a bias

voltage applied between the sample and the detector adds a constant energy

shift to the entire spectrum, in which case the difference in energy between the

shifted EF and the low energy cutoff in the photoemission spectrum is equal

to its work function. Notice too that the analyzer, as a material different from

the sample, has a different work function, φA, that must be accounted for in

a real measurement. φA shows up in PES spectra as a constant energy shift

in the spectrum due to a higher or lower barrier between the vacuum and the

analyzer than between the vacuum and the sample. It can only be accounted

for by knowing the photon energy used and the work function of the sample

in question. Thus

KEmeas = hν − (φ− φA) + EB − EF (3.5)

EF itself is easily measured by fitting a Fermi distribution function, Eq.

3.4 to the part of the photoemission spectrum with the highest kinetic energy

(e.g. binding energy equal to zero at zero temperature). In the figure we

distinguish between three types of electronic states: unoccupied valence states,

occupied valence states and occupied core level states. Electrons that make

up core level states, which do not generally participate in chemical bonding,

are roughly speaking the solid state equivalent of free atomic electron levels.

Because in high resolution photoemission we are primarily concerned with the

interactions and dispersions affecting the valence states we note the presence

of core levels here only in passing. Clearly access to these electrons require
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Figure 3.2: Energy level diagram relating density of states in a sample to what
is measured in a photoelectron spectrometer.

a somewhat higher photon energy to excite out of a sample than do valence

electrons and so are not normally accessible (or interesting) in a low energy

ARPES experiment.

While PES gives invaluable information about the total electronic density

of states of a system it was ultimately recognized that much more valuable

information could be gleaned from photoemission were one able to resolve the

photocurrent not only as a function of kinetic energy but also as a function

angle of emission from the surface. The technique of angle resolved PES,

ARPES from here on out, rests on the fact that electrons inhabiting the dis-

persing bands of a single crystal have a well defined momentum within that

crystal and therefore, due to conservation of linear momentum, should retain
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that information by escaping the crystal surface in preferred directions. By

measuring EDC’s at many well defined angles of emission one could effectively

reconstruct the band structure of the crystal by observing the peak photocur-

rent’s dispersion as a function of kinetic energy and emission angle, so long as

one could relate that emission angle to the crystal momentum ~k the electron

had prior to photoexcitation.

In general this relation of emission angle to crystal momentum is a very dif-

ficult problem. The reason is that electrons, having a wavelike nature, refract

(and reflect) at the crystal surface/vacuum interface in a manner analogous to

the refraction and reflection of light upon traversing an interface between two

regions of differing index of refraction. In the case of a solid the interface is

effectively defined by the presence of the energy barrier at the surface which

has both an energy component, the work function, and a spatial component

defining the distance from the surface over which this potential operates. Phys-

ically this barrier derives from the atomic orbitals exposed at a crystal surface.

As for light, the wavelike nature of the electron implies that it’s wavefunction

must satisfy certain boundary conditions at the crystal/vacuum interface. In

terms of the electron momentum this condition is,

~kin · n̂ = ~kout · n̂ (3.6)

where we ignore the reflected wave because it is unobservable in photoemis-

sion and n̂ is taken to be evaluated at the crystal surface/vacuum interface.

In ARPES it is particularly convenient to break the wavevector down into

components parallel and perpendicular to the surface, k = k‖ + k⊥. As in
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electrodynamics this results in the important rule for the parallel component

of the photoelectron momentum,

k‖,in = k‖,out (3.7)

which is to say that the plane parallel momentum of the photoelectron is

strictly conserved in the photoemission process. For photoelectrons originating

from inherently two dimensional Bloch states this equation is exact, a result

that is the basis and reason for the understandability of high resolution ARPES

experiments performed on essentially 2D, layered electronic systems like the

cuprates. The conservation of parallel momentum leads to a form of Snell’s

law for ARPES [23],

~k‖ = p‖ =
√

2mEkin{sin(θ) sin(ϕ)k̂x + sin(θ) cos(ϕ)k̂y} (3.8)

where the polar and azimuthal angles of emission θ and ϕ are defined relative

to the sample normal n̂ as in Fig. 3.3 and m is the rest mass of the electron.

This relation is often simplified by noting that the quantity
√

2m
~2 is a “universal

constant of photoemission” equal to .5124 [Å
−1
/
√
eV ]. From now on we’ll just

call this C. Also, because ϕ is often small we can take cos(ϕ) ≈ 1 and so Eq.

3.8 is usually written in the scalar form

k‖ = C
√

hν − φ− EF + EB sin(θ) (3.9)

where we have written the photoelectron kinetic energy explicitly using Eq.

3.3. Note that we here on out omit reference to φA as it is extrinsic to the
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Figure 3.3: All angles parameterizing an ARPES experiment are measured
relative to the sample normal n̂. (α, β) and (θ, ϕ) are the azimuthal and polar
angles of the incident photon and exiting photoelectron, resepctively.

photoemission process as such. Here the role of the “index of refraction” is

played by the prefactor C
√
KineticEnergy. Practically speaking this is the

most important equation in ARPES because it tells us how to relate the things

we can measure, i.e. the various energies of the problem and the emission angle

defined in our detector by, say, a slit or pinhole, to that electron’s origin in

the reciprocal space of the crystal. It also yields a simple definition for the

momentum resolution in ARPES,

∆k‖ = C
√

hν − φ− EF + EB cos(θ)∆θ. (3.10)

There are three more contributions to the momentum of photoelectrons in

ARPES. The first, the contribution to the momentum from the exciting pho-

ton, is easily dealt with in low energy ARPES. In the UV and VUV regimes,

the photons themselves carry negligible total momentum p = E/c. This is not
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the case as one scales up in photon energy to x-ray wavelengths where, in the

XPS regime (x-ray photoemission spectroscopy) one must take into consider-

ation finite momentum q transitions in the spectrum. Such effects are of no

concern to us here. An effect that may be of more concern as the quantitative

precision of photoemission is pushed to higher scales and better energy reso-

lutions is that of the photorecoil effect. In its simplest incarnation this effect

is understood as a consequence of the conservation of linear momentum be-

tween a photoemitted electron and the ionic core from which it was previously

bound. The recoil of the ionic core induces a shift in the kinetic energy of the

electron that can be estimated as

∆E = KE
m

M
(3.11)

where ∆E is the recoil energy imparted to an atom at rest, KE is the pho-

toelectron kinetic energy, m is the electron mass and M is the atomic mass

[24]. ∆E is observed as an apparent shift to higher binding energy of the

emitted electron. While this effect is obviously most noticeable at high kinetic

energies, it has recently been observed experimentally as a shift in the Fermi

level of gold and aluminum on copper. For low energy ARPES this shift is

negligible, on the order of .1 to .01 meV depending on the photon energy and

atomic mass, and so is only mentioned here for the sake of completeness. Nev-

ertheless, as the technique pushes the bounds of precision this effect may one

day need to be taken account of.

A more important problem comes from considering the effects of having a

component of crystal momentum perpendicular to the surface, k⊥. Because
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k⊥ can itself take on an imaginary component, k⊥ = k1 + ık2, where k1 and k2

are real scalar quantities, there is a damping component associated with the

propagation of an electron wave originating from a three dimensional state

through the crystal surface. The magnitude of this damping is often very

difficult to determine precisely in experiments. The perpendicular component

of the momentum measured in ARPES is therefore not conserved and as such is

broadened significantly in most measurements. This can be seen schematically

by approximating the electron wavefunction as a plane wave at a crystal surface

so that

ψ⊥ eık⊥r = eık1re−k2r (3.12)

where r is the normal coordinate from the surface. What’s more, as will be

encountered below, this damping of the photoelectron, after dissociation from

the remaining photohole, leads to the measured lifetime of a 3D electron be-

coming the superposition of the photohole and photoelectron lifetimes whereas

for D < 3 the measured lifetime only reflects the decay of the photohole in

response to scattering events occurring in the remaining N-1 electron system

in the crystal. The practical effect of this problem is to render the results of

ARPES on one and two dimensional systems vastly simpler to interpret than

on three dimensional systems. This has led to a natural predisposition in the

ARPES community in recent years to study intrinsically one and two dimen-

sional states, e.g. in layered systems like the cuprates and dichalcogenides or

the surface states of metal crystals, as opposed to more general 3D systems.

In light of the realization that the physics of one and two dimensional systems

is often much richer than that of 3D systems this has not presented much of
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a handicap to the technique. In any event, we will from here on out confine

ourselves to the study of ARPES in systems of reduced dimensionality except

where necessary.

3.2 Quantum Theory of Photoemission

What have been described so far are the purely kinematic relations used to

link the various quantities measured in ARPES, e.g. electron kinetic energy

and emission angle, to the quantities of interest in a solid sample, binding

energy and crystal momentum. This analysis does not tell us anything about

the quantum mechanical nature of the photoemission process. The quantum

theory of ARPES tells us how to interpret what we are measuring whereas the

kinematics only tell us how to measure it. The quantum theory of ARPES is

typically broken down into two flavors called the three step and the one step

models, respectively [22]. The three step model, described in more detail be-

low, consists of picturing the photoemission process as i) photodissociation of

an electron from the background sea of electrons in the crystal by an impinging

photon ii) propagation of the photoelectron to the surface and iii) emission of

that electron into the vacuum while the remaining N-1 electron system relaxes

by annihilating the residual photohole. The one-step model on the other hand

makes use of the sudden approximation in which a photoelectron is excited

directly from an occupied state in the crystal to a final state in the vacuum

followed by relaxation of the N-1 electron system. The approximation made in

this case is that the photoelectron does not interact with the residual system

before exiting the crystal or, put another way, that the decay of the photohole
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occurs on a time scale much longer than the escape time of the photoelectron.

In what follows we assume a system with dimensionality less than three.

The photocurrent I(k, ω) (where ~ω is the electron binding energy; recall

we use hν as the photon energy) is directly proportional to the transition

matrix element from some N electron initial state (in the sample) to someN−1

final state in the sample along with the state of the photoelectron removed to

create it. This transition is calculated according to Fermi’s Golden Rule such

that

I(k, ω) ∝ 2π

~
| 〈f | Ĥint |i〉 |2f(ω)δ(Ef − Ei − hν)δ(k‖,i − k‖,f − G) (3.13)

where 〈f | and |i〉 are the initial and final state wavefunctions, respectively, Ĥint

is the Hamiltonian operator connecting the two states and G is a reciprocal

lattice vector. The Fermi function f(ω) enforces the fact we can only probe

occupied electronic states. The delta functions as usual enforce energy and

momentum conservation. Because we are here focusing on low dimensional

systems for which k⊥ = 0 we have dropped that delta function. For photon

energies with insufficient momentum to excite q transitions beyond the first

Brillouin zone, as is the case for the low energy laser, G becomes irrelevant

and so can be dropped so long as we are working in the reduced zone scheme.

In photoemission the interaction Hamiltonian Ĥint is the electromagnetic

dipole operator introduced by the photon source. It is formed by modifying the

electronic momentum to reflect the electron’s coupling to an electromagnetic

field,

p̂ → p̂ +
e

mc
A (3.14)

46



so that the Hamiltonian becomes

Ĥint =
1

2m
(p̂ +

e

c
A)2 − eV. (3.15)

After expanding the square, keeping in mind the noncommutativity of p̂ and A

(which can be written in terms of harmonic oscillator creation and annihilation

operators) this becomes

Ĥint =
e

2mc
(A · p̂ + p̂ · A) − eV + (

e

mc
)2A · A (3.16)

where A is the magnetic vector potential, p̂ is the canonical momentum op-

erator −ı~∇, V is (here) the scalar electric potential, e and m are again the

electron charge and mass, and c is the speed of light. This is simplified by

working in the Coulomb gauge so V = 0. The first term is simplified by

commuting p̂ through A yielding

e

2mc
(A · p̂ + p̂ · A) =

e

2mc
(2A · p̂ + ı~∇ · A). (3.17)

Assuming that the divergence of the photon field is negligible over the region

near the surface photoemission occurs (another point we shall return to later)

∇ ·A = 0 and ignoring the second order term in Eq. 3.16A ·A that describes

the field energy, Ĥint is reduced to the rather slim form

Ĥint =
e

mc
A · p̂. (3.18)
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In a three step model the initial state |i〉 is formally decomposed as

|i〉 = φi
k,ω |N − 1, i〉 (3.19)

where we have explicitly identified the wavefunction of the electron undergo-

ing excitation from the sample as being separate from the (properly antisym-

metrized) many body wavefunction describing all the remaining electrons in

the system. The final state wavefunction can be similarly decomposed;

〈f | = φf
Ekin

〈N − 1, f ′| (3.20)

In this case we distinguish between the final state f of the photoelectron and

the final state f ′ of the remaining system. Noting that the dipole operator

only acts upon the photoelectron wavefunction the photocurrent can then be

written as

I(k, ω) ∝
∑

f,i,k

∑

f ′

| 〈φf
Ekin

|A·p̂ |φi
k,ω〉 〈N − 1, f ′| ck |N, i〉 |2f(ω)δ(Ef−Ei−hν)δ(k‖,i−k‖,f )

(3.21)

where we have absorbed various constants into the proportionality, explicitly

introduced the fermion annihilation operator ck into the overlap integral be-

tween the initial and final states of the many bodied system “left behind” by

photoemission and summed over all initial and final states of the photoelectron

and (separately) summed over all final states of the N − 1 body system as is

required to evaluate the golden rule.

The first bracket in the above equation denotes the fact that the electrons
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most likely to be emitted are those with their momentum aligned along the

polarization vector of the incident light. This effect, which is essentially geo-

metrical, imparts a modulation to the spectral intensity that can under some

circumstances be externally controlled (say by changing the relative angle of

incidence and polarization of the exciting light) but usually does not contain

any easily determined quantitative information. In the literature of ARPES

this is what is usually referred to as the ARPES matrix element,

M2
f,i = | 〈φf

Ekin
|A · p̂ |φi

k,ω〉 |2. (3.22)

The second factor describes the response of the system itself to the introduc-

tion of a photohole by how that hole subsequently decays due to scattering of

the remaining electrons into that vacancy, thus yielding the density of states

component of Fermi’s Golden Rule. Put all together the photocurrent is pro-

portional to

I(k, ω) ∝M2
f,iA(k, ω)f(ω)δ(Ef − Ei − hν)δ(k‖,i − k‖,f ). (3.23)

where A(k, ω) is called the spectral function, which we shall examine more

closely in a moment.

While the three step model has the somewhat pedagogical advantage of

explicitly separating the matrix element contribution to the photocurrent from

the density of states defined by the spectral function it is not so easy to derive

obvious or experimentally useful conclusions from this formulation. On the

other hand, though the validity of the sudden approximation might be called
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into question, it has the distinct advantage of relating transitions between

relatively easily identified single particle states in the crystal to what one can

expect to measure. In the one step model one simply avails one’s self of the

Golden Rule as is,

I(k, ω) ∝ | 〈f |A · p̂ |i〉 |2f(ω)δ(Ef − Ei − hν)δ(k‖,i − k‖,f). (3.24)

where we can take the final state wavefunction to be either a free electron (in

the vacuum) or a so-called inverse LEED state and we can take the initial

state to be that of a Bloch electron in the crystal as described by A(k, ω).

Whether one can trust such a simple picture at low energies in the cuprates

has been a matter of debate. For photoemission at VUV and higher photon

energies the photoelectron certainly escapes the sample long before the system

relaxes, if only because of the increased sensitivity to the surface. It has been

shown recently that the sudden approximation seems to hold at least for the

nodal state of Bi2212 at low T with a 6 eV excitation source by comparing

a laser excited spectrum to data taken at a more conventional synchrotron

beamline. Jumping ahead a little bit, it is well known that the low energy

states of optimally doped Bi2212 show lifetimes τ between scattering events

on the order of picoseconds whereas an electron imparted with 6 eV of kinetic

energy, even L = 10 nm below the surface of a sample, requires a mere handful

of femtoseconds t, in a classical calculation, to find its way out of the sample.

Thus it is natural to expect that for a given system the sudden approximation

will hold so long as t ≪ τ . Note that this may not be true for systems in

which scattering is very strong, implying a very short electron lifetime, or
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even for more conventional systems at high temperatures. In any event, the

same reasoning shows that a state would have to have an intrinsic width on

the order of 100 meV before the sudden approximation might begin to fail.

Returning to the quantum theory of ARPES, we find that the spectral

function contains the information about the electronic density of states as a

function of energy and momentum we seek to measure,

A(k, ω) = | 〈N − 1, f ′| ck |N, i〉 |2δ(ω − ǫk) (3.25)

where A(k, ω) is the spectral function of the system. The spectral function

is the probability that an electron can be removed (added) from (to) the oc-

cupied (unoccupied) part of the electron distribution in a sample. The power

of ARPES to probe the many body physics of crystalline solids stems from

the simple relationship derived in quantum field theory between the spectral

function and the one electron Green’s function G(k, ω),

A(k, ω) =
1

π
| ImG(k, ω)|. (3.26)

In field theory applied to solid state physics the Green’s function contains all

the information about the bare dispersion of electrons as would be obtained

from, for example, a tight binding model of band structure, as well as infor-

mation about the interactions, in the form of self energies, that can alter that

dispersion as well as lifetimes. The trivial example of this property is the bare

(unrenormalized) Green’s function that contains no information about electron
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interactions with themselves or with the medium in which they reside;

G−1
0 (k, ω) = ω − ǫk − ıη (3.27)

which, per Eq. 3.26, yields the spectral function

A0(k, ω) = δ(ω − ǫk). (3.28)

The spectral function shows that in the absence of interactions one expects

electrons to appear as Dirac delta functions located at the poles of the nonin-

teracting Green’s function, which are themselves defined by the bare dispersion

relation ǫk. The minus sign in front of the infinitesimal −ıη term has been

chosen to uphold the causal properties of positive and negative energy states.

The power of the Green’s function method is that it allows the relatively sim-

ple introduction of many body interactions into a formalism that modifies the

bare dispersion through the additive inclusion of self energy terms. The self

energy is included after renormalization of the bare dispersion by, for example,

the electron-electron (Coulomb) interaction, the electron-phonon interaction

or any other electron-boson interaction that might be relevant to the system.

In field theory these interactions can be represented graphically in terms of

Feynman diagrams. Mathematically, self energies can be simply added to the

renormalized Green’s function,

G−1
Int = ω − ǫk − Σ(k, ω) (3.29)
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where the self energy term Σ(k, ω) is itself a complex quantity,

Σ(k, ω) = Re Σ + ı Im Σ. (3.30)

The spectral function that derives from this Green’s function is

AInt(k, ω) =
1

π

Im Σ

(ω − ǫk − Re Σ)2 + (Im Σ)2
(3.31)

which is a Lorentzian line shape. Recalling that the Dirac delta function is the

limit of a Lorentzian taken to zero width, one views the non-interacting case,

not surprisingly, as one in which the electrons have infinite lifetime. Physically

the interacting spectral function reflects the fact that in the presence of new

interaction channels electrons have some probability for scattering into new

states by absorbing and emitting particles and so have a finite lifetime τ . This

lifetime is related to the Lorentzian width in energy measured in the EDC of

a photoemission experiment as

~

τ
= 2 Im Σ ≡ Γ (3.32)

where Γ is the full width at half maximum of the Lorentzian defined by Eq.

3.31.The real part of the self energy shows up as a shift in the dispersion of

the band away from the bare dispersion. In the presence of an interaction

well defined in energy and momentum this shift takes the form of a “kink”

in the dispersion at ω = EF ± ~Ω where Ω is the mode energy. The real

and imaginary parts of the self energy are self consistently related to each

other through causality so that by measuring one you can extract the other by
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Kramers-Kronig (KK) transformation. This last fact is especially important

for the philosophy of measuring these things in an ARPES experiment because

while one can clearly measure linewidths in EDC’s without much ambiguity,

one certainly has a right in the absence of experimental evidence to ask whether

one can legitimately measure the shift in dispersion implied by the real part of

the self energy versus a bare dispersion that by definition doesn’t really exist.

In practice one can often assume a bare dispersion defined by theory and, after

measuring the lifetimes, use the KK relations to check for self consistency.

Eq. 3.31 is often written in the somewhat more transparent form used for

actually fitting data as,

A(k, ω) =
1

π

ZkΓk(ω)

(ω − ǫk − ξ(ω))2 + Γ2
k(ω)

+ (1 − Zk)AInc (3.33)

where for brevity we’ve set Re Σ = ξ and introduced what’s called the quasi-

particle weight Zk and the so-called incoherent part of the spectral function

AInc. Zk is essentially the normalization constant that arises because the total

probability for electron existence, viz a viz Eq. 3.21, must be equal to unity

when the incoherent part of the spectrum is taken into account. Ainc is not

currently well described by theory.

3.3 The Modern Practice of ARPES

The above relations are essentially true for the case of photoemission from

one and two dimensional states. Before moving on a few words about how

modern ARPES is really performed are in order. This discussion leads in
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short to the technique of measuring Momentum Distribution Curves (MDC’s).

Whereas EDC’s are a measure of the spectral weight as a function of binding

energy for a fixed angle of emission, MDC’s measure the momentum (or, more

directly, the angular) distribution of the spectral weight for a fixed binding

energy. For reasons that will become clear when we turn our attention to low

energy ARPES, we must be very careful not to use the emission angles θ and

φ interchangeably with the crystal momentum k per Eqs. 3.8 and 3.9, as is

often the case in photoemission using VUV photoexcitation.

Most modern photoelectron spectrometers are based upon what is referred

to generically as a hemispherical deflection analyzer (Fig. 3.4). The basic

ingredients of a hemispherical analyzer are a collection lens based on electron

optics, a channel formed by two concentric hemispheres at different voltages

and a detector that registers the electrons. The sample sits at the focus of the

electron lens, which collects electrons over some range of emission angles and

focuses them so they enter one side of the hemisphere perpendicular to a slit.

The width of the analyzer entrance slit defines the best possible energy resolu-

tion obtainable in the hemispheric deflector. The outer and inner hemispheres

have negative and positive potentials such that electrons entering through the

slit have their trajectories bent into an arc whose radius depends upon their

kinetic energies. By changing these voltages, electrons with different kinetic

energies can be sent on trajectories that land them on the center of the detector

on the other side of the hemisphere. By sweeping the voltages one acquires on

the detector a photoelectron intensity as a function of kinetic energy, an EDC.

Before the advent of the angle multiplexing spectrometers discussed below one

would collect EDC’s as a function of emission angle as described above, one
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for every angle; by taking a scan of I(ω) and then changing the position of the

sample relative to the analyzer (or vice versa if the analyzer was small enough

to fit in the vacuum chamber) and then taking another scan. The detector

of choice for this type of measurement is called a channeltron. It effectively

registers a number proportional to the total electron flux impinging upon it.

The presentation of this type of data looked much like Fig. 3.5b.

The mathematics governing the orbits of electrons through this type of

analyzer are ancient [22]. For an electron of kinetic energy E entering the

hemisphere through an entrance slit at a radius R0 half way between the inner

and outer radii Rin and Rout, respectively, traversing this radius around the

hemisphere and landing in the center of the detector at the same radius on

the back end, the inner and outer potentials are

Vout = E × (3 − 2
R0

Rout

) (3.34)

and likewise

Vin = E × (3 − 2
R0

Rin
). (3.35)

The energy resolution of such a spectrometer depends ideally upon the width

of the entrance slit, S and the kinetic energy these same electrons have as they

enter the analyzer. This energy, called the pass energy, Epass, is usually much

lower than Ekin and is achieved in the lens section of the analyzer by electro-

static deceleration of the incoming photoelectrons. The energy resolution can

be approximated as

∆E =
EpassS

2R0
. (3.36)
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Figure 3.4: Cutaways of generic hemispheric electron spectrometer used in
ARPES showing a) kinetic energy sorting geometry and b) angle sorting ge-
ometry in hemisphere. Note that the entrance slit can only define energy
resolution, not angular resolution.
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Our own analyzer has an R0 of 200 mm and comes equipped with several slits

of different widths. As an example, for laser ARPES using 6 eV light, the 1 eV

pass energy and a slit of .5 mm we have a theoretical best energy resolution

for the spectrometer of 1.25 meV. Experiments performed with synchrotron

radiation from a storage ring more often utilize pass energies of 5 or 10 eV and

somewhat larger slits. Regardless, the high theoretical performance of this type

of spectrometer is more often limited by the bandwidth of the light source and

“extrinsic” factors such as analyzer fabrication quality, power supply stability,

magnetic fields in the spectrometer and so on.

During the 1990’s two developments radically altered the way these spec-

trometers were used. The first was the introduction of microchannel plates

(MCP’s) as the detector on the back of the hemisphere. These position sen-

sitive detectors allowed the rapid collection of EDC’s by registering the pho-

toelectron intensity of more than one energy at a time across the detector.

Referring to the discussion above it is clear that for a given setting of voltages

electrons with higher energy will travel longer orbits and so strike a detec-

tor at a position of higher radius and vice versa for electrons of lower kinetic

energy. Thus in the same way that removing the entrance slight of a photon

spectromer and replacing it with a CCD allows the simultaneous measurement

of multiple wavelengths so to the removal of the analyzer “exit slit” in favor

of a position sensitive detector like an MCP allows detection of electrons with

multiple kinetic energies simultaneously. An earlier version of this technique

using a lower “pixel count” segmented detector was pioneered by S. D. Kevan

[25].

A more important advance followed when it was realized that by tuning the
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focusing properties of the electron lens at the front of the analyzer one could

essentially form an image on the MCP whereby many angles and energies could

be measured simultaneously. This development essentially takes advantage of

the fact that in a large hemisphere electrons entering along different points

along the length of the entrance slit will maintain their relative spatial positions

to high accuracy as they are sorted in energy as described above. The curvature

of the analyzer does introduce a geometrical abberation that mixes angles and

energies to some degree. In later model analyzers this is correctable with

a set of curved slits of varying widths. The net result is that rather than

taking an EDC for every angle of sample position one could take many angles

at once, much faster and with much higher angular resolution. With angle

multiplexing spectrometers can effectively make images of electronic bands

and so see the fine structure of dispersion and line shapes that had previously

been inaccessible.

Angle multiplexing allowed the introduction of new types of analysis on

photoemission data. Most importantly, the fine spacing of angles, and there-

fore momentum points, with resolution on the order of .1o allowed the analysis

of ARPES spectra not only in terms of EDC’s but in terms of cuts taken as a

function of momentum at constant binding energy, called momentum distribu-

tion curves or MDC’s. The three common modes of representing an ARPES

spectrum, in terms of EDC’s, MDC’s and false color image plots combining

the two is shown in Fig. 3.5.

It turns out that for highly dispersing bands the MDC lineshape typically

has a very nearly pure Lorentzian form and a very simple (usually flat) back-

ground. This property, contrary to the historical difficulties in fitting EDC’s,
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Figure 3.5: An early sample of 6 eV laser ARPES data taken at 20 K on
optimally doped Bi2212 in the nodal region. Panel a) shows the 2D spectrum
in energy and angle space. The horizontal and vertical dashed lines mark EF

and kF , respectively. Intensities are mapped to the false colorscale per the
colorbar at the top of the panel. Panels b) and c) show EDC and MDC stack
plots, respectively, as are often found in the literature.
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allows for a relatively simple analysis of many highly dispersing bands seen

in ARPES. The quantities measured by an MDC, namely peak position and

peak full width at half maximum (FWHM), have a very simple relationship to

the quantities measured by EDC’s. The FWHM of an MDC, ∆k is a measure

of the mean free path of the electron in that state (as opposed to the lifetime

Γ measured by fitting an EDC),

ℓ =
1

∆k
. (3.37)

By fitting many MDC’s to locate the peak positions in momentum space at

many binding energies one can easily determine the band velocity and, near

EF , the Fermi velocity vF ,

vF =
1

~

∂ǫk
∂k k=kF

(3.38)

The imaginary part of the self energy is related to the bare Fermi velocity

v0
F [26] by

~v0
F∆kF = 2 ImΣF (3.39)

where v0
F is in m/s. (The natural measure of band velocity in ARPES is

actually eV Å, k and ∆k having units of Å
−1

.) Not that in the event the band

structure is renormalized by the presence of an electron-boson coupling v0
F can

differ significantly from the renormalized Fermi velocity vF . In general,

Im Σ(ω) =
~

2ℓ

∂εk‖

∂k
. (3.40)
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We note in passing that the nearly perfect Lorentzian line shape of MDC’s

indicates the weak momentum dependence of interactions in many systems,

relative to their energy dependence.

With the theoretical basics of ARPES in hand it is time to move on to

the possible advantages, and disadvantages, of using a very low energy laser

for photoemission versus a more traditional source of ultraviolet photons. To

begin with, in recent years photoemission has in general been viewed primarily

as a probe of the electronic structure of surfaces. This mistaken belief derives

from the fact that the inelastic mean free path of photoelectrons has a min-

imum in the VUV energy range most often used in synchrotron and helium

discharge lamp based experiments. To see why this is the case, the so-called

“universal curve” of photoemission, exemplified by the data in Fig. 3.6, was

often pointed to [2]. Because we are only interested in electrons that escape a

sample without first scattering such a curve clearly implies that high resolu-

tion photoemission as it is most often used is a surface science technique. It is

true that a great deal of ARPES has been done on 2D surface states of metals

as well as inherently 2D systems such as the dichalcogenides and the cuprates.

However it has also been demonstrated that one can equally well obtain band

structures even for 3D materials that agree well with theoretical calculations.

This problem of bulk versus surface sensitivity has been compounded by

facts of life that have their origin in the photon sources traditionally used in

photoemission. While sources of x-rays for XPS (X-ray photoemission spec-

troscopy) have been around for quite a long time, and while these higher en-

ergies certainly yield a bulky signal as far as the universal curve is concerned,

even in the event that one could obtain a very narrow bandwidth x-ray beam

62



Figure 3.6: Inelastic mean free path of electrons in a crystal, in nanometers,
as a function of electron kinetic energy. Adapted from reference [2]
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the resolution in k space, viz a viz Eq. 3.10, is certainly not optimal for prob-

ing the details of sharp, highly dispersive states. On the other hand, light

sources for UPS – ultraviolet photoemission spectroscopy – while somewhat

more plentiful now, clearly sit around the minimum of the universal curve, in

the vicinity of a 4-5 Å probing depth. Before synchrotron radiation sources

became “widely” available the workhorse of photoemission light sources was

the venerable Helium discharge lamp utilizing the He Iα line at 21.22 eV. Syn-

chrotron beamlines can in principle scan a very large range of photon energies

from the visible up to many tens of eV depending on their configuration. Our

own undulator beamline, U13UB at the NSLS, is equipped with a normal in-

cidence monochrometer yielding a nominal tuning range between 15 and 30

eV, and so is still essentially a surface probe.

In recent years some pointed reminders of the limitations of referencing the

universal curve have come to light. For one thing, it must be recalled that the

data that went into these curves was taken using the so-called overlayer method

in which one takes a spectrum on a clean and well understood reference surface

and then monitors the photoelectron intensity of the reference as one deposits

thicker layers of another type of atom on the surface. While trustworthy in

its context, it is hard to say from first principles exactly how well this type

of situation applies to the study of intrinsically layered materials, such as the

cuprates. Recent examples in which the simple picture of probing depth has

met some difficulty in modern high resolution ARPES include the cases of

Sr2RuO4, Y Ba2CuO7+x and to some extent Bi2Sr2CaCu2O8+x.

It was found in strontium ruthenate, for example, that cleaving a crystal

in a very good vacuum at low temperatures results in a reconstruction of
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the surface layer of atoms into a structure different enough from the bulk

material that it produced a set of states and Fermi surfaces totally unlike

that of the bulk. It was later found that one can tune the photon energy used

(and hence the matrix element M2
f,i) to enhance or suppress the photoemission

intensity of the bulk versus the surface. It was also found that by aging the

surface for some amount of time in the vacuum chamber that the surface

states were eventually destroyed to the extent one could study the bulk states

from underlying layers with relative clarity. In the case of YBCO, at least at

optimal doping, it was found that the rather violent process of cleaving this

relatively isotropic crystal results in a fairly disordered surface made up partly

of exposed BaO planes and partly of broken CuO chains. The result by some

as yet unknown mechanism is that the topmost layer of CuO2 planes becomes

maximally overdoped to the point that it does not exhibit any evidence of

superconductivity or even any sort of interaction that would result in the

strong renormalization of bands typically found in the cuprates. It has been

shown that by finding a “good” spot on the surface or, again, by tuning to

some special photon energy one can obtain spectra with varying contributions

from the bulk and surface components of the spectrum.

Bi2212, mercifully, lies on the extreme other end of surface born compli-

cations. In that material the layers are held together very weakly by Van

der Waals forces and so have a natural cleavage plane at the BiO layer. The

exposed BiO surface is an inert band gap insulator and so the photoemission

results entirely from buried CuO2 layers. The samples live an incredibly long

time (days, versus hours) as a result and one only loses photoemission signal as

the surface is eventually covered by atoms of residual gas in the vacuum cham-
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ber too thick for the photoelectrons to penetrate without scattering strongly.

These properties of insensitivity to surface impurity atoms and ease of cleavage

have made the Bi2212 system the workhorse of ARPES on the cuprates.

