Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Geometric Algorithms for

Dynamic Airspace Sectorization

A Dissertation Presented
by
Girishkumar R. Sabhnani
to
The Graduate School
in Partial fulfillment of the
Requirements
for the Degree of

Doctor of Philosophy
in
Computer Science

Stony Brook University
May 2009

Stony Brook University
The Graduate School

Girishkumar R. Sabhnani

We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree,
hereby recommend acceptance of this dissertation.

Joseph S. B. Mitchell - Dissertation Advisor
Professor, Computer Science Department

Esther M. Arkin - Chairperson of Defense
Professor, Computer Science Department

Jie Gao - Committee Member
Assistant Professor, Computer Science Department

George Hart - Committee Member
Research Professor, Computer Science Department

Dr. Robert L. Hoffman - Outside Member
PhD Applied Mathematics, Metron Aviation, Inc. and Institute for Systems
Research at the University of Maryland, College Park

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

il

Abstract of the Dissertation
Geometric Algorithms for Dynamic Airspace Sectorization
by
Girishkumar R. Sabhnani

Doctor of Philosophy
in
Computer Science

Stony Brook University
2009

The National Airspace System (NAS) is designed to accommodate a large
number of flights over North America. For purposes of workload limitations
for air traffic controllers, the airspace is partitioned into approximately 600
sectors; each sector is observed by one or more controllers. In order to satisfy
workload limitations for controllers, it is important that sectors be designed
carefully according to the traffic patterns of flights, so that no sector becomes
overloaded.

We formulate and study the airspace sectorization problem from an al-
gorithmic point of view, modeling the problem of optimal sectorization as a
geometric partition problem with constraints. We evaluate our algorithms ex-
perimentally. We conduct experiments using actual historical flight track data
for the NAS as the basis of our partitioning. We compare the workload bal-
ance of our methods to that of the existing set of sectors for the NAS and find
that our resectorization yields competitive and improved workload balancing.
In particular, our methods yield an improvement by a factor between 2 and 3
over the current sectorization in terms of the time-average and the worst-case
workloads of the maximum workload sector.

Further, we investigate the dynamic nature of air traffic and use that to
guide sector designs that evolve over time. Depending on the time of day,
demand profiles, weather changes, etc. the traffic density of various parts of
the NAS changes. In such a scenario, it is more practical to have dynamic
sector designs in order to accommodate the changing traffic; in fact this is
a common practice even today. The goal is to automate the identification
and re-configuration of these dense traffic areas. A simple solution would just
compute separate sectorizations for different instances of air traffic within a

il

sliding time window. While this method gives excellent workload balance for
each time window, it does not guarantee that the change in sector design is
minimal and local to dense traffic regions; a feature which is very important
for dynamic sectorization. Hence, we propose an approach which involves
local merging and re-partitioning of neighboring sectors in high traffic density
regions.

v

Contents

List of Figures
List of Tables
Acknowledgements

1 Introduction
1.1 Motivation
1.2 Related Work
1.3 Summary of Contributions

2 Static Sectorization

2.1 Convex Sector Design
2.1.1 The 1D Sectorization Problem
2.1.2 The Sectorization Problem in 2D
2.1.3 Experimental Results

2.2 Feedback from the Controllers

2.3 Flow Conforming Sector Design
2.3.1 Modeling Constraints
2.3.2 Extending the Convex Sectorization Heuristics
2.3.3 Experiments oo

2.4 3D Sectorization Lo

25 Conclusion

3 Dynamic Re-Sectorization
3.1 Imtroduction
3.2 Multiple “Clean Sheet” Sector Designs
3.3 Local Adaptable Re-Sectorization
3.3.1 Algorithm
3.3.2 Experiments
34 Conclusion

4 Related Problems
4.1 Scheduling Aircraft to Reduce Controller Workload
4.1.1 Algorithms
4.1.2 Lower Bounds
4.1.3 Experiments
4.2 Trajectory Clustering

vii

xi

60
60
60
62
65
67
68

4.2.1 Algorithms
4.2.2 Experiments

5 Future Work

References

vi

List of Figures

10
11
12
13
14
15

16

17

18

19
20

(Part of) the National Airspace System of United States. . . . 2
Sweeping ¢ (red) rightwards. The hollow (blue) circles indicate
critical points where the max-workload might increase as £ sweeps. 10
Reduction from array partitioning to rectangular partitioning

fora3d x3array. 13
Modeling aspect ratio constraint. 18
Range constraints for pie cutting. 19
Example showing Wheel-cuts of the region into 4,5 and 6 pieces.

The numbers show time-avg. workload. 20
Regions used for the experiments. 23
Partition results for Domain 1.. 28
Partition results for the continental USA (Domain 2). 29
Partition results for ZFW Center. 31
Problematic aspects of BSP Airspace Partitions. 33
Problematic aspects of Pie-Cut Airspace Partitions. 34
Problematic aspects of Wheel-Cut Airspace Partitions. 35
Influences of traffic flow characteristics on sector design. . . . 36

Desired interaction between the (brown) SUA and the (black)
sector boundary. Left: SUA is considerably away from the sec-
tor boundary (desired); Middle: Sector boundary cuts through
the SUA, with considerable part of SUA on each side of the
cut (allowed); Right: Sector boundary clips a corner of SUA

(disallowed). 37
Desired features in a sector design modeled as constraints in
GEOSECT2.0 38

Directional dominant flows shown in ‘blue’ and the buffer from
the sector boundary is modeled as rectangular and disc obstacles
constraint. Lo 39
Modeling SUA Constraint: (black) sector boundaries are al-
lowed while (red) boundaries are disallowed. Left: True mod-
eling using inner and outer offset of the SUA boundary. Right:
Simplified modeling using disc obstacles at the corners of SUA
boundary, as implemented in GEOSECT2.0. 40
Bad (black) sector region and its (red) convex hull. 40
Steps of the BSP heuristic. ZDC partitioned into 8 sectors using
hand extracted (blue) dominant flows. The numbers show time-
avg. workload. 42

vil

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38

39
40

41

42

43

Nodes (points) generated by GEOSECT2.0 for discretizing the
search space with (blue) dominant flows.
Feasible cuts in different orientations at one level of BSP recur-
sion. Points inside the region are internal search nodes I and
the number on top-right is the max time-avg workload.
Datasets along with auto extracted (blue) dominant flows.
Search space (gs) v/s time-avg. workload.
No. of orientations (¢) v/s time-avg. workload.
Angle constraint v/s time avg. workload.
Angle constraint v/s avg. min¢.
Disc constraint v/s time avg. workload
Disc constraint v/s avg. min §. L
Results for Set3. oL
Effect of constraint (on the coordination workload balance) x.

Screenshots of sector designs for the combined objective function.

Results for the entire NAS, one center at a time.
z=const. cut splitting high alt. traffic from low alt. traffic
Results for 3D sectorization of Set3.
Time vs max and avg (over 17) worstcase WL for original sectors
operational in ZDC. At each discrete time i, the air traffic in a
3 hour sliding time window (4,7 + 3) was considered to evaluate
the workloads.
Effect of multiple (k) clean-sheet sectorizations, over the course
of a day, on the peak workload.
Results of the dynamic program to decide the best switching
times (k=3) for sector design (using convex sectorization meth-
ods) in ZFW.o
Local moves available for adaptable re-sectorization.
Plot of maximum aircraft count over time for ZDC, comparing
the original 17 sectors to GEOSECT-D results for a 16-sector
design that is re-optimized over time using a 3-hour look-ahead
and 30-minute re-evaluation interval
Stepping through the adaptable re-sectorization, as implemented
in GEOSECT-D. o
Left: 4 kinds of blocks. Right: The tight-fitting in the groove

Constructing 2 sectors scheduling problem from a given instance
of 3-Partition problem.

viil

43

44
47
48
49
20
20
o1
51
53
o4
25
o6
o7
58

61

63

64
66

67

68

72

74

44

45

46

47

48
49
50

o1
52
53

Screenshots of datasets. The number in the sectors indicate the
max-workload count for the corresponding flight schedules. . .
Grid cell max-workloads (before and after scheduling), for grid
size 0.1 X 0.1.o oo
The (black) trajectories that are fully contained (f = 1.0) in e-
fattening of (blue) dominant flow, are “close” to the dominant
flow.
Left: Tracks; Right: Traffic Density Map showing regions with
high (red), moderate (yellow) and very low (dark green) traffic
density.
Sensitivity of number of dominant flows to the constraints. . .
Number of dominant flows vs coverage.
Screenshot of (blue) dominant flows (along with covered (grey)
tracks) for increasing total coverage (Left: ¢ = 50%, Middle:
c¢=60% and Right: c=70%).
Screenshots of result for Set3 (c= 60%).
Terminal flow interaction in SFO/OAK/SJC..
(Grey blue) Voronoi partition of (red) dominant flows. The
(blue) discs represent constraint zones at flow crossing points.

X

79

83

85

88
89
89

90
92
94

95

List of Tables

N

10

11

12

13

BSP results for the 5 regions after parameter tuning. 24
The statistics for pure BSP, the Final Heuristic and the original
sectors for Domain 1. The number of sectors was 10 in all cases. 26
The statistics for the original sectors, the Final Heuristic, pure
BSP, and pure Pie-Cut for Domain 2. The number of sectors

was 411 in all cases except Pie-Cut, for which it was 412. 27
The statistics for the MIP solutions and the Final Heuristic for

sectorizing ZEW (Dallas) center. 30
Comparing workload and flow conforming metrics for two sector

designs.o 52
Comparing results of 2D and 3D sector designs. 59
Summary of Data Sets used for experimentation. 78

Workload statistics of algorithms for Set1, Set2 and Set3. Max:
Maximum Workload, Mean: Mean of workload, Var: Variance
of workload 78
Workload statistics of algorithms for Set4 and Set5. Max: Max-
imum Workload, Mean: Mean of workload, Var: Variance of
workload 80
Time shift statistics of various methods for Set1, Set2 and Set3.
Max: Max shift, Total: Sum of absolute value of shift, Avg:
Average of absolute value of non-zero shifts. (format 14:21:48.04
means 14 days 21 hours 48.04 minutes) 80
Time shift statistics of various methods for Set4 and Set5. Max:
Max shift, Total: Sum of absolute value of shift, Avg: Average
of absolute value of non-zero shifts. (format 14:21:48.04 means
14 days 21 hours 48.04 minutes) 81
Results of Right-Shift heuristic with additional grid constraints
for Setl and Set2. SMax: Sector Max, SMean: Sector Mean,
GMax: Grid Max, GMean: Grid Mean. 82
Results of Right-Shift heuristic with additional grid constraints
for Set5. SMax: Sector Max, SMean: Sector Mean, GMax:
Grid Max, GMean: Grid Mean. 83

Acknowledgements

I begin by acknowledging the two people without whom I would not have pur-
sued doctoral studies in the first place; my advisor Prof. Joseph S. B. Mitchell
and my friend and fellow graduate student Amitabh Basu. I thank Joe for
introducing me to Computational Geometry (CG), the topic that attracted
me the most at Stony Brook University (SBU), and for welcoming me to his
research group. His precious guidance and extensive support have made this
dissertation possible. Joe is a keen problem solver, an excellent teacher, inge-
nious researcher and the most humble person I have ever met.

Further, I thank Prof. Jie Gao for my first hands on experience in conduct-
ing algorithmic research. It was a thrilling experience to witness her transform
my sensor networks course project into a research publication. I owe a lot to
Prof. Esther M. Arkin, whose keen insight and fertile ideas always helped me
through times when I was stuck on a problem in my research. I also cherish
the time I spent working in the algorithms lab under Prof. Steven Skiena. My
instructors (especially Joe, Estie, Steve, Prof. Yair Tauman and Prof. Michael
Bender) at SBU and the courses they taught were equally instrumental in ig-
niting my interest in research.

My work benefited immensely from productive discussions with Dr. Robert
Hoffman, Dr. Jimmy Krozel, Dr. Arash Yousefi, Bert Hackney and Dr. Joseph
Prete of Metron Aviation, Inc. and Gregory L. Wong of NASA, Ames. Many of
the problems investigated in this thesis were triggered by the ideas exchanged
with them over teleconferences. Their domain expertise with Air Traffic Man-
agement allured me towards and enhanced my knowledge about the field.

I am grateful to my colleagues working in the CG group at SBU, in partic-
ular Jason Zou, Joondong Kim, Rik Sarkar, Eli Packer and Irina Kostitsyna.
The blackboard discussions with them were crucial in much of the problem-
solving process during my PhD. My development as a researcher gained a lot
from my participation in the Reading Group and the CG Group meetings at
Stony Brook. The workshops and conferences that I attended during my years
as a PhD student were extremely useful. I specially profited from my visit to
University of Helsinki and my host Valentin Polishchuk.

I value the research collaborations with Prof. Alon Efrat, Arizona State
University and Dr. Alexander Kroller, Braunschweig Institute of Technology.

I thank Prof. Alan Tucker for giving me the opportunity to teach Probability
Theory. I also acknowledge the help from other staff members at SBU, includ-
ing Cynthia Scalzo, Christine Rota, Victor Poon, Brian Tria, Christos Kalesis
and Dr. Kent Marks.

Last, but not the least, I thank my parents, brother, sister-in-law and
friends whose constant encouragement was invaluable to me. In particular, I
thank Mahesh for putting my interests ahead of his, Abhishek for his never
ending belief in me and Rajul for always being there. I would like to dedicate
this thesis to my father, whose unceasing efforts during my formative years
have instilled the values which laid the foundation of this dissertation.

This research was partially supported by grants from the National Science
Foundation (CCF-0528209, CCF-0729019) and the NextGen-Airspace Project
of NASA’s Airspace Systems Program (Order No. NNAO7BB33C). Special
thanks to Gregory L. Wong, Shannon Zelinski, Harry Swenson, and Dr. Pari-
mal Kopardekar at NASA Ames Research Center for their support and insight-
ful comments.

1 Introduction

1.1 Motivation

The National Airspace System (NAS) of United States (US) is a complex trans-
portation system designed to facilitate the management of air traffic with safety
as the primary objective and efficiency as the secondary objective. Airspace de-
sign engineers and air transportation policy makers are continually “tweaking”
the system to adjust for changes in the demand patterns, changes in weather
systems that disrupt the network, and changes in the air traffic management
(ATM) policies that govern the safe operation of aircraft.

A key component of the NAS is the partitioning of airspace into managerial
units. At the highest level, the NAS is partitioned into 20 Air Route Traffic
Control Centers (ARTCC) (in the continental US), each of which is partitioned
into sectors, each one of which is managed by one air traffic controller (ATC)
(or a small team of 1-4 controllers) at any given time of the day. There are
a total of about 600 sectors; the FAA employs about 15,000 controllers, of
which over 7000 are due to retire within the next 9 years [2], suggesting a
need to redesign the airspace for fewer controllers in the near future. There
are roughly 60,000 daily flights within the NAS, interconnecting about 2000
airports (see Figure 1).

The capacity of the NAS to accommodate increases in traffic demand are
being pushed to the limits. Both the FAA and NASA are backing initiatives
to study how greater throughput can be accommodated safely through system
redesign and new technologies for automation, communication, and ATM. The
National Airspace Redesign (NAR) initiative [1] has been in place for the last
few years to address this challenging problem. Airspace redesign is critical for
anticipated future growth in the NAS. Current sector boundaries are largely
determined by historical effects and have evolved over time. Hence, the sec-
tors are too rigid i.e. the sector geometry has stayed relatively constant when
compared to the change in the route structures and demand profiles over the
years; and there is a large workload imbalance across the sectors.

(a) The current sectorization of the airspace. (b) Historical track data for flights.

Figure 1: (Part of) the National Airspace System of United States.

We study the automatic sectorization (“sector boundary design”) of airspace
problem from a formal and geometric perspective, while attempting to model
precisely the system design constraints. In doing so, we have developed a tool,
GEOSECT, which allows us to explore algorithms and heuristics for automatic
sectorization and load balancing. Load balancing here refers to balancing the
workload of a controller managing the sector. The definition of workload is
critical. It needs to take into account human factors issues, which include sub-
jective estimations of psychological/physiological state and mental workload,
such as issues of visual and auditory perception, memory, stress, and atten-
tion span. Many research studies (see, e.g., [32, 43, 5, 49]) have addressed the
modeling and quantification of ATC workload.

We model the problem using a geometric and easily quantified approach to
defining sector workload: Based on a given set of historical (or any other wind
optimized, simulated etc.) flight data, w(o) is defined to be the maximum
(worst-case) or the time average number of aircraft in sector o during a fixed
time window [0, 7] (typically, the time window corresponds to a 24-hour day).
This definition accounts directly for the traffic density /number of flights aspect
of workload. While it does not include other components that often make up
an aggregated workload estimate, we are able to quantify some of these other
factors and add them to our model. We have already done so for coordination
workload between sectors (which accounts for the number of times a flight
must be “handed off” between controllers), as we report later; other workload
components for potential inclusion in our analysis include traffic mix, separa-

tion standards, aircraft speeds, crossing aircraft profiles, angle of intersection
between routes, directions of flights, number of facilities in a sector, location
of conflicts within a sector, number of altitude changes, etc (see [57] for more
details).

The track data is assumed to be given. It gives a set of trajectories (each
given by a sequence of way points with time stamps) for each recorded flight
path in the NAS over the time window [0, 7]. We are using the historical data
to give a distribution (in space and time) of the typical trajectories of the
aircraft in the NAS; on any given day, of course, the flight paths vary, with
weather conditions and other events that disrupt the standard schedule. Thus,
a potentially more desirable method of assessing workload is to use track data
from an airspace simulation (such as NASA’s Airspace Concept Evaluation
System [53]), since this allows one to evaluate the “ideal” routes for a given
set of demand, to incorporate new air traffic concepts (such as “Free Flight”),
and to modify the demand according to predicted future growth. The methods
we investigate, though, work equally well with input from a simulator or from
historical data.

We further extend our methods to account for no-fly constraints and the
location of airports within sectors. In accordance with controller feedbacks to
our methods we enhance capabilities of GEOSECT to have sector boundaries
conform to dominant flows in air-traffic. The software also has capabilities
of 3D sectorization in which each sector along with its 2D polygonal region,
also has an altitude range, usually referred as floor (for low altitude limit) and
ceiling (for high altitude limit).

After extensive development of methods for static sectorization (sector
boundaries remains same over the day or entire season), we investigate meth-
ods to automate dynamic sectorization (sector boundaries evolve over the
course of the day) to accommodate changes in traffic pattern due to changing
demand profiles and the effect of convective weather over the NAS.

1.2 Related Work

The sectorization problem has been previously studied as a global optimiza-
tion problem using techniques of integer programming; after discretizing the
NAS into 2566 hexagonal cells, Yousefi and Donohue [60, 59] formulate and
solve an extensive mathematical programming model that captures more of

the sector workload issues than many prior methods. They use a large-scale
simulation to compute en route metrics that are combined to give a workload
model. Yousefi’s thesis [59] is a good reference for problem motivation and
related literature prior to year 2004. More recent efforts in sectorization are
summarized next. Bloem et al. [17] combine under-utilized airspace sectors to
conserve air traffic control resources, Xue [58] starts with a Voronoi partition
of ‘k’ points (if ‘k’ sectors are desired), and uses genetic algorithms to move
the points so as to optimize workload balance, Conker et al. [22] also explore a
clustering approach starting with square grid cells to design sector boundaries,
but they explicitly refine sector boundaries to conform to traffic pattern. Lee’s
thesis [39] is a good recent resource for understanding airspace complexity.

In the algorithms literature, there has been related work on partitioning of
rectangles and arrays for load balancing of processors; see, e.g., [14, 24, 15, 34,
35, 44, 45]. Geographical load balancing applications have arisen in political
districting (to avoid gerrymandering); see Altman [6] (who proves NP-hardness
of political districting), Altman and McDonald [7], and Forman and Yue [28].
Geographic load balancing also arises in electric power districting; see, e.g.,
Bergey, Ragsdale, and Hoskote [13]. Recent work in the computational geom-
etry literature looks at minimum-cost load balancing in sensor networks; see
Carmi and Katz [9].

What makes our sectorization problem novel compared with most geomet-
ric load balancing problems previously studied is that the input data consists
of trajectories of moving points; typical geometric partitioning problems have
addressed static point data. Also, dynamic aspect of the problem rises inter-
esting questions, less studied in the literature.