All these complications aside, if one is interested in obtaining spectra that

have the greatest relative sensitivity to probing bulk electronic states while

maintaining or even improving upon the momentum resolution described by

Eq. 3.10 one must go to lower photon energies than are typically utilized in

discharge lamps and synchrotron beamlines. This was one major though as yet

not decisively tested reason for attempting to use very low energy light from

a laser source to perform ARPES. Our own efforts, described in greater detail

in later chapters, utilized the harmonic conversion of light from a Ti:Sapphire

laser to reach 6 eV. Additional benefits of using a laser are its incredibly high

brightness relative to a synchrotron or lamp, its intrinsically narrow bandwidth

and, at these very low energies, the ability to use transmitting optics to focus

and alter the polarization state of the beam. Additionally, UV lasers represent

the first application of truly coherent light for the purpose of high resolution

single photon ARPES and so require some modification to how we usually

think about the first principles of the photoemission process outlined above.

As before I will lay out the peculiar kinematics of very low energy ARPES and

then discuss how one might modify the quantum theory of photoemission to

take into account the coherent nature of the excitation source.
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3.4 Very Low Energy ARPES

Low energy ARPES, particularly utilizing a laser excitation source [27][28]

has become an important tool in the arsenal of high resolution photoemis-

sion in recent years. In principle one of the most positive effects that arises

from using 6 eV light as an excitation source, regardless of its origin or other

properties, arises from the momentum resolution one can achieve. Assuming

a work function of 4.5 eV (for most materials this number falls between 4 and

5 eV as a rule of thumb) one finds trivially from Eq. 3.10 that the momentum

resolution at 6 eV vs. 21 eV increases by a factor of 3.3 and by a factor of 5.8

vs. 55 eV regardless of angular resolution. There is, however, a complication.

In general, in three dimensional systems, the lifetime of a state measured by

photoemission contains contributions from both the photohole and photoelec-

tron lifetimes because the electron waves normal to the surface are damped.

This measured lifetime is written as

Γexp =
Γh/vh⊥ + Γe/ve⊥

|(1/vh⊥)[1 − mvh‖

~k‖
sin2 θ] − (1/ve⊥)[1 − mve‖

~k‖
sin2 θ]|

(3.41)

where ve,h;⊥,‖ are the electron and hole parallel and perpendicular band veloc-

ities, respectively, and Γe,h are the intrinsic electron and hole lifetimes. For

the moment we are restricting ourselves to “one angle” equations like Eq. 3.9

for simplicity’s sake. Here m is still the electron rest mass. In the event the

states of interest are one or two dimensional, vh⊥ = 0 and the above equation

is simplified to

Γexp =
Γh

|1 − mvh‖

~k‖
sin2 θ|

. (3.42)
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The important point is that in this case the contribution to the measured life-

time from the photoelectron drops out so that one can measure the photohole

lifetime independently.

It was shown experimentally by Hansen et. al [29] in the days before

angle multiplexing that if one attempts to measure the EDC of a very highly

dispersing band (vh‖ large) at low photon energy, so that θ is large while k‖ is

relatively small, one can observe the lifetime of that state as being narrower

than it truly is. This effect was called kinematic compression and results from

the fact that at high angles and low photon energies the conversion between

measured emission angle and the corresponding k‖ changes very rapidly. If the

dispersion of this state is positive one will observe a lifetime that is broader

rather than narrower. We have dubbed this effect kinematic decompression.

A less obtuse way to see this is to examine Eq. 3.9 which shows explicitly

that, for a given angle, k‖ changes as the square root of the kinetic energy

of the photoelectron. It turns out that under most normal combinations of

UPS photon energies, interesting emission angles and for low binding energies

the square root hardly changes fast enough for the conversion from θ to k‖ to

appear as anything but a constant for all sampled binding energies. In that

case one often sets the k scale at EF and the conversion for all binding energies

is the same.

It turns out however that for all states of interest in the cuprates, ARPES

with a 6 eV laser situates you firmly in the regime of high angles and low

kinetic energies to which the above analysis applies. To some extent one

can handle this complication with relative ease. Whereas for the older style

of data acquisition one could only infer the correction to the lifetime of a
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state from Eq. 3.42, it is a simple matter to scale from θ to k‖ for every

recorded energy, i.e. to scale every MDC appropriately with Eq. 3.9. The

resulting algorithm effectively “tilts” and deforms the spectrum in the process.

An example of the result of such a procedure is given in Fig. 3.7 in which

the distorting effects of having an instrument that measures angles instead of

momenta directly is clearly visible. Unfortunately, our ability to apply such a

correction to laser ARPES data is limited by the fact that we can only take

linear “cuts” in momentum space, such cuts being determined by the entrance

slit of the analyzer. The problem with this approach becomes clear if we plot

lines of constant θ(ω) on a Euclidean grid of momenta and energies as they’re

measured by the instrument and examines what points in θ space are sampled

by constant k‖ cuts. Evidently one can only perfectly correct spectra in this

manner for situations in which the cut taken (or the slit orientation) trace

a line back to θ = 0, e.g. the Γ point of any Brillouin zone. The further

off such a geometry one attempts to scan, the more the lines of θ in (ω, k‖)

space change perpendicular to the cut defined by the analyzer slit. In the

worst case, as is illustrated in Fig. 3.8 where the slit is oriented perpendicular

to a high symmetry line that intersects the Γ point, no correction of this

type is possible because as one scans to lower kinetic energies (higher binding

energies) there is no simple way to scale from angle to the rapidly changing

momentum variable. The problem is only compounded when we consider both

polar and azimuthal angles of emission simultaneously as with Eq. 3.8. While

in principle one could stack a very high density of this worst sort of cut in order

to extract lines of constant k‖ from a large number of spectra, in practice this

would be an exceedingly challenging procedure and would not likely achieve
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Figure 3.7: A typical 6 eV laser ARPES spectrum near the node of Bi2212.
Panel a) shows the spectrum as it’s acquired by the electron spectrometer.
Panel b) shows the result of kinematic compression upon converting from θ
to k‖ space. Regions of the MCP detector beyond those where spectra are
typically acquired are shown for clarity. The main effect of the conversion from
angle to momentum space is the “tilting” and compression of the spectrum
in the θ direction and the subsequent sharpening in energy of the observed
dispersing band.

the same angular resolution as is easily achieved by a single scan at higher

photon energies.

3.5 Coherence in the ARPES Light Source

To conclude this chapter on a more positive note we turn to a brief dis-

cussion of the ramifications of using a coherent light source, a laser, versus

the more traditional incoherent lights sources such as synchrotron radiation.

What difference there may or may not be between coherent and incoherent

light sources is a very natural question. To begin with, we recognize that
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Figure 3.8: Lines of constant angle in k space. The red cut through (kx, ky, E),
easily obtainable at high photon energies, must be constructed from many cuts
though angle space in low energy ARPES.
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whatever the properties of the light we choose to use in a photoemission ex-

periment, the relevant quantity of interest is the vector potential that appears

in the interaction Hamiltonian, Eq. 3.16. The electromagnetic field is quan-

tized by representing the vector potential in explicit operator form and writing

it in terms of a sum over harmonic oscillators, one for each mode k [30],

Â =
∑

k

√

~

2ǫ0V ωk

εk{âke
−ıωkteık·r − â†ke

ıωk te−ık·r} (3.43)

where εk is the polarization vector, V is the volume under consideration,

ωk is the photon mode energy and âk and â†k are the harmonic oscillator

annihilation and creation operators, respectively, that here play the role of

photon creation and annihilation operators. Note that in this section we are

using k as the photon wave vector and not as the crystal momentum. A

general beam of incoherent light can be represented by number states |n〉

with the usual properties of harmonic oscillator states. There is no quantum

uncertainty in photon number in this instance (∆n = 0) because there is no

phase relationship amongst the photons.

In general, an incoherent beam of light possesses no microscopic temporal

structure and thus consists of a well defined number of photons or, more for-

mally, can be represented by a complete basis of well defined number states.

Coherent light on the other hand is represented as a rather special superposi-

tion of number states

|α〉 = e−
1

2
|α|2

∑

n

αn

(n!)
1

2

|n〉 (3.44)
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where α satisfies the eigenvalue equation for the annihilation operator

âk |α〉 = α |α〉 . (3.45)

α, which is complex, can be usefully represented with a phase so that

α = |α|eıθ (3.46)

where we now use θ as the phase angle. For the purposes of evaluating the

photoemission matrix element M2
f,i in the presence of a coherent excitation

source we first take the expectation value of the vector potential for a coherent

state.

〈α| Â |α〉 =
∑

k

√

~

2ǫ0V ωk

εk{|αk|eıθke−ıωkteık·r − |αk|e−ıθkeıωk te−ık·r} (3.47)

which reduces to the rather nice form

〈α| Â |α〉 =
∑

k

√

2~

ǫ0V ωk

εk|αk| cos(k · r − ωkt+ θ) (3.48)

This form of the vector potential (and, similarly, the expectation values of the

quantized electric and magnetic fields) overtly displays the complementarity of

coherent light with the classical form of an electromagnetic wave in the limit

of large α for a given mode. As a result of this, an explicit time (for a traveling

wave) or space (for a standing wave) dependence in the form of a well defined

phase enters the computation of the transition matrix element M2
f,i. As before
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we retain only the A · p̂ term in Ĥint and so find explicitly that

M2
f,i = (

e

m
)2

∑

k

(
2~

ǫ0V ωk

)|α|2| 〈f ;α| cos(k · r − ωkt+ θ)εk · p̂ |i;α〉 |2. (3.49)

There are several things of note that appear in this equation. First we find

an explicit dependence of the magnitude of the matrix element on a factor ω−1
k

arising solely from the quantized form of the vector potential regardless of the

nature of the photon states it acts upon. Evidently the coupling of initial to

final states has a very general dependence on the photon energy and so we

find that states should appear intrinsically “brighter” as the photon energy is

decreased in a photoemission experiment, other factors not withstanding.

The obvious effects of using coherent light appear to be manifold yet should

only exhibit themselves in a real experiment under certain conditions. The

factor |α|2 appearing outside the bracket is the mean number of photons in

the beam, 〈α| n̂ |α〉 = |α|2 where n̂ is the harmonic oscillator number operator.

In the limit of large α (bright beams) this should asymptotically approach

the eigenvalue obtained from the number states 〈n| n̂ |n〉 = n. Conversely

in the limit of low α (weak beams) the number-phase uncertainty relation

(∆n∆θ ≥ ~/2) will, for a beam with well defined phase, guarantee an inherent

instability in the number of photons found by our sample in the beam and

thus in the photoemission intensity.

Another effect of using coherent light is the explicit introduction of spa-

tiotemporal oscillations in the field impinging upon the sample. In general

even for rather high photon energies the wavelength of light is such as to ren-

der the field essentially constant over the volume of sample being probed and
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so this is not important. Time variations of the field are also generally too fast

to be observed in a photoemission experiment with pulsed lasers and so one

should expect the time average of the variation in the field to be the relevant

quantity in the matrix element. Nevertheless it is not hard to imagine that for

the case of a continuous wave (CW) laser one could through a combination of

polarization phase relationships in the beam (to modulate couplings to differ-

ent states) and positioning of the wave nodes of the CW beam relative to the

surface achieve a sort of depth modulated photoemission. Even in the simplest

case one could imagine positioning the beam node at the sample surface and

so achieve a photoemission signal manifestly due to excitations from the bulk.

In such a case, or even in the event of a very high f number focus of the beam,

one might have to include the p̂ · Â term in consideration of the experiment.

This is certainly not all one can do with the coherent nature of light in

a photoemission experiment. The use of orbital angular momentum states of

light might be used for selectively coupling light to electronic states of certain

symmetries in a manner analogous to what is already done with circularly

polarized light in magnetic circular dichroism experiments. The literature on

laser physics is certainly vast and many books on the topic contain excellent

treatments of the theory of photoemission from the point of view of optical and

atomic physics rather than solid state physics. What’s more, as photoelectron

analyzers continue to push the bounds of angular and energy resolution, as well

as temporal resolution in various kind of time of flight detector arrangements,

it is certainly worth considering how one might apply the methods of ARPES

to the study of light itself. Further consideration of such topics is well beyond

the scope of this work and the intention has been only to point out how one
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might reconsider what has become well trod ground in the ARPES community

in light of the arrival of a powerful new set of tools.
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Chapter 4

Harmonic Generation

The generation of laser harmonics by nonlinear processes in optical crystals

was first demonstrated in 1961 shortly after the discovery of the original ruby

laser [31]. The work was stimulated by the then new ability to produce (by

the standard of the time) very intense, monochromatic and well collimated

laser light beams which, when focused to a point, produced transient local

voltages well in excess of what had been previously possible. Since that time

harmonic generation has found wide application in the operation and manip-

ulation of laser beams in many experimental and engineering circumstances.

In recent years it has been found that by using multiple harmonic generation

steps one can produce laser beams of sufficiently high energy and intensity

so as to be extremely useful for the practice of angle resolved photoemission

spectroscopy[27]. While these processes result in deep ultraviolet (DUV) laser

beams that are by many standards extremely weak, even a very weak DUV

laser is often more than an order of magnitude more intense than a beam of

corresponding energy produced, for example, in a typical synchrotron beam-
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line or gas discharge lamp. Further, the laser offers these beams in a form

with high purity of polarization, collimation and for which the focusing prop-

erties of Gaussian optics come into play. Some of these advantages have been

alluded to in earlier chapters. It is the purpose of this chapter to first give a

brief summary of the electromagnetic theory of harmonic generation in dielec-

tric media and to then demonstrate by numerical simulation the feasibility of

producing a suitable DUV beam from picosecond laser pulses. In particular we

shall highlight the relative challenges of using picosecond, versus femtosecond,

laser radiation for such purposes as well as the ultimate benefits of doing so

despite the inherent difficulties of such an approach.

As might be expected by the general heading of “nonlinear optics” in asso-

ciation with harmonic generation, any theoretical description of the generation

of frequency overtones of a laser beam in a ponderable medium will necessi-

tate the consideration of nonlinear terms in the equations of motion describing

the interaction between oscillating electromagnetic fields, e.g. from the laser,

and the atoms and molecules of the system with which they interact. While

nonlinear equations are generally impossible to solve analytically some rea-

sonable conclusions can be arrived at by the usual judicious employment of

suitable approximation schemes. Further, while the full description of the

interaction of photons with charged particles necessitates a quantum theory,

as is often the case in optics one can arrive at some useful and more or less

physically meaningful conclusions from examining classical and quasi classical

approximations to the full problem. Thus, to keep the discussion of second

harmonic generation physically transparent and on a relatively accessible level

for non-specialists in this field of optics the following discussion is drawn al-
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most exclusively from that contained in reference [32]. The object is merely

to provide a context for understanding the results of the full blown numerical

simulations of the harmonic generation scheme employed in the present pho-

toemission experiments. Such simulations are vital for determining the best

choice of, for example, optics, crystals and laser wavelengths with which to

produce a DUV laser beam suitable for performing ARPES.

4.1 Nonlinear Mechanics of a Driven Harmonic

Oscillator

The starting point for the theory of laser-matter interactions that will

lead to the generation of harmonics of an incident laser beam is the classical

harmonic oscillator model of an electron, bound to an ionic core experiencing

the time dependent force generated by the electric fields of an incident laser

beam. Assuming the electron at equilibrium resides in a spatially radially

varying potential well V (r) one begins expanding the potential in a Taylor

series about the minimum. Thus,

V (r) = V (r0) + r(
dV

dr
)r=r0

+
1

2!
r2(

d2V

dr2
)r=r0

+
1

3!
r3(

d3V

dr3
)r=r0

. . . (4.1)

where r0 is the location of the potential well minimum. The equation of motion

for the electron driven by the laser electric field depends not upon the potential

but upon the force, which enters as derivatives of the potential. Therefore we

can set the first term, a constant, to zero. The first derivative of the potential

is also zero at the well minimum and so this term is dropped as well. The
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quadratic term simply gives the usual result for the harmonic oscillator so

that the coefficient can be identified as

(
d2V

dr2
)r=r0

= mω2
0. (4.2)

By going to higher order, to the third term, we introduce a first order

nonlinearity into the problem. Not knowing a priori what the constant as-

sociated with the derivative should be (this can evidently be calculated from

first principles in quantum mechanics) we shall simply assign it a symbol,

A =
1

3!
(
d3V

dr3
)r=r0

. (4.3)

Consideration of higher order terms is unnecessary for the derivation of the

primary nonlinear effects we are interested in here.

Recalling that F = −dV/dr we find that the terms in the classical equation

of motion for the electron in a potential well deriving from that potential are

F = −dV
dr

= −mω2
0x− 3Ax2 − ... (4.4)

so that the full equation of motion, when the driving force eE(t) is included,

is

e

m
E(t) = r̈ + ω2

0r + ar2 + ... (4.5)

where we have set 3A
m

= a for the sake of a notational simplicity whose ad-

vantage will become clear momentarily. Finally, for a well defined (linearly

polarized) laser beam we can, as in chapter 3, set E(t) = E0 cos(ωt) so that
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our compact expression, now dropping the ellipses, is

e

m
E0 cos(ωt) = r̈ + ω2

0r + ar2. (4.6)

As alluded to above, solving nonlinear differential equations such as Eq.

4.6 analytically is in general not possible without making some major con-

cessions to approximation. One such scheme that is standard in mechanics

problems if not frequently taught in the schools is to recognize that a first

order, approximate solution can be arrived at by recognizing the smallness

of the nonlinear term (a good physical approximation in this case) and then

using that solution to iteratively derive higher order corrections that explicitly

include the progressively smaller nonlinearities. Thus the first approximation

consists of solving that most familiar of mechanical equations (minus a linear

restoring force)

r̈(1) + ω2
0r

(1) =
e

m
E0 cos(ωt). (4.7)

The parenthetical superscript here denotes the order of approximation. The

complementary solution to this equation, the same as would be got in the

absence of a driving force, is simply r
(1)
c = A1exp(ıω0t) + A2exp(−ıω0t), A1

and A2 arbitrary constants. In the event the perturbation is weak, as is our

stated case, this simply represents a perpetual sympathetic oscillation of no

interest. In the event the perturbation were strong, we may introduce a linear

restoring force of the form kṙ which would in any event cause this solution to

exponentially decay in time and so cause it to remain irrelevant. The particular
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solution to the driven harmonic oscillator problem we are interested in is

r(1) =
e/m

ω2
0 − ω2

E0 cos(ωt). (4.8)

The nonlinear equation approximate solution scheme follows by using this

solution for r(1) as the coordinate for the nonlinear term ar2 while solving for

the next iteration of r, r(2), as though it were a harmonic oscillator with a now

modified driving force. Thus,

r̈(2) + ω2
0r =

e

m
E0 cos(ωt) − a(r(1))2 (4.9)

where we plug in the solution to Eq. 4.8 on the right hand side for r(1). The

particular solution to this equation for r(2) is [31]

r(2) =
e/m

ω2
0 − ω2

E0 cos(ωt)− a

2ω2
0

(
e/m

ω2
0 − ω2

)2E2
0−

a

2

1

ω2
0 − 4ω2

(
e/m

ω2
0 − ω2

)2E2
0 cos(2ωt).

(4.10)

And so we find the central result that the second order approximate solution

to the nonlinear harmonic oscillator contains a component of the motion for

which the electron oscillates at twice the frequency of the incident laser beam.

The physical ramifications of this effect for the absorption and emission of

radiation will be addressed in the next section.

Expressions such as these can be greatly simplified by switching to the

more practical exponential notation for oscillatory phenomena whereby the

fundamental electromagnetic wave is written as

E0 cos(ωt− kz) =
1

2
[Eω(z)e−ı(ωt−kωz) + c.c.] (4.11)
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where z is the linear coordinate along the propagation direction inside the

crystal medium and the wave oscillating at twice the fundamental frequency

is written as

E0 cos(2ωt− k2ωz) =
1

2
[E2ω(z)e−ı(2ωt−k2ωz) + c.c.] (4.12)

where the second harmonic takes a different wave vector from the fundamental

reflecting the difference in the frequency dependent index of refraction for the

medium,

k(ω) = n(ω)
ω

c
. (4.13)

In this form the second harmonic electron displacement, now written ex-

plicitly as a function of time, becomes (assuming E(z) is real)

r
(2)
2ω (z, t) = −a

4

1

ω2
0 − 4ω2

(
e/m

ω2
0 − ω2

)2E2
ω[e−2ı(ωt−kωz) + c.c.] (4.14)

in which the factors of 2 in the exponentials arise for the same reason as the

factor of 2 in the cosine of Eq. 4.10.

4.2 The Wave Equation in Ponderable Media

Thus far we have only made the process of harmonic generation plausible

by examining the effect of a nonlinear term in the equation of motion for an

oscillating electron-ion system. With this result in hand we now turn our at-

tention to the details of directly connecting the behavior of highly stimulated

matter to the wave equations governing the propagation of a laser beam and its
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harmonics in a dielectric medium. The aim of this section is to provide a more

direct contact to the physically measurable quantities associated with materi-

als and electromagnetic waves that will ultimately provide the tools necessary

to determine whether and under what circumstances harmonic generation can

be practically achieved in the laboratory. While the discussion to follow on

the production and distribution of primary and second harmonic fields in the

medium appears a bit abstract at first it will ultimately produce the several

simple and vital results that delineate when and how harmonic generation can

occur.

The connection between the physical properties of a material, a material’s

behavior when subject to the presence of electromagnetic fields and how the

fields themselves are modified by the interaction are summarized by the equa-

tions for electrical polarization and electric susceptibility, respectively, which

are

P = Ner = ǫ0χE (4.15)

where P is the polarization vector, N is the number of electron-ion systems

per unit volume and χ is the electric susceptibility. (Though P and E are vec-

tor quantities there is no loss in generality when working in one dimension at

this stage.) The essential point here is that the polarization directly connects

the nonlinear displacement of the electron subject to the oscillating field as

described in the previous section to the material susceptibility, including the

frequency dependent index of refraction, and the electric field itself. This con-

nection is made at an even more fundamental level by examining the Maxwell
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wave equation with a source

∇2E − ǫ0µ0
∂2E

∂t2
= µ0

∂2P

∂t2
. (4.16)

The implication is that the nonlinear polarization induced by the funda-

mental, PNL
2ω = Ner

(2)
2ω acts as a source generating an oscillating field E2ω, e.g.

the second harmonic. This is

PNL
2ω = −Nea

4

1

ω2
0 − 4ω2

(
e/m

ω2
0 − ω2

)2E2
ω[e−2ı(ωt−kωz) + c.c.]. (4.17)

Additionally, one must consider the linear polarization induced in the medium

by the second harmonic itself, PL
2ω, which is identical to the first term in

Eq. 4.10 with the replacements ω → 2ω, kω → 2k2ω and, Eω cos(ωt) →
1
2
[E2ωexp(−ı(2ωt − k2ωz)) + c.c.]. Thus the full polarization to be considered

when evaluating Eq. 4.16 is P = PNL
2ω + PL

2ω.

Following some rather unilluminating algebraic manipulations carried out

in reference [32] Eq. 4.16 can be reduced to a relatively simple form relating

the nonlinear polarization responsible for generating the second harmonic wave

to the electric field of that wave

dE2ω(z)

dz
= ıω

√

µ0

ǫ2ω
d̄E2

ω(z)eı∆kz (4.18)

where d̄ is the relevant component of the nonlinear susceptibility tensor relating

fundamental field intensities to nonlinear polarizations as (for example)

PNL
2ω = d̄E2

ω(z) (4.19)
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and

∆k = 2kω − k2ω = 2ω
√
ǫ0µ0[n(ω) − n(2ω)]. (4.20)

These last three equations, when considered together, encode the most im-

portant practical aspects of harmonic generation. That is, the strength of

the second harmonic field E2ω generated in a ponderable medium depends

directly upon the intensity E2
ω of the fundamental beam, the strength of the

nonlinear susceptibility d̄ connecting the fundamental field to the generation

of a nonlinear polarization in that medium and the magnitude of difference in

the indices of refraction in that medium between the fundamental and second

harmonic beams. The success of harmonic generation depends upon the con-

trol of these three parameters. In the following section we shall explore how

one might go about optimizing these parameters. This discussion will lead

directly to the specific examples of second harmonic generation upon which

our photoemission experiments rely.

4.3 Phase Matching and Crystal Properties

Besides the fundamental beam intensity, some practically relevant prop-

erties of which we shall investigate in the next section, the most important

considerations for the successful production of useful second harmonic beams

reside in the ∆k term of Eq. 4.18 and in the nonlinear susceptibility denoted

above by d̄. Both quantities are governed by physical properties of the non-

linear medium, most often a birefringent crystal.

Eq. 4.18 can be easily integrated from z = 0 to L and squared to yield
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an equation for the intensity of the second harmonic beam in terms of the

fundamental intensity, relative wavevectors of the fundamental and second

harmonic, ∆k, and the crystal length L

E2
2ω(L) =

µ0ω
2d̄2

ǫ2ω

|Eω(0)|4L2(
sin(∆kL/2)

∆kL/2
)2 (4.21)

where L is the crystal length. In this form, the direct dependence of the ef-

ficiency of second harmonic generation upon ∆k is manifest. For a given L,

the second harmonic intensity varies according to the Airy function sin2(x)/x2

with maximum intensity at ∆k = 0. The process by which ∆k is minimized

is called phase matching, with ∆k = 0 critically phase matched. A second

harmonic generation process for which ∆k 6= 0 is referred to as quasi phase

matched. The phase matching condition is most physically transparent in

Eq.4.20, from which it becomes clear that optimal phase matching, and thus

second harmonic generation, occurs when the index of refraction for the fun-

damental beam equals the index of refraction for the second harmonic beam.

Physically, an index mismatch causes the fundamental and second harmonic

beams to travel through a crystal with different phase velocities c/n(ω). Over

time the waves fall out of phase with each other and no more energy can be

transferred from the fundamental to the second harmonic. Thus the name

phase matching. During quasi phase matched harmonic generation processes

the harmonic beam, due to group velocity mismatches, falls behind the fun-

damental pulse and is said to walk away. Further, a mismatch in indices of

refraction will, over a long enough crystal, cause the second harmonic beam to

travel along a slightly different spatial trajectory than the fundamental beam
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thus further weakening it. In this case, the second harmonic is said to walk

off. In general a coherence length Lc = |π/∆k| is often defined, indicating the

point beyond which walk off and walk away effects render further lengthening

of the crystal ineffective.

Because it is far too much to ask of any random crystal that its indices of

refraction be identical for wavelengths separated by a factor of exactly two,

useful nonlinear crystals generally exhibit a very strong birefringence. Birefrin-

gent crystals have different indices of refraction along different crystallographic

directions. Classic examples of such materials include calcite and quartz, high

quality samples of which can be found in nature. Unpolarized light entering

a birefringent crystal from the appropriate direction will appear to be split

as the different polarization components of the light are separately refracted.

This effect is historically called double refraction. Birefringence does not oc-

cur in crystals with centrosymmetric structural symmetry such as those with

cubic type structures. A crystal whose structural symmetry is broken in only

one direction is said to have a uniaxial birefringence. The optic axis of such

a crystal is defined as the propagation direction for which all polarizations of

light experience the same index of refraction, termed the ordinary index, no.

Light waves incident upon the crystal from a direction normal to the optic axis

are termed either ordinary waves (o waves) if they are polarized normal to the

optic axis or extraordinary wave (e waves) if they are polarized parallel to the

optic axis. The situation, often stated but for some reason seldom drawn, is

diagrammed in Fig. 4.1.

The extraordinary index of refraction ne is defined for an angle of incidence

of π/2 relative to the optic axis. The index of refraction actually experienced
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Figure 4.1: Schematic of polarization properties of a uniaxial birefringent crys-
tal. Gray lines indicate the manner in which the crystal structural symmetry
is broken. The optic axis is defined by the wave propagation direction for
which all polarizations experience the same index of refraction. Ordinary (o)
polarized waves experience the same index of refraction no as if they traveled
along the optic axis. Extraordinary (e) polarized waves experience a fraction
of the extraordinary index of refraction ne depending upon the tuning angle θ
of their angle of incidence.
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by an e wave can be continuously tuned between it’s maximum value of ne and

no by changing its angle of incidence relative to the optic axis. This tuning is

expressed quantitatively by the relation

1

n2
e(θ, ω)

=
cos2 θ

n2
o(ω)

+
sin2 θ

n2
e(ω)

. (4.22)

A crystal for which ne(ω) > no(ω) is called a positive uniaxial crystal. Con-

versely, a negative uniaxial crystal has the property ne(ω) < no(ω).

This ability to tune the effective ne while leaving no constant is the key

to the so-called angle tuning method of phase matching. The object of angle

tuning is to find a crystal that, for some angle of incidence, matches ne(ω) to

no(2ω) (for positive uniaxial crystals) or no(ω) to ne(2ω) (negative uniaxial).

For positive uniaxial crystals the phase matching angle θM is determined by

setting the ω and 2ω indices equal and solving for θM . Thus

sin2 θM =

1
n2

o(ω)
− 1

n2
o(2ω)

1
n2

o(ω)
− 1

n2
e(ω)

. (4.23)

For negative uniaxial crystals the role of e and o in the denominator is reversed.

In the laboratory there are two further considerations when angle tuning a

nonlinear crystal. The phase matching angle θM is the angle made between the

propagating waves inside the crystal and that crystal’s optic axis. For a real

crystal the actual angle of incidence of the fundamental beam impinging upon

the surface will in most cases differ from θM because the beam will be refracted

according to Snell’s law. For this reason crystals destined for application with

particular wavelengths are often cut and polished so that the surface normal
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lies close to θM rather than some strange angle relative to the optic axis.

This decreases the Snell’s law effect as well as mitigating problems associated

with reflection losses to the s polarized o wave beam at the crystal surface.

Further tricks can be played to mitigate such effects such as using crystals cut

to a Brewster angle so one wave can pass in or out without intensity losses

to reflection. Losses to absorption, scattering and optical damage induced by

high laser fluences sadly depend upon the innate absorption spectrum of the

crystal as well as it’s manufacturing quality and purity. All these consideration

aside, the attraction of angle tuning to achieve good phase matching is its

inherent simplicity. Because phase matching only depends upon one’s ability

to tune one or both of the indices of refraction of a birefringent crystal several

other methods exist. These include, for example, temperature tuning, pressure

tuning and combinations of methods which exploit, for example, n(ω, T, P, θ).

These methods, not used in the experimental work described in this thesis,

will not be treated here.

Returning to the physical properties of nonlinear crystals it is worth saying

a few words about the nonlinear coefficient d̄. The factor d̄ introduced above

as the nonlinear coefficient is actually the component of a nonlinear suscepti-

bility tensor describing the ability of a material to generate harmonics of one

polarization at one frequency from another polarization and frequency. For the

purpose of examining second harmonic generation it suffices to point out that

a) the bigger the d̄ the more efficiently a second harmonic will be generated

and b) by its relation to the electric susceptibility it is also directly depen-

dent upon the index of refraction of a material at the fundamental and second

harmonic frequencies. This last relationship often means that the larger the
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index of refraction of a material the more likely it is to have a large nonlinear

coefficient. Ultimately, d̄ is a material property and to the extent that one

has a limited number of choices of nonlinear crystals appropriate to a given

harmonic generation scheme, you frequency double with the d̄ you have, not

the one you want. Some tricks can be played e.g. with crystal temperature,

etc., but by and large the crystal with the largest d̄ that satisfies the phase

matching condition is the one you use.

4.4 Fundamental Considerations

Clearly, setting aside all other contributions for the moment, the easiest

way to increase the intensity of the second harmonic is to increase the intensity

of the primary input beam. There are several ways to accomplish this, most

of which are taken advantage of in the current experiment. First, if possible,

one can simply apply brute force to the problem by using a more powerful

laser. In our own experiments, the physical description of which is provided in

more detail in a later chapter, this was accomplished by increasing the power

of the fundamental beam from .7 Watts to 1.5 Watts. Because the price of

modern lasers tends to scale with their output power this is a simple albeit

expensive method of improving harmonic generation efficiency. This approach

is limited ultimately by space available – which is always at a premium in

optics laboratories and at synchrotron facilities – and by the amount of power

it is practically possible to get out of a given type of laser. In the case of the

conventional mode locked Ti:Sapphire laser 2 Watts is generally the limit.

Given an average power limited beam there are several ways to further
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maximize harmonic generation efficiency prior to considering the dielectric

medium and its radiation response. A simple way to increase the intensity

of a beam inside the medium, where it is needed, is to focus the beam with

lenses or curved mirrors so that the power density is at a maximum in the

interaction region. Thus the power figure of merit for the primary beam inside

the crystal is not the overall power of the beam but the power per area, usually

expressed as Watts/cm2, or fluence. Because the local propagation direction of

the beam with respect to the crystal axes is vitally important for maximizing

second harmonic generation inside a nonlinear crystal, it is usually a good idea

for the entire confocal length of the focused beam to be contained inside the

crystal. This ensures that the wavefronts of the exciting beam are essentially

plane wave like in nature. A suitable choice of initial beam size, beam waist

and confocal length (or Rayleigh range, which is half the confocal length), for

a given crystal length, which remains to be determined, can be ascertained in

the vast majority of cases by examining the equation for focusing of a Gaussian

beam. The relationship between the Rayleigh range and the beam waist is

z0 =
πw2

0

λ
(4.24)

where w0, the beam waist, is the beam radius at the point of focus, λ is the

photon wavelength and z0, the Rayleigh range, is the distance from the point

of focus to the point where the beam radius w equals w0

√

(2).

The third method employed in the present experiment for increasing the

power of the incident beam is to use a mode locked laser. A mode locked laser

outputs the same time averaged power as a continuous wave (CW) laser but
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with the beam now arriving in short, discrete pulses rather than continuously.

In this fashion the total power is maintained but the peak power is greatly

increased and continues to increase as the duration of individual pulses and

the number of pulses emitted from the laser per second is decreased. Mode

locked Ti:Sapphire lasers typically emit pulses at a repetition rate of about 80

MHz with pulse durations of 2 to 3 picoseconds for long pulse lasers and tens

to a few hundred femtoseconds for so-called ultra fast lasers. When using a

pulsed laser for spectroscopy and for harmonic generation some care must be

taken. Recall the energy-time Heisenberg uncertainty relation

∆E∆t ≥ ~

2
(4.25)

for which ∆E and ∆t are one standard deviation of a Gaussian spread in energy

and time, respectively. Laser pulses of the type considered here are generally

produced in a state very close to that of being transform limited, meaning in

this instance that the relationship between the pulse duration and its energy

spectrum are approximately governed by the inequality in Eq. 4.25 becoming

an equality. CW beams, for example, have an essentially infinitely narrow

spectral bandwidth and an infinitely long “pulse duration”. Considering an

example relevant to the current experiment, a pulse with a Gaussian intensity

envelope in time of 300 fs, full width at half maximum (FWHM), has a FWHM

spectral bandwidth of 6.08 meV (recalling that one standard deviation σ =

2
√

(2 ln 2)) whereas a pulse of 2 ps in duration will have a bandwidth of a

mere .91 meV FWHM. On the other hand, let’s say we have a 2 Watt laser

with a rep rate of 80 MHz so that each pulse contains 2.5 · 10−8 Joules of
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total energy. The 300 fs pulse will deliver over the FWHM of it’s duration the

equivalent of 83333 Watts whereas the 2 ps pulse will deliver a relatively soft

12500 Watts, more than a factor of 6 worse in terms of effective intensity and

thus relative harmonic generation efficiency. Thus we find that as far as the

generation of harmonics is concerned we generally gain energy resolution in

our beam, which is highly desirable for high resolution ARPES, at the expense

of the intensity of harmonics that can be generated. Fortunately ARPES does

not require intense beams.

Lest this analysis appear to paint too dire a picture for the generation

of harmonics with high spectral purity it should be recalled that many other

factors come into play when considering the design of a harmonic generation

scheme. Eq. 4.21 indicates that one can increase the amount of second har-

monic produced simply by increasing the length of crystal through which the

fundamental propagates, subject to the limits of phase matching for quasi

phase matched processes. This fact is of much greater consequence for pi-

cosecond pulses than femtosecond pulses because very short pulses, containing

very many more Fourier modes than their longer cousins, are much more prone

to chromatic dispersion in dielectric media. Because femto pulses will rapidly

broaden in a crystal, they can only be effectively used for harmonic generation

in very short crystals, typically with lengths on the order of hundreds of mi-

crons, whereas pico pulses can typically be used with great effect in crystals

of up to several millimeters in length. Further, nonlinear crystals typically

have an energy bandwidth acceptance, meaning that for pulses that are too

short some of the beam won’t excite the second harmonic because it contains a

significant number of frequencies outside of the phase matching range. On the
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other hand, longer crystals may not do better in cases for which absorption

of either or both of the fundamental and harmonic beams is a serious issue as

might be the case for the harmonic generation of a DUV laser beam. Also,

for high efficiency conversion processes one must also consider the depletion

of energy from the fundamental beam as it produces the second harmonic, for

the quantum picture of second harmonic generation is that for every second

harmonic photon emitted, two fundamental photons are necessarily absorbed.

For the most part such considerations are most easily handled in the context of

the sort of direct numerical simulations described below for particular crystals

and wavelengths.

So far the simplest case of harmonic generation, in which a single laser

beam or pulse is passed once through a crystal, has been considered. Not

surprisingly there exist many other more sophisticated techniques for increas-

ing the effective intensity of the fundamental laser beam seen by the nonlinear

medium. These include various methods of intracavity harmonic generation in

which a nonlinear crystal is placed directly into the fundamental laser cavity,

as well as several other external cavity methods such as optical parametric

amplification (OPA). Further, there are so-called three and four wave mixing

processes such as sum and difference frequency generation in which two beams

of different wavelengths, combined in a suitable nonlinear medium, produce a

third beam at either the sum or difference of their frequencies. Such topics

are beyond the scope of the present work.
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4.5 Simulation

The scheme proposed for laser ARPES at the NSLS was to generate the

fourth harmonic of a Ti:Sapphire laser by first doubling the frequency of its

near IR beam at 820 nm and then doubling the frequency of that second

harmonic at 410 nm in a second crystal to reach the fourth harmonic at 205 nm.

For all the reasons outlined above regarding crystal and laser beam properties

it was not obvious from the outset that this would work, our laser being of

the picosecond variety and the fourth harmonic, being in the DUV, subject to

the severe strictures of strong absorption in most materials. It did not help

that our custom Ti:Sapphire laser had an unusually high repetition rate of

105 MHz versus the usual 80 MHz repetition rate, resulting in a 24 percent

decrease in the energy per pulse of our laser relative to the garden variety

oscillator. To settle these issues as well as to aid the overall design of the double

harmonic generation scheme both harmonic generation steps were examined

using numerical finite difference calculations.

Calculations were performed using SNLO, a software package freely avail-

able from Sandia National Laboratory [33]. The package uses a split-step fi-

nite difference numerical method to simulate the mixing of beams in nonlinear

crystals. The package includes codes for variously detailed levels of simulation

including long and short pulse mixing in the plane wave approximation as well

as more detailed, fully two dimensional codes for the accurate simulation of

realistically focused beams. Additionally there are codes to aid the design of

OPO and OPA systems. Included in the package are several useful tools for

aiding the design of optical systems and the selection of nonlinear crystals, in-
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cluding a “phase matching calculator” that determines the beam polarization,

launching angles θ and φ (for biaxial crystals), and nonlinear coefficients for

a given nonlinear crystal, temperature and combination of beams, be it for

second harmonic generation or sum or difference frequency generation. Given

the rapid gains in computing power that have occurred even since the outset of

this project it has become a trivial matter to run the full blown 2D simulations

with a very tight spatial and temporal grid. Typical run times on a 2.4 GHz

quad core PC were on the order of five minutes.

Though the first second harmonic generation step, converting from 820 nm

to 410 nm, was performed using a commercial “harmonic generator”, simu-

lation of the process nevertheless provided a good check and valuable insight

into applying the above considerations in the laboratory. Given the relative

ease of measuring the output characteristics of the second harmonic, being well

within the blue end of the visible part of the electromagnetic spectrum, this

check proved to be particularly straightforward. To avoid as much of the DUV

absorption in the second step as possible, the first simulation was actually car-

ried out at 821 nm. The crystal of choice for this step was Lithium Triborate

(LBO). LBO is actually a biaxial crystal, meaning it has no optic axis as de-

scribed above, and so has three different indices of refraction depending upon

polarization direction and crystal axis. For LBO, optimal phase matching is

achieved for propagation of the beam along the XY plane (n(x) < n(y) < n(z))

at θ = 90o and φ = 29.6o.

All nonlinear crystal parameter calculations were performed assuming a

crystal temperature of 300 K using the QMIX tool in the SNLO package. SHG

occurs for the input of the 821 nm beam as an o ray with the second harmonic
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produced as an e ray. While the phase velocities of the e and o rays are matched

for this configuration so that ∆k = 0, there is a small mismatch in the group

velocity indices of 1.631 and 1.665 for the near infrared (NIR) and blue rays,

respectively, resulting in a small amount of walkoff. The walkoff angle is 15.79

mrad. Because we are using 2 ps pulses, the spectral bandwidth acceptance

does not come into play here. Also included, but of minimal consequence for

picosecond pulses, is the group dispersion that tends to broaden the pulse, in

this case a factor of 44.2 fs2/mm for the NIR beam and 123.7 fs2/mm for the

blue beam. Finally the d̄ for this process is .762. The parameters used in the

“2D-MIX-SP” simulation of this second harmonic generation process, using a

4 mm long crystal and 2 ps long pulses, is presented in Fig. 4.2, which is a

screen shot captured from the actual run. Reflectances were calculated with

Fresnel’s equation assuming normal incidence to the crystal face. The beams

are labeled according to standard usage as the “Signal”, “Idler” and “Pump”,

in descending order of intensity. For Type I SHG in which a single input

beam functions as both the signal and idler, and has a single polarization (o

in this case), the initial pulse energy is split evenly between the two columns,

everything else being identical as well. The simulation assumed a fundamental

power of 1.5 W which, at 105 MHz, yields a pulse energy of 1.38 · 10−8 Joules.

The pulse energy of the second harmonic, the pump, is seeded with an energy

at least an order of magnitude smaller than what is expected. As this number

is made smaller the result for pulse energy should ultimately converge to a

single number as the whole mixing calculation is ultimately self consistent.

The radii of curvature of the input and output beams in air at the crystal

surface are calculated using the FOCUS tool native to the SNLO package.
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Figure 4.2: Initial parameters for the SNLO 2D short pulse mixing algorithm
for second harmonic generation in LBO of a 410.5 nm beam from the 821 nm
fundamental.
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The results of the simulation are summarized in Fig. 4.4, panels a)-c). The

second harmonic pulse energy yielded by this configuration was 8.09 · 10−10

Joules giving rise to an average power of 85 mW at 105 MHz. This number

is consistent with the typical SHG power observed at U13A using the setup

described in Chapter 5. The observed power was between 75 and 100 mW,

depending on the details of the coupling and the amount of power delivered

to the crystal at the NSLS. Interestingly this mixing process gives rise to a

small compression of the second harmonic pulse width relative to that of the

fundamental as well as a corresponding broadening of the second harmonic

spectral width. This new pulse width, as well as pulse energy of the second

harmonic were used as inputs into the simulation of fourth harmonic generation

by doubling the frequency of the second harmonic in a second nonlinear crystal.

The second SHG step was carried out using a Beta-Barium Borate (BBO)

crystal. BBO was selected for it’s relatively high transparency in the DUV

region as well as the possibility for phase matching 410.5 nm and 205.25 nm

light. It is a negative uniaxial crystal of the type described earlier in this

chapter. The second harmonic is sent into the crystal as the o wave and the

fourth harmonic exits as the e wave. The phase velocities are again matched

with o and e indices of refraction of 1.691. The angular bandwidth did not

come into play as an optical configuration was chosen so that the crystal length,

2 mm, was less than the Rayleigh range of the beam. The phase matching angle

θM for this configuration is 85.9o. Unlike the previous case, the group velocity

indices were significantly different at 1.775 for the second harmonic and 2.163

for the fourth harmonic. Similarly the group delay dispersion is 205.6 fs2/mm

for the second harmonic and 914.7 fs2/mm for the fourth harmonic. This
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results in a significant temporal delay, shown in Fig. 4.4d) and e), of the fourth

versus second harmonic pulses. d̄ for this process is .334. The input parameters

for the simulation are summarized in Fig. 4.3 using a pulse length of 1.8

ps obtained from the output of the previous simulation. The output of the

simulation is summarized in Fig. 4.4 panels d)-f). The output pulse power was

5.26 · 10−12 Joules or .552 mW average power at the 105 MHz repetition rate.

Taking into account losses from optics downstream of the crystal, this number

is consistent with a photoelectron yield between 20 and 50 times greater than

what is observed on gold and Bi2212 samples examined identically with the

laser and with the U13UB undulator synchrotron beamline, whose output

power at 21 eV is equal to or less than .01 mW.

4.6 Outlook

Given the strictures imposed upon this experiment by the type of laser used

and the distances overcome in shuttling the beam to the harmonic generation

apparatus the method presented in this chapter of generating an ARPES-

qualified DUV beam at high energy resolution can be judged a success. Fur-

ther, the process is robust enough that even under dire circumstances it does

not appear difficult to generate DUV beams of significantly greater power than

what is available, for comparable energy resolution, from synchrotron beam-

lines. The advantage of the current scheme is its simplicity in utilizing two

successive SHG processes, both of which are easy to implement and highly

efficient in terms of conversion, even while using picosecond laser pulses in a

single pass configuration. While one might gain power or energy bandwidth
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Figure 4.3: Initial parameters for the SNLO 2D short pulse mixing algorithm
for second harmonic generation in BBO of a 205.25 nm beam from the 410.5
nm second harmonic of a Ti:Sapphire laser.
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Figure 4.4: Plots of power and spectral output of SNLO simulations of second
and fourth harmonic generation. a),b) are the normalized and absolute power,
respectively, as a function of time and c) is the spectral distribution of the
fundamental (Idler) and second harmonic (Pump) pulses after the harmonic
conversion in LBO initialized with the parameters in Fig. 4.2. d)-f) same as
a)-c) for the result of simulating the doubling of the second harmonic with
parameters in Fig. 4.3, which were themselves obtained from the results of
the previous simulation.
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by using, for example, cavities of various types, including for CW beam con-

version, the current method produces at least as many photons as can be used

in an actual ARPES experiment and often more.

On the other hand, a photon energy of 6 eV is just high enough to perform

ARPES and the technique would clearly benefit from higher photon energies.

The technique outlined here, relying as it does upon phase matching to the

fourth harmonic in a BBO crystal, is ultimately limited by the availability of

nonlinear crystals. BBO can only phase match to 205 nm. Quasi phase match-

ing in a three wave mixing process, mixing the fundamental with the third

harmonic of a Ti:Sapphire laser, one can reach 193 nm ( 6.5 eV) with BBO,

though this scheme is both much more difficult and much less efficient than

the one outlined above. More encouragingly, efficient SHG phase matching

down to 177 nm (7 eV) has recently been demonstrated in the new nonlinear

crystal KBe2BO3F2, (KBBF), and already applied to laser PES [34]. Unfor-

tunately, this crystal is currently very difficult to synthesize and is not yet

commercially available. A few research grade samples exist in the ARPES and

optics communities but availability to the wider scientific community is cur-

rently limited. Barring the development of any more UV transparent nonlinear

crystals KBBF is likely to remain the gold standard for nonlinear crystals that

can be used for ARPES for quite some time.
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Chapter 5

Experimental Apparatus

Thus far we have taken a mostly theoretical approach to superconductiv-

ity, ARPES, harmonic generation and the new methodologies of deconvolution

and Fermi normalization. Where appropriate and necessary we have used the

results of real experiments to make these discussions more concrete. We have

also highlighted the ways in which some particular aspects of the experimental

apparatus used in modern photoemission experiments directly impact the in-

terpretation of data in light of these various theoretical topics. Before moving

on to the presentation and interpretation of the new physics captured in the

results of our laser ARPES experiments it is first necessary to explain in detail

how these results were actually acquired. As we shall see below, low energy

laser ARPES experiments add a layer of difficulty on top of what is already

recognized as an extremely complex experimental undertaking. In the case of

our own laser ARPES facility this difficulty was compounded by our ambition

to implement the technique not in the warm confines of a laboratory as has

been recently accomplished by other groups but at a long established syn-
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chrotron beamline endstation. While the unique challenges in this endeavor

were immense, the potential payoff – the ability to use both synchrotron and

laser radiation simultaneously or in tandem for the study of low dimensional

and complex correlated electron systems – more than justifies the effort. The

goal was to obtain an experimental apparatus that combines the photon energy

tunability and large momentum space sampling provided by a high resolution

synchrotron beamline with the high brightness, small spot size and momentum

and energy space “zoom lens” properties of low energy lasers, all in a single

facility. In short, we wanted one endstation with two beamlines.

5.1 Laser System

The minimum photon energy required for any ARPES experiment is set

by the work function at a sample surface, discussed in Chapter 3, which has

a value that seldom exceeds 5 eV and lies between 4 and 5 eV for the vast

majority of solids. The exception to this rule are the elements comprising the

first column of the periodic table. While it has long been known that the

introduction onto a crystal surface of a small amount of Cesium or Potassium,

for example, suppresses the work function of a surface down to 1 to 3 eV,

their presence in a complex system such as BSCCO might overly complicate

matters e.g. by changing the effective doping of the surface. Thus, at least

while studying the cuprates, it is preferable to avoid this method when possible.

The simplest method of producing a laser beam with photon energy in excess

of 5 eV is the generation of even harmonics of a pulsed laser in nonlinear optical

crystals. A brief explanation of this physics as well as simulations relevant to
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showing the feasibility of using relatively long pulses for this experiment were

presented in Chapter 4. It suffices here to recall that with the crystals available

to us we could obtain a beam with a photon energy of 6 eV, wavelength of

205 nm, by first frequency doubling a beam at 820 nm to 410 nm and then

doubling that beam.

At the NSLS we were able to avail ourselves of the laser facilities previously

constructed for use in time resolved, two photon infrared (IR) spectroscopy

at the U6 laser hutch. That system initially consisted of a Mira 900-P Tita-

nium doped Sapphire (Ti:Sap) passively mode locked oscillator from Coherent

pumped by a Verdi V-5 5 Watt, frequency doubled Nd:YVO laser, also from

Coherent. The oscillator was equipped with the so-called X Wave broadband

optics set giving it a nominal wavelength tuning curve running from 700

nm to 950 nm, with optimum intensity falling fortuitously around 820 nm.

Most Ti:Sap oscillators, when mode locked, generate transform limited pulses

of tens to hundreds of femtoseconds length by dispersion compensation in a

matched prism pair inside the cavity. Our cavity was of the somewhat un-

usual picosecond pulse length variety using a thin film grating optic to achieve

the required dispersion compensation. Additionally, our oscillator had a cus-

tom cavity length; rather than running at the typical pulse repetition rate of

around 80 MHz the cavity length was shortened to produce pulses at a rate of

105.2 MHz, exactly twice the repetition rate of the VUV ring running in seven

bunch mode. This was required for timing operations at the IR beamlines of

the VUV ring. While odd, this configuration in principle had several advan-

tages for ARPES. First, having a high repetition rate and thus a relatively low

intensity per pulse is desirable in an ARPES experiment as it allows the use
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of a higher flux beam overall before space charging near the sample surface

becomes a problem. Second, though harmonic generation becomes much less

efficient as the pulse length is increased, the transform limited nature of the

pulses ensures a much narrower intrinsic bandwidth for the laser. For a 2 ps

pulse length we should have a photon bandwidth of about 1 meV FWHM.

Because harmonic generation efficiency, especially in the single pass design

outlined below, decreases linearly as the power per pulse is decreased and

the length of a pulse is increased, the pump laser was upgraded to the 10

Watt Verdi V-10 model at the outset, raising the maximum power output

by the oscillator to roughly 2 Watts at 820 nm from less than a Watt when

environmental conditions allowed optimum tuning of the cavity optics. The

power increase also vastly improved the stability of the mode locking, which

we found empirically to suffer somewhat from the custom design of the cavity.

Another unfortunate result of the custom cavity design was the introduction

of a relatively severe ellipticity of the beam profile as it exited the cavity. This

was corrected for by the introduction of a pair of cylindrical lenses immediately

downstream of the oscillator.

Another good reason to increase the output power of the Ti:Sap laser is

illustrated in Fig. 5.1. Because the lasers used in this experiment were all Class

IV and therefore extremely dangerous in an uncontrolled environment like the

experimental floor of the VUV ring, a great deal of effort had to be expended to

carry out operations in a manner consistent with the safety guidelines laid out

by BNL in general and the NSLS in particular. Because the IR experiments

to which the laser was originally dedicated only required intense, pulsed light

at a particular rep rate it was sufficient for those investigators to enclose the
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laser system, optics bench and other working parts in a light tight hutch with

appropriate interlocks and other safety features, and distribute the light to

various beamlines by fiber optic cable assemblies. Harmonic generation on

the other hand requires intense, coherent beams which, owing to the distance

between the U6 hutch and our own endstation and surroundings, presented

something of a dilemma. The distance, about 200 feet as the crow flies, was too

long to use fiber to carry the fourth harmonic directly to the sample chamber

and would have in any event resulted in a beam quality much degraded from

what was desired. Similarly there was no way to transport the fundamental

beam or its second harmonic via fiber for later stage harmonic generation

near the experimental chamber. Ultimately it was decided that the beam

requirements, coupled to the limited table space available in U6 and the short

coherence length of DUV light at 205 nm in air, rendered every option but the

transport of the fundamental beam through free space, to the vicinity of U13,

untenable.

As a result of these considerations a steel pipe was erected between U6

and U13A. It was composed of 15 sections of stainless steel tube, each section

approximately ten feet long and 1.5 inches in diameter. Sections of pipe were

joined end to end by quick flanges (QF) so that the pipe could ultimately be

purged with nitrogen or evacuated as the need arose. It was also a simple

way to keep the pipe securely light tight. Steel was used because the more

common material for this application, PVC, was deemed unsafe and a health

hazard in the event of fire. As we chose to transport the beam in a straight shot

across the VUV ring, passing through twenty years’ worth of cabling, pipes and

equipment necessary to keep the storage ring functioning, the pipe diameter
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Figure 5.1: Schematic of the VUV ring experimental hall of the NSLS circa
2008. The laser hutches at U6 and U13A as well as the hutch enclosing U13UB
are shown. The steel laser pipe connecting U6 to U13A is shown as the thick
red line connecting the two hutches.
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Figure 5.2: Arrangement of optics and lasers in the U6 hutch. The Ti:Sapphire
oscillator output was first corrected for ellipticity and then expanded before
being steered through the beam pipe to U13. The last mirror, residing at the
pipe entrance, was moroized and controlled remotely as needed.

had to be extremely small and the pipe had to be suspended by various means

roughly eight feet above the ground. Keeping a 1.5 inch wide pipe aligned

well enough over 200 feet to pass a laser beam through, while passing over

a particle accelerator and attempting to connect two optics benches hidden

behind walls at each end is no mean feat. Nevertheless with a great deal of

effort and assistance from our post-doc, Hongbo Yang, and one of the master

electricians at the NSLS, Jim Lacey, this was accomplished while only inducing

the VUV ring to crash once while we were inside it.
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To get the fundamental beam through the laser pipe it was necessary to

first expand it with a pair of spherical singlet lenses by a factor of 8 so that

the Gaussian beam waist would fall roughly in the middle of the traverse. The

beam was then directed vertically to a mirror mounted just in front of the

U6 entrance to the pipe. The layout of optics in U6 is diagrammed in Fig.

5.2. Because steering the beam through the pipe over such a distance required

great precision, and because the mirror was located near the ceiling of the

U6 hutch well above the optical bench, tipping and tilting of the kinematic

mirror mount was achieved using New Focus Picomotor actuators. These ac-

tuators were connected to a control box that supplied appropriate voltages to

them. The control box was connected in turn to a networking unit so com-

mands controlling the velocity, acceleration, activation and deactivation of the

two mirror actuators could be sent remotely from the command prompt of a

Telnet terminal on any computer connected to the network via the TCP/IP

protocol. A Thorlabs thermopile power meter affixed to the end of the pipe

at U13 provided a voltage signal proportional to the power. This signal was

fed to a multimeter in U6 to facilitate the gross alignment of the beam. Once

aligned through the main pipe section a broadband dielectric mirror was in-

serted before the power meter to steer the beam through the last two meters of

pipe into the laser enclosure constructed at U13A (details given below) where

harmonic conversion and other optical manipulations occurred. Once aligned

the motorized mirror only required minor adjustments every week or so to

keep the beam well aligned. This was accomplished by monitoring the beam

power and profile on the optical bench in U13A while sending commands to

the motor controller via the NSLS local network.
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Figure 5.3: The turning mirror at the end of the pipe is removed during initial
alignment of the 820 nm beam from U6 to U13. Alignment is established by
monitoring the signal of a thermopile power meter. The mirror turning mirror
is then replaced and the beam steered through the last two meters of pipe into
the U13A laser enclosure.
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The U13A end of the pipe was fitted with a 50 mm diameter achromatic

doublet lens epoxied vacuum tight to a QF flange adapter. An optical rail

affixed to this part of the pipe was fitted with a concave spherical singlet on a

linear stage and a stearing mirror to bring the beam down to the table. This

arrangement, diagrammed in Fig. 5.3, effectively prevented any air currents

from moving through the pipe as it was only open at one end and also allowed

for the recollimation of the beam at U13A so it could be easily manipulated

with standard one inch optics. Once back on the table at U13A the beam

typically had a diameter of 2 mm FWHM and an average power of 1.5 Watts

at 820 nm. Though it had to travel a great distance the beam position and

intensity was stable for periods on the order of a week before requiring correc-

tion. There was no detectable motion in the beam due to vibration induced

by, for example, the low frequency sonic noise that permeates the facility due

to the presence of vacuum pumps and experimenters at other beamlines.

The beam path and optics for harmonic generation in U13A are dia-

grammed in Fig. 5.4. After steering the 820 nm beam onto the table it passes

through half waveplate to clean up the polarization and ensure it is horizontal

as it enters the second harmonic generation stage. The Inrad harmonic genera-

tor (HG) designed to accompany the Mira Ti:Sapphire oscillator is used in the

frequency doubling of the fundamental beam. Inside the HG the fundamental

beam is focused through an LBO crystal by a spherical broadband dielectric

mirror with a 50 mm focus. Because harmonic generation using picosecond

length pulses is much less efficient than with femtosecond pulses relatively long

crystals are used; the LBO crystal was 4 mm long (in the direction of the beam)

and cut to 38.6 degrees. This choice of angle for the LBO crystal was dictated
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in the design of the harmonic generator by the desire to be able to achieve

reasonably efficient phase matching over a wide range of wavelengths. Phase

matching in the LBO crystal between the fundamental and second harmonic

beams was achieved by angle tuning the crystal and then optimizing its posi-

tion in the fundamental beam waist. The fundamental and second harmonic

beams, exiting the crystal collinearly, were collimated by a second broadband

dielectric spherical mirror. The fundamental and second harmonic beams were

then separated by a thin film dichroic mirror. The fundamental was sent to

a beam dump and the second harmonic, vertically polarized, was allowed to

exit the harmonic generator. For a typical input power of approximately 1.5

W in the fundamental beam we routinely achieved second harmonic powers

between 75 and 100 mW.

After steering the 410 nm beam to the fourth harmonic generating section

of the setup the polarization was rotated in a second waveplate to a horizontal

orientation. This was done so the polarization of the fourth harmonic at

205 nm would be vertical (s polarization) and the 410 nm beam horizontally

polarized (p polarization) before entering the last set of optics for reasons that

will become clear shortly. The 410 nm beam, after rotating its polarization,

was focused through a BBO crystal by a 100 mm focal length lens. This focal

length was chosen so the beam waist would lie entirely within the BBO crystal

while maintaining a reasonably small beam diameter at the focus. The beam

waist at the crystal position was measured to be 10 µm by a razor blade on a

micrometer driven translation stage. The BBO crystal was 2 mm long and cut

to 56 degrees from the optic axis so the impinging and exiting beams would

lie close to the crystal surface normal. The exiting second harmonic beam and
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Figure 5.4: Layout of optics for generation and characterization of second and
third harmonics of the Ti:Sap fundamental beam. An enclosure (not shown)
was installed over the optics bench to limit dust and air currents that induced
noise in the second and fourth harmonics. Waveplates ensured that the fourth
harmonic was s-polarized, and the second harmonic p-polarized, with respect
to the ArF2 mirrors. This arrangement ensured their function as effective
dichroic mirrors.
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fourth harmonic beam at 205 nm were recollimated by a VUV grade CaF2

spherical singlet lens mounted on a linear translation stage. The BBO crystal

itself was mounted on a combination linear translation and precision rotation

stage (not shown in the figure) to facilitate optimum angle phase matching

and positioning of the crystal in the beam waist.

Working with 205 nm laser radiation, deep ultraviolet (DUV) radiation,

versus vacuum ultraviolet (VUV) radiation presents some unique challenges.

Unlike more common laser wavelengths in the IR, NIR and visible parts of

the spectrum, detection of the beam can be problematic. Wavelengths longer

than the visible are easily viewed with “night vision goggle” IR viewers. Un-

like second harmonic generation, which is easily confirmed by the appearance

of visible, in this case blue, light, DUV light is both invisible to most UV

viewscreens and is easily swamped by the visible signal when attempting to

generate and optimize the fourth harmonic. Furthermore, one’s choice of ma-

terials with which to construct even the most basic optical elements is ex-

tremely constrained and optics with antireflection (AR) and high reflection

(HR) coatings for these wavelengths very difficult to come by. It was found

that the simplest, most reliable and cost effective method for separating the

visible from the second harmonic was to utilize the reflection, transmission

and polarization dependent properties of mirrors originally designed for 193

nm eximer lasers. Though designed for 193 nm, the optic still works excep-

tionally well as a reflector for s polarized (vertical in our case) radiation at 205

nm and reflects p polarized radiation at 410 nm exceptionally poorly. Thus we

are able to use the optic as a “poor man’s” dichroic mirror for separating the

second from the fourth harmonic. In practice there remains a small amount,
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less than 1 mW, of visible radiation. This residual blue light, collinear with

the DUV radiation, proves to be of enormous practical use when lining up and

focusing the beam through the remainder of the apparatus, into the experi-

mental chamber and onto a sample. It is easily viewed safely through a CCD

camera whereas the DUV beam is not.

While the residual blue light is very useful it still poses difficulties with

regard to detection and optimization of the fourth harmonic. That is because

the quantum efficiency of most commercially available photon detectors and

power meters is much higher in the visible than the DUV, and because at best

we do not expect more than about .5 mW of DUV radiation anyway, another

means of detecting the fourth harmonic is necessary. We thus use another

ArF mirror mounted on a flip mount just after the recollimation lens (L2 in

the figure) to direct the beams into a home made dual grating imaging spec-

trometer that can completely separate the visible from the DUV beams. The

design and characterization of the spectrometer is discussed below. Detection

and optimization of the fourth harmonic was achieved by first aligning the

residual second harmonic beam through the spectrometer with the entrance

slit wide open and onto the beam profiler using the long wavelength grating.

Switching from long to short grating halved the wavelength to which the spec-

trometer was set, in our case from 410 nm to 205 nm. With the alignment

thus assured, it was a simple matter to adjust the angle and position in the

beam waist of the BBO crystal while observing the fourth harmonic output on

the profiler. The harmonic conversion down to 205 nm was thus optimized by

examining the shape and intensity of the image produced at the CCD without

being swamped by signal from the second harmonic. A typical example of the
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Figure 5.5: Image and real time x and y profiles of the fourth harmonic beam
taken with laser beam profiler. The fourth harmonic beam has been separated
from the second harmonic beam by the grating monochrometer.

resulting fourth harmonic beam profile is presented in Fig. 5.5.

After fourth harmonic generation has been optimized the first ArF mirror

is flipped down and the beams are separated in the second, fixed ArF mirror.

Because class 4 laser radiation must always be contained on the experimental

floor and because the fourth harmonic is particularly sensitive to absorption

by air and dust it is launched immediately into the laser beamline through

an AR coated VUV grade CaF2 window. The window was made by securing

the coated optic in a CF flanged quick connect. The seal between the quick

connect and the optic was formed by a Viton o-ring. The laser beamline and

its relationship to the U13UB beamline and endstation, as well as the U13A

laser hutch, is diagrammed in Fig. 5.6. The beamline is constructed of two

120



main sections that can be isolated from eachother and from the experimental

chamber by means of two gate valves, V1 and V2 in the figure. The beamline

is constructed primarily of 1.5 inch diameter stainless steel tubes connected by

2 3/4” Conflat (CF) flanges. The first section comprises of the CaF2 window, a

standard ion gauge, pump out port for a removable turbo cart and a 50 l/s ion

pump which is sufficient to maintain a base pressure of 10−8 Torr in the whole

beamline. This section passes through the U13UB beamline and intersects a

five way cross mounted on a breadboard. The cross hosts the next beam pipe

section, two screened, standard viewports used for alignment and a 1” diameter

VUV enhanced aluminum mirror. The mirror, which steers the beam through

the last section of beamline into the experimental chamber, is attached to a

micrometer driven linear translator used to move the mirror in and out of

the beam path during alignment, a rotary platform and a micrometer driven

tip-tilt mechanism for fine adjustments. The beam is aligned through the first

section by centering it in window W1 with the mirror withdrawn. The mirror

is then inserted and the beam is steered down the last beamline section. The

last section of beamline is equipped with another pumpout port so the sections

can be independently pumped out and baked during commisioning, a cold

cathode ion gauge that can interface with the synchrotron beamline vacuum

interlocks, and a paddle that can be inserted into the beampath for observation

through a standard viewport. The beamline is isolated from the endstation by

a second gate valve, V2, and a hydroform bellows that allows adjustments in

the positioning of the endstation relative to the synchrotron beamline, which

is also equipped with a bellows for this purpose, while maintaining connection

to the laser beamline.
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The last optic in the system, a 100 mm focus VUV grade CaF2 spherical

singlet lens, is mounted in a lens tube inside the chamber. The lens tube is

anchored to a port alignment mechanism that allows small movements of the

lens about the axis of the beamline to correct for small misalignments of the

beamline relative to the sample position without moving the aluminum mirror.

The lens alignment mechanism is in turn connected to a linear drive used to

adjust the distance of the lens from the sample to optimize the focus. The main

advantage of having the final lens so close to the sample inside the chamber

is the ease with which a small spot size for the fourth harmonic – a mere ten

microns – can be achieved. This is desirable because the angular resolution of

the electron spectrometer depends on having a pointlike source. We can thus

improve our angular resolution by using a smaller spot size than is typically

achieved at the synchrotron, whose beam presents an elliptical profile on the

sample with a vertical width of about 300 microns and a horizontal width

defined by the exit slit of the beamline monochrometer ranging from 100 to

300 microns. Another good reason for using a small spot size is the presence

in some samples, typically ones difficult to grow as well ordered single crystals,

of spatially small domains.