1.3 Summary of Contributions

1. We model the airspace sectorization problem in algorithmic terms, as a
precise computational geometric formulation.

2. We develop a suite of heuristics (extending exact solution to a 1D prob-
lem) to solve the problem in two dimensions (2D), and we discuss algo-
rithmic issues.

3. We enhance the methods to incorporate other no-fly zone and special
dominant flow crossing constraints.

4. We implement and conduct experiments to test the effectiveness of our
methods on real flight data. We present extensive computational results
comparing our methods and design choices in our heuristics. We compare
also the results we obtain with the existing sectorization currently in use

by the FAA.

5. We further extend our model for allowing 3D sectorization with floors
and ceilings.

6. Finally we investigate methods for automating dynamic sector designs.

The GEOSECT software is available online at [4]. Our static sectorization
results are quite promising: our best heuristic methods yield an improvement
by a factor between 2 and 3 over the current sectorization in terms of the time-
average and the worst-case workloads of the maximum workload sector. An
even better improvement is seen in the standard deviations (over all sectors)
of both time-average and worst-case workloads. With the flow conforming
methods, we show that while maintaining workload balance, we can still get
good separations from crossing flows, and also get good angle of intersections
of flows with sector boundaries. Extension to local methods for dynamic re-
sectorization also leads to promising future directions.

The experiments currently include only en route airspace. Sectorization
involving Terminal Radar Approach Control (TRACON) areas near major air-
ports is envisioned as a further extension to the methods. We model workload
in terms of aircraft density (number of aircrafts in a sector), determined by
a given set of track data, which may come from historical data or from the
results of a simulation. We have extended the results to include coordination
workload in the objective function as well, so that we take into account the
number of times a flight must be handed off between sectors.

The organization of material in this dissertation is as follows. Chapter 2
includes details of static sectorization methods, both for convex sector designs
and flow conforming sector designs. In there, we also describe methods for 3D
sectorization. Chapter 3 is dedicated to novel ideas for dynamic sector design,
where the sector boundaries change over the course of the day. In Chapter 4, we
explore two problems (re-scheduling aircraft and trajectory clustering) closely
related to sectorization.

2 Static Sectorization

The word static suggests that the sector design remains fixed over the entire
time period for which it was designed, typically a day or the entire season. The
air traffic pattern for the whole time period is used to evaluate the workload
and the goal is to balance this workload across different sectors. More formally,

Problem Statement The (static) sectorization problem is to determine a
decomposition of a given airspace domain D into a set of k sectors, oy, ..., 0,
in an “optimal” manner. Optimality is defined in terms of the workloads,
w(o;), of the sectors, where w(o;) is a numerical value indicating the amount
of “effort” required to manage and control traffic in sector o;. The objective
may be to minimize the maximum workload (min-max) or to minimize the
average workload (min-avg) across sectors, subject to an upper bound, k, on
the number of sectors. Alternatively, the objective may be to minimize k
subject to a bound on the maximum or average workload across sectors.

2.1 Convex Sector Design

In this section, we discuss sectorization methods where the resulting sectors
are required to be convex. We assume that the given airspace domain is also
convex to begin with. Though convexity is a good property for sector shape,
in subsequent sections we relax this for more important features essential for
“acceptable” sector designs. This is joint work [11] with Amitabh Basu.

We begin with a study of the 1D problem, which has interesting algorithmic
aspects of its own. Further, the 1D solution is used within the 2D heuristics
we develop and implement.

2.1.1 The 1D Sectorization Problem

Consider an airspace domain that is 1-dimensional, consisting of an interval,
without loss of generality D = [0, 1], on the z-axis. Flights can take off at
some point (“airport”) of D and land at another point (“airport”).

The input data consists of a set S of flight trajectories, each represented
by a sequence of “waypoints”, (x;,t;), where ¢; is the timestamp when the
flight is recorded to be at location x; € [0,1]. We consider there to be a finite
time horizon, [0, T], containing all of the timestamps ¢;. We generally assume
that the flight speed between waypoints is constant; thus, a trajectory can
be thought of as a t-monotone polygonal chain in the (x,t)-plane. If we view
this problem in a “LineLand” model, then it makes sense that the trajectories
be z-monotone as well; if the speeds are constant along each such trajectory,
then the trajectories are simply line segments. (Other waypoints between the
start and destination z-coordinates may be used to specify changes in speed
or direction. If the 1D problem arises as a projection of the 2D problem onto
the (x,t)-plane, the trajectories will, in general, zig-zag, not necessarily being
monotone in z.) While our methods for the 1D problem can be extended
to more general polygonal trajectories, here, we consider the case of the 1D
problem in which the input S = {sq,...,s,} is a set of line segments in the
(x,t)-plane, all of which lie within the 1-by-T" rectangle, [0, 1] x [0, T7.

The sectorization problem asks us to partition [0, 1] into a set of k sectors,
01,09, ...,0%; i.e., we desire partition points, 1o =0 < x1 < x5 < -+ < Tp_1 <
xp = 1, which define the sector intervals o; = (z;_1, z;).

The maz-workload, w(o;), of a sector o; = (x;_1,x;) is defined to be the
maximum number of flights ever simultaneously in sector o;: this is given
geometrically by the maximum number of segments of S intersected by a hor-
izontal segment, (x;_1,t)(z;,t), for t € [0,7]. One can envision a sweep of
the rectangle [x;_1,2;] x [0,7] by a horizontal segment — the max-workload
of 0; is the maximum number of segments of S intersected during the sweep.
The avg-workload, w(o;), of a sector o; = (x;_1,x;) is defined to be the time-
average number of flights in the sector o;: this is given geometrically by the
sum of the lengths of the ¢-projections of segments S clipped to the rectangle
(-1, 2;] x [0, T], divided by T If we let &;(¢) denote the number of segments of
S crossed by the horizontal segment (x;_1,t)(z;,t), then w(o;) = maxejo,r & (1)

and w(o;) = L [&(t)dt.

The min-k sectorization problem is to determine a set of partition points x;
(and corresponding sectors ;) in order to minimize the number, k, of sectors in
a partitioning of [0, 1], subject to a specified workload bound, B. The workload
bound B stipulates that w(o;) < B, or that w(o;) < B, foralli=1,...,k, in

the max-workload or the avg-workload case, respectively.

The min-B sectorization problem is to determine a set of partition points
x; (and corresponding sectors ¢;) in order to minimize the upper bound, B,
on the workloads of the sectors, subject to their being at most (and therefore
exactly) k sectors, where k is specified as part of the input. In other words, we
want to determine the x;’s, i = 1,..., k, subject to w(o;) < B, or w(o;) < B,
foralli =1,...,k, in the max-workload or the avg-workload case, respectively.

Thus, we get four versions of our sectorization problem, depending if we are
using max-workload or avg-workload measures, and depending on the choice
of min-k or min-B in the optimization.

min-k, max-workload. We are given a budget B on the max-workload in
each sector and wish to minimize the number, k, of sectors. We prove that
the following greedy algorithm is optimal: At stage ¢, with partition points
x1,...,x; already determined, we compute partition point x;.; in order to
make sector 0,41 = (x;,r;41) as large as possible, subject to the budget con-
straint B.

The determination of z;,; according to this greedy rule is an interesting ge-
ometric subproblem in its own right, and it is related to the following problem:
Given a set of n line segments in the plane, determine the lowest point of the
B-level. Recall that the j-level of a set of line segments S' is defined to be the
locus of all points on S that have exactly j segments lying strictly below. In
our setting, “below” means “leftward” in the (x,t)-plane, and “lowest” point
on the B-level means the leftmost point of the B-level. The lowest point on
the B-level in an arrangement of lines is solved in expected time O(nlogn)
by the randomized algorithm of Chan [19]. In fact, this algorithm is readily
adapted to give the same expected running time O(nlogn) for computing the
lowest point on the B-level in an arrangement of line segments or z-monotone
curves of constant complexity [20]. Below, we give a simple O(nlog®n) deter-
ministic algorithm; we are not aware of an O(nlogn) deterministic algorithm
for computing the lowest point on the B-level of an arrangement of lines or of
segments.

Consider sweeping a vertical line ¢ rightwards from x = x;. The max-
workload of the sector between x = z; and ¢ can change only at certain events,

when ¢ passes over a critical point, and it can only go up (by definition) (see
Figure 2). Each left endpoint of a segment of S is a potential critical point.
A critical point may also occur at the intersection of two segments of S, if
the signs of these segments’ slopes are opposite (since, in this case, the ¢-
projections of the segments within the vertical strip start to overlap, possibly
causing the max-workload to change). A critical point may occur at the inter-
section p; N s;, for some segment s; € S, if the signs of the slopes of s; and s;
are opposite; here, p; is the rightwards ray from the right endpoint of segment
s; € S. Finally, a critical point can occur at the intersection p;; N s;, for some
segment s; € S, if the signs of the slopes of s; and s; are the same. Here, p;;
is the rightwards ray from the point a;; = {z = 2;} N's; on s; intersected by
the vertical line z = x;.

We can now solve the geometric subproblem using binary search on the
set of z-coordinates of potential critical points. Using slope selection (see
Cole et al. [21]), we can, in O(nlogn) time, compute the median z-coordinate,
2, among vertices in the arrangement, A, of the n lines containing each seg-
ment of S, the (at most n) lines containing each ray p;, the (at most n) lines
containing each ray p;;, and the (at most n) vertical lines through left end-
points of segments in S. In fact, we compute 2’ to be the median z-coordinate
among vertices of the arrangement that lie between x = x; and = 1. Now,
we can “test” the value ', to see if x;,1 should lie to its left or its right, by
computing the workload, w([x;,2']): If w([x;,2']) > B, then we know that
xip1 < a'; otherwise, x;41 > 2/. Computing the workload w([x;, 2']) is easily
done in time O(nlogn), e.g., by clipping the segments S to the strip [z;, 2],
projecting the clipped segments onto the t-axis, and sweeping in t to deter-
mine the depth of overlap among the projections. Since there are at most
O(n?) candidate critical points, and each step of the binary search takes time
O(nlogn), we get that the overall algorithm to determine z;,; greedily takes
(deterministic) time O(nlognlogn?) = O(nlog®n). Doing this for each stage
of the greedy algorithm yields the following:

Theorem 2.1. The one-dimensional min-k, maz-workload, sectorization prob-
lem can be solved exactly in (deterministic) time O(knlog®n), where k is the
output optimal number of sectors. Using a randomized algorithm, it can be
solved in expected time O(knlogn).

Proof. We have described the algorithm and its running time already. In order
to justify the correctness of the algorithm, consider an optimal partition X* =

{z7, 25, ..., 25 }. Let the output of the greedy solution be X = {xy, xo, ..., xx}.
Let 7 be the first index for which] # z;. If 7 > z;, then x; could not have
been the greedy output, since we could have pushed z; further to the right
(to xf) without violating the budget constraint B. Thus, = < z;. Now, we
can replace =} with z; in X*. The workload of the sector [z} | = x;_1,2] =
x;] clearly cannot exceed the budget B (since the greedy sectors must be
feasible), and the workload of the sector [z}, z} ;] only went down with the
replacement of =} with z; > z;. Continuing this argument, we convert solution
X* into solution X, proving that the greedy algorithm produced an optimal

partition. 0

Figure 2: Sweeping ¢ (red) rightwards. The hollow (blue) circles indicate
critical points where the max-workload might increase as ¢ sweeps.

min-B, max-workload. We are given an allowed number k of sectors and
wish to determine a set of partition points, x1, ..., zx_1,2x = 1, of [0, 1] in order
to minimize the maximum workload, B = max; w(c;). We do this optimization
using binary search, using the min-k solution above to test a particular value,
B’, of (integer) budget B. Note that the optimal B* must lie between 1 and
By < n, where By is the maximum number of segments of S intersected by

10

a horizontal line. For each test value B’, we run the greedy algorithm to
determine the optimal number of sectors, k*(B’), subject to budget B'. If
k*(B') > k, then we know that B* < B’; otherwise, we know that B* > B’
The binary search concludes in O(logn) steps, so we get

Theorem 2.2. The one-dimensional min-B, mazx-workload, sectorization prob-
lem can be solved exactly in (deterministic) time O(knlog®n). Using a ran-
domized algorithm, it can be solved in expected time O(knlog®n).

min-% and min-B, avg-workload. In the average workload case, we con-
sider the “cost” of a sector to be the time-average number of aircraft in a
sector. Since the time-average w(o;) for sector o; = (x;_1,x;) is simply the
sum, (1/7))", cg to,(8), of the lengths pi,, (s) of the t-projections of the seg-
ments s € S clipped to sector g;, each of which varies linearly with x;, we
see that the function f(z) = w((x;,z)) that measures the time-average work-
load of the interval (z;, z) is a piecewise-linear (and continuous) function of z.
The function f(z) has breakpoints that correspond to the z-coordinates of end-
points of S. For the min-k avg-workload, k is exactly equal to [(1/7)M],
where p(s) is the length of the ¢-projection of segment s. The sector (inter-
val) boundaries can be determined by greedily scanning from left to right the
O(n) possible critical values of z, between which the function f(x) has an
easy-to-describe (linear) formula, which we can threshold against the budget
B. Thus, the overall running time becomes just O(nlogn + k) for the min-k
problem. For the min-B version, the avg-workload of each of the k sectors will

be exactly (1/T)M, and the running time of the algorithm to determine
the sector boundaries remains the same, i.e., O(nlogn + k). The correctness
of the greedy approach is proven similarly as before and is omitted here. In

summary,

Theorem 2.3. The one-dimensional min-k (and min-B), avg-workload, sec-
torization problem can be solved exactly in time O(nlogn + k), where k is the
output optimal number of sectors.

Remark. Note that the min-B problem is (trivially) always feasible, both
for max-workload and for avg-workload. The min-k problem is always feasible
for avg-workload and, for max-workload, it is feasible and results in a finite k
provided that B is at least as large as 0,,4,, the maximum number of segments
of S passing through a common point. (If B < 0,4z, No partitioning in the
immediate z-vicinity of the high-degree vertex will suffice to meet the (max-
workload) budget constraint; if B = §,,4., then there needs to be an infinite

11

sequence of partition points, converging on the z-coordinate of the high-degree
vertex.)

2.1.2 The Sectorization Problem in 2D

In contrast with prior work on partitioning sets of (static) points in the plane,
or elements of an array (e.g., see [34, 35, 44, 45]), our sectorization problem
involves a third dimension (time): The input data consists of a set S of trajec-
tories, which correspond to t-monotone polygonal chains in (z,y, t)-space. We
let n denote the number of trajectories, and N the total number of waypoints
(vertices) in the full set of n trajectories. Given a domain of interest, D C R?,
we are to partition it into a small number of sectors, each of which has a small
workload. As in the 1D problem, we can distinguish the min-% from the min-B
problem, where k denotes the number of sectors in the partition and B denotes
an upper bound on either the max-workload or the avg-workload of the sectors.

The max-workload for a sector ¢ C D is the maximum number of tra-
jectories intersected by a “horizontal” (in ¢) polygon of shape o, sweeping
vertically through time, ¢ € [0,7]. Another way to view the problem is to
clip the 3D trajectories to the vertical cylinder defined by o, and project each
clipped trajectory onto the t-axis. The maximum depth of this set of intervals
is the max-workload for o; the sum of the interval lengths, divided by 7', is
the avg-workload for o.

Hardness We expect that the sectorization problem in two (or more) di-
mensions is NP-hard for most formulations of the problem. Here, we prove
hardness of the special case in which sectors are required to be axis-aligned
rectangles, and the goal is to minimize the max-workload upper bound B, sub-
ject to a bound k on the number of sectors. Hardness follows from the result
of Khanna, Muthukrishnan et al [34], who proved that the following problem
is NP-hard (and also NP-hard to approximate within a factor of g): Given an
n x n array A of integers, find a rectangular partition of A into k£ rectangles,
in order to minimize the maximum weight of a rectangle. The weight here is
defined to be the sum of the array elements in the rectangle.

For a given instance of the array partitioning problem, we construct an
instance of the sectorization problem in the following manner. Consider a
two-dimensional n x n grid in the (z,y)-plane corresponding to the array A,
with unit width for each cell. Let e = 1. For each cell (,7) of the array A

12

(1 <i<n,1<j<n)we denote the weight of the cell by w; ;. In the cell
corresponding to (4, j), we put w; ; tracks going from the left boundary to the
right boundary in the time interval [0, 1] and w; ; tracks going from the bottom
boundary to the top boundary in the time interval [1,2]. The horizontal tracks
are at a distance of (i — 1)e from the bottom boundary; similarly, the vertical
tracks are at a distance (j—1)e from the left boundary of the cell. See Figure 3.

€ 2€
®
* ", ° .

.. ® 0o

o0 o ® X o
) o O

o
o o O
Original Array A Dark lines show tracks

Figure 3: Reduction from array partitioning to rectangular partitioning for a
3 X 3 array.

For any solution for the array-partitioning problem, it is easy to see that
there exists a corresponding solution of the rectangular-partitioning problem
that gives the same solution in terms of workload. We need to show that any
solution of the rectangular-partitioning problem yields a solution for the array-
partitioning problem. First, we observe that if one of the rectangles in the
solution has vertical tracks from two horizontally adjacent cells corresponding
to (¢,7), (¢,7+1), then its workload is at least w; j+w; j41. This is because the
distance between the “bundles” of vertical tracks are at a distance of 1+ ¢, so
this implies that there is a time instant ¢ € [0, 1] such that the horizontal tracks
from both cells are present in this rectangle. Similarly, if horizontal tracks
are present in a rectangle from two vertically-adjacent cells corresponding to
(4,7), (141, 7), then the rectangle’s workload is at least w; j +w;41 ;. It is clear
that if horizontal tracks are present from two horizontally-adjacent cells, then
the workload is either the sum or is equal to that of one of the cells; a similar

13

statement applies to vertical tracks from two vertically-adjacent cells. The
above discussion implies that we can always convert a rectangular-partitioning
solution to one that conform to the boundaries of the grid, which then gives
a solution to the array-partitioning problem. Thus, we have the following
theorem:

Theorem 2.4. The optimal sectorization problem (min-k or min-B) for par-
titioning into rectangular sectors in two dimensions is NP-hard.

Recently, Farrahi et.al. [27] show that ASP is NP-hard in general.

Heuristics for 2D Sectorization Given the difficulty of solving the 2D
sectorization problem exactly, we turn our attention to heuristics for its solu-
tion. We consider the min-k version, in which a budget B is given, and our
goal is to partition D into a small number £k of sectors.

Our heuristics for 2D sectorization are based on two forms of recursive par-
titioning: binary space partitions (BSP) and pie-partitions. BSP algorithms
have been studied extensively in the computational geometry literature, start-
ing with the work of Paterson and Yao [46, 47]. Pie-partitions are based on a
multi-way partition into cones having a common apex; see below. All of our
heuristics have the property that they guarantee convex sectors when applied
to a convex domain D.

The use of recursive partitions heuristics is both natural and theoretically
motivated. For sectorizations based on BSP partitions whose cuts come from
fixed orientations (as ours do) with discretized intercepts (translations), we
are able to solve the min-k problem (for given budget B) optimally, as well as
the min-B problem (for given k) using dynamic programming. A subproblem
is defined by a convex polygon having O(1) sides; by selecting an optimal cut
from among a discrete set of possibilities, and recursively optimizing on each
side of the cut, we obtain an optimal BSP-based sectorization. This sketches
the proof of the following theorem:

Theorem 2.5. The min-k and min-B optimal fixed-orientation, discrete inter-
cepts BSP sectorization problem in 2D has an exact polynomial-time algorithm.

Proof. Let ¢ be the number of fixed orientations and d be the number of fixed
intercepts (which may depend on the endpoints of the tracks). This gives
us O(d*®) possible (convex) polygons using these orientations and intercepts,

14

since a polygon has at most two edges of any one of the ¢ orientations. A
subproblem of the dynamic program is such a polygon P, and we maintain
the optimal way to partition P in an array. The algorithm for min-£, with
given budget B is as follows (it returns the number of sectors):

Partition_mink(Polygon P)
(i) If the max-workload of the polygon is B, simply return 1.

(ii) Else, for each pair (o,) of orientation and intercept, recursively solve
the subproblems corresponding to the two polygons (say P, and P;) into
which P is divided by the cut corresponding to (0,%), and compute w(o, 7)
= Partition(P;) + Partition(P,).

(iii) Return w(o,7), which is minimum over all choices of orientation and
intercept of a partitioning cut.