The chromatic dispersion of the lens ensures that the residual blue beam is

supremely unfocused when the DUV beam is focused properly on the sample.

In order to avoid problems related to charging of the lens by the profusion of

photoelectrons emitted from a sample it is recessed 25 mm in the lens tube

behind a copper plate with a 10 mm diameter hole cut in the middle through

which the beam passes. Besides absorbing most of the electrons emitted in

the direction of the lens it can be shown that when a charge is placed behind a
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Figure 5.6: Laser beamline.

conductor with a circular hole cut in the middle the field on the other side of the

hole from the charge is exponentially damped with distance from the plate[21].

The whole lens tube assembly and field plate are coated with graphite to

match the work function of the graphite coated electron spectrometer. Finally,

the lens tube is perforated with a half inch diameter hole on its side so it

will vent properly under vacuum. While this necessarily connects the UHV

environment in the endstation at 5 ∗ 10−11 Torr to the 10−8 Torr vacuum in

the laser beamline, the smallness of the link between the two ensures that the

endstation vacuum is not adversely affected.

Alignment of the sample to the laser and the electron analyzer is a partic-
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ularly tricky business when operating in the open environment of the NSLS

experimental floor as all porthole windows on the chamber had to be made

light tight. During normal operations with synchrotron radiation, assuming

that the chamber and electron spectrometer are already well aligned with re-

spect to the synchrotron beam by using the visible light of zero order specular

reflection from the beamline’s monochrometer. Such direct observation of the

laser beam through the endstation chamber viewports is forbidden because

of the safety concerns presented by the use of class 4 laser radiation. To get

around this problem safely we mounted a CCD camera with 4x magnifying

lens (shown in the figure) to an adapter that allowed us to mount it directly

on a 2 3/4” viewport. The camera image was fed to a monitor on which

samples and laser radiation could be clearly seen. Alignment was augmented

by a a class 2 diode laser shot through a viewport on the back of the ana-

lyzer, through the entrance slits and onto the center of a viewport opposite

the analyzer entrance. Because of the strong chromatic dispersion of the final

lens for 410 nm light versus 205 nm light, the camera image could only facili-

tate alignment and not focus. Focusing and fine position tuning of the DUV

beam and sample relative to the analyzer was accomplished by monitoring the

transmission mode electron spectrum in real time. Transmission mode gives

the position of electron emission versus kinetic energy rather than angle verses

kinetic energy. By minimizing the width of the transmission spot and center-

ing it on the detector we are able to align beam, sample and analyzer as well

as optimize the focus of the beam and therefore the emission spot size. The

ease of focus and alignment is especially important given the vast distance our

laser must travel from U6; from experiment to experiment it is often necessary
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to tweak or otherwise work on the alignment. Also, because the focal length

of the final focusing lens is relatively short, in order to get the small spot size

we desire, the depth of field of the focus is extremely small rendering easy,

precision adjustment of the lens an absolute necessity.

5.2 Photon Spectroscopy

Characterization of the the spectral and spatial characteristics of the 205

nm beam, while useful for ensuring the quality of the beam used in photoemis-

sion experiments, does not warrant the expense of a dedicated new commercial

system with the sensitivity and resolution to perform this single task. On the

other hand, the US national laboratories are well known for their reserves of

aging yet entirely serviceable equipment that can be repurposed or otherwise

modified with minimal effort or expense for new experiments. In this spirit

a reasonably high resolution imaging spectrometer was constructed on the

optical table in the U13A laser enclosure.

The overall layout of the system is diagrammed in Fig. 5.7. Spectral dis-

persion is accomplished with the diffraction gratings contained in an old Jarrell

Ash model 82/410 dual grating monochrometer/spectrometer donated to the

cause by Larry Carr at the NSLS. The device has slots at the beam input and

output ports that accept slits of various widths. Sadly most of the slits for

this device were lost over the years and the only remaining pair, both with slit

widths on the order of millimeters, were insufficient to the task. Further evi-

dence of the spectrometer’s provenance from wide bandwidth, low resolution

applications is observed in its mechanical construction; the grating is posi-
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Figure 5.7: Layout of home built imaging spectrometer.

tioned by turning a large knob on the side of the housing that simultaneously

drives a dial marked out in steps of .2 nm. Another knob on the housing flips

the grating turret between the high and low blaze gratings. Nevertheless the

absolute wavelength calibration of the spectrometer is more or less intact as

is evidenced by its ability to reliably sort the second and fourth harmonics

described in the previous section.

In olden times the lack of an exit slit, or rather the appearance of an

exit aperture on the order of 2 cm, would render the device useless as the

traditional method of measuring a spectrum involved a measurement of total

beam intensity as the grating was swept through many wavelengths. To render

the absence of an exit slit moot we located a windowless CCD based laser beam

profiler (Newport model LBP-1 USB2 beam profiler) at the spectrometer exit
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port. The beam profiler is controlled by a computer that allows real time

adjustment of electronic shutter speed, frame averaging, gain and beam profile

characteristics as well as a convenient method of storing image data. The LBP-

1, when used without a window, is sensitive down to 193 nm and so is well

suited to our task. To keep the stray light observed by the beam profiler to a

minimum a large coffee can with a slit cut out to let in light was put over the

beam profiler (upside-down of course) and positioned so the entrance aperture

of the can abutted the exit slit of the spectrometer. The inside of the coffee

can was coated in graphite to minimize internal light scatter. Ultimately, as

with the Scienta analyzer for electrons, one does not require an exit slit if one

has a position sensitive detector and, with such a detector, one can acquire

much more information much more rapidly anyway.

Because the center wavelength of the Ti:Sapphire fundamental beam and

its harmonics are easily and precisely determined with the Ocean Optics fiber

spectrometer it was not necessary to fine tune the home built system for ab-

solute value measurements of wavelengths. All that is desired is a precise

determination of relative wavelength across the detector so that one can con-

vert the width of a feature measured on the CCD to a width in energy. This

calibration was accomplished by observing the position on the detector of a

small feature of light scattered off the diffraction grating as a function of wave-

length setting on the spectrometer. Because the CCD chip is extremely small

- about 1 cm across - relative to the path length between the grating in the

spectrometer and the detector - about 50 cm - and because the change in wave-

length on the detector as a function of spectrometer setting we wish to observe

is relatively small, we expect the small angle approximation for motion of the
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Figure 5.8: Calibration plot for home built imaging spectrometer. The λ
points are read from the Jobin Yvon spectrometer and the pixel value from
stored camera images taken at each wavelength calibration point.

beam across the detector to hold and thereby produce a linear relationship

of pixels per nanometer. As demonstrated in Fig. 5.8, this is true and we

derive a calibration constant for our device of 77 pixels/nm or 0.013 nm/pixel

in the vicinity of 205 nm. At 205 nm this works out to a theoretical maximum

resolving power λ/∆λ of about 15600 for emission observed to land on a single

pixel or, put another way, an energy resolution of about 0.38 meV.

Of course achieving this high resolution in a real measurement depends

upon having an entrance slit comparable to the pixel size – in this case about

8 µ – while maintaining enough signal for the apertured beam to be detectable.

In the absence of an entrance slit, the whole beam profile is imaged almost
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untouched by the dispersion of the grating. Without an entrance slit, in what

might be called the beam imaging mode of the instrument, a limit on the

resolution is set by the beam diameter. To operate the instrument in a truly

spectroscopic mode it is necessary to provide a very narrow entrance slit. This

was accomplished by situating a post mountable adjustable slit mechanism in

front of the spectrometer’s original entrance aperture. With this set of slits,

which unfortunately are not knife edges, we were able to measure an upper

bound on the bandwidth of the DUV beam of .01 nm or 2.5 meV. Presumably

with better slits this number can be brought down further.

It is thus possible to establish the existence and optimize the intensity of

the fourth harmonic beam with the instrument in imaging mode and to then

close up the slit as much as possible in order to perform a spectroscopic mea-

surement. The variable slit mechanism also has the desirable effect of blocking

much of the residual second harmonic beam launched into the spectrometer

even the scattered light of which can obscure observation of the much weaker

fourth harmonic.

5.3 Vacuum System

Because the laser beamline was constructed to interface with an existing

endstation a few, though significant modifications had to be applied to the

endstation itself. One major modification, already addressed, was the intro-

duction into the experimental chamber of the laser lens assembly. Two other

significant modifications were made in the course of this work that will be

described shortly. It is first necessary to describe the rest of the system as it
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was found. For any electron spectrometer and experimental chamber designed

to perform high resolution, low energy ARPES must meet two fundamental

requirements. First, the vacuum must be impeccably good and second the

sample and photoelectron environs must be kept devoid of any stray electric

or magnetic fields. While either of these requirements might be met alone

with not too much difficulty, construction of a system in which both are met

simultaneously can be extremely difficult.

An exceptionally good UHV environment is necessary for ARPES because

of the limited escape depth of photoelectrons originating from or near the

sample surface. When a sample is cleaved or otherwise prepared to reveal an

atomically clean, fresh surface it will only remain in such a pristine state until

it is covered by residual atoms or molecules in the vacuum chamber. Assuming

we are in the Knudsen flow regime, and assuming that all atoms and molecules

present will stick to the surface of our sample (a reasonable approximation at

deeply cryogenic temperatures) we can expect approximately one monolayer

of surface coverage per second at 10−6 Torr, or 1 Langmuir (1 L) = 10−6

Torr-seconds. Thus to retain a sample surface free of contamination and fresh

enough to emit the electrons we wish to study rather than those originating

from contaminants, a pressure of at least 10−10 Torr is necessary for an experi-

ment lasting at least several hours. This number varies from sample to sample

due to the details of adsorbate bonding at the surface and the constituents of

any residual gas in the chamber. Bi2212, for example, can live for days in a

vacuum in the 10−11 Torr range and for many hours in a worse vacuum due

to the “protective” inert Bismuth oxide layer exposed at the natural cleavage

plane. Samples that are very surface sensitive on the other hand might give
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you only a few hours even under the best circumstances. Additionally, the

presence of contaminants such as water may be particularly problematic if

they interact strongly with a sample surface, whose chemistry might well be

different from that of the bulk. Thus in order to perform experiments in a

reasonable amount of time for the vast majority of samples it is necessary to

maintain a vacuum at least as deep into the 10−11 Torr range as possible.

To achieve and maintain such a vacuum the chamber is equipped with

an array of pumping systems operating most efficiently at different pressure

ranges. A high vacuum environment is easily obtained by the combination of

a 150 l/s turbomolecular pump and 300 l/s ion pump, both mounted directly

to the chamber. This combination is sufficient to reach the 10−8 Torr range.

To reach the 10−11 Torr range it is necessary to bake the entire chamber

(including pumps) and analyzer at 150 C and 110 C, respectively, for upwards

of a week. This exceptionally long bake out time is imposed upon us by

the large amount of surface area introduced by the many successive layers of

magnetic shielding (discussed below) both inside the main chamber and inside

the analyzer. Below 10−10 Torr the turbo pump is not very effective and so is

valved off from the chamber. To reach and maintain better pressure the ion

pump in combination with the occasional use of a titanium sublimation pump

is necessary. This combination effectively maintains a pressure of 5∗10−11 Torr.

During experiments that require wide ranging changes in sample temperature

this system is augmented by a liquid nitrogen cold trap in the titanium pump.

This is necessary because residual gasses in the chamber will accumulate on

the cryostat at low temperatures. When the temperature of the cryostat is

raised past the point that accumulated gasses desorb the result can be a sudden
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increase in chamber pressure that, if not compensated for, can quickly coat

the surface of the sample and prematurely terminate the experiment. While

the Scienta analyzer on our endstation is equipped with an additional pump

out port to compensate for the poor vacuum transmission and large surface

area inside the device, we found that it is sufficient to connect this port via

a flexible UHV hose to the main chamber. Finally, great care is taken at all

times either when the chamber is vented to atmosphere for maintenance or

during the routine introduction of samples to avoid contamination by high

vapor pressure substances, especially of the organic variety. Identification of

contaminants as well as the remaining water vapor pressure and helium leak

detection is facilitated by a residual gas analyzer mounted inside the chamber.

5.4 Magnetic Shielding

Low energy, high resolution angle resolved photoemission experiments are

exquisitely sensitive to the magnetic field environment traversed by the pho-

toelectrons. Magnetic fields do no work and therefore cannot alter the actual

kinetic energy of an electron. However because the force exerted upon an elec-

tron depends upon its velocity through the magnetic part of the Lorentz force

law, F = ev×B, where e is the electron charge, v is its velocity and B is the

magnetic field strength in vacuum, and because the photoelectron spectrum

generally contains electrons with a large range of velocities, the presence of

stray magnetic fields can have devastating consequences for the experiment.

Magnetic fields in the vicinity of the sample induce an energy dependent al-

teration in the photoelectrons’ trajectories which translates into a very com-
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plicated and malefactorous variation in the best angular resolution achievable.

Because hemispheric spectrometers gain their kinetic energy resolving power

by sorting electrons into differing orbits according to their energies, a stray

magnetic field inside the hemisphere will not only alter their measured emis-

sion angle but their measured kinetic energy as well. Further, because the

entrance slit to the spectrometer determines not only the energy resolution of

the spectrometer but the location and depth of the cut in k space sampled by

the spectrometer, the presence of stray fields can also cause errors in determin-

ing the location in the Brillouin zone at which a spectrum is acquired. Finally,

stray fields that alter electron trajectories along the length of the slit will re-

sult in an energy dependent tilting and distortion of the spectrum thereby

rendering any measure of a state’s momentum dependence useless.

For all these reasons the quality and integrity of the magnetic shielding

provided for an ARPES experiment is crucial to its success. The shielding

problem becomes much more severe as one decreases the overall kinetic en-

ergy of the photoelectrons. A simple finite difference calculation, the results

of which are plotted in Fig. 5.9, reveals the magnitude of the problem. In this

calculation we assume a beam of electrons is launched from a point source into

the ŷ direction with velocity defined by a range of realistic kinetic energies and

zero initial velocity in the x̂ direction. A constant, uniform magnetic field Bz is

applied in the positive ẑ direction. For kinetic energies ranging between .5 eV

and 2 eV, the energy range relevant for laser ARPES, the overall displacement

of the beam is, not surprisingly, strongly dependent upon the field strength.

Worse still is the strong energy dependence of the displacement for a given

field strength over the range, yielding a strongly energy dependent angular
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Figure 5.9: Finite difference calculation of electron trajectories normal to a
magnetic field pointing out of the plane. Electrons originate from a point at
(x,y)=(0,0) with initial velocities in the ŷ direction. Trajectories of electrons
with kinetic energies between .5 and 2 eV are shown for Bz = 0.01 Gauss
(blue), 0.005 Gauss (red) and 0.001 Gauss (black). Electrons with kinetic
energies between 21.5 and 23 eV in a 0.005 Gauss field – a condition similar to
typical synchrotron experiments – are shown in green. The horizontal dashed
line marks the distance from the sample to the entrance aperture of the SES-
2002 electron spectrometer. The vertical dashed and dotted lines mark the half
widths of a .5 mm and .1 mm analyzer entrance slit, respectively. Calculations
were performed with time steps of 10−10 seconds.
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resolution. This situation contrasts sharply with the situation at VUV photon

energies. Also shown in the figure, for comparison, is the displacement of an

electron beam with energies ranging between 21.5 eV and 23 eV in a 0.005

Gauss field. This situation is nominally representative of the fields and ki-

netic energies typically experienced at U13UB during synchrotron operations.

Both the overall beam displacement and the range of displacements over the

kinetic energy range are minimal in this arrangement. Clearly the angular

(and thus momentum) resolution achievable in a laser ARPES experiment are

highly dependent upon the ability to suppress magnetic fields over the flight

path of the photoelectrons. While the orientation of fields in the chamber are

essentially random, it is appropriate to consider the worst case for the best

magnetic field we can achieve. Setting the goal of at least a 0.001 Gauss field

for laser ARPES, we find that an entrance slit on the order of .5 mm width 10

cm from the source provides the narrowest meaningful cut through the angular

distribution of photoelectrons.

The residual magnetic field generated by the Earth is on the order of 0.5

Gauss at its surface. On top of this, synchrotron facilities are filled with

large and varied permanent and electrically driven magnets required for both

experimental apparatus and the operation of the synchrotron itself. While we

might reasonably expect minimal impact from these local fields because the

magnetic dipole field falls off like 1/r3 in the far field, a sense of the difficulty of

this problem was gained by observing the displacement of photoelectrons by up

to several mm in real time in the spatial imaging mode of the Scienta analyzer

at low kinetic energies while the booster ring and linac (Fig. 5.1) of the NSLS

were run during injection into the VUV and X-Ray storage rings. In short,
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while synchrotron light sources are invaluable for many ARPES applications

they are incredibly hostile environments and the hostility grows as the photon

energy declines. Great effort must be expended to repel these deleterious fields.

The cornerstone of magnetic shielding for all parts of an ARPES experi-

mental chamber and spectrometer is the judicious application of mu metal, a

nickel-iron alloy that, when heat treated in a hydrogen atmosphere, obtains

an incredibly high magnetic permeability µ. While the vacuum vessel of the

Scienta 2002 electron spectrometer is fabricated from standard UHV grade,

nonmagnetic stainless steel the electron lens and hemispheres are surrounded

by two layers of 3 mm thick mu metal joined mechanically to form as complete

a magnetic circuit as possible. Because the magnetic shielding properties of

the mu metal degrade with the introduction of holes in the shielding through

which fields can “bulge” and possibly reconnect, openings in this shielding are

limited to those required for the entrance aperture to the lens, four electri-

cal feedthroughs for the voltages operating the lens and hemispheres and the

microchannel plate detector stack. The magnetic field inside the Scienta is

assumed to be zero. This is difficult to check directly though it is observed to

fall rapidly to zero upon inserting a magnetometer into the entrance of the lens

assembly. The negligible magnitude of the field inside the analyzer is achieved

largely through the quality and care of construction and through a design that

minimizes field intrusion though apertures.

A somewhat trickier business is the shielding of the experimental chamber

mated to the Scienta in which the sample and peripheral experimental equip-

ment resides. The experimental chamber itself is based on a cylinder 18 inches

in diameter and 3 feet in height with an assortment of different size necked
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flanges arranged around the circumference in three levels. The analyzer is

mounted to a 10 inch flange on the middle level of the chamber. Samples,

mounted on a cryostat, are introduced through a 1.5 inch hole in the top cen-

ter of the chamber and lowered into the focus of the analyzer’s electron lens.

Magnetic shielding of the main chamber is accomplished with an overlapping

pair of 2 mm thick mu metal shields lining the chamber walls with holes cut out

in the locations of ports on the chamber which is itself also made of nonmag-

netic stainless steel. The home made chamber shielding is mechanically mated

by bolts flush to the shielding on the Scienta thus forming a magnetic circuit

continuous around both the chamber and analyzer. Because of the many holes

cut in the shielding for instrumentation and viewports allowing observation

of the inside of the chamber, the strength of the magnetic field inside is not

uniform. The field strength is however measured to range between 0.005 and

0.01 Gauss in the vicinity of the sample and the space between the sample

and the entrance aperture of the analyzer. As demonstrated above, this level

of shielding is adequate for high resolution ARPES experiments using syn-

chrotron radiation as a photon source. Unfortunately, even at this level of

shielding a small but noticeable energy dependent broadening of the electron

beam was observed in transmission mode (i.e. imaging) spectra acquired with

the laser. In angle resolved spectra this would translate to an unacceptable

loss of angular and momentum resolution.

Our somewhat unorthodox solution to this problem was to supplement the

passive magnetic shielding provided by the mu metal with a set of “Helmholtz”

coils wound directly onto the chamber. Through some trial and error it was

found that with two sets of coils, one wound about the top and bottom of
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Figure 5.10: Arrangement of magnetic field shim coils. The vertical field
canceling coils are marked red and the horizontal coils blue. The sense of the
currents driving the coils are marked by arrows. The entrance to the Scienta
analyzer is green. The position of the sample, mounted on a cryostat, relative
to the coils and the analyzer is also shown.

the main chamber cylinder equidistant from the Scienta and another small set

wound about two small flanges located ninety degrees from both the Scienta

and the main chamber axis, it was possible to “push” the fields around in such

a way as to null the field in the vicinity of the sample. The arrangement of the

coils is diagrammed in Fig. 5.10. The large “vertical” coils were 18 inches in

diameter and composed of 40 turns per coil. The small coils were five inches in

diameter and also composed of 40 turns per coil. The coils were permanently

affixed to the chamber by stainless steel shim bands spot welded directly to the

vacuum vessel. The wire used to construct the coils was insulated by Teflon to

they could be safely baked along with the rest of the chamber without needing

to be removed. The coils were wired, like true Helmholtz coils, so current

flowed in the same sense around each coil in a pair.

The leads from the coils were twisted and each set run from a separate DC

138



power supply. The current driving each coil pair was calibrated by iterative

manual adjustment while observing the reading on a flux gate magnetometer.

It was found that the field in the sample region and between the sample and

the spectrometer could be reduced to less than 0.001 Gauss in all directions

by this procedure. The large coils require a current of 2.5 Amps and the small

coils a current of 0.48 Amps. To check for alterations in the magnetic field

environment as well as any drift in the system calibration the procedure was

repeated after one year of operation and the same current values were found to

yield the same vanishingly small fields. Measurements of the ambient magnetic

fields around the chamber and analyzer with the coils in place and functioning

yielded not obvious difference from the coil free environment. We are thus

confident that our method of shimming the residual magnetic field inside the

chamber with some well placed coils is highly robust and repeatable and serves

as a flexible and cost effective way of improving upon the traditional magnetic

shielding methods employed in ARPES.

5.5 Sample Handling

The mounting, cooling, manipulation and introduction of samples into the

apparatus is fairly straightforward. Samples that require only in situ cleaving

for preparation of a fresh surface (e.g. Bi2212) are affixed to a copper wedge cut

to the azimuthal angle θ required to reach the specified part of the Brillouin

zone for a given photon energy. The wedge face, typically with a surface

area on the order of 3 cm2, can accommodate several samples at once. The

wedge is mounted as a tail piece with titanium screws to the bottom of a

139



non-magnetic, UHV compatible liquid helium flow cryostat from Janis. A

copper shield with an opening just large enough to show the face of the wedge

is anchored to a thermal ballast several inches above the cold finger. The

shield, which is cooled to at least liquid nitrogen temperatures by contact to

the helium exhaust shroud of the cryostat, acts to dampen the amount of

blackbody radiation from the world seen by the sample and cold finger, thus

improving the system’s performance at very low temperatures. The cryostat is

equipped with a resistive heater and a calibrated Lake Shore thermal resistor

sensor epoxied to the outside of the tail piece. The temperature can be set

accurately to within a degree Kelvin with a Lake Shore temperature controller.

The system can be run efficiently by cooling with helium gas from a dewar

down to 10 K. By filling the bottom of the cryostat with liquid Helium the

system can be maintained at about 4.5 K. By pumping on the exhaust, thereby

lowering the vapor pressure of the liquid helium accumulated at the bottom

of the cryostat, we have achieved temperatures as low as 3.2 K with a holding

time on the order of 15 minutes.

The mounting of samples is often more of an art than a science. How this

is done has a great deal to do with the properties of a given sample. Because

the layers Bi2212 are held together by Van der Waals forces samples can be

cleaved without a great deal of force. On the other hand, this same softness

can, if care is not taken, cause the sample to flex or even crack upon cooling to

cryogenic temperatures. Further, however one mounts a sample it is necessary

to maintain good thermal and electrical contact between the sample and the

cryostat. Traditionally samples are glued onto the wedge described above

with an epoxy, either Torr seal or some kind of silver laced epoxy. However
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the best method for mounting thin, flat, easily cleaved samples is by far the

“tape” method. In the version of this method developed for our system, a

piece of double sided, UHV compatible, sticky silver tape is first mounted to

the copper wedge with a very thin layer of silver epoxy in between to help it

stick at low temperatures. The Bi2212 samples are stuck directly to this tape.

The tape is strong enough that the samples can be “pre-cleaved” with Scotch

tape to remove the weakest interlayer bonds. Then small aluminum posts are

mounted on the samples with more silver epoxy. Finally the whole thing is

spray coated with an aqueous graphite solution to cover the tape as well as

provide a non-photoresponsive, even potential around the samples. Using this

method we have found that the resistance between the sample surface and the

cryostat is a mere few tens of Ohms. The rate of successful cleavage by this

method is nearly 100 percent as it does not rely on one’s skill at mounting

very small crystals without the epoxy squirting out the sides grabbing the

rest of the sample. The surfaces revealed are almost always very flat and

mirror like. Another benefit of the tape besides ease of mounting and good

electrical connection to the sample is that the tape appears to take up the

mechanical strain that would otherwise be imparted to the crystal by a rigid

epoxy upon the cooling to cryogenic temperatures and subsequent contraction

of the copper tail piece.

The cryostat, with samples mounted, is introduced into the chamber after a

24 hour bake out in an isolated bellows section above the chamber. This section

is pumped by a separate turbo pump. Because the cryostat must be able to

be lowered from outside the main part of the chamber down to the center

level at which the Scienta resides it is relatively long; one meter. The bellows
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is mounted on an XYZ stage with X and Y positions controlled manually

with micrometers. The cryostat is affixed to a rotary platform at the top of

the bellows allowing rotation of the cryostat and sample in the φ direction

relative to the entrance slit of the analyzer. Because it is often useful to be

able to introduce an electric potential between the sample and the analyzer

for low energy ARPES the system was modified by inserting a high voltage

ceramic insulating section between the cryostat and the rotary platform large

enough for the cryostat to pass through. Smaller ceramic sections isolated

it from its pumping unit. This configuration allows the whole cryostat to

be electrically isolated without any special preparations for the sample. By

applying a positive bias between the sample and analyzer it is possible to

measure the energy difference between the Fermi level and the low energy cutoff

of the photoelectron spectrum and thus derive a sample’s work function. By

floating the sample and introducing a picoammeter it is also possible to directly

measure the photocurrent produced at the sample. Because the quantum

efficiency of photoemission for different photon energies and samples can vary

greatly this is a more useful characterization of laser photoemission than simply

measuring the laser beam power. During normal measurements the sample is

grounded.

5.6 Auxiliary Apparatus

In addition to the primary elements of the laser ARPES experiment de-

scribed above the U13UB endstation is or can be equipped with a range of other

surface science related pieces of equipment. The upper level of the chamber
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(above the Scienta) contains a reverse view Low Energy Electron Diffraction

(LEED) apparatus and a wobble stick. The latter is used to hit pins epoxied

to the top of samples thereby cleaving them. The LEED fires a collimated

beam of electrons with energies usually in excess of 50 eV at a sample and

images the diffracted electron pattern on a phosphor screen. This is useful for

characterizing the surface structure of a sample (if, for example, it turns out

to be different from the bulk) as well as for verifying the rotation angle of the

sample about the ψ axis (as opposed to θ and φ). The LEED gun is mounted

precisely ninety degrees in the φ direction from the electron spectrometer. By

finding the φ angle relative to the LEED gun at which a change in electron

kinetic energy produces no change in φ angle of the central diffraction spot

the normal photoelectron emission angle is easily determined.

The analyzer level is equipped with an ion sputtering gun, usually used with

an Argon source, used for cleaning the surfaces of non-cleavable samples such

as metal crystals. For experiments requiring the deposition of thin metal films

upon a sample substrate thermal and e-beam evaporators for various sources

can be introduced through several auxiliary ports of the middle and upper

levels. These are usually used in conjunction with a quartz crystal thickness

monitor used to check the deposition rate. Also, as mentioned above, a flange

mountable CCD camera adapted from an older Scienta analyzer no longer in

use can be mounted on a 2 3/4 inch view port for remote visualization of

the sample, a task especially important during laser operations when direct

viewing of the inside of the chamber is prohibited for safety reasons. This

camera, being sensitive to near IR wavelengths, is also useful for monitoring

the onset of sample heating during experiments that require annealing of a
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sample for surface preparation.
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Chapter 6

Lucy-Richardson Deconvolution

and Fermi Normalization

6.1 Photoemission Above the Fermi Level

In Chapter 3 we explored the kinematic and quantum theories of ARPES

and pointed out some of the considerations most relevant to interpreting the

results of a photoemission experiments performed at very low photon energies.

It was found that in general the detector intensity I(k‖, ω) was determined by

Fermi’s golden rule such that

I(k‖, ω) ∝M2
f,iA(kparallel, ω)f(ω;T ) (6.1)

where the transition matrix elementM2
f,i modulated the signal intensity, A(k‖, ω)

gave the density of electronic states in the crystal and f(ω;T ), the temperature

dependent Fermi-Dirac distribution, enforcing the fact that ARPES can only
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probe the occupied part of the spectral function. The semicolon in the expres-

sion for the Fermi function reminds us that T is fixed for a given distribution in

the energy variable ω. The proportionality absorbed the various constants in

the problem as well as the solid angle distribution of photoelectrons dΩ/dσdω

sampled by our detector.

Two issues with this parametrization of photoemission spectroscopy were

glossed over. The first issue, which is theoretical in nature, involves our def-

inition of the spectral function. While the above statement that the spectral

function gives the density of states for a system at both positive and negative

binding energies is true, the way in which we enforce our probing of the oc-

cupied part of the spectral function is somewhat misleading. The full spectral

function can be broken down into parts describing positive and negative fre-

quencies corresponding to the advanced and retarded Green’s functions from

which they derive.

A(k‖, ω) = A−(k‖, ω)ω<0f(ω;T ) + A+(k‖, ω)ω>0(1 − f(ω;T )) (6.2)

This form shows that what we were previously calling the spectral function A

was actually A−, the electron (occupied) part of the spectral function whereas

A+ is the hole (unoccupied) part of the spectral function. It also shows explic-

itly how A− can, at finite T , display electron excitations above the chemical

potential in proportion to the hole excitations below EF described by A+. It

is this latter quantity that is probed, for example, in inverse photoemission

spectroscopy and to some extant by two photon photoemission spectroscopy.

In any event, we will from here out recognize that photoemission can only
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probe A− and so revert to our former notation of simply calling the occupied

part of the spectral function A. While A(k‖, ω) is what we seek to measure

in photoemission, clearly what we actually measure then is A(k‖, ω)f(ω;T ).

At T = 0 there is no mixing of electrons and holes and all single particle ex-

citations reside below EF . At finite T states above the chemical potential are

filled in proportion to the fraction of electrons thermally excited to previously

unoccupied states and so can be probed by photons. Thus, the density of

states we actually measure in ARPES is

Ã(k‖, ω;T ) = A(k‖, ω)f(ω;T ). (6.3)

which, for finite T , includes states above EF . The extent of electron-hole

mixing can easily be determined for a give temperature by plotting f(ω;T ),

which we do for several temperatures in Fig. 6.1. Though states above EF

are filled in this way by thermally excited electrons, we still refer to them as

unoccupied states, semantics notwithstanding. This is true so long as, in some

sense, A+(T = 0) is not too different from A−(T > 0). So long as T < Tc

superconductors more or less fulfill this requirement. In any event, because the

electron-hole mixing only extends to within 4kBT of either side of the Fermi

level, it is still true that Ã = A− so long as we only look at binding energies

larger than this. Unfortunately, the excitations residing within this range of

the Fermi level are usually those of greatest interest to solid state physics.

What’s more, as has become abundantly clear in the ARPES community over

the last year or so, acquiring some understanding of the excitations above the

Fermi level is crucial to resolving the physics of high Tc superconductors. Thus
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Figure 6.1: Fermi-Dirac distribution for several temperatures. For ARPES
spectra with good counting statistics, dividing out the Fermi function reveals
excitations up to 4kBT above the Fermi level. The dashed lines indicate 4kBT
for the curves at 80 K, 140 K and 300 K; 27.6 meV, 48.3 meV and 103.4 meV.

it behooves us to try to use ARPES to probe these states.

6.2 The Resolution Problem

It has long been recognized in the photoemission community that one can

in principle remove the effects of the Fermi function both above and below EF

from an ARPES spectrum, and thus recover A(k‖, ω), which is the theoretically

relevant quantity, by simply normalizing the measured spectrum by a Fermi
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function[35]. Thus,

A(k‖, ω;T ) = Ã(k‖, ω)/f(ω;T ). (6.4)

The inversion of Eq. 6.4 to generate a Fermi normalized spectrum (FNS) is

in principle a matter as trivial as the algebra done to get it. Ã is simply

what we measure and, if we know the sample temperature, we know f(ω;T ) a

priori. It turns out however that performing this normalization on real data in

a rigorous way that can yield trustworthy, quantitatively accurate results is far

from simple. The reason for this difficulty, which we will now explore at some

length before returning to the problem of generating good FNS, is intimately

related to the more general problem in ARPES which constitutes the second

unresolved issue alluded to at the beginning of this chapter. An even simpler

method of exploring unoccupied states, that of symmetrizing the spectrum in

energy about EF [36], has recently been shown to also suffer greatly from this

resolution effect[37] on top of whatever physical deficiencies this method may

have.