For min-B, given k we similarly have the following algorithm to compute
optimal workload:

Partition_minB(Polygon P, k)
(i) If £ =1, simply return max-workload(P).

(ii) Else, for each pair (o,1) of orientation and intercept, and every possible
way to partition k£ into ky and ks such that k = ki + ko, recursively solve
the two polygons (say P, and P,) into which P is divided by the cut cor-
responding to (o,7), and compute B(o, 1, k1, ko) = max{Partition(P;,k;),
Partition(Pg,kg)}.

(iii) Return B(o,1, k1, k2), which is minimum over all choices of orientation
and intercept of a partitioning cut, and k; and k.

It is easy to see why the above algorithms work. The first cut made by an
optimal solution on the polygon P, is one of the cuts that is considered by the
algorithm, and then the subproblems are recursively solved. Now look at the
optimal solution on either side of this cut. The subproblems solved recursively
on either side can be only better than this optimal solution. Moreover, the
first cut found by the algorithm did at least as well as this (optimal) cut. So
the output from the algorithm is at least as good as the optimal partitioning.

15

The running time of each algorithm is clearly polynomial in N (the total
complexity of the input trajectories) and d, for fixed ¢: There are O(dc) candi-
date cuts for each of O(d*®) subproblems, and the evaluation of the workload
associated with a subproblem can be computed readily by truncating each
trajectory at the boundary of the subproblem and projecting onto the time
axis. 0

If we do not restrict ourselves to BSP sectorizations, but still consider the
class of allowable cuts to lie on a discrete set of lines, of fixed (c) orientations
and discrete intercepts, then we can obtain a polynomial-time approximation
algorithm for the (non-BSP-based) min-£ sectorization problem, using the fact
that an optimal sectorization can be converted into a BSP sectorization with
a small factor increase in the number of sectors: We simply apply the dynamic
programming algorithm, as above, to find the best BSP-based sectorization,
and then appeal to the known results on the size of a BSP partition of a set
of (convex) objects to argue that the best BSP-based sectorization yields a
number of sectors that is within a factor of the number of sectors in an op-
timal (not necessarily BSP-based) sectorization. In particular, this yields a
2-approximation for the rectangular (axis-parallel) case, by the results of [14]
on the BSP of a packing of axis-aligned rectangles.

Throughout our discussion below, we will interchangeably use the term
“weight” and “workload” when referring to a sector.

BSP Heuristic Rather than implementing a relatively high-degree (d°(®))
polynomial time dynamic programming algorithm, as described in the previ-
ous section, we have chosen to craft BSP heuristics based on computing a
most balanced cut at each stage, which is defined as follows. Given a node of
the current BSP subdivision, with associated sector ¢, our algorithm finds a
straight cut (from among a set of fixed orientations) to partition the convex
polygon o into two subpolygons, in order to minimize the maximum workload
(either max-workload or avg-workload) of the two subpolygons. This strategy
leads to the following simple consequence in the avg-workload case about the
relative weights (workloads) of the sectors: In the final sectorization using
most balanced cut BSP, the ratio of the (avg-workload) weight of the heaviest
sector to the lightest sector is at most 2. In our experiments, as we describe
later, we have further refined the most-balanced cut method for avg-workload
in order to partition avg-workload exactly across the k sectors, while simulta-
neously attempting to control the max-workload balance; see Section 2.1.3.

16

In order to find the most balanced cut, we use a discrete set of ¢ allowable
orientations for our cut. For each orientation, we find the most balanced cut
with that orientation as follows. We project the line segments that make up
the trajectories onto a plane perpendicular to the cut orientation, resulting in
the 1D problem. We now use a binary search on the critical points (as defined
in the previous section) to find the most balanced cut in the 1D case. Thus,
each step of the BSP takes worst-case time O(N?c): O(N) for projecting the
segments, O(N?) for finding the critical points (which can be found in output-
sensitive time, by standard techniques), and then finally the binary search for
the most balanced cut. If we finally end up with K sectors, the entire proce-
dure takes worst-case O(K N?2¢) time (again, with corresponding speed-up for
using an output-sensitive segment intersection algorithm).

Since the calculation of the critical points becomes the bottleneck in this
heuristic, even if using clever means of implementing nearly output-sensitive
algorithms, in our experiments we decided to use a coarser set of points to
search for the cut. We refer to this set as the approximate critical set. We
empirically decide the coarseness of this set and prove experimentally that for
the real track data, this works just as well (in practice) as the original set of
critical points and saves tremendously on the execution time.

Avoiding Bad Aspect Ratio of Sectors The balanced BSP heuristic can
clearly produce very skinny sectors, even while producing sectors with well-
balanced workloads. Skinny sectors can be undesirable because air traffic
passing through the sector perpendicular to the its diameter will have very
small dwell time (time for which the flight remains within the sector). Fig-
ure 4 (left) shows the behavior of traffic with skinny sectors.

To get a sector whose shape is invariant to the direction of air traffic, we
use the aspect ratio of the region we are subdividing to guide us. For any
rectangle, define « to be the ratio of the smaller side to the larger side. (Note
that aspect ratio is often defined to be 1/a.) For any sector o that we want to
subdivide by the most balanced cut, we also use the following constraint for
the cut. Consider a bounding rectangle with the smallest « for the region. We
only consider cuts with an orientation within a small range of the orientation
of the smaller side of this rectangle. In our implementation, we use a range
of [0 — aF,0 + aF], where 6 is the orientation of the smaller side. However,

17

this heuristic can still result in bad aspect ratio for a sector. Refer to Fig-
ure 4 (right).

P 1

(a) The (magenta) air traffic remains in (b) The allowable range for cut ori-

the sector for very short duration (bad), entations is shaded. Circled (red): a

while the (brown) air traffic remains for cut within the allowable orientation

long duration (good). range may result in a skinny polygon
on the right.

Figure 4: Modeling aspect ratio constraint.

We suggest another heuristic to circumvent this problem. We define 3 < 0.5
to be a user-specified lower bound on a(c), which our algorithm is expected
to respect in its decomposition. Given an orientation for the cut, we have to
find a range for the cut so that the resulting two polygons have a« > 3. In our
experiments we naively search for this range by linearly searching through the
approximate critical set. This range may clearly not exist (for example, set
8 = 0.8 and consider a square — no range exists for any orientation). However,
for reasonable values of (8 this seems to work quite well. Empirically, we
observed that for § < 0.5, if the original polygon has a > (3, this heuristic
works extremely well.

Pie Cutting In addition to the BSP cuts, we consider another cutting op-
eration to allow for more flexibility during sectorization. This is the so-called
“pie-cut”. For this we fix a point within the region (called the center) and
an orientation. We now wish to make a pie-cut which comprises three rays
originating from the center. One of the rays is along the designated orienta-
tion. The other two are such that the resulting 3 pieces are all convex and as
well-balanced as possible. We accomplish this pie-cut in two steps, obtaining
one cut in each step. The line segments are first transformed to their polar co-
ordinates, in the following sense. Consider any point p with polar coordinates

18

(r,0, z) with respect to the center and the given orientation (r is the distance
from the center, 6 is the angle that the line through p and the center makes
with the given orientation. This point is transformed to (6, z), resulting again
in an instance of the 1D sectorization problem. Then a cut is found that di-
vides the workload in the ratio 1 : 2. Then the second cut is chosen with range
restrictions (so that the resulting regions are convex) to balance the workload
in the 2-sized region. See Figure 5.

Allowable range for finé! cut

Figure 5: Range constraints for pie cutting.

For greater flexibility and control over a;, we also use the pie-cut operation
with more than 3 cuts. Note that it is not desirable for many sectors to meet
at one point (pie-cut center here) as it decreases the chance of an airplane to
stay in a sector for reasonable time, before leaving it. So there has to be an
upper-bound on how many cuts should be allowed in pie-cut operation and
it can easily be added as a constraint. If the current workload is W, and
P = |W/B], we start with max(P,5) cuts and if any of the resulting regions
has « less than the threshold, we try with one less cut and so on, until we
reach 3. At 3 however, even if one of the o values are bad, we make the cut
anyway to maintain convexity of the regions. This is the disadvantage of pure
pie-cuts. This can be remedied to a large extent if we combine BSP cuts with
Pie-Cuts. That is our motivation for the final heuristic.

Wheel Cuts As noted above, it is not desirable for many sectors to meet
at one point (eg. pie-cut center), we introduce another kind of partitions:
Wheel-Cuts. In order to partition a region into k + 1 subregions we first start

19

with a pie-cut partition into k& subregions, and then replace the central node
with a convex k-gon whose vertices lie along the rays of the pie-cut partition.
Wheel-cuts result in a partition all of whose nodes have degree 3, typically
with no small angles. Further, the degree-3 nodes are well separated. Three
examples are shown in Figure 6.

The central k-gon of a wheel cut can be chosen in order to balance exactly
the workload in all k 4+ 1 subregions; however, for simplicity in our implemen-
tation, we have opted to construct wheel-cuts more directly from pie-cuts: we
begin with a pie-cut into k subregions that exactly balances workload, then we
replace the central node with a convex k-gon whose vertices are each chosen
to be at the same point, proportionally, along the ray segments of the pie-cut,
with the size of the central region chosen to give it exactly 1/(k+ 1) of the av-
erage workload. This simplification allows us to adjust a single parameter for
the load balance of the central region (versus k parameters if we adjust each
vertex of the central region independently along its pie-cut ray). However, the
resulting workload values of the k subregions surrounding the central region
will not, in general, be perfectly load balanced with respect to the workload
in the resulting wheel-cut.

EVAGELY

Figure 6: Example showing Wheel-cuts of the region into 4,5 and 6 pieces.
The numbers show time-avg. workload.

20

The Final Heuristic We formulate a method using the operations of BSPs
and Pie-cuts (Wheel-cuts may also be used here). The final heuristic first
attempts to make a possible pie-cut. If the pie-cut is unable to find a partition
respecting the [threshold, we use a BSP cut. The new regions are then
inserted into a priority-queue according to the workloads. We recurse on the
heaviest region until all the regions have a workload less than B.

Other heuristics Some other heuristics for 2D-partitioning are conceivable.
For example, a partitioning resembling the Voronoi regions of some predeter-
mined centers. There does not seem to be sufficient evidence to suggest that
such combinatorial structures will optimize the workload as considered. A par-
titioning that does load balancing amongst different sectors according to the
definition of workload in this paper does not seem to have any similarity to
the structure of Voronoi regions. We feel our heuristics are natural strategies
to try and implement when trying to optimize a function like the workload. A
related, but perhaps of not much relevance, clustering idea appears in [31].

2.1.3 Experimental Results

Experimental Setup Implementation of the above heuristics (GEOSECT1.0)
is done in C++ (Microsoft Visual Studio 6.0), using the OpenGL Graphics li-

brary for all visualizations. All three heuristics (BSP, Pie-Cuts and the Final

Heuristic) were implemented as described above. We also implemented the

capability to search over an approximate critical set of points while solving

the 1D problem to save some time while not compromising much on the abil-

ity to balance workload. All experiments were run on machines with 3.2 GHz

Pentium 4 processors and 1GB RAM.

Data is provided to us by Metron Aviation. The historical track data corre-
sponds to a 25-hour period from 04:00, June 27 to 05:00, June 28, 2002, with
74588 flight tracks, and the average complexity (number of bends) of each
track is 59.26. We compare our results to existing sector data. (We are not
using ultra high-altitude sectors.) In evaluating sector workloads, both in our
sectors and in the existing sectors, we are assuming that all track data is rele-
vant to the sectors. Note that some fraction of the track data may correspond
to ultra high-altitude sectors and may not be relevant to the workload of the
high-altitude sectors. Another limitation of our test data is that it does not
include a broad sample of different traffic patterns, which may be impacted,
e.g., by weather events.

21

Tuning the Parameters of the Heuristic For best performance of our
heuristics, we first tune the user-specified parameters that are used at each
stage of the heuristic. For tuning parameters in our heuristic, we use 5 different
sub-regions of the NAS, shown in Figure 7. The selection of the regions was
based on a visual inspection of the track data to correspond to both high and
low traffic regions.

BSP We begin by selecting good choices of parameters for the BSP cuts.
Statistics were generated for Number of sectors and Max, Min, Average and
Standard Deviation for Worst-case workload, Time-average workload, and as-
pect ratio a, for each of the 5 sub-regions of the NAS (Figure 7, top). We
summarize our experimental findings:

o Number of discrete orientations while searching for the most balanced
cut. We generated the above statistics for the following set of values: {2,
4,6, 8, 10, 12, 14, 16, 24, 32}. The statistics show that increasing the
number of orientations beyond 10 does not yield any significant change
in the results. We choose to use 16 orientations in all future experiments.

e Discretization for balanced search in a given orientation. Ideally, we
should use the critical points of the projected tracks. However, as men-
tioned earlier, critical point computation is expensive and we use the
approximate critical set instead. We examined the data for 5 different
values of the discretization parameter (spacing between consecutive can-
didate cut lines): 0.1, 0.01, 0.001, 0.0001, 0.00001. For values less than
0.001, there is only a very slight fluctuation in the results. We pick value
0.0001 for our experiments.

e Choice of B for aspect ratio control. The goal is to obtain reasonably
fat sectors without compromising too much on the quality of the sec-
torization (number of sectors, workload balance etc.). We experimented
with 10 uniformly spaced values between 0.01 and 0.4 for the value j3.
Arbitrary small fluctuations are observed in the range 0.01 to 0.2. The
experiments suggest predictable behavior for 5 > 0.2. In the results
below (Table 3) we show the effect of different choices of 5 on the final
workload balancing.

Some results are presented in Table 1. Here, we subdivide to balance the
worstcase workload. We can see that the BSP cuts achieve highly balanced
sectors in terms of workloads as reflected by the standard deviation of the

22

23

Region | WorstcaseWorkload | TimeAverageW orkload Q@

Mazx | Avg. | Std.Dev. | Max | Avg. | Std.Dev. | Avg. | Min | Std.Dev.
4.237 0.501 | 0.891 | 0.344 0.133 | 0.572 | 0.350 0.139
4.571 0.564 | 0.893 | 0.403 0.151 | 0.609 | 0.350 0.156
4.559 0.537 | 0.766 | 0.409 0.138 | 0.593 | 0.350 0.148
4.442 0.573 | 1.206 | 0.405 0.169 | 0.591 | 0.350 0.141
4.414 0.553 | 0.771 | 0.351 0.142 | 0.587 | 0.350 0.149

Y | W DN =
Ot Ot Ot O] Ot

Table 1: BSP results for the 5 regions after parameter tuning.

worstcase workload. We could instead choose to balance the time-average
workload, which would result in better standard deviation statistics for the
time-average case. By the nature of the heuristic, we have a guarantee on the
minimum value of a.

Pure Pie-Cut The only decision parameter for this class of heuristics is how
to choose the orientation for the first cut of the pie. We compared two choices:
(1) Use the « restriction, as in BSP cuts, i.e. the first cut is approximately
perpendicular to the diameter; and, (2) Choose a random orientation uniformly
in [0,27]. The aspect ratio readings fluctuate unpredictably for both cases.
This happens because 3-pie cuts can result in regions with very bad aspect
ratio, as mentioned previously.

The Final Heuristic We use the parameter choices described in the previ-
ous two subsections (for BSP and Pie-Cut methods) in our experiments with
the Final Heuristic.

Achieving the Workload Balance The main goal is to balance the time-
average workload across all of sectors while controlling the worstcase workload
and also the aspect ratios of the sectors. It is easy to see that one can exactly
balance the time-average workload, i.e. given k, the number of sectors, it is
possible to achieve sectors with workload exactly equal to the total workload
divided by k. We control the worstcase workload by iteratively choosing the
sector with the maximum worstcase workload as the candidate for splitting.
Also, since we know the target workload for individual sectors, we restrict
ourselves to cuts that preserve integer multiples of target workload on both
sides. For example, if we want to split a region with time-average workload
9 into 3 sectors, we do not split it into 4.5-4.5; we instead restrict to cuts
that split it in 3-6 or 6-3, so that later the sector with time-average workload

24

6 can be split in 3-3. The aspect ratio of sectors is controlled, as described
previously, by avoiding the cuts that result in bad aspect ratios. Definitely,
there is a trade-off between preserving good aspect ratio and optimal workload
balance. This trade-off is indicated in the results in Table 3.

Comparing the Final Heuristic with Existing Sector Data To com-
pare our Final Heuristic with the original sectors, we conduct experiments for
two types of geographical domains: (1) [“Domain 1”] a specific convex polyg-
onal region, C, selected to contain approximately 10 current sectors; and (2)
[“Domain 2”] a large convex polygonal region, U, selected to contain all of
the continental USA. To be as accurate as possible, we purposely select these
regions so that they closely match existing boundaries of the sectors. See Fig-
ure 7.

When computing the statistics for original sectors, we consider only the
sectors that are completely inside the domain of interest. While we compare
the results for both time average workloads and worstcase workloads, the goal
for each of the following experiments was to balance the time-average workload.

Results for “Domain 1”7 Both the BSP method and the Final Heuristic
performed well in comparison with the original sector data. The statistics for
one of the regions are shown in Table 2. Our heuristic achieves a significant
improvement (by a factor of 10) over the original sectors in the standard de-
viation of the workloads and decreases substantially the maximum workload,
while using the same number of sectors and having comparable average work-
loads. The average workloads are slightly higher for our heuristic because it is
applied to a conver domain (Domain 1), which is slightly larger than the union
of the original sectors. The average workload for original sectors is computed
for only those original sectors which are fully contained within the domain.
But, the average workload calculation for our sectors includes air traffic which
may lie outside the original sectors (but within Domain 1). The BSP results
are shown as well. This experimentally supports our claim that the heuristics
achieve highly balanced workloads, while avoiding skinny sectors.

Results for “Domain 2” As with Domain 1, in the Domain 2 (the entire
NAS) experiments, we computed statistics only for those original sectors that
are fully contained within Domain 2. In running our methods, we used the
same number (411) of sectors as there were original sectors in Domain 2 (ex-

25

Sectorization | Time Average Workload Worstcase Workload «
Max | Avg. | Std.Dev. | Max | Avg. | Std.Dev. | Avg. | Min | Std.Dev.
Original Sectors | 12.33 | 6.899 2.578 441 26.8 8.340 | 0.548 | 0.264 0.169
Final Heuristic | 7.289 | 7.226 0.054 30| 279 1.221 | 0.534 | 0.323 0.159
BSP | 7.9525 | 1.226 0.302 31 27 2.323 | 0.522 | 0.25 0.171

Table 2: The statistics for pure BSP, the Final Heuristic and the original
sectors for Domain 1. The number of sectors was 10 in all cases.

cept that for Pie-Cut it was 412, due to the nature of the combinatorics of
Pie-Cut partitions). Results are presented in Table 3.

Clearly the Final Heuristic and the BSP give very nicely balanced sectors,
while avoiding skinny (low aspect ratio) sectors, since they are constrained
to have aspect ratio a > . (For the original sectors, we list the value of g
as 0, since there is no explicit aspect ratio bound on them.) Notice that as
[is increased, our partitioning algorithms become more constrained, thereby
decreasing their ability to achieve workload balancing (and increasing the stan-
dard deviations of the workloads).

The standard deviations of workloads produced by our methods are about
an order of magnitude better than the standard deviation of the workloads for
the original sectors. Also, the maximum value of worstcase and time-average
workloads in the sectorizations produced by our methods is better than the
corresponding values for the original sectors, by a factor between 2 and 3.

The Pie-Cut heuristic fails to keep the aspect ratio above the threshold
and actually gives very poor values for . Still, though, it does balance the
workload better than the original sectors.

As with Domain 1, our average workloads are slightly higher for our heuris-
tics than for the original sectors, since our sectorizations completely cover
Domain 2, while the union of the original sectors for which workload is com-
puted is a proper subset of Domain 2. (This under-counting should not have
much impact on the variation in the workloads across sectors — the variation
is the main subject of our investigation in load balancing.)

Our heuristics methods are thus seen to be very effective in global sectoriza-

tion, in terms of balancing workload and producing sectors with good aspect
ratio.

26

Sectorization £ | Time Average Workload
(a>pB) | Max | Avg. | Std.Dev.
Original Sectors 0| 24.519 | 6.283 3.378
Final Heuristic 0.15| 7.335 | 6.365 0.157
Final Heuristic 0.25 | 9.283 | 6.365 0.294
Final Heuristic 0.30 | 8.938 | 6.365 0.457
BSP 0.15 | 7.343 | 6.365 0.0715

BSP 0.25 | 9.568 | 6.365 0.426

BSP 0.30 | 9.545 | 6.365 0.512

Pie-Cut 0|11.085 | 6.35 2.901
Sectorization I} Worstcase Workload

(a>p) | Max | Avg. | Std.Dev.

Original Sectors 0 87 | 24.569 10.437

Final Heuristic 0.15 39 | 25.297 2.586
Final Heuristic 0.25 34 | 25.253 2.539
Final Heuristic 0.30 40 | 25.426 2.939

BSP 0.15 34 | 25.207 2.567

BSP 0.25 36 | 25.11 2.882

BSP 0.30 35 25.1 2.849

Pie-Cut 0 47 | 25.041 8.812
Sectorization 164 o

(> 0) | Avg. | Min | Std.Dev.

Original Sectors 01]0.316 0 0.241

Final Heuristic 0.15| 045 0.15 0.185
Final Heuristic 0.25 | 0.506 | 0.25 0.152
Final Heuristic 0.30 | 0.532 | 0.30 0.151
BSP 0.15 | 0.588 | 0.15 0.188

BSP 0.25 | 0.60 | 0.25 0.181

BSP 0.30 | 0.578 | 0.30 0.164

Pie-Cut 0] 0.286 | 0.021 0.175

Table 3: The statistics for the original sectors, the Final Heuristic, pure BSP,
and pure Pie-Cut for Domain 2. The number of sectors was 411 in all cases
except Pie-Cut, for which it was 412.

27

Refer to Figure 8 and Figure 9 for some screenshots of the sectorizations

we compute.

o.060

(b) Final Heuristic partition. (¢) Binary Space Partition.

Figure 8: Partition results for Domain 1.

Comparison with a Mixed Integer Programming Method We have
directly compared our Final Heuristic with a leading sectorization method
based on formulating the problem as a Mixed Integer Program (MIP) [59].
The MIP method considers the domain of interest to be a union of small regu-

28

s

(@] a8
m QP i san | oz
N osps P .
T T
& oz e
s | S ol) o) ofse
" s, o [fo
A\ TR, | K] R 15 Gafs
I A Pt
o o 2t o ok o sglu6 i £l M5
. . ois ; d 1
oo
asp | oo o i 52
2 s H S SHTE kA o 0
ofi 7 4l 4y A ¢
b T o0 .
s 53 5 s
ad_Jske 7 |l) 43 g
& ¢ ol OFpE RS o4 s d%
' £ LS ; Y d ‘ 91006
i S o 0
i A ge
@l adft 2
3 slezq) o i 8l
43y ofiss P
5 = e o o) bl
? 5 a7
8 P . Ylae Al < o
e e | T .
i R Fushok | i
cds & - 0
53 y
ode . T A
o2 TN [12 .1
o s
LET
gl s X
pi

(a) Original sectors (411) strictly within the (b) Final Heuristic partition (411 sectors).
selected region.

S
f
oo a4
5
= F! 2\ » "
b 6364 B 5t F
e T
e | o] o = g R 13 : g w
P £ E { @ X
G) El I u N
I I g = <
o3 ?
= z = = El B B
s ofep o oo 3 2 » e
36 s | e E
6363 &7 1 * 3 w B B <
T b BT bkt 2 f y
o 4 P i
245 5 53¢ gt {) e) *
a9 1) L B T
i 0 ey & & E)
5365, L E) 37
B i3 g " » B i & = »
s R o emtalt s - Y & Y B >
L] [T v PN N g Nl
B = oo p =
EikE oo
s bespea] |6 Ed 7 B
P
7 assp asa ades s | %
7;’, { R I . = ENE SO
T S e el s 7 @ K B3 B X
[+ B : % 7 u
- T et > By : S A
o P E
5339 B 2 i3 0 E:
1o 018 3 2
p T s '
s g h M
o
o 5945 618 X 7
3 E 4 3) T
G g

(¢) BSP (411 sectors). (d) Pie-Cut partition (412 sectors).

Figure 9: Partition results for the continental USA (Domain 2).

29

Sectorization | No. of | Time Average Workload

Sectors | Max | Avg. | Std.Dev.

IP Method 18 | 5.408 | 4.184 0.658

Final Heuristic 18 | 5.158 | 4.771 0.194
Sectorization | No. of Worstcase Workload

Sectors | Max | Avg. | Std.Dev.

IP Method 18 20 | 16.611 2.059

Final Heuristic 18 23 | 18.167 2.034

Sectorization | No. of «

Sectors | Avg. | Min | Std.Dev.

IP Method 18 | 0.442 | 0.210 0.148

Final Heuristic 18 | 0.600 | 0.319 0.173

Table 4: The statistics for the MIP solutions and the Final Heuristic for sec-
torizing ZFW (Dallas) center.

lar hexagonal cells. It then formulates the optimization problem as a MIP for
clustering cells in order to optimize the “coordination workload” (the number
of times a flight crosses a sector boundary), while constraining the maximum
deviation in the average workload per cluster (sector) of cells. In Table 4 we
show the results of two methods for sectorizing ZEW (Dallas) center. The
objective of the Final Heuristic in this experiment was to balance the average
workload while keeping the aspect ratio of the sectors at least 0.30

We see that the Final Heuristic does a better job at balancing the average
workload of the resulting sectors and keeping their aspect-ratios high. The
MIP method, though, did a better job of minimizing the worstcase workload.
One practical issue with the MIP method is that the resulting sectors have
irregular boundaries, since the sectors correspond to unions of hex-cells; this
is often addressed by doing a post-processing (polygonal simplification) of the
sector boundaries, possibly at some cost in optimality. The running-time of
the MIP method is also considerably higher than our methods described in this
paper, since it relies on solving a complex MIP (which is done using CPLEX).
Refer to Figure 10 for the screenshots of these comparison.

30

(a) MIP method.

(b) GeoSect: Final Heuristic partition.

Figure 10: Partition results for ZF'W Center.

31

2.2 Feedback from the Controllers

To aid evaluating the quality of a sectorization, we showed the airspace de-
signs obtained with above heuristics to controllers for feedback [42] on how
well the objectives and constraints were being captured in the current model.
We now discuss some of the features of GEOSECT1.0 sectorizations that were
flagged by controllers as problematic, and why they were not desirable. We
have modified our model to account for these issues, and further experiments
use the new model, with new algorithms for partitioning.

Before getting to details of the feedback, let us define a new term: Dom-
inant Flow (or just flow). Each individual flight track may be considered as
a flow, but the routes which encompass many flights bear more importance.
These are called dominant flows. Often the air-plane routes are modified to
conform to sector boundaries, which means if a dominant flow needs to be
modified, many air-planes must be detoured. Thus, interaction of dominant
flows with the sector boundaries is more critical. Section 4.2 is dedicated to
identification of dominant flows from the track data. Henceforth, when we
refer to flow, we mean dominant flow.

Straight-Line Cut Partitions (BSP) Controller feedback indicated that,
for most of the resulting sectors in Figure 10, sector size was acceptable, but the
corners were an issue. Referring to the lettered regions in Figure 11, controllers
noted the following problems:

Region A: The critical question is the direction of the flow. If the direction
of the flow is from NE to SW, then perhaps the sector should end per-
pendicular to that flow. The sector should not end in a tip, but have
its tip blunted so that flow is orthogonal to the sector boundary. If the
flow is E-W, then again, blunting off this tip will allow the flow to have
a clear orthogonal sector line between the left and right sectors.

Region B: This is not a good intersection, since any aircraft flying near it or
any flow near it could quickly pass between three sectors in minutes. It
is not desirable to have four sectors meet like this. It is also suggested
that degree 3 nodes are highly preferred to nodes of higher degrees and
that one does not want two nodes of degree 3 to be too close to one
another.

Region C: Traffic flow should again be considered in this region. The sector

32

in this region has a very acute angle in the upper NE corner, which is a
problem if an aircraft quickly crosses over it, since there is not enough
time to perform coordination actions. For the other two sectors sharing
this intersection, if the small segment exists between the two sectors,
then one must ask if there is a flow between the two; if there is, the edge
should be orthogonal to the flow (or nearly so) and wider to allow for
more variation on how aircraft end up crossing it.

o

Figure 11: Problematic aspects of BSP Airspace Partitions.

In general, controllers felt that it was desirable to reduce the likelihood of
a point out, which is when an adjacent sectors airspace is required in order
to resolve a conflict. Thin sectors or sectors with acute angles have a higher
probability of requiring point outs to resolve conflicts. Thus, acute angles
should be blunted or cut off so there is enough space available to resolve
conflicts. It was stated that there should be four or more sides per sector to
avoid acute angle problems.

Pie-Cut Partitions Controller feedback indicated that, for most of the re-
sulting sectors in Figure 12, sector size was acceptable, but that all sectors
were highly undesirable due to the sector corners (nodes of the sectorization).
Referring to the lettered regions in Figure 12, controllers provided the following
comments:

Region D: There is an acute angle, which may mean that aircraft fly across
the sector near the acute angle in a very short period of time. (This

33

comment depends, of course, on the aircraft traffic flows in the vicinity
of the sector corner.)

Region E: The situation at this corner is even worse.

Region F: This corner is the worst. If a flow of aircraft were to pass close to
this corner, they could move through five sectors in a matter of moments.
High-degree corners should be avoided.

R

Figure 12: Problematic aspects of Pie-Cut Airspace Partitions.

In general, it was stated that, to avoid acute angles, the tips of the pie slices
need to be blunted.

Wheel-Cut Partitions Controller feedback indicated that, for most of the
sectors shown in Figure 13, size was acceptable, but the corners were problem-
atic. Referring to the lettered regions in Figure 13, controllers provided the
following comments:

Region G: To reduce the point out potential, blunt off the indicated tip
shown in each of the three sectorizations in Figure 12.

Region H: The center wheel cut is good because it cuts off the acute angles
on all the pie-shaped sectors in the previous example, but which is best
depends on what you are trying to do with the flows. These sector
boundaries best accommodate the case where flows were passing from
the center to the perimeter sectors. If you have two flows the left case is

34

a good solution, if you have three then the center is a desirable solution,
if you have four, then the right case is a good solution. You really need to
know what the controllers are trying to do with flows in the very center
sector in order to critique this further.

Figure 13: Problematic aspects of Wheel-Cut Airspace Partitions.

Further Feedback Controllers emphasized the importance of traffic flow
considerations in sector design. Some specific feedback is shown in Figure 14.
On the subject of aspect ratio constraints (from section 2.1.2), controllers felt
that aspect ratio did not take into consideration two important points:

e If the flow is only in one direction and there is no crossing traffic, then
a thin sector is acceptable.

e [f there is any crossing traffic, then the width in the direction of that
traffic needs to be long enough to resolve conflicts with other traffic. Note
that the minimum width needs to take into account the speed of the
crossing traffic; the constraint is not that the width needs to be a certain
number of miles, but that the dwell time needs to be a certain number of
minutes (typically a minimum of 4-5 minutes). Thus, the constraint must
be a function of the average traffic velocity; the width will have to be
greater, for example, if the crossing traffic is high altitude (faster) traffic,
versus low altitude (slower) traffic. While controller feedback varied, it
seems that a minimum width requirement should be approximately 20

35

nmi for low altitude traffic and approximately 30 nmi for high altitude
traffic.

*could be a good design if the
goal is lo use the center sector lo
manage the crossing point
between two major flows

*want the crossing of flows not
too close to sector boundaries

*could be a good design if the
adjacent sectors support a flow
into and out of the center sector,
which will have the highest
workload, and needs room for
conflicts

*could be a good design if the
goal is to use the center sector as
the terminal environment for
arrivals into and out of a major
airport, with two departure flows
diverging out, and arrivals coming
in from the cornerposts

Figure 14: Influences of traffic flow characteristics on sector design.

Special Use Airspace (SUA), as the name suggests, is space assigned for
special purposes like military usage, “no-fly” zones like Manhattan etc. More
often it is defined as a region on the ground, with the airspace above it meant
for special usage. There are various permanent SUA’s all over the NAS and
sometimes they are defined temporarily for certain amount of time, eg. a se-
vere weather condition may be considered as a “no-fly” zone. Regardless of
when and where they are present, the sector design should respect them in
certain ways.

Ideally, the SUA region should be considerably inside the sector boundary.
This gives sufficient time to the sector controller, after a flight has entered his
sector, to re-direct it around the SUA | if needed. Sometimes a sector boundary
may cut across the SUA, splitting it into two regions as shown in Figure 15.
The requirement then, is that considerable part of the SUA should lie in both
sectors. Thus both controllers are aware of its existence (and approximate size),
and can direct the air-traffic around it. In other words, the sector boundary
should not clip a corner of the SUA.

36

168

Figure 15: Desired interaction between the (brown) SUA and the (black) sector
boundary. Left: SUA is considerably away from the sector boundary (desired);
Middle: Sector boundary cuts through the SUA, with considerable part of SUA
on each side of the cut (allowed); Right: Sector boundary clips a corner of SUA
(disallowed).

2.3 Flow Conforming Sector Design

Most of the controller feedbacks dealt with how the sector boundaries should
interact with the flows. Specific artifacts were also pointed out in the shape
of the sectors, like small acute angles made at vertices of the boundary, more
than three sectors meeting at a point, etc. Maintaining convex sector bound-
aries, obviously, becomes too restrictive to satisfy all the desired (shape and
flow-interaction) properties, while at the same time balancing the workload
across sectors.

Following the top-down paradigm of sectorization, we extend the notion
of “cut”, the partitioner at any level of recursion, from straight line segment
to a more general polygonal path (with small number of bends). This allows
more flexibility in the cut, thus making desirable features possible. Also we
can now start with a non-convex region to sectorize. (Recall that earlier we
started with the convex hull of the region, and at each step straight cuts guar-
anteed convextity of resulting sectors.) We start by modeling the controller
feedback as specific constraints and implement them in our software extension
GEOSECT2.0.

37

2.3.1 Modeling Constraints

We model the feedback from controllers and the SUA knowledge in the form
of constraints as enumerated below. Refer to Figure 16.

Figure 16: Desired features in a sector design modeled as constraints in GEO-
SECT2.0

1. Flow-Sector boundary crossing: Dominant flows should cross a sec-
tor boundary almost orthogonally. We enforce this constraint by re-
stricting the polygonal cuts which, if intersect dominant flows, have the
(acute) intersection angle > 6., (0 < 0f5. < 90).

2. Flow-Flow crossing: In case of any crossing traffic, the width in the
direction of the arriving traffic needs to be long enough (average dwell-
time typically a minimum of 4-5 minutes) to resolve conflicts with other
traffic. We model this requirement, by placing a rectangular obstacle
of length [proportional to the average dwell-time along the arriving
dominant flow, as shown in Figure 17. The width of this rectangle w is
guided by the separation desired between flow and sector boundary. We
also put a disc obstacle (of diameter w) at the crossing point, so that it
remains sufficiently inside the sector. For now, the implementation only
keeps a disc of radius r¢y. at the crossing point.

3. Cut-Sector boundary intersections: The angle made by a cut at
the point where it meets the sector boundary should not be too acute,
as the resulting sector will have sharp angle at one of the vertices. Like
above, we enforce this angle > 6.,.. Also, after we make a cut, we add

38

Figure 17: Directional dominant flows shown in ‘blue’ and the buffer from the
sector boundary is modeled as rectangular and disc obstacles constraint.

a disc obstacle of radius r.s at the point of intersection of cut and the
region boundary. This not only avoids more than three sectors meeting
at a point, but also ensures that no neighboring sectors share boundary
of length < 7. (important for easy hand-offs).

. Turn-Angle at vertices along the polygonal cut: The turn-angle
made at an internal vertex of the polygonal cut should also not be too
acute, for same reason as in constraint 3. We add a constraint: turn-
angle > 0;,, (0 < 6, < 90).

. SUA-Cut interactions: It is easy to incorporate the constraint which
would keep the SUA considerably inside the sector boundary; by offset-
ting the sector boundary externally with the desired separation margin,
and treating the new offseted polygon as a constraint, which all cuts
must avoid. But, so as to allow a sector boundary to cut across the SUA
(splitting the SUA, with considerable portions on both sides of the cut),
we use an inner offsetting of the SUA as shown in Figure 18. The final
constraint is, either the cut must completely avoid the external (outer)
offseted polygon, or if it intersects the outer offset, then it must also in-
tersect the inner offset. Along with reasonable values of the above angle
constraints, this ensures that if the SUA is split, it is not just clipped.
For simplicity in the current implementation, instead of using the offsets,
we put disc obstacles of radius rg,, at all vertices of SUA boundary (or
after boundary simplification, in order to have small number of vertices
defining the sector boundary). This serves well for most cases.

. Sector area compared with the area of the convex-hull: This
constraint is intended to keep the sector shape close to convex. We

39

Figure 18: Modeling SUA Constraint: (black) sector boundaries are allowed
while (red) boundaries are disallowed. Left: True modeling using inner and
outer offset of the SUA boundary. Right: Simplified modeling using disc
obstacles at the corners of SUA boundary, as implemented in GEOSECT2.0.

constraint that the ratio of the area of sector region with the area of
its convex hull should be > v, (0 < 7 < 1). Again, with reasonable
values for above angle constraints, this suffices to measure the convexity
of sector i.e. a case like shown in Figure 19 is unlikely to happen.

Figure 19: Bad (black) sector region and its (red) convex hull.

Cuts that satisfy the above angle constraints, and avoid any rectangu-
lar /disc obstacles, would result in sector designs that address the controller
comments. The key question that remains is, how to ensure workload balance
across sectors, while keeping them flow conforming.

40

2.3.2 Extending the Convex Sectorization Heuristics

The BSP heuristic (from Section 2.1.2) can now be extended as follows. At each
step, find a polygonal workload balancing cut that satisfies all the constraints,
and recurse until desired number of sectors are obtained (or the workload of
each sector decreases below some threshold). Like before, it remains theoreti-
cally challenging to find an optimal workload balancing cut in 2D. Hence, we
resort to finding “good” workload balancing cuts over a discrete search graph.
See Figure 20, for an illustration of the steps of the BSP heuristic, for dividing
ZDC into 8 sectors.

Discretizing the Search Space We first discretize the region boundary, by
placing few (parameter dependent) points uniformly spaced along the bound-
ary. Initialize the set of boundary nodes B with these points, and add to B the
original vertices of the region. Only cuts that connect a pair of these boundary
nodes will be considered at any BSP recursion step. Next, we discretize the
interior of the region using a discrete uniform square grid and initialize the set
of internal nodes I with these points. We augment, both B and I, with points
that approximate the medial axis of the dominant flows. Start with a finer
resolution (uniform) grid; the approximate medial axis points are the ones that
are simultaneously close (minimum distance of a point from dominant flows is
achieved for two flows at the same time) to two or more dominant flows.

An instance of the discretization explained above is shown in Figure 21.
Each of the internal nodes can potentially act as a way point on the cut, giv-
ing the cut greater flexibility for good workload balance, while satisfying the
model constraints.

We build a complete graph, G(N, E), over the node set, N = BUI. From
N, we remove all the nodes that lie in the vicinity (parameter dependent) of
a dominant flow to avoid a cut from bending near a flow. Also, from FE, we
remove all the edges that violate any constraint (disc or angle). Note that, the
turn-angle constraint depends on the previous edge selected in a cut, and the
area constraint depends on the final partitioned polygons; hence these can not
be checked up front, before actually searching for the cut.

Finding One Workload Balancing Cut After discretizing the search
space, we wish to find a workload balancing cut from one boundary node
to other. We start with a discrete set of ¢ allowable orientations for our cut.

41

Figure 20: Steps of the BSP heurist

dominant flows. The n

cted (blue)

Boundary Node

Internal Grid Node
Internal Medial Axis Node

Figure 21: Nodes (points) generated by GEOSECT2.0 for discretizing the
search space with (blue) dominant flows.

For each orientation do the following. Consider all pairs of nodes, from B,
such that the straight line joining them is parallel to the current orientation
(within some allowable threshold). For each pair of nodes, i,j € B, find a
min-turn-angle depth first search path (refer Algorithm 1), satisfying turn an-
gle constraint, starting from ¢ to j. We use min-turn-angle path to keep the
cuts as straight as possible, thus keeping the shape of sectors more or less
convex. Note that (due to the way it is described), the mta_dfs path from i
to 7 may differ from the path from j to 7. Further, we explicitly check if the
two polygons defined by this cut satisfy the area constraint (for approximate
convexity). Finally, among all the constraint satisfying cuts, we pick the one
that balances the workload best, over all orientations. In Figure 22, we show
the workload balancing feasible cuts (in different orientations), for one recur-
sive step of BSP. Each cut minimizes the maximum of time-average workload
on two sides of the cut.