The issue at hand is that of all spectroscopies, namely, the instruments

we use to perform measurements have a finite resolution in every variable. In

the case of ARPES, photoelectron spectra are broadened by a finite energy

resolution ∆E and a finite angular resolution ∆θ. The former is a function of

the quality of the spectrometer being used, e.g. in terms of the stability of its

power supplies or smoothness of its internal potentials and the width of the

entrance slit described in Chapter 3, as well as the bandwidth of the exciting

light. Clearly, for a dispersing band these effects will mix. The angular resolu-
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tion is determined similarly by the spectrometer quality as well as by the spot

size on the sample made by the impinging light. Assuming all these contri-

butions to the various resolutions are Gaussian in nature, the resolution for a

given experiment is usually parameterized in terms of overall Gaussian energy

and angular resolutions. We will denote the function describing this overall

broadening in energy and angle by the asymmetrical, normalized Gaussian

distribution R(θ, ω|θ′, ω′),

R(θ, ω|θ′, ω′) =
e

−ω
2

2∆ω2 e
−θ

2

2∆θ2

2π∆θ∆ω
(6.5)

where ∆θ and ∆ω are the standard deviations of the Gaussian resolutions in

angle and energy, respectively. Of the angular resolution versus the momentum

resolution, the angular resolution is the more natural of the two to use because

that is the variable our spectrometers actually measure and also because it

avoids possible complications viz a viz the odd nature of scaling from emission

angle to crystal momentum for very low energy photoemission. The presence

of the primed variables in R is a natural consequence of our defining it as a

convolution kernel in what is about to follow.

We note here that there exists an additional, non-Gaussian contribution

to the resolution function that can arise if we are not careful. If the count

rate of an experiment is low the pulse counting (PC) method should be used

to record data rather than the usual analogue to digital converter (ADC).

Recall that the detector at the back end of the spectrometer (Chapter 3) is

composed of a microchannel plate (MCP) stack that multiplies photoelectrons,

the resulting amplified pulses of which strike a phosphor screen. Flashes on the
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phosphor screen are recorded by a CCD camera, the pixels of which have been

calibrated in terms of energy and angle. In the traditional ADC mode of data

acquisition the intensities registered by the camera from the phosphor screen

are converted directly to grayscale intensities in the image. Thus, if a pulse is

large enough, as it often is, a single hit is recorded across many pixels of energy

and angle with some spread in intensity values. The result is a contribution

to the 2D resolution resulting not from entrance slits and photon bandwidths

(for example) but entirely upon the energy/pixel and angle/pixel calibration.

The PC mode on the other hand uses software to register each pulse as a single

count at the center pixel of the flash recorded by the CCD camera. Thus at

the price of having a lower absolute value of intensity in the resulting image

we remove this extra resolution effect. This situation is diagrammed in Fig.

6.2. We mention this here because the effect of using the ADC is to introduce

possible non-gaussian resolution effects which we have not taken into account

in our deconvolution kernel, Eq. 6.5. In the event the count rate is so high

individual pulses cannot be discerned by the software the ADC mode must be

used and the data must be oversampled enough relative to the resolution that

this is not a problem. Such is the case for laser ARPES due to its intrinsically

high count rate.

The general problem of spectroscopic resolution manifests itself in ARPES

in the following way. In ARPES, as in most spectroscopies, one can achieve

almost any resolution desired at the expense of signal intensity and signal to

noise ratio. While in principle our electron spectrometers are well enough con-

structed to achieve at least .1 meV resolution in energy, this can be done only

by narrowing the entrance slit of the analyzer, reducing the counts reaching

151



Figure 6.2: Schematic of ARPES data acquisition modes. In ADC mode hits
on the detector phosphor screen are converted to grayscale intensities by the
CCD camera spread across several pixels. In pulse counting mode each pulse
is registered as a single count at the energy and angle position of the pulse
center.

our detector in proportion. Similarly, we can narrow the bandwidth of inci-

dent light by passing it through a monochrometer in which the bandwidth, as

well as the intensity, of light can be decreased by narrowing entrance and exit

slits. Such is the case on all synchrotron beamlines as well as many lamps.

(Of course in this respect lasers have the great advantage of being intrinsi-

cally bright while simultaneously having a very narrow width in energy.) All

light sources face problems when the spot size on the sample, which defines

the angular resolution, is considered. As one decreases the spot size one must

simultaneously reduce incident photon flux to avoid space charging in the vac-

uum near the sample surface which would in turn reduce energy resolution.

When all these contributions are taken together the experimentalist is forced

to make a best compromise for a given experiment between a resolution suf-

ficient to observe the details of a system while maintaining enough signal for
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the experiment to be performed at an acceptable signal to noise ratio and on

a time scale comparable to the lifetime of a freshly cleaved sample surface. To

put some numbers to the problem, a typical high resolution experiment at a

synchrotron beamline usually produces results with energy resolution between

10 and 30 meV and an angular resolution between .1◦ and .2◦.

If we properly account for the finite resolution of our experiment, as we

did not do in Chapter 3, we find the spectral intensity measured in an ARPES

experiment to be

I(θ′, ω′) ∝
∫ ∫

Ã(θ, ω)R(θ, ω|θ′, ω′)dωdθ (6.6)

where we have made the further simplification of absorbing the matrix elements

M2
f,i into the proportionality because it represents only an overall intensity

modulation in the spectrum. Because intensity information is recorded by an

MCP detector, it is useful to view I(θ′, ω′) as an image formed by an array of

pixels such that individual counts are recorded on pixels given discrete values

ω ± δω and θ ± δθ where δθ and δω are half the height (width) of a given

pixel in the space of the measured variables. The effect of the convolution

of the spectral function with the resolution kernel is to “smear” the image

of Ã in such a way that intensities are distributed about their mean value

to neighboring pixels in a Gaussian fashion. This process does not alter the

overall intensity of the image but rather blurs it. This is the general resolution

problem of ARPES. If R is larger than some feature in Ã, e.g. a Lorentzian

peak in the dispersion, that feature will be broadened accordingly and we say

the spectrum is resolution limited. Considering the problem of generating
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FNS, if R(θ) & 4kBT we clearly have

A(θ, ω) 6= I(θ′, ω′)/f(ω;T ) (6.7)

or, in other words, I(θ′, ω′) 6= Ã(θ, ω). In general, the resolution problem lim-

its our ability to determine the intrinsic line shapes of the spectral functions

as we would like to measure them from EDC’s and MDC’s. This problem

is compounded at low T where, in the absence of thermal broadening, low

energy electronic states can be quite narrow in many systems. The problem

is especially burdensome in the vicinity of the Fermi level where states are

theoretically the narrowest and where the presence of the Fermi distribution

itself can, under the best of circumstances, distort the line shape in such a

way as to render measurements of Γ(ω), kF , vF , etc. unreliable on the quan-

titative level. This last point is especially problematic for generating reliable

FNS because a Fermi function broadened by convolution with a finite energy

resolution produces another Fermi function of apparently higher temperature,

T ′, such that

f(ω;T ′) =

∫

f(ω′;T )R(ω|ω′)dω′ (6.8)

where T ′ and T can be approximately related by the equation

4kBT
′ =

√

(4kBT )2 + σ2
ω. (6.9)

This expression is useful for determining the energy resolution of a measure-

ment from a Fermi function acquired at a known temperature T .

In light of this relationship between apparent and physical Fermi functions
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one is faced with a serious quandary when attempting to produce reliable

FNS from real spectra. Normalization of a broadened spectrum by the phys-

ical Fermi function produces undesirable intensity artifacts both above and

below EF thereby rendering the process highly unreliable. On the other hand,

normalization of a broadened spectrum by a resolution broadened Fermi func-

tion, while appearing to mitigate this problem, results in equally unreliable

results in which, for example, the intensities and binding energies of states

above and below EF can be seriously over or underestimated and the line-

shapes and dispersions themselves distorted. This is the result of attempting

to normalize a manifestly unphysical quantity, I, by another unphysical quan-

tity, f(ω;T ′). The unphysical components of these quantities do not cancel.

Clearly if we want to obtain more reliable quantitative results from ARPES

FNS another method is required. The remainder of this chapter is devoted to

the methodology we’ve devised for remedying the situation.

6.3 Lucy Richardson Deconvolution

There are several methods available for dealing with these problems, none

of which constitute a silver bullet. The obvious solution is simply to find

ways to improve the experimental energy and angular resolutions that can be

routinely achieved. While great strides in this direction are certainly under

way, and much has been done already, the constraints mentioned above as

well as unforseen problems specific to different kinds of crystal samples will

probably always render a certain level of high resolution unattainable except

for a few select circumstances. For example, certainly as one scales up in
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photon energy into the VUV regime the problem of finding a light source

bright enough to reduce the photon bandwidth significantly while maintaining

reasonable levels of signal becomes a problem. It’s also not unfair to say

that at some point ∆ω ∝ U, implying a law of diminishing returns for future

experimental facilities dedicated to ARPES.

If one is unable or unwilling to improve the experimental resolution outright

remedy must be sought in analytical and computational methods for treating

the data. One method suggested in the literature is to generate a simulation of

the underlying spectral function (Ã) based on theoretical calculations, broaden

it with Eq. 6.6, and then compare the results to the experiment[38]. We call

this the traditional approach. While there is certainly nothing wrong with this

method in principle, it offers very little for experiments on systems for which

there is no accepted theoretical description or for which there are several nearly

degenerate theoretical models. The cuprates, and strongly correlated electron

systems in general, are good examples of this problem as it is well known

that band structure calculations fail spectacularly in many of these materials.

What’s more, if one is interested in discovering new physics, i.e. physics not

yet contained in a model, the traditional approach offers little but to point

out one’s lack of knowledge in the best case and in the worst case to simply

leave open the question of whether one should put more stock in theory or

experiment, both or either of which may ultimately be flawed.

Another method for overcoming the ill effects of finite resolution in ARPES

is deconvolution. Deconvolution is essentially a method for inverting integrals

of the form of Eq. 6.6. The question we would like to answer is, given the result

of the convolution (in this case I) and the convolution kernel itself (R), both
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of which we know a priori by performing an experiment, what is Ã? This very

reasonable question it turns out is exceptionally ill defined mathematically.

The most successful methods for accomplishing this task essentially take the

form of clever curve fitting methods. That is, for reasons having to do with the

nature of the statistics of conditional probabilities, called Bayesian statistics,

one can only ascertain the function that is most likely to give the result I

when convolved with a given kernel R. One method that has been applied

with mixed success to ARPES is the so-called Maximum Entropy Method

(MEM)[39][40][41][42]. In the cases presented in the literature the MEM was

used to invert the equation for the electron-phonon coupling constant λ given

in terms of the Eliashberg α2F (ω)

λ = 2

∫ ∞

0

dω

ω
α2F (ω) (6.10)

where λ is directly related to the real part of the self energy Re Σ discussed in

Chapter 3. The object was to retrieve α2F (ω) and thus the phonon spectrum

from the ARPES spectrum. The MEM is perhaps well suited to such a task,

at least in principle, because it allows one to explicitly introduce into the

fitting procedure the constraint that the result should look like the Eliashberg

funtion and one can effectively control how strongly the constraints are applied

to the data. The problem with this approach to the more general problem of

extracting line shapes from ARPES is that it explicitly introduces some idea

of what the data should look like, a priori and enforces that to some degree

decided by the analyst. In the sense that one can only get out physics like what

one expects to find, the MEM can only be applied in situations for which one

157



already has some degree of confidence that the traditional method outlined

above can be useful. Thus, bias about the physical nature of the expected

result is explicitly introduced into the analysis. Without a theory in hand,

one could not easily apply the MEM to good data representing the edges of

our understanding of physical systems. To paraphrase a recent Secretary of

Defence, the MEM can help you resolve known unknowns but can do nothing

in the presence unknown unknowns.

An alternative method of deconvolution, the application of which to ARPES

has been recently pioneered by our group[43], is called the Lucy-Richardson

method (LRM)[44][45]. This method, which has been applied to the analysis

of medical and astronomical imagery and recently to other forms of electron

spectroscopy [46] applies equally well to ARPES data. As explained earlier,

ARPES data taken on modern detectors essentially forms an image on an array

of pixels of angle and energy space. As will be demonstrated below, the LRM

has the great advantage for ARPES that it does not require any assumptions

to be made about the nature of Ã or the physics that it encodes. All it requires

from the analyst is the data itself and a knowledge of the resolution function

R, the parameters of which depend only upon the apparatus used and which is

easily determined during an experiment by simple calibration procedures. To

restate the problem, given a priori knowledge of I and R from the experiment

itself, what is the most likely physical Ã to have underlain the convolution Eq.

6.6? This manner of asking the question is entirely agnostic as regards the

underlying physics of Ã.

In the LRM, the kernel R is viewed as the probability that an electron

originating from a binding energy ω ± δω and angle θ ± δθ in the true spec-
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tral function of the sample is measured to have originated from the binding

energy ω′ ± δω′ and angle θ′ ± δθ′ where the δ’s in the unprimed system origi-

nate from quantum mechanics and those of the primed system originate from

the Gaussian nature of the resolution function. The former contribution is

intrinsic to the physics of photoemission. The latter is extrinsic to the photoe-

mission process and represents the instrumental contribution to the observed

photoemission spectrum. This is a restatement of the “smearing” effect. It

was shown by Lucy that, using Bayes’ theorem one can define a quantity Q

such that

Q(ω, θ|ω′, θ′) =
Ã(ω, θ)R(ω′, θ′|ω, θ)

∫ ∫

Ã(ω, θ)R(ω′, θ′|ω, θ)dωdθ
=
Ã(ω, θ)R(ω′, θ′|ω, θ)

I(ω′, θ′)
. (6.11)

Rearranging terms and integrating both sides in the primed (measured) coor-

dinate system it is found that

Ã(ω, θ) ≡
∫ ∫

I(ω′, θ′)Q(ω, θ|ω′, θ′)dω′dθ′ (6.12)

where we have used that fact that
∫ ∫

R(ω′, θ′|ω, θ)dω′dθ′ = 1 for a properly

normalized probability distribution. From Eq. 6.12, we see that Q appears to

be the inverse kernel of R and in principle reduces the problem of inverting an

integral to the much simpler problem of solving one. Because Q is a functional

ofR, this equation cannot be solved by directly positing aQ. A partial solution

can be acquired if one is able to devise an analytical approximation to Q by

positing a functional form for R as well as the underlying line shapes of Ã

and has met some success. That practice has some disadvantages of its own
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stemming from the assumption of an underlying line shape and the need to

approximate Q as a power series. The LRM on the other hand aims to generate

successively better estimates of Q and therefore of Ã by an iterative procedure.

The initial guess of Q, Q0 is obtained numerically from Eq. 6.11 using I = I0

where I0 is the observed spectrum. This guess is used to generate an initial

estimate of Ã using Eq. 6.12 such that,

Ã1(ω, θ) =

∫ ∫

I0(θ
′, φ′)Q0(ω, θ|ω′, θ′)dω′dθ′. (6.13)

With an estimate of Ã in hand the cycle can be repeated. In general, where r

denotes the iteration number,

Ãr+1(ω, θ) =

∫ ∫

I0(θ
′, φ′)Qr(ω, θ|ω′, θ′)dω′dθ′ (6.14)

where (after the initial cycle)

Qr(ω, θ|ω′, θ′) =
Ãr(ω, θ)R(ω′, θ′|ω, θ)

Ir(ω′, θ′)
(6.15)

where

Ir(θ′, φ′) =

∫ ∫

Ãr(ω, θ)R(ω′, θ′|ω, θ)dωdθ. (6.16)

At this point the procedure can be simplified by using Eq. 6.15 in Eq. 6.14 so

that

Ãr+1(ω, θ) = Ãr(ω, θ)

∫ ∫

I0(θ
′, φ′)

Ir(θ′, φ′)
R(ω′, θ′|ω, θ)dω′dθ′. (6.17)

So far we have only couched the results obtained by Lucy in terms familiar
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to the ARPES formalism. Lucy went on to show that this procedure has

several features that are highly desirable for the manipulation of spectroscopic

data. First, the LRM conserves the overall intensity of the spectrum;

∫ ∫

I0(θ
′, φ′)dω′dθ′

∫ ∫

Ir(θ′, φ′)dω′dθ′
= 1. (6.18)

That is, the LRM only “rearranges” intensities across pixels in a process that

is the reversal of the blurring effect the resolution had (which also conserved

spectral weight). Thus, overall intensity information is rigorously preserved.

The next highly desirable feature of the LRM is that no negative values in Ã

are produced by the procedure so long as the initial guess to Ã has no negative

values, as should be the case for a spectral function. Thus

Ãr+1(ω, θ) ≥ 0∀{ω, θ}. (6.19)

While a seemingly obvious spectral requirement for any integral inversion pro-

cedure we might use, it turns out this last point is highly non-trivial as the

vast majority of procedures involving, for example, a direct assault on Eq.

6.6 or approximations to Eq. 6.12 can result in the production of negative

intensities. Finally, the LRM is inherently insensitive to fluctuations in the

original spectrum on scales much shorter than the R because it only attempts

to get the Ir generated from estimates of Ãr to match I0 over an integral. This

smoothing out results from the integrals over R. In other words it will not see

the statistical noise inherent in any experiment for many iterations. (Similarly,

in a real measurement the instrumental resolution broadening tends to destroy
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whatever quantum statistical noise might appear in Ã itself so that the high

frequency noise actually observed is entirely due to the apparatus.) In princi-

ple, so long as R is not too much larger than any characteristic feature in the

data, the procedure should converge to a good “fit” to Ã. Conversely, features

much smaller than the resolution will be treated poorly, i.e. as noise, and

so the requirement of performing a good experiment in the first place is not

negated. However we can clearly compensate for the not unreasonable amount

of broadening that accompanies the vast majority of ARPES experiments.

Because attempting to iterate to full convergence will ultimately enhance

otherwise benign noise in the data it is useful to check explicitly for each

iteration that one has not iterated too far. Even in the absence of noise

related artifacts the use of Fourier transforms in the procedure will, if some

care is not taken, produce other undesirable artifacts that must be guarded

against. We do this by calculating a χ2 per degree of freedom for the “fit” of

Ã by using Ir after each iteration.

χ2(r) =
1

N

∑

N

(
∫ ∫

Ãr(ω, θ)R(ω′, θ′|ω, θ)dωdθ− I0(θ
′, φ′))2

I0(θ′, φ′)
=

1

N

∑

N

(Ir − I0)
2

I0

(6.20)

In practice, χ2(r) shows either an asymptotic convergence to some value close

to one, in which case it is best to cut off the procedure by hand before it begins

to adjust noise-like features to fit the data or it has a clearly defined minimum,

in which case one stops iterating there. Either way, as we show below, only a

few iterations are needed in almost all circumstances of interest.

It turns out that the LRM is particularly well suited to the analysis or

ARPES data because acquiring a detailed knowledge of R, the most important
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information we have to provide the algorithm besides the data itself, has always

been a standard practice in ARPES. What’s more, in ARPES, R takes on the

particularly simple form of Eq. 6.5 so that we only have to supply the two

parameters from experiment ∆ω and ∆θ. This is a stark contrast to the much

more complicated divination of the broadening kernel that was required, for

example, to analyze early imagery from the Hubble Space Telescope when it

was found to be suffering a severe astigmatism. This simplicity is a result

of the fact that our spectrometers image phase space rather than real space,

the former being governed by the simple and robust kinematics outlined in

Chapter 3.

It is clear we now have a program for reliably generating FNS from reso-

lution limited data. That is, we want to use the LRM to arrive at the Ã that

was most likely responsible for producing the I0 observed in experiment. With

Ã in hand, we can normalize by an unbroadened Fermi function at the actual

experimental temperature, Texp, and retrieve A without the kinds of anomalies

illustrated above. Thus,

A(ω, θ) = ÃLRM (ω, θ)/f(ω;Texp) (6.21)

which is the physically correct statement.
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6.4 Deconvolution of Simulated ARPES Spec-

tra

To make the above discussion concrete and to demonstrate the efficacy of

the computational techniques explored above we would like to progress in as

orderly a manner as possible. Thus we shall first demonstrate the LRM on

simulated ARPES data encoding the simplest possible situation we are likely

to encounter in a real experiment: a single Fermi liquid-like band crossing

the Fermi level. We will then compare those results to the deconvolution of

real data acquired on a similarly simple state. Then, with an eye towards

exploring more interesting physics, we shall apply the LRM to a linear band

with a BCS type superconducting gap opened at the Fermi level and compare

that to data obtained from the superconducting state of Bi2212. At each stage

we shall compare the results of Fermi normalization by the various methods

outlined so far as well as, where applicable, observe how basic observables such

as lifetime, binding energy and dispersion are affected by the LRM.

For simplicity we begin by modeling a linear band crossing the Fermi level,

which is a good approximation to the low energy nodal excitations of Bi2212.

The dispersion relation is therefore ǫk‖
= vF (k‖ − kF ) where we’ve set kF =

.4Å
−1

and vF = 1.2eV Å. The spectral function itself is modeled using Eq.

3.31 where we set ξ = 0 in the absence of a well defined bosonic interaction,

Zk = 1 and use Γ(ω) = α+ βω2 + (γkBT )2 to get an energy and temperature

dependent broadening similar to that predicted for a Fermi liquid. We’ve also

added a small, constant background to model the presence of Ainc. In the

simulations we’ve set α = 2meV to model a small temperature and energy
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Figure 6.3: Simulations of a linear band crossing EF . a) Theoretical spec-
tral function A0(k‖, ω) b) Ã0(k‖, ω) = A0(k‖, ω)/f(ω;Texp) c) I0(k

′, ω′) =

Ã0(k‖, ω)
⊗

R(k, ω|k′, ω′), d) Ã7(k, ω)

independent impurity scattering, β = 3, γ = π and T = 80K. The energy and

momentum broadening kernel R is parameterized by Eq. 6.5 with the energy

and momentum resolutions set to ∆ω = 10 meV and ∆k = .003Å
−1

FWHM,

respectively.

Image convolutions were performed using IMFILTER algorithm and the

LRM was applied using the DECONVLUCY algorithm, both of which are

contained in the Matlab Image Processing Toolkit. For simplicity we have not

added detector noise to these simulations though its effect becomes obvious in

real data. In Fig. 6.3, panel a) we plot the complete spectral function A(k, ω)

and in panel b) the occupied part of the spectral function Ã(k, ω) where we

have cut off the spectrum by multiplying A(k, ω) by f(ω;Texp). The result

of convolving the image in panel b) by the resolution function to generate

I0(k, ω) is shown in panel c). Finally, in panel d) the result of deconvolving

I0 by the same resolution function is shown after seven iterations. This result

is denoted by Ã7(k, ω). All panels in the figure share the same color scale
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mapping of intensities denoted by the color bar. While the states we’ve chosen

to simulate are rather sharply peaked compared to what one often encounters

in real life the effect of even 10 meV energy broadening is profound. The

rapid drop in peak intensity in panel c) is a typical effect as is the deleterious

nature of intensity appearing at more positive binding energies than it ought to.

Nevertheless, panel d) shows the LRM vastly improves upon the “as measured”

spectrum.

A better idea of what’s happening in the simulations can be obtained from

examination of EDC’s taken at kF (Fig. 6.4a) and MDC’s taken at EF (Fig.

6.4b). While with this number of iterations we were unable to completely

reconstruct the theoretical Ã, the results in both EDC’s and MDC’s show

clear improvement over I0 in terms of peak height and width. The shift and

subsequent recovery of kF , located at the MDC peak, is dramatic enough to be

visible by inspection. The most promising feature to show up in the EDC’s is

the drastic reduction of spurious spectral weight above EF relative to I0. Also,

as should be the case, the broadening and deconvolution procedures have no

detectable effect on features broader than the resolution in either momentum

or energy.

While various edge smoothing and image padding techniques have been

employed to mitigate the edge effects associated with using Fourier transforms,

there remains a small spurious feature in the EDC’s at about -20 meV. It is also

visible, though greatly reduced, in the MDC’s. As we’ll see below, this effect,

common in the simulations, does not show up in the deconvolution of real

data. This problem is related to our method of simulating I0, that is, the act

of convolving the original spectral function with a Gaussian produces medium
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Figure 6.4: a) EDC’s at kF and b) MDC’s taken at EF . The thick blue lines
are from the theoretical Ã, the thick black lines are from I0, the thick red lines
are from Ã7 and the thin green lines are intermediate iterations.

wavelength ripples in the final image which, while hardly noticeable at first are

amplified in deconvolution. The LRM assigns some non-zero statistical weight

to the fluctuations introduced by the original broadening and thus appears

to interpret those ripples as real features. In principle this problem could

be remedied by, for example, using an analytical approximation to a Voigt

function to simulate the broadening, thereby avoiding the necessity of the first

round of Fourier transforms. For the time being, so long as we can properly

interpret the results, this is beyond the scope of our present case.

Because ultimately we wish to determine the best method for generating

FNS, the final step in our simulation is to compare what happens when we try

to recover the full spectral function to the original theory. In Fig. 6.5a) we
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Figure 6.5: a) I0/f(ω;Texp), b) I0/f(ω;T ′), c) Ã7/f(ω;Texp)

have simply normalized I0 by the Fermi function at the experimental temper-

ature. The result is clearly asymmetric in binding energy, with the intensity

peak falling well above EF and the peak widths clearly unequal at positive

and negative frequencies. In panel b) we simulate the method most often

reported in the literature, that of normalizing I0 by a resolution broadened

Fermi function. While better than the result in panel a), the peak in the

intensity still lies above EF and the peak widths are still somewhat broader

above than below EF . Lastly, in panel c) we present the result of normalizing

Ã7 by the experimental temperature Fermi function. Panel c) compares rather

well to the original theory, Fig. 6.3a) both in terms of the peak widths across

the whole spectrum as well as well as the symmetry of the band above and

below EF . We also present Lorentzian fits to the MDC’s of the spectra in

Fig. 6.5 as well as to the theory, Fig. 6.3a). The results are summarized in

Fig. 6.6 for the MDC peak widths ∆k, spectral weights Zω and dispersion
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ǫk‖
. While the lineshapes we are fitting are clearly Lorentzian convolved with

a Gaussian, known as a Voigt lineshape, that more honest type of fit adds a

level of detail we are not currently aiming to grapple with. In general, fitting

a Lorentzian to a Voigt profile will slightly underestimate the peak width and

slightly overestimate the spectral weight. Because the Gaussian broadening is

not very severe however the errors are only on the order of a few percent and

in the present circumstance are small enough to be ignored.

In panel a) of the figure we find that the peak widths obtained by nor-

malizing a broadened spectrum by a Fermi function at either T or T ′ give

indistinguishable results. Normalization of the deconvolved spectrum by a

Fermi function set at T on the other hand does an admirable job of recovering

the widths above and below EF with a relatively small residual error in the

immediate vicinity of the Fermi level. The quasiparticle weights, not surpris-

ingly, are the most affected by resolution broadening and the choice of Fermi

function used in the normalization. Normalizing a broadened spectrum by

f(ω, T ′) is terrible. Surprisingly, normalizing I0 by the resolution broadened

Fermi function actually yields worse results below EF and overestimates the

weight above EF in manner that suggests the result will become unreliable

somewhat before 4kBT . The deconvolved result does the best below EF and is

somewhat better, and at least linearly diverging from the theory, above EF , up

to 4kBT . Again, we expect the deconvolved results to perform better than this

on real data because of the Fourier transforms we had to invoke to broaden

the spectrum in the first place. Finally, the dispersions extracted for both

broadened spectra are nearly identically misplaced relative to the dispersions

extracted from the theory and the fits to the deconvolved spectrum, which are
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Figure 6.6: a) Lorentzian FWHM ∆k(ω), b) spectral weight Zω and c) MDC
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6.3a), the blue line is the fit to Fig. 6.5a), the red line is the fit to 6.5b) and
the black line is the fit to 6.5c). The dashed line marks 4kBT , the energy up
to which one can usually recover spectra in a real experiment.

nearly identical to each other. Again, the correct and incorrect dispersions

begin to diverge below the Fermi level and continue to diverge as one goes to

more positive binding energies. It’s worth taking a moment to point out the

value of a null result to the deconvolution procedure. That is, if one were to

attempt to deconvolve a spectrum and saw no effect as a result the spectrum

can be said with certainty to be a valid representation of Ã.

To model the opening of a superconducting gap, we use the weak coupling

BCS spectral function [5]

A(k, ω) =
1

π

u2
kΓk(ω)

(ω − Ek)2 + Γ2
k(ω)

+
1

π

v2
kΓk(ω)

(ω + Ek)2 + Γ2
k(ω)

(6.22)

where

Ek =
√

ǫ2k + ∆2
k (6.23)
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with ∆k the gap parameter and where the coherence factors u2
k and v2

k are

given by

u2
k =

1

2
(1 +

ǫk
Ek

) (6.24)

v2
k =

1

2
(1 − ǫk

Ek
)

with the normalization condition

u2
k + v2

k = 1.

Notice that in the presence of a superconducting gap the spectral function

becomes double valued in energy for the range of k around kF that both u2
k

and v2
k are non-zero. Excitations such as these are said to mix particle and hole

states into a linear combination of fields that, taken together, form a single

excitation with unit probability for observation per the normalization, Eq.

6.25. This compound excitation is called a Bogoliubov quasiparticle (BQP).

One of the key facts embodied by this spectral function is that at k = kF ,

u2
k = v2

k. That is, the Bogoliubov quasiparticle peaks above and below EF

should have equal weight. Also notice the strict symmetry of the peak binding

energies above and below EF . This is a key prediction we shall want to check

on the cuprates because other orders, such as density wave orderings, do not

have to respect this binding energy symmetry.

In this simulation the dispersion, lifetime, T and R are the same here as

for the simple linear band above. The gap parameter ∆k has been set to 7

meV. (Recall the full BCS gap, peak to peak, is 2∆.) Because at T = 0, in
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the absence of pair breaking scatterers, the gap is defined by symmetric delta

function above and below EF , we interpret our gap parameter as the peak

to peak distance between two Lorentzians. Until quite recently one could

raise strong and probably well justified objections to our attempting to model

the opening of a superconducting gap at 80 K in a cuprate with the BCS

spectral function. This is an issue quit beside whether or not pairing in high Tc

superconductors is due, e.g. to phonons. What’s more, it has been known for

some time that the EDC lineshape in the cuprates is probably not Lorentzian.

Nevertheless, the literature as well as our own data appear to support the

notion that, at least in the vicinity of the nodes, the superonducting gap ∆k

behaves in a manner indistinguishable from the BCS gap used here. In this

respect, the d-wave nature of cuprate superconductivity only enters by our

recognizing the gap amplitude ∆k varies along the putative Fermi arc according

to Eq. 2.2[47]. This BCS-like behavior even seems to extend to the coherences

observed in experiment. As we’ll see, it appears that the spectral function

describing the opening of the superconducting gap is agnostic regarding the

mechanism by which superconductivity is achieved.

For the simulations we shall proceed as before. Fig. 6.7a) shows the full

spectral function. The opening of the gap causes the characteristic folding of

the bands above and below the Fermi level. This is the effect of particle-hole

mixing in the superconducting state. The intensity of the folded branches is

gradually extinguished by the coherence factors, Eqs. 6.24. Panel b) shows the

occupied part of the spectrum at 80 K. Even though the spectrum is cut off

by the Fermi distribution the lowest lying states above the gap corresponding

to BQP excitations are clearly visible. Notice also that the gap, as in panel
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Figure 6.7: Simulations for a single band with a 7 meV BCS type supercon-
ducting gap. a) the whole spectral function, b) cut off by the Fermi distribu-
tion, c) blurred by 10 meV energy and .01 degree angular resolution and d)
result of deconvolving c) with the LRM after seven iterations.

a), is not entirely empty of single particle excitations. This is due in our

model to the presence of the impurity scattering term in the expression for

Γ that is independent of energy and temperature, as well as the pronounced

thermal broadening that occurs at this relatively high temperature. It has

been shown for BCS superconductors in the strong coupling limit that such a

broadening of the density of states into the gap can be attributed to excitation

of single electrons by interaction with a bath of virtual phonons. Whether or

not phonons are causally related to superconductivity in the cuprates, at the

high temperatures at which the phenomenon is observed they will certainly

make their presence felt. In any event, our simple impurity term acts as a pair

breaker.

The presence of the quasiparticle peak above EF has only recently been no-

ticed as an obvious feature of the near nodal ARPES spectrum of the cuprates.

The reason for this is illustrated by the resolution broadened model, Fig. 6.7c).
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Here, as in most spectra acquired at a moderate energy resolution at “high”

temperatures, the gap has been almost completely annihilated by energy res-

olution broadening. Further, the most delicate feature we would like to ob-

serve, the coherence suppressed band folding, is almost completely wiped out.

A perusal of the literature will show that unless great care is taken to max-

imize resolution while maintaining adequate signal, while also using samples

for which impurity scattering has been reduced to a negligible contribution,

all information about the nature of excitations above the chemical potential,

and indeed a great deal of information about the gap itself, is lost. The re-

sult is the appearance of a “tail” above EF that has in the past been largely

ignored. Nevertheless we are once again able to demonstrate the power of the

LRM to remove the worst effects of resolution broadening. The result of seven

iterations of deconvolution, Ã7(k, ω), as applied to the image in panel c), is

shown in panel d). While the overall sharpening is similar to that observed

for our non-superconducting model above, when applied to the situation of a

gap in the spectrum about the chemical potential the LRM shows itself to be

invaluable in the recovery of the most basic features of a spectrum associated

with Cooper pairing. The results of this deconvolution are summarized by the

EDC’s taken at kF in Fig. 6.8 for the original, broadened and deconvolved

theories as well as curves for the intermediate iterations of the deconvolution

procedure. These EDC’s, taken before Fermi normalization, reveal quite a bit

about the efficacy of our deconvolution procedure. One of the most telling

features to reveal itself in the theory is the position and intensity of the gap

center. While as stated above the gap in the density of states is, for a BCS

superconductor, centered at the chemical potential, once the Fermi cutoff has
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Figure 6.8: EDC’s at kF taken from the unbroadened thoery (blue curve), the
broadened theory (black curve), the deconvolved spectrum (red curve) after
seven iterations and intermediate results of the LRM (green curves).
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been introduced this is clearly no longer the case for the occupied part of the

spectral function. This shift in the gap minimum is a result of the redistri-

bution of electron spectral weight from below to above the chemical potential

and is a physical process. The same process causes the unnormalized binding

energy of the positive binding energy peak to appear to shift thereby rendering

the peak positions asymmetric in binding energy. This shift is accompanied

by an induced asymmetry in the positive energy peak lineshape itself as the

intensity is rapidly modulated by the Fermi function as it dies to zero. More

striking is the ability of the LRM to rapidly transform the broadened theory,

in which the positive energy peak appears merely as a shoulder in the spec-

trum, into a distribution in which the separate existence of the high energy

peak is clearly delineated. Even a few iterations suffice to bring our broadened

spectrum much more in line with the underlying physical picture.