In Algorithm 1, the details of computed_path(i,j) are skipped, where in
appropriate data structures are used to store the path computed by the depth

first search.

Other heuristics, like Pie-Cut (and Wheel-Cut), can also be extended in a

43

19.32 2242

28.38 19.56

19.40 19.77

Figure 22: Feasible cuts in different orientations at one level of BSP recursion.
Points inside the region are internal search nodes I and the number on top-
right is the max time-avg workload.

44

Algorithm 1 mta_dfs
Input: Start node: i, End node: j, Graph G(N, E), Set of boundary nodes
B.
Output: Minimum turn angle depth first search path from i to j.
T «— {} (Stack of nodes to visit)
V «— B\{4,j} (Set of visited nodes)
push T4
while T is not empty do
u <« pop T
V—Vu{u}
if u=j then
return computed_path(i, j)
end if
C' «— {} (List of feasible current neighbors)
for all nodes v € N do
if v ¢V and e(u,v) € E and e(u,v) satisfies 6;, then
push C,v
end if
end for
for all nodes w € C, in decreasing order of Zwuj do
push T, w
end for
end while
return null

45

similar way. Instead of finding polygonal cuts connecting two boundary nodes,
a central internal node may act as the pie-center, and polygonal cuts would
connect this node to boundary nodes. We have not implemented these other
heuristics in GEOSECT2.0, yet. Next, we run experiments to analyze how
various parameters and constraints affect the workload balance, and compare
flow conforming sector designs for different data and objective functions.

We compute statistics for two new flow-related metrics, which quantify the
“goodness” of sector boundary interactions with the dominant flows. The new
methods for sectorization are bound to do good with respect to these metrics,
since they have been encoded as specific constraints in the model.

1. Angle of Intersection (¢) of dominant flows with the sector boundary.

2. Distance of Flow Crossing Points (4) from the sector boundary. In
GEOSECT2.0, (J) is measured as Euclidean distance directly considering
(latitude,longitude) for the coordinates of points (flat earth assumption).
Hence unit of measurement is degree.

Note that, while [18] computes these metrics for all tracks, we restrict ourselves
to evaluating these only with respect to the dominant flows.

2.3.3 Experiments

While code for GEOSECT1.0 was written in C++-, using Microsoft Visual Stu-
dio environment, all further versions (GEOSECT2.0 onwards) have been devel-
oped under Linux (Debian) environment. The code still is in C++ (compiled
with g++), and uses OpenGL (glut and glui) libraries for visualization. The
experiments described below were run on a machine with Intel(R) Core(TM)2
Duo CPU (E4500 2.20GHz) and 4GB ram. (Some were run on a slightly bet-
ter machine, with Intel(R) Core(TM)2 Quad CPU (Q9300 @ 2.50GHz) and
8GB ram).

Three datasets were used for most of the experiments. Setl (and Set2)
consist of regions spanning 4 high-altitude sectors (currently operational in the
NAS), from ZKC (and ZFW) center. Region for Set3 comprises of the whole
of ZDC center. The 452 tracks for Setl come from simulated data, and are
meant to represent 90 minutes of high traffic time window. The 1327 tracks
for Set2 (6380 for Set3) are actual flown trajectories for a 24 hour time pe-
riod. All sets have track data for altitude range > 24k. See Figure 23, for the

46

screenshots of the datasets. The dominant flows for all the sets are obtained
by clustering the input trajectories, using methods described in Section 4.2.

(a) Setl. (b) Set2.

(c) Set3.

Figure 23: Datasets along with auto extracted (blue) dominant flows.

The first set of experiments include the sensitivity analysis of the work-
load balance to various parameters and constraints in the new model (mostly
using Setl and Set2). After making intelligent choice for the parameters, ex-
periments are conducted on Set3 for different workload (objective) functions.
For all experiments, at each step of BSP recursion, the region with maximum
worstcase workload was picked for further sub-division.

47

Sens

itivity Analysis For all sensitivity analysis experiments, the number

of sectors desired for both Setl and Set2 is 4. Also, the objective function is
to balance the time average workload.

Time Avg WL

Search Space: Size of the search space is dependent on the the number
of nodes and edges in the search graph. There is a parameter gs which
guides this size in GEOSECT2.0. In particular, points are uniformly
spaced along the boundary at a distance total_boundary_length/(C - 29%)
for some constant C. Similarly, the spacing between the internal (uni-
form square) grid points is [0.5 (% span +Yspan)]/ (C - 29°) where Zspan (Yspan)
is the x-width (y-width) of the region’s bounding box in 2D. Thus,
the number of search nodes at any level of recursion is proportional to
(C'-29%)% i.e. with every increment in gs by 1 the number of search nodes
becomes (approximately) 4 times. Parameter gs is kept in the exponent
to ensure that for any specific value of gs, all search nodes coming from
parameter values gs’ < gs are preserved.

Note that, few of the uniform search nodes may be missing from the
search space, either because they lie outside the region or near a con-
straint. Similarly, the edges violating any constraint may also be missing.
Hence, increasing gs only guarantees an approximate (multiplicative) in-
crease in the search space.

24

Max Time Avg WL —— oal Max Time Avg WL —— |
22 ¢ in Time Avg WL] : Min Time Avg WL
20 ¢ 1
16 =
2 L 3
14 | 5
L £
12 = 18 L
10
8t] 16
6 L L L L L L L L L L
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 2.5 3
gs gs
(a) Setl. (b) Set2.

Figure 24: Search space (gs) v/s time-avg. workload.

In Figure 24, we show the effect of increasing gs on workload balance.
Not surprisingly, the workload balance improves by increasing the size of

48

search space, as number of choices for the cuts increases. For gs > 3 the
workload balance almost becomes perfect. Also for Set2, good workload
balance is already achieved for gs as less as 1. This shows that one may
get lucky to find good search space for small values of gs. As discussed
before, a higher value for gs is unlikely to hurt the workload balance,
though it does have a huge impact on the running time. For Set2, as
gs was increased from 0 to 3, the average number of search nodes per
iteration (of recursive BSP) increased from 56 to 634, the average number
of feasible cuts for all orientations (8 here) increased from 28 to 367 and
the running time of the experiment increased from 0.033 minutes to 2.86
minutes.

e Discrete Orientations of Cuts: The graph in Figure 25 also verifies
the intuition. The workload balance improves as the number of allowed
orientations (hence the number of feasible cuts) increases. Note that
beyond a point, when all pairs of boundary nodes are checked to find
a cut, the increase in the number orientations would not increase the
number of feasible cuts.

24

'Max Time Avg WL —— 24l Max Time Avg WL —— |
22 | Min Time Avg WL i . Min Time Avg WL
§' 20 | | EI 22 ¢
= /\// =
Z 18 3 2
g g
E 167 £ 187
14 +
16
12 : : : : : : : : : : : :
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Num Orient Num Orient
(a) Setl. (b) Set2.

Figure 25: No. of orientations (¢) v/s time-avg. workload.

e Model Constraints: Various constraints in the model (as described in
Section 2.3.1) can be broadly classified as angle constraints and disc con-
straints. The angle constraints 6., 0.sc and 0, all should ideally be close
to orthogonal (90°). In Figure 26, we show the sensitivity of workload
balance to the angle constraints, as they increase from 0° (no constraint)
to 90° (max constraint). All the angle constraints are increased simul-
taneously as it is difficult (and may be unnecessary) to classify one as

49

Time Avg WL

more important than the other. The radius for all disc constraints were
set to be 0 (no constraint). Very high values of angle constraint (75° and
85°) have a significant impact on the workload balance. In Figure 27, we
show the sensitivity of average(over 4 sectors) minimum ¢ to the angle
constraints. The average minimum ¢ consistently increases with the in-
crease in the angle constraint.

0 Max Time Avg WL */ 6 Max Time Avg WL ——
60 Min Time Avg WL E 5 | Min Time Avg WL
50 §l 4l
40 o
I 3
30 g
20 | E 27
10 ¢] 17
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Angle Constraint (degrees) Angle Constraint (degrees)
(a) Setl. (b) Set2.

Figure 26: Angle constraint v/s time avg. workload.

80 Setl —-
70 ¢ Set2 £ |
60 |
50 |
40 t
0L
20 ¢
10

Avg Min Angle

0 10 20 30 40 50 60 70 80 90
Angle Constraint (degrees)

Figure 27: Angle constraint v/s avg. min ¢.

The radius of two disc constraints: flow-flow intersection rss. and the
cut-boundary intersection r.s. are also increased simultaneously and the
effect on the workload balance is shown in Figure 28. The angle con-
straints were all set to be 0° (no constraint). Even for disc constraint as

50

high as 0.20 the workload balance is good. Note that, no SUA bound-
aries were used for any experiments; hence though the concept exists
(and is implemented in GEOSECT2.0), sensitivity of workload balance
to the rg,, constraint is left as future work. In Figure 29, we show the
sensitivity of average (over 4 sectors) minimum ¢ to the disc constraint.
Similar to angle constraint, the average minimum 0 consistently increases
with the increase in disc constraint.

28 \ \ \ \ \ \ \ \
2% | Max Time Avg WL —— 24l Max Time Avg WL —— |
4 Min Time Avg WL . Min Time Avg WL
g 22¢ 2 227]
= =
o 207 5
g 18 : 3 2]
[} L
g 16 £
= 14 ¢ E 18]
12 + 1
10 + 1 16]
8 n n n n n n n n
0.04 008 012 016 0.2 0.24 0.04 0.08 012 016 02 0.24
Disc Constraint Disc Constraint
(a) Setl. (b) Set2.

Figure 28: Disc constraint v/s time avg. workload

0.5 .
Setl
0.45 ¢ Set2
04 ¢t

0.35
03
0.25
0.2

0.15 1
0.1 //
0.05 : : : :

0.04 0.08 012 0.16 0.2 0.24
Disc Constraint

Avg Min Distance

Figure 29: Disc constraint v/s avg. min .

Comparing different objective functions Using sensitivity analysis re-
sults, we pick reasonable values for each constraint, and experiment with Set3

o1

Sector Design | Time Avg WL | Avg. Dwell Time | Avg. Min. ¢ | Avg. Min. ¢
balancing | Max | Std.Dev. | Avg. Min

Time Avg WL | 13.88 0.09 | 8.81 5.17 65.85 0.39

Coord. WL | 19.18 1.39 | 11.35 6.33 63.37 0.38

Table 5: Comparing workload and flow conforming metrics for two sector
designs.

for different workload functions. In particular, we start by looking at two ex-
treme cases, first experiment where we balance (minimize the maximum over
all sectors) time average workload, and second where we balance coordination
workload. A sector with low coordination workload has less intersections (and
thus more alignment) with flows. Thus, balancing coordination workload fa-
vorably increases the average dwell time of air craft within the sector.

For this set of experiments, gs = 1 (this already gave sufficient graph size),
the number of sectors was fixed to 8, all angle constraints were set to 45° and
all disc constraints were set to 0.16. ¢ = 16 orientations were used, so as
to allow more flexibility to find cuts that align with flows. See Table 5, for
the comparison of time average workload and average dwell time for the two
experiments. As desired, first sector design gave excellent workload balance,
but the average dwell time is considerably less. On the other hand, the second
sector design successfully increased the average dwell time, though at the cost
of time average workload balance. Both the designs performed very well on
the average (over 8 sectors) minimum ¢ and the average minimum 4. Refer to
Figure 30 for screenshots of the sector designs.

Next, we try to combine the objective functions from previous two experi-
ments so as to get good workload balance, and at the same time try to align
sector boundaries with the dominant flows. At each step of BSP recursion,
among all feasible cuts, get the one with best coordination workload balance.
Consider all the feasible cuts whose coordination workload balance is within
2% of the best coordination workload. Among these, pick the one which gives
the best time average workload balance. For x = 0, it would pick the best
coordination workload balancing cut every time (like in second experiment
above). The graph in Figure 31 shows the effect of increasing x on the av-
erage dwell time and the time average workload balance. It is interesting to
see that as we relax the constraint (by increasing x) on requiring the cut to
balance the coordination workload, we get improvement in workload balance.

52

(a) Balancing time average workload. (b) Balancing coordination workload.

Figure 30: Results for Set3.

But, the monotonous decrease in the average dwell time is surprising, as there
is no obvious reason for the two objective functions to compete each other.
See Figure 32 for the screenshots of sector designs for the combined objective
functions.

We also ran experiments for the entire NAS, considering each center sepa-
rately for sectorization. Air traffic for a 24 hour time period was considered,
and sector designs were computed for two different altitude layers: 24k — 35k
and 35k — 60k feet. Hand extracted dominant flows (using traffic density heat
map from Section 4.2) were used for all the centers. See Figure 33, for the
screenshots. This experiment was run with an intermediate implementation
of GEOSECT2.0; hence there were a couple of constraints missing, leading to
some visual artifacts in the sector boundaries.

2.4 3D Sectorization

In all the above sections, we were trying to partition a region in 2D. A sec-
tor’s workload was measured using all the air-traffic above (in the complete
altitude-range) its polygonal boundary. This is restrictive in the sense that
the altitude variation in traffic is not taken into account. Flows moving in
opposite direction are always altitude separated. Also, depending on the air-

23

195 : : : 1.4
19 =
3 s 12 1
s 185 >
5 18 Z 1+ 1
17.5 @
© £ 08!]
E 17 e 08
% 16.5 g 0.6 | i
= 16 T 04}]
155 &
15 L L L 02 L L L
0 5 10 15 20 0 5 10 15 20
Constraint on Coord WL (x) % Constraint on Coord WL (x) %
(a) x v/s maximum (over 8 sectors) time (b) = v/s std. dev. of time avg. work-
avg. workload. load.

11

105

10

Avg Dwell Time

9.5

9 1 1 1
0 5 10 15 20

Constraint on Coord WL (x) %
(¢c) z v/s avg. dwell time (in minutes).

Figure 31: Effect of constraint (on the coordination workload balance) .

o4

95

(a) Alt. range 24k-35k feet.

(b) Alt. range 35k-60k feet.

enter at a time.

Figure 33: Results for the entire NAS, one ¢

56

craft size, it may or may not have the ability to attain certain altitudes. Most
important of all, flight ascends (during take off) and descends (during landing)
make altitude consideration critical for sector designs in the TRACON region.
Today’s airspace in the NAS is also divided into low-altitude, high-altitude
and very-high altitude sectors. Each existing sector thus has an altitude range
(min and max) which filters the air-traffic handled by the controller in that
sector.

Figure 34 gives an idea, how partitioning a sector at an altitude level
might help reduce controller workload. Effectively it splits high altitude traffic
from low altitude, thereby assigning workload of different altitudes to different
controllers.

N

time

Figure 34: z=const. cut splitting high alt. traffic from low alt. traffic

Floors and Ceilings Intuitively, each sector has a flat floor and a flat ceil-
ing defining its boundary in the z (altitude) dimension. Keeping the floor and
ceiling flat is important. This is because of the limitations of the Operational
Display Systems used by the controllers, which still gives them 2D visualiza-
tion of the airspace. This is also true in case of sectors in the TRACON, where
there is a lot of ascending and descending traffic. Hence, from a controller per-
spective it is easy to work with a specific range of altitude assigned to a 2D
sector region.

It turns out that availing the possibility of this kind of partition (split) is
an easy addition to the suite of heuristics GEOSECT. The 1D problem (in

27

Section 2.1.1) was trying to find x = const. cuts; which is exactly what we
want but this time in the z-dimension. The new heuristic for 3D sectorization
(extension from BSP) is: At each level of BSP recursion, find the best z=const.
cut (projecting the tracks in z — ¢ plane as shown in Figure 34). Compare the
workload balance resulting from this cut to that resulting from a 2D BSP cut
and pick the better of two. Note that one has to maintain an altitude range
and use air traffic within that range for each intermediate region (and the final
sectors).

Experimental Results We experiment with Set3 (for 8 sectors balancing
the worstcase workload), and compare the results for 2D and 3D sector designs.
We do not use any dominant flows for this experiment. This is because, the
current capability in GEOSECT has flows defined only in 2D, and hence not
all flows are relevant at all altitude levels. See Figure 35, for the screenshot
of sectors produced by the 3D method. In particular, one intermediate region
was divided at altitude level 34.5k. This is not surprising, in fact it explains
why the altitude split at 35k was suggested for the NAS wide experiment in
Section 2.3.

(a) Alt. range 24k-34.5k feet. (b) Alt. range 34.5k feet and above.

Figure 35: Results for 3D sectorization of Set3.

Refer to Table 6, for comparison of workloads for 2D and 3D sector designs.
Even though the 3D method marginally improved the max worstcase workload,

o8

Sectorization Worstcase WL Time Avg WL

Mazx | Min | Std.Dev. | Max | Min | Std.Dev.
2D 37 33 0.42 | 14.30 | 12.36 0.22
3D 36 31 0.62 | 14.85 | 11.69 0.37

Table 6: Comparing results of 2D and 3D sector designs.

there is not much difference between the workload balance of the two methods.
The 3D capability might be useful, when we model experiments for TRACON
region, where there is a lot of ascending and descending traffic. Further, flow
definitions need to be extended to 3D, and constraints in the model must also
be updated appropriately, to make them suitable for 3D sectorization.

2.5 Conclusion

We started with convex sectorization methods and developed ways to balance
workload, while keeping the sector shapes ‘fat’. Further, we modeled domi-
nant flow interactions as constraints and extended the methods for non-convex
sectorizations, still keeping the shapes of sectors desirable. All the methods
performed reasonable with respect to workload balance, and the non-convex
sector designs gave good flow interactions. A method for 3D sectorization
was also presented. In future, we would like to experiment more with other
workload metrics. [56] is an ongoing work specifically aimed at incorporating
simplified dynamic density (SDD)[38] metrics into GEOSECT.

29

3 Dynamic Re-Sectorization

3.1 Introduction

In Chapter 2, we saw sectorization methods, where the sector boundary re-
mains fixed for the entire time period, of the track data. Depending on the
time of day, certain areas in the NAS have high air traffic, while others have
low traffic. The traffic intensity across different regions is also affected by the
presence of convective weather, change in the demand profiles at various air-
ports etc. Hence, the workload across (static) sectors changes, over the day;
See Figure 36. It is important to address the dynamic nature of air-traffic,
and allow sector boundaries to morph to the changing traffic. Moreover, the
sector boundary changes should be less frequent, as there is a “transition cost”
associated with each modification. The transition cost may be due to the re-
assignment of ATC to the new sectors, the hand-offs of air craft from one ATC
to other (as the sectors change), etc. A general rule of thumb is that the ben-
efit of new design (improvement in workload balance, etc.) should sufficiently
exceed the transition cost, in order to warrant a change.

Note that, in the dynamic re-sectorization problem, an initial sector con-
figuration is given as input. This might be a configuration that is currently
operational in the NAS, or computer generated for a reasonably small time
window (3-4 hours) of air traffic (looking into the future). Below, we explore
two methods: the first promotes doing “few” clean-sheet re-designs over the
day, to balance the workload across sectors, while the second tries to identify
dense traffic regions, as the air traffic evolves over the day, and restricts re-
designs to only those regions.

3.2 Multiple “Clean Sheet” Sector Designs

Consider an extreme case, where the transition cost between sector designs is
negligible and there is high benefit of reducing the workload variation (over
the day) across sectors. A simple way to achieve this is to invoke GEOSECT
(or any other static sectorization tool), several times over the course of day, to

60

50

Max Worstcase WL ——
Avg Worstcase WL

40

30

20

Workload

10 ¢

0

0O 2 4 6 8 10 12 14 16 18 20
Time (Hours)

Figure 36: Time vs max and avg (over 17) worstcase WL for original sectors
operational in ZDC. At each discrete time 7, the air traffic in a 3 hour sliding
time window (7,7 + 3) was considered to evaluate the workloads.

do a “clean sheet” sectorization and balance the workload (as it exists at that
time). If there is a bound on the maximum allowable workload of a sector, this
method also decides the minimum number of sectors required, at each time of
the day.

Such an extreme case, though, is highly impractical. A clean sheet redesign
usually has a high transition cost associated with it; since (almost) all the con-
trollers are reassigned to the new sectors. But, restricting one self to “few”
redesigns (clean sheet), over the course of time T' (eg. a day or a week), may
be beneficial. If the redesign times are same as the shift-switching times of
the ATC’s, then arguably there is no transition cost. Also, if the phenomenon
is repetitive and the ATC knows that at a certain (exact) time, every day, he
is reassigned the same new airspace, its just a matter of time before he gets
trained to handle two (or more) sectors. The sub-problem can be defined as:
Suppose we are allowed to modify the sector design k times, over time 7'; iden-
tify the best switching times and the sectorizations for the resulting (k + 1)
time windows.

A discrete version of this problem, where all possible switching times come
from a set of (pre-defined) discrete times, can be solved by a simple dynamic

61

programming approach. For each pair, (¢;,;), of time points (discretized at,
say, 15-minute intervals), we use GEOSECT to compute an optimal sectoriza-
tion using a specified number of sectors. Then, over the time interval [0, T, we
compute an optimal set of £ times t;, at which to switch to a new sectorization
that is optimal for the next time interval, (t;,;11) ((fo = 0).

We experiment with Fort Worth (ZFW) center, using historical trajectories
for a 24 hour time period. The number of desired sectors is 18, and the
time is discretized into 24 intervals (hourly splits). We analyze the effect of
number of switching times, k, to the max (over k+ 1 time windows) of average
(over 18 sectors) worstcase workload. In Figure 37, we show how optimal re-
sectorization can lead to a decrease in the maximum aircraft count. Refer to
Figure 38, for the screenshots of resulting sector designs, for ¢ = 2. Notice
that, by allowing more switches (for the same number of sectors), we improve
the max workload. Alternately, if we keep a bound on the workload, multiple
switchings would help in decreasing the number of sectors.

3.3 Local Adaptable Re-Sectorization

Given a sectorization to start with (either the existing one, or the one gen-
erated by GeoSect), it is easy to identify high traffic regions (a group of
local sectors) in the NAS. Locality is specified by means of a parameter, k:
Within an existing airspace partition, we examine local neighbors (clusters) of
k sectors (i.e., connected components of size k in the dual graph). Currently,
GEOSECT-D is implemented for the case k = 2. The objective is to perform
small, local changes to the airspace, versus large-scale changes, in response to
changes in traffic pattern and traffic density. This has several advantages over
“clean-sheet” re-sectorization, including most notably cognitive familiarity. Lo-
cal re-optimizations are also combinatorially small problems, which allows us
to apply sophisticated optimizations that would be prohibitive if applied to
global airspace design. The local re-optimizations within GEOSECT-D can
be done by any sectorization algorithm, such as those within GEOSECT2.0,
those based on MIP, those based on graph partitioning, Voronoi diagrams, etc.
Currently, GEOSECT-D is implemented only with re-optimizations based on
the flow-conforming cut method (from Section 2.3).

62

23 0

14 9
12

(a) Improvements to the avg. (over 18 sectors) peak workload for ZFW Center, as we
allow k=1, or k=2, or k=3.

19.5

Dg;mn.i,c Suitchi;lg Betueen Sector Designs to Inprove Horkload s

15

14.5

14

13.5

RAvg_Hax workload

13

12.5

12 L
a 1 2 3 4 5 6

No of Design Changes during the day

(b) Plot of max. (over all re-designs) avg. peak workload as a function
of k.

Figure 37: Effect of multiple (k) clean-sheet sectorizations, over the course of
a day, on the peak workload.

63

(a) 7:00 to 7:00 hrs (one sector design for (b) Design 1: 7:00 to 17:00 hrs.
the whole day).

(c) Design 2: 17:00 to 22:00 hrs. (d) Design 3: 22:00 to 7:00 hrs.

Figure 38: Results of the dynamic program to decide the best switching times
(k=3) for sector design (using convex sectorization methods) in ZEW.

64

3.3.1 Algorithm

The main algorithm is a greedy, iterative method, which tracks over time the
potential benefit to the objective function of performing each candidate lo-
cal re-optimization. For the k = 2 case (the current implementation), this
amounts to tracking each pair, (01, 02), of adjacent sectors in the current de-
sign. We call this operation, a 2 — 2 move; see Figure 39 for an instance. We
let I(o1,02) denote the amount by which the objective function improves if we
perform a re-optimization of the pair (o7, 03) over the time horizon [¢,t + T,
where t is the current time and 7' is the look-ahead time over which we exam-
ine the predicted demand. The objective function can be arbitrary and may
be quite general, taking into account dynamic density or any workload met-
ric that is computable. Simple versions of objective functions may just count
maximum instantaneous aircraft count or average dwell time. More sophisti-
cated objective functions may include several components that contribution
to dynamic density, such as coordination workload, merging flows, altitude
changes, speed variations among aircraft, etc. Since the local re-optimization
searches over the set of feasible partitions of just the two sectors (oy,03) (or,
more generally, a small number, k, of sectors), it can afford to evaluate a com-
plex objective function for each possible re-partition of (07 Uoy). GEOSECT-D
reduces the space of all possible partitions of (o U g3) by restricting itself to
flow-conforming polygonal cuts computed by (static) sectorization methods in
GEOSECT.

The GEOSECT-D algorithm monitors the benefits functions, I(oy, 09), over
time. At each discrete time step, according to a re-evaluation interval of time
(e.g., 5 minutes), the algorithm applies one of two possible trigger mechanisms:
(1) We choose to re-optimize that pair (o1, 09) (or k-tuple) of sectors that cor-
responds to the largest benefit to the objective function, or (2) We choose to
re-optimize all pairs that have benefit above a user-specified threshold. In both
cases, we restrict ourselves to re-optimizing those pairs (o1, 02) that satisfy the
condition that both o7 and oy are eligible for re-optimization: We say that o;
is eligible if it has been unmodified for at least a certain minimum amount of
time, T},i,, which specifies the minimum amount of time between changes to
the boundary of a sector.

65

(2 — 2) move.

(2 — 1) move.

2— 3 move

Figure 39: Local moves available for adaptable re-sectorization.

66

3.3.2 Experiments

In Figure 40, we show a first experimental result with GEOSECT-D applied to
Washington (ZDC) center. The look-ahead time window is 3 hours long, and
the re-evaluation time interval is 30 minutes. We plot the maximum aircraft
count as a function of time, comparing the result for the original 17 sectors
with the GEOSECT-D result for 16 sectors (kept constant over time). We see
that there is a reduction in the maximum aircraft count.

50

C)rigihal 17 Sectors
40 GeoSect-D 16 Sectors

30 //f_\ _/’_/__\/___\
20 | \

X
o7 R

0

Max Aircraft Count

0O 2 4 6 8 10 12 14 16 18 20

Time (Hours)
Figure 40: Plot of maximum aircraft count over time for ZDC, comparing
the original 17 sectors to GEOSECT-D results for a 16-sector design that is

re-optimized over time using a 3-hour look-ahead and 30-minute re-evaluation
interval

In Figure 41, we show an instance of 2 — 2 local move, as performed by
GEOSECT-D. Notice that, the local re-balancing between sectors ¢; and oy
has resulted in an undesirable shape of the boundary (portion joining points p
to ¢) between o3 and 0y. The current implementation corrects this by finding
a new cut, from p to ¢, which satisfies the shape/flow constraints. But, this
shape correction results in worsening of the workload balance between o3 and
02. One idea to avoid this imbalance is, instead of finding a new path between
p and ¢; we should search for a path from p to ¢/, where ¢’ lies any where on
the boundary of either o3 or oy, and the cut p to ¢’ balances the workload
between o3 and o,. This idea is yet to be implemented in GEOSECT-D.

67

(a) Detected unbalanced sec- (b) 2 — 2 local move balanc- (¢) Correction to the unde-
tors o1 and 0. ing the workload between oy sirable boundary shape, re-
and o9, results in undesirable sults in workload imbalance
boundary shape between o3 between o3 and os.
and os.

Figure 41: Stepping through the adaptable re-sectorization, as implemented
in GEOSECT-D.

The first experiment uses the assumption that the number of sectors is con-
stant over time, which results from the fact that we do local re-optimizations
of pairs of sectors, keeping the sector count fixed. In future experiments we
will enrich the set of local operations to include 2 — 1,1 — 2,3 — 3, 3 — 2,
and 2 — 3 re-optimizations (see Figure 39), thereby not necessarily conserv-
ing the number of sectors. This will allow the algorithm to adapt to changing
demand by decreasing or increasing the number of sectors accordingly.

3.4 Conclusion

Dynamic re-sectorization is very important in DAC research. While improve-
ments are possible with multiple clean sheet re-sectorizations, we believe that
the local adaptable airspace re-optimizations are more practical, as they per-
mit cognitive continuity over time of the airspace design. This leads to another
interesting question: Given two sector designs, how close is one sector design
to the other. A couple of approaches (shared-cell, Hausdorff distance and
centroid-based metrics) are described in Bert et al. [30]. More importantly,
what is the exact cost associated with the transition from one design to other.

68

It is also important to identify the lead time for the controllers, before a change
in sector design actually happens, for them to prepare accordingly. Studies
relevant to these questions using redesigns produced by GEOSECT are under-

way.

69

4 Related Problems

4.1 Scheduling Aircraft to Reduce Controller Workload

As we have seen so far, ATC workload in a sector is largely related to the
number of flights present in the sector at any given time, the more the flights
the more is the work for the controllers. Departure time of flights thus affect
the ATC workload because it decides when exactly the airplane is present in
a sector. We study the problem of re-scheduling the departure time of flights
so as to balance the workload and keep it as low as possible. This is joint
work [36] with Joondong Kim and Alexander Kroller.

Problem Statement For a given set of trajectories and a given sectorization
of airspace, determine alternate departure times “close” to the originally sched-
uled times so that the modified trajectories result in minimizing max, ; n,(t),
the maximum occupancy count of a sector over a time window of interest.

Formally, the Min-Max Sector Workload Problem (MMSWP) is defined as
follows: Given a set ¥ of sectors and a set © of periodic flight plans. The
common period of all plans is T, e.g., T' = 24 hours. Corresponding to each
flight plan 6 is a sequence ¥y = (0p1,0¢2,...) of the sectors it visits, where
opr € X Vk. Flight plan 6 also has an associated departure time dg € [0,T),
and for each sector oy, it has an associated dwell time tg .

Assuming a flight 6 departs daily with a delay of Ay, it will therefore be
in sector oy, during the intervals

Ig(ogr, DNg) = [Z to,e, Z tog) +do+ Dy +TZ (1)

1<k 1<k

Therefore, at time ¢ € [0,7") (and also ¢ + 27 for any z € Z), a total of
ne(t) == {0 € © : t € Iy(o,Ng)}| (2)

flights will be in sector o € X.

70

Our goal is to find delays (Ag)peo to minimize the overall maximum occu-
pancy count max,;n,(t). The delays are constrained to be within the range
[0, D] for parameter D. Note that additionally allowing flights to leave early,
i.e., Ay < 0, does not change the problem due to the periodicity of flight plans:
A delay range [—a, b] is equivalent to [0, a + b], for a,b > 0. Therefore, we just
consider the problem where Ay > 0.

Relation to Job-Shop Scheduling When there is no constraint on the
maximum delay, i.e., D > T, our problem is equivalent to “no-wait job-shop
scheduling”. We represent each flight plan as a job and each sector as a
machine. We seek to minimize makespan, i.e., the smallest time in which all
jobs can be processed, where no two jobs can be on the same machine at the
same time. The no-wait constraint ensures that, once started, a job can neither
be delayed between machines nor suspended while being processed on one. An
optimal solution to the job-shop problem with makespan M can be converted
trivially to a flight plan solution with maximum occupancy [M/T]. Vice
versa, an algorithm for flight plan scheduling also solves job-shop by finding
the largest A for which a flight plan with all processing times scaled by A\ can
be scheduled with maximum occupancy 1. This can be achieved using binary
search.

Lemma 4.1. Minimizing makespan in the no-wait job-shop scheduling prob-
lem is polynomially equivalent to the Min-Max Sector Workload Problem (MM-
SWP).

No-wait job-shop scheduling has attracted various researchers (see, e.g., [41,
51, 55, 50, 40]). [10] gives a PTAS for a special case of the problem and shows
hardness of approximation for another case. [33] provides a survey of schedul-
ing algorithms, defining the various terms and known results for some of the
basic problems. Since the job-shop problem is NP-hard, so is the MMSWP, by
Lemma 4.1. [23] formulates train scheduling as job shop problem with no-store
constraints.

Another good reference is Bertsimas et. al [16] which solves an optimal
combination of flow management actions, including ground holding, rerouting,
speed control and airborne holding on a flight-by-flight basis.

Simplified Cases Here, we examine some special cases of the problem. In
all the cases here, we consider D = T, so that there are no maximum delay
constraints.

71

One-Sector Problem In the simplest of cases, there is only sector g and
hence all the flight plans just define the time interval the flight remains in this
sector. For all 0 € ©, 091 = 0y.

If we remove periodicity of flight plans, i.e. put a constraint dg+Ag+15; <
T hours for each flight 6, the optimal re-scheduling problem of minimizing the
maz-workload exactly maps to the bin-packing problem which is known to be
hard (reduction from set partition) and also has an asymptotic PTAS [25]'.

If we consider periodic flight, then the one-sector problem has a trivial
solution just by assigning delay to make flight back to back. This gives max-
workload of [, o te1/T].

Two-Sector Problem The extension of the problem to two sectors, with
a periodic schedule of flights, seems like an interesting special case to under-
stand the complications associated with the no-wait constraint and also the
periodicity of the schedules. It is much easier to understand the two-sector
problem by considering its exact equivalent below.

2

- ? |
g — -
Figure 42: Left: 4 kinds of blocks. Right: The tight-fitting in the groove of
size 2.

Consider Figure 42. Let A, B be the sectors. The red rectangles indicate
the time interval of flights in A and the blue rectangles indicate intervals in B.
Red to the left of blue indicates that flight starts in A and single red rectangle
indicates the flight is only in A. Thus, the MMSWP corresponds to packing
these blocks of rectangles as tightly as possible in the groove of width 2, con-
straining that red rectangles strictly remain in the upper row, blue rectangles

L An asymptotic PTAS is an algorithm that, given € > 0, produces a (1+¢)- approximate
solution provided OPT > C(¢) for some function C, and runs in time polynomial in n for
every fixed e.

72

strictly remain in the lower row and none of the rectangles overlap.

It turns out that periodicity does not really help for this case, as this
version of the problem also turns out to be NP-complete by reduction from

3-PARTITION PROBLEM.

Theorem 4.2. The MMSWP within 2 sectors is NP-Complete.

Proof. 3m numbers a4, as, ..., as,, are given for a 3-PARTITION PROBLEM
instance P. All of these number are between B/4 and B/2, where mB is the
total sum of aq,...,as,. We show the optimal solution of minimizing work-
load overall sectors gives us the solution of this problem.

Let’s construct the MMSWP problem instance corresponding given input
m, B, and a;’s. There are two sectors o; and 5. Let time horizon T be
(mB + m). For given numbers a; where ¢ € {1,...,3m}, we generate flights
¢; which visits only oy with staying time a;. i.e, Xy, = (01) and tg,1 = a;
for i € {1,2,...,3m}. And we prepare additional m flights 63,11, ..., 03m4m
which visit o, for time (B + 1) and then oy for 1. ie, ¥y, = (02,01) and
tg,1 = (B+1),tg,2o=1for je{3m+1,...,3m+m}.

Then, we claim that if we minimize maximum workload overall sectors for
this problem as 1, then we are able to solve given P.

In order to make workload as 1 for o5, we have to arrange 05,11, - .., 03m13
back-to-back like dark-gray blocks in Figure 43. Then there are m intervals
with length B in o;. Now finding a placement of 6, ..., 03, (light gray blocks
in Figure 43) to make workload of o7 as 1 is finding a partition of {as, ..., asy,}
such that each sum is exactly B.

O
4.1.1 Algorithms
We designed heuristic algorithms and compare them with a given flight plan

and a lower bound.

Shifting Starting with the original flight schedule, we pick the sector with
worst max-workload (in case of tie check each one of them), and look at the
time interval where the max-workload is worse. All the flights present in the

73

01 0o O3m

L] O e e e e]

Sl a R SR ol

B+1 1
mB +m

Figure 43: Constructing 2 sectors scheduling problem from a given instance of
3-Partition problem.

sector in that time interval are considered for re-scheduling (shifting) and the
one which gives the “best” improvement is selected greedily. The goodness of
a shift is judged by its effect on the workload vector which stores the workloads
of all sectors in the sorted order. The flight whose re-scheduling gives the best
improvement in lexicographic ordering of the workload vector is selected (in
case of ties, we pick the flight which has the least difference in the re-schedule
time and the ordinal schedule). The process is repeated till all shifts at a given
iteration worsen the workload vector. (Note that shifts keep taking place even
when the workload vector remains same).

We constrain the greedy shifting to be of the following three kinds:
e Right Shift - The flights are only allowed to be postponed.
o Left Shift - The flight are only allowed to be preponed.

e Short Shift - The decision of postpone/prepone is decided by the amount
of shift, and the shorter one is picked.

We run the experiments for each of these separately, and also run an ex-
periment where for each flight both left and right shifts are checked. We call
that “Best Shift”.

74

We also devise an incremental heuristic, in which flights are added one
by one (in a random order). With each new flight addition, we run complete
experiment of a shift heuristic considering all the flights previously added along
with this one.

Randomized Rounding The randomized rounding algorithm solves a lin-
ear problem formulation whose variables describe a probability distribution for
each flight plan. Then, a solution is generated by drawing delays from these
distributions.

We evenly divide the interval [0, D] into a discrete set of delays {0 =
do,dy,..., d,, = D}. Also we slice the 24h-period T into n pieces {0 =
tot, ...ty =T}

For each flight 6, the linear formulation has a variable zy(d;) for each
d;,0 <1 < m. The interpretation (in terms of the finally assigned delay Ay)
is

l’g(dl) = PI”[AQ Z dl] .

So the z4(-) define a probability function on [0, D] for every flight (the density
is constant within each interval [d;, d;,1), that is, the distribution is uniform
within each interval). To make sure the xy(d;) define a proper probability
distribution, we use the constraints

1= SEg(dO) Z l’g(dl) Z Z Ig(dm) =0.

This means the probability that a flight delay is in the range [d;, d;] is zo(d;) —
x(d;), so the probabilities are nicely encoded in the formulation. Note that

Pr[flight € is in sector ¢ at time ¢]

is a linear term in the xg(-) variables. To see this, translate ¢ into a range
[Ay, Ag| of delays where a flight would start to be in o at t. The probabilities
are then:

e Some of the first interval with d; < A, < d;11, that is,

dis1 — A
Prlfisin o at ¢, Ay € [di, dit1)] = H(iﬁa(di) — (dit1)) -
i1 — d;

e All of the intervals A, < d; < ...djy1 < Ay, in a similar fashion.

1)

e Some interval part around Ay, again analogous to the first case.

By adding the cases, one can see how Pr[f is in ¢ at t] is a linear term with
up to four coefficients. Obviously there are a number of special cases when
[A,, Ag] Z [0, D]; these are easy to resolve and left out in this presentation.
So we can now describe the expected load of sector o at time t by the linear
term
E[number of flights in o at time t] = Z Pr[f is in o at t].
o

Hence, we solve the following LP:

min C
s.t. E[number of flights in ¢ at time t] < C Vo € X,t € {T,,...,T,}
1 =xz4(do) > wg(d1) > -+ > 29(dpn) =0 VO €O,

which gives us a probability distribution for each Ay, so we now generate ac-
tual Ay values following these distributions.

An interesting variant arises when we add integrality constraints to the LP,
as this forbids smearing flights over many delay intervals. As the resulting IPs
are typically impossible to solve within reasonable time, we employ a different
strategy: First, the LP-based heuristic is run. We identify the most crowded
sectors, and add integrality constraints for tracks passing these sectors. At
the same time, we vary n and m for different sectors and tracks, such that the
crowded sectors get a more detailed formulation than the others.

4.1.2 Lower Bounds

Naive Approach The optimal one sector solution for a sector o (refer sec-
tion 4.1), for D = T, independent of any other sector, is a naive lower bound
to its max-workload attained by any scheduling and for any D. Thus we can
optimize each sector individually, and pick the maximum value over all sectors
to serve as a lower bound to the workload attained by the optimal scheduling.