The spectra generated by Fermi normalization of the broadened and de-

convolved theories are shown in Fig. 6.9. Again, as for the normal state band,

the improvement granted by the LRM is self evident. Note that only the de-

convolved spectrum, panel c, clearly shows the presence of the folded bands

and their rapid extinction due to the coherence factors. As demonstrated by

the corresponding EDC’s taken at kF , Fig. 6.10, deconvolution followed by

normalization to the physical Fermi function clearly gives the best result in

terms of peak widths, symmetry of binding energies and position of the gap

minimum. As promised, the gap minimum of the original theory falls at EF

and the peaks are symmetric in binding energy. Also, as expected, states

above the chemical potential are affected much more adversely by resolution

broadening than those below. It should be noted however that even the nega-
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Figure 6.9: FNS resulting from a) dividing the broadened theory by the ex-
perimental Fermi function, b) dividing the broadened theory by the resolution
broadened Fermi function and c) dividing the deconvolved theory, after seven
iterations, by the experimental Fermi function.

tive binding energy peak is moved by broadening with the peak position, and

hence the value of the gap one would measure on such data, clearly shifted.

6.5 Finer Points of Deconvolving ARPES Spec-

tra

Having established that the best method with which to analyze resolution

limited ARPES data in general, and FNS in particular, is to include Lucy-

Richardson deconvolution as a standard component of the analytical toolbox

it will behoove us to explore a little more deeply some of the finer points

of utilizing these procedures. The most important outstanding issue for the

practical application of these methods to real ARPES experiments arises from
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Figure 6.10: EDC’s at kF for the full theoretical spectral function (pink curve),
the broadened theory divided by the experimental Fermi function and broad-
ened Fermi function (black and red curves, respectively) and the deconvolved
theory (after seven iterations) divided by the experimental Fermi function
(blue curve).
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two related questions. The first is, how many iterations should I use? Even

in the original paper by L.B. Lucy it was admitted that one should iterate,

“As often as is necessary or wise”. The second question is, if, as is evident by

comparing Ã7 to the original theory, one cannot fully deconvolve a spectrum

due to noise effects or the introduction of unwelcome, spurious artifacts, what

is the effective resolution I can achieve after some number of iterations? For,

clearly, depending on how badly broadened the spectrum is relative to the

intrinsic width of some feature, it will not always be possible to recover the

true underlying spectral function in its entirety. Indeed, the presence of noise

in a measurement should render that impossible even in principle because there

will always be spectral weight missing.

To show how one might begin to tackle these and related questions it is

instructive to carry out a far greater number of iterations than might normally

be desired. In Fig. 6.11 the result of continuing to deconvolve our broadened

superconducting simulation to twenty iterations is summarized. The further

amplification of Fourier transform induced waves into “peaks” by the method

clearly brings into sharp focus the kinds of artifacts that, in the absence of some

a priori knowledge of the generic features of a spectrum we expect to observe,

might be mistaken in a real experiment for truth. Again, this results after a

few iterations from the algorithm’s attempt to “fit” relatively short wavelength

features in the data, in this case induced by the broadening procedure itself.

In real data, as we shall demonstrate this effect shows up in the amplification

of noise in the data. On the other hand, while convergence is slow, we find the

rather surprising and encouraging result that the lineshapes of the main peaks

are reproduced well enough to justify our previous assertions that one can, in
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fact, recover something very near the true spectral function of a system from

resolution broadened data. As some spectral weight has been pushed into the

“artifacts”, we do not expect the intensities to be as well reproduced as other

factors. Evidently, so long as we are able to ignore whatever spurious features

are generated by the procedure, and are able to recognize them as spurious, this

method of analysis can be pushed rather far in obtaining certain quantitative

information. In this sense, the LRM is very much like a traditional curve

fitting procedure in which the scientist analyzing the data must inevitably

make some decisions as to what model produces the best fit.

It is no sin to make some compromises and those we choose to make depends

on whether we wish, per our above examples, to improve the overall picture or

to render as perfectly as possible some smaller aspect of our analysis. Bearing

in mind that like a conventional fitting of model to data the LRM is at heart

a statistical method all we can expect to produce is a representation of the

underlying physics that was most likely to have resulted in our data after

broadening by our apparatus. This fundamental statistical uncertainty in the

inversion of Eq. 6.6 is best illustrated by the images used to calculate the

χ2(r) of Eq. 6.20, Fig. 6.12. These images, the originally broadened spectrum

on the left and the rebroadened, deconvolved spectrum (with r = 20) on the

right are clearly nearly identical even though the image on the right resulted

from broadening the heavily abused image in the inset of Fig. 6.11. Thus

we say that while for a given image and R the application of the LRM is

deterministic – meaning that it will yield the same result every time – it is not

unique. Thus we find that the greater the broadening of a given feature relative

to it’s intrinsic width, the larger is the set of the number of possible inversions
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Figure 6.11: EDC’s taken at kF corresponding to the original full theoretical
spectral function (pink curve) and spectra divided by the physical Fermi func-
tion after seven iterations (blue curve) and twenty iterations (green curve).
The inset shows the FNS after twenty iterations.

that exist which, when re-broadened, can produce images nearly identical to

that with which we started. In the worst case one might even expect to

find chaotic solutions, that is, deconvolutions with an inordinately sensitive

dependence upon the initial conditions. This situation would make itself plain

if vastly different spectral functions resulted from negligible changes in the

resolutions assumed for R. This would be an indication that the underlying

features of the spectrum are much sharper than the resolution, a useful piece

of information itself but not a situation the experimentalist should relish.

As said earlier, χ2(r) provides a useful quantitative check on the number
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Figure 6.12: Comparison of the occupied spectral function after broadening to
the re-broadened, deconvolved spectral function used to calculate χ2(r).

of iterations we can justifiably use. χ2(r) for the present case is plotted in

Fig. 6.13. That χ2(r) in this case tends asymptotically towards zero should

not trouble since our simulations yield data that is essentially statistically

“perfect”. What we find in this rather typical case is that, in keeping with

our above observations, the greatest improvement in the spectrum is obtained

after the first few iterations, after which we run the risk of fitting noise. In this

case we are certainly justified in imposing a cutoff at some number of iterations

suitable for the purpose we have in mind, e.g. to improve the overall picture or

to try to fit as perfectly as possible the main features of the data. Occasionally

one will find that a further iteration actually makes χ2(r) worse than χ2(r−1),

in which case the cutoff of the algorithm is imposed upon us. Such convergence

is desirable for it’s clarity but not necessary.

The second question, that of defining an effective resolution after having
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settled on an appropriate number of iterations, is somewhat trickier to handle.

Some progress can be made examining limiting cases. In the event that de-

convolution produces no effect on the data it can only be said that either the

resolution is better than any feature in the data and thus no computational

augmentation is necessary or that any features in the data that are sharper

than the resolution lie so close to each other as to be indistinguishable even to

the LRM. It is not hard to imagine for instance that data taken with too few

pixels, energy-per-pixel steps being too large for example, that we will learn

nothing. It is thus always desirable to have some external knowledge, e.g. from

theory, to justify our not observing new features. Another limiting case is to

start with a delta function, equivalent to the presence of intensity at a single

pixel, broaden it and then observe the the results of deconvolution for some

number of iterations. By the same token one can examine the improvement of

a broadened Lorentzian by fitting after each iteration with a Voigt function,

though this may impose a level of physics on the problem that, at least for

strongly correlated system, is not well deserved.

Ultimately we wish to impose as little external information on our analysis

as possible and thus seek a standard candle that is as simple and as general

as possible, that is physically grounded yet requires few assumptions. For

ARPES the natural choice is the Fermi distribution itself. This is so because

i) we already use the measured Fermi function of a normal metal at a known

temperature to establish the energy resolution of an experimental arrangement

ii) as mention before, a Fermi function convolved with a Gaussian is another

Fermi function at a higher effective temperature, iii) there is a simple algebraic

relationship between real and effective temperature and gaussian resolution
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that can be derived. Thus our program for defining the effective resolution

of a deconvolved spectrum should be to generate a Fermi distribution at the

effective temperature T ′ appropriate to our physical temperature T and mea-

sured energy resolution ∆E, deconvolve it with the number of iterations used

on our spectrum of interest and then fit the result with another Fermi function

so we may extract the new effective temperature, call it T ℵ, and the effective

resolution, ∆Eℵ. Because the Fermi-Dirac distribution is an idea, in the Pla-

tonic sense, we may without doing an experiment simply construct tables of

∆Eℵ(r) for the combinations of T and ∆E we are interested in. An example

of this procedure is given for a 50 Kelvin Fermi distribution broadened by a 15

meV energy resolution, Fig. 6.14. As expected the effects of broadening are

essentially removed after a mere four iterations, yielding an effective resolu-

tion ∆Eℵ of about 2 meV. After four iterations unphysical results are obtained

which as usual are the result of the algorithm attempting to fit artifacts gen-

erated by itself on our too-perfect representation of the data. Examination

of χ2(r) (inset) tells us that even in the absence of physical knowledge, e.g.

about the experimental temperature, little is to be gained by using more than

four iterations and we are well justified in our earlier statement regarding the

cutoff of the procedure as it asymptotically approaches some final value of χ2.

Similar figures can be easily produced for any combination of temperature and

energy resolution.

With this guide in hand, what are we to make of the preceding results in

which we applied the LRM to normal and superconducting simulated bands

in which in many respects the fits got better, albeit much more gradually, as

we increased the number of iterations? One aspect of this problem is related
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Figure 6.14: Effective temperature T ℵ a) and FWHM Gaussian effective res-
olution ∆Eℵ b) fit for a Fermi distribution initialized at 50 Kelvin with an
initial energy broadening (FWHM) of 15 meV. The black line in panel a) de-
notes the “physical” temperature of the Fermi function. The fifth iteration,
going too far, yields an imaginary result for the resolution calculated for panel
b) (not shown). The inset of the first panel shows χ2(r) for the LRM in this
instance out to 10 iterations on a linear scale.
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entirely to the use of discrete Fourier transforms and the associated irregular-

ities they induce as we iterate. That is, the form these artifacts take for any

particular spectrum depend strongly on the details of the features contained

in that spectrum and thus it is best to view our calibration of effective resolu-

tion as being essentially correct only until it converges. While in principle as

we keep iterating past convergence the resolution should stay essentially zero

the creeping effect of artifacts will obscure this and possibly cause problems.

Thus one must be aware, at least after the first few iterations, of introduc-

ing unphysical artifacts into the analysis. It turns out, fortuitously, that the

presence of some noise in real data partially ameliorates this problem.

There is however a much more serious, physics based problem to be con-

cerned with when attempting to calibrate the effective resolution of a decon-

volved spectrum. That is, in our analysis we have implicitly assumed that the

Fermi function represents in some sense the sharpest possible physical feature

that can be found in the data. In other words, we do not expect to find states

(or bands) whose intrinsic width as measured by EDC’s will be sharper than

kBT and so, if we can deconvolve the Fermi function every other feature will

have been brought into line. We have not however directly addressed the de-

convolution of other line shapes, such as Lorentzians, except in the simulations

above. In those cases even though the FWHM of a lineshape might be of the

same order as the Fermi distribution, there are clearly parts of the function

that will be narrower and thus require more iterations to fully deconvolve.

Further complications with this picture are introduced when considering, for

example, the shape of a band crossing the Fermi level. These problems are

apparently easily dealt with by examining the internal consistency of the de-
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convolution and the rate at which χ2(r) changes.

A more serious, and much more physically interesting problem, arises if

we consider the possibility of states that are intrinsically narrower than the

temperature by any definition. For the vast majority of conventional systems

that such a state could exist would seem to be rather counterintuitive. Cer-

tainly this should be true for a Fermi liquid in which the electrons couple to

the phonon bath with a T 2 dependence while the width of the Fermi func-

tion is approximately 4kBT . Even at very low temperatures one expects some

broadening due, for example, to impurity scattering. Nevertheless it can be

argued that we should not rule out the existence of such features a priori in

strongly correlated or other pathological systems. Wei Ku has provided the

rather elegant counter example to our expectation by considering the pres-

ence of a single impurity in an otherwise ultra pure normal system such as a

metal. That impurity will acquire through Anderson localization an isotropic

k dependence in its spectral function and an essentially delta function like

width in energy that will not appreciably change with the bath temperature.

More generally we should recognize that the temperature dependence of the

width of a state, given above by (γkBT )2, results from a self energy. It should

not be ruled out that the form of this self energy can be drastically modified

in strongly correlated systems such as the cuprates. One example of such a

modification is the so-called Marginal Fermi Liquid.

Two questions about the resolution linger. First, what if the resolution

we divine from experiment is for some reason wrong? Second, what if the

kernel of the resolution, R, is not truly Gaussian. As to the correctness of the

magnitude of resolution broadening divined from experiment, it is up to the
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experimenter to prove the veracity of his or her claim. Besides case by case

measurements of the resolution usually obtained in the course of an experiment

most ARPES systems have undergone extensive calibrations with respect to

various parameter settings yielding particular energy and angular resolutions.

So long as the calibrations and the spot checks are in agreement there is no

problem. Further one can often reference features in particular spectra of

samples to use as an internal consistency check. This is a matter of just being

competent. Any intrinsic broadening e.g. due to disorder on a sample surface,

should no be deconvolved if all that is accounted for in the LRM is instrumental

broadening. As to the Gaussian nature of the resolution, it may well contain

small contributions of higher order but in this case the operative word is small.

In the many years high resolution ARPES has been practiced there has not

been any obviously compelling evidence that the resolution function is not

Gaussian. If this is the case then producing FNS by using Gaussian broadened

Fermi functions is even worse than suggested above.

6.6 Deconvolution and Fermi Normalization

of Real Data

Having explored in some detail the theoretical and technical issues involved

in applying the LRM to ARPES data we are at last in a position to examine the

results of a real experiment. All data presented in this chapter was acquired

at the undulator beamline U13UB on the VUV ring of the NSLS. The beam-

line endstation was equipped with a Scienta SES-2002 electron spectrometer.

189



Further details of the experimental apparatus will be given in a later chapter.

It suffices now to note that the beamline/spectrometer combination in use,

while in principle capable of achieving better than 1 meV energy resolution,

was set to an energy resolution on the order of 15 meV in order to maintain an

acceptable signal-to-noise ratio. Each scan presented in this chapter still re-

quired acquisition times of five to six hours – much longer than is normal for a

modern ARPES experiment – in order to accumulate enough statistics to ren-

der visible the low lying states above the Fermi level. While the data contain

a wealth of information it is not our goal in this chapter to delve too deeply

into the physics but rather to demonstrate the efficacy of using the LRM to

enable more accurate and detailed analyses. We shall where appropriate point

out the most significant features in the data.

The first example to be analyzed was acquired on a high quality single

crystal sample of optimally doped BSCCO (TC about 91 K). It was cleaved

in situ at low temperature. The experimental temperature was 60 K and the

energy and angle resolution were 16.5 meV and .1 degrees, respectively. The

pressure in the endstation chamber was 5X10−11 Torr. The photon energy

was 20.1 eV and was p polarized relative to the sample. The PC mode of

data acquisition was used rather than the ADC mode. The cut in k space,

located in the first Brillouin zone, is in the MX direction about half way

between Γ and M. The misorientation of the cut with respect to the ΓM

high symmetry line is responsible for the drastic change in matrix element

(e.g. band intensity) across the spectrum. The spectrum displays many of

the generic features often seen in this region of the Brillouin zone for BSCCO.

Even in the original spectrum, Fig. 6.15a), one observes the presence of the
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bilayer splitting of the main BSCCO valence band. The inner parabolic band

is identified as the antibonding (AB) band and the outer band as the bonding

band (BB). The matrix element suppresses the BB on the left side (negative

momentum) of the spectrum. The broadness of the bands at high binding

energy is usually associated with its interaction with a strong bosonic mode.

The sharp, flat band with zero dispersion running across the gap edge below

EF is usually associated with impurity scattering. Evidently scattered carriers

are also bound into Cooper pairs. A large superconducting gap ∆ of about

20 meV as measured from the AB peak is clearly visible. Thermally excited

quasiparticles appear as a dim smudge traversing the Fermi level from the

top of the AB band. This dim feature is the object of our study. Upon

deconvolution of the spectrum, Fig. 6.15b)-e), the thermal excitation feature is

seen to sharpen and ultimately to form a peak above the Fermi level separated

from the negative binding energy states by a clear superconducting gap. As

promised, there is no obvious sign in the data, even up to ten iterations (Fig.

6.15e), of the sorts of Fourier transform induced artifacts observed above in

simulation. Further, the occupied part of the spectrum is clearly sharpened by

the procedure which corrects both the observed lifetimes and dispersions. The

dim band on the left hand side, in which one band is almost totally suppressed,

even at this point displays the sort of folding associated with the opening of a

superconducting gap in the BCS theory.

The various methods by which one can produce FNS are demonstrated in

Fig. 6.16 with corresponding EDC stack plots given in Fig. 6.17. Panel a)

shows the result of normalizing the raw data by a Fermi function set at the

experimental temperature T . While the gap minimum remains at the Fermi
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Figure 6.15: Cut in k space taken at location diagrammed in inset of panel
e) on optimally doped Bi2212 at 60 K. Panel a) shows the original spectrum
for which the experimental energy and angular resolution was set to 16.5 meV
and .1o, respectively. Panels b) through e) show the result of applying the
LRM to the spectrum in panel a) after 4, 6, 8 and 10 iterations. The false
color intensity scale for all panels is shown in the inset of panel a). The Fermi
level is indicated by dotted lines.
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level as it should for a superconductor, the intensity of thermally excited states

is clearly too high relative to that of the occupied states. Naturally they are

also broadened to the point where they are not clearly recognizable as bands.

On the other hand, normalization by a Fermi distribution broadened to the

effective temperature T ′ underestimates the intensity of states above EF and

does nothing to clarify their dispersion. One should also note the position of

the positive high energy cutoff of the spectrum. Because quasiparticles can

only be excited to 4 or 5 kBT above the Fermi level any real spectrum, when

normalized to a Fermi function, will generate a region of essentially infinite

intensity values. This is due to the division of small finite numbers gener-

ated e.g. by detector noise, camera noise or high energy secondary electron

emission by a number that is very close to zero. The location of this cutoff

is determined by the temperature (4 or 5 kBT ) and the signal to noise of the

thermally populated states. The shift of this cutoff between panels a) and b)

is thus an artifact of the unphysical nature of FNS generated with resolution

broadened Fermi functions. Another telling feature of panel b) is the shift of

the gap minimum away from zero energy. This is a serious problem if one is

attempting to, for example, find some violation of our current understanding

of superconductivity in the cuprates viz a viz how far we can justify our use

of the BCS picture explored above.

Panels c)-e) of Figs. 6.16 and 6.17 show the result of Fermi normalizing

spectra deconvolved by the LRM after 4, 8 and 10 iterations. After only four

iterations, a number which is consistent with our observations in Fig. 6.14

(which hold for the current situation) we find that the gap minimum remains

at zero energy as in panel a) but that the thermally occupied band above EF
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Figure 6.16: Comparison of different Fermi normalization methods applied to
the data in Fig. 6.15. Panel a) results from normalizing the original data (Fig.
6.15a) to a Fermi function at the experimental temperature. Panel b) shows
the result of normalizing the same spectrum to a resolution broadened Fermi
function. Panels c)-e) show the result of normalizing to the experimental Fermi
function after 4, 8 and 10 iterations, respectively. The Fermi level is indicated
by dotted lines. The dashed lines indicate 4kBT and 5kBT , respectively. The
false color intensity scale is the same as Fig. 6.15.
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Figure 6.17: EDC stack plots generated from corresponding panels in Fig.
6.16. The Fermi level and 4kBT are marked by the solid lines.

is now sharp enough to identify a dispersion and has a spectral weight as a

function of momentum in line with what we expect from the coherences in

Eqs. 6.24 and 6.25. Thus the LRM has allowed us to confirm the BCS-like

nature of Bogoliubov quasiparticles of the superconducting state of optimally

doped BSCCO below TC . The further number of iterations in panels d) and

e) of the figures show that continued application of the LRM shifts the gap

minimum away from zero as would be expected for over correction of the

underlying Fermi distribution in the data. On the other hand, very little

happens to the occupied bands after four iterations indicating they are now

essentially resolution free and are too close together to be uniquely resolved by

our method. The thermally occupied bands do however increase in sharpness

and change their dispersion upon further iteration. In light of the results

of our simulations above of how broadened Lorentzian peaks are affected by

the procedure, both above and below EF , it is not entirely unreasonable to
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expect some further sharpening of peaks. We thus conclude that the thermally

excited peaks probably have a lifetime much longer than might be expected

based purely on coupling of the bands to the thermal bath and at least for this

resolution it is not possible to achieve a unique determination of the lifetime

and the Fermi normalization simultaneously for this level of broadening. This

conclusion is supported by examination of χ2(r), Fig. 6.18, in which we clearly

have not yet converged after four iterations. Because we are depending upon

the rectification of the Fermi distribution for our normalization procedure

and because we cannot assume a particular lineshape for the bands a priori

any further analysis should be carried out on the data sharpened with four

iterations. Nevertheless further deconvolution is not useless as we can see the

wall of high energy noise cut off almost exactly at 4kBT in panel e).

The result of this analysis is a picture that, if not containing features as

sharp as they could be in reality, is at least much better than what we started

with and entirely self consistent which, more so than absolute values of inten-

sities, is the most desirable feature to find in an ARPES experiment. It must

also be recalled that the more iterations we perform, the more likely it is the

procedure will begin to fit “noise” and generate instabilities in the image which

will be further amplified with each iteration. Bands above EF are, as above,

particularly sensitive to this problem and so we should probably not trust fur-

ther iteration anyway. To the LRM they can, after a few iterations, begin to

look like noise due to their relatively low signal. In any event, four iterations is

more than adequate to extract the underlying physics of the experiment which

was not possible without the LRM.

We conclude our analysis of sample ARPES data with the case most like
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Figure 6.18: χ2(r) for the deconvolution of Fig. 6.15.

that simulated above, that of a single band crossing the Fermi level interrupted

by the opening of a superconducting gap. Without presenting the gory details

of the analysis, we cite the example of the comparison between different meth-

ods of generating FNS first reported in the literature. This cut, as illustrated

in the inset of Fig. 6.19, was close to the node of optimally doped BSCCO

below TC . The resolution was 15 meV and .1 degrees, respectively, and the

temperature was also 60 K. The improvement with application of the LRM is

self evident, as is the recovery of the BQP dispersion.

The reader will no doubt wonder now at the discrepancies between our

deconvolution of real versus simulated data. The main differences between the

two sets of results are a) deconvolution of real data is much less sensitive to

computational artifacts such as FFT induced reflections than are the simula-

tions and b) unlike the simulations, when deconvolving real data physically
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Figure 6.19: (a) the raw data before analysis, (b) the same data as in (a) after
dividing by the Fermi function, (c) the spectra after dividing the data in (a) by
the Fermi function broadened with a function representing the experimental
resolution and (d) the deconvoluted spectra (derived from (a) using the LRM)
divided by the Fermi distribution function. The solid black lines represent the
EDC corresponding to the Fermi wave-vector, kF .
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consistent FNS could only be obtained up to the number of iterations consis-

tent with deconvolution of the Fermi distribution whereas in simulations we

were more or less free to iterate to our hearts’ content. The first point is eas-

ily explained by the dampening effect that real noise has on FFT reflections,

“softening” any sharp edges that might otherwise be found in the data.

The second point is more interesting and has several possible explanations.

One possibility is that the accumulation of small experimental errors in our

measurement of the energy and angular resolution as well as the kinetic energy

of the Fermi level might well lead to a residual asymmetry in the FNS as well as

errors associated with using a slightly incorrect resolution when deconvolving

the data. These errors can easily result, for example, from small differences

in sample charging and signal to noise between measurement of the Fermi

distribution on the reference sample (e.g. polycrystalline gold) and the sample

itself. These errors do not exist for the idealized situation embodied by our

simulations. The technique might benefit in the future from a quantitative and

systematic understanding of how such errors affect deconvolution of ARPES

data though such an investigation is beyond the current scope of this work.

Problems may also arise if the resolution function for ARPES is not truly

Gaussian. In light of the apparent success in using the Gaussian kernel on our

measurements such non-Gaussian contributions to the resolution will most

likely appear as higher moment corrections to the Gaussian form and, once

known, could easily be incorporated into the methodology. Nevertheless such

higher order contributions are likely to be small and so are unlikely to effect

the results greatly if we limit our iteration number to the few necessary to

remove the worst effects of the broadening.
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Future work can most fruitfully proceed along two tracks. First, one would

like to better quantify the functional form of the resolution broadening exper-

imentally for a range of photon sources and electron analyzer configurations.

For example, the kernel likely differs somewhat when using a curved versus a

straight entrance slit in the electron spectrometer. Another approach would

be to extend the computational methods outlined here to a more sophisti-

cated rendering of the problem. One direction for future work would be to

attempt the implementation of so-called blind deconvolution algorithms. In

those programs the resolution kernel is provided as an initial guess along with

the data. Then the algorithm not only produces an image that was most likely

to have existed prior to broadening but also a self consistent approximation

to the (presumably poorly understood) kernel that caused the broadening in

the first place. Ideally these experimental and computational investigations

into the true resolution function of ARPES would be brought to some kind of

agreement.

To summarize, we have in this chapter laid out the essential idea of the

LRM and shown that because the resolution kernel of ARPES is quite simple

and easily obtained to first order, it is very well suited to the improvement

of raw data without any prior assumptions about the underlying physics. We

went on to apply the method to some rudimentary simulations of spectral

functions for both normal and superconducting states and, though sampling

only a very small part of the parameter space for such work, outlined the

advantages and some of the pitfalls such analysis can bring to bear on the

problem of analyzing ARPES data. With these guidelines in hand we applied

the method to samples of real ARPES data, by which we were able to resolve
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physically relevant features that were not previously discernible despite our

best experimental efforts. Overall, we have shown that the LRM is at least

as useful for ARPES as is it has proven itself for the analysis of medical and

astronomical imagery. We have also tried to point out where null results are

useful for determining whether features in various spectra are broad enough

to be unaffected by finite resolution or are anomalously sharp. Finally, we

pointed out where experimental errors will affect the deconvolution procedure,

where we are likely to remain safe and how these issues might be addressed

in future studies. We leave this chapter with the caution that as great as the

LRM’s potential is as a tool for improving the results of very difficult ARPES

experiments, its potential abuse by the unwary or unscrupulous user is far

greater. It is the great ease with which these methods can be applied that

make it a dangerous tool in the wrong hands and so the results of its use, as

with the use of any experimental or analytical technique, must always be met

with deep thought and deeper scrutiny.
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Chapter 7

Laser ARPES on Optimally

Doped Bi2212

7.1 Introduction

It has been over a decade since ARPES gained the high energy and mo-

mentum resolution necessary to discern in detail the presence of mass renor-

malizations, or “kinks”, in the electron spectral function of solids induced

by electron-boson couplings or other strong interactions. The enumeration of

these interactions and the identification of the Bosonic modes presumed to be

responsible for them has played a critical role in our understanding of elec-

tronic structure in general and has been of particular importance in the study

of correlated electron systems. This has been most notably true for the cop-

per oxide high temperature superconductors due to the important role such

couplings are thought to play in the anomalous physics of these materials. Un-

fortunately, because ARPES can only probe the effect such interactions have
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on the single electron density of states, rather than the boson spectrum itself,

it has proven necessary to look to other experimental or theoretical methods

to determine the boson, if any, responsible for these features. This fact has

often resulted in wide disagreement as to the nature of such couplings be-

cause of the often overwhelming number of candidate bosons present at the

relevant energies and momenta. As a result of these controversies the role, if

any, that such interactions play in achieving high superconducting transition

temperatures Tc in the cuprates has remained clouded in doubt.

Below we present evidence for an additional kink in the nodal region of

the low energy ARPES spectrum of optimally doped Bi2212 at low tempera-

ture. While the existence of such a feature in the Bi2212 spectrum has been

previously hinted at there has yet to appear in the literature any substantial

study of its character. It will be shown below that this new kink exhibits a

unique dispersion with respect to the superconducting gap in the nodal region

of the Brillouin zone. That is, it always appears at 8 meV high binding energy

than the superconducting gap regardless of the gap’s magnitude. Because of

this behavior it is possible to rule out all but a single optical phonon mode as

being responsible for the observed interaction in the electron spectrum. Be-

sides being interesting in its own right as an example of an electron-phonon

coupling not previously observed by ARPES the fact that this is the only such

interaction observed to date in Bi2212 that can be resolved with certainty will

provide a much needed moment of clarity in the study of the physics of this

highly complex system.
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7.2 Laser ARPES Data and Initial Findings

The construction and operation of the laser ARPES system at the NSLS

has already been explored in detail in chapter 5. The remainder of this chapter

will be devoted to the presentation and explanation of the best data resulting

from that experiment. We believe the result represents one of the few easily

explained phenomena to be discovered in the study of the electronic structure

of Bi2212. Once again discovery came as a pleasant surprise rather than as

the result of a concerted effort to solve a particular problem.

When commissioning the laser ARPES system the first sample we mea-

sured was meant only to check that our experiment was functioning properly

in angle resolved mode and that it had at least a respectable energy resolu-

tion considering the difficulties imposed on the project outlined in chapter 5.

The “figure of merit” for high resolution ARPES, and in particular for those

ARPES groups that spend most of their time thinking about high temperature

superconductivity, is the nodal spectrum of optimally doped Bi2212. This is

because optimally doped Bi2212 is one of the best known, most studied sam-

ple varieties in condensed matter physics and because at Brookhaven we are

blessed with an essentially inexhaustible supply of ultra high quality optimally

doped Bi2212 grown by Genda Gu in the neutron scattering group. These

samples are world renowned for their order and their purity and represent the

gold standard in floating zone crystal growth for copper oxide superconduc-

tors. Further, the optimally doped variety of Bi2212 is the most stable version

of the doped system and each sample from a given grow rod, and each sample

of ours acquired from different growths, are as identical as these systems can
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be with Tc’s ranging at most between 89 K and 91 K.

Our measurement was performed at a temperature of 10 K with the same

open cycle helium cryostat, electron spectrometer and vacuum as reported

above. The sample was cleaved at 10 K and the Fermi level was referenced to

a bulk specimen of gold in electrical contact with the Bi2212 sample. All the

data reported here were acquired within two hours of cleaving in situ. The

analyzer was set to use the 1 eV pass energy with an entrance slit of .5 mm.

The results of our measurement of optimally doped Bi2212 were gratifying

if not immediately appearing to be remarkable in any way. Aside from the

incredibly high signal to noise ratio expected from a source as bright as the

laser we only noted that spectra taken relatively far from the node appeared to

display a very sharp “kink” in the dispersion close to the gap edge and, without

thinking about that too much further, we assumed it was just a result of seeing

the BCS-like dispersion accompanying the opening of a large superconducting

energy gap. The raw spectra (converted to units of momentum and binding

energy) are plotted in Figure 7.1a-c moving progressively further away from

the node. The locations of these cuts in the Brillouin zone are shown in the

inset of Figure 7.5a.

Accepting the energy resolution of 13 meV and angular resolution of .1 de-

grees these spectra were acquired at we proceeded to apply the LRM discussed

earlier to the present experiment. The resulting deconvolved spectra are shown

in Figure 7.1d-e. Raw and deconvolved EDC’s and MDC’s from the near nodal

data shown in Fig. 7.1, panels a and d, are shown in Fig. 7.3. Lorentzian

fits to the deconvolved distribution curves are shown in Fig. 7.4. Both fits

demonstrate the the combination of laser ARPES and the LRM appear to
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Figure 7.1: Laser ARPES spectra from the nodal region of optimally doped
Bi2212 at 10 K. Panels a-c are the raw data. Panels d-f are the same spectra
deconvolved using the LRM. The locations of the cuts in the Brillouin zone
are diagrammed in the Figure 7.5a inset.
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Figure 7.2: Near nodal spectrum of optimally doped Bi2212 at 8 K taken at
the VUV ring of the NSLS with a photon energy of 16.7 eV. The orientation
of the cut in the Brillouin zone is shown by the dashed line in panel c). b)
MDC’s at ω = 0 meV (circles) and -10 meV (triangles). The peaks are fit by
two Lorentzians. d) EDC at k − kF = -.015 Å1 with a single Lorentzian fit to
the high binding energy (bonding band) peak. [3]
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provide access to the intrinsic energy and momentum line shapes of Bi2212.