Linear Programming The second lower bound algorithm is based on the
randomized rounding algorithm. Assume that all the zy(-) are binary, i.e., 0
or 1 (see Section 4.1.1 for details). If now zy(d;) — z9(d;) = 1, then flight 6
will have a delay Ay € [d;, d;].

76

For a track 6 € ©, a sector ¢ € ¥ and a time ¢, we again compute the inter-
val [Ay, Ag] of delays for 6 under which 6 will be in o at t. Then we determine
the smallest d; > A, and the largest d; < Ag]. Then, when z4(d;) —x(d;) =1,
the flight will be in o at ¢. So define gy(o,t) := xo(d;) — zo(d;).

The following IP charges 1 towards the maximum capacity C' when a track
is guaranteed to be in o at t:

min C'

st. Y golot) <C VYoex,tel{l,,. .. T}
0cO
1= {L'g(d()) > (L’g(dl) > 2 fL‘g(dm) =0 VheoO
.%‘g(dz)G{O,l} Voe©,i=0,...,m

The optimal solution to this IP is a lower bound to the original problem. For
efficiency reasons, we do not solve this IP directly, but rather its LP relaxation,
which is obtained by dropping the integrality constraint.

4.1.3 Experiments

We use real-world flight track data and sector data from the National Airspace
System (NAS). The data, as shown in Table 7, is divided into 5 sets depend-
ing on the number of sectors. The alt-range defines the range of altitude for
the air-traffic in the sectors. The high-altitude sectors typically have alt-range
24,000 feet and above. Setl, Set2 and Set3 considers flight tracks for the
entire 24 hour time period while Set4 considers only the flights that overlap a
4 hour time window. Note that the flight times may start or end outside the 4
hour time window. Also, Set4 includes all the sectors spanned by these flights,
thus having high-altitude sectors, low-altitude sectors and some sectors from
Canada as well.

Set5 (random data) consists of a 300 x 300 (unit nautical miles) square
region divided into 16 sectors in the form of a square grid. 64 (uniform) ran-
dom cities were generated such that 10% cities had weight 10, 15% had weight
5 and remaining had weight 1. 4994 random flights were generated between
(weighted uniform) randomly chosen city pairs such that each city had prob-
ability of selection proportional to its weight. The departure-time of a flight
was (uniform) randomly generated between 0 — 24 hours. The speed of the

7

No. of Sectors | Alt-Range | Flights | Time Window
Setl 5 > 24k feet | 1904 0 — 24 hrs
Set2 18 > 24k feet | 3063 0 — 24 hrs
Set3 57 > 0 feet 12123 0 — 24 hrs
Set4d 1281 Different | 11986 14 — 18 hrs
Seth 16 > 24k feet | 4994 0 — 24 hrs

Table 7: Summary of Data Sets used for experimentation.

Setl Set2 Set3
Max | Mean | Var | Max | Mean | Var Max | Mean | Var
Original plan 22 18.00 | 6.80 18 12.83 | 12.25 38 21.56 | 36.70
Right Shift 18 16.40 | 1.04 14 11.11 | 3.99 31 20.77 | 26.27

Incr. Right Shift 15 13.80 | 0.96 12 10.17 | 2.25 26 18.75 | 16.40
Rand. Rounding 16 14.20 | 1.36 14 11.17 | 3.69 29 20.18 | 21.55

MIP 15 14.20 | 0.16 14 11.33 | 3.22 27 19.68 | 17.71
Naive | LP 1P Naive LP 1P Naive | LP 1P
Lower Bound 6 9 10 5 8 9 16 20 wait

Table 8: Workload statistics of algorithms for Setl, Set2 and Set3. Max:
Maximum Workload, Mean: Mean of workload, Var: Variance of workload

aircraft was modeled as a (uniform) random variable between 200 — 600 nau-
tical miles per hour. The arrival-time of a flight was thus calculated using the
departure time, the speed of the aircraft and the distance between the city
pair. Additional constraint was added that no two aircraft depart from (or
arrive) at a city within 1 minute of each other.

A screenshot of data sets Setl, Set2 and Set5 can be seen in Figure 44.

Tables 8 and 9 show the comparison of max-workload statistics of the given
flight plans, the heuristic solutions and the LP based methods. The maximum
allowable shift to any flight schedule was constrained to be 1 hour in all meth-
ods. The discretization of time for LP/IP methods is 1 minute. The results
show a considerable improvement over the workloads of each sector arising due
to the original flight schedules. Even the variance values have gone down signif-
icantly, indicating more balance of workload across sectors. In particular, the
incremental shift heuristic seems to out-perform all the other methods. Note
that the shifting heuristics do not discretize the time like LP/MIP methods.

78

(a) Setl sectors and the underlying (b) Set5 (randomly generated) flight
square grid (and shifted square grid) tracks with the underlying sectors.
cover (grid resolution: 0.1x0.1).

=59
=

=
=
=l
-
=
=
o

\‘//.ﬂ
L
b

\]
A
3

TTNEE |

e

(c) Set2 sectors and grid cover (1x1).

Figure 44: Screenshots of datasets. The number in the sectors indicate the
max-workload count for the corresponding flight schedules.

79

Set4 Setb
Max | Mean Var Max | Mean | Var
Original plan 58 7.67 37.88 24 13.00 | 46.13
Right Shift 47 7.61 36.35 19 11.75 | 29.01
Incr. Right Shift 39 7.51 34.50 17 10.81 | 20.66
Rand. Rounding 39 | missed | missed | wait | wait | wait

MIP n/a - - wait | wait | wait
Naive LP 1P Naive | LP 1P
Lower Bound 12 - - 13 11 11

Table 9: Workload statistics of algorithms for Set4 and Set5. Max: Maximum
Workload, Mean: Mean of workload, Var: Variance of workload

Setl (1904 fit) Set2 (3063 fit) Set3 (12123 fit)
Max Total Avg | Max Total Avg || Max Total Avg
Right Shift 5.76 46.08 1.44 8.64 5:25.44 1.44 || 17.28 5:18.24 1.44

Incr. Right Shift || 48.96 | 2:00:46.08 | 4.32 || 51.84 | 3:16:20.64 | 5.76 60 18:21:7.2 | 5.76

Rand. Rounding 60 | 13:22:23.52 | 10.08 60 | 13:06:48.04 | 5.76 60 35:18:15.4 | 4.32

MIP 60 | 14:21:48.04 | 11.52 60 | 15:21:42.28 | 7.2 60 | 37:10:59.08 | 4.32

Table 10: Time shift statistics of various methods for Setl, Set2 and Set3.
Max: Max shift, Total: Sum of absolute value of shift, Avg: Average of
absolute value of non-zero shifts. (format 14:21:48.04 means 14 days 21 hours
48.04 minutes)

The “missed” values in Table 9 and Table 11 is due to the failure of log-
ging the workloads of all sectors. Since it takes about a week to run Set4
with randomized rounding method, we did not have another chance to get
those results in time. The “wait” indicates that we are still waiting for the
instance to complete execution while “-” indicates that we do not hope to get
the result for that case. For Set4, the MIP method ran for about 6 weeks and
then ran out of memory, while the shift heuristic takes couple of hours and
the incremental shift heuristic takes little more than a day to execute.

Tables 8 and 9 also shows the lower bound calculations for the 5 sets. The
best solutions are still not close to the computed lower bounds but we believe
they are very close to optimal solution. Future work will specifically aim to
improve the lower bounds.

Tables 10 and 11 shows the statistics of the amount of time shifts from

the original schedule. Max indicates the maximum shift in any flight schedule,
Total indicates the sum of absolute values of shifts and the Avg gives the aver-

80

Set4 (11986 fit) Set5 (4994 fit)

Max Total Avg || Max Total | Avg
Right Shift 53.28 | 12:53.28 4.32 | 6.97 3:8.32 | 0.82
Incr. Right Shift 60 | 14:22:53.76 | 17.28 || 53.56 | 4:18:4.84 | 3.84
Rand. Rounding 60 missed 11.52 | wait wait wait
MIP - - - wait wait wait

Table 11: Time shift statistics of various methods for Set4 and Set5. Max:
Max shift, Total: Sum of absolute value of shift, Avg: Average of absolute
value of non-zero shifts. (format 14:21:48.04 means 14 days 21 hours 48.04
minutes)

age time shift of all flights with non-zero shifts. The value of Total in case of
right shift heuristic is considerably small compared to other methods possibly
because of the early termination due to local minimum. Also, the average time
shift is considerably low for all the methods, thus suggesting that we can get
considerable improvements in workloads with reasonable modification to the
schedules.

Other Workload Considerations Apart from the maz-workload of a sec-
tor, there are other workload issues which are significant from the controller
perspective. One of them, usually referred to as coordination workload, deals
with the hand-offs between controllers when an aircraft moves from one sector
to the other. Another, critical one, is the conflict resolution workload which
is related to monitoring the aircraft when they are expected to be present at
(or near) the same (lat,long) point (conflict point) simultaneously. Note that
even if two aircraft are flying at different altitudes, at the conflict point, they
demand special attention of the controller.

While re-scheduling flights has no effect on the coordination workload, it
can favorably affect the conflict resolution workload, by reducing the number
of conflict points. It is easy to incorporate conflict resolution workload in the
model, as we discuss below.

Conflict Resolution Workload We sub-divide the region (spanned by the
sectors) into (reasonably) small size cells and compute the max-workload in
each cell separately. If the size of the cell is small enough, a high max-workload
cell would represent a conflict point, as more airplanes come in the vicinity of
one another simultaneously. We add these cells as new (artificial) sectors to
the data set and try to minimize their workload vector separately, thus (pos-

81

Setl (Given SMax: 22) Set2 (Given SMax: 18)

Grid Size Given Shifted Given Shifted

GMax | GMean | SMax | GMax | GMean | GMax | GMean | SMax | GMax | GMean
0.1x0.1 4 1.670 18 3 1.604 4 1.467 14 4 1.478
0.2x0.2 5 2.446 18 4 2.356 5 2.105 14 4 2.083

Table 12: Results of Right-Shift heuristic with additional grid constraints for
Setl and Set2. SMax: Sector Max, SMean: Sector Mean, GMax: Grid Max,
GMean: Grid Mean.

sibly) decreasing the number of conflict points.

The shifting heuristic is now modified to be a two step procedure. First
step treats the overall max value of max-workload across all cells as a con-
straint W.. The air-crafts are re-scheduled to improve the workload vector of
the sectors, like before, while keeping the workloads in all cells below W.. In
the second step, the role of sectors and cells is reversed. Now the optimized
maximum value of the workload of the sectors is treated as a constraint and
the air-crafts are re-scheduled with the objective of improving the workload
vector of the cells.

For experimentation, these cells come from a uniform (square) grid and
a shifted uniform grid as shown in Figure 44 covering the region spanned by
the sectors. Two different side lengths of square grid cells are used, 0.1 x
0.1 and 0.2 x 0.2 (unit latitude/longitude degrees). In Setl, Set2 and Set5,
1 degree corresponds to somewhere in the range of 35 — 60 nautical miles.
Tables 12 and 13 shows the results of the workload improvements with the cell
constraints. We observe that the max-workload of the sectors still improve as
compared to the original (18 v/s 22 for Setl), while the number of conflict
points are considerably decreased (see Figure 45). For Setl, after scheduling
there are no grid cells with workload 4, while the number of cells with workload
3 has also decreased by more than 90%.

Concluding Remarks We presented a periodic flight plan scheduling prob-
lem, proved it to be NP-hard, and proposed heuristics for which we reported
experimental results on real-world data. The results show a considerable work-
load improvement over the originally scheduled flight times and come at low
computational cost. The reduction in the number of conflict points was also
impressive. Future work will specifically aim to improve the lower bound, as

82

Set5 (Given SMax: 24)

Grid Size Given Shifted

GMax | GMean | SMax | GMax | GMean
0.1x0.1 11 1.609 19 8 1.598
0.2x0.2 14 2.271 19 10 2.243

Table 13: Results of Right-Shift heuristic with additional grid constraints for
Setb. SMax: Sector Max, SMean: Sector Mean, GMax: Grid Max, GMean:
Grid Mean.

10000 10000
o) o
w© ©
@ 1000 @ 1000
o0 0
k) k)
2 2
3 10 g 100
5 O before 5 O before
I} m after I} m after
‘5 10 5 10
<] <]
: [In : [In

1 T T 1 T
4 3 2 1 4 3 2 1
Grid Cell Workload Grid Cell Workload
(a) Setl. (b) Set2.

Figure 45: Grid cell max-workloads (before and after scheduling), for grid size
0.1 x0.1.

83

we believe that the heuristically produced solutions are already almost optimal.
Also, we are interested in re-routing the aircraft along with re-scheduling to
improve the workloads.

4.2 Trajectory Clustering

Given the aircraft trajectories (historically flown, wind-optimized or any sim-
ulated data), it is important to identify the dominant flows. Recall, from
Section 2.2, that a dominant flow is a path used by many air craft. Identifying
dominant flows is critical for re-routing traffic in case of weather changes, de-
signing sector boundaries (refer Section 2.3), realization of airspace concepts
like tubes [52], etc. This is joint work with Irina Kostitsyna.

The main objective (similar to many other classical clustering problems)
is to cluster trajectories into bundles and to find a representative for each
cluster, defining the dominant flow. Note that the trajectory data may have
many outliers (the trajectories that do not fly through or follow any dominant
flow). Considering this fact, the decision version of the trajectory clustering
problem can, now, be defined as:

Problem Statement: Given a set T of n aircraft trajectories (polygonal
paths in 2D), does there exist a set of dominant flows D C T, |D| < k, such
that at least ¢ % of trajectories in 7" lie “close” (within €) to at least one of
the dominant flows. A trajectory t is “close” to a dominant flow d if a certain
fraction f, of its length [(¢), lies within the e-fattening of d (see Figure 46).
One may wish to minimize either &£ or minimize). . (i), where [(i) is the
length of dominant flow i. Alternately, given k the objective may be to maxi-
mize c.

Related Work [3] is an excellent web survey covering different kinds of
trajectory clustering problems. Repetition is how Andrienko et al. [8] classify
the trajectory clustering problem (as motivated above). Gudmundsson et al’s
book chapter [29] also gives a good overview of the topic, along with some key
applications. Dykes et al. [26] suggest that the track density map approach
discussed below dates back to the work of Héagerstrand in 1970.

84

Figure 46: The (black) trajectories that are fully contained (f = 1.0) in e-
fattening of (blue) dominant flow, are “close” to the dominant flow.

Specific Requirements Related to Sector Design For sectorization pur-
poses, along with the identification of flows, it is also important to assign speed
and direction to each flow. This assists in deciding the buffer requirements for
conflict points (flow crossings) from the sector boundary. One way of getting
the speed (direction) of a dominant flow is by averaging (majority voting) the
speed (direction) of tracks “close” to this flow.

4.2.1 Algorithms

We devise three greedy heuristics: GREEDYD, GREEDYW and GREEDYT.
The first two use the traffic density map, while the third one explicitly uses
the given trajectories to find the dominant flows.

Traffic Density Map The construction of traffic density map is as follows.
Starting with the bounding rectangle of trajectory set 7', discretize the space
of the rectangle with a uniform grid G. The spacing between points in G is
defined by a parameter incr. For each grid point g define the weight w(g) as
the number of tracks that intersect a disc of radius € (from problem definition)
centered at this point. See Figure 50 for examples of traffic density maps. The
points with heavy weight indicate regions of high traffic density.

85

Now, for each track ¢, we define the weight w(t) as the sum of weights of
all grid points that are within distance e (in the e-band) of t. The density
of t is defined as d(t) = w(t)/n(t) where n(t) is the number of grid points in
the e-band of ¢. Intuitively, it is weight per unit length of the track and is a
good quantifier for the dominance of ¢. A track ¢ with high d(¢’), suggests
that this track goes through (or lies completely in) the region of high traffic
density. Thus, ¢’ is a good candidate for dominant flow.

Algorithm 2 Greedy Trajectory Clustering
Input: Set T of tracks, Coverage threshold ¢ %.
Output: Set D of dominant flows.

D «— ¢
C— ¢
Coverage «— 0
while Coverage < ¢ % do
d «— “best” track
D« DUd
for all Tracks t € T' do
if t ¢ C and t “close” to d then
C—t
end if
end for

Coverage < > . l(t)/ > ,cr (1)

end while

All the three greedy heuristics are based on Algorithm 2, which is moti-
vated from greedy set-cover. The only difference is the way in which each
heuristic selects the “best” track. For GREEDYD, the “best” track is one
with the maximum density. Since a track with the maximum density may
have a very low weight w(t), it is not a good choice because this low weight
track will hardly cover any tracks. We modify GREEDYD by introducing a
constraint that the weight of the selected track is at least a fraction wc of
the maximum track weight. Thus, d < ma%yier and t¢C and w(t)y>wewr)d(L),
where t' < maxyer and tgc)w(t).

GREEDYW selects the track with maximum weight, under the constraint
that d(t) is at least a fraction dc of the maximum track density. Thus, d «

MATY(ET and t¢C and d(t)>de-d)W(t), Where ¥ «— maryuer and 1¢c)d(t). Note

86

that the track density map is updated in each iteration of Algorithm 2, to
have weights corresponding to tracks 7//C. GREEDYT, picks the track with
maximum coverage, d < MaZvyer and v¢c)cov(t’), where

COU(t/) = SUMY(teT and t¢C and t “close” to t’)l<t)

4.2.2 Experiments

Datasets Setl, Set2 and Set3 are same as used in Section 2.3.3. Refer to
Figure 50, for the traffic density map of Setl and Set2, for incr = 0.04 and
e = 0.15. For all experiments below, f = 0.7. Thus, a track that was fraction-
ally outside the e-band of a dominant flow d, would still be covered by d.

Firstly, we use Setl and Set2 to evaluate the sensitivity of we (and dc)
with respect to k& (number of dominant flows), for ¢ = 95%. Ideally, incr
should be as less as possible (more discrete points to approximate the continu-
ous traffic density map) and ¢ should dictate the width of a dominant flow in
nautical miles (nm). For this experiment, we use high values for incr = 0.04
and € = 0.15 (~ 7.5nm), as the main aim of experiment is to understand the
sensitivity of parameters and not to extract the exact dominant flows. With
high values of incr and €, one experiment for Set1, for a specific wc took less
than 3 minutes to execute. In Figure 48, we show the variation of k as wc
(and dc) increases from 0 to 1. The decreasing behavior of k, for GREEDYW,
is intuitive; as for lower values of wc, it is likely that the tracks with small w(t)
are selected initially, which do not cover many tracks. Similar explanation can
be given for the increasing behavior of k (with decreasing wc), for GREEDYD.
Observe that, k remains same (75 for Set1) for both GREEDYD, when we = 0,
and GREEDYW, when dc = 1. This is because, both heuristics pick maximum
density track (regardless of the weight), at each step. In a similar way, k re-
mains same (44 for Set1) in case of GREEDYD, when we = 1, and GREEDYW,
when dc = 0, as maximum weight track is picked.

GREEDYT, for ¢ = 95%, gave 28 and 35 dominant flows for Set1 and Set2,
respectively. Comparing GREEDYT results with the graphs in Figure 48, we
assign dec = 0.6 and we = 0.7. These are chosen so that the number of dom-
inant flows k, for GREEDYD and GREEDYW, remains comparable to that
achieved by GREEDY'T; at the same time, the density of each dominant flow
is as high as possible.

Next, we use the constraint parameters fixed above, to see how k changes

87

(a) Setl.

Figure 47: Left: Tracks; Right: Traffic Density Map showing regions with high
(red), moderate (yellow) and very low (dark green) traffic density.

88

75

GreedyD (Coverage c=95%)

70 1
65 1
60 1
56 ¢
50 -
45
40
35
30

No. of Dominant Flows

" Setl
Set2

25
0

20 40 60 80
Weight Constraint (wc) %

100

(a) we v/s no. of flows for GREEDYD.

GreedyW (Coverage c=95%)

75 . .
g 70 t Setl
o 65 | Set2
L
= 60
g 55
S 45 ¢
2 a0
© 35
§ 30

25 : : : :

0 20 40 60 80 100

Density Constraint (dc) %

(b) dc v/s no. of flows for GREEDYW.

Figure 48: Sensitivity of number of dominant flows to the constraints.

with the increasing coverage (c¢). Refer Figure 49: For ¢ > 60%, the addition of
a flow, does not increase the coverage by much. Other way to interpret this is,
for coverage beyond 60%, the density (dominance) of any new flow is modest.
Visual inspection (see Figure 49) of dominant flows at different coverage levels
also reveals that 60% is the right choice for c.