The improvement in momentum resolution over what can be achieved using

synchrotron radiation as a photoexcitation source is evident from a comparison

to the spectrum, EDC’s and MDC’s shown in Fig. 7.2 which was acquired at

an energy resolution of about 5 meV at a photon energy of 16.7 eV [3] on an-

other optimally doped Bi2212 sample. The data were acquired with the same

endstation, at beamline U13UB of the NSLS, as was used for the laser ARPES

experiment. At that photon energy the momentum resolution is roughly three

times less than is achieved with the laser for the same angular resolution. The

drastic change in transition matrix element between the two photon energies

and the drastically improved signal to noise achievable with the laser is also

clear.

To be fair we were a bit shocked to find that when this was done an entirely

new feature in the very low energy spectrum of Bi2212 appeared to emerge.

That is, there appeared to be a very small “kink” in the dispersion setting in

well short of the superconducting gap energy. Recall that in Chapters 2 and 3

we briefly touched on the issue of how an electron-boson interaction is observed

by ARPES in the single particle density of states. ARPES measures the single

particle spectral function A(k, ω) which is related to the many body electron

Greens function by the relation A(k, ω) = 1
π
| ImG(k, ω)| where in the presence

of an interactions G−1(k, ω) = ω − εk − Σ(k, ω) with Σ(k, ω) = ReΣ(k, ω) +

ı Im Σ(k, ω) the real and imaginary parts, respectively, of the electron self

energy. In Chapter 6 we modeled several spectral functions based on such

Greens functions in which the self energy was taken to be that of a Fermi

liquid. In those cases (ignoring the presence of a superconducting gap) the
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Figure 7.3: Panel a) EDC’s and panel b) MDC’s taken at the kF and EF ,
respectively. The blue curves are from the raw data of Fig. 7.1a and the red
curves from the deconvolved data of Fig. 7.1d. All cuts are taken along a
single column or row of channels demonstrating the superior signal to noise
that can be achieved with a laser. Note that in addition to sharpening the
peaks the peak positions themselves are corrected by application of the LRM.
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Figure 7.4: Fits to the deconvolved EDC (panel a) and MDC (panel b) shown
in Fig. 7.3. Both fits are performed using Lorentzians on a linear background.
The EDC fit is cut off by the Fermi-Dirac distribution. Peak widths ∆E and
∆k are shown in the figure.
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entire spectrum was taken to derive from a single self energy function extending

over the full energy and momentum ranges of the bands under investigation.

When considering Landau quasiparticles this self energy reflects the dressing

of the bare electron mass by electron-electron interactions in such a way that

bare electron states can be mapped one-to-one onto quasiparticle states with

the renormalized effective mass m∗.

Taking the physics a step further one can also consider the effect upon the

spectral function of the presence of other interactions beyond the electron-

electron interaction. These effects are derived from the presence of a bosonic

mode with which the electrons interact. Such an interaction will change the

dressing of the electron, i.e. it will be further renormalized. In the language

of field theory this renormalization takes the form of an additional self energy

term in the electron Greens function that sets in at a particular energy and

momentum corresponding to that of the bosonic mode. It can be shown in a

generic quantum field theory that when considering multiple renormalization

effects, e.g. from a mass renormalization, vertex renormalization, etc., to

first order the self energies derived from the fields add linearly in the inverse

Greens function. Taking G0(k, ω) to be the Greens function of a bare band

we find that the overall Greens function of a system including interactions is

G−1
int(k, ω) = G−1

0 + Σ1(k, ω) + Σ2(k, ω) + ... where G0 is taken to be the bare

Greens function plus contributions from various interactions. This relationship

can be trivially though usefully rearranged to display how the effect of multiple
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interactions stack;

G−1
int(k, ω) = G−1

0 +

∞
∑

n=1

Σ′(k, ω) + ı

∞
∑

n=1

Σ′′(k, ω). (7.1)

The simplest addition to the single particle self energy one can conceive

of, after the inclusion of an energy independent impurity scattering, is a plain

vanilla electron-phonon interaction. This interaction represents the ability of

an electron with sufficient energy and appropriate momentum to emit and

absorb phonons by scattering off the ionic lattice of the crystal. The avail-

ability of this interaction channel renormalizes the electron mass from m to

some effective mass m∗ characterized by a coupling constant m∗/m = 1 + λ.

A change in the relationship between electron momentum and energy, i.e. the

dispersion relation, causes the band velocity to also become renormalized and

so introduces a “kink” in the dispersion around the phonon mode energy. At

energies below the kink an electron does not possess sufficient energy to ex-

cite the phonon mode and so has a longer lifetime (sharper Lorentzian width).

The change in dispersion in this region is most pronounced. Above this energy,

when the electron can easily gain or lose energy through the new interaction

channel, the lifetime decreases – reflecting the increased scattering – and the

velocity changes to eventually reflect the bare mass. The presence of the ad-

ditional self energy renormalizes the electron lifetime and binding energy, the

former deriving from the imaginary part of the self energy and the latter from

the real part, the two parts being causally related by Kramers-Kronig trans-

formations. Thus, to prove that the feature we are here discussing is truly a

“kink” in the sense that it is caused by the onset of an electron-boson cou-
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pling we are required to observe not only a change in the dispersion, which

if the coupling is small can be quite difficult to detect, but also a change in

the scattering rate above and below the mode energy. For reasons explained

below, this is not such a simple task in our case.

7.3 Extraction of Quantitative Information from

the Data

As we’ve said often throughout this work the low energy nodal spectrum

of optimally doped Bi2212 is one of the most highly examined, best known

results to come out of ARPES on high temperature superconductors. That

yet another kink in the spectrum, and at such low energy, could have gone un-

noticed for so long is striking. One has every reason to ask how that could be.

The answer, both from this data and from a reexamination of the literature,

is fairly straightforward and a good lesson in the assumptions that go into

examining any type of experimental data. Firstly, as can be seen in the raw

data, even a very small amount of resolution broadening almost completely

wipes out this feature. It can only be seen in the raw data shown in panel

c because of the kinematic effects of using a very low energy photoexcitation

and because of the odd angle relative to the normal of the Fermi surface at

which it was acquired. Additionally, ARPES at 6 eV has what is in this case

a distinct advantage over higher photon energy data in the form of an ex-

treme matrix element effect. (The ARPES matrix element was discussed at

length in Chapter 3.) It has been observed in previous ARPES experiments
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on Bi2212 using excitation energies less than 8 eV that for reasons not entirely

clear the antibonding band is entirely suppressed by transition matrix element

effects[20]. In our own spectra it is obvious that only one band can be seen.

This is in stark contrast to a spectrum shown in Figure 7.2. In this case it was

clear that even at the node there is a small but observable bilayer splitting

in the band. In such a circumstance it is almost impossible to tease out such

a fine feature as the one here presented from even the best data in a case

when you observe two bands lying almost but not quite on top of each other.

That this is the case for almost all ARPES spectra acquired with synchrotron

radiation as presented in the literature will clearly hide the existence of this

very low energy kink.

This is not to say the “little kink” was unobservable. The data set from

which Figure 7.2 was taken did yield a hint of the little kink but it was difficult

to verify and impossible to track any of its systematics at the time. The

possible existence of such a feature has even been indicated recently in the

literature from the results of an experiment performed with a 7 eV laser.

Nevertheless as that study made clear the reflexive use of our favorite technique

for analyzing nodal ARPES spectra, the use of MDC’s and band velocities to

determine the band dispersion and imaginary part of the self energy, rather

than the direct EDC method, also obscures the result. Recall that 2 ImΣ =

~v∆k where ∆k is the MDC width at some energy and v is the band velocity

at that energy. This formulation only works in the approximation that the

band has linear dispersion and a high velocity to begin with. We can see that

in the event the band velocity is changing very rapidly as a function of energy

in our region of interest it will be almost impossible to determine v with any
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kind of certainty and thus impossible to determine Im Σ from MDC’s alone.

This is the case for our little kink. To make matters worse the MDC analysis

fails utterly in the vicinity of the superconducting gap because not only is

the velocity changing rapidly there but it is also changing its overall character

from linear to parabolic and thus exiting the high velocity regime for a very

low velocity regime in which MDC’s are not clearly meaningful.

In order to study this feature in the spectrum and determine if it really is

due to a kink and thus due to a previously unidentified interaction of the low

energy states of Bi2212 with some bosonic mode (more about which we will

discuss below) it was necessary to examine the EDC’s of the spectra directly.

The challenges of this approach in the cuprates are manifold. First, it is widely

assumed that the “Lorentzian” peaks that make up the EDC’s of a band

such as this are asymmetric in energy, the asymmetry presumably deriving

from many body effects not captured in the lowest order approximation of the

lineshape being due to lifetime effects. Second, the form of the background,

here assumed to be linear, derives theoretically in part from the incoherent

part of the electron spectral function. To say it is poorly understood would be

an understatement. Finally, because there is no theory of high temperature

superconductivity there is no function known to us a priori with which to fit

spectra such as these in which a gap is present. All these complications aside

it did prove possible to fit EDC’s of the spectrum with simple Lorentzians on a

linear background provided we cut off the fit at the gap edge. Besides providing

good fits it also avoided the complications associated with the gap profile

and the Fermi function at zero energy. The one caveat with this procedure

involves the identification of the very small gap in the spectrum acquired
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Figure 7.5: Imaginary part of the self energy as a function of binding en-
ergy extracted from the deconvolved spectra of Figure 7.1d-f. The scattering
rate Γk(ω) = 2 Im Σk(ω). The dotted vertical lines denote the gap position
corrected for kinematic and resolution effects. Double valued points in the
vicinity of the gap result from the parabolic dispersion along the gap edge
upon crossing kF .

closest to the node. Simulations such as those in Chapter 6 indicate that peak

positions observed near the Fermi level are affected by energy resolution and

experimental temperature broadening. The results of applying this procedure

for acquiring the imaginary part of the self energy as a function of binding

energy from the deconvolved spectra are plotted in Figure 7.5a-c.

Out of what appeared to be a rather complicated set of spectra we have

been able to extract a shockingly simple structure in the very low energy

216



scattering rate. Each plot of Γk(ω) can be broken down into three distinct

regions. At the lowest binding energies we observed in all cases a sudden

increase in the scattering rate upon approaching the gap edge, which is here

defined as the point with the smallest binding energy, followed by a gradual

decrease in the scattering rate and folding back of the dispersion. While at first

glance this behavior appears odd it is nothing more than a manifestation in

scattering rates and dispersions of the formation of Bogoliubov quasiparticles

in the superconducting state. It is essentially no different from the coherence

effects observed in the synchrotron experiment but here shown at a much

higher level of detail concomitant with the increased momentum resolution

imparted by the use of a very low energy photoexcitation source. The end of

this “tail” is cut off where the coherence factor has suppressed the folded band

intensity to the point it can no longer be reliably fit in the manner described

above. While the physics of Cooper pairing is not the object of our study here

the extent to which the back folded part of the Bogoliubov dispersion reaches

in binding energy gives a good indication of how deep in energy the effects

of pairing reach when considering a frequency dependent gap function ∆k(ω).

The importance of this point will become clear momentarily.

The rest of the structure in Γk(ω) is divided neatly between the very low

scattering rate observed immediately before the effects of the superconducting

gap set in and the steep rise and subsequent saturation of the scattering rate

at higher binding energy. It is this step-like profile in the imaginary part

of the self energy that we are here most interested in because it is the classic

signature of an electron-boson interaction. That this step in the scattering rate

occurs where the kink is observed in the spectrum is a strong indication that

217



the little kink does in fact reflect such a coupling. The most likely alternative

scenario for the appearance of such features, that the kink and the step in the

scattering rate are somehow related to their proximity to the superconducting

gap, can be effectively ruled out by their considerable separation from the

binding energies at which pairing effects clearly dominate. This separation of

energy scales is clearly demarcated by the limited extent in binding energy

of the Bogoliubov like dispersion pointed out above. In addition we did not

observe such a feature emerging from the simulations of Chapter 6 in which

we introduced a superconducting gap into our linear spectra.

Having established that the kink is most likely due to an electron-boson

coupling we can turn our attention to the systematics of the effect. One of the

foremost problems in ARPES on the cuprates has involved the examination

of systematics e.g. with doping, temperature, momentum and energy of the

other known kinks in the system. The kink at 70 meV in the nodal region, the

“classic kink”, for example exhibits only a weak temperature dependence[17],

a strong doping dependence and evolves in energy and momentum in a rather

complicated and not entirely clear way as one moves around the Fermi surface.

The combination of these observations together with the abundance of avail-

able bosonic modes of the appropriate energy scale that may be responsible

for its formation have made the nature of the classic kink a subject of intense

debate for over a decade now.

The little kink on the other hand shows a very clear momentum dependence

so far as we were able to measure it. It turns out that the binding energy of

the center of the step feature in the scattering rate always appears 8 meV

below the superconducting gap ∆. The momentum dependence of this feature
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is summarized in Figure 7.6 in which we plot ∆k, the mode energy Ωk and

the difference between the two, δk = |Ωk − ∆k| as a function of Fermi surface

angle φ. Note that the value of the gap for the cut shown in Figure 7.1c and f

is corrected to reflect the value of the gap at the kink momentum rather than

the gap momentum because of the large angle between that cut and the Fermi

surface normal. The figure clearly shows how both the gap and mode energies

evolve around the Fermi surface in the nodal region while their separation in

energy remains a constant. Such a clear and unusual relationship between the

gap and mode energies has profound implications for the type of boson that

can be responsible for the little kink that we shall divulge in the following

section.

7.4 The Identification of a Boson

When confronted with evidence for a new electron-boson coupling in any

system the next step is clearly to attempt to identify the bosonic mode re-

sponsible. In Bi2212 the task is a bit more fraught than normal because of the

abundance of both phonons and various sorts of magnetic excitations as well

as the distinct possibility that more exotic phenomena may be relevant. This

has certainly been the case for the classic kink as well as the recently iden-

tified “big kink” at 350 meV [19] which, depending whom you ask, is either

a clear cut case of an electron-magnon interaction, a spurious matrix element

effect or derivative of a more complicated band structure effect. Regardless,

one must at least try. In this case the unusual nature of the mode’s dispersion

relative to the superconducting gap provides the decisive clue that has allowed
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Figure 7.6: Important energy scales extracted from the self energies of Figure
7.5 as a function of Fermi surface angle φ. The red points are Ωk, the blue
points are ∆k and the black points are δk = |Ωk−∆k|. Lines connecting points
are a guide to the eye.
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us to for the first time unambiguously assign a particular bosonic mode to an

interaction in Bi2212 observed by ARPES.

As it turns out, the fact that δk is a constant, i.e. that the apparent

mode energy is renormalized in the ARPES spectrum by the opening of a

superconducting gap[48], implies a coupling of the low energy electrons in the

system to a q 0 bosonic mode. Physically this phenomenon derives from the

fact that a photohole injected into the system at a momentum k and binding

energy ω greater than δk can, in the presence of a zone center mode, only be

annihilated by an electron decaying in a near vertical transition preserving

momentum. Because in the superconducting state all electrons above the gap

energy are paired, the lowest energy electron that can transition in this manner

will always originate from the vicinity of the gap edge, in this case 8 meV

away, and so as one scans around the Fermi surface the mode energy will

always appear at the same binding energy relative to the gap. In this picture

the broadness of the step in the scattering rate at the mode energy derives

from the broadness of the gap edge states, i.e. because the density of states at

the gap edge is not a δ function in real materials, as well as the finite width of

the phonon density of states and the residual energy resolution which is here

about 5 meV.

In the energy range of interest here there is actually a relative paucity

of zone center bosonic modes to be found in Bi2212. Certainly there is no

magnetic mode of this form known to exist in Bi2212 at 8 meV. The most ob-

vious q=0 bosonic excitations to be found in any crystal are optical phonons,

a.k.a. Einstein modes. These observations narrow the range of possibilities

considerably and make the identification of our boson a relatively straightfor-
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ward process of examining the extensive literature already available concerning

the measurement and assignment by model calculation of the optical phonon

spectrum in Bi2212. The primary experimental techniques available for these

measurements are IR spectroscopy and Raman spectroscopy which probe com-

plementary and mutually exclusive sets of optical phonons that are for obvious

reasons said to be either IR active or Raman active. An extensive listing of

such measurements as well as some of the model calculations that went with

them are given in the citations[4][49][50][51]. The result of this archaeological

expedition was the identification of a strong Ag or A1g Raman active mode

[52]in Bi2212 clocking in between 58 cm−1 and 65 cm−1; that is between 7.19

and 8.06 meV, respectively. (In the parlance of optics units of cm−1 are re-

ferred to as “wave numbers” denoted by the symbol ν = 1/λ. The conversion

to units of energy meaningful in the context of ARPES is done by E = hcν.)

Because these numbers resulted from experiments performed on a range

of “optimally doped” Bi2212 samples of varying and perhaps unknown qual-

ity, at various temperatures and in various Raman scattering geometries, we

found it efficacious to attempt our own measurement of the Raman active

modes in optimally doped Bi2212. Our experiment was performed at room

temperature on a high quality single crystal sample of optimally doped Bi2212

from the same rod growth as the sample used in our laser ARPES study. The

sample was cleaved with Scotch tape just before the experiment to reveal a

fresh, mirror perfect surface. The surface quality was checked by simultaneous

in situ optical microscopy, revealing a featureless, flat cleaved surface. The

experiment was performed in a Witek confocal Raman microspectrometer at

the Brookhaven Center for Functional Nanomaterials. The spot size examined
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Figure 7.7: Confocal Raman spectrum of Bi2212 at room temperature using
a 532 nm excitation source.

was less than one micron and a 532 nm laser excitation source was used. The

result of this experiment is plotted in Figure 7.7. Because of the extremely

high f/♯ of confocal Raman there was no well defined polarization vector in the

experiment. This essentially results in almost all the Raman active phonons in

the system being observed simultaneously, producing a relatively featureless

high energy response in the Raman shift. The lower energy part of the spec-

trum, below about 150 cm−1, is suppressed by an edge filter placed between

the sample and the analyzing spectrometer so that only the strongest phonon

line is observed. The Raman active phonon mode observed on our sample was

centered at 66.5 cm−1 (8.25 meV) which is consistent both with the literature

and with the mode energy Ω0 observed in the ARPES data.
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7.5 Self Consistency and the Coupling Con-

stant

As we mentioned above the real and imaginary parts of the self energy

ought to be causally related to each other via Kramers-Kronig relations. We

have also pointed out that the real part of the self energy for Bi2212 is difficult

to determine directly from experiment because it represents the change in

the electronic band dispersion from that of the bare band induced by the

interaction. If one can postulate a reasonable bare band from, say, a tight

binding model then it is a trivial matter to measure the difference in energy

between the observed and bare band, that difference being the real part of

the self energy due to the electron-boson interaction. Unfortunately the bare

band is a poorly defined concept in general and almost meaningless in Bi2212

because it is a doped Mott insulator. Also, as is evidenced by the deconvolved

spectra, the change in the real part of the self energy induced by this coupling

yields a much weaker signal than the change in the imaginary part.

Our identification of the culprit Boson as a particular optical phonon mode

allows some rare insight into this problem. To first order we can represent the

imaginary part of the self energy as a step function with Γ(ω < Ω) = 0 and

Γ(ω > Ω) = γ where γ is the energy step measured in ARPES. In this case

the Migdal equation[53]

Γ(ω) = 2π

∫ ω

0

α2F (ω′)[2n(ω′) + f(ω′ + ω) + f(ω′ − ω)]dω′, (7.2)

where n(ω′) and f(ω′±ω) are the Bose-Einstein and Fermi-Dirac distributions,
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respectively, can be easily inverted to find that α2F (ω) = Aδ(ω − Ω), a delta

function at the mode energy. Thus,

Γ(ω) = 2πAθ(ω − Ω) (7.3)

and

A =
γ

2π
(7.4)

where γ is the energy step in Im Σ ignoring other contributions, e.g. impurity

scattering. With this result in hand it is a trivial matter to determine the

mass enhancement factor λ,

λ = 2

∫ ∞

0

α2F (ω′)

ω′
dω′ =

2A

Ω
=

γ

πΩ
. (7.5)

where γ is the measured step energy (Eint−′E ′
bare). For example, with γ = .013

eV and Ω = .008 eV, consistent with the above data, we find λ = .6 putting

this interaction squarely into the weak coupling regime. There exists a simple

analytic form of the real part of the self energy in the event the imaginary part

Γ/2 described above has the step function form[54]. That is,

Re Σ(ω) =
λΩ

2
ln

Ω − ω

Ω + ω
. (7.6)

The relationship between α2F (ω), 2 Im Σ(ω) and Re Σ(ω) is shown in Fig-

ure 7.8. The singularity in the real part of the self energy evident in Eq. 7.6

at the mode energy is screened by both the finite temperature and finite mode

width and dispersion present in real materials. This problem does not arise in
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mode; a) α2F (ω) with α2 = 1.5 and a finite width as derived from the Raman
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the fully numerical calculation presented below.

We can improve our estimate of λ and Re Σ in this case by the following

procedure. While it is in general quite difficult to invert the ARPES scattering

rate to get α2F (ω) in the event a complicated set of relevant phonons or other

bosons is present, in this case it turns out to be relatively straightforward to

do so by hand. Using the Raman data of Figure 7.7 we conclude that this

phonon mode has a FWHM of 10 cm−1 ( 1 meV). We therefore construct
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an Eliashberg function with F (ω) a Gaussian of FWHM 1 meV centered at

Ω = 8 meV. Solving Eq. 7.2 we find that α2 ∼= 1.5 comes closest to capturing

the observed 2 ImΣ nearest the node; the model yields a broadened step in

the scattering rate with Γ(ω) reaching a saturation value of Γ = 13.5 meV.

Solving Eq. 7.5 yields a coupling constant (at T=0) of .52, close to that of the

ideal Einstein mode but softened somewhat by the nonsingular nature of the

physical interaction. The real part of the self energy is determined numerically

by the Kramers-Kronig transform

ReΣ(ω) = ℘
2

π

∫ ∞

0

ω′ Im Σ(ω′)

ω2 − ω′2 + ıǫ
dω′ (7.7)

where the +ıǫ prescription (taking the + at positive frequencies) has been used

to shift the pole at ω = ω′ an infinitesimal distance onto the complex plane

and ℘ denotes that the principal part of the integral is to be taken. While

the real part of the self energy calculated with Eq. 7.7 depends upon the

manner and energy in which the integral over the imaginary part is assumed

to be cut off, the overall scale of the renormalization is affected only weakly

by these choices. In this case we cut off the mode at 70 meV – the energy of

the “classic” kink – because the effects of the interaction become minimal at

this point. In Figure 7.9 we plot the α2F (ω), 2 Im Σ(ω) and Re Σ(ω) for the

above parameters for comparison with Figure 7.8.

The result of this exercise shows that the qualitative effect of introducing a

finite temperature and mode width into the problem are a slight broadening of

the step in the scattering rate and an accompanying softening on the peak in

the real part of the self energy. Further, the singularity in the real part of the
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self energy that was present in the idealized case has been removed without

artifice. The major difference between the idealized and full calculations lies

in the behavior of the real part of the self energy for |ω| > |Ω|. While for the

simplified Einstein case the real part is always positive it tends to zero at high

energy for the full calculation and, depending on the manner and energy at

which the integral in Eq. 7.7 is cut off and the strength of the interaction, can

even take on negative values for some range of energies past the mode.

To make a realistic comparison of the theory to the experimental results it

is necessary to make a few phenomenological additions to the imaginary part

of the self energy. Recall that the full scattering rate is given by a sum of

terms

Γtot = Γe−e + Γimp + Γe−ph (7.8)

where Γe−e accounts for scattering due to the electron-electron interaction,

Γe−ph is the electron-phonon term calculated above and Γimp is a constant

impurity scattering term on the order of a few meV. Γimp is supplied from the

data by the narrowest value observed near the Fermi level in a given spectrum

and is added by hand. Γe−e is not well understood in the cuprates. In the

normal state it is taken to be of the marginal Fermi liquid form in which Γ ∝

max(ω;T ), i.e. to be linear in the binding energy or temperature, whichever

scale is greater. On the other hand the scattering rate in the superconducting

state is taken to be either cubic in ω or of the quadratic Fermi liquid form. In

practice it is almost impossible to tell the difference between these forms over

the range of energies that are sampled here. Because we observe that most

points in 2 ImΣ are technically Landau quasiparticles, meaning they have a
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lifetime less than or equal to their binding energy, we find it expedient to

model Γe−e up to the binding energy examined on the Fermi liquid form;

Γe−e = 2β((πkBT )2 + ω2) (7.9)

where 2β = πU2/2W 3, U being the on sight Coulomb energy and W the

bandwidth, which is also the electron kinetic energy. Following Comanac et

al [55] we use U = .9 × 4.4 eV and W = 2.5 eV so that 2β 1.58. This

parametrization of the electron-electron term has the benefit in this case of

being independent of the present measurement. Finally, we shift the step

position by Ω0 + ∆k and broaden it by the residual energy resolution of 5

meV. No attempt is made to account for the presence of the superconducting

gap, which does not affect the kink here, or the presence of the kink at 70

meV which if due to an electron-boson coupling would affect the dispersion

over the whole energy range here examined. The impurity term aside the only

parameter in the fit is now α2. The results of the model calculations are lain

over the data in Figure 7.5. We found the data to be well modeled by choosing

α2’s of 1.5, 1.1 and 1.2, respectively, for the total scattering rates plotted in

the figure. Because an α2 of 1.1 yields λ = .38 for a mode at 8 meV the data

suggests the coupling strength diminishes as one moves away from the node

though clearly a more systematic study of this effect would be desirable. In

any event, the value of λ closest to the node is in very good agreement with the

mass enhancement due to electron-phonon interactions calculated from first

principles (for LSCO) in reference [56].

As a final check on the validity of our approach to modeling the data we
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Figure 7.10: Simulation of nodal BSCCO ARPES spectrum at 10 K using the
experimentally derived Einstein phonon spectrum.

plot a simulation similar in spirit to those of Chapter 6 using a linear band at

the node. We take the bare band velocity to be 2.2 eVÅ, the scattering rate to

be the unbroadened calculation for Γtot with α2 = 1.25, Ω0 = 8 meV, Γimp = 8

meV, the real part of the self energy calculated from Eq. 7.7 and then broaden

it by the experimental resolution. As before we model the EDC line shape as

a simple Lorentzian. The result, representative of what one expects at the

node, is shown in Figure 7.10. The result bears a reassuring resemblance to

the data. Qualitatively the most pronounced aspect of the model spectrum is

the manner in which the little kink manifests itself much more strongly in the

scattering rate than it does in the real part of the self energy. This behavior

provides a good explanation for why even if we were to postulate a bare band
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dispersion and attempt to extract the real part of the self energy directly from

the data an accurate accounting would be extremely difficult. This difficulty

is enhanced in the real system by the 70 meV kink, the presence of which

was not included in our model. Because the change in the real part of the

self energy associated with the 70 meV dispersion anomaly must set in and

increase rapidly at much lower binding energies what we observe as a very

slight kink in our model will tend to appear as a “bend” in the dispersion thus

making it even more difficult to observe directly than our simple model here

suggests.

7.6 Conclusion of the Phonon Story

In this section we have presented ARPES data showing evidence of a small

electron mass renormalization whose binding energy scales with the supercon-

ducting gap at low temperature such that ωk − ∆k ≃ 8 meV. This scaling is

best explained by the mass enhancement originating from an electron-phonon

coupling involving a q=0 optical phonon mode of A1g symmetry as deduced

from model calculations in the literature. There are has been previous the-

oretical work suggesting such a coupling is possible in the Bi based cuprates

[57]. We were able to correlate this energy scale in the ARPES data to a

particular Raman active mode observed previously in the literature as well

as in our own Raman measurement. Further, by combining the behavior of

the imaginary part of the self energy observed in ARPES with the measured

phonon spectrum for the culprit mode we were able to deduce the Eliashberg

function α2F (ω), the mass enhancement factor λ and subsequently provide
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an estimate for the self consistent real part of the self energy. Simulation of

the nodal ARPES spectrum with these parameters as well as some additional

phenomenological and theoretical input produced results in good agreement

with the measurements.

The correlation of any bosonic mode with a coupling observed by ARPES

is always circumstantial because photoemission by itself can only observe the

single electron density of states. In Bi2212 such correlations have been highly

controversial because at the energy scales at which they are observed there

generally exists a plethora of candidate modes, any of which alone or in concert

with others may yield such mass enhancements. In this case on the other

hand the identification is relatively clear due to the very particular form of

the modal dispersion and because of the small number of modes in the correct

energy range and of the correct momentum. We are thus led for the first time

to be able to unambiguously identify an interaction in Bi2212.

While this phenomenon is itself unlikely to be directly related to high

temperature superconductivity in Bi2212 it does give us some insight into

the more exotic physics observed in this system. First, the observation that

there exists a “universal nodal Fermi velocity” in the cuprates [58] is certainly

incorrect. Because the little kink involves the relative oscillations of the two

copper oxide planes in the bilayer Bi2212 system we do not expect it to appear

in the single layer compounds, e.g. Bi2201, and they will thus have a different

nodal Fermi velocity. Looking to other bilayer systems it is clear that if such

a coupling is present it will appear at a different energy, if at all, because the

low energy of the mode in Bi2212 is tied to the great mass of the out of plane

Bismuth atom in the unit cell. We thus conclude not surprisingly that the
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nodal Fermi velocity should be similar in all cuprates because it originates

from nearly identical copper oxide planes but that the details of any given

system might yield very different velocities at EF in the superconducting state

depending on whether or not such low energy couplings in the system are

present.

More importantly this finding will necessarily deepen the story behind

the famous 70 meV kink first observed in Bi2212 and later in many other

cuprates. The observation that the band structure of Bi2212 is affected by a

renormalization that sets in prior to the 70 meV kink implies that the coupling

strength associated with this interaction as derived from any measure of the

real part of the self energy will have to be revised downward. This revision

will in turn affect the identification of the mode or modes, if any, responsible

for that interaction. It is hoped this observation will make that problem, still

unresolved after more than a decade, more tractable.

Finally, this coupling can provide some insight into the unique nature of the

quasi 2D electronic states that reside in the copper oxygen planes of Bi2212.

In Figure 7.11 we diagram the relative motions of the atoms in the Bi2212 unit

cell provided by calculations of the A1g phonon eigenmodes in reference [49].

The 8 meV Einstein mode, as well as those of similar energy, is dominated

by the c axis motion of the Bismuth atoms as well as the collective motion of

the copper ions in the planes, apical oxygen atoms (which in the figure reside

above or below the planar Copper atoms) and the Strontium atoms. This

calculation provides an intuitively meaningful physical picture for why this c

axis mode should couple to electrons residing in the copper oxygen planes with

an essentially 2D character.
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Figure 7.11: Schematic of the Bi2212 primitive unit cell atomic motions asso-
ciated with the 8 meV A1g optical phonon mode. The arrow lengths depict
the relative magnitudes of displacement suffered by various atoms. Note that
in the Bi2212 primitive unit cell the out of plane apical oxygens are located
directly above (below) the copper atoms of the upper (lower) copper-oxygen
planes. This figure is adapted from Reference [4].
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Evidently there are several factors at work here. Determining the relative

importance of these mechanisms is beyond the scope of this work. For now it

suffices to point out that firstly this mode involves the motion of the planar

copper atoms relative to stationary planar oxygen atoms. This relative mo-

tion will effectively alter how the Cu ions screen electrons in the planar pdσ

orbitals. Secondly, this is the only A1g mode in Bi2212 except for one ob-

served, curiously, at 77 meV that involves motion of the apical oxygen atoms.

The possible relevance of this fact stems from the observation that the apical

oxygen atoms of all the cuprates are thought to play an important role in

mediating the next-nearest neighbor oxygen-oxygen hopping energy t′ in the

plane. Because the nearest neighbor hopping term t is strongly suppressed in

the cuprates by correlations between nearest neighbors the t′ term plays an

outsized role in the planar conduction. Thus a phonon involving the apical

oxygens may well alter the electron-ion screening in the plane sufficiently to

induce the mass renormalization observed by ARPES. Finally, the movement

of the copper atoms produces in this mode a relative motion of the two Cop-

per Oxygen planes that can be pictured as two hands clapping. Because the

nature of interlayer conductivity in the cuprates remains poorly understood

we can only speculate that this will have some effect on the planar electrons

though it does suggest that one should not find a similar interaction arising in

the single layer cuprates. Confirmation or refutation of any or all these ideas

will have to await future experimental and theoretical examination. Finally,

because the temperature scale θE associated with this mode is coincidentally

very close to Tc (Ω/kB = 92.8 K while Tc = 91 K) we expect this feature to

be unobservable above Tc. That effect is not profound but rather due to the
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loss of coherence and subsequent broadening of states above Tc, making this

mode, at such low energy, totally unobservable in the scattering rates. Fur-

ther, the broadening of the Fermi distribution as T is raised will, in analogy to

a resolution broadening, alter the dispersion of the very low energy electronic

states in such a way as to cause the change in the real part of the self energy

to become unobservable.
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Chapter 8

Unoccupied Electronic States of

Underdoped and Optimally

Doped Bi2212

8.1 Methodology and Expectations

The experiment examined here was based upon the systematic study of low

lying thermally populated excited states in optimally and underdoped Bi2212.