Coverage (%)

Setl

T T T T T
R L odeiet L
. : 1

»
e
*

x
*

GreedyD ——
GreedyW
_GreedyT -

0 L L L
0 5 10 15 20 25 30 35 40 45 50

No. of Dominant Flows
(a) Setl.

100

90 r
80
70
60 -
50
40 /
30 ’__.":
20 ¥

Coverage (%)

10

Set2

o

GreedyD ——
GreedyW
5 10 15 20 25 30 35
No. of Dominant Flows
(b) Set2.

Figure 49: Number of dominant flows vs coverage.

Refer to Figure 51, for the results of GREEDYD and GREEDYW, for ¢ =
60%, for the Set3. For this experiment, incr = 0.015 and € = 0.05 (~ 2.5nm).
Most of the high traffic density regions look covered with the computed domi-

89

Figure 50: Screenshot of (blue) dominant flows (along with covered (grey)
tracks) for increasing total coverage (Left: ¢ = 50%, Middle: ¢ = 60% and
Right: ¢ = 70%).

90

nant fows.

Concluding Remarks The requirement, D C 7', in the problem statement
might be too rigid. It will be interesting to identify a dominant flow which is
central to the tracks that lie within its e-band. This is similar to considering
the centroid of points as cluster head (like done in k-means clustering). More
formally, the sub-problem can be thought of as: Given a set T”, of polygonal
chains in 2D, find a chain ¢ so as to min}_, ., d(t,7) or min max;ep d(t, 1),
where d(t,17) is the Fréchet distance between t and i. A possible related ref-
erence is the work of Bereg et al [12], where they consider finding Voronoi
diagram of polygonal chains under discrete Fréchet distance.

Also, for sectorization purposes, it may suffice to get the output in the form
of a planar graph (defining the arrangement of dominant flows), with edges
(poly-chains) connecting nodes (flow crossing points). The direction and speed
of tracks along the edges can be used to specify the separation requirement of
crossing points from sector boundaries. Such output, in terms of planar graph,
can be expected from density based clustering methods [48]. Experimentation
with such methods is left as a future work.

91

(b) Track data.

(¢) Dominant flows (blue) produced by GreedyD (Left: Overlayed on
density map; Right: Along with the covered trajectories).

(d) Dominant flows (blue) produced by GreedyW (Left: Overlayed on
density map; Right: Along with the covered trajectories).

Figure 51: Screenshots of result for Set3 (¢ = 60%).

92

5 Future Work

Terminal Airspace All of the methods discussed so far (and the experi-
ments conducted) were aimed at sectorizations involving en route airspace.
The terminal airspace (within 30 — 50 nautical miles of an airport) is sector-
ized very differently from the en route airspace. Fach Terminal Control Areas
(TCA) (sector in the terminal airspace) is very structured to enable efficient
climb and descent traffic profiles.

As discussed in Bert et. al [30], runway and flow path design is inseparably
intertwined with sectorization in the terminal airspace. Refer to Figure 52
for an example of highly structured flow interactions in the SFO/OAK/SJC
metroplex area. (The images are from the terminal airspace slides of Doug
Isaacson, NASA Ames Research Center.) The function of controllers in TCA’s
is very specific to the kind of flow they are handling. There are feeder sectors
that handle TRACON entry and merge preparation, final approach sectors,
departure sectors, hand-off sectors, etc.

The study of combined flow design and sectorization is new and challeng-
ing. We are currently compiling exact requirements and exploring algorithmic
approaches for terminal airspace design.

Airspace Playbook Kopardekar et. al [37] proposed the concept of an
“Airspace Playbook” as a set of pre-defined airspace configurations that go
hand-in-hand with the the existing pre-defined scenarios from the National
Severe Weather Playbook (NSWP). The NSWP consists of a set of reroutes
based on weather changes. Each “configuration play” involves adjustment to
sector boundaries, ideally in the increments of existing sector components (sub-
sectors). Typical examples of a play include exchanging sub-sectors among
neighboring sectors, splitting sub-sectors within a sector etc. The main advan-
tage of pre-defined airspace configuration lies with the “memorization” [18]
aspect of controller training. Since sub-sectors are used in configuration plays,
air traffic controllers can train themselves on sub-sector geometry.

93

£an [raneisee Day Araa
Major Jet Arrival &

Departure Routes - SE
oy Plan wroous

Al INT

 postton

X positon

(b) Actual flight tracks.

Figure 52: Terminal flow interaction in SFO/OAK/SJC.

94

The local repartitioning method, described in Section 3.3, restricts the re-
design to regions of dynamic air traffic; each redesign consists of a local move,
such as (2 — 2), (2 — 3), (2 — 1), etc. While the set of local moves is
pre-defined (and small), each local move may result in many different config-
urations in the same region. This is because of the large number of possible
flow conforming cuts available in the discrete search space (uniform grid). That
said, it is not difficult to incorporate the concept of sub-sectors into the local
repartitioning method used by GEOSECT-D. Instead of searching for a new
cut on a discrete grid, the search graph may consist of nodes and edges that
define sub-sector boundaries within a sector (more generally, a region). This
will restrict the number of different possible configurations (resulting from a
local move) to a small set of different combinations of sub-sectors. A challeng-
ing question is to come up with a good set of candidate sub-sectors that define
an optimal underlying search graph for cuts. One way to get the sub-sectors
is to invoke GEOSECT for designing a large number of sectors. Another, more
flow conforming, way would be to use the Voronoi partition (see Figure 53) of
dominant flows as the set of candidate sub-sectors.

Figure 53: (Grey blue) Voronoi partition of (red) dominant flows. The (blue)
discs represent constraint zones at flow crossing points.

Multi-Controller Staffing Tien et al [54] discuss the use of a multi-controller
policy where, by assigning more than one controller to a sector, they circum-
vent the need to perform disruptive sector boundary changes during busy pe-
riods of air-traffic. The addition of an extra controller may not double the

capacity of a sector, but can definitely serve as an alternative to re-design,
when the workload of sector increases above that manageable by one con-
troller. This adds another interesting dimension to the airspace sectorization
problem, where the new objective is to minimize the controller-hours (which
directly translates to the cost of controller-staffing). The current methods in
GEOSECT can be appropriately modified to handle this new objective; among
all choices of flow conforming cuts, instead of picking the one that best bal-
ances the workload, we may prefer a cut that gives a better controller staffing
opportunity.

GEOSECT Enhancements There are several specific planned enhancements
in the software, including:

e GUI for manually editing the sector boundaries:
Add the capability for a user to edit (delete/add/move) a sector bound-
ary. While a boundary is being edited, the workload of the sectors shar-
ing that boundary should be updated in real time, allowing instant assess-
ment of possible benefits. This feature is important for multiple reasons
as enumerated below.

1. Post-process a computer generated sector design, either from GEO-
SECT or from any other algorithm. This should assist in rectifying
any small artifacts in the design.

2. Validate the methods that generated the sector design. If by editing
a sector boundary, the workload balance improves, one may want
to re-examine or modify the algorithm, adjust the algorithm’s pa-
rameters, or check for the correct implementation of the algorithm.
Alternately, if the method is working correctly, this might be an-
other way for a user to understand why the algorithm arrived at a
particular sector design.

3. Allow the possibility for the user to decide to skip considering an
auto-generated sector design altogether. This may be particularly
useful in the dynamic setting, where a sector design is already in
use. Modifying the sector boundary manually, while monitoring
the changes in the resulting workload, may well end up being the
method of choice, especially for small changes in traffic patterns.

The important data structure, doubly connected edge list (DCEL), to
make possible these editing features is already present in GEOSECT.
Hence, it should be one of the easier enhancements to the tool.

96

e Using dominant flows more intelligently:

Update the current implementation of the constraint at flow crossing
points. Currently, the constraint is implemented as a circular disc. The
modification will allow other shaped regions (e.g., rectangles, polygons)
that will allow consideration of the direction and speed of the crossing
flows (see Section 2.3). We also intend to make necessary modifications
to consider the dominant flows in 3D (and possibly 4D). This will be
important for producing sector designs in the TRACON region and also
for dynamic re-sectorization.

e Starting with an input sector design:
The local heuristics, mentioned in Section 3.3.1, allow GEOSECT to start
with an input sector design and adjust the sector boundaries locally, to
either improve the workload or to make them flow conforming. A globally
optimal solution (e.g., MIP [59]) that gives good workload balance, but
has issues with sector boundary flow interactions, is likely to benefit from
such post-processing.

More specifically, in order to make use of a global solution, it will be
important for GEOSECT not only to make the boundary changes that
are absolutely necessary, but also to keep the resulting new design as
close as possible to the input design. To achieve this goal, the local
2-opt method can be modified as follows. After erasing a boundary,
increase the weight of (or add more) search nodes near this boundary.
By increasing the weight, we mean that a node near this boundary should
be more likely to be on the new cut. Any constraint violation by the
new cut should be addressed, regardless to this weighing scheme.

¢ Extending local re-partitioning method:
Add more options for a local move, including (2 — 1), (2 — 3) (1 — 2)
etc.

¢ Running time:
Running time was not an issue with GEOSECT1.0, which produced con-
vex sector designs very quickly in practice. However, incorporating flow
(and other) constraints in the model has resulted in a substantial in-
crease in the running time. For dynamic re-sectorization, it is critical to
generate the sector designs quickly. Real-time update of workload (and
constraint violation checks) is also inevitable for adding the manual edit-
ing feature. While running time was not our primary focus in recent

97

developments designed to improve functionality and quality of sectors,
there are many optimizations we expect to incorporate in the software
to increase its efficiency.

98

References

1]

[10]

National airspace redesign (NAR). Office of Air Traffic and Airspace
Management, Federal Aviation Administration.

Occupational outlook handbook. Bureau of Labor Statistics, U.S. Depart-
ment of Labor.

http://movementpatterns.pbworks.com/Patterns-of-Movement.
http://voronoi.ams.sunysb.edu/~gk/projects/GeoSect.

Human operator or load on air traffic control. M. W. Somlensky and E. S.
Stein, editors, Human factors in air traffic control, pages 155—-183, March
1998.

M. Altman. Is automation the answer? The computational complexity of

automated redistricting. Rutgers Computer and Law Technology Journal,
23(1):81-142, 1997.

M. Altman and M. McDonald. A computation-intensive method for evalu-
ating intent in redistricting. In 200/ Midwest Political Science Association
Conference, Chicago, IL, April 2004.

N. Andrienko and G. Andrienko. Designing visual analytics methods for

massive collections of movement data. In Cartographica v.42 (2), pages
117-138, 2007.

B. Aronov, P. Carmi, and M. J. Katz. Minimum-cost load-balancing par-
titions. In SCG ’06: Proceedings of the 22nd annual Symposium on Com-
putational Geometry, pages 301-308, New York, NY, USA, 2006. ACM.

N. Bansal, M. Mahdian, and M. Sviridenko. Minimizing makespan in
no-wait job shops. Mathematics of Operations Research, 30(4):817-831,
2005.

99

[11]

[16]

[17]

[18]

[19]

[20]

A. Basu, J. S. B. Mitchell, and G. Sabhnani. Geometric algorithms for
optimal airspace design and air traffic controller workload balancing. In
Ninth Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 75-89, San Fransisco, CA, January 2008.

S. Bereg, K. Buchin, M. Buchin, M. L. Gavrilova, and B. Zhu. Voronoi
diagram of polygonal chains under the discrete fréchet distance. In Pro-
ceedings of the 14th annual International Conference on Computing and
Combinatorics, pages 352362, 2008.

P. K. Bergey, C. T. Ragsdale, and M. Hoskote. A simulated annealing
genetic algorithm for the electrical power districting problem. Annals of
Operations Research, 121(1-2):33-55, July 2003.

P. Berman, B. Dasgupta, and S. Muthukrishnan. On the exact size of the
binary space partitioning of sets of isothetic rectangles with applications.
SIAM Journal of Discrete Mathematics, 15:252-267, 2002.

P. Berman, B. Dasgupta, S. Muthukrishnan, and S. Ramaswami. Im-
proved approximation algorithms for rectangle tiling and packing. In
Proceedings of the 12th annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 427-436, 2001.

D. Bertsimas, G. Lulli, and A. Odoni. The air traffic low management
problem: An integer optimization approach. In 13th International Con-
ference on Integer Programming and Combinatorial Optimization, IPCO
2008 Bertinoro, volume 5035, pages 34—46, May 2008.

M. Bloem and P. Kopardekar. Combining airspace sectors for the efficient
use of air traffic control resources. In AIAA Guidance, Navigation, and
Control Conference, Aug 2008.

C. R. Brinton and L. S. Cook. Analysis of current airspace operations
and implications for dynamic airspace configuration. In ATAA Guidance,
Navigation, and Control Conference, Aug 2008.

T. M. Chan. Geometric applications of a randomized optimization tech-
nique. Discrete & Computational Geometry, ACM, 22(4):269-278, De-
cember 1999.

T. M. Chan. Personal communication, 2006.

100

[21]

[22]

[23]

[31]

R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemerédi. An optimal-time
algorithm for slope selection. SIAM Journal on Computing, 18(4):792—
810, 1989.

R. S. Conker, D. A. Moch-Mooney, W. P. Niedringhaus, and B. T. Sim-
mons. New Process for “Clean Sheet” Airspace Design and Evaluation.
In 7th US/Europe ATM Seminar, July 2007.

A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algo-
rithm for scheduling trains in a railway network. In Furopean Journal of
Operational Research, volume 183(2), pages 643—657, December 2007.

B. Dasgupta and S. Muthukrishnan. Slice and dice: A simple, improved
approximate tiling recipe. In Proceedings of the 13th annual ACM-SIAM
Symposium on Discrete Algorithms, pages 455-464, 2002.

W. F. de la Vega and G. Lueker. Bin packing can be solved within 1 + €
in linear time. Combinatorica, 1(4):349-355, 1981.

J. A. Dykes and D. M. Mountain. Seeking structure in records of spatio-
temporal behaviour: visualization issues, efforts and applications. Com-
putational Statistics € Data Analysis, 43(4):581-603, 2003.

A. H. Farrahi and Z. Wood. Computational complexity of the airspace
sectorization problem. Personal Communication, Feb 2009.

S. L. Forman and Y. Yue. Congressional districting using a TSP-based
genetic algorithm. Lecture Notes in Computer Science, 2724:2072-2083,
Jan 2003.

J. Gudmundsson, P. Laube, and T. Wolle. Movement patterns in spatio-
temporal data. In Encyclopedia of GIS, pages 726—732. 2008.

B. Hackney, R. Hoffman, B. Khorrami, R. Kicinger, T. Lewis, M. Lowther,
J. Mitchell, J. Prete, G. Sabhnani, K. Stefanidis, and A. Yousefi. Airspace
Algorithms: Dynamic Airspace Configuration DCN 32N0209-014. Tech-
nical report, NASA Ames Research Center, March 2009.

S. Har-Peled. Clustering motion. Discrete & Computational Geometry,
31(4):545-565, 2004.

101

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]

K. C. Hendy, J. Liao, and P. Milgram. Combining time and intensity
effects in assessing operator information and processing load. Journal of
Human Factors, 39(1):30-47(18), 1997.

D. Karger, C. Stein, and J. Wein. Scheduling algorithms. CRC Handbook
of Computer Science, 1997.

S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rect-
angle tiling and packing. In Proceedings of the 9th annual ACM-SIAM
Symposium on Discrete Algorithms, pages 384-393, Philadelphia, PA,
USA, 1998. Society for Industrial and Applied Mathematics.

S. Khanna, S. Muthukrishnan, and S. Skiena. Efficient array partitioning.
In ICALP °97: Proceedings of the 24th International Colloquium on Au-
tomata, Languages and Programming, pages 616626, London, UK, 1997.
Springer-Verlag.

J. Kim, A. Kroller, J. S. B. Mitchell, and G. R. Sabhnani. Scheduling air-
crafts to reduce controller workload. Submitted to 17th annual European
Symposium on Algorithms (ESA), 2009.

A. Klein, P. Kopardekar, M. D. Rodgers, and H. Kaing. “Airspace Play-
book”: Dynamic Airspace Reallocation Coordinated with the National
Severe Weather Playbook. In AIAA 7th Aviation Technology, Integration
and Operations (ATIO) Forum, Belfast, UK, September 2007.

S. Klein, M. Rodgers, H. Kaing, P. Lucic, and K. Leiden. DAG CE-6
Golden Nuggets Fast-Time Modeling and Simulation Studies Final Re-
port Part 3: Dynamic Airspace Configuration Analysis. Technical report,
NASA Ames Research Center, December 2008.

K. Lee. Describing Airspace Complexity: Airspace Response to Distur-
bances. PhD thesis, Georgia Institute of Technology, April 2008.

P. M. Lennartz. No-Wait Job Shop Scheduling, a Constraint Propagation
Approach. PhD thesis, UU Universiteit Utrecht, Netherlands, 2006.

A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-
wait constraints. Furopean Journal of Operational Research, 143(3):498-
517, December 2002.

102

[42]

[44]

[49]

[50]

[51]

[52]

J. S. B. Mitchell, G. Sabhnani, J. Krozel, B. Hoffman, and A. Yousefi. Dy-
namic airspace configuration management based on computational geom-

etry techniques. In ATAA Guidance, Navigation, and Control Conference,
Aug 2008.

R. H. Mogford, J. A. Guttman, S. L. Morrow, and P. Kopardekar. The
complexity construct in air traffic control: A review and synthesis of
the literature. Technical report DOT/FAA/CT-TN95/22, Department of
Transportation, Federal Aviation Administration Technical Center, July
1995.

S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings
in two dimensions: Algorithms, complexity, and applications. In ICDT
’99: Proceedings of the 7th International Conference on Database Theory,
pages 236-256, London, UK, 1999. Springer-Verlag.

S. Muthukrishnan and T. Suel. Approximation algorithms for array par-
titioning problems. Journal of Algorithms, 54(1):85-104, 2005.

M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-
surface removal and solid modeling. Discrete € Computational Geometry,
5(5):485-503, 1990.

M. S. Paterson and F. F. Yao. Optimal binary space partitions for or-
thogonal objects. Journal of Algorithms, 13(1):99-113, 1992.

J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering
in spatial databases: The algorithm gdbscan and its applications. Data
Mining and Knowledge Discovery, 2(2):169-194, 1998.

D. K. Schmidt. On modeling ATC work load and sector capacity. Journal
of Aircraft, 13(7):531-537, 1976.

C. J. Schuster. No-wait job shop scheduling: Tabu search and complexity
of subproblems. Mathematical Methods of Operations Research, 63(3):473—
491, July 2006.

C. J. Schuster and J. M. Framinan. Approximative procedures for no-wait
job shop scheduling. Operations Research Letters, 31(4):308-318, 2003.

B. Sridhar, S. Grabbe, K. Sheth, and K. D. Bilimoria. Initial study of tube
networks for flexible airspace utilization. In ATAA Guidance Navigation
and Control Conference, Aug. 2006.

103

[53]

[55]

[56]

D. Sweet, V. Manikonda, J. Aronson, K. Roth, and M. Blake. Fast-time
simulation system for analysis of advanced air transportation concepts.
In ATAA Modeling and Simulation Technologies Conference and Ezhibit,
Monterey, CA, August 2002.

S.-L. A. Tien and R. Hoffman. Optimizing airspace sectors for varying
demand patterns using multi-controller staffing. In Eighth USA/Europe
Air Traffic Management Research and Development Seminar, June 2009.

G. J. Woeginger. Inapproximability results for no-wait job shop schedul-
ing. Operations Research Letters, 32(4):320-325, 2004.

G. L. Wong. Analysis of different cost functions in the geosect airspace
partitioning tool. To be presented at the 28th Digital Avionics Systems
Conference (DASC), October 2009.

I. Wyndemere. Dynamic resectorization: Accommodating increased flight
flexibility. Technical report, Boulder, CO, 1997.

M. Xue. Airspace sector redesign based on voronoi diagrams. In AIAA
Guidance, Navigation, and Control Conference, Aug 2008.

A. Yousefi. Optimum Airspace Design with Air Traffic Controller
Workload-Based Partitioning. PhD thesis, George Mason University, 2005.

A. Yousefi and G. L. Donohue. Temporal and spatial distribution of
airspace complexity for air traffic controller workload-based sectorization.
In AIAA Jth Aviation Technology, Integration and Operations (ATIO)
Forum, Chicago, 1L, September 2004.

104