While many justifications and reasons might be given for undertaking such

an exercise perhaps the most important at the time was that the unoccupied

states of Bi2212 represented almost entirely unexplored territory for photoe-

mission on the cuprates. Though difficult, such an experiment opened new

and ultimately unforseen possibilities in the study of the electronic structure

of these materials since by this time the occupied electronic structure had

seemingly been well characterized and did not appear to offer much in the way
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of new insight into high temperature superconductivity. Ultimately this study

led not only to the discovery of new physics in these materials but also out of

necessity to the development of the LRM for applications in ARPES.

The methodology of our study has already been laid out at some length in

Chapter 6, namely that of observing unoccupied states at “elevated” temper-

atures by normalizing LRM resolution corrected spectra to the Fermi-Dirac

distribution f(ω, T ). The result was called a Fermi normalized spectrum or

FNS and revealed the nature of unoccupied states up to 4kBT above the Fermi

level. As alluded to earlier, the LRM correction was devised in response to

the observation that other methods of normalizing ARPES spectra acquired

with an energy resolution even modestly greater than the natural widths of the

intrinsic features of a spectrum often yielded unphysical results. Additionally,

because the signal to noise ratio (SNR) of an ARPES spectrum is approxi-

mately Gaussian in the number of counts detected at the analyzer for a given

channel on the microchannel plate (MCP), and because the number of counts

above the Fermi level relative to the occupied side of a spectrum decays almost

exponentially with increasing energy, the integration time needed to get a re-

liable picture of the unoccupied states was an order of magnitude greater than

what is typical. For this study, each spectrum required between six and twelve

hours of continuous data accumulation. The acquisition of enough spectra for

an FNS study of a given sample at a time when our group was rather small

in number thus required us to work alternating twelve hour shifts over the

course of several days. As a result this time was also sufficient to complete the

reading of an entire Thomas Pynchon novel dealing largely with the symbolic

and metaphorical ramifications of birefringence and wave-particle duality.
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Figure 8.1: The d-wave weak coupling BCS gap ∆ as a function of temperature
T and Fermi surface angle φ for a superconductor with Tc = 91 K. Regions
of zero height on the z axis denote Fermi surface angles for which unoccupied
Bogoliubov quasiparticles are unobservable by the thermal population tech-
nique. As one raises the temperature from absolute zero unoccupied states of
the d-wave gap further from the node can be observed. For optimal doping
one can observe low lying unoccupied states across the whole Brillouin zone
for T & 50 K.
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In our examination of the superconducting state the original object was to

observe the presence of Bogoliubov quasiparticles on both the occupied and

unoccupied side of the Fermi level simultaneously. The form these spectra

were assumed to take has already been reviewed in Chapter 6 and at the time

we were aware of only one other ARPES experiment in which this issue had

been explored[59] though a similar study appeared in the literature concurrent

with our own experiments [60]. As a rough guide of where in the Brillouin zone

to look for an energy symmetric superconducting gap, at least for optimal and

overdoped cuprates, it is useful to plot the gap as a function of both Fermi

surface angle φ (defined in Chapter 2) and T , keeping only those values of the

gap at or below the cutoff temperature for observability, EObs = 4kBT . This

is done in Figure 8.1 using the d-wave form for the angular dependence of the

gap ∆(φ, T ) = ∆(T ) sin(2φ) with the approximate BCS expression for the gap

magnitude as a function of temperature ∆(T ) = 3.2kBTc

√

1 − T/Tc. Though

only approximate and somewhat optimistic because of the intervention of the

pseudogap phenomenology it is close enough for optimally doped samples to

guide an investigation of this sort in the nodal region of the Brillouin zone.

In addition to the observation of the Bogoliubov quasiparticle dispersion

expected to be associated with the opening of the superconducting gap it was

also decided that a few other features merited attention. As a check on the

efficacy of our methodology for generating accurate FNS an examination of

the nodal state was required. That is because the node should exhibit no en-

ergy gap either above or below Tc, regardless of doping, and so should cross

the Fermi level in a manner very similar to that of the model linear band

examined in Chapter 6. Similarly, it was expected that an examination of
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the unoccupied part of the electron spectral function in the normal pseudogap

state in the vicinity of the node, i.e. along the so-called Fermi arc, should

yield similar results. As shall be seen below we were pleasantly surprised to

find that this is most definitely not the case for the underdoped samples that

were examined. Finally, because the pseudogap state remains one of the most

baffling phenomena in solid state physics, it was of paramount importance to

examine the unknown status of its unoccupied side using FNS in the normal

state as well as its evolution below Tc. This experiment was motivated in part

by the time resolved optical reflectance mentioned above as well as various

measurements showing the existence of a strong diamagnetic response for un-

derdoped cuprates well above Tc, but below T ∗, indicative of a strong phase

incoherent pairing persisting well into the normal state, i.e. pre-formed pairs.

Taken altogether it was hoped that these measurements could shed some light

on the long known particle-hole asymmetry in cuprate tunneling specta indi-

cating a much larger density of electronic states below the chemical potential

than above it.

8.2 Result of the Examination of Unoccupied

States in Optimally and Under Doped Bi2212

Our study focused on two dopings of Bi2212; the optimally doped samples

with a Tc of 91 K and doping fraction of .16 and heavily underdoped samples

with a Tc of 65 K and a doping between .12 to .13. Tc was measured for all

samples by the bulk magnetic susceptibility technique in a Magnetic Properties
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Measurement System (MPMS) using SQUID magnetometry. All samples were

fabricated by the traveling solvent floating zone technique known to yield the

highest quality of single crystal cuprates. Underdoping of samples was achieved

by annealing in a vacuum at 550 C for 48 hours. Samples were oriented in a

Laue diffractometer prior to mounting. All measurements were carried out on

beamline U13UB with a Scienta SES-2002 photoelectron spectrometer. The

overall energy and angular resolution of the spectrometer/beamline system

was 15 meV and .1 degrees, respectively. The energy resolution as well as

the position of the Fermi level were calibrated on a bulk sample of gold in

electrical contact with the Bi2212 samples. Samples were cleaved in situ by

the top post method with a vacuum chamber base pressure of 5× 10−11 Torr.

All measurements were carried out within 24 to 48 hours of cleaving a given

crystal.

Though optimally doped Bi2212 is well known to have a small pseudogap

with a T ∗ of about 140 K it essentially served as the control for the experiment

because the sample quality is the most consistent of any doping of Bi2212 and

because the high Tc and relatively sharp, bright states, especially below Tc,

make it easier to observe the details of low lying thermal excitations. It is also

a useful check because it is by far the best studied doping of the Bi2212 family,

at least from the point of view of ARPES. Figure 8.2 shows a typical result for

both raw and Fermi normalized spectra taken on optimally doped Bi2212 at 80

K in the nodal region. The location of the cut in k space is shown in the inset

of panel a. A “bump” in the spectrum above EF is clearly visible in panel a,

as well as in the corresponding EDC stack plot in panel c. Panel b shows the

FNS generated by normalizing the spectrum in panel a to the experimental
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Figure 8.2: Spectra from optimally doped Bi2212 below Tc treated by the
LRM a) before and b) after Fermi normalization. Panels c) and d) show
EDC’s corresponding to panels a) and b), respectively. The location of the
cut through the Brillouin zone is shown in the inset of panel a).
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temperature Fermi distribution. The spectrum in panel a, from which panel b

was derived, has already been corrected for resolution effects using the LRM.

The overall result depicted in panel b and in the corresponding EDC stack plot

in panel d shows a remarkably conventional BCS-like Bogoliubov quasiparticle

dispersion. The peak-to-peak energy gap 2∆ is symmetrical about the chemi-

cal potential and the coherent weights of the occupied and unoccupied bands

evolve as a function of momentum in accordance with the coherence factors u2
k

and v2
k of a simple weak coupling pairing model. Because superconductivity in

even the optimally doped cuprates is not believed to originate from the BCS

mechanism such behavior for the Fermion spectrum in the presence of a su-

perconducting gap should be interpreted as a generic result of the formation of

a phase coherent Cooper pair condensate. In this sense, the superconducting

gap in optimally doped Bi2212 in the nodal region appears to be eminently

conventional and in striking accord with the results of the simple simulations

shown in Chapter 6.

An examination of the FNS for a Tc = 65K underdoped sample in the

superconducting state shows similar results. Spectra acquired at the node for

both the OP 91 and UD 65 samples below Tc, Figure 8.3a and c, show the

unbroken persistence of the single particle spectrum above EF . Away from

the node, both dopings display a particle-hole symmetric superconducting gap

as shown in panels b and d of the same figure. It should be noted that the

spectrum shown in panel d of Figure 8.3 was acquired at a point along the

Fermi surface that is off of the Fermi arc at Tc, or in other words at a point in

k space that is already pseudogapped before the sample goes superconducting.

This highly nontrivial fact will be explored more fully below though for the
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Figure 8.3: FNS of optimally doped (panels a) and b)) and Tc= 65 K un-
derdoped (panels c) and d)) Bi2212 below Tc. Panels a) and c) show spectra
acquired at the nodes. Panels b) and d) show spectra acquired away from the
nodes at Fermi surface angles φ shown in the insets.
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Figure 8.4: Normal state FNS for optimally doped (panels a-c) and underdoped
(panels e-g) Bi2212 in the normal pseudogap state at T = 140 K. Panels d and
h show the cut locations in k space for the optimal and underdoped samples,
respectively. Panel h shows a small, closed Fermi pocket consistent with the
underdoped FNS data. The area of this pocket is consistent with the nominal
doping level of the underdoped sample, about .12. The underdoped sample
displays a striking electron-hole asymmetry in the normal state.

moment it suffices to show that at least in the superconducting state the single

particle spectral functions of both samples appear to be very ordinary for a d-

wave superconductor. This behavior is consistent with another similar study

of FNS in the superconducting state of a Tc = 91 K “underdoped” Bi2212

sample [60].

The first major surprise of this experiment occurred when we examined

the normal state FNS of the underdoped sample for points in the Brillouin

247



zone along and just off of the Fermi arc. Normal state FNS at 140 K for

the optimally doped sample are plotted in Figure 8.4, panels a-c, and for the

underdoped sample in panels e-g. The locations of the cuts in the Brillouin

zone are shown in panels d and h for the optimally and underdoped samples,

respectively. While the optimally doped sample shows rather conventional

metallic behavior along its Fermi arc, i.e. displaying bands crossing the Fermi

level unperturbed into unoccupied territory, the same is decisively not true

for the underdoped sample. Upon moving away from the node, the spectral

function acquires a clear particle-hole asymmetry. The suppression of spectral

weight above EF , with the top of the band moving to progressively lower

energy as one moves away from the node, is the hallmark of single particle gap

opening and centered above the Fermi level. That this gap is not particle-hole

symmetric even when the top of the band has moved below the Fermi level

(panel g) indicates that this gap cannot be associated with the formation of

Cooper pairs above Tc. Further, the phenomenological description of the Fermi

arc as comprising the set of single particle states in the vicinity of the node that

are not pseudogapped in the normal state clearly requires some modification

to reflect the fact that these states are not defined by what is left behind after

the antinodal pseudogap is opened but rather by how this new, high energy

gap disperses in momentum space. A full discussion of whether and how the

“classic” antinodal pseudogap and this apparently new energy gap are related

shall be deferred until the remainder of the data has been examined.

The data presented thus far give no indication of possible agreement with

the observation of a strong diamagnetism or energy symmetric gap indicated

by normal state Nernst effect or tunneling spectroscopy measurements. Be-
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Figure 8.5: FNS from the Tc = 65 K samples a) at 50 K, b,d) at 140 K and
c) 40 K. The cut locations are diagrammed in panel f. Panel e) EDC’s at kF

from panels a and b just off the Fermi arc. Panel g) EDC’s at kF from panels
c and d near the antinode. Nodal states display electron-hole asymmetry
in the normal state with symmetry restored in the superconducting state.
Antinodal states display electron-hole symmetry in both the normal pseudogap
and superconducting states.
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cause it is impossible for “pairing” in the particle-particle channel observed in

the nodal region to generate such a signature, which has thus far been taken

as evidence of the existence of so-called pre-formed Cooper pairs, one must

seek remedy elsewhere. In searching for a spectroscopic signature of this phe-

nomenon in ARPES it became evident that if only by process of elimination

it was necessary to examine the unoccupied states much closer to (π, 0) where

the classic pseudogap is strongest. The result of this part of the experiment

is shown in Figure 8.5. Panels a and b of Figure 8.5 show the FNS below and

above Tc, respectively, for the underdoped sample a short way past the Fermi

arc but still well away from the antinode. The particle-hole asymmetry of the

gap in this region is is highlighted by the EDC’s taken at the approximate

Fermi momentum kF . Panel c of the same figure shows an FNS acquired near

(π, 0) in the superconducting state with an energy symmetric, zero energy

centered gap (panel g) as one expects for a superconductor. Extraordinarily,

the FNS at the same point by the antinode far above Tc, panel d in the figure

with accompanying EDC in panel g, also shows a particle-hole symmetric gap

with the gap minimum centered at EF . The locations of these cuts through

the zone are shown in panel f.

8.3 Interpreting the Results

Because of the difficulty in acquiring this data and because of the wealth of

qualitatively new information contained therein, it was very difficult to form a

complete picture of what is going on here. Nevertheless a few astute observa-

tions about the data set and some support from complementary experimental
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techniques and theory offer a way in. In assimilating all this information it is

still easiest to examine various regions of the Brillouin zone separately and to

only then attempt to draw an overall conclusion.

8.3.1 The Nodal Region

In discussing the nodal region around which particle-hole asymmetry is ob-

served it is useful to examine some explanations for the Fermi arc phenomenol-

ogy that existed prior to this experiment. The Fermiology of the cuprates has

long been studied using the so-called symmetrization technique rather than the

Fermi normalization technique used in this study[36]. Symmetrization takes

advantage of the fact that the occupied part of the ARPES spectrum goes

like A(k, ω)fullf(ω) and the unoccupied part goes like A(k, ω)empty(1 − f(ω)).

If one assumes that the occupied and unoccupied parts of the spectrum are

essentially identical, as was essentially the case with all of our optimally doped

data, then one can approximate the full low energy spectral function by saying

Afull ≈ Aempty so that A(k, ω)f(ω) + A(k, ω)(1 − f(ω)) = A(k, ω), effectively

canceling the contribution to the spectrum of the Fermi distribution. In prac-

tice this amounts to reflecting the spectrum across EF , and possibly about kF

as well, and summing so as to acquire a full picture at both positive and neg-

ative binding energies. While a reasonable thing to do in some circumstances

and clearly an easier method than generating FNS, it will obviously fail in

the presence of particle-hole asymmetric states like those observed here in un-

derdoped Bi2212. While the physical assumptions behind this procedure are

now known to be grossly inadequate for studying the cuprates it nevertheless
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provides at least a convenient method for observing whether and where a gap

has opened up in the density of states around the Fermi level.

In a world in which the Fermi arc at all dopings is assumed to look like

what was seen here in only the optimally doped system it is difficult to come

up with a plausible physical explanation for the lack of a Fermi surface in

the normal state at suboptimal dopings. In light of the non-ARPES measure-

ments cited above that indicated the presence of preformed pairs in the normal

state the most “natural” explanation for some time was in the spirit of the

Emery and Kivelson model. In this picture it was imagined that while the

cuprates exhibited a strong pairing associated with the T ∗ energy scale, true

bulk superconductivity was only achieved upon doping and lowering the tem-

perature to the point that classical thermal phase fluctuations between pairs

could be overcome. Once phase coherence was established across the sample

a true condensate of strongly bound Cooper pairs could form. In this picture,

the Fermi arc was the result of a loss of phase coherence around the node at

elevated temperatures that subsequently caused the order parameter in this

region to average to zero, thus forming arcs in the single particle density of

states where the superconducting gap is weakest. The recent observation, still

in doubt, that the length of this Fermi arc scales with T/T ∗ appeared to sup-

port an argument of this type[61]. This argument is essentially destroyed by

the observation of an asymmetric gap in the underdoped material, e.g. one not

centered at zero energy, evolving smoothly from the arc region to beyond the

arc. This point past the arc (Figure 8.5b) would under symmetrization appear

as a pairing gap but in fact is due to another interaction altogether. Thus the

Fermi arc is not simply the result of a partially dephased pre-superconducting
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state but something else altogether.

As it turns out, a far more satisfactory and ultimately more profound

explanation for why we observe node-centered arcs of Fermi surface in the

normal state of underdoped cuprates has its origins in an equally old but until

recently unverifiable idea. This idea, simply put, is that doped Mott insulators

form an entirely new taxonomic kingdom of materials on a par with metals

and semiconductors. Undoped semiconductors have a band gap and no Fermi

surface, both qualities corresponding to the absence of free carriers in the

system at low temperatures. Metals on the other hand are characterized by a

well defined Fermi surface, the area of which in the Brillouin zone is directly

proportional to the number of free carriers in the system, which is in turn

proportional to the filling fraction of the bands crossing the Fermi level and

forming the Fermi surface. This is the Luttinger sum rule. In the language of

many body theory it is said that the Fermi surface occurs at the zero energy

poles of the electron Greens function.

The undoped Mott insulator defies these expectations. If one were to sim-

ply count the filling of these systems from an examination of the chemistry

involved in the copper oxide plane one would arrive at the conclusion that

the valence band is half filled and so there should be a metallic Fermi surface

whose area totals up to half that of the full Brillouin zone. LDA certainly

gives this picture and it is the LDA Fermi surface that, though wrong, is

drawn in the literature and so far in this thesis as a means of at least orient-

ing where in the zone we are. However, because of strong correlation effects

arising from electron-electron Coulomb interactions then through strong su-

perexchange coupling J it is more energetically favorable for this system to
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form an insulating antiferromagnet of the type depicted in Chapter 2.

Now the question arises as to what happens when you dope a Mott insula-

tor, as is routinely done to achieve high superconducting transition tempera-

tures in the cuprates, by adding extra holes or electrons. As we’ve said before

it appears that we are faced with a paradox, for although the cuprates gradu-

ally begin to acquire upon doping some of the properties one associates with a

metal, e.g. they conduct electricity and develop electronic bands that cross the

Fermi level in places we call arcs, no normal state Fermi surface develops and

so there is no obvious relationship between the valence band filling (now less

than one half in the hole doped curprates) and the number of free carriers in

the system. Further, there is no obvious way to relate these seemingly simple

properties to the low energy electronic states of the system that in a real metal

would contain almost all the relevant information we seek.

Early in the theoretical exploration of the cuprates it was suggested that

many of the normal state properties of the system could be explained if rather

than forming a single large open Fermi surface pocket centered at (π, π) with

an area corresponding to the overall filling 1/2+δ (the 1/2 originating from the

original half filled band), where δ is the doping fraction, small, closed Fermi

surface pockets formed in the nodal region encompassing an area proportional

to δ itself[62]. This picture makes the rather appealing physical argument that

you really should always have a pocket of some kind with an area correspond-

ing to the number of free carriers in the system even if the rest of the carriers

of the system are frozen out of the equation do to lingering strong correlation

effects. It also provides a nice way of understanding one of the fundamental

problems of correlated electron systems in general, i.e. how a change of carrier
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concentration not only causes a shift in the chemical potential as would be

the case for a metal or semiconductor, but how the overall band structure can

undergo significant qualitative changes as a function of doping that have no

place in traditional band structure calculations. Clearly, if correct, this state-

ment would amount to saying the doped Mott insulators form a classification

of conducting materials all their own and so of course the vast majority of

bulk and even microscopic properties measured in such systems should appear

“anomalous”.

With the development of ARPES as a technique to directly and accurately

map the Fermi surfaces of a wide range of materials off limits to traditional,

more indirect measurements it would seem a trivial matter to examine the

locations of electronic states around the Fermi level across the whole Brillouin

zone to determine whether and how such pockets come to be. And indeed over

the course of many years this measurement has been performed on a variety

of cuprates at various doping levels always with the same conclusion: there

are no “little pockets” to be found, only disconnected arcs of density of states

at the Fermi level – Fermi arcs – in the normal pseudogap state. Even with

the recent advent of de Haas-van Alphen measuremnts on pathologically clean

YBCO samples in ultrahigh magnetic fields appearing to show the existence

of small Fermi pockets in this state[63], the issue has remained far from clear

precisely because the samples used in these measurements are considered too

unrepresentative of the wider body of cuprates and because no one really

knows what happens when you apply a 60 Tesla (!!!) magnetic field to a very

complex material.

As the reader will no doubt have gathered by now from this lengthy dis-
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cussion of cuprate pocketology and some of the figures presented above we

believe the idea that small nodal Fermi pockets emerge upon doping the Mott

insulator has quite a bit of merit to it after all. First, in a theoretical develop-

ment that occurred prior to the experiments discussed here, it was shown that

under certain circumstances the Luttinger sum rule has to be modified [9].

Specifically, it was shown that the introduction of dopants into a disordered

spin liquid spiritually associated with the cuprates requires a modification of

how one defines a pocket. In systems of this type it turns out that pockets are

not formed by a Fermi surface as such but by a Fermi “arc” defined by the

poles of the electron Greens function at zero energy that merges seamlessly

with a “Luttinger arc” formed by the zeros of the Greens function at zero

energy. This Fermi-Luttinger pocket, or “hot pocket”, manifests itself as a

Fermi arc because the spectral weight associated with the zeros of the Greens

function (the Luttinger surface) is completely suppressed by coherence factors

as one moves away from the Fermi part of the surface, which remains visible

to singly particle probes such as photoemission.

This theory appears to explain rather conveniently how one can have a

pocket only half of which is visible to a probe of electron density of states such

as ARPES, and indeed one has a right to wonder how such a phenomenon

could ever be observed as by definition half of what you’d look for in an ex-

periment is invisible. The theory as presented at the time gave no obvious

prescription as to what to look for in what can be observed to settle the is-

sue one way or the other. Here we maintain that our measurements do in

fact show an experimental signature of such a phenomenon. In the course of

interpreting the data presented in Figure 3 showing electron-hole asymmetry
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Figure 8.6: Model calculation from Yang et al. (unpublished) showing how
the band structure is renormalized away from the nodes by the opening of a
gap above EF . The thickness of the bands schematically denotes the relative
spectral weights of the “rising” and “falling” parts of the band arising from
coherence factors similar to the BCS u2

k and v2
k.

along and past the Fermi arc in the normal pseudogap state it was observed

that if one were to symmetrize the FNS acquired midway along the arc in

momentum, rather than energy, about the k point at which the band appears

to reach the edge of a gap, the resulting spectrum would form a parabola the

invisible side of which recrosses the chemical potential just shy of the antifer-

romagnetic zone boundary running from (π, 0) to (0, π). This observation of

a) a dispersing energy gap opening above the Fermi level, b) loss of coherent

weight for k points beyond this gap edge and c) the inference of an invisible

yet mathematically necessary band forming the other side of a pocket at a

meaningful symmetry point in the Brillouin zone provides strong evidence for

the type of Fermi-Luttinger pocket described above and in the reference. The

situation in energy-momentum space is shown in Figure 8.6, adapted from

reference [62]. The zero energy surface, i.e. the form of the pocket, inferred
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from our measurements is shown in Figure 8.5, panel h. Further ARPES mea-

surements around the edge of the pocket arc acquired since our study agree

with and extend this picture. The area of this pocket is approximately δ/2

as it should be for a bilayer system in which the doped carriers must almost

equally fill the bilayer split bonding and antibonding bands. Further, this pic-

ture of a pocket existing only on one side of the magnetic zone boundary is in

qualitative agreement with recent tunneling spectroscopy measurements[64].

Additionally, recent microwave conductivity measurements appear to bare

out this picture. Broun et al. [65] observed that for YBCO with dopings

close to 5 percent per copper oxygen plane that Tc ∝ (δ − δ0)
1/2 while the

zero temperature extrapolated superfluid density ρs0 ∝ δ − δ0 where δ0 is the

critical doping at which superconductivity sets in: five percent per plane. Such

a dependence can be derived under the pocket picture as follows. At very low

dopings we can, to first order, approximate the area of a little pocket as a

circle so A = πk2
r where kr is the radius of the pocket in reciprocal space. The

doping this area represents is δ = 2πk2
r + δ0 where the factor of two accounts

for the fact we can put two electrons of opposite spin at each momentum as we

fill the bands. It has been shown [61] that the Fermi arc length L ∝ T/T ∗ for

underdoped samples above Tc and thus the arc length above Tc, Lc = DTc/T
∗

where D is a constant of proportionality on the order of unity. Approximating

this arc length, which contains all the density of the electronic states at the

Fermi level just above Tc as half the circumference of the circle enclosing the

pocket we find Lc = πkr = DTc/T
∗. Eliminating kr between the equations for
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area and circumference we find

δplane − δ0 =
2

π
(
DTc

T ∗
)2 (8.1)

which is to say Tc ∝ (δ − δ0)
1/2.

A more honest but difficult calculation in which we take the pockets to be

elliptical rather than circular also yields a quadratic dependence of the doping

on Tc but with a different numerical prefactor. For an arbitrarily shaped

elliptical pockets as one would have for higher dopings one can approximate

the arc length by a series expansion in the semimajor axis of the ellipse or,

more accurately, by incomplete elliptical integrals performed numerically. The

supposed T ∗ dependence of the Fermi arc length, which is by no means settled

at this time, is at any rate small over the narrow doping range examined in

the experiment and at higher dopings may account for the deviation from the

simple quadratic dependence of Tc on the doping. It has been shown that

the data of Broun et al. is tantamount to the relationship ρs0 ∝ T 2
c and thus

proportional to the doping. If we take the density of states at the fermi level

N(0) ∝ Lc so that effectively Tc ∝ N(0)2 we find that the cuprates differ

drastically from BCS superconductors with a pairing energy proportional to

e−1/N(0)V and to N(0)V (where V is a sample volume) for weak and strong

couplings, respectively [5].

While more measurements at other doping concentrations and tempera-

tures are clearly required to verify the consistency of this picture for more

than one setting the data is clearly consistent with a small Fermi-Luttinger

pocket picture in which small pockets form on only one side of the magnetic
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zone boundary. The asymmetric shape of this pocket in k space, falling on

only one side of the antiferromagnetic zone boundary, indicates that super-

conductivity cannot be caused by the presence of the well known Q = (π, π)

magnetic mode which many have presumed forms the Cooper pairing “glue”

of the cuprates. Pockets consistent with that picture would form symmetri-

cally about the antiferromagnetic zone boundary. Similarly, any attempt to

explain the normal pseudogap ground state as being conventionally metallic,

as suggested by recent quantum oscillation experiments, will also fail.

To summarize, FNS of the nodal region strongly indicate that doped Mott

insulators, of which underdoped Bi2212 is a classic example, are characterized

by the opening of a gap away from the node above the chemical potential, the

result of which is consistent with the formation of a very special kind of Fermi(-

Luttinger) surface pocket whose area is proportional to the doping fraction δ

(δ/2 in the bilayer system) rather than the overall carrier concentration per

plane (1/2)(1 + δ). This observation is inconsistent with the idea that the

formation of incoherent Cooper pairs in the normal state above Tc originates

in the nodal region of the Brillouin zone. Further measurements to pinpoint the

binding energy of the upper side of this gap as well as to better understand

the doping, temperature and k dependence of this phenomenon are clearly

required. Because it is thought that the size of these pockets, as determined by

the Fermi arc length, increases with increasing temperature as demonstrated

by the T/T ∗ scaling of the Fermi arc length, reflecting the shrinking of the

pseudogap, there is clearly a great deal of work that needs to be done to

connect the physics of the nodal and antinodal regions into a seamless whole.
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8.3.2 The Antinodal Region

As always in the cuprates the discussion must now return to the antinodal

region and the physics of the classic normal state pseudogap. This discussion

is made more difficult by fact that new and intriguing experimental results

that appear to finally be shedding some light on the nature of this state have

been entering the literature at a furious pace. For the moment the best we can

do is to interpret our experiment on its own merits and then attempt to place

it in the larger context of what is thought to be known about the pseudogap

at the present time.

To begin with, the data presented above clearly indicate the presence of

an energy symmetric gap both above and below Tc in the pseudogap region

of the 65 K underdoped Bi2212 material. This characteristic symmetry of

the energy gap is a necessary but not sufficient condition for the existence of

Cooper pairs either above or below Tc. Further, it is not at all clear at present

how one deals with the topological problem of the manner in which states

forming the boundary of this symmetric gap evolve, presumably smoothly,

into the asymmetrically gapped pseudogap states observed close to the Fermi

pockets, as exemplified by the FNS in Figure 8.5b. That said, if we take at

face value the Nernst effect measurements showing strong diamagnetism and

vortex flow in the pseudogap state above Tc but below T ∗ as evidence for some

kind of Cooper pair syrup in the normal state [8] then we are again led by

process of elimination to the (π, 0) states that are here seen to exhibit features

consistent with such pairing. Further, the lack of a true condensate in the

presence of this pairing is easily understood to result from the obvious lack of
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coherence observed in the states above Tc.

The location of these pairing states indicates they occur along the copper-

oxide bonds on real space. That these pairs are highly localized on the real

space lattice is seen both by their location in k space and by the fact that the

electrons in these states have nearly infinite mass in that direction due to the

presence of the extended van Hove singularity along the Γ−M direction in the

Brillouin zone. That Cooper pairs can be forced by real space constraints into

what is effectively an insulating state has been demonstrated on an engineered

system using conventional superconducting materials[66]. That such behav-

ior might be able to arise naturally in a single crystal then should perhaps

not come as too big a surprise. The lack of coherence between such isolated

Cooper pairs results naturally from the high temperature of the system and

accompanying classical thermally induced phase fluctuations, the extremely

short coherence length for such a pair if one were to attempt to calculate it in

the literal BCS fashion as ξ0 = ~vF

π∆0
and the fact that Cooper pairs, as bosons,

are subject to the fact that pair number and wavefunction phase are conjugate

variables, i.e. that ∆N∆φ ≥ ~/2. If we fix the number of particles by real

space localization then the conjugate phase of the wavefunction is necessarily

indeterminate and so no phase locking across pairs can occur.

In addition to these observations from ARPES and how they interact with

the most basic level of theory perhaps the most revealing additional piece of

information comes from tunneling spectroscopy. While the spectroscopic in-

formation offered by this technique is somewhat limited compared to ARPES

because it measures a zone-integrated density of states modulated by some

unknown tunneling matrix element, this handicap is made up for by the abil-
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ity to resolve in real space where certain spectroscopic signatures originate

from. Recently, it has been shown by several groups that even well into the

superconducting state of the underdoped materials states that in energy corre-

spond to the pseudogap states seen around the antinode in ARPES form a real

space “checkerboard” pattern. This checkerboard is incommensurate with the

atoms of the lattice (that is, it resides between atoms) and has no long range

order. Interpretations of this phenomenon in the tunneling community range

between simply observing that the pseudogap even below Tc corresponds to

glassily ordered bound excitations in real space to their being the result of a

more or less conventional charge density wave with an onset temperature of

T ∗ and a total absence of long range order[67].

8.4 Tieing it All Together

These views represent the two main strains of belief in pseudogap physics.

On one side are those who believe the pseudogap reflects the presence of an

ordered ground state in competition with superconductivity, e.g. some kind

of electronic density wave. On the other side are those who believe that the

pseudogap, if originating from preformed pairs, causes or is at least a nec-

essary ingredient for high temperature superconductivity in the underdoped

cuprates. Our experiment points to the latter explanation. That is, the pseu-

dogap is largely representative of the formation of some kind of quasi-ordered

array of localized Cooper pairs with a pairing temperature on the order of T ∗.

Around T ν they begin to acquire enough phase coherence to support localized

supercurrents robust enough to screen a magnetic field and produce vortices
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but that are unable to form a bulk superconducting condensate across the

whole sample. On the other hand there are good reasons to believe that the

pseudogap pairs do not participate in the superconducting condensate that

emerges, presumably from the Fermi arcs, below Tc.

This order of things in fact must be true if we make the following obser-

vation. We know that the pseudogap states remain localized even below Tc

from tunneling and that both above and below Tc they exhibit an energy gap

consistent with, if not proof of, pairing. Nernst effect measurements suggest

pairing in the normal state though there have been plausible suggestions that

such a signal could arise from the presence of a more conventional density

wave. How can we tell the difference? An examination of Figure 8.5 gives

the answer. The states observed closest to the antinode exhibit a drastic in-

crease in coherence below Tc as compared with above and the states observed

close to but just off of the Fermi pocket not only exhibit an onset of coher-

ence below Tc but actually show that superconductivity forces electron-hole

symmetry onto this previously asymmetric gap. The simplest explanation for

these observations is that the pseudogap results from frozen pairs that acquire

phase coherence, if not mobility, by sympathy with the condensate formed by

the onset of true superconductivity in the nodal region. Conversely, there is

no obvious reason anything at all should happen with respect to coherence in

the pseudogap states were they to be indicative of the presence of an order in

competition with superconductivity.

There is clearly more to this story. Experimental evidence has recently been

piling up showing that the condensate below Tc originates from the Fermi arc.

In this picture one recovers something at least in the same spirit of BCS in the
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sense that one requires a density of electronic states at the Fermi level out of

which to form mobile Cooper pairs that will condense and carry a current. We

have not touched at all on how this pairing might actually come to pass except

to rule out some possibilities, e.g. the magnetic resonance, in the underdoped

systems. We have also not so much as mentioned the overdoped cuprates

which, while presumed to be much more “conventional” in nature because

there is no obvious signature of a pseudogap, nevertheless defy explanation as

to how they can acquire a Tc ranging up to 90 K in Bi2212. These questions

lie beyond the reach of the experiments described in this thesis and so will

have to await the patience of future students and post docs.
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